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Abstract 

 

Investigating the impact of households’ occupancy patterns and activity routines 

on daily load profiles: a data-driven approach 

 

Saba Akbari, M.A.Sc 

Concordia University 2021 

 

Examining individual households' load profiles and discovering contextual and temporal factors 

of energy usage (e.g., occupancy, time of use, and occupant activity) gain lots of popularity in 

recent studies. Given the proliferation of Home and Building Energy Management Systems 

(HEMS and BEMS) and the availability of high-resolution data of households’ energy usage, it is 

possible to gain a deeper understanding of temporal factors of load profiles and take advantage of 

the services offered by these systems. The incorporation of smart meters in the grid has several 

economic and environmental benefits. These technologies (1) provide the opportunity for 

appliance scheduling, which can reduce electricity costs on the customer-side, and (2) optimize 

the integration of intermittent renewable energy sources to the electricity grid. Despite the 

importance of temporal determinants, previous works mainly focused on determinants of annual 

end-use load. Additionally, studies on residential energy mainly address district and city scales, 

while small-scale analyses are highly overlooked. Based on the identified limitations, in this study, 

two time-series analysis methods (k-shape clustering and change point detection) are implemented 

on historical, sensor-collected data of three residential units in order to discover the frequent 

occupancy schedule patterns of each household and identify the high- and low- consumption 

periods within each occupancy pattern. Then LASSO regression is utilized to find the comparative 

contribution of various activity factors on households’ energy usage (e.g., kitchen-, living room-, 

bathroom-, or bedroom-related activities indicated by plug loads recorded in specific rooms of the 

apartments) during the identified energy consumption periods. The results suggest that occupancy 

patterns are able to explain temporal variations in daily load profiles, and the shape of daily load 
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profiles can be characterized by the occupancy schedule pattern of a day. Furthermore, the analysis 

of this study can make households aware of the most influencing activities during high-

consumption periods. And as a result, households can reduce their energy bills by shifting the 

energy-consuming activities from high-consumption periods to off-peak periods. 
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Chapter One 

1. Introduction 

1.1. Background and motivations 

The residential sector accounts for almost one-third of U.S. electricity use (Figure 1-1), and around 

39% of this consumption is for household appliances (28%) and lighting (11%) (Figure 1-2) 

(Schwartz et al., 2017).  

 

 

Figure 1-1. Electricity consumption by sector in U.S., 2014 (Schwartz et al., 2017) 

 

 

Figure 1-2. Residential electricity consumers in U.S., 2014 (Schwartz et al., 2017) 
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According to the Annual Energy Outlook report published by U.S. Energy Information 

Administration, the residential electricity consumption will grow by 0.6% per year through 2050 

because of the increasing demand for electric appliances and devices (Figure 1-3) (Sugawara & 

Nikaido, 2019). Given the importance of residential electricity demand, it is essential to have a 

good understanding of its influencing factors to enhance demand response in this sector. 

 

 

Figure 1-3. Annual prediction of residential energy demand through 2050 by energy type; adopted from (Sugawara 

& Nikaido, 2019) 

 

One of the most important challenges regarding residential energy consumption is peak demand. 

The economic and environmental issues introduced by imbalances between supply and demand 

during peak periods are becoming increasingly significant. As mentioned by (Thieblemont et al., 

2018), the mismatches between demand and supply, especially during the peak hours, force energy 

suppliers to (1) buy energy from their neighbors at an expensive rate or (2) turn to fossil fuels 

instead of renewable sources to respond to the peak demand. As a result of the mentioned issues, 

the smart grid solutions have gained popularity in recent years since they can bring economic and 

environmental benefits to the demand-supply system (Grunewald & Diakonova, 2018) (Kirschen, 

2003). On the small scales (i.e., household or building), (Zhou et al., 2016) emphasized the role of 

Home Energy Management Systems (HEMS) in alleviating the two-way interaction between 

consumers (demand-side) and energy providers (supplier-side). (Beaudin & Zareipour, 2015) 
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reported that HEMS can reduce the cost of electricity by 23.1%, and the residential peak demand 

can be reduced by 29.6% using these systems. (Zhou et al., 2016) summarized functionalities of 

smart HEMS as: 1. “monitoring” real-time energy consumption of households, 2. “collecting” and 

storing data regarding the amount of appliance consumption, amount of energy generated from 

available resources in the distributed grid, and energy storage capacity, 3. “controlling” and 4. 

“management” of energy usage in smart homes through consideration of renewable energy 

systems, home appliance operations, energy storage systems, and plug-in electric vehicles (EV), 

and eventually 5. “alarming” in case of fault and abnormality detection in the systems. Based on 

these functionalities, some of the advantages of smart HEMSs are as follows:  

• HEMSs can contribute to the integration of multiple renewable sources of energy through the 

provision of a sophisticated storage and controlling platform that schedule charging/ 

discharging operations based on the energy demand and availability of different renewable 

sources at each time (Vijayapriya & Kothari, 2011) (Zhou et al., 2016);  

• These smart systems can be programmed to follow an appliance scheduling scheme based on 

real-time electricity pricing during peak and off-peak periods to reduce costs for consumers 

and reach energy efficiency (Ozturk et al., 2013) (Zhou et al., 2016). Appliance scheduling can 

reduce the peak-to-average ratio of one household energy usage by 19.7%, and the same 

statistics for aggregated usage of 10 households is 34.6% (Zhao et al., 2013).  

• Furthermore, (Nilsson et al., 2018) noted that HEMSs have the potential to improve energy 

feedback effectiveness and increase households’ awareness regarding their energy 

consumption. The authors further stipulated that through employing a variety of metrics, 

formats, and data aggregation levels, HEMSs can provide transparent and interpretable energy 

feedbacks. The concise feedback with high-level interpretablity can bridge the gap between 

households’ everyday activities and the amount of energy consumption and are easier for 

households to use them and reduce energy consumption. 

Advanced metering technologies connected to these systems can collect high-resolution data from 

households and their energy-related behaviors over a long period, making it possible to analyze 

households’ energy usage on a daily or hourly basis. Perceiving energy consumption as load 

profiles rather than daily, monthly or annual end-uses can enhance energy estimations on higher 

resolutions and provide opportunities for shifting load from peak to off-peak periods (Torriti, 
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2020). Investigating temporal drivers of energy usage can help us realize when, how, and why the 

energy is consumed, so understanding these temporal factors leads to improved energy 

management in the residential sector. 

 

1.2. Objectives 

This study aims to develop a methodology framework that reveals the impact of occupants’ 

routines on the shape of load profiles in residential apartments. The proposed framework of this 

study is examined on data of three residential apartments collected by HEMS (Home Energy 

Management System) over one year. This study aims to achieve the following objectives: 

• To develop a methodology framework to extract the usual routines of individual 

households regarding their presence and energy-related activities 

• To investigate the effect of temporal factors of energy consumption (i.e., occupancy and 

occupants’ activity) on the shape of load profiles 

The purpose of this investigation is to find out when and why the shape of load profiles regularly 

changes. Occupancy and occupants’ activity data will be analyzed to find the answers to these 

questions. Finding the factors of energy consumption on an hourly basis is beneficial for energy 

interventions since occupants can get aware of their activities during the peak demand periods; 

plus, suggestions regarding appliance scheduling and peak shifting can be presented to households 

in order to reduce their peak demand and avoid high electricity cost rates during the peak hours. 

Fulfilling the mentioned objectives can be useful for regulating the automation of buildings’ 

systems to the frequently practiced routines of households’ members. 

 

1.3. Organization of the thesis 

In this study, in Error! Reference source not found., the studies exploring the determinants of r

esidential energy are overviewed, and different types of data collection methods and their impact 

on residential energy analyses are critically reviewed. Based on the previous works, at the end of 

chapter Error! Reference source not found., the existing research gaps are mentioned, and the a

pproach of this study to addressing them is explained. Chapter 0 reports the characteristics of the 
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data sets used in this study. Afterward, the proposed methodology framework of the current 

research and its potentials to achieve the defined objectives are introduced in chapter Error! R

eference source not found.. Lastly, the results of the analyses are thoroughly discussed in chapter 

0. 
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Chapter Two 

2. Literature review 

2.1. Residential energy: determinants, data, and scale in previous 

analyses 

So far, the available data regarding residential energy consumption mainly contain information 

about socio-demographic, dwelling characteristics, and appliance ownership factors. Based on the 

review of (Jones et al., 2015), most of the studies exploring the mentioned factors are mainly 

conducted on large scales with a large number of dwellings (e.g., usually more than hundreds). 

Plus, each household's annual or monthly end-use loads are mainly considered for impact 

assessment of the mentioned factors. (Satre-Meloy, 2019) found the comparative contribution of 

several structural factors (e.g., dwelling characteristics and ownership of certain appliances) and 

occupant-related drivers (e.g., occupants’ energy literacy and attitudes towards consumption, 

socio-economic factors, etc.) on the annual electricity consumption of almost 1000 households. 

The findings suggest that dwelling size, number of households’ members, ownership of air-

conditioner (AC) and electric vehicles (EV) are strongly associated with high consumption. In 

contrast, some habitual behaviors like unplugging unneeded appliances and turning off AC during 

the times of absence are associated with low energy consumption in residential dwellings. With 

the same approach to find the comparative contribution of appliance ownership and appliance 

usage factors, dwelling characteristics, socio-demographic parameters, and occupants’ attitudes on 

annual energy consumption of 845 households, (Huebner et al., 2016) discovered that the 

regression model employing only appliance-related variables is able to explain the residential 

energy consumption sufficiently, and inclusion of socio-demographic and dwelling factors to the 

same model can only enhance the energy predictions slightly; this is while occupant attitude factors 

proved to be neutral predictors. The findings of the above-mentioned studies suggest that a 

combination of socio-demographic, dwelling characteristics, and appliance ownership factors can 

sufficiently explain the size of end-use load (Satre-Meloy, 2019). However, these factors cannot 

explain fluctuations in the shape of load profiles and timing of consumption since none of the 

mentioned factors are sufficient representatives of the daily routines of different socio-

demographic groups (Torriti, 2020). (Yu, Fung, et al., 2011) summarized the factors influencing 
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building energy consumption in two main categories of related and unrelated to occupant behavior. 

In the mentioned study, the authors suggested that occupant behavior's impact on buildings’ energy 

can be grasped if the factors unrelated to occupant behavior (e.g., climatic conditions, building 

characteristics, building services features, number of households’ members, etc.) are similar 

among buildings. Inspired by the same idea, (Ashouri et al., 2019) took advantage of k-means 

clustering to group buildings which have similar physical characteristics (i.e., occupant number, 

climate, and building characteristics, etc.) to rank buildings regarding their end-use consumption 

and provide energy feedbacks to the occupants of buildings with similar physical characteristics. 

The results suggested that the consumption gap between end-use loads of buildings with similar 

physical characteristics can be attributed to occupant behavior. However, in this study, temporal 

occupant-related factors such as occupied and unoccupied periods and hourly consumption of 

different activities have not been considered, and only daily end-use loads are compared and 

analyzed for the energy feedback purposes. As a result, there is the possibility of comparing 

households who spend most of their time inside their apartments and consuming energy against 

those who are usually absent and inevitably consume less. Two of the well-recognized factors of 

energy consumption that are highly variable at different time-periods of day are occupancy and 

occupant activity (Torriti, 2020). Timing of occupied periods (Yao & Steemers, 2005) (Richardson 

et al., 2008) (Buttitta et al., 2017), along with the timing and type of occupant activities (Satre-

Meloy et al., 2020) (Widén & Wäckelgård, 2010) (Gajowniczek & Zabkowski, 2017), have an 

evident impact on daily load profiles. Recent research emphasizes the need to investigate energy 

consumption factors on an hourly or daily basis rather than monthly or annually (Satre-Meloy, 

2019). Nowadays, owing to the proliferation of monitoring and availability of high-resolution 

occupancy and energy consumption data, it is possible to explore factors influencing the shape of 

load profiles on an hourly or even higher-resolution basis.  

In this section, some of the common data collection methods and the models obtained from them 

in the previous works of residential energy are reviewed. Based on the advantages and drawbacks 

of data collection methods, their potentials for different occupant behavior and energy analyses 

are also discussed. The most common monitoring techniques of occupant behavior are sensor 

monitoring and surveys (Gilani & O’Brien, 2017). Self-reports like time-use surveys are 

commonly used to address occupancy and occupant activities in the residential sector (Torriti, 

2020). In some of these studies, the metered consumption data accompany self-reports and surveys 
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to assess the impact of occupants on energy consumption (Satre-Meloy et al., 2020) (Huebner et 

al., 2016) (Viegas et al., 2016) (Vassileva et al., 2012). Surveys and self-reports are easier and 

more economical to collect than sensor-monitoring, which can be relatively expensive at first 

installation (Zhang et al., 2018) (Gilani & O’Brien, 2017); the mentioned qualities make surveys 

more suitable for studies on larger scales. However, the main issue with reports is that actual and 

reported events are not always in accordance with each other (Hong et al., 2017) (Zhang et al., 

2018) (McKenna et al., 2018). To examine the consistency between reported and actual 

consumption, (Durand-Daubin et al., 2013) investigated several indicators such as duration, time 

of use, and intensity of energy consumption obtained from questionnaires, diaries, and measured 

energy consumption data of 60 buildings in France. Despite the overall consistency between 

intensity and operation time of appliances obtained via the mentioned data collection methods, 

some level of inconsistency is reported for some appliances and indicators (Durand-Daubin et al., 

2013). Additionally, self-reports data are difficult to be maintained for long-term data collection 

practices (Gilani & O’Brien, 2017), and they are usually collected for a limited number of days. 

For instance, national Time Use Surveys (TUS), one of the most common available data in 

residential energy studies, are collected for one single weekend day and one single working day 

(McKenna et al., 2018). Hence, the models developed from these surveys are based on the 

assumption of two repetitive behavioral patterns for all working days and all weekend days 

(Buttitta et al., 2017) (Buttitta et al., 2019). As stated by (McKenna et al., 2018), this issue with 

TUS leads to ignorance of the inherent flexibility of occupant behavior. TUS data are reports filled 

by occupants at, usually, 10-minute intervals. The data contains information about the location of 

occupants and their activities at each time-interval. National time-use surveys are one of the most 

popular data collection methods when it comes to residential energy. Surveys like TUS can be 

collected for a large number of households (e.g., on district or city levels). Many studies addressing 

residential occupancy and occupant activities have used TUS to find groups of occupants (or 

households) with similar behavioral characteristics (i.e., customer segmentation) (Diao et al., 

2017) (Buttitta et al., 2017) (Buttitta et al., 2019) (Torriti, 2020). Although customer segmentation 

and developing models for a small number of customer groups can be useful for demand-response 

programs on large scales, (O’Brien et al., 2017) argued that aggregating data of several occupants 

on small scales (16 occupants in this study) ignores the inter-diversity in behavior of occupants. 

According to the authors, attention must be paid to the selection of sample size so that the obtained 
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model can sufficiently capture diversity among occupants’ behavior on large scales. However, for 

small-scale occupant behavior analyses, the authors did not recommend aggregating multiple 

occupants’ behavior since the diversity in occupants' behavior (e.g., arrival and departure hours) 

is more tangible on small scales. (Li et al., 2019)  reported that aggregation can introduce a 

smoothing effect on load profiles since aggregated data of several occupants with diverse peak 

load timing will result in smoothed load profiles during peak periods. Using WikiEnergy data, 

(Gajowniczek & Zabkowski, 2017) also demonstrated how the aggregated load profile of 46 

households represents a smoother peak load in the morning compared to a random single 

household load profile. This aggregation and smoothing effect can lead to smaller prediction errors 

in large-scale analyses that cover data from a large number of consumers. (Gajowniczek & 

Zabkowski, 2017) reported that the mean absolute percentage error (MAPE) in the prediction of 

individual household’s consumptions (20 - 100%) is extremely higher than that of aggregated 

consumption of multiple households (1 - 2%). It can be concluded that the impact of occupant 

behavior tends to introduce some level of uncertainty to energy predictions on small-scale levels, 

while this uncertainty is less effective on larger scales (Li et al., 2019). This fact emphasizes the 

need to address individual households’ traits in small scales to increase the prediction accuracy of 

each household’s consumption. (Pereira & Ramos, 2019) discussed the importance of adapting 

energy management systems (e.g. HEMS, BEMS, BAS, etc.) to the specificities of each household 

in order to automate the operation of some building systems such as windows and roller shutters. 

This automation can increase the visual and thermal comfort and improve the indoor air quality. 

Additionally, a good knowledge of specificities of each occupant’s routines can be useful in 

optimizing the zone-level designs (e.g., terminal HVAC units) (O’Brien et al., 2017). So far, the 

modelling efforts primarily tried to fit data to a limited number of customer groups, while the 

diversity in routines of individuals is largely ignored (O’Brien et al., 2017). Sensor monitoring 

allows for collecting data for a prolonged period and can provide more suitable granularity of real 

data (Zhang et al., 2018). In general, sensor-collected data are more suitable for discovering the 

diverse energy consumption routines of individual households. 
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2.2. Data analysis in occupant behavior modeling  

Data science is a fast-growing science that offers a variety of powerful, quantitative, analytical 

tools and techniques capable of handling large volumes of data that can be applied in many fields 

of study, including building energy. Some of these tools are data warehousing, artificial 

intelligence (AI), machine learning (ML), data mining (DM), and data visualization, which can be 

very helpful in decision-making processes. The mentioned techniques are compelling in handling 

large volumes of data collected by BEMS and HEMS since this data is of high resolution (e.g., 

records data at one-minute or even less than one-minute intervals) and can be collected for an 

extended period, so the size of datasets is relatively large. Considering building energy and 

occupant behavior studies, DM techniques (e.g., clustering, association rule mining, and 

classification methods, etc.) and statistical models such as regression models are some of the 

frequently practiced tools in exploring associations among different variables and discovering 

hidden, recurring patterns in behavior of occupants (Li et al., 2019) (Zhang et al., 2018) (Fan et 

al., 2018). Next, some of the most common data analysis methods practiced for pattern discovery 

and profiling are reviewed. 

2.2.1. Pattern discovery and profiling  

Among all the available methods, clustering has broadly been applied to find typical behavioral 

patterns of occupants. For example, (D’Oca & Hong, 2014) used k-means clustering and 

discovered four distinctive patterns of window opening/closing behavior among the occupants of 

16 naturally-ventilated office units. The obtained patterns are used to categorize office users based 

on their attitudes regarding interaction with windows. By taking a clustering-then-classification 

approach, (Yu, Haghighat, et al., 2011) first identified groups of buildings characterized by similar 

consumption behaviors using k-means. Then they applied decision tree to extract rules that explain 

the consumption characteristics of each group. Nonetheless, the clustering method's main 

popularity in occupant behavior and energy studies is associated with the fact that this method can 

be applied to time-series data to extract occupancy and energy load profiles. The profiles are 

characterized by similar fluctuation patterns of a certain value (e.g., level of occupancy, amount 

of consumption, etc.) over a certain time-window (usually a 24-hour window is considered). Load 

profiling has several merits, such as providing a basis to explore factors that have relations to the 

obtained profiles (Satre-Meloy et al., 2020) (McLoughlin et al., 2015), providing tailored energy 
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recommendation, load shifting, and enhancing demand-response managements (Kwac et al., 2014) 

(Kwac et al., 2018). Although conventional similarity distance measures like Euclidean distance 

(ED) are used very frequently to find clusters of load profiles (Lavin & Klabjan, 2015) (Kwac et 

al., 2018) (McLoughlin et al., 2015) (Liu et al., 2012) (Chicco et al., 2006), some recent studies 

(Satre-Meloy et al., 2020) (Teeraratkul et al., 2018) suggested that methods employing 

conventional distance measures cannot properly capture the temporal variations in time-series of 

load profiles. It is due to the fact that Euclidean distance can only compare the distance between 

corresponding time-points of two given time-series, so do not appropriately capture the temporal 

variations in load profile time-series. However, instead of using conventional distance measures 

to find dissimilarities between time-series of raw energy consumption, some studies attempted to 

make changes in the time-series of raw energy consumption to extract load profiles using 

conventional distance measures. For instance, (Xiao & Fan, 2014) segmented daily time-series 

into three modes of morning, afternoon, and night period, then used minimum, maximum, mean, 

and standard deviation of energy consumption within each mode to find the days with similar 

energy consumption statistics and extract the load profiles. In another study, to discover the peak-

time consumption profile of 269 households, (Satre-Meloy et al., 2020) utilized daily time-series 

of cumulative consumption instead of daily raw consumption time-series and compared the results 

of several clustering algorithms with different conventional distance measures (e.g., Euclidean, 

Manhattan distance measure). The results show that the use of cumulative load time-series allows 

for taking advantage of the simplicity of Euclidean distance as a distance measure to extract load 

profiles. On the other hand, there are similarity measures with more flexibility towards temporal 

variations of time-series and are tailored for time-series data. (Teeraratkul et al., 2018) used 

dynamic time warping (DTW) distance to find distinctive load profiles and extracted a smaller 

number of clusters comparing to the previously practiced clustering methods with conventional 

distance measures. The obtained clusters with DTW showed more cohesiveness with lower 

variability among the time-series clustered in the same groups. (Yang et al., 2017) compared 

clustering results obtained from DTW and Shape-based distance (SBD) measures on consumption 

time-series of 10 institutional buildings. They found out SBD outperforms DTW, and the obtained 

profiles of K-shape increase the overall accuracy of energy predictions. In addition to consumption 

time-series, profiling has also been used for time-series of occupancy. Occupancy is commonly 

recognized as the pre-requisite for occupants' energy-related behaviors and activities (Li et al., 
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2019). (Wei et al., 2019) proved the importance of occupancy level as an input for the energy 

prediction model to achieve higher prediction accuracy. (J. Zhao et al., 2014) evaluated the impact 

of office occupancy profiles on the HVAC energy use by integrating these profiles in energy 

simulations. They concluded that the influence of occupancy profiles on HVAC consumption 

varies for different climate zones. Plus, for some zones, consideration of hourly occupancy rate 

can reduce the energy consumption significantly. (D’Oca & Hong, 2015) found that the occupancy 

state of office buildings (occupied or vacant) can be accurately predicted by decision tree (C4.5) 

that uses time-related variables (e.g., season, day of week, etc.) and window change behaviors as 

input. In this study, the profiling is done by k-means clustering, and four identical occupancy 

schedule patterns are identified. Furthermore, (Liang et al., 2016) showed that occupancy profiles 

could also be explained and predicted using time-related variables (e.g., season, day of week) in 

office buildings. It can be seen in the literature that sensor-collected data has generally been used 

to find occupancy profiles in office buildings and the figures usually indicate the number of present 

occupants (i.e., occupancy level) at each time interval. However, in the residential sector, 

occupancy is mainly addressed using national TUS. Markov-Chain techniques are applied to TUS 

data of residential users to generate occupancy models that determine occupancy state (e.g., absent, 

present and active, present and non-active) at each time interval. These statistical models are 

regularly trained based on different categories such as weekday/weekend, number of household 

members (Richardson et al., 2008), or buildings’ type (e.g., detached houses, apartments, etc.) 

(Widén & Wäckelgård, 2010). However, (Buttitta et al., 2017) identified the limitation of such 

models in the incapability of categorizing users based on their presence routines and generating 

representative occupancy profiles for each category of users. This limitation exists because the 

generated occupancy models using probabilistic approaches like Markov-Chain for building stock 

users can only output the probability of change in occupancy states of a large number of users who 

might have utterly different at-home presence routines. To tackle this issue, (Buttitta et al., 2017) 

applied k-modes clustering on TUS data of building stock users and discovered several occupancy 

profiles representing groups of users with similar at-home presence schedules. As stated by the 

authors, these profiles are more suitable to be integrated in scalable energy-use models of building 

stocks. (Buttitta et al., 2019) proved that consideration of distinctive occupancy schedules for 

different groups of customers can increase the accuracy of annual heating energy demand 

estimations. (Diao et al., 2017) used k-modes clustering on sequences of 9 identified activities 
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obtained from American TUS (i.e., away from home, grooming, dishwashing, laundry, sleeping, 

cooking, cleaning, leisure, other) to find groups of occupants with similar activity patterns. The 

discovered patterns have been further used for energy estimation purposes. However, as mentioned 

earlier, one of the shortcomings of TUS data is the limited duration of data collection, and these 

surveys are collected for one single weekday and one single working day (Buttitta et al., 2017), so 

they are incapable of capturing intra-diversity of individuals’ behavior and are not appropriate to 

address the diversity of occupant behavior in small-scale analyses.  

 

2.3. Identified research gaps  

Based on the review, there is a trend in the literature regarding the discovery of temporal factors 

that impact residential energy consumption patterns, especially at the household level. The reason 

behind this growing trend is to find associations between time-related factors, user activity, and, 

eventually, the shape of load profiles. The insights obtained from this analysis can provide the 

opportunity for improved energy forecasts (Gajowniczek & Zabkowski, 2017) and enhanced 

energy management in the residential sector. Furthermore, in modeling approaches, especially in 

the residential sector, it is mainly attempted to fit data to a limited number of customer groups, and 

diverse routines of individuals have not been captured. In the residential sector, TUS data are 

essentially used for collecting data on occupancy and occupant activities. These surveys are only 

collected for a limited number of days, so models obtained from them cannot capture the diversity 

in the presence and activity routines of households. 

Based on the review of previous works on residential energy, the following research gaps are 

identified: 

1. While fitting models to data of a small number of customer groups is frequently practiced 

in the previous works, modeling specific routines of individual households have not been 

satisfactorily exercised. As a result, the inherent flexibility of individual households 

regarding their presence and energy consumption routines is ignored.  

2. It is also discussed that although the factors that impact the size of end-use load are well-

addressed, little is known about temporal factors of residential energy consumption.  
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Therefore, in this study, the attempt is to develop a data-driven framework to explore the impact 

of temporal and contextual determinants like occupancy and occupants’ activity on individual 

households' load profiles. The goal is to answer the following questions: 

• How diverse are a single household's routines regarding their presence and energy 

consumption throughout a long period? 

• Which hours are the time points when load profiles are bound to change (i.e., increase or 

decrease) significantly?  

• What types of activities are the key drivers of energy consumption during high- and low- 

consumption periods? 

The next chapter explains the case study apartments and the available data from the apartments 

and their potentials to answer the mentioned questions.  
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Chapter Three 

3. Data  

The datasets used in this study belong to three residential units of a building complex called Hikari. 

Hikari is an energy-efficient complex equipped with high-tech building/home energy management 

systems (BEMS/HEMS), which monitors a variety of data, including occupant-, energy-, and 

environmental-related. The three residential units selected for the current study have similar floor 

plans (see Figure 3-1) and are located on different levels of a building in the Hikari complex (see 

Table 3-1). The datasets of these units contain one-minute records of occupancy, lighting, and plug 

load in the year 2016: 

• Occupancy variables are motion detection data recorded for each apartment's room and 

have a binary format (i.e., contains values of zero and one representing unoccupied and 

occupied status, respectively).  

• Each lighting variable represents the amount of energy consumption for lights in a specific 

room of an apartment, so the lighting variables type is numerical, and the unit is W.h.  

• Plug variables contain energy consumption values recorded from each outlet in an 

apartment; therefore, they represent the households’ appliances energy consumption. Each 

plug variable belongs to a certain room. However, as opposed to motion variables, the 

plugs' location is unknown. In section 5.1, a possible solution is brought, which helps to 

have an assumption about the location of each plug sensor. Since specific appliance loads 

are not available in this study, each plug variable is perceived as occupants’ activities and 

interactions with appliances situated in a specific room to make these variables more 

understandable. The term “activity” refers to the interactions of occupants with appliances 

that lead to consumption in a specific zone. It is evident that each plug variable can 

represent the consumption value of more than one device. 

It should be noted that the initial data sets hold one-minute records of cumulative load for 

lighting and plug variables. Therefore, to obtain the actual lighting and plug energy 

consumption values on a one-minute basis, the cumulative consumption values of consecutive 

records are simply subtracted (i.e., the subtraction of cumulative consumption value in 5:01 

from the value in 5:00 is assigned to 5:00). 
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Table 3-1. General information on residential units 

 

 

 

 

Figure 3-1. Floor plan of the residential units (apartment 112, 152, and 162) 

 

 

 

 

 

Apartment ID Floor No. Floor Area (square meter) No. of residents 

112 1 109.3 1 person 

152 5 110 2 people 

162 6 110.2 2 people 
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Chapter Four 

4. Methodology 

4.1. Methodology framework 

The data-driven framework, illustrated in Figure 4-1, is proposed to achieve the objectives of the 

current study. As mentioned in chapter 0, data sets of three residential apartments are available for 

this study. The proposed framework is applied to the data of each apartment separately to see 

whether it can be generalized to households with different characteristics. After data preprocessing 

(first step of framework), to find the occupancy patterns, a clustering method, called K-shape, is 

used. The function of this method is more suitable for time-series compared to other conventional 

clustering methods such as K-means. Daily time-series of occupancy (obtained from motion 

detection data) are used as input of K-shape, and the outputs are clusters containing days with 

similar occupancy schedule profiles. In the third step, change point detection (CPD) is applied to 

daily time-series of energy consumption for days grouped in the same occupancy cluster. The 

obtained results of change point detection are hours when energy consumption is highly probable 

to either decrease or increase significantly. These hours can specify the periods of day 

characterized by a particular energy consumption behavior (i.e., high or low) within each 

occupancy cluster. In the fourth stage of the analysis, a regression model is trained for each 

consumption period in order to find the influencing activity factors within each period. Thus, the 

plug variables (i.e., plug number 1, 2, …, n) coupled with the total lighting load are utilized as 

predictors, while the total energy consumption is considered as the target variable of the regression 

models. Each plug variable belongs to a certain room of each apartment, so the energy consumed 

from each plug can be seen as an activity that belongs to the appliance(s) located in that room. 

Therefore, the regression model outputs some coefficients that indicate the most influencing 

activity factors on a household’s energy consumption for a given period. Regularization penalties 

are applied to the regression models to better differentiate the variables regarding their contribution 

to total energy consumption. The penalized regressions shrink the coefficients of all predictors to 

zero or near-zero values. This shrinkage is more severe for irrelevant predictors rather than 

influencing ones. In this study, the LASSO penalty is selected since this penalty term can achieve 

highly interpretable and sparse results by shrinking insignificant variables’ coefficients to zero. 
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Therefore, the coefficient set acquired from LASSO regression is expected to be sparser as some 

predictors’ coefficients will be set to zero. 



19 
 

 

Daily Occupancy Time-series: 

Step 1: Data Preparation 

Cluster (1) 

Cluster (k) 

Step 3: Change Point Detection 

Step 4: LASSO Regression 

Period 1-1  Period k-p  

1. Missing and dead values: removing days with consecutive missing and dead values 

2. Data aggregation: from one-minute to one-hour resolution  

3. Outlier detection: quartile method 

Step 2: K-shape Clustering 

Figure 4-1. Methodology framework 
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Microsoft Excel and R programming language are utilized to implement the framework. For the 

data preparation step, Microsoft Excel is used to handle missing and dead values, and “lubridate”, 

“dplyr”, and “reshape2” packages in R programming language are utilized to read and manipulate 

time variables (e.g., hour, day of week, month, season, etc.), aggregate data, and separate time-

series of length 24. “ggplot2” is used for plotting. For time-series clustering and cluster validation, 

“dtwclust” is used. Change point detection is carried out using the “changepoint” package. 

Regression analysis is implemented using both “glmnet” and “caret” packages in R. 

 

4.2. Data preparation 

4.2.1. Missing and dead values 

Two of the common issues with sensor-collected data are missing values and dead values. Missing 

values are data points for which the value is not recorded. As mentioned earlier, for lighting and 

plug variables, cumulative consumption values are transformed to minute-wise consumption 

values. Before this transformation, missing values found in one-minute cumulative consumption 

variables (i.e., lighting and plug variables) were filled with their respective previous value. 

Similarly, regarding one-minute binary values of motion detection, the value of the previous record 

is used to fill a missing record. Furthermore, missing values can occur at consecutive records in 

the datasets. In cases where missing values appeared at more than 30 consecutive records (i.e., 30 

minutes), the entire data of the respective day in which the continuous missing values have 

occurred should be removed entirely. Another type of issue in raw sensor-collected data is dead 

values. Dead values are defined as continuous data points (i.e., records) for which the sensor has 

recorded the same value for a long period (Xiao & Fan, 2014). The same measure applied for 

continuous missing values is adopted for dead values as well. Therefore, days containing more 

than 30-minutes of dead values are removed from the data sets. It should be mentioned that in our 

datasets, the cases of consecutive missing records and dead values usually occur in several days, 

which is much greater than a 30-minute window. However, a 30-minute window is suggested for 

removing the entire day instead of filling the continuous missing values since the replaced values 

can lead to misleading extreme values in the data aggregation step.   
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4.2.2. Data aggregation 

Another data preparation stage is data aggregation. In this study, the one-minute values are 

aggregated to one-hour values in order to make variables more interpretable and tangible. As stated 

earlier, motion detection data is available for each room of the apartments and shows whether a 

motion is detected in a room within a one-minute interval. Given the occupancy in the entire 

apartment matters for the purpose of this study, to hourly aggregate the occupancy variables, it is 

necessary to sum all the motions detected in the entire apartment within each hour. After 

aggregation, the hourly values of occupancy account for all the motions detected in the entire 

apartment at each hour. These hourly values represent the occupancy level (count of motions 

recorded) within an hour. The number of motions detected in the period between two consecutive 

hours is assigned to the beginning hour of that period (e.g., the number of motions detected from 

1:00 to 1:59 a.m. are summed up, and the obtained value is assigned to 1:00 a.m.). The same 

aggregation is used for plug and lighting variables, so the sum of values within an hour is calculated 

and assigned to the beginning hour of each one-hour interval. After this aggregation, it is possible 

to obtain sequences (time-series) of length 24, which depict changes in hourly count of motions 

and hourly energy consumption throughout a day. With a simple transformation in the arrangement 

of data, it is possible to create datasets whose rows represent daily time-series of motion count or 

energy consumption. In the next steps of the methodology, daily time-series of motion count (i.e., 

occupancy) are used as input of time-series clustering to find groups of days with occupancy time-

series of similar shapes. Plus, daily load profiles are utilized in change point detection (CPD) to 

find the hours at which a sudden change in the load profile is expected. 

4.2.3. Outlier detection 

The quartile method is used to detect the outliers. However, some of the plug variables in the data 

sets are very sparse. As mentioned earlier, these variables represent the amount of energy 

consumption recoded from the apartments' outlets. It is evident that occupants might occasionally 

plug appliances into the outlets, or some plugged devices might not have a significant standby 

energy consumption, which causes sparsity in the respective plug variables. Due to the sparsity in 

the plug variables, the quartile method is only applied to the non-zero values in order to find the 

abnormal values. Hence, using equations presented in Appendix G, the plug variables’ outliers are 
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set to zeros. The quartile method is also implemented on hourly motion count values and hourly 

lighting energy consumption values. 

 

4.3. Time-series clustering analysis  

So far in the literature, the partitional clustering algorithms, especially K-means with Euclidean 

distance, have proved to be very efficient in occupancy and energy profiling. This is while due to 

its pair-wise distance calculation, K-means has some shortcomings when it comes to measuring 

the distance between time-series. (Paparrizos & Gravano, 2015) mentioned that in addition to the 

choice of clustering method (e.g., hierarchical, partitional, spectral, etc.), the choice of distance 

measure is necessary to achieve higher accuracy and efficiency in time-series clustering 

algorithms. In the mentioned study, the authors introduced a novel time-series clustering method, 

called K-shape, which is a domain-independent, accurate, and scalable clustering method. 

However, the major popularity of the K-shape lies in the fact that this method is able to properly 

address the distortions and temporal variations in time-series when measuring the similarity among 

time-series.  

4.3.1. Distortions in time-series 

In time-series clustering, it is essential to mitigate the impact of distortions and temporal variations 

in time-series data so that the comparisons are meaningful. In other words, the clustering algorithm 

should be invariant towards the distortions. Some of the distortions are as follows: 

1. Translation distortion is related to the difference in the amplitude of two time-series with 

similar patterns. Figure 4-2 (a) shows that while the illustrated time-series have similar 

patterns, one of them has a bigger amplitude. 

2. Noise distortion happens when there are noises in time-series' values, while time-series’ 

overall patterns are similar. Noise invariance is a characteristic of clustering algorithms to 

handle noises and measure similarity in time-series regardless of noises (see Figure 4-2 (b)).  

3. Shift distortion is associated with the difference in phases of two time-series with similar 

overall patterns; time-series can be of the same pattern, but one can be slightly shifted in time 

(see Figure 4-2 (c)).  
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Some of the intrinsic distortions in time-series data can be eliminated using the normalization of 

time-series. Z-normalizing is the most common normalization method used for time-series 

clustering, which also helps achieve translation-invariance (Paparrizos & Gravano, 2015). Hence, 

it is vital to z-normalize input time-series before comparing the similarity between them. Z-

normalization is applied on values of each time-series separately, so for a time-series of length 𝑛 

the z-normalization equation is as follows: 

𝑧𝑖 =  
𝑥𝑖 −  𝜇

𝜎
, 𝑓𝑜𝑟  𝑖 = 1, 2, … , 𝑛. (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛1) 

 

In case of daily time-series used in this study, 𝑖 ranges from 1 to 24. Nonetheless, z-normalizing 

time-series solely cannot provide the area for meaningful comparison of time-series. The choice 

of distance measure and centroid calculation should also be accounted for to make robust 

comparisons. K-shape method, which is shift-, translation-, and complexity-invariance, can 

 

(a) Translation distortion 

 

(b) Noise distortion 

 

(c) Shift distortion 

Figure 4-2. Different types of distortions in time-series data 
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compare time-series properly and handle the temporal variation by satisfying the mentioned 

invariances (Paparrizos & Gravano, 2015).  

4.3.2. K-shape clustering procedure 

Similar to the well-known K-means, K-shape uses the iterative assignment and refinement 

procedure to group time-series with similar shape (pattern) in distinctive clusters. Accordingly, in 

the K-shape algorithm, after the initial random selection of 𝑘 clusters, the cluster centroids will be 

computed. Once the initial centroids are obtained, each time-series will be assigned to the closest 

centroid. The assignment step depends on the shape-based distance measure computation 

(Equation 3). Then, in the refinement step, the new centroids' position will be determined based 

on the new cluster members using Equation 4. The assignment and refinement steps will be 

repeated until either (1) no changes occur in cluster membership of time-series or (2) the algorithm 

reaches its iteration limit, which can be predetermined by the user. Both assignment and refinement 

procedures in K-shape clustering relies on the normalized cross-correlation (𝑁𝐶𝐶) computation 

(Equation 2). The nature of cross-correlation is similar to the convolution of two functions. Cross-

correlation (𝑐𝑐𝑤 (�⃗�, �⃗�)) calculates the inner-product of two sequences in the way that one sequence 

remains static and the other one slides over it; meanwhile, the inner-product of each slide is 

calculated. The slide with the highest inner product gives the alignment of two time-series, where 

the similarity between the two time-series is at its peak. Therefore, if two time-series with length 

𝑚 are considered (𝑥 =  (𝑥1, . . . , 𝑥𝑚) and 𝑦 =  (𝑦1, . . . , 𝑦𝑚)), 𝑤 is defined as a set like 

{1, 2, … , 2𝑚 − 1} which shows a slide. The goal of NCC alignment is to find the one 𝑤 that 

represents the position of the slide with the highest cross-correlation value (see Equation 2). 

𝑁𝐶𝐶 =  
𝐶𝐶𝑤(�⃗�, �⃗�)

√𝑅0 (�⃗�, �⃗�) .  𝑅0 (�⃗�, �⃗�)
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛2) 

 

where 𝑅0(�⃗�, �⃗�) and 𝑅0(�⃗�, �⃗�) are the autocorrelations of sequences 𝑥 and 𝑦, or in other words, 

cross-correlation of a single sequence with itself. To measure the similarity between time-series, 

K-shape uses shape-based distance (SBD), which also works based on cross-correlation 

computation. In SBD computation, the maximum value of NCC between the two time-series is 

considered:  
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𝑆𝐵𝐷(�⃗�, �⃗�) = 1 − 𝑚𝑎𝑥𝑤  (
𝐶𝐶𝑤(�⃗�,�⃗⃗�)

√𝑅0 (�⃗�,�⃗�) .  𝑅0 (�⃗⃗�,�⃗⃗�)
) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛3)   

 

As mentioned earlier, centroid computation also depends on the 𝑁𝐶𝐶 calculation. In general, the 

objective of centroid computation in partitional clustering methods is to find the position where 

the sum of squared distances between all time-series and the centroid position is minimized. In 

other words, the general approach of partitional clustering is to find the position of the centroids 

where the dissimilarities among all sequences (time-series) of a cluster and their respective 

centroids are minimized. However, the nature of cross-correlation is to measure similarity rather 

than dissimilarity (Paparrizos & Gravano, 2015) since in cross-correlation calculous, one time-

series is sliding over the other one, and the inner product of each slide is calculated. Therefore, the 

maximum cross-correlation value indicates the highest similarity between two time-series. Hence, 

the configuration with the maximized cross-correlation shows the highest similarity. The 

optimization problem for centroid computation in K-shape is defined as Equation 4; the aim is to 

compute the centroid sequence (time-series) for which the sum of squared 𝑁𝐶𝐶s from the centroid 

to all other sequences assigned to that centroid is maximized. Since k-shape relies on 𝑁𝐶𝐶 to 

extract centroid, the centroid computation process is called shape-extraction (Paparrizos & 

Gravano, 2015), and it is calculated as follows:   

𝜇𝑘
∗⃗⃗⃗⃗⃗ =  𝑎𝑟𝑔𝑚𝑎𝑥

𝜇𝑘⃗⃗⃗⃗⃗⃗
∑ 𝑁𝐶𝐶(𝑥𝑖⃗⃗⃗⃗ , 𝜇𝑘⃗⃗⃗⃗⃗)2

𝑥𝑖⃗⃗ ⃗⃗  𝜖 𝑃𝑘

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝜇𝑘⃗⃗⃗⃗⃗⃗

∑ (
𝑚𝑎𝑥𝑤 𝐶𝐶𝑤(𝑥𝑖⃗⃗⃗⃗ , 𝜇𝑘⃗⃗⃗⃗⃗)

√𝑅0 (𝑥𝑖⃗⃗⃗⃗ , 𝑥𝑖⃗⃗⃗⃗ ) .  𝑅0 (𝜇𝑘⃗⃗⃗⃗⃗, 𝜇𝑘⃗⃗⃗⃗⃗)
)

2

𝑥𝑖 ⃗⃗⃗⃗⃗⃗  𝜖 𝑃𝑘

 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛4) 

 

where 𝑃 = {𝑝1, . . . , 𝑝𝑘} represents the 𝑘 disjoint clusters, so 𝑘 is the number of clusters, and 𝜇𝑘
∗⃗⃗⃗⃗⃗ 

represents the centroid time-series (centroid sequence).  

Figure 4-3 demonstrates the modifications applied to time-series after NCC-based alignment. This 

alignment reflects the situation where the inner-product of the two time-series is maximized. 
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Figure 4-3. NCC-based alignment, adopted from (Sardá-Espinosa, 2019) 

 

4.3.3. Cluster validation 

To determine the most optimum number of clusters that achieves high intra-cluster and low inter-

cluster similarity, the “cvi” function in the “dtwclust” package is utilized. This function provides 

a variety of cluster validation indices, namely internal and external indices. External clustering 

validation indices evaluate the clustering results based on externally provided labels or “ground 

truth”. Readers are referred to (Aghabozorgi et al., 2015) for more information on ground truth 

and external indices. Since the “ground truth” is not available in this study and the purpose is to 

find the one clustering arrangement which is best fitted to the provided data, internal indices are 

used to find the most optimum number of clusters (k). Generally, internal indices compare the 

goodness of fit between the obtained clustering results from different 𝑘 values. Internal indices 

work on the basis of inter-and intra-cluster distances, so the most optimal clustering result has the 

low intra-cluster distances and high inter-cluster distances. To discover the optimum number of 

clusters, the majority vote of several indices is taken when these indices are measured for 2 ≤

𝑘 ≤ 10. The validation indices considered for this purpose are Silhouette (Rousseeuw, 1987), 

Calinski-Harabasz (Caliński & Harabasz, 1974), Davis-Bouldin (Davies & Bouldin, 1979), Dunn 

(Dunn, 1973); please check Appendix F for equations of the mentioned indices. 

In this study, K-shape is applied on daily time-series of occupancy (as mentioned earlier, these 

time-series indicate the count of motions detected at each hour of a day). The outputs of the K-

shape are clusters grouping days with similar occupancy profiles, and each cluster contains days 

during which the presence patterns of the household are very similar. In the next step, another 
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time-series analysis method is implemented to find the hours when the significant changes in 

energy consumption are probable during the days with similar occupancy patterns. 

 

4.4. Change point detection (CPD) 

Changepoint detection, also known as change point inference, enables detecting segments of a 

signal (i.e., time-series) where the statistical properties like mean or variance are significantly 

different from their adjacent segments. In general terms, this method can detect segments of a 

signal for which the probability distribution functions are different from each other. There are a 

variety of change point detection algorithms for various applications and analyses. For instance, 

after implementing an energy efficiency measure, (Touzani et al., 2019) sought changes in both 

mean and variance of daily energy consumption to find the non-routine consumption events. On 

the other hand, (Pereira & Ramos, 2018) only considered changes in the mean of environmental 

parameters (e.g., CO2, RH, etc.) to detect the timing of occupants’ action (e.g., cooking, showering, 

heating, etc.). Figure 4-4 (a) and (b) show the change points detected in mean and variance of time-

series values, respectively (the solid orange lines depict changepoints). In general, change point 

detection algorithms are designed to test time-series regarding the existence of changes in their 

patterns and, in case of change detection, reveal the location of changes (Chen & Gupta, 2012).  

4.4.1. Statistical hypotheses of change point detection 

According to (Chen & Gupta, 2012), if 𝑥1, 𝑥2, … , 𝑥𝑛 is a time-series of independent random 

variables, and 𝐹1, 𝐹2, … , 𝐹𝑛 are the respective probability distribution functions, the change point 

detection problem is to test the null hypothesis: 

𝐻0 ∶  𝐹1 =  𝐹2 = ⋯ =  𝐹𝑛 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛5) 

 

against the alternative hypothesis:  

𝐻1 ∶  𝐹1 = ⋯ = 𝐹𝑘1
≠ 𝐹𝑘1+1 = ⋯ = 𝐹𝑘2

≠ 𝐹𝑘2+1 = ⋯ = 𝐹𝑘𝑞
≠ 𝐹𝑘𝑞+1 = ⋯ = 𝐹𝑛  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛6)  
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In Equation 6, 𝑞 is the number of change points, and 𝑘1, 𝑘2, … , 𝑘𝑞 are the location of them. It is 

also possible that the distributions 𝐹1, 𝐹2, … , 𝐹𝑛 belong to a common parametric family 𝐹(𝜃), where 

𝜃 ∈  𝑅𝑝; therefore, the previous hypotheses can be translated to: 

𝐻0 ∶  𝜃1 =  𝜃2 = ⋯ =  𝜃𝑛 =  𝜃 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛7) 

 

𝐻1 ∶  𝜃1 = ⋯ = 𝜃𝑘1
≠ 𝜃𝑘1+1 = ⋯ = 𝜃𝑘2

≠ 𝜃𝑘2+1 = ⋯ = 𝜃𝑘𝑞
≠ 𝜃𝑘𝑞+1 = ⋯ = 𝜃𝑛 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛8) 

 

For instance, if the change point problem is to find changes in the mean value of a normally 

distributed time-series like 𝑥𝑖, where 𝑖 =  1, 2, … , 𝑛, the null hypothesis: 

𝐻0 ∶  𝜇1 =  𝜇2  = · · · =  𝜇𝑛  =  𝜇 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛9) 

 

Should be tested against the alternative: 

𝐻1 ∶  𝜇1  = · · · =  𝜇𝑘 ≠ 𝜇𝑘+1 = · · · =  𝜇𝑛 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛10) 

 

It should be mentioned that the hypothesis (Equation 10) only deals with detecting a single change 

point, and 𝑘 is the unknown location of that change point. The process of testing the existence of 

one change point against zero change point is applied in one of the most popular changepoint 

methods, called “binary segmentation”. Binary segmentation can be summarized in three stages 

(Chen & Gupta, 2012). In the first stage, the entire time-series (sequence) will be tested for the 

existence of a single change point, and if no change is detected and the null hypothesis (Equation 

9) is accepted, the process will be stopped at this stage. But if the null hypothesis is rejected (or 

𝐻1 (Equation 10) is accepted), it means that one change point is detected, and its location will be 

revealed. The algorithm will then move on to the second stage, considering that the initial time-

series is already divided into two segments (two time-series). In the second stage, each segment 

will be tested with the same set of hypotheses as the first stage (Equations 9 and 10), to find a 

single change within each segmented time-series. This process will continue until no change is 

detected in any subsegments and no null hypothesis is rejected. At the end of the binary 
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segmentation process, the estimated number (q) and locations (𝑘1, 𝑘2, … , 𝑘𝑞) of all change points 

in the initial time-series will be obtained. The popularity of binary segmentation method is due to 

the simultaneous detection of the number of change points and their location, so it is 

computationally fast. However, this fast computation introduces some level of accuracy loss as 

well (Touzani et al., 2019).  

 

(a)  

 

(b)  

Figure 4-4. Change point detected in (a) mean and (b) variance 

 

The question that remained unanswered so far is about the criterion that determines whether the 

null hypothesis is rejected or accepted. This criterion also determines the changepoints location at 

each step of the binary segmentation process. Information criteria are some of the most common 

approaches applied to address the mentioned issues. In this study, Schwarz Information Criterion 

(𝑆𝐼𝐶), introduced by (Schwarz, 1978), is applied to the change point detection process.  

To clarify the role of 𝑆𝐼𝐶 in changepoint detection, (Chen & Gupta, 2012) brought an example of 

change point detection in the variance of time-series values:  

Consider a time-series like 𝑥1, 𝑥2, … , 𝑥𝑛 consisting of independent, identically distributed 

random variables. The purpose is to detect changes in the variance (Figure 4-4 (b)) within 

the time-series 𝑥𝑖 , where 𝑖 = 1, … , 𝑛. Since changes in the mean are not desired in this 

example, this value is considered as a constant (denoted by 𝜇) for all the subsegments of 

the time-series 𝑥𝑖. In this case, 𝑆𝐼𝐶(𝑛) denotes the model for the null hypothesis, where no 
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change in the variance can be observed within the time-series 𝑥𝑖. Therefore, 𝑆𝐼𝐶(𝑛) can be 

defined as follows:  

𝑆𝐼𝐶(𝑛) = 𝑛 𝑙𝑜𝑔 2𝜋 + 𝑛 𝑙𝑜𝑔 �̂�2 + 𝑛 +  𝑙𝑜𝑔 𝑛 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛11) 

• �̂�2 =
(∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 )
𝑛⁄  is the maximum likelihood estimator of 𝜎2 under null 

hypothesis 𝐻0.  

It should be noted that there is one possible value for 𝑆𝐼𝐶(𝑛), which is determined by 

Equation 11. However, (𝑛 − 3) SICs can be calculated under the hypothesis 𝐻1 denoted 

by 𝑆𝐼𝐶(𝑘), where 𝑘 ranges from 2 to 𝑛 − 2. 𝑆𝐼𝐶(𝑘) is defined as Equation 12:   

𝑆𝐼𝐶(𝑘) = 𝑛 𝑙𝑜𝑔 2𝜋 + 𝑘 𝑙𝑜𝑔 𝜎1̂
2 + (𝑛 − 𝑘) 𝑙𝑜𝑔 𝜎�̂�

2 +  2 𝑙𝑜𝑔 𝑛 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛12) 

 

• 𝜎1̂
2 =

(∑ (𝑥𝑖 − 𝜇)2𝑘
𝑖=1 )

𝑘
⁄  and 𝜎�̂�

2 =
(∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=𝑘+1 )
(𝑛 − 𝑘)

⁄  are the maximum 

likelihood estimators of 𝜎1
2 and 𝜎𝑛

2, under the hypothesis 𝐻1, respectively.  

Accordingly, calculation of maximum likelihood estimator is only available for points of 

time-series located between 2nd and (𝑛 − 2)𝑡ℎ positions. Therefore, based on the 

information criterion principle, the null hypothesis (𝐻0) is accepted if: 

𝑆𝐼𝐶(𝑛) < 𝑚𝑖𝑛
2≤𝑘≤𝑛−2

𝑆𝐼𝐶(𝑘) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛13), 

and is rejected (i.e. 𝐻1 is accepted) if: 

𝑆𝐼𝐶(𝑛) >  𝑆𝐼𝐶(𝑘), 2 ≤ 𝑘 ≤ 𝑛 − 2 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛14). 

Evidently, the changepoint position is determined based on the one 𝑘 that minimizes 

𝑆𝐼𝐶(𝑘) (Equation 12).  

For more details about the function of information criteria and calculous of maximum likelihood, 

the readers are referred to (Chen & Gupta, 2012).  

In this study, the binary segmentation method coupled with the SIC penalty is utilized to detect 

changes in the daily time-series of energy consumption. Changes in the mean energy consumption 

are considered so that the segments of time-series with high and low consumptions are separated 
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from one another. Figure 4-5 demonstrates an example of change point detection in the mean value 

of energy consumption. Based on the four change points detected at 6 am, 8 am, 6 pm, and 8 pm 

in the daily time-series, five periods with different mean energy consumption can be found. It 

should be mentioned that the energy consumption values of hours detected as change points have 

closer values to their previous hours. So, the hours at which a change has occurred will be in the 

same period as their respective previous hours. Consequently, the identified periods are as follows: 

period 1: [12 𝑎𝑚 − 6 𝑎𝑚], period 2: [7 𝑎𝑚 − 8 𝑎𝑚], period 3: [9 𝑎𝑚 − 6 𝑝𝑚], period 4: [7 𝑝𝑚 −

8 𝑝𝑚], period 5: [9 𝑝𝑚 − 11 𝑝𝑚]. It should be mentioned that each period expands from the first 

minute of the starting hour to the last minute of the ending hour. So, period [12 𝑎𝑚 –  6 𝑎𝑚] is 

equivalent to [12: 00 –  6: 59]. 

 

Figure 4-5. Change points detected in mean electricity consumption. The hours indicated by red circles are the 

points of time-series where changes are detected, and the blue lines depict the mean values throughout the periods 

specified by change points 
 

4.4.2. Detection of usual routines of households using CPD 

In this study, the purpose of CPD is to find the general consumption routines of occupants and 

separate the regular high- consumption periods from the regular low-consumption ones. Therefore, 

implementing change point detection on a single load profile is not intended since it cannot deliver 

the frequent change hours across several days. With the aim of discovering occupants’ general 

consumption routine, in this study, change point detection is applied in the same way as used by 

(Li, Panchabikesan, et al., 2019). Accordingly, the maximum number of change points (𝑄) are 
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primarily determined by trying several values for 𝑄 and observing the results. When the limit for 

the maximum number of change points (𝑄) increases, the algorithm might detect insignificant 

changes in the mean value that are not desirable. Since the purpose of CPD analysis in this study 

is to distinguish regular high consumption hours from low consumption periods, it is not desirable 

to find the points of time-series (hours) with insignificant changes in mean energy consumption.  

In the previous step of the methodology framework, the days during which households follow a 

similar occupancy schedule are grouped using K-shape clustering. In this step, to separate the 

regular high-consumption periods from regular low-consumption periods within each occupancy 

cluster, CPD is applied to the daily load time-series of each cluster. A set of change points (hours) 

is obtained for each day. Eventually, the number of times a change point is detected at each hour 

is counted to discover the most probable hours for change point occurrence in each occupancy 

cluster. As a result, within each occupancy cluster, the relative frequency of change point 

occurrence can be calculated for each hour. For example, if the relative frequency of 7 am in 

occupancy cluster_n is 0.5, it means that in 50 percent of the days clustered in occupancy cluster_n, 

a change is observed in the daily load profiles at 7 am. Based on the calculated frequencies, a 

threshold must be selected to determine the hours when the possibility of change point occurrence 

is relatively high. Obviously, as the 𝑄 increases, the limit that determines the most frequent change 

points (i.e., hours with a high possibility of change point occurrence) should be increased as well. 

In this study, based on the observed results, 𝑄 =  5, and in some cases, 𝑄 =  6 are suitable as the 

maximum number of change points. Therefore, these 𝑄s can sufficiently capture the hours where 

mean energy consumption is probable to change significantly. Based on the results obtained from 

selected 𝑄s, the proper limit for change point frequency in each occupancy cluster is determined 

as 0.4. Therefore, the hour detected as a change point in at least 40 percent of days within an 

occupancy cluster is considered the frequent change point in that cluster. Using the frequent change 

points (i.e., most probable change hours) in each occupancy cluster makes it possible to find the 

periods during which the mean consumption value is significantly higher or lower than the adjacent 

periods. These periods will give us an insight into the households’ routine in case of energy 

consumption. In the next step, the factors that explain the consumption behavior of occupants 

within high- and low-consumption periods are determined.   
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4.5. Statistical analysis with LASSO regression  

At this stage, a regression model will be trained for each period to determine what types of 

activities (indicated with plugs located in different rooms of the apartments) have noticeable 

impacts on the total load within each period. The statistical analysis of this step helps identify the 

comparative contribution of occupants' activities to the energy consumption within each period. 

Variable selection is the key role of regression models in energy studies. Based on the 

characteristics of data, the variable selection task can be faced with some challenges. One of these 

challenges is due to the high dimensionality of the dataset. The high dimensionality happens when 

the number of predictors is higher than the number of training examples (i.e., the number of rows 

or data points to train the regression model). This issue raises the possibility of overfitting, which 

can impair the interpretability of the trained model (Satre-Meloy et al., 2020). Overfitting is a 

product of complex models that perfectly fit the training set while failing to generalize to new data 

(testing set). In other words, although the overfitted model outperforms on the training set, when 

new data is introduced, the performance of the model decreases noticeably. Another challenge is 

associated with the sparsity of predictors (i.e., variables which contain many zeros). 

Multicollinearity is one of the possible products of sparsity in the predictors’ matrix, and it occurs 

when a predictor can be linearly explained by other predictors. Multicollinearity can introduce 

instability to the model so that small changes in data or the model can lead to noticeable changes 

in model parameters (Satre-Meloy et al., 2020). Although multicollinearity might not affect the 

model’s accuracy, it influences model coefficients. So, the delivered variable importance can be 

misleading if multicollinearity exists among predictors. Regularized regression can be the solution 

to overcome the challenges mentioned above. In this study, plug variables and total lighting load 

are used to predict total energy consumption using regression analysis. Some of the plugs might 

have been occasionally used by occupants or are associated with appliances that do not constitute 

the base load consumption of the household (i.e., has lots of zeros in their consumption pattern), 

so sparsity in predictors matrix can be an issue in the variable selection task. On the contrary, some 

plug variables are associated with base load consumption of households (e.g., fridge, freezer, and 

appliances with significant standby energy consumption like TV); therefore, these variables 

always have a value and are not sparse. Considering the different characteristics of the predictors, 

regularization is applied to linear regression, to be able to find the comparative contribution of all 

predictors with different characteristics. The penalized regressions are designed to avoid 



34 
 

overfitting in the way that they introduce some level of bias1 to the best-fitted model to the training 

set in order to achieve lower variance2 in the performance of the model when it is applied on the 

testing set. Another term for regularization is penalized regression, as these models add a penalty 

term to the ordinary least square (OLS) optimization problem (Equation 15). By doing so, the 

predictors’ coefficients will be shrunk to zero or near-zero values, and this shrinkage is more sever 

for irrelevant predictors rather than influencing ones. Due to this shrinkage, the obtained model 

from penalized regression will be more interpretable than the output of simple regression models. 

This quality of penalized regressions makes them a suitable choice in case of variable selection 

purposes. The OLS regression problem is to estimate coefficient values (𝛽𝑗) that minimize the 

residual sum of squares (RSS) (see Equation 15): 

𝑅𝑆𝑆(𝛽) =  ∑ (𝑦𝑖  − 𝛽0 −  ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛15) 

 

Where p is the number of predictor variables, 𝑥𝑖𝑗 denotes the 𝑗𝑡ℎ predictor value for the 

𝑖𝑡ℎ observation, and 𝑦𝑖 is the target value for the 𝑖𝑡ℎ observation. As mentioned earlier, penalized 

regressions change the OLS optimization problem (Equation 15) by adding a penalty to the 

equation. Here two of the most popular regularization methods, naming RIDGE (Hoerl & Kennard, 

1970) and LASSO (Robert Tibshirani, 1996), and their shortcomings and advantages are 

discussed. Equation 16 is the optimization equation of RIDGE regression: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

(𝑅𝑆𝑆(𝛽) +  𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 ) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛16) 

 

 
1 In machine learning concept, when a model fits perfectly to the training set so that it can properly capture the 

distribution of training data, it can be said that the model has low bias. 

 
2 In machine learning, variance is associated with the difference in fits between training and testing set. Meaning that, 

when the performance of a model on training data is close to its performance on unseen (i.e., testing) data, it can be 

said that the model has low variance. 
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where 𝜆 ≥ 0  is a constant value that controls coefficient shrinkages (Satre-Meloy, 2019). 

Increasing the penalty term of RIDGE regression (i.e., 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1 ) leads to shrinkage of model 

coefficients; however, not all the way to zero. On the other hand, the penalty used in LASSO 

regression (i.e., 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1 ) can set variable coefficients to zero and make the final coefficients 

more distinguishable regarding their importance in the prediction task (see Equation 17); the 

optimization problem of LASSO regression is to minimize the Equation 17. Therefore, when the 

aim is to obtain sparsity in results and yield more interpretable models, the LASSO penalty is a 

more desirable choice than the RIDGE penalty (James et al., 2013) (Satre-Meloy, 2019). 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

(𝑅𝑆𝑆(𝛽) +  𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 ) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛17) 

 

As mentioned earlier, increasing 𝜆 is equivalent to the increase of penalty, which results in higher 

bias to the model. Regarding penalized regressions, it is necessary to check how increasing the 

penalty impacts the trade-off between bias and variance. In other words, it is crucial to check how 

much bias can be tolerated by the model without sacrificing the variance. Therefore, finding the 

optimum 𝜆 that achieves high accuracy when applied to the new data (i.e., achieves low variance) 

is necessary. In other words, the purpose here is to increase the bias (by increasing the penalty) as 

long as the variance improves and is not impaired. Cross-validation is frequently used to determine 

λ in the way that it calculates mean squared error (MSE) for a range of λ values to find the one 𝜆 

that achieves the least prediction error. For each 𝜆 value, the k-fold cross-validation uses a certain 

proportion of data to train a regression model and then test the obtained model on the remaining 

data. If the number of folds (𝑘) is equal to 10, this process will be repeated ten times, so 90 percent 

of data will be used for training and 10 percent for testing, and eventually, the average of the 10 

MSEs will be calculated. The k-folds cross-validation process is repeated for a range of 𝜆 values 

so that the 𝜆 that gives the lowest average of MSEs is chosen as the most optimum. 

Out of the two most popular regularization methods (i.e., RIDGE, LASSO), LASSO is selected 

because one of the purposes of this study is to discover the most influencing factors of energy 

consumption, and the interpretability of the model is essential for the analyses. LASSO regression 
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can yield more sparse models as it set variable coefficients to zero and makes the final coefficients 

more distinguishable regarding their importance in the prediction task. Therefore, it can achieve 

more interpretable models by shrinking the insignificant variables’ coefficient to zero. The aim of 

using penalized regression in this study is to avoid overfitting, enable identifying the comparative 

contribution of several plug variables with different energy consumption patterns, and perform 

variable selection that leads to understanding the influencing factors of energy usage in residential 

apartments.  

4.5.1. Data preparation for LASSO regression 

It should be mentioned that min-max normalization is applied to variables before training the 

regression models. This transformation allows for a more improved evaluation of variable 

importance through the estimated coefficients of the model (Ren et al., 2019). Accordingly, the 

values of all variables are scaled between 0 and 1. The min-max normalization formula is shown 

in Equation 18: 

𝑥𝑖
′ =  

𝑥𝑖 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛18) 

 

For a vector like 𝑥𝑖, where 𝑖 = 1, … , 𝑛, 𝑥𝑖′ is the normalized value of the ith element from vector 

𝑥𝑖. 𝑚𝑖𝑛(𝑥) and 𝑚𝑎𝑥(𝑥) are the minimum and maximum values in the vector 𝑥𝑖.  

 

4.5.2. Evaluating regression models 

Regarding the evaluation of regression models, 80 percent of the data is used for training the 

models, and the remaining 20 percent is considered for testing the trained model. The evaluation 

measure applied to the testing set is 𝑅2 (R-squared). Therefore, first, the model is trained using the 

training set, and the obtained model is implemented on the unseen, testing data, and the 𝑅2 

demonstrates how well does the trained models can explain the variations in the target variables 

of the testing set. The higher the 𝑅2, the better the goodness of fit. 𝑅2 is determined using Equation 

19 and ranges from 0 to 1 inclusive. 
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𝑅2 =  1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑(�̂�𝑖 − 𝑦𝑖)
2

∑(𝑦 − 𝑦𝑖)2
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛19) 

 

where RSS is the residual sum of squares, and TSS is the total sum of squares. 𝑦 represents the 

target value, so 𝑦𝑖 is the actual target value of the ith observation, �̂�𝑖 is the predicted value for the 

ith observation, and 𝑦 is the average of all observations’ actual values. 
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Chapter Five 

5. Results and Discussions 

5.1. Data preparation 

After removing days containing continuous missing or dead values and excluding days with zero 

occupancy, the final datasets of apartments 112, 152, and 162 include 271, 271, and 216 days, 

respectively. As mentioned earlier, to have an assumption about the location of plug variables, 

correlation analysis is employed to find the relations between the count of motions in different 

rooms and plug loads. So, it is assumed that if the consumption of a plug demonstrates correlations 

with the count of motions recorded in a specific room, that plug sensor is probably located in the 

same room as the motion sensor. This assumption is also used in (Li, Panchabikesan, et al., 2019). 

After discovering the associations between plug variables and motion variables in different rooms 

of each apartment, every plug variable can be seen as a zone-related activity. Therefore, plug 

variables can give us an insight into occupants’ activities in different rooms of the apartments. For 

example, based on the correlation analysis among motion and plug variables in apartment 152 

(Figure 1-1Figure 5-1), the plug number 16 (P16) has the highest Pearson’s coefficient with living 

room motions. It can be interpreted that when occupants are active in the living room, they use 

appliance(s) plugged into the plug number 16. Although plug 16 also has a high correlation with 

motions detected in the kitchen, only the highest correlation value found for each plug variable is 

considered to label the plug. Accordingly, the labels of each plug variable are shown in Table 5-1. 

Please check 0 for the results of correlation analysis in apartments 112 and 162. It should be 

mentioned that for some of the apartments, correlations only appear when the aggregation level is 

increased to an hourly level. Thus, aggregation is essential in order to find trends and patterns in 

the data. For the same reason, hourly aggregation is frequently practiced in most of the previous 

studies, and in this study, the same level of aggregation is utilized. 
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Figure 5-1. Pearson correlation coefficients between plug variables and motion detection variables of apartment 152 

 

Table 5-1. Zonal labels of plug variables in apartment 152 

Zonal labels of the apartment 152 Plug Power Variables 

Bedroom-related P2, P3, P7 

Livingroom-related P4, P5, P13, P16 

Kitchen-related P8, P14, P17 

Bathroom-related - 

Others P1, P6, P9, P10, P11, P12, P15 

 

After plotting hourly aggregated values of plug variables, three types of consumption patterns 

could be observed:  

1. The first category indicates the consumption pattern of appliance(s) that are constantly 

consuming energy at each hour with negligible fluctuations in their consumption value 

(Figure 5-2 (a)). The consumption of these plugs forms a proportion of each household’s 

base load3, so this consumption exists during sleeping, or unoccupied periods as well as 

active, occupied hours. As shown in Figure 5-2 (a), the plugs having the first category of 

 
3 The base load is associated with standby load of electric appliances (e.g. TV, set-up boxes, etc.), or consumption of 

the appliances that are always working (e.g. fridge, freezer, etc.). 
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consumption pattern are not affected by occupants' presence and activities since the pattern 

of consumption has not been changed significantly during the one-month period shown in 

Figure 5-2 (a). Examples of the appliances belonging to this category are internet modem, 

cordless phone etc. (Standby Power Summary Table, 2018). Accordingly, this category of 

plug variables has low standard deviations (SD) (i.e., below 𝑆𝐷 = 2), and the mean and 

three percentiles (25th, 50th, 75th percentiles) of these variables are very close to each other 

(see Table 5-2 and Appendix B). 

2. Figure 5-2 (b) demonstrates the consumption pattern of electric appliance(s), which 

constitute a proportion of the household’s base load and have high fluctuations in their 

consumption pattern. The appliances which belong to this category are desktop computer, 

TV, etc. (Standby Power Summary Table, 2018). This category of plug variables is 

characterized by approximately high mean and SD values, and the difference between the 

three percentiles (25th, 50th, 75th percentiles) is more noticeable compared to the other two 

categories of plugs (see Table 5-2 and Appendix B). 

3. The third category of plug variables represents the consumption pattern of electric 

appliance(s) that are only plugged-in occasionally or has negligible standby power, such 

as hairdryer, electric kettle, dishwasher etc. (Standby Power Summary Table, 2018). These 

plug variables are very sparse, meaning that they contain zero values most of the time 

(Figure 5-2 (c)). Correspondingly, the mean of these variables is relatively small, while the 

SD is usually high. Another common characteristic of these variables is that their 25th, 50th 

(median), and 75th percentiles are negligible (i.e., usually zero). This fact emphasizes the 

sparsity in 3rd category of plug variables (see Table 5-2 and Appendix B). 

It should be noted that each plug variable can represent the consumption pattern of more than one 

appliance that is plugged into an outlet, and the names of appliances brought as examples are only 

mentioned to make the patterns shown in Figure 5-2 more tangible for the readers. It can be seen 

that sparsity exists among the plug variables (Figure 5-2 (c)). As mentioned in section 4.5, sparsity 

should be handled in the regression analysis step (step 4 of the methodology). 
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(a) 

 

(b) 

 

(c) 

Figure 5-2. Categories of plug variables based on hourly consumption pattern; (a) constant consumption with 

negligible fluctuations (b) continuous consumption with noticeable fluctuations (c) sparse consumption 
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Table 5-2. Summary statistics of variables in apartment 152 

Plug 

Variables 

in Apt. 152 

Mean 

(W.h) 
SD 

25th 

percentile 

50th 

percentile 

75th 

percentile 

Category 

(based on 

consumption 

pattern) 

OTH_P1 35.71 23.09 20 32 50 2nd  
BED_P2 5.59 16.73 0 0 1 3rd  
BED_P3 0.02 0.53 0 0 0 3rd  
LIV_P4 19.63 87.46 0 0 0 3rd  
LIV_P5 40.19 52.62 21 25 29 2nd  
OTH_P6 18.12 1.76 17 17 20 1st  
BED_P7 1.75 5.67 0 0 0 3rd  
KIT_P8 8.80 71.96 0 0 0 3rd  
OTH_P9 5.87 0.38 6 6 6 1st  

OTH_P10 12.40 0.58 12 12 13 1st  
OTH_P11 2.16 11.92 0 0 0 3rd  
OTH_P12 0.26 1.00 0 0 0 3rd   
LIV_P13 32.81 14.32 23 30 37 2nd  
KIT_P14 3.03 12.62 0 0 0 3rd  
OTH_P15 0.02 0.41 0 0 0 3rd  
LIV_P16 34.12 41.35 6 12 72 2nd  
KIT_P17 21.11 95.95 0 0 0 3rd  
LIGHTS 19.39 43.86 0 1 14 - 

              

5.2. Time-series clustering results  

In this section, the cluster validation results are first presented to discover how many clusters can 

extract all the distinctive occupancy patterns in each apartment. Secondly, the results of K-shape 

clustering are brought and discussed for each apartment.  

5.2.1. Cluster validation results 

For this study, four cluster validation indices (CVIs) are evaluated for 𝑘 = 2 to 𝑘 = 10 clusters. 

To determine the optimum number of clusters, Silhouette, Calinski–Harabasz, and Dunn Index 

should be maximized, while Davis–Bouldin should be minimized (see Table 8-4). The values 

indicated with the bold font in Table 5-3. Apartment 112, cluster validation indices Table 5-4, and Table 

5-5 represent the optimum value of each index. The majority vote of the four indices is selected to 

determine the best number of clusters capturing all the distinctive occupancy patterns. For 

example, in apartment 112, three CVIs (Silhouette, Dunn Index, Davis–Bouldin) show that 

optimum results can be achieved with three clusters while only one CVI (Calinski–Harabasz) votes 
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for two as the most optimum number of clusters; in this case, 𝑘 = 3 is considered as the optimum 

number of clusters for apartment 112. Following the same logic, two clusters enable discovering 

all the distinctive occupancy schedule patterns in apartments 152 and 162 (see Table 5-3. Apartment 

112, cluster validation indices, Table 5-4, and Table 5-5). 

Table 5-3. Apartment 112, cluster validation indices 

Number of Clusters (k) 2 3 4 5 6 7 8 9 10 

Silhouette 0.116 0.128 0.125 0.108 0.101 0.113 0.102 0.102 0.091 

Calinski-Harabasz 192.960 88.426 71.914 59.211 61.133 68.143 55.186 36.898 34.111 

Davis-Bouldin 2.034 1.680 1.717 2.131 1.791 1.788 1.861 1.891 1.806 

Dunn 0.102 0.124 0.095 0.075 0.064 0.087 0.061 0.088 0.084 

 

Table 5-4. Apartment 152, cluster validation indices 

Number of Clusters (k) 2 3 4 5 6 7 8 9 10 

Silhouette 0.251 0.188 0.190 0.160 0.163 0.122 0.179 0.173 0.132 

Calinski-Harabasz 181.174 200.959 91.241 98.650 68.619 54.881 57.604 42.607 36.539 

Davis-Bouldin 1.061 1.525 1.862 2.108 2.213 2.306 1.777 2.012 1.801 

Dunn 0.046 0.039 0.045 0.025 0.026 0.051 0.080 0.056 0.052 

 

Table 5-5. Apartment 162, cluster validation indices 

Number of Clusters (k) 2 3 4 5 6 7 8 9 10 

Silhouette 0.213 0.211 0.192 0.147 0.124 0.159 0.165 0.143 0.151 

Calinski-Harabasz 234.634 143.728 79.479 75.909 46.290 57.719 42.846 40.527 40.310 

Davis-Bouldin 1.132 1.322 1.654 1.420 2.042 1.493 1.523 1.535 1.468 

Dunn 0.128 0.100 0.084 0.062 0.038 0.040 0.041 0.021 0.017 

 

5.2.2. K-shape clustering results 

Based on the optimum number of clusters, K-shape is implemented on daily time-series of 

occupancy. In clustering, it is commonly regarded that discovering clusters containing a small 

number of data points (in our case, daily time-series of occupancy) can be an indicator of overfitted 

clustering results or the existence of outliers. Table 5-6 shows that daily time-series in the dataset 
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of each apartment are almost equally distributed among the occupancy clusters obtained for that 

apartment.  

Table 5-6. Distribution of daily occupancy time-series among the occupancy clusters of each apartment 

Apartment ID Cluster-ID Number of days 

112 

Cluster1_Day-time Absence 119 

Cluster2_Mostly Present 82 

Cluster3_Mostly Absent 70 

152 
Cluster1_Day-time Absence 152 

Cluster2_Mostly Present 119 

162 
Cluster1_Mostly Absent 112 

Cluster2_Mostly Present 104 

 

Figure 5-3 (a), (b), and (c) show the obtained occupancy patterns for apartments 112, 152, and 

162, respectively. Each gray string depicts a daily time-series of motion counts, and the time-series 

values are z-normalized hourly count of motions. The red string demonstrates the centroid of each 

cluster. To further evaluate the clustering results and grasp a clearer insight into the obtained 

patterns, raw values of motion count (i.e., values before z-normalization) are plotted using 

heatmaps shown in Figure 5-4, Figure 5-5, and Figure 5-6. These figures show the intensity of 

occupants’ motions throughout the days grouped in each cluster. Each row of the heatmaps 

represents the occupancy profile of a specific day. Therefore, each row contains 24 tiles 

representing the count of occupants’ motions at each hour. Based on the obtained profiles shown 

in Figure 5-3, the patterns obtained for each apartment are explained to get an insight about each 

household’s presence routines: 

Occupancy clusters in apartment 152: Considering occupancy cluster_1 in apartment 152, 

the number of detected motions usually starts to increase at 7 am (Figure 5-3 (b)), so it can be 

interpreted that the usual waking-up hour in cluster_1 of apartment 152 is 7 am. This is while 

the waking-up hour in cluster_2 varies from 7 to 8 am (Figure 5-3 (b)). The schedule pattern 

of days grouped as cluster_1 (Figure 5-3 (b)) shows that occupants tend to leave the apartment 

before 9 am on these days (the count of motions decreases after 8 am) and return home around 

7 pm. On the other hand, it can be seen in Figure 5-3 (b) and Figure 5-5 (b) in cluster_2 of 
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apartment 152, occupants are usually present, and the count of motions only decreases from 2 

to 6 pm.  

Occupancy clusters in apartment 112: the waking-up hour is around 7 to 8 am in all the three 

obtained clusters (Figure 5-3 (a)). The pattern of cluster_1 in Figure 5-3 (a) shows the 

household's schedule on days when they are absent from 12 to 7 pm, while in the days grouped 

in cluster_2, the apartment is usually occupied. On the other hand, cluster_3 is characterized 

by the high level of motion count during the morning (i.e., 7 to 10 am). In this cluster, 

occupancy is also recorded during the afternoon and evening hours, but the number of motions 

is lower than in the morning hours. Figure 5-7 shows that the hourly averaged count of motions 

from 11 am to 11 pm is smaller than the same values in the period from 8 to 9 am in cluste_3 

(“day-time absence”).  

Occupancy clusters in apartment 162: Occupancy profiles obtained for apartment 162 shows 

that the usual waking-up hour is around 5 to 6 am (see Figure 5-3 (c)). The daily occupancy 

patterns of days gathered in cluster_1 of apartment 162 are highly variable. These days are 

either characterized by presence during the morning or the evening (Figure 5-6 (a)). This type 

of inconsistency in the period of occupancy presence observed in cluster_1 is due to the fact 

that K-shape clustering is shift-invariant (see Figure 4-2 in section Error! Reference source 

not found.). Hence, time-series with similar patterns and different phases can be clustered 

together. The shift-invariant quality of the K-shape method is also in favor of our analysis since 

it can handle insignificant shifts in phases of time-series with similar overall shapes. However, 

this algorithm ignores noticeable shift distortions in time-series as well. Therefore, occupancy 

time-series with different presence periods can be clustered together. Cluster_2, on the other 

hand, represents days with active occupancy throughout the day, except for sleeping hours 

(Figure 5-6 (b)). 

The results suggest that for a single apartment, K-shape enables discovering occupancy schedule 

patterns which have utterly distinguishable characteristics from one another. However, some 

similarities can be observed among the occupancy patterns of different apartments. With the 

exclusion of sleeping hours, there is an occupancy cluster, in all apartments, that groups days 

during which the count of motion is usually high; in other words, occupants are mostly present 

throughout those days (see Figure 5-4 (b), Figure 5-5 (b), and Figure 5-6 (b)). According to the 
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observed pattern, the name “mostly present” is chosen for these three clusters. It can also be seen 

that the count of motion ranges between 0 and 150 in apartments 152 and 162, while this value 

ranges from 0 to 100 in apartment 112 (Figure 5-4, Figure 5-5, Figure 5-6). The reason for this 

difference lies in the fact that the number of occupants in 152 and 162 are twice as many as the 

number of occupants in 112. Another similarity in occupancy schedule patterns of different 

apartments can be found between cluster_1 of apartment 112 and cluster_1 of apartment 152. The 

mentioned occupancy clusters demonstrate households' presence schedule when they are absent 

for some hours in the middle of the day. In cluster_1 of apartment 112, the absence period (when 

the hourly count of motions is zero or near zero) starts from 12 pm and ends at 7 pm (see Figure 

5-4 (a)), while this period is longer for cluster_1 of 152 as it starts from 9 am and ends at 6 pm 

(see Figure 5-5 (a)). According to the timing of absence, the name chosen for these occupancy 

clusters is “day-time absence”. Additionally, centroids of cluster_3 in apartment 112 (Figure 5-3 

(a)) and cluster_1 in apartment 162 (Figure 5-3 (c)) demonstrate the same pattern, and both show 

a peak in the count of motions in the morning. However, as discussed earlier, in cluster_3 of 

apartment 112, occupant presence also happens during afternoons and evenings, but the motion 

count values during these hours are much lower than in the mornings (Figure 5-4 (c)). While in 

162, the occupancy presence happened either in the mornings or evenings (Figure 5-6 (a)). Due to 

the similarity in centroids’ patterns of cluster_3 in apartment 112 and cluster_1 in apartment 162, 

and few hours of occupancy presence in these occupancy clusters, these clusters are named “mostly 

absent”.  

Occupancy clusters are formed based on the similar daily time-series shapen by hourly occupancy 

level (count of motions detected within an hour). Although occupancy level cannot represent 

presence and absence, heatmaps (Figure 5-4, Figure 5-5, and Figure 5-6) can show hours with a 

relatively low number of movements (below ten motions detected) during which the occupants are 

either absent or sleep. It is discussed that occupancy clusters are explicit regarding the number of 

definite occupied hours and the occupancy level fluctuations. In the current study, the purpose of 

occupancy pattern extraction is only to find the impact of these occupancy patterns on the shape 

of load profiles, which is discussed in the following section. So, the uniqueness of occupancy 

clusters from one another and their distinctiveness regarding the shape of daily load profiles fulfill 

the purpose of the current study, and discussing the probability of presence is not the case here. 
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Interested readers are referred to (Panchabikesan et al., 2021), which further extract the presence 

probability profiles from the occupancy patterns obtained from K-shape clustering.
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(a) 
 

 

 
 

(b) 

 

 
 

(c) 

Figure 5-3. Occupancy schedule patterns in apartments (a) 112, (b) 152, and (c) 162; Red lines depict the centroids computed for each cluster; grey 

lines are the z-normalized daily occupancy time-series.  



49 
 

Figure 5-4. Heatmaps of occupancy clusters in apartment 112; each row of heatmaps show a daily occupancy time-series, so each time-series is assigned to a day 

index and contains the hourly count of motions before z-normalization 
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Figure 5-6. Heatmaps of occupancy clusters in apartment 162; each row of heatmaps show a daily occupancy time-series, so each time-series is assigned to a day 

index and contains the hourly count of motions before z-normalization

  

Figure 5-5. Heatmaps of occupancy clusters in apartment 152; each row of heatmaps show a daily occupancy time-series, so each time-series is assigned to a 

day index and contains the hourly count of motions before z-normalization 
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Figure 5-7. Average of hourly count of motions for each occupancy cluster in apartment 112; the hourly averaged 

values are real values before z-normalization 

 

As mentioned in section 2.1, the limitation of occupancy pattern discovery practices in previous 

works is associated with short-term occupancy data collection in the residential sector. Since 

surveys like TUS are mainly collected for a limited number of days, the obtained occupancy 

models from these surveys cannot properly capture the variation in the presence schedule of 

individual households. The bar chart in Figure 5-8 (a) demonstrates that apartment 152 is mostly 

occupied on Mondays and weekends since the “mostly present” occupancy cluster has usually 

occurred on these days. And it is also obvious that occupancy cluster_1, “day-time absence”, 

usually occurs on all working days except for Mondays. This result contrasts the assumption of 

prior occupant models, which used TUS to find occupancy patterns. The mentioned studies made 

an assumption regarding the repetition of a single occupancy pattern for all the working days and 

another occupancy pattern for working days (Buttitta et al., 2017). Analyzing one-year historical 

data demonstrates that working days and weekend days can have similar occupancy patterns. 

However, for the two other apartments, occupancy clusters do not demonstrate transparent 

relations to specific weekdays like apartment 152. For example, occupancy clusters in apartment 

162 are almost equally distributed among all weekdays (see Figure 5-8 (b)). However, the 

occupancy clusters of apartment 162 show relations to seasons (see Figure 5-9 (b)); cluster_1 in 

162 can be observed in spring and summer, while cluster_2 mainly happens during fall and winter 
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days. The obtained number of clusters for each apartment indicates that presence routines of 

individual households can be grasped using two to three clusters, and these clusters can be 

explained using time-variables like weekdays and seasons. 

 

(a) 

 

(b) 

Figure 5-8. Distribution of occupancy patterns among weekdays (a) in apartment 152 and (b) in apartment 162 

 

 

(a) 

 

(b) 

Figure 5-9. Distribution of occupancy patterns among seasons (a) in apartment 152 and (b) in apartment 162 
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5.3. Relationship between load profiles and occupancy clusters 

It has been seen that K-shape clustering can group days with distinctive occupancy patterns in each 

apartment and capture the flexibility in each household’s presence routines. Now, it is important 

to see the influence of occupancy patterns on the shape of load profiles and realize whether 

distinctive occupancy clusters are unique in case of load profiles. Using the 25th, 50th, and 75th 

percentiles of hourly consumptions in each occupancy cluster, the most probable peak periods in 

a typical day of each occupancy cluster are depicted in Figure 5-11, Figure 5-12, and Error! 

Reference source not found.. Based on the obtained percentile profiles, 7 am, 8 am, 7 pm, and 8 

pm are the common peak hours in clusters of all apartments.  

Additionally, it can be seen that during days when apartments are mostly occupied (i.e., “mostly 

present” cluster in apartments 112, 152, and 162), a peak consumption is bound to happen at noon 

(12 pm) (see Figure 5-11 (b), Figure 5-12 (b), and Error! Reference source not found. (b)); this 

peak does not exist in other occupancy clusters, so the occurrence of noon peak differentiates the 

consumption profiles of “mostly present” clusters from other occupancy clusters. This noon period 

cannot be easily identified without considering the occupancy clusters, meaning that when the 

hourly consumption percentiles of all days (without grouping days by occupancy clusters) are 

depicted, the noon peak consumption might not even appear at the 25th percentile. To better 

understand the significance of occupancy clustering in the determination of energy usage during 

the noon, Pareto figures of hourly energy consumption during 12 pm is depicted to see the 

distribution of energy usage at 12 pm of days grouped in each occupancy cluster (see Figure 5-13, 

Figure 5-14, Figure 5-15). The hourly average energy consumption throughout the year is 

calculated for each apartment to have a basis for defining high energy consumption values at 12 

pm; the obtained annual average energy consumption is 201 W.h in apartment 112, 260 W.h in 

apartment 152, and 223 W.h in apartment 162. If the value of energy usage at 12 pm is higher than 

the annual average, that value is considered high-energy consumption. The Pareto lines in all three 

“mostly present” clusters demonstrate that around 60 to 70 percent of the days grouped in “mostly 

present” clusters experience energy usage values of higher than annual average energy 

consumption. On the other hand, the percentage of days with energy usage of less than annual 

average energy consumption at 12 pm in each apartment is as follows:  

• 90% in “day-time absence” cluster and 80% in “mostly absent” cluster of apartment 112,  
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• 75% in the “day-time absence” cluster of apartment 152, 

• 90% in the “mostly absent” cluster of apartment 162. 

It can be concluded that the energy consumption during the noon (12 pm) is expected to be higher 

than the annual average usage when the households follow the “mostly present” schedule. In 

general, the determination of the occupancy profile of a day can give useful information about the 

timing of high consumption. Knowing the occupancy schedule of a day can contribute to the 

energy estimations on an hourly basis.  

Furthermore, in apartment 112, the percentile profiles of “day-time absence” and “mostly absent” 

clusters have similar behaviors during the mornings, and the difference appears in the evening 

period. For days grouped in the “mostly absent” cluster, the 50th and 75th percentile during the 

evening only reaches a little higher than 200 and 300 W.h, respectively (see Figure 5-11 (c)). While 

the same percentiles during the evening can be as high as 300 and 600 W.h in the “day-time 

absence” cluster (Figure 5-11 (a)).  

Based on the differences that exist in the load profiles of each occupancy cluster, it can be 

concluded that occupancy is an essential determinant of the shape of load profiles. In general, it is 

true to say different occupancy clusters in each apartment are characterized by different 

consumption profiles, and it is possible to identify the timing of high- and low-consumption 

periods using the occupancy pattern of a day.  
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Figure 5-10. Hourly percentiles of electricity consumption in apartment 112 in (a) “day-time absence” and (b) “mostly present” (c) “mostly absent” cluster 
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Figure 5-11. Hourly percentiles of electricity consumption in apartment 152 in (a) “day-time absence” and (b) “mostly present” cluster 
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Figure 5-12. Hourly percentiles of electricity consumption in apartment 162 in (a) “mostly absent” and (b) “mostly present” cluster
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Figure 5-13. Distribution of energy consumption values recorded at 12 pm in days of each occupancy cluster of 

apartment 112. In cluster2 (“mostly present”), for almost 60% of days, an energy consumption of higher than 201 

W.h (the average hourly energy consumption over the year in apartment 112) is recorded at 12 pm. 
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Figure 5-14. Distribution of energy consumption values recorded at 12 pm in days of each occupancy cluster of 

apartment 152. In cluster2 (“mostly present”), for almost 70% of days, an energy consumption of higher than 260 

W.h (the average hourly energy consumption over the year in apartment 152) is recorded at 12 pm. 
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Figure 5-15. Distribution of energy consumption values recorded at 12 pm in days of each occupancy cluster of 

apartment 162. In cluster2 (“mostly present”), for almost 60% of days, an energy consumption of higher than 223 

W.h (the average hourly energy consumption over the year in apartment 162) is recorded at 12 pm. 

 

5.4. Change point detection results  

As mentioned earlier, the change point is applied to find the hours when the consumption pattern 

is bound to experience a significant change (i.e., a rise or a drop). The information provided by the 
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change point results would give us an insight into each household's energy consumption routine. 

Since occupancy clusters are characterized by distinctive energy consumption profiles, the change 

point is applied to the daily load profiles of each occupancy cluster separately. Hence, to determine 

the most probable change hours (change points) in an occupancy cluster, change point detection 

(CPD) is applied to daily load profiles of all the days grouped in that cluster separately. The change 

hours obtained from each daily load profile are recorded (an example of a change point detection 

result for a single daily load profile is shown in Figure 4-5). When the records of change hours are 

obtained from all daily load profiles, the number of change occurrences at each hour should be 

counted in order to determine the most probable change hours in each occupancy cluster. As 

mentioned earlier several values for the maximum number of change points (Q) is tested, and the 

most suitable value is selected based on the obtained results. In this study, Q =  5 is selected for 

all occupancy clusters except for “mostly present” clusters; Q =  6 is shown to be more 

appropriate for “mostly present” clusters in all three apartments. Based on the chosen Q, the proper 

limit to determine the frequent changing hours is 0.4. Hence, the hours detected as change points 

in at least 40 percent of the days of an occupancy cluster are the most probable changing hours 

within that cluster. In this section, the results acquired for apartment 152 are only discussed, and 

the results of other apartments are available in Appendix D. The results show that change point is 

detected at 6 am, 8 am, 6 pm, and 8 pm in 86, 70, 59, and 57 percent of days in cluster_1 (“day-

time absence” cluster) of apartment 152, respectively (see Figure 5-16). The relative frequencies 

of frequent change hours in the “day-time absence” cluster are higher than the “mostly present” 

cluster (see Figure 5-16), which indicates that occupants are regularly following a certain energy 

consumption routine in days of the “day-time absence” cluster. In contrast, in the “mostly present” 

cluster, discerning the frequent change hours from the rest of the hours is not as clear as they are 

in the “day-time absence” cluster. Therefore, it is true to say that the variation in energy 

consumption routines of occupants in the “day-time absence” cluster is much lower than the 

“mostly present” cluster. Despite the variations in daily load profiles of the “mostly present” 

cluster, there are hours at which changes in the energy consumption pattern are more probable. 8 

am, 11 am, 2 pm, 5 pm, and 8 pm have a relative frequency of higher than 0.4 for change point 

occurrence (see Figure 5-16), so they are considered highly probable change hours for days 

grouped in “mostly present” cluster. In other words, during days when occupants of apartment 152 

are mostly present throughout the day, it is expected for their energy consumption pattern to change 
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at the mentioned hours. The frequent change points in each occupancy cluster indicate the hours 

at which the mean consumption is usually increasing or decreasing. Based on the most frequent 

change hours, it is possible to separate high- and low-consumption segments (periods). Figure 5-17 

shows that the mean consumptions of adjacent periods are well-separated from one another. One 

of the common high-consumption periods in all clusters of each apartment occurs at 7 and 8 pm; 

so, it is true to say that this period is not characterized by occupancy clusters. On the other hand, 

it is revealed that a high-consumption period in the noon is only discovered in “mostly present” 

clusters, and this high-consumption period does not exist in other occupancy clusters. Therefore, 

the high or low state of energy consumption during the noon can be determined through the 

occupancy schedule patterns. This result emphasizes the importance of occupancy schedules on 

the shape of daily load profiles. Furthermore, it can be seen that no change has been detected at 

hours 12 am, 10 pm, and 11 pm in any of the occupancy clusters. The reason is rooted in the 

calculation of maximum likelihood estimates, which cannot be obtained for the 1st, (n)th, and (n −

1)th points of a time-series (see section 4.4 4.4.1). Therefore, it is recommended to consider the 

starting point of the daily time-series with the hour that has the least chance of change occurrence 

(e.g., 4 am). Accordingly, the same starting hour should be considered for all steps of analysis, 

including removing the days in the data cleaning step and separating time-series of occupancy for 

K-shape clustering. For example, if 4 am is considered as the starting point, the occupancy time-

series used for time-series clustering must start from 4 am and end at 3:59 am. In this study, 12 am 

is considered as the time-series’ starting point. The results indicate that the obtained periods are 

well-separated regarding their mean consumption value in all clusters of apartments 112, 152, and 

162. Therefore, the results obtained by considering midnight (12 am) as the starting point of the 

time-series is accepted. The change point results can also be justified using Figure 5-11, Figure 

5-12, and Error! Reference source not found., which show the peak consumption hours of 7 and 

8 pm, while a drop is expected from 9 pm in occupancy clusters of all apartments. 
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Figure 5-17. Mean electricity consumption within each specified period of cluster1 (Day-time Absence) and cluster2 (Mostly Present) in apartment 152

  

Figure 5-16. relative frequency of change occurrence at each hour in cluster1 (Day-time Absence) and cluster2 (Mostly Present) of apartment 152 
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5.5. LASSO regression results  

Up to now, the periods characterized by high- and low-consumption are determined for each 

occupancy cluster. The purpose of the analysis at this stage is to identify the most influencing 

activity types within each period. As mentioned earlier, several plug variables are available, and 

for each plug variable, the location in the apartments is assumed using correlation analysis in 

section 5.1. In this step, regression analysis is used to realize which of these plug variables are the 

most influencing ones at each period. Since the plugs are linked to zone-related activities, the 

regression analysis results can help us understand which types of zonal activities contribute to the 

variations in the total energy consumption at each time-period. Plus, it is possible to provide useful 

feedback to occupants about their consumption behaviors throughout the day. Therefore, in this 

step, a regression model is trained for each time-period, using lighting and plug variables as 

predictors and total load as the target value. As mentioned in section 5.54.5, regression models 

should be able to handle sparsity and multicollinearity that might exist among predictor variables. 

In section 5.1, sparsity could be found among plug variables (Figure 5-2 (c)). In addition to 

sparsity, multicollinearity can affect the estimated coefficients of regression models, and 

regularization can handle this issue as well. Variance-inflation factors (VIFs) are utilized to 

identify multicollinearity in the predictor matrices. The VIFs determine whether it is possible to 

explain one particular predictor using the linear combination of other predictors. For instance, to 

obtain the VIF for predictor A, a multiple linear regression model will be trained for this predictor 

using the rest of the predictors so that predictor A is considered the target variable. The R-squared 

(𝑅2) of the trained model shows how well predictor A can be explained linearly by the combination 

of other predictors. According to the Equation 20, when 𝑅2 gets closer to its maximum value 

(i.e.  𝑅2 = 1 ), the VIF will approach infinity. Therefore, high VIF values imply strong 

multicollinearity among predictors, while VIFs closer to 1 rejects the existence of 

multicollinearity.  

𝑉𝐼𝐹 =  
1

1 −  𝑅2
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 20) 

• 0 ≤ 𝑅2 ≤ 1 

• 1 ≤ 𝑉𝐼𝐹 ≤  ∞ 
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In previous works, 𝑉𝐼𝐹𝑠 =  3.3 is considered the threshold based on which the multicollinearity 

among predictors is either rejected or accepted (Satre-Meloy, 2019) (Roberts & Thatcher, 2009), 

so VIFs higher than 3.3 indicate multicollinearity among variables. In this study, the same 

threshold is considered to check the existence of collinearity. In datasets of the case study 

apartments, multicollinearity exists among plug variables (see Table 8-3 in Appendix E); OTH_P4, 

OTH_P7, OTH_P8 in apartment 112, OTH_P6, OTH_P9, OTH_P10 in apartment 152, and 

OTH_P4, OTH_P7, OTH_P8 in apartment 162 have shown strong multicollinearity since their 

VIFs are extremely high. After checking the energy consumption pattern of these plug variables 

from Table 5-2, Table 8-1, and Table 8-2, it is revealed that the consumption pattern of the plugs 

with high multicollinearity belongs to the first category of plug variables (see Figure 5-2 (a) in 

chapter 5.1). As discussed earlier, the consumption pattern of these plugs shows that hourly 

consumption of these plugs only experiences minor fluctuations and the changes in their values of 

consumption are insignificant. Some examples of appliances with consumption patterns of first 

category are cordless phone, internet modem, etc., which does not show strong relations to the 

presence of occupants and their activities. Since, the plug variables in this category are not able to 

explain the variations in total load, it is expected that the coefficient of these variables to be 

estimated at zero after implementing the LASSO penalty.  
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Figure 5-18. 39 regression models obtained for each period within all occupancy clusters in apartment 112, 152, and 162
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Figure 5-18 demonstrates the estimated coefficient values of all the LASSO regression models; in 

total, 39 models are trained for the three apartments. Out of these 39 models, 16, 11, and 12 belong 

to apartments 112, 152, and 162, respectively. Since the models are trained separately for each 

period, comparing the variables’ estimated coefficients of different periods cannot be considered 

a valid comparison. To properly analyze the coefficients obtained for each period and understand 

the variable importance in different periods, the relative ratios of coefficients in each time-period 

should be compared to the ratios in another period. Within each period, the variables are ranked 

based on their magnitude of consumption and their correlation with total energy usage during that 

period, so plugs with higher coefficients can better explain the variations in total energy 

consumption. Therefore, if a plug (“Plug n”) has a high rank within a certain period (“Period I”) 

while its rank drops within another period (“Period II”), it does not necessarily show that the 

consumption of “Plug n” in “Period II” is lower than “Period I”. This drop only implies that the 

consumption value of “Plug n” compared to other plugs is lower in “Period I” than it is in “Period 

II”. The 𝑅2 of the models range from 0.85 to 0.97. This shows that even after eradicating and 

shrinking the coefficients of some plug variables, the variability in total consumption can be well-

explained using the remaining plug variables.  

Based on the obtained models shown in Figure 5-18, some of the important outcomes are as 

follows:  

The common feature in all of the 39 models is that the estimated coefficient of plug 

variables with multicollinearity is zero or insignificant (see coefficients of OTH_P4, 

OTH_P7, OTH_P8 in apartment 112, OTH_P6, OTH_P9, OTH_P10 in apartment 152, and 

OTH_P4, OTH_P7, OTH_P8 in apartment 162). This proves that the plug variables 

belonging to the first category of energy consumption pattern can be handled by LASSO 

regression, and their coefficients will be set zero since these variables do not lead to 

variations of the total energy consumption. Other plugs can be found with all-time zero 

coefficients such as: BED_P2 and OTH_P9 in apartment 112, BED_P3, BED_P7, 

OTH_P12, and OTH_P15 in apartment 152, and BED_P1 and BED_P10 in apartment 162; 

these plugs are associated with insignificant energy consumption values and are very sparse 

(see Table 5-2, Table 8-1, and Table 8-2).  
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Furthermore, in the “mostly present” cluster of apartment 152 (b.II), the rank of KIT_P17, 

which is related to kitchen-related activities, has surpassed other plugs during period 2-3 

[12 pm - 2 pm]. Additionally, since KIT_P8 has the 2nd rank during this period, it can be 

interpreted that occupants tend to use kitchen appliances and attend to kitchen-related 

activities during this period. In other apartments, the equivalent noon period in “mostly 

present” clusters (a.II, c.II) (i.e., period 2-3 [11 am - 1 pm] in apartment 112 and period 2-

4 [12 pm - 1 pm] in apartment 162) is associated with kitchen-related activities as well. For 

instance, in apartment 112, KIT_P6 is insignificant in most of the time-periods, but it 

appears in the 1st rank during period 2-3 in the “mostly present” cluster (a.II). The same 

inference is true for KIT_P6 in period 2-4 of the “mostly present” cluster in apartment 162 

(c.II). This plug has become 3rd during period 2-4 [12 pm - 1 pm] in the “mostly present” 

cluster, while its coefficient has rarely appeared in other periods. In the same period, 

KIT_P14 has the 4th rank, and its coefficient has a relatively high magnitude among other 

plugs, which further proves the existence of kitchen-related activities during period 2-4 in 

the “mostly present” cluster of apartment 162. Based on the approximate similarity in the 

timing of period 2-3 [11 am – 1 pm] in Figure 5-18 (a.II), period 2-3 [12 pm – 2 pm] in 

Figure 5-18 (b.II), and period 2-4 [12 pm – 1 pm] in Figure 5-18 (c.II), these periods are 

called as the “noon period”. Since the “noon period” in “mostly present” clusters of all 

three apartments is associated with kitchen-related activities, and the mentioned periods 

have high energy consumption in all three apartments (see Figure 5-17 (cluster2, period 2-

3), Figure 8-4 (cluster2, period 2-3), and Figure 8-6 (cluster2, period 2-4)), the households 

should be noticed about kitchen-related appliances during noon. While the period after the 

mentioned “noon period”s in all three apartments have a lower consumption (see Figure 

5-17 (cluster2, period 2-4), Figure 8-4 (cluster2, period 2-4), and Figure 8-6 (cluster2, 

period 2-5)), and it can be seen from section 5.2.2 that during these periods occupants are 

usually present at home (see Figure 5-4 (b), Figure 5-5 (b), and Figure 5-6 (b)). Therefore, 

occupants can shift some of the kitchen-related consumptions from the “noon period”s to 

the next low-consumption periods. In general, with a good knowledge about occupants' 

schedule and the type of activities taking place during each period, it is possible to check 

the feasibility of appliance scheduling interventions. Additionally, kitchen plugs have high 

ranks within the time-periods from 7 pm to 8 pm in every cluster of all apartments (See the 
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following variables’ coefficients during the periods from 7 pm to 8 pm in all 39 models 

depicted in Figure 5-18: KIT_P6, KIT_P14 in apartment 112, KIT_P8 and KIT_P17 in 

apartment 152, and KIT_P6 and KIT_P14 in apartment 162).  

Earlier, it is found that the periods from 7 pm to 8 pm have high consumptions in all 

apartments (see Figure 5-17, Figure 8-4, and Figure 8-6). For load shifting, suggestions 

regarding shifting kitchen-related activities can be given to the households during the noon 

and evening high-consumption periods. To see the impact of kitchen-related activities on 

the mean energy usage within these high-consumption periods, the mean usage of noon 

and evening periods (identified as high-consumption periods in CPD analysis) are 

recalculated with the exclusion of the top-ranking kitchen-related plugs. The obtained 

results show that: 

• Removing KIT_P6 from period 1-4 [7 pm – 8 pm], period 2-3 [11 am – 1 pm], 

period 2-5 [7 pm – 8 pm], and period 3-4 [7 pm – 8 pm] in apartment 112 (Figure 

8-4 in Appendix D) can reduce the energy usage within the mentioned periods by 

19% on average (the reduction in period 1-4, period 2-3, period 2-5, and period 3-

4 is 26%, 10%, 27%, and 13%, respectively.).  

• Consider the noon and evening high-consumption periods in apartment 152 (period 

1-4 [7 pm – 8 pm], period 2-3 [12 pm – 2 pm], and period 2-5 [6 pm – 8 pm] in 

Figure 5-17). It is revealed that excluding KIT_P8 can decrease the mean energy 

usage of the mentioned periods by 9% on average, while eradicating KIT_P17 can 

lead to an average reduction of 20% within the mentioned periods.  

• Shifting KIT_P14 from period 1-4 [7 pm – 8 pm], period 2-4 [12 pm to 1 pm], and 

period 2-6 [7 pm – 8 pm] in apartment 162 (Figure 8-6 in Appendix D) can result 

in an average reduction of 5%, 10%, and 17% during the mentioned periods, 

respectively.   

The mentioned reduction percentages can be presented to the occupants, and based on the 

type of appliances associated with the mentioned plugs, households can consider moving 

the operation of the respective plugs to another period that has a lower energy consumption. 

The scheduling is dependent on the type of appliances. For example, if the energy 

consumption of the mentioned kitchen-related plugs is associated with appliances like 
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dishwasher, rice cooker, etc., shifting their operation is more viable compared to appliances 

like microwave oven whose operation time has a great impact on occupant’s comfort. 

According to (Zhou et al., 2016) (Zhao et al., 2013), appliances can be categorized into two 

groups naming, non-schedulable4 and schedulable5, based on their dependency on humans’ 

manual control. Since users’ comfort is highly dependent on the operation time of non-

schedulable appliances (e.g., hairdryer, microwave oven, etc.) (Zhou et al., 2016), changing 

the timing of activities related to non-schedulable appliances might be difficult.  

 Another interesting result of regression models is related to bathroom activities during the 

mornings in all clusters of apartment 112 (in regression models of apartment 112 in Figure 

5-18, see coefficients of BATH_P12 in period 1-2 [7 am - 10 am], period 2-2 [8 am - 10 

am], and period 3-2 [7 am - 9 am] in “day-time absence”, “mostly present”, and “mostly 

absent” clusters, respectively.). The results indicate that the estimated coefficient of 

BATH_P12 is higher than other plugs during the mentioned periods, while this plug has 

not appeared in the rest of the periods in apartment 112. It can be concluded that the 

occupant(s) living in apartment 112 consume a considerable amount of electricity in the 

bathroom in the mornings.  

Furthermore, it can be seen that in apartment 112, LIGHTS coefficients is usually 

noticeable, especially during the sleeping periods (i.e., period 1-1 [12 am - 6 am] in Figure 

5-18 (a.I), period 2-1 [12 am - 6 am] in Figure 5-18 (a.III), and period 3-1 [12 am - 7 am] 

in Figure 5-18 (a.II)). Similarly, in apartment 152, LIGHTS is one of the most important 

determinants of total electricity load during the sleeping periods (i.e., period 1-1 [12 - 6 

am] and period 2-1 [12 - 8 am] in “day-time absence” and “mostly present” clusters, 

respectively). Therefore, occupants of apartment 112 and 152 can save energy by paying 

attention to lighting consumption during the sleeping periods. On the contrary, LIGHTS’ 

coefficient is negligible within the sleeping periods in apartment 162 (i.e. period 2-1 [12 

am - 6 am] in Figure 5-18 (c.II) and period 1-1 [12 am - 5 am] in Figure 5-18 (c.III)). In 

this case, households of apartments 112 and 152 need to make sure the lights are off 

throughout the nights. LIGHTS are also important in the morning high energy consumption 

 
4 Some examples of non-schedulable appliances are computer, printer, microwave oven, television, hairdryer, etc. 
5  Some examples of schedulable appliances are washing machine, tumble dryer, rice cooker, air conditioner, 

dishwasher, water heater, etc. 



70 
 

period in the “day-time absence” cluster of apartment 152 (Figure 5-18 b.I, period 1-2 [7 

am – 8 am]). It can be seen that LIGHTS are assigned to a high coefficient and ranked third 

after two living room-related appliances (LIV_P4 and LIV_P5). Household of apartment 

152 needs to take advantage of the daylight throughout this period to save energy consumed 

for lights.   

The obtained regression models can have several benefits:  

1. Regarding energy reduction, the regression models show which types of activities have the 

highest priority for energy reduction at each time of day. In this way, occupants can be 

more cautious about the type of activities that consume a considerable amount of electricity 

at each time of day 

2. Regarding load shifting purposes, it is possible to see which types of activities have the 

most contribution during high consumption periods and check the possibility of shifting 

those activities to a low consumption period (identified by change point method).  
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6. Conclusions, limitations, and future work 

6.1. Conclusions 

This study deals with the application of metering infrastructures on household-level energy 

analyses. It can be recognized from the literature that although the drivers of end-use energy 

consumption have been broadly investigated in the previous works, the factors of in-day energy 

consumption, which contributes to the determination of the shape of daily load profiles, have not 

gained enough attention. These temporal drivers are the determinants of energy consumption at 

each time of day, and recognizing them leads to an improved energy management in the residential 

sector. The increasing availability of high-resolution data of residential households, which is 

collected over a long period, creates the opportunity to execute analyses to discover individual 

households' diverse routines and identify the impact of temporal factors of the shape of daily load 

profiles. In this study, a systematic methodology framework is developed to investigate the 

temporal and contextual factors of households’ energy consumption, such as occupants’ activities 

and occupancy. Firstly, a time-series clustering method, called K-shape, is implemented on the 

daily time-series of occupancy, which enables the discovery of distinctive occupancy schedule 

patterns of a household. Secondly, for days grouped within the same occupancy cluster, the change 

point detection (CPD) method is applied on daily time-series of energy consumption to determine 

the low- and high-energy consumption periods in each occupancy cluster. Lastly, the LASSO 

regression method is utilized to discover the most influencing activities on energy consumption 

throughout the periods obtained from CPD analysis. A detailed look into the results indicates that: 

• Single household’s presence routines can be captured using two or three clusters, and K-

shape clustering can extract all of these diverse presence routines for each household. The 

obtained occupancy clusters can be explained using time-variables such as season or 

weekdays. 

• It is shown that distinctive occupancy clusters are characterized by unique load profiles. 

This uniqueness mainly appears in the earlier hours than in the evenings. Based on the 

obtained results, the evening peak timing is similar between occupancy clusters of different 

households. However, the difference between the load profiles of distinctive occupancy 

clusters mainly manifests in earlier hours, especially during the noon. Furthermore, change 

point detection found the hours denoting a change in the shape of daily load profiles, and 
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it has been shown that these hours are specific to each occupancy cluster. So, occupancy 

patterns can be recognized as one of the important temporal factors of the load profiles. 

• Additionally, analyzing one-year data of occupancy and energy consumption in three 

residential apartments indicated that during days when apartments are mostly occupied 

(i.e., “mostly present” occupancy clusters), the energy consumption during the noon is 

expected to be higher than the annual average consumption. The results indicate that for 

almost 60 to 70% of the days grouped in “mostly present” clusters, the energy consumption 

of higher than annual average usage is recorded at 12 pm. On the other hand, the probability 

of high-energy consumption in the noon is less than 25% in other occupancy clusters. This 

result further proves that the occupancy schedule of a day is an important temporal factor 

of the load profile of that day. Based on the results obtained from the three apartments, 

identifying the occupancy pattern of a day as the “mostly present” can increase the chance 

of witnessing high-energy consumption during the noon by more than 60%.  

• Furthermore, LASSO regression results of all the apartments reveal the importance of 

kitchen-related activities during the noon peak period in the “mostly present” clusters. It is 

shown that kitchen-related activities are influencing factors of energy usage during the 

evening peak hours (7 to 8 pm) as well.  

• The average energy usage during the high-consuming noon and evening periods can be 

reduced by 5 to 27 % (based on the results of all three apartments) if the top kitchen-related 

activities are shifted to another time. The obtained knowledge can be presented to the 

households as suggestions for peak energy reduction, and households can manage to shift 

high-energy consuming activities based on the flexibility of their requirements and the 

possibility of scheduling the appliances. 

Some of the contribution of this study are as follows: 

• The impact of peak demand of several households might be mitigated during some hours 

of the day since the peak demand hours can be different among households. However, this 

peak demand can also be intensified during the common peak hours, and the application of 

this work is of greater importance during these common peak demand hours. The findings 

of this study can help households to consume energy in a more cost-efficient manner. If 

the common peak demand periods are revealed to the households, they can manage their 
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energy bills by reducing their consumption during the peak demand hours. This reduction 

can be performed by shifting the operation of some appliances from high-demand periods 

to off-peak periods. Knowing the occupancy schedule of a household and the key activity 

drivers of energy usage during each energy consumption period allows for personalized 

energy consumption reduction interventions and improved comprehension of residential 

consumers’ flexibility regarding load shifting and appliance scheduling programs. 

Discovering the comparative contribution of activity factors to the total energy 

consumption can also raise occupant’s awareness about their routine activities that cause 

great variations to the energy consumption at each time of day. So, occupants can focus on 

the high-consuming activities and attempt to reduce the energy consumption of those 

activities, especially during peak demand hours. Furthermore, the obtained temporal 

factors (e.g., occupancy clusters and the frequent change points when the energy 

consumption usually increases or decreases) can be used as inputs of energy prediction 

models of a household and improve the accuracy of estimations on an hourly basis. It has 

been seen that knowing the occupancy cluster of a day can contribute to the determination 

of the most probable peak hours during that day. (Singh et al., 2012) identified occupancy 

and historical peak load of households as significant determinants of energy predictions on 

an hourly basis. They further stipulated that although the physical features like temperature 

are helpful for weekly or daily load predictions, these features are not as effective 

predictors of hourly load predictions as historical-based data of occupancy and historical 

peak demand. Plus, it is shown that the occupancy clusters can be explained using time-

variables such as seasons and weekdays. Therefore, using occupancy schedule clusters as 

input of energy prediction models can enhance the accuracy of energy estimations in 

residential apartments on an hourly, daily, or even monthly basis. Moreover, the 

methodology framework of this study has been implemented on data sets of three 

households, and it is shown that the framework can be generalized to different households 

with different presence schedules and different energy consumption routines. Customized 

load shifting programs and controlling strategies can be suggested to each household using 

the proposed data-driven framework. The methodology framework can be utilized for 

various climate conditions and building characteristics since occupancy and load profiles 

exist for all households. It is also shown that LASSO regression can be implemented for 
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plug variables having diverse energy consumption patterns. So, the framework can be 

generalized to households having a variety of appliances with different energy 

consumption patterns.  

 

6.2. Limitations of the current study  

One of the limitations faced in this study deals with the characteristics of K-shape clustering. As 

mentioned in section Error! Reference source not found., K-shape is shift-invariant (see Figure 

4-2 (c)). Therefore, as long as two time-series have similar shapes, they will be clustered together, 

even if their phases are different. This quality of K-shape contributed to the ignorance of noisy 

values and small shifts in the phases of time-series, which makes the method more robust and 

accurate. However, the significant shifts can also be ignored, as it is shown in Figure 5-6 (a); this 

can pose challenges to the identification of the usual unoccupied periods from the occupied 

periods. However, with the change point detection method applied to daily load profiles after 

occupancy clustering, the usual high-energy consumption periods can still be identified and 

differentiated from regular off-peak hours. Another limitation of the current work is that each plug 

variable cannot be associated to a specific appliance. Each plug variable represents the energy 

usage from an outlet in the apartment, and it is evident that more than one device can be plugged 

into an outlet. Therefore, guessing the appliances based on the consumption pattern of plug 

variables is challenging. This limitation might reduce the feasibility of feedback aimed to request 

occupants to shift some appliances’ operations from one period to another. As appliances can be 

categorized as schedulable and non-schedulable based on their dependency on manual control and 

occupant’s comfort, knowing the type of appliances is necessary for practical appliance scheduling 

and load shifting interventions. Ignoring appliance types can reduce the practicality and feasibility 

of energy interventions. Providing practical feedback to occupants necessitates analyzing the 

operation time of each specific appliance individually in order to give accurate recommendations 

to shift the schedulable appliances’ operation to another time. The presented energy feedback in 

this study is more useful in notifying occupants about the energy usage of the different appliances 

within a specific room during high-consumption periods. The feedback and suggestions of this 

work cannot specifically point to certain appliances. Another issue can be pointed to the privacy 

concerns of the households being monitored by motion detection sensors. This issue can be 

resolved using other variables such as indoor environmental factors and occupant-related variables 
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showing interactions with lights and windows to generate occupancy profiles. (Panchabikesan et 

al., 2021) demonstrated that occupancy level can be predicted using indoor CO2 and relative 

humidity, along with energy consumption data. 

 

6.3. Future work 

This study emphasizes the role of long-term sensor-collected data and data analysis methods in 

discovering the temporal determinants of load profiles in residential apartments. However, the vast 

opportunity provided by data analysis is capable of achieving much more in energy and occupant 

behavior studies. In this section, some of the potential research opportunities for future works are 

suggested:   

• Based on the results of this study, occupancy schedule patterns are important determinants 

of the shape of load profiles. Therefore, the prediction of occupancy patterns can lead to a 

more accurate estimation of energy usage at different times of day. It has also been shown 

that occupancy patterns can be explained using time-variables such as season and 

weekdays. Finding the occupancy patterns can hint at the hours at which energy usage 

usually increases or decreases. Therefore, discovering the drivers of occupancy patterns 

and predicting the occupancy patterns using the recognized drivers such as time-variables 

(i.e., season, weekday, etc.) can be useful for building automation purposes.  

• The diverse occupancy patterns for each household are discovered using one-year 

occupancy data. It is also important to further investigate the sufficient length of the data 

collection period to capture these diversities in the presence routines of each household. 

As mentioned in section 5.2.2, each household's data collection period may differ based on 

the relationships between occupancy patterns and time-variables such as season and 

weekdays. For example, for the household living in apartment 152, occupancy patterns 

demonstrate strong relations to the weekdays (see Figure 5-8 (a)). On the other hand, for 

the household living in apartment 162, the diverse occupancy schedules can be explained 

by the change of seasons Figure 5-9 (b). It can be concluded that a data-collection period 

of less than one month is capable of capturing the diversity in presence routines of 

household 152, while this period should cover different seasons (probably a year) for 

household 162, since occupancy patterns in apartment 162 change seasonally.  
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• The manual test and trial process to find the optimum number of change points (𝑄) and the 

threshold to define frequent change points in the CPD step (which is practiced in (Li, 

Panchabikesan, et al., 2019)) is not in line with the automation purposes of the HEMSs. 

One possible solution is sensitivity analysis. Sensitivity analysis is recommended to find 

out how sensitive are the final results (relative frequencies of hours and determination of 

the frequent change points where energy consumption change significantly depicted in 

Figure 5-16, Figure 8-3, and Figure 8-5) to the selection of 𝑄. The lower the sensitivity, 

the higher the CPD method's robustness in case of determination of the regular peak hours.  

• The identified Occupancy profiles, frequent change hours, and the knowledge about the 

influencing activities can be incorporated into the control systems. Investigating the effect 

of the mentioned factors on the control strategies should be addressed in future works. For 

instance, the feasibility of appliance scheduling and its actual impact on peak and 

electricity cost reduction needs to be measured when the scheduling is put in action.   
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8. Appendix 

Appendix A 

 
(a) Apartment 112 

 

 
(b) Apartment 162 

Zonal labels of the apartment 112 Plug Power Variables 

Bedroom-related P1, P2, P5 

Livingroom-related P11 

Kitchen-related P6, P10, P13, P14 

Bathroom-related P12 

Others P3, P4, P7, P8, P9 
 

Zonal labels of the apartment 162 Plug Power Variables 

Bedroom-related P1, P2, P5, P10 

Livingroom-related P11 

Kitchen-related P6, P12, P14 

Bathroom-related -  

Others P3, P4, P7, P8, P9, P13 
 

Figure 8-1. Pearson correlation coefficients between plug variables and motion detection variables of apartment (a) 112 and (b) 162; the tables show the zonal 

labels of plug variables in each apartment 
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Appendix B 

Table 8-1. Summary statistics of variables in apartment 112 

Plug 

Variables 

in Apt. 112 

Mean 

(W.h) 

SD 25th 

percentile 

50th 

percentile 

75th 

percentile 

Category (based 

on pattern of 

consumption) 

BED_P1 3.86 16.70 0 0 0 3rd 

BED_P2 0.70 1.56 0 0 0 3rd 

OTH_P3 2.07 34.40 0 0 0 3rd 

OTH_P4 18.45 0.81 18 18 19 1st 

BED_P5 65.99 30.83 53 61 71 2nd 

KIT_P6 10.22 70.46 0 0 0 3rd 

OTH_P7 6.01 0.23 6 6 6 1st 

OTH_P8 10.52 0.61 10 11 11 1st 

OTH_P9 0.03 0.28 0 0 0 3rd 

KIT_P10 33.80 33.51 19 23 32 2nd 

LIV_P11 0.50 5.87 0 0 0 3rd 

BATH_P12 0.96 16.52 0 0 0 3rd 

KIT_P13 30.06 20.39 26 30 32 2nd 

KIT_P14 1.70 15.94 0 0 0 3rd 

LIGHTS 17.95 34.14 0 0 22 - 
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Table 8-2. Summary statistics of variables in apartment 162 

Plug 

variables in 

Apt. 162 

Mean 

(W.h) 

SD 25th 

percentile 

50th 

percentile 

75th 

percentile 

Category (based 

on pattern of 

consumption) 

BED_P1 1.41 6.96 0 0 0 3rd  
BED_P2 7.05 16.32 0 0 2 3rd  
OTH_P3 10.93 61.87 0 0 0 3rd  
OTH_P4 19.38 0.75 19 19 20 1st  
BED_P5 17.07 23.10 6 7 20 2nd  
KIT_P6 4.31 45.17 1 1 1 3rd  
OTH_P7 5.82 0.41 6 6 6 1st  
OTH_P8 11.83 0.57 12 12 12 1st  
OTH_P9 14.50 80.65 0 0 0 3rd  
BED_P10 1.11 2.76 0 0 0 3rd  
LIV_P11 36.58 42.69 12 20 36 2nd  
KIT_P12 58.94 42.55 38 42 55 2nd  
OTH_P13 15.64 115.27 0 0 0 3rd  
KIT_P14 10.88 63.33 0 0 0 3rd  
LIGHTS 7.51 19.21 0 0 5 - 
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Appendix C 

 
(a) 

 
(b) 

Figure 8-2. Distribution of occupancy patterns among (a) weekdays and (b) seasons in apartment 112 
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Appendix D 

 
(a) 

 
(b) 

 
(c) 

Figure 8-3. relative frequency of change occurrence at each hour in cluster1 (a), cluster2 (b), and cluster3 (c) of apartment 112 

 
(a) 

 
(b) 

 
(c) 

Figure 8-4. mean electricity consumption within each specified period of cluster1 (a), cluster2 (b), and cluster3 (c) in apartment 112 
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(a) 

 
(b) 

Figure 8-5. relative frequency of change occurrence at each hour in cluster1 (a) and cluster2 (b) of apartment 162 

 
(a) 

 
(b) 

Figure 8-6. mean electricity consumption within each specified period of cluster1 (a) and cluster2 (b) in apartment 162 
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Appendix E 

 

Table 8-3. Variance Inflation Factors (VIFs) 

Apartment 112 

BED_P1 BED_P2 OTH_P3 OTH_P4 BED_P5 KIT_P6 OTH_P7 OTH_P8 OTH_P9 KIT_P10 LIV_P11 BATH_P12 KIT_P13 KIT_P14 LIGHTS    

1.023 1.065 1.016 253.128 1.132 1.085 400.813 180.315 1.029 1.586 1.032 1.019 3.066 1.059 1.084    

Apartment 152 

OTH_P1 BED_P2 BED_P3 LIV_P4 LIV_P5 OTH_P6 BED_P7 KIT_P8 OTH_P9 OTH_P10 OTH_P11 OTH_P12 LIV_P13 KIT_P14 OTH_P15 LIV_P16 KIT_P17 LIGHTS 

2.872 1.098 1.022 1.054 1.080 40.758 1.193 1.096 633.675 655.815 1.087 1.278 2.993 1.154 1.060 1.363 1.233 1.308 

Apartment 162 

BED_P1 BED_P2 OTH_P3 OTH_P4 BED_P5 KIT_P6 OTH_P7 OTH_P8 OTH_P9 BED_P10 LIV_P11 KIT_P12 OTH_P13 KIT_P14 LIGHTS    

1.221 1.253 1.056 393.943 1.316 1.016 438.685 316.675 1.369 1.306 1.861 2.776 1.244 1.244 1.490    
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Appendix F 

Table 8-4. Cluster validation indices summary (adopted from (Satre-Meloy et al., 2020)) 

 

Index Equation Optimal case 

Calinski-Harabasz 

(Caliński & 

Harabasz, 1974) 

𝐶𝐻(𝑞) =  
𝑡𝑟𝑎𝑐𝑒(𝐵𝑞)/ (𝑞 − 1)

𝑡𝑟𝑎𝑐𝑒(𝑊𝑞)/ (𝑛 − 𝑞)
 

• 𝑊𝑞: the within-cluster dispersion matrix for data clustered 

into q clusters 

• 𝐵𝑞: the between-cluster dispersion matrix for data clustered 

into q clusters 

• 𝑞: number of clusters 

• 𝑛: number of data points 

To be 

maximized 

Davies-Bouldin 

(Davies & Bouldin, 

1979) 

𝐷𝐵(𝑞) =  
1

𝑞
 ∑ max

𝑘≠𝑙
(
𝛿𝑘 + 𝛿𝑙

𝑑𝑘𝑙
)

𝑞

𝑘=1

 

• 𝐾, 𝑙 =  1, … , 𝑞, both indicates cluster number, and 𝑞 is the 

number of clusters 

• 𝑑𝑘𝑙: the distance between centroids of cluster 𝐶𝑘and 𝐶𝑙 

• 𝛿𝑘: the average distance between each data point of cluster 𝑘 

and the centroid of cluster 𝐶𝑘 

To be 

minimized 

Dunn 

(Dunn, 1973) 

𝐷𝑢𝑛𝑛(𝑞) = min
1≤𝑖≤𝑞

{ min
1≤𝑗≤𝑞, 𝑗≠𝑖

{
𝑑𝑖𝑗

max
1≤𝑘≤𝑞

{𝛿𝑘}
} } 

• 𝑖, 𝑗, 𝑘 =  1, … , 𝑞 

• 𝑑𝑖𝑗: the distance between centroids of cluster 𝐶𝑖and 𝐶𝑗 

• 𝛿𝑘: the average distance between each data point of cluster 𝑘 

and the centroid of cluster 𝐶𝑘 

To be 

maximized 

Silhouette 

(Rousseeuw, 1987) 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 = 
∑ 𝑆(𝑖)𝑛

𝑖=1

𝑛
 , 𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 ∈ [−1, 1] 

• 𝑆(𝑖) = 
𝑏(𝑖)−𝑎(𝑖)

max {𝑏(𝑖),   𝑎(𝑖)}
 

• 𝑎(𝑖): The mean distance between a sample (the 𝑖th data 

point) and all other points in the same cluster 

• 𝑏(𝑖): The mean distance between the 𝑖th data point sample 

and all other points in the next nearest cluster 

• 𝑛: total number of observations (data points) 

To be 

maximized 
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Appendix G 

Quartile method find outliers using the following equations: 

 

𝑙𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 =  𝑄1 − 𝐼𝑄𝑅 

𝑢𝑝𝑝𝑒𝑟 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = 𝑄3 + 𝐼𝑄𝑅 

• 𝑄1: first quartile 

• 𝑄3: third quartile 

• 𝐼𝑄𝑅: inter quartile range (𝑄3 − 𝑄1) 

Knowing the median is the second quartile (𝑄2), the first quartile (𝑄1) is the value between the 

median and the minimum value, and the third quartile (𝑄3) is the value between the median and 

the maximum value. 

 


