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Abstract

Quantitative Measurement of Muscle Oxygen Saturation Using 5-Wavelength

Near-Infrared Spectroscopy with Fault Diagnostic

Shuang Ni

Regular physical activity can help people improve both physical and mental health. As people pay

more attention on their health, fitness has become a popular activity. For individuals who have spe-

cific training goals, such as losing fat, gaining weight, and preparing to participate in competitions,

it is important to avoid injury during exercise and improve the efficiency of training. Physiological

monitoring during exercise, such as heart rate, blood lactate, oxygen uptake, and tissue oxygena-

tion, is helpful for improve the effectiveness and safety of training. Many researchers are devoting

their efforts to propose methodology and invent instruments of measuring these metrics. It is well

known that heart rate is a commonly used measurement indicator, which can be measured on many

fitness equipment and wearable devices. However, heart rate is a global parameter of the trainer’s

body and cannot represent the training intensity of a specific muscle. Because the muscles are

directly affected by the exercise, it is necessary to measure the metrics of muscles to determine

whether a specific muscle can tolerate the exercise load or not. If the muscles are overworked,

there is a high probability of injury, which must be avoided. Hence, it is imperative to measure

local muscles.

Muscle oxygen saturation (SmO2) is an indicator of the altering between oxygen delivery and

consumption in the muscles. The more intense the exercise, the more oxygen is consumed by the

muscles. So SmO2 is a good indicator to assess how fatigued a specific muscle is. In sports science,

it is usually measured non-invasively by near-infrared spectroscopy (NIRS). Many instruments

were developed by researchers previously based on different NIRS techniques and algorithms.

In this thesis, a methodology of measuring absolue value of SmO2 was proposed for a wearable

measurement device with one source and two detectors using 5-wavelength NIRS. The algorithm
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of fitting the light attenuation to the Taylor expansion model by bound-constrained non-linear least

squares fitting was evaluated with simulated tissues. For in vivo measurement, an orthogonalization

technique was introduced to reduce the effect of the absorption and scattering of overlying tissues.

With comparison and analysis, the measuring SmO2 values of two designed running procedures

were reasonable.

During exercise, the trainer may not always wear the device correctly and the device may move

or fall off. And some of the individuals may not exercise as the designed training procedures.

So the measured data will be unreliable in these cases. In order to remind users to wear the

device properly and to train as the designed procedures, a fault diagnostic method was proposed

by machine learning approach in this thesis. With labelling data by its reliability and splitting data

into different training status, a support vector machines (SVM) model with Gaussian radial basis

function kernel was trained. According to two evaluation curves, ROC curve and cross-validation

learning curve, the SVM classifiers in both training states can achieve an accuracy of over 97%.

These trained models can be applied as a fault diagnostic for the measurement device.

There is no screen on the device, so the results need to be displayed on a computer or mobile

phone. In this thesis, an application that integrated the SmO2 calculation and fault diagnostic was

developed in Matlab App Designer. With this application, after three clicks by users, the SmO2

curve during training and the absolute values could be displayed in the interface. Since the device

didn’t have the feature of real-time wireless transmission, a simulation of real-time mode was done

to show the possibility of real-time measurement in the future.
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Chapter 1

Thesis Overview

1.1 Introduction

Exercise provides oxygen and nutrients to tissues and helps the cardiovascular system work more

efficiently. The common goal of everyone involved in sports is to improve their muscle strength

and enhance endurance. And for athletes, another goal is to enhance their performance in the com-

petition. However, there are two situations, under-reaching and over-training, which often occur

that hinder people from achieving their goals. On the one hand, individuals who are under-reaching

cannot elicit any physical improvement from their insufficient exercise. Especially for people who

have specific training goals, such as losing fat, gaining weight, and preparing to participate in

competitions, they cannot achieve their goals with the situation of under-reaching. On the other

hand, over-training occurs when individuals exceed their body’s ability to recover from strenuous

exercise. Usually, it happens when non-elite athletes do high-intensity and high-volume training

for long periods, which can lead to inadequate or incomplete recovery. If over-trained for long

enough, an individual can completely crash, become chronically ill and fatigued, which is the re-

sult that no one wants. Athletes and fitness enthusiasts should try their best to avoid under-reaching

and over-training. Therefore, how to work out scientifically and reasonably has become a major

concern for trainers.

To prevent these two situations from occurring and to achieve training in the most effective way,

not only is it necessary to train harder, but also to train smarter. For the effectiveness and safety

of training, physiological monitoring is essential during exercise. There exist several evaluation
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metrics to monitor the status during training, such as heart rate, blood lactate, oxygen uptake, and

tissue oxygenation. These monitoring have the goal to determine whether the trainer is able to

tolerate work out load or not. Trainers need to combine these metrics with professional advice

from experts to conduct an effective and safe training.

In the body of a well-trained athlete, the exercised muscle consumes approximately 80% of

oxygen. Muscle oxygen saturation (SmO2) indicates the altering between oxygen delivery and

consumption in the muscles. It is a real-time measurement metric of how the muscle utilizes oxy-

gen progressively, which can assist athletes to comprehend how efficiently their muscles are using

oxygen during a workout. The non-invasive SmO2 measurement techniques are usually based

on near-infrared spectroscopy (NIRS), an optical strategy for enlightening muscle tissues which

penetrate, absorb, reflect, and scatter light coordinated at the tissue. When measuring oxygen

saturation, the attenuation of NIR light is mainly caused by the absorption of chromophores and

melanin and light scattering. Hemoglobin (Hb) and myoglobin (Mb) are chromophores in human

muscle, which are also substances that transport and store oxygen in muscle tissues. Hemoglobin is

an iron-containing protein in red blood cells and it can exist in two forms, oxygenated hemoglobin

(O2Hb) and deoxygenated hemoglobin (HHb). By measuring the attenuation of NIR light and ex-

cluding the influence of absorption and scattering by other tissues, the ratio of O2Hb to the total

Hb can be calculated, which is the absolute value of SmO2.

NIRS can be divided into four categories, including continuous-wave spectroscopy(CWS), spa-

tially resolved spectroscopy (SRS), time-resolved spectroscopy (TRS), and phase-modulated spec-

troscopy (PMS). All of these methods can be used to measure oxygen saturation. There are many

instruments in the industry that using NIRS to measure in vivo tissue oxygenation. Some of these

instruments use PMS and TRS, which are highly accurate but usually expensive and bulky, and are

generally used in laboratories and hospitals. The instruments using CWS and SRS can be made

into wearable or portable devices, but the accuracy and precision are relatively low.

1.2 Objective of the Research

According to the discussion in the previous section, monitoring during exercise has great benefits

for athletes to improve training efficiency and safety. The most common is the monitoring of
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heart rate, which is also a metric used by many wearable devices. However, heart rate is a global

parameter of the individual’s body, which is unable to represent the training intensity of specific

muscles. Although blood lactate can provide a very accurate measurement of the effect of training

intensity, it is usually measured invasively. Measurement of muscle oxygen saturation can be both

representative of the intensity of training in a specific muscle and measured non-invasively.

Even though there are some wearable SmO2 measuring devices on the market, their prices

are very expensive. For example, the price of a Moxy monitor [1] invented by Fortiori Design

LLC is more than a thousand Canadian dollars. For sports enthusiasts, few people would spend so

much money on a measuring device. Therefore, an affordable measuring device was designed by

Getwell Health Technology Co., Ltd. The company designed the hardware [2] but the algorithms

of calculating the value of SmO2 needed to be worked on.

The objective of my research is to design algorithms that suitable for this newly invented de-

vice to calculate SmO2. More specifically, a method to quantitatively measuring SmO2 using 5-

wavelength NIRS with two source-detector distances was proposed in this thesis. Besides, in order

to reduce the incorrect guidance to users from the unreliable results, a fault diagnostic methodol-

ogy was introduced based on data reliability classification and prediction by the machine learning

approach. Moreover, since there was no screen on the device, a user-friendly computer application

that integrates SmO2 calculation functions and fault diagnostic was designed using Matlab App

Designer and introduced in this thesis.

1.3 Contributions

For the newly invented 5-wavelength near-infrared spectroscopy measurement device, We have

customized a SmO2 calculation algorithm and a fault diagnosis method based on the limited mea-

sured data given by Getwell Health Technology Co., Ltd. The main contributions of this thesis are

highlighted as follows:

1. For the newly invented SmO2 measurement device, we applied bound-constrained non-linear

least squares fitting to the Taylor extension model to estimate SmO2 value. Boundaries of

each parameter in the least squares fitting were appropriately selected based on their physical

meaning.
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2. The accuracy of this algorithm was evaluated using 5 wavelengths in three aspects with

the simulated attenuation spectra under three light scattering conditions, including non-

scattering medium, forearm, and calf.

3. For the in vivo measurement, according to the original hexadecimal data read from the de-

vice, the light attenuation of five wavelengths at each sampling point was generated.

4. We modified the orthogonalization technique to apply to our measurement device. This

technique was applied to the in vivo measured light attenuation from both main and auxiliary

measurement distances to reduce the absorption and scattering in skin and fat.

5. The measurement algorithm were applied to the orthogonal light attenuation of 5 wave-

lengths to calculate the values of SmO2 at each sampling point.

6. The SmO2 results of 33 in vivo tests of different subjects were estimated and analyzed.

Some of the results were compared with the results generated from Moxy monitor to prove

the rationality of the results.

7. The results of each in vivo test was split by training process and labelled by their reliability.

A fault diagnostic methodology was introduced based on data reliability classification and

prediction by machine learning approach.

8. A user-friendly application was developed by Matlab App Designer, which integrated all

algorithms described in this thesis.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows.

In chapter 2, the background knowledge used in this thesis for measuring SmO2 using NIRS

and literature review are presented. First, the theorems and formulas of light absorption and scat-

tering in tissue are given. Then, the biological responses to electromagnetic radiation and the

absorption coefficients of water, oxygenated hemoglobin (O2Hb), and deoxygenated hemoglobin

(HHb) are explained. Next, four categories of near-infrared spectra that commonly used to measure

tissue oxygenation are presented. Besides, the principles and four metrics of measuring athletes’

training in sports science are presented. Finally, the definition of oxygen saturation and existing

measurement techniques are introduced.
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In chapter 3, a method to quantitatively measuring SmO2 using 5-wavelength NIRS with two

source-detector distances is proposed. First, the structure and principle of the measuring device is

described. Then, an algorithm for calculating the absolute value of SmO2 from the measured data

of the main measurement distance is explained in detail. Besides, an accuracy evaluation of this

algorithm is done in three aspects with the simulated attenuation spectra under three light scatter-

ing conditions, including non-scattering medium, forearm, and calf. Next, an orthogonalization

technique is applied to the measured data from two measurement distances to reduce the absorp-

tion and scattering in skin and fat. Moreover, two training procedures are introduced to collect the

useful data from detectors and the data processing process is explained in a flowchart. Finally, the

numerical results of the in vivo measurement are shown and explained to prove the usability of the

algorithms.

In chapter 4, the content is mainly divided into two parts. Firstly, a fault diagnostic methodol-

ogy based on data quality classification and prediction by machine learning approach is introduced.

Secondly, an application that integrated all these algorithms described in this thesis designed by

Matlab App Designer is presented.

In chapter 5, the work of this thesis is concluded and some directions for future research is

provided.
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Chapter 2

Background and Literature Review

The measurement of muscle oxygen saturation involves knowledge of many disciplines, including

biology, clinical medicine, optics, and sports science. To better understand the principles and

methods of muscle oxygen saturation measurement, the knowledge of these related subjects should

be known.

In this chapter, the background knowledge of many subjects and literature review of tissue oxy-

gen saturation measurement were elaborated. First, the theorems and formulas of light absorption

and scattering are presented. Then, the optical properties of tissues related to hemoglobin in human

tissues, especially for near-infrared light, is explained in detail. Next, four kinds of near-infrared

spectroscopy usually used in clinical medicine are introduced. Besides, the principles of measuring

athlete’s training in sports science are described. Finally, the definition and existed measurement

technologies of tissue oxygen saturation are presented.

2.1 Light Absorption and Light Scattering

For pure absorption without scattering, Beer-Lambert’s law [3–5] was introduced to describe the

relationship between chromophore concentration and the attenuation. In 1760, Johann Heinrich

Lambert proposed the relationship of the absorption of light to the amount of absorbent [5], which

is called Lambert’s law. Lambert’s law states that the light absorbed by each successive layer of the

absorbent is independent of the intensity of the radiation, and they all absorb an equal proportion

of light [5]. Then, in 1852, the fact that the concentration of an absorbent is proportional to its
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absorption of light was investigated by August Beer, which is called Beer’s Law [4].

2.1.1 Beer-Lambert’s Law

In the case of light transmission through a non-scattering medium, as shown in Fig. 1, the absorp-

tion coefficient µa can be defined as

dI = −µa I dl (1)

where I is the intensity of the light and l is the thickness of the medium. In a homogeneous

I𝐼0 I𝐼1

𝐼 𝐼 − 𝑑𝐼

𝑑𝑙

𝑙

Non-Scattering Medium

Figure 1: Light transmission through a non-scattering medium

medium, dI is the change in the intensity of light moving along an infinitesimal path dl. Integration

over a thickness l (mm), the formula becomes as follows

I1 = I0 exp (−µal) (2)

where I0 is the incident light intensity. In this case, the thickness l represents the pathlength of

the light through the non-scattering medium, which is also equal to the source-detector distance d.

The absorption coefficient µa can be described as

µa = c · ε · ln 10 (3)
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Therefore, equation (2) can also be expressed as a logarithm to base 10 as follows

I1 = I0 10−c·ε·l (4)

where c is the molar concentration of the compound, and ε is the extinction coefficient and its SI

unit is the square metre per mole (OD · cm−1 ·mM−1).

The attenuation spectrum in optical density (OD) units measures the optical attenuation per

centimeter of material, which is defined as natural logarithm of the ratio of the incident light

intensity to the transmitted light intensity, given by

A = − ln

(
I1

I0

)
(5)

When measured light attenuation spectrum and ε are expressed as logarithms with base 10,

from equations (2), (4) and (5) we can obtain

A = µal = c · ε · l · ln 10 (6)

2.1.2 Modified Beer-Lambert’s Law

The Beer–Lambert’s law is only valid in non-scattering media and cannot be applied to biological

tissues. In media with scattering, such as tissue, multiple-scattering effects can cause the physical

pathlength of light through the tissue to be longer than the geometric distance between the light

source and the detector [6]. The differential pathlength has come to be used to refer to this phys-

ical pathlength, which can be expressed in equation (7) as a differential pathlength factor (DPF)

multiplied by the source-detector separation distance d [7], as shown in the following formula

L = DPF · d (7)

In the modified Beer-Lambert’s law proposed by D.T. Delpy et al. [7], light scattering was

taken into account, as shown in Fig. 2. A term G is added to describe the effect of scattering on the

spectrum, which is an unknown geometrically related factor. Therefore, the attenuation spectrum

can be expressed as

A = − ln

(
I1

I0

)
= L · µa +G = DPF · d · µa +G (8)
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Figure 2: Light transmission through a scattering medium

2.1.3 Light Scattering in Tissue

In tissues, the refractive index mismatches at boundaries causes light scattering. The area that

contributes to scattering is called effective cross-section. The scattering coefficient µs (mm−1) is

expressed as the cross-sectional area (mm2) per unit volume of the medium (mm3) [8]. Assuming

scattered photons don’t return to the incident axis, µs can be defined as

I1 = I0 exp (−µsl) (9)

Another parameter called reduced scattering coefficient µ′s is commonly used for in vivo mea-

surements, which is defined as

µ′s = µs (1− g) (10)

where the parameter g is the anisotropy factor, which can be represented as

g =

∫ 1

−1

cos θf (cos θ) d cos θ (11)

When g = 0, scattering is isotropic. When g = 1, the incident light doesn’t scatter in tissues.

When g = −1, the incident light scatters complete backward to the source. The value of g in

biological tissues is 0.69 ≤ g ≤ 0.99, which means that forward scattering usually occurs in the

tissues [8].
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2.2 Optical Properties of Tissue

When measuring in vivo tissue by optical techniques, it is important to consider the biological

responses to electromagnetic radiation. There are three main reasons for the attenuation of NIR

light in tissue: (i) O2-dependent absorption from chromophores of variable concentration, i.e.,

hemoglobin (Hb), myoglobin (Mb) (in muscles only), and cytochrome oxidase; (ii) absorption

from chromophores of fixed concentration, i.e., skin melanin; (iii) light scattering [9]. Hemoglobin

is an iron-containing protein in red blood cells and can exist in two forms, oxygenated hemoglobin

(O2Hb) and deoxygenated hemoglobin (HHb). One mole of HHb combines with four moles of

oxygen to form O2Hb [8].
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Figure 3: Absorption spectra of O2Hb and HHb

As early as in the 19th century, continuous light has been used to non-invasively investigate

human tissue by transmitting the light through the tissue such as breast and head [10]. In 1860s,

Hoppe-Seyler from Germany and Stoke from the United Kingdom described the spectrum of O2Hb

and HHb [11]. The absorption coefficient determines how far light of a particular wavelength can

penetrate a material before being absorbed. And it depends on the wavelength of the absorbed light

and the material. There is very little light absorption in a medium with a low absorption coefficient,

and it will show as transparent to that wavelength if the medium is thin enough. The optical
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absorption characteristics of O2Hb and HHb are different, and the absorption spectra of O2Hb and

HHb [12] are shown in Fig. 3. In this figure, the isosbestic point, which is the intersection of the

curves of the two hemoglobins, is at approximately 800 nm.
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Figure 4: Absorption spectra of water

The absorption spectra of water [13] is shown in Fig. 4. In order to reduce the influence of

water absorption, the wavelength with small water extinction coefficient should be selected, which

is between about 200 nm and about 950 nm. Taking into account the absorption spectra of main

components in tissues, in vivo measurements by spectroscopy with wavelengths between 650 nm

and 950 nm are especially reasonable.

2.3 Near-Infrared Spectroscopy in Clinical Medicine

With the development of science and technology, near-infrared (NIR) spectroscopy (NIRS) has

became a popular technique for a wide range of quantitative and qualitative analysis in various

fields, such as agriculture, food, medicine, materials, etc. Across the full electromagnetic spectrum

of light, visible light lies in the mid-spectrum range of 400 nanometers (nm) to 700 nm and the

NIR light spectrum ranges from 700 nm to 2500 nm. Light below 650 nm is strongly absorbed
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by hemoglobin, while light above 950 nm is strongly absorbed by water. In clinical applications

of NIRS, the wavelength between 650 nm and 9500 nm are commonly used. For in vivo tissue

measurement, visible light can only penetrate the tissue no more than 1 centimeters (cm), while

NIR light can access the tissue depth up to 8 cm [14]. As a spectroscopic method, NIRS examines

the change in absorbance of the electromagnetic spectrum.

In 1932, Nicolai et al. completed the first study on the spectroscopic measurement of in vivo

tissue, which examined the optical characteristics of hemoglobin [15]. Ten years later, Millikan

developed the first practical ear oximeter for aviation [16]. The most important follow-up work in

ear oximetry began in 1948 by the laboratory of Earl H. Wood. Millikan’s earpiece was modified

by Wood et al. to obtain the absolute oxygen saturation of arterial blood [17]. Due to their device

are based on many extraneous assumptions, it was not sufficiently stable for continuous monitoring

of oxygen saturation. Therefore, their idea was used to manufacture ear oximeters for clinical use

for twenty years, until Aoyagi et al. [18] proposed a new instrument named pulse oximetry in 1974,

which uses arterial pulsation. This kind of device can accurately measure the oxygen saturation

of arterial blood without being affected by factors other than arterial blood. Nowadays, pulse

oximetry is widely used in clinical medicine all over the world. Although it is important to measure

oxygen saturation of arterial blood to reflect gas exchange occurring in the lungs, measurement of

blood oxygenation in the capillaries of each tissue is also desirable.

In NIRS, reflected or transmitted light intensity is usually used for determining the tissue oxy-

genation. However, it is difficult to detect transmitted light in adult tissues, such as the brain,

thigh, calf, forearm, etc., so NIRS using transmitted light is not suitable for clinical measurement.

Therefore, reflection light intensity is most commonly used in clinical medicine nowadays.

There are four major categories of NIRS techniques that have been used to measure tissue

oxygenation: continuous-wave spectroscopy(CWS), spatially resolved spectroscopy (SRS), time-

resolved spectroscopy (TRS), and phase-modulated spectroscopy (PMS).

2.3.1 Continuous-Wave Spectroscopy

The term ”continuous wave” refers to a measurement technology based only on the light intensity,

regardless of the phase, time, etc. In continuous-wave spectroscopy (CWS), a constant intensity of
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light is incident into the tissue, and then the attenuated light signal is measured at a certain distance

from the light source, as shown in Fig. 5. Most commonly, in CWS instruments, the source and

detector are connected to the tissue using optical fibers, but there are also some devices that use

LEDs as light source and photodiode as the detector, which is placed directly on the skin.
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Time
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𝐼0 𝐼𝑟𝑒𝑓

Figure 5: Continuous-Wave Spectroscopy Technique

The change in tissue oxygenation can be determined from the change in absorption coefficients

of a tissue. Assuming that the changes in light absorption are mainly due to oxygenation or volume

changes in the blood. According to equation (3), the change of absorption coefficient of a tissue

under a specific wavelength can be defined as

∆µa (λ) = (εO2Hb (λ)∆cO2Hb + εHHb (λ)∆cHHb) ln (10) (12)

where εO2Hb (λ) and εHHb (λ) represent the extinction coefficients of O2Hb and HHb at wavelength

λ, and ∆cO2Hb and ∆cHHb are the changes of O2Hb and HHb concentrations.

In order to get the value of ∆cO2Hb and ∆cHHb, ∆µa should be obtained from measurements at

least two wavelengths. A combination of wavelengths between 650 and 950 nm is commonly used

by the NIRS techniques. These wavelengths are usually chosen on both side of the isosbestic point

of O2Hb and HHb absorption spectra, which is shown in Fig. 3. The larger the difference between

two wavelengths, the easier to obtain the intensity change due to the wavelength, but the change in

the optical path length should not be ignored. Assuming that the path lengths of each wavelength
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are same, the changes in concentration of O2Hb and HHb can be expressed as

∆cO2Hb =
εHHb (λ2) ∆µa (λ1)− εHHb (λ1) ∆µa (λ2)

εO2Hb (λ1) εHHb (λ2)− εHHb (λ1) εO2Hb (λ2)
(13)

∆cHHb = − εO2Hb (λ2) ∆µa (λ1)− εO2Hb (λ1) ∆µa (λ2)

εO2Hb (λ1) εHHb (λ2)− εHHb (λ1) εO2Hb (λ2)
(14)

In Continuous-Wave NIRS (CW-NIRS), assuming that the scattering coefficient doesn’t change

during measurement, the change of attenuation spectrum can be generated from equation (8). As-

suming that the parameter G has the same value for all chromophores in the medium, G can be

cancelled by using the differential equation. Therefore, the change of attenuation spectrum in

optical density (OD) units is defined as

∆A = − ln

(
I1

I0

)
= L ·∆µa = DPF · d ·∆µa (15)

When DPF and source-detector distance are known, ∆µa can be calculated from this formula

because ∆A can be measured by CW-NIRS devices. Although the DPF information of a specific

tissue at a specific wavelength could be found in some priori studies, such as Duncan’s paper [19],

the actual pathlength of light L would never be known.

The CWS technique has advantages that it is very sensitive and it enables a data sampling rate

of less than one second. However, it has the disadvantage that it cannot fully determine the optical

properties of tissue, such as light absorption and scattering coefficients, and therefore it cannot

obtain the absolute value of O2Hb and HHb [8].

2.3.2 Spatially Resolved Spectroscopy

Spatially resolved spectroscopy (SRS) [20] is an improvement to the original on source-detector

device in CW-NIRS technology, as shown in Fig. 6. The estimation precision of attenuation spec-

trum A can be improved by measuring at multiple distances from the source. In addition, the SRS

technology enhances the detection of deeper tissues while reducing the contribution of shallower

tissues [21]. Moreover, when measuring tissues with multi-layer by SRS, the light received at

shorter distances almost only contains the information of the top layer, such as skin and fat, while

at longer distances, both information of the top layer and underlying tissue, such as muscles, is
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contained in the collected light. In addition, unlike the TRS (described below), the SRS instrument

can process a larger number of photons at the detector, and thus with less noise. Therefore, it is

possible to be transported and commercialized.

Tissue (𝜇𝑎)

𝐼0
𝐼𝑟𝑒𝑓

Figure 6: Spatially Resolved Spectroscopy Technique

Spatially resolved NIRS also can’t be used to calculate absolute concentrations of chromophores

in tissues because the pathlength of light L is unknown. However, the changes in the concentrations

of O2Hb and HHb, relative to the initial baseline value, can be determined by the SRS instrument.

2.3.3 Time-Resolved Spectroscopy

Time-resolved spectroscopy (TRS), as shown in Fig. 7, uses a picosecond pulsed light as incident

light and a detection equipment with temporal resolution in the subnanosecond scale to get the

reflected light intensity. A recording system that can detect and calculate the delay between pulse

transmission and reception is also required in TRS devices. In a TRS device, a single pulse is split

into two parts, a part of the laser output is taken directly to the streak camera for time reference,

while another part of the beam traverses the tissue [22]. Both the time reference and the signals

reflecting or penetrating the tissue are recorded simultaneously. Due to scattering in the tissues, the

received signal is delayed. Therefore, the time difference between the light entering and exiting

the tissue can be measured, which can be used for calculating DPF by

DPF =
L

d
=

cvt

d
nt (16)
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Figure 7: Time-Resolved Spectroscopy Technique

where L represents the differential pathlength, d is the source-detector distance, cv means the

light speed in vacuum, and nt is the refractive index of the tissue, which is assumed to be 1.4, an

empirical value [23].

TRS technology is considered to have the highest accuracy in the quantitative distinction be-

tween absorption and scattering, and is considered to be the best technique for measuring the

optical properties of tissues [24]. This technique can be used to determine the absorption coef-

ficient, the reduced scattering coefficient of tissues, etc. Since the actual pathlength of light in

tissue can be determined by TRS, it is possible to generate the absolute value of O2Hb and HHb

concentrations.

However, there are also several disadvantage of TRS technique. First, it requires complicated

instruments which are expensive. Besides, there exists a high level of noise due to the low number

of photons [24]. Some advanced instrument, such as glass fibers and the photomultiplier tubes,

can reduce the noise, but they are in large size and in danger of being destroyed. Therefore, TRS

technique usually only implements on laboratory-based devices.

2.3.4 Phase-Modulated Spectroscopy

In 1949, frequency domain measurement, also known as phase-modulated spectroscopy (PMS),

was first proposed by Chance et al. in [25]. PMS instruments modulate a continuous light source

at a given frequency and there exists a phase shift between the light entering and leaving the tissue,
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as shown in Fig. 8. This phase shift can be used to calculate the time interval between light incident

Tissue (𝜇𝑎, 𝜇𝑠′ )

𝐼0 𝐼𝑟𝑒𝑓

Figure 8: Phase-Modulated Spectroscopy Technique

and light detection. Then, the corresponding DPF can be calculated using different wavelengths

and modulating frequencies within the radio frequency range, as shown below

DPF =
L

d
=

φcv
2πfntd

(17)

where φ represents the phase shift, and f represents the modulation frequency.

In PMS instruments, the attenuation of light should also be recorded. With the information of

attenuation and DPF, it can be used to generate the absolute value of the concentrations of O2Hb

and HHb.

The basic components in the PMS experimental device include laser, oscillator, phase modula-

tor, sample, detector and recorder. PMS requires a lot of hardware and becomes more complicated

due to its conversion technique. Therefore, PMS is not suitable for wearable devices.

2.3.5 Conclusion

According to the principles of four measurement technologies introduced above, the comparison

of advantages and disadvantages of CWS, SRS, TRS and PMS [8] are listed in table 1.
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Parameters CWS SRS TRS PMS

CO2Hb,CHHb Changes Changes Absolute Absolute

SO2 No No Yes Yes

µa No No Yes Yes

µs No No Yes Yes

DPF No No Yes Yes

Sampling Rate ≤ 100 ≤ 100 ≤ 1 ≤ 10

Portability Wearable Wearable Portable Portable

Cost Low Low High Moderate

Light Source
LED or

laser diode

LED or

laser diode
laser diode laser diode

Detector
Silicon

photodiode

Silicon

photodiode

Photomultiplier

tube

Avalanche

photodiode

Table 1: Comparison of CWS, SRS, TRS and PMS

2.4 Monitoring and Evaluation of Training

Training is a complex behavior and workouts vary between sports. Commonly, training can be

classified into four categories: endurance, interval, strength and skill. In general, endurance train-

ing can train the aerobic power system, interval training can train the anaerobic glycolytic system,

strength training can train the phosphagen system, and skill training can train the central nervous

system [26].

It is necessary for athletes to practice with a properly executed training program, since scientific

training methods can not only improve endurance, strength and skill, but also optimize metabolic

efficiency and adaptability. On the contrary, an improper training plan may lead to injuries and ill-

ness, which are something athletes need to avoid. In order to maximize efficiency and adaptability

and avoid injuries and illness, athletes must be able to accurately measure training intensity and

duration. Physiological monitoring is important in training, such as monitoring of heart rate, blood

lactate, oxygen uptake, and tissue oxygenation, and it is suitable for measuring training intensity

that maintains at a stable intensity for at least a few minutes.
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2.4.1 Heart Rate

Heart rate is the most widely-used metric of measuring training intensity. It can be measured by an

electrocardiograph in the laboratory or a series of miniaturized electrocardiographs for fieldwork.

The most reliable method is to detect the electrical activity of the heart and use it to calculate the

heart rate [26]. Athletes can also directly measure the heart rate by palpation of an artery in the

wrist or neck, but exercise has to be temporarily stopped for the measurement and the resulting

estimate is not accurate. Heart rate is a global parameter of the athlete’s body, which is unable to

represent the training intensity of specific muscles.

2.4.2 Blood Lactate

Blood lactate concentration is measured by many athletes and trainers to determine the lactate

threshold. During strenuous exercise, muscles produce lactate which diffuses into the blood by

the anaerobic glycolytic pathway. Therefore, the concentration of blood lactate will increase 1 - 2

mmol · L−1 above the resting value. Anaerobic threshold, also called lactate threshold, is defined

as the highest intensity of lactate stability, which corresponds to a blood lactate concentration of

approximately 4 mmol ·L−1. Exercise at this intensity can last 30-60 minutes until fatigue occurs.

Low intensity workouts can not cause an increase in blood lactate, while at high intensity, blood

lactate will not reach a stable value before the athlete fatigues. During the training process, athletes

measure the blood lactate mainly to determine the anaerobic threshold and then arrange a training

intensity plan relative to the threshold.

Although measuring blood lactate can provide a very accurate measurement of the effect of

training intensity, there still exist some disadvantages. First, the value of lactate threshold varies

from person to person. Even within the same athlete, the anaerobic threshold will change due to

changes in muscle glycogen content caused by recent training or diet. Besides, the measurement

of blood lactate test is usually done with a finger or earlobe prick, which is invasive.

2.4.3 Oxygen Uptake

Oxygen in the human body can oxidize glucose into adenosine triphosphate (ATP) to provide

energy. During the workout, the demand for oxygen increases due to human muscles work harder
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than usual. As a result, the heart rate rises and breathing increases to provide more oxygen to

the working muscles. Oxygen uptake (V O2) is the amount of oxygen taken in and consumed by

the body per minute, which is a good measure of the intensity of steady-state workout. Maximal

oxygen uptake(V O2 max) is the maximum value of V O2 during an endurance exercise. It reflects

cardio-respiratory adaptability and endurance during exercise.

In practice, the measurement of V O2 and V O2 max requires athletes to breathe into special

equipment in order to collect or analyze expired gas. This requirement restricts monitored training

to only be performed in laboratories or professional locations. Therefore, long-term monitoring of

V O2 and V O2 max is difficult to achieve. And the measurement of V O2 max cannot be used for

precise intensity training, because it measures volume rather than intensity.

2.4.4 Muscle Oxygen Saturation

In a well-trained athlete’s body, the exercising muscle consumes approximately 80% of oxygen.

Muscle oxygen saturation (SmO2) is a direct measure of the amount of oxygen in the muscle tissue.

If the supply exceeds the demand, oxygenation will be high and the muscles will be in a state of

aerobic metabolism, while if demand exceeds supply, oxygenation will be low and muscles will be

in a state of anaerobic metabolism. SmO2 can accurately and continuously measure the intensity

level and duration of specific muscles, enabling athletes and coaches to adjust training in real-time

to better adapt to training.

Currently, there are three methods of measuring muscle oxygen: electrochemical, transcuta-

neous PO2, and near-infrared spectroscopy (NIRS). In electrochemical, there are various inva-

sive methods for measuring dissolved oxygen in medium. The transcutaneous PO2 measurement

method only measures dissolved oxygen in skin, but not in muscle tissues. Although these two

methods are used in medicine, there are currently no sports science uses. For monitoring SmO2 in

human body, NIRS is the principal technology. It is a non-invasive method that uses light in the

near-infrared spectrum to measure oxygenated and deoxygenated hemoglobin.
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2.5 Tissue Oxygen Saturation Measurement

2.5.1 Definition

In general, oxygen saturation (SO2) is a measure of the relative concentration of oxygen dissolved

or carried in a specific medium. The standard unit of SO2 is percentage. In clinical medicine, tissue

oxygen saturation (StO2) refers to the degree of oxygenation of blood cells, which is a measure of

the percentage of hemoglobin binding sites of oxygen in the blood [27]. StO2 can be expressed as

the ratio of blood oxygen concentration to total hemoglobin concentration (tHb), as shown below

StO2 =
cO2Hb

cO2Hb + cHHb
× 100% (18)

tHb = cO2Hb + cHHb (19)

where cO2Hb and cHHb are concentrations of oxygenated hemoglobin (O2Hb) and deoxygenated

hemoglobin (HHb).

Muscle oxygen saturation (SmO2) is the local SO2 value in a specific muscle. Due to the exist

of myoglobin in muscles, SmO2 can be defined by

SmO2 =
c(O2Hb+O2Mb)

c(O2Hb+O2Mb) + c(HHb+Mb)

× 100% (20)

where c(O2Hb+O2Mb) is the concentration of oxygenated heme, including O2Hb and oxymyoglobin

(O2Mb), and c(HHb+Mb) is the concentration of deoxygenated heme, including HHB and de-

oxymyoglobin (Mb). And the total concentration of heme in the muscle is described as

tHb = c(O2Hb+O2Mb) + c(HHb+Mb) (21)

In muscle tissue, myoglobin (Mb) accounts for approximately 10% of the NIRS light absorp-

tion signal [28]. Since the absorption spectra of myoglobin and hemoglobin are very similar in

the NIR wavelength range, it is difficult to distinguish the role of myoglobin and hemoglobin in in

vivo measurements [6].

2.5.2 Measurement Technologies

There is growing interest in measuring human tissue oxygen saturation (StO2), especially using

NIRS for continuous and non-invasive measurement. In 1894, the absolute and relative amounts of
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O2Hb and HHb was first measured in vitro by spectroscopy technology [29]. In 1938, Matthes and

Gross from Germany determined O2Hb and HHb in human tissue using two wavelength, one is in

red and another in near-infrared region [30–32]. In terms of quantitative measurement, modified

Beer-Lambert’s law [7] was proposed in 1988. It describes light attenuation with scattering as

equation (8), which is often used in many studies. In 1977, Jöbsis first introduced the application of

NIRS on measuring attenuation spectra across the head of a cat to non-invasively monitor changes

in oxygenation saturation in the brain [33]. Jöbsis is the pioneer of using NIRS and a lot of NIRS

instruments and methods were designed and built after that.

Continuous-wave spectroscopy (CWS) is the most economic and simplest technique for real-

time monitoring human tissue oxygenation. Although the traditional CWS method can only cal-

culate the change values of tissue oxygenation, many researcher have proposed new methods to

generate the absolute values. The study of Myers et al. [34] proposed a second derivative spec-

troscopic method for quantifying hemoglobin oxygen saturation in tissue. They used four wave-

lengths with a 40nm interval and applied a second derivative spectroscopic method to remove the

effect of scattering [34]. A StO2 calibration curve was generated in the in vitro measurement by

scaled second derivative attenuation at 720 nm. The limitation of this method is caused by the

difference between the in vitro and in vivo measurements. Two Russian scientists, Stratonnikov

and Loschenov, proposed a CWS technique in the visible wavelength range (510 nm - 590 nm)

to measure the hemoglobin oxygen saturation and relative hemoglobin concentration [35]. It was

assumed that except the attenuation of O2Hb and HHb, all other contributions to the attenuation

including scattering are smooth wavelength functions and can be approximated by Taylor series

expansion [35]. Linear least square was applied to fit the measured attenuation spectrum collected

from human fingers to the Taylor expansion attenuation model. After fitting, the product of the

optical pathlength and the O2Hb and HHb concentration can be obtained, and then the StO2 can

be calculated [35]. In theory, this is a simple and robust method, but visible light cannot penetrate

tissue as deep as NIR light. Based on their method, Yang et al. [6] used a bound-constrained non-

linear least squares fitting of the measured attenuation spectrum in broadband NIRS (725 nm – 880

nm) to the modeled spectrum [6]. Two source-detector distances were utilized with an orthogo-

nalization method to reduce the scattering effects of the fat and the influence of skin melanin [36]

.
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When measuring tissue oxygenation by CW-NIRS, the wavelengths between 650 nm and 950

nm are commonly used. Choosing the most suitable wavelengths for measuring O2Hb and HHb

concentration is a mathematical optimization problem. Three main aspects need to be considered:

(i) the number of wavelengths used; (ii) the biological model of the tissue; (iii) the mathemat-

ical approach to solve the optimization problem [33]. For two-wavelength measurement, many

researchers figures that the best choice of wavelength is 830 nm combined with a wavelength in

the range less than 780 nm [37]. For measurement using more than two wavelengths, different

optimum wavelength combinations were proposed in many studies. From the study of Corlu et al.

in [38, 39], in a three layered medium with O2Hb and HHb as chromophores, the optimal choices

for three wavelength are 680 ± 5 nm, 725 ± 10 nm and 877 ± 12 nm. And for four-wavelength

measurement, the best choices are 685 ± 7 nm, 719 ± 9 nm, 731 ± 8 nm and 873 ± 9 nm. Later

in the study of Zhu et al. [40], they represent that three wavelengths of 782 nm, 832 nm and 884

nm, and the four wavelengths of 786 nm, 807 nm, 850 nm and 889 nm are optimal.

PMS and TRS are also always used for measuring tissue oxygenation [41–44]. However, due

to complicated components and high cost of PMS and TRS instruments, these technique are not

suitable for measurements during training. Therefore, they will not be described in more details

here.

2.5.3 Commercial Instruments

There are many instruments for in vivo measuring tissue oxygenation in the industry, some of

which are listed in table 2.

In table 2, among these instruments, only Moxy Monitor [1] uses Monte Carlo simulation

based on a tissue model. When the optical properties of the tissue are known, Monte Carlo method

can accurately predict the propagation of light through turbid tissue. Monte Carlo simulation is

performed on a tissue model to generate simulated path length data when light travels through this

tissue, where the absorption rate is set to zero. This model can mimic the scattering properties and

geometry of the in vivo tissue, including layer thickness and shape. It also uses broadband wave-

length as source to improve the measurement accuracy. There are four steps for Moxy Monitor to
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Instrument Technique Wearable Source Measurable Parameters Company

PocketNIRS Duo CWS Yes LED ∆tHb,∆O2Hb, ∆HHb DynaSense, Japan

NIRO-500 [45] CWS No Laser ∆tHb,∆O2Hb, ∆HHb Hamamatsu, Japan

Humon Beta [46] CWS Yes LED SO2 Dynometrics, USA

BSX Insight [47] CWS Yes LED ∆O2Hb, ∆HHb BSX Athletics, USA

OXYMON [48, 49] SRS No Laser SO2, ∆tHb,∆O2Hb, ∆HHb Artinis, Netherlands

Moxy Monitor [1] SRS Yes LED SO2 Fortiori Design, USA

PortaMon [50] SRS Yes LED SO2, ctHb,cO2Hb, cHHb Artinis, Netherlands

NIRO-200NX SRS No LED SO2, ∆tHb,∆O2Hb, ∆HHb Hamamatsu, Japan

PortaLite SRS Yes LED SO2, ctHb,cO2Hb, cHHb Artinis, Netherlands

OxiplexTS [51] PMS No Laser SO2, ctHb,cO2Hb, cHHb ISS, USA

TRS-10 [52] TRS No Laser SO2, ctHb,cO2Hb, cHHb Hamamatsu, Japan

Table 2: Commercial instruments for measuring tissue oxygenation

generate SmO2 value: (i) generating calculated pathlength from a Monte Carlo model; (ii) smooth-

ing the pathlength data; (iii) generating a matrix of diffuse reflectance data at discrete values of

tissue parameters and sensor optical properties; (iv) determining the tissue parameters based on

diffuse reflectance data [1].
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Chapter 3

Quantitative Measurement of Muscle

Oxygen Saturation Using 5-Wavelength

Near-Infrared Spectroscopy

As mentioned in the previous chapter, muscle oxygen saturation (SmO2) has become an impor-

tant reference indicator for athletes’ training. SmO2 is usually non-invasively and quantitatively

measured by near-infrared spectroscopy (NIRS). Among the various measurement techniques of

NIRS, continuous-wave NIRS (CW-NIRS) is the most economic and simplest method for monitor-

ing SmO2. Using multiple source-detector distances with CW-NIRS, also called spatially resolved

NIRS (SR-NIRS), can reduce the absorption of shallow layer tissue and improve the accuracy of

muscle oxygenation measurement.

In this chapter, a methodology of quantitatively measuring SmO2 using SR-NIRS with two

source-detector distances is introduced. First, the structure and principle of the measuring instru-

ment is described. Then, an algorithm for calculating the absolute value of SmO2 based on the

measured data in the main measurement distance is explained in detail. In addition, to evaluate

the accuracy of this algorithm, simulated attenuation spectra were calculated for three simulated

tissues with different light scattering conditions, including non-scattering medium, forearm, and

calf. Next, to reduce the absorption and scattering of superficial tissues, such as skin and fat, an

orthogonalization technique is applied to the measured data from both main and auxiliary mea-

surement distances. Besides, to collect the useful data from detectors, two training procedures are
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introduced. And the data processing process is explained in a flowchart. Finally, the numerical

results generated from the data measured in vivo are shown.

3.1 Principle of Measuring Instrument

The measuring instrument in this study is produced by Getwell Health Technology Co., Ltd. [2],

which includes LED sources with 5 wavelengths and two photodiode detectors. The structure of

this device [2] is shown in Fig. 9.

PD2

Other Modules

PD1

Other Modules

5 LEDs Photodiodes

1 cm 1 cm

Figure 9: Structure of the Measuring Instrument

In the light source module, one AlGaInP high-brightness LED chip and four AlGaAs high

power infrared LED chips are used. The wavelengths of 5 LEDs are 660 nm, 730 nm, 810 nm,

850 nm and 940 nm. The choices of wavelengths are very reasonable, because there are two

wavelengths on both sides of the isosbestic point, and another wavelength is close to the isosbestic

point. Since the absorption spectra of O2Hb and HHb are different on both sides of the isosbestic

point, the absorption of O2 Hb and HHb at various wavelengths can be detected sensitively, and

the concentration of O2Hb and HHB can be calculated.

A silicon photodiode is a semiconductor device that converts light into electric current and is
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used to detect the intensity of reflected light. This device includes two photodiodes. The photo-

diode far away from the light source (PD1) is the main detector that measures the reflected light

intensity at the main measurement distance. And the detector near the light source (PD2) is used

as an auxiliary detector to reduce the absorption and scattering of superficial tissues.

In order to generate the muscle attenuation spectrum, both the incident and reflected light in-

tensities should be known. The LEDs are powered by an adjustable electrical current and different

current will produce different incident light intensity. However, the light intensity is difficult to

measure both in light source and detector. Therefore, there are some other modules in this measur-

ing device, such as amplification circuit, analog-to-digital converter, etc., to convert the immeasur-

able light intensity into measurable voltage and current. In this device, the photodiodes are used to

convert received light into an electrical current, and then an amplification circuit is used to amplify

the small current to a large voltage. The reflected light density can be represent by detecting this

voltage and current combining the characteristics of the amplifier circuit and the photodiode.

In order to represent the incident light intensity, additional measurements with another separate

photodiode circuit are performed. The LEDs are powered separately by different current to produce

different light intensity, which is measured by a independent photodiode circuit. The value of

current in this photodiode circuit will be used to represent the incident light intensity. For every

wavelength, the relationship of the current that powers the LEDs (ILED) and the current that is

detected in the photodiode circuit (Iin) are shown in Fig. 10.

3.2 Quantitative Measurement Algorithm

In human muscles, the light attenuation spectrum can be defined in equation (5). Due to the strong

tissue scattering, the region of photon trajectory between the light source and the detector passing

through the tissue looks like a banana shape, as shown in Fig. 11. The photon pathlengths throught

the tissue can be represent by a probability function P . Therefore, the intensity of detected light is

determined by absorbing and scattering properties of the tissue by following equation:

I1

I0

=

∫ ∞
0

P (µs, g, l) · exp (−µal)dl (22)
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Figure 10: Relationship of the current that power the LEDs (ILED) and the current that detected in
the photodiode circuit (Iin)

where P (µs, g, l) dl is a dimensionless value, which represents the probability of photon path-

lengths in the small interval dl when the absorption pathlength distribution function is unknown

[35].

As mentioned in the previous chapter, muscle oxygen saturation (SmO2) can be defined as the

ratio of oxygenated heme (O2Hb and O2Mb) concentration to total heme concentration, as shown

in equation (20). In order to calculate the absolute value of SmO2, a muscle attenuation spectrum

approximation model using Taylor series expansion was introduced by Stratonnikov et al. in [35].
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Figure 11: Banana shaped region of contributing photon trajectories

3.2.1 Taylor Series Expansion Model

Assuming that the attenuation spectrum A is a smooth function of µa, the Taylor series expansion

described in Appendix A.1 can be applied to A in equation (5) at some value µa = µ0
a [35] as

follow:

A (µa) =
∞∑
n=0

A(n) (µ0
a)

n!
·
(
µa − µ0

a

)(n)

≈ A
(
µ0
a

)
+ A

′ (
µ0
a

)
·
(
µa − µ0

a

)
+ · · ·

(23)

In equation (23), it can be observed that the expansion coefficient A′ is equivalent to the average

photon pathlength 〈L〉 through the tissue by calculation the first derivative to A over µa as follow:

〈L〉 = ∂A

∂µa

|µa=µ0
a

=

∫∞
0

l · P (µs, g, l) · exp (−µal)dl∫∞
0

P (µs, g, l) · exp (−µal)dl
(24)

Applying A′ = 〈L〉 in equation (23) can get the following formula:

A = A0 + 〈L〉µa (25)

where A0 represents unknown contribution of scattering.

Comparing equation (25) with modified Beer-Lambert’s law in equation (8), the Taylor coef-

ficient 〈L〉 in equation (25) is independent of µa while the differential pathlength factor (DPF) in

equation (8) is depend on the tissue property of absorption coefficient µa.
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In human muscle tissue, light attenuation is caused by light absorption from hemoglobin, myo-

globin, water and other components, such as skin pigment, and light scattering in fat. Therefore,

the absorption coefficient as a function of wavelength is described as follows:

µa (λ) = µba (λ) + [εO2Hb (λ) cO2Hb+O2Mb + εHHb (λ) cHHb+Mb + εw (λ) cw] ln (10) (26)

where εO2Hb, εHHb and εw are the extinction coefficients of O2Hb, HHb and water, which are

shown in Fig. 3 and Fig. 4. cO2Hb+O2Mb, cHHb+Mb and cw are the concentration of oxygenated

heme, deoxygenated heme and water. And µba (λ) represents the absorption coefficient of other

components in the tissue.

Taking into account equation (23) and equation (26), an attenuation model can be described by

Amodel (λ) = a0 + a1λ+ 〈L〉µa (λ)

= a0 + a1λ+ 〈L〉

· [εO2Hb (λ) cO2Hb+O2Mb + εHHb (λ) cHHb+Mb + εw (λ) cw] ln (10)

(27)

where a0 represents the wavelength-independent absorption from chromophores other than heme

and water in the tissue. a0 + a1λ describes the attenuation caused by light scattering and also

includes the background absorption µba (λ).

3.2.2 Non-Linear Least Squares Fitting

In the Taylor expansion model in equation (27), only the parameters ε and the wavelengths λ are

known, and the parameters a0, a1, 〈L〉 and concentration c are unknown. In order to obtain the

absolute value of SmO2 from equation (20), cO2Hb+O2Mb, cHHb+Mb and cw should be known. A

bound-constrained non-linear least squares fitting can be implemented to fit the measured atten-

uation spectrum Ameasure to the modeled attenuation spectrum Amodel. The values of unknown

parameters can be obtained by minimizing the sum of square difference χ2 between Ameasure and

Amodel with least squares method by

minχ2 = min
5∑
i=1

[Amodel (λi)− Ameasure (λi)]
2 (28)

where λi represents the ith wavelength of the total five wavelengths, including 660 nm, 730 nm,

810 nm, 850 nm and 940 nm.
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However, non-linear least squares fitting requires that the number of unknown parameters

should less than or equal to the number of observations. In our case, there are only five wave-

length that can be used to obtain five values of Ameasure but there are six unknown parameters

(a0, a1, 〈L〉, cO2Hb+O2Mb, cHHb+Mb and cw) waiting to be generated. Therefore, the concentration

of water cw in muscle tissue can be fixed at 62% by volume, which was evaluated by Matcher et

al. in 1994 [53]. In this way, the non-linear least squares fitting problem can be solved with five

observations and five unknown parameters.

3.2.3 Boundaries of Non-Linear Least Squares Fitting

Since the attenuation model in the equation (27) is related to an actual problem, each parameter

should have a corresponding physical meaning. Therefore, each unknown parameter should have

a reasonable boundary in the non-linear least squares fitting.

The parameters cO2Hb+O2Mb and cHHb+Mb represent the concentration of oxygenated heme and

deoxygenated heme. In human muscle, the concentration of total hemoglobin and myoglobin (tHb)

in equation (21) usually does not exceed the molar concentration of 0.1 mM [54]. Therefore, the

boundaries of cO2Hb+O2Mb and cHHb+Mb can both be set to (0, 0.1].

The term 〈L〉 represents the average photon pathlength. Due to the main source-detector dis-

tance d is 2 cm, the lower bound of 〈L〉 should be 2 cm. 〈L〉 is approximately equal to the actual

pathlength L = DPF · d. In human calf muscle, the value of DPF in NIR wavelength range is

between 4.38 and 6.83 [19]. Therefore, when measuring calf muscle, the upper bound of 〈L〉 can

be set as 7×2 cm = 14 cm. In human forearm muscle, the value of DPF in NIR wavelength region

is between 3.16 and 5.29 [19]. Therefore, when measuring forearm muscle, the upper bound of

〈L〉 can be set as 5.5× 2 cm = 11 cm. In conclusion, when measuring calf muscle, the boundaries

of 〈L〉 can be set as (2, 14] cm, and when measuring forearm muscle, the boundaries of 〈L〉 can

be set as (2, 11] cm.

a0 and a1 represent the attenuation caused by light scattering. The reduced scattering coefficient

µ′s can be described by a linear function of wavelength with negative slope [55], which is a0 +a1λ.

The reduced scattering coefficients µ′s of calf and forearm are shown in Fig. 12. a1 means negative

slope, so it should be negative. Therefore, the boundary of a1 is (−∞, 0). And a0 can be any real
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Figure 12: Reduced scattering coefficient in NIR region

number.

3.2.4 Trust-Region-Reflective Least Squares

To solve a non-linear least squares problem, the basic idea is to approximate the model by a linear

one and to refine the parameters by successive iterations. There exist a lot of algorithms, such as

Gauss–Newton method [56], Levenberg–Marquardt algorithm [57], singular value decomposition

[58], direct search methods [59] and trust-region-reflective algorithm [60]. Many methods used in

the Optimization Toolbox solvers are based on trust-region, which is a simple and powerful concept

in optimization. Coleman et al. proposed the trust-region-reflective least squares algorithm, which

is defined by minimizing a quadratic function subject only to an ellipsoidal constraint [60].

Consider a problem of calculating a local minimizer of a smooth nonlinear function with

boundaries on the variables, as shown bellow:

min f (x) , lb ≤ x ≤ ub (29)

Note that some components of the lower bound (lb) and upper bound (ub) can be infinite, which

means there is no boundary in this direction.
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The first derivative and second derivative can be represented as

g (x) = ∇f (x) (30)

H (x) = ∇2f (x) (31)

Assume that x∗ is a local minimum, the first necessary condition that x∗ should satisfy is:

g (x∗)


= 0, if lbi < xi < ubi

≤ 0, if xi = ubi

≥ 0, if xi = lbi

(32)

Also assume a vector v (x) is defined as follows:

v (x)i =


ubi − xi, if gi < 0 and ubi <∞

xi − lbi, if gi > 0 and lbi > −∞

1, otherwise

(33)

which represents the distance between the anti-gradient point and the bounds.

Based on v (x), a diagonal matrix D (x) can be defined as

D (x) = diag
(
v (x)

1
2

)
(34)

The purpose of the matrix D is to prevent steps directly into bounds, so that other variables can

also be explored during the step. So the optimization problem can be defined as a diagonal system

of non-linear equations as follows:

D2 (x) g (x) = 0 (35)

The Jacobian of the left hand side exist whenever x (x)i 6= 0 for all i, which is true when x

satisfies lb ≤ x ≤ ub. The Newton step of this system satisfies:(
D2H + diag (g) Jv

)
p = −D2g (36)

where Jv is diagonal Jaconbian matrix of v (x), which elements take values ±1 or 0. And all

elements of the matrix C = diag (g) Jv are non-negative. Let x = Dx̂, then the corresponding

trust-region problem can be formulated as

minpm̂ (p̂) =
1

2
p̂TBp̂+ ĝT p̂, s.t.‖p̂‖ ≤ ∆ (37)
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where ∆ represents the trust region.

In the original space there is

B = H +D−1CD−1 (38)

and the equivalent trust-region problem is

minpm (p) =
1

2
pTBp+ gTp, s.t.‖D−1p‖ ≤ ∆ (39)

A modified improvement ratio of out trust-region solution is computed as follows:

ρ =
f (x+ p)− f (x) + 1

2
p̂TCp̂

m̂ (p̂)
(40)

A sketch of constrained minimization using trust-region-reflective ideas is given as follows:

1. Consider the trust-region problem in “hat” space as described in 37;

2. Compute the corresponding solution in the original space p = Dp̂.

3. Restrict this trust-region step to lie within bounds. Step back from the bounds by θ =

min(0.05, ‖D2g‖) times the step length.

4. Consider a single reflection of the trust-region step. Use 1-d minimization of the quadratic

model to find the minimum along the reflected direction.

5. Find the minimum of the quadratic model along the ĝ. (Rarely it can be better than the

trust-region step because of the bounds.)

6. Choose the best step among 3, 4, 5. Compute the corresponding step in the original space as

in 2, update x.

7. Update the trust region radius by computing ρ by equation (40).

8. Check for convergence and go to 1 if the algorithm has not converged yet.

The trust-region-reflective was used in the SmO2 measurement algorithm. It was implemented

by “lsqcurvefit” function in Matlab® Optimization Toolbox of Matlab programming language

(Mathworks, Inc., Natick, MA).

3.3 Evaluate the Accuracy in Simulated Tissues

Before applying the quantitative measurement SmO2 algorithm to in vivo measurement, its accu-

racy should first be evaluated. In the simulation, three different tissue light scattering conditions
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were used to simulate attenuation spectra, including non-scattering and scattering from the fore-

arm and calf. It needs to be noted that the hemoglobin concentration includes both hemoglobin

and myoglobin, and only the muscle layer was simulated in this case. Suppose there are N = 9

different theoretical SmO2 values: 0%, 20%, 40%, 50%, 60%, 70%, 80%, 90% and 100%, which

can be considered as real values of SmO2, and the corresponding attenuation spectra can be con-

sidered as simulated attenuation Asimulate. The quantitative measurement algorithm was applied to

the simulated attenuation spectra Asimulate to calculate the estimated SmO2 values. Three analysis

methods were used to evaluate the correctness and accuracy of the algorithm.

3.3.1 Simulated Attenuation Spectra

In the simulation, the simulated attenuation spectra Asimulate can be regarded as the measured

attenuation spectra Ameasure in the in vivo measurement of the previously explained algorithm. For

tissues with different type of scattering properties, Asimulate can be expressed in different forms.

And the wavelength range of this simulation is between 650 nm and 950 nm.

In non-scattering absorbing tissue, the attenuation Asimulate at wavelength λ can be expressed

by Beer-Lambert’s law, similar to equation (6), which is

Asimulate (λ) = L · µa (λ) (41)

where the differential pathlength L of pure absorption tissue equals the source-detector distance

d = 2 cm in this case.

And the absorption coefficient µa as a function of wavelength λ is described by

µa (λ) = [εO2Hb (λ) cO2Hb+O2Mb + εHHb (λ) cHHb+Mb + εw (λ) cw] ln (10) (42)

where the values of extinction coefficients εO2Hb, εHHb and εw of each wavelength λ can be found

in the studies of [12, 13], which are also shown in Fig. 3 and Fig. 4.

The concentration of water cw can be fixed to a theoretical value 62% [53]. And the concen-

tration of total hemoglobin and myoglobin (tHb) can be fixed to the molar concentration of 0.1

mM [54], which means

cO2Hb+O2Mb + cHHb+Mb = 0.1 (43)
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When the theoretical SmO2 value is fixed to a specific percentage, the value of cO2Hb+O2Mb and

cHHb+Mb can be represented as

cO2Hb+O2Mb = 0.1× SmO2 (44)

cHHb+Mb = 0.1× (1− SmO2) (45)

Therefore, under non-scattering condition, light attenuation values for each wavelengthAsimulate (λ)

can be generated.

For the simulation of scattering in calf and forearm muscles, a single layer infinite slab diffusion

model between light attenuation and the absorption coefficients µa (λ) and scattering coefficients

µ′s (λ) was used to generate light attenuation spectra [61], as shown below

Asimulate (λ) = − ln

 sinh
(
σ(λ)
µ′s(λ)

)
√

2π sinh (σ (λ) · d)

 (46)

where the quantity σ (λ) is calculated by

σ (λ) =
√

3µa (λ) · [µa (λ) + µ′s (λ)] (47)

where µa (λ) can be calculated by equation (42).

The values of scattering coefficients µ′s (λ) of calf muscle can be calculated by equation (48),

and µ′s (λ) of forearm muscle can be calculated by equation (49) [55], as shown in follow

µ′s (λ) = −8.9λ× 10−3 + 16.3 (48)

µ′s (λ) = −5.1λ× 10−3 + 11 (49)

where λ is in units of nm and µ′s (λ) is in units of cm−1.

Therefore, under three scattering conditions, light attenuation spectra for all wavelengths with

varying SmO2 values were generated in Fig. 13.

Fig. 13(a) was calculated using equations (41) - (45), which shows the spectra from a non-

scattering simulated tissue, where light attenuation only occurs by absorption. Fig. 13(b) and

Fig. 13(c) were calculated using equations (46) - (49), which shows the spectra from simulated

tissues with calf and forearm scattering properties. Comparing the calf and forearm muscles with

non-scattering tissue, the attenuation was significantly increased due to scattering. For the same
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Figure 13: Simulated attenuation spectra with varying SmO2 values in three different scattering
conditions

theoretical SmO2 values, the shapes of the spectra scattered by the calf and forearm muscles were

similar to the shapes of the spectrum without scattering. In addition, with the increase of SmO2

value, the attenuation spectra were non-linearly affected by the change of the scattering coefficient

of different tissue types.

3.3.2 Real and Estimated SmO2 Comparison

To calculate the value of SmO2, the nonlinear least squares fitting was applied to the attenuation

model in the equation (27), as shown below

minχ2 = min
n∑
i=1

[Amodel (λi)− Asimulate (λi)]
2 (50)
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where n indicated the number of wavelength, which was five in this case, including 660 nm, 730

nm, 810 nm, 850 nm and 940 nm.

To solve the minimize problem in equation (50), the trust-region-reflective least squares method

was applied, which was implemented with “lsqcurvefit” function in Matlab. After least squares

fitting, the values of cO2Hb+O2Mb and cHHb+Mb were generated and then equation (20) was used

to calculate the estimated SmO2 value for each corresponding theoretical SmO2 value. The plots

of theoretical versus estimated SmO2 in three scattering conditions are shown in Fig. 14. The

diagonal line in these figures represents a perfect match between the theoretical and estimated

SmO2 values.
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Figure 14: Real versus estimated SO2 results from simulated spectra in 3 different scattering prop-
erties

In Fig. 14(a), it was clear that the estimated SmO2 values almost equal to the theoretical

values in the condition of pure absorption. In Fig. 14(b) and Fig. 14(c), when SmO2 values were
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between 40% and 100%, the estimated results were clustered along the line of perfect prediction

with excellent correlation, which represented the estimation was accurate. Therefore, this SmO2

algorithm can be considered accurate and correct.

3.3.3 Statistical Analysis

There are two metrics to evaluate the accuracy of estimated results of SmO2, the coefficient of

determination (R2) and the root-mean-square error (RMSE).

In general, the coefficient of determination is explained in A.2. In the case of estimating SmO2,

the mean of the observed data, which is theoretical SmO2 value, can be defined by

ȳ =
1

N

N∑
i=1

SmO2reali (51)

where N is the total number of SmO2 values used in the simulation, which equals nine.

The total sum of squares can be represented by

SStot =
∑
i

(
SmO2reali − ȳ

)2
(52)

The residual sum of squares can be defined by

SSres =
∑
i

(
SmO2reali − SmO2esti

)2 −
∑
i

e2
i (53)

Therefore, the coefficient of determination (R2) can be calculated by equation (54) with equa-

tions (51) - (53).

R2 = 1− SSres
SStot

(54)

According to the explanation in A.1, the closer the value of R2 is to 1, the better the estimation

result.

In addition, the root-mean-square error (RMSE) describes the estimated measurement error,

which can be calculated by

RMSE =

√∑N
i=1

(
SmO2esti − SmO2reali

)2

N
(55)

The value of RMSE is non-negative. If the RMSE value is relatively small, it indicates that the

estimated SmO2 values are accurate.

39



Scattering property R2 RMSE(% SmO2)

Non-scattering 0.9997 0.6685

Calf scattering 0.9700 7.1877

Forearm scattering 0.9728 6.8351

Table 3: Evaluation metrics of simulated spectra with different scattering properties

Using the estimated and theoretical SmO2 values in Fig. 14, the values of R2 and RMSE for

three scattering conditions can be calculated, which are shown in table 3.

Obviously, it can be found that the values of R2 under three scattering conditions were all

very close to one. And the value of RMSE under non-scattering condition was very small. Under

the conditions of calf and forearm scattering properties, the values of RMSE were also relatively

small. In summary, the value of SmO2 generated by non-linear squares fitting descried above was

accurate and reliable.

3.4 Orthogonalization Technique

It is known that the overlying tissues, such as skin and fat, have a great influence on the quanti-

tative near-infrared spectroscopy measurements of human muscles [36]. There is the fact that the

penetration depth of light is dependent on the source-detector distance [62]. Based on this fact, a

number of methods of correction for the optical effects of the overlying tissues were proposed by

researchers [63–65].

An orthogonalization technique in measurement using two-distance fiber-optic probe was pro-

posed by Yang et al. [36]. It was assumed that three layers of tissue are measured, including skin,

fat, and muscle, and two source bundles and one detector bundle was used in measurement [36],

as shown in Fig. 15. One source was placed close to the detector at a distance of 2.5 mm, which

could detect the light that has penetrated only the skin and fat layer. Whereas the second source

was placed far to the detector at a distance of 30 mm, which could capture light from the skin,

fat and muscle layers. Two light sources were controlled by the controller and only one of them

was allowed to emit light at a time [36]. The reflectance light spectra collected from short-distance

pair was orthogonalized to light spectra collected from long-distance pair to generate the spectra
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describing the attenuation only caused by the muscle layer.

Source1 Source2

2.5 𝑚𝑚

Detector

30 𝑚𝑚

Skin
Fat

Muscle

Figure 15: Measurement with two source and one detector

Assuming that the reflectance light spectra of two distances can be represented as Rsf and

Rsfm, where s, f and m represent skin, fat and muscle, respectively. First, the short distance

reflectance spectra Rsf was mapped to long distance reflectance spectra Rsfm by fitting a second-

order polynomial at each wavelength, which is

Rsfm (λ) = aλRsf (λ)
2 + bλRsf (λ) + cλ (56)

where aλ, bλ and cλ are unitless constants, which can be generated by regression. Once the values

aλ, bλ and cλ are obtained, the mapped reflectance spectra R̃sf can be generated at each wavelength.

Then, a weight matrix can be defined as

w = RT
sfmR̃sf

(
R̃T

sf R̃sf

)−1

(57)

Finally, orthogonalization can be done between R̃sf and Rsfm [64], described as follow

R̂ort = Rsfm − R̃sfw
T (58)

where R̂ort represents the spectra which describes the attenuation only caused by the muscle layer.

In the measurement using our device, as shown in Fig. 9, it was also assumed that three layers

of tissue was measured, including skin, fat, and muscle, and two photodiode detectors at different
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distances were used to receive the reflected light. However, in this device, the distance measured

at short-distance (PD2) is not short enough to penetrate only the skin and fat without reaching the

muscle layer. In the in vivo measurement, the photodiode detector at short distance (PD2) detected

the lights that has penetrated mainly the skin and fat layer and a little of the muscle layer. Whereas

the detector at long distance (PD1) detected the lights that has penetrated the skin and fat layer and

most of the muscle layer. The measurement structure and optical paths of two distances are shown

in Fig. 16.

LED PD2
1 𝑐𝑚

𝐿

PD1
1 𝑐𝑚

Skin
Fat

Muscle

Figure 16: Two-distance measurement structure and optical paths of two distances

Supposed that the attenuation spectra of two distances can be expressed as Amain at PD1 and

Aauxiliary at PD2. And the short distance attenuation spectra Aauxiliary was mapped to long distance

attenuation spectra Amain by fitting a second-order polynomial at each wavelength, as in equation

(56), as shown below

Amain (λ) = aλAauxiliary (λ)
2 + bλAauxiliary (λ) + cλ (59)

Then, a weight matrix was defined similar to equation (57) as

w = AT
mainÃauxiliary

(
ÃT

auxiliaryÃauxiliary

)−1

(60)

Finally, orthogonalization was done between Ãauxiliary and Amain, which was similar to equa-

tion (58) but with one more parameter α, described as follow

Âort = Amain − Ãauxiliaryαw
T (61)
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where the parameter α was a unitless constant between 0 and 1 to eliminate the influence of the

attenuation of muscle absorption measured by short distance detector (PD1).

The obtained orthogonal attenuation spectra Âort can be used as Ameasure for non-linear least

squares fitting in equation (28) to generate the values of SmO2.

3.5 In Vivo Measurement Procedures

For in vivo measurement of SmO2, our device described in Fig. 9 was used. The device was stabi-

lize on the calf to measure the oxygen saturation of the calf muscle. Two processes are required to

obtain the values of SmO2: data collection process and data processing process.

3.5.1 In Vivo Data Collection Process

The person wearing the device had to run at different intensities on the treadmill. Each measure-

ment procedure included several different combinations of exercise intensities. There are two types

of exercise processes, progression running and interval running. All testing and data collection was

done by Getwell Health Technology Co., Ltd. (China). Because the physical conditions of each

test subject were different, the actual testing process and speed might vary from the test plan.

Progression Running

Progression runs are designed to begin at trainer’s natural pace and end at a faster pace. They

are moderately challenging workouts and require more recovery time than base runs but less than

tempo or interval runs. The test procedure of progression running was designed as follows:

• Warm up: walk 180 seconds

• Low speed running: 180 seconds

• Moderate speed running: 180 seconds

• High speed running: 180 seconds

• Resting and recovery: walk 240 second
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Interval Running

High intensity interval training (HIIT) can be highly effective training, which has been shown

to improve aerobic capacity in untrained and moderately active individuals more quickly than

continuous moderate run, as well as having potential benefits for highly trained athletes. Interval

Runs are workouts that contain short or long bursts of intense effort separated by equal or slightly

longer segments of slower running, jogging or walking. The test procedure of interval running was

designed as follows:

• Warm up: walk 180 second

• High speed running: 60 seconds

• Resting and recovery: walk 120 seconds

• High speed running: 60 seconds

• Resting and recovery: walk 120 seconds

• High speed running: 60 seconds

• Resting and recovery: walk 120 seconds

• High speed running: 60 seconds

• Resting and recovery: walk 180 seconds

3.5.2 Data Processing Process for In Vivo Measurement

For in vivo measurement, the data collected from the detectors was the voltage of two circuits of

photodiodes. Combined with the resistance information in the circuits, the current in two photo-

diodes was calculated , which can be represented as Iref (λ,main) and Iref (λ, auxiliary). The

reflected light intensity can be represented by these two currents, and the incident light intensity

can also be represented by the current measured by a standalone photodiode circuit, denoted as Iin.

Therefore, the measured attenuation spectra of two distances were calculated by

Ameasure (λ,main) = −ln
(
Iref (λ,main)

Iin

)
(62)

Ameasure (λ, auxiliary) = −ln
(
Iref (λ, auxiliary)

Iin

)
(63)

The measurement frequency was 1hz so that the value of SmO2 was calculated for each second.
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The flowchart for data processing procedure is shown in Fig. 17.

Measure calf tissue at main and auxiliary distances, get the
measurement current of photodiode detectors.
➢ 𝐼𝑟𝑒𝑓(𝜆,𝑚𝑎𝑖𝑛), 𝐼𝑟𝑒𝑓(𝜆, auxiliary)

Calculate the measured attenuation spectra at main and
auxiliary distances.
➢ 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝜆,𝑚𝑎𝑖𝑛), 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝜆, auxiliary)

Perform orthogonalization to two measured attenuation spectra
to obtain skin and fat corrected muscle attenuation.
➢ 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝜆, 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙)

Apply constrained non-linear least squares fitting between
orthogonal attenuation spectra 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝜆, 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙) and
the attenuation model 𝐴𝑚𝑜𝑑𝑒𝑙(𝜆), generate the value of least
squares parameters.
➢ 𝑎0, 𝑎1, 𝐿 , 𝑐𝑂2𝐻𝑏+𝑂2𝑀𝑏, 𝑐𝐻𝐻𝑏+𝑀𝑏

Calculate muscle oxygen saturation.
➢ 𝑆𝑚𝑂2

Figure 17: Data processing procedure for in vivo measurement

3.6 In Vivo Measurement Results

Using in vivo measured data, the value of SmO2 can be calculated. For comparison, some trainers

also wear a Moxy monitor [1]. The results from our device were compared with the results of Moxy

monitor. Note that the results of Moxy monitor were for reference only, and did not represent
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the medically true value of oxygen saturation in muscles. In total, 33 in vivo tests were done

independently and their SmO2 results were calculated and analyzed, of which 21 were done by

progression running and 12 were done by interval running.

3.6.1 Analysis of Attenuation

It has been explained above that different wavelengths have different absorption coefficients for

HHb and O2Hb, that is to say, when the HHb and O2Hb in the muscles change, the changes of

different wavelengths are different. The wavelengths located to the left of the isosbestic point,

in this case 660 nm and 730 nm, are mainly affected by HHb. On the contrary, the wavelengths

located to the right of the isosbestic point, in this case 810 nm, 850 nm, and 940 nm, are mainly

affected by O2Hb.

The exercise process was the progression running described previously. During the whole pro-

cess of measurement, the attenuation of each wavelength measured by main photodiode detector

at long source-detector distance is shown in Fig. 18. And the attenuation of each wavelength
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Figure 18: The attenuation of each wavelength measured at long source-detector distance

measured by auxiliary photodiode detector at short source-detector distance is shown in Fig. 19.
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Figure 19: The attenuation of each wavelength measured at short source-detector distance

In these two figures, with the changes of the state of training, the attenuation changes of each

wavelength are clearly shown. When running speed increased, muscle oxygen consumption in-

creased, the corresponding O2Hb in muscles decreased, and HHb increased. At the time around

150s, 400s and 650s, for wavelengths at 660 nm and 730 nm, because HHb increased with the

increasing of running speed, the attenuation also increased significantly. At the time of 850s, the

state of exercise changed from fast running to walking. Since the muscles suddenly rested, O2Hb

increased and HHb decreased. With the increasing of O2Hb, the values of attenuation of wave-

length at 810 nm, 850 nm, and 940 nm increased rapidly. In contrast, as the decreasing of HHb,

the values of attenuation of wavelength at 660 nm and 730 nm decreased rapidly.

3.6.2 Validity of Orthogonalization

As mentioned before, the overlying tissues have a great influence on the quantitative measurement

of SmO2, and the orthogonalization technique with measurement at two source-detector distances

can reduce these effects. To demonstrate the applicability of the orthogonal algorithm, a compari-

son was done between using the data collected at the two detectors with applying orthogonalization

technique and only using the data collected at the main detector. The exercise procedure used for
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the measurement was the progression running described previously.

The SmO2 results generated without the orthogonalization technique and the results of Moxy

monitor are shown in Fig. 20. The light attenuation spectra of the long-distance detectorAmeasure (λ,main)

was directly used as the measured attenuation in the non-linear least squares fitting. It can be found

from this figure that the trend of SmO2 measured by our device was similar to that measured by

Moxy monitor. However, during the time of running with fast speed, which was 500 second to 850

second, it was not normal for some SmO2 values to be calculated as 0. The value of SmO2 was

not possible to be zero because some blood vessels in the muscle do not exchange oxygen with the

tissues so that O2Hb do not transfer to HHb in these vessels. Because these results were generated

from the long source-detector distance data without removing the influence of overlying tissues,

the skin and fat might absorb some light so that the attenuation was greater than the actual absorp-

tion of muscle. Therefore, the estimated SmO2 values obtained only from the long source-detector

distance data were too small.
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Figure 20: The SmO2 results generated only from the data of the main detector and the results of
Moxy monitor

The SmO2 results generated with the orthogonalization technique and the results of Moxy

monitor are shown in Fig. 21. After using the orthogonal method, the influence of the overlying
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tissues was reduced and the values that were previously too low were calculated correctly. This

has shown that the orthogonalization technique was effective.
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Figure 21: The SmO2 results generated with the orthogonalization technique, and compared with
the results of Moxy monitor

3.6.3 SmO2 Measurement Results

The SmO2 results of three complete independent training of the progression running are shown in

Fig. 21, 22, and 23.

Use the results in Fig. 22 as an example to explain the changes of oxygen saturation in calf

muscle during progression running. It is clear that the value of SmO2 has four obvious changes.

At around 200 seconds, the trainer changed from walking to running, so oxygen consumption

increased, resulting in a decrease of SmO2 value. Then at around 450 seconds, when the running

speed increased, there was a rapid decrease of SmO2 value due to higher oxygen demand. At

around 750 seconds, the trainer started to run at the highest speed so that the SmO2 value decrease

again. After the trainer had a rest to recover, the SmO2 value increased rapidly to the highest, even

higher than the value before exercise. This is because when high-intensity training was suddenly

stopped, the oxygen consumption immediately decreased but the volume of oxygen delivery was
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Figure 22: The SmO2 results of a trainer under progression running procedure, compared with the
results of Moxy monitor
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Figure 23: The SmO2 results of a trainer who did not strictly follow the progression running
procedure
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still high. The same trend can be found in Fig. 21 and Fig. 23, except that the time interval of the

running process of different testers was slightly different.

In addition to trends, absolute values of SmO2 must also be analyzed. In Fig. 22, the value was

around 60% when the trainer walked at the beginning, which was called the baseline value. The

baseline value of different instruments could be various. From the summary of Yang et al. in [6],

the possible baseline values of several instruments were between 50% and 80%. And for different

individuals, the baseline values might be also different. The baseline value of the trainer of Fig.

21 was around 50%. And in Fig. 23, the baseline value was also around 50%. These values are

within a reasonable range.

Before trainers had a rest, their calf muscles suffered several minutes ischemia. The SmO2

value could as low as 20%, depends on the intensity of training. The results in Fig. 21 and Fig. 22

shows the SmO2 values were around 20% during the ischemia. And the results in Fig. 23 shows the

SmO2 values were around 30% during the ischemia. In the study of Yang et al. in [6], the average

SmO2 at 5 minutes ischemia was 28.2% ± 14.0%. And in the study of DeBlasi et al. in [66],

the average SmO2 at 5 minutes ischemia was 33.8% ± 16.4%. Compared with these studies, our

SmO2 values are reasonable.
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Figure 24: The SmO2 results of a trainer under interval running procedure
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In Fig. 21, 22, and 23, when the trainers changed from running to walking to have a rest, their

SmO2 values suddenly increased to around 80%, which was also consistent with the results in the

study of Yang et al. in [6].

In summary, through the comparison with other researchers’ results and analysis based on the

training process, our results of SmO2 values were reasonable.

The SmO2 results of a complete measurement of the interval running described before is shown

in Fig. 24. The baseline value was around 60%, which as a reasonable value. After several minutes

warm up, the trainer started high speed running from 200 seconds so that the value of SmO2

decreased. After running for 60 seconds, the trainer changed to walk for 120 second. During this

recovery period, the SmO2 first increased rapidly to a value that higher than before the start of this

interval, then maintained this value until the running began in next interval. For each interval of

running and recovery, the value of SmO2 was possible to be higher than the previous interval due

to the oxygen delivery was increasing with the training progressed. The curve of SmO2 values and

changes trend clearly showed that interval running could strengthen individual’s aerobic capacity

and cardiopulmonary function.
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Figure 25: The unreliable SmO2 results of a trainer who did not wear devices correctly and did not
follow the interval running procedure
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However, there also existed some unreliable results, as shown in Fig. 25. There are many

reasons for unreliable results. First, due to the wearable device could easily move or fall off,

the collected data would be unreliable if the trainer didn’t wear it in the correct way. Then, the

trainer may not wear the device in the proper place as instructed. For example, in running training,

the device was wrongly worn on the front of the calf instead of the muscle in the back of the

calf. Besides, for the prescribed training procedures, some individuals couldn’t strictly follow or

complete. In this case, the values of SmO2 in each second should be correct but the curve of SmO2

couldn’t be interpreted by the specific prescribed training procedures.

The training procedure of the trainer in Fig. 23 should have been the progression running

described before. However, this trainer didn’t strictly follow the procedure and started to walk from

700 seconds. The value of each second in this result was correct. But it will be confused if explain

this results with the specific procedure. It was recommended to follow the training process because

experts can analyze the trainer’s tolerant of exercise load with some specific training process.

The results in Fig. 25 was generated from the a training procedure which was not prescribed.

The trainer should have been training the interval running procedure mentioned previously. It

can be seen from the results of Moxy monitor and our device, he/she did not run according to

the prescribed process. And the trainer did not wear two devices correctly, especially the Moxy

monitor. Therefore, this data is useless for evaluating a training.

In addition, all measurements and calculations in this thesis were assumed to be at room tem-

perature. However, the actual measurement temperature might be different. Besides, sweating

during exercise will also affect the light absorption and scatting. These factors have affected the

estimation accuracy.

To evaluate the training efficiency, it is important to get correct and precise results. Calculation

results can only be useful if reliable data is measured. Therefore, a method is needed to judge

whether the measurement data is reliable or not. One such method will be described in the next

chapter.
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Chapter 4

Fault Diagnostic and Integrated Application

During exercise, the wearable device could easily move or fall off. If the trainer does not wear the

device correctly, the measured data will be unreliable. If athletes optimize their training based on

incorrect SmO2 results, it may lead to bad consequences, such as failure to achieve the training

effect or injury due to over-training. Therefore, a method to judge whether the result is reliable is

needed. In this chapter, machine learning classification methods were used to solve this problem.

A fault diagnostic methodology is introduced based on data reliability classification and prediction

by machine learning approach in the first part of this chapter.

In addition, since this is a set of algorithms made for wearable devices without a screen, the

results generated after measurement and analysis need to be viewed on a computer or mobile

phone. An integrated application can make it more convenient for users. Therefore, an application

that integrated all these algorithms described previously was designed by Matlab App Designer.

The second part of this chapter details the design and function of this application.

4.1 Fault Diagnostic by Machine Learning

As explained above, the reliability of SmO2 results is important for users. To filter out the unreli-

able SmO2 results, the best way is to find the key features that distinguish good quality from bad.

By observing the figure of attenuation, under the same training process, it could be found that the

attenuation of the reliable results has something in common and the attenuation of the unreliable

results was usually different from reliable results. Therefore, a classification mechanism can be
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established to classify data into reliable or unreliable categories.

There are two indicators to judge reliability of the measurement results. One is that the value

of each second should be within a reasonable range. The other is that the trend of SmO2 in a period

of time is consistent with the current state of exercise.

To distinguish the results reliability, the most direct method was to observe the original data

collected from the device. However, the original data included the measuring data of one source

and two detectors, which was too complicated to find their features. The SmO2 results were gen-

erated from the light attenuation by non-linear least squares fitting. So it was suitable to use the

light attenuation of each test as the data for classification.

Because attenuation was high-dimensional data, it was difficult to observe its features with the

naked eyes and to judge its reliability with a single judgement condition. It is well known that

using machine learning can solve a classification problem well. Therefore, this data reliability

classification problem can also be solved by machine learning.

4.1.1 Classification in Machine Learning

Machine learning is an application of artificial intelligence that enables the system to automatically

learn and improve from experience without the need for explicit programming. Classification is a

type of supervised learning. In statistics, classification is the problem of determining which group

of categories a new observation belongs to. It is based on learning a training data set containing

observation data whose category membership is known. There are two types of classification prob-

lem: binary and multiclass. Binary classification is the task of dividing the elements of a collection

into two groups according to classification rules. And multiclass classification is a problem of

dividing the elements of a collection into one of three or more classes.

There are several types of classification algorithms, depending on the data set used. The fol-

lowing are the four most common classification algorithms in machine learning.

Logistic Regression

Logistic regression is a calculation used to predict a binary outcome. It should only be used when

the target variable belongs to a discrete category. Logistic regression is named for the function
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used at the core of the method, the logistic function, also called the sigmoid function:

g (z) =
1

1 + e−z
(64)

Suppose that y ∈ {0, 1}, and the hypothesis of logistic regression tends it to limit the cost

function between 0 and 1, which is represented as hΘ (x) ∈ [0, 1]. The hypothesis can be written

as

hΘ (x) = g
(
ΘTx

)
=

1

1 + e−ΘT x
(65)

In a binary classification problem, the probability of two classes can be represented as

P (y = 1|x; Θ) = hΘ (x)

P (y = 0|x; Θ) = 1− hΘ (x)
(66)

which can also be written as

P (y|x; Θ) = hΘ (x)y (1− hΘ (x))1−y (67)

A cost function of log likelihood was created as follows:

l (Θ) = logL (Θ) =
m∑
i

y(i) log hΘ

(
x(i)
)

+
(
1− y(i)

)
log
(
1− hΘ

(
x(i)
))

(68)

which can be used in gradient ascent method to find the maximum likelihood:

∂

∂Θj

l (Θ) =
m∑
i=1

(
y(i) − hΘ

(
x(i)
))
x

(i)
j

Θj := Θj + α

m∑
i=1

(
y(i) − hΘ

(
x(i)
))
x

(i)
j

(69)

When the inputs are passed through a prediction function, it will return a probability score

between 0 and 1, which can used to generate the class.

Logistic regression is a widely used technique because it is very efficient, without requiring

too many computational resources. It works better when removing attributes that are not related

to the output variables and attributes that are very similar to each other. A disadvantages is that

logistic regression can not solve non-linear problems since it’s decision surface is linear. Another

disadvantages is the high reliance on a proper presentation of data.

56



Naive Bayes Classifier

Naive Bayes classifier was one of the first algorithms used for machine learning. It is suitable for

binary and multiclass classification and allows for making predictions and forecast data based on

historical results.

For both binary and multiclass classification, given the data xi ∈ {1, 2, · · · , k}, the probability

can be represented as

P (x|y) =
n∏
i=1

P (xi|y) (70)

where n represents the number of features, which is large.

The classification is conducted by deriving the maximum posterior which is the maximal

P (y|xi) with the above assumption applying to Bayes’ theorem:

argmaxP (y|x) = argmax
y

P (x|y)P (y)

P (x)
(71)

Naive Bayes assumes that the attributes are conditionally independent. This assumption greatly

reduces the computational cost by only counting the class distribution. However, Naive Bayes is

not valid in most cases since the attributes are dependent.

K-Nearest Neighbors

K-nearest neighbors (k-NN) is an algorithm that uses training datasets to find the k closest relatives

in future examples. The k-NN algorithm assumes that similar things exist very closely to each

other. The procedure of k-NN algorithm can be described as follows:

1. Load the data with labels and initialize k to chose the number of neighbors.

2. For each example in the data, calculate the distance between the query example and the

current example from the data, and add the distance and the index of the example to an

ordered collection

3. Sort the ordered collection of distances and indices in ascending order.

4. Pick the first k entries from the sorted collection and get their labels.

5. Determine the number of occurrences of the classes of the first k entries.

6. Return the class with the highest occurrence of the first k entries as the predicted classifica-

tion of the points to be classified.
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It should be noted that the distance metric using in k-NN for continuous variables is usually

Euclidean distance and for discrete variables is usually Hamming distance. Choosing a proper

value for k is the most important decision in k-NN. The best choice of k depends upon the data.

Small value of k can classify the data more distinct, but it may lead to over-fitting. Larger values

of k reduces effect of the noise, but make boundaries between classes less distinct [67] .

K-nearest neighbors is a simple and non-parametric algorithm, so it does not make assumptions

about the data distribution. It stores the training datasets and learns from them only at the time of

making real time predictions. However, the k-NN algorithm is computationally expensive because

it searches new points in the nearest neighbors during the prediction. It doesn’t work well with

high dimensional data because with large number of dimensions, it becomes difficult to calculate

the distance in each dimension. Besides, the storage requirements are high since k-NN must store

all data points, while its accuracy is sensitive to noisy data, missing values and outliers.

Support Vector Machine

A support vector machine (SVM) is a discriminative classifier defined by a separating hyper-

plane [68]. In other words, given the labeled training data, the algorithm will output the optimal

hyperplane that classifies the new example. This optimal hyperplane is the decision boundary,

which should maximize the margins from both classes. In the SVM algorithm, each data item is

ploted as a point in a p-dimensional space, where p is number of features.

Supposed that the given a training dataset of n points is in the form of

(x1, y1) , · · · , (xn, yn) (72)

where yi indicates the class of the point xi, which is either 1 or -1. And each xi is a p-dimensional

real vector. There exists a hyperplane that divides the group of points xi for which yi = 1 from the

group of which yi = −1. The optimal hyperplane maximizes the distance between the hyperplane

and the nearest point from two groups, as shwon in Fig. 26. Any hyperplane can be written as the

set of points xi satisfying

w · x− b = 0 (73)

where w is the normal vector to the hyperplane, and b
‖w‖ determines the offset of the hyperplane

from the origin along the normal vector w.
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Figure 26: Maximum-margin hyperplane and margins for an SVM trained with samples from two
classes.

If the training data is linearly separable, two parallel hyperplanes that separate the two classes

of data can be found, so that the distance between them is as large as possible. As shown in Fig. 26,

although there are some outliers in the data, it can still find the hyperplane that has the maximum

margin by minimizing equation (77), which is called soft-margin SVM. The region bounded by

these two hyperplanes is called the ”margin”, the hyperplane that lies halfway between them is the

optimal hyperplane. These hyperplanes can be described as

w · x− b = 1

w · x− b = −1
(74)

For each data point xi, it satisfies w · xi − b ≥ 1 if yi = 1, and w · xi − b ≤ −1 if yi = −1.

These two inequalities can also be written as

yi (w · xi − b) ≥ 1, for all 1 ≤ i ≤ n (75)

It can be found from equation (74) that the distance between two hyperplanes is 2
‖w‖ . Therefore,

the problem of maximizing the distance between two hyperplanes can be replaced by the problem

of minimizing ‖w‖ subject to equation (75).
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To extend SVM to cases in which the data are not linearly separable, the hinge loss function in

equation (76) is used.

max (0, 1− yi (w · xi − b)) (76)

The hinge loss function is 0 if the constraint in equation (75) is satisfied, which means xi lies

on the correct side of margin. For data on the wrong side of the margin, the function’s value is

proportional to the distance from the margin.

The goal of the optimization becomes to minimize the following equation:

C

n∑
i=1

max (0, 1− yi (w · xi − b)) + ‖w‖ (77)

where C is a regularization parameter that controls the trade-off between maximizing the margin

and minimizing the training error. A large value of C will lead to low bias but high variance. On

the contrary, a small value of C will cause high bias but low variance. Too large value of C may

cause over-fitting, while too small value of C may cause under-fitting.

SVM can also be extended into nonlinear classification problems by applying the kernel trick

[69]. The resulting algorithm is similar in form to the linear algorithm. The difference is that each

dot product is replaced by a nonlinear kernel function. Some common used kernels are listed as

follows:

• Polynomial:

k (xi, xj) = (xi · xj + r)d (78)

where where d is specified by parameter degree.

• Gaussian radial basis function (RBF):

k (xi, xj) = exp
(
−γ‖xi − xj‖2

)
(79)

where γ > 0, which is sometimes parametrized using γ = 1
2σ2 . γ defines how much influence

a single training example has. The larger γ is, the closer other examples must be to be

affected.

• Hyperbolic tangent:

k (xi, xj) = tanh (κxi · xj + r) (80)

where κ > 0 and r > 0.
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In general, SVM works relatively well when there is a clear margin of separation between

classes. The kernel trick is real strength of SVM. With the introduction of kernel, input data can be

converted into high dimensional data to avoid the assumption of linearly separability. SVM is very

good when people has no idea on the data because it can be used for the data that is not regularly

distributed and has unknown distribution. It works well with even unstructured and semi structured

data like text, images and trees. Besides, SVM models have generalization in practice. Generally

it does not suffer from over-fitting if the parameters C and γ (in the case of a RBF kernel) are

appropriately chosen.

However, there are also some disadvantage of SVM. The biggest limitation of the support

vector approach lies in choice of the kernel. Besides, algorithmic complexity and memory require-

ments of SVM are very high. So it takes a long training time on large datasets.

4.1.2 Classification of Light Attenuation

There are three main steps for solving a classification problem. First, in supervised learning, the

data should be labelled properly. And for some of the learning algorithms, preprocessing the data

can lead to a more accurate result. Then, determining the parameters of the selected model is

the most important step because the parameters determine the degree of fit of the model. Failure

to choose appropriate parameters will lead to over-fitting or under-fitting. Finally, train the model

using the training datasets and evaluate it by several aspects using both training and testing datasets.

Preprocessing and Labelling Data

For classification in machine learning, sending raw data through a model would cause certain er-

rors. Preprocessing techniques are always applied to rea-world data before training the model.

Two methods are usually well known for rescaling data, normalization and standardization. Nor-

malization scales all numeric variables in the range [0,1] and two possible formula are given by

xscale =
x− xmin

xmax − xmin
(81)

and

xscale =
x− xmean
xmax − xmin

(82)
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And standardization will transform the data to have zero mean and unit variance, for example

using the equation below:

xstandard =
x− µ

σ
(83)

where µ is the mean of data and σ is the variance.

Both of these techniques have their drawbacks and limitations. Generally, most of data sets

have outliers. With normalization, the normal data will certainly be scaled to a very small value

because of these outliers. And standardization might behave badly if the individual features do not

look like standard normally distributed data, which is Gaussian with zero mean and unit variance.

Figure 27: Mean-subtraction and denoised attenuation of five wavelengths in running status

For the classification of light attenuation, it is important to preserve not only the relative rela-

tionships of the five wavelengths, but also the trend information over a period of time. So none of

the methods mentioned above can be used. Therefore, a simple mean-subtraction, which described

in equation (84) was applied to the orthogonal attenuation.

xnew = x− xmean (84)

Due to the variance of attenuation at each wavelength was large, it was also necessary to apply a

denoise to the mean-subtraction data. An example of preprocessed data is shown in Fig. 27.

In total, 33 independent tests of different individuals were done in two training procedures, of

which 21 were done by progression running and 12 were done by interval running. The measuring
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data collected from the progression running was used to train and test the classification model. For

classification problem, the data should be labeled first. There are two principles to label the data.

The first principle is to compare the results with Moxy monitor, if it is similar, the results can be

labeled as reliable. For the data that didn’t have a comparison with Moxy monitor, the reliability

can be labeled by the reasonable value and trend of the corresponding movement status. Due to

improper wearing of the device or other reasons, there are 11 tests results which were determined

as unreliable and the other 10 tests were reliable. For implementing classification in Python, the

class of reliable data was labelled as 1 and the class of unreliable data was labelled as -1.

To evaluate the results both in each second and in a short period, the data should be divided

by training status, because in different training status, the value and the trend are different. For

example, in the warm up status, the values of SmO2 should be in the range from 50% to 80% and

should stay relatively stable. While in the running status, the values of SmO2 may be lower than

50% and may have a trend of decrease. Therefore, the classification should be done in each status.

In this thesis, two training status was divided, warm up and running.

We divided 10 seconds as a period to evaluate the results. For warm up status in progression

running procedure, there were about 180 seconds for each individual, and some individuals had

more. Each dataset was divided into several pieces of 10 seconds. After splitting and labelling,

there were 140 samples of class 1 (reliable) and 135 samples of class -1 (unreliable). These samples

were shuffled and randomly composed the training set and testing set for classification of warm up

status. And for running status, there were about 400 seconds for each test and they were also split

into pieces of 10 seconds. Among them, 507 samples were class 1 and 448 samples were class

-1. Therefore, each sample is the preprocessed attenuation of 5 wavelengths in 10 seconds, which

is 50 dimensions. These samples were also shuffled and randomly composed the training set and

testing set for classification of running status.

Model and Parameters

Four classification methods and their advantages and disadvantages were described previously.

For classifying light attenuation, each sample is 50 dimensions and there were only 275 samples

in warm up status. Therefore, it is a high-dimension problem with a small number of datasets. In

this case, support vector machine (SVM) with Gaussian radial basis function (RBF) kernel would
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be the best choice.

As mentioned before, the parameters in SVM, C and γ, are highly influence the performance of

classifier. C behaves as a regularization parameter in the SVM, which defines how far the influence

of a single training example reaches. If C is a large value, training accuracy will be high but the

margin will be small. γ can be regarded as the inverse of the radius of influence of samples selected

by the model as support vectors. If γ is too large, the radius of the area of influence of the support

vectors only includes the support vector itself. This will lead to overfitting that even a small regular

term C cannot prevent.

To find the relatively best parameters, the grid search method is applied. As its name suggests,

it is an algorithm that applies two parameters within a given range and searches for the best result,

which can be visualized as a heatmap as shown in Fig. 28. The lighter the color in the grid, the

higher the accuracy of the prediction using the parameters in the current grid. It was implemented

by the sklearn.model selection.GridSearchCV function of scikit-learn [70] in Python. With this

function, we can get the best set of parameters in the given range without visualization.

Figure 28: A heatmap of the classifier’s cross-validation accuracy as a function of C and γ
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Evaluation

An important metric to evaluate a classifier is the accuracy, which is defined as

accuracy (y, ŷ) =
1

n

n−1∑
i=0

1 (ŷi = yi) (85)

where 1 (x) is the indicator function, n is the number of samples, ŷi is the predicted value of i-th

sample, and yi is the corresponding true value.

To evaluate a model, two curves were used in this study, cross-validation learning curve and

receiver operating characteristic (ROC) curve.

Learning the parameters of a classifier and testing it on the same data is a methodological

mistake. A model would have a perfect score with training data but would fail to predict anything

useful on unseen data. To avoid this situation, it is necessary to hold out part of the available data as

a testing set. Using different training and testing sets allocations will cause instability in accuracy

values. Therefore, it is better to use the average accuracy of different allocations of training and

testing sets to evaluate classifier performance. Cross-validation is an approach that measures the

average of accuracy based on several groups of training and testing sets. It is often used to assess

whether the choice of parameters in the model is appropriate. K-fold cross-validation splits the

training sets into k smaller sets. The model is trained using k − 1 of the folds as training sets and

the resulting model is validated on the remaining part of the data. This procedure would loop k

times until each group of data has been used for validation. Another approach of cross-validation

is to randomly generate a certain percentage of training samples to train the model and use other

samples as testing data to evaluate it. This procedure should loop several times to calculate the

average accuracy. Cross-validation is computationally expensive, but it does not waste too much

data, which is a major advantage in the problem with small sample sizes.

The cross-validation learning curve uses the number of data sets from small to large to train

and evaluate the model. That curve shows the effect of the number of training examples used in

cross-validation on accuracy.

An ROC curve is a graph showing the performance of a classification model at all classification

thresholds. This curve plots two parameters, true positive rate and false positive rate. True posi-

tive rate (TPR) represents a proportion of those samples truly belong to class 1 that are correctly
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identified as class 1, and is defined as

TPR =
TP

TP + FN
(86)

False positive rate (FPR) is calculated as the ratio between the number of samples in class -1

wrongly categorized as class 1 and the total number of actual samples of -1, which is defined as

FPR =
FP

FP + TN
(87)

AUC measures the entire two-dimensional area underneath the entire ROC curve. The value of

AUC represents the probability that the model can distinguish between class 1 and class -1. The

AUC of a good model is close to 1, which means it has a good measure of separability. A poor

model with AUC near 0 means it has the worst measure of separability, which means all predictions

are opposite. When AUC is 0.5, it means that the model does not have any classification ability

and just randomly guess.

4.1.3 Results

The classification was done separately in warm up and running status.

Warm up

To find the proper value ofC and γ for SVM classifier, a heatmap of the classifier’s cross-validation

accuracy as a function of C and γ was plot, as shown in Fig. 29. From the heatmap, it is clear

that when γ and C both larger than 2.15, the accuracy of the classifier was higher than 90%. As

mentioned before, the best values can be found by GridSearchCV function. When γ = 4.6 and

C = 6, the performance of the classifier was the best.

The learning curve is shown in Fig. 30. With the increasing number of training samples, the

cross-validation accuracy also increased. For each validation step, 80% of samples were randomly

picked to train the model and others were used for testing. Even the total number of training

samples were not large, the accuracy was still higher than 95%. This indicated that the selection

of parameters was successful.
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Figure 29: A heatmap of the classifier’s cross-validation accuracy as a function of C and γ for the
classification in warm up status

Figure 30: Learning curve of cross-validation accuracy in warm up status
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Figure 31: ROC curve of the model with the best parameters in warm up status

Fig. 31 shows the ROC curve and corresponding AUC both in training and testing with the

best γ and C values. The performance of this classifier was great because testing AUC was 0.97,

which means that the probability of making the correct decision was 97%.

Running

For running status, a heatmap of the classifier’s cross-validation accuracy as a function of C and γ

is shown in Fig. 32. The values of C and γ can choose from the corresponding values of the high

accuracy grids in light color. And the calculated best value was γ = 2.15 and C = 0.78.

Fig. 33 shows the learning curve of cross-validation accuracy in the best values of γ and C.

Both training and the cross-validation accuracy increased with the increasing number of training

samples. For each validation step, 50% of samples were randomly picked to train the model and

others were used for testing. The cross-validation accuracy was near 100%, which indicated that

the parameter selection was successful.

With the best γ and C, it can be found from the ROC curve in Fig. 34 that both training

and testing cuerves are far away from the diagonal. And 0.97 of testing AUC represents that this
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Figure 32: A heatmap of the classifier’s cross-validation accuracy as a function of C and γ for the
classification in running status

Figure 33: Learning curve of cross-validation accuracy in running status
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Figure 34: ROC curve of the model with the best parameters in running status

classifier works very well.

Conclusion

With the classification of light attenuation, the reliability of corresponding SmO2 results can be

predicted. These good evaluation results indicate the possibility of fault diagnostic in SmO2 mea-

surement. However, more in vivo have to be collected to make the classifiers more robust. With

the increasing of datasets, the values of C and γ will be relatively small, so that overfitting can be

avoided with high accuracy.

4.2 SmO2 Calculation Application

As mentioned before, since the wearable devices does not have screen, the measurement results

should be viewed on computer. For a better user experience, an application that integrated all these

algorithms described previously was designed by Matlab App Designer.
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4.2.1 Matlab App Designer

Matlab App Designer integrates two primary tasks of app building: laying out the visual compo-

nents of a graphical user interface (GUI) and programming app behavior. It is the recommended

environment for building apps in Matlab. It allows developers to distribute the application by pack-

aging the application into the installer file directly from the App Designer toolbar, or by creating

a standalone desktop or web application. There are two steps to develop an application in Matlab

App Designer: designing a user interface and defining app behavior.

Matlab App Designer provides a grid layout manager to organize the user interface, and pro-

vides automatic reflow options to make the application detect and respond to changes in screen

size. The Component Library allows developers to easily drag and drop components into the user

interface, as shown in Fig. 35. It automatically generates the object-oriented code that specifies

Figure 35: App Designer’s component library

the app’s layout and design.

To define the functionality of application, we use the integrated version of the Matlab Editor,

and Code Analyzer can automatically check for coding problems. After dropping components

into the user interface, component callbacks and custom mouse and keyboard interactions, which

execute when a user interacts with the application, can be added by writing object-oriented code

based on Matlab functions.
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4.2.2 Application Interface and Functionality

An application of SmO2 calculation and data quality classification was designed using Matlab App

Designer. It included both results display and a simulation of real-time measurement. There are

several user interacts functions.

The main interface of this application is shown in Fig. 36. User clicked the file selection

Figure 36: Main interface of SmO2 calculation application

menu in the upper left corner, and a system file selection dialog box appeared, where the user was

required to select a data file. After selection, the chosen file path would show in the text box at

the top. The button of real-time and show results modes represented whether the measurement

results were shown in real-time or not. When one button was selected, the other was automatically

unavailable. The switch on the right was where the user controlled the start and stop. If user didn’t

choose file before switched to start, a suggestion of choosing file would show in the text box of file

path, as shown in Fig. 37. After choosing file and selecting mode, the switch can be switched to

start to process the data.

In the show results mode, a message was showed up to indicate the progress of data processing,

as shown in Fig. 38.
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Figure 37: Display suggestion for selecting file

Figure 38: Calculation progress reminder

73



Figure 39: Display calculation and classification results with reliable data

Figure 40: Display calculation and classification results with unreliable data
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After the data processing was complete, the results of SmO2 values of each second was dis-

played in the figure, as shown in Fig. 39. If the user moves the mouse to a certain position of the

curve, the specific value will be displayed in the box, where X represents the time in second, Y

represents the SmO2 value at that specific time. The success light changed to green represented

that this data was classified as reliable so that the results shown were informative.

If the input data was classified as unreliable, the error light would change to red to indicate that

the results shown were useless, as shown in Fig. 40.

Figure 41: Real-time calculation with display SmO2 value and curve

Besides the functionality of showing SmO2 results, this application also provide a simulation

to real-time testing. All of the user interaction procedures were same except for clicking the teal-

time button before clicking start. Fig. 41 shows the simulation was in progress and the results

were showed in ”real-time”. However, this was not a true real-time measurement, and this simu-

lation just provided the possibility for real-time measurement. If the device can transmit data to

the computer in real-time via some wireless method, such as Bluetooth and WiFi, the real-time

measurement will be achieved.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Measuring muscle oxygen saturation quantitatively and accurately provides benefits for sports en-

thusiasts and athletes. They can monitor the training of a specific muscle in their body. In this

thesis, an algorithm was introduced for a newly invented SmO2 measurement device. The light

attenuation of each wavelength at two source-detector distances was generated from the original

measured hexadecimal data. To reduce the effect of the absorption and scattering of overlying

tissues, such as skin and fat, an orthogonalization technique was introduced to generate the or-

thogonal attenuation from the light attenuation of two source-detector distances. The Taylor series

expansion model of SmO2 was fitted to the orthogonal attenuation using bound-constrained non-

linear least squares fitting. The boundaries of parameters in bound-constrained non-linear least

squares fitting was chosen with their physical meanings. Then, the SmO2 values of each sampling

were calculated by the ratio of the concentration of oxygenated hemoglobin to the concentration

of total hemoglobin.

In our study, two training procedure was designed to in vivo measurement. In total, 33 indepen-

dent tests of different subjects of two training procedures were done. The measuring results were

plot in figure and compared with the results of Moxy monitor. We analyzed the absolute values of

each training status and the trends of two training procedures, which were all within a reasonable

range.

However, due to the instability of the wearable device, some of the measuring results were
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unreliable. A fault diagnostic was needed to remind users to wear the device properly and training

as the designer procedures. It was done by classifying the reliability of orthogonal attenuation in

a period using machine learning approach. We labelled the data that collected from 21 tests with

its reliability and split them into different training status. In each training status, support vector

machines with Gaussian radial basis function kernel was trained. The parameters were determined

by the method of grid search. Two evaluation curves, ROC curve and cross-validation learning

curve, were used to evaluate the performance of classifiers. After evaluation, the SVM classifiers

in both training states can achieve an accuracy of over 97%.

For the convenience of users, an application that integrated the SmO2 calculation and fault

diagnostic was developed in Matlap App Designer. With this application, users can generate the

SmO2 results with three clicks, including choosing the data file from file explore, choosing the

resulting showing mode or real-time mode, and clicking start. The SmO2 curve during training

and the absolute values could be displayed in the interface. And two indication lights would show

whether the data is reliable or not. However, the real-time mode in this application was just a

simulation of real-time measurement. A wireless transmission module should be integrated in the

device so that the data could be received and processed in computer in real-time.

5.2 Future Work

Although the quantitative measurement of SmO2 and fault diagnostic were studied in this thesis,

there are still some limitations that need to be addressed in future. In the following, some of the

potential directions for future research work are provided.

5.2.1 Improve the Estimation Accuracy and Reliability in Practical

As mentioned in the previous chapters, the reliability was highly dependent on the correct wearing

of our device. In addition, measurement temperature and humidity of human skin would also

affect the accuracy. Fault diagnostic can only give the trainer a hint that the measurement results

are unreliable, but it cannot give the reliable and accurate results. Therefore, how to estimate

reliable results under improper wearing and under different temperature and humidity conditions

is a question worth studying in the future.
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Besides, the fault diagnostic in this thesis was based on the data labelled by comparing with

Moxy monitor. In actual use, the real class of data is unknown. To make the fault diagnosis

function to be available in practical, there are two possible solutions. The first method is to use

unsupervised learning to predict the reliability of data. Another one is to establish a complete rule

for judging the reliability of data, which can be combined with data from other hardware devices,

such as thermometers, hygrometers, and gyroscopes.

5.2.2 Personalized Parameters and Fault Diagnostic

In this thesis, the in vivo measurements were done in 33 different individuals and their physical

parameters, such as body fat percentage and skin color, were unknown. However, for individuals

with different fat thickness and skin color, the best boundaries and initial values of least squares

fitting and parameters of the classification model will be different. What we studied in this thesis

was only the parameters and models for ordinary people. In other words, we design general algo-

rithms for all users of this device. However, as a personal wearable measuring device, it should be

adapted to each wearer’s own physical parameters. In order to enable this device to customize per-

sonalized parameters and models for each user, differences in parameters for different individuals

should be studied in the future.

In the case of knowing the individual’s physical parameters, for example, the same person can

use the device to measure multiple times to obtain data in the duture study. The data obtained in

this way can be analyzed for intra-personal characteristics. Then, let multiple people participate

in the experiment to analyze the inter-personal differences. By comparing the data of people with

different body fat and skin color, it is possible to propose algorithms personalized to different

individuals.

5.2.3 In Vivo Measurement and Fault Diagnostic for Other Exercises and

Other Muscles

The in vivo measurement did in this thesis were based on running and walking, and the measuring

muscle was calf muscles. A monitoring device should not only target one exercise. Other training
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should also be considered, such as swimming, rope jumping, and weightlifting. And more corre-

sponding muscles should be measure, such as forearm, thigh muscles, biceps brachii, and triceps

brachii. Therefore, more in vivo measurements should be done in different muscles with different

exercises in the future study.

Besides, the data classification of reliability did in this study just gave a possibility of fault

diagnostic. To improve the accuracy and universality of fault diagnostic for any exercise and any

muscle, more in vivo measurement and analysis should be done in the future work.

5.2.4 Real-Time Measurement and Fault Diagnostic of SmO2

Although a simulation of real-time testing has been described in previous chapter, the true real-

time measurement requires more improvement both in hardware and software. The device should

be able to transmit data to the computer or phone in real-time via some wireless methods, such as

Bluetooth and WiFi. And the receiving computer or phone needs to have an interface to receive

and read the real-time transmitted data. The calculation algorithms will not change for real-time

measurement but the fault diagnostic based on machine should be different.

In the real-time prediction, a time factor can be added as a feature in machine learning. A

possible method is to use 5 attenuation and time in each second as the feature so that the training

data is in 6-dimension, which is much lower than the current 50-dimensional. In this way, not only

can the dimensionality be reduced, but also all the training status can be learned in one model.

Besides, the newly predicted values and results can be added into the training dataset in real time

to improve the accuracy of the classifier.

5.2.5 Mobile Application Combined with Professional Training Advice

The application designed in Matlab App Designer was aimed to the professional users. For fitness

enthusiasts and athletes, an application on mobile phone will be more convenient to use. So a

mobile application is necessary to be developed in the future.

Besides the value of SmO2, measurement of other metrics, such as heart rate, can also be

integrated in this application. It is not enough to only show the values of these metrics because non-

professional athletes don’t know what these metrics indicate. Professional training advice based
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on their training behavior and performance should also be provided in this application. These are

things that need to be studied in the future.

80



Appendix A

Appendix

A.1 Taylor Series Expansion

The Taylor series of a function is the infinite sum of terms expressed as the derivatives of the

function at a specific point. The partial sum formed by the n first terms of the Taylor series is a

degree n polynomial, which is called the nth Taylor polynomial of the function. Generally, when

n increases, the Taylor polynomial approximation becomes better.

The Taylor series of a real or complex function f (x) that is infinitely differentiable at a real or

complex number x0 is defined as

f (x) =
∞∑
n=0

f (n) (x0)

n!
(x− x0)(n)

≈ f (x0) +
f

′
(x0)

1!
(x− x0) +

f
′′

(x0)

2!
(x− x0)2 f

′′′
(x0)

3!
(x− x0)3 + · · ·

(88)

where f (n) (x0) denotes the nth derivative of f (x) evaluated at the point x0.

A.2 Coefficient of Determination

In statistics, the coefficient of determination, denoted R2, is the proportion of variance in the

dependent variable, and the variance can be predicted from the independent variable.

Assuming that a data set has n values marked y = [y1, · · · , yn]T , each associated with a mod-

eled value marked f = [f1, · · · , fn]T . Define the residuals as ei = yi − fi or e = y− f.
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Define ȳ as the mean of the observed data:

ȳ =
1

n

n∑
i=1

yi (89)

There are two sums of squares can be calculated, including total sum of squares in equation

(90) and residuals sum of squares in equation (91).

SStot =
∑
i

(yi − ȳ)2 (90)

SSres =
∑
i

(yi − fi)2 −
∑
i

e2
i (91)

Therefore, the coefficient of determination can be defined as

R2 = 1− SSres
SStot

(92)

If the modeled value exactly matches the observed value, resulting in SSres = 0 and R2 = 1,

the modeling or fitting is the most successful. If the predicted value is always equal to the average

value ȳ, it will result in R2 = 0. In the worst case, a model with a poor prediction will make R2

become negative.
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