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Abstract

Learning Linear Programs:
Inverse Optimization as a Form of Machine Learning

Yingcong Tan, Ph.D.

Concordia University, 2021

Conventionally, in an optimization problem, we aim to determine the values of the

decision variables to minimize the objective function subject to the constraints. We refer to

this problem as the forward optimization problem (FOP). In an inverse optimization (IO)

problem, the goal is to determine the coefficients of an FOP such that an observed solution

becomes an optimal solution of the learned FOP model. In this dissertation, we focus on the

inverse linear optimization problem whose FOP has the form of linear programming. We

adopt an interdisciplinary approach, leveraging concepts and methods from machine learning

to address a very general form of this problem.

Firstly, we study the general form of the inverse linear optimization problem, that is,

learning all model coefficients individually or jointly where the unknown model coefficients

may or may not depend on exogenous parameters. We are the first to cast the IO problem

as a form of deep learning and solve it with a gradient-based algorithm. To compute the

gradients, we differentiate through the steps of an optimization process, in particular, the

Barrier interior-point method. We develop new sets of benchmark instances and show good

performance of our algorithm on different IO tasks: 1). learning a cost vector of linear

program; 2). learning cost vector and constraints of a linear program jointly; 3). learning

unknown parameters in the objective and constraints of a parametric linear program. To the

best of our knowledge, this algorithm is the first IO approach in the literature to be able to

handle all three types of tasks.

Secondly, we formulate the inverse linear optimization problem as a bilevel optimization
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problem and explicitly encode constraints in the outer problem to ensure that observed

solutions remain feasible with respect to the constraints. Again by leveraging a machine

learning perspective on inverse linear optimization, we develop a general-purpose framework

to solve the bilevel model with gradient-based algorithms. We investigate different methods

for differentiating through an optimization problem and specialize them to LP. Additionally,

we focus on an objective-based loss function and derive a closed-form expression for computing

gradients. Experimental results show that our framework is capable of solving synthetic

parametric linear program and multi-commodity flow problem instances which could not be

previously solved by methods in the IO literature. Additionally, we show that our closed-form

expression is orders of magnitude faster than other methods for computing the gradients.

Finally, we focus on a special case of learning the objective only. We present four

different methods for solving this problem, including three mathematical formulations and

one general gradient-based algorithm. We test all four methods on synthetic parametric

linear program and multi-commodity flow problem instances, and show that all four methods

can successfully solve all experimental instances. All three mathematical models are solved

in a commercial optimization solver and, due to their specialized nature, outperform the

more generic gradient-based algorithm in runtime. Additionally, we show that the parametric

linear programs learned from the KKT-based and strong duality-based formulations produce

the best predictions on testing data.

In summary, the main contribution of this dissertation is the development of a general

gradient-based framework which is able to solve problems that were previously not tackled

in the IO literature. In addition, we extend and unify models for the special case of learning

the objective only, which has been the focus of previous IO work. This dissertation unifies

machine learning and inverse optimization both at the modelling and algorithmic levels.
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Chapter 1

Introduction

Optimization is deeply embedded in various decision-making processes of modern

organizations (e.g., budget planning, staff scheduling, inventory management, etc.)

and an individual’s life (e.g., routing, shopping, diet management). Optimization

models are widely used to represent decision-making processes by formally charac-

terizing the objective (e.g., cost and achievable goals), constraints (e.g., restrictions

on resources) and the associated decision variables (e.g., choice of actions). For that

reason, optimization models such as linear programs (LPs) continue to receive a great

amount of attention from research and industry.

Recently, the availability of big data has promoted the research and application of

data-driven decision-making, which emphasizes using real data to guide the decision-

making process. This requires one to develop an optimization model based on the

collection of real data, and the developed model should be a useful representation of

reality. Inverse optimization (IO) aims to learn unknown coefficients of optimization

models from observed optimal solutions. As a data-driven methodology for inferring

model coefficients, IO is receiving growing attention.

This dissertation’s central thesis is that viewing IO as a learning problem with

bilevel structure facilitates the development of a general gradient-based framework for
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solving inverse linear programs (i.e., learning linear programs from optimal decisions)

where the unknown model coefficients may or may not depend on exogenous parame-

ters. As such, this dissertation advances the methodology of developing data-driven

optimization models through an integration of ideas from machine learning and inverse

optimization. The gradient-based framework proposed in this dissertation provides

the first, to the best of our knowledge, general approach able to learn all coefficients

of a linear program from data.

1.1 Motivation

The conventional workflow of optimization model development requires not only

excellent knowledge of the modelling techniques but also an in-depth understanding

of the underlying decision-making process. This workflow commonly demands a high

level of human intervention.

Firstly, the model developers are expected to incorporate the knowledge of the

decision-making process into the design of the objective, constraints and decision

variables of a mathematical programming (MP) model. Secondly, raw data are collected

and used to specify the model coefficients with suitable data analysis methods. Lastly,

the initially developed model is implemented and tested to collect feedback and possibly

additional information from other domain experts (e.g., stakeholders). When noticing

any discrepancy between the developed model and other collected information (e.g.,

historical data, feedback and suggestions from stakeholders), the MP model has to be

revisited and updated by the model developer. We refer to this step as model refinement.

Model refinement can be done in different ways: adding/removing/updating additional

constraints, revisiting the second step to use a different data analysis method, or

manually modifying the model coefficients. All these approaches are time consuming

and largely depend on the knowledge and expertise of the model developer. This cycle
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of model development and refinement is expected to be repeated until a satisfactory

MP model is accepted and delivered for real-life use.

Model refinement heavily depends on the model developers’ expertise in mod-

elling techniques. In this conventional workflow, there is no formal methodology to

directly incorporate the knowledge from other domain experts (e.g., decision maker,

shareholders) into specifying the model coefficients such that the developed model

would produce solutions that are favourable for the decision makers. One methodology

that can help resolve this issue is inverse optimization, which can be used to automate

the model coefficient estimation process, especially where the model developer manu-

ally modifies the model coefficients in the model refinement step. Most importantly,

incorporating IO into the conventional workflow described above does not conflict

with other procedures involved or additional knowledge from other domain experts.

Additionally, the conventional workflow of model development largely depends on

raw data availability for specifying the model coefficients of the MP models. In many

real-world applications, one may not have access to the decision-maker or be able to get

feedback. This would severely limit the model coefficient estimation and the accuracy

of the corresponding developed model. However, we often can observe some optimal

(or close-to-optimal) solutions (e.g., historical data representing the decision-maker’s

behaviour), which allows IO to infer the corresponding model coefficients directly

from the observed solutions. Consider a real-life routing problem, users (e.g., driver)

of a given network of roads may optimize their path from an origin to a destination

based on some criteria. These criteria could be road-specific (e.g., speed limit, length)

or user-specific (e.g., vehicle, preference on toll roads). These criteria would reflect

the user’s objective function that dictates his/her decisions, and thus it is important

to collect information from the user when specifying the coefficients in the objective

function. In practice, we do not always have access to an individual driver but we
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may be able to collect data on some paths used by the driver and then use IO to infer

the objective function coefficients directly from the observed path.

As discussed above, we believe that, as a data-driven methodology for inferring

model coefficients, inverse optimization (IO) can be embedded in the conventional

workflow of optimization model development to automate the data analysis procedures.

Using IO can facilitate a novel workflow that is more automated and will be more

akin to model fitting done in machine learning.

1.2 Dissertation Overview

This dissertation studies the most general form of the inverse linear optimization

problem where all model coefficients of a linear program depend on other parameters

(i.e., parametric linear program), and the goal is to learn the parameter. We refer

the readers to Chapter 2 for more details of non-parametric and parametric linear

programs.

This dissertation is presented in a manuscript-based format, and it consists

of six chapters. Chapter 1 presents the introduction, outline and contributions of

this dissertation. Chapter 2 provides some background information and literature

review. Three manuscripts are presented in Chapters 3, 4 and 5. Each of the

manuscript chapters defines its own notation and has its own literature review. The

manuscript in Chapter 3 was published in the 16th International Conference on

the Integration of Constraint Programming, Artificial Intelligence, and Operations

Research (CPAIOR’19). The manuscript in Chapter 4 was published in the 34th

Conference on Neural Information Processing Systems (NeurIPS’20). The manuscript

in Chapter 5 will be submitted to an operations research journal, potentially the

European Journal of Operational Research. Lastly, Chapter 6 presents future work

directions and concludes this dissertation.
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In Chapter 3, we first propose to view IO as a learning problem and present

connections between IO and deep learning. IO can be viewed as a learning problem

since it aims to learn a parametric optimization problem whose optimal solution

(which is referred to as the prediction) is consistent with the observed solution (which

is referred to as the target). Similar to deep learning models, the goal of IO is to

minimize the loss between the target and prediction. Unlike deep learning models

whose prediction is the result of a feedforward neural network, the prediction in

the IO is the result of an optimization problem. This perspective motivates the

first manuscript in this dissertation. We replace the forward pass of the neural

network in the deep learning architecture with the Barrier interior point method

(IPM), which produces an optimal solution of a linear program, and then computes

the loss accordingly. Like the forward pass of a neural network, the Barrier IPM is an

iterative and differentiable procedure, and thus it is compatible with the automatic

differentiation functions (i.e., differentiating a nested function using the chain rule)

in deep learning packages such as PyTorch. In summary, we cast the IO problem as

a form of deep learning. We develop a gradient-based algorithm called deep inverse

optimization (DIO) which unrolls the optimization process to compute the gradients

for updating the parameters. As proof of concept, we implement the Barrier IPM in

PyTorch (Paszke et al., 2019). We construct new sets of IO benchmark instances and

show that our proposed algorithm successfully solves three IO problems: 1). learn

the objective of a non-parametric LP, 2). learn the objective and constraints of a

non-parametric LP jointly, and 3). learn parameters of a parametric LP.

In Chapter 4, we investigate different methods to differentiate through a linear

program for computing the gradients of LP coefficients. Although the problem of

differentiating through an optimization problem has been studied in some deep learning

literature (e.g., Amos and Kolter (2017) studies the quadratic programming problem,
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Agrawal et al. (2019) studies the convex optimization problem), we find no similar

work focused on LP. Unlike many deep learning methods, we investigate an objective-

based loss that penalizes the difference between the target and predictions in their

objective values and derive a novel approach to compute the gradients through a

closed-form expression. We formulate the inverse linear optimization problem as a

bilevel optimization model. The inner-problem encodes the linear program whose

optimal solution is the prediction. The outer-problem minimizes the loss between the

target and prediction, and it explicitly encodes constraints to ensure the target is

feasible with respect to the learned constraints. We demonstrate good performance of

the proposed gradient-based framework on the synthetic PLP and minimum-cost multi-

commodity flow problem instances. Additionally, we demonstrate the performance

superiority (in runtime) of our closed-form approach in computing the gradients over

a implicit differentiation approach and a backpropagation approach.

While in Chapters 3 and 4 we study the problem of learning all model coefficients

from optimal solutions, in Chapter 5 we focus on the special case of learning the

objective function only. To our knowledge, most of the existing work studies this

problem under the setting of non-parametric LP, and there is no previous work

discussing the connections among existing methods. We generalize the mathematical

models from Chan et al. (2019) and Tavaslıoğlu et al. (2018) to the general parametric

case with multiple observations and propose two new mathematical models accordingly.

We also generalize the concept of inverse-feasible-region (i.e., collection of all cost

vectors that make the observed solution optimal) from Tavaslıoğlu et al. (2018) to the

parametric setting. We prove that our new mathematical models are mathematically

equivalent to the model from Keshavarz et al. (2011) when the inverse-feasible-region

is not empty. All formulations are coded in CPLEX (IBM, 2020) and then tested on

synthetic parametric LP and multi-commodity flow problem instances. We compare
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their performance with the gradient-based framework (developed in Chapter 4) and

show the performance advantage (in runtime) of the mathematical formulations solved

in CPLEX.

1.3 Contributions

We focus on the IO problem of learning the model coefficients of linear programs. This

problem is referred to as the inverse linear optimization problem in this dissertation.

The main contributions of the three manuscripts included in this dissertation are

provided below.

• Chapter 3: Deep Inverse Optimization (published in the Proceedings of CPAIOR’19)

– We cast the IO problem as a form of deep learning. It allows us to solve

the IO problem with gradient-based algorithms. Notably, we compute

the gradients by backpropagating through all the steps of an optimization

process.

– To our knowledge, we propose the first method for solving the most general

form of the inverse linear optimization problem, that is, learning the

objective and constraints of a parametric linear program jointly or separately

given multiple observations.

– To understand the behaviour of the proposed algorithm, we establish

new benchmark instances that categorize the inverse linear optimization

problems based on the ratio of the number of variables to the number of

constraints.

– We demonstrate that the proposed methods can efficiently learn the objec-

tive and constraints of a non-parametric or parametric LP separately or

jointly.
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• Chapter 4: Learning Linear Programs from Optimal Decisions (published in the

proceedings of NeurIPS’20)

– To extend the work in Chapter 3, we formulate the inverse linear optimiza-

tion problem as a novel bi-level optimization model. The outer problem

minimizes a discrepancy between the observed solution and the predictions.

The prediction is an optimal solution of a parametric linear program which

is defined in the inner problem.

– We explicitly encode constraints in the outer problem to ensure that the

observed solutions remain feasible in any learned model. We refer to this

set of constraints as the target feasibility constraints. To our knowledge,

we are the first to propose this type of constraint in formulating an IO

problem.

– We solve the bi-level formulation with gradient-based algorithms and dif-

ferentiate through an LP to compute the gradients. We specialize methods

from the literature to the case of linear programming. In addition, we focus

on the objective-error type of loss function, and derive a new closed-form

expression for computing the gradients.

– We implement four variants of our gradient-based algorithm each with a

different gradient methods: implicit (i.e., implicit differentiation), backprop

(i.e., backpropagation), direct (i.e., closed-form expression) and cvx (i.e.,

using a python library called cvxpy).

– We demonstrate strong performance of our gradient-based algorithms on

synthetic parametric linear programs and parametric multi-commodity flow

instances. In particular, the gradient algorithms with implicit, backprop

and direct solve 60-65% of the instances, gradient algorithm with cvx
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solves ∼ 50% of the instances. In contrast, the gradient-free baselines are

successful only 25% of the time.

– We demonstrate that our closed-form expression is multiple orders of

magnitude faster than other approaches in computing the gradients.

– We illustrate the challenge of generalization that occurs in IO. We show via

an example that the training data can under-specify the learned PLP and

achieve zero training loss while not being able to match target solutions on

the test set.

• Chapter 5: Learning the Objective of Linear Programs: Models and Insights

(will be submitted to an operations research journal).

– We study a special case of inverse linear optimization with the goal of

learning the objective under the parametric setting, which has not previously

been addressed in the IO literature.

– We propose four different mathematical formulations, including three single-

level optimization models which are extensions of existing IO literature,

and one bilevel optimization model which is directly based on Chapter 4.

∗ We specialize the method from Keshavarz et al. (2011) to LP and

propose a single-level optimization model using the KKT conditions.

We refer to this model as the KKT-based formulation.

∗ We generalize the method from Chan et al. (2019) to parametric case

and propose a single-level optimization model using the strong duality.

We refer to this model as the strong duality-based formulation.

∗ We generalize the method from Tavaslıoğlu et al. (2018) to parametric

case and propose a single-level optimization model using the concept

of inverse feasible region. We refer to this model as the inverse feasible
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region-based formulation.

∗ We specialize the bilevel optimization model and gradient-based algo-

rithm from Chapter 4 to learning the objective only.

– We generalize the concept of inverse feasible region from Tavaslıoğlu et al.

(2018) to the general case of parametric LP, and define the parametric

inverse feasible region.

– We prove that the three single-level optimization models are mathematically

equivalent under the assumption of a non-empty parametric inverse feasible

region.

– Computational results show that all three single-level optimization models

solved in CPLEX are faster than the bilevel optimization model solved

with a gradient algorithm. Additionally, the inverse feasible region-based

model has the shortest runtime.

– We show that PLP models learned from the KKT-based and strong duality-

based formulations provide better predictions on testing data. Combining

with the runtime comparison, we highlight the performance trade-off be-

tween the runtime and accuracy of the predictions.
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Chapter 2

Inverse Linear Optimization:

Background and Literature Review

Linear programming is a class of optimization problems that deals with linear objective

and constraints and continuous decision variables. It is widely implemented in various

fields (transportation, production, etc.). It is unarguably important in both theory

and applications. Consequently, the problem of learning linear programs, i.e., inverse

linear optimization is receiving growing attention. It has been successfully implemented

in various applications, such as radiation therapy planning (Chan et al., 2019; Chan

and Kaw, 2020), production planning (Chan et al., 2019; Troutt et al., 2006), traffic

network (Burton and Toint, 1992), investment portfolio optimization (Bertsimas et al.,

2012) and electricity demand forecasting (Saez-Gallego and Morales, 2017).

2.1 Background

Conventionally, in an optimization problem, we aim to determine the values of the

decision variables to minimize the objective function and subject to the constraints.

We refer to this problem as the forward optimization problem (FOP). In an inverse
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optimization (IO) problem, the goal is to determine the coefficients of a FOP such that

an observed solution becomes an optimal solution of the learned FOP model. In this

dissertation, we focus on the inverse linear optimization problem whose corresponding

FOP has the form of LP.

For the rest of this section, we provide some background information on linear

programming, its generalization under parametric setting and inverse linear optimiza-

tion. Mathematical formulations, numerical examples and figures are provided. Lastly,

we discuss some related work and research gaps that motivate this dissertation.

2.1.1 Linear Programming and Parametric Linear Program-

ming

In linear program (LP), the cost vector c ∈ R
D, inequality constraint coefficients

A ∈ R
M1×D, b ∈ R

M1 , and equality constraint coefficients G ∈ R
M2×D, h ∈ R

M2 are

given and held fixed. The goal is to determine a solution x ∈ R
D which satisfies the

constraints and minimizes an objective function.

minimize cTx (LP)

subject to Ax ≤ b

Gx = h
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minimize
x

0.5x1 + 1.5x2

subject to − 5 ≤ x1 ≤ 5

− 5 ≤ x2 ≤ 5

− 3x1 + 2x2 ≤ 5

Figure 2.1: An example of an LP. The mathematical model is shown on the left and
the corresponding feasible region is shown on the right. The solid lines, arrow, and
circle represent the feasible region, cost vector, and corresponding optimal solution
respectively, and the dashed lines represent the horizontal and vertical axes.

Figure 2.1 presents an example of linear program. It is also referred to as the

non-parametric LP in this dissertation, since model coefficients c, A and b do not

depend on other parameters.

Parametric Linear Program (PLP) In parametric linear program, the model

coefficients (and therefore the corresponding optimal solutions) depend on some

features u (e.g., time or weather conditions).

minimize c(u)Tx

subject to A(u)x ≤ b(u)

G(u)x = h(u)
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minimize
x

(u − 0.5)x1 + (u + 0.5)x2

subject to x1 ≤ 4 + u

x2 ≤ 4 + u

− x1 ≤ 4 + u

− x2 ≤ 4 + u

− (u+ 2)x1 + 2x2 ≤ 4 + u

Figure 2.2: An example of PLP(u), where u1 = 1, u2 = 0, u3 = −1 denote the features
u under different observations. The mathematical model is shown on the left and the
corresponding feasible regions are shown on the right.

Figure 2.2 shows a parametric linear program instance with three u values. Note

that the LP instance in Figure 2.1 is a special case of the PLP instance in Figure 2.2

(i.e., PLP(u = 1)).

Model Hypothesis Our perspective is similar to the concept of hypothesis space

used in ML literature. Hypothesis space consists of the set of functions the model is

limited to learn. For instance, depending on the parameterizaiton, a regression model

can be limited to linear functions as its hypothesis space, or it can be expanded to

polynomials. Motivated by this perspective, to learn a PLP model from data, in this

dissertation we introduce the notion that one needs to define a suitable hypothesis

space parametrized by w, that is, PLP(u,w):

minimize c(u,w)Tx

subject to A(u,w)x ≤ b(u,w)

G(u,w)x = h(u,w)

.
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minimize
x

(wu − 0.5)x1 + (wu + 0.5)x2

subject to x1 ≤ 4 + wu

x2 ≤ 4 + wu

− x1 ≤ 4 + wu

− x2 ≤ 4 + wu

− (w ∗ u+ 2)x1 + 2x2 ≤ 4 + w ∗ u w = 1 w = 2

Figure 2.3: An example of PLP(u, w) where w characterizes the hypothesis space
and u1 = 1, u2 = 0, u3 = −1 denote the feature u under different observation. The
mathematical model is shown on the left and the corresponding graph is shown on
the right.

Figure 2.3 shows an example of PLP that is parametrized by w. Note that the

PLP instance in Figure 2.2 is equivalent to PLP instance on the left-hand-side of

Figure 2.3 (i.e., PLP(w = 1)).

2.1.2 Inverse Optimization

To help understanding the IO problem, we present two classic formulations from the

literature (Ahuja and Orlin, 2001; Keshavarz et al., 2011). For consistency, we present

the formulations using the notation from the original papers.

Firstly, we present the formulation developed by Ahuja and Orlin (2001). They

study the IO problem with the goal of determining the cost vector of a non-parametric

LP from a single noise-free observation. A noise-free observation means that the

observed solution is a candidate optimal solution. In an LP, this means the observed

solution lies on the boundary of the feasible region.

Let x ∈ R
D, c ∈ R

D denote the decision variables and cost vector of the primal

LP and A ∈ R
M×D, b ∈ R

M denote the constraint coefficients of the primal LP model.
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Let λ ∈ R
M denotes the corresponding dual variables. We first present the primal

and dual LP models used in Ahuja and Orlin (2001).

(Primal) minimize
D∑
j=1

cjxj

subject to
D∑
j=1

aijxj ≥ bi, i = 1, . . . , M

xj ∈ R, j = 1, . . . , D

(Dual) minimize
M∑
i=1

biλi

subject to
M∑
i=1

aijλi = cj, j = 1, . . . , D

λi ≥ 0, i = 1, . . . , M

Let xobs ∈ R
D denote an observed solution. Let I = {1, . . . , M} denote the

index set of constraints. and I ′ = { i ∈ I | ∑D
j=1 aijx

obs
i = bi } denote the index set

of active inequality constraints. Additionally, c0 ∈ R
D denotes the target cost vector,

and the goal is to find a cost vector c with minimum perturbation from the target

cost vector that makes the observed solution optimal. We present the IO formulation

from Ahuja and Orlin (2001) below.

minimize
D∑
j=1

|cj − c0j |

subject to cj =
∑
i∈I′

aijλi, j = 1, . . . , D

λi ≥ 0, i ∈ I ′

(2.1)
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The objective is to minimize the distance between the learned cost vector and

the target cost vector. The constraint is obtained by combining the complementary

slackness (i.e., λi(
∑D

j=1 aijx
obs
j − bi) = 0, i = 1, . . . ,M) conditions and dual feasibility

constraints (i.e.,
∑M

i=1 aijλi = cj, j = 1, . . . , D) in the Dual model. This formulation

is developed by noticing that if an observed solution is optimal, the complementary

slackness conditions must be satisfied.

Secondly, we present the formulation from Keshavarz et al. (2011). They study

the IO problem with the goal of imputing the objective function of a parametric

convex optimization problem (COP) from multiple noisy observations. Parametric

problem means that the model coefficients depend on other parameters. An observed

solution is called “noisy” if it is not candidate optimal solution. That is, the observed

solution lies strictly inside or outside the feasible region.

Let x ∈ R
D denote the decision variable, and u denote a set of features that

objective and constraints depend on. f =
∑K

i=1 wifi(x,u) represents the parametric

objective function where w ∈ R
K denotes the unknown parameters that we want to

learn and fi are pre-selected basis functions. Let gj(x,u), j = 1, . . . , M1 denote the

inequality constraint functions, and G ∈ R
M2×D, h ∈ R

M2 denote the coefficients of

the equality constraints. We first present the parametric COP studied in Keshavarz

et al. (2011).

minimize
K∑
i=1

wifi(x,u)

subject to gj(x,u) ≤ 0, j = 1, . . . , M

G(u)x = h(u)

(2.2)

Let λ ∈ R
M1 and ν ∈ R

M2 denote the dual variables corresponds to the inequality

and equality constraints respectively. Accordingly, we define the residuals of the

17



Karush–Kuhn–Tucker (KKT) conditions as below.

rineq =

[
(gj(x,u))+

]M1

j=1

req = G(u)x − h(u)

rstat(w,λ,ν) = ∇f(x,u) +

M1∑
j=1

λj∇gj(x,u) + G(u)Tν

rcomp =

[
λjgj(x,u)

]M1

j=1

(KKT Residuals)

For each pair of observation (uk,x
obs
k ), we introduce the corresponding dual

variables λk and νk. Let rstat
k , rcomp

k , rineq
k , req

k denote the KKT residuals correspond

to each observation k. We present the IO formulation from Keshavarz et al. (2011)

below.

minimize
N∑
k=1

φ( rstat
k , rcomp

k )

subject to λk ≥ 0, k = 1, . . . , N

(2.3)

Note, the objective is to minimize a convex penalty function, which satisfies

φ(rstat, rcomp) = 0 ⇐⇒ rstat = 0, rcomp = 0. The only constraint represents the dual

feasibility. This formulation is developed by noticing that, if a observed solution is

optimal, the corresponding KKT conditions must be satisfied.

Here we present two classic mathematical formulations for inverse optimization

problems. Both formulations aim to learn the objective. In this dissertation, we focus

on developing a general method to learn both objective and constraints. Secondly,

both Ahuja and Orlin (2001) and Keshavarz et al. (2011) make some assumptions that

would make their formulations less accessible and flexible in real-world applications.

In particular, Ahuja and Orlin (2001) assumes prior knowledge of c and Keshavarz

et al. (2011) assumes an affine parameterization in the objective.
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2.2 Literature Review

IO problems studied include inverse integer problems, inverse multi-objective optimiza-

tion. As mentioned above, we focus on inverse linear programs in this dissertation,

and thus the literature review discussed in this section focuses on the topic of inverse

linear optimization. For inverse integer problems, we refer the reader to Wang (2009);

Schaefer (2009); Moghaddass and Terekhov (2020), for multi-objective inverse opti-

mization, we refer the reader to Chan et al. (2014); Chan and Lee (2018); Dong and

Zeng (2020)

The problem of learning the coefficients of an optimization model has been studied

by some distinct research communities. Although methods developed by these distinct

communities have overlapping ideas, many of them are not aware of each other’s

work. In this section, we review some work in the inverse optimization community and

machine learning community. By identifying the connections and gaps, we leverage

concepts and algorithms from different communities and develop the core work of this

dissertation.

2.2.1 Existing Methods from Inverse Optimization

To our knowledge, the notion of IO was first introduced in Burton and Toint (1992);

Burton (1993). They study the inverse shortest path problem, that is, determine

the travel cost of edges in a network from a given optimal path. Troutt (1995)

defines the concept of decision efficiency as the ratio of the prediction’s objective

value to the observed solution’s objective value. Correspondingly, the IO problem

is to find the model coefficient that maximizes decision efficiency. We also notice

that Troutt (1995) mentions another earlier reference for IO problem from Stevenson

(1986). Inspired by these paper, IO is studied under various settings and different

mathematical programming models have been proposed in the literature.
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Here we first introduce some popular mathematical programming (MP) models

used in the literature. Ahuja and Orlin (2001) studies the inverse linear optimization

problem, and the goal is to learn the cost from a single observation (see Model

(2.1) presented above). Ahuja and Orlin calls a cost vector inverse feasible with

respect to an observed solution if it makes the observed solution optimal. Later,

Tavaslıoğlu et al. (2018) generalizes the idea of inverse feasible cost vector and formally

characterizes the inverse feasible region of a non-empty face. Tavaslıoğlu et al. also

propose a formulation to minimize the distance from a target cost vector and discuss

its connection with Ahuja and Orlin (2001). The idea of inverse feasible cost vector

is also discussed in Chan et al. (2019) and Gupta and Zhang (2020) but under a

different name. Keshavarz et al. (2011) is the first to propose a formulation based on

the Karush-Kuhn-Tucker (KKT) conditions (see Model (2.3) above). This formulation

is also studied in Saez-Gallego and Morales (2017) and Gupta and Zhang (2020).

For the rest of this section, we refer to this type of formulation as the IO-KKT.

Aswani et al. (2018) is the first paper states that IO can be formulated as a bilevel

optimization problem, and they proposed an approach to reformulate the bilevel

problem as a single-level optimization problem using strong duality. Similar strong

duality-based formulations are developed in Chan et al. (2019) and Ghobadi and

Mahmoudzadeh (2020). For the rest of this section, we refer to this type of formulation

as the IO-Dual.

For the rest of this section, we discuss the literature based on the categorization

of non-parametric and parametric LP.

Non-parametric LP Closed-form solutions for learning the cost vector have been

derived by Chan et al. (2019) for the case of a single noisy observation and by Babier

et al. (2020) for the case of multiple noisy observations. Chan and Kaw (2020)
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derives a closed-form solution for learning the left-hand-side constraint coefficients

A under the same setting of non-parametric linear programs. Tavaslıoğlu et al.

(2018) propose a new formulation to learn the cost vector of an LP using the idea of

inverse-feasible-region, that is, to represent the collections of all candidate cost vectors

using all active constraints. The same idea is also mentioned in Chan et al. (2019)

and Gupta and Zhang (2020). Schede et al. (2019) focus on learning the constraints of

an LP from both feasible and infeasible observed solutions using incremental learning

strategy. That is, solving a mixed-integer linear program with observed solutions

added iteratively. Ghobadi and Mahmoudzadeh (2020) study the problem of learning

both left and right-hand-side constraint coefficients A,b from multiple observations

by encoding a new optimization model using the strong duality. However, learning

objective and constraint coefficients jointly has, to date, received little attention.

This task has been investigated by Troutt et al. (2008, 2005) who addresses the

case of learning c and A. However, their approach was limited to two dimensions

(Troutt et al., 2005) or required the coefficients to be non-negative (Troutt et al., 2008).

Parametric LP In the parametric optimization setting, Keshavarz et al. (2011)

encoded an optimization model using the IO-KKT method. The model minimizes the

residuals of the complementary slackness and stationary conditions, and it is used

to impute objective function coefficients of a convex optimization problem. Aswani

et al. (2018) focus on the same problem under the assumption of noisy measurements,

developing two algorithms that are shown to maintain statistical consistency. For the

same problem in the LP setting, a recent work (Gupta and Zhang, 2020) proposes a

two-phase algorithm to first project noisy observations to a vertex and then find the

optimal cost vector. Saez-Gallego and Morales (2017) address the case of learning c

and b jointly in a parametric setting where the b vector is assumed to be an affine
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function of a regressor.

Given the literature review above, we identify a few research gaps as follows.

Firstly, the general case of learning the parameters of PLP where c, A and b all

depend on other parameters has not been addressed in the literature. Secondly,

most of the IO literature makes the use of IO-Dual or IO-KKT methods and then

proposes algorithms that are tailed to specific problem settings. Despite all the

advancements in theory and applications, there are no general methods that can be

flexibly applied to solve inverse linear optimization problems under different problem

settings. Lastly, the majority of the IO literature focuses on learning the objective, and

several different formulations have been proposed. To our knowledge, a comprehensive

comparison of these formulations has not been completed in the literature, neither in

the non-parametric nor the parametric case.

To summarize, we list some important references in table 2.1 and highlight

some key characteristics. To our knowledge, none of the existing methods in IO

literature address the problem of learning all model coefficients jointly under either

non-parametric or parametric setting.
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Literature
Coef. to learn LP problem setting Num. Obs. Obs. type

c A b Param. Non-Param. Single Multiple Noisy Noise-free

Ahuja and Orlin (2001) � � � �

Troutt et al. (2005) � � � � �

Troutt et al. (2008) � � � � �

Keshavarz et al. (2011) � � � �

Saez-Gallego et al. (2017) � � � � �

Bärmann et al. (2017)1 � � � � �

Aswani et al. (2018) � � � �

Tavaslıoğlu et al. (2018) � � � �

Dong et al. (2018)1 � � � �

Chan et al. (2019) � � � �

Schede et al. (2019) � � � � �

Babier et al. (2020) � � � �

Ghobadi et al. (2020) � � � �

Gupta and Zhang (2020) � � � �

Chan and Kaw (2020) � � � �

Bärmann et al. (2020)1 � � � �

Table 2.1: Summary of literature. Abbreviation used in the table: coef. stands for
coefficients, param. stands for parametric and obs. stands for observation.

1This work views IO from an online learning perspective.
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2.2.2 Existing Methods from Machine Learning

Amos and Kolter (2017) proposed integrating a quadratic programming (QP) layer in a

deep neural network and derive parameter gradients through implicit differentiation of

the KKT conditions. Agrawal et al. (2019) develop a differentiable convex optimization

layer, which can also be embedded into a deep neural network. Similarly, they also

make use of implicit differentiation to derive parameter gradients.

Some recent work (Bärmann et al., 2017; Dong et al., 2018; Bärmann et al.,

2020) view IO through the lens of online learning, where the optimization model is

incrementally updated based on new observations arriving over time. In particular,

Dong et al. (2018) updates the parameter by solving an optimization model encoded

using the KKT conditions and Bärmann et al. (2017, 2020) updates the parameter

using the multiplicative weights update (MWU) algorithm (Arora et al., 2012).

Another related work is the literature of inverse reinforcement learning (IRL) (Ng

et al., 2000; Abbeel and Ng, 2004; Ratliff et al., 2006) where the goal is to learn the

unknown reward function of a Markov Decision Process (MDP). Solving IO problems

with IRL methods requires modelling the forward optimization problem. IRL has

been successfully implemented in solving some IO problems such as inverse shortest

path. For more details on the connections between inverse optimization and inverse

reinforcement learning, we refer the readers to Zimmermann and Frejinger (2020).

Given the literature review above, we identify a few research gaps as follows.

Unlike methods in IO literature, algorithms developed by Amos and Kolter (2017);

Agrawal et al. (2019) can be applied to learn all model coefficients individually or

jointly. The flexibility of their methods is valuable. However, Amos and Kolter (2017)

and Agrawal et al. (2019) use the decision error loss (e.g., ‖xobs−xlrn ‖22), and they did

not investigate other types of loss that are commonly used in the IO literature, such

as objective error loss (e.g., | cT (xobs − xlrn) |). Their methods do not allow adding
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additional constraints which are commonly used in IO applications for encoding prior

knowledge on the FOP. Lastly, Amos and Kolter (2017) and Agrawal et al. (2019)

focus on quadratic program and convex optimization problems respectively. To our

knowledge, no similar work has been done focused on LP. To take advantage of the

rich literature of LP, this thesis focuses on the inverse linear optimization problems

and aims to develop new algorithms that can be flexibly applied to different settings.
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Chapter 3

Deep Inverse Optimization

3.1 Abstract

Given a set of observations generated by an optimization process, the goal of inverse

optimization is to determine likely parameters of that process. We cast inverse

optimization as a form of deep learning. Our method, called deep inverse optimization,

is to unroll an iterative optimization process and then use backpropagation to learn

parameters that generate the observations. We demonstrate that by backpropagating

through the interior point algorithm we can learn the coefficients determining the

cost vector and the constraints, independently or jointly, for both non-parametric

and parametric linear programs, starting from one or multiple observations. With

this approach, inverse optimization can leverage concepts and algorithms from deep

learning.

3.2 Introduction

The potential for synergy between optimization and machine learning is well-

recognized (Bengio et al., 2018), with recent examples including Bonami et al. (2018);
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Fischetti and Jo (2018); Mahmood et al. (2018a). Our work uses machine learning for

inverse optimization (IO). In inverse optimization, we observe one or more decisions

from an unknown optimization process, and the goal is to ‘learn’ an optimization

model that is consistent with the observations. Aspects of the unknown optimization

process that we may wish to learn include terms in the objective function or constraints

on the decision variables.

An early example of IO is the inverse shortest path problem, used to learn

the unobservable transmission times of seismic waves which are known to follow a

shortest path (Tarantola, 1987). Other applications include determining the tolls that

would enforce a desired traffic flow (Burton and Toint, 1992), imputing the relative

importance of treatment objectives from clinically-approved radiotherapy plans (Chan

et al., 2014; Mahmood et al., 2018b) in order to automate clinicians’ decision-making,

and predicting the behaviour of price-responsive customers (Saez-Gallego and Morales,

2017).

We illustrate our framework in the context of parametric linear optimization.

Specifically, consider the parametric linear program PLP(u,w):

minimize
x

c(u,w)′x

subject to A(u,w)x ≤ b(u,w),

(3.1)

where x ∈ R
D, c(u,w) ∈ R

D, A(u,w) ∈ R
M×D and b(u,w) ∈ R

M . The ‘feature’

vector u represents conditions (e.g., time, prices, weather) under which we may want to

instantiate and solve the linear program. The ‘weight’ vector w represents parameters

relating the features to the optimization model instance.

In inverse optimization, for a set of features {u1,u2, . . . ,uN} we observe the

corresponding decisions of some unknown optimization process. Call these decisions
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{xobs
1 ,xobs

2 , . . . ,xobs
N }, as they are generated by the ‘true’ underlying process. Funda-

mentally, IO problems are learning problems: the goal of IO is to learn weights w

such that, for each n ∈ {1, . . . , N}, there exists an optimal solution of PLP(un,w)

that is consistent with the corresponding observed decision xobs
n . The learned model

can then be applied to predict decisions under new conditions u that were not seen at

training time.

In this paper, we cast inverse optimization as a form of deep learning. Our

method, called deep inverse optimization, is to ‘unroll’ an iterative optimization

process and then use backpropagation to learn model parameters w that generate the

observations, i.e., training targets. Specifically, we use a deep learning framework to

trace computations across the iterations of an optimization loop, resulting in a chain

of dependent variables (a dynamically unrolled loop) which are then automatically

differentiated with respect to a loss function so as to compute a gradient for w.

Figure 3.1 shows the actual result of applying our deep IO method to three inverse

optimization learning tasks. The top panel illustrates the non-parametric, single-point

variant of model (3.1) — the case when exactly one xobs is given — a classical problem

in IO see (Ahuja and Orlin, 2001; Chan et al., 2019). In Figure 3.1 (i), only c needs to

be learned: starting from an initial cost vector cini, our method finds clrn which makes

xobs an optimal solution of the LP by minimizing ‖xobs − xlrn‖2. In Figure 3.1 (ii),

starting from cini, Aini and bini, our approach finds clrn, Alrn and blrn which make xobs

an optimal solution of the learned LP through minimizing ‖xobs − xlrn‖2.
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Figure 3.1 (iii) shows learning w = [w0, w1] for the parametric problem instance

minimize
x

cos(w0 + w1u)x1 + sin(w0 + w1u)x2

subject to − x1 ≤ 0.2w0u,

− x2 ≤ −0.2w1u,

w0x1 + (1 + 1
3
w1u)x2 ≤ w0 + 0.1u.

(3.2)

c(u, wtru)

True parametric LP Initial parametric LP Learned parametric LP

(i) Learning c only

cini clrnctru

xtru

c(u, wini) c(u, wlrn)

(ii) Learning c, A, b jointly

xlrn

xini

x(u , wtru) loss = 0.45 loss = 0.00

clrn ctru

cini

xtru

(iii) Learning weights w of a parametric LP from multiple points

Figure 3.1: Three IO learning tasks in non-parametric and parametric linear programs.

The left panel of Figure 3.1 (iii) shows the true PLP(u,wtru) with wtru =

[1.0, 1.0], along with four observations denoted as x(un,w
tru) corresponding to u

values {−1.5,−0.5, 0.5, 1.5}. Starting from wini = [0.2, 0.4] with a loss (mean squared

error) of 0.45, our method is able to find wlrn = [1.0, 1.0] with a loss of zero, thereby
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making the observed xobs
n optimal solutions of (3.2). In this case, the learned PLP

will predict the same decisions as the true PLP when evaluated on new values of u.

In other words, the learned model generalizes well.

The contributions of this paper are as follows. We propose a general framework

for inverse optimization based on deep learning. This framework is applicable to

learning coefficients of the objective function and constraints, individually or jointly;

minimizing a general loss function; learning from a single or multiple observations;

and solving both non-parametric and parametric problems. As a proof of concept,

we demonstrate that our method obtains effectively zero loss on many randomly

generated linear programs for all three types of learning tasks shown in Figure 3.1, and

always improves the loss significantly. Such a numerical study on randomly generated

non-parameteric and parametric linear programs with multiple learnable parameters

has not previously been published for any IO method in the literature. Finally, to

the best of our knowledge, we are the first to use unrolling and backpropagation for

constrained inverse optimization.

We explain how our approach differs from methods in inverse optimization and

machine learning in Section 3.3. We present our deep IO framework in Section 3.4

and our experimental results in Section 3.5. Section 3.6 discusses both the generality

and the limitations of our work, and Section 3.7 concludes the paper.

3.3 Related Work

The goal of our paper is to develop a general-purpose IO approach that is applicable

to problems for which theoretical guarantees or efficient exact optimization approaches

are difficult or impossible to develop. Naturally, such a general-purpose approach

will not be the method of choice for all classes of IO problems. In particular, for

non-parametric linear programs, closed-form solutions for learning the c vector (Figure
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3.1 (i)) and for learning the constraint coefficients have been derived by Chan et al.

(2019); Babier et al. (2020) and Chan and Kaw (2020), respectively. However, learning

objective and constraint coefficients jointly (Figure 3.1 (ii)) has, to date, received little

attention. To the best of our knowledge, this task has been investigated only by Troutt

et al. (2008, 2005), who referred to it as linear system identification, using a maximum

likelihood approach. However, their approach was limited to two dimensions (Troutt

et al., 2005) or required the coefficients to be non-negative (Troutt et al., 2008).

In the parametric optimization setting, Aswani et al. (2018) focus on the same

problem under the assumption of noisy measurements, developing a bilevel formulation

and two algorithms which are shown to maintain statistical consistency. Saez-Gallego

and Morales (2017) address the case of learning c and b jointly in a parametric setting

where the b vector is assumed to be an affine function of a regressor. The general case

of learning the weights of a parametric linear optimization problem (3.1) where c, A

and b are functions of u (Figure 3.1 (iii)) has not been addressed in the literature.

Recent work in machine learning (Bärmann et al., 2017, 2020; Dong et al.,

2018) views IO through the lens of online learning, where the optimization model is

incrementally updated based on new observations. Our approach may be applicable

in online settings, but in the current paper we consider problems with a fixed training

set.

It is worth noting that there are conceptual parallels between inverse optimization

and constraint acquisition (Bessiere et al., 2017), including recent variants that incorpo-

rate machine learning (Lombardi and Milano, 2018). In constraint acquisition, the goal

is to allow non-expert users to specify constraint sets in the constraint programming

formalism using an example-based approach.

Methodologically, our unrolling strategy is similar to Maclaurin et al. (2015a)

who directly optimize the hyperparameters of a neural network training procedure
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with gradient descent. Conceptually, the closest papers to our work are by Amos and

Kolter (2017) and Donti et al. (2017). However, these papers are written independently

of the inverse optimization literature. Amos and Kolter (2017) present the OptNet

framework, which integrates a quadratic optimization layer in a deep neural network.

The gradients for updating the coefficients of the optimization problem are derived

through implicit differentiation. This approach involves taking matrix differentials

of the KKT conditions for the optimization problem in question, while our strategy

is based on allowing a deep learning framework to unroll an existing optimization

procedure. Their method has efficiency advantages, while our unrolling approach is

easily applicable, including to processes for which the KKT conditions may not hold

or are difficult to implicitly differentiate. We include a more in-depth discussion in

Section 3.6.

3.4 Deep Learning Framework for Inverse Optimiza-

tion

Inverse optimization can be viewed as an approach to machine learning specialized

to the case when the observed data is coming from an optimization process. Given

this perspective on IO, and motivated by the success of deep learning for a variety of

learning tasks in recent years (see LeCun et al. (2015)), this paper develops a deep

learning framework for inverse optimization.

Deep learning is a set of techniques for training the parameters of a sequence

of transformations (layers) that have been composed (chained) together. The more

intermediate layers of computation, the ‘deeper’ the architecture. We refer the reader

to the textbook by Goodfellow, Bengio and Courville Goodfellow et al. (2016) for

details. The features of the intermediate layers can be trained/learned through
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backpropagation (Rumelhart et al., 1986), an automatic differentiation technique

that can efficiently compute a direction in which to update the weights of the model.

Importantly, current machine learning libraries such as PyTorch provide built-in

backpropagation capabilities (Paszke et al., 2017), making this technique much more

accessible and flexible than in the past.

Our deep IO framework cycles through three steps: (1) instantiate a forward

optimization problem with the current weights w, (2) solve the problem with a

standard algorithm while tracing its execution, and (3) automatically compute an

update to improve w by backpropagating through the traced steps.

Algorithm 1 Deep inverse optimization framework.

Input: initial weights wini; training targets
{
(un,x

obs
n )

}N

n=1
.

Output: learned weights wlrn

1: w ← wini

2: for s in 1 .. max_steps do
3: ∆w ← 0
4: for n in 1 .. N do � For each training example
5: x ← FO(un,w) � Run forward optimizer to completion
6: � ← L(x,xobs

n ) � Compute loss w.r.t. target
7: ∂�

∂w
← backprop(�) � Backpropagate gradient to weights

8: ∆w ← ∆w + 1
N

∂�
∂w

� Accumulate average gradient
9: end for

10: ∆w ← α�∆w � Scale gradient component-wise
11: β ← line_search(w,∆w) � Find safe step size
12: w ← w − β∆w � Update weights
13: end for
14: Return w

Our approach, shown in Algorithm 1, takes the pairs
{
(un,x

obs
n )

}N

n=1
as input,

and initializes w to wini. For each n, the forward optimization problem (FO) is solved

with the current weights (line 5), and the loss between the resulting optimal solution

x and xobs is computed (line 6). The gradient of the loss function with respect to w is

computed by backpropagation through the layers of the forward process (line 7). The

gradient is optionally scaled by component-wise product (�) with a vector α that
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(i) IPM forward process

c(u,w)x(u,wtru)

x(1)
x(u,w)

x(2)

u

w

c(u,w)

A(u,w)

b(u,w)

x(1)

x(2)

x(u,w)

(ii) Deep inverse optimization through IPM

x(u,wtru)

loss(u,w)...

Newton step

forward instance feasible pointfeatures

params

gradient ∆w
target

bac
kpr

op

Figure 3.2: Illustration of the deep inverse optimization framework.

controls the relative learning rates (line 10). Line search then determines a safe step

size β that precludes an increase in the overall loss and prevents the forward problem

from becoming unbounded or infeasible (line 11). Finally, the weights are updated

(line 12). This process repeats until max_steps iterations are complete.

Importantly, our framework is applicable in principle to any differentiable forward

optimization procedure. Gradients are automatically computable even with non-linear

constraints or non-linear objectives, as long as they can be expressed through standard

differentiable primitives. For our experiments we implement the barrier interior point

method (IPM) as described by Boyd and Vandenberghe Boyd and Vandenberghe

(2004) for our forward solver. The IPM forward process is illustrated in Figure 3.2 (i):

the central path taken by IPM is illustrated for the current u and w, which define

both the current feasible region and the current c(u,w). As shown in Figure 3.2 (ii),

backpropagation starts from the loss between between IPM solution x(u,w) and the

target x(u,wtru) and proceeds backward to the initial state x(1) of IPM. The key to

backpropagating through each Newton step of IPM is to differentiate a matrix inverse

operation, which PyTorch now does automatically. In practice, backpropagating all

the way to x(1) may not be necessary for computing sufficiently accurate gradients;

see Section 3.6.

The framework requires setting three main hyperparameters: wini, the initial

weight vector; max_steps, the total number of steps allotted to the training; and
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α, the learning rates for the different components of w. The number of additional

hyperparameters depends on the forward optimization process.

3.5 Experimental Results

In this section, we demonstrate the application of our framework on randomly-

generated linear programs for the three types of problems shown in Figure 3.1: learning

c in the non-parametric case; learning c, A and b together in the non-parametric case;

and learning w in the parametric case.

Implementation

Our framework is implemented as a Python package called deep_inv_opt1. The

package is designed to be used with PyTorch version 1.0, leveraging its built-in

automatic differentiation and backpropagation capabilities (Paszke et al., 2017). All

numerical operations are carried out with PyTorch tensors and standard PyTorch

primitives, including the matrix inverse at the heart of the Newton step.

Hyperparameters

We limit learning to max_steps = 200 in all experiments. Four additional hyperpa-

rameters are set in each experiment:

• ε, which controls the precision and termination of IPM;

• t(0): the initial value of the barrier IPM sharpness parameter t;

• µ: the factor by which t is increased along the IPM central path;

• α: the vector of per-parameter learning rates, which in some experiments is

broken down into αc and αAb.
1Available at https://github.com/yingcongtan/deep_inv_opt
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In all experiments, the ε hyperparameter is either a constant 10−5 or decays exponen-

tially from 0.1 to 10−5 during learning.

Benchmark methodology

To the best of our knowledge, there are no well-established benchmarks in the IO

literature. Thus, we develop an IO benchmark comprising random instances with

varying dimension and number of constraints. We generate a set of feasible regions

having D dimensions and M constraints by sampling at least D points with compo-

nents from N (0, 1) and computing their convex hull via the scipy.spatial.convexhull

package (QHull Library, 2018). We refer to these as ‘baseline’ feasible regions. We

generate 50 baseline feasible regions for each of the following six problem sizes: D = 2

with M ∈ {4, 8, 16}, and D = 10 with M ∈ {20, 36, 80}. The baseline regions and

training/testing targets in our experiments can all be generated by scripts in the

accompanying code repository. Though we observe that our method works for equality

constraints, our experiments focus on inequality constraints, and we leave a systematic

evaluation of equality constraints to future work.

3.5.1 Experiments on non-parametric linear programs

We first demonstrate the performance of our method for learning c only, and learning

c, A and b jointly, on the single-point variant of model (3.1), i.e., when a single

optimal target xobs is given, a classical assumption in IO (Ahuja and Orlin, 2001).

We use two loss functions, absolute objective error (AOE) and squared decision error

(SDE), defined as follows:

AOE = | clrn′
(xobs − xlrn) |, (3.3)

SDE = ‖ xobs − xlrn ‖22. (3.4)
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Figure 3.3: Experimental results for non-parametric IO problems.
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Both AOE and SDE have been used in IO Chan et al. (2014, 2019); Babier et al.

(2020), and SDE is a standard metric in machine learning.

Learning c only

For each of the 50 baseline feasible regions, we randomly select one vertex of the

convex hull to be the training target xobs. We set A and b to match the baseline

feasible region, and we generate a random cini by drawing from N (0, 1). The goal is

to find a clrn for which xobs is a solution.

We implement a randomized grid search by sampling 20 random combinations

of the following three hyperparameter sets: t(0) ∈ {0.5, 1, 5, 10}, µ ∈ {1.5, 2, 5, 10, 20},
and αc ∈ {1, 10, 100, 1000}. These hyperparameter sets were chosen based on intuition

from preliminary experiments. As in other applications of deep learning, it is not

clear which hyperparameters will work best for a particular problem instance. For

each instance we run our algorithm with the same 20 hyperparameter combinations,

reporting the best final error values. Note that in this experiment a loss of zero

is achievable by a closed-form expression (Chan et al., 2019), so the success of our

method can be evaluated in absolute terms by the fraction of instances that achieve

zero loss.

Figure 3.3 (i) shows the results of this experiment for AOE and SDE loss. In

both cases, our method is able to reliably learn c: for all instances, the final error

is under 10−4, while the majority of initial errors are above 10−1. There is no clear

pattern in the performance of the method as M and D change for AOE; for SE, the

final loss is slightly larger for higher D.

38



Learning c, A, b jointly

For each of the 50 baseline feasible regions, we generate a random baseline c vector to

form a baseline LP. We then generate an either strictly feasible or strictly infeasible

target point xobs by perturbing an optimal solution to the baseline LP. We interpret

these strictly feasible/infeasible targets as being a mismatch between the baseline LP

and some unknown true LP we wish to recover. We set Aini and bini to be the baseline

feasible region, and set cini to be a perturbed version of the baseline c vector. The IO

algorithm must then find a clrn,Alrn,blrn for which the target xobs is optimal.

Specifically, for each of the 50 baseline feasible regions, we generate a c ∼ N (0, 1)

and compute its optimal solution x∗. To generate an infeasible target we set xobs =

x∗ + η where η ∼ U [−0.2, 0.2]. We similarly generate a challenging cini by corrupting

c with noise from U [−0.2, 0.2]. To generate a strictly feasible target near x∗, we set

xobs = 0.9x∗ + 0.1x′ where x′ is a random point within the feasible region, generated

by a Dirichlet-weighted combination of all vertices; this method was used because

adding noise to a vertex in 10 dimensions almost always results in an infeasible target.

In summary, the IO task involves both a misspecified cini and a misspecified

feasible region Aini and bini relative to the target xobs. The goal is to demonstrate

the ability of our algorithm to alter the constraints and the objective so that the

feasible/infeasible target becomes an optimum. For each of the six problem sizes, we

randomly split the 50 instances into two subsets, one with feasible and the other with

infeasible targets. For AOE loss we set ε = 10−5 and for SDE we use the ε decay

strategy. In practice, this decay strategy is similar to putting emphasis on learning c

in the initial iterations and ending with emphasis on constraint learning.

The values of hyperparameters αc and αAb are independently selected from

{0.1, 1, 10} and concatenated into one learning rate vector α. We generate 20 different

hyperparameter combinations from the same hyperparameter sets as described above.
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We run our algorithm on each instance with all hyperparameter combinations and

record the value of the best trial. The minimum achievable loss in this experiment is

again zero, so the success of our method can be evaluated in absolute terms by the

fraction of instances achieving zero loss.

Figure 3.3 (ii) shows the results of this experiment for AOE and SDE loss. In

both cases, our method is able to learn model parameters that result in median loss

of under 10−4. For AOE, our method performs equally well for all problem sizes,

and there is not much difference in the final loss for feasible and infeasible targets.

For SE, however, the final loss is larger for higher D but decreases as M increases.

Furthermore, there is a visible difference in performance of the method on feasible

and infeasible points for 10-dimensional instances: learning from infeasible targets

becomes a more difficult task.

3.5.2 Experiments on parametric linear programs

Several aspects of the experiment for parametric LPs are different from the non-

parametric case. First, we train by minimizing the aggregated SDE(w), defined

as

SDE(w) =
1

N

N∑
n=1

‖x(un,w
tru)− x(un,w)‖22. (3.5)

For the parametric experiments, we chose to train and evaluate using the SDE loss

instead of AOE for reasons discussed in Section 3.6. In the parametric case, we also

assess how well the learned PLP generalizes, by evaluating its SDE(wlrn) on a held-out

test set.

To generate parametric problem instances, we again started from the baseline

feasible regions. To generate a true PLP, we used six weights to define linear functions
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of u for all elements of c, all elements of b, and one random element in each row of A.

For example, for 2-dimensional problems with four constraints, our instances have the

following form:

minimize
x

(c1 + w1 + w2u)x1 + (c2 + w1 + w2u)x2

subject to




a11 a12 + w3 + w4u

a21 a22 + w3 + w4u

a31 + w3 + w4u a32

a41 a42 + w3 + w4u



≤




b1 + w5 + w6u

b2 + w5 + w6u

b3 + w5 + w6u

b4 + w5 + w6u



.

(3.6)

Specifically, the “true PLP” instances are generated by setting w1, w3, w5 = 0 and

w2, w4, w6 ∼ N (0, 0.2). This ensures that when u = 0 the true PLP feasible region

matches the baseline feasible region. For each true PLP, we find a range [umin, umax] ⊆
[−1, 1] over which the resulting PLP remains bounded and feasible. To find this ‘safe’

range we evaluate u at increasingly large values and try to solve the corresponding

LP, expanding [umin, umax] if successful. For each true PLP, we generate 20 equally

spaced training points spanning [umin, umax]. We also sample 20 test points u sampled

uniformly from [umin, umax]. We then initialize learning from a corrupted PLP by

setting wini = wtru + η where each element of η ∼ U [−0.2, 0.2].

Hyperparameters are sampled from t(0) ∈ {0.5, 1, 5, 10}, µ ∈ {1.5, 2, 5, 10, 20}
and αAb ∈ {1, 10}, and αc is then chosen to be a factor of {0.01, 1, 100} times αAb,

i.e., a relative learning rate. The range of these values was based on preliminary

experiments. Here, αc and αAb control the learning rate of parameters within w that

determine c and (A,b), respectively. In total, we generate 20 different hyperparameter

combinations. We run our algorithm on each instance with all hyperparameter

combinations and record the best final error value. A constant value of ε = 10−5 is

used. In these experiments, the minimum achievable loss is again zero.
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Figure 3.4: Experimental results for parametric IO problems.

We demonstrate the performance of our method on learning parametric LPs of

the form shown in (3.6) with D = 2, M = 8, and D = 10, M = 36. In Figure 3.4, we

report two metrics evaluated on the training set, namely SDE(wini) and SDE(wlrn),

and one metric for the test set, SDE(wlrn). Figure 3.4 (iii) shows an example of an

instance with D = 2, M = 8 from the training set. We see that, overall, our deep

learning method works well on 2-dimensional problems with the training and testing

error both being much smaller than the initial error. In the vast majority of cases the

test error is also comparable to training error, though there are a few cases where it is

worse, which indicates a failure to generalize well. For 10D instances, the algorithm

significantly improves SDE(wlrn) over the initialization SDE(wini), but in most cases

fails to drive the loss to zero, either due to local minima or slow convergence. Again,

performance on the test set is similar to that on training set.

3.6 Discussion

The conceptual message that we wish to reinforce is that inverse optimization can be

viewed as a form of deep learning, and that unrolling gives easy access to the gradients
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of any parameter used directly or indirectly in the forward optimization process.

There are many aspects of this view that merit further exploration. What kind of

forward optimization processes can be inversely optimized this way? Which ideas and

algorithms from the deep learning community will help? Are there characteristics of

IO that make gradient-based learning more challenging than in deep learning at large?

Conclusive answers are beyond the scope of this paper, but we discuss these and other

questions below.

Relation to neural networks

Deep neural networks often have millions of trainable weights and are very flexible in

what kinds of input-output relations they can learn, thus requiring very large training

sets. The optimization models we consider have comparatively few trainable weights

because they represent a strong prior over how features u determine decisions x. As

such, they require less training data than a typical neural network, which is why

we can train our parametric instances on only 20 training points and not observe

over-fitting.

Generality and applicability

As a proof of concept, this paper uses linear programs as the forward problems with

barrier IPM as the optimization process. In principle, the framework is applicable

to any forward process for which automatic differentiation can be applied. This

observation does not mean that ours is the best approach for a specialized IO problem,

such as learning c from a single point (Chan et al., 2019) or multiple points within

the same feasible region (Babier et al., 2020), but it provides a new strategy.

The practical message of our paper is that, when faced with novel classes or novel

parameterizations of IO problems, the unrolling strategy provides convenient access
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to a suite of general-purpose gradient-based algorithms for solving the IO problem at

hand. This strategy is made especially easy by deep learning libraries that support

dynamic ‘computation graphs’ such as PyTorch. Researchers working within this

framework can rapidly apply IO to many differentiable forward optimization processes,

without having to derive the algorithm for each case. Automatic differentiation and

backpropagation have enabled a new level of productivity for deep learning research,

and they may do the same for inverse optimization research. Applying deep inverse

optimization does not require expertise in deep learning itself.

We chose IPM as a forward process because the inner Newton step is differentiable

and because we expected the gradient to temperature parameter t to have a stabilizing

effect on the gradient. For non-differentiable optimization processes, it may still be

possible to develop differentiable versions. In deep learning, many advances have

been made by developing differentiable versions of traditionally discrete operations,

such as memory addressing (Graves et al., 2016) or sampling from a discrete dis-

tribution (Maddison et al., 2016). We believe the scope of differentiable forward

optimization processes may similarly be expanded over time.

Finally, it may be possible to develop hybrid approaches, combining gradient-

based learning with closed-form solutions, combinatorial algorithms, coordinate descent

schemes, or techniques from black-box optimization.

Limitations and possible improvements

Deep IO inherits the limitations of most gradient-based methods. If learning is

initialized to the right “basin of attraction”, it can proceed to a global optimum. Even

then, the choice of learning algorithm may be crucial. When implemented within a

steepest descent framework, as we have here, the learning procedure can get trapped

in local minima or exhibit very slow convergence. Such effects are why most instances
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in Figure 3.4 (ii) failed to achieve zero loss.

In deep learning with neural networks, poor local minima become exponentially

rare as the dimension of the learning problem increases (Dauphin et al., 2014; Soudry

and Hoffer, 2017). A typical strategy for training neural networks is therefore to

over-parameterize (use a high search dimension) and then use regularization to avoid

over-fitting to the data. In deep IO, natural parameterizations of the forward process

may not permit an increase in dimension, or there may not be enough observations

for regularization to compensate, so local minima remain a potential obstacle. We

believe training and regularization methods specialized to low-dimensional learning

problems such as those from Sahoo et al. (2018) may be applicable here.

We expect that other techniques from deep learning, and from gradient-based

optimization in general, will translate to deep IO. For example, learning algorithms with

second-order aspects such as momentum (Sutskever et al., 2013) and L-BFGS (Byrd

et al., 1995) are readily available in deep learning frameworks. Deep learning ‘tricks’

may also help deep IO. For example, we observe that, when c is normal to a constraint,

the gradient with respect to c can suddenly become very large. We stabilized this

behaviour with line search, but a similar ‘exploding gradient’ phenomenon exists when

training deep recurrent networks, and gradient clipping (Pascanu et al., 2012) is a

popular way to stabilize training. A detailed investigation of applicable deep learning

techniques is outside the scope of this paper.

Deep IO may be more successful when the loss with respect to the forward process

can be annealed or ‘smoothed’ in a manner akin to graduated non-convexity (Blake and

Zisserman, 1987). Our ε-decay strategy is an example of this approach, as discussed

below.
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Loss function and metric of success

One advantage of the deep inverse optimization approach is that it can accommodate

various loss functions, or combinations of loss functions, without special development

or analysis. For example one could substitute other p-norms, or losses that are robust

to outliers, and the gradient will be automatically available. This flexibility may be

valuable. Special loss functions have been important in machine learning, especially for

structured output problems (Hazan et al., 2010). The decision variables of optimization

processes are likewise a form of structured output.

In this study we chose two classical loss functions: absolute duality gap and

squared error. The behaviour of our algorithm varied depending on the loss function

used. Looking at Figure 3.3 (ii) it appears that deep IO performs better with ADG

loss than with SE loss when learning c,A,b jointly. However, this performance is

due to the theoretical property that ADG can be zero despite the observed target

point being infeasible (Chan et al., 2019). With ADG, all the IO solver needs to

do is adjust c,A,b so that xlrn − xobs is orthogonal to c, which in no way requires

the learned model to be capable of generating xobs as an optimum. In other words,

ADG is meaningful mainly when the true feasible region is known, as in Figure 3.3

(i). When there is limited knowledge about the true feasible region, SE may be a

more meaningful loss function because it prioritizes optimization models that can

directly generate the observations xobs
n . That is why we used SE for our parametric

experiments (Figure 3.4). However, SE penalizes any difference between the predicted

and observed decision variables, even if those differences do not affect optimality. In

short, ADG and SE both have conceptual drawbacks, and it may be beneficial to

develop new or hybrid loss metrics.

In practice, minimizing the SE loss also appears to be more challenging for steepest

descent. To get a sense for the characteristics of ADG versus SE from the point of
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(i) ADG loss surface (ii) SE loss surface
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Figure 3.5: Loss surfaces for the feasible region and target shown in Figure 1 (i).

view of varying c, consider Figure 3.5, which depicts the loss for the IO problem in

Figure 3.1 (i) using both high precision (ε = 10−5) and low precision (ε = 0.1, 0.01) for

IPM. Because the ADG loss is directly dependent on c, the loss varies smoothly even

as the corresponding optimum x∗ stays fixed. The SE loss, in contrast, is piece-wise

constant; an instantaneous perturbation of c will almost never change the SE loss in

the limit of ε → 0. Note that the gradients derived by implicit differentiation (Amos

and Kolter, 2017) indicate ∂�
∂c

= 0 everywhere in the linear case, which would mean c

cannot be learned by gradient descent. With IPM one can learn c nonetheless because

the barrier sharpness parameter t smooths the loss, especially at low values. The

precision parameter ε limits the maximal sharpness during forward optimization, and

so the gradient ∂�
∂c

is not zero in practice, especially when ε is weak. Notice that the SE

loss surface in Figure 3.5 becomes qualitatively smoother for weak ε, whereas ADG is

not fundamentally changed. Also, when c is normal to a constraint (when the optimal

point is about to transition from one point to another) the gradient ∂�
∂c

explodes even

when the problem is smoothed.
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Computational efficiency

Our paper is conceptual and focuses on flexibility and the likelihood of success, rather

than computational efficiency. Many applications of IO are not real-time, and so

we expect methods with running times on the order of seconds or minutes to be of

practical use. Researchers may also consider applying gradient-free solvers (Hutter

et al., 2011; Snoek et al., 2012) to their IO problem instances. Still, we believe the

gradient-based framework can be both flexible and fast.

Deep learning frameworks are GPU accelerated and scale well with the size of

an individual forward problem, so large instances are not a concern. A bigger issue

for GPUs is solving many small or moderate instances efficiently. Amos and Kolter

(2017) developed a batch-mode GPU forward solver to address this issue. We note

that PyTorch now also supports batch-mode GPU matrix inverse, which can be used

to efficiently run IPM on several small instances in parallel.

What is more concerning for the unrolling strategy is that forward optimization

processes can be very deep, with hundreds or thousands of iterations. Backpropagation

requires keeping all the intermediate values of the forward pass resident in memory,

for later use in the backward pass. The computational cost of backpropagation is

comparable to that of the forward process, so there is no asymptotic advantage to

skipping the backwards pass. Although memory usage was small in our instances, if the

memory usage is linear with depth, then at some depth the unrolling strategy will cease

to be practical compared to Amos and Kolter (2017) implicit differentiation approach.

However, we observed that for IPM most of the gradient contribution comes from

the final few Newton steps before termination. In other words, gradient contributions

diminish as backpropagation returns ‘deeper’ along the central path. This means the

gradient can be well-approximated in practice with truncated backpropagation through

time (see Sutskever (2013) for review), which uses a small constant pool of memory
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regardless of the number of forward steps that were run (i.e., regardless of depth).

The unrolling approach is convenient and practical, especially during the develop-

ment and exploration phase of IO research. Once an IO model is proven to work, its

implementation can be made more efficient through a number of strategies, including

deriving the implicit gradients (Amos and Kolter, 2017) or by asymptotically faster

learning algorithms being developed in the deep learning community.

3.7 Conclusion

We developed a deep learning framework for inverse optimization based on backpropa-

gation through an iterative forward optimization process. We illustrate the potential

of this framework via an implementation where the forward process is the interior

point barrier method. Our results on linear non-parametric and parametric problems

show promising performance. To the best of our knowledge, this paper is the first to

explicitly connect deep learning and inverse optimization.

49



Chapter 4

Learning Linear Programs from

Optimal Decisions

4.1 Abstract

We propose a flexible gradient-based framework for learning linear programs from

optimal decisions. Linear programs are often specified by hand, using prior knowl-

edge of relevant costs and constraints. In some applications, linear programs must

instead be learned from observations of optimal decisions. Learning from optimal

decisions is a particularly challenging bilevel problem, and much of the related in-

verse optimization literature is dedicated to special cases. We tackle the general

problem, learning all parameters jointly while allowing flexible parametrizations of

costs, constraints, and loss functions. We also address challenges specific to learning

linear programs, such as empty feasible regions and non-unique optimal decisions.

Experiments show that our method successfully learns synthetic linear programs and

minimum-cost multi-commodity flow instances for which previous methods are not

directly applicable. We also provide a fast batch-mode PyTorch implementation

of the homogeneous interior point algorithm, which supports gradients by implicit
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differentiation or backpropagation.

4.2 Introduction

In linear programming, the goal is to make an optimal decision given a linear objective

and subject to linear constraints. Traditionally, a linear program is designed using

knowledge of relevant costs and constraints. More recently, methodologies that are

data-driven have emerged.

Inverse optimization (IO) (Burton and Toint, 1992; Troutt, 1995; Ahuja and

Orlin, 2001), in contrast, learns linear programs from observations of optimal decisions

rather than of the costs or constraints themselves. The IO approach is particularly

important when observations come from optimizing agents (e.g., experts (Chan et al.,

2014; Bärmann et al., 2017) or customers (Dong et al., 2018)) who make near-optimal

decisions with respect to their internal (unobserved) optimization models.

From a machine learning perspective, the IO setup is as follows: we are given

feature vectors {u1,u2, . . . ,uN} representing conditions (e.g., time, prices, weather)

and we observe the corresponding decision targets {xobs
1 ,xobs

2 , . . . ,xobs
N } (e.g., quantities,

actions) determined by an unknown optimization process, which in our case is assumed

linear. We view IO as the problem of inferring a constrained optimization model that

gives identical (or equivalent) decisions, and which generalizes to novel conditions u.

The family of candidate models is assumed parametrized by some vector w.

Learning a constrained optimizer that makes the observations both feasible

and optimal poses multiple challenges that have not been explicitly addressed. We

demonstrate this via an example shown in Figure 4.1. In this example, we learn

a parametric linear program (PLP), here parametrized by a feature u and weights

w=(w1, w2) and using a single training observation (u1,x
obs
1 ). The PLP corresponding

to three parameter settings w1,w2,w3 are shown, with the cost vector and feasible

51



Figure 4.1: A depiction of our constrained learning formulation.

region corresponding to u1 emphasized. The goal of learning is to find solutions

such as w∗ = w3. (See Appendix for the specific PLP used in this example.) The

parameter setting w1 in Figure 4.1 makes the observed decision xobs
1 optimal but not

feasible, w2 produces exactly the opposite result, and some w values (black-hatched

region in Figure 4.1) are not even admissible because they will result in empty feasible

regions. Finding a parameter such as w3 that is consistent with the observations can

be difficult. We formulate the learning problem in a novel way, and tackle it with

gradient-based methods despite the inherent bilevel nature of learning. Using gradients

from backpropagation or implicit differentiation, we successfully learn linear program

instances of various sizes as well as learning the costs and right-hand coefficients of a

minimum-cost multi-commodity flow problem.

Parametric Linear Programs In a linear program (LP), the values of

decision variables x ∈ R
D must be determined, whereas the cost coefficients c ∈ R

D,

inequality constraint coefficients A ∈ R
M1×D, b ∈ R

M1 , and equality constraint

coefficients G ∈ R
M2×D, h ∈ R

M2 are all treated as constants. In a parametric linear

program (PLP), the coefficients (and therefore the optimal decisions) may depend on

features u. In order to infer a PLP from data, one may define a suitable hypothesis

space parametrized by w. We refer to this hypothesis space as the form of our forward

optimization problem (FOP).
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minx cTx

s.t. Ax ≤ b

Gx = h

(LP)

minx c(u)Tx

s.t. A(u)x ≤ b(u)

G(u)x = h(u)

(PLP)

minx c(u,w)Tx

s.t. A(u,w)x ≤ b(u,w)

G(u,w)x = h(u,w)

(FOP)

A choice of hypothesis w in (FOP) identifies a PLP, and a subsequent choice of

conditions u identifies an LP. The LP can then be solved to yield an optimal decision

x∗ under the model. These predictions of optimal decisions can be compared to

observations at training time, or can be used to anticipate optimal decisions under

novel conditions u at test time.

4.3 Related Work

Inverse optimization IO has focused on developing optimization models for

minimally adjusting a prior estimate of c to make a single feasible observation xobs

optimal (Ahuja and Orlin, 2001; Heuberger, 2004) or for making xobs minimally sub-

optimal to (LP) without a prior c (Chan et al., 2014, 2019). Recent work (Babier

et al., 2020; Shahmoradi and Lee, 2020) develops exact approaches for imputing

non-parametric c given multiple potentially infeasible solutions to (LP), and to finding

non-parametric A and/or b (Chan and Kaw, 2020; Ghobadi and Mahmoudzadeh,

2020). In the parametric setting, joint estimation of A and c via a maximum likelihood

approach was developed by Troutt et al. (2005, 2008) when only h is a function of

u. Saez-Gallego and Morales (2017) jointly learn c and b which are affine functions

of u. Bärmann et al. (2017, 2020) and Dong et al. (2018) study online versions

of inverse linear and convex optimization, respectively, learning a sequence of cost

functions where the feasible set for each observation are assumed to be fully-specified.

In Chapter 3, we propose a gradient-based approach for learning costs and constraints

of a PLP, inspired by deep learning: they ‘unroll’ a barrier interior point solver
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and backpropagate through its steps. For certain loss functions, their formulation is

susceptible to the situation depicted in Figure 4.1 as ‘w1’.

In inverse convex optimization, the focus has been on imputing parametric cost

functions while assuming that the feasible region is known for each ui (Keshavarz et al.,

2011; Bertsimas et al., 2015; Aswani et al., 2018; Esfahani et al., 2018), usually under

assumptions of a convex set of admissible u, the objective and/or constraints being

convex in u, and uniqueness of the optimal solution for every u. Furthermore, since

the feasible region is fixed for each u, it is assumed to be non-empty and bounded,

unlike for our work. Although our work focuses on linear programming, it is otherwise

substantially more general, allowing for learning of all cost and constraint coefficients

simultaneously with no convexity assumptions related to u, no restrictions on the exis-

tence of multiple optima, and explicit handling of empty or unbounded feasible regions.

Optimization task-based learning Kao et al. (2009) introduces the concept of

directed regression, where the goal is to fit a linear regression model while minimizing

the decision loss, calculated with respect to an unconstrained quadratic optimization

model. Donti et al. (2017) use a neural network approach to minimize a task loss

which is calculated as a function of the optimal decisions in the context of stochastic

programming. Elmachtoub and Grigas (2019) propose the “Smart Predict-then-

Optimize” framework in which the goal is to predict the cost coefficients of a linear

program with a fixed feasible region given past observations of features and true costs,

i.e., given (ui, ci). Note that knowing ci in this case implies we can solve for x∗
i , so

our framework can in principle be applied in their setting but not vice versa. Our

framework is still amenable to more ‘direct’ data-driven prior knowledge: if in addition

to (ui,x
∗
i ) we have partial or complete observations of ci or of constraint coefficients,

regressing to these targets can easily be incorporated into our overall learning objective.
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Structured prediction In structured output prediction (Taskar et al., 2005;

BakIr et al., 2007; Nowozin et al., 2014; Daumé III et al., 2015), each pre-

diction is x∗ ∈ argminx∈X (u) f(x,u,w) for an objective f and known output

structure X (u). In our work the structure is also learned, parametrized as

X (u,w) = {x | A(u,w)x ≤ b(u,w), G(u,w)x = h(u,w) }, and the objective is

linear f(x,u,w) = c(u,w)Tx. In structured prediction the loss � is typically a

function of x∗ and a target x̄, whereas in our setting it is important to consider a

parametric loss �(x∗, x̄,u,w).

Differentiating through optimization Our work involves differentiating through

an LP. Bengio (2000) proposed gradient-based tuning of neural network hyperparam-

eters and, in a special case, backpropagating through the Cholesky decomposition

computed during training (suggested by Léon Bottou). Stoyanov et al. (2011) proposed

backpropagating through a truncated loopy belief propagation procedure. Domke

(2012, 2013) proposed automatic differentiation through truncated optimization proce-

dures more generally, and Maclaurin et al. (2015b) proposed a similar approach for

hyperparameter search. The continuity and differentiability of the optimal solution

set of a quadratic program has been extensively studied (Lee et al., 2006). Amos and

Kolter (2017) recently proposed integrating a quadratic optimization layer in a deep

neural network, and used implicit differentiation to derive a procedure for computing

parameter gradients. As part of our work we specialize their approach, providing

an expression for LPs. Even more general is recent work on differentiating through

convex cone programs (Agrawal et al., 2019), submodular optimization (Djolonga and

Krause, 2017), and arbitrary constrained optimization (Gould et al., 2019). There are

also versatile perturbation-based differentiation techniques (Papandreou and Yuille,
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2011; Berthet et al., 2020).

4.4 Methodology

Here we introduce our new bilevel formulation and methodology for learning parametric

linear programs. Unlike previous approaches (e.g., Aswani et al. (2018)), we do

not transform the problem to a single-level formulation, and so we do not require

simplifying assumptions. We propose a technique for tackling our bilevel formulation

with gradient-based non-linear programming methods.

4.4.1 Inverse Optimization as PLP Model Fitting

Let {(ui,x
obs
i )}Ni=1 denote the training set. A loss function �(x∗,xobs,u,w) penalizes

discrepancy between prediction x∗ and target xobs under conditions u for the PLP

hypothesis identified by w. Note that if xobs
i is optimal under conditions ui, then xobs

i

must also be feasible. We therefore propose the following bilevel formulation of the

inverse linear optimization problem (ILOP):

minimize
w∈W

1
N

∑N
i=1 �(x

∗
i ,x

obs
i ,ui,w) + r(w) (ILOP)

subject to A(ui,w)xobs
i ≤ b(ui,w), G(ui,w)xobs

i = h(ui,w), i = 1, . . . , N

(4.1a)

x∗
i ∈ argmin

x


 c(ui,w)Tx

∣∣∣∣ A(ui,w)x ≤ b(ui,w)

G(ui,w)x = h(ui,w)


 , i = 1, . . . , N

(4.1b)

where r(w) denotes an optional regularization term such as r(w) = ‖w‖2 and W ⊆ R
K

denotes additional problem-specific prior knowledge, if applicable (similar constraints
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are standard in the IO literature (Keshavarz et al., 2011; Chan et al., 2019)). The

‘inner’ problem (4.1b) generates predictions x∗
i by solving N independent LPs. The

‘outer’ problem tries to make these predictions consistent with the targets x∗
i while

also satisfying target feasibility (4.1a).

Difficulties may arise, in principle and in practice. An inner LP may be infeasible or

unbounded for certain w ∈ W , making � undefined. Even if all w ∈ W produce feasible

and bounded LPs, an algorithm for solving (ILOP) may still attempt to query w /∈ W .

The outer problem as a whole may be subject to local minima due to non-convex

objective and/or constraints, depending on the problem-specific parametrizations. We

propose gradient-based techniques for the outer problem (Section 4.4.2), but d�
dw

may

not exist or may be non-unique at certain ui and w (Section 4.4.3).

Nonetheless, we find that tackling this formulation leads to practical algorithms.

To the best of our knowledge, our proposed (ILOP) formulation is the most general

model of inverse linear parametric programming. The formulation subsumes cases

that are non-parametric, or parametric only in u, that have received much interest in

the IO literature. It has not been proposed in work focused purely on differentiation,

such as that of Amos and Kolter (2017) or of Agrawal et al. (2019).

Choice of loss function The IO literature considers decision error, which penalizes

difference in decision variables, and objective error, which penalizes difference in

optimal objective value (Babier et al., 2020). A fundamental issue with decision error,

such as squared decision error (SDE) �(x∗,xobs) = 1
2
‖x∗

i − xobs
i ‖2, is that when x∗ is

non-unique the loss is also not unique; this issue was also a motivation for the “Smart

Predict-then-Optimize” paper (Elmachtoub and Grigas, 2019). An objective error, such

as absolute objective error (AOE) �(x∗,xobs, c) = |cT (xobs
i −x∗

i )|, is unique even if x∗ is

not. We evaluate AOE using imputed cost c(u,w) during training; doing so requires at
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least some prior knowledge W to avoid trivial cost vectors, as in Keshavarz et al. (2011).

Target feasibility Constraints (4.1a) explicitly enforce target feasibility

Axobs
i ≤ b, Gxobs

i = h in any learned PLP. The importance of these constraints can

be understood through Figure 4.1, where hypothesis w1 achieves AOE=0 since xobs

and x∗ are on the same hyperplane, despite xobs being infeasible. Chan et al. (2019)

show that if the feasible region is bounded then for any infeasible xobs there exists a

cost vector achieving AOE=0.

Unbounded or infeasible subproblems Despite (4.1a), an algorithm for

solving (ILOP) may query a w for which an LP in (4.1b) is itself infeasible or

unbounded, in which case a finite x∗ is not defined. We can extend (ILOP) to explicitly

account for these special cases (by penalizing a measure of infeasibility (Murty et al.,

2000), and penalizing unbounded directions when detected) but in our experiments

simply evaluating the (large) loss for an arbitrary x∗ returned by our interior point

solver worked nearly as well at avoiding such regions of W, so we opt to keep the

formulation simple.

Noisy observations Formulation (ILOP) can be extended to handle measurement

noise. For example, individually penalized non-negative slack variables can be added

to the right-hand sides of (4.1a) as in a soft-margin SVM (Cortes and Vapnik, 1995).

Alternatively, a norm-penalized group of slack variables can be added to each xobs
i on

the left-hand side of (4.1a), softening targets in decision space. We leave investigation

of noisy data and model-misspecification as future work.
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4.4.2 Learning Linear Programs with Sequential Quadratic

Programming

We treat (ILOP) as a non-linear programming (NLP) problem, making as few assump-

tions as possible. We focus on sequential quadratic programming (SQP), which aims

to solve NLP problems iteratively. Given current iterate wk, SQP determines a search

direction δk and then selects the next iterate wk+1 = wk + αδk via line search on

α > 0. Direction δk is the solution to a quadratic program.

minimizew f(w) minimizeδ ∇f(wk)Tδ + δTBkδ

subject to g(w) ≤ 0 (NLP) subject to ∇g(wk)Tδ + g(wk) ≤ 0 (SQP)

h(w) = 0 ∇h(wk)Tδ + h(wk) = 0

Each instance of subproblem (SQP) requires evaluating constraints1 and their gradients

at wk, as well as the gradient of the objective. Matrix Bk approximates the Hessian

of the Lagrange function for (NLP), where Bk+1 is typically determined from the

gradients by a BFGS-like update. Our experiments use an efficient variant called

sequential least squares programming (SLSQP) (Schittkowski, 1982; Kraft, 1988) which

exploits a stable LDL factorization of B.

The NLP formulation of (ILOP) has NM1 inequality and NM2 equality con-

straints from (4.1a):

g(w) =

[
A(ui,w)xobs

i − b(ui,w)

]N
i=1

, h(w) =

[
G(ui,w)xobs

i − h(ui,w)

]N
i=1

,

plus any constraints needed to enforce w ∈ W. The NLP constraint residu-

als and their gradients ∇g(w),∇h(w) can be directly evaluated. Evaluating
1NLP constraint vector h(w) is not the same as FOP right-hand side h(u,w), despite same

symbol.
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f(w) = 1
N

∑N
i=1 �(x

∗
i ,x

obs
i ,ui,w) + r(w) requires solving each LP in (4.1b). Fi-

nally, evaluating ∇f(w) requires evaluating the vector-Jacobian product term

in d�
dw

= ∂�
∂w

+ ∂�
∂x∗

i

∂x∗
i

∂w
for each i, which requires differentiating through the LP

optimization that produced x∗
i from ui and w. Differentiating through the LP allows

us to tackle (ILOP) directly in its bilevel form, using powerful gradient-based NLP

algorithms such as SQP as the ‘outer’ solver. Section 4.4.3 compares methods for

differentiating through an LP optimization.

Redundant NLP constraints When PLP model parameters w have fixed

dimension, the NLP formulation of (ILOP) can involve many redundant constraints,

roughly in proportion to N . Indeed, if W ⊆ R
K and K < NM2, the equality

constraints may appear to over-determine w, treating (NLP) as a feasibility

problem; but, due to redundancy in (4.1a), w is not uniquely determined. The

ease or difficulty of removing redundant constraints from (NLP) depends on the

domain-specific parametrizations of PLP constraints A(u,w),b(u,w),G(u,w), and

h(u,w). Equality constraints that are affinely-dependent on w can be eliminated

from (NLP) by a pseudoinverse technique, resulting in a lower-dimensional problem;

this technique also handles the case where (NLP) is not strictly feasible in h(w) = 0

(either due to noisy observations or model misspecification) by automatically searching

only among w that exactly minimize the sum of squared residuals ‖h(w)‖2. If

equality constraints are polynomially-dependent on w, we can eliminate redundancy

by Gröbner basis techniques (Cox et al., 2013) although, unlike the affine case, it

may not be possible or beneficial to reparametrize-out the new non-redundant basis

constraints from the NLP. Redundant inequality constraints can be either trivial

or costly to identify (Telgen, 1983), but are not generally problematic for SQP

algorithms. See Appendix for details.
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Figure 4.2: An illustration of how SLSQP and COBYLA solve the learning problem
in Figure 4.1 for the AOE and SDE loss functions. Each algorithm first tries to satisfy
the NLP constraints g(w) ≤ 0 (triangle-shaped feasible region in w-space), then
makes progress minimizing f(w).

Benefit over gradient-free methods Evaluating f(w) is expensive in our NLP

because it requires solving N linear programs. To understand why access to ∇f(w) is

important in this scenario, it helps to contrast SQP with a well-known gradient-free

NLP optimizer such as COBYLA (Powell, 1994). For K-dimensional NLP, COBYLA

maintains K + 1 samples of f(w),g(w),h(w) and uses them as a finite-difference

approximation to ∇f(wk),∇g(wk),∇h(wk) where wk is the current iterate (best

sample). The next iterate wk+1 is computed by optimizing over a trust region centered

at wk. COBYLA recycles past samples to effectively estimate ‘coarse’ gradients,

whereas SQP uses gradients directly. Figure 4.2 shows SLSQP and COBYLA running

on the example from Figure 4.1.

4.4.3 Computing Loss Function and its Gradients

If, at a particular point (ui,w), each corresponding vector-Jacobian product ∂�
∂x∗

i

∂x∗
i

∂w

exists, is unique, and can be computed, then we can construct (SQP) at each step. For
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convenience, we assume that (c,A,b,G,h) are expressed in terms of (u,w) within

an automatic differentiation framework such as PyTorch, so all that remains is to

compute Jacobians ( ∂�
∂c
, ∂�
∂A

, ∂�
∂b
, ∂�
∂G

, ∂�
∂h
) at each (ui,w) as an intermediate step at the

outset of computing d�
dw

. We consider four approaches:

backprop: backpropagate through the steps of the homogeneous interior point algorithm

for LPs,

implicit: the implicit differentiation procedure of Amos and Kolter (2017) specialized

to LPs,

direct: evaluate gradients directly, in closed form (for objective error only), and

cvx: use a cvxpylayer (Agrawal et al., 2019) for LP solve and for implicit differen-

tiation.

To implement the first three approaches, we developed a batch PyTorch version

of the homogeneous interior point algorithm (Andersen and Andersen, 2000; Xu et al.,

1996); this algorithm was originally developed for the MOSEK optimization suite

and is currently the default linear programming solver in SciPy (Virtanen et al.,

2020). Our backprop implementation is also efficient, for example re-using the LU

decompositionfrom each Newton step.

For implicit differentiation we follow Amos and Kolter (2017) by forming the

system of linear equations that result from differentiating the KKT conditions and

then inverting that system to compute the needed vector-Jacobian products. For

LPs this system can be poorly conditioned, especially at strict tolerances on the LP

solver, but in practice it provides useful gradients. The cvx approach is similar but is

implemented by a cvxpylayer, which in turn relies on a fast conic solver (O’Donoghue

et al., 2016) for the forward problem and an implicit differentiation procedure similar

to the work of Amos and Kolter (2017) for the gradients.

For direct gradients (in the case of objective error), we use Theorem 4.1.
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Theorem 4.1 Let x∗ ∈ R
D be an optimal solution to (LP) and let λ∗ ∈ R

M1
≤0 ,ν

∗ ∈
R

M2 be an optimal solution to the associated dual linear program. If x∗ is non-

degenerate then the objective error z = cT (xobs − x∗) is differentiable and the total

derivatives2 are

∂z
∂c

=
(
xobs − x∗)T ∂z

∂A
= λ∗x∗T ∂z

∂b
= −λ∗T ∂z

∂G
= ν∗x∗T ∂z

∂h
= −ν∗T .

When � is AOE loss, by chain rule we can multiply each quantity by ∂�
∂z

= sign(z) to

get the needed Jacobians. Gradients ∂z
∂b

and ∂z
∂h

for the right-hand sides are already

well-known as shadow prices. If x∗ is degenerate then the relationship between shadow

prices and dual variables breaks down, resulting in two-sided shadow prices (Strum,

1969; Aucamp and Steinberg, 1982).

We use degeneracy in the sense of Tijssen and Sierksma (1998) (see Appendix),

where a point on the relative interior of the optimal face need not be degenerate,

even if there exists a degenerate vertex on the optimal face. This matters when x∗

is non-unique because interior point methods typically converge to the analytical

center of the relative interior of the optimal face (Zhang, 1994). Tijssen and Sierskma

also give relations between degeneracy of x∗ and uniqueness of λ∗,ν∗, which we

apply in Corollary 4.1. When the gradients are non-unique, this corresponds to the

subdifferentiable case.

Corollary 4.1 In Theorem 4.1, both ∂z
∂b

and ∂z
∂h

are unique, ∂z
∂c

is unique if and only

if x∗ is unique, and both ∂z
∂A

and ∂z
∂G

are unique if and only if x∗ is unique or c = 0.

2In a slight abuse of notation, we ignore leading singleton dimension of ∂z
∂A ∈ R

1×M1×D, ∂z
∂G ∈

R
1×M2×D.
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4.5 Experiments

We evaluate our approach by learning a range of synthetic LPs and parametric

instances of minimum-cost multi-commodity flow problems. Use of synthetic instances

is common in IO (e.g., Ahuja and Orlin (2001); Keshavarz et al. (2011); Dong et al.

(2018)) and there are no community-established and readily-available benchmarks,

especially for more general formulations. Our experimental study considers instances

not directly addressable by previous IO work, either because we learn all coefficients

jointly or because the parametrization results in non-convex NLP.

We compare four versions of our gradient-based method (SQPbprop, SQPimpl,

SQPdir, SQPcvx) with two gradient-free methods: random search (RS) and COBYLA.

A gradient-free baseline is applicable to (ILOP) only if it (i) supports general bilevel

natively, or (ii) allows the objective and constraints to be specified by callbacks.

COBYLA is conceptually similar to SQP and can be readily applied to (ILOP), but

many otherwise-powerful solvers such as BARON (Sahinidis, 2017), CPLEX (IBM,

2020) and Gurobi (Gurobi Optimization, 2020) cannot.

Complete experimental results for synthetic LPs are presented in Figures 4.3, 4.8,

4.9, 4.10. The main observation is that the gradient-based methods perform similarly

and become superior to gradient-free methods as the dimension K of parametrization w

increases. We find that including a black-box baseline like COBYLA is important

for assessing the practical difficulty of an IO instance (and encourage future papers

to do so) because such methods work reasonably well in low-dimensional problems.

A second observation is that there are instances for which no method succeeds at

minimizing training error 100% of the time. Our method can therefore be viewed as a

way to boost the probability of successful training when combined with simple global

optimization strategies such as multi-start.

Experiments used PyTorch v1.6 nightly build, the COBYLA and SLSQP
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Figure 4.3: A comparison on synthetic PLP instances having D=10 decision variables
and M1=36 inequality constraints.

wrappers from SciPy v1.4.1, and were run on an Intel Core i7 with 16GB RAM.

(We do not use GPUs, though our PyTorch interior point solver inherits GPU

acceleration.) We do not regularize w nor have any other hyperparameters. Code to

reproduce experiments is available at https://github.com/yingcongtan/ilop.

Learning linear programs We used the LP generator from Chapter 3, modifying

it to create a more challenging variety of feasible regions; their code did not perform

competitively in terms of runtime or success rate on these harder instances, and is not

effective at learning constraints under an AOE loss. Fig. 4.3 shows the task of learning

(c, A, b) with a K=6 dimensional parametrization w, a D=10 dimensional decision

space x, and 20 training observations. Curves in Fig. 4.3 show the probability over time

of achieving AOE training loss �(w) below a tolerance threshold of 10−5. Box plots

show final training and testing loss of 100 different trial instances, each with 20 training

and 20 testing points (distinct u values). We evaluate the “testing loss” for AOE with

respect to the ‘true’ cost c(u), never the imputed cost. The median loss over a set of

testing points tends to be smaller than their mean; see Section 4.6 for discussion. We

make the following observations. RS fails; COBYLA ‘succeeds’ on �30% of instances;

SQPbprop, SQPimpl, SQPdir succeeds on �60–65%, which is substantially better. The

success curve of SQPbprop slightly lags those of SQPimpl and SQPdir due to the overhead

of backpropagating through the steps of the interior point solver.
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Figure 4.4: A visualization of minimum-cost paths (for simplicity) and minimum-cost
multi-commodity flows (our experiment) on the Nguyen-Dupuis network.

SQPcvx performs worse in these instances due to the speed at which the internal

scs solver (written in C) could reach the inner tolerance (10−8), and not due to any

overhead. See Appendix for five additional problem sizes, where overall the conclusions

are the same. On instances with equality constraints, where we learn (c, A, b, G, h)

jointly, performance was similar to the above (see Figure 4.9 in Appendix).

Much of the IO literature is focused on learning coefficients of c and/or b

directly, often from a single training target xobs, i.e., learning a single LP rather

than a PLP. In our formulation, we can learn coefficients of (c,A,b,G,h) jointly by

concatenating them into w. For example, an instance with D=10,M1=80,M2=0

has 890 adjustable parameters. In Figure 4.10 of Appendix, we show SQPbprop,

SQPimpl and SQPdir consistently achieve zero AOE training loss on such problems,

whereas RS and COBYLA fail to make learning progress given the same time budget.

SQPcvx makes progress, but is slower than the other gradient-based implementations.

Learning minimum-cost multi-commodity flow problems Fig. 4.4 shows a

visualization of our experiment on the Nguyen-Dupuis graph (Nguyen and Dupuis,

1984a). Sources {s1, s2, s3, s4} and destinations {d1, d2, d3, d4} are shown. At left are

two example sets of training paths {(t1,xobs
1 ), (t2,x

obs
2 )} alongside an example of a

correctly predicted set of optimal paths under different conditions (different t). At

right is a visualization of a correctly predicted optimal flow, where color intensity
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Figure 4.5: A comparison on minimum-cost multi-commodity flow instances, similar
to Fig. 4.3.

indicates proportion of flow along arcs.

We learn a periodic arc cost cj(t, lj, pj) = lj + w1pj + w2lj(sin(2π(w3 + w4t +

w5lj)) + 1) and an affine arc capacity bj(lj) = 1 + w6 + w7lj , based on global feature t

(time of day) and arc-specific features lj (length) and pj (toll price). To avoid trivial

solutions, we set W = {w ≥ 0, w3+w4+w5 = 1}. Results on 100 instances are shown

in Fig. 4.5. The SQP methods outperform RS and COBYLA in training and testing

loss. From an IO perspective the fact that we are jointly learning costs and capacities

in a non-convex NLP formulation is already quite general. SQPcvx is still slower, but

more competitive.

4.6 Discussion

Generalizing is hard We report both the mean and median loss over the testing

points in each trial. The difference in mean and median testing error is due to the

presence of a few ‘outliers’ among the otherwise-small test set errors.

Fig. 4.6 shows the optimal decision map u �→ x∗ for a ground-truth PLP (a) and

learned PLP (b) with the value of components (x∗
1, x

∗
2) represented by red and green

intensity respectively, along with that of a PLP trained on {u1,u2}. The learned PLP

has no training error (SDE=0,AOE=0) but large test error (SDE= .89,AOE= .22)
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(a) (b) (c)

Figure 4.6: A failure to generalize in a learned PLP.

as depicted in (c). (See Appendix for the specific PLP used in this example.)

Fig. 4.6 shows the nature of this failure to generalize: the decision map u �→ x∗

of a PLP has discontinuities, so the training data can easily under-specify the set of

learned models that can achieve zero training loss; this is similar to the scenario that

motivates the max-margin learning principle, used for good generalization in SVMs.

It is not clear what forms of regularization r(w) might reliably improve generalization

in IO. Fig. 4.6 also suggests that training points which closely straddle discontinuities

are much more ‘valuable’ from a learning perspective.

Scalability We wish to highlight the scalability of direct gradients, and of our

bilevel approach more generally. First, our experiments use a general-purpose LP

solver where forward solve dominates runtime. In scenarios where forward solve is

fast, for example by an application-specific algorithm (max-flow, matching, etc.) or a

fast re-solve strategy, the gradient computation can be proportionally significant. In

that case, direct evaluation of the gradient scales much better than solving backprop

or solving the system required by implicit differentiation (Amos and Kolter, 2017;

Agrawal et al., 2019). Shown at right are compute times for an LP parameter gradient

averaged over the 100 instances from Fig. 4.5, with ‘direct’ being at least �50x faster

than alternatives.
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Figure 4.7: Runtime for computing gradients.

Second, note that other IO approaches often convert a bilevel problem into a new

single-level one (Aswani et al., 2018). This strategy cannot exploit fast algorithms for

specialized forward problems (i.e., the inner problem of our formulation) and must rely

on general-purpose machinery like CPLEX. By retaining the bilevel nature of (ILOP),

our approach allows specialized algorithms to be used for the forward problem, and

fast gradients whenever optimal primal and dual solutions can be recovered.

Generality and applicability Our work generalizes in some respects, and special-

izes others. Considering only literature on inverse linear optimization, our (ILOP)

formulation generalizes prior work in that it tackles fully parametric PLPs and ar-

bitrary number of observations. Our methodology is meanwhile a novel extension

of Chapter 3 since here we introduce ‘outer’ constraints, SQP-based training, a new

gradient computation method, and a faster forward solver implementation. Outside

the linear case, our NLP approach can be applied to inverse convex optimization

because the more general gradient-computation machinery now also exists (Agrawal

et al., 2019).

Although we highlighted SQP as a suitable gradient-based NLP solver, other

NLP methods may work better in a given setting. Our methodology is applicable for
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any gradient-based NLP solver allowing specification of objective and constraints via

callbacks, thereby being ‘agnostic’ to the bilevel nature.

4.7 Conclusion

In this paper, we propose a novel bilevel formulation and gradient-based framework

for learning linear programs from optimal decisions. The methodology learns all

parameters jointly while allowing flexible parametrizations of costs, constraints, and

loss functions—a generalization of the problems typically addressed in the inverse

linear optimization literature. It furthermore has speed advantages over a gradient-free

approach.

Our work allows a strong class of inductive priors, namely parametric linear

programs, to be imposed on a hypothesis space for learning. A major motivation for

ours and for similar work is that, when the inductive prior is suited to the problem, we

can learn a much better (and more interpretable) model, from far less data, than by

applying general-purpose machine learning methods. In settings spanning economics,

commerce, and healthcare, data on decisions is expensive to obtain and to collect, so

we hope that our data-efficient approach will help to build better models and to make

better decisions.

Appendix

Appendix A: Forward Optimization Problem for Figure 1

Forward optimization problem for Figure 4.1. The FOP formulation used is shown
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in (4.2) below.

minimize
x1,x2

cos(w1 + w2u)x1 + sin(w1 + w2u)x2

subject to (1 + w2u)x1 ≥ w1

(1 + w1)x2 ≥ w2u

x1 + x2 ≤ 1 + w1 + w2u

(4.2)

For a fixed u and weights w = (w1, w2) it is an LP. The observation xobs
1 =

(−0.625, 0.925) was generated using u1 = 1.0 with true parameters w = (−0.5,−0.2).

For illustrative clarity, the panels in Figure 4.1 depicting the specific feasible

regions for {w1,w2,w3} are slightly adjusted and stylized from the actual PLP (4.2),

but are qualitatively representative.

Appendix B: Redundancy Among Target-Feasibility Con-

straints

Redundant constraints in (4.1a) are not problematic in principle. Still, remov-

ing redundant constraints may help overall performance, either in terms of

speed or numerical stability of the ‘outer’ solver. Here we discuss strategies for

automatically removing redundant constraints, depending on assumptions. In this sec-

tion, when we use x or xi it should be understood to represent some target xobs or xobs
i .

Constraints that are equivalent. There may exist indices i and i′ for which the

corresponding constraints a(ui,w)Txi ≤ b(ui,w) and a(ui′ ,w)Txi′ ≤ b(ui′ ,w) are

identical or equivalent. For example, when a constraint is independent of u this often

results in identical training targets xi and xi′ that produce identical constraints. The

situation for equality constraints is similar.
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Constraints independent of w. If an individual constraint a(u,w)Tx ≤ b(u,w)

is independent of w then either:

1. a(ui)
Txi ≤ b(ui) for all i so the constraint can be omitted; or,

2. a(ui)
Txi > b(ui) for some i so the (ILOP) formulation is infeasible due to model

misspecification, either in structural assumptions, or assumptions about noise.

The same follows for any equality constraint g(u,w)Tx = h(u,w) that is

independent of w. For example, in our minimum-cost multi-commodity flow

experiments, the flow conservation constraints (equality) are independent of w and so

are omitted from (4.1a) in the corresponding (ILOP) formulation.

Constraints affinely-dependent in w. Constraints may be affinely-dependent

on parameters w. For example, this is a common assumption in robust optimization

(Zhen et al., 2018). Let A(u,w) and b(u,w) represent the constraints that are affinely

dependent on w ∈ R
K . We can write

A(u,w) = A0(u) +
K∑
k=1

wkA
k(u) and b(u,w) = b0(u) +

K∑
k=1

wkb
k(u)

for some matrix-valued functions Ak(·) and vector-valued functions bk(·). It is easy

to show that we can then rewrite the constraints A(u,w)x ≤ b(u,w) as Ã(u,x)w ≤
b̃(u,x) where

Ã(u,x) =

[
A1(u)x− b1(u) · · · AK(u)x− bK(u)

]

b̃(u,x) = b0(u)−A0(u)x.

Similarly if G(u,w)x = h(u,w) are affine in w we can rewrite them as G̃(u,x)w =

h̃(u,x). If we apply these functions across all training samples i = 1, . . . , N , and stack
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their coefficients as

Ã =

[
Ã(ui,xi)

]N
i=1

, b̃ =

[
b̃(ui,xi)

]N
i=1

, G̃ =

[
G̃(ui,xi)

]N
i=1

, h̃ =

[
h̃(ui,xi)

]N
i=1

then the corresponding (ILOP) constraints (4.1a) reduce to a set of linear ‘outer’

constraints Ãw ≤ b̃ and G̃w = h̃ where Ã ∈ R
NM1×K , b̃ ∈ R

NM1 , G̃ ∈ R
NM2×K , h̃ ∈

R
NM2 . These reformulated constraint matrices are the system within which we

eliminate redundancy in the affinely-dependent case, continued below.

Equality constraints affinely-dependent in w. We can eliminate affinely-

dependent equality constraint sets by reparametrizing the (ILOP) search over a lower-

dimensional space; this is what we do for the experiments with equality constraints

shown in Figure 4.9, although the conclusions do not change with or without this

reparametrization. To reparametrize the (ILOP) problem, compute a Moore-Penrose

pseudoinverse G̃+ ∈ R
K×NM2 to get a direct parametrization of constrained vector w

in terms of an unconstrained vector w′ ∈ R
K :

w(w′) = G̃+h̃+ (I− G̃+G̃)w′. (4.3)

By reparametrizing (ILOP) in terms of w′ we guarantee G̃w(w′) = h̃ is satisfied and

can drop equality constraints from (4.1a) entirely. There are three practical issues

with (4.3):

1. Constrained vector w only has K ′ ≡ K− rank(G̃) degrees of freedom, so we would

like to re-parametrize over a lower-dimensional w′ ∈ R
K′ .

2. To search over w′ ∈ R
K′ we need to specify Ã′ ∈ R

NM1×K′ and b̃′ ∈ R
NM1 such

that Ã′w′ ≤ b̃′ is equivalent to Ãw(w′) ≤ b̃.

3. Given initial wini ∈ R
K we need a corresponding w′

ini ∈ R
K′ to initialize our
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search.

To address the first issue, we can let the final K −K ′ components of w′ ∈ R
K in

(4.3) be zero, which corresponds to using a lower-dimensional w′ ∈ R
K′ . As shorthand

let matrix P ∈ R
K×K′ be

P ≡ (IK×K − G̃+G̃)IK×K′ = IK×K′ − (G̃+G̃)1:K,1:K′

where IK×K′ denotes


 IK′×K′

0(K−K′)×K′


 as in torch.eye(K, K’) and (G+G)1:K,1:K′ de-

notes the first K ′ columns of K×K matrix G+G. Then we have w(w′) = G+h+Pw′

where the full dimension of w′ ∈ R
K′ matches the degrees of freedom in w subject to

G̃w = h̃ and we have G̃w(w′) = h̃ for any choice of w′.

To address the second issue, simplifying Ãw(w′) ≤ b̃ gives inequality constraints

Ã′w′ ≤ b̃′ with Ã′ = ÃP and b̃′ = b̃− ÃG̃+h̃.

To address the third issue we must solve for w′
ini ∈ R

K′ in the linear system

Pw′
ini = wini − G̃+h̃. Since rank(P) = K ′ the solution exists and is unique.

Consider also the effect of this reparametrization when G̃w = h̃ is an infeasible

system, for example due to noisy observations or misspecified constraints. In that

case searching over w′ automatically restricts the search to w that satisfy G̃w = h̃ in

a least squares sense, akin to adding an infinitely-weighted ‖G̃w − h̃‖2 term to the

(ILOP) objective.

Inequality constraints affinely-dependent in w. After transforming affinely-

dependent inequality constraints to Ã′w′ ≤ b̃′, detecting redundancy among these

constraints can be as hard as solving an LP (Telgen, 1983). Generally, inequality

constraint aT
j w ≤ bj is redundant with respect to Aw ≤ b if and only if the optimal
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value of the following LP is non-negative:

minimize
w

bj − aT
j w

subject to A{j′ �=j}w ≤ b{j′ �=j}

(4.4)

Here aj is the jth row of A and A{j′ �=j} is all the rows of A except the jth. If

the optimal value to (4.4) is non-negative then it says “we tried to violate the

jth constraint, but the other constraints prevented it, and so the jth constraint

must be redundant.” However, Telgen (1983) reviews much more efficient methods

of identifying redundant linear inequality constraints, by analysis of basic basic

variables in a simplex tableau. Zhen et al. (2018) proposed a ‘redundant constraint

identification’ (RCI) procedure that is directly analogous to (4.4) along with another

heuristic RCI procedure.

Constraints polynomially-dependent in w. Similar to the affinely-dependent

case, when the coefficients of constraints A(u,w)x ≤ b(u,w) and G(u,w)x ≤ h(u,w)

are polynomially-dependent on w, we can rewrite the constraints in terms of w.

Redundancy among equality constraints of the resulting system can be simplified by

computing a minimal Gröbner basis (Cox et al., 2013), for example by Buchberger’s

algorithm which is a generalization of Gaussian elimination; see the paper by Lim

and Brunner (2012) for a review of Gröbner basis techniques applicable over a real

field. Redundancy among inequality constraints for nonlinear programming has been

studied (Caron, 2009; Obuchowska and Caron, 1995). Simplifying polynomial systems

of equalities and inequalities is a subject of semialgebraic geometry and involves

generalizations of Fourier-Motzkin elimination. Details are beyond the scope of this

manuscript.
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Appendix C: Proofs of Theorem 1 and Corollary 1

Degeneracy is often defined for vertices, but solutions returned by an interior point

solver tend toward the analytical center of the optimal face. We first define non-

degeneracy for a face of an LP model, following Tijssen and Sierksma (1998) and

Sierksma and Tijssen (2003). We then use this definition to define non-degeneracy of

a particular solution on the optimal face of an LP model.

Let F be a face of the polyhedron P . A constraint of P is binding on F if it is

satisfied with equality for every point of F . Let dim(F ) and n denote the dimension

of F and P respectively and bnd(F, P ) denote the number of constraints of P that

are binding on F .

Definition 4.1 (Tijssen & Sierksma 1998) The degeneracy degree of a face F

with respect to polyhedron P is σ(F, P ) = bnd(F, P ) + dim(F )− n.

Definition 4.2 (Tijssen & Sierksma 1998) A face F of polyhedron P is degener-

ate iff σ(F, P ) > 0, and non-degenerate iff σ(F, P ) = 0.

Definition 4.3 Given an LP with feasible set P , an optimal solution x∗ is non-

degenerate iff the smallest face F containing x∗ is non-degenerate, i.e., σ(F, P ) = 0

for the smallest face with x∗ ∈ F .

By these definitions, a solution on the relative interior of the optimal face may

be non-degenerate, even when other sub-faces of the optimal face (including vertices)

are degenerate in the usual sense.

To assist the proof of Theorem 4.1, we first show that the following lemma is

true.

Lemma 4.1 If x∗ is a non-degenerate solution to an LP, then the constraints active

at x∗ are linearly independent.
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Proof Let P denote the feasible set of the LP, and let F denote the smallest face

containing x∗ ∈ R
n. Let {a1, . . . , ak} denote the set of constraints binding on F , so that

bnd(F, P ) = k. By non-degeneracy of x∗ we have σ(F, P ) = 0 and so k = n− dim(F ).

Since dim(F ) + rank{a1, . . . , ak} = n must also hold, we have rank{a1, . . . , ak} = k,

i.e., the constraints binding face F are of full rank.

Now consider whether a constraint ak+1 can be active at x∗ but not binding on

F . Since ak+1 is not binding on F , it must be must be linearly independent from the

constraints that are binding on F , i.e., rank{a1, . . . , ak, ak+1} = k + 1. But if ak+1

were also active at x∗, this would imply the existence of a face of P containing x∗ and

having dimension n− k − 1. Since F has dimension n− k, this would contradict our

assumption that F is the smallest face containing x∗. Therefore {a1, . . . , ak} must

comprise all constraints that are active on x∗, and they are linearly independent.

Proof of Theorem 4.1 The dual linear program associated with (LP) is

maximize
λ,ν

bTλ+ hTν

subject to ATλ+GTν = c

λ ≤ 0,

(DP)

where λ ∈ R
M1
≤0 ,ν ∈ R

M2 are the associated dual variables for the primal inequality

and equality constraints, respectively.

Since x∗ is optimal to (LP) and λ∗,ν∗ are optimal to (DP), then (x∗, λ∗, ν∗)
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satisfy the KKT conditions (written specialized to the particular LP form we use):

Ax ≤ b

Gx = h

ATλ+GTν = c

λ ≤ 0

D(λ)(Ax− b) = 0

(KKT)

where D(λ) is the diagonal matrix having λ on the diagonal. The first two constraints

correspond to primal feasibility, the next two to dual feasibility and the last one

specifies complementary slackness. From here forward it should be understood that

x,λ,ν satisfy KKT even when not emphasized by ∗.
As in the paper by Amos and Kolter (2017), implicitly differentiating the equality

constraints in (KKT) gives

Gdx = dh− dGx

ATdλ+GTdν = dc− dATλ− dGTν

D(λ)Adx+D(Ax− b)dλ = D(λ)(db− dAx)

(DKKT)

where dc, dA, db, dG, dh are parameter differentials and dx, dλ, dν are solution

differentials, all having the same dimensions as the variables they correspond to.

Because (KKT) is a second-order system, (DKKT) is a system of linear equations.

Because the system is linear, a partial derivative such as ∂x∗
j

∂bi
can be determined (if it

exists) by setting dbi = 1 and all other parameter differentials to 0, then solving the

system for solution differential dxj, as shown by Amos and Kolter (2017).

We can assume (KKT) is feasible in x,λ,ν. In each case of the main proof it will

be important to characterize conditions under which (DKKT) is then feasible in dx.
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This is because, if (DKKT) is feasible in at least dx, then by substitution we have

cTdx = (ATλ+GTν)Tdx

= λTAdx+ νTGdx

= λT (db− dAx) + νT (dh− dGx)

(4.5)

and this substitution is what gives the total derivatives their form. In (4.5) the

substitution λTAdx = λT (db− dAx) holds because x,λ feasible in (KKT) implies

λi < 0 ⇒ Aix − bi = 0 in (DKKT), where Ai is the ith row of A. Whenever dx is

feasible in (DKKT) we have λiAidx = λi(dbi − dAix) for any λi ≤ 0, where dAi is

the ith row of differential dA.

Note that (4.5) holds even if (DKKT) is not feasible in dλ and/or dν. In other

words, it does not require the KKT point (x∗,λ∗,ν∗) to be differentiable with respect

to λ∗ and/or ν∗.

Given a KKT point (x∗,λ∗,ν∗) let I,J ,K be a partition of inequality indices

{1, . . . ,M1} where

I = { i : λ∗
i < 0, Aix

∗ = bi }

J = { i : λ∗
i = 0, Aix

∗ < bi }

K = { i : λ∗
i = 0, Aix

∗ = bi }

and the corresponding submatrices of A are AI ,AJ ,AK. Then (DKKT) in matrix

form is




G 0 0 0 0

D(λI)AI 0 0 0 0

0 0 D(AJx− bJ ) 0 0

0 0 0 0 0

0 AT
I AT

J AT
K GT







dx

dλI

dλJ

dλK

dν



=




dh− dGx

dbI − dAIx

0

0

dc− dATλ− dGTν




(4.6)
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The pattern of the proof in each case will be to characterize feasibility of (4.6) in

dx and then apply (4.5) for the result.

Evaluating ∂z
∂c

. Consider ∂z
∂cj

= xobs
j − x∗

j − cT ∂x∗
∂cj

. To evaluate the cT ∂x∗
∂cj

term, set

dcj = 1 and all other parameter differentials to 0. Then the right-hand side of (4.6)

becomes




G 0 0 0 0

D(λI)AI 0 0 0 0

0 0 D(AJx− bJ ) 0 0

0 0 0 0 0

0 AT
I AT

J AT
K GT







dx

dλI

dλJ

dλK

dν



=




0

0

0

0

1j




(4.7)

where 1j denotes the vector with 1 for component j and 0 elsewhere. Sys-

tem (4.7) is feasible in dx (not necessarily unique) so we can apply (4.5) to get

cT ∂x∗
∂cj

= cTdx = λT (0− 0x) + νT (0− 0x) = 0. The result for ∂z
∂c

then follows from

cT ∂x∗
∂c

= 0.

Evaluating ∂z
∂h

. Consider ∂z
∂hi

= −cT ∂x∗
∂hi

. Set dhi = 1 and all other parameter

differentials to 0. Then the right-hand side of (4.6) becomes




G 0 0 0 0

D(λI)AI 0 0 0 0

0 0 D(AJx− bJ ) 0 0

0 0 0 0 0

0 AT
I AT

J AT
K GT







dx

dλI

dλJ

dλK

dν



=




1i

0

0

0

0




(4.8)

Since x∗ is non-degenerate in the sense of Definition 4.3, then there are at most

D active constraints (including equality constraints) and by Lemma 4.1 the rows of

80




G

AI


 are also linearly independent. Since active constraints are linearly independent,

system (4.8) is feasible in dx across all i ∈ {1, . . . ,M2}. We can therefore apply (4.5)

to get cT ∂x∗
∂hi

= cTdx = λT (0− 0x) + νT (1i − 0x) = νi. The result for ∂z
∂h

then follows

from cT ∂x∗
∂h

= ν∗T .

Evaluating ∂z
∂b

. Consider ∂z
∂bi

= −cT ∂x∗
∂bi

. Set dbi = 1 and all other parameter

differentials to 0. For i ∈ I the right-hand side of (4.6) becomes




G 0 0 0 0

D(λI)AI 0 0 0 0

0 0 D(AJx− bJ ) 0 0

0 0 0 0 0

0 AT
I AT

J AT
K GT







dx

dλI

dλJ

dλK

dν



=




0

λi1
i

0

0

0




(4.9)

Since x∗ is non-degenerate, then system (4.9) is feasible in dx for all

i ∈ I by identical reasoning as for ∂z
∂hi

. For i ∈ J ∪ K the right-hand side

of (4.6) is zero and so the system is feasible in dx. System (4.9) is therefore

feasible in dx across all i ∈ {1, . . . ,M1}. We can therefore apply (4.5) to get

cT ∂x∗
∂bi

= cTdx = λT (1i − 0x) + νT (0− 0x) = λi. The result for ∂z
∂b

then follows from

cT ∂x∗
∂b

= λ∗T .

Evaluating ∂z
∂G

. Consider ∂z
∂Gij

= −cT ∂x∗
∂Gij

. Set dGij = 1 and all other parameter
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differentials to 0. Then the right-hand side of (4.6) becomes




G 0 0 0 0

D(λI)AI 0 0 0 0

0 0 D(AJx− bJ ) 0 0

0 0 0 0 0

0 AT
I AT

J AT
K GT







dx

dλI

dλJ

dλK

dν



=




−xj1
i

0

0

0

−νi1
j




(4.10)

Since x∗ is non-degenerate, then (4.10) is feasible in dx for all i ∈ {1, . . . ,M2}
and j ∈ {1, . . . , D} by same reasoning as ∂z

∂h
. Applying (4.5) gives

cT ∂x∗
∂Gij

= cTdx = λT (0− 0x) + νT (0− 1ijx) = −νixj where 1ij is the M2 ×D matrix

with 1 for component (i, j) and zeros elsewhere. The result for ∂z
∂G

then follows from

cT ∂x∗
∂G

= −ν∗x∗T where we have slightly abused notation by dropping the leading

singleton dimension of the 1×M2 ×D Jacobian.

Evaluating ∂z
∂A

. Consider ∂z
∂Aij

= −cT ∂x∗
∂Aij

. Set dAij = 1 and all other parameter

differentials to 0. Then the right-hand side of (4.6) becomes




G 0 0 0 0

D(λI)AI 0 0 0 0

0 0 D(AJx− bJ ) 0 0

0 0 0 0 0

0 AT
I AT

J AT
K GT







dx

dλI

dλJ

dλK

dν



=




0

−xj1
i

0

0

−λi1
j




(4.11)

Since x∗ is non-degenerate, then by similar arguments as ∂z
∂b

and ∂z
∂G

(4.11) is

feasible in dx for all i ∈ {1, . . . ,M1} and j ∈ {1, . . . , D} and the result for ∂z
∂A

follows
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from cT ∂x∗
∂G

= −λ∗x∗T .

Proof of Corollary 4.1 The result for ∂z
∂c

is direct. In linear programming, Tijssen

and Sierksma (1998) showed that the existence of a non-degenerate primal solution

x∗ implies uniqueness of the dual solution λ∗,ν∗ so the result for ∂z
∂b

and ∂z
∂h

follows

directly. If a non-degenerate solution x∗ is unique then matrices λ∗x∗T and ν∗x∗T

are both unique, regardless of whether c = 0. In the other direction, if λ∗x∗T and

ν∗x∗T are both unique, consider two mutually exclusive and exhaustive cases: (1)

when either λ∗ �= 0 or ν∗ �= 0 this would imply x∗ unique, and (2) when both λ∗ = 0

and ν∗ = 0 in (DP) this would imply c = 0, i.e. the primal linear program (LP) is

merely a feasibility problem. The result for ∂z
∂A

and ∂z
∂G

then follows.

Appendix D: Additional Results

Figure 4.8 shows the task of learning (c, A, b) with a K=6 dimensional parametriza-

tion w and 20 training observations for a D dimensional decision space x with M1

inequality constraints. The five different considered combinations of D and M1 are

shown in the figure.

The results over all problem sizes are similar to the case of D=10,M1=80 shown

in the main paper: RS fails; COBYLA ‘succeeds’ on ∼ 25% of instances; SQP succeeds

on ∼ 60 − −75%. As expected, instances with higher D, are more challenging as

we observe that the success rate decreases slightly. The success curve of SQPbprop

slightly lags those of SQPimpl and SQPdir due to the overhead of backpropagating

through the steps of the interior point solver. However, this computational advantage

of SQPimpl and SQPdir over SQPbprop is less obvious on LP instances with D = 10.

For larger LP instances, the overall framework spends significantly more computation

time on other components (e.g., solving the forward problem, solving (SQP)). Thus,

the advantage of SQPimpl and SQPdir in computing gradients is less significant in
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the overall performance. The SQPcvx implementation works better than COBYLA

for most instances, but struggles to converge to the requested tolerance when more

constraints are added (M1 = 80, shown in Figure 4.3).

Figure 4.8 shows the experiment results of total 100 trials, where each trial

includes 20 training and 20 testing instances. After training, if an instance ui (of

20) for which the LP c(ui,w),A(ui,w),b(ui,w) is infeasible or unbounded, then we

report a loss �(w) = 100 arbitrarily and consider these to be failures. In the M1=80

case, SQPcvx tends to fail for one of two reasons: its forward solver (scs) is slow to

converge to the requested tolerance of 10−8, or cvxpylayers raises an exception on

encountering any infeasible/unbounded instance (whereby we return � = 100); the

latter behaviour is a consequence of how cvxpylayers handles errors, not a fundamental

limitation.

Figure 4.9 shows instances with equality constraints, where G and h also need to

be learned, and the performance is similar. Note that RS failed to find a feasible w

in all instances, caused mainly by the failure to satisfy the equality target feasibility

constraints in (4.1a). Recall that a feasible w means both (4.1a) and (4.1b) are

satisfied.

Figure 4.10 shows the performance on LPs where the dimensionality of w is

higher. It shows the probability of achieving zero AOE training loss over time (curves),

along with final loss (box plots). Each mark denotes one of 100 trials (different

instances), each with one training point. Note, in this experiment we aim to learn LP

coefficients directly, i.e., w comprises all LP coefficients, and the LP coefficients do

not depend on u. Therefore, there is only a single target xobs for learning w, and no

testing data. We observe that COBYLA performs poorly, SQPcvx makes progress but

is slow, and the remaining SQP methods succeed quickly on all instances. COBYLA’s

poor performance is caused by the finite-difference approximation technique used in
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COBYLA which is inefficient in high dimension w space. This result demonstrates

the importance of using gradient-based methods in high dimensional (in w) NLP.

Sensitivity of results to parameter settings The specific results of our exper-

iments can vary slightly with certain choices, but the larger conclusions do not

change: the gradient-based SQP methods all perform similarly, and they consistently

out-perform non-gradient-based methods, especially for higher-dimensional search.

Specific choices of parameter settings include the numerical tolerance used in the

forward solve (e.g. 10−5 vs 10−8), algorithm termination tolerances of the COBYLA

and SLSQP, and PyTorch version (v1.6 vs. nightly builds). However, we did see a

degradation in “success rates” when tolerance on the forward problem was configured

to be weak (10−3), which may be caused by unstable or inaccurate gradients. The

running time of the SQPcvx forward solver, scs, can be very sensitive to the numerical

tolerance requested. For example, using the default SciPy tolerance of 10−8 and

max_iter= 108, the scs solver could be >100x slower than the case of using its default

settings of tolerance 10−3 and max_iter= 2500.

In general, the experimental results of SQPbprop, SQPimpl and SQPdir are largely

insensitive to specific parameter settings. For example, we tried using strict tolerances

and different trust region sizes for COBYLA to encourage the algorithm to search

more aggressively, but these made only a small improvement to performance; these

small improvements are represented in our results. We also observed that, although

the homogeneous solver works slightly better when we use a strict numerical tolerance,

there is no major difference in the learning results.

Appendix E: Parametric Linear Program for Figure 4.6

Forward optimization problem for Figure 4.6. The FOP formulation used is shown
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(i) D=2,M1=4

(ii) D=2,M1=8

(iii) D=2,M1=16

(iv) D=10,M1=20

(v) D=10,M1=80

Figure 4.8: A comparison on synthetic PLP instances as in Figure 4.3 but with other
choices of decision variable dimension D and inequality constraints M1.
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Figure 4.9: A comparison on synthetic PLP instances with parametric cost vectors
(D=10), inequality constraints (M1=80), and equality constraints (M2=2).

Figure 4.10: A comparison on synthetic LP instances (D=10, M1=80).

in (4.12) below.

minimize
x1,x2

− w1u1x1 − w2u2x2

subject to x1 + x2 ≤ max(1, u1 + u2)

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

(4.12)

The two training points are generated with w = (1, 1) at u1 = (1, 1
3
) and u2 =

(1, 1
3
) with testing point utest = (1

2
, 5
6
). PLP learning was initialized at wini = (4, 1)

and the SQPimpl algorithm returned wlearned ≈ (35
9
, 4
3
), used to generate the learned

decision map depicted in the figure.
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Chapter 5

Learning the Objective of Linear

Programs: Models and Insights1

5.1 Abstract

Optimization models are widely used for assisting the decision-making processes in

modern business organizations. Developing an optimization model that accurately

represents the underlying decision-making process is challenging in practice. Inverse

optimization infers model coefficients of an optimization model from the observed

solution. In this work, we study the inverse linear optimization problem whose goal

is to learn unknown parameters in the objective of a parametric linear program

(PLP) from optimal decisions. We present four different methods: three single-level

optimization models that are extensions of existing IO formulations, and one bilevel

optimization model that is directly adapted from Chapter 4. We show that the three

single-level optimization models are in fact mathematically equivalent under certain

assumptions. Furthermore, we show that, despite mathematical equivalence, two of
1Some preliminary work of this project was conducted by Nima Sajedi under Yingcong Tan’s

supervision for the fulfillment of ENGR412 course requirements at Concordia University.

88



the three single-level optimization models tend to learn PLPs that generalize better

to test data, empirically.

5.2 Introduction

Optimization is deeply embedded in various decision-making processes in modern

organizations (e.g., budget planning, inventory management) and an individual’s life

(e.g., diet management, routing). One common practice to represent the decision-

making process is through optimization modelling, which formally characterizes the

objective (e.g., achievable goals, cost), constraints (e.g., restrictions on the resource)

and the associated decision variables (e.g., choice of actions).

Conventionally, in an optimization problem, the goal is to determine the decision

that optimizes an objective function subject to a set of constraints. We refer to this

problem as the forward optimization problem (FOP). In inverse optimization (IO), the

goal is to determine the coefficients of an FOP model such that a target solution is an

optimal solution of the learned FOP model. Studying IO is particularly important in

practice since perfect knowledge of the objective and constraints is not always available,

and accurate model parameter estimation could be challenging. For instance, in a

real-world routing problem, the users (e.g., drivers) of a given network would optimize

their path from an origin to a destination based on some criteria. These criteria

could be either network-specific (e.g., length of a road) or user-specific (e.g., type

of vehicle, preference on toll roads) (Burton and Toint, 1992; Burton, 1993). These

criteria would reflect the user’s objective function that dictates their decisions, and

thus it is crucial to collect information from the user when specifying the coefficients

in the objective function. However, in some settings we may not have access to an

individual driver. Instead, we can observe some routes that they took. Using IO,

we can incorporate the observed routes into the optimization model and infer the
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objective function coefficients. The learned model can then be used for prediction

(e.g., in road network planning) or recommendation (e.g., in customized navigation

system).

In this paper, we study the IO problem whose FOP is a linear program (LP),

and the goal is to learn the objective. We refer to this problem as the inverse linear

optimization problem, denoted as ILOP-obj. Linear programming is an important

class of optimization models, which deals with a linear objective, linear constraints

and continuous decision variables. Its presence is ubiquitous in various fields, such

as engineering, manufacturing and transportation. Studying the inverse linear opti-

mization problem is important for the advancement in both theory and application.

Additionally, we are interested in the parametric case, where the coefficients of a

linear program also depend on other parameters, and the goal is to learn the unknown

parameters from observed solutions.

The organization of this paper is as follows. Section 5.2 presents the introduc-

tion, related work and main contributions of this paper. Section 5.3 presents some

preliminaries on linear programming, parametric linear programming and inverse

linear optimization. We present four different mathematical formulations in Section

5.4 for solving ILOP-obj problems. We discuss the connections among the different

mathematical formulations in Section 5.5. Section 5.6 and 5.7 present the experimental

results and the discussion. Lastly, Section 5.8 concludes the chapter.

5.2.1 Related work

Inverse optimization problem was first described in Burton and Toint (1992) and

Burton (1993). They studied the inverse shortest path problem, and the goal was

to learn the travel time of edges based on a given path. Ahuja and Orlin (2001)

studied the inverse linear optimization and proposes a general formulation to learn
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the cost vector that minimizes the Lp normal from a target cost vector. Early studies

of inverse linear optimization focused on noise-free observations which are candidate

optimal solutions of a given feasible region. Keshavarz et al. (2011) studied the IO

problem under the assumption of noisy measurement. They studied the parametric

convex optimization problem and propose a formulation based on the Karush-Kuhn-

Tucker (KKT) conditions. Aswani et al. (2018) focused on the ILOP-obj problem

with noisy-observations. To our knowledge, they were the first to view IO as a bilevel

optimization problem. They proposed to reformulate the bilevel formulation to a

single-level optimization model using the strong duality, and proposed two numerical

algorithms that are shown to maintain statistical consistency. Tavaslıoğlu et al. (2018)

formally defined and characterized the notion of inverse feasible region, that is, the

collection of all cost vectors which make target solutions optimal. This concept was

first described in Ahuja and Orlin (2001) as the inverse feasible cost vectors, and also

studied in other papers Chan et al. (2019) and Gupta and Zhang (2020). Chan et al.

(2019) studied the ILOP-obj problem with a single observation which is assumed to be

feasible with respect to a given feasible region. Chan et al. proposed a mathematical

formulation based on the strong duality. Notably, they derived a closed-form solution

and analyzed different loss functions. Babier et al. (2020) generalized the work of

Chan et al. (2019) to the case of multiple observations which are not restricted to be

feasible with respect to the constraints. The same problem was studied in Gupta and

Zhang (2020) who proposed a mixed-integer formulation based on the KKT-based

formulation from Keshavarz et al. (2011).

The problem of learning the coefficients of an optimization model was also studied

in other distinct areas. Bärmann et al. (2017, 2020) studied the IO problem under the

online setting. Zimmermann and Frejinger (2020) explained the connections between

inverse optimization and inverse reinforcement learning (IRL). By reformulating the
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forward problem as a dynamic model, some IO problems (e.g., inverse shortest path)

can be solved using IRL methods. Amos and Kolter (2017) and Agrawal et al. (2019)

studied differentiable optimization layer that can be embedded in deep neural networks.

In particular, Amos and Kolter (2017) focused on quadratic programming problems

and Agrawal et al. (2019) focused on convex optimization problems. They applied

implicit differentiation to the KKT conditions to compute the gradients for updating

the model coefficients. In Chapter 3 and 4, we leverage concepts and algorithms from

deep learning literature, and study inverse linear optimization to learn the objective

and constraints jointly. We propose a bilevel optimization problem and develop

gradient-based algorithms to solve the bilevel formulation directly. However, like other

gradient-based algorithms, this method can also get trapped in local optima. This

method requires solving the linear programs repeatedly to compute the gradients,

which could be computationally expensive, especially when the LP size is large.

Here we identify a few research gaps that motivate this work. First, most

IO literature focuses on developing single-level optimization models that are then

solved with commercial optimization solver. We notice that there is no existing work

discussing the connections among different models or comparing their performance.

Secondly, many gradient-based algorithms have been studied in the literature (Amos

and Kolter (2017); Agrawal et al. (2019), Chapter 3 and 4). These papers mainly focus

on solving the most general form of IO problem that is learning all model coefficients

jointly. We are interested in adapting their gradient-based algorithms to the ILOP-obj

problem and compare its performance with the MP models solved in CPLEX.

5.2.2 Contributions

Motivated by the arguments above, we study a general form of ILOP-obj problem

with unknown parameters in the objective. The main contributions of this paper are
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listed below.

• We study the inverse linear optimization problems to learn the objective under the

general parametric setting. We propose four different mathematical formulations,

including three single-level optimization models which are extensions of existing

IO literature, and one bilevel optimization model which is directly based on

Chapter 4.

– We specialize the method from Keshavarz et al. (2011) to parametric LP

and propose a single-level optimization model using the KKT conditions.

We refer to this model as the KKT-based formulation.

– We generalize the method from Chan et al. (2019) to the parametric case

and propose a single-level optimization model using the strong duality. We

refer to this model as the strong duality-based formulation

– We generalize the method from Tavaslıoğlu et al. (2018) to the parametric

case and propose a single-level optimization model using the concept of

inverse feasible region. We refer to this model as the inverse feasible

region-based formulation.

– We specialize the bilevel optimization model and gradient-based algorithm

from Chapter 4 to learning the objective only.

• We generalize the concept of inverse feasible region from Tavaslıoğlu et al. (2018)

to the parametric case, and define the parametric inverse feasible region.

• We prove that the three single-level optimization models mentioned above (i.e.,

KKT-based, strong duality-based and inverse feasible region-based formulations)

are mathematically equivalent under the assumption of a non-empty parametric

inverse feasible region.
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• Computational results show that all three single-level optimization models

solved in CPLEX are faster than the bilevel model solved with a gradient-based

algorithm. Additionally, the inverse feasible region-based formulation has the

shortest runtime.

• We show that PLP models learned from the KKT-based formulation and the

strong duality-based formulations provide better predictions on testing data, em-

pirically. Combining with the runtime comparison, we highlight the performance

trade-off between the runtime and accuracy of the predictions.

5.3 Preliminaries

In this section, we provide some background information on linear programming,

parametric linear programming and inverse linear optimization.

5.3.1 Linear Programming

Let x ∈ R
D and c ∈ R

D denote the primal decision variables and the cost vector

respectively. Let A ∈ R
M1×D and b ∈ R

M1 denote the coefficients of inequality con-

straints, G ∈ R
M2×D and h ∈ R

M2 denote the coefficients of equality constraints.

Lastly, λ ∈ R
M1 and ν ∈ R

M2 denote the dual decision variables associated with the

inequality and equality constraints of the primal LP model, respectively. We present

the primal-dual pair of LP models below.

(LP) minimize
x

cTx

subject to Ax ≤ b

Gx = h

(DP) maximize
λ,ν

bTλ + hTν

subject to ATλ + GTν = c

λ ≤ 0
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5.3.2 Parametric Linear Programming

In this paper, we are interested in the parametric linear program (PLP) whose objective

function and constraints depend on parameters u and w. Let u denote the observable

feature (e.g., time, weather conditions) which may vary with different observations,

and w denote the unknown parameters that we aim to learn. In the ILOP-obj problem,

the unknown parameter w occurs only in the objective. We provide the mathematical

formulation below.

PLP(u,w) minimize
x

c(u,w)Tx

subject to A(u)x ≤ b(u)

G(u)x = h(u)

(5.1)

5.3.3 Inverse Linear Optimization

In this paper, we study the inverse linear optimization problem to learn the unknown

parameters in the objective of a PLP model. That is, we aim to learn w in a PLP

model (i.e., Model (5.1)) from a set of noise-free observations. An observation consists

of a pair of observable feature u and the corresponding observed solution xobs. An

observation is called noise-free if the observed solution is believed to be a candidate

optimal solution. In an LP, that means the observed solution lies on the boundary of

the feasible region.

We first introduce the notation, and then generalize the definition of noise-free

observations to the parametric setting. Let I = {1, . . . , N} denote the index

of observations. Correspondingly ui and xobs
i denote the observable feature and

observed solution under an observation i respectively. Let J = {1, . . . , M1}
and K = {1, . . . , M2} denote the indices of inequality and equality constraints.

Correspondingly, A(ui), b(ui) denote the coefficients of inequality constraints, and
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G(ui), h(ui) denote the coefficients of equality constraints.

Definition 5.1 For a PLP with the form of Model (5.1), an observation i is called

noise-free if xobs
i lies on the boundary of the corresponding feasible region specified by

ui, denoted by Fx(ui), where Fx(u) = {x ∈ R
D |A(u)x ≤ b(u), G(u)x = h(u)}.

Effectively, Definition 5.1 says that for a noise-free observation i, xobs
i is a feasible

solution on the boundary of the feasible region corresponding to ui. For this to be

true, there should be at least one active constraint.

The prediction under an observation i, denoted by x∗
i , is an optimal solution

of PLP(ui,w), i.e., xobs
i ∈ argminPLP(ui,w). The goal of ILOP-obj problem is to

learn the unknown parameter w in the objective function to minimize the discrepancy

between the observed solutions and predictions, i.e., minimizew �(xobs
i ,x∗

i ,ui,w). To

measure the discrepancy, many loss functions � have been studied in the literature

including absolute duality gap (Chan et al., 2019), absolute objective error 2 (Tan et al.,

2019, 2020), squared decision error (Tan et al., 2019; Agrawal et al., 2019), p-norm

between the learned and target cost vectors (Ahuja and Orlin, 2001; Tavaslıoğlu et al.,

2018) and squared KKT residuals (Keshavarz et al., 2011).

For the remaining of this paper, we assume all observations {(ui,x
obs
i )}i∈I are

noise-free. Although some formulations presented in Section 5.4 are applicable to

noisy observations, the discussion of noisy observations is beyond the focus on this

paper and we leave that for future work.

5.4 Mathematical Formulations

In this section, we present four different methods for solving ILOP-obj in the parametric

case. Firstly, we specialize the mathematical formulation from Keshavarz et al.
2Absolute duality gap and absolute objective error are equivalent under the LP setting.
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(2011) to LP. This formulation uses the idea that if an observed solution is optimal,

the corresponding KKT conditions must be satisfied. Secondly, we generalize the

mathematical formulation from Chan et al. (2019) to the parametric case. This

formulation uses the idea that if an observed solution is optimal, the strong duality

must be satisfied. Thirdly, we generalize the formulation from Tavaslıoğlu et al. (2018)

to the parametric case. This formulation uses the concept of inverse feasible region,

that is, the set of all cost vectors making the observed solution optimal. Lastly, we

specialize the bilevel optimization model and gradient-based algorithm from Chapter

4 to learning the objective only.

5.4.1 KKT-based Formulation

We specialize the formulation from Keshavarz et al. (2011) to LP and present the

corresponding mathematical formulation:

minimize
w,λi,νi,r

comp
i ,rstati

1

N

N∑
i

( ‖rstat
i ‖22 + ‖rcomp

i ‖22 ) (5.2a)

subject to rstat
i = c(ui,w) +A(ui)

Tλi +G(ui)
Tνi, i ∈ I (5.2b)

rcomp
i = diag(λi) (A(ui)x

obs
i − b(ui) ), i ∈ I (5.2c)

λi ≥ 0, i ∈ I (5.2d)

w ∈ W (5.2e)

The objective function captures the KKT residuals which measure the error in

the constraint space. Constraint (5.2b) and (5.2c) define rstat
i and rcomp

i which are

the residuals in the stationary conditions and complementary slackness respectively.

Constraint (5.2d) represents the dual feasibility and constraint (5.2e) represents prior

knowledge on the unknown parameter w. As discussed in Keshavarz et al. (2011), the
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residuals of primal feasibility (see the equations below) are fixed since the constraints

do not depend on the unknown parameter w. The residuals of primal feasibility can

be checked trivially beforehand, and thus, can be omitted in Model (5.2). The expres-

sion of residuals in the primal inequality and equality constraints are presented as below

rineq
i = (A(ui)x

obs
i − b(ui) )+, i ∈ I req

i = G(ui)x
obs
i − h(ui), i ∈ I

On the one hand, we specialize the model from Keshavarz et al. (2011) to LP.

On the other hand, the original model from Keshavarz et al. (2011) assumes the

objective function of the FOP has the finite dimensional affine parametrization (i.e.,

obj =
∑P

i=1 wif(x,u), where fi are pre-selected basis functions) and wi, i = 1, . . . , P

are the unknown parameters. Our formulation is not restricted to this assumption,

and thus it is also a generalization of Keshavarz et al. (2011).

5.4.2 Strong Duality-based Formulation

We generalize the formulation from Chan et al. (2019) to the parametric case and

propose the following mathematical formulation:

minimize
w,λi,νi,εi

1

N

N∑
i

|εi|2 (5.3a)

subject to A(ui)
Tλi +G(ui)

Tνi = c(ui,w), i ∈ I (5.3b)

c(ui,w)Txobs
i − εi = b(ui)

Tλi + h(ui)
Tνi, i ∈ I (5.3c)

λi ≤ 0, i ∈ I (5.3d)

w ∈ W (5.3e)

The objective function is a quadratic function that captures the error in the
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objective space, where εi, i ∈ I represents the residual in the strong duality conditions.

Constraint (5.3b) and (5.3d) represents dual feasibility. Constraint (5.3c) enforces

strong duality. Constraint (5.3e) represents prior knowledge on w. This formulation

is built based on the assumption that the observed solutions xobs
i are feasible (i.e.,

A(ui)x
obs
i ≤ b(ui), G(ui)x

obs
i = h(ui), i ∈ I).

5.4.3 Inverse Feasible Region-based Formulation

We first introduce the inverse feasible region defined by Tavaslıoğlu et al. (2018) for

the non-parametric case, and then generalize it to the parametric case.

Inverse Feasible Region for Non-Parametric LP

Tavaslıoğlu et al. (2018) defines the inverse feasible region of of an solution as the set

of all cost vectors that make that solution optimal.

Definition 5.2 For a linear program, the inverse feasible region of a solution x ∈ R
D,

denoted by Fc(x) is the set of all cost vectors that make the observed solution optimal,

i.e., Fc(x) = {c ∈ R
D | x ∈ argminLP(c)}.

Recall that J and K denotes the set of inequality and equality constraints. Let

J ′ denote the set of active inequality constraints of xobs, and we know J ′ ⊆ J . Let

aj, bj denote the jth row of A and jth element of b respectively, and gk, hk denote the

kth row of G and kth element of h respectively. Given a noise-free solution x ∈ R
D,

Tavaslıoğlu et al. (2018) showed that the corresponding inverse feasible region (see

Definition 5.2) can be expressed in the following mathematical form.

Fc(x) = cone({ −aj | ajx = bj, j ∈ J ′ })
⊕

span({ −gk | k ∈ K })
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=



∑

j∈J −βjaj +
∑

k∈K −γkgk

∣∣∣∣∣∣∣∣∣∣

βj = 0, j ∈ J \ J ′

βj ≥ 0, j ∈ J ′

γk ∈ R




(5.4)

Where,
⊕

is the Minkowski sum 3, cone(P) denotes the conic hull of P and

span(P) denotes the span of P .

Inverse Feasible Region for Parametric LP

We consider a parametric LP whose cost vector depends on the observable feature u

and unknown parameter w ∈ W (see Model (5.1)). We first generalize the Definition

5.2 to the parametric LP whose constraints also depend on feature u.

Definition 5.3 Given a parametric LP with the form of Model (5.1) and a pair of

observation (u,x), the inverse feasible region, denoted by Fc(u,x) is the set of all cost

vectors c(u,w) that make solution x optimal, i.e., Fc(u,x) = {c(u,w) ∈ R
D | x ∈

argminPLP(u,w)}.

Given a set of noise-free observations {(ui,x
obs
i )}Ni=1, Ji and Ki denote the set

of inequality and equality constraints of PLP(ui), and J ′
i denotes the set of active

inequality constraints given xobs
i . Let aij, bij, j ∈ Ji denote the jth row of A(ui) and

jth element of b(ui) respectively, and gik, hik, k ∈ Ki denote the kth row of G(ui)

and kth element of h(ui) respectively. We rewrite equation 5.4 as follows.

Fc(ui,xi) =



∑

j∈Ji
−βijaij +

∑
k∈Ki

−γikgik

∣∣∣∣∣∣∣∣∣∣

βij = 0, j ∈ Ji \ J ′
i

βij ≥ 0, j ∈ J ′
i

γik ∈ R, k ∈ Ki




(5.5)

3 Minkowski sum of two sets of vectors is formed by adding each vector in one set to each vector
in the other set. Let S and S ′ denote two sets of vectors, S⊕S ′ = {s1 + s2 | s1 ∈ S, s2 ∈ S ′}
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Let W denote the feasible domain of w. We define the parametric inverse feasible

region, denoted by Fw(ui,x
obs
i ), as the set of parameter w that makes the observed

solution xobs
i optimal.

Definition 5.4 Given a parametric LP with the form of Model (5.1) and a pair of

observation (u,x), the parametric inverse feasible region of x is, Fw(u,x) = {w ∈
W | c(u,w) ∈ Fc(u,x)}.

Definition 5.5 Given a parametric LP with the form of Model (5.1) and multiple

observations {(ui, xi)}Ni=1, let X = {x1, . . . , xN}, the parametric inverse feasible

region of X , denoted by Fw(X ), is the intersection of the parametric inverse feasible

regions of each observed solution. That is, Fw(X ) = ∩i∈IFw(ui,xi)

Based on the Definition 5.4 and 5.5, we generalize the formulation from Corollary

14 in Tavaslıoğlu et al. (2018) to the parametric case. Given multiple noise-free

observations {(ui,x
obs
i )}Ni=1, our mathematical model is presented below.

minimize
w,βij ,γij

0 (5.6a)

subject to w ∈ Fw(X obs) (5.6b)

X obs = {xobs
1 , . . . , xobs

N }

Constraint (5.6b) defines the parametric inverse feasible region of all observed

solutions Fw(X obs) which can be expressed explicitly as below.

Fw(X obs) =

{
w ∈ Fw(ui,x

obs
i ), i ∈ I

}
(from Def. 5.5)

=⇒ =



c(ui,w) ∈ Fc(ui,x

obs
i ), i ∈ I

w ∈ W


 (from Def. 5.4)
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=⇒ =




Fc(ui,x
obs
i ) =

∑
j∈Ji

−βijaij +
∑
k∈Ki

−γikgik, i ∈ I

βij = 0, j ∈ Ji \ J ′
i , i ∈ I

βij ≥ 0, j ∈ J ′
i , i ∈ I

γij ∈ R, k ∈ Ki, i ∈ I

c(ui,w) ∈ Fc(ui,x
obs
i ), i ∈ I

w ∈ W




(from Eq. 5.5)

Explicitly encoding Fw(X obs) in Model (5.6b) requires a prepossessing step to

compute all active inequality constraints (i.e., J ′
i = {j ∈ Ji | aijx

obs = bij}, i ∈ I).

The original formulation from Tavaslıoğlu et al. (2018) uses a loss function to minimize

a p-norm of the learned cost vector from a target cost vector. In this study, we assume

that such a target cost vector is not available, and thus, the optimization problem is

naturally reduced to a feasibility problem. Lastly, we emphasize that Model (5.6) has

a solution only if the following assumption is satisfied.

Assumption 5.1 The parametric inverse feasible region of all noise-free observed

solutions of a parametric LP is non-empty, i.e., Fw(X obs) �= ∅

Example Where Inverse Feasible Region for PLP is Empty

We show an example of inverse linear optimization problem that has no solution in

Model (5.6). Firstly, we consider an PLP example whose mathematical formulation

is presented below. We know that w ∈ R, and there is a single observation (u =
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1, xobs = [−3, 2.5]),

minimize
x1,x2

(−0.5 + wu)x1 + (0.5 + wu)x2

subject to x1 ≤ 2 + u

x2 ≤ 1.5 + u

− x1 ≤ 2 + u

− x2 ≤ 1.5 + u

x1 + x2 ≤ 3 + u

(5.7)

Secondly, we substitute (u = 1, xobs = [−3, 2.5]) into the constraints and find

that the second and third constraints are active. We formulate the corresponding

ILOP-obj problem using Model (5.6) and present the mathematical model below.

minimize
w1,w2,β2,β3

0

subject to w ∈ Fw(u = 1,xobs = [−3, 2.5])

(5.8)

where,

Fw(u = 1,xobs = [−3, 2.5]) =




Fc(x
obs) = −β2


0
1


− β3


−1

0




β2, β3 ≥ 0
−0.5 + w

0.5 + w


 = Fc(x

obs)

w ∈ R



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Lastly, we simplify the equation above as follows.

Fw(u = 1,xobs = [−3, 2.5]) =





−0.5 + w

0.5 + w


 = −β2


0
1


− β3


−1

0




β2, β3 ≥ 0

w ∈ R




=




w = β3 + 0.5

w = −β2 − 0.5

β2, β3 ≥ 0

w ∈ R




=




w ≥ 0.5

w ≤ −0.5


 = ∅

As shown above, the parametric inverse feasible region is empty, and thus Model

(5.8) has no solution in w space. We illustrate the feasible region of the FOP (see

Model (5.7)), inverse feasible region Fc(x
obs) and the parametric inverse feasible region

Fw(x
obs) in Figure 5.1.
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(a) Feasible Region of PLP. (b) Fc(x
obs). (c) Fw(x

obs).

Figure 5.1: Illustration of the feasible region of the example PLP in Model (5.7),
inverse feasible region Fc(x

obs) and the parametric inverse feasible region Fw(u,x
obs)

of the corresponding ILOP-obj problem.

5.4.4 Bi-level Formulation

We specialize the bilevel formulation from Chapter 4 to the case of learning the

objective only and present the corresponding mathematical formulation below.

minimize
w

1
N

∑N
i=1 | cT (ui,w)(xobs

i − x∗
i ) | (5.9a)

subject to x∗
i ∈ argmin

x


 c(ui,w)Tx

∣∣∣∣ A(ui)x ≤ b(ui)

G(ui)x = h(ui)


 , i ∈ I (5.9b)

w ∈ W (5.9c)

The objective is to minimize the difference in objective between the observed

solution and prediction. The loss function is also referred to as the absolute objective

error (AOE) in Chapter 4. The prediction is the optimal solution of a PLP model that

is defined in the inner problem. W in the last constraint represents prior knowledge

on the unknown parameter.

We found no suitable commercial optimization solvers that can solve a bilevel

optimization model directly. To solve Model (5.9), we specialize the gradient-based
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algorithm from Chapter 4. Their algorithm uses a gradient-based non-linear program-

ming algorithm, that is, the sequential quadratic programming (SQP) algorithm to

solve the outer problem. They differentiate through an LP to compute the gradients

of the model coefficients. Chapter 4 studies 4 different approaches for computing the

gradients, and a closed-form approach called direct shows performance superiority

in runtime. Thus, this is the method we employ here.

5.5 Mathematical Equivalence

In this section, we analyze the three single-level models: Model (5.2), (5.3) and (5.6),

and show that they are mathematically equivalent when Assumption 5.1 is satisfied.

We state this formally in Theorem 5.1 and 5.2 where we provide our definition of

mathematical equivalence.

Theorem 5.1 Given a parametric LP with the form of Model (5.1) and a set of

noise-free observations {(ui,x
obs
i )}i∈I, if Assumption 5.1 is satisfied, a solution is

feasible for Model (5.6) if and only if it is optimal for Model (5.2).

Theorem 5.2 Given a parametric LP with the form of Model (5.1) and a set of

noise-free observations {(ui,x
obs
i )}i∈I, if Assumption 5.1 is satisfied, a solution is

feasible for Model (5.6) if and only if it is optimal for Model (5.3).

5.5.1 Proof of Theorem 5.1

Here, we present the proof for Theorem 1.

Proof Firstly, we present the proof of the forward direction, i.e., a feasible solution

of Model (5.6) is optimal for Model (5.2). If Assumption 5.1 is satisfied, we know that

there exists a feasible solution { ŵ, β̂ij, γ̂ik, j ∈ Ji, k ∈ Ki, i ∈ I } to Model (5.6),

106



and we have the following equations.

c(ui, ŵ) =
∑
j∈Ji

−β̂ijaij +
∑
k∈Ki

−γikgik, i ∈ I (5.10a)

β̂ij ≥ 0, j ∈ J ′
i , i ∈ I (5.10b)

β̂ij = 0, j ∈ Ji \ J ′
i , i ∈ I (5.10c)

γ̂ij ∈ R, k ∈ Ki, i ∈ I (5.10d)

ŵ ∈ W (5.10e)

Combining the equation (5.10b) - (5.10c) and the definition of J ′
i = {j ∈ Ji, i ∈

I | aijx
obs
i − bij = 0}, i ∈ I, we know the following:




if aijx
obs
i − bij < 0, then β̂ij = 0, j ∈ Ji \ J ′

i

if aijx
obs
i − bij = 0, then β̂ij ≥ 0, j ∈ J ′

i


 , i ∈ I

====⇒ β̂ij(aijx
obs
i − bij) = 0, j ∈ Ji, i ∈ I (5.11)

Let β̂i =

[
β̂ij

]
j∈Ji

, γ̂i =

[
−γ̂ik

]
k∈Ki

, i ∈ I, we can rewrite the equation (5.10a)

and equation (5.11) in the matrix form below.

0 = ci(ui,w) +A(ui)
T β̂i +G(ui)

T γ̂i, i ∈ I (5.12)

0 = diag(β̂i)(A(ui)x
obs
i − b(ui)), i ∈ I (5.13)

We make the following observations. 1). equations (5.12) and (5.13) are equivalent

to the constraints (5.2b) and (5.2c) with rcomp
i = 0, rstat

i = 0, i ∈ I; 2). the objective

value 1
N

∑N
i ( ‖rstat

i ‖22 + ‖rcomp
i ‖22 ) = 0; 3). the solution { ŵ, β̂ij, γ̂ik, j ∈ Ji, k ∈

Ki, i ∈ I } satisfies the constraints (5.2d) and (5.2e).

In summary, { ŵ, β̂ij, γ̂ik, r
comp
i = 0, rstat

i = 0, j ∈ Ji, k ∈ Ki, i ∈ I} is an
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optimal solution of Model (5.2) since it is feasible for Model (5.2) and the corresponding

objective value equals the lower bound of the objective function (recall that, Model

(5.2) has a quadratic objective function whose minimum value is zero).

Secondly, we present the proof of the reverse direction. That is, an optimal solution

of Model (5.2) is also feasible for Model (5.6). Let {λ̂ij, ν̂ik, ŵ, r̂stat
i , r̂comp

i , j ∈
Ji, k ∈ K i ∈ I} be an optimal solution of Model (5.2). Since all observations are

noise-free, we know that 1). r̂stat
i = 0, r̂comp

i = 0, i ∈ I (recall that Model (5.2) has

a quadratic objective function whose minimum value is zero); 2). the solution must

satisfy all constraints in Model (5.2).

Since r̂comp
i = 0, i ∈ I, we can rewrite constraint (5.2c) as the follows:

0 = λ̂ij (A(ui)x
obs
i − b(ui) ), j ∈ Ji, i ∈ I

====⇒




if aijx
obs
i − bij < 0, then λ̂ij = 0

if aijx
obs
i − bij = 0, then λ̂ij ≥ 0


 , j ∈ Ji, i ∈ I

Given the definition of the index set of active constraints J ′
i = {j ∈ Ji, i ∈

I | aijx
obs
i − bij = 0}, i ∈ I, we can rewrite the equations above as the following:



λ̂ij = 0, j ∈ Ji \ J ′

i

λ̂ij ≥ 0, j ∈ J ′
i


 , i ∈ I (5.14)

Since rstat
i = 0, we can simply constraint (5.2b) below:

c(ui,w) =
∑
j∈Ji

−λ̂ijaij +
∑
k∈Ki

−ν̂ijgij, i ∈ I (5.15)

Combining equation (5.14), (5.15) and constraints (5.2e), we obtain the following
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system of equations.




c(ui,w) =
∑
j∈Ji

−λ̂ijaij +
∑
k∈Ki

−ν̂ikgik, i ∈ I

λ̂ij = 0, j ∈ Ji \ J ′
i , i ∈ I

λ̂ij ≥ 0, j ∈ J ′
i , i ∈ I

ν̂ik ∈ R, k ∈ Ki, i ∈ I

ŵ ∈ W




(5.16)

As shown in equation (5.16), it is obvious that {λ̂ij, ν̂ik, ŵ, r̂stat
i , r̂comp

i , j ∈
Ji, k ∈ K i ∈ I} satisfies the constraints in Model (5.6) (see the definition of

Fw(X obs)).

5.5.2 Proof of Theorem 5.2

Proof Firstly, we present the proof of the forward direction. That is, a feasible

solution of Model (5.6) is optimal for Model (5.3). If Assumption 5.1 is satisfied, we

know that there exists a feasible solution { ŵ, β̂ij, γ̂ik, j ∈ Ji, k ∈ Ki, i ∈ I } to

Model (5.6), and we have the same system of equations as (5.10a) - (5.10e).

We multiple both sides of equation (5.10a) with xobs
i , and obtain the following

equation.

c(ui,w)xobs
i =

∑
j∈J ′

i

−β̂ijaijx
obs
i +

∑
k∈K

−γ̂ik gikx
obs
i︸ ︷︷ ︸

= hij

, i ∈ I (5.17)

Combining the equation (5.10b) - (5.10d) and the definition of J ′
i = {j ∈ Ji, i ∈
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I | aijx
obs
i − bij = 0}, i ∈ I, we know the following:




if aijx
obs
i − bij < 0, then β̂ij = 0, j ∈ Ji \ J ′

i

if aijx
obs
i − bij = 0, then β̂ij ≥ 0, j ∈ J ′

i


 , i ∈ I

====⇒ β̂ij(aijx
obs
i ) = β̂ijbij, j ∈ Ji, i ∈ I

Therefore, equation (5.17) can be written as the following:

c(ui,w)xobs
i =

∑
j∈J ′

i

−β̂ijbij +
∑
k∈K

−γ̂ikhij, i ∈ I (5.18)

Let β̂i =

[
−β̂ij

]
j∈Ji

, γ̂i =

[
−γ̂ik

]
k∈K

, i ∈ I, we can rewrite the equation (5.10a)

and (5.18) in the matrix form below.

ci(ui,w) = A(ui)
T β̂i +G(ui)

T γ̂i, i ∈ I (5.19a)

ci(ui,w)xobs
i = b(ui)

T β̂i + h(ui)
T γ̂i, i ∈ I (5.19b)

We make the following observations. 1). equations (5.19a) and (5.19b) are

equivalent to the constraints (5.3b) - (5.3c) with εi = 0, i ∈ I; 2). the corresponding

objective value 1
N

∑N
i |εi|2 = 0; 3). { ŵ, β̂ij, γ̂ik, j ∈ Ji, k ∈ Ki, i ∈ I } satisfies the

constraints (5.3d) and (5.3e).

In summary, { ŵ, β̂ij, γ̂ik, εi = 0, j ∈ Ji, k ∈ Ki, i ∈ I} is an optimal solution

of Model (5.3) since it is feasible for Model (5.3) and the corresponding objective

value equals the lower bound of the objective function (recall that, Model (5.3) has a

quadratic objective function (i.e., eq. (5.3a) ) whose minimum value is zero)).

Secondly, we present the proof of the reverse direction. That is, an optimal solution

of Model (5.3) is also feasible for Model (5.6). Let {λ̂ij, ν̂ik, ŵ, ε̂i, k ∈ K i ∈ I} be
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an optimal solution of Model (5.3). Since all observations are noise-free, we know

that 1). ε̂i = 0, i ∈ I (recall that Model (5.3) has a quadratic objective function

whose minimum value is zero); 2). the solution satisfies all constraints in Model (5.3).

We substitute {λ̂ij, ν̂ik, ŵ, εi, k ∈ K i ∈ I} into the constraints (5.3b) - (5.3e), and

obtain the following euqations.

c(ui,w) =
∑
j∈Ji

λ̂ijaij +
∑
k∈Ki

+ν̂ikgik, i ∈ I (5.20a)

c(ui,w)xobs
i =

∑
j∈Ji

λ̂ijbij +
∑
k∈Ki

+ν̂ikhik, i ∈ I (5.20b)

λ̂ij ≤ 0, j ∈ Ji, i ∈ I (5.20c)

ŵ ∈ W (5.20d)

We substitute equation (5.20a) into equation (5.20b), and then obtain the follows:

∑
j∈Ji

λ̂ijaijx
obs
i +

∑
k∈Ki

+ν̂ikgikx
obs
i =

∑
j∈Ji

λ̂ijbij +
∑
k∈Ki

+ν̂ikhik, i ∈ I

====⇒
∑
j∈Ji

λ̂ij(aijx
obs
i − bij) +

∑
k∈Ki

+ ν̂ik(gikx
obs
i − hik)︸ ︷︷ ︸
=0

= 0, i ∈ I

====⇒
∑
j∈Ji

λ̂ij(aijx
obs
i − bij) = 0

Since aijx
obs
i − bij ≤ 0, λ̂ij ≤ 0, j ∈ Ji, i ∈ I (i.e., primal LP inequality

constraints), we rewrite the equation above as the follows:

λ̂ij(aijx
obs
i − bij) = 0, j ∈ Ji, i ∈ I

====⇒




if aijx
obs
i − bij < 0, then λ̂ij = 0

if aijx
obs
i − bij = 0, then λ̂ij ≤ 0


 , j ∈ Ji, i ∈ I

Given the definition of the index set of active constraints J ′
i = {j ∈ Ji, i ∈
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I | aijx
obs
i − bij = 0}, i ∈ I, we can rewrite the equations above as the following:



λ̂ij = 0, j ∈ Ji \ J ′

i

λ̂ij ≤ 0, j ∈ J ′
i


 , i ∈ I (5.21)

Let θij = −λij, j ∈ Ji, i ∈ I, we can rewrite equation (5.20a) - (5.20d) as follows:




c(ui,w) =
∑
j∈Ji

−θ̂ijaij +
∑
k∈Ki

−ν̂ikgik, i ∈ I

θ̂ij = 0, j ∈ Ji \ J ′
i , i ∈ I

θ̂ij ≥ 0, j ∈ J ′
i , i ∈ I

γ̂ik ∈ R, k ∈ Ki, i ∈ I

ŵ ∈ W




(5.22)

As shown in equation (5.22), it is obvious that {λ̂ij, ν̂ik, ŵ, ε̂i, k ∈ K i ∈ I}
satisfies the constraints in Model (5.6).

5.6 Experimental Results

We test all four formulations presented in Section 5.4 on a range of synthetic parametric

LPs and parametric multi-commodity flow problem instances. For each instance, we

generate 20 pairs of (u,xobs
i ) as training data.

We solve Model (5.2), (5.3) and (5.6) using CPLEX Optimization Studio 12.10.

with the following configuration: use barrier method in CPLEX; use a single core; set

runtime limit as 30s. We adapt the gradient algorithm from Chapter 4 to lean the

objective only, which is then used for solving Model (5.9). We denote this gradient

method as GradAlgo. In particular, we use the following algorithm configuration:

� = AOE =
∑N

i=1
1
N
| c(u,w)(xobs − x∗) | and gradient_method = direct. The
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GradAlgo also uses PyTorch v1.6 nightly build and SciPy v1.4.1 (for SQP algorithm).

We code the complete experiment in Python 3.7.9., and we run the experiment on an

Intel Core i7 with 16GB RAM.

5.6.1 Instance Generation

Synthetic Parametric Linear Program We generate a range of synthetic

parametric LP instances following the instance generation procedure from Chapter

3 , and introduce a linear function of two parameters w1, w2 and feature u to the

objective, i.e., ca(w1, w2, u) = cbase
a + w1 + w2u, where cbase

a , a = 1, . . . D are

known constants. We generate 100 instances for each of the following six problem

sizes: D = 2, M1 = {4, 8, 16} and D = 10, M1 = {20, 36, 80}. Since the cost vector

is linear with respect to w1, w2, Model (5.2) and (5.3) are quadratic programming

models with linear constraints and quadratic objective functions. Correspondingly,

(5.6) is a feasibility problem with linear constraints.

Multi-Commodity Flow (MCF) We follow the instance generation procedure

in Chapter 4, and we use a slightly different parametric function for the arc cost,

ca(t, la, pa) = la + w1pa + w2la(sin(2π(t+ la)) + 1) based on global feature t (time

of day) and arc-specific features la (length) and pa (toll price). Since the periodic

term sin(2π(t+ la)) does not depend on the parameter w1, w2, the arc cost function

ca(t, la, pa) is a linear function with respect to w1, w2. Model (5.2) and (5.3) are

quadratic programming models with linear constraints and quadratic objective function.

Correspondingly, (5.6) is a feasibility problem with linear constraints.
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5.6.2 Evaluating Prediction Accuracy

The ultimate goal of IO is to use the learned FOP models under novel conditions and

then produce optimal solutions for assisting real-life decision-making. Therefore, it is

important to evaluate the performance of the learned models. In particular, we use

two loss functions which are the absolute objective error (AOE) and squared decision

error (SDE) from Chapter 4.

AOE(u,w) =
N∑
i=1

1

N
| c(u,w)T (xobs

i − x∗
i ) |

SDE(u,w) =
N∑
i=1

1

N
‖ (xobs

i − x∗
i ) ‖22

where, x∗
i ∈ argminPLP(ui,w)

AOE captures the error in the objective space and SDE captures the error in the

decision space. The complete results for PLP instances with D = 10, M1 = 80 is

presented in Figure 5.2, and the complete result for MCF instances is presented in

Figure 5.3. Note, the y-axis represent the log-scaled loss value. (The complete results

for other PLP instances are presented in the Appendix.)

Evaluate the learned model on training data As described in Section 5.6, we

have have N = 20 training data for each instance. The training data are pairs of ob-

servable feature utrain
i and observed solutions xobs

i . Correspondingly, the predictions x∗
i

are the optimal solutions of the learned model (i.e., x∗
i ∈ argminPLP(utrain

i ,wtru), i =

1, . . . , N). We compute both AOE(utrain
i ,wlrn) and SDE(utrain

i ,wlrn) loss on the

training data.

The main observations are as follows. Although Model (5.2), (5.3) and (5.6)

have different objective functions, we notice that they all achieved effectively zero
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(i) Evaluate the loss of the learned PLP model on training data

(ii) Evaluate loss of the learned PLP model on testing data.

Figure 5.2: Experiment results on 100 random parametric linear program instances
with D = 10, M1 = 80.
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(i) Evaluate the loss of the learned PLP model on training data

(ii) Evaluate loss of the learned PLP model on testing data.

Figure 5.3: Experiment results on 100 random instances of minimum cost multi-
commodity flow problem on Nguyen-Dupuis Graph (Nguyen and Dupuis, 1984b)
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AOE loss. This suggests that all three models are effectively learning a PLP model

that minimizes the AOE loss. This observation is consistent with our expectation.

When AOE loss is zero, we know that the learned cost vector makes the observed

solution optimal. Consequently, the KKT conditions and strong duality are satisfied.

Although GradAlgo is a general gradient algorithm which could be trapped in local

optima, we observed that it successfully solves Model (5.9) on all PLP and MCF

instances. This is because the cost vector parameterization is relatively simple (recall

that c(u,w) is a linear function of the unknown parameter w). Lastly, we noticed

that, Model (5.2), (5.3) have effectively zero SDE loss on majority of the PLP and

MCF instances. Model(5.6) and (5.9) have relatively worse performance in SDE loss.

Evaluate the learned model on testing data For each instance, we have a set

of held-out testing data, i.e., N = 20 pairs of observable feature utest
i and observed

solutions xobs
i . Consequently, we compute the the predictions x∗

i which are the optimal

solutions of the learned model (i.e., x∗
i ∈ argminPLP(utest

i ,wtru), i = 1, . . . , N). We

then compute both AOE(utest
i ,wtru) and SDE(utest

i ,wtru) on the testing data. Note

that we use the true cost vector ctru
i = c(ui,w

tru) to evaluate the AOE loss on the

testing data (see discussion in Section 4.5 of Chapter 4).

The main observations are as follows. As expected, when evaluating on testing

data, the performances (both AOE and SDE) of all four methods decline. This

suggests the challenge of generalization in the IO problem. Same as what we observed

from the model evaluation on training data, all four methods have worse SDE loss. In

a parametirc LP instance, even a small error in the learned cost vector could change

the resulting optimal solution. Depending on the feasible region which is specified

by ui, even if the prediction is on the same hyperplane with the observed solution

(e.g., two vertices on one constraint in a 2D instance), their distance in x space (which
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is what SDE effectively measures) could be very large. See more discussion in the

Appendix where we observe a large SDE loss on PLP with D = 2. Lastly, we see that

LP models learned from Model (5.2) and (5.3) have similarly better AOE and SDE

loss on testing data. This observation is consistent with the loss values on training

data.

As shown in the computational results above, we conclude our observations below.

The PLP model learned using the Model (5.2) and (5.3) have the best performance

on both training and testing data.

5.6.3 Evaluating the Runtime

We compare the runtime of different methods for solving each IO instance completely.

For Model (5.2) and (5.3), we record the CPLEX runtime. Constructing the Model (5.6)

requires a pre-processing process to compute all active constraints. For a fair compari-

son, we record the runtime for pre-processing plus the CPLEX runtime for Model (5.6).

Synthetic Parametric Linear Program We present the complete result of run-

time in Table 5.1. The main observations are as follows. Firstly, all four methods

successfully solved all PLP instances completely. Secondly, all three single-level models

solved with CPLEX outperform the the bilevel model solved with GradAlgo in runtime.

Thirdly, among the three single-level models, Model (5.6) has the shortest runtime

since it has the smallest number of variables and constraints (we discuss this in Section

5.7 in more detail). Lastly, we observe a significantly larger standard deviation in the

runtime of solving bilevel model. The main reason causing this is that, GradAlgo is

a gradient algorithm whose performance is sensitive to its “configurations” such as

random initialization of the parameters w.
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Ins. Size

(D,M1)
Stats. Model (5.2) Model (5.3) Model (5.6) Model (5.9)

(2, 4)

Mean 0.00107 0.00127 0.00092 0.04760

Median 0.00105 0.00128 0.00090 0.02740

Std. 0.00013 0.00013 0.00008 0.13100

(2, 8)

Mean 0.00177 0.00131 0.00089 0.09750

Median 0.00155 0.00131 0.00088 0.06000

Std. 0.00214 0.00007 0.00005 0.18700

(2, 16)

Mean 0.00295 0.00163 0.00083 0.13800

Median 0.00273 0.00163 0.00083 0.09780

Std. 0.00201 0.00008 0.00002 0.18900

(10, 20)

Mean 0.00483 0.00343 0.00345 0.33100

Median 0.00480 0.00336 0.00342 0.18100

Std. 0.00026 0.00031 0.00017 0.50700

(10, 36)

Mean 0.00945 0.00541 0.00346 0.33900

Median 0.00943 0.00541 0.00344 0.24900

Std. 0.00037 0.00044 0.00015 0.44300

(10, 80)

Mean 0.02230 0.01710 0.00354 0.71100

Median 0.02210 0.01660 0.00346 0.55400

Std. 0.00134 0.00287 0.00026 0.81300

Table 5.1: Summary of Runtime (in s) of Synthetic PLP experiment.

Multi-Commodity Flow (MCF) We present the complete result of runtime in

Table 5.2. The main observations are consistent with the parametric LP experiment.
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Although MCF instances on the Nguyen-Dupuis graph is larger than the synthetic

parametric LP instances, three single-level models solved in CPLEX show similar

runtime. Meanwhile, we observe that runtime for solving Model (5.9) increases

significantly. This shows that GradAlgo’s performance is sensitive to the size of the

FOP.

Graph Stats. Model (5.2) Model (5.3) Model (5.6) Model (5.9)

Nguyen-

Dupuis

graph

Mean 0.01730 0.00775 0.00572 1.19000

Median 0.01630 0.00732 0.00489 0.87100

Std. 0.01030 0.00433 0.00597 1.14000

Table 5.2: Summary of Runtime (in s) of MCF experiment

Similarly, all three single-level models solved with CPLEX are faster than the

bilevel model solved with GradAlgo. For example, the average runtime of Model

(5.6), (5.3) and (5.2) are approximately ∼ 200, ∼ 150, ∼ 60 times faster than the

average runtime of Model (5.9) on the MCF instances. We notice that the absolute

differences in runtime are relatively small since the IO instances tested in this Chapter

are relatively small (e.g., small D, M1, M2). However, we believe that this performance

advantage in runtime will become more significant when we scale up the IO benchmark

instances, especially when we implement IO for solving real-life problems. Consider a

routing problem on the network of roads in Montreal, then solving both FOP and IO

models become challenging. In this case, the runtime performance advantage would

be very valuable.

Although Model (5.6) has the shortest average runtime on all instances, we would

like to highlight that the corresponding learned PLP model from Model (5.6) has the
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worst prediction accuracy on the testing data. This demonstrates a performance trade-

off between the runtime of solving and the prediction accuracy. Such trade-offs must be

taken into consideration when implementing IO in real-life applications. Experimental

results suggest that Model (5.3) is the favourable method for soling ILOP-obj problems.

However, to establish guideline for using different different formulations in real-world

IO applications, experiments on larger instances is necessary. We leave this to the

future work.

5.7 Discussion

Model Complexity Here, we discuss the model complexity of four mathematical

models presented in Section 5.4, and summarize their objective function type, number

of decision variables and number of constraints in Table 5.3. Among the three single-

level models, we see that Model (5.2) has the largest number of decision variables

and constraints, and Model (5.6) has the least of number of decision variables and

constraints. This is consistent with what we see in Table 5.1 and 5.2 that Model (5.2)

has the longest runtime and Model (5.6) has the shortest runtime.

Model (5.9) is a bilevel optimization model. To our knowledge, there exist no

suitable bilevel optimization solver, and thus, we solve it with GradAlgo which is

directly based on Chapter 4. We observe that, although Model (5.9) has significantly

less number of decision variables than the three single-level models, it has the longest

runtime. There are two main reasons causing this. Firstly, GradAlgo solves a

parametric linear program repeatedly to compute the gradients. This process could be

computationally expensive. Secondly, GradAlgo uses the homogeneous interior-point

method (Andersen and Andersen, 2000) for solving the LPs, and its performance in

solving an LP is not comparable with commercial solvers like CPLEX.
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Model obj. func. type num. of variables num. of constraints

Model (5.2) Quadratic

w : |w|
λi : N ×M1

νi : N ×M2

rstat
i : N ×D

rcomp
i : N ×M1

constraint (5.2b): N ×D

constraint (5.2c): N ×M1

Model (5.3) Quadratic

w : |w|
λi : N ×M1

νi : N ×M2

εi : N

constraint (5.3b) : N ×D

constraint (5.3c) : N

Model (5.6) NA

w : |w|

βij :
N∑
i=1

|J ′
i |

γij : N ×M2

constraint (5.6b): N ×D

Model (5.9) Convex w : |w| constraint (5.9b): N LPs

Table 5.3: Summary of objective function type, number of variables and number of
constraints in Model (5.2), (5.3), (5.6) and (5.9)

5.8 Conclusion

This paper studies the inverse linear program that aims to learn the unknown parame-

ters in the objective of a parametric LP from multiple noise-free observations. We

propose three single-level optimization models which are extensions of the literature:

KKT-based formulation (i.e., Model (5.2)); strong duality-based formulation (i.e.,

Model (5.3)) and inverse feasible region-based formulation (i.e., Model (5.6)). We show

that the three single-level optimization models are mathematically equivalent under

certain assumptions. We also propose one bilevel optimization model (i.e., Model
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(5.9)) which is directly based on Chapter 4. We solve the single-level models using

CPLEX, and solve the bilevel model using a gradient algorithm adapted from Chapter

4. We test their performance on synthetic parametric LP and multi-commodity flow

problem instances. We observe that all four methods successfully solved all experiment

instances. Additionally, three single-level models solved with the CPLEX outperform

the bilevel model solved with the gradient algorithm in runtime. Furthermore, we

show that the strong duality-based and KKT-based models produce better predictions

on test data, empirically.

5.9 Appendix

Complete Loss Results of Synthetic PLP Instances Here, we present the

results of model evalution for PLP instances with (D = 2, M1 = 4), (D = 2, M1 = 8),

(D = 2, M1 = 16), (D = 10, M1 = 20) and (D = 10, M1 = 36).

To better visualize the AOE and SDE loss in the boxplot figures, we process

the loss value. Firstly, when the learned PLP model is unbounded, we return an

arbitrarily large loss of 100. Secondly, we specify a loss range loss [10−5, 102], value

outside of the range are clipped to this range. In consequence, the two red crosses

along the top edge of the AOE loss boxplot in Figure (5.4ii) represent two instances

that the learned PLP model from Model (5.6) are unbounded. One might notice that

the corresponding SDE loss boxplot have five red crosses along the top edge (5.4ii).

Two of those markers represent instances with the unbounded PLP models, and the

other three markers represent learned PLP models with large SDE loss. This large

SDE loss is more likely to occur in the PLP instances with small D. The main reason

causing this is that, when there is a small number of constraints, the parametric LP

is more likely to have an “ill-shaped” feasible region (e.g., skinny triangle), and a

low quality learned cost vector could lead to a prediction that is far away from the
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observed solutions; correspondingly, the SDE loss is large.

(i) Evaluate the loss of the learned PLP model on training data

(ii) Evaluate loss of the learned PLP model on testing data.

Figure 5.4: Experiment results on 100 random parametric linear program instances
with D = 2, M1 = 4.
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(i) Evaluate the loss of the learned PLP model on training data

(ii) Evaluate loss of the learned PLP model on testing data.

Figure 5.5: Experiment results on 100 random parametric linear program instances
with D = 2, M1 = 8.
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(i) Evaluate the loss of the learned PLP model on training data

(ii) Evaluate loss of the learned PLP model on testing data.

Figure 5.6: Experiment results on 100 random parametric linear program instances
with D = 2, M1 = 16.
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(i) Evaluate the loss of the learned PLP model on training data

(ii) Evaluate loss of the learned PLP model on testing data.

Figure 5.7: Experiment results on 100 random parametric linear program instances
with D = 10, M1 = 20.
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(i) Evaluate the loss of the learned PLP model on training data

(ii) Evaluate loss of the learned PLP model on testing data.

Figure 5.8: Experiment results on 100 random parametric linear program instances
with D = 10, M1 = 36.
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Chapter 6

Conclusion

6.1 Future work

Active inverse optimization As discussed in both Chapter 4 and 5, generalization

is challenging in inverse linear optimization problems. Depending on the selection of

training data, one could easily under-specify the learned model but still achieve zero

loss. To address this challenge, we believe a better strategy for sampling training

data is needed. To our knowledge, no work has been done in the literature to

address this issue. We believe that active learning techniques are useful in solving

this problem. The goal here is to actively sample training data near the "deci-

sion boundary" and include them in the training process. See Figure 4.6 for an example.

Generalization Prior to this dissertation, the definition of noise-free and noisy

observations in the literature is developed under non-parametric problems. It depends

on the location of the target solutions in the primal feasible region. As we explore in

this dissertation, in parametric problems, one needs to define a suitable hypothesis

space. However, there might be a mismatch between the hypothesis space and reality,

leading to noise in the learning process. We believe the current definition of noise-free
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and noisy observations should be extended to include "noise" in the hypothesis

space. Consequently, we are interested in generalizing existing formulations to noisy

observations. For instance, in Chapter 5 we study the ILOP-obj problem with

noise-free observations, and we show that three formulations are mathematically

equivalent when the parametric inverse feasible region is non-empty. It is important

to extend this analysis to noisy observations.

Improvement on the gradient-based algorithms In Chapter 4, we develop

a general gradient-based algorithm and show that it can successfully solve many

randomly generated IO benchmark instances. Below, we highlight a few aspects to

improve the performance of our gradient-based algorithm. First, our LP solver is a

preliminary implementation of the homogeneous interior-point method (Andersen

and Andersen, 2000). There are many features (e.g., resolving) that can be added

to improve the efficiency and stability of our homogeneous IPM. Secondly, the

current implementation of our gradient-based algorithm does not handle “unbounded”

parameters. When the parameter values become too large (i.e., w ≥ 1e5), we would

terminate the training and return the best parameters that have been found so far.

We think techniques such as L1 or L2 regularization may applicable and can help

handle unbounded parameters during the training.

New IO benchmark instances Although we propose procedures to generate

new benchmark instances, there are some limitations. The generation of synthetic

parametric LP largely depends on the use of scipy.spatial.convexhull package QHull

Library (2018) function. LP is intensively studied with many different benchmark

instances proposed in the literature. With the rich literature in this, we aim to

develop a general process to convert LP benchmark instances to ILOP benchmark
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instances.

Statistical consistency Aswani et al. (2018) discussed the importance of statistical

consistency in IO problem. One important concept they emphasized is the estimation

consistency. That is, the ability to learn the true values of the parameters when given

the true form of parameterization. Knowing the true parameter values would allow

one to study the forward optimization problem under different scenarios to understand

how different values of u would influence optimal solutions. In this thesis, we focused

on achieving accurate predictions under novel conditions (i.e., u), not recovering the

true parameter values. We would like to extend the methods proposed in this thesis

to include the analysis of statistic consistency.

6.2 Conclusion

This dissertation studies the general form of inverse linear optimization problems,

that is, learning a linear program whose unknown model coefficients may or may not

depend on exogenous parameters.

In Chapter 3, we develop a gradient-based algorithm, called deep inverse optimiza-

tion by casting the IO problem as a form of deep learning. We implement the Barrier

interior-point method to solve a linear program and then use backpropagation to com-

pute the gradients to update the parameters. We establish a set of new IO benchmark

instances, and show that our algorithm can learn the coefficients determining the

cost vector and the constraints, independently or jointly, for both non-parametric and

parametric linear programs, starting from one or multiple observations.

In Chapter 4, we formulate the inverse linear optimization problem as a bilevel

optimization model. We introduce a set of outer problem constraints to ensure that the

observed solutions remain feasible with respect to the learned models. We develop a
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gradient-based algorithm and implement several methods for computing the gradients,

including one closed-form expression. We show good performance of our gradient-based

algorithm on synthetic parametric LP and multi-commodity flow problem instances.

We also show that our closed-form expression is orders of magnitude faster than other

methods for computing the gradients.

Finally, Chapter 5 focuses on the special case of learning the objective only.

We present four different methods, including three mathematical formulations and

one general gradient-based algorithm. Experimental results show that all three

mathematical models solved in CPLEX are faster than the general gradient algorithm.

Although the inverse feasible region-based model has the shortest runtime, we highlight

that PLP models learned from a KKT-based and a strong duality-based models produce

better predictions on testing data.

In conclusion, this dissertation studies the inverse linear optimization problem

and develops general gradient-based algorithms that can be flexibly applied to solving

various of IO problems. This dissertation also extends and unifies several optimization

models for the special case of learning the objective function only.

Beyond the contributions mentioned above, this dissertation will enable more

practical applications of IO and also serve as a step toward automating the workflow

of optimization model development.
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