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ABSTRACT

Toward Resilient Building Design in Energy Performance under Climate Change
Mirata Hosseini, Ph.D.

Concordia University, 2021

Building energy simulation is commonly used to evaluate the energy performance of buildings to
support decisions made at the design stage or to quantify potential energy savings of various
strategies for retrofitting existing buildings. However, in many cases, the anticipated performance
through simulation output significantly deviates from actual measured data. A major reason for

such discrepancy is due to uncertainty in the simulation inputs.

One source of input uncertainty is weather data representing the climate condition. In order to
predict the long-term performance of the buildings with energy simulation, modellers commonly
use a single Typical Meteorological Year (TMY) weather data file which supposedly represents
the climatic conditions. The single weather year file is composed of hourly resolution data from
the most 12 representative calendar months of 30 years which are selected based on statistical
similarity to long-term weather daily-averaged data. These weather files are synthetically
constructed on historical weather data over a long period of time for an array of weather
parameters, such as solar radiation, temperature, wind speed and others. The statistical procedure
to construct the weather files depends on the weights assigned to these weather parameters. Under
current practice, these weighting factors are universally assigned regardless of climatic locations
nor the building application. This approach leads to energy performance predictions that deviate

from the long-term averages.

Nevertheless, the single weather file ignores the variation in building energy performance resulted
from natural weather variation. This source of uncertainty becomes even more critical when the
long-term superimposed effect driven by human and anthropogenic factors are added to natural
variation. Historical weather data shows that compared to other regions, higher latitudes, including
Canada, have been affected more by climate change, and it is expected that this change will be

even more in the years to come. Uncertainty due to weather variation and climate change is one of
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the main reasons for unexpected actual energy performance. Under the changing climate,
building's energy performance is expected to change significantly in the northern climates,

including Canada.
The current thesis mainly aims to address the two aforementioned issues with novel approaches:

1. Machine learning were deployed to extract the feature importance of the weather parameters in
order to assign non-universal weighting factors straightly proportional to their impacts on energy
performance of buildings. Weather files constructed with these systematically assigned weighting
factors are climatic location and building type dependent. The newly constructed typical
meteorological year weather files were applied to two different climatic locations to investigate
the representativeness of these new weather files as compared to existing weather files and
historical weather data of actual years. The representativeness was indicated in terms of the
deviation in predicted energy performance of buildings between using the typical meteorological
year weather file and actual historical weather data. The results indicated that typical
meteorological year weather file based on the novel approach offers better prediction (with
statistical significance) on energy performance for climatic locations with wider temperature
range. As a result, the suggested method avoids potential under/oversizing of equipment and

promotes energy conservation.

2. General circulation model (GCM) data considering various climate change scenarios based on
socio-economic, population, land use, technology, and policies are used to provide information
about future climatic condition. However, there are two primary challenges in application of data

for building simulation:

1. Bias in the models: considerable deviation can be found when the historical GCM

data is compared to station observed weather data.

ii. Inadequate resolution: GCM data has daily temporal resolution rather than the

hourly resolution required in building energy simulation.

In order to use this data for simulation purposes and better predict future building performance,
further processing is conducted. A statistical bias-correction technique, known as the quantile-
quantile method, is applied to remove the bias in the data in order to adapt GCMs to a specific

location. The study then uses a hybrid classification-regression (K-Nearest Neighbour — Random

v



Forest) machine learning algorithm to downscale the bias-corrected GCM data to generate future
weather data at an hourly resolution for building energy simulation. In this case, the hybrid model
is structured as a combined model, where a classification model serves as the main model together
with an auxiliary regression model for cases when data is beyond the range of observed values.
The proposed workflow uses observed weather data to determine similar weather patterns from
historical data and uses it to generate future weather data, contrary to previous studies, which use
artificially generated data. However, in cases where the future GCM data showed temperatures
ranging outside of the observed data, the study applied a trained regression model to generate
hourly weather data. The current study suggests a workflow that can be applied to global and
regional models data to generate future weather files year by year for building simulation under
various scenarios and, consequently, extreme weather characteristics are preserved for extreme or

reliability analysis and design optimization.

In addition, a novel method is introduced to find building design solutions under uncertainty of
weather variation and climate change. The design options are architectural and envelop features at
different levels. A full factorial design of experiment is used for large-scale simulations and
training deep neural network surrogate models to assess energy performance of design alternatives
under multiple future years under various climate change scenarios. The method with application
of a novel performance indicator is applied to explore design space and find the design solutions
that most probably contribute to meet building energy performance targets over the project's

lifespan.

This workflow takes into account the effect of weather variation under various climate change
scenarios and suggests several design solutions that can be offered to stakeholders, architects,
engineers, and third-parties including insurance companies. This way, design alternatives can be
compared, and designs with a higher probability of success can be selected as a final solution. In
addition, policy-makers can use the results and the suggested workflow to adopt and update
national and provincial building energy codes such as National Energy Codes of Canada for

Buildings (NECB) in line with the national policies following the Paris climate change agreement.
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Chapter 1. INTRODUCTION
1.1 Problem statement

Building energy simulation is commonly used to evaluate the energy performance of the buildings;
the process is conducted to either support decision at the design stage or to quantify the possible
energy savings when energy efficiency strategies are supposed to be assessed to retrofit an existing
building. However, in many cases of energy-efficient buildings, the predicted performance
deviated from measured data considerably. In fact, such deviation has been well-documented for

quite many LEED certified building [1-4].

A major reason for such discrepancy between predicted outcome and the actual energy
consumption is due to uncertainty in the simulation inputs as suggested by Hopfe et al. [5]. For
building energy simulation, uncertainty is resulted from three sources of physical uncertainty,
design uncertainty, and scenario uncertainty including internal heat gain and weather condition [5
,0]. For instance, internal gains such as occupancy and plug load or from outside the environment
and weather condition make up the major energy consumption of a building. Therefore, the natural
variation of occupancy and weather condition is ignored either by simplification or assumptions
during the simulations which might lead to a considerable actual performance deviation from what
it was expected at the simulation stage. One source of input uncertainty is weather data
representing the climate condition. In order to predict the long-term performance of the buildings
with energy simulation, modellers commonly use a single Typical Meteorological Year (TMY)
weather data file which supposedly represents the climatic conditions. The single weather year file
is composed of hourly resolution data from the most 12 representative calendar months of 30 years
which are selected based on statistical similarity to long-term weather daily-averaged data. These
weather files are synthetically constructed on historical weather data over a long period of time
for an array of weather parameters, such as solar radiation, temperature, wind speed and others.
The statistical procedure to construct the weather files depends on the weights assigned to these
weather parameters. Under current practice, these weighting factors are universally assigned
regardless of climatic locations nor the building application. This approach leads to energy
performance predictions that deviate from the long-term averages. Nevertheless, the single
weather file ignores the variation in building energy performance resulted from natural weather

variation.



The uncertainty due to natural weather condition variation might become even more critical when
the long-term superimposed effect driven by human and anthropogenic factors are added to natural
variation. The greenhouse gas concentrations and aerosols loadings are the two factors contributing
to this long-term effect, also known as climate change. From the mid-twenties century, it is
observed that human activities, majorly energy, has been the dominant cause of this change [7-8].
Over the same period, higher latitudes including Canada have been effected greater compared to
other regions. Generally, historical data show that Canada experienced a warming rate as much as
twice the global mean, and this has been triple in northern Canada [9]. According to the
information presented by The Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) Working Group I [8], over the period of 1880 to 2012 the global temperature has
increased about 0.85 °C. A Canadian study calculated an annual temperature rise for 16 major
cities in Canada over the period of 1900 to 2013. For Montreal, QC, the average annual
temperature rose about 2 °C which 1.4 °C occurred in summer and 2.7°C in winter [9]. The main
reason for such major effect is supposedly the global system of wind transporting warm air from
the highly solar-heated equator to the higher latitudes which is called the general circulation of the
atmosphere [8].

Typical meteorological year data (TMY) is widely used for assessment of building energy
performance; the main problem with TMY is that it cannot be used for extreme condition analysis
and varying weather conditions. Knowing that building energy performance considerably
influenced by weather condition, building energy performance can be significantly degraded under
the effect of climate change. Under the effect of climate change, a major challenge is that the
decision-makers including designers, investors, and engineers of the project cannot select the best
design solution because they cannot foresee the consequence of uncertain events that affect the
payoff of each design solution. In fact for the owners of the project, an insight into the success of
the sustainable project is quite necessary which is ignored in typical building energy simulation.
On the other hand, it is suggested to use design-builder integrated design method of delivery for
high-performance energy buildings as a strategy to reduce the capital cost while to make sure the
target level of energy efficiency will be met [10]. In this method, the builders collaborate with
designers from the early stage and the design-builder team is legally responsible for the actual

performance of the high-performance project. Therefore, every possible design solution together



with the probability of the success of the project should be included in the analysis of the design

stage.

Although the climatic condition variation is not reducible, the building design can be improved
such that it meets the design goals with certain level of confidence which itself requires introducing

additional performance indicators to help decision-makers to properly choose a design solution.

1.1 Objectives

The objective of this research is to develop a workflow to support decision-making for the design
of a sustainable building accounting for natural weather variation and the long-term effect of
climate change. This workflow should be practical and sensible to decision-makers including
building energy modellers, building engineers, architects, and investors. It should provide a
comprehensive information about the potential design options, processing future weather data, and
the outcome of each design solution together with the suggested design solution. Meanwhile,

machine learning can be used to speed up the large-scale simulation.

The workflow employs a novel approach considering the variation in weather to minimize the
deviation of actual building energy performance from what is expected at the design stage. This
approach provides the designers a means to differentiate designs not just on the predicted
performance but on the probability in achieving the performance target. The proposed workflow

should have the following features:
* Considers the effect of future climate change effect:

The future weather condition is represented as scenarios which are the results derived from a
variety of parameters such as the economy, population, technology, and corresponding emission
scenarios. A range of future climate change effect with acceptable resolution should be considered,

at least for the next 30 years.
* Considers a large scale range of building design options:

As a strategy to mitigate the effect of climate change, a large range of design options including the
architectural properties such as window-to-wall ratio and building enclosure parameters such as

insulation level, solar reflectance etc. should be considered in the workflow.



* Provides probability of long-term project success:

The probability of success associated with each design combination over the lifespan of the

building should be presented.
* Suggests the most appropriate design solutions:

From the energy performance point of view, the most acceptable range of design options should

be suggested for final decision making.

1.2  Qutlines of the thesis

This thesis reports the author’s effort to develop a novel workflow to properly design a sustainable
building under a long-term outdoor environment condition, namely, the natural weather variation

and climate change.

The second chapter is an overview of the current building simulation approaches and the methods

to process climate change data for building energy simulation.

In the third and fourth chapters, buildings' energy performance with various design combinations
are simulated with actual historical weather years to assess the variation of performance under
natural weather variations. The simulation results are also compared with the simulations with
Canadian weather year for energy calculation (CWEC) to investigate deviation of the CWEC from

actual years and CWEC applicability to represent long-term energy performance.

In the fifth chapter, a novel machine learning-based method is introduced to reduce the deviation
of CWEC from the actual year’s energy performance. The study deploys machine learning
algorithms to systematically find non-universal weather parameters weighting factors required in

constructing a typical meteorological year.

In chapter six, a preliminary study of a building with multiple design combinations under an
extreme climate change scenario is conducted to investigate how building enclosure design
parameters can potentially mitigate the impact of weather variation and climate change. Since this
is a preliminary study, a simple downscaling method is used to construct future climate change

weather years.



In chapter seven, a novel machine learning-based methodology is introduced to process climate
change data for building energy simulation. The study deploys machine learning algorithms to
downscale climate change data to be used for building energy simulation. The method captures
both the intensity and frequency of climate change data; therefore, it can potentially be also used

for extreme condition analysis.

In the eights chapter, a novel method is introduced to improve the building energy performance of
building under weather variation and the effect of climate change. The study uses simulation and
data-driven models to enable architects, engineers, and decision-makers to find the design

solutions to meet the targets with the most probability of success under climate change.

Finally, chapter nine concludes the thesis report and explains the future work of the research.



Chapter 2. OVERVIEW ON CURRENT PRACTICE IN BUILDING ENERGY

SIMULATION; CONSIDERATION OF CLIMATE AND CLIMATE CHANGE
Simulation programs use building characteristics and environment conditions data as input to
predict building energy performance. These inputs include envelope and architecture properties,
operation schedules and occupancy patterns, as well as outdoor climate conditions. Some inputs
such as occupancy and climate conditions are stochastic but are used in a deterministic manner
with assumptions and simplification; an example is using a single weather year data representing
a climate condition. Depending on the level of energy modeller’s confidence and whether or not
he/she wants to consider the uncertain parameters, different approaches can be used to conduct
simulations which are explained in section 2.1. One significant source of uncertainty in input
values is the outdoor environment including climate condition and climate change which can be
addressed through introducing them as weather data inputs to simulations; the latter are explained

further in sections 2.2 and 2.3.

2.1 Building energy simulation approaches
Generally, in engineering numerical simulations two approaches are applied:

1.  Deterministic approach: Deterministic models expect single outcome where the
inputs are assigned with single values to model, and the same outcome is expected with the
same set of input values as the model is executed again.

2.  Probabilistic approach: Probabilistic models take into account the uncertainty of
models by defining a random experiment in which outcome varies in an unpredictable
manner when the experiment is repeated for the same design. Probabilistic models result

in a stochastic outcome where inputs are assigned with probabilistic functions.

Deterministic models are simplified models which ignore the inherent variation and uncertainty of
input parameters and outcome might not reflect the uncertain reality. The advantage of this
approach is a faster and more straightforward performance. However, in building energy
simulation, most inputs affecting energy performance are stochastic in nature and stochastic
outcomes should be expected. Probabilistic approach in conducting building simulation can be
used in different applications including the hygrothermal performance of building enclosure [11]

and in building energy performance at design [12-14], calibration [15-16], and retrofit [17-18]



stages. The probabilistic approach is time-consuming as it is required to be repeated so many times
and preprocessing and post-processing might also be required. However, when the case study is a
high-performance building, the decision makers might be interested to see more reliable designs.
The goal of a probabilistic approach in evaluating building energy performance is to minimize
uncertainty in predicted performance by offering designers and building owners the probability of
occurrence at each performance level. In other words, the probabilistic approach enables designers
to consider the probability that the buildings will perform at the very least the predicted
performance at the design stage if not more in actual operation. One important source of
uncertainty in building energy performance is the uncertainty due to the natural weather variation

and climate change that are considered in the system as weather year files as input in simulations.

2.2 Adopting typical meteorological year data (TMY) to consider climate condition

A typical meteorological year weather file, supposedly representing the climatic conditions, is
commonly used as an input for building energy simulation to predict the long-term performance
of the buildings. These weather files are synthetically constructed on historical weather data over
a long period of time (usually 30 years) for an array of weather parameters, such as solar radiation,
temperature, wind speed, and others. The weather year consists of 12 representative months of
different years from historical hourly data based on statistical resemblance. The statistical
procedure to construct the weather files depends on the weights assigned to these weather
parameters. Under current practice, these weighting factors are assigned based on experts’
judgments, regardless of climatic locations. Previous literature indicates that such an assignment

approach leads to energy performance predictions that deviate from the long-term averages.

Using data analytic techniques, non-universal weighting factors can be achieved in order to reduce
the resulted energy performance deviations from expected values for different applications which

is addressed in chapter 5 of this study.

Other than the typical meteorological year data that represent the historical weather condition,
future weather files can also be introduced to simulation programs in the format of weather files

to consider future climatic conditions.



2.3 Considering climate change in building simulation

The concentration of greenhouse gases in the atmosphere reduces the amount of energy radiating
back to space. In the last two centuries, it is generally believed that human activities have
contributed to an increase in the production of greenhouse gases emission leading to global
temperature rise which is also known as global warming or climate change [7]. Although some
natural factors such as volcanic eruption partially release carbon dioxide to the atmosphere, they
play only a minor role in climate change. Therefore, anthropogenic factors are expected to continue

making up a major reason of this effect in the future [8].

These activities are projected by possible future scenarios which are related to social, economic,
and technological states and corresponding radiative forcing (the difference between absorbed
insolation by earth and energy radiated back to space in the form of infrared radiation). In the
previous versions of Intergovernmental Panel on Climate Change (working group 3 and 4),
scenarios were presented as Al, A2, B1, and B2 [19] which were replaced with Representative
Concentration Pathways of RCP 2.6 W/m?, RCP 4.5 W/m?, RCP 6 W/m? and RCP 8.5 W/m? in
IPCC working group 5 [8]. The numbers after RCPs come from the relative difference of radiative
forcing at the end of 2100 compared to just before the industrial revolution (1750) [8]. Table 2.1

explains the socio economic, and biotic condition under each scenario [20].

Table 2.1: Explanation of each scenario in case of future socio economic, and biotic condition [20]

RCP Explanation

Global CO2 emissions peaks by 2020 and then reduce to about zero by 2080.
Concentrations in the atmosphere peaks at 440 ppm in mid-century and then starts reducing.
World population peaks to 9 billion in the mid-century.

2.6 Global economy highly grows.

: Oil consumption decreases whereas other fossil fuels consumption increases. Bio fuel consumption is high and

renewable energy increases but still remain low.
Cropping area increases faster and animal husbandry become more intensive.
Deforestation continues at the current rate.

Global CO2 emissions peaks by 2050 with 50% higher than that it was at the year 2000 reducing
continuously for 30 years and then remains constant at about half of what it was at the year 2000.The trend of
concentration continues till 2070 at about 520 ppm and continues with lower slope afterwards.
4.5 World population and economic moderately grows with slightly lower than that in RCP 2.6.
: Energy consumption would be higher than under RCP 2.6 and oil consumption remain constant till the end of century
whereas use of nuclear power and renewables increase.
Cropping area considerably decreases whereas reforestation increases.

Global CO2 emissions double by 2060 then significantly drops but still above the current level.

The concentration continues increasing, reaching 620 ppm by 2100.

World population reaches 10 billion. Compared to other three scenarios, the economy growth is lower.
6 Energy consumption reaches a peak at 2060 then reduces to the level under RCP 2.6 until 2100.

Oil consumption keeps at high level while biofuel and nuclear power will be less than other scenarios.

Cropping area remains at the current trend and natural vegetation would the same as under RCP 4.5.




Global CO2 emission continuously increases to reach 30 gigatonnes of carbon in the year 2100 in
comparison to 8 gigatonnes in 2000.
The concentration rapidly increases to 950 ppm by 2100.
World population reaches 12 billion by 2100.

8.5 The economy growth would be similar to that under RCP 6 however, the incomes in developing countries will be

- significantly lower.

Energy consumption continuously increases to 3 times the current level.
Oil consumption significantly increases until the year 2070 before a deep decline afterwards. Coal will be highly used
to provide the required inclined energy consumption.
Cropping area increases while the deforestation continues.

General circulation models mathematically simulate atmospheric, oceanic, and biotic interactions
and combine them with radiative forcing scenarios to evaluate the future climates. GCM models
consist of grid cells resulted from latitude and longitudinal divisions, in which, the meteorological
data are calculated [21]. General circulation models outputs have a course resolution namely, a
spatial resolution of larger than 100 km * 100 km and usually a temporal resolution of daily-
average. Whereas, hourly meteorological data is required for building energy simulation.
Therefore, further process, called downscaling, is required to have finer resolution data. Depending
on the availability of resources and expertise, two main approaches are used for downscaling,

dynamical, and statistical.

2.3.1 Dynamical downscaling

Dynamical downscaling requires an additional computationally intensive physical process which
is conducted for a specific region using regional or local climate models. This method is applied
in literature to project climate change on future weather condition used for building energy
simulation. Kikumoto et al. [22] used GCM data as initial and boundary condition for regional
climate models namely, Model for Interdisciplinary Research on Climate (MIROC) and the
Weather Research and Forecasting (WRF) to construct the future weather data from 1931 to 1935
for a Japanese climate. Their energy simulation for a detached residential building showed a 15%

increase in building sensible load compared to the year 2007.

Burger et al. [23] assessed the effect of climate change on cooling and heating demand of an office
building attributed to three epochs namely, built: before World War 1, after World War II, and
from 2000 onward in Vienna, Austria. They used REMO UBA regional climate model to
dynamically downscale A1B climate change scenarios with the resolution of about 10 km * 10

km. They evaluated the results for two time frames of 2011-2040 and 2036-2065. In one case,



their result showed a 41% increase in cooling and a 56% decrease in heating load compared to the

years 1961-1990.

2.3.2 Statistical downscaling

This approach relies on the availability of observed weather data and can be used for all scenarios
of climate change while it provides point-scale climatic variables; in addition, it can be applied to
regional and /or global models. In statistical approach, a critical assumption is stationary which
means that, while the climate changes, the statistical relations among the meteorological
parameters data remain constant over time [24-25]. Statistical downscaling is categorized into
three main groups of linear methods, weather classification, and weather generators. Linear
methods including the delta method (also known as morphing) are easy to use and are widely used
in previous studies. In morphing, a changing factor is directly applied to the observed data to
calculate future data. This method is used to predict the future climate condition of American
climate [26-29] Canadian climate [30-31], Swedish climate [33-33], Spanish climate [34], Italian
climate [35], and British climate [36].

Weather classification relates a class of future weather pattern to a local observed weather and the
future weather data are synoptically selected from the observed weather data. In this method, the
effect of climate change is estimated by evaluation of the frequency of the change of weather
pattern parameters from GCM output; moreover, it is assumed that the characteristics of each class
will remain constant [37-38]. One challenging issue of weather classification may be dealing with
unprecedented increasing weather variables such as temperature which is quite significant in

building energy performance. This issue is addressed in chapter 7.

Tian and de Wilde [39] investigated the use of climate change projection for building energy
analysis for a British climate using statistic reduction (Finklestein-Schafer) applied to the output
of a weather generator for three different climate change scenarios. For the statistical method, the
CDF of the temperature and radiation with equal weight was used to project climate change for
the 2020s, 2050s, and 2080s. They used a linear meta-model developed with historical weather as

a tool to apply energy efficiency measures to reduce the effect of climate change.

Weather generators are used for temporal downscaling; these statistical models generate numerous

possible time-series weather variables using the same statistical characteristics such as correlation
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coefficient of several-years historical data applied to the GCM models output. In addition, the
relationship between predictor and predictand is critically assumed to be stationary from the time
point of view [40]. In fact, the data generated from the generators are different from the observed
data and only keep the statistical characteristics of the observed data. Among the weather
generators, only a few are able to consider the relationship between the weather elements when
multiple variables are predicted [25]. In addition, these weather generators are able to generate

only a few weather parameters such as temperature and solar radiation [41].

2.4 Summary and research direction

Building energy simulation which has been used for design decision making of new buildings, and
energy performance assessment of existing buildings requires hourly weather data; the current
practice is to use a single typical meteorological data which is statistically selected from the
historical data in simulations. This approach, although provides a faster process in decision
making, doesn’t capture the variation of energy performance resulted from natural variation of
weather. Moreover, because of the effect of climate change, the actual energy performance of the
building might significantly different from what is expected if historical data is used at design
stage; therefore, future climate change weather data should be used for energy simulation
especially for the high-performance buildings. By reviewing the previous literature related to the
subject of climate change and building energy performance, it is found that most of the literature
targets were quantifying the effect of climate change on building energy performance of existing
buildings; therefore, their methodologies focused on quantification of long-term effect of climate
change on building energy performance in the form of long time frames. Some conclusions are

summarized below.

2.4.1 Future climate change consideration

Most of the studies focused on only one future climate change scenario (the most extreme global
warming) while, other scenarios are ignored. This is partially due to the lack of weather data
because most GCM models provide only one or two climate change scenarios. In addition, all the
previous literature used a single weather year as a representative of a long period of time (usually
two to three decades); although single representative year provides a holistic vision of energy

performance, it doesn’t capture the natural variation of that which might be quite significant.
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Using GCMs providing data for all scenarios and considering natural variation can be promising

for better building design solutions.

2.4.2 Downscaling techniques

Statistical downscaling is computationally inexpensive and is able to capture the station-scale
climate information therefore, it seems an efficient promising way to capture the effect of climate
change for building energy simulation at the design stage of sustainable projects. However, the
linear method of temporal downscaling (morphing) largely used in previous studies [26-36]
although is easy to use and seem practical for long time-frame weather data construction, may not
be suitable to capture extreme events; as they only add the mean future temperature rise to all the
observation hourly data. This might seem appropriate when long-term frames are constructed but
not suitable when a year-by-year evaluation is required; because this makes all the historical data

warmer, while in reality there might be some colder winters in the future.

In addition, the complicated weather generators used in the literature [39-41] generate hundreds
of possible future events for a given time period under each scenario; therefore, they are
computationally expensive and this makes post-processing an extremely time-consuming stage. A
novel weather classification method could be an efficient way to downscale the data with a
potential for year-by-year simulation weather files creation; the subject is addressed in chapter 7.
Once the future weather data are processed, multiple year-by-year simulations introduce logical
randomness to the approach then, the energy performance of various design options can be

assessed using a probabilistic approach based on scenarios.

2.4.3 Design solution to mitigate the effect of climate change

At the design stage of the buildings, the decision must be made under uncertain future situation.
Building design solutions under climate change suggested by previous studies were highly related
to the method of climate change data processing and assessment. Most previous studies didn’t
consider all the climate change scenarios and they didn’t suggest design solution mitigating the
effect in a comprehensive study. In most studies, a single representative year was used to show a
couple of decades' climatic conditions. Therefore, finding the design solutions methodology was
limited to optimizations without considering the fluctuations and variations resulting from the
weather's natural variation. A novel method to select the design variable that meets the

requirements with a high probability of success under different climate change scenarios can select

12



those designs that meet the energy efficiency levels most of the time. The method can potentially
apply multiple constructed future climate change weather files under different scenarios and
predict multiple design options' energy performance under the future climate. A machine learning
algorithm can be trained on simulation output to efficiently find the design solutions that reduce
the building's cooling and heating demand while keeping the performance under different climate

change scenarios. The method is addressed in chapter 8 of this study.

Before the effect of climate change are taken into account, preliminary studies are conducted to
evaluate the natural variation of weather on energy performance of building with various design

parameters in cold climate which is explained in chapter 3.
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Chapter 3. THE EFFECT OF NATURAL WEATHER VARIATION ON BUILDING ENERGY
PERFORMANCE UNDER VARIOUS ENVELOP DESIGN.
Weather conditions account for a major source of deviation between simulation results and actual
energy performance of buildings. Typical meteorological year (TMY) weather data are commonly
used to evaluate building energy demand at design stage. However, such data might overestimate
or underestimate the energy demand of buildings considerably depending on the building designs.
Also, TMY does not capture the yearly weather variations which is important for evaluating the
potential energy savings and penalties for specific energy efficient measures in the long run. This
chapter aims to provide a better understanding of the natural weather variation on building energy
performance and the effect of building design to reduce the corresponding performance variation
of climate conditions. The study also investigates the deviation of results of simulations with
Canadian weather year for energy calculation (CWEC) from the simulations with multiple actual

weather years for multiple design combinations in Montreal.

This chapter was published in Energy and Buildings, Volume 145, Pages 284-292, M. Hosseini, B.
Lee, S. Vakilinia, “Energy performance of cool roofs under the impact of actual weather data”, ©

Elsevier Ltd. 2017

3.1 Introduction

The actual weather condition variation such as variation in solar radiation, air temperature, and
wind speed affect the performance of the building considerably. Hence, the idea of using a single
representative weather year was formed to generalize long term weather condition for a specific
location. Typical meteorological year (TMY) and weather year for energy calculation (WYEC)
weather data are commonly used to evaluate building energy consumption at design stage.
However, these data, while typical as they are intended to be, for certain years, they might
overestimate or underestimate the energy consumption of the building and this can have a great
impact on predicting the amount of energy saving obtained from building energy efficiency
measures. The impact of 30-year actual weather data on HVAC source energy use, total source

energy use, peak electric demand, peak electric demand reduction and energy savings is
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investigated in a previous study [1]. The impact of weather on the long-term performance of
buildings is also evaluated from a life cycle perspective [2]. Since TMY or WYEC are not taken
into account extreme weather conditions [3]; actual data are suggested for building design,

especially when the building solutions are strongly influenced by weather conditions [4].

3.1.1 TMY vs. AMY

Other literatures compared the long term mean energy consumptions of buildings according to
building codes using actual years with what estimated by simulation using typical meteorological
data. Hong et al. [2] compared long-term actual meteorological years (AMY) simulation from
1980 to 2009 with that of TMY3 for three types of office buildings according to two energy
efficiency codes namely, ASHRAE Standard 90.1, 2004 and ASHRAE Standard 90.1, 2010,
across 17 ASHRAE climate zones; Their results showed that in most cases TMY 3 underestimated
long term annual energy consumption of the buildings where in one case the deviation amounted
to —-9%. They concluded that energy performance prediction based on TMY3 weather data is not
necessarily representative of the average energy use over a long period, and it can be significantly
higher or lower than that based on the AMY data. In addition, they suggested that the impact of
weather is greater for buildings in colder climates than warmer climates. In another study, Yang
et al. [5] conducted building energy simulation for office buildings in the five Chinese climate
zones namely severe cold winter, cold winter, warm winter, hot summer and cold winter, mild and
hot summer, using AMY from 1971 to 2000 to compare the long term energy consumption mean
with that simulated using TMY. They found the deviation came with a mean bias errors ranged
from —4% in Guangzhou to 0% in Beijing and root-mean-square errors from 3% in Harbin to 5%

in Guangzhou.

This study investigates the long term performance of various roof design combinations and
compares the mean long term energy performance simulation from the year 1960 to 1989 with the
predicted energy performance of a typical meteorological year (CWEC). It demonstrates the
impact due to the variation of weather on energy performance of buildings based on historical data

and identifies optimal roof designs.
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3.2 Methodology

A large scale simulation considering various roof designs in the case of solar reflectance and
thermal resistance are conducted with actual historical weather data and a typical meteorological
year. For each design combination, the deviation of the results with the typical meteorological year
from the actual years are then calculated. The following sections describe how historical weather

data are collected and imported to simulation program.

3.2.1 Waeather data

Canadian Weather Energy and Engineering Datasets (CWEEDS) is a set of hourly weather data
for different locations in Canada [6]. Depending on the location (station), datasets include the
weather data necessary for urban planning and energy efficient buildings between the years 1953
and 2005. Canadian Weather Year for Energy Calculation (CWEC), a variant of TMY and Weather
Year for Energy Calculations (WYEC) [7], is a single typical meteorological year including twelve
statistically selected months from CWEEDS. The selection is carried out by a comparison of
cumulative density function (CDF) of the monthly meteorological data such as solar radiation,
outdoor air temperature, and wind speed for long term (usually 30 years) dataset. In this study, the
station of Montreal Trudeau international airport with station identification number 94792 was
selected to investigate. For this station, the months of CWEC are selected from the years 1960 to
1989 [8]. Table 3.1 shows the corresponding years of each month of CWEC for the weather station.

Table 3.1: Corresponding years of CWEC months for Montreal airport weather station

Month‘ Jan ‘ Feb ‘ Mar ‘ Apr ‘ May‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec
Year | 1966 | 1970 | 1961 | 1979 | 1971 | 1970 | 1977 | 1978 | 1979 | 1986 | 1984 | 1978

There are a few hours in some of the years of CWEEDS dataset that solar radiation data is missed,
especially the first few daylight hours of the morning; to fill in the blank points, interpolation is
conducted to estimate the missing data. The weather year files are then constructed with a weather

file creator tool for the simulation purpose.
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3.2.2 Waeather file creator

Elements [9] a free open-source software tool is used to create weather file for energy simulation.
Elements enable users to create weather file in the formats of DOE-2 (.bin, .fmt) and EnergyPlus
(.epw). A special feature of Elements is that some of the weather parameters will be calculated
automatically according to psychrometric chart as there are rational relations among some of the
meteorological data; for example, wet bulb and dew point temperature can be calculated with dry
bulb temperature, atmospheric pressure and relative humidity. In addition, global solar radiation
is calculated with normal and diffuse solar radiation into Elements; moreover, wind speed and
wind direction are also included in the weather data (overall 10 weather parameter). After
constructing the historical weather years, the large scale simulations are conducted with multiple
historical actual weather years and the CWEC. For each design combination, the deviation of result
simulated with CWEC from the actual years are calculated which is explained in the following

section.

3.2.3 Normalized root-mean-square deviation

The root-mean-square deviation (RMSD) also known as root-mean-square error (RMSE) is
frequently used to show the sample standard deviation of the differences between values predicted
by a model and the actual measured values. The RMSD sums up the errors in predictions for
various times into a single measure therefor it is a good measure of accuracy, to compare
estimating errors of different models for a variable [10]. By analogy, for each design combination,
RMSD of annual energy demand resulted from CWEC compared to annual energy demand of

actual-year is defined as the square root of the mean square deviation:

RMSD of CWEC can be calculated based on equation 3.1.

RMSD (Ecwec) = /MSE (Ecwee) (3.1)

Where: MSE (Ecygc) 1s the mean of the square of the errors and can be calculated from equation

3.2.

MSE (Ecwec) =~ Yty (E; — Ecwec)? (3.2)
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Where: E;is the annual heating, cooling, and total energy of each actual year, Ecwec is the annual
heating, energy, and total energy resulted from simulation with CWEC, and n is equal to 30

representing the number of actual years.

Normalizing the RMSD facilitates the comparison between datasets with different scales [11].
Common choice is the range defined as the difference between the maximum and the minimum

annual energy of the 30 actual-years simulations as equation 3.3.

NRMSD= ——50 (3.3)

max—Emin

3.2.4 Case study

A full factorial simulation study is conducted to study the long term performance for a variety of
different roof designs and the associated deviation of CWEC prediction from actual weather years
in Montreal. The study is mostly focused on the deviation of results simulated with typical
meteorological data from long term energy performance of cool roofs considering the effect of

design variation namely, roof solar reflectance and roof thermal insulation level.

Since a big-box building incurs a relatively large roof surface (as compared to wall surfaces), a
2299 m? floor area retail store prototypical building offered by U.S. Department of Energy [12] is
selected as the case study. The building enclosure is modified according to the National Energy
Code of Canada for Buildings (NECB) 2011 [13]. The design parameters are roof insulation and
solar reflectance of the roof. A parametric study of energy performance of the buildings of the
different design variations has been performed using JePlus, an EnergyPlus simulation manager
for parametric studies [ 14]. For parametric study of each design variation, the CWEC weather data
are applied together with the actual weather data from 1960 to 1989. The results are 31 sets (based
on CWEC and the 30 actual years) of cooling, heating and total annual energy demand data.
Overall, 3906 simulations (14 roof insulation levels from 2.4 m?>-K/W to 15.4 m*-K/W with an
interval of 1 m*-K/W, 9 roof solar reflectance levels from 0.1 to 0.9 with interval of 0.1, and 31

sets of weather data) are run using JePlus.

Since the focus is on roof performance rather than on HVAC system design, the energy demand
(heating and cooling) rather than the energy consumption (considering the effect of HVAC system

efficiency) is investigated. Table 3.2 shows the characteristics of the case study building.
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Table 3.2: Building characteristics of the case study

Item Descriptions
General
Location Montreal
Building Prototype standalone retail
Form
Total Floor Area (square meter) 2299 (54.2mx42.3 m)
Building shape
Number of Floors 1
Window-to-Wall Ratio (WWR) 25.4% on the south facing facade

Back Space
Thermal Zoning Core Retail
Point of Sale Entry Front Retail

Envelope

Exterior walls
Steel-Frame Walls:

Construction Wood Siding + wall Insulation+1/2 in Gypsum Board
R-value (m*K /W) 4.1
Roof
Built-up Roof:
roof membrane + roof insulation + metal decking
R-value (m*K /W) 24t015.4
Window
R-value (m*K /W) 0.5
SHGC 0.3
Foundation

2
R-value(m*’K/W) 59

Air Barrier System

Infiltration 0.001024 m*/s/m* of above ground envelope area
Lighting
Average power density (W/m?) 12.5, Core zone 36.2
Plug load
Average power density (W/m?) 3.2, Point of sale 21.5 and back space 8
Occupancy
Area (m?)/Person 6.2, back space 27.8
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3.3 Results and discussion

The results of the building’s annual heating, cooling, and total (heating + cooling) energy demand
for two different roof designs, one with solar reflectance of 0.9 and thermal resistance of 2.4 m?-
K/W (solid lines and curves) and the other with solar reflectance of 0.1 and thermal resistance of

15.4 m2-K/W (doted and dashed lines and curves) are shown in Figure 3.1.
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Figure 3.1: Heating, cooling, and total demand of the prototypical building, 30-years actual weather data V.S.
CWEC for two designs. “ins” and “ref” represent insulation value and reflectance respectively.

From Figures 3.1.a, 3.1.b, and 3.1.c, generally there are larger difference between energy demand
simulated with CWEC and actual years for the first design with high solar reflectance-low thermal
insulation compared to that for second design with low solar reflectance-high thermal insulation.
However, this is not always true; for instance, for heating, Figure 3.1.a shows that in 1987 which
has the minimum energy demand among all the 30 years, the difference is about 21 kWh/m? for
the first design and 16 kWh/m? for the second design respectively; in contrast, in 1961which has
the maximum heating energy consumption among the thirty years, the difference is only around 3
kWh/m? for the first design and 13 kWh/m? for the second design. Furthermore, in a few years
such as 1968, 1978, and 1989, CWEC overestimate the heating energy for the first design while it
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underestimates the heating energy for the second design although this inaccuracy is quite small

(around 1 kWh/m?)

As for cooling, generally, the Figure 1.b shows that the more insulation level and low solar
reflectance increases the cooling energy significantly. Moreover, with the first design, the
deviation between cooling energy simulated by CWEC and actual years is almost zero for the years
with the most cooling energy namely, 1973, 1975, and 1983; whereas with the second design the
difference increases up to round 6 kWh/m? in 1975. In addition, in a few years such as 1970, 1984,

1987, 1988, and 1989 the cooling energy.

Total energy is the summation of cooling and heating energy demand. As Figure 3.1.c illustrates,
in some years such as 1960, 1964, and 1965, CWEC overestimates the total energy dramatically
as a result of overestimation in both heating and cooling energy for both designs. In other years
such as 1972 and 1976, CWEC underestimates heating energy as much as it overestimates the
cooling energy consumption for both designs so that the discrepancies cancel out each other and
the total energy of CWEC would be very close to the actual year results. In another years including
1979, for the second design CWEC estimates the heating and cooling energy accurately therefore,
the total energy consumption simulated with CWEC is very close to what simulated with actual
years. Unlike the second design, for the first design CWEC overestimates both cooling and heating
energy, consequently it overestimates the total energy in 1979. However, generally it seems that,
the simulation with CWEC is much closer to the extreme events; namely, 1961, 1972, 1976, 1978
for heating, 1973, 1975, 1983 for cooling, and 1961, 1972, 1976 for total energy. Unlikely, for the
second design, energy consumptions simulated with CWEC stands in the middle of the actual-
years variation. Since different years represent various behavior compared to CWEC according to
design, deviation of energy simulated with CWEC from actual years for different design

combinations helps to have a better understanding.

Figures 3.2.a, 3.2.b, and 3.2c show the energy demand and normalized root-mean-square deviation

of CWEC for each design combinations of roof solar reflectance and roof thermal resistance.
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Figure 3.2: Heating, cooling and total demand and normalized root-mean-square deviation of CWEC for different
roof design combinations.
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3.3.1 Effect on heating demand

As can be seen from Figure 3.2.a, heating energy demand of the building is more influenced by
the level of insulation rather than solar reflectance. With low level of insulation, changing the solar
reflectance from 0.9 to 0.1 leads to a 12 kWh/m? reduction in heating demand from 114 to almost
102 kWh/m? and this difference would be even much smaller (about 1kWh/m?) when high level
of insulation is used for roof. Increasing the level of insulation however, dramatically reduces the
heating demand of the building. For example, changing the level of insulation from 2.4 to 15.4
m?2.K/W results in a considerable heating demand reduction of 36 kWh/m? and 27 kWh/m? for high

reflectance (cool roof) and low reflectance (dark roof) respectively.

Meanwhile, Figure 3.2.a shows that deviation of CWEC from actual years, for higher reflectance
is just slightly bigger than that for lower reflectance. For example, for thermal resistance of 2.4
m?-K/W the heating normalized root-mean-square deviation of CWEC is about 0.44 for reflectance
of 0.9 and 0.42 for reflectance of 0.1. Whereas, with roof thermal resistance of 15.4 m?-K/W the

root-mean-square deviation of CWEC from actual years is 0.25 for both reflectance of 0.9 and 0.1.

For a constant level of solar reflectance, normalized root-mean-square deviation of CWEC of
heating decreases significantly, as roof thermal resistance increases; however, this reduction will
not be influenced by changing the solar reflectance considerably. For instance, with solar
reflectance of 0.9 increasing level of insulation from 2.4 to 15.4 m?-K/W corresponds to reduction
of normalize root-mean-square deviation from 0.45 to 0.25 (0.2 difference) and similarly, for solar

reflectance of 0.1 these numbers change from 0.42 to 0.25 (0.17 difference).

3.3.2 Effect on cooling demand

As Figure 3.2.b shows, for low solar reflectance (dark roof), the cooling energy decreases as the
level of insulation increases; lower solar reflectance increases the amount of solar radiation
absorbed by roof and makes the roof surface hot and this considerably increases the heat transfer
from outside to inside; therefore, extra level of insulation helps to prevent the heat transfer from
outside to inside of the building in warm days of the year. However, increasing the level of roof
insulation doesn’t always reduce the energy demand. For high solar reflectance (cool roof) as level
of insulation increases, the cooling energy increases as well. This is mostly happens in commercial
buildings including retail stores where, because of high internal heat gain such as lighting, solar

heat gain through the windows, occupant, and miscellaneous load, inside temperature tends to get
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hot; because of low roof surface temperature, the most heat transfer is from inside to outside. In
these condition, more level of insulation traps heat inside the building and increases the cooling

load.

Moreover, solar reflectance plays the dominant role in cooling demand of the building. As Figure
3.2.b illustrates, with low level of insulation (2.4 m?-K/W), changing solar reflectance from 0.9 to
0.1 drastically increases the cooling demand from 26 to 44 kWh/m? (18 kWh/m? difference); even
with very high level of insulation of 15.4 m2-K/W, still the difference is considerable (5.5
kWh/m?).

By comparing Figure 3.2.b and 3.2.a, the normalized root-mean-square deviation of CWEC from
actual years for cooling demand is larger than that for heating demand. In addition, for cooling,
design variation has a larger effect on deviation of CWEC from actual years. Solar reflectance
plays the major role also in cooling normalized root-mean-square deviation of CWEC. It can be
observed that with a constant level of insulation, the cooling demand deviation of CWEC from
actual years is larger for higher reflectance designs (reflective roofs) compared with low
reflectance designs (dark roofs). For thermal resistance of 2.4 m?-K/W, the cooling normalized
root-mean-square deviation of CWEC is about 0.62 for reflectance of 0.9 decreasing to about 0.38
for reflectance of 0.1 (0.24 difference). Meanwhile, with roof thermal resistance of 15.4 m*-K/W
the normalized root-mean-square deviation of CWEC remains at around 0.3 as solar reflectance
decreases from 0.9 to 0.1. Moreover, for a constant level of solar reflectance, cooling normalized
root-mean-square deviation of CWEC considerably decreases as thermal insulation level increases
from 2.4 to 15.4 m?-K/W for high reflectance (0.35 reduction) whereas it just slightly decreases

for low reflectance designs (0.15 reduction).

3.3.3 Effect on total demand

By using high solar reflectance design, reduction in cooling energy demand is larger than increase
in heating energy demand. In other words, cooling energy saving of cool roof is greater than the
heating penalty of that; this means a net annual energy saving of cool roof. For example, for low
level of insulation of 2.4 m?.K/W, changing solar reflectance from 0.1 to 0.9 decreases the cooling
energy from 44 to 26 kWh/m? (18 kWh/m?) whereas, it increases the heating energy by 12 kWh/m?
, which implies 6 kWh/m? of net annual total energy saving for cool roof (Figure 3.2.c). This is

because during winter in cold climates, the days are shorter, sun angle is lower, the sky is cloudier;
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which leads to less solar radiation available hitting the roof in winter. As the result shows, for
heating demand the insulation level plays the dominant role in roof design as less solar radiation
hits the flat roof in heating season, whereas in cooling season, solar reflectance plays the major
role in roof design. By comparing the results from cooling and heating, the importance of solar
reflectance overweighs the importance of insulation level in roof design. However, in terms of the
total annual demand, the best design combination is the low solar reflectance with high level of
insulation in cold climate; such that it reduces the cooling demand in cooling season while
decreases the heating demand in heating season. As Figure 3.2.c shows, the maximum total
demand belongs to the design with low reflectance (dark roof) with low level of insulation, and
the minimum total demand belongs to the design with high solar reflectance (cool roof) and high

level of insulation.

On the other hand, Figure 3.2.c shows that even though increasing level of insulation considerably
decreases root-mean-square deviation of CWEC from actual years by 0.3, changing solar
reflectance doesn’t have a great effect on that; such that the root mean square deviation of CWEC
from actual years in worst case remains in the order of 0.55 with only a slight variation of 0.05 by

changing solar reflectance from 0.1 to 0.9.

3.3.4 Overall effect

Normalized root-mean-square error only shows the amount of deviation. Since it is a positive
number, it doesn’t indicate overestimation or underestimation considering long term duration of
time. Hence, by comparing the mean of the thirty actual years with CWEC and also the difference
of CWEC and mean with standard deviation of the thirty years, one can determine the
appropriateness of applying CWEC for different designs. Among all the 135 designs the results of
6 designs are summarized in Table 3. The six designs consist of: Design 1 with thermal resistance
of 2.4 m*-K/W and solar reflectance of 0.9, design 2 with thermal resistance of 2.4 m*-K/W and
solar reflectance of 0.1, design 3 with thermal resistance of 5.4 m>-K/W and solar reflectance of
0.9, design 4 with thermal resistance of 5.4 m?>-K/W and solar reflectance of 0.1, design 5 with
thermal resistance of 15.4 m*-K/W and solar reflectance of 0.9, and design 6 with thermal
resistance of 15.4 m*-K/W and solar reflectance of 0.1. Note that the level of insulation for design

3 and 4 is based on national energy code of Canada for buildings (NECB, 2011).
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Table 3.3 presents the maximum, minimum, mean, variance, standard deviation, energy results

from CWEC and overestimation of CWEC, (w ), for each six roof design.

Table 3.3: Statistics of energy demand of the building in 30-years V.S. CWEC for six different roof design

combinations
Design Number| Thermal resistance Solar Max Min Max-Min Mean Variance Standard CWEC CWEC-Mean|Overestimation (%)
m-K/W) reflectance deviation
Heating (KWh/m?)
1 2.4 0.9 119 93 26 105 42 6 114 10 9
2 2.4 0.1 108 82 27 93 40 6 102 9 10
3 5.4 0.9 101 76 25 86 37 6 91 5 6
4 5.4 0.1 9% 71 25 81 36 6 86 5 6
5 15.4 0.9 91 66 25 76 34 6 78 2 3
6 15.4 0.1 89 64 25 74 34 6 76 2 3
Cooling
1 2.4 0.9 27 17 10 21 9 3 27 6 29
2 2.4 0.1 48 35 14 40 12 3 44 4 10
3 54 0.9 35 24 11 28 9 3 32 3 12
4 54 0.1 46 33 12 38 11 3 41 2 6
5 15.4 0.9 40 29 11 34 9 3 35 2 5
6 15.4 0.1 45 33 12 38 10 3 39 1 3
Total
1 24 0.9 146 110 36 125 42 7 141 15 12
2 2.4 0.1 156 116 40 133 39 6 146 13 10
3 5.4 0.9 136 100 36 114 39 6 123 8 7
4 54 0.1 142 104 38 119 37 6 126 7 6
5 15.4 0.9 131 95 36 109 37 6 113 4 4
6 154 0.1 133 97 37 111 36 6 115 4 3

From Table 3.3, for different designs, the difference between maximum and minimum heating
demand among the 30 actual years remains almost constant at around 25 kWh/m? no matter what
roof design it is; whereas, for cooling, solar reflectance has a considerable effect on this difference.
With low level of insulation (designs 1 and 2), the difference between maximum and minimum is
smaller for cool roof compared to that for dark roof; although, increasing the level of insulation

reduces this difference.

As can be seen from Table 3.3, for heating, with low thermal resistance (designs 1 and 2), the
simulation conducted with CWEC deviates from the mean of thirty actual years considerably (10

kWh/m? or approximately 10 % overestimation), such that it is located out of the first standard
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deviation. On the contrary, with high level of insulation (designs 5 and 6), heating energy of the
building simulated with CWEC is close to the mean of the thirty-year simulations (2 kWh/m? or
3% deviation). With a standard constant level of insulation (5.4 m*-K/W as suggested by NECB,
2011, designs 3 and 4), changing the solar reflectance from 0.9 to 0.1 doesn’t have a significant
impact on deviation of CWEC from the mean of thirty actual years for heating demand (6%

overestimation for both designs), and both designs are within the standard deviation.

In addition, although more solar reflectance and thermal insulation reduces the cooling energy
demand of the building, it increases the overestimation of CWEC for cooling demand. As can be
seen from table 1, for design 1, the simulation result with CWEC is far beyond the standard
deviation (by 6 kWh/m? or 29% overestimation), In other words, CWEC can underestimate the
cooling energy saving of a reflective low insulation roof by 29 %. Design 2 however, makes the
CWEC closer to the mean of thirty-year simulations yet, out of the standard deviation with 4

kWh/m? or 10 % overestimation.

Moreover, as it is illustrated, with standard level of insulation (designs 3 and 4), although lower
solar absorption reduces cooling demand of the building, it increases overestimation of CWEC
such that the difference between the simulation run with CWEC and the mean of thirty years is
larger than the standard deviation. Whereas, lower solar reflectance decreases the overestimation
of CWEC yet, the simulation with CWEC falls within the standard deviation. This means that with
standard level of insulation, CWEC overestimates the cooling energy of the building with

reflective roof by 12 % whereas it overestimates that for dark roof by around 6 %.

Overall, Table 3.3 shows that, for heating, with a constant level of standard insulation (designs
3 and 4), the difference between the results simulated with CWEC and the mean of thirty years are
almost the same for cool roof and dark roof; while for the same condition, cooling energy of
building with cool roof (design 3) is lower than what is expected from simulation with CWEC, in
comparison to what is expected from dark roof (design 4). Consequently, a higher energy saving

can be obtained in real life by an application of cool roof in the long term
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3.4 Conclusion

A parametric study of energy performance of the buildings of the different design variations has
been performed. For each design variation, the CWEC weather data is applied together with the
long term actual weather data from 1960 to 1989. The mean performance of the 30 years is also
compared to that of CWEC for the different design variations to fully assess the appropriateness

of applying a TMY weather file to evaluate different roof designs with building energy simulation.

The results show that, the best design combination is the low solar reflectance with high level of
insulation in cold climate. Moreover, the appropriateness in applying TMY weather data to
building energy simulation is highly dependent on the roof designs, which can result in significant
underestimation or overestimation of the energy savings. Although using cool roofs instead of a
regular dark roof decreases the predicted cooling and total energy demand of the building with
TMY, the deviation between such prediction and the mean energy demand as evaluated with AMY
weather data is also increased. However, such deviation is fairly small compared to the absolute
value of the total energy demand of a dark roof. It is only through this comparison of energy
performance evaluated under TMY and AMY weather data, insight on the long term energy
performance of different roof configurations (notably cool roof and dark roof) can be obtained.
The result also indicates that a higher than predicted energy saving can be obtained in the long

term by deploying cool roof based on a conventional TMY weather data based simulation.
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Chapter 4. THE APPLICABILITY OF CANADIAN WEATHER YEAR FOR ENERGY
CALCULATION (CWEC); THE EFFECT OF BUILDING DESIGN AND CLIMATE
The intended purpose of a single-year typical meteorological weather file is to assess the long-
term average performance, while disregarding year-to-year fluctuations and extreme conditions.
This chapter aims to provide a better understanding of the applicability of current Canadian
typical meteorological year (CWEC) for building different building design and under different
cold climate conditions. The study explores design parameters that are seldom prescribed in
energy efficiency standards and codes but have great impact on cooling and heating energy
demands. The studied design parameters include window-to-wall ratio (WWR), window solar heat
gain coefficient (SHGC), floor construction (concrete or wood), and solar reflectance of exterior
walls and roof. These design parameters are applied to two different building types — small and

large office buildings, and two different climatic locations — Montreal and Vancouver, Canada.

This chapter is submitted to the journal of Urban Climate, M. Hosseini, A. Bigtashi, B. Lee,
“Evaluating the applicability of Typical Meteorological Year under different building designs and

climate conditions™, 2021

4.1 Introduction

Typical meteorological year (TMY) data, is developed to estimate the long-term buildings
energy performance or solar energy conversion systems performance through computer
simulations. Although the file is created to estimate the long-term average weather data, many
studies have found TMY data to be an inadequate representation when evaluating specific energy
system applications or building criteria [1, 2] . The methodology behind the TMY file generation
has also been found to play a significant role in results [3, 4] putting into question the reliability

of these files.

The artificial single year is composed of 12 typical months which contain actual hourly weather
data. Each month is selected based on the similarity to median weather conditions as a means to

best represent long-term weather data. A variety of different file formats including International
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Weather year for Energy Calculations (IWEC)[5], Typical Meteorological Year (TMY) [6], TMY?2
[7], TMY3 [8], Test Reference Year [9], and Canadian Weather Year for Energy Calculation
(CWEC) [10] are readily available.

There are a few methods to generate the typical meteorological data including, but not limited to,
Sandia National Laboratory method [6, 11], the Danish method [9] and the Festa and Ratto method
[11]. A study conducted by Janjai and Deeyai [4] evaluated the three above-mentioned methods;
the statistical test results showed a minor difference between the long-term average of the weather
parameters and the corresponding TMY generated from the different methods. The TRNSYS
energy simulation conducted for two solar water heating systems and two photovoltaic systems
with varying sizes in four tropical climates showed a good agreement between the solar fraction
and electricity resulted from the TMY's and the average long-term data. The Sandia method is the
most well-known and commonly applied method for generating TMY files. Individual months are
selected from the pool of available meteorological data, where the Cumulative Distribution
Function (CDF) is applied to each parameter considered for both short-term and long-term daily
mean values [12]. The parameters considered are the dry bulb temperature, relative humidity, wind

velocity and global solar Irradiance, where the min, max and range are considered when applicable.

There have been many studies conducted on the effects of different typical weather year generation
methods on simulated building performance [1, 3, 13]; as well as the impact for applications in

different climates [14-21].

In an earlier study, Crawley [22] found an annual energy consumption variation between the long-
term average and the typical weather year ranging between 7.0% and 11.0% for a simulated
prototypical office building while using different weather files for varying climates, namely; TRY,
T™MY, TMY2, WYEC, and WYEC2. The authors stated that an identical building model was kept
for energy simulation of all climates; furthermore, the older and/or lower energy efficiency
standards could contribute to higher amount of deviation. Other studies have expanded their
research to include the effects of different typical weather years on different building design

aspects, such as daylighting, and energy system applications [2, 23].

Another study was conducted by Ebrahimpour & Maerefat [1] to assess the difference between
TMY files generated using different methods. The Sandia method, as well as the Meteonorm and

Weathergenerator software were used to generate TMY files which were subsequently compared
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to the long-term average measured data. The goal was to determine which generation method
would provide minimal difference to the long-term average measured data. The results show that
the Sandia method, as well as the data generated from Meteonorm, best met the above-mentioned

criteria.

Questioning whether a single typical meteorological year can properly represent the range of
climate conditions over a period, Crawley & Lawrie [24] suggested generating files by selecting
extreme climatic months to create an eXtreme Meteorological Year (XMY). Guo et al. [25] applied
a similar concept, which they refer to as typical hot-year (THY) in order to assess the indoor

environment during extreme heat waves.

Yang et al. [26] conducted a study where a typical office building was simulated for five different
climate zones in China using actual meteorological year (AMY) data from 1971 to 2000 to
compare the long-term mean to typical meteorological year results. The results showed root-mean-
square errors ranging from 3% to 5% between the AMY average and TMY. Furthermore, Hong et
al. [27] evaluated the impact of using 30-year actual weather data for simulation in terms of HVAC
source energy use, total source energy use, peak electric demand, peak electric demand reduction
and energy saving. They also analyzed the impact of weather on the long-term performance of
buildings considering three types of office buildings according to two energy efficiency codes
across 17 ASHRAE climate zones. The study highlighted that the TMY ’s capability of considering
extreme weather conditions or regular events was dependent on climate. However, the intended
use for TMY files are to represent typical weather conditions rather than extreme events.
Moreover, building configuration, purpose and other design combinations were ignored in this
assessment. Their results showed that TMY3 underestimated long-term annual energy

consumption of the buildings by 9%.

Cui et al. [28] assessed the long-term representation of a typical year by comparing it to a 55-year
actual weather data set for an office building simulated for 10 large cities covering all climate
zones in China. Their results indicated that the typical year simulations overestimated or
underestimated the energy use and peak load in many cases, including 2.7 kWh/m? (17.8 %)

difference in cooling load in one case.

A study by Hosseini et al. [29] evaluated various roof designs for a Canadian cold climate, where

a variety of parameters such as roof solar reflectance and thermal insulation were considered. The
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results from the case study conducted on a single storey retail store office building indicated a
smaller deviation between the CWEC and long-term average results for design with high solar

reflectance (cool roofs) and higher thermal insulation.

A majority of commonly used TMY files focus on the thermal aspects of the climatic environment.
Other studies have expanded their research to include the effects of different typical weather years
on different building design aspects, such as daylighting and energy system applications [23]. Sun
et al. [2] conducted an analysis on the impact of using different TMY data files for daylighting
simulations. The study considered three different TMY data files (CSWD, SWERA and IWEC)
for four cities in China with varying climates. The study found little difference in results between
the different TMY data files when static metrics, such as Daylighting Factor (DF), were
considered. However, when considering dynamic metrics, such as Daylight Autonomy (DA) and
Useful Daylight Index (UDI), a significant divergence was noted, indicating that the TMY
generation method must be taken into account when assessing results of daylighting studies.
Similarly, Realpe et al. [23] evaluated the application of various TMY datasets for Concentrated-
PV (CPV) systems. In the study, five different TMY data files were generated using the Sandia
method, two simplified drivers which solely considered Direct Normal Irradiance (DNI) and two
filtered drivers which took into account the characteristics of the CPV system. The study
determined that the Sandia method was not suitable for simulating CPV systems, while driver-

based files better represented the long-term average for both monthly and annual cases.

As previously mentioned, most studies conducted on typical meteorological year data and the
impact of their generation methods utilize a single prototypical building set in varying climates. In
most cases, only the climate based building envelope thermal properties are considered; with the
exception of two studies conducted by Hosseini et al. [29, 30] which evaluated the deviation of
results of CWEC from long-term average results of actual years considering a variety of roof
designs. However, variations in other building properties such as WWR and window solar heat
gain coefficient (SHGC) are neglected. This paper evaluates the applicability of typical
meteorological year by considering building design properties, including WWR and SHGC, for

two office buildings located in two cold climate cities.
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4.2 METHODOLOGY

Building energy simulation is used to evaluate the applicability of the CWEC file in
representing long-term average energy performance. The large-scale simulation involves a variety
of building designs run once with 30-year actual historical data and once with CWEC. Design
options include WWR, window solar heat gain coefficient (SHGC), floor type, and wall and roof
solar reflectance, which equates overall to 16 design combinations, where each design parameter

has two possible options.

The historical weather data of Montreal and Vancouver is extracted from the Canadian Weather
Energy and Engineering Datasets (CWEEDS). The dataset includes the weather data necessary for
urban planning and energy efficient building application for a period between the years of 1953
and 2014. The historical data is taken for a period ranging from 1960 to 1989 in order to compare
to the acquired Canadian Weather Year for Energy Calculation (CWEC) file. CWEC is a single
typical meteorological year which includes twelve statistically selected months. The selection is
carried out by comparing the cumulative density function (CDF) of monthly meteorological
parameters such as solar radiation, outdoor air temperature, and wind speed to the long-term

average (usually 30 years) dataset.

The probability density function for the heating and cooling energy consumption over the 30-year
period is calculated for each design option. The averages of each distribution are then compared

to the results from the single CWEC simulation for each design combination.

4.2.1 Case Study
4.2.1.1 Weather condition

Two cold climate Canadian cities, Montreal (QC) and Vancouver (BC), are considered in
this study. Generally, Vancouver has a milder climate and is classified in ASHRAE as zone 5,
whereas Montreal, which exhibits colder winters, is classified as zone 6. The ASHRAE cooling
and heating degree days of these two cities are shown in Table 4.1. Vancouver is overall cloudier
and, generally, has less solar radiation available throughout the year than Montreal. Figure 4.1

compares the availability of solar radiation for both cities.
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Table 4.1: Heating and Cooling Degree Days of the two studied cities

City HDD18 CDDI10
Montreal 4603 1192
Vancouver 3157 853

Figure 4.1 illustrates a histogram plot of 30 years of daily-averaged horizontal solar irradiance for
Montreal and Vancouver. There is a greater frequency of values exceeding 200 W/m? for Montreal,

indicating sunnier skies for the region, in comparison to Vancouver.
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Figure 0.1: 30 years of hourly global horizontal solar Irradiance for Montreal and Vancouver from 1961 to 1989

In this study, the stations selected for investigation are the Montreal-Trudeau International airport,
identification number 94792, and the Vancouver International airport, identification number

24287.

4.2.1.2 Building Properties
To evaluate the effect of varying designs on the overall applicability of CWEC, a single-

storey small office building and a 12-storey large-office building are simulated. The two buildings
are based on the US Department of Energy (DOE) prototypical office buildings (DOE) with
associated EnergyPlus input files, which are publicly available [31]. The building envelops are
based on the level of efficiency measures set by the National Energy Code of Canada for Buildings
(NECB) [32]. The original building specifications are available at the DOE website, however, the

updated NECB specifications are summarized in Table 4.2.
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Table 0.2: Properties of the studied buildings

Building Prototype Small Office Large Office

Floor Area (m2) 511 3567 (46356 total conditioned)

Building Shape

12
Number of Floors 1
(plus basement)

Perimeter zone depth: Sm. Perimeter zone depth: 4.5m.

Thermal Zoning
Each floor has four perimeter zones, one core zone and

Four perimeter zones, one core zone and an attic one IT closet zone.
zone. Percentages of floor area: Perimeter 29%, Core 70%, IT

Closet 1%

Percentages of floor area: perimeter 70%, core The basement has a datacenter zone occupying 28% of
30% the basement floor area
Floor to floor height (m) 3 3.96
Floor to ceiling height
3 2.74
(m)
. Wood-frame walls (2X4 16 in): lin. Stucco + 5/8 Mass (pre-cast concrete panel):
Exterior Wall
in. gypsum board + wall Insulation+ 5/8 in. 8 in. heavy-weight concrete + wall insulation + 0.5 in.
Construction
gypsum board gypsum board
Exterior Wall U-factor
0.246 (Montreal), 0.316 (Vancouver) 0.246 (Montreal), 0.316 (Vancouver)
(W/m2-K)
. Attic roof with wood joist: Built-up roof:
Roof Construction . . . . . .
Roof insulation + 5/8 in. gypsum board Roof membrane + roof insulation + metal decking
Roof U-factor (W/m2-K) 0.183 (Montreal), 0.227 (Vancouver) 0.183 (Montreal), 0.227 (Vancouver)
Window U-factor
0.39 (Montreal), 0.42 (Vancouver) 0.39 (Montreal), 0.42 (Vancouver)
(W/m2-K)
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In this study, four primary design parameters were selected; window-to-wall ratio (WWR), solar
heat gain coefficient (SHGC), flooring and roof and exterior wall solar reflectance. The WWR is
the ratio between the total glazed area (window) and the exterior envelope wall area. The value
ranges between 0 and 1, where full window coverage is considered as being 1 or 100%. In this
study, the two considered WWR values are 0.8 and 0.2. The solar heat gain coefficient refers to
the characteristic of a window to transmit heat directly or indirectly into the building. The value
for the parameter is a fraction ranging from 0 to 1; the closer the value is to 0, the less heat the
window transmits into the building. In this case, the selected values for SHGC are 0.4 and 0.32 for
Montreal and 0.45 and 0.35 for Vancouver. The flooring types selected in this study are concrete
and wood. In this study, heavy weight 8-inch concrete slab or wood were selected for the small
office building cases, while 100mm normal weight concrete or wood were used for the large office
building cases. The exterior wall and roof solar reflectance represents the fraction of solar radiation
which is reflected back from the wall and roof. This parameter allows to reduce the overall
absorbed solar energy. Thus, a roof or wall with a high solar reflectance will absorb less energy
and will be cooler than a regular wall or roof. The values range between 0 and 1, where light
colored surfaces which have high solar reflectance approach 1 in value, while darker surfaces
approach 0. In this study, the walls and roofs are assumed to have a solar reflectance of 0.8 or 0.4.

Each parameter assessed in this study has two possible values as summarized in Table 4.3.

Table 4.3: values of design parameters used in the study

Windows
WWR Floor Roof and wall solar reflectance
SHGC
High Low High Low High Low High Low
Small office Montreal 0.8 0.2 0.4 0.32 Concrete  Wood 0.8 0.4
Small office Vancouver 0.8 0.2 0.45 0.35 Concrete  Wood 0.8 0.4
Large office Montreal 0.8 0.2 0.4 0.32 Concrete  Wood 0.8 0.4
Large office Vancouver 0.8 0.2 0.45 0.35 Concrete ~ Wood 0.8 0.4

The focus of this case study is to evaluate the applicability of the CWEC file for a variety of
building designs rather than for HVAC system design, therefore, the efficiency of the HVAC

system is kept constant among different building designs.

Python-EnergyPlus (EPPY) package is used for the large-scale simulation. Each of the 16 design

configurations is run with 30 actual historical year and the CWEC weather files. Overall 496
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simulations were run for each building type - location. The results for the CWEEDS actual years

are then compared to the CWEC results.

4.3 Results and discussion

After conducting the simulations, the outputs are processed in order to be analyzed. For each
design option, the probability density function (PDF) of the 30-years cooling and heating energy
consumptions are calculated, and the mean is compared to the corresponding results from CWEC.
Figures 4.2 to 4.5 show the results for each building located in each studied location. SHGC
represents the solar heat gain coefficient of the window, F stands for the floor type which can take
the characteristic of concrete (C) or wood (W), and REF stands for solar reflectance of the exterior
walls and roof. The dark blue shows the distribution of the long-term cooling, the light blue line
shows the mean of the distribution, and the green line shows the cooling resulted from CWEC. By
the same token, the red color illustrates the distribution of the long-term heating, the orange line
stands for the mean of the distribution, and the gold color represents the heating resulted from
CWELC. In each set of figures, a) presents the eight scenarios with small windows (WWR of 0.2)
and b) presents the eight scenarios with larger windows (WWR of 0.8). In addition, the subplot
located on the right shows the deviation of results of CWEC from the long-term mean, in which a
positive value indicates underestimation by CWEC whereas a negative value signifies an

overestimation.

4.3.1 The effect of climate (weather)

The cooling and heating energy consumption in Montreal for all simulated cases are larger
than in Vancouver, as seen in Figures 4.2 to 4.9. The wider distribution for the Montreal cases
indicates harsher weather conditions in contrast to the cooling and heating distributions exhibited

in the Vancouver cases, which are much closer together, indicating a milder climate.

A greater deviation of the CWEC results from the long-term average results was noted for the
Vancouver cases. An overall assessment for all small office building cases show cooling energy
consumption ranging from 10 to 60 kWh/m? for Montreal and 7 to 50 kWh/m? for Vancouver. For
heating energy consumption, the Montreal cases range between 50 to 100 kWh/m?, while

Vancouver cases range between 25 to 70 kWh/m?,
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Moreover, for the simulated large office buildings, the cooling energy consumption for Montreal
and Vancouver fall between the ranges of 10 kWh/m? and 50 kWh/m? and between 5 kWh/m? and
45 kWh/m? respectively. The heating energy consumption ranges between 20 kWh/m? and 60
kWh/m? for Montreal and 3 kWh/m? and 35 kWh/m? for Vancouver.
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Figure 4.2: Montreal, small office with small windows
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Montreal, Small Office, WWR=0.8
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Figure 4.3: Montreal, small office with large windows

Vancouver, Small Office, WWR=0.2
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Figure 4.4: Vancouver, small office with small windows
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Vancouver, Small Office, WWR=0.8
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Figure 4.05: Vancouver, small office with large windows

Montreal, Large Office, WWR=0.2
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Figure 4.06: Montreal, large office with small windows
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Montreal, Large Office, WWR=0.8
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Figure 4.7: Montreal, large office with large windows

Vancouver, Large Office, WWR=0.2
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Figure 4.8: Vancouver, large office with small windows
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Vancouver, Large Office, WWR=0.8
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Figure 4.09: Vancouver, large office with large windows

Although the buildings in Vancouver exhibit a smaller range for both annual heating and cooling
energy consumption, the deviation noted between the CWEC results and that of the long-term
average is greater than for Montreal. The deviation of the CWEC results for cooling in Montreal
ranges from slightly below 2% to 3%, while heating ranges from 0% to 2%. Vancouver exhibits
slightly higher deviation values, which range from 2% to more than 4.5% for cooling and slightly
below 2% to 3% for heating. This slight increase in deviation can be explained by the greater

number of cloudy days and the smaller amount of solar radiation available in the region.

4.3.2 The effect of building type

As shown in Figures 4.2 to 4.5, the cooling energy consumption for both Montreal and
Vancouver is smaller than the heating energy consumption for the typical use of a small office
building in cold climate. However, in the Vancouver small office cases, the heating and cooling
distributions are much closer, which is due to Vancouver’s milder climate. Similarly, Figures 4.6
and 4.7 show larger heating energy consumption in comparison to the required cooling for a large

office building in Montreal. In this case, the heating and cooling are closer in value compared to
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the small office buildings. However, Figures 4.8 and 4.9 illustrate that for a large office building
in Vancouver, the heating energy consumption is less than the cooling energy consumption, despite
Vancouver being a cold climate region. This is a common phenomenon which occurs in many cold
climates for large office buildings with large internal heat gain. The large office building contains
datacenters on each floor, which contributes to a considerable amount of internal heat gain; the
increase in internal heat gain leads to an increase in cooling consumption while reducing heating
energy consumption. Considering the milder climate of Vancouver, the high internal heat gain

makes the cooling larger than the annual heating.

The type of building also influences the deviation of the CWEC from long-term average results.
Comparing Figures 4.2 to 4.5 with 4.6 and 4.9, a greater deviation is noted for the large office
building cases. The largest deviation noted is for the large office building in Vancouver, with more
than 4.5% deviation. In larger office buildings with a relatively large amount of internal heat gain,
the total cooling or heating energy consumption can be more sensitive to fluctuations in internal

gain, infiltration, and fresh air required in thermal zones.

4.3.3 The effect of design

Building design can play an important role in cooling, heating, and deviation of the CWEC
results from that of the long-term average. In this study, the selected design options are parameters
which have been considered as being mostly neglected in previous literature, building codes and
standards. These parameters include WWR, window solar heat gain coefficient, floor type and roof
and exterior wall solar reflectance, which can have a direct relationship with solar radiation in
building energy performance. Design, building type and climatic conditions are related to each
other considerably. In other words, a design’s overall performance is dependent on climatic
condition and building type. Figures 4.2 to 4.9 illustrate larger variations in performance for the
small office buildings in comparison to the large office building cases. This variation in
performance is due firstly, to the fact that small office buildings typically possess lower occupancy
and lower internal heat gain and can therefore be more sensitive to the outdoor environment
condition. Secondly, the total roof and exterior wall area in contrast to the conditioned area is
greater than for large office buildings, which cause a larger heat transfer to occur through the

building enclosure.
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Figures 4.2 to 4.5 show that for the small office building, increasing the WWR from 0.2 to 0.8
increases the cooling energy consumption considerably; for Montreal and Vancouver an increase
of about 20 kWh/m? is noted, while the reduction in heating energy consumption is about 10
kWh/m?. The reasoning behind the heating energy saving being only half of the cooling increase
is that the heating occurs during the Fall, Winter and part of Spring, when the sun angle is lower.
On the other hand, cooling occurs at the end of spring and during the summer months, when the
sun angle is higher, and therefore, allows for greater amount of solar gains. In other words, a higher
amount of solar radiation is allowed into the thermal zones of the building, leading to a higher
amount of cooling demand during this period. Moreover, a closer inspection of Figures 4.2 to 4.5
show that making use of solar gains has the potential to bring cooling and heating distributions
closer. In this case, a lower roof and wall solar reflectance paired with high thermal capacity
flooring and increasing the SHGC of the windows to allow for more solar radiation to enter in the

thermal zones would allow to bring the distributions closer.

In addition, increasing the use of solar gains in the design reduces the deviation between the CWEC
and long-term average results for cooling. A larger WWR makes the deviation of the CWEC results
smaller. An example of this can be seen in Figure 4.3a, where the cooling deviation for the
“WWR=0.2, window SHGC=0.45, concrete floor, solar reflectance=0.8" design is slightly less
than 4%, while the same design with a larger WWR applied (“WWR=0.8, window SHGC=0.45,

concrete floor, solar reflectance=0.8"") exhibits a deviation of 2% (Figure 4.5).

In another example, replacing the concrete floor with wood causes the deviation between the
CWEC and long-term average results to increase for cooling and decrease for heating. This can be
seen in Figure 4.4, where “WWR=0.2, window SHGC=0.45, concrete floor, solar
reflectance=0.8" design has a cooling and heating deviation of about 4% and 2% respectively,
while “WWR=0.2, window SHGC=0.45, wooden floor, solar reflectance=0.8" design increases
the cooling value to 4.5% while decreasing the heating deviation to 1.5%. This change can be
attributed to the fact that there is a large availability of solar radiation which becomes stored in the
concrete floor, which behaves as a thermal mass. In cold climates, the solar radiation availability
is quite different between seasons, where the solar gain potential is much greater during the
summer in comparison to winter which has limited solar radiation. The concrete behaves as a

thermal mass by storing the solar gains and releasing them later in the day. The application of a
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thermal mass is useful during the cold winter months as a means to reduce the overall heating
consumption, since the gains are stored and released later in the evening when the outdoor
temperature begins to drop. However, for office buildings with typical operating hours, this benefit
is negligible given that most occupants have vacated the building during this time. Furthermore,
the limited solar radiation available during the winter months presents an issue for the concrete
floor which has a high thermal capacity. In this given case, the deviation variation is most likely
due to the high weighting factor (40%) attributed to solar radiation in the generation of the CWEC
file. The large weighting factor indicates that solar radiation is supposed to play the most
significant role in the thermal performance of a building. Therefore, if a building is less sensitive
to the solar radiation according to its design, climate and use, there is an increase in uncertainty

and the deviation of CWEC results from the long-term average results increases.

Furthermore, as Figures 4.6 to 4.9 show, when the type of building changes from a small office
building to a large one, the influence of the selected design properties decreases, especially in the
case of Vancouver. As described in section 4.3.2, for larger office buildings with larger internal
gains, the cooling and heating energy consumption are less sensitive to the design of the building.
The roof and exterior walls represent a smaller percentage of the total building area, therefore,
energy efficiency measures such as solar reflectance or window SHGC would not be as effective.
Even in the case of WWR, which is the most effective considered design parameter, there is little
effect. Increasing the window area does allow for an increase in solar gains, however, the affected
area represents only a small portion of the total floor area, reducing its effectiveness. In this case,
other weather parameters such as temperature and wind might play more important roles, as they
deal with infiltration, required fresh air and HAVC systems. As Figures 4.6 to 4.9 show, for large
office buildings, no matter the design, cooling and heating deviation of the CWEC results for
WWR=0.2 is about 3% and 2% in Montreal and 4.5% and 3% in Vancouver respectively (Figures
4.6 and 4.8). These numbers change to around 2% and 1% for Montreal and 2% for both cooling
and heating in Vancouver if WWR = 0.8 is used (Figures 4.7 and 4.9).

Previously in the study, the historical weather data simulation results were compared to the CWEC
simulation results. In order to further assess the applicability of CWEC in simulation, the peak

demand for 98%, 99% and 99.6% were evaluated for small office buildings. These values were
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selected following the ASHRAE Design Day Fundamentals, which uses these percentiles when
evaluating temperature for HVAC design. Figure 4.10 and 4.11 show the percent difference
cumulative distribution function, for select designs, between the peak load for each year of the
historical weather data and CWEC simulation results for all above-mentioned percentiles. The x-
axis represents the percent difference between the CWEC and historical results, where a negative
percentage indicates that the CWEC results are below the historical weather data results. In other
words, data points located to the left of the y-axis indicate underestimation of loading by the

CWEC results, where the y-axis shows the proportion of years (a total of 30 years are represented).
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Figure 4.10: Percent difference cumulative distribution function for Montreal and Vancouver heating.
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Figure 4.11: Percent difference cumulative distribution function for Montreal and Vancouver cooling.

The selected designs were among the cases which had the greatest overall deviation from the
CWEC simulation results for heating (Montreal) and cooling (Vancouver). The corresponding

heating and cooling figures for the same designs were then selected.

The graphs in Figures 4.10 and 4.11 illustrate the ratio of number of historical years where the
CWEC simulation results underestimate the load. The Montreal cases ranged between 62.7% and
82.1% of the years having underestimated loads during the heating season for the 98™ percentile.

This represents 18 to 25 years, depending on the design, where the CWEC results are lower than
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that of the historical weather data results. Vancouver designs exhibit a smaller number of years
where the results are higher than that of the CWEC results, with the percentage ranging between
39.9% to 60.7%, namely, 12 to 18 years for the 98" percentile. During the heating season, designs
which are considered sensitive to solar radiation fluctuations are more susceptible to be
“underestimated” by the CWEC results. Designs sensitive to solar radiation have a greater number
of years where the simulation results are higher than the CWEC simulation results. The
discrepancy between the historical weather data results and those of CWEC may be attributed to
the weighting factor applied during the CWEC file generation process. In the case where a greater
importance is attributed to solar radiation in contrast to another parameter, for example
temperature, the expected amount of information provided by the specified weather parameter is
expected to be greater. In this case, when a design is sensitive to solar radiation fluctuations, the

influence of solar radiation is increased, and a notable increase in “underestimated” years occurs.

During the cooling season, a larger percentage of years have results which are higher than CWEC
for the Vancouver cases, with the exception of the 98" percentile which lies below Montreal;
however, it exhibits a larger range in years (5 to 18 years). In all cases for the Vancouver cooling
season, designs which are sensitive to solar radiation are subjected to a drop in percentage of years
where the simulated results are above CWEC results. Thus, designs less sensitive to solar radiation
cause an increase in the number of years which are “underestimated”. Montreal exhibits the same
behavior as Vancouver, where designs with a small window-to-wall ratio and large solar
reflectance exhibit results which fall above CWEC for a greater number of years. These
observations align with those previously made for the heating season. For the cooling season, less
sensitive designs restrict the quantity of information provided by the file, increasing unknowns.
The reason that Vancouver experiences a greater number of “underestimated” years may be due
to the amount of solar radiation the region receives, which is lower than Montreal. It appears that
during the cooling season, when the information provided by solar radiation is greater, the
frequency of “underestimated” years is decreased. The patterns shown during the heating a cooling
season have led the authors to suspect that there may be an issue in the attributed importance of

solar radiation (greater) and/or temperature (lower).
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Although the deviation of the CWEC results from that of the long-term average results changes
due to the climatic condition, building type and design, it’s quite fairly negligible, such that it
remains under 5%. However, the deviation can be reduced with updated weighting factors

depending on the application.

4.4 Conclusion

A large-scale simulation was conducted in order to assess the impact on energy
performance prediction between deploying a typical meteorological year (CWEC) file and actual
meteorological year (AMY) files. The study was conducted using data for two cold climate cities,
where two building types with varying design parameters were simulated. The effect of varying
design parameters was further investigated in order to fill the void in existing studies which have
ignored the selected parameters. These design parameters were among those neglected by

standards and codes.
The results of the large-scale simulation are summarized below:

e The deviation of the results simulated with CWEC from the long-term average results for
all the building types and designs were noted to be larger in Vancouver, where lower solar
radiation is available.

e The large office buildings generally showed a higher deviation of the CWEC results from
that of the long-term average.

e The designs considered less sensitive to solar radiation fluctuations generally showed
higher deviation of results when comparing to the long-term average. For example, for a
small office building in Vancouver, the design “WWRO0=0.2, window SHGC=0.35, wood
floor, solar reflectance=0.6" showed a deviation of about 4.5% whereas, the design
“WWR=0.8, window SHGC=0.45, concrete floor, solar reflectance=0.2” contributed to a
deviation of less than 2%.

e A year-by-year evaluation of the 98™, 99" and 99.6" percentile of the heating season found
that CWEC simulation results were lower than the historical data simulation results for a
greater number of years for designs sensitive to solar radiation. The cooling season showed

a greater discrepancy for designs less sensitive to solar radiation.
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The building design and configuration may significantly impact the deviation of the CWEC results
from that of the long-term average. This impact is especially significant when smaller buildings
are considered, since they are often heavily influenced by minor changes in design parameters. In
one case, a change in the WWR was able to reduce the deviation of the CWEC results by more
than half. The study also noted a decrease in deviation between the CWEC results from the long-
term average results for designs exhibiting higher sensitivity to solar radiation fluctuation. A high
weighting factor of 40% for solar radiation during the generation of the CWEC file might
exacerbate over/underestimation of the CWEC results. In addition, considering the lower amount
of solar availability in cold climate and the fact that larger buildings are less susceptible to
conduction and radiation, the solar radiation weighting factor of 40% might lead to an
overestimation in energy prediction. Although, all the aforementioned factors play role in the
deviation between the CWEC and long-term average results, all the deviations remained below
5%. This indicates that the CWEC may still be reliable to be used for estimation of cooling and
heating energy performance. Furthermore, when comparing the percentile results on a year-by-
year, the CWEC results were found to be below a large proportion of the years for the historical
data simulation. However, modifications of the weighting factors might reduce the deviation of
results. By doing so, the uncertainty can be reduced for cases with less solar radiation effect on

building.
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Chapter 5. A SYSTEMATIC APPROACH IN CONSTRUCTING TYPICAL

METEOROLOGICAL YEAR WEATHER FILES USING MACHINE LEARNING
The single typical meteorological year file is composed of hourly resolution data from the most 12
representative calendar months of 30 years which are selected based on statistical similarity to
long-term weather daily-averaged data. These weather files are synthetically constructed on
historical weather data over a long period of time for an array of weather parameters, such as
solar radiation, temperature, wind speed and others. The statistical procedure to construct the
weather files depends on the weights assigned to these weather parameters. Under current
practice, these weighting factors are universally assigned regardless of climatic locations nor the
building application. This approach leads to energy performance predictions that deviate from the
long-term averages. This chapter introduces a novel machine learning algorithm to extract the
feature importance of the weather parameters in order to assign weighting factors straightly
proportional to their impacts on energy performance of buildings. Weather files were constructed
with these systematically assigned weighting factors which are climatic location dependent. The
typical meteorological year weather file based on the novel approach offers better prediction (with
statistical significance) on energy performance for certain climatic As a result, the suggested

method avoids potential under/oversizing of equipment and promotes energy conservation.

This chapter is published in Energy and Buildings, Volume 226, 110375, M. Hosseini, A. Bigtashi,
B. Lee, “A systematic approach in constructing typical meteorological year weather files using

machine learning”, © Elsevier Ltd, 2020

5.1 Introduction

Although typical meteorological year weather files are meant to be a representation of long-term
weather, some studies have noted deviations between energy performance simulated with the
typical meteorological weather file and that through measurement under long-term actual weather.
A study by Hosseini et al. [1] (previous chapters) demonstrated that the deviation could be quite
considerable depending on the designs of buildings. On the other hand, another study conducted
by Janjai and Deeyai [2] showed minor differences between the long-term average energy
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performance and the corresponding energy performance simulated with typical meteorological
year weather files. However, the study focused on the simulated energy performance of solar
related technologies, such as water heating systems and photovoltaic systems, without considering
the energy performance of the whole building. The limited scope might explain the negligible
deviation between the long-term average energy performance and that predicted with typical

meteorological weather files.

In building energy simulation, typical meteorological year weather data is usually a synthesized
single year of weather data that represents multiple years of historical weather data over a period
of thirty years, if not more, from which typical meteorological weather files are created. There are
a few existing methods used to generate the typical meteorological data including, but not limited
to, the Sandia National Laboratory method [3], the Danish method [4], the Festa and Ratto method
[5] and the ISO 15927-4 standard [6].

The Sandia method is one of the most frequently used methods, where the Finkelstein-Schafer
(FS) [3] statistic is calculated to determine typical weather months of a year. Here is a brief
description of a generic generation procedure to generate typical meteorological year weather file
in CWEC format. The FS statistic is used to find the absolute value of the difference between long-
term data and each of the historical candidate months. In other words, for each weather data month,
all historical months are evaluated and the month which matches most statistically to the long-term

weather pattern is selected. The procedure is summarized below.
For each month of a year:

1. The cumulative distribution function (CDF) of each of the 9 weather parameters,
namely, horizontal solar radiation, average temperature, maximum temperature,
minimum temperature, average dew point temperature, maximum dew point
temperature, minimum dew point temperature, average wind speed, and maximum
wind speed are calculated.

il. The FS statistic is calculated for each parameter according to equation 1:

FS = (1/pEr, s; (1)
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Where: § is absolute difference between the long-term data CDF and the historical
candidate month data CDF, and n is the number of readings in a month (usually 30,
representing a 30-year period).

iil. Weighting factors of the weather parameters are commonly assigned based on experts’
judgments according to their importance on building energy demand. The weighting
factors from previous studies are summarized in Table 5.1 for different weather file
types. The month with minimum weighted sum of FS displays the most similar weather
pattern to the long-term historical weather that is selected according to equation 2,
where the weighted sum is calculated for each candidate month:
WS =) w;FS; (2)
Where: wi is the weighting factor attributed to each parameter (shown in Table 1), and
FS; is index FS statistic.

iv. The hourly weather data belonging to the minimum WS is used to fill up the

corresponding month of the twelve-month weather file.

The same procedure will be repeated for each month of the representative year until all the 12

months of the year are selected.

Table 5.1: Weightings factors of weather parameters in previous studies

TMY([3] TMY2 &3 [7,8] IWEC & CWEC[9] (Kalogirou, 2003)[10]  (Chan, 2016) [11]
Maximum dry-bulb temperature 0.042 0.050 0.050 0.031 0.061
Minimum dry-bulb temperature 0.042 0.050 0.050 0.031 0.003
Mean dry-bulb temperature 0.083 0.100 0.300 0.063 0.258
Standard deviation of dry-bulb ) ) ) 0.031 )
temperature
Maximum dew point temperature 0.042 0.050 0.025 - 0.106
Minimum dew point temperature 0.042 0.050 0.025 - 0.008
Mean dew point temperature 0.083 0.100 0.050 - 0.017
Maximum relative humidity - - - 0.031 -
Minimum relative humidity - - - 0.031 -
Mean relative humidity - - - 0.063 -
Stam'ia'rd deviation of relative ) ) ) 0.031 )
humidity
Maximum wind speed 0.083 0.050 0.050 0.031 0.146
Mean wind speed 0.083 0.050 0.050 0.063 0.082
Standard deviation of wind speed - - - 0.031 -
Air pressure - - - - -
Global horizontal solar radiation 0.500 0.250 0.400 0.250 0.319
Direct normal solar radiation - 0.250 - 0.250 -
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As presented in Table 5.1, depending on weather file formats, the weighting factor attributed to

each weather parameter may vary slightly. Global horizontal solar radiation always carries the

most weight regardless of the file formats. Table 5.2 provides list of terms used in this study.

Table 5.2: List of terms used in figures, tables, and texts

Terms Abbreviation Explanation

Maximum dry-bulb temperature max_temp Maximum dry-bulb temperature in a day (°C)
Minimum dry-bulb temperature min_temp Minimum dry-bulb temperature in a day (°C)

Mean dry-bulb temperature temp Mean daily dry-bulb temperature (°C)

Maximum dew point temperature  max_dew Maximum dew point temperature in a day (°C)
Minimum dew point temperature min_dew Minimum dew point temperature in a day (°C)
Mean dew point temperature dew_temp Mean daily dew point temperature (°C)

Maximum wind speed max_wind Maximum wind speed in a day (m/s)

Mean wind speed wind Mean daily wind speed (m/s)

Solar radiation rad Mean daily global horizontal solar irradiance (W/m?2)
Cooling demand cooling Mean daily cooling energy demand (kWh)

Heating demand heating Mean daily heating energy demand (kWh)

Total demand total Total of daily average cooling and heating energy demand (kWh)

An important issue with the current typical meteorological weather file generation methods is the
subjectivity behind attributing weighting factors. This process relies on experts’ judgments in order
to determine the importance of each weather parameter on the performance of the system.
Furthermore, the level of importance attributed to each weather parameter is designated regardless
of the climatic location or the application. Differences in weighting factors not only affect building
energy performance as shown by the previous studies but may also lead to changes in the
composition of typical meteorological weather files. In the study conducted by Georgiou et al. [12]
a change in the weighting factors showed a considerable change in the selected months for the
typical year, which led to a smaller difference between long-term average and actual years. The
study conducted a simulation for cooling and heating energy consumption of a building, as well
as that for the solar collector, and wind turbine. The study used the arbitrary weighting factors and
concluded that weighting factors should be optimized based on intended use of the weather file to

enhance “precision and accuracy” of simulation results.

A few studies applied optimization and sensitivity analysis to find the importance of each weather
parameter with respect to a specific performance. Kalamees et al. [13] conducted a sensitivity

analysis to weigh the weather parameters by changing the monthly average value of the parameters
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for each month and observing the change in monthly cooling and heating demand of a building
through simulations for climate zones 1 to 4. Chan [11] used genetic algorithms to optimize the
weighting factors according to the application. The study focused on four primary applications, an
air-conditioned building and three renewable energy systems, including a building integrated
(attached) photovoltaic (BIPV or BaPV) system, a wind turbine and a concentrated solar power
generation (CSP) system. Their results showed a very good agreement between the long-term
average and the simulation results with the optimal weighted typical meteorological year weather
file. However, the genetic algorithm used in this study requires a coupled optimization algorithm
with building energy simulation (EnergyPlus in this case) for new mutation. In other words, the
procedure would be based on trial and error which requires multiple time generations of new sets
of weighting factors that make a new weather file. This is followed by energy simulation to
minimize the uncertainty between long-term average of the output and the output of the
corresponding weather file in each mutation stage. Therefore, this procedure can be fairly time-
consuming as it requires numerous simulations. With the demonstrated uncertainty associated with
experts’ judgments based weighting factors, it is therefore paramount to develop a systematic and
yet faster approach in properly assigning weighting factors to weather parameters according to
their importance to the performance of specific applications (different sets of weighting factors for

investigations of different types of performance).

In data mining and machine learning, a similar concept is applied to find how useful a variable is
at predicting a target variable (feature importance). The Sandia method is a K-nearest neighbor
machine learning algorithm for classification which is currently using experts’ judgments for
defining weighting factors. Applying another supervised regression machine learning algorithm
can fit the data and extract the features importance, allowing for systematic selection of weighting
factors, which can then be introduced to the FS. Applying the machine learning algorithm requires
the simulation to run only once and won’t require repetition of simulations, which saves

considerable processing time.

Depending on the data and type of problem, various machine learning algorithms can be used to
find the feature importance. In its simplest form in linear models, such as linear regression or
logistic regression, the importance of each variable is simply the weight or coefficient for each

input variable [ 14]. In fact, these are the weights that are used for prediction. Non-linear, individual
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models such as decision tree and its ensemble model, Random Forest, find the importance of
variables based on the variable’s role in reducing the variance in the output [14, 15]. The Random
Forest algorithm is particularly effective in attending to regression models [ 16] since the algorithm
considers a small but random subset of features at each level and avoids the potential bias that

could be introduced if the dataset contains a few predominant features.

The current study introduces a novel method based on machine learning to systematically
determine weighting factors in proportion to feature importance of weather parameters according
to the climate and application in which the typical meteorological year weather file is applied. In
the case of this study, the Canadian Weather year for Energy Calculation (CWEC) typical
meteorological year weather file was selected, with the period ranging between 1960 and 1989.
The CWEC file applies the same set of weighting factors used in the original International Weather
year for Energy Calculation (IWEC) [9]. The proposed novel method was applied to a small
prototypical office building to improve the quality of CWEC and reduce the deviation from the
long-term average. The reduction in deviation is evaluated using the root mean square error
(RMSE). For the purpose of this study, a small office building was chosen due to its higher surface
to volume ratio; that is, it is more sensitive to weather conditions in comparison to a large building.
It must be noted that the methodology can be applied to other types of buildings and applications

as well.

5.2 Methodology

5.2.1 Weighting factors

The purpose of weighting factors in the generation of typical meteorological year weather files as
suggested by Wilcox [8] is to reduce the uncertainty, in this case deviation from the average,
caused by representing multiple years by one singular year. The value attributed to each weighting
factor depends on the importance of the selected weather parameter. The experts’ judgment in
assigning values to weighting factors is to be replaced by machine learning algorithm through a
systematic approach proposed in this study. Weather data are pre-processed to determine the
feature importance. Feature importance in this case is the importance of each weather parameter
on the building energy demand; that is, the amount of energy demand that can be attributed to each
weather parameter. The identification of such importance will help reduce the uncertainty in

building energy performance as it makes the FS procedure (in Sandia method) more adaptive to
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the problem [17] which will become apparent later in the discussion. The building energy demand
is climate and application specific. To demonstrate the applicability of the proposed approach, the
case study building was based upon DOE prototypical small office building [18] with the building
envelope adapted to the specification of the National Building Energy Code of Canada [19] and
was simulated with EnergyPlus (version 8.9) simulation program. The case study building was
studied for two locations— Montreal and Vancouver. Thirty-year actual historical weather data at
the respective airports, ranging from 1960 to 1989, were used. Energy performance was evaluated
in terms of hourly cooling, heating, and total energy demand for the thirty years. The methodology

is explained in the following sections.

The datasets are resampled to daily average data as the FS (equation 1) are calculated over daily-
averaged resolution data. Figures 5.1 and 5.2 present the scatter plot, histogram and the projection
of distribution of the 30-years historical daily-averaged weather parameters and the corresponding
total energy demand for Montreal and Vancouver respectively. The upper diagonal section shows
the scatter pair plot of the variables; the diagonal midsection shows the histogram of data for each
variable together with their corresponding mean, standard deviation, maximum, and the minimum.
Finally, the lower diagonal section shows the projection of distribution of pair data. There are three
groups of correlations that can be observed in Figures 5.1 and 5.2. The first group relates the 9
weather parameters among themselves. For example, from the data of Montreal, it can be observed
that the temperature parameters are highly correlated among themselves, mildly correlated with
radiation, and not quite correlated with wind. The second group relates the 3 energy performance
parameters with the 9 weather parameters. There exists a high linear correlation between total
energy demand and temperature, in contrast to wind speed, which exhibits a non-linear relationship
with the total energy demand. The third group relates the energy performance parameters between
themselves. In this case, a higher correlation is noted between total energy and heating energy for

Montreal, which is explained by the cold climate.

From Figure 5.1, it can be observed that dry-bulb temperatures (max, mean, min) and the dew
point temperature are linearly correlated in Montreal, whereas from Figure 5.2, the correlation is
not clear in Vancouver. The more frequent humid weather in Vancouver helps explain the
situation. Only heating energy demand is more or less linearly correlated to temperatures. All other

forms of energy demand and weather parameters are non-linearly correlated. Although both
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locations are considered cold climates, there are different correlations and relative importance

among the weather parameters and between weather parameters and the energy demands.

The bottom of Figure 5.1 displays two samples of the figures in a larger size for better resolution.
The two high resolution kernel density estimate (KDE) diagrams present the probability density
function of a continuous variable, in this case solar radiation and temperature respectively, in
relation to total energy demand. The warmer colors indicate a higher density function. From the
figure, in Montreal, dry-bulb temperatures within the range of 10 to 15 °C leads to minimum total
energy demand whereas the values larger or smaller than this range increases the total energy
demand as cooling and heating energy demand increases, respectively. The figure shows that the
data is denser (more frequent) within the range of about 7 to 20 °C and 5 to 10 kWh (red region).
During the heating season, a total energy demand of up to 30 kWh/m? is noted in instances where
the solar irradiance is less than about 130 W/m?. A solar irradiance higher than 200 W/m? leads to
a total energy demand of less than 15 kWh/m? which occurs mostly during the cooling season. The
red region in the density plot suggests that the most frequent solar irradiance is within the range of

around 50 to 200 W/m? which is associated with a total energy demand of about 5 kWh/m?.
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Figure 5.1: The distributions of 30 years historical weather data together with corresponding energy demands of the
small office building in Montreal; the bottom figures are two samples of the above figures for better resolution.
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Figure 5.2: The distributions of 30 years historical weather data together with corresponding energy demands of the
small office building in Vancouver.

The correlation between the dry-bulb and dew point temperatures are stronger in Montreal than in
Vancouver which is explained by the difference in relative humidity levels in the two cities, as
mentioned above. Some variables exhibit almost linear relationships, such is the case for
temperature, min/max daily temperature and the total energy demand, as well as wind speed and

maximum wind speed in a day, while others have non-linear relationships. The relationship
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between variables is important to consider in the process of selecting an appropriate model to

capture non-linearity of the relationship among the independent and dependent variables.

5.2.1.1 Random Forest algorithm and corresponding feature importance
Due to its simplicity and lower hyperparameters (parameters in machine learning algorithms for

more accurate and robust results; for example number of trees in the forest) involved in the model,
the Random Forest regression algorithm is used to statistically find relationships between the
attributes and the dependent variables, as it can capture the non-linear relationship among the
variables. The energy demands are the dependent variables, while the nine weather parameters are
considered as continuous independent variables. A Random Forest model includes many
regression trees splitting a dataset into smaller and smaller datasets on decision nodes while the
tree develops. The classification and regression tree (CART) model [20] used in this study is a
binary tree, meaning that each decision node representing an input variable splits into two branches
and the splitting continues until it reaches the leaf nodes, where the cost function reaches the
minimum error between the prediction and the actual result. The leaf nodes have output values
(this can be cooling, heating, or total energy demands) that can be used for prediction. In a simple
explanation, the whole algorithm recursively finds the variable and the corresponding value which
has the greatest potential to reduce the variance of the dataset and splits it at that value [20]. This

way the searching will have the lowest cost.

In the case study, there are nine weather parameters which are considered as variables. The
algorithm evaluated all the variables iteratively. The algorithm offered by Breiman [14] is used in
this study. Figure 5.3 shows how a regression tree of the Random Forest model works for the
multivariate problem. At every node, all the weather parameters are evaluated with their values to
find the best split point where the corresponding prediction shows minimum error. The mean

square error is defined as equation 3:
n oy —%)2
MSE = Zl=1(+x) 3)

Where: y; is the corresponding total energy demand, cooling or heating of each level of a weather
parameter in the sample; x is the mean of all the corresponding total energy demands in the sample

(predicted energy demand of the sample), and n is the number of samples.
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Figure 5.3: A tree of Random Forest; the blue scatters show the data; the vertical dash are the split points of the
variables, and the horizontal dash lines show the prediction of total energy demand after splitting. The number of
depths are reduced to 3 for better presentation.

Since each node must be divided into two other nodes, MSEs must be weighted according to the

number of samples. Therefore equation 4 is used to weight the MSE of feature levels as follow:

__ Ny*MSE] + nyx MSE,

MSE,,=

(4)

In each node, MSE,, is calculated for all the values of each weather parameter (features) and the
minimum value is selected as the split point of the node; the split point divides the parent node
into two child nodes on the left and the right. n; and n,. of equation 4 are the numbers of left and
right samples (child nodes), MSE; and MSE, are the MSE of left and right samples (child nodes),

and n is the number of parent node samples. This process persists until the variance is reduced to

approximately zero.
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Figure 5.3 shows a single tree of the Random Forest displaying only three levels of depth for better
illustration; for the first node of the original dataset, average temperature is the best feature to split,
at -3.5 °C. If the temperature is below -3.5 °C, the predicted total energy demand was about 16
kWh, as defined by the dashed horizontal line from Figure 5.3 (Node 0). If the temperature is
above -3.5 °C, the predicted total energy demand was about 8 kWh. For each split, two branches
are created with opposing ranges, where the units are defined by the defined parameter. The range
is defined by the split point, and each branch has an associated predicted energy demand. This
procedure continues till the terminal node (leaves) are reached, where the MSE will be almost
zero. When the tree is constructed, an unseen data traverses the entire tree till it reaches the leaves
where it can find the predicted value. The details are further explained below and with equations

5-8.

An interesting feature of the tree is the calculation of the importance of each of the weather
parameters in predicting the total energy demand. At every node j of a decision tree, the importance

of the node, denoted by ni;, is evaluated to split the dataset into two child nodes:

where MSE; = MSE at node j, MSE,,;; = MSE,, of child node from left split on node j, MSE,,,; =

MSE,, of child node from right split on node j.

Then the importance for each feature is calculated as:

P Zj: node j splits on feature inij 6
fi, = - (6)
2k € all nodes ik

Where: fi; is the importance of feature i, and ni; is the importance of node j for a single tree.
The feature importance can be divided by the sum of all feature importance values in order to
normalize to a value between 0 and 1.

fii
Zj € all features fij

normfi; =

(7

Finally, the average feature importance of each feature is calculated based on the number of trees

in the forest.

RFfi; = Yje all trees NOTMSfij; (8)

T
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Where: RFf1; is the average feature importance i from all the trees of Random Forest, normfi;;

is the normalized feature importance of feature 1 in tree j, and T is the number of trees in the

Random Forest model.

As mentioned above, Random Forest is an ensemble model which contains multiple decision tree
models. As a data-driven model, trees have randomness nature and are trained on random subsets
of the dataset. Therefore, the output of the model and the feature importance can slightly change
when new models are trained. As the number of the trees in the Random Forest model increases
to a high number, the feature importance converges to a constant value as they are averaged from
multiple trees feature importance. Therefore, a larger number of trees, in this case 1000, is

considered in this study in order to have a stabilized result.

5.2.2 Application of Random Forest: feature importance extraction
The algorithm of Random Forest and the method of feature importance calculations are described
in the previous section. As a summary of the methodology, Figure 5.4 shows the flowchart of the

proposed method in comparison to the current Sandia method.

Historical weather ~ Historical weather 1y Building energy
[ ] data (hourly) data (hourly) simulation
v v v
Historical weather Historical weather ™ Trainlﬁng R:ndc_)m Forest
data (daily) data (daily) App '““"gpp;;;g”““"’“‘
Expert’s judgment Syste.ma'fic approach Feature imp.orta nce
weighting factors weighting factors extraction
v v
FS-WS FS-WS
Recognize Recognize
representative month representative month
Corresponding hourly |, Corresponding hourly
data data
v v
Typical Typical
meteorological meteorological
weather year weather year

Figure 5.4: Contrasting the steps taken under the current Sandia method with those of the proposed method and
indicating where the additional steps of random forest modeling takes place and supports the systematic weighting
factors assignment.

70



The left side of the flowchart shown in blue is the current Sandia method which is explained in the
introduction. The right side shown in orange shows the process in identifying the feature
importance of the weather parameters. The section in green presents how the process is
incorporated into the Sandia method. Thirty years of hourly weather data (from 1960 to1989) are
fed into the building energy simulation program (EnergyPlus, in this study, as described under
section 5.2.1) to generate the hourly cooling and heating energy demands. The hourly outputs are
converted to daily average values. The daily data, together with the daily-average weather data
(from daily averaged dataset), maximum and minimum temperature in a day (from hourly dataset),
maximum and minimum dew point in a day (from hourly dataset), and maximum wind speed in a
day (from hourly dataset) and hourly solar irradiance are then used to train the Random Forest
model. The trained data is taken from both the hourly dataset and the daily-averaged dataset; some
parameters such as average temperature is selected from the daily averaged dataset whereas, other
parameters such as maximum temperature (max temperature in a day at an hour) is taken from
hourly dataset. Since here, the goal of using Random Forest is to extract the features (feature
importance) from the dataset and not for prediction, 100% of the dataset is considered as training
data. The model can be trained with different approaches which is explained in section 5.2.2.1.
Once the model is trained, the importance of each weather parameter is extracted from the trained
model using equations 5 to 8 in section 5.2.1. The extracted importance from the feature
importance process are used as systematic weighting factors instead of the current Sandia
weighting factors, which rely on experts’ judgments. The new systematically assigned weighting
factors, together with the daily-averaged data from the original Sandia method, is introduced to
the FS-WS (equations 1 and 2) in order to find the representative months. The 12 representative
months of different years are identified and the corresponding hourly weather data are extracted

from the original dataset and joined to form a typical meteorological year.

Random Forest is used in this case solely to extract the feature importance, and therefore, the
entirety of the dataset is used to train the model. The testing phase is not necessary in this
application since Random Forest is not used for prediction, which is also applicable for cases where
the goal is to evaluate the fit of the data. Once the feature importance is extracted, the weights are
applied to the FS-WS equations, which are a form of the k-nearest neighbor algorithm. The k-
nearest algorithm has no explicit training phase, incorporates the whole dataset, and simply

generates values from the dataset. Once these values are generated, the CDF is taken and compared
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to find the most similar candidate month. The similarity is cross-validated by minimizing the error

by adopting different training approaches to be explained in the next section.

-Training approaches

Thirty years of historical weather data of the nine weather parameters is used as training input,
while the corresponding energy simulation results are used as training output. As mentioned in the
previous section, the corresponding cooling, heating, and total energy demands of the buildings,
which are converted to daily averaged data in order to apply the FS-WS procedure. Different
approaches can be used to train the Random Forest model and extract the respective features
importance. The proposed systematic approach in assigning weighting factors attends to the
problem that, under certain applications and for certain climatic conditions, a universal set of
weighting factors might cause discrepancy in long-term energy prediction. In most building
projects, total energy demand is the main concern. There are also cases that cooling and heating
energy demands would prefer to be identified separately, as cooling and heating might be provided
by different energy sources (and thus at different prices). There are also cases that, for some
climatic locations, a single set of weighting factors might not fully reflect the variations in
influence of each weather parameters throughout the year. To properly train the random forest
model, five different training approaches, investigating potentially different applications and

climatic characteristics, are suggested. Details of each of these approaches are presented as follow:

1) Cooling Energy Based: the original dataset of 30 years energy demand is reduced to a
subset of daily cooling having values larger than zero; the cooling energy demand serves

as the output for training.

2) Heating Energy Based: the same approach as above where heating energy demand serves

as the output for training.

3) Total Energy Based: the same approach as above where the total energy (summation of

cooling and heating) is used as the output for training.

4) Month-by-Month (MBM) Cooling or Heating Energy Based: the original dataset are
rearranged based on the months, which means 12 subsets of the original dataset are
generated such that each subset represents a particular month of all 30 years of data.

Afterwards, two subsets are generated, one with cooling energy demand greater than zero
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and another with heating energy demand greater than zero in order to train the random
forest model for cooling and heating respectively. The feature importance is then extracted
from either the cooling or heating model with larger R? value. Consequently, 12 monthly

feature importance are extracted for each weather parameter.

5) Month-by-Month (MBM) Total Energy Based: the original dataset is rearranged based
on the months (overall 12 subsets) and each subset is reduced to the sets having a total
energy demand larger than zero; for each subset a model is trained with the target of total
energy demand which leads to 12 monthly feature importance for each weather parameter.
This approach is considered as a strategy to use the model that is trained with greater

numbers of data.

The accuracy of the models in different approaches are shown in section 5.3.1. Once the models
are accurately fit to the output, the features importance are extracted. Once each model is trained,
the feature importance is extracted from the model following the five approaches. For each
approach with new feature importance, a typical meteorological file is created. The output of the
building energy simulation for each of the five approaches are then compared to the results from
actual years. The root mean square error (RMSE) between the simulations from actual years and

the new weather years is calculated; this is shown in section 5.3.2.

5.3 Results and Discussion

5.3.1 Models performance

The comparison of the simulation results and the trained model results for the first three approaches
for Montreal are presented in Figures 5.5 to 5.7. The accuracy of the models is confirmed by a
very high R? value. The bottom of the figures zoom into the first year (1960) and shows that there
is a good agreement between the simulation results and the model results. Vancouver data display

similar R? value and are therefore omitted from presenting.
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Figure 5.5: Results of trained models in comparison to the simulation results for cooling-based approach for
Montreal; the bottom zooms into the first year (1960) of the top (approach 1).
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Figure 5.6: Results of trained models in comparison to the simulation results for heating-based approaches for
Montreal; the bottom zooms into the first year (1960) of the top (approach 2).
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Figure 5.7: Results of trained models in comparison to the simulation results for total-based approaches for
Montreal; the bottom zooms into the first year (1960) of the top (approach 3).

Table 5.3 shows the performance of the trained models based on the month-by-month (MBM)
cooling or heating energy based approach (approach 4) and month-by-month total energy based in
Montreal and Vancouver. For MBM cooling or heating, the dataset is rearranged to the 12 separate
months and for each month a cooling (with cooling data) and a heating model (with heating data)
are trained, then the model with a larger R? value is selected for further analysis. Due to the fact
that during the cooling seasons, the number of data having positive cooling demand is larger than
for the heating demand in the datasets, the models with cooling energy demand show larger R?
values and are therefore selected for the those particular months (May to August for Montreal and
May to September for Vancouver); for the same reason, heating energy models are used for those
heating predominant months (January to April and September to December for Montreal). Aside

from the number of data, the variability (larger variance) can be a reason for the lower R? value
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for some months. For example, the January model in both approach 4 and 5 has lower R? in

comparison to other months for Montreal.

Table 5.3: Performance of the trained models for month-by-month cooling or heating energy based and month-by-
month total energy based in Montreal and Vancouver (approaches 4 and 5)

Montreal Vancouver
MBM Cooling or Heating Based

Cooling Based Heating Based R2 Cooling Based Heating Based R2
Jan 4 0.95 N4 0.96
Feb 4 0.98 4 0.97
Mar % 0.98 N4 0.95
Apr 4 0.98 7 0.94
May 7 0.98 % 0.96
Jun Y% 0.98 4 0.96
Jul 7 0.97 % 0.95
Aug 4 0.98 4 0.97
Sep Y% 0.98 % 0.95
Oct 4 0.99 4 0.97
Nov % 0.98 N4 0.97
Dec % 0.98 4 0.98

MBM Total Based

Jan 0.95 0.97
Feb 0.98 0.97
Mar 0.98 0.95
Apr 0.97 0.92
May 0.98 0.94
Jun 0.98 0.96
Jul 0.97 0.95
Aug 0.98 0.97
Sep 0.97 0.95
Oct 0.96 0.96
Nov 0.98 0.97
Dec 0.98 0.98
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5.3.2 Features importance: systematic approach to defining weighting factors

As defined in the methodology section, the feature importance for each parameter was generated
using Random Forest for all five approaches. Once the models from different approaches are
trained, the feature importance of each model is extracted before they are used in FS statistic.
Figure 5.8 shows the feature importance calculated for the weather parameters using cooling,
heating, and total energy (approaches 1 to 3). The bars show the importance of each weather
parameter on cooling, heating, and total energy demand for the two locations. In each of the
diagrams, the green line represents the cumulative importance while the grey line shows the 95%
threshold. The cumulative threshold can be inferred as the level where 95% of the information can
be achieved. For example, for the cooling energy based approach, temperature, solar irradiance ,
and wind speed contribute 95% of the energy demand uncertainty in Montreal whereas, in
Vancouver, temperature, solar radiation, maximum temperature, and wind speed contribute 95%
of the total uncertainty. For the heating energy based approach in Montreal, temperature alone can
almost account for 95% of total uncertainty. In the case of the total energy based in Vancouver,
the five weather parameters of average temperature, maximum temperature, solar radiation, wind,

and dew temperature lead to the threshold.
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total energy based model for Montreal and Vancouver (approach 4 and 5). In both cases, the
weather parameters have various values in different months. Depending on the climate, month-by-
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Figure 5.8: Feature importance extraction from Random Forest Regression (approaches 1 to 3)
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temperature and the maximum temperature show an importance of 0.544 and 0.307 respectively,
whereas these values for the month of February are about 0.875 and 0.027. The summer season in
Montreal has warm days and cool nights which can lead to a more stable average temperature,
while the maximum temperature experiences more variation which is most likely the reason for
the higher maximum temperature importance in July. Solar irradiance shows rather similar
importance in July which can be explained by the fact that the case study building has a sloped
roof that makes the building absorb less solar radiation compared to a flat roof. For the same
reason, compared to a flat roof, the sloped roof can absorb higher solar radiation when the sun
angle is lower in winter. Moreover, it should be noted that the overall lower weighting factor
applied to solar irradiance does not necessarily indicate that the parameter has minimal effect on
total energy demand, but rather that regardless of the variation in solar radiation, the imposed

changes on total energy demand are small.

Table 5.4: Weighting factors used resulted from MBM cooling or heating energy based, and MBM total energy
based model for Montreal and Vancouver.

Montreal Vancouver
MBM Cooling or Heating Based

rad temp max min dew max min wind m-ax rad temp max min dew max min wind m.ax

temp temp temp dew  dew wind temp temp temp dew dew wind

Jan 0.046 0.628 0.070 0.042 0.090 0026 0.050 0.032 0.018 | 0.046 0.784 0.038 0.024 0.020 0.021 0017 0.029 0.019
Feb 0.024 0.875 0.027 0.015 0.014 0009 0.013 0.013 0.009 | 0.029 0.819 0.028 0.022 0.023 0.017 0012 0.032 0.017
Mar 0021 0864 0016 0020 0.022 0012 0016 0.020 0008 | 0072 0.630 0087 0.031 0.043 0031 0028 0050 0.028
Apr 0.016 0.849 0.046 0.013 0.018 0015 0.016 0.017 0.011 | 0056 0.676 0.042 0.030 0042 0.028 0.039 0.055 0.032
May 0016 088 0030 0012 0010 0011 0009 0018 0012 | 0039 0768 0035 0027 0034 0020 0017 003 0023
Jun 0.016 0.801 0.104 0.011 0.010 0015 0.013 0.020 0.009 | 0.037 059 0221 0026 0031 0.019 0015 0.035 0.020
Jul 0.026 0.544 0307 0.019 0.022 0017 0019 0.029 0.018 | 0037 0.524 0269 0027 0033 0.023 0021 0.041 0.026
Aug 0.027 0.805 0.083 0.012 0.010 0013 0011 0.026 0.013 | 0037 0.668 0.183 0.020 0.020 0.017 0013 0.023 0.018
Sep 0.018 0871 0019 0.023 0.016 0014 0014 0.016 0.009 | 0.064 0.638 0109 0034 0042 0.019 0022 0.047 0.025
Oct 0.011 0920 0013 0.013 0.012 0008 0.008 0.008 0.007 | 0039 0.781 0.074 0.024 0017 0.019 0010 0.022 0.013
Nov 0022 0834 0057 0022 0017 0011 0.015 0012 0.009 | 0050 0.804 0.043 0029 0.019 0013 0.012 0020 0.010
Dec 0.016 0.867 0016 0.019 0.027 0011 0.021 0.014 0.009 | 0.022 0.862 0.033 0015 0018 0.011 0011 0.018 0.011

MBM Total Based

Jan 0.046 0.632 0.069 0.042 0.087 0026 0050 0.031 0.018 | 0.046 0.786 0.036 0.026 0.020 0.021 0017 0.030 0.019
Feb 0.025 0877 0.026 0.015 0.014 0009 0.013 0.014 0.009 | 0.028 0.825 0.026 0023 0.023 0.017 0012 0.030 0.016
Mar 0021 0862 0016 0021 0.022 0012 0.017 0020 0.008 | 0.069 0.641 0.088 0.029 0.042 0.030 0.025 0.047 0.027
Apr 0.018 0.822 0052 0.017 0.020 0019 0018 0.020 0.012 | 0073 0.595 0.047 0043 0052 0.037 0040 0.078 0.036
May 0026 0793 0075 0017 0.015 0.016 0.013 0.029 0.018 | 0.056 0.694 0.050 0.033 0.050 0.024 0.020  0.044  0.029
Jun 0.019 0501 0395 0.012 0.012 0012 0.015 0.024 0.010 | 0.035 0.535 0288 0.025 0.029 0.019 0014 0.036 0.020
Jul 0.028 0400 0442 0.019 0.023 0017 0.021 0.029 0.019 | 0039 0429 0357 0027 0034 0.023 0022 0042 0.027
Aug 0.031 0710 0170 0.013 0.012 0013 0.011 0.027 0.013 | 0.040 0.530 0312 0.021 0.021 0.017 0.014 0.025 0.019
Sep 0.039 0570 0269 0.020 0.020 0021 0.018 0.028 0.015 | 0073 0443 0277 0.038 0045 0.020 0.025 0.050 0.029
Oct 0.024 0777 0.036 0.038 0.035 0022 0022 0.032 0015 | 0058 0.718 0.072 0036 0.025 0.031 0013 0.030 0.018
Nov 0022 0829 0060 0022 0018 0011 0.016 0013 0.009 | 0047 0.806 0041 0.032 0.019 0014 0012 0019 0.010
Dec 0.016 0.865 0.016 0.020 0.027 0011 0.021 0.014 0.009 | 0.022 0.862 0.033 0015 0.017 0.011 0011 0.018 0.011
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5.3.3 Approaches performance

The feature importance resulting from approaches 1 to 5 were introduced to FS procedure (wi in
Equation 2). For each approach, a new typical meteorological year weather file was generated with
the new weighting factors for weather parameters. Energy simulations are conducted using new
weather files to evaluate cooling and heating energy demand of the buildings. Figure 5.9 shows
the simulation results with actual meteorological year weather files (fluctuating plot), the original
CWEC file and the newly generated typical meteorological year weather files (horizontal lines)

for Montreal and Vancouver.

Montreal Vancouver

=8~ Actual

== CWEC

=#= Cooling Based

== Heating Based

=#= Total Based

~#~ MBM Cooling-Heating Based
MBM Total Based

et

1962 1966 1970 1974 1978 1982 1986 1990
Time

32 =8 Actual
- CWEC
=8~ Cooling Based
31 == Heating Based
== Total Based
~#— MBM Cooling-Heating Based

N
w

N
N

N
[

N
o

=
©

=
©

=
N

1962 1966 1970 1974 1978 1982 1986 1990
Time

Montreal Vancouver

~
a

== Actual
-~ CWEC
Cooling Based
== Heating Based
Total Based
=#= MBM Cooling-Heating Based
MBM Total Based

~
£

~
N

B
(=]

(-} ~
-] o
5
b-
L
L
-.b
1

o
@
-
w
0

\/\..J -V

- CWEC

-]

B
w
o

Cooling Based
—+— Heating Based
34 Total Based
~#~ MBM Cooling-Heating Based
MBM Total Based

1962 1966 1970 1974 1978 1982 1986 1990
Time

(]
N

1962 1966 1970 1974 1978 1982 1986 1990
Time

Annual Heatimg Energy Demand (kWh/m2) Annual Cooling Energy Demand (kWh/m2)
Annual Heatimg Energy Demand (kWh/m2) Annual Cooling Energy Demand (kWh/m?2)

Figure 5.9: Simulation results based on actual meteorological years and the typical meteorological year weather files
made up with weighting factors based on different approaches for Montreal and Vancouver.

As observed, different approaches lead to different simulation results although the deviation is
minor in most of the cases. However, in the case for Montreal heating energy demand, the new
approaches showed quite a significant difference. The heating energy demand resulted from
CWEC showed about 64 kWh/m?, whereas the new approaches showed a demand in the range of

67 to 68 kWh/m?. The considerable reduction in deviation noted for Montreal can be explained by
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the fact that, in this case, the dew point is highly correlated with dry-bulb temperature, as seen in
Figure 5.1. Therefore, in order to reduce the variance of the model, the dew point parameter may
be ignored or assigned a minor weighting factor. The latter is done by applying the new weighting
factors generated from the Random Forest feature importance algorithm. However, in Vancouver,
the dew point does not exhibit as high of a correlation with the dry-bulb temperature as Montreal.
Therefore, removing the parameter or allocating a minor weighting factor to the parameter may

not reduce the uncertainty of the model significantly.

When the year-to-year fluctuations in energy demand based on actual meteorological year weather
are considered, the new approaches show more promising results. In order to estimate the deviation
of each method from the simulation with actual years, the root mean square error for each approach
is calculated using the difference between the actual years’ results and the new approaches results.
Table 5.5 shows the root mean square error calculated for the original CWEC file and the new
approaches, where the root mean square error reduction of new approaches are calculated in

comparison to the CWEC RMSE to show the improvement by each new approach.

Table 5.5: Root mean square error calculated for CWEC and the suggested approaches. RMSE reduction shows the
reduction of root mean square error in comparison to CWEC method. Minus values show penalty; the numbers of
percentages are rounded to zero digit. Blue and pink sections represent RMSE for cooling and heating respectively.

CWEC Annual-Cooling  Annual-Heating  Annual-Total M!BM-CooIing or MBM-Total
Based Based Based Heating Energy Based Energy Based

RMSE 2.54 2.47 2.47 2.47 2.47 2.47

= RMSE reduction (%) 3 3 3 3 3

g RMSE 6.00 5.50 5.50 5.50 5.50 5.40

S RMSE reduction (%) 8 8 8 8 10

= RMSE 4.52 3.76 3.76 3.76 3.89 3.70
RMSE reduction (%) 16 16 16 14 18
RMSE 2.05 2.06 2.06 2.06 2.05 2.07

GLJ RMSE reduction (%) 0 0 0 0 -1

g RMSE 3.63 3.60 3.60 3.60 3.61 3.61

§ RMSE reduction (%) 1.00 1.00 1.00 1.00 1.00

g RMSE 2.64 2.63 2.63 2.63 2.65 2.63
RMSE reduction (%) 0 0 0 0 0

As presented in Table 5.5, the new approaches of generating typical meteorological year weather
file reduced the root mean square error as compared to conventional means such as that of CWEC.

The RMSE of CWEC for cooling energy demand in Montreal is reduced from 2.54 to 2.47 showing
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a 3% reduction with the new approaches. For the heating energy demand, CWEC RMSE of 6 is
reduced to 5.5 for new approaches, a reduction of more than 8%. The largest reduction in RMSE
for Montreal was noted for the total energy demand. The RMSE of CWEC for the total energy
demand was 4.52, which was reduced to 3.70 using the MBM total energy based approach

(approach 5), which represents an overall reduction of 18%.

For Vancouver, the new approach could achieve only a minor improvement of about 1% in heating

and a negligible penalty of less than 1% for cooling.

The implication of applying the new approaches in generating typical meteorological year weather

files can be summarized below:

e The proposed method has reduced the uncertainty associated with typical meteorological
year and has improved the representativeness of the weather year generated from the
Sandia method based on experts’ judgments.

e The method showed better improvement when applied to the colder climate of Montreal as
the RMSE observed both in cooling and heating were reduced considerably. This is
partially due to the high correlation between the dew point and dry-bulb temperature, which
implies one of the parameters can be removed or allocated with a minor weighting factor
to reduce the uncertainty of the model. For the milder cold climate of Vancouver, the effect
of applying the proposed method is negligible.

e All five approaches yielded similar results, in which the MBM total energy-based model
for Montreal offered slightly better result. Approach 5 (MBM total energy based) centers
on increased information being relayed from the dataset where more data having positive
output as a result of summing up cooling and heating energy demands. The increase in

information helps to improve the Random Forest model during the training.

5.4 Conclusion

This study introduced a novel method to systematically weigh the weather parameters for
generating typical meteorological year. The “feature extraction” or “feature importance” method

used in machine learning algorithms to reduce the uncertainty of modeling is applied in this study.
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For the case of cooling and heating energy demand of a small office building, the weighting factors
resulted from the novel method were different from those originally used in CWEC. For example,
the weighting factor for solar radiation was overestimated whereas the average temperature was
underestimated in CWEC. The new weighting factors resulting from the different approaches
reduced the uncertainty and increased the typicality of the weather year which was reflected by
RMSE reduction of almost 10% in one case. It is noted that a dynamic monthly set of weighting
factors (12 sets or approaches 4 and 5) instead of a single annual set of weighting factors will most
likely show a better result. This is due to the fact that multiple sets of weighting factors can make
the Sandia method (which can be considered as a K nearest neighbor algorithm) more adaptive to

the problem.

The proposed method is applicable to different climates and potentially offers better energy
performance prediction and introduces significant energy saving for climatic locations with a
dynamic temperature range. However, more studies are required to explore the effect of the

proposed method for warm climates as well as for different building types and sizes.
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Chapter 6. A PRILIMINARY STUDY OF CLIMATE CHANGE EFFECT ON BUILDING
ENERGY PERFORMANCE

The nature of TMY in excluding weather extremes makes them less suitable to investigate the effect
of potential climate change on building design as climate change likely increases the frequency
and magnitude of those extreme conditions. The current practice of designing buildings has lacked
a clear method to incorporate future climate change trends. An approach is used to compare
present weather simulation results of a commercial building with varying roof reflectance and
insulation thermal resistance parameters with future year-by-year results which are affected by
potential climate change. Future weather data for year-by-year simulations is obtained by
“morphing” historical weather data with a General Circulation Model (HadCM3). Mean energy
consumption and optimal roof configurations are discussed with regards to climate change over

the study period, and are compared to results obtained with TMY data.

This chapter was published in the journal of Building Engineering, Volume 17, Pages 107-114, M.
Hosseini, F. Tardy, B. Lee, “Cooling and heating energy performance of a building with a variety

of roof designs; the effects of future weather data in a cold climate®, © Elsevier Ltd. 2018

6.1 Introduction

Over the past decades, literature has indicated that a warming global climate is affecting various
human activities ranging from crop production [1] to power plant output [2]. The practice of
designing buildings to cope with potential climate change has lacked a clear method to incorporate
this trend. Today’s buildings are designed to last several decades, and as weather patterns change
over time, buildings designed for today’s climate may not withstand the potential changes during

their useful lives.

Building designers should therefore take future climate predictions into account when assessing
building energy performance in the subsequent building design process. Most building energy

simulation programs use weather data which represents a single, typical meteorological year
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(TMY). The implications of this practice are twofold. a) extreme weather conditions are excluded
from the TMY weather data, and the use of TMY data might not be able to reflect future realities
since the weather tends to become more extreme under the premise of climate change [3] and b)
regardless of the different climate change scenarios, changes in the weather might not be

adequately captured by a single TMY.

Therefore, even if building engineers today commonly use TMY weather data for design and
analysis purposes, such data can not only lead to an under or overestimation of energy savings, but

also does not support future weather modeling.
In this optic, the objective of this research is to:

1. Quantify and systematically demonstrate the effects of future climate changes on energy

consumption.
2. Offer a path to building design which considers the effects of climate change.

This research described in this paper seeks to accomplish this objective by improving the thermal
design of roofs in cold climates to reduce overall yearly energy consumption by anticipating the
predicted effects of future climate change. Two factors inflecting roof design are studied: thermal
insulation and solar reflectance. Simulations are conducted for several combinations of the two

factors in order to comprehend underlying synergies and trends.

6.1.1 Climate change and its impact on building energy performance

Jentsch et al. [4] discussed the fact that many currently used TMY weather files for building energy
performance are typically derived from historical weather data from the latter 20" century, and
research by [5,6] has demonstrated that there exists discrepancies between this data and current
weather trends. In Canada, the same issues arise from the use of Canadian Weather Year for Energy
Calculation (CWEC) data [7], which is derived from historical weather data from 1961-1990. With
the now widely accepted effects of climate change, the amount of energy used for building cooling
should increase in the future. This is supported by the U.S. Global Change Research Program,
which states that “warming will be accompanied by decreases in demand for heating energy and
increases in demand for cooling energy. The latter will result in significant increases in electricity

use and peak demand in most regions” [8].
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While heating buildings can be achieved by using various energy sources at high efficiency, most
commercial cooling devices operate solely on mechanical power, but several advances in passive
cooling may be used to shift the cooling load to other measures [9] and the combination of various

materials and colors and structure weights on roofs [10].

6.1.2 Climate change prediction models and their implication on building energy
simulation

Building energy simulations involve hourly step calculations which reflect the complex
interactions between HVAC systems, control systems, internal loads and external factors.
Building energy simulation programs are commonly used to quantify the savings and/or penalties
for a variety of techniques used to improve energy efficiency and to estimate the monthly and
annual energy consumption of buildings. However, this quantification, might not be reliable due
to a deterministic approach in simulation. Estimated energy performance based on typical
meteorological years (such as TMY) and Canadian weather years for energy calculation (CWEC)
may not reflect actual energy performance and their variations. In addition, TMY does not capture
extreme weather conditions. Given the stochastic nature of building operation and weather
patterns, exact predictions are difficult, if not impossible, to obtain. Furthermore, research by [11]
documented that the city built environment and heat islands pose effects on the temperature and
humidity of the surrounding environment, and suggests that these factors must be included in

weather data for building simulations by using an urban downscaling methodology.

Researchers have increasingly been using General Circulation Models (GCMs) to predict future
weather patterns affected by climate change. So far, several methodologies have been developed
to integrate these predictions into weather files which is used to reliably prepare for the eventuality
of climate change [12-14]. Jentsch et al. [15] discussed the importance of climate change
adaptability in planning for future climate scenarios into the widely used TMY2 weather file
formats. They chose to use the Hadley Center Coupled Model, version 3 (HadCM3) to predict
future weather conditions, accounting for the effects of climate change. Instead of representing
data predictions for a single weather station at a specific geographical location, the HadCM3 model
covers a finite grid point model covering an area of 2.5° latitude by 3.75° longitude, with a
resolution nearing 300 x 300 km? worldwide. However, general circulation models such as

HadCM3 provide monthly data whereas hourly data is required in building energy simulations. A
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downscaling method should be applied to fine-tune to the required resolution. Jentsch et al. [15]
[9] proposed using ‘morphing’ techniques to generate new TMY2 files from current Test

Reference Years (TRY) and Summer Design Years (DSY).

With morphing methodology, originally developed by Belcher et al. [16], corrections for future
hourly temperature, humidity and solar radiation GCM data are simply superimposed on existing
EPW (EnergyPlus Weather) data. A modified weather file is generated which can be used by

building designers with tools that are available in the public domain.

Zhu, et al. [17] applied the TMY morphing method to three cities in China over five future periods
ending in 2089, and showed that average increases in temperature ranged from 3.0°C to 5.4°C in
all three cities. In their analysis of a “Passivhaus”, or low energy design, McLeod et al. [18],
determined peak load data from the worse of two distinct winter weather situations from a
“morphing” method used with the Hadley Centre Regional Model 3 (HadRM3), which they have

encapsulated in a software conveniently named the Passivhaus Planning Package (PHPP12).

Kikumoto et al. [14] proposed an improved method for obtaining future weather data by using a
method referred to as “dynamical downscaling”. The often used “morphing” method, the authors
argued, causes much data to be lost due to the GCM’s coarse resolution. It was also stressed that
statistical manipulations led to the loss of information concerning interactions between various
weather components, which is particularly important in determining extreme weather conditions.
Boundary conditions originating from GCM data for prediction year climates are used to define a
Regional Climate Model and the data is dynamically downscaled to produce weather predictions
and standard data which can be used to simulate a building in the predicted climate for the year in
question. The authors created a Weather Research and Forecasting (WRF) model for the 2030’s,
which they used to conduct accurate predicted future building energy calculations in a simulated

detached house, with room for improvements in accuracy and bias mitigation.

6.1.3 Adapting building design processes to adapt to climate change

With regards to the environmental or economic strategies surrounding the design and usage of
buildings over their useful lives, climate change presents building designers with added
constraints. Designers who do not take future conditions into account risk presenting future owners

or occupants with buildings which might not effectively respond to local environmental conditions

89



at some point in time. Therefore, the focus of any climate adaptive design will be to analyze the
energy patterns of a building with different simulations using weather predictions which span over

this period [19].

The simplest energetic strategy to implement could be the one which produces the least deviations
from normal conditions, but economic factors or business cases could make other strategies, such
as retrofitting, more appealing. Loonen et al. [20] discussed the idea of a Climate Adaptive
Building Shell (CABS), which was defined as a building which could “repeatedly and reversibly
change some of its functions, features or behaviour over time in response to changing performance
requirements and variable boundary conditions with the aim of improving overall building
performance”. Robustness, adaptability, and multi-ability were defined and placed into context for
energy efficiency. While their definition is not specifically geared towards global climate change,
it does provide a blueprint towards defining building adaptability to varying indoor and outdoor

conditions.

Robert and Kummert [21] generated future weather files to investigate if they affected the energy
performance of an existing Net Zero Energy Building (NZEB) home in the northern climates of
Montréal, QC and Massena, NY, and they found that the building does not attain net-zero energy
status in future years. This has led to the argument that NZEB buildings should always be designed
with weather data spanning over their entire useful life instead of with TMY data which might not
even adequately reflect the first year of operation. In the same vein, McLeod et al. [ 18] argued that
special attention needed to be placed on accurate local climate data to make Passivhaus designs
relevant, data which is further complicated with climate change. For these specific cases, they
considered that overheating and undercooling posed a significant risk to the mission and

certification of the building.

6.1.4 Effects of highly reflective roofs (cool roofs) on buildings

The practice of installing cool roofs (surfaces which highly reflect solar radiation back to sky) in
various climates have existed for millennia, as white roofs are very prevalent along the
Mediterranean and in the Middle East. As effective as they are, they have only been sparsely used
in western architecture. However, as techniques used to improve comfort have progressed, cooling
has become as equally important to building design as heating is. Since buildings are static

structures that cannot easily be adapted to changing seasonal weather patterns, a balance must be
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found to smooth power demand and limit energy consumption throughout the year while taking
advantage of the conditions present in the natural surroundings. Such a balance will often be unique

to every type of building in every climate.

In hot environments, while limiting heat gain and increasing reflectivity on the roof can passively
serve to increase comfort when outdoor temperatures are high, such measures can also serve to
reduce cooling loads from air-conditioning devices. In the United States, the Department of Energy
(DOE) began investigating the benefits of cool roofs in the 1980’s, which were favorably adopted
in California at the beginning of the 21st century as a method to reduce peak demand from air
conditioning in the summer following an energy crisis. Several years later, such practices have
become more common, with dedicated organizations such as the Cool Roof Rating Council
making their appearance as a measure in green building certifications, such as LEED

accreditations.

Currently, for a roof to be defined as a “cool roof”, it must possess a high solar reflectance factor
of 0.55 after 3 years of use, effectively returning a majority of the solar radiation hitting the roof
back to the sky in the form of infrared radiation [22, 23] although technology helped to produce
dark-colour less reflective cool roofs [24]. Several studies have been made to determine deciding
factors on their usability for various buildings particular climates. Piselli et al. [25] studied the use
of cool roofs on buildings in five Italian climate zones with varying occupancies, building
characteristics and HVAC systems, using optimized solar reflectance factors to minimize the
energy consumption of the buildings. Their results showed that for warmer climates, the maximally
considered solar reflectance of 0.8 was the optimal value. However, for heating dominant regions,
the optimal solar reflectance depended on other parameters, such as the characteristics of the
HVAC system. Furthermore, [26] devised a simple calculator to assist designers in determining
the benefits of highly reflective roofs in varying conditions, while [27] proposed an advanced
model which correlated daily accumulative inward heat in buildings with rooftop albedo,

mentioning that increasing roof insulation can curtail air-conditioning requirements in the summer.

Several studies were conducted to determine the effects of varying albedo on roofs and their
surroundings. A series of experiments were conducted by [28] to measure heating and cooling
energy demand changes with varying roof albedo in various conditions and were validated with

TRNSYS simulations. The authors found variations in reductions in air temperatures and
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overheating hours, increased heating loads, and decreased cooling loads. Touchaei et al. [29] found
that increasing the solar reflectance of surfaces such as roofs, walls and pavement in urban settings
located in cold climates reduced solar heat gains in buildings and modified surrounding
meteorological conditions. A DOE-2 building simulation was used to simulate four prototype
commercial buildings with varying roof definitions: a dark roof control design, a white roof control
design, and an albedo-enhanced roof. While calculating the difference in yearly heating and
cooling energy consumption over white and albedo roof scenarios, it was found that the cooling
energy savings from the white control roof cancelled the heating energy penalties for small offices
and that heating energy losses from albedo-enhanced roofs outweighed cooling savings. However,
as the size of the office building increased, cooling energy savings from white or albedo-enhanced

roofs surpassed heating losses, and thus their presence became justified.

Beyond reflectance, increasing the thermal resistance of insulation on roofs to reduce energy
consumption in the heating season, which is not specifically defined but which generally runs from
October to May, can lead to contradicting effects during the cooling season, which generally runs
from July to September. The minimal required total Thermal Resistance (RSI value) of insulation
in buildings suggested by the national building codes for Montreal is 5.4 m2K/W. An experimental
study conducted by Ramamurthy et al. [30] concluded that extra insulation on the roof might not
always be beneficial during the cooling season, as heat accumulating inside a building can be

prevented from exiting a highly insulated roof.

On its face value, the decision to use cool roofs in cold and northern climates may seem
counterproductive due to the advantages obtained from solar heat gains in the winter. However,
this is misleading. The presence of snow in most of the heating season, narrowed sun ray angles
radiating during shorter days, increased cloud cover and nighttime heating schedules all contribute
towards minimizing the impact a cool roof would have in preventing winter heat gains in the
building. The effects of snow accumulation on cool roofs were studied by [31-33], who concluded
that its presence significantly mitigated their heating penalty in the winter in both Montreal, QC
and Anchorage, AK. Considering that weather patterns are dynamic and often deviate from
standard definitions, roof design practices for winter remains largely unchanged due to the
permanent factors discussed above. While predictions show that the length of the annual snowfall

period will decrease with a warming climate, the frequency of heavy snowfall events have been
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increasing of the past 30 years and it is estimated that it the trend should continue in the foreseeable

future [34].

Considering the effects of climate change, the literature shows that, compared to previous years,
warmer summers and winters with reductions in solar irradiation in the winter and increases in the
summer, are expected in future years [21]. These variations can affect the energy performance of
reflective roofs. Therefore, future weather data that accounts for the effects of climate change is

used to demonstrate the energy performance of a variety of roof designs for the future.

6.2 Methodology

6.2.1 Adaptation of a climate change model to a base case building

To evaluate the effects of present and future weather conditions on a particular design, one of the
building scenarios that was previously used in [7, 32], a one-storey commercial building with a
2299 m? floor area and a flat roof, was modeled with varying thermal resistance insulation and
solar reflectance values. The DOE prototypical retail store reference building geometry and its
characteristics are also available on the U.S Department of Energy website [35]. The original
building enclosure characteristics are adapted to ASHRAE standard 90.1, upgraded to the
Canadian National Energy Code for Buildings (NECB, 2011) since the case study is located in
Montreal, Canada. The building is defined as having five zones (core, front, back space, point of
sale, entry) and no plenum. This building model has been defined with 126 different roof

configurations. The layout and overall characteristics of the building are summarized in Table 6.1.
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Table 6.1: Building characteristics used for simulation

Item Descriptions
Form
Total Floor Area 2299 m? (54.2 m x 42.3 m)
/ Back Space
Building shape gare Resal
Point of Sale Front R

Window-to-Wall Ratio (WWR) 25.4% on the south facing facade
Envelope
Exterior walls

RSI-value (m’K /W) 4.1

Solar reflectance 0.7
Roof

RSI-value (m*K /W) 24t015.4

Solar reflectance 0.1t00.9
Window

RSI-value (m’K /W) 0.5

SHGC 0.3
Foundation

RSI-value(m*K/W) 59
Air Barrier System

Infiltration 0.001024 m*/s-m? of above ground envelope surface area

EnergyPlus [36] is used in this paper to simulate building energy consumption. Total heating and
cooling loads per unit area have been simulated for every simulation year over a lifespan of 20
years which begins in the year 2018. To reflect actual building energy consumption, a previously
introduced COP of 2.93 has been applied to the cooling load to calculate cooling energy
consumption, and the heating source for the building is assumed to be entirely electric, with an
efficiency (Nneating) of 100%. Therefore, final results do not represent physical quantities of thermal
energy, which in theory would negate each other, but instead represent the total yearly mechanical-
electrical energy consumption required to heat and cool the building. While this assumption may
not accurately predict the end-use electricity consumption, it is a common and acceptable method
for estimation purposes. The reason behind this method is twofold. Firstly, determining HVAC
system consumption in simulations requires much greater simulation resources. Secondly,

depending on the building enclosure configuration (roof design), the size of the required HVAC
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system could change, leading to variations in HVAC efficiency, affecting HVAC efficiency and

therefore results, which is outside the scope of this study.

6.2.2 Future hourly weather generation

Six future possible scenarios relating to population of the world, economic condition, and the
technology are introduced in the third and fourth reports from the IPCC (Intergovernmental Panel
on Climate Change) [37]. Each of these scenarios predict that a specific quantity of greenhouse
gas emissions are released up to the year 2100, based rely on data collected in the 80s and 90s. In
the A2 scenario, the global population continuously increases, economic development is primarily
regionally oriented, and capita economic growth and technological change are slower than in other
scenarios. Additional information on these scenarios can be found in [15]. In this study, the A2
scenario is used as a representative of future years. World temperatures can increase or decrease
in line with the greenhouse gas emissions presented by this scenario. Many other parameters can
be affected by these changes, such as solar radiation, wind speed, cloud cover and relative
humidity. Therefore, a general circulation model is required to mathematically predict such
alterations. HadCM3, a general circulation model, covers grid points not only for Montreal,
Canada, but over the entire planet. Since data from a general circulation model is limited to
monthly averages, a downscaling method must be applied to convert the monthly averages to the
hourly data required to use building energy simulation programs. In this paper, the typical
meteorological weather file (CWEC) for Pierre Elliott Trudeau International Airport in Montreal
is used as base weather data. The ’morphing’ method was used to downscale the data from
HadCM3 to generate hourly future typical horizon data for the 2020’s, 2050°s and 2080’s decades
from CWEC data. CCWorldWeatherGen a free Microsoft Excel-based tool developed by the
University of Southampton, is used to transform base years into future climate change years, a
method similar to that used in [21]. A set of 126 building simulations (126 roof configurations of
varying thermal resistance and solar reflectance as discussed in 2.1) were conducted to evaluate
the total energy consumption required for cooling and heating for each of the horizon future years

and for the future typical years.

6.3 Results

A review of results from a simulation calculated with original CWEC data shown on the left side

of Figure 6.1 indicate that heating energy consumption is dominant in the total energy consumption
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balance. As is expected, heating energy consumption is highest when the building roof is simulated
with low insulation values, and decreases when insulation is increased as per Fourier’s law of heat

conduction. Moreover, lower solar reflectance reduces the heating energy consumption.

By contrast, the building’s yearly cooling energy consumption is lowest for a roof with high solar
reflectance and low insulation, and highest with low reflectance and low insulation. Greater roof
insulation reduces cooling energy consumption with low reflectance roofs, but increases it with
high reflectance roofs, bridging the difference between albedo configurations. When added
together, results show that the highest total energy consumption for this building occurs when solar
reflectance and insulation values are low. Results also show that low solar reflectance on the roof

is desirable during the heating season and undesirable in the cooling season.

This model is insightful but possesses the inherent flaw that it does not consider the enduring
presence of snow, a highly reflective material, on flat roofs in the winter. Snow can therefore
significantly increase the solar reflectance of a roof during the heating season. Snow also increases
the overall thermal resistance of the roof contributing to less heating energy consumption, no
matter with high or low reflective roof. Since snow is never present during the cooling season, it
could be reasonable to assume that increasing the solar reflectance of a flat roof could have a
positive effect in reducing the overall yearly energy consumption of a building. Furthermore, as is
mentioned above, a building’s roof is less exposed to sunlight during the winter months as it is

during the summer months.

For simulations which were carried out with CWEC weather files that were morphed with GCM
data for the 2020’s and 2080’s horizon years, Figure 6.1 — cooling, heating and total energy for a
retail building using CWEC and horizon weather data shows that no matter which roof design is
used, in future years, the cooling energy consumption will increase while the heating energy

consumption will decrease.
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Figure 6.1: Cooling, heating and total energy for a retail building using CWEC and horizon weather data

6.4 Conclusion

The research described in this paper shows that climate change will affect building energy
consumption in future years and should be considered when designing HVAC systems today.
Selecting reflectance and insulation values for a building roof should imply calculating heating
and cooling consumption data over a period covering a building’s lifespan to determine optimal

configurations.

These results also show that heating energy consumption in a building is significantly reduced
with higher levels of roof insulation and that increase in solar reflectance lead to reductions in
cooling energy consumption. This indicates that cool roof designs are suitable for robust designs
with respects to cooling energy. However, it should be noted that in cold climates like the one in
Montreal, flat roofs are covered with snow during many of the heating days which leads to reduced
solar effects. For these reasons, increased roof solar reflectance will have a minor effect on a
building’s heating energy performance in the winter. Therefore, in a robust building energy
performance case, the total energy consumption variation will generally be affected by variations
in cooling demand. In addition, using cool roofs would be even more attractive when larger scale

benefits such as reduction in urban heat island effect is taken into account.
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Chapter 7. GENERATING FUTURE WEATHER FILES UNDER CLIMATE CHANGE
SCENARIOS TO SUPPORT BUILDING ENERGY SIMULATION — A MACHINE
LEARNING APPROACH

In the case of building energy performance, General circulation models (GCM) can be used to
evaluate future building energy performance through simulations. However, there are key issues
with the use of GCM data in building energy simulation. The first challenge is that the GCMs are
usually biased, which means a considerable deviation can be found when the historical GCM data
is compared to station observed weather data. The second challenge is that the GCM data has

daily temporal resolution rather than the hourly resolution required in building energy simulation.

This chapter introduces a machine learning-based approach to process the climate change general
circulation models (GCM) data for building energy simulation. The method statistically removes
the bias in data and applies hybrid classification-regression machine learning algorithms to
downscale the GCM data. The proposed workflow enables user to generate future weather files

year by year under different climate change scenarios.

This chapter was published in the journal of Energy and Buildings, Volume 230, 110543, M.
Hosseini, A. Bigtashi, B. Lee, “Generating Future Weather Files under Climate Change Scenarios

to Support Building Energy Simulation — a Machine Learning Approach”, © Elsevier Ltd. 2021

7.1. Introduction

Historical data shows that Canada has experienced a warming rate of twice the global mean, while
northern Canada has experienced triple the global mean [1]. According to the information
presented by The Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC) Working Group I [2], over the period of 1880 and 2012, the global temperature has
increased by about 0.85 °C. A Canadian study reported the annual temperature rise ranging from
0.5 °C to 4 °C for 16 major cities in Canada over the period of 1900 to 2013. For Montreal, the

average annual temperature rose about 2 °C, where a 1.4 °C rise was noted during the summer,
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and a 2.7°C rise was recorded in winter [1]. Ongoing temperature rising with respect to climate
change and its possible catastrophic consequences on building performance have made more and
more engineers and architects consider sustainability in building designs. However, as a first step,
it is important to clearly understand the possible problem and consequences in order to offer
appropriate solutions. In the building and construction industry, the topic of climate change, and
the possible impact on energy consumption of buildings has been studied by engineers and
architects. Building energy simulation has been the main tool to evaluate the energy performance
of buildings. In order to evaluate the building energy performance, meteorological data is required.
Typical meteorological year weather files, which are used for simulations, reflect the historical
weather condition and do not necessarily represent future weather data. In order to adequately
represent future energy demand in building energy simulations, future weather data must be
generated. The generated weather data must fit the purpose of the application. For example, in
cases where the purpose of the building energy simulation is simply to estimate the future building
energy consumption, a single future typical weather file representing a trend of multiple future
years’ weather might be enough. However, one important aspect of climate change is the increase
in the number of heatwaves, which lead to significant consequences, including heatwaves related
fatalities. As an example, during the summer of 2010 and 2018, heatwaves caused about 280 and
90 deaths, respectively, in the cold climate of Quebec, Canada [3]; of the 90 deaths in Quebec, 66
deaths occurred in Montreal, Quebec, Canada [4]. A survey conducted in 2011 showed that only
half of the residential buildings were equipped with air-conditioning systems [5]. These facts might
reflect the point that these buildings are not designed for extreme conditions, but rather, for typical
cold climate weather conditions. This point directs the research toward creating future weather
files that not only meet the intended initial use of finding typical building energy performance, but
that also project the variability of performance for extreme conditions, including heatwaves. The
generated weather files would enable architects, building engineers, and energy modelers to
consider extreme future events at the building design stage in order to ensure that buildings and
their associated energy systems could operate as expected under these conditions. There have been
different types of weather files, which are used to evaluate typical and extreme weather conditions
using energy simulation, that are reviewed in a previous study [6]. There are many challenges in
handling climate change data for building energy simulation, which are explained in the following

section.
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Table 7.1: Nomenclature for phrases used in figures, tables, and texts

Term Abbreviation Explanation

Maximum dry-bulb temperature max_temp Maximum dry-bulb temperature in a day (°C)
Minimum dry-bulb temperature min_temp Minimum dry-bulb temperature in a day (°C)

Mean dry-bulb temperature temp Mean daily dry-bulb temperature (°C)

Maximum dew point temperature max_dew Maximum dew point temperature in a day (°C)
Minimum dew point temperature min_dew Minimum dew point temperature in a day (°C)

Mean dew point temperature dew_temp Mean daily dew point temperature (°C)

Maximum wind speed max_wind Maximum wind speed in a day (m/s)

Mean wind speed wind Mean daily wind speed (m/s)

Solar radiation rad Mean daily global horizontal solar irradiance (W/m?)

7.1.1 Future climate change data and challenges relating to building energy simulation
application

General circulation models (GCM) have been used by researchers to assess the effect of climate
change in different fields of study. GCMs mathematically simulate atmospheric, oceanic, and
biotic interactions and combine them with radiative forcing scenarios to evaluate the future
climates. The models consist of grid cells resulted from latitude and longitudinal divisions, in
which the meteorological data is calculated [7]. Although these models help considerate the impact

of climate change, the output data of the models can’t be directly used for building energy
simulation. The challenges in applying the data are explained in the following section

GCM covers a vast geographical area, and the historical data based on the model is expected to
deviate from the observed data of a specific location. Furthermore, the output of the circulation
models has a coarse resolution, in terms of both spatial and temporal dimensions. The spatial
resolution of the output from the circulation models is larger than 100 km x 100 km. As for the
temporal resolution, typically, the output has a resolution of daily-average. This poses an issue for
building energy simulation, which requires hourly meteorological data. In order to have a finer
resolution, the data must be further processed. Finally, the GCM provides data for most weather
parameters that used in typical meteorological weather files, with a few exceptions, notably, dew

point.

Moreover, GCM suffers from systematic bias, which means that there is a considerable deviation
when the historical data of GCM is compared to observed data at stations. The GCM systematic
bias, coarse resolution, and limited available weather parameters make it difficult to apply the

output data, without further processing, for energy simulation purposes.
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Therefore, in summary, there are three main challenges to use GCM data for building simulation:

. Coarse spatial resolution
. Coarse temporal resolution
. Bias in the model data

From simple to sophisticated methods, previous studies used various approaches to address these

challenges.

7.1.2 Previous approaches to address the challenges

Generally, there are two main approaches to process the GCM outputs; dynamical and/or statistical
downscaling. Dynamical downscaling relies on further application of physics-based models for
finer resolution outputs. Statistical downscaling, however, relies on the application of statistical
rules and correlation for further processing. Each of these two approaches has pros and cons, which

are discussed in the following section.

7.1.2.1 Dynamical downscaling
Depending on the availability of resources and expertise, different approaches are used to process

the data in order to be used for building energy simulation. Some studies used dynamical
downscaling, a method that requires an additional computationally intensive physics-based
process based on a specific regional or local climate model. In this method, a regional or local
climate model is nested in the GCM to use the GCM output as a boundary condition and take into
account the hydrology, topography, and vegetation of the region to create finer resolution data.
Kikumoto et al. [8] used GCM data as a boundary condition for regional climate models, namely,
Model for Interdisciplinary Research on Climate (MIROC) and the Weather Research and
Forecasting (WRF) to generate the future weather data of 2030s for a Japanese climate. The
downscaled data was based on dynamical downscaling. For August, the sensible cooling load for
a detached residential building increased by 15% from 2007 to 2030, mainly attributed to an

average 1.52 °C rise in temperature comparing the two years [8].

Burger et al. [9] assessed the effect of climate change on the cooling and heating demand of an
office building built during three different epochs: before World War I, after World War 11, and
from 2000 onward, in Vienna, Austria. They used REMO UBA regional climate model to
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dynamically downscale A1B climate change scenarios with a resolution of about 10 km x 10 km.
They evaluated the results for two timeframes ranging from 2011-2040 and 2036-2065. The
downscaled data was used for building energy simulation. In one case, the results showed an
average 41% increase in annual cooling and 56% decrease in annual heating compared to the

period of 1961-1990 as a result of a temperature rise of about 3°C [9].

Although regional or local climate models provide finer temporal and spatial data, nesting of these
models in the GCM models could be challenging as the time steps, and the grid resolution in the
regional climate models are different from those in the GCMs. Moreover, physics-based
calculations of finer resolution data would require expensive computational resources. In addition,
when using dynamical downscaling, the bias of GCM data may not be removed completely, and
further processing may still be required. Due to the mentioned restrictions, statistical downscaling

techniques have been used to process the GCM data for various applications in different fields.

7.1.2.2 Statistical downscaling
Other studies used statistical downscaling methods. These methods rely on the availability of

observed weather data and can be used for all scenarios of climate change. Statistical methods
provide point-scale climatic parameters and can be applied to regional and/or global models. In
the statistical approach, a critical assumption made is stationary, which means that, while the
climate changes, the statistical relations among the meteorological parameters remain constant

over time [10-11].

Generally, statistical downscaling is categorized into three main groups: linear methods, weather
generators, and weather classification. The first two groups have been used for building simulation
in previous studies and are briefly explained in the following sections, while the last group —

weather classification, is one of the subjects of interest in this study.
Linear methods

Linear methods, including the delta method (also known as morphing in building simulation) [12],
are easy to use and are widely applied in previous studies. In morphing, a changing factor is
calculated by comparing the daily values of historical and future data and then applying it directly
to the hourly observed data to achieve future hourly data. These factors can be additive or

multiplicative or a combination of the two depending on the weather parameter. For example, the
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downscaling of atmospheric pressure is additive (adding the change of means to each value for all
hours), and the downscaling of the wind is multiplicative (multiplying the mean change to each
value for all hours). These applications are done separately for each weather parameter and,
therefore, the correlations among the weather parameters are ignored. Therefore, the morphing
method can change the mean and variance of the historical data to the GCM data, but other
statistics of the data such as the 25th or 75th percentile of the data do not necessarily change. In
other words, the morphing method might transfer the intensity of the GCM data to the downscaled

data, but it may not transfer the frequency.

Due to its simplicity, the method is widely used to predict the future climate condition, including
in American climate [13-16], Canadian climate [17-19], Swiss climate [20], Swedish climate [21-

22], Spanish climate [23], Italian climate [24], British climate [25], and Chinese climate [26].

The morphing method is designed to use a TMY file, and the same is applied in these studies as
well. The TMY is generated from historical data with extreme events removed [11]. The
application of morphing on a single TMY might lead to project a single annual building cooling
or heating energy consumptions for a long period of time. The mentioned feature makes the
morphing method suitable as long as the goal of the application is to estimate the building energy
consumptions over a long period of time. However, in cases where multiple weather years are
required, the morphing method may not be suitable. There are some tools that use the morphing
method to downscale the future GCM weather data, such as “CCWorldWeatherGen” or
“WeatherShift™ tool”, which are used in building simulation [27-29]. One important point in
using these tools is respecting the time frame of the base TMY file as it should be between the
years 1961-1990 for the former and 1976-2005 for the later tool; otherwise, the output would be

overestimated.

However, when the application is to optimize the design e.g. robust design, reliable design, or
other design aspects, multiple weather years, are required. This is because of the fact that these
design methods rely on statistics requiring multiple samples. For example, for designing a weather-
robust building, providing multiple weather years would be an essential requirement for design
optimization. As another example, for reliability-based design, extreme events must be taken into
account. However, these events are disregarded by the morphing method on TMY, as it ignores

the frequencies in the processing of data (e.g. frequencies of multiple warm days/heat waves) [20].
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Moreover, using the morphing method may not remove all the existing biases between the GCM
historical data and the observation data. As such, weather generators are also used to generate
multiple future weather years stochastically to capture the yearly variations over a long period of

time.

7.1.2.2.1 Weather generators
Other studies used weather generators to evaluate the effect of climate change on buildings [26,

30-32]. Weather generators are used for temporal downscaling. These statistical models generate
numerous possible time-series weather parameters using statistics of several-years historical data
of weather parameters applied to the GCM model output. Due to the stochastic nature of data
generation, the generated data might change when the process is repeated and may require further
processing to make a single weather file. The data generated from the generators are different from
the observed data and only keep the statistical characteristics of mean and variance of the GCM
data. Therefore, all the generated data is artificial data that synoptically have the same statistics as
the GCM data. Among the weather generators, only a few are able to consider the relationship
between the weather elements when multiple parameters are predicted [11], and they are able to
generate only a few weather parameters such as temperature and solar radiation [31]. Furthermore,
thousands of different generated data is produced by weather generators. Therefore, in order to

adapt the data for building energy simulation, further processing is required [26].

To prepare the generated data for extreme analysis, Nik [22] suggested creating a typical
downscaled year (TDY) together with one extreme cold year (ECY) and one extreme warm year
(EWY). In order to create these weather years, the same procedure of making a typical
meteorological year (TMY) is used, except that only the temperature variable is considered in the
procedure e.g., one year with all months having typical temperature values (TDY), one year with
all months having low-temperature values (ECY), and one year with all months having high-
temperature values (EWY). The reason behind considering only the temperature was stated to be
“the difficulties and uncertainties in weighting the climatic variables”. The same method was used
in a newer study to downscale regional climate model data in order to consider typical and extreme
conditions for the projection of weather data for different future timeframes, namely, 2010-2039,
2040-2069, and 2070-2099 [20]. Although the method reduced the required number of simulations

for building design optimization, the method seems to create artificial extreme weather years that
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may never happen in the future, especially without the bias-correction of the RCM data that might

overestimate the extreme conditions.

The issue of the weighting of the climatic variables mentioned by the previous two studies [20,
22] is recently addressed with a novel method in the previous study conducted by the authors for

building energy simulation application [33] (chapter 5).

7.1.3 Research gap

From the literature review, it is perceived that the morphing method may not be used for design
optimization of the building and HVAC systems as it ignores the frequency of data, and therefore,
it ignores the extreme conditions such as heatwaves in summers. Moreover, the morphing
techniques are applied to each of the weather parameters separately and consequently ignoring the

correlations among the weather parameters.

Weather generators, on the other hand, may be used for design optimization; however, the method
generates a large amount of artificial data that only maintains the mean and variance of the GCM
data for each weather parameter separately, ignoring once again the correlation between the
parameters. The literature review showed that previous studies mostly used morphing or weather
generators. In other industries, weather classification or weather typing schemes is another method
used for downscaling the GCM climate change data. However, due to certain limitations, this

method has not been deployed in the building industry.

The other method of downscaling the GCM climate change data in other industries is weather
classification or weather typing schemes. Weather classification relates a class of future weather
patterns to locally observed weather data, and the future weather data are synoptically selected
from the observed weather data. In this method, the effect of climate change is estimated by
evaluating the frequency and intensity of the change of the weather pattern parameters from the
GCM output. In other words, the future GCM data is compared to historically observed data, and
a class of historical data is selected according to statistical resemblance. The selected historical
weather pattern values will then represent the future climatic weather condition. The method can
be used for normal and non-normal weather parameters such as temperature and wind speed.

However, a large set of historical observations is required [11]. This method is more sophisticated
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than the simple morphing method in the case of data analysis but can create real data selected from

the past and therefore keeps the real relationship among the weather parameters in hourly values.

In contrast to the morphing method, this method can transfer all the information of GCM data
(including percentiles) to the downscaled data. This method has been used in hydrological studies
[34-35], but there is a lack of literature in applying the method to building energy performance. In
the building energy simulation industry, weather typing or classification is used to create a
representation of the long-term (usually 10 to 30 years) weather pattern from the historical data
using a typical meteorological year. The Sandia method, a method for generating typical
meteorological year files, can be categorized in this group. However, the method is not used to
downscale the future GCM data. The main disadvantage of this method is its inability to predict
new values that are beyond the range of the historically observed data (increase in intensity).
Building energy consumption is highly correlated with outdoor air temperature, which is expected
to increase in the future unprecedentedly. Therefore, the weather classification alone, may not be
used to downscale the future climate data for building energy consumption. In this study, a hybrid

classification-regression model is proposed to downscale climate change GCM data.

7.1.4 A proposed method to use weather classification downscaling for building simulation
Weather classification can retain all the statistics of the GCM data; however, it is incapable of
keeping the intensity of data when a new out-of-range of historical data is in the GCM data.
Therefore, the combination of the weather classification with a regression model as a hybrid model
can be a promising method to downscale the GCM or RCM data to be used for building energy
simulation. The method can partially apply an algorithm that is currently already used in the
building simulation industry and uses real historical weather data rather than artificially generated
values. The regression model will be trained using observed historical data and will be used only
for conditions when the GCM data is higher or less than any previously experienced data. The
hybrid application of this method can transfer all the statistics of the GCM data while keeping the

intensity of the data as well.

There is a shortage of studies (if any) that apply weather classification as a method to downscale
the GCM data to be used for building simulation. The reason for that, as mentioned before, is that
the building energy performance is highly dependent on outdoor air temperature, which is expected

to increase in the future; the classification model is not properly downscaling the new values that

109



are higher or less than any observed values. Therefore, a regression model will be combined with
the classification model for new unseen values larger or smaller than the observed values. This

method is introduced in this study as part of the methodology.

7.2 Objective and organization of the study

This study attends to the issues in applying GCMs to generate future weather files, namely
removing bias within data, as well as, the application of a coarse resolution general model to a

specific location and scaling of the daily data to hourly data.

The objective of this study is to provide a systematic workflow to create hourly weather files for
individual future years under different climate change scenarios using GCM future data. The

workflow can be applied to regional climate models (RCM) data as well.

This study introduces a new hybrid machine learning algorithm pairing the weather classification
model with a regression model to process the climate change data to be used for building energy
simulation. The classification model used in this study is introduced as the main model to
downscale the GCM data for building simulation. An auxiliary regression model is also trained on
the observed station data to predict (regress) the climate change values for cases when the values
are larger than any observed values. The latter solves the challenge of using the classification

method to downscale the GCM data for building simulation.

The proposed methodology would be suitable to create multiple year by year future hourly weather
under four climate change scenarios that can be used by architects, building energy modelers, and
engineers to consider typical and extreme weather conditions at the design stage of the buildings.
The generated weather years can be used for building and energy system optimization, especially

those designs that use statistics e.g. reliability-based design or robust-based design optimization.
The current study is outlined as follows:

Section 7.3.1 explains the process for selecting weather parameters deemed essential for building
energy simulation, which is then weighted for further processing. This is done due to the fact that
in cases where weather parameters are highly correlated, processing only one of these parameters
is sufficient. The weather parameters weights and data will be used in the weather classification

model. In section 7.3.2 the bias-correction method is explained to remove the existing bias in the
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GCM data statistically. This step is essential since the GCM models ignore the topography,

vegetation, and urban effects, and bias correction can address these issues.

Section 7.3.3 explains the spatio-temporal method used to downscale the bias-corrected GCM data
to be used for simulation. The classification and the regression algorithms used for downscaling

are explained in this section.

Section 7.4 presents the results followed by the discussion and a summary of the contributions of

this study.

7.3 Methodology

Geophysical Fluid Dynamics Laboratory Coupled Model Earth System Model (GFDL-ESM2M)
is a global climate model developed at the NOAA Geophysical Fluid Dynamics Laboratory and is
consistent with the IPCC Fifth Assessment Report (ARS) [36]. The model provides a range of
weather parameters including temperature, solar radiation, wind speed, and many other parameters
with a resolution of about 2.0° x 2.5° along the latitude and longitude. The model output includes
the dataset for the four Representative Concentration Pathways (RCP) 2.6, 4.5, 6, and 8.5 W/m?,
ranging up to the year 2100. Figure 7.1 shows an example of near-surface air temperature data in
°C from GFDL-ESM2M for the 21% of July 2020 and 2049. A bilinear interpolation (interpolation
among 4 points rather than 2 points) is conducted to extract the data at Montréal-Pierre Elliott

Trudeau airport with a longitude of -73.75° and latitude of 45.47°.
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Daily Temperature, 2020-07-21

Daily Temperature, 2020-07-21

Daily Temperature, 2049-07-21

Figure 7.1: The GFDL-ESM2M, near-surface daily air temperature for 2020-07-21 and 2049-07-21 under RCP 8.5,
left figures show the location of Montréal—Pierre Elliott Trudeau airport.

Typical meteorological year weather files being used for building energy simulations usually
include a set of weather parameters such as horizontal solar irradiance, dry bulb temperature, dew
point temperature, atmospheric pressure, and wind speed [37-38]. These weather files are used in
building energy simulation as a means to evaluate building energy performance. In the previous
study of the authors [33] the effect of each weather parameter on cooling, heating, and total energy
consumption of the buildings are statistically evaluated. The GCM provides some of these weather
parameters, with quite a few missing such as dew point temperature. To attend to the issue, an
analysis is presented in the next section to select the required climatic data from the GCM data for
further processing. Since some of the weather parameters are highly correlated, only one parameter
among the correlated ones is selected for further processing, e.g. classification; this is explained in

section 7.3.1.

Table 7.2 provides an overview of the workflow. Detailed implementation of each step is provided

in subsequent sections.
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Table 7.2 Overview of the workflow

Step Background Description

The correlation between the weather parameters are evaluated.

Weather To reduce the number of evaluated parameters .
. For each case of highly correlated parameters, a
parameter and avoid redundancy as some parameters are w -, . .
. . representative” or candidate parameter is selected for further
selection highly correlated.

processing.

Application of quantile-quantile method, which corrects the
bias by determining the difference between the CDF of the
historical and observation data is then applied to the future
data, quantile by quantile.

To address the existing discrepancy between the
Bias-correction historical GCM data and the observed data due
to low spatial resolution.

Application of two machine learning algorithms to process the
climatic data. Each algorithm provides the required output
data. A threshold is selected in order to evaluate the deviation
of the historical month temperature from the future
temperature. In the case that the threshold for temperature is
not met, the regression model data is selected (Random
Forest), otherwise, the K-nearest all data is selected.

Spatio-temporal To downscale the weather data to the required
downscaling resolution for simulation purposes.

The weighted K-nearest neighbor algorithm is used to select
the most similar historical month weather pattern to the future
month. It is done by applying the FS statistics method to the

Algorithm 1 CDF of each of the weather parameters. The feature
importance of each parameter is applied and the most similar
historical data is selected, with the corresponding hourly output
data.

K-nearest-
neighbor

A regression model is trained and tested using historical data.
Historical hourly observed temperature is resampled to average
Random Forest . daily and the corresponding hourly data is provided as training
. Algorithm 2 h . . .
Regression output. The regression model is then trained to provide
corresponding hourly data for each month of daily average
GCM data input.

7.3.1 Weather parameters selection

In order to reduce the dimensionality of data, the correlation coefficient of ten weather parameters
are determined in order to eliminate the parameters with high correlations. Reducing the number
of parameters contributes to better handling of the data and a more accurate prediction model in
classification. The selected weather parameters will define a class of weather in the classification
model. Following this, a dataset that includes 10-years historical hourly weather data [39] is
generated to find the correlation among the weather parameters. The entire dataset is then
resampled to daily average data as the classification model finds a very similar class of daily
weather data to the GCM daily data. The considered parameters are total global horizontal
irradiance, average dry bulb temperature, maximum and minimum dry bulb temperature in a day,
average dew point temperature, maximum and minimum dew point temperature in a day,

atmospheric pressure, average wind speed, and maximum wind speed in a day. The heatmap
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presenting the correlation coefficient between the parameters is plotted in Figure 7.2. Values
approaching 1 or -1 show a more linear correlation among the weather parameters. A high linear
correlation (more than 0.93) between the average temperature, the minimum and maximum
temperature in a day, average dew point, the maximum and minimum dew point is noted, as
represented in Figure 7.2. There is also a high linear correlation between the average wind speed,
and the maximum wind speed in a day (0.86). Therefore, the average temperature is selected as a
representative for all the temperature parameters, and the maximum wind is represented by average
wind speed. The atmospheric pressure doesn’t show a considerable correlation with others;

therefore, it is also considered as one of the selected parameters.

The four weather parameters, average dry bulb air temperature, global horizontal solar irradiance,
atmospheric air pressure, and wind speed are selected for further processing. The next step is to
compare the historical data of GCM data with observed data over the same period of time for these
four selected parameters. As mentioned in section 2, due to reasons such as limited spatial
resolution, simplified physical and thermodynamic processes, the historical data of the GCM
model is deviated from the weather station data, which implies that the GCM future data cannot
directly be used. Therefore, a statistical bias-correction is proposed to remove the bias from the

future model data.
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Figure 7.2: Correlation coefficient for parameters; darker colors represent stronger linear correlation.

7.3.2 Bias-Correction

GCM data doesn’t include the effect of regional and local features such as vegetation and
topography as the spatial resolution is low. This may lead to considerable differences when
comparing GCM historical model data to observed data at a local station over the same period. In
order to avoid this discrepancy, the GCM data requires calibration before proceeding to further
processing. In older applications, two general approaches were applied; the first approach, known
as the delta method, is to calculate the difference between the future and historical GCM data and
add it to the observation data (station data). In the second approach, the bias can be removed by
finding the difference between the observed station data and the historical GCM data and apply it
to the future GCM data. Each of these approaches has to base on its own controversial assumption

to apply. For the first approach, it is assumed that there is no change in the variation of the weather
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data in the future. For the second approach, it is assumed that the future data provided by the model

1S accurate.

A newer approach, known as the quantile-quantile method, introduced by Amengual et al. [40] is
used in this study. The method demonstrates more flexibility in bias-correction and is applicable
to all climate parameters. In this method, instead of directly adding the difference to the future
model or observed data, the difference is applied according to a statistical method — the future
model data is corrected according to the cumulative distribution function (CDF). The difference
between the corresponding CDFs for historical model data and the observations data are calculated
and are then applied to the CDF for the future model data quantile by quantile. The advantage of
this method is that all the statistics of data, including mean, variability, and shape of the GCM data
will change according to the statistical changes in the calibration period. Amengual et al. [40]
presented further details. Figure 7.3 shows an example of the function of quantile-quantile bias-
correction for temperature. The blue color represents the CDF of the daily averaged observed
station data, the red color represents the CDF of the GCM historical data, and the green color
represents the CDF of the GCM future data. Under CDF values, the difference between
observation and GCM historical data are calculated (red arrows which denote the area between the
blue and red line), and are subsequently added to the corresponding values of the same CDFs of
the GCM future data (green arrows which denote the area between the yellow and green line) to

calculate bias-corrected GCM future data.
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Figure 7.3: Quantile-Quantile bias-correction method; the future model data are statistically corrected according to
historical deviation from observation.

In order to correct the existing bias in the GCM data from 2020 to 2049, a 30-year period of
historical data, ranging between 1976 and 2005, is selected as the calibration period. Figure 7.4
shows the daily average temperature data for the calibration period and future data. From the
figure, we observe that the GCM data is underestimated in maximum and minimum temperatures
(red and blue) for most of the period. The underestimation is corrected for future GCM data. As it
is shown, the corrected GCM future data (orange) surpasses the original GCM future data (green)

in maximum and minimum temperatures.
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Figure 7.4: The validation period historical GCM data and historical observed data from 1976 to 2005 (left) [39]
versus original GCM future data and bias-corrected GCM data from 2020 to 2049 (right).

Figure 7.5 zooms into the first year of the calibration period and the future period data for clearer
illustration. As seen in the figure, during the first four months of the calibration period, the GCM
model (red) over and underestimates the temperature (compared to observation). The fluctuation
between over and underestimation leads to the bias-corrected data (orange) surpassing the original
GCM data (green). For the rest of the year, the GCM mostly underestimates the data, and therefore,
the GCM bias-corrected data is mostly higher than the original future GCM data (green).
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Figure 7.5: The first year (1976) of the validation period historical GCM data and historical observed data (top)
versus the first year (2020) of original GCM future data and bias-corrected GCM data (bottom).

In Figure 7.6, the bias-corrected data is averaged yearly and compared to the corresponding
original GCM future data for the future period.
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Figure 7.6: Yearly-averaged of original future GCM data versus the bias-corrected data for the period of 2020 to
2049.

The original GCM model shows annual average temperature within the range of about 3.5 to 6.5
°C, whereas the bias-correction increased the range to about 5.5 to 9.5 °C. As previously
mentioned, the increase in temperature is due to the consideration of local station data, which
account for the effects of topography and vegetation that are ignored in the original GCM data.
For this study, the airport data is considered as the observed data; however, local station data

located in an urban environment may also be used to consider the local climate effect.

For further capturing of the local effects from a larger scale, spatial downscaling is required. The
output of GCM is set to the daily average, whereas hourly data is required for building energy
simulation. Therefore, a spatio-temporal downscaling is applied to convert the daily-averaged data

into hourly resolution data.
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7.3.3 Spatio-temporal downscaling
A hybrid method of weather classification-regression is used to downscale the weather data,
meaning that two machine learning algorithms are used to process climate change data. The

reasons for combining the two suggested algorithms, as stated in section 7.1.3 are:

. The weather classification is capable of downscaling the data as long as the GCM data has

values within the range of the observed data.

. In cases where the GCM data values are considerably higher or lower than any values in
the observed data, a regression model is trained from the observed data to downscale the GCM

daily data to hourly data.

Both algorithms use local station data as the observed data, and the data of GCM is extracted for
the same location (Montreal international airport). The models disaggregate the data from daily
average to hourly data; therefore, the current method can be referred to as spatio-temporal
downscaling. This means that the data is spatially and temporally downscaled at the same time.
The k-nearest-neighbor classification algorithm helps to select the most similar weather pattern
from the observed station data and this can be valuable approach as the observed historical data is

actual measured data which captured the characteristic of the local environment.

7.3.3.1 k-nearest-neighbor algorithm for weather classification
In pattern recognition, the k-nearest neighbor machine learning algorithm is used for classification,

which doesn’t require training and is, therefore, quite faster than the training-dependent
algorithms. The algorithm is simple and easy to implement and is widely used in classification
problems, especially in situations where the decision must be made for problems with non-normal

distribution. This capability is helpful in this study with non-normal variables, including wind.

Depending on the type of dataset, different techniques, including root mean square error, can be
applied to find the neighbors. Similarly, the Sandia method, which is used for generating typical
meteorological weather files, uses the Finkelstein-Schafer (FS) model to statistically find similar
neighbors [38]. The weighted k-nearest neighbor (KNN) algorithm is used to find the absolute
value of the difference between predictor and the neighbor predictand. The predictor is the future

GCM data (bias-corrected), and the predictand is the historical weather station observed data. In
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other words, for each future month weather data, the most similar historical monthly weather

pattern is selected as long as the selected month shows an acceptable level of closeness.

The following procedure is used to downscale future bias-corrected GCM daily-averaged data. For

each future month of a year:

ii.

iil.

1v.

Vi.

The cumulative distribution function (CDF) of each of the weather parameters, namely,
global horizontal irradiance, average temperature, average wind speed, and
atmospheric pressure, are calculated.

The FS criteria are calculated for each parameter according to equation 1:

FS = (L/pEL, ; (1)
Where: 0 is the absolute difference between future parameter CDF and the historical
candidate month parameter CDF, and n is the number of readings in a month (hear is
30) (See Figure 7.7).

The most similar weather pattern is selected by weighting the parameters based on the
importance of the parameters on the building energy demand. These importance factors
are calculated by the feature importance technique used in machine learning and
described in section 7.3.1.1. The minimum WS factor will present the most similar
weather pattern of historical weather to the future model data, which will be selected
according to equation 2:

WS = w;FS; (2)
Where: w; 1s the weather parameter weighting factor (importance) shown in Figure 7.8,
and FS; is weather parameter FS statistics (from step ii).

The hourly weather data belonging to the minimum WS is used to fill up the
corresponding month of the twelve-month weather file.

The procedure is repeated for the next month of the future year until all 12 months of
the future years are found from historical observations.

The whole previous steps are done for all the future years (30 years).
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Figure 7.7: FS statistics for temperature, the absolute difference between the CDFs of the predictor and predictand
over n bin points (30) is calculated (step ii).

Figure 7.7 shows the comparison of a future month GCM temperature data CDF (red) with a
candidate month observed temperature data (grey). All the candidate observed months are
compared to the future month and FS is calculated for all the candidate months. Since there are 4
selected weather parameters, for each month, FS for all the weather parameters are calculated, and
the final selected month would be based on weighted-sum FS (WS in equation 2). The weighted
sum approach in the equation helps the algorithm to select the historical months with the most
statistical resemblance based on the most important weather parameters. The importance is relative
to the effect on the output (i.e. cooling, heating, or total energy demand). In order to apply the WS,

the weighting factors of each weather parameter are calculated, which is explained as follows.

7.3.3.1.1 Weighting factors of weather parameters for WS
The k-nearest neighbor algorithm, described in section 3.3.1, requires the importance of each

weather parameter on the building energy demand to be evaluated (equation 2). The k-nearest
neighbor and Random Forest algorithms have some similarities. Both cases make predictions from

models constructed from training datasets by looking at neighborhood setup by applying weighting
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factors [41]. The weighting factors calculated from Random Forest regression may be applied to
KNN. These weighting factors help with the final decision-making process by finding the final
overall most similar weather pattern to the future data from historically observed data. The
procedure of finding the weather parameter importance is described in details in another study by
the authors [33] (chapter 5). A brief description is provided in the following section, which

includes the modifications made for this study.

To illustrate the procedure, a U.S. Department of Energy prototypical small office building [42]
upgraded to National building Energy Code of Canada (2015) standards is simulated with 10-year
historical weather data from 2009 to 2018, taken from the Montreal-Pierre Elliot Trudeau
International airport. The simulation was conducted using EnergyPlus 8.9 building energy

simulation program.

The Random Forest regression algorithm is used to statistically find relationships between the
parameters, as it can capture the non-linear relationship among the parameters. It should be noted
that, at this step, the Random Forest algorithm is only used to find the feature importance by fitting
all the given data from 2009 to 2018. Since the goal at this step is not making a prediction, there
is no test data at this step. Once the algorithm is fitted to the data, it is able to extract the feature
importance from the data. To find the feature importance, the total energy demand is assumed to
be the dependent variable, while the four weather parameters of average temperature, global
horizontal solar irradiance, average wind speed, and the atmospheric pressure are considered as

continuous independent variables.

The importance is defined as the importance of each of the weather parameters in predicting the
total energy demand and is calculated based on variance reduction. Then the importance of each
weather parameter is calculated. For more details, refer to the study by Hosseini et al. [33] (chapter

5).

Since the effect of each weather parameter on total energy demand in varying months might be
different, a specific set of weighting factors is calculated for each month of the year. Figure 7.8
shows the feature importance of each weather parameter on predicting the total energy demand of

the building.
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As expected, the temperature gives the most information (variance) in predicting the total energy
demand in all months of the year. The radiation is the second information contributor in predicting
the total energy demand in six months of the year, although the radiation, atmospheric pressure,
and the wind are observed to have similar importance and fairly small in all the months of the year.
Following the overview of the k-nearest-neighbor algorithm and how the weather importance is
calculated, the next section describes how the algorithm is applied for weather classification using

weather data.
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Figure 7.8: The feature importance (weather parameter weighting factors) extraction from Random Forest
Regression to be used for KNN classification algorithm.
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The previous sections explained the k-nearest-neighbor algorithm and how the weather importance
calculated. The next section describes how the algorithm is applied for the weather classification

purpose using weather parameters data.

7.3.3.1.2 Application of k-nearest-neighbor
The weighting factors shown in Figure 7.8 are introduced to the classification model (KNN) to

calculate WS from step iii.

Figure 7.9 shows the application of the FS statistics method for weather parameters. The blue color
shows the CDF average daily values of a future month weather parameter. The red color shows
the CDF of the most similar historical daily average weather data to future data, namely, the closest
CDF to the blue color for only that particular weather parameter (before the application of
weighting factors). The green color is the CDF of the overall closest weather pattern of historical
observed weather data to the future month when all the weather parameters are considered with
their weighting factors. For example, in Figure 7.9 (top), to disaggregate the future GCM data for
July 2020 (blue), for the global horizontal solar irradiance, July of 2006 (red) is statistically the
most similar to the future data, whereas for the average wind velocity, July of 2004 is the most
similar data to the future data. However, when all the weather parameters are taken into account
with their corresponding weighting factors, July 1963 has the most similar overall weather pattern
to the future January (2020). The red and green colors are the results based on the FS method and
the WS in steps 1 and ii. The results are shown in purple for cases where the results of FS and WS
are the same, as is the case for average temperature. Following this, the hourly weather data of

July 1963 is selected for July of the future year.

This method maintains the relationships among the weather parameters as the future hourly data
is selected from actual observed historical data. In some cases, the temperature differs greatly from
the historical candidates, which leads the CDF of the temperature of the future month to be far
beyond the nearest candidate found by the algorithm; this is the limitation of weather classification
mentioned in the literature review section 7.1.3. According to the data, this only occurs for the
temperature parameter during, primarily, the winter, spring, and fall seasons. In other words, some
of the future months during the aforementioned seasons can be considerably warmer or colder than
any historical month, which may be relayed by the phenomenon of climate change. In order to

account for the deviation, a regression model is incorporated into the workflow.
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A regression model is developed to disaggregate (temporally downscale) the temperature for
situations when the temperature of the most similar weather pattern in the past is considerably
deviated from the future month temperature. The deviation is the absolute difference between the
two CDFs. By observing the CDF of the temperature for multiple months, it is found that the two
CDFs were relatively close as long as the deviation was under 0.05; therefore, three levels of
thresholds, 0.03, 0.04, and 0.05 are considered as the criteria for replacing the temperature data of
the selected historical month with the regression model data. If the selected historical month
temperature is deviated from the future model more than the threshold, only the temperature of the
selected month is replaced with the regression model data. For example, in Figure 7.9 (bottom) for
the month of March 2021, the future model temperature CDF is higher than any historical observed
temperature CDF, and the deviation is more than 0.05. Therefore, the temperature values resulted
from the classification model are replaced with the data from the regression model. Section 7.3.3.2
describes the Random Forest regression model, which is applied to disaggregate the GCM bias-
corrected temperature data in cases where the bias-corrected data is considerably higher or lower

than any observed historical temperature.
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Figure 7.9: CDF of the future weather data in comparison to the historical observed weather data for July 2020 (top)

and March 2021 (bottom).
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7.3.3.2 Random Forest regression model for prediction (downscaling)
A Random Forest regression model is used due to its capability to model multiple targets (outputs).

For disaggregation, the data input into the regression model is daily-average data, whereas the
output is composed of hourly data for a 24-hour period. This way, the algorithm learns (train) the
relationship between the daily-average input and the 24-hour (hourly) values. The original single-
target algorithm of Random Forest is recursively developed based on finding the values of features
where the most information is gained from a subset of the original dataset (variance for regression)
by a minimization algorithm. The method is described in detail in another study by the authors of
this study [33] (chapter 5) and Breiman et al. [43]. For a multi-target problem, Seagal [44], added
a covariance weighting to include the multiple outputs to the objective of the optimization in the
original Random Forest algorithm. Thus, the multiple outputs and their covariance are considered
in the Random Forest algorithm during node splitting. For more details on the multi-target Random

Forest algorithm, readers can refer to the study by Segal and Xiao [45].

In order to disaggregate the future GCM or RCM model data, first, all the historical hourly
observed temperatures are resampled to daily-average data and introduced to the regression model
as inputs of training data. Then, for each daily-averaged observed input, 24 hourly observed values
are introduced to the model as training outputs. For each desired month, when the future daily-
average GCM data is introduced to the model, 24 hourly values for each day of the desired month

are predicted.

All the historical daily average and hourly temperature data for the period of 1953 to 2005 [39] is
used to train the model, while data ranging between 2006 and 2018 is used for testing the model
(around 20% of training). Figure 7.10 shows the data used to train and test the model, along with
the output of the regression model for future data. The green color shows the training data, the
light blue color shows the original data for the test period, the dark blue is the output of the Random
Forest regression model output, and the red color shows the Random Forest output for the future
data. A comparison of the light blue and dark blue hourly resolution data (Figure 7.10 top left) for
the test period shows a very good agreement between the observed hourly data and the Random
Forest output. For daily-average, monthly-average, and the yearly-average data, the observed and
the Random Forest output overlap. The yearly-average data from the Random Forest model clearly

shows the increase in average temperature in the future (Figure 7.10 bottom right).
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Figure 7.10: Train, test, and predicted result of the Random Forest regression model; hourly data (top left), daily-
averaged data (bottom left), monthly-averaged data (top right), and yearly-averaged (bottom right).

For better presentation of the agreement between the observed data and the regression model
output, the last 5 months of the training period, and the first 8 months of the test period is shown
in Figure 7.11. As mentioned before, a very good agreement between the hourly observed data
and the output of the regression model can be seen (Figure 7.11 top). Moreover, the daily-
averaged observed data and the regression model completely overlap (Figure 7.11 bottom),
which means that for daily and yearly resolution data, the regression model transfers all the
statistics of the GCM bias-corrected data to the downscaled data. The accuracy of the regression
model is quantified by comparing the output of the regression model with the actual hourly data
(dark and light blue in Figure 7.10 top left). Table 7.3 reports the error between actual hourly
values and the predicted hourly values using mean squared error (MSE), root mean squared error

(RMSE), mean absolute error (MAE), and R? score.

Table 7.3: accuracy of the regression model on test data

MSE RMSE MAE R2
5.9 2.43 1.85 0.96
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Figure 7.11: The last 5 months of the training period and the first 8 months of the test period with hourly resolution
(top) and daily resolution (bottom).

As mentioned above, the regression model is used only when the temperature of the historical
month selected by classification differs from the future month temperature with a deviation larger
than the defined threshold (0.03 to 0.05). As an example, the data from March 1984 is selected for
March 2021 (Figure 7.9 bottom) whereas, the CDF of the temperature of March 1984 differs

considerably from the GCM data. Therefore, for the current future month, the temperature data of
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March 1984 is replaced with data from the Random Forest regression model. Figure 7.12 shows
the temperature values selected by the classification model for March 2021 (March 1984) and the
corrected values using the regression model. The red color shows the daily average value of the
most similar month of the observed temperature to the future month (March 1984). The light blue
color shows the future GCM data, and the dark blue shows the regression model output when it is
resampled to daily-average values. It can be seen that the daily data from the GCM and the daily-

average data from the regression model overlap.
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Figure 7.12: Temperature values selected by classification (March 1984) and daily-averaged of corrected values
using regression model for March 2021. Top: daily-averaged of all days of the month; bottom: CDF of the daily
values.
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Figure 7.13 shows the flowchart of the workflow used to process the GCM data to be used for

building energy simulation.

Observed
(station hourly)

Observed Train regression model
(station daily) 4 (multi-target RF)
Building simulation
Weather and GSM future GSM historical
total demand (daily) (daily)
Train Random . . Test regression model
> Bias correction
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importance (daily)

v
Classification model

(KNN)
Recognize l'em?er.ature No Extract Regression model
tative month Peimimn temperature (daily) prediction
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Corresponding I Yes
1 hourly data

Future hourly

Figure 7.13: Flowchart of the workflow to process the GCM data to be used for building energy simulation; the
Random Forest algorithm is used twice; once in the feature importance sub-process (shown in pink) with single
target of total demand; and once as a regression model (shown in green) with multi-target of 24 hour-temperature
and input of daily-averaged temperature.

As seen in Figure 7.13, the blue blocks in the middle of the flowchart show the bias-correction
process. The sub-process is done to remove the bias in the GCM data. The observed daily-average
and GCM historical data are used to correct the existing bias in the future GCM data. The output
of this sub-process is the bias-corrected GCM daily data for four weather parameters; temperature,
solar irradiance, wind speed, and the atmospheric pressure. The output data is then used by the

classification model or the temperature by the regression model.

The whole pink-colored blocks on the left side of the flowchart show the feature importance sub-
process. The sub-process is done in order to determine the weighting factors for all four weather

parameters used in the classification model (equation 2). Multi-years hourly observed data is used
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to simulate a small prototypical office building with EnergyPlus building energy simulation. The
daily-average weather data and corresponding total energy demand is then used to train the
Random Forest (RF) model, and the feature importance of each weather parameter is found. The
goal of using RF at this step is to create a good fit to the data in order to find the importance of
each weather parameter in predicting the output (daily-average total demand). In other words, in

this case, the RF is not used for prediction, and therefore, a training phase is not required.

As stated, an auxiliary regression model is also used to downscale the GCM-daily data for
situations when the GCM future bias-corrected temperature is considerably higher or lower than
any observed data. For these situations, the consequent temperature CDF of the bias-corrected data
is considerably deviated from the CDF of the observed daily-averaged temperature. The green
blocks on the right of the flowchart show the train, test, and prediction steps for the RF multi-target
regression model. The observed-daily averaged temperatures are used as the input, and the 24
hourly temperature values are used as the targets to train the regression model. In the testing phase,

the model is tested with unseen observed values to ensure the model properly predicts the values.

The orange blocks show the classification sub-process. The daily-average observed data, along
with the bias-corrected GCM data and feature importance of each weather parameter, are
introduced in the KNN algorithm to find the most statistically similar weather pattern to the future
data from the observed data. The statistical similarity is based on the comparison of CDFs of the
four weather parameters, as explained in section 7.3.3.1. The date of the most similar weather
pattern is noted. At this step, the deviation of the CDF of the selected month’s temperature from
the temperature CDF for the future GCM is examined. If the deviation is less than the specified
threshold, all the corresponding hourly weather parameter data of the noted date, including
temperature, are directly used as future hourly data. Otherwise, only the hourly temperature of the
month found by KNN is replaced with the output of the multi-target Random Forest regression
model (input is the bias-corrected temperature of the GCM).

The procedure is done for all the 12 months of the year from 2020 to 2049 for all four climate
change scenarios. As a result, for each year of the future, 12 months of hourly historical weather
data are generated. The three deviation thresholds defined in section 7.3.3.1 are considered to
evaluate the effect of the threshold criteria in the workflow. Overall, 360 weather years

representing the future 30 years are made for each of the four scenarios for all three thresholds.
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The next section shows the results of the weather year and corresponding building energy

simulations.

7.4 Results and Discussion

The workflow described in the previous section used to generate 360 weather years for the future
30 years under four climate change scenarios and three levels of thresholds. As an example, Table
7.3 shows the historical months from which weather data are used to generate the future hourly
weather data of 2020 with RCP 2.6. 4.5, 6, and 8.5 W/m? and under the three thresholds of 0.03,
0.04, and 0.05. Depending on the RCP, various months from different years are selected as the
corresponding months of the future year. As expected, the regression model (Shown with ‘R’) is
less frequently used when a higher level of threshold is selected. As defined in previous sections,
the threshold is the criteria for using the regression model temperature data instead of the
temperature resulted from KNN. The deviation of the temperature CDF of the selected month by
KNN from the temperature CDF of the GCM future data is compared. If the difference falls within
the threshold, the KNN temperature data is kept, else the Random Forest predicted data is used.
For example, under RCP of 2.6 the regression model is used only once with a threshold of 0.05

whereas, it is used 8 out of 12 times with a threshold of 0.03.

It should be noted that the regression model in the workflow can be used for the following two
conditions; 1) When the future GCM month is warmer or colder than all the observed historical
months and 2) when a very small threshold is selected, and the algorithm is interested to predict
the data as close as possible to the GCM data. By continuously observing the selected data by
KNN (Figure 7.10 as an example), it is realized that a deviation higher than 0.05 happens when
the future GCM data is considerably warmer or colder than the warmest or coldest historical
observed month. Considering the high weighting factor for the average temperature, it can be
inferred that all months represented by ‘R’ and under the threshold of 0.05 in Table 7.4 are simply
the months that are predicted to be warmer or colder than any of the observed historical months in
the past by the GCM. However, it must be noted that deviations of 0.04 and 0.03 do not necessarily
infer this, as it has been observed that in cases where the deviation is within the range of 0.03 to
0.04, there has been at least one colder or warmer month. In these conditions, the regression model

is used only to make the results closer to the future data.
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Table 7.4: The historical years from which hourly data are selected month-by-month for the future year of 2020; the
months in which temperature is corrected by the values of regression model are shown with ‘R’.

2020
RCP Threshold Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1984 1972 1968 1958 1999 1969 1968 2004 2000 1971 1958 1973
0.05 R
2.6
0.04 R R R R
0.03 R R R R R R R R
2014 1975 1989 1956 1976 1976 1954 1964 1976 1957 1989 1975
0.05 R R
4.5
0.04 R R R R R R R
0.03 R R R R R R R R R R R R
2008 1975 1968 2006 2004 2003 1963 2007 1974 1970 2002 1973
0.05
6.0
0.04 R R R R R
0.03 R R R R R R R R R R R
1964 1979 1992 1982 1959 2008 1963 2003 1999 1969 1986 1957
0.05 R R R
8.5
0.04 R R R R R R
0.03 R R R R R R R R R R R R

To validate the method, the daily average of the downscaled hourly data is compared with the
original bias-corrected GCM data. Figure 7.14 shows the daily average of the created downscaled
hourly temperature under RCP 8.5 for all three thresholds for the year 2020, compared to the
corresponding bias-corrected GCM temperature. The figure shows that the daily-average of the

downscaled data are in very good agreement with the original bias-corrected data (red).

As it is seen from Table 7.3, for RCP 8.5, with a threshold of 0.03, all the temperature values
selected by KNN are replaced with the regression model output for all the months of the year 2020.
In Figure 7.14, the temperatures for the threshold of 0.03 and the GCM bias-corrected data (blue
and red) overlap for all the months of the year. The lower threshold of 0.03 means the regression
model is more frequently used to downscale the data. When the regression model is used for a
month, the downscaled hourly daily-average data was found to be exactly equal to the mean of the
daily GCM bias-corrected data, as observed in Figures 7.10 and 7.11. In fact, any threshold
between 0.03 and 0.05 can be used by the user; however, the following tradeoffs must be

considered:

1) A smaller temperature deviation (threshold closer to 0.03) from the GCM data will sacrifice

the actual correlation between temperature and the other parameters.
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2) A larger temperature deviation (threshold closer to 0.05) from the GCM data will maintain the

actual correlation between the parameters.

In other words, in order for the downscaled temperature to be closer in value to the GCM bias-
corrected temperature, the smaller threshold (0.03) sacrifices the correlation between the

temperature and the other weather parameters.

For the threshold of 0.05, the regression model is only used for January, March, and August
which means that except for these three months, the actual correlations between temperature and
all the other weather variables are respected. During these months, the temperature data created
with the threshold of 0.03 criteria overlap with the other thresholds and the GCM data. In other
words, during these three months, the daily-average of downscaled hourly temperatures are
identical to the GCM bias-corrected data. However, the correlations between the temperature and
other weather parameters are not necessarily respected. For the threshold of 0.04, during the
months of January, February, March, May, August, and December, the regression model is used,
and the data overlaps with the 0.03 threshold and the GCM data. For other months, although the
data with a threshold of 0.04 does not overlap with the GCM data, there is only a minor deviation
between the threshold of 0.04 data and the GCM bias-corrected data.

RCP 8.5

Temperature(°C)

e T-0.03
s T-0.04
-30 = T-0.05
—— GCM-bias-corrected

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 7.14: The daily-averaged temperature created under RCP 8.5 with three thresholds and the corresponding
bias-corrected GCM temperature for the year 2020 (discontinuity at the end of February is due to the leap year).
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In addition, the yearly-average temperatures disaggregated by the workflow with three different
thresholds are compared with the bias-corrected GCM data under the four RCMs in Figure 7.15.
For all the RCPs, the threshold of 0.03 shows a very close result to yearly-average GCM bias-
corrected data. As expected, the threshold of 0.05 shows the largest deviation from the GCM bias-
corrected data, although the deviation at most is within about 1°C. Moreover, RCP 4.5 and 8.5
show higher year by year change. Consequently, a drastic year by year change is expected in the

cooling and heating energy demand of the building.
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Figure 7.15: Yearly-averaged temperature of GCM bias-corrected data and temperature disaggregated with the three
levels of threshold under the four RCPs.

Figure 7.16 presents the annual cooling and heating energy demand of the building simulated with
weather files created with the three thresholds and under the four RCPs. For RCPs 6 and 8.5, a
minor trend of increase in cooling energy demand can be seen. For RCP 2.6 almost a constant
trend can be seen in cooling energy demand whereas, in RCP 4.5, the cooling energy demand trend

slightly increases until around the year 2042, where it begins to decrease for the remaining years.
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A cooling range of 50 to 70 kWh/m? is noted for most of the time for all the RCPs, although there
are a few values passing this range, including about 45 kWh/m? in RCP 4.5 and about 78 kWh/m?
in RCP 2.6 and 8.5.

For heating, a steep decrease is noted for all cases. Furthermore, a drastic year by year change in
heating energy demand is found under RCP 8.5, which is in line with the drastic change of
temperature under RCP 8.5 (Figure 7.15). A wide range of about 83 to 136 kWh/m? in heating
energy demand can be seen under RCP 8.5. For RCP 2.6 and 6 the range is reduced to about 90 to
130 kWh/m?.
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Figure 7.16: Annual cooling and heating energy demand of the building simulated with the weather files generated
under the four RCPs and based on three thresholds.

Choosing different thresholds has a minor effect on annual cooling energy demand. The maximum
deviation is found to be at most about 12 kWh/m? (or 10%) deviation in the year 2042 under RCP
8.5. This is mainly because of the fact that during the summer, solar irradiance can have a
considerable effect on cooling energy demand, whereas the solar irradiance doesn’t change under

different thresholds. In other words, only temperature in the weather year might change with
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different thresholds. On the other hand, for heating, choosing different thresholds leads to slightly
higher deviations in annual energy demand. This is due to the fact that during winter, the days are
shorter and cloudier, and the sun angle is lower in cold climates. Therefore, less solar radiation is
available, and the total heating energy demand is sensitive to outside air temperature change.
Hence, changing the threshold and consequent temperature data of the weather year leads to higher
heating energy demand deviation. From Figures 7.14 to 7.16, with a threshold of 0.03, the
regression model is used for most months of the weather file. Due to the selection of the regression
model data, the relationship between the weather parameters may change. In contrast, with a
threshold of 0.05, the regression model is barely used, and for most of the months, the temperature
remains unchanged. However, the temperature selected from the classification might significantly
deviate from the GCM temperature data. A threshold of 0.04 can be assumed as a conservative
value, as it shows good results when comparing the corresponding output temperatures to the GCM
bias-corrected temperature data. Furthermore, the specified threshold of 0.04 allows maintaining
the relationship of the weather parameters, at the hourly resolution, for most cases. This is due to
the fact that the real historical temperature from the classification model is kept rather than using

the regression model.
In summary, the findings determined from this study are as follows:

e A statistical bias-correction method is used to remove the bias in the GCM data and
calibrate it with station data; the station data can be a local weather station data as well.

e A weather classification model is introduced to downscale the GCM data for building
energy simulation.

e The classification model keeps the actual correlations among the weather parameters as it
uses whole weather parameters actual hourly data from observed data for future values.

e For those cases when the GCM future temperature is considerably higher or lower than any
observed historical temperature, a regression model is trained on historical data to learn the
relationship between the daily-averaged temperature data and hourly data; therefore the
model is used to downscale the temperature and replace the temperature of the

classification model with the regression output.
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e A threshold is considered in order to evaluate the deviation of the observed temperature
from the GCM temperature. In the case that the threshold for the temperature is not met,
the regression model data is selected, otherwise, the classification model data is used.

e The thresholds can be selected by the user, however the following tradeoffs must be
considered: 1) A smaller temperature deviation (closer to 0.03) from GCM data will
sacrifice the actual correlation between temperatures and the other weather parameters and
2) A larger temperature deviation from the GCM data will maintain the actual correlation
between the temperature and the other weather parameters.

e The proposed method keeps the statistics of the GCM data when data is downscaled which
means that if the downscaled hourly data is averaged again, the statistics of the average

data and the bias-corrected GCM data would be the same

The multiple year by year generated weather files can be used for simulation by architects, energy
modelers, and engineers to evaluate and optimize their designs facing natural year by year weather

variation and extreme weather conditions under climate change.

7.5 Conclusion

GCM data has been widely used as a means to assess the impact of climate change in various
fields. In the case of building energy performance, the use of GCM data may allow to better
estimate future building energy performance. However, GCM data is biased, where a considerable
deviation can be found between historical GCM data and the observed weather station data, and
do not have the hourly resolution required for building energy simulation. In order for GCM data
to be used as a means to estimate future building energy performance, further processing is

required.

The current study applied the quantile-quantile method, which statistically removes the bias in the
GCM future data by comparing the historical GCM data with observed station weather data. The
method can be applied to all weather parameters. Once the bias was corrected, the study applied a
hybrid classification-regression model to downscale the bias-corrected GCM data. The method
uses similarly observed weather data to represent future data. This method allows for the
correlation among the weather parameters to be preserved with an hourly resolution. However,

this K-nearest neighborhood machine-learned classification model cannot provide data for cases
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that are outside of the observed data range. In other words, it may not be able to solve for cases
with higher temperature intensity resulting from climate change. Therefore, the study applied a
regression model for cases where the future GCM data is considerably warmer or colder than any
observed weather data. In such situations, the temperature values from the classification model is
replaced with hourly temperature data from the Random Forest regression model to follow the

temperature rise due to climate change effect.

The suggested workflow allows generation of future weather files for each future year for different
climate change scenarios. The workflow preserves the extreme weather characteristics and is

suitable for reliability analysis.

7.6 Remark

The study introduces the weather classification method as a technique to downscale the GCM
future data to hourly resolution data for building simulation. The current study uses a single GCM
model (GFDL-ESM2M) containing all the four climate change scenarios RCPs. Two assumptions

are made in this study:

1. the GCM data is stationary which means while the climate changes, the statistical relations

among the meteorological parameters remain constant over time;

2. the GCM correctly model the future climate change scenarios after the bias-correction is

conducted although it not guaranteed that this assumption will be actually true.

The goal of the study was to show the new method of bias-correction downscaling in building
simulation. For, more reliable results, it is suggested to use the data based on the average of
multiple GCM models. Furthermore, by following the proposed workflow, future weather files can
be generated for a specific application, in this study, for building energy simulation. Other
applications such as performance analysis of energy generation might require another set of future

weather files generated for that purpose.
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Chapter 8. DESIGN SOLUTIONS UNDER WEATHER VARIATION AND CLIMATE
CHANGE
Building design solutions under climate change suggested by previous studies were highly related
to the method of climate change assessment. In most studies, a single representative year was used
to show a couple of decades' climatic conditions. Therefore, finding the design solutions
methodology was limited to optimizations without considering the fluctuations and variations
resulting from the weather's natural variation. This chapter aims to introduce a novel method to
select the design variable that meets the requirements with a high probability of success under
different climate change scenarios. In other words, at the design step of building, those designs
meet the energy efficiency levels most of the time, excel the designs with only a few times meeting
the targets, and are better candidates for the final design selection. The workflow helps architects
and designers find the best design solutions under uncertain conditions of climate change at the
buildings' design stage. The workflow applies the constructed future climate change weather files
under different scenarios (from chapter 7) and predicts multiple design options' energy
performance under the future climate. The workflow applies a novel method to find the design
solutions that reduce the building's cooling and heating demand and the building keeps the

performance under different climate change scenarios.

8.1 Introduction:

In the recent years, considerable researches focused on climate change in building sector. Many
researches focused on assessment of climate change impact on existing buildings energy
consumption including low energy buildings [1,2]. This included numerous studies for different
building types and climates which are helpful to demonstrate the vulnerability of building sector
to climate change. Fonseca et al. [3] quantified the effect of climate change on building energy
consumption across 96 cities in the United States and found a rise in the energy use intensity of
buildings for most cities and climate zones. They suggested prioritization for building energy
efficiency of warm and humid climates. For Toronto, a cold Canadian climate, Berardi and
Jatarpour [4] studied the effect of climate change on 16 prototype buildings and found a decrease
of heating EUI by 18-33% and an increase of cooling EUI by 15%—126% by 2070s. Further studies

considered other aspects resulted from climate change. Dino and Akgiil [5] studied the effect of
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climate change on existing residential building stock in Turkey in case of energy use, greenhouse
gas emissions and occupant comfort; they concluded that cooling was dominate thermal loads due
to increased temperatures and it was even worse in warmer climates. Their analysis showed severe
overheating for poorly ventilated and highly insulated buildings. Other studies considered the
effect of climate change on performance of buildings utilized renewable energies; in many studies
the modelled present zero-energy building in different climates would not achieve net zero target

in future under climate change [6-8].

Other studies focused on strategies toward the mitigation of the climate change impact on buildings
using various techniques at design stage or retrofitting. Shen et al. [9] showed that considering the
effect of climate change can significantly change the strategies of selecting energy efficiency
measures during the buildings retrofit as a result of increasing cooling however, only one climate

change scenario was considered in the study.

At the early design stage of a net-zero energy building, Chai et al. [10] optimized the sizing of a
net-zero energy building air-conditioning system, the PV system and the electrical storage system
under climate change without optimization of building enclosure. Gercek and Arsan [11]
conducted sensitivity analysis for a residential building design parameters in Turkey under climate
change; their analysis for a warm and humid climate indicated that the most important design
parameters related to energy and environment were those with the transparent surfaces of the
building enclosure, i.e. solar heat gain coefficients (SHGC), and heat transfer coefficients (U-

value) of transparent surfaces of the building.

The effect of architectural design parameters in mitigating the effect of climate change is also
investigated in the literature. Roshan et al. [12] downscaled two climate variables namely,
temperature and relative humidity of a general circulation model (GCM) under three scenarios for
10 cities representing 10 climatic condition in Iran. Having the two climatic condition data, the
authors investigated various design strategies suggested by Givani [13] bioclimatic chart in the
past and the future time horizon for the 10 climatic conditions. The design strategies were 16
design strategies suggested by Givani [13] including active heating/cooling, passive cooling,
shading, etc that could be used by architects to design the buildings according to climatic condition.

Their study showed that compared to the past, the design strategies changed when the future
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climate were considered in some climates. However, the authors did not consider the solar

radiation effect in their investigation.

Rubio-Bellido et al. [14] optimized annual energy demand of an office building in 9 Chilean
climate zones under an extreme climate change scenario; the authors optimized the energy demand
using the parameters of form ratio (FR) and window-to-wall ratio (WWR) and concluded that for
different climates, different climate change scenarios, and different future time period, the

optimum value of FR and WWR can vary.

The design solutions suggested by the literature were highly related to the method of climate
change assessment. In all of the literature, a single representative year was used to show the
climatic condition of couple of decades. Most of the literature used morphing method that apply
the super imposed effect of the climate change on a single typical meteorological year [15-22];
consequently, the methodology of design solutions were limited to optimizations without

considering the fluctuations and variations resulted from the natural variation of weather.

8.1.1 System Engineering designs to mitigate climate change

8.1.1.1 Robust design

Although energy consumption reduction might be a major objective in the design of a sustainable
energy building, it may not be the only concern in design. Generally, the uncertain parameters such
as occupancy patterns and weather condition variation can lead to a significant variation in energy
performance. Even multi-year energy simulations with historical weather data show considerable
fluctuation in a period of time. In these situations, the simulations with some weather years might
lead to meeting the energy efficiency target whereas they may not meet the target when the
simulations are conducted with other weather years. This is where an engineering design can be

significantly useful to cope with such relatively complicated problems.

Robust design optimization has been one way of dealing with selecting designs under uncertain
parameters due to occupancy-related or weather condition [23-27]. The concept of robustness in
design was associated with selecting the designs that show the least sensitivity to uncertain

condition.

In Taguchi method, the sensitivity of uncertain condition is defined by signal-to-noise ratio (S/N)

with unit of decibel (db) expressed in the following [28]:
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S/N = 1010g10(%) (1)

Where: u is the signal factor and o is noise factor

In order to address robust design solution against climate change, a previous study [29] suggested
robust design optimization for finding design solutions. In the study, the climate change was
considered as a noise to the system therefore, used two objective function for a genetic
optimization process; the first objective was to optimize signal-to-noise ratio (S/N), and the second
objective function was to minimize the energy use. The study used 3 weather files, a constructed

typical (TDY), an extreme cold year (ECY), and an extreme warm (EWY) future years as input.

The S/N was adopted to the problem by defining first the variability in response expressed by mean
squared deviation (MSD) which is average squared difference of energy simulated with ECY and
EWY from TDY as reference values. The second parameter of S/N was defined by energy
performance of the design with TDY. The whole objective function was formulated with following

equation:

14
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Where: p is temporal resolution (12 for monthly, 8760 for hourly), ETDI(ui) is the energy

performance of each design with TDY, and MSD is the average squared difference of energy

simulated with ECY and EWY from TDY.

By minimizing the two objective functions, the authors found the robust design solutions against

the climate change.

Although optimization makes the process faster, it doesn’t provide observing all the design options
over long-term. In engineering problems, designers might interested in more output characteristics;
for example, designers may want to achieve more chance of success or meeting a design goal that

can be achieved through axiomatic design concept.

8.1.1.2 Axiomatic Design
The axiomatic design focuses on mapping between design parameters and functional requirements.

In axiomatic design, the functional requirement can be met through a systematic formulation of

design parameters [30]:
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Where: FR is matrix of requirement, A is called design matrix and DP is matrix of design

parameters.

The name of axiomatic design comes from design principle or axiom in which two axioms should

be respected:
1: The Independence Axiom:
Maintaining the independence of the functional requirements (FRs).
2: The Information Axiom:
Minimize the information content of the design or maximize the probability of success [30].

According to the axiomatic design, good designs are those respecting the two axioms. The
axiomatic designs were previously used in many industries [31-33] including HVAC design [34].
This study introduces the axiomatic design concept in building energy performance under
uncertain condition of climate change. In green building industry, the functional requirement can
be total energy consumption intensity, cooling and heating demand, Greenhouse gas emissions,
etc. The design parameters are building envelope, HVAC, and architectural design parameters.
The probability of success also can be considered as probability of a design to meet a specific

target or functional requirement under uncertain condition.

According to the independent axiom, the good design is the design in which changing the value of
a design parameter, does not affect more than one functional requirement; this axiom in practice,
requires to have design parameters equal or higher than the numbers of functional requirements,
otherwise the design would be called a coupled design which is not acceptable by the theory. If
the number of design parameters is more than the number of functional requirement, the system is
either coupled or redundant; in a redundant system, by aggregating the design parameters and
tuning the values, a decoupled design can be achieved which is considered a good design by
axiomatic design [30]. For the case of building cooling and heating demand efficiency, many
design efficiency measures contribute to either cooling or heating efficiency whereas at the same
time it contributes to a penalty in the other if used alone. This means that changing value of a

design parameter can change both functional requirement. For example, using a single efficiency
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measure of reflective color for walls reduces the cooling energy demand in summer, whereas, it
increases the heating energy demand in winter; these savings and penalties varies in different
climates and building characteristics. However, if multiple design parameters are applied, by
aggregating the effects of multiple design parameters a good design fulfilling the functional

requirement can be achieved.

Moreover, in many guidelines and standards like those that are based on performance, the cooling
and heating demand must be less than an absolute target [35] which can be considered as functional
requirement in axiomatic design concept. However, what is less considered (if any), is the
probability of the success or probability to meet the targets. At the design stage of a sustainable
and energy-efficient building, the decision about the design should be made under uncertain
condition related to the project. There can be a considerable uncertainty in building energy

consumption corresponding to variable weather condition.

The axiomatic design is identified through quantification of probability of success; this means the
probability that a design meets the functional requirements. Considering the policies and design
goal, the axiomatic design tackles the uncertainty introduced by weather variation and climate
change by finding the designs that meet the functional requirement with the most probability over
the expected lifespan of the building. In order to find the best values for design parameters, the
simulation tools can be used. With the novel machine learning algorithms, the consideration of all
the design options under all the future climate change weather years doesn’t necessarily require
full simulation runs; therefore surrogate models trained on significantly lower number of

simulations can be used to cover all design space under all the future weather years.

8.1.2 Objective and organization of the study

The goal of this study is to select the design variable that meet the requirements with high
probability of success under different climate change scenarios. This means that at the design step
of building, those designs meeting the energy efficiency levels for most of the time excel the
designs with only a few times meeting the targets and are better candidate for final design. The
workflow help architects and designer to find the best design solutions under uncertain condition
of climate change at design stage of the buildings. In addition, policy makers can use the workflow

to observe the energy performance of multiple building characteristics under climate change in
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order to make appropriate national, provincial, and municipality codes both for building envelops

and energy performance of different buildings in different climate zones.
The rest of the study is organized into different sections:

In section 8.2.1 the simulation results of a baseline model under historical and future weather years
are shown to explore the trend of cooling and heating over a long period of time. In section §.2.2
the design of experiment as a method to create different design alternatives is explained. A deep
neural network will be applied to reduce the number of required simulation runs. Therefore,
preprocessing of input and simulation output is conducted in section 8.2.3 to prepare data for
raining and testing of the model. The model architecture, validation and test, together with post
processing are explained in section 8.2.4. A performance indicator for different design alternatives
is introduced in section 8.2.5; this is followed by a summary of the whole methodology used in
this study in section 8.2.6. The results are shown in section 8.3 followed by discussion in section

8.4. Finally, the contribution of the study is summarized in section 8.5.

8.2 Methodology

8.2.1 Observing energy performance of a baseline over time

The historical and the future weather data under the four scenarios constructed in the previous
chapter were used to simulate the case study building with NECB 2015 standard as a baseline
model. The simulations are conducted for the historical period of 1953-2014 and the future years
of 2020-2049. In addition, the simulation is conducted with Canadian weather year for energy
calculation (CWEC) to compare the results with historical and future weathers. Figure 8.1 shows
the cooling and heating demand of the building under historical, future, and CWEC weather years.
From the figure, since the CWEC is a representative of the years 1960-1989, the cooling and
heating demand result of CWEC (black line) show an acceptable agreement with the cooling and
heating results of the actual years for the same period. However, after the 1989, the cooling shows

an increasing trend whereas the heating shows an increasing trend.
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Figure 8.1: Annual cooling and heating of the small office building under historical, CWEC, and future weather
years.

The result of simulation with CWEC shows a cooling demand of about 45 kWh/m?; the results of
the actual years between 1960 and 1989 show cooling demand within the range of 41-51 kWh/m?.
The range of cooling demand increases to 43-58 kWh/m? after 1989. The simulation results with
the future weather years show that except two years under RCP 45, all the cooling demands are

higher than 45 kWh/m? namely, between 46 and 65 kWh/m?.
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For the heating, the simulation with CWEC shows heating demand of 51 kWh/m?. For the period
of 1960-1989 the simulations with actual weather years show heating demand within the range of
46-58 kWh/m?. The heating demand gradually decreases to the range of 37-57 kWh/m? between
1990 and 2014. The range of heating demand reduces further to 30-60 kWh/m? under future
weather years between 2020 and 2049.

The above were results of the baseline model under multiple historical and future years. However,
some design combinations might present smaller energy consumptions with drastic fluctuations
whereas, others might show larger energy consumption with a slight variation over time.
Therefore, in order to investigate the performance of different design combinations, a large-scale
building energy simulations including multiple design options are conducted that are explained in

the following section.

8.2.2 Design of Experiments

In complex engineering problems where scientific theory is difficult to achieve if available,
experimentation and observation is the only approach to find a solution. When several factors play
a significant role in the performance of a system, the best strategy of experimentation is to design
a type of factorial experiment. In a factorial experiment, factors are varied together to study the
joint effects of several factors effect [36]. In fact, in each complete trial, all possible combinations
of levels of the factors are investigated [37]. The experimental design has numerous applications
including, product design configuration, process development, and optimization, performance
testing, evaluation of materials and alternatives, component tolerance determination, reliability

and life testing [36].

Building energy performance is significantly dependent on a range of architectural efficiency
measures and their interactions. Therefore, evaluation of simultaneous effects would be quite
difficult to predict unless a large-scale full factorial simulation is carried out [38]. In this study, a
factorial energy simulation are conducted to fully explore the energy performance resulted from
design space. In order to have an efficient way of investigation, the design factors are limited to
architectural and enclosure characteristics which contribute a considerable performance change.
Based on the author experience in numerous simulations and the literatures, wall and roof thermal
insulation, wall and roof solar reflectance, window-to-wall ratio, and window type are among the

most influential and practical in building envelope design. These parameters could be also found
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using sensitivity analysis techniques [38]. Table 8.1 shows the design factors and the levels for

each factor.

Table 8.1: Design parameters and levels selected for the case study

Roof Solar Wall Solar WWR Window Type Roof Thermal Wall Thermal
Reflectance Reflectance (U Factor in W/m2-K) Resistance (m2-K/W) Resistance (m2-K/W)
0.4 0.4 0.2 Type 1: U=0.39, SHGC=0.40 5.4 4
- 0.6 0.6 0.4 Type2: U=0.33, SHGC=0.40 7.4 6
g 0.8 0.8 0.6 Type3: U=0.25, SHGC=0.40 9.4 8
- 0.8 Type4: U=0.19, SHGC=0.20 11.4 10
13.4 12

As an experience, an energy simulation input file containing a design combination is constructed
and introduced to the simulation program to run. The simulations are repeated year-by-year for the

future years to evaluate the performance of each design over a period of time.

To evaluate the performance of all the design options, each design option must be simulated with
120 future weather years namely, 30 future years for each of the four climate change scenarios.
Considering the assumed 3600 design options and 120 weather years, 432000 simulations are
required to evaluate all the design options which is quite time consuming. This was also an issue
in a previous study [29]; that is why the authors in previous study made three weather files, namely,
extremely cold, extremely warm, and a typical future year, followed by optimization to find the
best solution. In the current study however, surrogate models are used to evaluate the design
options; in this case, deep neural network models are trained on the results of significantly shorter
number of simulations; then the models are used to find the performance of all the design
alternatives. Surrogate models have been used in previous studies as well and many of them

showed promising accuracy compared with simulation results [39-41].

8.2.3 Data preprocessing

In order to prepare training data for the surrogate models, six representative years with different
cooling demand levels and six representative years with heating demand levels are selected to run
the full factorial design options. The representative years are selected in a way to cover at least the
minimum, average, and maximum cooling and heating demands over the 62 historical actual years
in addition to the 120 (4 scenarios* 30 years) future years with the NCEB 2015 standard (baseline)

building. Figure 8.2 shows the representative years and corresponding cooling and heating demand
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selected to be fully simulated to be used as input for the surrogate models. For cooling, the actual
weather years of 1956, 1989, 1996, 2001 and the future weather years 2031 under RCP 4.5 and
year 2042 under RCP 6 are selected for training of the models and the year 2014 is selected to test
the models. For heating, the actual weather years of 1976, 1994, 1996, 2001, 2006 in addition to
the future year 2038 under RCP 6 is selected for training of the models and the year 2014 is selected
to test the models. Therefore, the full-factorial design options with the representative years are

simulated using EnergyPlus energy simulation program coupled with Python programming.
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Figure 8.2: Annual cooling and heating of the small office building under historical, CWEC, and future weather
years; orange and blue circles indicate the weather years selected for training of heating and cooling models
respectively; the pink and green circles indicate the weather year for test of the cooling and heating models
respectively.
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The simulation results of all the design alternative with the representative weather years are used
for training the surrogate models. To train the models, the simulation results need to be processed

to convert to a language that can be learned by the machine.

In order to train the surrogate models, the input data is needed to be processed. The input data to
the models include the building design data, temporal data, and weather data which are described

further below.

8.2.3.1. Design data encoding
The design data related to the building enclosure, previously shown in Table 8.1, included

numerical data such as solar reflectance, or categorical data such as window type. One Hot
Encoding (OHE) technique is used to encode this type of data. The technique converts n unique
levels of a design parameter (a column in the dataset of design) into n different new features (n
columns) with new binary values of 0 or 1. This technique is specifically useful for design variables
whose values do not necessarily follow an order or hierarchy in the dataset; otherwise, models
might confuse during the training process. Therefore, the six design parameters (six columns in

the dataset) are converted to 24 new features (columns) with 0 and 1.

8.2.3.2. Temporal data encoding
To consider the building's temporal features, namely, building schedules, the temporal data is also

encoded. The temporal data plays a significant role in the modeling as it can capture the hourly

schedule of the building during the days, weekday/weekend, and holidays in modeling.

The temporal data include hour of the day, day of the week, day of the month, and the month of
the year. Therefore, there were four columns of temporal data in the original training data set.
Hour of the day column has values 1 to 24; day of the week with values between 1 and 7, day of

the month with values 1 to 31, and the month of year with values 1 to 12.

Similar to the design data, the temporal data is encoded using OHE because timestep t+1 does not
necessarily have more/less cooling or heating demand than timestep n. Due to the computational
memory limitation and better capturing seasonal effect the whole hourly data is divided into four
seasons data (3 months data each). The first season is considered January-March, the second

season April-June, the third season July-September, and the last season October-December.
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For each season, the hour of the day converted to new 24 features, the day of the week converted
to 7 new features, the day of the month converted to new 31 features, and the month of the year
converted to new three features (each season data has 3 month data) all having values 0 or 1.

Overall, instead of the 4 temporal features, 65 new features are used in the dataset.

8.2.3.3. Weather data encoding
The four weather parameters of dry bulb temperature, horizontal solar irradiance, atmospheric

pressure, and wind speed were used as input to the models. The weather data were encoded using

min-max scaling using the following equations to convert all the data into values between 0 and
1.

Xscaled = (X - Xmin) / (Xmax) - Xmin) (4)

Where: X is each of the weather parameter data before scaling, Xscaled 1S €ach of the weather
parameter data after scaling, Xminis the minimum value of each weather parameter, and Xmax is the

maximum value of each weather parameter in the dataset.

After processing the input parameters, the overall 93 input features, together with corresponding

cooling or heating demand, are introduced to the models for training purposes.

8.2.4 Model

Feed Forward Neural Networks (FFN) have been previously used to build energy prediction as
surrogate models or forecast actual energy consumptions of buildings with remarkable accuracy
in previous studies [39-41]. There are various types of neural networks including Multi Perceptron
neural networks (MLP), Recurrent neural network (RNN) including Long-Short-Term-Memory
(LSTM), and Convolutional neural networks (CNN) that can be used for time-series prediction

and forecasting.

The MLP FFN is more straightforward compared to the other two; there is no feedback from output
to input, and the information moves only in one direction. Unlike LSTM, the MLP is a good auto-
regressive model that is quite necessary for the current problem because it includes multiple design
options and multiple weather years from different climate change scenarios. This study's final goal
is to find the best design solution against climate change; some designs might result in very similar
outputs, whereas others might result in significantly different outputs. The building with multiple

design options can be considered a complex non-linear system with different behaviors (designs),
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requiring accurate models to predict cooling and heating demands. In this study, eight Multi
Perceptron (MLP) feed-forward deep neural network models are trained to predict the building's
cooling and heating demand. The eight models include four models for the cooling demand of four
season data and four heating demand models for four seasons. The reasons for selecting eight

different models instead of one model are twofold:

The training data is quite large, and importing all data at one step is very challenging, if possible,
in case of computation memory. Dividing the whole weather data into different seasonal data can

make the models more accurate, as the data's variance reduces.

There are 93 features in each model's input, including all the design features, temporal features,

and the weather features; in the output, there is hourly cooling or heating demand values.

There is no particular rule for selecting the number of hidden layers and neurons; however, from
the literature, for n input features, two hidden layers with 2n+1 neurons in the first hidden layer
and n neurons in the second layer showed accurate outputs. Therefore, two hidden layers are
considered for the model. The first hidden layer has 187 neurons. The second hidden layer has 93
neurons; the output layer is a dense layer with one neuron for cooling or heating. Figure 8.3 shows

the architecture of the models.

Input Layer € R3 Hidden Layer € R187 Hidden Layer € R93 output Layer € R!

Figure 8.3: The architecture of the deep neural network model with two hidden layers; there are 187 neurons in the
first hidden layer and 93 neurons in the second hidden layer. Note: the number of neurons in the layers are reduced
in the figure for better presentation.
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Two hyper-parameters in training the networks are number of epochs and batch size. Epoch is the
number of forward and backward passes of introducing samples to the model for training; batch
size is the number of samples in each epoch. 80 epochs with batch size of 200 were considered for

models.

8.2.4.1 Model validation
The models are validated using 20% of random data in the train dataset in each epoch of each

model's training. Figures 8.4 and 8.5 show the history of the training process. The models are very
well trained in the data as mean absolute error and mean squared error show reduction trends over

epochs and the errors on train and validation dataset converge.
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Figure 8.4: History of models trained for heating demands over epochs.

The four models are trained on four different seasons heating demand data; therefore, the mean
absolute errors have different ranges. Furthermore, the Model 3 is trained on data from the
beginning of July and the end of September, where heating demand is zero or relatively small.
Although the figure shows fluctuations, the MAE reduces with further epochs, and the range of
the MAE values are quite negligible.
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Figure 8.5: History of models trained for cooling demands over epochs.

8.2.4.2 Model test
In addition to model validation, all the models' performance is tested with test data that included

weather data that was not introduced to the models during training process. In the test process, the
weather data of the year 2014 and temporal and design data are given to the models for predictions.
Afterward, the eight models' output is compared with the simulation results with the weather year
2014; the mean absolute error, mean squared error, root mean squared error, and R? of the models

are calculated and shown in table 8.2.

Table 8.2: The performance of the eight trained models in predicting the cooling and heating for 3600 design with
the weather year 2014 (test data).

Cooling Heating
MAE MSE RMSE R? MAE MSE RMSE R?
57.12 4235.6 65.08 0.9998 | 44.18 2870.1 53.57 0.9997

Table 8.2 shows the eight models' performance in predicting annual cooling and heating of all the
3600 designs for the year 2014 compared to the simulation results. From the table, the models are
entirely accurate in predicting the cooling and heating demands of the buildings for the 3600 design

options. The models' annual cooling and heating demand predictions on test data are shown in
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figures 8.6 and 8.7 with blue and orange colors. The simulation results for the same design options
and weather year 2014 are shown with the grey color. As can be seen, there are fair agreements

between the model's output and the simulation results.
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Figure 8.6: Predicted annual cooling demands of the trained models with weather year 2014 (test data) in
comparison to the simulation results; top: the whole 3600 designs, bottom: the first about 700 designs.
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Figure 8.7: Predicted annual heating demands of the trained models with weather year 2014 (test data) in
comparison to the simulation results; top: the whole 3600 designs, bottom: the first about 700 designs

8.2.4.3 Data post-processing

After training and testing the models, all the future weather years and all the design options and
temporal features are given to the models to predict all the future weather years under the four

RCPs. For each design option, the hourly results are resampled and summed annually for each
year.

8.2.5 Performance indicator

The designs' information content is expressed as a performance indicator based on the probability
of success to consider the information axiom.
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1=Y,;log, (pli) =- ¥ log,(p) i € {RCP2.5, RCP4.5, RCP6, RCP8.5} (5)

Where: [ is the information content of a design under the four RCP scenarios with unit of bits, and
p is the probability that a design meet target under a specific RCP or number of years the design

meet the targets over all the future years (e.g. 30 years for each scenario).

As mentioned before, according to the axiomatic design, the best designs are those having the
minimum information contents; in other words, the design that contributes to the smallest uncertain

information.

8.2.6 Workflow summary

Figure 8.8 shows the workflow of the methodology. The case study with NECB 2015 standard
(baseline) is simulated with historical and future weather years. The results of the baseline
simulation are used to select representative weather years. Six representative weather years for
training purposes and one weather year for testing purposes are selected. The representative
weather years then are used for full factorial design simulations (orange blocks). The simulation
results are preprocessed and divided into train and test data to be used for training and testing of
the models (blue blocks). Once the cooling and heating models are trained, they are tested with
test data, and the results are compared with the simulation results for weather year selected for
testing. After making sure that the models showed acceptable performance, the models are used to
predict all the design alternatives with all the future weather years. The output of the models are
then post-processed; for each design option, the hourly results are resampled and summed
annually; this is followed by applying the information axiom to find the best design solutions using

equation 2 from the design space.
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Figure 8.8: The workflow of the methodology

8.3 Results

The models’ outputs of cooling and heating demands of all designs for each future year under the
four RCPs are shown in figure 8.8 for better comparison. The cooling and heating demands of all

designs with the CWEC weather are shown with orange color.

In all the scenarios, the heating demands resulting from CWEC are generally lower than the future
years. The cooling demands are higher than the future years for the same design options. With
CWEC, the largest heating and cooling demands are about 60 kWh/m?, and the smallest cooling
and heating demand of about 22 kWh/m? and 17 kWh/m?, respectively. Whereas, certain designs
show a cooling demand of up to about 75 kWh/m? under RCP 6 and heating demand of up to about
50 kWh/m? under RCP 6 and 8.5, and minimum cooling of about 20 kWh/m? under RCP 4.5 and
minimum heating demand of about 7 kWh/m? under RCP 2.6.
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However, designs show different performance under different scenarios. Therefore, the designs
with the lowest cooling and heating demand under different scenarios or the designs with the most

probability to meet the performance targets can be found through design space exploration.
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Figure 8.9: Annual cooling and heating demand under four climate change scenarios; under each scenario; 108000
points represent the demand of 3600 design combination for 30 future years; the 3600 orange points represent the
same design combinations under CWEC weather condition.

8.3.1 Design space exploration

The results obtained from the models contained 3600 different design combinations with different
cooling and heating demands. The best design options are selected with inspiration from a system
design methodology called axiomatic design, which transfers customers' needs into functional

requirements that can be achieved by manipulating design parameters [30].
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The probability of meeting the targets can be defined as the number of years the heating or cooling
corresponding of design is less than a target over the next 30 years under each RCP using the
following equation. For example, if the target of cooling demand is defined as 30 kWh/m?, the
probability of meeting the cooling target of 60% under a specific RCP means the design contributes

to a cooling demand less than 30 kWh/m? in 18 out of 30 future years under the specific RCP.

The design with NECB 2015 code showed in figure 8.1, indicated the next thirty years average
cooling demand of 53.8, 54.1, 54, and 56 kWh/m? and heating demand of 45.1, 43.5, 44.6, and
45.1 kWh/m? under RCPs of 2.6, 4.5, 6, and 8.5 respectively. Therefore, the cooling and heating
demand should not surpass 53.8 and 45.1 kWh/m? for respectively cooling and heating demand in
most of the future years. With these two functional requirements and 60% probability of success,
the results show 2528 design options meet these criteria, as shown in Figure 8.10; each point can
represent the probability of success for multiple designs. The purple points with blue points in the
center show that some designs meet the targets under a specific scenario but not necessarily under

all the scenarios.
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Figure 8.10: Probability of meeting targets (functional requirement) for cooling and heating for various designs. The
blue points represent the probabilities under each RCP and the purple points show the performance of designs
meeting the targets with more than 60% under all the four scenarios.

With tougher functional requirements (targets) of 30 kWh/m? for cooling and 25 kWh/m? for
heating, the probability of meeting the targets under the RCPs are plotted in figure 8.11. A designer
can be 80% confident, that 12 designs out of 3600 design options will meet the targets under all

the four scenarios which are shown with solid purple points.

169



§ Cooling Target:30kWh/m2, Heating Target:25kWh/m2-RCP2.6 g . Cooling Target:30kWh/m2, Heating Target:25kWh/m2-RCP6

~ -

5 100 ceoo Yy 100 o0 °

o o ° oo

G C

= gao. = g0

o 80 o 80

= £

° °

S eo0- S 6o

o o

c S

= %

o 40- H 40-

= =

Y =

© o

- 20- 12 Designs meet targets > 20- 12 Designs meet targets

=4 under four RCPs with = under four RCPs with

= probability more than 80% - probability more than 80%

T °

.g 0- .g 0-

& 0 20 40 60 80 100 & 0 20 40 60 80 100
Probability of Meeting Heating Target (%) Probability of Meeting Heating Target (%)

;:5 Cooling Target:30kWh/m2, Heating Target:25kWh/m2-RCP4.5 ;\? Cooling Target:30kWh/m2, Heating Target:25kWh/m2-RCP8.5

- -

.E; 100- : .o ‘d'; 100-

o o .

1= [

© [ [ ] [ ]

5 8 8o ° -

o =

= £

© °

S eo- S so-

o o

c c

z 5

3 40- o 40-

= =

Y= Y=

© ©

> 20- 12 pesigns meet targets > 20- 12 pesigns meet targets

b= under four RCPs with =] under four RCPs with

- probability more than 80% — probability more than 80%

E B

.g 0- .g 0-

i 0 20 40 60 80 100 £ o 20 40 60 80 100
Probability of Meeting Heating Target (%) Probability of Meeting Heating Target (%)

Figure 8.11: Probability of meeting targets (functional requirement) for cooling and heating for various designs. The
blue points represent the probabilities under each RCP and the purple points show the performance of designs
meeting the targets with more than 80% under all the four scenarios.

Numerous designs meet the cooling and heating demand target, at least in one future year under
each scenario. Some designs meet the targets only once in the future years, whereas other designs
meet the targets in most future years. Therefore, those designs that meet the targets more frequently
or the design with more probability of success are considered better design according to the
axiomatic design concept. For the same cooling and heating demand targets, the information
content of all the designs that meet the targets at least in one future year is shown in figure 8.12.
Those designs with lower information content are the designs with a higher probability of success.
From the figure, design numbers between 700 and 900 show relatively smaller information

contents (less than 4 bits) in comparison to other design alternatives.
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Figure 8.12: The information content of designs that meet cooling demand target of 30 kWh/m? and heating demand
of 25 kWh/m? at least in one future year in each scenario.

The 12 designs meeting the targets under all the scenarios with probability more than 80% are

summarized in Table §8.3.

Table 8.3: The 12 designs meeting the targets with more than 80% probability under all the four RCP scenarios

Roof Thermal Wall Thermal
Window Type Resistance Resistance Roof Solar Wall Solar Information
WWR (U Factor in W/m?2-K) (m2-K/W) (m2-K/W) Reflectance  Reflectance (bits)
1 0.2 Window_U_0.19_SHGC_0.20 5.4 4 0.6 0.6 1.1966899
2 0.2 Window_U_0.19_SHGC_0.20 5.4 6 0.6 0.6 0.5964203
3 0.2 Window_U_0.19_SHGC_0.20 5.4 8 0.6 0.6 0.6156279
4 0.2 Window_U_0.19_SHGC_0.20 5.4 10 0.6 0.6 0.5188035
5 0.2 Window_U_0.19_SHGC_0.20 7.4 4 0.6 0.6 0.6057236
6| 02  Window_U_0.19_SHGC_0.20 5.4 4 0.6 0.4 1.1823621
7 0.2 Window_U_0.19_SHGC_0.20 5.4 6 0.6 0.4 0.6640401
8| 02  Window_U_0.19_SHGC_0.20 7.4 4 0.6 0.4 0.6640401
9 0.2 Window_U_0.19_SHGC_0.20 5.4 4 0.6 0.2 1.3500329
10 | 0.2  Window_U_0.19_SHGC_0.20 5.4 4 0.4 0.6 1.2340009
11 0.2 Window_U_0.19_SHGC_0.20 5.4 6 0.4 0.6 0.6640401
12 | 02  Window_U_0.19_SHGC_0.20 5.4 4 0.4 0.4 1.3500329
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From Table 8.3, while all the design options meet the targets with more than 80% probability under
the four scenarios, some designs' information content is less than others and, therefore, are better
designs according to the second axiom. All the design options suggest a window-to-wall ratio of
0.2 with window type 4, namely, with U factor 0.19 W/m?-K and SHGC 0.2. The reason must be
because a smaller window with smaller solar heat gain prevents heat gain through the coming

sunny warm days and prevents the heat loss during the cold days in the future.

In most designs, roof thermal resistance of 5.4 m>-K/W with a solar reflectance of 0.6 is suggested
to reduce the building's cooling load. The low thermal resistance of 5.4 m?-K/W is because a high
thermal resistance leads to a heat trap in the attic, which leads to a high cooling load for the
building. However, walls thermal resistance is suggested to have a low thermal resistance of 4
W/m?-K to the high value of 10 W/m?-K yet, the high thermal resistance of 12 W/m?-K is not
found in any of the 12 designs. The wall solar reflectance is also suggested to be a value of 0.2,
0.4, or 0.6; this shows that the building may be more sensitive to the roof than the wall, although
the smallest information content belongs to the design number 4 with thermal resistance 10 W/m2-
K and solar reflectance 0.6. Since the sun angle is lower and less solar radiation is available in
winter, design number 4 helps thermal zones keep cooler in summer and warmer in winter under

different climate change scenarios.

Overall, the roof solar reflectance is mostly suggested to be 0.6 while the roof thermal resistance
is suggested to be the minimum value of 5.4 W/m?, which is equal to the value suggested by the
current NECB standard. The suggested values generally express a smaller window to wall ratio
with lower U-value windows; besides, the smaller roof and wall thermal resistance indicate higher
thermal resistance is not necessarily associated with sustainability in design. The higher roof solar
reflectance in roof and wall indicates the cooling strategy of building through the roof and wall in

summer.

8.4 Discussion

The probability calculated for the designs can have other advantages. The probability of success
calculated in previous section can be used for other purposes such as risk assessment as well which

is described in the following.
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8.4.1 Risk definition

For a project investor and policymakers, an insight into the success of the project is significantly
essential. Generally, the risk is defined as the expected consequence associated with an event.
Therefore, the product of the probability and consequence of an event calculates the risk.
Considering that many utilities have different policies and rates regarding the electricity price,
some level of caution is suggested to calculate the risk. However, a fundamental way of calculating
the partial risk related to the energy performance of design of a sustainable building can be the

product of the probability of the failure of the design (Pf = 1-P) and the electricity cost.

8.4.2 Risk treatment

The risk analysis can be conducted based on uncertain parameters that can be because of:

a. natural variation (in this case, natural variation of weather under different climate change

scenarios).

b. modeling, which can be either related to the parameters that are ignored in the modeling or

related to the model's mathematics.
c. the statistical uncertainty that is related to the techniques of the probability calculation.

This study's objective is the item a. which is the natural variation and the effect of climate change

contributing to the risk in sustainable building design.

8.4.3 Risk mitigation

Risk mitigation of a sustainable building under climate change and weather variation can be carried
out by modifying building energy performance control at the operational stage. For example, when
a very cold or warm year is anticipated, or a forecasted sky day is predicted, the occupants are
asked to limit their miscellaneous electricity consumption to essential requirements. Predictive

control strategies can implement this.

8.4.4 Risk reduction
The risk reduction is performed at the design stage by selecting a high probability of success as a
target at the design stage. The risk can also be reduced by reducing the failure's consequence at the

operational stage through control optimization.
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8.4.5 Risk transfer
The risk calculation associated with the design can be used by the third party companies such as

insurance, or financial centers.

8.4.6 Risk acceptance
The methodology used in this study enables the decision-makers to select the designs that comply

with risk acceptance criteria.

8.5 Contribution

In this study, a workflow is suggested to consider climate change and its effects on the buildings'
energy performance and suggest building designs that meet the predefined performance targets

under uncertain climate change scenarios with probability defined by designers.

The proposed method provides the opportunity to observe the variability of each design solution's
energy performance under the effect of climate change. The probability of success is introduced
to design options at the design stage such that those design solutions with a minimum information
content can be selected as the final design solutions. The proposed method helps to select the
designs contributing to resilient performance against the effect of climate change; meanwhile, it
will help avoid under/overdesign building thermal characteristics while keeping the targets.
Depending on the project delivery method, this might be very important for the design-builder
team or the owner who will be contractually responsible for the actual performance of the design
to meet or exceed the design target. Furthermore, the probability of success calculated in the

workflow can be used by the third party companies.
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Chapter 9. CONCLUSION AND FUTURE WORK

9.1 Conclusion

For evaluating the building energy performance, the current practice is building simulation with a
single typical meteorological year statistically selected from the actual historical year. The single
representative year's main problem is that it cannot be used for extreme condition analysis and
varying weather conditions. Knowing that building energy performance is considerably influenced
by weather conditions, building energy performance can be significantly degraded under climate
change. For example, one actual problem for cold climate buildings is the risk of overheating,
which can endanger the occupant's health during extreme heatwaves. The main reason is that the
buildings were initially designed for the heating-dominant condition a couple of decades ago.
Under the effect of climate change, a major challenge is that the decision-makers including
designers, investors, and engineers of the project cannot select the best design solution because
they cannot foresee the consequence of uncertain events that affect the payoff of each design

solution.

This study first introduced a novel machine learning approach to systematically reduce the
deviation of the simulation with a typical meteorological year from the simulation with actual
weather year results. The systematic approach replaces the universal expert's judgments-based
with non-universal data-analytic-based using machine learning algorithms. The approach

considerably improved the applicability of a single typical meteorological year.

Furthermore, a novel machine learning approach is introduced to downscale climate change to
construct multiple year-by-year future weather files under different climate change scenarios.
Unlike the simple so-called 'morphing' method, the method captures future climate data's intensity
and frequency and constructs future weather years. This feature helps create logical future years
for future building performance prediction and optimizing the performance considering natural
weather variation under multiple climate change scenarios at the building's design stage. The

constructed weather files can also be used for extreme conditions analysis.

Finally, a novel method is introduced to select the design variable that meets the requirements with
a high probability of success under different climate change scenarios. The workflow helps

architects and designers find the best design solutions under uncertain climate change conditions
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at the buildings' design stage. Besides, policymakers can use the workflow to observe the energy
performance of multiple building characteristics under climate change to make appropriate
national, provincial, and municipality codes for building envelop and different buildings' energy

performance in different climate zones.

9.2 Future work

The current study used a single GCM model containing all the four climate change scenarios RCPs.
The current study is conducted with the assumption that the GCM used correctly predict the future
climate condition. However, different GCMs might differently predict future climate due to the
difference in algorithms and mathematical equations. Therefore as a first future work, an ensemble

of multiple GCMs or regional climate models will be used for more reliable results.

Furthermore, the generated future weather files work best for building energy simulation with
regards to energy consumption. For other energy systems such as renewables, the importance of
weather parameters on outputs is different. Therefore, a new set of weather files can be constructed

with updated weather parameters importance depending on the application as a second future task.
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