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Abstract

Contamination in Cryptographic Protocols

Nan Yang, Ph.D.

Concordia University, 2021

We discuss a foundational issue in multi-prover interactive proofs (MIP) which we call “contamina-

tion” by the verifier. We propose a model which accounts for, and controls, verifier contamination,

and show that this model does not lose expressive power. A new characterization of zero-knowledge

naturally follows. We show the usefulness of this model by constructing a practical MIP for NP

where the provers are spatially separated. Finally, we relate our model to the practical problem of

e-voting by constructing a functional voter roster based on distributed trust.

iii



Acknowledgments

I would like to thank my mom, Renato, all of my friends, and every teacher I ever had.

iv



Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 A Blind Spot in Interactive Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 General Preliminaries 5

2.1 Probability and Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Interactive Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Interactive Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Single-Prover Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Multi-Prover Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Complexity of Turing Machines and Circuits . . . . . . . . . . . . . . . . . . . . 11

2.9 Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.11 Non-Locality, No-Signaling, and Quantum Non-Local . . . . . . . . . . . . . . . 14

3 Contamination in Interactive Proofs 18

v



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 The Standard MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Locality-Explicit MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Zero-Knowledge LE-MIPs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 The Power of LE-MIPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 A Local, Zero-Knowledge LE-MIP for NEXP . . . . . . . . . . . . . . . . . . . . 30

3.5.1 The Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Proofs of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.3 Entangled Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Zero-Knowledge and Non-Locality . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Minimal Simulator Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Advantage Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Succinct Zero-Knowledge under Relativistic Assumptions 44

4.1 Relativistic Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 The Hidden Cost of Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Implementations Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Non-local Games and Relativistic Multi-Prover Interactive Proofs . . . . . 53

4.3.3 Multi-Prover Commitments with Implicit Unveiling . . . . . . . . . . . . 54

4.4 Classical Two-Prover Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Distribution of questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



4.4.2 A Variant Over the Two-Prover Protocol of Cleve et al. . . . . . . . . . . . 58

4.5 Perfect Zero-Knowledge Two-Prover Protocol . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Distribution of questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Three-Prover Protocol Sound Against Entangled Provers . . . . . . . . . . . . . . 63

4.6.1 Distribution of questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.2 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.3 Proof of Perfect Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Distributed Trust and Non-Locality 72

5.1 Trading (Non-)Locality for (Dis-)Trust . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Framing our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Protocol Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Verifiable Secret-Sharing and Commitment . . . . . . . . . . . . . . . . . 80

5.5.2 Eperio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Ballots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Eperio Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Eperio Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Our Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Proof of Security (Sketch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7.2 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusions 90

Bibliography 90

vii



List of Figures

Figure 3.1 A PR-box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2 Locality-Explicit MIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.1 Space-Time diagrams of Chailloux and Leverrier (2017)’s ZK-MIP⋆ for NP.

(45◦ diagonals are the speed of light.) . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.2 Space-Time diagram of our ZK-MIP⋆ for NP. (45◦ diagonals are the speed

of light.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.3 The 7 ways to unveil the colors of at most 3 vertices in Π
(3)
qnl. . . . . . . . . 70

Figure 5.1 A Pret-A-Voter ballot with 3 candidates. . . . . . . . . . . . . . . . . . . . 83

Figure 5.2 Our variant of Eperio using VSS. . . . . . . . . . . . . . . . . . . . . . . . 86

viii



List of Tables

Table 5.1 A comparison of computational and collusion security assumptions. . . . . . 75

ix



Chapter 1

Introduction

1.1 A Blind Spot in Interactive Proofs

An interactive proof is a dialog between two parties: an efficient verifier and an all-powerful but

possibly malicious prover [Babai (1985); Goldwasser, Micali, and Rackoff (1989)]. The prover

is attempting to convince the verifier of some computational claim (such as “this graph is not 3-

colorable”). If the claim is true, the prover should succeed almost all the time; if not, the prover

should fail almost all the time. This is a generalization of the complexity class NP, except instead of

simply being handed a polynomial-sized witness, the verifier is allowed to interact with the prover.

The multi-prover interactive proof (MIP) model was introduced in Ben-Or, Goldwasser, Kilian,

and Wigderson (1988). This model consists of multiple, “non-communicating” provers talking to

a single verifier. Like a detective interrogating multiple suspects in isolation, the verfier is able to

cross-examine the provers and, as a result, is able to correctly accept more computationally difficult

claims compared to the single-prover model.

We will call one-verifier-multi-provers the standard MIP model. The standard MIP model is the one

which is used in existing literature on multi-prover interactive proofs. However, we believe that it

has a glaring disadvantage. We invite the readers to consider the following ridiculous two-prover

1



interactive proof:

Protocol 1.1. ( Ridiculous Interactive Proof )

(1) Verifier sends Prover 1 a random string S.

(2) Prover 1 replies with a string T .

(3) Verifier sends Prover 2 the string T .

(4) Prover 2 replies with a string S′.

(5) Verifier accepts if S = S′.

Suppose that we claim the following ridiculous theorem:

Theorem 1.1. (Ridiculous Theorem) The probability that the verifier accepts in the Ridiculous

Interactive Proof is exponentially small.

Proof. By the definition of MIPs, the provers cannot communicate. If Prover 2 can output an S′ that

is the same as the uniformly random S that only Prover 1 knows, then they must have communicated.

Contradiction.

The reader is astute in pointing out that steps 2 and 3 of the Ridiculous Interactive Proof clearly

show that the verifier is helping the provers by relaying the very answer it is supposed to keep

secret. The “proof” of the Ridiculous Theorem is flawed: it overlooks the verifier’s cross-prover

interactions. We will call this contamination by the verifier.

There exist MIPs in which this type of verifier behavior is necessary [Ben-Or et al. (1988)]. But then

we find ourselves in a precarious situation: the verifier must contaminate for the MIP to achieve a

certain property, but it must not contaminate too much as to not break another property. Existing
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literature does not address this. Furthermore, the standard MIP model does not offer an easy way to

do so.

The theme of this thesis is contamination. Accounting for it, enforcing its negation, and exploring

the consequences of this enforcement are the problems which we will solve in this work. Specifi-

cally, we will answer the following questions:

• How do we account for contamination?

• How do we enforce non-contamination in theory?

• How do we enforce non-contamination physically?

• What are the consequences of enforcing non-contamination?

• Can the techniques we develop along the way be used in practice?

1.2 Our Contributions

In Chapter 3, we look at how the standard setup for multi-prover interactive proofs leaves an am-

biguity about verifier contamination. We re-examine the well-known result MIP = ZKMIP =

NEXP [Babai, Fortnow, and Lund (1992); Ben-Or et al. (1988); Dwork, Feige, Kilian, Naor, and

Safra (1992); Feige and Kilian (1994, 2000); Fortnow, Rompel, and Sipser (1994); Kilian (1990b)]

under a novel model which we call locality-explicit. We show that in this new model, the old re-

sults hold unambiguously. We show that as a consequence of enforcing non-contamination, we gain

a new perspective on zero-knowledge: the simulator’s advantage. This answers the questions of

accounting for contamination, and enforcing non-contamination in theory and its consequences.

In Chapter 4, we implement MIPs under the assumption of no-signaling faster-than-light. Under

this setup, commitments are expensive to initiate and maintain. We propose a new succinct protocol

for NP (in terms of simultaneous commitments sustained) and show a variant that is resistant to

entanglement. This protocol is presented in the locality-explicit form. This answers the question of

enforcing non-contamination physically.

3



Finally, in Chapter 5, we explore the (hitherto unexplored) relationship between enforcing non-

contamination, distributed trust, and the commitment protocol used in the locality-explicit model.

We construct a new type of functional voter roster which is information-theoretically secure under

the assumption of distributed trust. This answers the question of applying the techniques we have

developed in the previous chapters.
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Chapter 2

General Preliminaries

2.1 Probability and Entropy

Let S be a finite set. Let X : S → R be a function. We call S the sample space and X a discrete

random variable. We will only deal with discrete random variables in this work, so we will omit

the word ‘discrete’ from now on.

Associated with each random variable X is a probability mass function, fX : S → [0, 1] which

defines the probability that X takes on a particular value. That is fX(x) = Pr(X = x). This

function satisfies ∑︂
x∈S

fX(x) = 1.

The Shannon entropyH of a random variable describes the amount of uncertainty a random variable

contains. We define it as

H(X) = −
∑︂
x∈S

fX(x) log2 fX(x).

In this work, we will be looking at the case where S = {0, 1}n, or the entropy of bit-strings. In

the special case where n = 1, H(X) represents the amount of uncertainly we have about the value

of a binary random variable. When H(X) = 0, we know its value with certainty, whereas when
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H(X) = 1, it could be zero or one with equal probability. For example, if we use X to describe the

outcome of a coin-toss, then H(X) describes the bias of the coin, from a coin which only lands on

one side (H(X) = 0) to a perfectly fair coin (H(X) = 1) and everything in between.

2.2 Asymptotics

Definition 2.1. Let f, g : N→ R be functions. We define the following notations:

• f ∈ O(g) if there exists k,C ∈ R such that x > k ⇒ |f(x)| < C|g(x)|

• f ∈ o(g) if limx→∞ f(x)/g(x) = 0

• f ∈ Ω(g) if there exists k,C ∈ R such that x > k ⇒ f(x) > Cg(x)

• f ∈ Θ(g) if f = O(g) and f = Ω(g)

• f ∼ g if limx→∞ f(x)/g(x) = 1

• f is a negligible function if f(x) = o(1/poly(x)) for every polynomial poly

The same asymptotic notations can be defined for functions whose domain or range is a subset of R

analogously.

2.3 Interactive Turing Machines

Our main objects of study are cryptographic protocols. We will use interactive Turing machines

to model these protocols. It is a consequence of the Church-Turing thesis [Church (1936); Turing

(1937)] that any interactive protocol can be computed by a set of interactive Turing machines. We

adopt the definition of interactive Turing machines from Goldreich (2006).

Definition 2.2. An interactive Turing machine (ITM) is a Turing machine with the following tapes:

(read only) input tape, (read only) random tape, work tape, (append only, at least one) sending

communication tape(s), (read only, at least one) receiving communication tape(s), (append only)

output tape, switch tape (consisting of a single cell).
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Each ITM is associated with a bit string id, called its identity. The machine is said to be active if

the content of the switch tape is equal to its identity; otherwise, it is idle.

We will most likely not ever consider a single ITM. We will configure them into networks in order

to define cryptographic protocols.

Definition 2.3. A set of ITMs is a network if their identities are all distinct, they are pairwise

connected by sending and receiving communication tapes, and they share a single switch tape.

The joint computation of a network is a sequence of local configurations of all machines, on some

common input x. In each step of the configuration, exactly one machine is active, all others are idle.

The initial switch configuration is set to one of the machines.

If a machine halts while the switch tape is equal to its identity, then we say that the network has

halted. The outputs of all machines on that network are determined at that point.

The time complexity of a network is a function t : N → N such that on common input x, all

machines halt with t(|x|) steps. If no such function exists, then the time complexity is unbounded.

The definition from Goldreich (2006) included only a pair of ITMs. In order to study multi-prover

interactive proofs, we use an extension of its definition here.

An execution of ITMs M1, . . . ,Mk on common input x, denoted [M1 . . .Mk](x), is the final states

and outputs of all machines. When these machines are probabilistic, [M1 . . .Mk](x) will denote the

random variable, over their randomness, of their outputs and final states.

If we only care about a particular machine’s output or state, we will denote that machine’s output

and state as [M1 . . .Mk](x)|Mi . When the machine in question is clear from context, we will simply

write [M1 . . .Mk](x).

Machine Mi accepts the interactive computation on input x if it stops in state ACCEPT in the

execution [M1 . . .Mk](x). The machines jointly accept if every machine accepts.

7



2.4 Interactive Proofs

One particular kind of cryptographic protocol that will be the focus of our attention are interactive

proofs. The simplest interactive proof can be defined by the interactions between a pair of ITMs.

Chapter 3 deals with generalizations of the interactive proofs to multiple parties, so we will leave

the general definition until that point.

The following definition for (two-party) interactive proofs comes from Goldreich (2006).

Definition 2.4. A pair of interactive machines (P, V ) is called an interactive proof system for a

language L if machine V is polynomial-time and the following two conditions hold:

(1) Completeness: For every x ∈ L, Pr([P, V ](x) = ACCEPT ) ≥ 2/3

(2) Soundness: For every x /∈ L and every ITM B, Pr([B, V ](x) = ACCEPT ) ≤ 1/3

Where [A, V ](x) is V ’s acceptance state in its execution with machine A.

Multi-provers interactive proofs (MIPs) – also called multi-prover interactive protocols – are pro-

tocols involving a set of provers modeled by interactive Turing machines, each of them interacting

with an interactive probabilistic polynomial-time (PPT) Turing machine called the verifier V . Al-

though all provers may share an infinite read-only auxiliary input tape at the outset of their compu-

tation, they do not interact with each other.

Definition 2.5. Let P1, . . . , Pk be computationally unbounded interactive Turing machines and let

V be an interactive PPT Turing machine. The Pi’s share a joint, infinitely long, read-only random

tape. Each Pi interacts with V but cannot interact with Pj for any 1 ≤ j ̸= i ≤ k. We call

[P1, . . . , Pk, V ] a k-prover interactive protocol (k–prover IP).

A [P1, . . . , Pk, V ] k-prover interactive protocol is a multi-prover interactive proof system for L if it

can be used to show V that a public input x is such that x ∈ L. At the end of its computation, V

concludes x ∈ L if and only if it ends up in state ACCEPT . We restrict our attention to interactive

proof systems with perfect completeness since all our protocols have this property.
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Definition 2.6. The k–prover interactive protocol Π = (P1, . . . , Pk, V ) is said to be a k-prover

interactive proof system with perfect completeness for L if there exists a negligible function q(n)

such that the following holds:

(1) Completeness: (∀x ∈ L)
[︁
Pr

(︁
[P1, . . . , Pk, V ](x) = ACCEPT

)︁
= 1

]︁
,

(2) Soundness: (∀x /∈ L)(∀ ˜︁P1, . . . , ˜︁Pk)
[︂
Pr

(︁
[ ˜︁P1, . . . , ˜︁Pk, V ](x) = ACCEPT

)︁
≤ q(|x|)

]︂
.

The parameter q(|x|) is called the soundness error of Π.

2.5 Single-Prover Zero-Knowledge

An interactive proof (of membership) is zero-knowledge if the verifier learns “nothing” except for

the fact that “x ∈ L”. We have adopted the formal definition of zero-knowledge from Goldreich

(2006).

Definition 2.7. Let (P, V ) be an interactive proof for some language L. We say that (P, V ) is

perfect zero-knowledge if for every probabilistic polynomial-time interactive Turing machine V ∗

there exists a probabilistic polynomial-time algorithm M∗ such that for all x ∈ L and all auxiliary

inputs z ∈ {0, 1}∗.

(1) Pr[M∗(x, z) = REJECT ] ≤ 1/2.

(2) Assuming M∗(x, z) ̸= REJECT , then [P, V ∗(z)](x)|V ∗ and M∗(x, z), as random vari-

ables, are identically distributed.

We define statistical zero-knowledge and computational zero-knowledge the same way, except that

[P, V ∗(z)](x)|V ∗ and M∗(x, z) are statistically close and computationally indistinguishable, re-

spectively.
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2.6 Multi-Prover Zero-Knowledge

The zero-knowledge [Goldwasser et al. (1989)] version of MIPs were defined in Ben-Or et al.

(1988). We give the textbook version of MIP zero-knowledge for completeness. We will discuss

extensions to this definition in Chapter 3.

Definition 2.8. Let [P1, . . . , Pk, V ] be a k-prover interactive proof system for L. We say that

[P1, . . . , Pk, V ] is perfect zero-knowledge if for all PPT interactive Turing machines ˜︁V there ex-

ists a PPT machine H∗, having blackbox access to ˜︁V , such that for all x ∈ L, and for all auxiliary

inputs z ∈ {0, 1}∗, [P1, . . . , Pk, ˜︁V (z)](x)|˜︁V and H∗(x, z) are identically distsributed.

2.7 Circuits

We require circuits as an additional model of computation. The reason is that in zero-knowledge

interactive proofs, we will, most of the time, be using circuits as a way of committing the steps and

outputs of a computation (see, for example, Protocol 3.4).

A circuit is a finite simple directed acyclic graph where the edges (or wires) take on a value from

some alphabet and for every vertex there corresponds a function which takes the values of the in-

edges and outputs values for the out-edges. Vertices of in-degree zero are input gates. Vertices of

out-degree zero are output gates.

Any particular circuit can only take inputs of a fixed length since there is a fixed number of input

gates. Therefore, to represent a function whose domain might contain strings of (possibly infinitely

many) dif and only iferent lengths, we use families of circuits {Ci}i∈I , where each Ci is a circuit,

and I is an index set.

A family of circuits {Ci}i∈I is f-uniform if there exists a Turing machine M such that for all i ∈ I ,

M(i) produces an appropriately encoded description of Ci, taking less than f(i) steps.
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2.8 Complexity of Turing Machines and Circuits

Let M be a Turing machine, x be an input on which M halts. The time complexity of M on input

x is the number of steps M takes before halting. The space complexity of M on input x is the

maximum number of tape cells used before halting.

Very often, we will speak of the time and space complexities of a Turing machine as functions of

the lengths n of the input, instead of the input itself. In such cases, we call the worst case complexity

the maximum space/time used over all inputs of length n, whereas the average case complexity the

average of the space/time used over all inputs of length n.

The complexity functions of most Turing machines are not easy to compute, so we bound them

asymptotically with simpler functions.

Let C be a circuit. The circuit size of C is its number of vertices. The circuit depth is the length of

its longest directed path.

We will adopt the usual convention in deeming Turing machines of polynomial complexity and

polynomial-uniform circuits to be those that are efficient or feasible.

2.9 Complexity Classes

The following common complexity classes will be discussed in this work. They contain languages

L with the following properties.

• P – L can be accepted in polynomial-time.

• P/poly – L can be accepted by a polynomially-sized family of circuits.

• BPP – L can be accepted in probabilistic polynomial-time with an error for soundness and

completeness of at most 1/3.

• NP – Every x ∈ L has a witness wx such that {(x,wx) : x ∈ L} ∈ P, where |wx| is

polynomial in |x|.
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• co-NP – Every x /∈ L has a witness wx such that {(x,wx) : x /∈ L} ∈ P, where |wx| is

polynomial in |x|.

• PSPACE – There exists a polynomial p and a Turing machine M such that, for all x ∈ L,

M accepts x while not using more than p(|x|) cells of M ’s tape.

• EXP – L can be accepted by a Turing machine in exponential-time.

• NEXP – Every x ∈ L has a witness wx such that {(x,wx) : x ∈ L} ∈ EXP, where |wx| is

exponential in |x|.

Other complexity classes will be defined if the need arises.

2.10 Commitment Schemes

Commitment schemes are important cryptographic primitives widely used in theory and practice.

Here we give a formal definition of a commitment scheme for a single bit from two provers to one

verifier. For generalization to multiple parties, see Goldreich (2006).

Definition 2.9. A bit commitment scheme is a cryptographic protocol between a sender S and a

receiver R. The sender has a secret bit b which the receiver does not know. The protocol has two

phases, the commit phase, and the unveil phase. There is a unary security parameter λ. Let negl

be a negligible function. The protocol is subject to the following constraints:

(1) Secrecy/Hiding/Concealing: At the end of the commit phase with an honest sender, the prob-

ability that any polynomial-time receiver outputs b is < 1/2 + negl(λ).

(2) Unambiguity/Binding: Given the transcript of the commit phase and a random bit b, the prob-

ability that any polynomial-time sender can complete the unveil phase and have the receiver

output b is < 1/2 + negl(λ).

(3) Correct/Complete/Viable: If both the sender and receiver are honest, then at the end of the

unveil phase, the receiver outputs b.
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A commitment scheme with the above properties would be one with computational hiding, com-

putational binding security. It is easy to see how stronger notions of hiding and binding can be

defined.

We will encounter a special type of commitment scheme, known colloquially as the BGKW-,

CHSH-, or PR-type commitment scheme. It is between two senders (provers) and one receiver

(verifier). We define a variant here.

Definition 2.10. Statistically binding, perfectly concealing 2-prover bit-commitment protocol.

All parties agree on a security parameter k. P1 and P2 partition some of their private random tape

into k + 1-bit strings {(ci, wi)}i≤N, where ci are bits and |wi| = k.

Pre-computation phase:

• V chooses a k-bit string z uniformly at random and sends it to P2.

• P2 responds with di = wi⊕ ci ·z, for 1 ≤ i ≤ N , where N is sufficiently large (depending on

the protocol which uses this bit-commitment scheme as a sub-protocol), and ci · z are thought

of as the product between a scalar ci and a vector z, over Z2.

Commit phase:

• P1 wishes to commit bi to V as [bi] = bi ⊕ ci.

Unveil phase:

• P1 sends wi to V .

• V computes ci = 1 if di ⊕ wi = z, or ci = 0 if di ⊕ wi = 0⃗ and recovers bi = [bi] ⊕ ci. V

rejects if di ⊕ wi does not equal to either z or 0⃗.

Commitment schemes such as Pedersen’s scheme [Pedersen (1992)] that are computationally bind-

ing are verifiable in the sense that the receiver can show the transcript of the entire protocol to a

third party and have them accept the outcome of the protocol. The CHSH-type commitment above
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does not have this property, unless the senders sign their messages, or unless the third party trusts

the receiver and a majority of senders (if one generalizes the CHSH-type commitment to more than

one sender).

2.11 Non-Locality, No-Signaling, and Quantum Non-Local

Although the standard MIP model simply assumes that the provers do not communicate, subsequent

work [Cleve, Hoyer, Toner, and Watrous (2004)] augmented the provers with so-called non-local

resources. An example of this would be quantum entanglement which, by itself, does not allow

communication between entangled parties [Popescu and Rohrlich (1998)]. Formally, this will be

defined as probability distributions on the inputs and outputs of bipartite games. We focus on

single-round games and strategies as they are sufficient to analyze most MIPs.

Definition 2.11. Let V be a predicate on A×B×X×Y (for some finite sets A,B,X, and Y ) and

let π be a probability distribution on A×B. Then (A×B ×X × Y, V, π) is called a single-round

game.

Given two players, Alice and Bob, and a pair of questions (a, b) sampled according to π, where

a ∈ A is sent to Alice and b ∈ B is sent to Bob. Suppose that Alice responds with x ∈ X and Bob

with y ∈ Y . Then we say that Alice and Bob win if V (a, b, x, y) = 1 and lose otherwise.

Definition 2.12. A strategy for Alice and Bob is a probability distribution P(x,y|a,b) describing their

answer (x, y) on pairs of questions (a, b). The winning probability of a strategy is the probability

of the strategy producing a correct answer, given a uniformly random question (a, b). A strategy is

winning if its winning probability is 1.

The value of a game is the supremum over the winning probabilities of all strategies.

Definition 2.13. A strategy P(x,y|a,b) is local if there exists a finite setR and functions fA : A×R→

X, fB : B ×R→ Y such that

P(x,y|a,b) =
|{r ∈ R : x = fA(a, r) and y = fB(b, r)|

|R|
.
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A local strategy corresponds to the situation where Alice and Bob agree on an individual determin-

istic strategy selected uniformly among |R| such possibilities. The choice r of Alice and Bob’s

strategy, and the choice of inputs (a, b) provided to Alice and Bob are generally agreed to be statis-

tically independent random variables.

Definition 2.14. We define the class local hidden variable (LHV) to be the set of local strategies

for any two-party game.

Of particular interest are games where there are winning or high-probability strategies which are

not local, but still do not violate the no-communication assumption of MIPs:

Definition 2.15. A strategy P(x,y|a,b) is no-signaling if the marginal distributions satisfy P(x|a,b) =

P(x|a) and P(y|a,b) = P(y|b).

In this work, we will think of non-local resources for the provers as an honest third party (a correla-

tor, formally defined later) interacting with the provers (and another with the verifiers). We can use

it to quantify the amount or strength of the non-local resources available to the provers. When the

behavior of this third party is well defined as a game strategy, we can associate it with an existing

non-local resource in the literature (such as quantum entanglement, see Barrett et al. (2005)).

Of some interest are a class of non-local, no-signaling strategies called quantum non-local (QNL),

which represents strategies players can adopt when they share quantum entanglement (but still not

allowed to communicate in any way). We need a bit of background in quantum information before

we can properly define it. We adopt the definitions from Nielsen and Chuang (2010).

Definition 2.16. Associated to every quantum system is a state space, which is a complex inner

product space (Also known as a Hilbert space). A state vector is a unit-length vector in a state

space. The state vector completely describes the quantum system.

A qubit is the state vector of a two-dimensional state space.

We will adopt Dirac’s Bra-Ket notation and write qubits as
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|ψ⟩ = a |0⟩+ b |1⟩

where the qubit is labeled ψ, |0⟩ and |1⟩ are a pair of orthonormal basis for the state space, and

a, b ∈ C. We will denote the conjugate transpose of a qubit |ψ⟩ as ⟨ψ|.

Evolutions of quantum systems are unitary operations from the state space to itself. We will inter-

pret them as analogs of logical operations in classical computer science.

In order to extract (classical) information out of a quantum system, we must perform a measurement.

Definition 2.17. A quantum measurement is a collection {Mm} of operators acting on the state

space being measured. The index m refers to the outcome of the measurement. Suppose that |ψ⟩ is

the state of the quantum system being measured, then the following holds:

• The probability that outcome m occurs, p(m), is given by p(m) = ⟨ψ|M †
mMm |ψ⟩,

• Given outcome m, the system post-measurement becomes Mm |ψ⟩ /
√︁
p(m), and

• The measurement operators satisfy
∑︁

mM
†
mMm = I , where I is the identity.

Composite quantum systems are constructed using tensor products, denoted ⊗. We refer the reader

to Page 71 of Nielsen and Chuang (2010) for the definition and algebraic properties of tensor prod-

ucts.

Definition 2.18. The state space of a composite system is the tensor product of its component

systems. If each of n components is in state |ψi⟩, then the composite system is in state |ψ1⟩ ⊗ . . .⊗

|ψn⟩. We will abbreviate this last tensor with the notation |ψ1⟩ . . . |ψn⟩ or |ψ1 . . . ψn⟩. In general,

the state vector of a composite system may not always be the tensor product of smaller state vectors.

The phenomenon which forms the basis of much (but not all) of what we call non-local resources is

quantum entanglement. It is those states which cannot be factored into a tensor product of smaller,

composite states.
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Definition 2.19. Given a state space, a state vector |ψ⟩ is entangled if there does not exist state

vectors |a⟩ , |b⟩ such that |ψ⟩ = |a⟩ |b⟩.

What will be of interest to us are state spaces which are the tensor products of two state spaces –

each of which belongs to one of two non-communicating parties – wherein the state vector is en-

tangled. Entanglement theory is an active area of research. What is presented here is the barebones

framework needed to define quantum non-local. We invite the reader to explore quantum informa-

tion and entanglement in its full generality in works such as Nielsen and Chuang (2010) and Wilde

(2013).

Definition 2.20. If a state space H = H1⊗H2, we can assign H1 and H2 to two parties (or, in the

context of games, two players). And if U = U1⊗U2 is a unitary operator on H , then U1 and U2 are

local operations which the two parties can apply on their share of the state. The parties can perform

local measurements {Mm ⊗ µn} on their respective states. These measurements are a special case

of the general measurements, defined above.

Definition 2.21. A strategy is entanglement-assisted if it is output from players who share entangled

states.

We define the class quantum non-local (QNL) to be the set of entanglement-assisted strategies for

any two-party game.
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Chapter 3

Contamination in Interactive Proofs

3.1 Introduction

From a complexity perspective, the zero-knowledge1 aspect of interactive proofs is characterized

by IP = CZKIP = PSPACE for single-prover IPs [Ben-Or et al. (1990); Impagliazzo and

Yung (1988); Shamir (1992)], and MIP = ZKMIP = NEXP for multi-prover IPs [Babai et

al. (1992); Ben-Or et al. (1988); Dwork et al. (1992); Feige and Kilian (1994, 2000); Fortnow et al.

(1994); Kilian (1990b)]. The (conjectured) necessity of complexity assumptions for zero-knowledge

in the single-prover case was the initial motivation for the multi-prover model.

Zero-knowledge is also where contamination becomes a proper problem for the standard MIP

model. The most important (and the most subtle) of those contaminations are ones where the veri-

fier helps the provers perform a so-called no-signaling correlation; examples of this can be found in

the following section, and also in Crépeau, Salvail, Simard, and Tapp (2011).

In the Ridiculous Interactive Proof, the Ridiculous Verifier is clearly contaminating. This is not

obvious when the verifier is more complex. It is an even subtler point when we consider that the

This Chapter is based on a paper written by Claude Crépeau and Nan Yang entitled Non-Locality and Zero-
Knowledge MIPs. It is currently under submission. A preliminary version of the paper was accepted as an invited
paper published in the post-proceedings of Mycrypt 2016 [Crépeau and Yang (2016)].

1Computational zero-knowledge. We omit statistical zero-knowledge from this introduction.

18



verifier could be helping the provers in a no-signaling manner. We believe that proofs within the

standard model must be reconsidered in light of this observation. We will further discuss this last

point in section 3.3.

In the existing MIP literature, proofs of soundness do not account for this blind spot. If soundness

depends specifically that the provers are correlated in a certain way, then contamination can be

problematic. At the very least, any proof which does not address soundness would be incomplete.

Proofs may implicitly assume non-contamination, but we would like to make this explicit.

Our solution, discussed in this chapter, is a multi-prover, multi-verifier model. We will borrow the

term locality from physics and call our model locality-explicit multi-prover interactive proofs (LE-

MIPs). LE-MIPs consist of prover-verifier pairs who are talking, but no communication between

any of the pairs. At the end of a locality-explicit protocol, a special, read-only verifier accepts or

rejects. LE-MIPs, by design, account for contamination in their very specification. This makes it

easy to prove that the desired security properties are unaffected by contamination.

In this chapter, we answer the following questions which were raised in the introduction:

• How do we account for contamination?

• How do we enforce non-contamination in theory?

3.2 Previous Work

The early claims by Ben-Or, Goldwasser, Kilian and Wigderson that ZKMIP = MIP from

Ben-Or et al. (1988) and Kilian (1990b) use multi-round protocols and their (honest) verifiers are

inherently signaling. This is precisely the situation we address in this work. Proving soundness is

quite subtle in this case because the provers could use the (signaling) verifier to break binding of the

commitments. In particular, soundness will not be valid if the protocol is composed concurrently

with other executions of itself or even used as a sub-routine. In recent conversations with Kilian

[Kilian (2018)], we have realized that controlling the impact of signaling via the verifier has been a

concern since the early days of MIPs. In particular, extra care had to be taken in the zero-knowledge

19



protocols described in Ben-Or et al. (1988) and Kilian (1990b) because the verifier couriered mes-

sages from one prover to the other. The protocols as they are might be sound but it is not fully

proven. However, it is also clear that no considerations had been given to general contaminations

made possible via the verifier. If soundness rests on the binding property of a commitment scheme

(such as those zero-knowledge proofs) and this binding property rests on the inability to achieve a

certain non-local correlation then impossibility to achieve this correlation via the verifier must be

demonstrated.

The reader may think that the entire issue we address may seem trivial because it is a known fact that

multi-round MIPs may be reduced to a single round using techniques of Lapidot-Shamir [Lapidot

and Shamir (1991)] and Feige-Lovasz [Feige and Lovász (1992)]. Nevertheless, if we are interested

in zero-knowledge MIPs, commitment schemes are generally used to obtain the zero-knowledge

property and thus the single-round structure is lost in the process. Although single-round protocols

– if implemented properly – bypass verifier’s contamination problems we describe in this work, con-

verting multi-round protocols into single-round ones is highly inefficient and complex. Preserving

zero-knowledge while achieving single-round has turned out to be a major challenge. Practically,

keeping a multi-round protocol’s structure, using only commitments to achieve zero-knowledge is

very appealing.

In Lapidot and Shamir (1991), the authors proposed a parallel ZKMIP for NEXP, but they re-

moved the zero-knowledge claim in the journal version Lapidot and Shamir (1997) of their work

without any explanation as to why. Feige and Kilian (1994) were the last ones to follow this ap-

proach combining techniques drawn from Lapidot and Shamir (1991), Feige and Lovász (1992)

and Dwork, Feige, Kilian, Naor, and Safra, [Dwork et al. (1992)] to achieve a “2-prover 1-round

0-knowledge” proof for NEXP.

As far as we can tell, this is the only paper in the ZKMIP literature that appears to address the

problems that we will discuss. However, note that the analysis of Feige and Kilian (1994) is partly

based of that of Lapidot and Shamir (1991), and the journal version of Feige and Kilian (2000)

does not contain their prior claim of zero-knowledge either. All other ZKMIPs for NEXP in the
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literature are multi-round, and thus our work applies to them.

Similar issues are possible using more recent results such as the proof from Ito and Vidick (2012)

that NEXP ⊆ MIP∗ and the proof from Kalai, Raz, and Rothblum (2014) that MIPns =

EXP; the multi-round structure of their protocols requires that any straightforward extensions to

ZKMIP∗ and ZKMIPns via commitment schemes be analyzed carefully and the locality of the

verifiers be established.

Bellare, Feige, and Kilian (1995) considered a multi-verifier model similar to ours in order to an-

alyze the role of randomness in multi-prover proofs. This is completely unrelated to our goal of

analyzing verifier contamination.

Finally, the notion of relativistic commitment schemes (using multiple provers and verifiers) put

forward by Kent (1999) leads to several results [Adlam and Kent (2015); Chailloux and Leverrier

(2017); Lunghi et al. (2015)] where a similar multi-verifier model is necessary in order to assess

spatial separation of the provers.

3.3 The Standard MIP Model

Multi-prover interactive proofs were introduced in Ben-Or et al. (1988). The intuition for their

model was that of a detective interrogating two suspects held in different rooms. This was formal-

ized as follows:

Definition 3.1. Let P1, . . . , Pk be computationally unbounded Turing machines and let V be a

probabilistic polynomial-time Turing machine. All machines have a read-only input tape, a read-

only auxiliary-input tape, a private work tape and a random tape. The Pi’s share a joint, infinitely

long, read-only random tape. Each Pi has a write-only communication tape to V , and vice-versa.

We call (P1, . . . , Pk, V ) a k-prover interactive protocol (k-prover IP).

This model is essentially equivalent to that of J. S. Bell (1964) who introduced his famous Bell’s

inequality to distinguish local parties from entangled parties.
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Zero-knowledge MIPs were also defined in Ben-Or et al. (1988):

Definition 3.2. Let (P1, . . . , Pk, V ) be a k-prover IP for a language L. Let view(P1, . . . , Pk, V, x)

denote the verifier’s incoming and outgoing messages with the provers, including his coin tosses. We

say that (P1, . . . , Pk, V ) is perfect zero-knowledge for L if there exists an expected polynomial-time

machine M such that for all V ′, view(P1, . . . , Pk, V
′, x) and M(x) are identically distributed.

Let us call the above two definitions the standard MIP model. There have also been augmentations

of the model by giving the provers various non-local resources, such as entanglement [Ito and Vidick

(2012)], or arbitrary no-signaling power [Kalai et al. (2014)].

The first work to point out the aforementioned contamination problem in the standard MIP model,

though implicitly, was Crépeau et al. (2011). In order to understand their point, we need to under-

stand the following two-prover protocol.

Protocol 3.1. ( BGKW-type commitment for bit b )

P1 and P2 pre-share a random n-bit string w. Let b be a bit. Let x,w, r, w′ be from

some finite field.

(1) V sends a random n-bit strings r to P2.

(2) P2 replies with x← b× r ⊕ w.

(3) P1 announces to V a string w′.

(4) V accepts iff (w′ ⊕ x) ∈ {0, r}.

This is a two-prover commitment protocol. Steps 1 and 2 commit, while steps 3 and 4 unveil. An

intuitive proof of its binding condition is that, since the provers cannot signal, and they both need to

know r in order to unveil the commitment in the way they want, therefore they cannot cheat. This
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intuition is incomplete, as was pointed out in Crépeau et al. (2011), because breaking the binding

condition does not require signaling. The following protocol, known as a PR-box, can be used to

break binding without signaling.

c →→
PR

r←←

w′ := c× r ⊕ x →→←← x (uniform)

Figure 3.1: A PR-box.

By having P1, P2 obtain w′, x via the PR-box, P1 can unveil the commitment the way it wishes, c.

This fact will become extremely important in Sections 3.5 and 3.4.1.

The punchline of Crépeau et al. (2011) is that the verifier itself can act as a PR-box for the provers

without violating their no-signaling assumption. Consider the following:

(1) Any security proof of protocol 3.1 must show that it does not contain a PR-box as a subroutine.

(2) More generally, any security proof of a protocol must show that no subroutine within itself

can be commandeered by the provers to achieve a non-local functionally (like the PR-box).

(3) Composition of protocols, for instance between the committing and the opening of commit-

ments, must be done in such a way that provably does not create a non-local box.

The solution proposed in Crépeau et al. (2011) was that of verifier isolation. Informally, this means

that any message an “isolating” verifier sends to a set S of provers must be computed solely from

messages that are received from S. The end result is that an isolating verifier can never accidentally

implement a PR-box and, in general, it will always enforce the locality of the provers. In a sense,

we can think of an isolating verifier as “local”. Our new model will make this more precise and

more general.

Furthermore, existing zero-knowledge MIPs such as Kilian (1990b) require that the verifier courier

an authenticated message between the provers in order to obtain soundness while ensuring zero-

knowledge. The gist of it goes like this:

(1) V asks P1 some questions.
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(2) V wants to check one of P1’s answers with P2 for consistency.

(3) In order for zero-knowledge to hold, V must ask P2 a question it has already asked P1.

(4) P1 authenticates a question with a key that was committed at the beginning of the protocol

and sends it to V .

(5) V sends the question and the authentication to P2, who proceeds only if authentication suc-

ceeds.

Steps 4 and 5 consists of V sending a message from P1 to P2. Proofs that this act does not con-

taminate non-locally (such as simulating a PR-box) is not found in any existing MIP. This needs

to be proven, and the proof contained in Kilian (1990b) does not address this issue. Moreover, the

zero-knowledge protocol of Kilian (1990b) allows P1 to send an arbitrary message to P2 (via the

authentication tag). Therefore, one cannot compose such a protocol in a nested fashion (as a sub-

routine call) since the inner instance would violate the no-communication assumption of the outer

instance. For more details on the problems of the standard MIP model, see Crepeau and Yang

(2017).

Existing simulators for zero-knowledge protocols such as those found in Kilian (1990b) needs to

know how to break commitments in order to simulate. The simulator accomplishes this by acting

as both provers, thereby receiving the secret string r which was meant for one prover only. This

standard model of zero-knowledge gives the simulator unnecessary power, in a sense. We will

discuss this further in section 3.4.1.

3.4 Locality-Explicit MIP

The standard MIP model allows the verifier to non-locally contaminate the provers. We neutralize

this problem by defining a model with multiple verifiers, each of which talks to a single prover; in

turn, each prover talks to a single verifier. There are no communication tapes between the verifiers,

nor are there between provers. There is a special verifier V0 which only reads the outputs of the other

verifiers; this is the verifier that will decide to accept or reject membership to L. We call this model
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“locality-explicit” since the provers and verifiers are explicitly local, and if any non-local resources

(such as entanglement) are available to them, then it is explicitly specified via a supplementary

entity named ˆ︁P for the provers and ˆ︁V for the verifiers.

This model is a generalization of the standard model because the special setting where ˆ︁P is empty

and ˆ︁V signals for the verifiers corresponds to the standard MIP model.

Definition 3.3. Let ( ˆ︁P , P1, . . . , Pk, ˆ︁V , V0, V1, . . . , Vk) be a tuple of ITMs, where the Pi’s are com-

putationally all-powerful and the Vi’s are polynomial-time. For each i, there are two-way communi-

cation tapes between Vi and Pi, and that for all j, there is a two-way communication tape betweenˆ︁V and Vj and also between ˆ︁P and Pj . In addition, for each ℓ, there is a read-only tape going from

Vℓ to V0 (where V0 reads). Then, this is said to be a locality-explicit multi-prover interactive proof.

We call ˆ︁P and ˆ︁V correlators and say that the provers and verifiers are ˆ︁P -local and ˆ︁V -local respec-

tively.

It is perhaps easier to understand our definition with the help of figure 2.

.	.	.
.	.	.

̂P ̂V

P1
P2

Pk

V1
V2

Vk

V0

Figure 3.2: Locality-Explicit MIP.

The solid lines represents two-way communication and the dashed arrows represents one-way com-

munication, with the arrow indicating the direction of information flow.

We can define that an LE-MIP accepts a language L if the usual soundness and completeness con-

ditions hold:
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Definition 3.4. An LE-MIP (ˆ︁V , V0, V1, . . . , Vk, ˆ︁P , P1, . . . , Pk) accepts a language L if and only if

• (completeness) ∀x ∈ L,Pr[V0(x, t1, . . . , tk) = accept] > 2/3,

• (soundness) ∀x /∈ L,∀P ′
1, . . . , P

′
k,Pr[V0(x, t1, . . . , tk) = accept] < 1/3,

where ti is the read-only tape from Vi to V0 at the end of the interaction of Vi with Pi (or P ′
i ) on

input x.

We will denote by MIPB
A the set of languages accepted by an LE-MIP where the verifiers share the

correlator A, and the provers share the correlator B.

Note that we do not quantify over ˆ︁P (nor ˆ︁V ), as we want to use them not as (possibly malicious)

participants to the protocol, but as a description of non-local resources available to the provers and

verifiers.

Definition 3.5. An LE-MIP is local if ˆ︁V = ˆ︁P = ∅ and all of the provers’ (resp. verifiers’) ran-

dom tapes are initialized with the same uniformly random string R (resp. verifiers with another,

independent uniformly random string S)2.

Note that (single-verifier) standard MIPs in which provers do not have non-local resources are equiv-

alent to LE-MIPs where ˆ︁P = ∅ and ˆ︁V acts as a bulletin board. That is, a single verifier commu-

nicating with multiple provers is equivalent to multiple verifiers communicating with provers and

among each other.

In standard MIPs, it is possible that the honest (single) verifier bridges the provers non-locally. If

a protocol does not desire this – and most existing MIPs do not – it must be proven. With local

LE-MIPs, the special verifier V0 decides to accept or reject. This verifier cannot communicate with

anyone else, avoiding the aforementioned contamination.
2By ∅ we mean the empty correlator that provides everyone with nothing at all as output.
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3.4.1 Zero-Knowledge LE-MIPs

Zero-knowledge is defined by simulations, the fundamental idea that if a transcript can be produced

by an entity (simulator) with no more power than one (verifier) interrogating all-powerful provers,

then no knowledge is gained.

The simulator of single-prover IP and standard MIP are equal to the verifier in computational power,

but they do have “advantages” which allow them to fake transcripts. For single-prover IPs, the sim-

ulator is allowed to rewind computation; for standard MIPs, the simulator is given a (commitment-

breaking) secret (though rewinding is allowed, it is unnecessary). Those advantages are, of course,

independent of knowledge.

LE-MIPs naturally induces a new advantage for the simulator: non-local correlations. This is a very

powerful advantage. Using the correct non-local correlations, simulators do not need to rewind, do

not need to pretend to be multiple (isolated) provers, and do not need to know any commitment-

breaking secrets. Multiple, no-signaling simulators can even produce transcripts in “real-time”

(example will follow) if the proper correlations are used.

Definition 3.6. Let M = (ˆ︂M,M1, . . . ,Mk) be a tuple of polynomial-time ITMs. Each machine

has a random tape, and every random tape is initialized with the same random bits. For 1 ≤ i ≤ k,

there is a two-way communication tape between ˆ︂M and Mi. There are no communication tapes

between any of the Mi’s. Then this is called a tuple of locality-explicit simulators and ˆ︂M is the

locality class ofM, which will be abbreviated ˆ︂M -local.

Definition 3.7. Let S = ( ˆ︁P , P1, . . . , Pk, ˆ︁V , V0, V1, . . . , Vk) be an LE-MIP for language L. If there

exists a correlator ˆ︂M such that for all verifiers (ˆ︁V ′, V ′
0 , V

′
1 , . . . , V

′
k) and for all x ∈ L, there exists

(M1, . . . ,Mk), such that the views between

( ˆ︁P , P1, . . . , Pk, ˆ︁V ′, V ′
0 , V

′
1 , . . . , V

′
k)

and

(ˆ︂M,M1, . . . ,Mk, ˆ︁V ′, V ′
0 , V

′
1 , . . . , V

′
k)

27



are identically distributed (on input x), where (ˆ︂M,M1, . . . ,Mk) is a tuple of locality-explicit sim-

ulators, then we say that S is a perfectly indistinguishable, ˆ︂M -local zero-knowledge LE-MIP for

L.

We will denote by ZKSMIPB
A a zero-knowledge LE-MIP where the simulators share correlator S,

and verifiers/provers share A/B as before.

Our motivations for the above definitions are twofold.

First, a simulator (or simulators) should not have more power than necessary. If two local simulators

can output for two local verifiers, then it is not necessary to have a single simulator (equivalent to

two signaling simulators) do the job. Allowing simulators to signal (equivalently, having a single

simulator) in the multi-prover setting is analogous to allowing unbounded running-time simulation

in single-prover zero-knowledge. In general, finding the minimal ˆ︂M that will allow simulation may

be of some theoretic interest.

Second, the non-locality of simulators is a characterization of the resilience of zero-knowledge. A

protocol with local simulators can withstand arbitrary (malicious) verifiers is more resilient than

one where signaling simulators are needed.

This may be of practical interest, if transcripts are timestamped. For example, under the relativistic

assumption that one may not signal faster-than-light, one may be able to distinguish two spatially

separated simulators from two spatially separated verifiers, if the simulators need to signal (transmit

a commitment-breaking secret) in order to generate a transcript. On the other hand, if two entangled

simulators are sufficient to produce the transcript, then they are indistinguishable from real verifiers

and provers. Our protocol 3.6 can be modified as to let entangled simulators do their work, without

needing PR-boxes or signaling. Details in section 3.5.

3.4.2 The Power of LE-MIPs

Local LE-MIPs form a subclass of standard MIPs. They are, by design, more restricted in what you

can make the verifier do. An immediate question is whether this is too restrictive. Perhaps, in all
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interesting cases, it is necessary for a single verifier to go back-and-fourth between provers, using

previous discussions to generate new questions.

The answer is that, of all the literature we have surveyed, almost all protocols can be re-written

in a local-verifier manner without any loss of functionality. We explicitly demonstrate this for the

multi-prover protocol for oracle-3-SAT in Babai et al. (1992). For the purpose of our discussion, we

only need to look at the general form of the protocol:

Protocol 3.2. ( BFL Classic, Single-Verifier )

(1) V asks P1 some questions non-adaptively.

(2) V chooses a question Q from the pool of questions which were asked to P1.

(3) V asks Q to P2.

(4) V accepts if the interaction with P1 was successful, and the answer from P2 is

consistent with those of P1.

The crucial observation is that V does not adaptively ask questions to P1. Therefore, the questions

asked on that entire side of the conversation can be selected in advance, and thus they can be shared

in advance with a second verifier. We can therefore naturally rewrite the BFL classic protocol as

a local LE-MIP in the following way. The reader can check the details in section 3 of Babai et al.

(1992).

Protocol 3.3. ( BFL as an LE-MIP )

(1) V1 prepares the questions which it will ask P1.
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(2) V1 chooses a question Q from the above list and shares it with V2.

(3) LE-MIP begins. All parties are local as per definitions.

(4) V1 asks the questions to P1.

(5) V2 asks Q to P2.

(6) V0, reading the responses, decides to accept or reject, based on the same criteria

as in protocol 3.2.

The BFL protocol is for oracle-3-SAT, which is NEXP-complete. Rewritten as a local LE-MIP, it

circumvents all non-locality issues we have mentioned. Thus, we can conclusively say that “local

LE-MIP” = MIP = NEXP; no transformation to single-round MIP necessary, and no need to

invoke the general theory of PCPs.

3.5 A Local, Zero-Knowledge LE-MIP for NEXP

The question which follows naturally is whether there exists a zero-knowledge, local LE-MIP for

NEXP. The existing technique for achieving zero-knowledge in MIP [Ben-Or et al. (1988); Kilian

(1990b)] requires the (single) verifier to courier an authenticated message between provers. This is

not possible with local-verifier LE-MIPs. We show that there is a way around that constraint.

By adapting the protocol from Babai et al. (1992), we will exhibit a protocol with the following

properties:

(1) The provers and verifiers are local: ˆ︁V , ˆ︁P ∈ LHV. For simplicity, we will assume that ˆ︁V =ˆ︁P = ∅.

(2) The simulators need only access to instances of PR-boxes to work. That is, ˆ︂M simply com-

putes indexed instances of PR-boxes. We will abbreviate this as “PR-local.”
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Let us call the set of multi-prover protocols with these properties “PR-local ZK, local LE-MIP”

which we shall denote ZKPRMIP∅
∅. This implies that ZKPRMIP∅

∅ = ZKMIP = NEXP.

The generic way of turning an interactive proof into a zero-knowledge one is by running it in com-

mitted form [Ben-Or et al. (1988); Kilian (1990b)]. With this technique, provers commit their

answers instead of directly responding, and use cryptographic techniques to convince the verifier

that the answers are correct.

As shown in section 3.4.2, the BFL protocol can be turned into a local LE-MIP. If we try to turn

it into a zero-knowledge LE-MIP by having the provers commit their answers (for example using

protocol 3.1 as commitment), we run into a problem. In order to achieve zero-knowledge, the

provers must ensure that the question P2 receives from V2 is one of the questions which V1 has asked

P1. On the other hand, since the provers and verifiers are local, the provers cannot communicate,

nor can they ask the verifiers to courier authenticated messages between them.

Our solution essentially asks the provers to (strongly-universal-2) hash [Carter and Wegman (1979)]

the selected committed answer with a key that is based on the verifier’s question. We force V2 to

behave honestly (to ask a question that V1 has asked) by making bad questions meaningless. If the

verifiers ask the provers the same question, they will receive the same hash of the same answer.

Otherwise, they will receive two unrelated random hash values.

We need the PR commitment (protocol 3.4), which is secure in the local setting as previously proved

in Crépeau et al. (2011); Kent (1999); Lunghi et al. (2015).

3.5.1 The Protocols

The following is a PR-type commitment that is perfectly concealing and statistically binding. In

general, we use the commitment-box notation “ b ” as the name of a commitment to bit b in the next

two protocols.

Protocol 3.4. A statistically binding, perfectly hiding commitment protocol to bit b.
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All parties agree on a security parameter 1k.

P1 and P2 partition their private random tape into two k-bit strings w1, w2.

Pre-computation phase:

• V1 samples two k-bit strings z1, z2 independently and uniformly, and provides

them to V2.

• V1 sends z1 to P1 and V2 sends z2 to P2.

Commit phase:

• P1 commits b to V1 as b = (b × z1) ⊕ w1, where b × z1 is a multiplication in

F2k .

• P2 sends V2: d = (w1 × z2)⊕ w2.

Unveiling phase:

• P1 sends w1, w2 to V1.

• V1 computes b = 1 if b ⊕ w1 = z1, or b = 0 if b = w1.

• V0 rejects if b ⊕w1 is anything but z1 or 0, or if d⊕w2 ̸= w1× z2 and accepts

b otherwise.

A proof sketch of the hiding and binding properties of the above commitment scheme is as follows:

• Hiding – Without any information on w1, which is sampled uniformly at random, w1 and

z1 ⊕ w1 are indistinguishable by the verifiers.

• Binding – We assume that the provers are local. Therefore, we can rewind the provers. Thus,

if the provers can break binding, it must be able to unveil the commitment to both a 0 and
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a 1 (which is not true for non-local provers). Specifically, P1 must be able to send w2 and

w2 ⊕ ((w1 ⊕ z1)× z2). But then P1 would be able to solve for z2, contradicting locality.

We will use a particular NEXP-complete language for our protocol, oracle-3-SAT. We adapt its

definition from Babai et al. (1992), in which a proof of its NEXP-completeness can be found.

Definition 3.8. Let w = z||a||b||c be a Boolean string of length r + 3s where |a| = |b| = |c| = s.

LetB(w, i, j, k) be a Boolean formula of r+3s+3 variables where i, j, k are Boolean variables. A

Boolean function F is a 3-satisfying oracle for B if for all w = z||a||b||c, B(w,F (a), F (b), F (c))

is true. B is oracle-3-satisfiable if such a function F exists.

Another technique we will use is called arithmetization of quantified Boolean formulas. We adapt

its definition from Shamir (1992).

Definition 3.9. Let B(xi)0≤i≤n be an n-variable quantified Boolean formula.

• Pick a finite field F.

• Change the domain of the variables from {0, 1} to F.

• Replace each occurrence of a negation (xī) by (1 − xi). Replace ∧ with field multiplication

*. Replace ∨ with field addition +.

• Replace universal quantifications ∀xi with product
∏︁

xi=0,1. Replace existential quantifica-

tion ∃xi with sum
∑︁

xi=0,1.

The resulting formula over F is the arithmetization of the B.

We will need the following sumcheck protocol from Babai et al. (1992). A detailed explanation can

be found there. For our purposes, it is sufficient that we follow the steps in such a way that the

answers from the corresponding prover are committed.

Protocol 3.5. ( Sumcheck Protocol )
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Let ϕ(x1, . . . , xm) be the 3-CNF formula which the prover P is trying to show to be a

tautology to a verifier V . Let F be a field of sufficient size (of order at least (3c+ 1)m

will suffice where c is the number of clauses of ϕ).

(1) V takes ϕ and computes its arithmetization f according to Babai et al. (1992)

Proposition 3.1 and sends it to P .

(2) V and P agree on a set I ⊂ F of size at least 2dm where d is the degree of f .

(3) V assigns b0 = 0, which is supposed to be equal to the sum

1∑︂
x1=0

. . .
1∑︂

xm=0

f(x1, . . . , xm)2 = 0

(4) i← 1.

(5) P sends the coefficients of the univariate polynomial in x,

gi(x) = h(r1, . . . , ri−1, x) =

1∑︂
xi+1=0

. . .

1∑︂
xm=0

f(r1, . . . , ri−1, x, xi+1, . . . , xm)2

(6) V checks whether bi−1 = gi(0) + gi(1). If not, abort.

(7) V chooses a random ri ∈ I , computes bi = gi(ri) and sends ri to P .

(8) If i ≤ m then i← i+ 1 and go to step 4.

(9) V checks whether bm = f(r1, . . . , rm)2.

We construct our zero-knowledge, local LE-MIP for oracle-3-SAT below. A note on notation: for a

circuit f , we will denote f
(︁
x
)︁

as the gate-by-gate committed circuit evaluated with x as the input.

We also use statements such as “P1 proves to V1 that Ω1 was computed correctly” by invoking

at a high level the result everything provable is provable in zero-knowledge [Ben-Or et al. (1990)].
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The reader is expected familiarity with zero-knowledge computations on committed circuits as put

forward by Brassard, Crepeau (1986, 1987); Impagliazzo and Yung (1988); Kilian (1990b).

Protocol 3.6. A local zero-knowledge LE-MIP for oracle-3-SAT

Let x = (B, r, s), an instance of oracle-3-SAT, be the common input, let k = |x| =

r+ 3s+ 3, and let Λ be the verifier’s program in the protocol from Babai et al. (1992).

(1) Pre-computation:

(a) V1 samples two k-bit strings z1, z2 independently and uniformly, and pro-

vides them to V2.

(b) V1 selects k+3 random bit strings R1, ..., Rk+3 (size specified implicitly by

Λ) and evaluates the circuit of Λ using the Ri as randomness, resulting in

questions Q1, ..., Qk+3, and provides them to V2

(c) V1 randomly chooses i, 1 ≤ i ≤ k + 3, the index of an oracle query that will

be made to both P1 and P2. V1 provides i to V2.

(d) V1 sends z1 to P1 and V2 sends z2 to P2 for future commitments.

(e) All parties agree on a family of strongly-universal-2 hash functions {Hi}

indexed by k-bit keys.

(f) P1 and P2 agree on a k-bit key γ, an index to the above family.

(g) P1 commits γ to V1.

(2) Sumcheck with oracle:

• Let f be the arithmetization obtained in protocol 3.5, let z be a string from

Ir and Qk+1, Qk+2, Qk+3 be strings of Is as generated in protocol 3.5. V1
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and P1 execute protocol 3.5 in committed form. At the end of this phase, P1

shows that the committed final value is equal to

f
(︂
z,Qk+1, Qk+2, Qk+3, A(Qk+1) , A(Qk+2) , A(Qk+3)

)︂
,

an evaluation in committed form of f using the committed values that were

used during the protocol’s loop. If this fails, V1 instructs V0 to reject.

(3) Multilinearity test:

(a) For 1 ≤ i ≤ k:

i. V1 sends Qi to P1,

ii. P1 commits his answer as A(Qi) .

(b) P1 and V1 evaluate a circuit description of Λ in committed form with inputs

A(Q1) , . . . , A(Qk) to verify proper linearity among them. P1 unveils the

circuit’s committed output. If it rejects, V1 instructs V0 to reject.

(4) Consistency test:

(a) V1 sends i to P1.

(b) P1 computes Ω1 = A(Qi) ⊕H γ (Qi) and sends Ω1 to V1.

(c) P1 proves to V1 that Ω1 was computed correctly, from the existing commit-

ments.

(d) P1 unveils Ω1 for V1, who gets Ω1.

(e) V2 sends Qi to P2 (recall that this was pre-agreed in step 1.(c))

(f) P2 responds to V2 with Ω2 = A(Qi)⊕Hγ(Qi).

(g) V0 accepts if and only if all of the following conditions are met:
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• Ω1 = Ω2

• All commitments which have been unveiled are valid.

• V1 did not reject in the two previous cases

3.5.2 Proofs of Security

Locality

Since the protocol is written as an LE-MIP in which ˆ︁P = ˆ︁V = ∅, the protocol is local by definition

3.5.

Completeness

Completeness follows from the completeness of the underlying protocol of Babai et al. (1992), and

the fact that the commitment protocol (protocol 3.4) is well-defined for honest provers (who will

never send a commitment that they cannot unveil).

Soundness

Without loss of generality, we may assume that the soundness error in the BFL protocol to be 1/3,

through sequential amplification. The probability that our commitment scheme (protocol 3.4) fails

binding is exponentially small in k. Local probabilistic provers are equivalent to local deterministic

provers. This is because the success probability α of randomized provers of breaking soundness is

an average over the randomized provers’ random tapes. Each instance of a random tape represents

a deterministic strategy. Therefore there is a deterministic strategy which succeeds with probability

at least α, and hence we only need to consider local deterministic provers.

Since P1 is deterministic, we may unambiguously consider what happens if we were to “rewind”

the prover machine. Suppose that at some point P1 unveils a particular commitment c to 0. We

rewind P1 and let V1 make different choices before that point. Suppose that, with these alternate
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choices, P1 then unveils c to 1 (an attempt to break binding). Because of locality, P1’s behavior is

independent of what P2 receives (namely z2). Therefore, there is only one such z2 which V0 will

ultimately accept as a valid unveiling of c in both ways (recall that our commitment is statistically

binding).

Therefore, in the worst case, for every commitment there exists a sequence of interactions be-

tween V1 and P1 such that P1 will attempt to break the binding of that commitment. Each such

commitment-breaking corresponds to at most one string z2 that will actually work.

Let us denote the set of such binding-breaking strings by B. If z2 /∈ B, then the provers will not

break binding, and the soundness error is reduced to that of the underlying protocol (at most 1/3).

On the other hand, since |B| < poly(k), the probability that z2 ∈ B is at most poly(k)/2k.

Therefore, the soundness error of our protocol is at most

Pr[z2 /∈ B and underlying protocol accepts] + Pr[z2 ∈ B] ≤ 1

3
+

poly(k)

2k
.

Zero-Knowledge

The simulation will be divided in two parts. In the first part, the simulator produces a transcript

of the pre-computation, multilinearity test and sumcheck with oracle parts, which involves only

interactions with V1. In the second part, the simulator will fake a valid consistency test.

Protocol 3.7. ( Perfectly Indistinguishable, PR-Local Simulator for Protocol 3.6, Part

1)

The setup:

• Let (ˆ︂M,M1,M2) be a set of locality-explicit simulators.

• M1 and M2 can send ˆ︂M an index along with a bit.
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• ˆ︂M completes the indexed PR box (protocol 3.1) for both simulators.

The simulation strategy:

(1) The simulators agree on unique indices for every commitment used in the proto-

col.

(2) M1 interacts with V1 the way P1 would. Whenever P1 should commit, M1 com-

mits to random bits, just like the single-simulator from section 3.5.

(3) For each commitment, V2 sends M2 a string s. M2 sends to ˆ︂M the index of the

commitment and s.

(4) ˆ︂M runs the PR box (protocol 3.1) and replies with V2’s half of the output.

(5) Whenever M1 needs to unveil a commitment, it can be unveiled in the way M1

desires by sending the corresponding index and bit to ˆ︂M .

(6) ˆ︂M completes the corresponding PR box which outputs t. ˆ︂M sends t to M1.

(7) M1 sends t to V1.

The second part (the consistency test) can be done by having the simulators ignore the question.

Protocol 3.8. ( Perfectly Indistinguishable, PR-Local Simulator for Protocol 3.6, Part

2)

(1) V1 sends i to M1.

(2) M1 computes Ω1 = H γ (Qi).

(3) Using ˆ︂M to break binding, M1 convinces V1 that Ω1 is actually A(Qi) ⊕
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H γ (Qi) instead.

(4) M1 unveils Ω1 for V1, who gets Ω1 = Hγ(Qi).

(5) V2 sends Q′
i to M2.

(6) M2 responds with Ω2 = Hγ(Q
′
i).

By the properties of the strongly-universal-2 hash H , if Qi = Q′
i then Ω1 = Ω2. Otherwise

Ω1 ̸= Ω2 with probability exponentially close to one. This produces the result as desired. The

simulators then feed the transcripts to V0, and terminates simulation.

3.5.3 Entangled Simulators

The binding condition of commitment used above (protocol 3.4) can be broken given PR-boxes.

However, if the verifier were willing to tolerate approximately 15% of errors in the provers’ un-

veiling string (z1 or 0), then it is possible to break binding with shared entanglement [Brassard,

Broadbent, and Tapp (2003)] while maintaining soundness against local provers. Using this weak-

ened version of commitment in place of protocol 3.4 still yields a local LE-MIP for oracle-3-SAT,

but easier to simulate (using weaker non-local resources). We leave the details of this modified

protocol to the reader.

3.6 Zero-Knowledge and Non-Locality

The heart of zero-knowledge is the idea of a simulator: a machine, with no more power than the ver-

ifier, can output a transcript indistinguishable from an interaction involving an all-powerful prover.

This vast asymmetry in computational power means that this simulator cannot accomplish this task

without some kind of advantage; this advantage must be independent of knowledge, else we would

lose zero-knowledgeness.

In the case of single-prover zero-knowledge proofs, this advantage can be in the form of the ability
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to rewind computation, the ability to discard failed simulations, or knowledge of a trapdoor in a

commitment scheme. The simulator can use these things because we only care that the transcript is

generated in polynomial-time (or expected polynomial-time).

In the case of multi-prover zero-knowledge proofs, the advantage in existing literature can be

summed up as signaling: the simulator, pretending to be several provers, knows secrets which

real provers, in a real instance of the protocol with separated provers, would not. That is, real

provers in a real run of a ZKMIP are unable to communicate (or they are unable to communicate

faster-than-light, in the case of relativistic instantiations of MIPs).

In either case, from a complexity perspective, the simulator’s advantage can be anything as long as

it is truly independent of knowledge – we do not want to exclude anything a priori. But, in practice,

zero-knowledge is ultimately applied cryptography and, from a cryptographic perspective, not all

advantages are equal.

3.7 Minimal Simulator Advantage

In existing ZKMIP literature, the (single) simulator’s advantage is its ability to interact with both

verifiers at once. This is equivalent to having a pair of signaling simulators. However, it turns out

that simulators do not need to signal in order to break the above commitment (section 3.3); a weaker

non-local distribution will do. The “blind spot” of the previous chapter, which was a gap in the

soundness analysis of MIPs, is an unexplored dimension of characterization in the zero-knowledge

analysis of ZKMIPs.

The framework in which this “non-local advantage” can be analyzed is locality-explicit MIPs;

specifically, locality explicit simulators (definition 3.6) and zero-knowledge LE-MIPs (definition

3.7). This naturally leads us to ask: what is the minimal simulator advantage needed for achieving

zero-knowledge for NEXP?

It is clear that signaling simulators can succeed in our protocol from the previous chapter; this is
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how standard ZKMIP simulators achieve indistinguishability. We can summarize this as

ZKSIGMIP∅
∅ = NEXP,

where SIG is a signaling correlator.

However, signaling is unnecessary, as the binding condition of commitment used above (protocol

3.4) can be broken given PR-boxes. Thus, the simulator’s advantage can be lowered to PR-boxes,

or

ZKPRMIP∅
∅ = NEXP.

If the verifiers were willing to tolerate approximately 15% of errors in the provers’ unveiling string

(z1 or 0), then it is possible to break binding with shared entanglement [Brassard et al. (2003)] while

maintaining soundness against local provers. Making this slight change in the protocol reduces the

simulator advantage further:

ZKQNLMIP∅
∅ = NEXP,

where QNL denotes polynomial amount of shared entanglement for the simulators.

Ideally, the simulators would not need any non-local advantage over the verifiers. However, we are

unable to find a zero-knowledge MIP where the simulators are local which can accept NEXP; nor

can we prove that it is impossible. We make the following conjecture:

Conjecture 3.1. ZK∅MIP∅
∅ = SZK, where SZK is the set of languages with statistical zero-

knowledge interactive proofs without computational assumptions (e.g., graph isomorphism).

3.8 Advantage Trade-Offs

As a further example of the drastic differences between MIP simulators’ non-local advantages and

single-prover IP simulators’ advantages (e.g., rewinding), consider the following:

Theorem 3.1. Suppose that the provers in protocol 3.6 have access to PR-boxes (thus they are
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no-signaling, but not local), then the protocol is not sound.

Proof. The provers adopt the simulators’ strategy. Since commitment binding is broken with the

aid of PR-boxes, the verifiers will always accept.

In this case, a change in non-locality which would render a protocol unsound is exploited to produce

simulations. Conversely, if the simulators’ strategy is dependent entirely on using the different non-

locality, then malicious provers with this change in non-locality can use it to break soundness.

This is contrasted with single-prover zero-knowledge, in which a prover having the ability to rewind

computations, although enough for simulators in IPs, is not enough to break soundness. The rela-

tionship between zero-knowledge and soundness will have to be explored in a future work. We

leave this chapter with the following conjecture:

Conjecture 3.2. If an LE-MIP is ZKˆ︂MMIP
ˆ︁Pˆ︁V , then it is not in MIP

ˆ︂Mˆ︁V . That is, if the provers have

access to an ˆ︂M correlator, then the protocol is not sound.

3.9 Chapter Conclusions

Although protocol 3.6 is a local LE-MIP, the only known ways of simulating the transcript are to

give the simulators some kind of non-local resource such as a PR box (or a fully signaling box, but

that is not necessary). We do not know whether it is possible to simulate protocol 3.6 with local

simulators, but we are unable to show this to be impossible.

MIP is cryptographic. NEXP is complexity theoretic. Although there exists a MIP which accepts

NEXP (resolving the complexity of MIP), the presence of non-locality with respect to zero-

knowledge has not been explored. Zero-knowledge simulators need advantages in order to function.

In the case of MIPs, it was always implicitly assumed this advantage is necessarily signaling. We

have shown that this is not true.
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Chapter 4

Succinct Zero-Knowledge under

Relativistic Assumptions

4.1 Relativistic Motivation

The need for more nuanced simulators is motivated by relativistic cryptography, an example of

which can be found in Lunghi et al. (2015). Relativistic cryptography exploits the fact that it is

impossible to signal faster than light. We can enforce the no-signaling condition of MIPs by spatially

separating the provers from each other. In order to enforce the provers’ spatial separation during the

execution of the protocol, each prover is paired with a verifier of its own, which is located nearby.

The verifiers can use the timing of the replies of their respective provers to judge their relative

distance.

In practice, this means that we can implement MIPs under relativistic assumptions if the verifier can

be “split” into multiple verifiers, each locally interacting with its corresponding prover. An example

of relativistic cryptography can be found in Lunghi et al. (2015), where a commitment was sustained

for over 24 hours.

This chapter is adapted from a paper by Claude Crépeau, Arnaud Y. Massenet, Louis Salvail, Lucas Shigeru Stinch-
combe, and Nan Yang. It has been accepted for publication in the Proceedings of Information Theoretic Cryptography
2020.
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In this chapter, we answer the question which was raised in the introduction, “How do we enforce

non-contamination physically?”

Some MIPs have verifiers which, intrinsically, cannot be split. Examples include Ben-Or et al.

(1988) and Kilian (1990b). In these examples, the verifier is used to courier an authenticated mes-

sage between provers. In the relativistic setting, if the verifier has time to pass a message between

provers, then the provers just signal between themselves.

Luckily, most MIPs in the literature have verifiers that are non-adaptive. These verifiers’ questions

to one prover are independent of the answers from all the provers. MIPs with non-adaptive verifiers

can be rewritten into a format with multiple, split verifiers; this format we will call locality-explicit,

and is formally defined in section 3.4.

As an example of what we mean, consider the following two-prover interactive proof for graph

3-coloring:

Protocol 4.1. ( Simple MIP, Single-Verifier )

Two provers P1, P2, one verifier V . On input graphG, P1 and P2 agree on a 3-coloring.

(1) V asks P1 for the colors of an edge e.

(2) V asks P2 for the colors of one of the nodes of e.

V accepts if and only if the colors of that edge from P1 are not equal, and P2 corrobo-

rates with P1’s answer by replying with the same color for the same node.

In the above protocol, V ’s questions to either prover does not depend on answers from any prover.

This is what is commonly known as a non-adaptive verifier. We can therefore split the above verifier

into a two-verifier version:

45



Protocol 4.2. ( Simple MIP, Multi-Verifier )

Two provers P1, P2, two verifiers V1, V2. On input graph G, P1 and P2 agree on a

3-coloring, V1 and V2 agree on an edge e.

(1) V1 asks P1 for the colors of e.

(2) V2 asks P2 for the colors of one of the nodes of e.

Post execution, V1 and V2 confer with each other, and accept if and only if the colors

of that edge from P1 are not equal, and P2 corroborates with P1’s answer by replying

with the same color.

This version of the protocol is naturally suited for relativistic implementation. However, it is not

zero-knowledge because even if P1 and P2 agreed on a randomly selected 3-coloring each time, a

dishonest verifier V2 may sample a node which is not from e. We can make a zero-knowledge, multi-

verifier MIP with the help of the following commitment scheme, which is adapted from Ben-Or et

al. (1988):

Protocol 4.3. ( Multi-Verifier Commitment )

Two provers P1, P2, two verifiers V1, V2. The provers share a random string w, and

the verifiers share a random string r. Operations are over a finite field. P1 wishes to

commit b.

(1) (Commit) V1 sends P1 the string r. P1 replies with x = w + br.

(2) (Unveil) P2 sends V2 the string w.
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Post execution, the verifiers confer. They accept if and only if x+w = r or x+w = 0.

Combining protocol 4.3 and the zero-knowledge protocol of Goldreich, Micali, and Wigderson

(1991) gives us a zero-knowledge, multi-verifier MIP.

Protocol 4.4. ( ZKMIP, Multi-Verifier )

Two provers P1, P2, two verifiers V1, V2. On input graph G, P1 and P2 agree on a

randomly selected 3-coloring and 2|V | strings wi, V1 and V2 agree on an edge e and

2|V | strings ri.

(1) P1 commits the coloring of G to V1 using the 2|V | wi, ri they pre-agreed.

(2) V2 asks P2 to unveil the colors of the edge e.

Post execution, V1 and V2 confer with each other, and accept if and only if the commit-

ment is valid, and the colors unveiled are not equal.

What makes this protocol zero-knowledge? In the commitment scheme (protocol 4.3), if P2 has

knowledge of r, then it can break the commitment by unveiling either way (by sending w or w + r

as needed). Following the precedents set by existing literature’s definition of zero-knowledge, the

(single) simulator, interacting with both verifiers, learns r. Therefore it can break the commitment

and always unveil a color that will be accepted by the verifiers.

4.2 The Hidden Cost of Zero-Knowledge

Using relativistic assumptions to build cryptography can be costly, even in theory. Specifically, as

in the case of Lunghi et al. (2015), the spatial (in the complexity sense) and the communication
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complexity of sustaining n commitments is linear in the length of time that the commitments is

sustained.

The idea of using distance and special relativity (a theory of motion justifying that the speed of

light is a sort of asymptote for displacement) to prevent communication between participants to

multi-prover proof systems can be traced back to Kilian (1990a). Probably, the original authors

(Ben Or, Goldwasser, Kilian and Wigderson) of Ben-Or et al. (1988) had that in mind already, but it

is not explicitly written anywhere. Kent was the first author to venture into sustainable relativistic

commitments [Kent (1999)] and introduced the idea of arbitrarily prolonging their life span by

playing some ping-pong protocol between the provers (near the speed of light). This idea was

made considerably more practical by Lunghi et al. in Lunghi et al. (2015) who made commitment

sustainability much more efficient. This culminated into an actual implementation by Verbanis et

al. in Verbanis et al. (2016) where commitments were sustained for more than a day!

As nice as this may sound, such long-lasting commitments have found so far very little practical

use. Consider for instance the zero-knowledge proof for Hamiltonian Cycle as introduced by Chail-

loux and Leverrier [Chailloux and Leverrier (2017)]. Proving in zero-knowledge that a 500-vertex

graph contains a Hamiltonian cycle would require transmitting 250 000 bit commitments (each of a

couple hundreds of bits in length) and eventually sustaining them before the verifier can announce

his choice of unveiling the whole adjacency matrix or just the Hamiltonian cycle. For a graph of

|V | vertices, this would require an estimated 200|V |2 bits of communication before the verifier can

announce his choice chall (see Fig. 4.1). This makes the application prohibitively expensive. If

you use a larger graph, you will need more time to commit, leading to more distance to implement

the protocol of Chailloux and Leverrier (2017). Either a huge separation is necessary between the

provers (so that one of them can unveil according to the verifier’s choice chall before he finds out the

committal information B used by the other prover while the former must commit all the necessary

information before he can find out the verifier’s choice chall) or we must achieve extreme commu-

nication speeds between prover-verifier pairs. This would only be possible by vastly parallelizing

communications between them at high cost. Modern (expensive) top-of-line communication equip-

ment may reach throughputs of roughly 1Tbits/sec. A back of the envelope calculation estimates
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that the distance between the verifiers must be at least 100 km to transmit 250 000 commitments at

such a rate.
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Figure 4.1: Space-Time diagrams of Chailloux and Leverrier (2017)’s ZK-MIP⋆ for NP. (45◦

diagonals are the speed of light.)
In the above two diagrams, V1 at a first location sends a random matrix B to P1 who uses each
entry to commit an entry of the adjacency matrix Y of G. At another location, V2 sends a random
challenge chall to P2 who unveils all or some commitments as A . At all times, V1 and V2 must
make sure that the answers they get from P1 and P2 come early enough that the direct communi-
cation line between V1 and V2 (even at the speed of light) is not crossed. The transition from left
to right shows that increasing the number of vertices (and thus increasing the total commit time)
pushes the verifiers further away from each other. In Chailloux and Leverrier (2017) the distance
must increase quadratically with the number of vertices in the graph.

In this work we consider the following problem: in a Multi-Prover environment, how little spatial

separation is sufficient to assert the validity of an NP statement in perfect zero-knowledge? We

exhibit a set of two novel zero-knowledge protocols for the 3-COLorability problem that use two

(local) provers or three (entangled) provers and only require them to communicate two trits each

after having each received an edge and two bits each from the verifier. This greatly improves the

ability to prove zero-knowledge statements on very short distances with very minimal communi-

cation equipment. In comparison, the protocol of Chailloux and Leverrier (2017) would require

transmitting millions of bits between a prover and his verifier before the latter may disclose what
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to unveil or not. This implies the provers would have to be very far from each other because all of

these must reach the verifier before the formers can communicate.

Although certain algebraic zero-knowledge multi-prover interactive proofs for NP and NEXP us-

ing explicitly no commitments at all have been presented before in Lapidot and Shamir (1995), Feige

and Kilian (1994) (sound against local provers) and Chiesa, Forbes, Gur, and Spooner (2018),Grilo,

Slofstra, and Yuen (2019) (sound against entangled provers), in the local cases making these pro-

tocols entanglement sound is absolutely non-trivial, whereas in the entangled case the multi-round

structure and the amount of communication in each round makes implementing the protocol com-

pletely impractical as well. (In their defense, the protocols were not designed to be practical).

The main technical tool we use in this work is a general Lemma of Kempe, Kobayashi, Matsumoto,

Toner, and Vidick (2011) to prove soundness of a three-prover protocol when the provers are entan-

gled based on the fact that a two-prover protocol version is sound when the provers are only local.

More precisely, they proved this when the three-prover version is the same as the two-prover version

but augmented with an extra prover who is asked exactly the same questions as one of the other two

at random and is expected to give the same exact answers.

Our protocols build on top of the earlier protocol in Cleve et al. (2004) who presented an extremely

simple and efficient solution to the 3-COL problem that uses only two provers, each of which is

queried with either a vertex from a common edge, or twice the same vertex. In the former case, the

verifier checks that the two ends of the selected edge are of distinct colors, while in the latter case, the

verifier checks only that the provers answer the same color given the same vertex. On the bright side,

their protocol did not use commitments at all but unfortunately it did not provide zero-knowledge

either. Moreover, it is a well established fact that this protocol cannot possibly be sound against

entangled provers, because certain graph families have the property that they are not 3-colorable

while having entangled-prover pairs capable of winning the game above with probability one. This

was already known at the time when they introduced their protocol. The reason this protocol is not

zero-knowledge follows from the undesirable fact that dishonest verifiers can discover the (random)

coloring of non-edge pairs of vertices in the graph, revealing if they are of the same color or not in
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Figure 4.2: Space-Time diagram of our ZK-MIP⋆ for NP. (45◦ diagonals are the speed of light.)

the provers’ coloring.

We are able to remedy to the zero-knowledge difficulty by allowing the provers to use commitments

for the color of their vertices. However they use these commitments in an innovative way that we

call the unveil-via-commit principle (of independent interest) explained below. For this purpose we

use commitments similar to those of Lunghi et al. (2015) but in their simplest form possible, over

the field F3 (or F4 if you insist working in binary), and thus with extremely weak binding property

but also minimal in communication cost: a complete execution of the basic protocol transmits a

question Q of exactly one edge number (using only log |E| bits) and two bits from verifiers to

provers and an answer A of two trits back from the provers to verifiers (see Fig. 4.2). This implies

that for a fixed communication speed, the minimal distance of the provers in our protocol increases

logarithmically with the number of vertices whereas the same parameter grows quadratically in

Chailloux and Leverrier (2017). Nevertheless, this is good enough to obtain a zero-knowledge

version of the protocol that remains sound against local pairs of provers. The main idea being that

the provers will each commit to the colors of two requested vertices only if they form an edge of

the graph. To unveil the color of any vertex, the verifiers must request commitment of the same

vertex by both provers but using different randomizations. This way the verifiers may compute the

color of a vertex from the linear system established by the two commitments and not by explicitly

requesting anyone to unveil. This is the unveil-via-commit principle (very similar to the double-

spending detection mechanism of the untraceable electronic cash of Chaum, Fiat, and Naor (1990)).

We then use the Lemma of Kempe et al. (2011) to prove soundness of the three-prover version of
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this protocol even when the provers are entangled. A positive side of the protocol of Chailloux

and Leverrier (2017), however, is the fact that only two provers are necessary while we use three.

Zero-knowledge follows from the fact that only two edge vertices can be unveiled by requesting the

same edge to both provers. Otherwise only a single vertex may be unveiled. Finally, we show that

even the three-prover version of this protocol retains the zero-knowledge property: requesting any

three edges from the provers may allow the dishonest verifiers to unveil the colors of a triangle in

the graph but never two end-points that do not form an edge (going to four provers would however

defeat the zero-knowledge aspect).

An actual physical implementation of this protocol is currently being developed.

4.2.1 Implementations Issues

Traditionally in the setup of Multi-Prover Interactive Proofs, there is a single verifier interacting

with the many provers. However, when implementing no-communication via spatial separation (the

so called relativistic setting) it is standard to break the verifier in a number of verifiers equal to

the number of provers, each of them interacting at very short distance from their own prover. The

verifiers can use the timing of the replies of their respective provers to judge their relative distance.

In practice, this means that we can implement MIPs under relativistic assumptions if the verifier are

“split” into multiple verifiers, each locally? interacting with its corresponding prover. The verifiers

use the distance between themselves to enforce the impossibility of the provers to communicate:

no message from a verifier can be used to reply to another verifier faster than the speed of light

wherever the provers are located.

Moreover, multi-prover interactive proof systems may have several rounds in addition to several

provers. In general, protocols with several rounds may cause a threat to the inherent assumption that

the provers are not allowed to communicate during the protocol’s execution. Nevertheless, most of

the existing literature resolves this issue by providing an honest verifier that is non-adaptive. To

simplify this task, most of the protocols are actually single-round. We stick to these guidelines in

this work. Moreover, in order to prove soundness of our protocols against entangled provers, we

use a theorem that is currently only proven for single-round protocols. The protocols we describe
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are indeed single-round and non-adaptive.

4.3 Preliminaries

4.3.1 Notations

In the following, G = (V,E) denotes an undirected graph with vertices V and edges E. If n = |V |

then we denote the set of vertices in G by V = {1, 2, . . . , n}. We suppose that (i, i) /∈ E for all

1 ≤ i ≤ n (i.e. G has no loop). We denote uniquely each edge in E as (i, j) with j > i. For i ∈ V ,

let Edges(i) := {(j, i) ∈ E}j<i ∪ {(i, j) ∈ E}j>i be the set of edges connecting vertex i in G. For

e, e′ ∈ E, we define e∩ e′ = i ∈ V if e and e′ have only one vertex i ∈ V in common. When e and

e′ have four distinct vertices in V , we set e ∩ e′ = 0. Finally, when e = e′, we set e ∩ e′ :=∞. For

readability, we use the following special notations: (a, b) ̸≠= (c, d) means a ̸= c and b ̸= d, while

as always, (a, b) ̸= (c, d) simply means a ̸= c or b ̸= d.

4.3.2 Non-local Games and Relativistic Multi-Prover Interactive Proofs

Consider a k–prover interactive proof system Π(x) (with or without perfect completeness) for L

executed with public input x /∈ L. In this situation, Π(x) defines a so-called quantum game. The

minimum q(|x|) such that for all P′
1, . . . ,P

′
k, Pr

{︁(︁
[P′

1, . . . ,P
′
k,V](x) = ACCEPT

)︁}︁
≤ q(|x|) is

called the classical value of game Π[x] and is denoted ω(Π(x)) when the provers are restricted to

be classical and unable to communicate with each other upon public input x. When the provers,

still unable to communicate with each other, are allowed to carry their computation quantumly

and share entanglement, we denote by ω∗(Π(x)) ≥ ω(Π(x)) the minimum q(|x|) such that for

all such quantum provers P′
1, . . . ,P

′
k, Pr

{︁(︁
[P′

1, . . . ,P
′
k,V](x) = ACCEPT

)︁}︁
≤ q(|x|). In this

case, ω∗(Π(x)) is called the quantum value of game Π(x). A k–prover interactive proof system

for L is said to be symmetric if V can permute the questions to all provers without changing their

distribution.

The following result of Kempe, Kobayashi, Matsumoto, Toner, and Vidick [Kempe et al. (2011)]

shows that the classical value of a symmetric one-round classical game cannot be too far from the
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quantum value of a modified game. Given a symmetric one-round two-prover game Π, one can

always add a third prover P3 and V asks P3 the same question than P1 with probability 1
2 or the

same question than P2 with probability 1
2 . Then, V accepts if P1 and P2 would be accepted in Π(x)

and if P3 returns the same answer as the one issued by the prover it emulates. We call Π′(x) the

modified game obtained that way from Π(x).

Lemma 4.1 (Kempe et al. (2011), Lemma 17). Let Π(x) be a two-prover one-round symmetric

game and let Π′(x) be its modified version with three provers. If ω∗(Π′(x)) > 1− ε then we always

get ω(Π(x)) > 1− ε− 12|Q|
√
ε where Q is the set of V’s possible questions to a prover in Π.

Lemma 4.1 remains true for non-symmetric two-prover one-round protocol by first making them

symmetric at the cost of increasing the size of Q. This is always possible without changing the

classical value of the game and by using at most twice the number of questions |Q| of the original

game (Lemma 4 in Kempe et al. (2011)).

4.3.3 Multi-Prover Commitments with Implicit Unveiling

Our multi-prover proof systems for 3COL use a simple 2-committer commitment scheme with a

property allowing to guarantee perfect zero-knowledge. In this section, we give the description of

this simple commitment scheme with its important properties for our purposes.

Assume that provers P1 and P2 share ℓ values c1, c2, . . . , cℓ ∈ F where F is a finite field. V wants

to check that these values satisfy some properties without revealing the specific values.

Bit commitment schemes have been used in the multi-prover model ever since it was introduced

in Ben-Or et al. (1988). The original scheme was basically, for 1 ≤ i ≤ l, wi := bi · ri + ci, a

commitment wi to value ci ∈ F using pre-agreed random mask bi ∈R F and randomness ri ∈ F∗

provided by V. Kilian [Kilian (1990b)] had a binary version where each bit ci := c1i ⊕ c2i ⊕ c3i

is shared among provers P1 and P2 (and therefore F needs only to be a group). To commit ci,

V samples chi from P1 and cji from P2 at random. If j = h but cji ̸= chi , V immediately rejects

the commitment. Otherwise either P1 or P2 may unveil by disclosing c1i , c
2
i , c

3
i at a later time.

Somehow, Crépeau’s bad recollection of the scheme in Ben-Or et al. (1988) lead Brassard, Crépeau,
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Mayers, and Salvail (1998) to a similar but different scheme definingwi := ci ·ri+bi, a commitment

wi to bit ci ∈ {0, 1} using pre-agreed bit mask bi ∈R {0, 1} and binary randomness ri provided by

their corresponding verifiers. Although this latter form of commitment is intimately connected to the

CHSH game [Clauser, Horne, Shimony, and Holt (1969)] and the Popescu-Rohrlich box [Popescu

and Rohrlich (1994)], this proximity is not relevant for the soundness and the completeness of our

protocols, even against entangled provers. While the binding property of the latter scheme has been

established in Chailloux and Leverrier (2017); Crépeau et al. (2011); Fehr and Fillinger (2015); Kent

(1999); Lunghi et al. (2015); Verbanis et al. (2016) against entangled provers, it is still not clear how

to get sound and complete proof systems against such provers. We shall rather get completeness

and soundness against entangled provers using a different technique from Kempe et al. (2011) that

uses a third prover.

For an arbitrary field F, the commitment scheme produces commitment wi := ci · ri + bi to field

element ci ∈ F using pre-agreed field element mask bi (specific to value 1 ≤ i ≤ ℓ) and random

field element ri ∈ F∗ provided by their corresponding verifiers. Many results were proven for

this specific form of the commitments. Notice however that the two versions discussed above,

wi := bi · ri + ci in the former case and wi := ci · ri + bi in the latter have equivalent binding

property (left as a simple exercise). Considering, the former as being the degree-one secret sharing

[Shamir (1979)] of ci hidden in the degree zero term, while the latter being the degree-one secret

sharing of ci hidden in the degree one term, we decided to use the former (original BGKW form)

because all the known results about secret sharing are generally presented in this form. In particular,

this form is more adapted to higher degree generalizations such as wi := ai · r2i + bi · ri + ci being

the degree-two secret sharing of ci hidden in the degree zero term, and so on.

Moreover, this choice turns out to simplify our (perfect) zero-knowledge simulator. For the rest of

this paper, we use wi := bi · ri + ci where wi, bi, ci ∈ F3 and ri ∈ F∗
3. Provers therefore commit to

trits, one value for each vertex corresponding to its color in a 3–coloring of graph G = (V,E). The

values shared between P1 and P2 are therefore, for each vertex i ∈ V , the color ci of that vertex

and a vertex specific random mask bi.
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Suppose that V asks P1 to commit on the color ci of vertex i ∈ V using randomness r ∈R F∗
3. Let

w = bi · r + ci be the commitment returned to V by P1. Suppose V asks P2 to commit on the color

cj of vertex j ∈ V using randomness r′ ∈R F∗
3. Let w′ = bj · r′ + cj be the commitment issued to

V by P2. The following 3 cases are possible depending on V’s choices for i, j, r, and r′:

(1) (forever hiding) if i ̸= j then V learns nothing on neither ci nor cj since w and w′ hide ci and

cj with random and independent masks bi ·r and bj ·r′ respectively. Even knowing r, r′ ∈ F∗
3,

bi · r and bj · r′ are uniformly distributed in F3.

(2) (consistency testing) If i = j and r = r′ then V can verify that w = w′. This corresponds to

the immediate rejection of V in Kilian’s two-prover commitment described above. It allows

V to make sure that P1 and P2 are consistent when asked to commit on the same value.

(3) (implicit unveiling) If i = j and r′ ̸= r then V can learn ci (assuming w = bi · r + ci and

w′ = bi · r′ + ci) the following way. V simply computes ci := −(w + w′) (Note that over an

arbitrary field ci := (wr′−w′r)(r′− r)−1 whenever r ̸= r′). Interpreting the meaning of this

test can be done when considering a strategy for P1 and P2 that always passes the consistency

test. In this case, w − bi · r = ci = w′ − bi · r′ are satisfied and V learns ci.

As long as P1 and P2 are local (or quantum non-local) they cannot distinguish which option V

has picked among the three. The consistency test makes sure that if P1 and P2 do not commit

on identical values for some i ∈ V then V will detect it when V picks the consistency test for

commitment w and w′ in position i.

4.4 Classical Two-Prover Protocol

First, consider a small variation over the protocol of Cleve et al. presented in Cleve et al. (2004). In

their protocol, when P1 and P2 both know and act upon the same valid 3-coloring ofG, V asks each

prover for the color of a vertex in G = (V,E). Consistency is verified when V asks the same vertex

to each prover and compares that the same color has been provided. The colorability is checked
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when the provers are asked for the color of two connected vertices in G. This way of proceeding

is however problematic for the zero-knowledge condition. V could be asking two vertices that do

not form an edge for which their respective color will be unveiled. This certainly allows V to

learn something about P1’s and P2’s coloring. Indeed, repeating this many times will allow V to

efficiently reconstruct a complete coloring. To remedy partially this problem, V is instead asking

each prover the coloring of an entire edge of G. The coloring is (only) checked when both provers

are asked the same edge, while consistency is checked when two intersecting edges are asked to the

provers.

4.4.1 Distribution of questions

Let G = (V,E) be a connected undirected graph. Let us define the probability distribution DG =

{(p(e, e′), (e, e′))}e,e′∈E for the pair (e, e′) ∈ E × E that V picks with probability p(e, e′) before

announcing e to P1 and e′ to P2. For e, e′ ∈ E such that e ∩ e′ = 0, we set p(e, e′) := 0 so that V

never asks two disconnected edges in G (this would be useless).

The first thing to do is to pick e = (i, j) ∈ E uniformly at random. With probability ϵ (to be

selected later), we set e′ = e, which allows for an edge-verification test. With probability 1 − ϵ,

we perform a well-definition test as follows. With probability 1
2 , e′ ∈ Edges(i) uniformly at

random and with probability 1
2 , e′ ∈ Edges(j) uniformly at random. In other words, the well-

definition test picks the second edge e′ with probability 1
2 among the edges connecting i ∈ V and

with probability 1
2 among the edges connecting j ∈ V . It follows that for e = (i, j) ∈ E and

e′ ∈ (Edges(i) ∪ Edges(j)) \{e}, we have

p(e, e′) =
1− ϵ
2|E|

(︃
|{e′} ∩ Edges(i)|
|Edges(i)|

+
|{e′} ∩ Edges(j)|
|Edges(j)|

)︃
. (1)

We also get

p(e, e) =
ϵ

|E|
+

1− ϵ
2|E|

(︃
1

|Edges(i)|
+

1

|Edges(j)|

)︃
≥ ϵ

|E|
. (2)

It is easy to verify that DG is a properly defined probability distribution over pairs of edges.
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4.4.2 A Variant Over the Two-Prover Protocol of Cleve et al.

Distribution DG produces two edges where the first one is provided to P1 while the second one is

provided to P2. Each prover then returns the color of each vertex of the edge to V. We denote the

resulting protocol Π(2)
std .

Protocol Π
(2)
std [G] : Two-prover, 3-COL.

Provers P1,P2 pre-agree on a random 3-coloring of G:

{(i, ci)|ci ∈ F3}i∈V such that (i, j)∈E =⇒ cj ̸= ci.

Interrogation phase:

• V picks ((i, j), (i′, j′)) ∈DG
E × E, sends (i, j) to P1 and (i′, j′) to P2.

• If (i, j)∈E then P1 replies with ci, cj .

• If (i′, j′)∈E then P2 replies with ci′ , cj′ .

Check phase:

• Edge-Verification Test:

if (i, j) = (i′, j′) then V accepts iff ci = ci′ ̸= cj′ = cj .

• Well-Definition Test:

if (i, j) ∩ (i′, j′) = h ∈ V then V accepts iff ch = c′h.

The perfect soundness of this protocol is not difficult to establish along the same lines of the proof

of soundness for the original protocol in Cleve et al. (2004). On the other hand, zero-knowledge

does not even hold against honest verifiers. V learns the color of each vertex contained in any two

edges of G. This is certainly information about the coloring that V learns after the interaction. To

some extend, the modifications we applied to the 2-prover interactive proof system of Cleve et al.
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(2004) leaks even more to V. In the next section, we show that the 2-prover commitment scheme,

that we introduced in Sect. 4.3.3, can be used in protocol Π(2)
std to prevent this leakage completely.

4.5 Perfect Zero-Knowledge Two-Prover Protocol

We modify the protocol of section 4.4.2 to prevent V from learning the colors of more than two

connected vertices in G. The idea is simple, P1 and P2 will return commitments for the colors

of the vertices asked by V. The implicit unveiling of the commitment scheme described in section

4.3.3 will allow V to perform both the edge-verification and well-definition tests in a very similar

way that in protocol Π(2)
std . The commitments require V to provide a random nonzero trit for each

vertex of the edge requested to a prover.

4.5.1 Distribution of questions

We now define the probability distribution D′
G for V’s questions in protocol Π(2)

lhv[G] defined in the

following section. It consists in one edge and two nonzero trits for each prover:

D′
G = {(p′(e, r, s, e′, r′, s′), ((e, r, s), (e′, r′, s′))}e,e′∈E,r,s,r′,s′∈F∗

3

upon graph G = (V,E) and where (e, r, s) is the question to P1 and (e′, r′, s′) is the question to

P2. D′
G is easily derived from the distributionDG for the questions in Π

(2)
std [G], as defined in section

4.4.1. First, an edge e ∈R E is picked uniformly at random. Together with e, two nonzero trits

r, s ∈R F∗
3 are picked at random. Then, as inDG, with probability ϵ (to be selected later) the second

edge e′ = e, in which case we always set r′ = −r and s′ = −s. This case allows for an edge-

verification test. Finally, with probability 1 − ϵ, we pick e′ with probability p(e, e′)|E| so that the

couple ((e, r, s), (e′, r, t)) is produced with probability 1
8p(e, e

′) for all e, e′ ∈ E, and r, s, t ∈ F∗
3.

This will allow for a well-definition test. A consequence of (1) is that for e = (i, j) ∈ E, e′ ∈

Edges(i) ∪ Edges(j)

p′(e, r, s, e′, r, t) ≥ 1− ϵ
16|E|

(︃
|{e′} ∩ Edges(i)|
|Edges(i)|

+
|{e′} ∩ Edges(j)|
|Edges(j)|

)︃
, (3)
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where the inequality results from e = e′ being possible. According to (2), we also get

p′(e, r, s, e,−r,−s) = p(e, e)

4
≥ ϵ

4|E|
. (4)

4.5.2 The Protocol

The protocol is similar to Π
(2)
std except that instead of returning to V the color for each vertex of

an edge in G, each prover returns commitments with implicit unveiling of these colors. If V asks

two disjoint edges then V learns nothing about the values committed by the forever-hiding property

of the commitment scheme. The resulting 2–prover one-round interactive proof system is denoted

Π
(2)
lhv.

Protocol Π
(2)
lhv[G] : Two-prover, 3-COL

P1 and P2 pre-agree on random masks bi ∈R F3 for each i ∈ V and a random 3-

coloring of G: {(i, ci)|ci ∈ F3}i∈V such that (i, j)∈E =⇒ cj ̸= ci.

Commit phase:

• V picks (((i, j), r, s), ((i′, j′), r′, s′)) ∈D′
G

(︁
E × (F∗

3)
2
)︁2.

• V sends ((i, j), r, s) to P1 and ((i′, j′), r′, s′) to P2.

• If (i, j) ∈ E then P1 replies wi = bi · r + ci and wj = bj · s+ cj .

• If (i′, j′) ∈ E then P2 replies w′
i′ = bi′ · r′ + ci′ and w′

j′ = bj′ · s′ + cj′ .

Check phase:

Edge-Verification Test:

• if (i, j) = (i′, j′) and (r′, s′) ̸≠= (r, s) then V accept iff wi + w′
i ̸= wj + w′

j .

Well-Definition Test:
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• If (i, j) = (i′, j′) and (r′, s′) = (r, s) then V accepts iff (wi = w′
i) ∧ (wj = w′

j).

• if (i, j) ∩ (i′, j′) = i and r′ = r then V accepts iff wi = w′
i.

• If (i, j) ∩ (i′, j′) = j and s′ = s then V accepts iff wj = w′
j .

Clearly, Π(2)
lhv satisfies perfect completeness. The following theorem establishes that in addition to

perfect completeness, Π(2)
lhv is sound against classical provers.

Theorem 4.1. The two-prover interactive proof system Π
(2)
lhv is perfectly complete with classical

value ω(Π(2)
lhv[G]) ≤ 1− 1

9|E| upon any graph G = (V,E) /∈ 3COL.

Proof. Assume G /∈ 3COL and let us consider the probability δ that V detects an error in the check

phase when interacting with two local dishonest provers ˜︁P1 and ˜︁P2. Π
(2)
lhv is a one-round protocol

where the provers cannot communicate directly with each other nor through V’s questions since

they are independent of the provers’ answers. It follows that the strategy of ˜︁P1 and ˜︁P2 can be made

deterministic without damaging the soundness error by letting each prover choosing the answer that

maximizes her/his probability of success given her/his question. Therefore, consider a deterministic

strategy as a pair of arrays W ℓ[i, r, j, s] ∈ F2
3 to be used by prover ˜︁Pℓ for ℓ ∈ {1, 2} (note: we

only care about the entries where (i, j) ∈E upon question ((i, j), r, s) with i < j. V can always

present edges in the same order)). For z ∈ {1, 2}, W ℓ
z [·, ·, ·, ·] is the z-th component of the output

pair W ℓ[·, ·, ·, ·]. We say that W [i, r] for [i, r] ∈ E × F∗
3 is well defined if for all j, k such that

(i, j), (i, k) ∈ E and ∀s, t ∈ F∗
3, one of the following 4 equalities is true depending on which of

j > i or j < i, k > i or k < i is correct

W 1
1 [i, r, j, s] =W 2

1 [i, r, k, t] =W 1
2 [j, s, i, r], or W 1

1 [i, r, j, s] =W 2
2 [k, t, i, r] =W 2

2 [k, t, i, r]

(5)

When W [i, r] is well defined for all i ∈ V, r ∈ F∗
3, we say that W is well defined.

We now lower bound the probability δwdt > 0 that, when W [i, r] is not well-defined for some
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i ∈ V and r ∈ F∗
3, the well-definition test will detect it. When (5) is not satisfied , w.l.o.g. we have

W 1
1 [i, r, j, s] ̸=W 2

1 [i, r, k, t] for some (i, j), (i, k) ∈ E. The other three cases are treated similarly.

Let e = (i, j) and e′ = (i, k) be these two edges. According to (3) (and (1) when e = e′), the

well-definition test will then detect an error with probability

Pr
{︁(︁

V picks e and e′ with randmoness r, s, t
)︁}︁

= p′(e, r, s, e′, r, t) ≥ 1− ϵ
16|E||Edges(i)|

. (6)

However, we can do much better: we observe that if W [i, r] is not well defined, we can detect it in

at least 2|Edges(i)| places. Consider any ℓ > i such that (i, ℓ) ∈ E and u ∈ F∗
3 (The case where

ℓ < i is treated similarly). It is obvious that one of the following three statements must be true:

W 1
1 [i, r, j, s] ̸=W 2

1 [i, r, ℓ, u], W
1
1 [i, r, ℓ, u] ̸=W 2

1 [i, r, ℓ, u], or W 1
1 [i, r, ℓ, u] ̸=W 2

1 [i, r, k, t].

It follows that ifW [i, r] is not well defined then there are 2|Edges(i)|ways for V to catch the provers

and each of these has probability at least 1−ϵ
16|E|·|Edges(i)| to be picked. It follows that,

δwdt ≥
(1− ϵ) · 2|Edges(i)|
16|E| · |Edges(i)|

=
1− ϵ
8|E|

.

Now, assume that W is well-defined, which means that the commitment values produced by the

provers satisfy the consistency test. As discussed in section 4.3.3, when the commitments are con-

sistent, the unique colors committed upon are defined by ci := − (W [i, r] +W [i,−r]) for both

values of r. Since G /∈ 3COL, two of the vertices must be of the same color at the end-points of

at least one edge (i∗, j∗) ∈ E. In this case the edge-verification test will detect it when (i∗, j∗) is

the edge announced to both provers and if randomness (r, s) ∈ F∗
3 × F∗

3 is announced to P1 then

(−r,−s) is the randomness announced to ˜︁P2. Using (4), the probability δevt to detect such an edge

when W is well defined satisfies

δevt ≥
∑︂
r,s

min
e∈E

(p′(e, r, s, e,−r,−s)) ≥ ϵ

|E|
.
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Therefore, the detection probability δ of any deterministic strategy for G /∈ 3COL satisfies

δ ≥ min(δwdt, δevt) ≥
1

9|E|
(maximized at ϵ = 1/9) .

The result follows as the classical value of the game ω
(︂
Π

(2)
lhv[G]

)︂
≤ 1− δ.

To prove (perfect) zero-knowledge, it suffices to show that if ((i, j), r, s) and ((i′, j′), r′, s′) are

selected arbitrarily, V can determine at most the colors of two vertices (that form an edge). The

commitments prevent a dishonest prover ˜︁V to learn the colors of two vertices that are not connected

by an edge in G. Proving this is not very hard and will be done in Section 4.6.3 for the three-prover

case (although with three provers, ˜︁V may also learn the color of three vertices that form a triangle).

The addition of a third prover will allow, using lemma 4.1, to get soundness against entangled

provers without compromising zero-knowledge. As shown in Cleve et al. (2004), their protocol is

not necessarily sound against two entangled provers. We also do not know whether Π(2)
std is sound

against two entangled provers.

4.6 Three-Prover Protocol Sound Against Entangled Provers

The three-prover protocol Π(3)
qnl, defined below, is identical to Π

(2)
lhv except that P3 is asked to repeat

exactly what P1 or P2 has replied. The prover that P3 is asked to emulate is picked at random

by V. An application of lemma 4.1 allows to conclude the soundness of Π
(3)
qnl against entangled

provers. Zero-knowledge remains since the only way to provide V with the colors of more than two

connected vertices is if they form a complete triangle of G. This reveals nothing beyond the fact

that G ∈ 3COL to V, since all vertices will then show different colors.

4.6.1 Distribution of questions

The probability distribution ˆ︁DG for V’s questions to the three provers is easily obtained from the dis-

tribution D′
G for the questions in protocol Π(2)

lhv[G]. V picks ((e, r, s), (e′, r′, s′)) ∈D′
G

(︁
E × (F∗

3)
2
)︁2

and sets ê = e, r̂ = r, and ŝ = s with probability 1
2 or sets ê = e′, r̂ = r′, and ŝ = s′ also

with probability 1
2 . Defined that way, ˆ︁DG is a properly defined probability distribution for V’s three
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questions, each one in E × (F∗
3)

2.

4.6.2 The Protocol

In protocol Π(3)
qnl, after the three questions picked according ˆ︁DG by V have been answered by the the

provers, V accepts if and only if the replies of P1 and P2 are accepted in Π
(2)
lhv and in addition, P3

gave the same reply than the prover it emulates.

Protocol Π
(3)
qnl[G] : Three-prover, 3-COL.

Provers P1,P2, and P3 pre-agree on random values bi ∈R F3 for all i ∈ V and a

random 3-coloring of G: {(i, ci)|ci ∈ {0, 1, 2}}i∈V such that (i, j)∈E =⇒ cj ̸= ci.

Commit phase:

• V picks (((i, j), r, s), ((i′, j′), r′, s′), ((ı̂, ȷ̂), r̂, ŝ)) ∈ ˆ︁DG

(︁
E × (F∗

3)
2
)︁3.

• V sends ((i, j), r, s) to P1, ((i′, j′), r′, s′) to P2, and ((ı̂, ȷ̂), r̂, ŝ) to P3.

• If (i, j) ∈ E then P1 replies wi = bi · r + ci and wj = bj · s+ cj .

• If (i′, j′) ∈ E then P2 replies w′
i′ = bi′ · r′ + ci′ and w′

j′ = bj′ · s′ + cj′ .

• If (ı̂, ȷ̂) ∈ E then P3 replies ŵı̂ = bı̂ · r̂ + cı̂ and ŵȷ̂ = bȷ̂ · ŝ+ cȷ̂.

Check phase:

Consistency Test:

• If ((ı̂, ȷ̂), r̂, ŝ) = ((i, j), r, s) then V rejects if (wi, wj) ̸= (ŵı̂, ŵȷ̂).

• If ((ı̂, ȷ̂), r̂, ŝ) = ((i′, j′), r′, s′) then V rejects if (w′
i′ , w

′
j′) ̸= (ŵı̂, ŵȷ̂).

Edge-Verification Test:

• if (i, j) = (i′, j′) and (r′, s′) ̸≠= (r, s) then V accept iff wi + w′
i ̸= wj + w′

j .
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Well-Definition Test:

• If (i, j) = (i′, j′) and (r′, s′) = (r, s) then V accepts iff (wi = w′
i) ∧ (wj = w′

j).

• if (i, j) ∩ (i′, j′) = i and r = r′ then V accepts iff wi = w′
i.

• If (i, j) ∩ (i′, j′) = j and s = s′ then V accepts iff wj = w′
j .

The soundness of protocol Π(3)
qnl against entangled provers can easily be shown a direct consequence

of the soundness of protocol Π(2)
lhv against classical provers, by an application of Lemma 4.1. Indeed,

the soundness error corresponds to the quantum value of the game when G = (V,E) /∈ 3COL

provided Π
(2)
lhv is symmetric. As defined in Sect. 4.5.1 however, the distribution of questions D′

G

is not necessarily symmetric since the first edge e is picked uniformly at random in E while the

second edge e′ ∈ E is picked from e in a way that the marginal may not be uniform. However,

Π
(2)
lhv can easily be turned into a symmetric protocol by picking (e, r, s), (e′, r′, s′) according D′

G

and announcing (e, r, s) to P1 and (e′, r′, s′) to P2 with probability 1
2 while announcing (e, r, s) to

P2 and (e′, r′, s′) to P1 with probability 1
2 . The resulting symmetric protocol is equivalent to Π

(2)
lhv

and therefore shares its classical value upper bounded in Theorem 4.1 and the set of questions Q to

each player remains the same as for Π(2)
lhv. In the symmetric version, Q is thus the same for every

prover and |Q| = 4|E|.

Theorem 4.2. The three-prover interactive proof system Π
(3)
qnl is perfectly complete and has quantum

value

ω∗
(︂
Π

(3)
qnl[G]

)︂
≤ 1−

(︃
1

9|E|+ 432|E|2

)︃2

≤ 1−
(︃

1

21|E|

)︃4

(7)

upon any graph G = (V,E) /∈ 3COL.

Proof. Assume G = (V,E) /∈ 3COL. The contrapositive of Lemma 4.1 indicates any one-round

symmetric game Π
(2)
lhv[G] with classical value ω

(︂
Π

(2)
lhv[G]

)︂
≤ 1 − δ − 12|Q|

√
δ is such that the

modified game Π
(3)
qnl[G] has quantum value ω∗

(︂
Π

(3)
qnl[G]

)︂
≤ 1 − δ. The set Q of questions to each
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player satisfies |Q| = 4|E|. Theorem 4.1 establishes that δ + 12|Q|
√
δ ≥ 1

9|E| , which implies
√
δ ≥ 1

(
√
δ+12|Q|)·9|E| ≥

1
(1+12|Q|)·9|E| =

1
9|E|+432|E|2 ≥

1
441|E|2 , and the result follows.

As an immediate consequence of Theorem 4.2, Ω(|E|4) sequential repetitions of Π(3)
qnl produces an

interactive proof system for 3COL with negligible soundness error. Although the resulting proof

system can be implemented on short distances, these many sequential rounds need to be performed

at high rate for a given proof to be concluded in reasonable time. A few executions of Π(3)
qnl could

be ran in parallel without having to greatly increase the distances while reducing the number of

sequential rounds. However, we don’t know how the soundness error decreases when Π
(3)
qnl is ran

only a few times in parallel, even though the results of Kempe and Vidick, a quantum version of

Raz’s parallel repetition theorem [Raz (1998)], indicate that Ω(|E|4) runs in parallel produces a

proof system with negligible soundness error [Kempe and Vidick (2011)].

4.6.3 Proof of Perfect Zero-Knowledge

In this section, we prove that protocol Π(3)
qnl is perfect zero-knowledge. As a consequence, Π(2)

lhv is

also zero-knowledge since everything ˜︁V sees in Π
(2)
lhv can also be observed in Π

(3)
qnl. The proof of

zero-knowledge proceeds using the fact that a vertex must appear at least twice to have its color

unveiled. This is the forever hiding property of the commitment scheme described in Section 4.3.3.

Notice that this would be enough for ˜︁V to learn something about the coloring if no extra condition on

these three vertices is observed. In fact, we can easily show that only a few cases of color disclosure

are possible and in each of these cases, ˜︁V learns nothing about the coloring that it could not have

computed on its own. ˜︁V can only learn the color of two connected vertices in G and nothing else

or the colors of three vertices forming a triangle in G. In each of these cases, ˜︁V learns random

distinct colors for these vertices, which is to be expected by a valid 3-coloring of G. Let us show

why this is enforced by the properties (see Section 4.3.3) of the commitment scheme. Remember

that in order to learn the color assigned to a vertex i ∈ V , ˜︁V must ask that vertex to at least 2 distinct

provers. Otherwise, ˜︁V sees only random values returned by the provers. There are 7 cases of figure

depending on how ˜︁V selects the 3 edges asked. Figure 4.3 shows all cases. The 3 edges indicated

for each case are the one picked by ˜︁V. The colors associated to white vertices remain hidden by
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the forever hiding property of the commitment scheme. For these vertices, the committed values

received from the provers are just random and independent elements in F3. In each of the 7 cases,

the unveiled colors of the vertices are displayed in shade of grey. We see that the only way to unveil

the color of two vertices (cases 2, 3, 4, 5, and 6) is when they are connected by an edge, which

means that the colors of both vertices are random but distinct. The only way for ˜︁V to learn the color

of 3 distinct vertices is when they form a triangle (case 7). In this case, ˜︁V learns three random and

distinct colors. Clearly, this is nothing more than something necessarily true when G ∈ 3COL.

These properties of the commitment scheme allow, for any quantum polynomial-time dishonest

verifier ˜︁V, an easy simulator for view(P1,P2,P3, ˜︁V, G) when G ∈ 3COL, thus establishing that

Π
(3)
qnl is perfect zero-knowledge.

Theorem 4.3. The three-prover interactive proof system Π
(3)
qnl is perfect zero-knowledge against

quantum verifiers.

Proof. The simulator Sim is classical given blackbox access to ˜︁V (and ˜︁V can be quantum).

Consider an execution Sim(G) upon graphG = (V,E). It first picks a random permutation COL[·] :

F3 ↦→ F3 over three colors, each corresponding to a distinct element in F3. Table MARK[i, r] ∈

{True,False}, for i ∈ V and r ∈ F∗
3, is initialized to False and will indicate if the output of a

prover has already been simulated for vertex i with randomness r. Table COUNT[i], for i ∈ V ,

counts the number of times vertex i has been asked so far during the simulation. Variable c ∈ F3,

initialized to 0, indicates the next color index the simulator should use when a new color must be

unveiled during the simulation.

Simulator Sim(G) : Simulator for ˜︁V’s view upon graph G in Π
(3)
qnl.

All arithmetic below is performed in F3.

(1) Let COL[·] be a uniform permutation of F3 and let c := 0.

(2) ∀i∈V,∀r∈F∗
3, let MARK[i, r] := False and COUNT[i] := 0.
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(3) Run ˜︁V until it returns ((i1, j1), r1, s1), ((i2, j2), r2, s2), ((i3, j3), r3, s3).

(4) For each ℓ ∈ {1, 2, 3} do:

• Whenever (iℓ, jℓ)∈E is provided by ˜︁V, output (wℓ
iℓ
, wℓ

jℓ
) ∈ F3 × F3 to ˜︁V,

both computed as follows:

(a) If ¬MARK[iℓ, rℓ] then

◦ If COUNT[iℓ] = 0 then pick W [iℓ, rℓ] ∈R F3.

◦ If COUNT[iℓ] = 1 then set W [iℓ, rℓ] := −COL[c]−W [iℓ,−rℓ], c :=

c+ 1.

◦ COUNT[iℓ] := COUNT[iℓ] + 1.

(b) If ¬MARK[jℓ, sℓ] then

◦ If COUNT[jℓ] = 0 then pick W [jℓ, sℓ] ∈R F3.

◦ If COUNT[jℓ] = 1 then set W [jℓ, sℓ] := −COL[c] − W [jℓ,−sℓ],

c := c+ 1.

◦ COUNT[jℓ] := COUNT[jℓ] + 1.

(c) MARK[iℓ, rℓ] := True, MARK[jℓ, sℓ] := True.

(d) wℓ
iℓ
:=W [iℓ, rℓ], wℓ

jℓ
:=W [jℓ, sℓ].

˜︁V is then invoked to produce questions ((iℓ, jℓ), rℓ, sℓ) for all provers Pℓ, ℓ ∈ {1, 2, 3}. Sim now

aims at setting the values (wℓ
iℓ
, wℓ

jℓ
) for Pℓ’s commitments. If (iℓ, jℓ) /∈ E, Sim produces no value

for (wℓ
iℓ
, wℓ

jℓ
), exactly as Pℓ in Π

(3)
qnl.

When (iℓ, jℓ) ∈ E, Sim first produces Pℓ’s commitment wℓ
iℓ

for iℓ ∈ V and then produces Pℓ’s
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commitment wℓ
jℓ

for jℓ ∈ V . We show how wℓ
iℓ

, wℓ
jℓ

is computed similarly mutatis mutandis:

• if MARK[iℓ, rℓ] then Sim returns the value of wℓ
iℓ

already determined for the simulation of

the commitment of an earlier prover Ph, h < ℓ. This ensures that both the commitment’s

consistency test performed and the well-definition test are always successful, as in Π
(3)
qnl with

honest provers.

• if ¬MARK[iℓ, rℓ] then Sim has never simulated a commitment of the color for vertex iℓ with

randomness rℓ. The value COUNT[iℓ] indicates the number of times prior to this value for ℓ,

vertex iℓ has been asked:

◦ If COUNT[iℓ] = 0 then wℓ
iℓ
∈R F3 is picked uniformly at random, as it should be when

the commitment value for the color of vertex iℓ is observed in isolation.

◦ If COUNT[iℓ] = 1 then the color associated to vertex iℓ has been committed to value wh
iℓ

by an earlier simulated prover Ph, h < ℓ upon randomness−rℓ (otherwise, MARK[iℓ, rℓ] =

True). Sim sets wℓ
iℓ
= −COL[c]− wh

iℓ
, which satisfies the implicit unveiling of random

color COL[c] = −wℓ
iℓ
− wh

iℓ
. The current color c is incremented.

The value of COUNT[iℓ] is increased by one and MARK[iℓ, rℓ] = True, as the color of vertex

iℓ with randomness rℓ has been committed upon by the simulated prover Pℓ.

Let (w1
i1
, w1

j1
), (w2

i2
, w2

j2
), and (w3

i3
, w3

j3
) be all commitment values simulated by Sim. As discussed

above and shown in Fig. 4.3, the colors of no more than 3 vertices are unveiled in the process.

Sim always unveils as many different colors as there are colors unveiled to ˜︁V. If Sim’s simulated

committed values unveils only the color of one vertex then that color is random, as it should in this

case in Π
(3)
qnl.

If Sim’s committed values unveils the colors of exactly 2 vertices then these 2 vertices form an edge

in G and the colors are two different random colors, as it should be in Π
(3)
qnl. Finally, when Sim’s

committed values unveil the colors of exactly 3 vertices then these vertices form a triangle in G.

The 3 colors unveiled by Sim to ˜︁V are different and assigned randomly to each of the 3 vertices, as
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Figure 4.3: The 7 ways to unveil the colors of at most 3 vertices in Π
(3)
qnl.

it is in Π
(3)
qnl. Otherwise, if wℓ

i for i ∈ V has been generated with only one random value then wℓ
i is

random and uniform in F3, exactly as it is in Π
(3)
qnl in the same situation. It is now clear that,

view(P1,P2,P3, ˜︁V, G) = Sim(G) ,

and Π
(3)
qnl is perfect zero-knowledge.

Note: since no rewinding is used by our simulator, it is absolutely unnecessary to explicitly handle

auxiliary-inputs or the fact that V is quantum. No special care is required to handle these consider-

ations that become highly non-trivial in the case where rewinding is required.

4.7 Conclusion and Open Problems

We have provided a three-prover perfect zero-knowledge proof system for NP sound against entan-

gled provers that is implementable in some well controlled environment. In order to make it fully

practical, it would be better to find a protocol with smaller soundness error and requiring only two

provers.
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Our protocols are proofs of membership whereas in practice we would like to use them for identifi-

cation purpose in which scenario proofs of knowledge is what we really need.

Moreover, we would like to extend our techniques to prove any language in QMA or QCMA, the

natural quantum extensions of NP.

We would also want to prove whether Π(2)
std is sound against entangled provers. Finally, we seek a

variant of Π(2)
std that would be sound against no-signaling provers and variants of Π(2)

lhv and Π
(3)
qnl that

are both sound against no-signaling provers and zero-knowledge.
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Chapter 5

Distributed Trust and Non-Locality

5.1 Trading (Non-)Locality for (Dis-)Trust

The connection between non-locality and electronic voting is a small but surprising one. A key

component of the construction is the committed voter roster. The commitment scheme used (al-

though we state that it can be interchanged) is a CHSH-style commitment. However, instead of

assuming that two provers are local, we assume instead that the provers are adversarial. That is, the

binding and hiding conditions hold not because provers cannot signal (or use a non-local strategy),

but because it is not in their interest to break them.

As an example of this adversarial assumption, consider a cryptocurrency (like Bitcoin) and its min-

ers. The payoff to successfully mining a block is winner-takes-all. Thus, miners are adversarial

and mutually-distrusting. Yet, it is not in the majority’s interest to deny the successful mining of

any particular miner, since it would mean that no one ever wins. In elections, where commitments

are shared across institutions, a similar equilibrium occurs, where adversarial assumptions keep the

commitments hidden and bound.

We will leave the definition of mutually-distrusting and adversarial informal, as the commitment

This chapter is adapted from a paper which was jointly authored by Nan Yang and Jeremy Clark. It was published in
the Financial Cryptography 2017 Voting Workshop [Yang and Clark (2017)].
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itself, instantiated in this manner, was not the focus of our paper. A formal game-theoretic treatment

of the link between locality and trust is left as an open problem.

This chapter answers the question which was raised in the introduction, “Can the techniques we

develop along the way be used in practice?”

Protocol 5.1. Mutually-Distrusting Commitment (Example)

We will call the provers “institutions” and the verifier a “voter”. We assume that there

exists an authenticated broadcast channel over which everyone can communicate, and

each two parties have pairwise authenticated, encrypted channels.

3 mutually-distrusting, adversarial institutions A, B, and C. Voter V .

The institutions share a random bitstring w.

A wishes to commit to a bit b during an interaction with V .

V sends A a random bitstring r. A broadcasts w ⊕ b · r.

When it is time to unveil, B and C broadcast w.

b can then be recovered publicly.

5.2 Background

An end-to-end verifiable (E2E) voting system uses cryptography to provide a verifiable tally while

maintaining the secrecy of each voter’s ballot. Over decades of research in this area, one trend

to emerge is a move toward real-world voting systems suitable for common election scenarios,

including governmental elections. For our purposes, we consider a system to be suitable for a

governmental election if it has two properties:
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(1) Vote-and-go: once a voter has completed and submitted their ballot, they do not need to be

involved in the tallying process.

(2) Human-votable: a voter can cast a vote without having to perform any computations (bare-

handed) through a process similar to a traditional (non-verifiable) voting system, such as DRE

or optical scan voting

Many E2E systems are designed within these constraints and some have been used in governmental

elections [Burton, Culnane, and Schneider (2016); Carback et al. (2010)]. The governmental setting

is contrasted with other practical settings, such as a boardroom vote, where all voters might be

physically present in the same room with their own trusted computational devices. This setting is

less constrained and allows different cryptographic techniques to be used — e.g., an unconditionally

secure multiparty computation.

In the governmental setting, vote-and-go requires a third party election authority to collect a repre-

sentation of the voter’s ballot. This representation is often an encryption or commitment to the voter

selections for DRE-based systems, or for optical scan systems, a paper-based obfuscation (e.g., code

substitution, permutation, split) that is accompanied by some encryption or commitment value on

the ballot or in the backend data. Standard encryption and commitment schemes are not secure

against a computationally unbounded adversary. Such an adversary can either recover the message

(Elgamal or Paillier), change the message (Pedersen commitment) or both (hash-based commit-

ments). When the message is a vote, this translates into, respectively, breaking election integrity or

ballot secrecy or both.

Computational assumptions underly nearly all real-world cryptographic applications, whether it is

HTTPS, password hashing, or secure messaging. However the exact assumptions evolve over time

as new attacks are found, as do the security parameters that realize them. An unconditionally secure

protocol alleviates us from monitoring the validity of these assumptions over time and future-proofs

the protocol against new innovations like quantum computing.
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Category Examples Secrecy Integrity

Distributed EA Pret a Voter, Helios • • • •
Chaumian Punchscan, Scantegrity • • •
Everlasting Privacy Moran-Naor • • • •
Boardroom Broadbent-Tapp • • • •
This work • • •

Table 5.1: A comparison of computational and collusion security assumptions in four common
categories of proposed cryptographic voting systems, plus our own system. Note: this table does
not attempt to capture all desirable features of a voting system. We acheive the same security
assumptions as boardroom voting systems, plus we allow human-voteable ballots and vote-and-go
tallying. The ‘special assumption’ used by Chaumian and this work, for privacy, both correspond to
a blackbox described below.

5.3 Prior Work

There are hundreds of papers proposing voting schemes and it is not possible to review even all

the relevant ones. Instead, we have broken the literature into four broad categories that classify a

majority of the proposals. Table 1 provides a summary of the election integrity and ballot secrecy

assumptions for each cluster.

Distributed EA. Beginning with Cramer, Gennaro, and Schoenmakers (1997), many systems ho-

momorphically encrypt ballots under a public key that is distributed amongst a set of trustees form-

ing an election authority (EA). If an unbounded adversary attacks a transcript of the election, they

can learn how every voter voted by breaking the encryption key but cannot change the value that

is encrypted. Further, assuming true zero knowledge proofs are used, unbounded adversaries can-

not undetectably change the tally. Note that in practice, many of these systems use non-interactive

zero knowledge proofs based on the Fiat-Shamir heuristic — this enables an unbounded adversary
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(whether a voter or a trustee) to lie [citeGK03] in a way that can undetectably change a tally, how-

ever this assumption is practical to avoid [Gallegos-Garcia, Iovino, Rial, Ronne, and Ryan (2016);

Kiayias, Zacharias, and Zhang (2015)]. If a suitable threshold of trustees are corrupted, they may

recover how each voter voted but they cannot change the tally. A few notable systems of this type

include: MarkPledge [Neff (2001)], Prêt à Voter [Chaum, Ryan, and Schneider (2005)], Voter-

initiated auditing [Benaloh (2006)], Helios [Adida (2008)], STAR-Vote [S. Bell et al. (2013)], and

vVote [Burton et al. (2016)].

Chaumian. Beginning with Chaum (2004), a series of systems also use a distributed election au-

thority much like above. However these systems add an additional assumption: trustees can use

a special computational device, called a blackbox, to perform computations such that the inputs

and intermediate values are not leaked to any participant. This enables an election system based

solely on cryptographic commitments and commitment-based cut-and-choose proofs. Assuming

the commitment scheme is perfectly binding, an adversary can break ballot secrecy by breaking the

commitment scheme (if unbounded), corrupting a sufficient number of trustees to recover the input

to the blackbox, or by breaking the blackbox hardware assumption. However an unbounded adver-

sary cannot undetectably change the values committed to, all modifications to the tally are detectable

even if made by a fully colluding election authority, and the soundness of the blackbox computations

are verifiable and not assumed to be done correctly. Notable systems of this type include Punchscan

[Popoveniuc and Hosp (2006)], Scantegrity I/II [Chaum, Carback, et al. (2008); Chaum, Essex, et

al. (2008)], Eperio [Essex, Clark, Hengartner, and Adams (2010)], and Remotegrity [Zagórski et al.

(2013)].

Everlasting Privacy. Beginning with Cramer, Franklin, Schoenmakers, and Yung (1996) (and re-

lated to earlier work in Chaum (1988)), a reasonable observation was made that integrity need only

last the lifetime of the election but ballot secrecy could be relevant for decades or centuries. It

is possible to invert the resistance of a voting scheme to computationally unbounded adversaries

from integrity to privacy. Most modern work uses perfectly hiding homomorphic commitments

in lieu of homomorphic encryption, however this creates a dilemma: if the random factors of the
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commitments are unknown, a tally cannot be computed (and if they are known, then the commit-

ment’s hiding property no longer resists an unbounded adversary). Most systems compromise by

using untappable channels to communicate random factors amongst trustees— thus it does not re-

tain unconditional ballot secrecy under collusion. Notable systems of this type include Moran and

Naor (2006), split-ballot voting [Moran and Naor (2007)], and extensions to distributed EA systems

[Demirel, van de Graaf, and dos Santos Araujo (2012)].

Boardroom Voting. The term boardroom voting was suggested by Benoloh and Fisher [Benaloh (né

Cohen) and Fisher (1985)] to categorize systems where voters participate in the tallying process (i.e.,

are not vote-and-go). Like the general literature on unconditionally secure protocols, these schemes

tend to use multiparty computation based on verifiable secret sharing. Note that not all boardroom

voting schemes are unconditional — many boardroom systems use computational assumptions to be

more practical [Hao and Zieliński (2009); Kiayias and Yung (2002); Schoenmakers (1999, 2000)].

However the ones that are resist unbounded adversaries for both integrity and privacy (but collusion

between them can break either property). One way to frame our contribution is porting the security

properties of these systems to a governmental election. This has been explored by Broadbent and

Tapp (2008) and the vote-and-go property is achieved, voters need to perform computations in the

booth (and it is thus not human voteable). One might argue that ThreeBallot [Rivest and Smith

(2007)] is a human-voteable instantiation of secret sharing and its properties are very close to what

we want to achieve. Unfortunately ThreeBallot is not fully private [Henry, Stinson, and Sui (2009)].

5.4 Framing our Contribution

It has long been asserted within our community that perfect ballot secrecy and perfect election

integrity cannot be simultaneously achieved. This trade-off is quite true under certain assumptions

but it is often repeated as a simple fact without internalizing the fine print. As it turns out, if

you read the fine print, it is possible to achieve both — indeed many boardroom voting systems

already do. The challenge is achieving these security properties while also allowing the voter to

deposit their ballot with the EA and leave. If the deposited ballot is an encryption or computational

commitment, it must be either computationally binding or hiding but not both. If the ballot is secret
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shared to the trustees, however, it can be perfectly hiding and binding under an assumption about the

number of honest trustees. The immediate difficulty here is that secret sharing a vote will require a

computational device.

This paper is intended as exploratory research to understand better how far unconditional privacy

and integrity can be extended to a practical governmental voting system. We are not insisting that

our system is immediately better than existing approaches because we require certain trade-offs that

might be less desirable (discussed below). However we think this area deserves exploration.

In our approach, we begin in the Chaumian model. We noted in our literature review that systems in

this model primarily rely on a commitment scheme. As we discuss in Section 5.5.1, verifiable secret

sharing can be used as a perfectly hiding commitment that is also perfectly binding but only to the

participants in the secret sharing scheme. We take a simple system from this model, Eperio [Essex

et al. (2010)], which is already just a backend tallying system that can interface with a variety of

paper ballots (permutation-based ballots like Prêt à Voter and code-based ballots like Scantegrity),

and we replace the commitment scheme with a protocol based on verifiable secret sharing. We then

show that the cut-and-choose protocols continue to provide election integrity, assuming an honest

threshold of trustees (which is already assumed in computational Eperio for ballot privacy). The

result is an interesting protocol that achieves unconditional privacy and integrity, plus voters can

vote with paper ballots.

Universal verification. We pay a price for unconditional secrecy and privacy, namely we have to

sacrifice universal verification. We are unaware of a proof that universal verification is impossi-

ble to achieve in the unconditional model, but we do note that attempts of adding it to the basic

primitive we use (VSS) generally has only been achieved with computationally secure primitives

[Schoenmakers (1999); Stadler (1996)]. In our protocol, voters can still perform the traditional

cast-as-intended and recorded-as-cast checks but voters have to trust that a threshold of trustees

are honest in reporting that ballots were tallied-as-recorded. It is not clear this trade-off is worth

the gain in security against unbounded adversaries, but we will say that it is not that different from

78



cryptographic election where voters defer to others (say each political party) to perform the cryp-

tographic election audit of the tally. Finally, our approach of using paper ballots does not preclude

traditional risk-limiting manual recounts done in conjunction with the cryptographic election if the

ballots have a cryptographic overlay (as in Scantegrity II).

Blackbox assumption. Finally, like Punchscan, Scantegrity and Eperio, we do make a blackbox

assumption that a perfectly private computation can be performed on a tamper-resistant device.

Blackboxes are stateless devices without any non-volatile memory. The simply compute an output

from a set of inputs without revealing any intermediary values in the function. They could be

implemented as a hardware circuit, FPGA, or in software in a trusted execution environment such

as Intel TXT (c.f., Mannan, Kim, Ganjali, and Lie (2011)).

Future work might explore the removal of this assumption, through a distributed computation, how-

ever we rely on it for this initial work in the area. We do note however that it is not immediately clear

that a distributed computation is necessarily better. If an adversary wanted to attack the election by

corrupting computational devices, it seems logical that compromising n devices is harder than com-

promising 1—in fact, this reasoning is seductive enough that the shareholders might use standard

computers without extra precautions to perform their computations. In such case, compromising n

devices might be as easy as compromising one (e.g., through an exploit for a common operating

system) and might indeed be easier if the single blackbox device (it does not even need to be a full

fledged computer) is given a lot of attention in terms of hardening it against attack.

Human-voteable & vote-and-go. Some voting schemes require the voter to participate in some

multi-party computation. For example, Broadbent and Tapp (2008) requires that voters take their

vote and secret-share it with different election authorities. Even Malkhi, Margo, and Pavlov (2002),

a voting scheme “without cryptography,” requires the voter to perform an amount of arithmetic

which is arguably unreasonable in practice. In contrast, a human-voteable (also called barehanded

[Riva and Ta-Shma (2007)]) voting scheme is one which does not require any kind of computational

device to vote (such as a trusted computer).1 Vote-and-go refers to the fact that individual voters
1Note we do not refer to assistive technology (AT) that helps voters with disabilities cast a vote—for this reason, we

dislike the term barehanded. Rather we mean devices that are trusted to perform a computation for the voter, not navigate
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are not expected to assist in any kind of post-ballot computations, such as computing the tally. All

major governmental elections today are have both properties. It is difficult to see how a scheme

that does not have both can escape being an impractical academic exercise. While smartphones are

ubiquitous, their use opens up new attack vectors and is no better than trusting a polling machine or

a physical ballot counted by humans.

5.5 Protocol Components

5.5.1 Verifiable Secret-Sharing and Commitment

A (k, n) verifiable secret-sharing (VSS) scheme is a multi-party protocol between a dealer and

n shareholders that consists of two functions ⟨Share,Recover⟩. When invoking share, the dealer

distributes some secret string x among the shareholders such that no subset of shareholders less than

k can jointly output x and the dealer proves that each share can be consistently used to reconstruct

some secret without an error. When invoking Recover, k or more shareholders combine their shares

to recover x (if less than k shareholders honestly contribute their shares, ⊥ is recovered instead).

The guarantees of a VSS scheme can be made information-theoretic while tolerating up to k < n/2

malicious shareholders, assuming the existence of a broadcast channel. A broadcast channel is

already a standard assumption in an E2E voting scheme. Many VSS schemes exist, each targeting

different efficiency metrics. For our purposes, we assume the use of a standard scheme due to Rabin

and Ben-Or (1989).

The relationship between a VSS scheme and a commitment function was explored recently by

Garay, Givens, Ostrovsky, and Raykov (2014). They observe that VSS is typically used a distributed

‘analogue’ to a commitment scheme and prove that VSS realizes a commitment-like properties.

Informally speaking, the two main properties of bit-commitment are binding and hiding, which

respectively mean that the sender can only open the commitment in one way, and that the receiver

is unable to distinguish between (chosen) committed messages m0 or m1.

an interface.
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The respective properties of VSS which will act as the binding and hiding conditions are:

• If no strict majority of shareholder’s shares uniquely defines a secret, then there will be an

abort. In other words, the dealer is unable to either create a commitment that they cannot

open, or a commitment that can be opened in more than one way.

• No strict minority subset of shareholders can reconstruct the secret, or prevent an honest strict

majority from reconstructing the secret. If a secret fails to be reconstructed, then the faulty

shares can be identified. In other words, no strict minority subset of colluding sShareholders

can change an existing commitment, or prevent the honest shareholders from opening the

commitment.

• The secret will only be reconstructed when the majority of honest shareholders come to an

agreement. In contrast to a two-party bit-commitment, the dealer is not involved in the open-

ing process. Some pre-agreed condition will trigger the honest shareholders to divulge their

shares. In our case, they are triggered by an auditor.

Concretely, given a (k, n)-VSS scheme, our commitment scheme will consist of two function

⟨Commit,Open⟩ realized as follows.

• Commit(x): The dealer takes a secret x and invokes Share(x) with the shareholders and

proves that the shares are consistent. A failure of the secret-sharing is considered a failure

of commitment. If successful, the dealer announces a commitment identifier id to the share-

holders used to identify the commitment that should be opened. This identity is output as

commitment value c (in a standard commitment, c would be functionally dependent on x).

• Open(c): The auditor sets id = c broadcasts to the shareholders Recover(id). The honest

shareholders follow the protocol to determine if the commitment should be opened or not. If

so, they execute the reconstruct protocol and send to the auditor their shares, who reconstructs

the secret. The honest majority will identify any dishonest shareholders, whose shares the

auditors will ignore.
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5.5.2 Eperio

Our voting protocol is based on the Eperio voting system [Essex et al. (2010)]. Technically Eperio

is a backend component that can realizes a variety of voting systems. We summarize some details

of that protocol which we will augment with VSS in Section 5.6.

Ballots.

Eperio can utilize different ballot types. We use a ballot in the style of Prêt à Voter (see Figure 5.1): a

permuted list of candidates with a serial number. The ballot is assumed to be physically unforgeable

and is marked by the voter and split along the dotted line. The candidate ordering is shredded, while

the mark position and serial number is optically scanned and then kept by the voter as a privacy-

preserving receipt. In Figure 5.1, we also show a tabular form of the ballot that is exactly equivalent.

This form of the ballot could be printed out and given to voters, however it would be a poor design

relative to the ballot form on the lefthand side of the figure.

The tabular form of the ballot consists of 3 columns and C rows, where C is the number of candidates

in the election. The first column, which we denote by U, are Unique IDs which contains a unique

ballot identifier and a choice identifier. In the example ballot of figure 5.1, the ballot number is 1234

and the suffixes identify each of the C markable positions on ballot 1234. So in this case, markable

position 1234.01 would count for Bob. On a different ballot, say 1235, position 1235.01 might

correspond to a different candidate.

The second column is the Marks List column, which we denote by M. In this column, the voter

places a checkmark at exactly one spot, indicating the row corresponding to the candidate the voter

wishes to vote for. The last column is the Candidate Selection column, which we will denote by S.

This is a list of the candidates in a randomly permuted (per-ballot) order.

Eperio Tables.

An Eperio table is a data structure that encodes the ballot information. If you were to take every

ballot in tabular form, concatenate them end-to-end, you would end up with the ‘canonical’ Eperio
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Bob
Alice
Charlie

1234

U M S

1234.01 Bob
1234.02 Alice
1234.03 Charlie

Figure 5.1: A Prêt à Voter ballot with 3 candidates. Each ballot has a randomly shuffled order of
candidates. Left side: the ballot as received by the voter. Right side: an equivalent formulation of
the same ballot information in tabular form.

table. This canonical table is never used directly, but many (e.g., 20) instances of it are created

which are row-wise shuffles the table. In the original Eperio protocol, the U and S columns are

individually encrypted for each instance of an Eperio table prior to the election to be used in the

post-election audit.

Eperio Protocol.

Prior to the election, a set of trustees use a blackbox device (trusted for ballot secrecy but not

integrity) to generate a canonical Eperio table for an election with C candidates and V voters. All

randomness used by the blackbox is deterministically derived from seeds provided by the trustees.

The canonical table will be 3 × CV . The canonical table is provided to the printers for printing the

ballots. As in almost all paper-based E2E voting systems, printing is assumed to be a trustworthy

process (at least with respect to ballot secrecy — a print audit will establish the correctness of the

printed ballots but cannot distinguish between a malicious printer or honest printers being provide

the wrong information to print).

A set of ℓ Eperio tables are generated by applying a random permutation to the rows of the canonical

table by the blackbox. ℓ is a security parameter where an attack that moves a vote from Alice to

Bob will be detected (given adequate receipt checks and print audits) with probability 1− 2−ℓ. The

U and S columns of each Eperio table is publicly committed prior to voting.

During voting, voters may request a ballot to be print audited (we defer to the paper the discussion

of the print audit — we can handle more simply in our protocol). They then fill out their ballots for

their selected candidates and have the mark position portion of their ballot recorded (they can keep
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this lefthand side of the ballot as a receipt). After the election, the trustees input into the blackbox

their random seeds and the scanned ballots (U and M). The blackbox reconstructs all the tables and

asserts an M column for each Eperio table. These M columns and an assertion of the final tally is

published.

After the results have been asserted, a random beacon is used to select an ℓ-bit string; one bit for

each Eperio table. If the bit for a given table is 0, the blackbox (again reseeded by the trustees)

reveals the U column and if it is 1, it reveals the S column (the M column for each is already

public). For each UM-revealed table, voters can check their receipt and everyone can check for

consistency across each table. For each MS-revealed table, anyone can check that it matches the

asserted tally. The specific reasoning for each of the three possible audits can be found in Essex et

al. (2010). For any particular committed Eperio table, if only one of these combinations is opened,

privacy is preserved.

5.6 Our Protocol

Our observation is that the encryption in Eperio is used as a commitment scheme and can be changed

to any type of commitments. The authors themselves make this observation suggesting that the

perfectly-binding commitment scheme (based on encryption) could be replaced with Pedersen com-

mitments for everlasting privacy. We observe here that the commitments could be replaced with a

VSS-style commitment to provide unconditional integrity and everlasting privacy (but sacrificing

universal verifiability). Our protocol is given in Figure 5.2.

Verification. In our protocol, voters may engage in three checks. The first is a receipt check,

which applies to any tables opened UM. External auditors may also check with these tables that

no ballot is over-voted. The second check is a print audit, which applies to all rows in each table

corresponding to a print audited ballot opened UMS. The final check is the correctness of the tally,

checked with MS. Note all UM tables are shuffled but otherwise identical versions of the same

data, and likewise with all MS tables. The basic integrity attack a malicious blackbox can conduct

is changing the tally, which constitutes moving marks in the M. However it must guess which tables
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will be opened UM and leave these unmodified (or the moved marks will be detectable via a receipt

check), and guess exactly which tables will be opened MS to move the marks (or the tally will

be unmodified, or inconsistent across tables). The probability of guessing correctly is 2−ℓ where

ℓ is the number of tables. For ℓ = 20 (a parameter used in Scantegrity for effectively the same

purposes), the probability of guessing correct is less than a thousandth of a percentage. Importantly,

this probability is independent of the adversary’s computational power.

Discussion: Minimizing blackbox usage. The shareholders in our scheme are involved in three

phases of the protocol: (1) preelection to use the blackbox to instantiate the election data, (2) after

the election to use the blackbox to assert the mark column for each table, and (3) after the challenge

to open up the data. In original Eperio, the blackbox must be used in all three steps. In our protocol,

(3) can be accomplished by the shareholders directly without requiring the blackbox. In a variation

of our protocol, we could also eliminate the blackbox from step (2). In step 2, the blackbox is

required to permute a list of marks. The shareholders could do this directly if in step (1), the

blackbox gave them each (in a specified order) a permutation to apply such that the composition of

all these permutations is the permutation that was used. The issue is that this requires n-out-of-n

shareholders in step (2) instead of k (however only k are required in step 3).2

5.7 Proof of Security (Sketch)

In our sketch of the security proof, we will reduce a breaking of either privacy or integrity to the

breaking of one or more properties of the VSS scheme. We assume that the blackbox’s computations

are unobservable, and that the broadcast and private channels between shareholders are secure. In

practice, these channels need not introduce extra cryptographic (and hence computational) assump-

tions, since they can be implemented as physical channels such as trusted couriers. In short, breaking

either privacy or integrity will imply that strictly more than half of shareholders are malicious.

The reader can find in the Eperio paper [Essex et al. (2010)] the full reduction of security properties.
2Future work might explore the possibility of giving each shareholder a matrix that interpolates to the correct permu-

tation matrix under the sequential composition of any k-out-of-n interpolations.
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Pre-Casting
(1) Voters register with a local election authority. Issues of voter registration fraud are han-

dled by the EA and are beyond the scope of this work.
(2) The EA publishes the number of candidates C and number of ballots to print (e.g., 2 · V

where V is the voting age population and the scalar 2 allows for, on expectation, one print
audit per voter). The EA sets security parameter ℓ.

(3) The blackbox uses local randomness to create the canonical Eperio table (which is pro-
vided to the printers) and ℓ permutations of it. It then uses VSS to commit the permuted
tables to the shareholders, cell by cell. Each table’s format and index is published. Upon
completion, the shareholders purge the memory of the blackbox.

Vote Casting and Tallying
(1) Voters show up and register at the designated voting locations. For each voter, the EA

will give the voter a paper ballot, such as the one in Figure 5.1, assuming they have not
voted already.

(2) The voter may optionally choose to print audit the ballot. The scanner notes the serial
number and its status as audited. The ballot is voided for voting purposes, and the voter
is given the next ballot with the same option to audit or vote.

(3) Once the voter decides to vote, she marks her ballot and destroys the portion of the
ballot containing the candidate ordering. The other portion, containing the serial number
and marked position, is copied by the scanner and the original is kept by the voter as a
privacy-preserving receipt.

(4) After the election, the scanners publish what they received: the M column of the canoni-
cal table.

(5) A quorum of at least k honest shareholders submit their shares of all tables to the black-
box, which reconstructs the canonical table (by sorting each Eperio table and checking
for consistency). It also takes as input the scanner data. It outputs an asserted M column
for each of the ℓ tables and an asserted final tally. The shareholders publish the output
and purge the blackbox’s memory.

Audit
(1) An unpredictable ℓ-bit value is publicly generated by a beacon (e.g., using stock prices

[Clark and Hengartner (2010)]).
(2) For bit i of the beacon value, a quorum of at least k honest shareholders publish their

shares of each cell in the U column in the i-th Eperio table if the bit is 0, and each cell in
the S column if the bit is 1. For print audited ballots (only), they publish both the U and
S cells.

(3) The shareholders securely delete all unused shares.

Figure 5.2: Our variant of Eperio using VSS.
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5.7.1 Privacy

It was shown in Eperio that violating privacy reduces to a number of assumptions including breaking

the hiding property of the commitment. Since we effectively only change the commitment scheme,

we can ask ourselves: “If a cabal of malicious shareholders, auditors and voters collude, can they

break the hiding property of the VSS-commitment?” Assuming, as always, that the number of

malicious shareholders is a strict minority, the answer to the above question is no.

We do not pursue a full simulation-based proof but we comment that VSS-commitments have an

additional property that should streamline such a proof, relative to the computational commitments

used in Eperio. As a cut-and-choose protocol, Eperio faces a standard problem of simulateability: as

the challenge space grows, the ability for the simulator to anticipate the correct challenge decreases

exponentially (if it rewinds the verifier, it must do it an exponentially-increasing number of times

which is not permissible). This can be side-stepped by, say, letting the simulator program the beacon

value (by running it through a random oracle) or by repeating the protocol with one-bit challenges.

In our case, a VSS-commitment is effectively a trapdoor commitment scheme for any majority of

the shareholders. During the audit phase, the simulator can open a commitment in such a way that

is perfectly consistent with any tally constraints imposed onto it.

Finally, we must also take care that each random choice (permutation in the tables) is truly random

and not the result of a deterministic random generator (as in the original Eperio) or else the the

permutations will not have a perfectly uniform distributed (which could be distinguished by an

unbounded adversary). We modify Eperio along these lines — the shareholders do not contribute

randomness, rather they remember shares of the randomness used (in the form of shuffled tables

which can be resorted to recover the permutation).

5.7.2 Integrity

As in Eperio, the integrity of the election is reduced to a number of assumptions including the

binding property of the commitment. We have replaced the commitment used by VSS, and in

section 5.5.1 we have argued that VSS has properties which corresponds to the binding property of
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a commitment scheme.

The auditing process remains the same. For each of the permuted Eperio tables, an auditor will

ask the shareholders to open the commitments in such a way that corresponds to the three audits,

as discussed in section 5.5.2. Assuming that the number of malicious shareholders are strictly less

than half, the VSS binding property guarantees that they cannot change the commitment that has

been successfully executed.

In fact, let us suppose that the malicious shareholders can arbitrarily control where the marks go in

the permuted Eperio tables. However, since there is at least one honest shareholder, the malicious

shareholders do not know how to consistently mark the votes. Therefore, with high probability

increasing exponentially to one in the number of Eperio tables, either a voter will detect that his

vote is inconsistent with his receipt when the U columns are opened during the auditing process,

or an auditor will discover inconsistencies across different Eperio tables opened the same way. In

either way, the malicious shareholders’ cheating is detected.

5.8 Conclusion

We present a system, based on Eperio, that offers integrity and ballot secrecy against computation-

ally unbounded adversaries, regardless of whether such an adversary is a voter, verifier, or election

trustee. Further, our system enables voters to cast paper-based ballots, such as an optical scan ballot

overlay as used in Scantegrity II or a permutation-style optical scan ballot as used in Prêt à Voter .

Once the ballot is cast, the voter may leave and does not have to participate in tallying the election

(in contrast to the other category of systems providing unconditional security: boardroom voting

schemes).

To be even-handed, we point out that our system introduces several drawbacks. We rely on private

and broadcast channels which, in practice, require computational cryptography, thereby negating

information-theoretic security. We have argued that these channels may be implemented physically

as untappable channels and in fact, for elections such as the Scantegrity II municipal election at

Takoma Park, MD, election officials did meet in person in the same room to set-up the election and
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to compute the final tally. Like other paper ballot systems, the physical ballots are assumed to be

unforgeable (therefore malicious voters cannot repudiate a correct audit) and we trust the EAs to

not peek at the printed physical ballots before issuing them to voters (which would break privacy).

Both of these issues could be mitigated to a large extent by using Scantegrity II ballots, however in

Scantegrity II the scanner learns how the vote was cast (as it is a cryptographic overlay and not a

replacement system).

Most importantly in terms of drawbacks, our system removes the ability for voters to independently

verify the election results. They must trust that a majority of shareholders are honest. While we have

no data on how many voters do a full cryptographic check of the election results in a typical E2E-

verifiable election, we expect that many will already defer to someone else to check (whether by

running their software without validating it or simply believing their assertions). That said, universal

verification provides the agility to decide who you trust after the election and even do it yourself

if you do not adequately trust anyone else who can perform the check. We are not advocating that

unconditional security trumps universal verification, but we believe it is important to provide viable

solutions for both sides of this trade-off. This way, readers can decide which is most appropriate for

their election requirements.
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Chapter 6

Conclusions

In this work, we defined contamination – a problem at the foundation of the theory of multi-prover

interactive proofs, and proposed a solution – locality-explicit multi-prover interactive proofs.

We reconciled the theoretical foundations of multi-prover protocols and contamination, and found

a new property of zero-knowledge simulators directly related to non-locality. We applied the tech-

niques of this locality-explicit framework to construct practical protocols which uses physical dis-

tancing to enforce no-communication. We discovered a link between trust and contamination,

and exploited the homomorphic properties of the multi-prover commitment scheme to build an

information-theoretically secure voting protocol.

Defending against adversaries that are augmented by non-local resources remains a theoretic prob-

lem. However, it is of note that, at the time of this writing, multiple organizations and nation-states

have either deployed or are in the process of deploying satellites for quantum cryptography, which

would allow entanglement distribution to be realized. Thus, at least one obstacle barring the in-

stantiation of (quantum) non-local attacks is being solved. If non-locality ever becomes a practical

resource, then contamination might become a practical problem.
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