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Abstract 
 

College level students’ understanding of functions in the context of modelling 

dynamic situations 

 

Devrim Turan 

Concordia University, 2021 

 

One of the critical tasks in early mathematical education is teaching the concept of function and its 

different representations through diverse examples and dynamic tasks. This task is meant to enable 

students to develop meaningful and powerful constructions between functional concepts and 

procedures, to conceptualize a function as a generalized process that accepts input and produces output 

and, therefore, to build essential conceptual and analytical thinking of functions that are necessary to 

form a covariational conception of function. This is particularly useful for College level students enrolled 

in Calculus courses who need a strong covariational conception of function to further succeed in 

mathematics courses.  

My thesis reveals that, from a sample group of college level students enrolled in Calculus courses at 

Concordia University, many participants do not have a strong conceptual or/and analytical thinking of 

functions that is essential in meaningfully modeling dynamic situations. Majority of students, who have 

obstacle(s) or/and pseudo-thought(s) or/and misconception(s) due to them having weak 

analytical/conceptual understanding of functions, do not move flexibly between different 

representations of functions and fail to view a function as a process that maps values of one variable to 

values of another variable. Consequently, these students generally do not reason dynamic functional 

situations covariationally at a higher level. This outcome questions the readiness of Calculus students for 

subsequent mathematics courses, as well as the effectiveness of prior school curriculum in mathematics 

education. 
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1 INTRODUCTION 

Along the history of humankind, mathematics has been a leading actor in the development of society 

and the notion of function has been playing a critical role as a unifying concept, not only in different 

branches of mathematics, but also in other sciences such as physics, chemistry or biology, or everyday 

life, where it modelled real-life situations. For example, the narrative ‘my height grows with age’ 

represents a function in which height is a dependent variable while time is a universal independent 

variable.  How do college level students reason this basic situation? Do they notice that this dynamic 

phenomenon represents a function? Do they realize that height is an output variable while time is an 

input variable? Do students think how height changes continuously (increasing, generally until the age of 

20s when it stops increasing) while time also changing continuously (always increasing), and these two 

variables changing in tandem? In other words, do college level students reason the given dynamic 

functional situation covariationally?  

In this thesis, I will describe how students enrolled in college level Calculus courses at Concordia 

University understand functions when they are confronted with this notion in the context of problems 

about dynamic phenomena. The idea for the thesis was inspired by the work of Marilyn P. Carlson and 

her collaborators on students’ understanding of Calculus, especially of the notion of function (Carlson, 

1998; Carlson et al., 2002; Thompson & Carlson, 2017). The notion of function is fundamental in all 

domains of mathematics (under different names, e.g., mapping, transformation) and functional thinking 

is indispensable in applications. 

As a motivation of my thesis, it is not only important to investigate whether college level Calculus 

students reason dynamic functional situations covariationally, but it is equally important to observe at 

what level they generally reason dynamic events covariationally in order to assess the effectiveness of 

current mathematical instruction in students’ covariational thinking and the readiness of Calculus 

students for more advanced mathematics courses. Carlson et al. (2002) introduced five levels regarding 

students’ covariational reasoning. For instance, in the example given above, if a student only makes a 

coordination between the two variables, height and time, then he/she reasons the given event 

covariationally at Level 1. A student’s reasoning unable to move a higher covariational reasoning level 

(e.g. Level 2) may be due to her/his lack of strong conceptual or/and analytical thinking (or 

understanding) of functions when modelling functional relationships of dynamic situations. Thus, in my 
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endeavour, I proceeded to examine the following research questions related to students’ covariational 

reasoning:  

How do college level Calculus students reason functional situations that rely on variables varying 

dynamically? Particularly, at what level do Calculus students generally reason dynamic functional 

situations covariationally? 

What can we, as educators, conclude about Calculus students’ conceptual and analytical thinking of 

functions in the context of modelling dynamic situations? How college level Calculus students being 

unable to reason dynamic function situations covariationally is related to Calculus students having a 

weak conceptual or/and analytical thinking of functions? 

Students in traditional Calculus courses often hold a very limited idea of function, mostly as a formula of 

the form    [an algebraic expression formed of letters, numbers, names of elementary functions and 

arithmetic operations] (Giovaniello, 2017). They are generally used to having the formula given to them 

in a problem, than to having to model a relationship between varying quantities with a function. In this 

direction, a revealing comment on the students and Calculus courses is made by Carlson in (Carlson, 

1998) and (Carlson et al., 2002): 

The successful college algebra students in this study had limited understanding of many 

of the components of the function concept. Their narrow view of functions was 

demonstrated by the fact that they thought any function could be defined by a single 

formula and that all functions must be continuous. They did not understand the function 

notation and had difficulty understanding the role of the independent and dependent 

variable given a functional relationship. (Carlson, 1998, p.137)  

Some studies suggest that students have enormous difficulties with representations of functions (Vinner 

& Dreyfus, 1989) and so in moving flexibly and fluidly between different representations of a given 

functional situation (Oehrtman, Carlson & Thompson, 2008) due to highly procedural orientation in 

mathematical education (Kaldrimidou & Ikonomou, 1998), which may contribute to students being 

unable to reason dynamic events covariationally. When dealing with functions, students may use 

meaningless conceptual associations or/and rely on their uncontrolled memorized algebraic expressions 

(formed by school curriculum), and so be in pseudo-analytical or/and pseudo-conceptual modes of 

thinking (Vinner, 1997) which may also prevent them reasoning dynamic functional situations 

covariationally. In addition to having pseudo- thoughts when working with functions, students also may 
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have some obstacles or/and misconceptions. Some of these obstacles can be classified as 

epistemological, didactical and cognitive obstacles (Bachelard, 1938/1983; Brousseau, 1997; Herscovics, 

1989; Sierpinska, 1992; Sierpinska, 2019). Thus, I am also interested to examine the following questions;  

What are common epistemological, didactical and cognitive obstacles, pseudo-thoughts and 

misconceptions in preventing college level Calculus students to successfully complete a dynamic 

function task?  

Is there a certain correlation between Calculus students having obstacle(s) or/and pseudo-thought(s) 

or/and misconception(s), Calculus students having weak conceptual or/and analytical understanding of 

functions and Calculus students being unable to reason dynamic events covariationally at a higher level? 

With my research project, I attempt to obtain and analyze data that would allow me to get some 

answers and formulate certain conjectures to these questions. 

This is mostly a qualitative research study, although some descriptive statistics will be provided. The 

emphasis will be on evaluating and studying various ways students are thinking about functions in the 

context of modeling a physical phenomenon. Students enrolled in Concordia’s course MATH 205 – 

Differential and Integral Calculus II, in Winter 2019 were given weekly assignments as extra-credit 

homework. During the beginning of the semester, students were given a first homework called 

Assignment 1 consisting of Problem 1 for which twenty-four students provided responses, and a second 

homework called Assignment 2 composed of Problem 2. While eighteen students provided solutions for 

Problem 2, I analyzed the solutions of fifteen participants who provided responses for both Problems 1 

and 2 since I did not enough data for the remaining three students. Students were given more 

assignments in the following weeks, but their participation rate went down dramatically each week and 

some of students who provided solutions to Problem 1 and 2 did not provide solutions for the other 

problems given in the following weeks. Due to the inconsistency of participation, time constraints and 

other factors, with the advice of my supervisors, a decision was made to analyze the students’ responses 

to Problems 1 and 2 only. 

In these two assignments, I have asked students enrolled in MATH 205 two modified versions of the 

same problem that Carlson et al. used in (Carlson et al., 2002).  – the “bottle filling” problem. The 

formulation of the bottle problem was modified to add more questions in order to compensate for the 

fact that I did not interview the students, as Carlson et al. did. Hence, in my research, I produced two 

problems associated with the bottle problem; one has a conceptual basis (Problem 1), while the other 

has an analytical basis (Problem 2). I adopted Carlson et al.’s theoretical construct. However, differently 
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from their construct, I divided behaviors associated with covariational reasoning in three sections; 

graphical, verbal and algebraic representations of function while Carlson et al. considered only graphical 

and verbal representations of function in their study. I also made some changes in the description of 

behaviors of verbal and graphical representations of function. More substantial changes are the addition 

of ‘representing relative magnitude(s) of the output variable on the y-axis while picturing relative 

magnitude(s) of the input on the x-axis’ in MA3 (since it is important to show relative magnitude(s) 

symbolically/numerically on the axes at this level) and modification of description of behavior as 

‘constructing a line, curve, with definite directions’ in MA2 for graphical representation of function 

(since an individual may not image only a straight line in her/him mind). All these additions and 

modifications are discussed in the theoretical framework. 

Another substantial change, added a posteriori, is that if a student’s behavior is supportive of MA1, MA2, 

MA3 and MA5, but not necessarily of MA4, we can say that her/his covariational reasoning has reached 

Level 5. As mentioned later in the theoretical framework, the mental actions MA1 through MA5 are 

supported by level 5 (L5) images and the instantaneous rate of change is conceptualized as resulting 

from smaller and smaller refinements of the average rate of change. However, it is likely that an 

individual has made this conceptualization of the average rates of change leading to the instantaneous 

rate of change sometime in the past and, later, when faced with a specific task, the individual does not 

repeat this conceptualization again because it is considered perhaps routine or simply an intermediate 

step already mastered. Therefore, the individual may not exhibit an awareness of the average rate of 

change of the output (thus no signs of MA4), but by coordinating the amount of change of the output 

(signs of MA3) and exhibiting a correct reasoning about the instantaneous rate of change of the output 

while picturing continuous changes in the input (signs of MA5), we allow the benefit of the doubt to 

prevail and pass to MA5.   

In the next chapter, I offer a review of previous existing research on students’ understanding of 

functions as recognized by specialists in mathematics education. The review does not have the ambition 

of being comprehensive and, instead, focuses on research into the covariational thinking about 

functions. In Chapter 3, I describe the theoretical framework that I used in analyzing students’ solutions. 

Chapter 4 presents the methodology – the context and tools of how the research was conducted.  

Chapter 5 presents the results of my research organized into three sections: analysis of the students’ 

responses for Problem 1, analysis of the students’ responses for Problem 2 and comparative analysis of 
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the results obtained for Problems 1 and 2. The final chapter, Chapter 6, offers some conclusions, 

recommendations and directions of future possible research.  
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2 LITERATURE REVIEW: RESEARCH ON STUDENTS’ UNDERSTANDING OF 

FUNCTIONS 

There are two perspectives in research on students’ understanding of functions: 1) the function is 

viewed mainly as a formally defined mathematical concept; 2) the function is viewed mainly as a 

modeling tool for relationships between varying quantities. The first perspective is related to a set-

theoretic conception of function which is represented today by the Dirichlet-Bourbaki definition, that is, 

“a function is any correspondence between two sets that assigns to every element in the first set exactly 

one element in the second set” (Vinner & Dreyfus, 1989, p.360). Students have difficulties understanding 

this formal definition of function, confuse the defining condition (or univalence condition) with the 

condition of one-to-one function and have trouble with representations of functions. The second 

perspective is associated with the dependence relation between quantities (or Euler’s definition) that 

represents a covariational conception of function (Carlson et al., 2002, Thompson & Carlson, 2017), that 

is, “a function is a dependence relation between two variables” (Vinner & Dreyfus, 1989, p.360). In either 

context, students’ understanding of modelling dynamic functional tasks can be obstructed by many 

factors while, in itself, the modelling could be quite a complex process. 

More than four decades, researchers have been investigating students’ and prospect teachers’ 

understanding of the function concept (Carlson, 1998; Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Carlson 

& Oehrtman, 2004; Carlson, Oehrtman & Engelke, 2010; Carlson, Madison & West, 2010; Carlson, 

Madison & West, 2015; Even, 1992; Even & Bruckheimer, 1998; Herscovics, 1989; Kaldrimidou & 

Ikonomou, 1998; Malik, 1980; Markovits et al., 1986; Monk, 1992; Oehrtman, Carlson, & Thompson, 

2008; Saldanha & Thompson, 1998; Sajka, 2003; Sierpinska, 1992; Sierpinska, 2019; Thompson, 1994; 

Thompson, 1994b; Thompson & Carlson, 2017; Vinner, 1983; Vinner & Dreyfus, 1989). The common 

result in these studies is that students (and even prospect teachers) have enormous difficulties in 

understanding the notion of function. These difficulties are related to having sometimes pseudo-

thoughts (Vinner 1997), epistemological obstacles (Sajka, 2003; Sierpinska, 1992; Sierpinska, 2019), 

cognitive obstacles (Herscovics, 1989), didactical obstacles (Bachelard, 1938/1983; Brousseau, 1997) or 

misconceptions (Giovanniello, 2017). So, the question is: What actions students need to take in order to 

understand the function concept and overcome these difficulties? The answer to this question is well 

argumented by Sierpinska (1992). 
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When dealing with functions, a student first needs to recognize the existence of ‘World of changes’, 

then identify ‘What changes’ in this world, and then look for some regularities in relationships between 

varying quantities (Sierpinska, 1992). In her work, Sierpinska provided the first two conditions of 

understanding functions as ‘identification of changes observed in our world’ and ‘identification of 

regularities in relationships between changes’: “U(f)-1: Identification of changes observed in the 

surrounding world as a practical problem to solve” and “U(f)-2: Identification of regularities in 

relationships between changes as a way to deal with the changes” (Sierpinska, 1992, p.31). Another 

important act of understanding identified by Sierpinska is “U(f)-3: Identification of the subjects of change 

in studying changes” in order to overcome the following epistemological obstacle “EO(f)-3: Regarding 

changes as phenomena; focusing on how things change, ignoring what changes” (Sierpinska, 1992, p.36). 

When an individual envisions ‘World of changes’ and correctly identify ‘What changes’ in this world, 

then he/she coordinates between variables, in other words, he/she starts to reason the situation 

covariationally at Level 1 (at least) (Carlson et al., 2002). Once he/she makes this basic coordination 

between variables, then he/she shall think of regularities in relationship between variables in order to 

reason the event covariationally at a higher level (e.g. Level 3). Ideally, school curriculum including 

textbooks developers would design mathematical instruction that encourage students to observe the 

existence of ‘World of changes’, identify ‘What changes’ in this world, and conceptualize ‘how quantities 

change together in tandem’ in this world of changes. 

Over the next sections, I first present the historical development of the function concept up to the 

middle of the 20th century (section 2.1) and then discuss the epistemology of the function concept in the 

end of the 20th century and the beginning of the 21th century (section 2.2). The latter section is divided 

into two sub-sections: past research on understanding the function concept (sub-section 2.2.1) and 

epistemology of a covariational conception of function (sub-section 2.2.2). 

2.1 HISTORICAL DEVELOPMENT OF THE FUNCTION CONCEPT UP TO THE MIDDLE OF THE 20TH
 CENTURY 

The general idea of function started to appear in the history of mathematics well before 2000 BC when 

Babylonians first created tabulated functions. It evolved with the works of Greek mathematicians, such 

as Ptolemy and Aristotle, and of 14th century European mathematicians, such as Oresme. Its evolution 

reached completion with the discoveries of 17th century mathematicians such as Descartes, Newton and 

Leibniz, of 18th century mathematicians such as Bernoulli and Euler, and of 19th century mathematicians 

such as Cauchy, Fourrier, Bolzano, Weierstrass and Dirichlet.  



8 
 

According to Boyer (1946), there are four main eras in the development of the function concept: 

proportion, equation, and function, the latter splitting into two periods. In the era of proportion, 

relationships between quantities were represented schematically and describing motion began to 

attract more attention in the mathematical community (e.g. Oresme in the 14th century). In the era of 

equation, relationships between quantities with constrained variation were represented algebraically 

after the Viète’s introduction (in the 16th century) of new symbolic algebra, and geometrically on the 

coordinate system after Descartes’ discovery of Cartesian Geometry (in the 17th century).  In the first era 

of function, a relationship between two continuously varying quantities, with values of one variable 

determined by values of other variable, was explicitly represented by a formula or a graph (in the 17th – 

18th centuries, e.g. Newton, Leibniz, Euler). In the second era of function, which started with Dirichlet’s 

introduction (in the 19th century) of the formal definition of function that lasted through present day, a 

relationship between two continuously varying quantities is represented clearly by a distinct law of 

correspondence in which values of one variable determined uniquely by values of another variable. 

Simultaneously, according to Youschkevitch (1976/77), there are three main periods of the development 

of the function concept up to the middle of the 19th century: 

1) The antiquity in which mathematicians worked on certain cases of functional dependence between 

two quantities which consist of general notions of functions and of variable quantities. 

2) The Middle Ages (during the 14th century, especially in Europe) in which geometric and mechanical 

dependences were represented.  

3) The Modern Period (after the 16th century) in which analytical representations of functions were 

introduced and a group of analytic functions were formulated by sums of infinite power series (e.g. 

     
 

  
 

  

  
 

  

  
         ).  

In the Modern Period, an analytical representation of functions led to a more efficient method of solving 

problems and that changed mathematics dramatically. In the middle of the 18th century, Euler provided 

a general definition of function since having only analytical forms of functions was not satisfactory in 

mathematical analysis. Then, in the 19th century, Dirichlet introduced the formal definition of function 

that opened a new era in the development of the theory of functions.  However, past studies suggest 

that students have difficulties in understanding of the set-theoretic definition of function (Even & 

Bruckheimer, 1998; Herscovics, 1989; Malik, 1980; Markovits et al., 1986; Sierpinska, 1992; Vinner, 

1983; Vinner & Dreyfus, 1989).  
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Note: A more detailed description of the historical development of the function concept up to the 

middle of the 20th century can be found in Appendix A. 

2.2 EPISTEMOLOGY OF THE FUNCTION CONCEPT IN THE END OF THE 20TH
 CENTURY AND THE 

BEGINNING OF THE 21TH CENTURY  

Euler (in 1744) first defined a function of a variable quantity as an analytic expression formed, in any 

manner, by the variable quantity and constants. In 1755, he changed his ‘analytic-expression’ definition 

of function to a more global definition of function, by  considering a function as a dependence relation 

between quantities, which represents a covariational conception of function. By introducing a more 

global definition of function, Euler overcame an important epistemological obstacle in the history of 

mathematics, that is, defining a function as an analytic expression. However, the existence of ‘analytic 

expression’ obstacle in educational system throughout the history is undeniable: ‘a function is an 

algebraic expression in one real variable’ (Carlson M. P., 1998; Giovanniello, 2017; Sierpinska, 2019). 

There are consequences of considering a function only as an analytic expression. For instance, based on 

Euler’s definition, the Dirichlet function (representing the relation from ℝ to ℝ composed of pairs (x, y), 

such that y = 1 if x ∈ ℚ, y = 0 if x ∉ ℚ) would not be a function since it is defined by the two different 

expressions for the two different intervals of the domain. On the other hand, a given situation may 

represent a relationship between quantities without having any rule (e.g. my height has been growing in 

time). In addition to these, an algebraic expression, such as      √ , without defining its domain 

would be considered as a function.  

After the introduction of the Dirichlet’s definition of a singled-valued function and of the Bourbaki’s set-

theoretic definition of function, the formal definition of function is called the Dirichlet-Bourbaki (or only 

Dirichlet) definition that is widely accepted and used in the educational system since 1960s. The 

definition of function given by teachers at the college or university level is the set-theoretic definition of 

function, involving a Cartesian product of two sets and a deterministic relation (or kind of 

correspondence) between these two sets, that is: 

A Function from a set D to a set Y is a rule that assigns a unique element     ∈   to 

each element  ∈  . (Thomas, 2008, p.2) 

In school curriculum or textbooks in which a function is usually defined by a law, the domain of the 

function is presumed to be the largest set of real numbers for which the analytic expression produces 
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real output values, in case of the domain is not being mentioned explicitly. This is called the ‘natural 

domain’.  

In his book of ‘Didactical Phenomenology of Mathematical Structures’, Freudenthal (1983) noted that 

there are two essential aspects of the function concept; ‘arbitrariness’ (being implicit) referring to the 

arbitrary nature of functions, and ‘univalence’ (being explicit) referring to the rule which assigns to each 

element in the first set unique element in the second set. Euler’s definition of function represents multi-

valued functions while the Dirichlet-Bourbaki definition which demands ‘univalence’ argument 

represents single-valued functions. Despite the importance of ‘univalence’ condition, most of students 

and many teachers do not know why functions have to be univalent (Even, 1992; Even and Bruckheimer, 

1998). 

2.2.1 Past Research On Understanding The Function Concept 

Researchers revealed that many students have enourmous difficulties in understanding of the set-

theoretic definition of function (Even & Bruckheimer, 1998; Herscovics, 1989; Malik, 1980; Markovits et 

al., 1986; Sierpinska, 1992; Vinner, 1983; Vinner & Dreyfus, 1989). These studies suggest that the set-

theoretic approach by itself is not very successful in educational system. 

In 1989, Vinner and Dreyfus conducted a research to investigate college level students’ images and 

definitions for the concept of function. They observed that most of students did not use the set-

theoretic definition of function and the students’ responses were formed by their previous learning 

experiences with functions from science courses. The results showed that most of college level students 

used a scientific interpretation of function (e.g. as a dependence relation, a rule or a formula) in their 

responses by avoiding a formal interpretation of function associated with the set-theoretic definition. 

Consequently, Vinner and Dreyfus (1989) questioned the necessity of teaching the set-theoretic 

definition in early calculus courses: 

…at least a doubt should be raised whether the Dirichlet-Bourbaki approach to the 

function should be taught in courses where it is not intensively needed. If discontinuous 

functions, functions with split domains, functions with exceptional points, strange 

functions are needed, we think that they should be introduced as cases extending the 

students' previous experience. The formal definition should be a conclusion of the various 

examples introduced to the students. (p.365) 

Malik (1980) also questioned the need of teaching the Dirichlet-Bourbaki definition: 
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…the necessity of teaching the modern definition of function at school level is not at all 

obvious and most of the instructors feel that pedagogical considerations were ignored 

while designing the course content and the mode of presentation.  (p.490)  

He then suggested that the set-theoretic definition should be introduced later in topology courses since 

Euler’s definition of function is sufficient for pre-calculus or calculus courses: 

We note that the definition of function as an expression or formula representing a 

relation between variables is for calculus or a pre-calculus course; is a rule of 

correspondence between reals for analysis; and a set theoretic definition with domain 

and range is required in the study of topology. Since only a small percentage of school 

students eventually study analysis and topology, the set theoretic definition could be 

postponed to the beginning of these courses and a simple and easily understandable 

definition should be taught at the elementary level. (Malik, 1980, p.492) 

Even and Bruckheimer (1998) similarly stated that there may be didactical advantages to focus on 

Euler’s definition and delay the introduction of Dirichlet-Bourbaki definition of function until it is more 

beneficial. They recommended that students shall engage in mathematical activities in which teachers 

represent both single-valued and multi-valued functions without putting any emphasis on the 

univalence condition that should be introduced when it is needed. Students shall be encouraged to 

focus on relationships between quantities and different representations of functions. This may 

contribute to the students’ learning of the function concept. 

..a number of studies indicate that students have difficulties in understanding and using 

the function concept. Consequently, it seems more reasonable to focus student attention 

on essential aspects of functions, such as how they describe relationships between 

variables, their power to mathematise situations, how representing a function in 

different ways can expand understanding about their behavior and how approaching 

them in different ways (e.g. object vs. process, point-wise vs. globally) may be useful in 

different situations… (Even & Bruckheimer, 1998, p.32) 

Students begin to learn the formal approach of the function concept interfering with the univalent 

restriction generally in high school or in the first year of their college. After the introduction of the 

Dirichlet-Bourbaki concept of function, students start to learn discriminating functions from non-

functions. However, differences between functions and non-functions and reasons why functions need 
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to be univalent are not sufficiently represented in textbooks and verbalized by teachers in mathematical 

activities of today’s school curriculum (Even and Bruckheimer, 1998). Even though the Dirichlet-Bourbaki 

definition is generally introduced in the textbooks and school curriculum, the examples used by teachers 

and the exercises provided in the textbooks are mostly related to functions whose rule of 

correspondence is given by a formula. This may cause students to summon functions as mental pictures 

of a formula. 

Last twenty years, researchers reported studies which revealed some fundamental understandings and 

reasoning abilities that students need to have in order to succeed in early calculus courses (Carlson, 

1998; Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Carlson & Oehrtman, 2004; Carlson, Madison & West, 

2010; Carlson, Oehrtman & Engelke, 2010; Carlson, Madison & West, 2015; Oehrtman, Carlson, & 

Thompson, 2008; Thompson & Carlson, 2017). Some of these essential understandings involve the 

meaning of the function concept, function evaluation, function composition, function inversion, being 

necessary to learn key concepts of pre-calculus and calculus courses such as rate-of-change of function, 

accumulation and continuous covariation. On the other hand, some of crucial reasoning abilities 

students need to have are ‘a process conception (or across-time view) of function’ and ‘a covariational 

conception of function’. 

The ‘APOS theory’ introduced in the 1990s involves the construction of mental actions, processes and 

objects (Breidenbach, Dubinsky, Hawks & Nichols, 1992; Dubinsky & Harel, 1992; Dubinsky & McDonald, 

2001). An ‘Action’ is a static transformation of objects through some repeatable manipulations in order 

to obtain other objects. When an individual has an action conception of function which is also called as a 

‘point-wise conception of function’ (Monk, 1992), she/he tends to rely on her/his computational 

reasoning abilities and to perform operations by step-by-step procedure (e.g. ability to plug numbers 

into an algebraic expression and compute).  A ‘Process’ conception of function (or across-time 

conception of function, Monk, 1992) interferes with a dynamic transformation of objects through some 

repeatable actions result in producing the same transformed object. A function is viewed as a 

generalized process which accepts input and produces output. An individual may start the mathematical 

activity with some objects, operate these objects and obtain new objects as a result of those repeatable 

actions. In this level, he/she shall be able to combine the process with other processes and reverse it- in 

general, operate the processes in multiple directions (Breidenbach et al., 1992).  

Some research on students’ understanding of the function concept remarked that pre-calculus and 

calculus students often have a static (or action) conception of function, and that students need to have a 
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dynamic (or process) conception of function in order to reason a given functional situation 

covariationally (Carlson, 1998; Carlson & Oehrtman, 2004; Carlson, Madison & West, 2010; Carlson, 

Oehrtman & Engelke, 2010; Carlson, Madison & West, 2015; Oehrtman, Carlson, & Thompson, 2008; 

Thompson & Carlson, 2017).  

Breidenbach, Dubinsky, Hawks and Nichols (1992) investigated difficulties that college level students 

have for the function concept. In the first task, they asked students ‘What is a function?’ before any 

instruction. The results revealed that only 14% of college level students have had a process conception 

of function while 24% have had an action conception of function. Students often conceptualize functions 

in terms of algebraic manipulations and standard procedures without thinking of function as a general 

mapping from a set of input values to a set of output values. In order to develop a dynamic (or process) 

conception of function, one needs to view a function as a generalized process which accepts input and 

produces output.  

Carlson (1998) similarly examined college level and undergraduate students’ understandings of the 

function concept. She found that many pre-calculus students did not have a process conception of 

function since they thought about functions in terms of algebraic manipulations, nor did these students 

have had necessary conceptual knowledge for modelling dynamic functional situations. Carlson 

concluded that this outcome is a result of limited mathematical instruction in educational system: 

…curriculum developers underestimate the complexity of acquiring an understanding of 

the essential components of the function concept… and that current curricula provide 

little opportunity for developing the ability to: interpret and represent covariant aspects 

of functions, understand and interpret the language of functions, interpret information 

from dynamic functional events. (Carlson, 1998, p. 142) 

Even (1992) investigated pre-service mathematics teachers’ knowledge and understanding of the 

inverse function. In the given tasks, Even asked 152 prospective teachers the following question: 

Given            and        
    

 
. Find                    Explain.  

(Even, 1992, p.558) 

She expected teachers to use the idea of ‘undoing’ and find the answer as 512.5 by knowing the inverse 

function undoes what the function does. Almost half of (43%) of teachers provided a correct answer by 

using the reasoning of ‘undoing’. However, half of these respondents who used the inverse property did 
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some extra, redundant computations in order to find or prove that the correct answer is 512.5. On the 

other hand, more than half (62%) of the participants did not use the inverse property of function, 

instead, they tried to do all computations in order to find an answer. One half of these participants 

completed correct calculations as: 

                          

                          
       

 
 

    

 
       

It is not clear whether these respondents understood the inverse property, but did not remember it or 

use it, or whether their thinking which might be formed by ‘rote learning’ (e.g. reacting based on their 

memorized procedural associations) was purely mechanical so they focused on showing their analytical 

knowledge instead of thinking the conceptual aspects of the given question. It is also not clear whether 

these participants have strong conceptual knowledge since they approached the given problem 

analytically instead of recalling the conceptual meaning of inverse function, or whether their thinking 

was based on naïve conception of composition of functions. On the other hand, it seems that the rest of 

the respondents who failed in reaching the correct answer did not consider the idea of inverse function 

at all. Even remarked that both procedural and conceptual knowledge, and the relationship between 

them, interfere in understanding an idea. Thus, it is important to focus on the relationship between 

conceptual and procedural knowledge. When an individual fails in making appropriate connections 

between concepts and procedures, he/she may produce some answers and even correct ones 

sometimes by coincidence, but he/she may not understand what he/she is doing (Even, 1992, p.561).   

In 1992, Monk conducted a study involving dynamic function events to investigate calculus level  

students’ difficulties in understanding the function concept by using Across-time questions that ask 

students to describe changes in the output while picturing changes in the input. One across-time 

problem he asked was a model of a moving ladder standing against a wall and then the top of the ladder 

moving down while the bottom of the ladder pulled away from the wall. Monk aimed to find out 

whether students have a dynamic conception of function when solving problems involve dynamic 

functional situations. Students were expected to explain changes in positions of the top and of the 

bottom of the ladder, and to sketch a graph of the given functional event represented in the ladder 

model. He observed that many students did not have an across-time (or process) conception of function 

since they were unable to describe patterns in the relationship between the two continuously changing 

quantities. These students often calculated particular values of the height of the top of the ladder from 
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particular values of the distance between the bottom of the ladder and the wall, being suggestive of 

them having a point-wise (or action) conception of function. Monk (1992) found that calculus students’ 

main difficulties were associated with ‘Iconic translation’ of a given situation, that is, ‘correlating the 

shape of a graph with the physical characteristic of a given situation’ being considered as a cognitive 

obstacle. There are other cognitive obstacles involved in ‘transforming pairs of numbers from an 

equation into pairs of coordinates’ or ‘transforming an algebraic expression of a function to its graphical 

one’ being well reported by Herscovics (1989). 

When examined university mathematics students’ and high school teachers’ difficulties with graphical 

representation of functions, Kaldrimidou & Ikonomou (1998) found that students’ and teachers’ 

difficulties are associated with particular characteristics of graphs (cognitive nature), the effectiveness of 

procedures (metacognitive nature), and common misconceptions about the nature of mathematics 

(epistemological nature). The investigators concluded that majority of participants who paid little 

attention to geometrical construction of functions had a strong tendency to use standard algebraic 

procedures related to functions instead of focussing on conceptual aspects of the given mathematical 

tasks. They think that this is a result of narrow or faulty mathematical instruction in educational system 

that pays too much attention to algebraic expressions of functions, creating a didactical obstacle 

(Brousseau, 1997). Regarding the educational system focusing on algebraic procedures rather than 

graphical representation of functions, Kaldrimidou & Ikonomou made the following comments: 

The subject of mathematics, as taught in school, gives rise to epistemological and 

metacognitive considerations that favor the algebraic rather than the graphic 

representation of problems. This means the creation of an implicit context of 

communication that reinforces the algebraic rather than the graphic representation of 

problems. This produces a vicious circle, in the sense that the solution of a problem by 

means of an algebraic representation results in a reinforcement of this representation 

with respect to its effectiveness (metacognitive characteristic). The continuous repetition, 

and its reinforcement in school, strengthens this kind of representation and makes it the 

prominent and most appropriate procedure in mathematics (epistemological 

characteristics). (Kaldrimidou & Ikonomou, 1998, p.286) 

In her investigation of a secondary student’s understanding of the function concept, Sajka (2003) 

analyzed a dialogue held with an average secondary school student, Kasia. Sajka’s analysis revealed that 

Kasia’s main difficulties in understanding the function concept are related to the nature of a 



16 
 

mathematical notation (epistemological nature), the limited choice of mathematical tasks and narrow 

contexts in school curriculum (didactical nature), and also her misinterpretation of a given functional 

situation (cognitive nature). During the dialogue, Sajka noticed that the student’s attention was drawn 

only to numerical equations and unknowns, so Kasia failed in moving to the level of thinking about 

meaning of a function. Sajka (2003) pointed out that: ‘function is for her not an encapsulated concept, 

but it is still in the process of construction’ (p.250). She described the Kasia’s difficulty with one of the 

epistemological obstacles being identified as ‘EO(f)-4: (Unconscious scheme of thought) Thinking in 

terms of equations and unknowns to be extracted from them’ by Sierpinska (1992) On  Understanding 

The Notion of function. In order to overcome this obstacle, one needs to exhibit a behaviour that 

supports the act of understanding identified as ‘U(f)-4: Discrimination  between two modes of 

mathematical thought: one in terms of known and unknown quantities, the other-in terms of variable 

and constant quantities’ (Sierpinska, 1992, p.37-38). Sajka also observed in the dialogue that Kasia often 

considered the idea of function as the same as the idea of the formula of a function. This indicates that 

she was maybe under an influence of memorized associations formed by limited mathematical tasks. 

Regarding individuals thinking functions as formulas, Sierpinska identified the following epistemological 

obstacle: ‘EO(f)-11: (A conception of function) Only relationships describable by analytic formulae are 

worthy of being given the name of function’ (Sierpinska, 1992, p.46). In order to overcome this obstacle, 

Sierpinska (1992) suggests that one needs to exhibit a behaviour that supports the act of understanding 

identified as ‘U(f)-9: Discrimination between a function and the analytical tools sometimes used to 

describe its law’ (p.46).  

It seems that promoting the set-theoretic definition of function in early calculus courses is not very 

successful. Promoting typical examples and standard algebraic procedures in mathematics education 

does not also lead to a successful understanding of functions in students. Because educational system 

encourages students to use typical procedures and to manipulate standard algebraic equations, 

students often fail in developing more meaningful constructions or interpretations between functional 

concepts and procedures due to them lacking strong conceptual thinking of functions and having some 

common obstacles, such as cognitive, epistemological and didactical. These students often fail in viewing 

a function as a generalized process which accepts input and produces output, and consequently, they 

fail in thinking how continuously varying variables changes in tandem. 
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2.2.2 Epistemology of a Covariational Conception of Function 

The idea of variables’ values varying continuously has been foundational in the development of calculus 

and so the function concept. Newton, Leibniz and Euler (17th- 18th centuries) discussed about changes in 

one continuously varying quantity causing changes in another continuously varying quantity. However, 

due to the emergence of functional analysis and of abstract algebra, Dirichlet’s conception of function 

attracted more attention and so became the foundation of the establishment of the modern set-

theoretic definition of function while the covariational approach of function did not attract much 

attention. 

Although the static set-theoretic definition of function is given in school curriculum at the college level, 

teachers often use dynamic expressions when describing the concepts of limit, continuity and derivative 

such as:“as x grows, y takes on smaller and smaller values” or “the limit of a function f(x) as x 

approaches x₀” (Sierpinska, 2019). The terms of ‘correspondence’ or ‘Cartesian product’ are often not 

mentioned in these dynamic expressions, causing students not practicing enough with these concepts. 

When given tasks for completion, students may not remember the static set-theoretic definition of 

function and only react based on their experiences or memorized associations related to dynamic 

expressions. This may result in students confusing and being unable to correlate a covariational 

conception of function with a set-theoretic conception of function, creating so an epistemological 

obstacle. On the other hand, if a teacher only focuses on the theoretical language of sets in beginning 

analysis courses and avoids the covariational approach, then this will produce a didactic obstacle 

(Sierpinska, 2019). In order to understand functions, it is important to study functions not only based on 

a set-theoretic conception of function, but also based on a covariational conception of function, and to 

harmonize between these two fundamental conceptions.  

When looking at the epistemology of covariational reasoning, we can say that the notion of covariation 

first emerged in the works of Jere Confrey, Patrick Thompson and Marilyn Carlson during 1990s. 

Confrey’s conception of covariation is related to coordinating values of two quantities as they change in 

relation to each other while Thompson’s conception of covariation concern visualizing values of each 

quantity as varying continuously and then picturing two or more quantities as varying continuously and 

simultaneously. 

Confrey and Smith described a covariation conception of function as requiring a coordination of an 

operational movement from yn to yn+1 with corresponding movement from xn to xn+1 (Confrey and Smith, 

1994, p.137). They pointed out that: ‘in a covariation approach, a function is understood as the 
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juxtaposition of two sequences, each of which is generated independently through a pattern of data 

values’ (Confrey and Smith, 1995, p.67) and ‘the elements and structure of the domain and range are 

cogenerated through simultaneous but independent actions, creating a covariational model of function’ 

(Smith and Confrey, 1994, p.337). Confrey and Smith (1994) stated that a covariation approach is 

fundamental in conceptualizing the rate of change of function (p. 153-154). 

Thompson described meanings of quantity, quantification, quantitative structure, quantitative 

relationship and quantitative reasoning, and focused on which ways students think of varying quantities, 

quantitative relationships between variables, and also rates of changes of variables, in his works (1990, 

1994, 1994a, 1994b, 2011). According to Thompson, a quantity is defined as an individual’s 

conceptualization of a quality of an object involving a measurement process:  

Quantities are conceptual entities. They exist in people’s conceptions of situations. A 

person is thinking of a quantity when he or she conceives a quality of an object in such a 

way that this conception entails the quality’s measurability. (Thompson, 1994a, p.187) 

Quantification is described as a process of an individual’s conceptualization of assigning numerical 

values to qualities: 

Quantification is a process by which one assigns numerical values to qualities. That is, 

quantification is a process of direct or indirect measurement. (Thompson, 1990, p. 5) 

While he defined a quantitative structure as ‘a network of quantitative relationships’, he described a 

quantitative relationship as ‘the conception of three quantities, two of which determine the third by a 

quantitative operation…For example, suppose an average speed is conceived by a multiplicative 

comparison of a distance and an interval of time’ (Thompson, 1990, p. 13).  

According to Thompson, quantitative reasoning is defined as an individual’s conceptualization of a 

mathematical situation quantitatively - in terms of quantities and quantitative relationships between 

these quantities: 

Quantitative reasoning is the analysis of a situation into a quantitative structure—a 

network of quantities and quantitative relationships. (Thompson, 1990, p. 13) 

In Patrick Thompson’s works, variation and covariation became a main target to explain the reasoning of 

individuals who pictured a mathematical situation quantitatively and also envisioned it dynamically (e.g. 
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imaging quantities whose values varied simultaneously). Regarding the idea of variation, Thompson 

(2011) noted that ‘the mathematics of variation involves imagining a quantity whose value varies’ (p.46).  

Saldanha and Thompson (1998) described the idea of covariation as an individual having in mind a 

sustained image of two quantities’ values changing simultaneously, and concluded that images of 

covariation are developmental:  

Thinking of covariation as the coordination of sequences fits well with employing tables 

to present successive states of a variation….In this regard, our notion of covariation is of 

someone holding in mind a sustained image of two quantities’ values (magnitudes) 

simultaneously. It entails coupling the two quantities, so that, in one’s understanding, a 

multiplicative object is formed of the two. As a multiplicative object, one tracks either 

quantity’s value with the immediate, explicit and persistent realization that, at every 

moment, the other quantity also has a value. In early development one coordinates two 

quantities’ values—think of one, then the other, then the first, then the second, and so 

on. Later images of covariation entail understanding time as a continuous quantity, so 

that, in one’s image, the two quantities’ values persist. An operative image of 

covariation is one in which a person imagines both quantities having been tracked for 

some duration, with the entailing correspondence being an emergent property of the 

image.  In the case of continuous covariation, one understands that if either quantity has 

different values at different times, it changed from one to another by assuming all 

intermediate values. (Saldanha and Thompson, 1998, p. 299) 

In 2017, Thompson and Carlson provided a more general definition of covariational conception of 

function being correlated with set-theoretic conception of function: 

A function, covariationally, is a conception of two quantities varying simultaneously such 

that there is an invariant relationship between their values that has the property that, in 

the person’s conception, every value of one quantity determines exactly one value of the 

other. (Thompson and Carlson, 2017, p.444) 

By the term “invariant relationship”, the researchers mean that the same relationship can be used to 

determine a value of the dependent variable from any value of the independent variable. 

According to the Thompson & Carlson’s theory of covariational reasoning, if an individual visualizes 

values of two quantities as varying continuously and images these variables varying simultaneously in 
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relation to each other, then he/she reasons a given functional situation covariationally (Thompson & 

Carlson, 2017, p.425). For example, in a situation of a car moving on a straight line and always having a 

distance from an initial point; an individual is supposed to conceptualize a car’s location in terms of a 

measure of the distance from an initial point, to visualize varying distance and also to envision elapsed 

time being measured as the car moving. If the individual conceptualizes the car’s measured distance as 

varying, visualizes the elapsed time being measured as varying and coordinates these two variables as 

they vary continuously and simultaneously, then we say that the individual reasons the given 

mathematical situation covariationally. By referring to Carlson’s work (1998), Thompson and Carlson 

(2017) remarked that covariational reasoning is fundamental for representing given dynamic functional 

situations both algebraically and graphically (p.452). However, many pre-calculus and calculus students 

are unable to reason dynamic events covariationally.  

Carlson (1998) investigated college algebra, calculus and graduate mathematics students’ understanding 

of the function concept according to their answers to certain tasks. In one of these tasks, students were 

asked to sketch a graph to represent the relationship between the values of two continuously changing 

quantities in a dynamic function event. In the bottle problem, students were supposed to construct a 

graph of the height of water as a function of the amount of water that’s in the bottle (Figure 1): 

 

Figure 1. The bottle problem used in the Carlson’s study 

The results indicate that majority (74%) of high-performing second-semester calculus students failed in 

constructing a suitable graph of the height of water as a function of the amount of water being in the 

bottle. During the interviews, some of these students also failed in describing how changes in the 

amount of water causing changes in the height of water (Carlson, 1998, p.124-126). Carlson concluded 

that high-performing calculus 2 students had difficulty defining piecewise functions, and interpreting 

dynamic graphical information related to these functions (Carlson, 1998, p.138-139). 

Carlson, Jacobs, Coe, Larsen & Hsu (2002) conducted a study to investigate second semester calculus 

students’ ability to reason given dynamic functional situations covariationally. In their study, they 

defined covariational reasoning as the collection of ‘cognitive activities involved in coordinating two 



21 
 

varying quantities while attending to the ways in which they change in relation to each other’ (Carlson et 

al., 2002, page 355). In the theoretical framework, they classified images of covariation as 

developmental with five levels. These five developmental levels (from Level 1 to Level 5) are defined in 

terms of mental actions represented from MA1-coordination between values of two quantities varying 

continuously and simultaneously to MA5-conceptualization of refinements of a function’s average rate 

of change on smaller and smaller intervals (detailed information given in the theoretical framework of 

my study). Differently from Saldanha and Thompson’s work (1998), Carlson et al. (2002) added 

coordination of the average and instantaneous rates of change of one quantity with respect to another 

quantity in their investigation since they aimed to examine students’ understanding of the rate of 

change of a function on successive intervals of the function’s domain. They asked students the same 

bottle problem which was used by Carlson (1998). The researchers documented that only the quarter 

(25%) of high-performing second semester calculus students were able to construct an acceptable graph 

while most (70%) of participants sketched an increasing concave up or an increasing concave down 

graph in their responses to the bottle problem (Carlson et al., 2002, p.369). Similarly, in students’ 

responses to the temperature problem with the given rate of change graph of temperature over an 

eight-hour time-period, they reported that only one fifth (20%) of high-performing second semester 

calculus students were able to draw an acceptable temperature graph while the quarter (25%) of these 

respondents sketched a temperature graph being similar to the given rate of change graph of 

temperature in the problem. Besides these, almost one third (30%) of participants were unable to mark 

the concavity changes when drawing their graphs (Carlson et al., 2002, p.377). 

Carlson et al. (2002) concluded that most of students were able to coordinate the direction of the 

change in the output while thinking changes in the input (MA2), and many of these students were also 

able to coordinate the amount of change in the output while picturing changes in the input (MA3). 

However, these students had difficulty in interpreting and representing the rate of change information 

of a dynamic functional situation (MA4).  They also had difficulty in conceptualizing the instantaneous 

rate of change of the output since they were unable to visualize smaller and smaller refinements of the 

average rate of change of the output with respect to the input (MA5). Even though a few students were 

able to exhibit some behaviors which support MA5, these students, during the interviews, were unable 

to describe how the instantaneous rate of change of the output with respect to the input was found. 

The investigators concluded that these students were not able to apply consistently Level 4 covariational 

reasoning and had difficulty in applying Level 5 covariational reasoning (Carlson et al., 2002, p.382-383).  
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In their work, Carlson & Oehrtman (2004) and Oehrtman, Carlson & Thompson (2008) reached to a 

similar conclusion that pre-calculus students exhibit behaviors that support only MA1 and MA2. When 

students were asked the same bottle problem, the examiners observed that many pre-calculus level 

students were unable to conceptualize the amount of change of the height of water while thinking 

changes in the volume of water (MA3). It is noticed that the students often constructed a concave up 

graph in their responses to the bottle problem and provided common explanation for their concave up 

graph, such as ‘as the water is poured in it gets higher and higher on the bottle (MA2)” (Carlson & 

Oehrtman, 2004, p.36; Oehrtman, Carlson and Thompson, 2008, p.163-164). Although some students 

mentioned about the rate of change of the output for a particular interval of the domain, these students 

were not able to describe how the rate changes over the domain of the function (MA4). Moreover, 

students who exhibited some behaviors that support MA5 stated that they used memorized procedures 

in order to reach their graphical constructions of the dynamic functional situation.  

In a different direction, when faced with a simple function such as        , many high performing 

pre-calculus students were unable to notice that the parentheses () stand as a marker for the 

independent variable,      represents the values of the dependent variable,   stands for the name of 

the function and    indicates how the independent variable   is mapped to the dependent variable 

    . Oehrtman, Carlson & Thompson (2008) concluded that students’ poor understandings of the 

functional notation and relying on their procedural memorized associations seem to contribute to 

students’ inability of moving between different representations of a functional situation. They remarked 

that “developing an understanding of function in such real-world situations that model dynamic change 

is an important bridge for success in advanced mathematics” (Oehrtman, Carlson & Thompson, 2008, p. 

154). The researchers suggest that mathematical instruction in educational system shall focus on 

conceptual orientation in teaching functions in order to encourage students to view a function as a 

process which accepts input and generates output, and so, to promote students to think how 

continuously varying quantities changes in tandem: 

A mature function understanding that is revealed by students' using functions fluidly, 

flexibly, and powerfully is typically associated with strong conceptual underpinnings. 

Promoting this conceptual structure in students' understanding may be achieved 

through both curriculum and instruction including tasks, prompts, and projects that 

promote and assess the development of these "ways of thinking" in students. We 

advocate for greater emphasis on developing students' ability to speak about functions 
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as entities that accept input and produce output, a more conceptual orientation to 

teaching function inverse and composition, the inclusion of tasks requiring simultaneous 

judgments about entire intervals of input or output values, and the development of 

students' ability to mentally run through a continuum of input values while imagining 

the changes in the output values…. (Carlson & Oehrtman, 2004, p.39; Oehrtman, Carlson 

and Thompson, 2008, p.167) 

Carlson, Madison & West (2010, 2015) and Carlson, Oehrtman & Engelke (2010) conducted studies to 

investigate pre-calculus or beginning calculus students’ reasoning abilities and understandings of some 

fundamental concepts related to functions. Foundational understanding and reasoning abilities, being 

essential for learning key ideas of pre-calculus and calculus courses, have been reported in these studies. 

Some of these foundational understandings are listed as: function composition, function inversion and 

the rate of change of function while fundamental reasoning abilities are described as: a process 

conception of function and a covariational conception of function. 

In their investigation, Carlson, Oehrtman & Engelke (2010) used the spherical bottle problem (in which 

cylindrical section removed from the original bottle problem) to investigate college algebra and pre-

calculus students' ability in constructing a graph of a dynamic function event, particularly, whether 

students are able to reason dynamic events covariationally. After conducting interviews with 47 

students, they found that only nine students were able to coordinate the instantaneous rate of change 

of the height of water while imagining continuous changes in the volume (MA5) (Carlson, Oehrtman & 

Engelke, 2010, p.127). Testing 550 college algebra and 902 pre-calculus students with a final assessment, 

Carlson, Oehrtman & Engelke (2010) observed that most of these students relied on their procedural 

associations, failed in conceptualizing a function as a generalized process which accepts input and 

produces output and so were unable to reason the dynamic functional situations covariationally (p.139). 

The investigators remarked that a process conception of function plays a critical role in covariational 

reasoning: “we view covariational reasoning as a refinement and extension of a process view of function 

and elaborate here why we claim that a process view of function is essential for imagining and describing 

how two quantities covary” (Carlson, Oehrtman & Engelke, 2010, p. 117).  

Carlson, Madison & West (2010, 2015) conducted similar studies to assess beginning calculus students’ 

readiness for calculus courses, and the effectiveness of pre-calculus courses in preparing students to 

learn key concepts of calculus. They asked students the following ladder question (Figure 2): 
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Figure 2. The ladder problem used in the Carlson, Madison & West’s works (2010, 2015) 

The results suggest that only one third (27%) of 631 beginning calculus students chose the correct 

answer for this question. It seems that these students visualized how the slope of the ladder changes, 

and noticed that doubling the value of the numerator and decreasing the value of the denominator 

would generate a slope being more than twice what it was before. Almost half of students (48%) chose 

the answer b), exactly twice what it was. After conducting interviews with some of these students, the 

examiners concluded that these students were unable to visualize the slope of the straight line as a ratio 

of two quantities, only focussed on the amount of change of the top of the ladder, and failed in 

conceptualizing how the increase in the distance of the top of ladder from the floor by a factor 2 and the 

decrease in the distance of the base of the ladder from the wall changed the slope of the ladder (Carlson, 

Madison & West, 2015, p.227). After analyzing 631 students’ responses to the 25-item multiple-choice 

instrument, the researchers found that vast majority of beginning calculus students had difficulty in 

understanding fundamental concepts of pre-calculus, such as the function concept, function 

composition, the rate of change of a function, were unable to view a function as a generalized process 

and so they had weaknesses in reasoning dynamic events covariationally. They concluded that beginning 

calculus students enrol in calculus courses without learning essential knowledge of pre-calculus and so 

they are not prepared to understand key ideas of calculus.  

Calculus is based on the two theories: the theory of integration and the theory of differentiation. In 

order to understand these theories and other fundamental concepts of calculus, students need to 

conceptualize variables of a dynamic functional situation as varying smoothly and continuously in 
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smaller and smaller bits. Covariational reasoning plays a vital role in the development of fundamental 

mathematical notions related to functions. Students and teachers need to understand the ideas of 

continuous variation and continuous covariation in order to develop more meaningful conceptions of 

mathematical notions associated with functions. In their study, Thompson and Carlson emphasized the 

importance of teaching ideas of continuous variation and continuous covariation earlier in mathematics 

education: 

Students are unlikely to succeed in calculus if they meet these ways of thinking for the 

first time in calculus. Meaningful learning in calculus relies on students being able to 

inject meanings they have built in school mathematics into representations of them in 

calculus while at the same time creating a scheme that unites them symbolically. They 

must therefore begin building ideas of smooth continuous variation and covariation, 

constant rate of change, and process conceptions of rules of assignment in school 

mathematics. (Thompson & Carlson, 2017, p.453) 

Thompson and Carlson (2017) also emphasized the supporting role of quantitative reasoning in 

covariational reasoning. Like quantitative reasoning, covariational reasoning is also about understanding 

mathematical situations. When an individual is able to keep track of quantities’ values changing 

simultaneously, he/she most strongly reasons a dynamic functional situation covariationally  (Thompson 

and Carlson, 2017, p.446).  

When faced with mathematical situations, students often rely on their memorized procedural 

associations formed by limited selection of standard school tasks, lack essential conceptual 

understanding and are unable to develop powerful constructions between functional concepts and 

procedures. Since students often fail in conceptualizing a function as a process that maps values of one 

variable to values of another variable, they are generally unable to reason dynamic functional situations 

covariationally. Consequently, many students enrol in calculus courses without learning fundamental 

function concepts and so are not ready to understand advanced key concepts of higher mathematics 

courses. 
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3 THE THEORETICAL FRAMEWORK 

The theoretical framework of my research is based on three main sources. One part of it is the theory of 

understanding functions called “covariational framework”, developed by Marilyn P. Carlson and her 

collaborators (Carlson et al., 2002). The second part consists of concepts of conceptual, pseudo-

conceptual, analytical and pseudo-analytical modes of thinking coined by Shlomo Vinner (Vinner, 1997) 

with the aim of capturing the origins of difficulty specific to learning mathematics at school. The last part 

composed of concepts of epistemological, didactical and cognitive obstacles, defined by Sierpinska 

(1992, 2019), Herscovics (1989), Bachelard (1938/1983) and Brousseau (1997), with the aim of revealing 

college level Calculus students’ common obstacles. 

3.1 COVARIATIONAL UNDERSTANDING OF FUNCTIONS 

In my work, I adopted the Covariation Framework rooted in Carlson et al.’s paper (2002) as main 

theoretical framework for investigating college level Calculus students’ abilities in covariational 

reasoning.  First, I present the original framework followed by its adaptation for the purpose of this 

research project. 

3.1.1 Carlson et al.’s “Covariational Framework” 

The covariational reasoning is defined in Carlson et al. (2002) to be the collection of ‘cognitive activities 

involved in coordinating two varying quantities while attending to the ways in which they change in 

relation to each other’ (page 355).  According to the original Framework, the development of 

covariational reasoning progresses through five levels. Each level is defined by the range “mental actions” 

(or thoughts about varying quantities) that it supports. The framework distinguishes five mental actions, 

describing each of them by its conceptual contents and by externally observable behaviors through 

which these thoughts are assumed to express themselves. The five mental actions and related behaviors 

are given in the Table 1 on page 360 in the cited article. I reproduce this table in Figure 3. 
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Figure 3. Carlson et al.’s original model of mental actions of covariational reasoning 

The concept of [mental] image [of a mathematical concept] is used to explain the levels of covariational 

reasoning. The description of the meaning of the word ‘image’ is taken from Thompson (1996) where he 

says:   

By “image” I mean much more than a mental picture. Rather, I have in mind an image as 

being constituted by experiential fragments from kinesthesis, proprioception, smell, 

touch, taste, vision, or hearing. It seems essential also to include the possibility that 

images can entail fragments of past affective experiences, such as fearing, enjoying, or 

puzzling, and fragments of past cognitive experiences, such as judging, deciding, 

inferring, or imagining. (Thompson P. , Imagery and the devlopment of mathematical 

reasoning, 1996, p. 276) 
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Thompson states that his understanding of “mental image” is different from (but not inconsistent with) 

Tall & Vinner’s notion of “concept image” (Tall & Vinner, 1981), A student can develop a “concept image” 

of a mathematical concept, in Tall & Vinner’s sense, only after having heard or seen its name and its 

definition; a concept image is an association in the learner’s mind with a name, a word, For example, a 

person’s concept image of the concept of function is made of all the associations he or she makes with 

the word “function” in the context of mathematics. Thompson summarizes Tall & Vinner’s notion of 

“concept image” as follows: “a concept image comprises the visual representations, mental pictures, 

experiences and impressions evoked by the concept name” (Thompson, Imagery and the devlopment of 

mathematical reasoning, 1996, pp. 15-16 in online version). On the other hand, the mental images 

proposed by Thompson may be developed through experiencing and dealing with mathematical 

situations, problems, before or independently of being introduced to a concept’s name and definition, 

and the focus is on what the person does with the image and/or elements of it (in other words, how the 

person operates with it): “the notion of image I’ve attempted to develop focuses on the dynamics of 

mental operations.” (ibid.). A person may develop an image of two quantities co-varying in different 

ways without necessarily associating it with the name “function” or a well-defined mathematical 

concept (as Newton and Leibniz did).  

Carlson et al.’s (2002) descriptions of the levels are reproduced below in Figure 4. The descriptions 

follow the same format. The authors considers the image of covariation of an individual to be at level   

if it supports mental actions MA1 through MA  summarizing briefly the actions used in their earlier 

description illustrated in Figure 3 for levels 1 to 3, and slightly enriched, for levels 4 and 5. 

According to Carlson et al., if the students’ behaviors engage in a mental action related with a given level, 

and in the mental actions related with all lower levels, then the student’s ability in covariational 

reasoning has reached that level. Our goal is that students fully participate in all mental actions 

presented in the covariation framework. 

At Level 1, the image of covariation a person holds allows that person to see two variables changing 

simultaneously and coordinate changes in one with changes in the other. This level is labelled the 

“coordination level”. So, according to the Covariational Framework, if we observe behaviors 

characteristic of mental action MA1 in a student, then we can say that the development of covariational 

reasoning in this student has attained at least Level 1.  

At Level 2, the image of covariation additionally allows a person to become aware of the direction of the 

changes (increase, decrease or neither) of the variable assumed to be “dependent” with respect to the 
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variable assumed to be “independent”. This level is called the “direction level”. So, if a student exhibits 

behaviors which are supportive of mental actions MA1 and MA2, we can claim that the development of 

covariational reasoning of this student has reached at least Level 2.  

At Level 3, called the “quantitative coordination level”, the image of covariation additionally allows a 

person to estimate the amount of change of the dependent variable, also called output variable function, 

while considering changes in the independent variable, also called input variable. Thus, if a student 

exhibits behaviors supportive of mental actions MA1, MA2 and MA3, then we can say that this student’s 

covariational reasoning ability has reached at least Level 3 and passed levels 1 and 2.  

At Level 4, called the “average rate level”, the image of covariation additionally allows a person to 

quantitatively coordinate the average rate of change of the output with respect to uniform changes in 

the input variable. If a student exhibits behaviors that are suggestive of mental actions MA1, MA2, MA3, 

and MA4, we can say that the development of covariational reasoning in this student has attained at 

least Level 4. 

At Level 5, called “the instantaneous rate level”, the image additionally allows coordinating the 

instantaneous rate of change of the output with continuous changes in the input variable and also 

observes changes in the rate of change from increasing to decreasing or vice versa over the entire 

domain of the input (i.e., identify points of inflection). Since, in the theory, instantaneous rate of change 

is conceptualized as the limit of the average rate of change over smaller and smaller intervals of the 

input variable, Carlson et al. (2002) require that a person should exhibit behaviors symptomatic of MA4 

(on top of  MA1, MA2, MA3 and MA5) to be declared at Level 5.  
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Figure 4. Carlson et al.’s (2002) original model of levels of covariational reasoning. 

3.1.2 Adaptation of Carlson et al.’s Covariational Framework to analyze the data 

Adaptation of Carlson et al.’s covariational framework was used to explore and report the covariational 

reasoning of college level Calculus students in dynamic function events. I note that Carlson et al.’s 

covariational framework evaluates graphical/schematic representation of a function and 

verbal/contextual representation of a function. Since I am interested to observe whether Calculus 

students are able to represent a given functional situation, verbally, graphically or algebraically, I added 

a new section as algebraic/symbolic representation of a function including the descriptions of behaviors 

associated with covariational reasoning in my adaptation and made some changes in the descriptions of 

behaviors listed in Figure 3. These changes will be explained shortly. 

At the coordination level (Level 1) which supports the Mental Action 1 (MA1), Carlson et al. expected 

that students will label the axes of the graph with verbal indications of coordinating two variables.  On 
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the one hand, labeling and speaking can occur at the same time in an interview. On the other hand, all 

labeling, verbalizing and symbolizing consist in writing, so they cannot be done simultaneously. We want 

to observe traces of three behaviors when analyzing written responses. Thus, I split the description of 

the behavior symptomatic of Level 1 in three parts; 1) labeling axes with names of variables, preferably 

putting the name of the variable implicitly assumed (in a problem) to be the input (or independent) 

variable on the horizontal axis and the name of the output (dependent) variable on the vertical axis, 2) 

verbalizing an awareness of coordinating these variables, 3) expressing name of the input and output 

variables algebraically/symbolically by letters/symbols (e.g.     ). These changes are visible in the new 

table identified as Table 1 below. 

Table 1. Adaptation of Carlson's mental actions descriptions to my research 

Name of 

mental 

action  

Description of 

mental actions  

Behaviors associated with covariational reasoning (more substantial adaptations 

to the conditions of my research: no oral interviews, more detailed questions to 

be answered in writing)  

  Graphical/Schematic 

Representation 

Verbal/Contextual 

Representation  

Algebraic/Symbolic Representation  

Mental 

action 1 

(MA1) 

Coordinating 

the value of 

one variable 

with changes in 

the other.  

Labeling axes with 

names of variables, 

preferably putting 

the names of the 

variable implicitly 

assumed to be the 

input (or 

independent) 

variable on the 

horizontal axis and 

the name of the 

output (dependent) 

variable on the 

vertical axis 

Verbalizing an 

awareness of 

coordinating the 

two variables, the 

input and output 

  

Expressing names of the input and 

output variables 

algebraically/symbolically – 

determination of functional 

notation. Names of the input and 

output variables are expressed 

explicitly by letters/symbols (e.g. 

y(x)) 
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Mental 

action 2 

(MA2) 

Coordinating 

the direction of 

change of one 

variable with 

changes in the 

other variable 

Constructing a line, 

curve, (or sequence 

of lines) with definite 

direction(s) (e.g. line 

rising from the left to 

right) 

 

 

 

Verbalizing an 

awareness of the 

direction of change 

of the output while 

considering 

changes in the 

input 

Expressing an awareness of the 

direction of change of the output 

while considering changes in the 

input, symbolically/algebraically.  

The direction of change of the 

output (with respect to changes in 

the input) is represented by 

symbols and/or numbers 

connected with inequality/equality 

signs (e.g. 0≤y1(x1)≤y2(x2)≤y(x) for 

the input 0≤x1≤x2≤x) 

Mental 

action 3 

(MA3) 

Coordinating 

the amount of 

change of one 

variable with 

changes in the 

other variable 

Plotting points/ 

representing relative 

magnitude(s) 

(numerically or 

symbolically) of the 

output variable on 

the y-axis while 

picturing relative 

magnitude(s) of the 

input on the x-axis. 

Possibly constructing 

a secant line or more 

 

Verbalizing an 

awareness of the 

amount of change 

of the output while 

considering 

successive changes 

in the input 

 

Expressing an awareness of the 

amount of change of the output 

while considering successive 

changes in the input, 

symbolically/algebraically.  

A rule (or rules) of correspondence 

between covarying quantities is 

represented by algebraic 

expression(s), involving letters/ 

symbols/ numbers combined by 

operations, connected to functional 

notation with an equal sign. The 

domain and range of the function 

are expressed explicitly (e.g. y(x) = x 

+ 3, the domain and range are all 

real numbers) 

Mental 

action 4 

(MA4) 

Coordinating 

the average 

rate of change 

of the function 

with uniform 

increments of 

Constructing 

contiguous secant 

lines for the domain 

 

Verbalizing an 

awareness of the 

rate of change of 

the output (with 

respect to the 

input) while 

Expressing an awareness of the 

average rate of change of the 

output while considering uniform 

increments of the input, 

symbolically/algebraically.  

The average rate of change of the 
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change in the 

input variable  

considering 

uniform 

increments of the 

input 

function is considered as change in 

the output (  ) divided by change 

in the input (  ). Being aware of 

that the slope of secant line passing 

through two specific points, such as 

(x1, y1) and (x2, y2), represents the 

average rate of change of the 

function that is: 

  
  

  
 

     

     
 

Mental 

action 5 

(MA5) 

Coordinating 

the 

instantaneous 

rate of change 

of the function 

with continuous 

changes in the 

independent 

variable for the 

entire domain 

of the function 

Constructing a 

smooth curve with 

clear indications of 

concavity changes 

(direction of 

concavities and 

inflection points are 

correct) 

Verbalizing an 

awareness of the 

instantaneous 

changes in the rate 

of change of the 

output as the input 

continuously takes 

values in its entire 

domain  

 

Expressing an awareness of the 

instantaneous rate of change of the 

output with continuous changes in 

the input, 

symbolically/algebraically.  

The instantaneous rate of change of 

the output is expressed as the 

derivative of the dependent 

variable, being aware that the slope 

of the tangent line at a specific 

point, such as           , 

represents the instantaneous rate 

of change of the function at the 

point    via the limit definition: 

          
     

  

   

    
     

               

   
 

The inflection point is found as the 

point where the second derivative 

changes sign 

 

At the direction level (Level 2) which supports the Mental Action 2 (MA2), the focus is on the 

coordinating the direction (e.g., increasing, decreasing or neither) of the changes in the output variable 
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with respect to changes in the input variable. One of the associated behaviors for Mental Action 2 that is 

written in the original Carlson et al.’s table (Figure 3) is ‘constructing an increasing straight line’. 

However, if the framework is to be applicable to a wide range of problems, we cannot assume that the 

only model students will think of will be an increasing linear function. Thus, I modified the description of 

the first behavior to reflect a greater generality and applicability, as “constructing a line, curve, (or 

sequence of lines) with definite direction(s) (e.g. line rising from the left to right)” under the section of 

graphical representation in Table 1 above. The second behavior symptomatic of MA2 – verbally 

coordinating the direction of changes in the two variables – remains the same under the section of 

verbal representation. I introduce the third behavior symptomatic of MA2 written in the section of 

algebraic representation as: “Expressing an awareness of the direction of change of the output while 

considering changes in the input, symbolically/algebraically. The direction of change of the output (with 

respect to changes in the input) is represented by symbols and/or numbers connected with 

inequality/equality signs (e.g. 0 ≤ y1(x1) ≤ y2(x2) ≤ y(x) for the input 0 ≤ x1 ≤ x2≤ x)”.  

At the quantitative coordination level (Level 3) which supports Mental Action 3 (MA3), plotting the 

points on the graph, verbalizing an awareness of the amount of change of the output while considering 

changes in the input and “expressing an awareness of the amount of change of the output while 

considering successive changes in the input, symbolically/algebraically” are the key behaviors. At this 

level, a rule (or rules) of correspondence between changing quantities is represented by algebraic 

expressions, involving letters/symbols/numbers combined by operations, connected to functional 

notation with an equal sign, and also the domain and range of the function need to be expressed 

explicitly (e.g. y(x) = x + 3, the domain and range are all real numbers). The word “successive” was added 

in the part of contextual representation in the table since changes in the input should be considered 

successively at Level 3. I added the following condition “representing relative magnitude(s) (numerically 

or symbolically) of the output variable on the y-axis while picturing relative magnitude(s) of the input on 

the x-axis, possibly constructing a secant line or more” in the section of schematic representation while I 

removed the part of “constructing secant lines” since I think that constructing secant lines should not be 

required at this level while it is necessary at Level 4. Special case: In a case that there exists a symmetry 

property between two functions (such as a case of bijectivity), if an individual verbally recognizes and 

uses the symmetry property between two bijective functions to coordinate the amount of change of the 

output (with respect to input), then this is considered as verbal evidence for MA3. 
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Regarding the average rate level (Level 4) which supports the Mental Action 4 (MA4), I kept first and 

second behaviors the same under the sections of graphical and verbal representations. I represent the 

third behavior symptomatic of MA4 which can be seen in the section of symbolic representation as: 

“expressing an awareness of the average rate of change of the output while considering uniform 

increments of the input, symbolically/algebraically. The average rate of change of the function is 

considered as change in the output (  ) divided by change in the input (  ). Being aware of that the 

slope of secant line passing through two specific points, such as (x1, y1) and (x2, y2), represents the 

average rate of change of the function that is:   
  

  
 

     

     
.”  

At the instantaneous rate level (Level 5) which supports the Mental Action 4 (MA5), while I made small 

changes and some organization under the sections of graphical and verbal representations, I introduce 

the third behavior symptomatic of MA5 as: “expressing an awareness of the instantaneous rate of 

change of the output with continuous changes in the input, symbolically/algebraically” under the section 

of algebraic representation. At this level, the instantaneous rate of change of the output is expressed as 

the derivative of the dependent variable. An individual needs to be aware of that the slope of the 

tangent line at a specific point, such as           , represents the instantaneous rate of change of the 

function at the point    via the limit definition: 

          
     

  

   
    

     

               

   
 

The inflection point needs to be found and represented as the point where the second derivative 

changes sign by an individual at this level.  

I made a more substantial change in defining Level 5. The original definition required “awareness that 

the instantaneous rate of change resulted from smaller and smaller refinements of the average rate of 

change” and, presumably, behaviors symptomatic of this awareness, that is, observation of MA4, since 

the authors say, “The mental actions identified as MA1 through MA5 are supported by L5 images.” 

While I agree with the assumption of awareness, I do not require that it is observable through behaviors 

characteristic of MA4. In theory, instantaneous rate of change is conceptualized as resulting from 

smaller and smaller refinements of the average rate of change. But, in a particular person, this 

conceptualization may have been done in a general case sometime in the past and, when, later, faced 

with a particular problem, the person may not redo the conceptualization. So the person may not 

exhibit behaviors characteristic of MA4 that is show an awareness of the average rate of change and 

then pass to the limit and show thinking about the instantaneous rate of change. Thus, if we observe 
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behaviors which are suggestive of mental actions MA1, MA2, MA3 and MA5, but not necessarily of MA4, 

we can claim that the development of covariational reasoning in this student has reached Level 5.   

Moreover, I identify a new level as ‘Level 0. Unsatisfactory Covariational Reasoning’ that corresponds to 

behavior not supporting MA1 which I will denote, and use further, as MA0. This means that the 

development of a student’s covariational reasoning has not even reached Level 1. At this level, when 

presented with a situation involving two changing quantities, the student does not show that he or she 

is coordinating their changes. 

3.2 DIFFERENT MODES OF THINKING ACCORDING TO VINNER 

A second set of concepts that I use in my theoretical foundation consist of the conceptual, pseudo-

conceptual, analytical and pseudo-analytical modes of thinking defined by Shlomo Vinner (1997) in a 

paper aiming to analyze and report students’ behaviors in learning or problem-solving situations. These 

concepts are also used by Carlson et al. in analyzing students’ responses (Carlson et al., 2002). 

For students to be engaged in a mathematical activity, it is expected that they are cognitively committed 

(meaning that students are intellectually involved with the subject) in a given learning or problem-

solving situation. Vinner calls this state ‘cognitive commitment’ and he remarks the following about true 

learning or problem-solving situations: ‘the student has to be cognitively committed (being in a learning 

mode) to the external stimuli that the student is going to absorb’ (page 99). Sometimes, classroom 

situations, which are learning or problem-solving situations for a teacher, become for some students 

pseudo-learning or pseudo-problem-solving situations. A student who is in a pseudo situation acts 

spontaneously without being cognitively involved with the topic, and tries to find the result (generally 

based on some memorized associations from past mathematical activities) without validating her/his 

answer (to see, for example, if the procedure is appropriate in this particular instance). The student is 

not concerned with whether his or her answer is valid but only with the fact whether the answer will be 

accepted by the teacher. Therefore he or she does not see the point of checking their answer – the 

control stage is missing in their thinking. This is the idea behind the notions of pseudo-conceptual and 

pseudo-analytical behaviors and underlying modes of thinking: 

Pseudo-conceptual or pseudo-analytical thought processes are based on the belief that 

that a certain act will lead to an answer which will be accepted by society or will impress 

society (mathematics teachers in our case). In other words, I am dealing with the 
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difference between the belief that statement X is true and the belief that statement X 

will be credited by person Y who is supposed to evaluate it. (Vinner, 1997, p. 115) 

Pseudo-conceptual and pseudo-analytical thought processes share important common features – e.g., 

lack of control procedures – yet Vinner insists on keeping both these concepts (Vinner, 1997, p. 116). 

The reason being that they occur in classroom situations with different goals.  When we evaluate 

students’ responses in a discussion about the meanings of mathematical concepts, Vinner proposes to 

speak about conceptual and pseudo-conceptual behaviors and thinking processes. When the main goal 

is to solve a problem– he proposes to speak about analytic and pseudo-analytic behaviors and thinking 

processes. Sometimes, reflection on the meaning of a concept takes place within a problem-solving 

situation. In this case, Vinner proposes to keep evaluating students’ behaviors in terms of analytic and 

pseudo-analytic behaviors: 

There are contexts which are essentially problem-solving contexts. In these contexts the 

main activity is to analyze the situation and to find the suitable solution procedure. It is 

true that part of analysis may be conceptual. Especially the control procedures may 

involve conceptual elements. However, if the main process is a problem-solving process, I 

will speak about analytical of pseudo-analytical thought processes and behavior. (Vinner, 

1997, p. 116) 

Vinner has trouble, however, to keep to this convention in his “additional examples” (section 6, p. 118-

119). So I will also depart from this convention and use the “conceptual” terms whenever the student is 

referring to the meaning of a concept, even if this occurs within a situation whose main goal is to solve a 

problem. 

3.2.1 Conceptual and Pseudo-conceptual thinking 

One common classroom activity has students and teachers participate in a discussion about the 

meanings of certain mathematical concepts. A student who is in a “conceptual mode of thinking” thinks 

about ideas, the meanings of mathematical notions and their logical connections. 

Concepts are involved. Students are expected to think about concepts, their meaning and 

their interrelations. If they really do it, they are in a conceptual mode of thinking. If they 

do not, but, yet, succeed in producing answers which seem to be conceptual, then this 

will be described, in my terminology, as being in a pseudo-conceptual mode of thinking. 

(Vinner, 1997, p. 99) 
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Therefore, if a student is in some thought processes in which ideas, concepts and their mental 

connections are involved; this type of thinking is identified as conceptual thinking being based on 

conceptual understanding. The behavior that is produced by these conceptual thought processes is 

called a conceptual behavior. It is introduced as a behavior that… 

…is based on meaningful learning and conceptual understanding. It is a result of thought 

processes in which concepts were considered, as well as relations between the concepts, 

ideas in which the concepts are involved, logical connections, and so on. (Vinner, 1997, p. 

100) 

If a student fails to think about ideas, concepts associated with the ideas and their logical connections, 

this type of thinking is called as pseudo-conceptual thinking. The behavior that is produced by these 

pseudo-conceptual thought processes is called pseudo-conceptual behavior. Vinner describes pseudo-

conceptual thoughts as … 

… formed in a spontaneous way. They are not necessarily taught by teachers or the 

agents. Sometimes they are the natural cognitive reactions to certain cognitive stimuli. 

The students use them without going through any reflective procedure, control 

procedure or analysis of any kind. (Vinner, 1997, p. 101) 

He points out the following about the pseudo-conceptual behavior: 

… a behavior which might look like conceptual behavior, but which in fact is produced by 

mental processes which do not characterize conceptual behavior. (Vinner, 1997, p. 100)  

According to Vinner, if a student’s behavior indicates that the control stage is missing when discussing 

the meaning of mathematical concepts and her/his answer does not make sense in the context, then we 

identify the student’s behavior as pseudo-conceptual behavior which is a result of the student’s pseudo-

conceptual mode of thinking:   

A dominant feature of the pseudo-conceptual thought processes is the uncontrolled 

associations which fail to become a meaningful framework for further thought processes. 

Most of us have some experience with situations in which we combine certain words or 

symbols and express them without knowing exactly what they mean. (Vinner, 1997, p. 

103)  
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In the following example, Vinner identifies the Student C’s reaction as a typical pseudo-conceptual 

behavior (page 107-108): 

Teacher: What is the distance between two points?  

Student A: The slope. 

Student B: A straight line. 

Student C: A segment. 

Teacher: …the distance between two points is the length of the segment connecting the 

two points. 

Student C: But this is exactly what I have said. 

We can determine from the Student C’s responses that he/she had a lack of control mechanism when 

responding to the question. He/she first claimed that the distance between two points is a segment, and 

then thought that the segment which represents a geometrical entity is identical with the length of the 

segment which represents a number. It is obvious that there are no clear distinctions between two 

different entities in the student’s mind which is an evidence of pseudo-conceptual behavior.  

In my work, I use the notions of conceptual and pseudo-conceptual thinking to investigate and report 

the students’ behaviors (true or pseudo) produced by some mental processes in moments of thinking 

about the meaning of concepts in concrete problem-solving situations. When a student is engaged in 

discussing the meanings of mathematical concepts, and is in a pseudo-conceptual mode, the student 

will try to use memorized associations which come from common rituals of answering standard 

mathematical questions. The student will probably not test, or fail to test, these associations in order to 

see if her/his answer is correctly derived or not.  

3.2.2 Analytical and Pseudo-analytical thinking 

Another common classroom activity in which the students and teachers participate is solving routine 

mathematical problems. The terms “analytical thinking” and “pseudo-analytical mode of thinking” are 

introduced by Vinner (1997) to examine and report certain specific students’ behaviors in routine 

problem-solving situations. According to Vinner, when a student is in a routine problem-solving event, 

the student is supposed to have mental processes that are “analytical” in the sense which he explains by 

way of a diagrammatic model in his paper (Vinner, 1997, p. 111). In summary, the model assumes that 

analytical thinking process (being based on analytical understanding) about a routine mathematical 



40 
 

problem consists in analyzing the problem to determine the type and structure of the problem, choosing 

a suitable solution procedure from a ‘pool of procedures’ (that student remembers from previous 

mathematical events) for this particular type of the problem, applying the selected solution procedure 

to the given problem in order to produce an answer, and verifying if the answer makes sense. 

Vinner says that his paper is not considering situations of solving non-routine problems. The problems 

given to the participants in my study were non-routine. Yet some students interpreted them as routine, 

or behaved as if they were given a routine problem to solve. That is why Vinner’s framework could still 

be applied to analyzing their solutions. 

When engaging routine or non-routine problem solving situations, most of students in the educational 

system (as some of the students who participated in my study) probably will try to use a memorized 

solution procedure that they remember from the past mathematical activities. In a problem-solving 

situation, it is vital to select a correct solution procedure. However, it is not sufficient to choose the right 

solution procedure in this process since the student also needs to apply the selected procedure 

accurately in her/his solution in order to find correct answer(s) by the end of the activity.   

As Vinner explained in his paper, it is essential to mention the importance of reading comprehension 

skill in a problem-solving situation. When a student does not understand, or misunderstands what 

he/she reads in a given problem, he/she will end up making enormous errors in his/her responses. In 

addition to that, it is also critical to have a control mechanism in any problem-solving situation and 

activate such mechanism when responding to a question in order to see if the answer makes sense. 

Therefore, these two abilities, reading comprehension and control mechanism, are fundamental in 

solving both routine and non-routine mathematical problems. 

In problem-solving situations, the students are supposed to be in the true analytical mode of thinking in 

order to exhibit true analytical behaviors. However, the students may have thought of processes that 

are ‘pseudo-analytical’ instead of true analytical. In pseudo-analytical mode of thinking, when a 

mathematical problem is posed to a student, the particular student will have mental processes to 

determine the similarity of a given mathematical problem to one of problems that is chosen from a pool 

of typical problems (including their solution procedures), and apply the selected solution procedure to 

the given problem in order to produce an answer. The produced answer can even be the correct answer. 

Vinner presents the following necessary conditions for pseudo-analytical mental processes to occur: 
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A student who solves problems using the pseudo-analytical mode has to have the 

following:  

(A’) A pool of typical questions and their solution procedures 

(B’) Mental schemes by means of which a similarity of a given question to one of the 

questions in A’ can be determined. (Vinner, 1997, p. 114) 

In pseudo-analytical thought processes, a student will match the given problem with one typical 

question and its solution procedure based on superficial similarities and not on deeper analysis of the 

problem’s type and structure. The student will then imitate remembered solution procedure to obtain 

an answer. The student will not reflect on the plausibility of the answer – he/she will not engage the 

control mechanisms. 

Vinner points out that, 

the most characteristic feature of the pseudo-analytical behavior is the lack of control 

procedures. The person is responding to his or her spontaneous associations without a 

conscious attempt to examine them. The moment a result is obtained there are no 

additional procedures which are supposed to check the correctness of the answer. 

(Vinner, 1997, p. 114)   

Therefore, ‘uncontrolled associations’ are the key feature not only in identifying the pseudo-conceptual 

behaviors, but also in identifying the pseudo-analytical behaviors.  

3.2.3 Distinction between Pseudo-conceptual thinking and Misconceptions 

It is important to distinguish between the pseudo-conceptual thoughts and misconceptions. Vinner 

identifies misconception as the concept that ‘it is based on a belief about a certain mathematical 

situation’ while pseudo-conceptual  thoughts ‘are based on the belief that a certain act will lead to an 

answer which will be accepted by society’ (Vinner, 1997, p. 115). In addition to that, as Vinner mentions 

in his paper (page 121), the difference between pseudo-conceptual thoughts and misconceptions is that 

a student is cognitively involved in misconceptions while there is no ‘cognitive involvement’ in pseudo-

conceptual mode of thinking. The lack of cognitive involvement is an important foundation for further 

pseudo-conceptual behavior. More precisely, Vinner points out the difference between the two modes 

as follows: 
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The difference between the pseudo-conceptual mode and misconceptions is in the 

cognitive dimension. The way I see it, misconceptions occur within cognitive frameworks. 

The pseudo-conceptual mode is outside the cognitive frameworks. A misconception is a 

result of cognitive involvement. It is a result of cognitive efforts. These efforts led to a 

wrong idea. On the other hand, when a pseudo-conceptual behavior occurs, there is no 

cognitive involvement. The person is looking for a satisfactory reaction to a certain 

stimulus while cognitive issues do not play a role (at least not a major role). The thought 

process is guided, in addition to other things by uncontrolled associations and superficial 

similarities. (Vinner, 1997, p. 121) 

3.3 EPISTEMOLOGICAL, COGNITIVE AND DIDACTICAL OBSTACLES IN THE CONTEXT OF FUNCTIONS  

Another set of concepts that I use in my study is formed by epistemological, cognitive and didactical 

obstacles as appear in work of Bachelard (1938/1983), Brousseau (1997), Herscovics (1989) and 

Sierpinska (1992, 2019) in aiming to reveal common obstacles college level Calculus students encounter 

when solving dynamic tasks. As discussed in the section 3.2, in a problem solving situation, a student is 

expected to be in a learning mode. However, the particular student may not be cognitively committed 

with the subject or the situation, so he/she may have some obstacles (besides maybe having some 

pseudo-thoughts) when solving the problem. These obstacles may be epistemological, cognitive or/and 

didactical. 

Brousseau (1997) defined an obstacle as “a previous piece of knowledge which was once interesting and 

successful but which is now revealed as false or simply unadopted” (p.82) while Bachelard (1938/1983) 

represented the concept of ‘epistemological obstacle’ relating to the progress of scientific knowledge: 

When one looks for the psychological conditions of scientific progress, one is soon 

convinced that it is in terms of obstacles that the problem of scientific knowledge must 

be raised. The question here is not that of considering external obstacles, such as the 

complexity and transience of phenomena, or to incriminate the weakness of the senses 

and of the human spirit; it is in the very act of knowing, intimately, that sluggishness and 

confusion occur by a kind of functional necessity. It is there that we will point out causes 

of stagnation and even regression; it is there that we will reveal causes of inertia which 

we will call epistemological obstacles. (Quoted from Herscovics, 1989, p.61) 
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Herscovics (1989) used the term ‘epistemology’ in the context of historical and critical study of science, 

specifically, and the growth of knowledge in general. The development of scientific knowledge 

encounters some periods of slow progress with some ‘jumps’ from old ways of knowing to new ways of 

knowing. This means that the process of growth of scientific knowledge (e.g. the process of learning 

mathematics) is discontinuous. Jumping from an old way of knowing to a new way of knowing requires 

some changes related to the knowledge in a person’s mind. However, the individual may hold some 

‘blind beliefs’ and ‘unconscious thoughts’ in her/his cognition, preventing her/him from knowing in new 

ways. If these ‘blind beliefs’ and ‘unconscious schemes of thought’ are widespread or have been 

widespread among human beings in some culture or society, then these obstacles are called 

‘epistemological obstacles’. When we take a distance from our ‘blind beliefs’ and ‘unconscious thoughts’, 

realize their consequences and consider other perspectives, we may overcome these epistemological 

obstacles (Sierpinska, 1992). Then, the jump can be described in terms of the new ways of knowing. 

Related to overcoming these obstacles, Sierpinska made the following comment:  

When, eventually, we start seeing and doing things differently, the unquestioned beliefs 

turn into hypotheses or assumptions, the unconscious ways of thinking turn into explicit 

techniques or methods, and the obstacle is overcome (Sierpinska, 2019) 

She mentioned that the geocentric view of the universe, believing that the Earth is the center of the 

universe and planets orbit around it (from Ptolemy’s Almagest), might well have been an 

epistemological obstacle in the history of astronomy. She also provided an example of an 

epistemological obstacle in mathematics being still present in the today’s school curriculum, namely 

‘thinking of a function as an algebraic expression made of variables and constants’. The “analytic-

expression” obstacle creates other obstacles such as only focusing on operational (or procedural) 

aspects of functions and not considering functions as representing relationships between changing 

quantities. 

On the one hand, according to Euler’s first definition, an analytic expression is a set of a variable 

quantity and constant quantities combined with certain algebraic operations, representing a rule of a 

function. On the other hand, ‘analytic expression’ today stands for one type representation of function 

and not for function itself. Therefore, to be able to overcome this obstacle, it is vital to distinguish 

functions themselves from their representations as Sierpinska (1992) stated in her work: “U(f)-15: 

Discrimination between different means of representing functions and the functions themselves” (p.53). 

If a student is not able to discriminate between a function and analytical tools used to represent the 
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function, then he/she may have not overcome the epistemological obstacle:  “EO(f)-11: Only 

relationships describable by analytic formulae are worthy of being given the name of functions” 

(Sierpinska, 1992, p.46), being used in my study. This epistemological obstacle may be very common 

among students due to highly procedural orientation being dominant in our world’s educational system.  

Another vital sign of understanding functions identified by Sierpinska is “U(f)-3: Identification of the 

subjects of change in studying changes”. If an individual fails in identifying “What changes” in the 

“World of changes”, then he/she may have the following epistemological obstacle also being used in my 

study; “EO(f)-3: Regarding changes as phenomena; focusing on how things change, ignoring what 

changes” (Sierpinska, 1992, p.36). Sierpinska identified other epistemological obstacles that I use in my 

study as follows: 

EO(f)-5: Regarding the order of variables as irrelevant. (Sierpinska, 1992, p.38) 

EO(f)-7: A Pythagorean philosophy of number: everything is number. (Sierpinska, 1992, 

p.41) 

EO(f)-9: Proportion is a privileged kind of relationship. (Sierpinska, 1992, p.43) 

EO(f)-16: The changes of a variable are changes in time. (Sierpinska, 1992, p.55) 

Both historical and individual development of scientific knowledge causes difficulties that students 

experience in learning of mathematics. While historical development of scientific knowledge is 

associated with ‘epistemological obstacles’, individual development of scientific knowledge is related to 

‘cognitive obstacles’. Herscovics distinguished between these two types of obstacles by the statements 

such as: 

…just as the development of science is strewn with epistemological obstacles, the 

acquisition of new conceptual schemata by the learner is strewn with cognitive obstacles. 

And, just as epistemological obstacles are considered normal and inherent to the 

development of science, so should cognitive obstacles be considered normal and 

inherent to the learner’s construction of knowledge. (Herscovics, 1989, p.61) 

In a learning situation, the critical point is cognitive balancing of new knowledge with existing old 

knowledge. Piaget called this the balancing factor ‘Equilibration’ (Cohen, LeoNora M. & Kim, Younghee 

M., 1999). According to this equilibration theory, when an individual is learning a new knowledge, 

he/she is supposed to maintain a balance between assimilation, which involves integration of the new 
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knowledge to the individual’s existing cognitive structure, and accommodation, which involves changes 

formed in the individual’s mental structures. But, if the individual fails to accommodate his/her existing 

cognitive structures in the process of construction of the new knowledge, then his/her existing cognitive 

structures may turn into ‘cognitive obstacles’ (e.g. being unable to transform a pair of numbers from an 

equation into pairs of coordinates, or, correlating the shape of a graph with the physical features of a 

mathematical situation represented by the graph of a function) as Herscovics pointed out: 

…some new ideas are involved which cannot easily be assimilated into the learner’s 

existing cognition. New cognitive structures must be constructed and this process of 

accommodation may necessarily confront the student with major cognitive obstacles. 

(Herscovics, 1989, p.61) 

As noted in Section 3.1.2, I intend to observe whether Calculus students are able to represent a dynamic 

situation, verbally, graphically or algebraically. However, students may have difficulty in representing 

functions and also in moving from one type representation of the function to another type, creating a 

cognitive obstacle. I aim to study the cognitive obstacles involved in students being unable to move 

between different representations of a function, thus, I identify the following cognitive obstacles being 

used in my research:   

1) CO-GTV: Cognitive obstacle of being unable to transform a graphical representation of function to its 

verbal one;         

2) CO-GTA: Cognitive obstacle of being unable to transform a graphical representation of function to its 

algebraic one;    

3) CO-VTG: Cognitive obstacle of being unable to transform a verbal representation of function to its 

graphical one;         

4) CO-VTA: Cognitive obstacle of being unable to transform a verbal representation of function to its 

algebraic one;          

5) CO-ATG: Cognitive obstacle of being unable to transform an algebraic representation of function to its 

graphical one. 

I note that we can also identify another cognitive obstacle of being unable to transform an algebraic 

representation of function to its verbal one (CO-ATV). But, I did not use this identification in my research 

due to low participation of students for verbal representation of the function in Problem 2 since it 
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seems that students did not find necessary to address the verbalization of the situation once they 

worked on the analytical side of the problem. 

On the other hand, there are obstacles of didactical origin which are the result of narrow or faulty 

mathematical instruction (Brousseau, 1997). For instance, focusing on the set-theoretic definition of 

function at school or paying too much attention on analytic expressions of functions along the 

educational system, considered as didactical obstacles. Providing standard examples and routine tasks in 

school curriculum is another didactical obstacle.  Associated with typical school examples of functions 

using almost exclusively x and y, I present the following didactical obstacle that I use in my investigation; 

DO-XY: Didactical obstacle involved in representing variables by the letters ‘x’ and ‘y’. These obstacles 

caused by the type of instruction are the avoidable ones since they depend on choices made by the 

educational system. However, epistemological obstacles which are associated with the development of 

scientific knowledge and cognitive obstacles related to individual’s process of accommodation are 

difficult ones to avoid due to the nature of new knowledge and to the learner’s natural thinking 

processes (Herscovics, 1989). 
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4 METHODOLOGY 

In my study, I have investigated the understanding of functions of college level Calculus students asked 

to model dynamic situations. I have posed two problems to two sections of Math 205 at Concordia 

University, class in which college level Calculus students are enrolled to come up to speed on pre-

university level Calculus required by their program of study. The class enrollment of a typical section 

varies in between 75 and 100 students, and there are, in average, five such sections of the class in a 

given term. Their participation was voluntary, but presented as an incentive to obtain up to 2 points per 

problem extra credit on their regular homework assignment for the class. The 2 points amounted to up 

to 2% of their homework grade which on its turns counts for 10% of their final grade for the class.  The 

collection of data was done with the help and cooperation of two instructors teaching the 

corresponding sections of the course, and with the approval of the course examiner.  

The problems were developed from ‘the bottle problem’ used in their study by Carlson et al. (2002). I 

have modified the formulation of the bottle problem and generated multiple parts under Problems 1 

and 2 to ask students more questions. This was motivated in part by the fact that our research study did 

not incorporate any interviews with the students.  

4.1 DEVELOPING THE RESEARCH INSTRUMENT: QUESTIONS (MATHEMATICAL PROBLEMS) FOR 

STUDENTS 

As research instrument, I have designed two non-routine tasks with the goal of having Calculus students 

to model dynamic situations and so to represent situations: verbally, graphically or/and algebraically. 

The students’ behaviors, exhibited in the process of solving such non-routine tasks, would provide 

information on college level Calculus students’ understanding of functions in the context of modeling 

changes between varying quantities. These two non-standard tasks were divided into Problem 1, 

representing a conceptual version of the bottle problem, and of Problem 2, representing an analytical 

version of the bottle problem. In this section, I will first present each problem exactly as it was given to 

the students, and then I will describe what I consider to be a Level 5 response. I note here that I have 

used a computer based program, called Wolfram Mathematica, to facilitate complex processes, such as 

plotting graphs or doing analytical calculations of polynomial functions with higher degree, in solving the 

dynamic tasks.  
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4.1.1 Problem 1 [The bottle problem – A conceptual version] 

This part consists of the formulation and the expected solution for Problem 1 having a conceptual base. I 

present the formulation of Problem 1 which contains four questions: 1a, 1b, 1c and 1d. 

4.1.1.1 Problem formulation 

Suppose an evaporating flask is filled with water. 

 

(a) Sketch a graph of the height of water as a function of the amount of water that is in the bottle. 

(b) Explain why your graph represents this relationship. 

(c) Does the graph of the function have a point of inflection? Justify your answer and, if yes, indicate 

clearly the point of inflection on the graph. 

(d) Is there an interval where the height grows linearly with respect of the amount of the water? If yes, 

mark clearly the interval on your graph. 

4.1.1.2 Expected solution 

I have aimed for students to draw a continuously increasing graph while thinking about the 

instantaneous rates of change of the height of water in the bottle for amounts of water ranging from 0 

to the volume of the whole bottle that was made of a spherical segment and a cylinder. In other words, 

a “correct” solution would show evidence of thinking about the relationship between the changes in 

amount of water and the height of water in the bottle at Level 5, i.e., “coordinating the instantaneous 

rate of change of the output with continuous changes in the input” (questions 1a, 1b, 1d) and also 

“observing changes in the rate of change from increasing to decreasing or vice versa”, that is, identify 

point(s) of inflection (question 1c). 

For a solution to be evaluated at Level 5 in the development of covariational reasoning, in response to 

question 1a students would have produced a concave down graph in the beginning until the amount of 
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water reached the middle of the spherical part of the bottle when the graph becomes concave up, 

followed by a straight line starting from the moment when the amount of water reaches the end of the 

spherical part until the height reaches the end of the bottle. The axes would have been labelled 

correctly: the horizontal axis – “amount of water”, or “volume of water”, or “V”, etc., and the vertical 

axis – “height of water” or “h”, etc. Additionally, the relative magnitudes of the output and input 

variables should be represented symbolically on the axes. For instance, the graph (even though without 

secant lines) in Figure 5 is an example of a Level 5 solution for graphical representation of function 

(representing graphical signs of MA1, MA2, MA3 and MA5). 

 

Figure 5. Expected kind of graph in response to question 1a 

In response to question 1b, I expected students to explain in words the changes in the height of water in 

the bottle as the amount of water increased, in a manner consistent with the graph and referring to the 

situation of filling a bottle with water. I expected that their answer to question 1b may already contain 

elements of answers to questions 1c and 1d, and that students will add annotations to their graphs. I 

present an annotated graph in Figure 6 below. 

 

Figure 6. Annotated graph in the same solution as shown in previous figure. 

I now introduce a student’s response of a level 5 solution for verbal representation of function (his 

graph is similar to the one given in Figure 6), involving verbal signs of MA1, MA2, MA3, MA4 and MA5 to 

question 1b as an example: 
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b) The bottom and top parts of the flask have a similar structure. Therefore, the 

curvature of the graph will be similar. At the beginning the bottom part is narrower 

compared to the middle part. Thus, the slope will be shown with an increasing curve. 

However, the slope is higher and it will decrease towards to the middle/wide part. After 

the middle (the widest part) which I pointed out with the inflection point, after the 

inflection area, the graph will start to have similar pattern to the bottom part. At the end 

due to the straight part of the flask the graph will have a linear increase. 

In response to question 1c, I expected students at level 5 to indicate that the inflection point will occur 

when water reached the middle of the spherical part of the bottle and explain it by reference to change 

of concavity or to change in the direction of the curvature (verbal sign of MA5). But I also accepted less 

accurate explanations such as the one below as level 5, where “change of direction of the graph” is 

mentioned, because the student referred to “curvature” in his answer to question 1b (written above):  

c) Yes, towards the middle of the flask where the radius is the biggest the graph changes 

its direction. 

In response to question 1d, I expected the interval corresponding to the linear part of the graph to be 

marked on the horizontal axis (graphical sign of MA5), but accepted it being marked on the curve, as in 

Figure 6. In the following example of response to question 1d, the student also provided a valid 

justification of the linearity, which was not required in this question but complements his answer to 

question 1b: 

d) Yes, the neck of the flask is cylindrical; this will cause the graph a linear behavior. The 

height will be directly proportional to the amount of water. 

4.1.2 Problem 2 [The bottle problem – An analytical version] 

This part consists of the formulation and the expected solution for Problem 2 representing an analytical 

version of the bottle problem. I will present first the formulation of Problem 2 that contains multiple 

questions denoted 2a, 2b, 2c and 2d. 

4.1.2.1 Problem formulation 

This problem is about the evaporating flask being filled with water, as last week, but this time you are 

given the dimensions of the flask. We are assuming the radius of the sphere that forms the round part of 

the bottle is 1 unit (e.g., 1 dm = 10 cm) and the neck starts at 1 and 4/5 units from the bottom of the 

bottle; we also assume that the neck is 1 unit high. 
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a) Find a formula for the volume V of water as a function of the height h of the water: V(h) = ?. What is 

the domain of this function? What is the range? 

b) Sketch a graph of the height as a function of the volume of the water, i.e., of the function h(V). 

Explain how you did it and what makes you sure you are right. What is the domain of this function? 

What is its range? 

c) What is the height of the water if there are, approximately, 

(i) 2 litres  

(ii) 4 litres 

(iii) 5 litres 

of water in the flask? Note: 1 litre = 1 dm³ 

d) Does the graph of the function h(V) have a point of inflection? If yes, what are its coordinates? Justify 

your response. 

4.1.2.2 Expected solution 

In the analytical version of the bottle problem, we assume that the radius of the spherical part of the 

flask and the neck are 1 unit while the distance from neck to the bottom of the flask is 1 and 4/5 units. 

In question 2a, I expected students to find a formula for the volume of water as a function of the height 

of water with its domain and range. I aimed for students to determine the volume of water in the 

spherical cap of the bottle visualizing it first by approximation as the sum of volumes of many thin 

circular cylinders whose number goes to infinity while the thickness of the cylinders goes to zero. In 

order to reach the formula of the volume of water in the spherical part of the flask, I expected an 

integral formula ‘summing up’ the areas of the circular discs would be obtained from the collapse of the 
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thin cylinders by the students. I present an example of Level 5 solution for the algebraic representation 

of function below.  

Considering the values (the height of the spherical part of the bottle and the radius of the bottle) that 

are given in the problem, the students would have found the value of the radius of cylindrical part of 

bottle as 
 

 
 by using the Pythagorean Theorem as shown in Figure 7 below. 

 

Figure 7. Finding the radius of cylindrical section of the flask. 

In response to question 2a, the students would have imaged the flask on vertical and horizontal lines by 

labeling the horizontal axis as “x”, and the vertical axis as “y” like the one shown in Figure 8. 

 

Figure 8. Representing the spherical section of the bottle on the x-y axes with an equation. 

The students would have noticed that they have a half of the circle with center at (0, 0) and radius 1 for 

the first part of the spherical section of the bottle. Therefore, the equation representing the circle is: 

            . This means that the radius of the disc (when the water reaches height h) is:    

 √    .  

Since the area of the disc   equals to             , so            . By summing up these areas, that 

is, integrating from -1 to h - 1, students would have had the formula for the volume of water in the 
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spherical section of the flask as a function of the height h of water (a solution involving algebraic signs of 

MA1, MA2 and MA3): 

       ∫     
 

  
 ∫     

   

 
 ∫           

   

  
               

 

 
  

            
 

 
                     

 

 
     

 

 
        

 

 
  for 

       
 

 
    ( or     

 

 
 ). 

Alternatively, the students would have pictured the spherical section of the flask by rotating it on 

horizontal line as seen in Figure 9: 

 

Figure 9. Rotating the flask on horizontal line. 

Therefore, the students would have realized that the area under a curve which is half of the circle with 

center at (1, 0) and radius 1 would have represented with the following equation:  

               ; e.g., the area under the graph of the function     √        .  

The volume of the spherical cap can be visualized as the sum of infinitely thin circular discs, 

perpendicular to the plane of the Figure 9. When the water reaches height x, and     
 

 
, the radius 

of this disc is equal to     √         √       .  

Hence, the area of the disc is:                 . By summing up these areas, that is, integrating 

from 0 to h, students would have found the formula for the volume of water in the spherical part of the 

flask as a function of the height h of water (a solution containing algebraic signs of MA1, MA2 and MA3): 

      ∫            
 

 
      

  

 
                

 

 
  for     

 

 
   . 



54 
 

The neck of the flask is a cylinder with radius    √    
 

 
    

 

 
. When the water in the neck reaches 

height H, the volume of water in it can be calculated using the formula for the volume of a cylinder: 

            
 

  
  . When the water reaches to the neck, the height H will be equal to   

 

 
 . 

Therefore, the total volume of water in the flask can be computed using the formula: 

       
 

  
    

 

 
     the volume of water in the spherical cap.  

The latter volume of water (in the spherical cap) can be computed using the previously obtained volume 

formula (       
 

 
 ) for     

 

 
, taking    

 

 
. Hence, the students would have found the formula 

for the total volume of water in the flask as a function of the height h of water (a solution interfering 

algebraic signs of MA1, MA2 and MA3): 

      
 

  
    

 

 
      

 

 
     

 

 
  

 

 
    

 

  
    

 

 
   

   

   
   for   

 

 
   

  

 
   .  

In conclusion, the volume of water as a function of height of water can be evaluated using the following 

formula, representing a piecewise function: 

      {
       

 

 
             

 

 
   

 

  
    

 

 
   

   

   
         

 

 
   

  

 
   

 

It is not difficult to notice that the domain of this volume function is the interval formed by the 

minimum and maximum values of the height of water in the bottle. The range of the volume function 

can be found by just plugging the minimum and maximum values of the height of water into the two 

obtained volume formulas above. So, the students would have found the domain and the range of the 

volume function as follows (a response representing algebraic signs of MA3):  

The domain of the volume function,        
  

 
  

The range of the volume function,          
  

 
       

   

   
          .  

In question 2b, the students were expected to sketch a graph of the height of water as a function of the 

volume of the water. The graph of the volume V(h) of water as a function of the height of water (in 

which                 ) can be plotted in Wolfram Mathematica as shown below (I note that the 

students were advised, by their instructors, to use computer based program to sketch their graphs or to 

do complex analytical calculations):  
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                                      ⁄              ⁄        ⁄   

                   ⁄          ⁄                   ⁄       ⁄       

                  ⁄    

Thus, the students would have obtained the following graph of the volume of water V(h) as a function of 

the height h of water (shown in Figure 10): 

 

Figure 10. The graph of V(h) obtained in Wolfram Mathematica 

By using ‘InverseFunction’ command on Mathematica (e.g.                                    ), 

they would have plotted the graph of the height of water h(V) being a reflection of the graph of the 

volume of water V(h) in the line V = h as seen in Figure 11 (representing graphical signs of MA1, MA2, 

MA3 and MA5):  

 

Figure 11. The graph of V(h) and its reflection h(V) 

In question 2b, I also expected students to explain their graphs of the height of water as a function of 

the volume of water and to write the domain and range of the height function. I present a student’s 
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explanation for her graph as an example of a level 5 solution for verbal representation of the height 

function (involving verbal signs of MA1, MA2, MA3, MA4 and MA5): 

As the volume starts increasing from zero, the height increases at a rapid rate as the 

radius is at its smallest. As the radius of the flask begins to increase with height, the rate 

of increase of the height slows. At    , the rate of increasing of h is the lowest, and as 

volume begins to increase, the rate of increase of height increases until it reaches   
 

 
 

at which the height increases linearly as volume increases as the radius is constant. 

In this question, I expected that students would describe the function of the volume of water V(h) as 

bijective, so its inverse h(V), being the function of the height of the water, exists (being considered as 

verbal evidence of MA3). This means that the domain of the volume function V(h) actually equals the 

range of the height function h(V), while the range of the volume function V(h) equals the domain of the 

height function h(V) since the height function h(V) is a reflection of the volume function V(h) in the line 

V = h (verbal sign of MA3). Thus, the expectation was that students would find the domain and the 

range of the height function as follows (answers containing algebraic evidence of MA3): 

The domain of the height function,        
   

   
             

The range of the height function,        
  

 
 . 

In question 2c, I have aimed for students to find the values of the height of the water in the bottle for 

some specific given values of the volume of water. The values of the height of water can be found by 

plugging the given values of the volume of water into the piecewise volume function obtained in 

question 2a and solving these equations. 

In part i) of question 2c in which the value of the volume of water is given as 2 litres, since the height of 

water is less than 
 

 
    (by looking at the graph of the volume of water as a function of the height of the 

water in Figure 10), the students would have used the first formula of the piecewise volume function 

found in question 2a and so they would have had a cubic equation as the following (algebraic sign of 

MA3): 

         
 

 
                            

 

 
   .  

By using ‘Solve’ command in Wolfram Mathematica (e.g., Solve [πh^3-3πh^2+6==0, h]), the students 

would have obtained the following results: 
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              ,             ,            .  

Since the first result is negative and the last result represents the value of the height of water as more 

than 
 

 
   , the students would have determined that the second result is the correct value of the height 

of the water, that is              (evidence of algebraic level MA3) is the suitable solution for the 

question posed in part i). 

In part ii) of question 2c with the given value of the volume of water as 4 litres, the students would have 

noticed that the first formula of the piecewise volume function found in question 2a again should be 

used since the height of water is less than 
 

 
     in this question too. So, they would have had the 

following cubic equation (algebraic evidence of MA3): 

         
 

 
                             

  

 
   .  

By using ‘Solve’ command in Wolfram Mathematica (e.g., Solve [πh^3-3πh^2+12==0, h]), the students 

would have found the following outcomes: 

              ,            ,            .  

Since the first outcome for the height of water is negative and the last outcome equals more than 
 

 
   , 

the students would have selected the second outcome of the value of the height of the water, that is 

            (involving algebraic sign of MA3), as the most appropriate solution for the question 

asked in part ii). 

In part iii) of question 2c with the given value of the volume of water as 5 litres, the students would have 

realized that they would need to use the second formula of the piecewise volume function obtained in 

question 2a since the height of water is more than 
 

 
    (by looking at the graph in Figure 10). Hence, 

the following equation would be found (algebraic evidence of MA3): 

  
 

  
    

 

 
   

   

   
  

They would have observed that the equation being a linear at this time has only one solution (algebraic 

evidence of MA3): 
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In question 2d, I expected students to take the second derivative of the volume function V(h) and find its 

root/s. By using the obtained root/s, they would have found the inflection point of the graph of the 

volume function. Then, they would have switched the coordinates of the obtained inflection point of the 

graph of the volume function in order to find the inflection point of the graph of the height function h(V).  

By taking the second derivative of the function of the volume of water, that is              
 

 
, the 

students would have found the following equation (algebraic sign of MA5): 

              .  

Then, by making this equation equal to zero, they would have noticed that the function has one root as 

   . By plugging this value of the height of the water into the volume function, they would have 

obtained the following value of the volume of water: 

             
 

 
  

 

 
  .  

The students would have then concluded that the inflection point of the graph of the volume function 

V(h) is    
 

 
   , since the height function h(V) is the inverse of the volume function V(h), hence the 

inflection point of the graph of the height function h(V) is   
 

 
     . Furthermore, they would have 

justified an inflection point as a point where the graph changes its shape from concave down to concave 

up (or from concave up to concave down), that is the point where second derivative of the volume 

function changes sign (algebraic sign of MA5). 

4.2 DATA COLLECTION 

The data for this research consists of written responses obtained from college level Calculus students 

who enrolled in Concordia University’s course MATH 205 – Differential and Integral Calculus II in Winter 

2019. The course is required for students in different programs to follow on more advanced courses and 

runs in several parallel sections. These written assignments were given to students enrolled in two 

sections by two different instructors, who voluntarily distributed the weekly assignments containing 

problems to Calculus students. These students would either have completed MATH 203 – Different and 

Integral Calculus I course or have had an equivalent course to MATH 203 prior to taking MATH 205 

course. Hence, they were expected to have essential conceptual and analytical thinking been necessary 

for modeling dynamic events and so to represent functions verbally, graphically and algebraically since 

they are already familiar with the ideas of function, limit, derivative, accumulation, continuous variation 
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and continuous covariation, have worked with different types of function, such as linear, quadratic and 

polynomial and have practiced with various representations of function; such as verbal, tabular, 

graphical and algebraic, for a minimum of two years. College level students, who were not interviewed 

but allowed to use a computer based program to sketch graphs or/and do complex calculations, 

voluntarily participated to complete their assignments at home, so they were not in the presence of a 

teacher while solving dynamic tasks. They were given extra bonus mark for every correct solution they 

provided in the weekly assignments. 

In the beginning of the semester, students from two classes of MATH 205 course were given Assignment 

1 consisting Problem 1 as a first homework, and Assignment 2 consisting Problem 2 as a second 

homework. Students were given more assignments in the following weeks, however, their participation 

in the assignments decreased dramatically each week and many students who provided solutions to 

Problem 1 did not provide solutions to Problem 2 or to other problems given in the following weeks. For 

instance, the twenty four students provided responses for Problem 1 while eighteen students provided 

solutions for Problem 2. But, the three participants out of the eighteen who responded to Problem 2 did 

not provide response to Problem 1. So while, for Problem 1, I have analyzed the responses of all twenty 

four participants, I chose to analyze, for Problem 2, the solutions of the fifteen respondents who 

provided responses for both Problems 1 and 2 as a result of having insufficient data for the other three 

participants. Because of weak participation in the assignments for the following weeks and due to time 

constraints, with the advice of my supervisors, a decision was made to analyze the students’ responses 

to Problems 1 and 2 only. 

4.3 DATA ANALYSIS 

Even though some explanatory statistics are provided, this is mainly a qualitative research study which 

interferes detailed investigation of behaviors/beliefs/views of small group of individuals for some period 

of time through in-depth data collection, organization and interpretation (Hammarberg, Kirkman & 

Lacey, 2016). The focus in my study is on studying and evaluating ways students are thinking about 

functions in the context of modeling dynamic situations. As a main theoretical construct which I discuss 

in Chapter 3, adaption of Carlson et al.’s (2002) Covariational Framework was used to analyze the 

collected data. For the analysis of the results, I also used the theoretical concepts of conceptual, 

analytical, pseudo-conceptual and pseudo-analytical modes of thinking (including misconceptions) 

defined by Vinner (1997), and of epistemological, cognitive and didactical obstacles which are rooted in 

the works of Bachelard (1938/1983), Brousseau (1997), Herscovics (1989) and Sierpinska (1992, 2019).  
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The data analysis of the examination started with carefully reading and comprehending the students’ 

solutions to both problems in order to determine the general nature of the solutions and categorize 

student’s behaviors on each task. Students’ written responses to each problem were analyzed from the 

point of view of correctness, of level of covariational reasoning by using mental actions described in my 

theoretical framework and of common pseudo-thoughts, obstacles and misconceptions, which I discuss 

in Chapter 5 containing also a comparative analysis of the results obtained for both Problems 1 and 2. 

My data analysis consists of three stages. I note that, in the second stage, I analyzed the solutions of 

students who provided responses to Problem 1. 

In the first stage, after evaluating each student’ s solution based on correctness, I identified the 

evidences of MA1, MA2, MA3, MA4 and MA5 for graphical and verbal representations of the dynamic 

situation in Problem 1 in order to determine the covariational reasoning level reached by each student 

and evaluate each student’s conceptual thinking of the function. When carefully analyzing students’ 

written responses to Problem 1, I also identified common epistemological, cognitive and didactical 

obstacles, pseudo-thoughts, and misconceptions among college level Calculus students.  

In the second stage, I repeated the same procedure for Problem 2. Differently from the process of 

detailed analysis of each student’s solution to Problem 1, I collected the evidences of MA1, MA2, MA3, 

MA4 and MA5 for algebraic, graphical and verbal representations of the function. I note that I focused 

more on analyzing the data for algebraic and graphical representations of the dynamic event due to 

students’ low participation in representing the dynamic situation verbally in Problem 2.  

In the last stage, I comparatively analyzed the results that I obtained for Problems 1 and 2 in order to 

reach some general conclusion about level at which Calculus students often reason dynamic events 

covariationally, Calculus students’ conceptual and analytical thinking of functions and common obstacles 

(epistemological, cognitive and didactical), pseudo-thoughts and misconceptions in preventing college 

level students successfully to complete dynamic tasks. Finally, I tried to find some correlation between 

Calculus students being unable to reason dynamic events covariationally and Calculus students having 

obstacles, pseudo-thoughts, misconceptions, weak conceptual and analytical understanding of functions. 

After analyzing the students’ solutions in each stage as described above, my analysis was sent to my 

supervisors for further correction, confirmation, disconfirmation or/and recommendation which have 

been very supportive not only in revealing findings and missing points of my research, but also in 

systematically organizing, planning and interpreting the textual data in every stage. This validation 

process which helped insure that details including errors were not missed during the in-depth data 
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analysis continued back and forth with my supervisors for more than two years until we reached final 

conclusion regarding students’ covariational reasoning levels (including students’ conceptual and 

analytical thinking of functions), students’ common obstacles, pseudo-thoughts and misconceptions  

and correlations between these aspects. 
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5 RESULTS 

This chapter, aiming to present my answers to the research questions raised in the introduction, consists 

of three sections: analysis of responses collected for Problem 1 (section 5.1), analysis of the responses 

collected for Problem 2 (section 5.2) and a side by side analysis of the results obtained for Problems 1 

and 2 (section 5.3). I intend to analyze college level Calculus students’ solutions to both problems in 

order to conclude levels of students’ covariational reasoning, including an assessment of the students’ 

conceptual and analytical thinking of functions and what type of common pseudo-thoughts, obstacles 

and misconceptions students have when modeling dynamic functional situations. I am also interested in 

investigating correlations between students having obstacles, pseudo-thoughts, misconceptions, weak 

conceptual/analytical understanding of functions and what makes students unable to reason functional 

relationships of dynamic situations covariationally. 

5.1 ANALYSIS OF STUDENTS’ RESPONSES TO THE FIRST PROBLEM ABOUT BOTTLE FILLING: VERBALIZING 

OR/AND GRAPHING THE PROCESS 

In this section, I analyze college level Calculus students’ responses to Problem 1 (problem having a 

conceptual basis) from the following perspectives: correctness (sub-section 5.1.1), level of students’ 

covariational reasoning (including students’ conceptual thinking of the function) (sub-section 5.1.2) and 

students’ common pseudo-thoughts, obstacles and misconceptions (sub-section 5.1.3).  

5.1.1 Analysis from the point of view of correctness 

From the twenty-four students who participated in the resolution of Problem 1, only four students 

(numbered 1, 2, 3 and 4), that is 17% of total number of students, produced correct answers for all 

questions posed in this problem (Table 2): 

Table 2. Distribution of correct answers to Problem 1 and their percentages 

Question Number of correct 
answers to question(s) 

% of correct answers 
among 24 students 

Q1a 11 46 

Q1b 9 38 

Q1c 6 25 

Q1d 18 75 

All of them 4 17 
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Note: I am interested to observe whether students are able to represent a given functional situation 

graphically or verbally in Problem 1. 

5.1.1.1 Question 1a 

For question a) of the bottle problem, where students were asked to “sketch a graph of the height of 

water as a function of the amount of water that is in the bottle”, eleven students (numbered 1, 2, 3, 4, 5, 

7, 8, 9, 12, 14 and 15) out of twenty-four, which makes 46% of all students, constructed an acceptable 

graph of the height of the water as a function of the amount (or volume) of the water (including labeling 

axes correctly). Student 6 constructed a valid graph of the volume of the water as a function of the 

amount of the height of the water; this is not considered an entirely acceptable solution in our study, 

but partially so, based on the relation between the graph of an invertible function and that of its inverse.  

5.1.1.2 Question 1b 

For question 1b) which asked students to “explain why your graph represents this relationship”, nine 

students (numbered 1, 2, 3, 4, 5, 6, 8, 10 and 11) out of twenty four, amounting for 38% of all students, 

provided a suitable or somewhat suitable explanation for their graphs. For example, Student 1’s 

explanation was considered satisfactory: 

When the flask is just starting to get filled in the beginning, the height is increasing at 

a faster rate compared to at the center of the spherical part of the flask because at 

the bottom the radius is smaller than at the middle. Once water is above the middle 

of the spherical section the water might increase more rapidly as the radius 

decreases. Once water height is above the sphere portion, the height increases 

linearly due to the cylindrical shape with a constant radius. (Student 1, response to 

Question 1b) 

while Student 9’s explanation was not entirely satisfactory: 

So as the height of the water rises, but depending on where in the flask sometimes 

like the height is small while the volume is larger. (Student 9, response to Question 

1b) 

Two students (numbered 14 and 15) among those who sketched acceptable graphs were not able to 

write a valid justification of their graphs. Another student (numbered 12) attempted to explain his graph 

analytically by performing some calculations while in pseudo-analytical mode of thinking. On the other 
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hand, two students out of the first group (numbered 10 and 11) divided their graphs into four intervals 

with an incorrect smooth curve for the spherical portion of the flask though they provided a suitable 

explanation of the behavior of the height with respect to the amount of water. 

5.1.1.3 Question 1c 

For question c), namely “Does the graph have a point of inflection? Justify your answer and, if yes, 

indicate clearly the point of inflection on the graph”, only six students (numbered 1, 2, 3, 4, 6 and 9) out 

of twenty-four, which makes 25% of all students, plotted the inflection point correctly and provided 

valid justification. Meanwhile, seven students (numbered 5, 7, 8, 12, 13, 14 and 15) out of twenty-four 

identified the inflection point correctly without providing satisfactory justification. In addition to that, 

Student 17 also plotted the inflection point (without satisfactory justification) but labeled the axes 

incorrectly (height vs. time), while Students 18 and 23 plotted the inflection point without labeling the 

axes at all and their explanations are not satisfactory either. Two students (numbered 10 and 11) 

explained correctly the reasons why a point on a graph is an inflection point, but failed to identify the 

inflection point correctly on their graphs. In fact, each one of them has plotted two or three inflection 

points. Students 16, 20 and 24 claimed that ‘there is no inflection point’, Students 19 and 22 thought 

that the starting point of the cylindrical section of the flask corresponds to an inflection point, and 

Student 21 imagined the point on the graph corresponding to the starting point of filling the flask as an 

inflection point.  

5.1.1.4  Question 1d 

For question d), “Is there an interval where the height of the water rises linearly with respect to the 

amount of water? If yes, mark the interval on your graph”, eighteen students out of the twenty-four 

(numbered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19 and 22) marked the linear part of the 

graph correctly on their graphs. Eight students (numbered 1, 2, 3, 4, 6, 7, 10 and 13) out of these 

eighteen came up with satisfactory justification for the linearly increasing part of the graph in their 

answers to the parts b) and d) although it was not specifically required. 

5.1.2 Analysis from the point of view of level of students’ covariational thinking 

5.1.2.1 An overview 

I start by presenting a table listing the assessments of students’ solutions from the point of view of 

“correctness” (or “acceptable answers”) and levels of covariational thinking (Table 3). 

Table 3. Distribution of correct answers to Problem 1 and level of covariational reasoning for each student 
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Student’s 
code 

Q1a 
graph 

Q1b 
explan. 

Q1c 
infl. 

Q1c 
justif. 

Q1d 
linear 

Number of correct 
answers per student 

Level of covariational 
reasoning 

S1 – S24 1/0
1 

1/0
2 

1/0
3 

1/0
4 

1/0
5 

sum
6 

0 – 5 

S1 1 1 1 1 1 5 5 

S2 1 1 1 1 1 5 5 

S3 1 1 1 1 1 5 5 

S4 1 1 1 1 1 5 5 

S5 1 1 1 0 1 4 5 

S6 0 1 1 1 1 4 3 

S7 1 0 1 0 1 3 4 

S8 1 1 1 0 1 4 3 

S9 1 0 1 1 1 4 3 

S10 0 1 0 1 1 3 3 

S11 0 1 0 1 1 3 3 

S12 1 0 1 0 1 3 2 

S13 0 0 1 0 1 2 3 

S14 1 0 1 0 1 3 2 

S15 1 0 1 0 1 3 2 

S16 0 0 0 0 1 1 1 

S17 0 0 0 0 0 0 0 

S18 0 0 0 0 0 0 0 

S19 0 0 0 0 1 1 2 

S20 0 0 0 0 0 0 2 

S21 0 0 0 0 0 0 0 

S22 0 0 0 0 1 1 2 

S23 0 0 0 0 0 0 0 

S24 0 0 0 0 0 0 0 

# of 
correct 
ans. to 
question 

11 9 13 8 18 59 Level 5 – 5 students, 
L.4 – 1 st. L.3 – 6 st. 
L.2 – 6 st, L.1 – 1 st. 
L.0 – 5 students  

% of 
correct 
answers 
among 24 
students 

46 38 54 33 75 49  

Legend: 

1) graph acceptable = 1, otherwise = 0 

2) explanation satisfactory = 1, otherwise = 0 

3) inflection point marked correctly = 1, otherwise = 0 

4) justification of inflection point satisfactory = 1, otherwise = 0 

5) linear part marked correctly = 1, otherwise = 0 

6) sum of numbers in this row and columns 2 to 6. 

I also present a table listing the assessments of students’ solutions from the point of view of level of 

mental actions for graphical and verbal representations of the given functional situation (Table 4). 

Table 4. Distribution of each student’s engaged mental actions for graphical and verbal representations of the function 
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Student’s 
code 

Student’s engaged 
mental Action for 
graphical 
representation 

Student’s engaged 
mental Action for 
verbal 
representation 

S1 – S24 MA1 – MA5 MA1 – MA5 

S1 MA2 MA5 

S2 MA2 MA5 

S3 MA2 MA5 

S4 MA2 MA5 

S5 MA5  MA4  

S6 MA3 MA3 

S7 MA2  MA4 

S8 MA2 MA3 

S9 MA2 MA3 

S10 MA2  MA3 

S11 MA3 MA3 

S12 MA2 MA1 

S13 MA3 MA2 

S14 MA2 MA2 

S15 MA2 MA1 

S16 MA1 MA1 

S17 MA0 MA0 

S18 MA0 MA0 

S19 MA2 MA0 

S20 MA2 MA0 

S21 MA0 MA0 

S22 MA2 MA0 

S23 MA0 MA0 

S24 MA0 MA0 

 

Recall: In the theoretical framework, we have mentioned that: “if we observe behaviors which are 

suggestive of mental actions MA1, MA2, MA3 and MA5, but not necessarily of MA4, we can claim that 

the development of covariational reasoning in this student has reached Level 5”. 

Based on the analysis of the students’ understanding of functions for the given dynamic situation 

represented in Problem 1, it is observed that five students (numbered 1, 2, 3, 4 and 5) provided a 

solution which was evaluated as representing Level 5 of covariational reasoning, showing evidence of 

students having strong conceptual thinking of functions when answering Problem 1 since they were able 

to make logical connections related to the ideas and concepts given in Problem 1 (Vinner, 1997). In 

other words, only five students exhibited behaviors that support Mental Action 5 for verbal or graphical 

representation of the function by coordinating the instantaneous rate of change of the values of the 

function with respect to continuous changes in the independent variable for the entire domain. Four of 

these students (numbered 1, 2, 3 and 4) were able to sketch a valid curve (which is concave down, then 



67 
 

concave up, then linear) but without contiguous secant lines and relative magnitudes of the variables 

(graphical sign of MA2 but not of MA3) while Student 5 constructed a valid smooth curve with the 

relative magnitudes and the correct directions but without contiguous secant lines (being considered as 

graphical sign of MA5 even though secant lines do not exist). Beside this, they all indicated the inflection 

point correctly in their responses. On the other hand, Students 1, 2, 3 and 4 verbalized an awareness of 

the instantaneous changes in the rate of change of the height while the amount of water rises in the 

bottle (verbal sign of MA5) while Student 5 expressed an awareness of the average rate of change of the 

height with respect to volume (verbal sign of MA4). Thus, these five students’ covariational reasoning 

has reached Level 5 since they exhibited behaviors being suggestive of MA5 for either verbal or 

graphical representation of the given functional situation. 

Six students (numbered 6, 8, 9, 10, 11 and 13) provided a solution which was evaluated as representing 

Level 3 of covariational reasoning since their behaviors are supportive of MA3 for verbal or/and 

graphical representation of the function while Student 7’s response seems to represent Level 4 of 

covariational reasoning since his behavior is indicative of MA4 for verbal representation of the given 

dynamic event while only MA2 for graphical representation of the situation. It seems that Students 6, 7, 

8, 9, 10 and 11 have good or moderate conceptual thinking of the function (but not as good as the 

previous five students have) while Student 13 has weak conceptual thinking of the situation due to him 

being unable to develop meaningful verbal and geometrical constructions related to the conceptual 

elements of the dynamic situation given in Problem 1 (Vinner, 1997). I note that Student 13 was unable 

to neither coordinate the amount of change of the output (with respect to the input) verbally nor 

construct a correct graph of the height function or the volume function.  

While Students 6 and 11 were able to coordinate the amount of change of the output while thinking 

changes in the input both verbally and graphically (verbal and graphical signs of MA3), Students 8, 9 and 

10 verbalized an awareness of the amount of change of the output with respect to changes in the input 

(verbal sign of MA3) but failed in representing relative magnitude(s) of the output variable on the y-axis 

so no graphical evidence for MA3 appears. Oppositely, Although his graph of V(h) was incorrect, Student 

13 represented relative magnitudes of the output with respect to corresponding magnitudes of the 

input including plotted points (graphical sign of MA3) but was unable to express an awareness of the 

amount of change of the output with respect to changes in the input thus no verbal evidence for MA3 

seems to exist.  
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Moreover, the covariational reasoning of other six students (numbered 12, 14, 15, 19, 20 and 22) seem 

to have remained at Level 2 due to them being unable to coordinate the amount of change of the 

output with respect to changes in the input graphically or verbally while Student 16’s covariationl 

reasoning has reached only Level 1 since he was unable to coordinate the direction of change of the 

output while thinking changes in the input both verbally and graphically. Hence, we can say that these 

seven students have had a weak conceptual thinking of the function when solving Problem 1 since they 

were not able to make more meaningful connections associated with the ideas represented in Problem 

1 (Vinner, 1997). On the other hand, the covariational reasoning of remaining students (numbered 17, 

18, 21, 23 and 24) attained at Level 0 because neither did these students verbalize an awareness of 

coordinating the two variables correctly nor did they labeled x-y axes, such as height and volume, 

correspondingly. These students seemed not to have an essential conceptual understanding of functions 

due to them failing to develop meaningful verbal and graphical representations of the situation related 

to the given concepts in Problem 1. The data reveals that majority of these students whose covariational 

reasoning have not reached Level 3 had obstacles (epistemological, didactical and cognitive), pseudo-

thoughts, or/and some misconceptions which I discuss in the section 5.1.3. 

In summary, we have observed that only 21% of all students provided a solution representing Level 5 of 

covariational reasoning and 25% of participants provided a solution being representative of Level 3 of 

covariational reasoning while other 25% of students provided a response being indicative of Level 2 of 

covariational reasoning and other 21% of respondents provided an answer representing Level 0 of 

covariational reasoning. 

The results indicate that most of students (79%) failed in coordinating the instantaneous rate of change 

of the function with continuous changes in the independent variable for the entire domain of the 

function (no Level 5 of covariational reasoning) and 75% of the respondents were unable to coordinate 

the average rate of change of the output while thinking uniform increments of the input (no Level 4 of 

covariational reasoning).It seems that half of students were not able to coordinate the amount of 

change of the output while picturing changes in the input (no Level 3 of covariational reasoning) and 

almost quarter of students (21%) were unable to make a correct coordination between the two 

variables (no Level 1 of covariational reasoning). On the other hand, 83% of participants were unable to 

represent relative magnitudes of the output on the axes even though some of them plotted points 

correctly on their graphs, thus there is no sufficient evidence of MA3 for graphical representation of the 
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function among these students’ responses to Problem 1.  These students did not construct secant lines 

either, so no signs of MA4 for geometrical representation of the function exist. 

Eight students (numbered 17, 18, 19, 20, 21, 22, 23 and 24), which makes 33% of all students, were 

unable to coordinate between the two variables verbally. This is suggestive of them having very poor 

conceptual thinking of functions when answering Problem 1 (Vinner, 1997). Five (numbered 17, 18, 21, 

23 and 24) of these students did not exhibit behaviors that support MA1 neither for graphical 

representation nor for verbal representation of the given event. This means that they failed in 

coordinating between the two variables both graphically and verbally. This suggests that these five 

students do not have essential conceptual thinking of functions when solving Problem 1. On the other 

hand, I have found that eleven students (numbered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11), amounting for 

46% of respondents, have strong or good or moderate conceptual thinking of functions in the context of 

modeling dynamic situations. 

5.1.2.2 Example of a response representing Level 5 of covariational reasoning 

There were five students whose solutions were assessed as representing Level 5 of covariational 

reasoning, Students 1 to 5. I present an analysis of Student 1’s and Student 5’s solutions.  

5.1.2.2.1 Student 1: a Level 5 solution with a strong verbal representation 

Student 1 provided a response that was evaluated as representative of Level 5 of covariational 

reasoning since she verbally coordinated the instantaneous rate of change of the height while thinking 

continuous changes in the volume for the entire domain of the function. I reproduce below her solution 

to questions 1a, 1b, 1c and 1d. 

 

Figure 12. Image of Student 1’s graph 

(b) When the flask is just starting to get filled in the beginning, the height is 

increasing at a faster rate compared to at the center of the spherical part of the flask 
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because at the bottom the radius is smaller than in the middle. Once water is above 

the middle of the spherical section,, the water height increases more rapidly as the 

radius decreases. (c) Point of inflection where it switches from concave down to 

concave up (marked on the graph). (d) Once water height is above the sphere portion, 

the height increases linearly due to the cylindrical shape with a constant radius. 

(Student 1) 

When examining Student 1’s responses, we see that the student constructed a valid graph (graphical 

evidences for both MA1 and MA2) but without representing magnitude(s) of the dependent and 

independent variables and contiguous secant lines (no graphical signs neither for MA3 nor for MA4), and 

verbalized an awareness of the instantaneous changes in the height with respect to the changes in the 

amount of water (verbal sign of MA5). In her answers, she considered three varying quantities as 

‘changes in height of water depend on changes in amount of water which depend on the radius of the 

top surface of the water at the particular height: h(V(r))’. She is aware that the changes in height are 

decreasing toward the middle of the spherical part of the bottle, while the volume of water increases, 

since she noted that ‘when the flask is just starting to get filled in the beginning, the height is increasing 

at a faster rate compared to at the center of the spherical part of the flask because at the bottom the 

radius is smaller than in the middle’ in her answer to question 1b (evidence of having strong conceptual 

thinking of the dynamic event). This is evidence of her being aware of instantaneous rate of change of 

the height with respect to the amount of water (verbal evidence for MA5). In addition, the student’s 

remark of ‘once water is above the middle of the spherical section, the water height increases more 

rapidly as the radius decreases’ is also an indication of the student’s awareness of the instantaneous 

changes in height while imagining the amount of water increases continuously (verbal evidence for 

MA5). In her response to question 1c, she identified the inflection point correctly by justifying it as ‘point 

of inflection where it [the graph] switches from concave down to concave up’ which is also an evidence 

of MA5 for verbalization of the functional relationship of the dynamic situation.  

5.1.2.2.2 Student 5: A Level 5 solution due to satisfactory geometrical representation 

Student 5’s solution also appeared to represent Level 5 of covariational reasoning since he graphically 

coordinated the instantaneous rate of change of the height while thinking continuous changes in the 

volume for the entire domain of the function but without constructing secant lines on his graph. I 

reproduce his solution to questions 1a, 1b, 1c and 1d below. 



71 
 

 

Figure 13. Image of Student 5’s graph 

(b) At first, the height raises quickly because the width is smaller and the width w=2r, 

where r is the radius. (c) The curve then reaches an inflection point and the other half 

of the sphere fills. (d) The height raises linearly when the water reaches the cylinder 

until the cylinder is full. Note that the sphere is not perfect: It has a square top for the 

cylinder, so the height of the water in the sphere is not exactly 2r. (Student 5) 

This student verbally and graphically considered the covariation between the volume of water as the 

independent variable and the height as the dependent variable (verbal and graphical signs of MA1). He 

measured the volume by the width of the flask at the particular height which depends on the radius of 

the surface of the water: h(V(w(r))). His answers to questions 1b and 1c imply that he considered the 

direction (verbal sign of MA2) and amount (verbal sign of MA3) of change of the height with respect to 

volume of water. Moreover the student expressed awareness of the rate of change of the height while 

picturing (approximately uniform) increments of the volume of water, from V=0 to V=volume of half a 

sphere, then from that volume to V=volume of the entire spherical part of the flask, and lastly from that 

volume to the volume of water in the whole flask (sign of having good or strong conceptual thinking of 

the situation). This can be regarded as verbal evidence for MA4 but not for MA5 since he did not 

consider what happens with height when volume V grows by smaller and smaller increments. 

He plotted points on his graph and represented relative magnitudes of the height of water while 

considering changes in the volume of water (graphical sign of MA3). Even though he did not construct 

contiguous secant lines, his smooth curve with correct direction of concavities including plotted points 

and relative magnitudes is considered as supportive of MA5 for graphical representation of the function. 

Thus, I estimate that his covariational reasoning has reached Level 5. 
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5.1.2.3 Example of a response representing Level 4 of covariational reasoning 

There was only one student whose solution appeared to represent Level 4 of covariational reasoning. 

5.1.2.3.1 Student 7: Considering average rates of change of the height of water with respect to uniform 

increments of change in volume 

Student 7 provided a response being evaluated as representative Level 4 of covariational reasoning 

since he verbally coordinated the average rate of change of the height while thinking changes in the 

volume of liquid. His solution to questions 1a, 1b, 1c and 1d were: 

 

 

Figure 14. Image of Student 7’s graph 

(b) From a [to] b rate of increase in height is decreasing. From b to c rate of increase 

in height is increasing. From c to d rate of increase in height is constant therefore the 

graph is linear. (c) The graph has an inflection point at point B which is the middle of 

the spherical portion since concavity changes at this point. 

(d) From c to d the graph is linear. (Student 7) 

Student 7 correctly labeled the x-axis as “Volume of liquid” and the vertical axis as “Height of liquid”, so 

condition 1) of MA1 is satisfied. But the points a, b, c, d marked on the x-axis do not refer to values of 

the volume, which would be numbers, but to planes, a different category of mathematical entities. So, 

one has doubts if he identified the covarying quantities correctly. Perhaps he was thinking of a, b, c, and 

d as representing the volumes of liquid in the bottle up to those planes, and not, literally, of the planes, 

and used the word “planes” as a shortcut. We can give him the benefit of the doubt and assume that he 

experienced the MA1 and meant the volume of liquid by writing the letters a, b, c and d in his responses. 

Then, we can claim that we have graphical evidences for MA1 and MA2 but not for MA3 since he failed 

in representing relative magnitude(s) of the height of liquid on his graph. We can also claim that we 

have verbal evidences for both MA3 and MA4 (in addition to signs of MA1 and MA2) since he expressed 

some awareness about the amount of change of the height and also how the rate of change of the 

height behaves in each interval by stating as ‘from a to b rate of increase in height is decreasing, from b 
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to c rate of increase in height is increasing’ (evidence of having good or moderate conceptual thinking of 

the functional event). Therefore, I estimate that his covariational reasoning has reached Level 4. We see 

some evidence of his awareness of the fact that the inflection point is where the rate of change of the 

height changes from decreasing to increasing in his answers to questions 1b and 1c. However, this is not 

sufficient to claim that his covariational reasoning reached Level 5 since he did not conceptualize what 

happens with the height when the volume of liquid increases by smaller and smaller increments. 

5.1.2.4 Examples of responses representing Level 3 of covariational reasoning 

5.1.2.4.1 Student 6: Graphing V(h) instead of h(V) 

In Student 6’s solution, it is observed that he sketched the graph of the inverse function by treating the 

volume of water as a function of the height of water. 

     

Figure 15. Image of Student 6’s graph 

Student 6 drew a correct graph of the function V(h) [instead of h(V)], labeling the axes with variables h 

and V. While he symbolically represented the three relative magnitudes of the independent variable (R, 

a, and b) on the horizontal line of his graph, he represented only one relative magnitude of the 

dependent variable on the vertical line (considered as graphical signs of MA1, MA2 and MA3). 

His responses to questions 1b and 1c follow: 

(b) 0R while h increases, V increases more quickly as the flask gets bigger in this    

range, Ra The flask starts to get smaller in volume which makes V increase more 

slowly as h increases, ab The cross-sectional area is the same at all points, hence 

the rate is constant. (c)Yes [there is an inflection point], 0R: large change in V with 

small change in h; increasing slope  concave up, Ra: small change in V with large 

change in h; decreasing slope  concave down, The inflection point is h=R. (Student 6) 
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The explanations are consistent with his graph. In these explanations, the student verbalized an 

awareness of: 

- coordinating the variables he labeled the axes with, that is, height or h, and volume or V (verbal sign of 

MA1);  

- coordinating the direction of change of the output (V in his case) while considering changes in the 

input (h in his case), since he speaks of the volume increasing while the height increases in his answer to 

question 1b (verbal sign of MA2); 

- coordinating the amount of change of the volume of water while imagining changes in the height, since 

he speaks of V increasing more quickly while h increases from 0 to R in his response to question 1b and 

of decreasing and increasing slopes in question 1c (verbal sign of MA3) (evidence of having moderate 

conceptual thinking of the dynamic situation ).  

However, he did not draw contiguous secant lines nor did he appear to consider the average rate of 

change of the volume with respect to uniform increments of change in the height of water (so no signs 

of MA4). He also does not seem to have instantaneous changes of the rate of change in mind even 

though he speaks of “increasing” and “decreasing slope”, because the way he understands, for example, 

“increasing slope” is “large change in V with small change in h” (no verbal sign of MA5). While his graph 

represents the direction of concavities for the volume function correctly, it does not have a correct 

direction of concavities for the height function, thus violating the coordination of the instantaneous rate 

of change of the function (no graphical sign of MA5). Therefore, we conclude that his covariational 

reasoning has remained at Level 3. 

5.1.2.4.2 Student 8: “Proportional growth” 

Student 8 provided a solution also seemed to represent Level 3 of covariational reasoning since he 

verbally coordinated the amount of change of the height while thinking changes in the amount of water. 

I reproduce his responses to questions 1a, 1b, 1c and 1d below. 
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Figure 16. Image of Student 8’s graph 

(b) Height is always increasing proportionally to the amount of water, however, we 

should observe the round section of the flask, where it will require progressively 

increasing quantities of liquid to increase the height of water inside the flask. (c) At 

the widest part of the spherical section of the flask, the radius of cross-sectional 

circles gradually decrease, making the required amount of water needed to rise in the 

height lower. This is identically opposite to the lower half, which means the exact half 

of the sphere would also be the point of inflection in our graph. (d) After the round 

part is completely filled up, the height becomes a standard cylinder, where height 

increases linearly with the amount of water. (Student 8) 

Student 8 labeled the axes correctly as ‘height’ on the vertical axis and ‘amount of water’ on the 

horizontal axis and constructed a valid smooth curve but without relative magnitudes of the variables 

and secant lines on his graph (graphical signs for only MA1 and MA2). He verbalized an awareness of 

coordinating these variables (verbal sign of MA1) and the direction of change of the output while 

considering changes in the input since he wrote as ‘height is always increasing proportionally to the 

amount of water’ (verbal sign of MA2). By stating ‘however, we should observe the round section of the 

flask where it will require progressively increasing quantities of liquid to increase the height of the water 

inside the flask’ in his answer to question 1b (sign of having moderate conceptual thinking of the 

dynamic event), he verbalized an awareness of how the height changes while picturing changes in the 

amount of water (verbal sign of MA3). Hence, I estimate that the covariational reasoning of this student 

reached Level 3.  

In his response to question 1c, he wrote that ‘At the widest part of the spherical section of the flask, the 

radius of cross-sectional circles gradually decrease [that may indicate a misconception as right at that 
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point, the radius has a maximum, until that point, the radius increases, after that it decreases], making 

the required amount of water needed to rise in height lower. This is identically opposite to the lower 

half, which means the exact half of the sphere would also be the point of inflection in our graph’. In his 

answer, the student pictured inputs to evaluate equal output, rather than estimating the output based 

on equal input. Besides that, he considered three varying quantities as ‘changes in height of water 

depend on changes in amount of water which depend on the radius of the surface of the water at the 

particular height: h(V(r))’.  

He did not appear to consider average rates of change of the height with respect to uniform increments 

of change in the amount of water (thus no sign of MA4). He also did not seem to think what happens 

with the height when the amount of water increases by smaller and smaller increments and, thus, failed 

to image instantaneous changes in the rate of change of the height with respect to the amount of water 

for the entire domain. Although he identified the point of inflection correctly, he was unable to explain 

why the point he marked on the graph is an inflection point since there is no mention of concavity 

changes (no signs of MA5).  

In addition, we can determine (from his expressions of ‘increasing proportionally’ and ‘progressively 

increasing’) that he may not have overcome yet the epistemological obstacle of ‘proportion privileged’ 

which is identified as “EO(f)-9: Proportion is a privileged kind of relationship” (Sierpinska, 1992, p.43).  

5.1.2.4.3 Student 10: Three points of inflection 

Student 10 provided a response that was also evaluated as representing Level 3 of covariational 

reasoning. The student’s solution to questions 1a, 1b, 1c and 1d were: 

 

Figure 17. Image of Student 10’s graph 
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(b) My graph is split up into 4 sections in order to represent the relationship between 

amount of water and height of water. Sections 1 and 3 of the graph represent the 

beginning and end parts of the spherical part of the flask. Because these parts are 

tapered or rounded, the height of the water will increase faster than the amount of 

water. Section 2 represents the main part of the spherical part of the flask, because it 

is the widest part, the amount of water will increase quicker than the height of the 

water. Part 4 of the graph represents the cylindrical part of the flask, the height and 

volume will increase at a constant amount. (c) The graph has three points of 

inflection marked by the circles on the graph. These points of inflection occur due to 

the change in shape of the flask. As the flask either tapers or gets wider we 

experience points of inflection. (d) Section 4 of the graph represents a linear 

relationship between height of water and amount of water. The linear relationship is 

due to the cylindrical shape of the flask.  (Student 10) 

Student 10 labeled the axes correctly as ‘height of water’ on the y-axis and ‘amount of water’ on the x-

axis (graphical sign of MA1) and the direction of his graph is correct as well (graphical sign of MA2) but 

he was unable to provide an acceptable graph with relative magnitudes of the variables (thus no 

graphical sign of MA3). The immediate noticeable fact is that the student constructed a smooth curve 

with incorrect direction of concavities, identified three inflection points (in violation of coordinating the 

instantaneous changes in the height of water with respect to the amount of water) and divided his 

graph into four intervals as sections 1, 2, 3 and 4 (in violation of coordinating the average rate of change 

of the height of water with respect to the amount of water). On the other hand, he verbalized an 

awareness of both the direction of change of the height of water while considering changes in the 

amount of water (verbal sign of MA2) and the amount of change in the height of water while picturing 

changes in the amount of water (verbal sign of MA3) by statements such as ‘because these parts are 

tapered or rounded (referring to Sections 1 and 3), the height of the water will increase faster than the 

amount of water’ or ‘[In Section 4], the height and volume will increase at a constant amount’ in his 

solution to question 1b (sign of having moderate conceptual thinking of the functional situation). In his 

response, he also wrote that ‘Section 2 represents the main part of the spherical part of the flask, 

because it is widest part, the amount of water will increase quicker than the height of the water’ in 

which he was not able to consider changes in the output with respect to changes in the input. In his 

solution to question 1c, he expressed the reason why the points marked on his graph are inflection 

points as ‘these points of inflection occur due to the change in shape of the flask. As the flask either 
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tapers or gets wider we experience points of inflection’. But, he failed in coordinating the average rate 

of change of the height of water with respect to uniform increments of change in the amount of water 

(no signs of MA4) and violated the coordination of instantaneous changes in the rate of change of the 

height of water with respect to smaller increments of change in the amount of water (so no signs of 

MA5), therefore, I conclude that his covariational reasoning has not reached neither Level 5 nor Level 4. 

Since he was unable to transform his verbal representation of the dynamic situation to an acceptable 

graphical construction, he may not have overcome yet the cognitive obstacle labeled as CO-VTG: 

Cognitive obstacle of being unable to transform a verbal representation of function to its graphical one, 

like Student 11 who also sketched a similar graph of the height function with four intervals of the 

domain.  

5.1.2.4.4 Student 13: Assuming water is poured at a constant speed 

Student 13 provided the following responses to questions 1a, 1b, 1c and 1d: 

 

Figure 18. Image of Student 13’s graph 

(b) from a-b and b-c they have same of volume. if pour water at same speed, a-b and 

b-c will have same speed, but opposite, a-b from fast to slow, b-c from slow to fast. 

Since D-C is cylinder, if pour the water is same speed, they will have constant speed 

rise. (c) point b will be inflection point, there are increasing to decreasing swift. (d) 

from C-D is linearly increasing. (Student 13)  

Student 13’s solution was also assessed at Level 3 of covariational reasoning. The shape of the curve 

looks somewhat like the graph of V(h), however  the axes are labeled inversely. So we have graphical 

signs of MA1, MA2 and MA3 since he also represented relative magnitudes of the input and output 

variables on his graph including plotted points but without constructing secant lines. Although he 

verbalized an awareness of the directions of change in volume while considering changes in the height 

of water (verbal sign of MA2), the student who seems to have weak conceptual thinking of the situation 
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did not verbalize an awareness of the amount of change of the volume with respect to the height of 

water (no verbal sign of MA3) and the average rate of change of the volume while considering uniform 

increments of the height of water (no verbal sign of MA4). When he mentions about ‘speed’ in his 

response to question 1b, it refers to pouring water at constant speed. Probably, the student imagined 

the variables as functions of time and, thus, overall three varying quantities, volume, height and time. It 

is possible that the student has not overcome yet the common epistemological obstacle “EO(f)-16: The 

changes of a variable are changes in time” (Sierpinska, 1992, p.55). Moreover, the student plotted the 

inflection point correctly on his graph but failed to explain why the inflection point is at h = b by explicit 

reference to concavity changes. Instead, the student refers to changes in something he calls “swift”:  

“increasing to decreasing swift”. It is not clear if he meant ‘switch’ or ‘speed’ by the word ‘swift’. I 

estimate that the student did not exhibit behavior supporting the act of understanding labeled “U(f)-5: 

Discrimination between the dependent and independent variables” and may not have overcome yet the 

corresponding epistemological obstacle labeled as “EO(f)-5: Regarding the order of variables as 

irrelevant” (Sierpinska, 1992, p.38).  

5.1.2.5 Examples of responses representing Level 2 of covariational reasoning 

5.1.2.5.1 Student 12: Analytic responses that do not explain the behavior of the function (a case of 

pseudo-analytical thought); covariational reasoning concealed  

In his response to question 1a, the student produced an acceptable graph but without representing 

relative magnitudes of the variables and constructing secant lines on his graph. 

 

Figure 19. Image of Student 12’s graph 

The response to question 1b is very long. Student 12 proceeded to justify his graph in question 1a 

analytically. He started by deriving a formula for volume as a function of height. He first rotated the flask 

90 degrees to the right on the x-axis (which is denoted by h), identified the values as h0, h1, h2 and h3 on 

the horizontal axis and r1 on the vertical axis (which is denoted by     ) and conceptualized the circle 

with center at  
     

 
    and radius 

     

 
 as:    

     

 
          

     

 
   in which      represents 
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the radius of the disc that is ‘r’. He used the formula   ∫       in order to find the formulas for 

volume of water both in the spherical cap and in the cylindrical part of the flask.  

  

Figure 20. Image of the beginning of Student 12’s response to question 1b 

b) We can make the cross section into a piecewise function from the two functions: 

     √ 
     

 
      

     

 
   from         

        from         

And using a volume formula:  

   ∫       

Next we can plug in our two functions and their bounds, because volume is the same 

as the amount of water 

   ∫   √ 
     

 
      

     

 
      

  

  

  ∫        
  

  

 

(Student 12’s next response to question 1b) 

I note the notational inconsistency in the formula for the function  : the independent variable is called 

“ ” in the name of the function (and on the graph) and “ ” in the rule of the function, and the name of 

the independent variable is omitted altogether in specifying the intervals; the student is saying, for 

example, “from        ” instead of “for  ∈        ”. On the graph in Figure 20, this function is called 

“   )”, not “    ”.  

Moreover, the last formula in his response is the formula for the total volume of water in the whole 

flask, and writing it is questionable in a problem that studies the process of filling the flask with water. 

The student should have continued to elaborate on the function      and calculated the integrals with 

variable upper bound:  

      ∫   √ 
     

 
      

     

 
      

 

  
     ∈         and 
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      ∫              ∈        
 

  
  

Instead, the student manipulates the formula for the total volume in a half-page of “calculations”. He 

does not, however, calculate the value of the integral: 

 

Figure 21. Student 12’s manipulations of the formula for total volume of the flask 

The last line in his calculations leaves the integrals unevaluated at the bounds, and this allows him to 

obtain a formula for volume of water as a function of height as a piecewise function: 

 

Figure 22. Image of the formula for volume as function of height that Student 12 obtained from calculating the integrals in 
Figure 21 
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There are similar imprecisions of notation in Figure 22. The name of the independent variable is not 

mentioned in the name of the function, nor in the intervals. Moreover, the constant C is not specified 

although it is essential, at least for the linear piece of the function (the “  ”), which does not start at (0, 

0) but it is shifted both horizontally and vertically. 

The student then sketches a rough graph of the function      and says “However, this is the graph of 

amount of water as function of height and we need to find height as function of amount”. This 

verbalization is clear evidence of awareness of what the independent and the dependent variables and 

of “coordinating them consistently with the labeling of the axes” (verbal sign of MA1).  

He then proceeds to obtain the inverse function      (algebraic sign of MA1). In Figure 22, he had used 

the letter “ ” for height and the letter “ ” for volume; now he renamed   as “ ”. Then he switched 

those letters in his formulas for   and    obtaining two equations of the form           He did not 

solve these equations for  . Thus, we can say that this student may not have overcome yet the common 

didactical obstacle labeled as DO – XY: Didactical obstacle involved in representing variables with the 

letters ‘x’ and ‘y’. With no further explanation, he then states that his graph in question 1a can be 

obtained from these equations (Student 12’s following response to question 1b: 

Next we must find the inverse functions, so if: 

    
     

 
     

   
     

 
  

 
               

   
     

 
     

   
     

 
  

 
              

we must switch x and y: 

   
     

 
     

   
     

 
  

 
                And from these equations, 

we make our final graph: 

 

Figure 23. Image of the final part of Student 12’s response to question 1b 
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In response to question 1c, about the inflection point, Student 12 marks the point correctly on his graph 

in Figure 19, but offers only the necessary analytic condition for the existence of an inflection point – the 

second derivative equal to 0 – and applies it to the function      not the function      for which he has 

no explicit formula: 

c) point of inflection is when          

      
     

 
     

   
     

 
  

 
  

       
     

 
       

     

 
    

             
     

 
     

(Student 12’s response to question 1c) 

The student made a mistake in calculating the second derivative        – there should be a zero and not 

“1” – so the solution of the equation          is not   
     

 
 (nor the radius of the sphere) as his 

graph in Figure 19 suggests. Obviously, the student had not used this equation to find the inflection 

point, and most likely had not used the equations for the functions      or      to sketch their graphs. 

His behaviors are suggestive of him having common pseudo-analytical thoughts when responding to 

Problem 1 (Vinner, 1997). One reason why he had these thoughts may be that the student has not 

overcome yet the most common epistemological obstacle labeled as “EO(f)-11: only relationships 

describable by analytic formulae are worthy of being given the name of functions” (Sierpinska, 1992, 

p.46). Whatever were his reasons, however, the result is that we do not know how he was really 

reasoning, how he figured out the particular shape of the graph. While he may have been reasoning 

covariationally at levels 3, 4, and 5, there is no written evidence for that. Since he was unable to 

transform his graphical construction of the functional situation to a verbal representation, I estimate 

that he may not have overcome yet the common cognitive obstacle labeled as CO – GTV: Cognitive 

obstacle of being unable to transform a graphical representation of function to its verbal one. 

Student 12 sketched an acceptable graph with axes labeled correctly (graphical signs of MA1 and MA2) 

and his analytical solution indicates an awareness of the direction of change of the height with respect 

to the volume (algebraic signs of MA1 and MA2). Therefore, we can say that the covariational reasoning 

of this specific student has reached Level 2. The student who appeared to have weak conceptual 

thinking of the function did not represent relative magnitudes of the variables on the axes, nor did he 
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display an awareness of the amount of change in height of water while picturing changes in volume (no 

signs of MA3). He did not draw secant lines and speak about the rate of change of the height of water 

slowing down and speeding up while envisioning changes of the volume of water in the spherical part of 

the bottle nor did he mention about the rate of change of the height of water being constant while 

picturing changes of the volume of water in the cylindrical part of the flask in his responses (no signs of 

MA4).  

5.1.2.5.2 Student 14: Unsatisfactory verbalization of the functional relationship of the dynamic situation 

Student 14’s solution to Problem 1 follows: 

 

Figure 24. Image of student 14’s graph 

(b) A -> B the growth rate is decreasing with the increase of height, B -> C the growth 

rate is increasing with the increase of height, C -> D the growth rate is constant with 

the increase of height. (c) point B. (d) From C to D. (Student 14) 

Student 14 provided a valid graph with axes labeled correctly and expressed an awareness of changes in 

the height of water while imaging increase in volume, which are signs of MA1. His rising graph from left 

to right is also suggestive of him graphically coordinating the direction of change of the output while 

picturing changes in the input (graphical sign of MA2). While he symbolically represented four 

magnitudes (A, B, C and D) of the volume, he did not represent corresponding magnitudes of the height 

of water on his graph (no graphical sign of MA3). In his response to question 1b, he stated as ‘A -› B, the 

growth rate is decreasing with the increase of height. B -› C, the growth rate is increasing with the 

increase of height. C -› D, the growth rate is constant with the increase of height’ (evidence of having 

weak conceptual thinking of the function). It seems that he considered three varying quantities as 

‘changes in the rate of change of the height (e.g. ‘the growth rate is decreasing’) depend on changes in 

height of water (e.g. ‘with the increase of height’) which depend on the particular interval of the volume 

(e.g. ‘A -> B’ being magnitudes of the volume): R(h(v))’. In his responses, he doesn’t explicitly verbalize 

an awareness of the amount of change of height with respect to changes in volume (no verbal sign of 

MA3); instead, he appears to verbalize the average rate of change of the height with respect to changes 
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in height (in relation to the volume of water). Thus, I evaluate that the student was not able to 

coordinate the average rate of change of the height of water with respect to volume of water. He also 

failed in constructing secant lines on his graph (so no signs of MA4). He plotted the inflection point 

correctly, but without a justification.  He may not have overcome yet the common cognitive obstacle of 

being unable to transform a graphical representation of a function to its verbal one labeled as CO – GTV 

since he provided a valid geometrical construction of the function, but his verbalization of the situation 

was insufficient. 

5.1.2.5.3 Student 20: Constructing a linear graph of V(h) and having pseudo-thoughts 

In her response to question 1a, Student 20 had an image of the following expressions in her mind: 

 

Figure 25. Student 20’s image of the bottle 

  {
         

 

 
   

                  
     

 

 
            

(Student 20’s first response to question 1a) 

The student used her memorized volume formulas of sphere and cylinder as   
 

 
    for the volume of 

water in the spherical cap of the flask,        for the volume of water in the cylindrical part of the 

bottle and   
 

 
         (algebraic sign of MA1) for the total volume of the water in the bottle. I 

note that she used the same letter symbol ‘r’ in both her formulas.  
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Figure 26. Image of Student 20’s further response to question 1a 

By imagining some numerical values, she wrote the value of the radius of sphere as eight, the value of 

the radius of cylinder as six and the value of the height of cylinder as seven, plugged these values into 

the total volume formula, that is   
 

 
        , in order to find the value of the total volume of the 

water in the bottle as           (evidence of pseudo-analytical behavior). However, she then 

completely avoided the volume formulas of sphere and cylinder and used two other memorized 

expressions        and   
  

  
 (but this time the independent variable is represented by the letter 

‘x’ being the height of water while the dependent variable is represented the letter ‘y’ being the volume 

of water), which are commonly used in todays’ mathematical activities, in order to find the value of the 

average rate of change of the function a as 127.667 and the value of the constant quantity b as zero 

(strong evidence of her having both pseudo-conceptual and pseudo-analytical thoughts). This student 

may not have overcome yet the common didactical obstacle labeled as DO – XY: Didactical obstacle 

involved in representing variables with the letters ‘x’ and ‘y’. 

She then constructed the following linear graph of the volume of water as a function of the height of 

water with its corresponding table: 

 

Figure 27. Image of Student 20’s graph and table in question 1a 

By using her linear function          , she produced a table containing the imagined numerical 

values of the height of water from 0 to 7 with the corresponding values of the volume of water and 

constructed a linear graph of the volume of water as function of the height of water with the associated 

numerical values (graphical and algebraic signs for MA1 and MA2). Very likely, this student has not 

overcome yet the following epistemological obstacle “EO(f)-7: A Pythagorean philosophy of number: 

everything is number” (Sierpinska, 1992, p.41).  Based on her various algebraic equations including the 

table with imagined numerical values, we can also claim that she has not overcome yet the most 
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common epistemological obstacle labeled as “EO(f)-11: only relationships describable by analytic 

formulae are worthy of being given the name of functions” (Sierpinska, 1992, p.46). 

Another evidence of the student missing the control stage and providing incorrect comments lies on her 

explanations for questions 1b, 1c and 1d which were: 

(b) The above graph represents the relationship between the height of the water as a 

function of the amount of the water in the bottle because the radius and height of 

both the cylindrical and spherical part of the light bulb remain the same. So, 

initializing those values, I obtain a total volume for the light bulb (V = 2936.34 u3). 

Now, the total height would be the height of the cylinder and 2r of the sphere (total 

height of bulb = 23 units). At 0 height, volume is 0. Using the formula y = 127.67x, the 

graph between the height of bulb and volume of water is found. (c) there is no point 

of inflection because the curve(line) does not change in any other direction. (d) the 

height of water increases linearly with respect to the amount of water all throughout. 

(Student 20)  

In her solution to question 1b, she first claimed that ‘the above graph represents the relationship 

between the height of the water as a function of the amount of water that is in the bottle’ which is not 

inconsistent with her graph since she constructed a graph of the volume of the water as a function of 

the height of the water (strong evidence of pseudo-conceptual behavior). Thus, it appears that there is 

no sign of MA1 for verbal representation. She was not able to transform neither her graphical 

representation of the function to its verbal one (defined as the cognitive obstacle, CO - GTV) nor her 

verbal expression of the function to its graphical one (defined as the cognitive obstacle, CO - VTG) since 

her verbalization of the situation in question 1b does not correspond to her graphical construction in 

question 1a. She attempted to justify her linear graph by writing the value of the total volume of the 

water as          , the value of the total height of the flask as h = 23 and her last volume formula as 

          (evidence of pseudo-analytical behavior). Like Student 12, she considered two letters, x 

and h, for the height of the water and two letters, y and V, for the volume of the water. She then wrote 

that she got her final graph ‘between the height of bulb and volume of water’ without mentioning which 

one is the function of the other.  

It is evident that this student lacked essential conceptual thinking necessary for solving the dynamic task, 

used multiple memorized algebraic formulas to represent the volume function, failed in making logical 

connections between those expressions and conceptual aspects of the dynamic situation, lacked of 
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control mechanism in her solutions, and so she was not able to develop meaningful construction of the 

given mathematical situation. This is a case of both pseudo-conceptual and pseudo-analytical modes of 

thinking. 

…there are some contexts in which both the analytical and conceptual (or the pseudo-

analytical and the pseudo-conceptual) modes are involved. (Vinner, 1997, p.116) 

5.1.2.6 Examples of responses representing Level 1 of covariational reasoning  

5.1.2.6.1 Student 16: Also having both pseudo-conceptual and pseudo-analytical thoughts 

Student 16 constructed the following graph of the volume of the water as a function of the height of the 

water in his response to question 1a: 

      

Figure 28. Image of Student 16’s graph 

In his solution to question 1b, the student divided the bottle into two parts as sphere and cylinder and 

into three intervals with four connecting points of 0, h0, 2h0 and h (where h0 is the radius of the sphere 

and h is the height of the flask).  Then, he provided the volume formulas for the sphere and cylinder as 

  
 

 
                 (where    is the radius of the cylinder and          ), respectively, and 

tried to take the derivative of the volume formula of the sphere with respect to its radius.  

  

Figure 29. Image of beginning of Student 16’s answer to question 1b 
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Student 16 then continued to explain his graph with his following response to question 1b: 

(b)The curve part of the graph shows how water keeps filling as it is a sphere 

   
 

 
     .This continuous until a point 2h0, where what starts filling in as a 

cylinder. Here          and    is the radius of the cylinder and it is constant so, let 

at be K, then          this is a linear function which becomes the new volume 

from h = 2h0 distance. (Student 16) 

Student 16’s answers to questions 1c and 1d were: 

(c) The graph has an inflection point at h = 0, but since w0 only consider the positive x, 

y of this graph, then it has no inflection on the positive x, y axis. An inflection point 

occurs when graph changes from increasing to decreasing or vice versa, but this 

graph keeps increasing always.  

(d) Yes, there is an interval where the volume increase linearly and that is from 2h0 to 

h, thus [2h0, h]. (Student 16) 

Student 16 labeled the horizontal axis by “h” and the vertical axis by “V” (graphical sign of MA1). But “h” 

means the “height of flask” for him, which is tacitly assumed to be constant in the problem, not the 

variable height of the water. His geometrical construction represents the graph of the volume of a 

sphere as a function of the radius:       
 

 
     

 , where    is the radius of a sphere. The equation 

he wrote in Figure 29 
  

   
   

 

 
     

   also represents    as an independent variable. He seems to 

think that the formula of the volume of a sphere as a function of its radius is an equation of a sphere 

filling with water radially. He is aware that some quantities co-vary in the problem, but he fails to 

identify them correctly. It is therefore with some reservations that his solution is evaluated as 

representing Level 1 of covariational reasoning because some sentences in his responses to questions 1b 

and 1c  are supportive of him being aware of that changes of height and volume are coordinated (verbal 

sign of MA1).  

Based on his responses to Problem 1, we can claim that the student did not have necessary conceptual 

thinking when modeling the dynamic event since he failed in considering the conceptual aspects of the 

given task correctly. He relied on his uncontrolled memorized associations, failed in making logical 

connections between his procedural associations and conceptual elements of the situation and so was 

unable to develop meaningful interpretation of the given functional situation. This is also an example of 
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common pseudo-conceptual and pseudo-analytical modes of thinking as in the case of student 20.  

Based on his responses, we conclude that this student, like Student 20, has not overcome yet the most 

common epistemological obstacle labeled as “EO(f)-11: only relationships describable by analytic 

formulae are worthy of being given the name of functions” (Sierpinska, 1992, p.46). 

5.1.2.7 Examples of responses representing Level 0  

5.1.2.7.1 Student 17: Height vs time 

The student labeled the horizontal axis as “time” and the vertical axis as “height” (no graphical sign of 

MA1):  

 

Figure 30. Image of Student 17’s graph 

His answer to question 1b starts with sentences stating the relationship between the direction of change 

in the rate of change and concavity (memorized rules). 

avg rate of change increase –concave up 

avg rate of change decreases-concave down 

(b) my graph represent this relationship by showing a slow rate of change to fill up 

the bottom, as it approaches the midpoint the rate of change starts to increase and 

even more so at the neck. (Student 17) 

Student 17 provided the following responses to questions 1c and 1d: 

(c) Yes, because there is a change in the rates. 

 (d) Yes it would and it would happen in the neck area. (Student 17) 

When analyzing Student 17’s solution to Problem 1, it is observed that he has constructed an acceptable 

shape of the graph with a correct inflection point, but did not consider ‘volume (or amount of water)’ as 

the independent variable in his graph and, instead, he pictured ‘time’ as the input. Possibly, the student 

has not overcome yet the common epistemological obstacle labeled as “EO(f)-16: The changes of a 
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variable are changes in time” (Sierpinska, 1992, p.55). Therefore, it is observed that the covariational 

reasoning of this specific student did not even reach Level 1 since he did not produce a solution which 

supports MA1 (evidence of not having necessary conceptual thinking of the function). From the 

student’s consideration of the two variables as ‘height’ and time’, we can claim that this student also, 

like Student 7, may not have gone past experiencing the act of understanding labeled as “U(f)-3: 

Identification of the subjects of change in studying changes” and overcome yet the corresponding 

common epistemological obstacle of ‘ignoring what changes’ which is identified as “EO(f)-3: Regarding 

changes as phenomena; focusing on how things change, ignoring what changes” (Sierpinska, 1992, p.36). 

His answer to question 1b suggests that the student is aware that the rate of change of the height 

decreases until [when the water reaches] the middle of the spherical part of the flask and then increases 

until the beginning of the cylindrical part of the flask, except that the reference to time remains implicit, 

so that it sounds as if the independent variable was “the bottle” and its shape. He seems to rely, in 

sketching the graph, on a memorized rule (e.g. ‘avg rate of change increase →concave up, avg rate of 

change decrease →concave down’) which he probably remembered from previous mathematical events 

of answering similar questions rather than on a thorough analysis of the conceptual elements of the 

given dynamic task. By using this procedural association, he tried to explain the functional relationship 

that his graph represents by such statement; ‘showing a slow rate of change to fill up the bottom, as it 

approaches the midpoint the rate of change starts to increase and even more so at the neck’ in his 

response to question 1b, and the reason why the point he marked on his graph is the inflection point 

with such words; ‘because there is a change in the rates’ in his answer to question 1c. His statement of 

that ‘the rate of change increases even more at the neck’ is not accurate since the rate of change of the 

height of water is constant in the cylindrical section of the bottle. Based on the student’s responses, we 

can say that he was also in both pseudo-conceptual and pseudo-analytical modes of thinking like 

students 16, 19 and 20 when responding to Problem 1 since he failed in thinking the concepts and ideas 

of the given functional situation correctly, used uncontrolled memorized procedures and failed in 

making meaningful connections between his procedural and conceptual associations. 

5.1.3 Analysis from the point of view of students’ common pseudo-thoughts, obstacles and 

misconceptions 

I start with the data tabulated in Table 5 which lists the assessments of students’ solutions from the 

point of view of common pseudo-thoughts, obstacles (epistemological, didactical and cognitive) and 

misconceptions. 
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Table 5. Distribution of each student’s common pseudo-thoughts, obstacles, misconceptions 

Student’s 
code 

Student’s 
pseudo-
thoughts 

Student’s 
epistemological 
obstacles 

Student’s 
didactical 
obstacles 

Student’s 
cognitive 
obstacles 

Student’s 
misconceptions 

S1 --- --- --- --- --- 

S2 --- --- --- --- --- 

S3 --- --- --- --- --- 

S4 --- --- --- --- --- 

S5 --- --- --- --- --- 

S6 --- --- --- --- --- 

S7 --- --- --- --- --- 

S8 --- EO(f)-9 --- --- --- 

S9 --- --- --- --- --- 

S10 --- --- --- CO-VTG --- 

S11 --- --- --- CO-VTG --- 

S12 PSA EO(f)-11 DO-XY CO-GTV --- 

S13 --- EO(f)-5, EO(f)-16 --- --- --- 

S14 --- --- --- CO-GTV --- 

S15 --- EO(f)-11 --- CO-GTV --- 

S16 PSA and PSC EO(f)-11 --- --- --- 

S17 PSA and PSC EO(f)-3, EO(f)-16 --- --- --- 

S18 --- EO(f)-3 --- --- --- 

S19 PSA and PSC EO(f)-11 --- --- --- 

S20 PSA and PSC EO(f)-7, EO(f)-11 DO-XY CO-GTV and 
CO-VTG 

--- 

S21 --- EO(f)-3, EO(f)-7, 
EO(f)-16 

--- --- MC-IP  

S22 --- EO(f)-3, EO(f)-11, 
EO(f)-16 

--- CO-GTV MC-IP  

S23 --- EO(f)-3, EO(f)-16 --- --- ---  

S24 --- EO(f)-3 --- --- MC-IP  

Abbreviation: 

PSA: Pseudo-analytical thought,   

PSC: Pseudo-conceptual thought,  

MC-IP: Misconception about the inflection point 

DO-XY: Didactical obstacle involved in representing variables with the letters ‘x’ and ‘y’ 

CO-GTV: Cognitive obstacle of being unable to transform a graphical representation of function to its verbal one 

CO-VTG: Cognitive obstacle of being unable to transform a verbal representation of function to its graphical one 

“EO(f)-3: Regarding changes as phenomena; focusing on how things change, ignoring what changes” (Sierpinska, 

1992, p.36) 

“EO(f)-5: Regarding the order of variables as irrelevant” (Sierpinska, 1992, p.38) 

“EO(f)-7: A Pythagorean philosophy of number: everything is number” (Sierpinska, 1992, p.41) 
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“EO(f)-9: Proportion is a privileged kind of relationship” (Sierpinska, 1992, p.43) 

“EO(f)-11: only relationships describable by analytic formulae are worthy of being given the name of functions” 

(Sierpinska, 1992, p.46) 

“EO(f)-16: The changes of a variable are changes in time” (Sierpinska, 1992, p.55) 

The data suggests that seven students (numbered 12, 15, 16, 17, 19, 20 and 22), making 29% of the 

participants, relied on their procedural associations instead of focusing on the conceptual elements of 

the dynamic task. Consequently, Students 16, 17, 19 and 20 were in both pseudo-analytical and pseudo-

conceptual modes of thinking (Vinner, 1997), while Student 12 had pseudo-analytical thoughts when 

responding Problem 1. I believe that the reason why Students 12, 16, 19 and 20 had common pseudo-

analytical thoughts is that they have not overcome yet the common epistemological obstacle labeled as 

“EO(f)-11: only relationships describable by analytic formulae are worthy of being given the name of 

functions” (Sierpinska, 1992, p.46). Similarly, it seems that Students 15 and 22 have also not overcome 

yet this epistemological obstacle since they provided unnecessary analytic formulas in their responses to 

the dynamic task which has a conceptual basis. 

Furthermore, Students 17, 18, 21, 22, 23 and 24, amounting for 25% of the respondents,  may not have 

overcome yet the corresponding common epistemological obstacle of ‘ignoring what changes’ which is 

identified as “EO(f)-3: Regarding changes as phenomena; focusing on how things change, ignoring what 

changes” (Sierpinska, 1992, p.36) since they were unable to identify the name of the variables while 

Student 13 may not have overcome yet the epistemological obstacle labeled as “EO(f)-5: Regarding the 

order of variables as irrelevant” since she was not able to discriminate between the dependent and 

independent variables (Sierpinska, 1992, p.38). In addition, Students 13, 17, 21, 22 and 23 may not have 

overcome yet the epistemological obstacle “EO(f)-16: The changes of a variable are changes in time” 

(Sierpinska, 1992, p.55) due to them considering the independent variable as time. In summary, it looks 

like “EO(f)-11, EO(f)-3 and EO(f)-16” are the most common epistemological obstacles among college 

level Calculus students. 

Meanwhile, Students 20 and 21 may not have overcome yet the epistemological obstacle labeled as 

“EO(f)-7: A Pythagorean philosophy of number: everything is number” (Sierpinska, 1992, p.41), and 

Student 8 has likely not overcome yet the epistemological obstacle of ‘proportion privileged’ which is 

identified as “EO(f)-9: Proportion is a privileged kind of relationship” (Sierpinska, 1992, p.43). 

On the one hand, Students 12, 14, 15, 20 and 22 were not able to make a ‘transformation from a 

graphical representation of a function to its verbal one’, which is the common cognitive obstacle labeled 
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as CO - GTV. On the other hand, Students 10 and 11 (and also student 20 since her verbal expression in 

question 1b does not correspond to her constructed graph in question 1a) seemed to be unable to 

‘transform a verbal representation of a function to its graphical one’, which is the cognitive obstacle 

labeled as CO - VTG. Hence, based on the students’ written responses to Problem 1, we can say that 

these seven students, amounting for 29% of the respondents, may not have overcome yet cognitive 

obstacles involved in moving between different representations of functions. In addition, Students 12 

and 20 preferred to use the letters ‘x’ or/and ‘y’ in their analytical expressions. It is likely that this is due 

to students, probably these two as well, frequently studying with typical examples in mathematical 

instruction and those often involve the letters ‘x’ and ‘y’. This is considered as an evitable common 

didactical obstacle (labeled as DO – XY: Didactical obstacle involved in representing variables with the 

letters ‘x’ and ‘y’) being generated by the narrow educational system (Herscovics, 1989). 

Lastly, three students have showed a deep misconception about the concept of inflection point: Student 

21 pictured an inflection point as appearing when the graph of a function touches the x-axis; Student 22 

believed that an inflection point happens when the shape of graph changes (without providing valid 

explanation of what that shape may be); and Student 24 thought that an inflection point occurs when 

the first derivative changes sign. 

5.2 ANALYSIS OF STUDENTS’ RESPONSES TO THE SECOND PROBLEM ABOUT BOTTLE FILLING: THINKING 

ANALYTICALLY ABOUT THE PROCESS AND THEN GRAPHING AND VERBALIZING THE PROCESS 

This section presenting the analysis of the students responses to Problem 2 consists of four subsections: 

analysis from the point of view of correctness (5.2.1), analysis from the point of view of level of students’ 

covariational reasoning (including students’ analytical and conceptual thinking of the dynamic event) 

(5.2.2) and analysis from the point of view of students’ common pseudo-thoughts, obstacles and 

misconceptions (5.2.3).  I aim to analyze whether students are able to represent a given functional 

situation, as exemplified here by Problem 2, in each of the following forms: algebraic, graphical and 

verbal. I note that in Problem 1, the analysis could only have been implemented for the graphical and, 

respectively, the verbal representations of a function. The type of mathematical questions posed in 

Problem 2 makes possible extending the analysis to the algebraic representation, hence a more 

comprehensive analysis. 
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5.2.1 Analysis from the point of view of correctness 

Fifteen students (Students 1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 20, 21 and 24) participated in the 

resolution of Problem 2. Unfortunately, no student out of fifteen provided correct responses for all 

questions asked in the second problem (Table 6). 

Table 6. Distribution of correct answers to Problem 2 and their percentages. 

Question Number of correct 
answers to each question 

% of correct answers 
among 15 students 

Q2a 2 13 

Q2b 1 6.66 

Q2c 3 20 

Q2d 1 6.66 

All of them 0 0 

 

5.2.1.1 Question 2a 

In question 2a, with the given value of radius of the spherical part of the flask as 1 unit, and the neck 1 

unit high, while the distance from neck to the bottom of the flask is 1 and 4/5 units, students were asked 

the following sub questions: “find a formula for the volume V of water as a function of the height h of 

the water: V(h)=? What is the domain of this function? What is the range?” Only two students 

(numbered 6 and 21) out of fifteen, which amounts for 13% of students, found a correct formula for the 

volume of water as a function of the height of the water and correct domain and range of this function. 

Student 11 obtained a correct formula but without calculating the integrals and referring to the domain 

and range of the function in question 2a. Student 13 provided a correct formula including the correct 

domain but with an incorrect range (although she provided a correct range in the beginning of her notes 

that she later changed to a wrong one). Additionally, Student 12 used the letter ‘x’ instead of the letter 

‘h’ for the independent variable when providing the formula for the volume of water in the cylindrical 

part of the bottle although the domain and range he has given for the function are correct. 

5.2.1.2 Question 2b 

In question 2b, students were asked the following sub questions: “sketch a graph of the height as a 

function of the amount of the water, i.e., of the function h(V). Explain how you did it and what makes 

you sure you are right. What is the domain of this function? What is its range?” Only one student 

(student 6) out of fifteen, which makes only 6.66%, constructed an acceptable graph of the height of the 

water as a function of the amount of the water with correct relative magnitudes of both independent 

and dependent variables, provided a suitable explanation for his graph and wrote the correct domain 
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and range of the height function. Student 1 also provided an acceptable graph, with satisfactory 

explanation, but without written relative magnitudes of the independent variable on her graph and 

without any mention of the domain and range of the height function with respect to volume. Students 4 

and 7 also provided somewhat suitable explanations, but without acceptable graphs, and without 

writing the domain and range of the height function. Although he wrote that ‘y = x’ instead of ‘h = V’, 

student 4’s explanation was considered as satisfactory: 

Firstly sketch the V(h) graph and reverse its graph about y = x to get h(V) (Student 4’s 

answer to question 2b) 

Student 7’s satisfactory explanation follows even though his graphs do not seem to be correctly 

constructed: 

I sketched V(h) first and then I just mirror it (took inverse) to create h(V) (Student 7’s 

answer to question 2b) 

On the other hand, Student 11 has given the correct domain and range of the height function but with 

unacceptable graph and no explanation for her graph. 

5.2.1.3 Question 2c 

In question 2c, students were asked to “find the height of the water if there are, approximately, i) 2 

litres, ii) 4 litres, iii) 5 litres of the water in the flask (with 1 litre =1dm³)”. Only three students (numbered 

5, 11 and 12), amounting for 20% of students, provided somewhat acceptable solutions of the height of 

the water for all three different values of the volume given in question 2c (although Student 12 did not 

provide any process about how he obtained correct answers for all three cases). It is important to note 

that these students did not provide a correct formula (including the integrals being evaluated in their 

formulas) for the entire domain of the function in their solutions to question 2a and correct responses 

to question 2b, but found correct answers of the three values of the height of the water for the given 

three different values of the volume of water in question 2c. Student 21 correctly found the solutions of 

the height of the water for the two values of the volume of the water given in the parts i) and ii), but he 

made a mistake in his calculations when trying to find the value of the height of water for the value of 

the volume of water given as 5 litres in the part iii), so he obtained an incorrect answer of the value of 

the height of water as 2.02 dm instead of 2.62 dm. Student 1 gave acceptable solutions of the height of 

the water for the two values of the volume of the water given in the parts ii) and iii) while she could not 

find the value of the height of water when the volume of water is 2 litres. On the other hand, student 14 
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obtained a correct answer for only the question asked in the part i) while student 6 gave a correct 

response for only the question asked in the part iii). 

5.2.1.4 Question 2d 

In question 2d, the following questions asked: “Does the graph of the function h(V) have a point of 

inflection? If yes, what are its coordinates? Justify your answer”. Only one student (numbered 6) 

provided the coordinates of the inflection point of the graph of the function h(V) correctly with valid 

explanation as the second derivative changes sign at this point. Student 11 also provided the correct 

coordinates of the inflection point of the graph of the function h(V) but without satisfactory justification 

while Students 1, 7, 12 and 13 provided somewhat satisfactory justification for the inflection point of 

the graph of the function but without providing its full coordinates. 

5.2.2 Analysis from the point of view of level of covariational thinking 

5.2.2.1 An overview 

I present a table summarizing the assessments of students’ solutions from the point of view of 

“correctness” (or “acceptable answers”) and levels of covariational thinking (Table 7). 

Table 7. Distribution of correct answers to Problem 2 and level of covariational reasoning for each student 

Student’s 
code 

Q2a Q2b Q2c Q2d 
Coor. 

Q2d 
Justf. 

Number of correct 
answers per student 

Level of covariational 
reasoning 

S1 – S24 1/0
1 

1/0
2 

1/0
3 

1/0
4 

1/0
5 

sum
6 

0 – 5 

S1 0.25 0.50 0.66 0 1 2.41 5 

S2 0.25 0 0.33 0 0 0.58 2 

S4 0.50 0.25 0 0 0 0.75 2 

S5 0 0 1 0 0 1 2 

S6 1 1 0.33 1 1 4.33 5 

S7 0 0.25 0 0 1 1.25 2 

S9 0.50 0 0 0 0 0.50 2 

S11 0.50 0.50 1 1 0 3 3 

S12 0.50 0 1 0 1 2.5 2 

S13 0.75 0 0 0 1 1.75 3 

S14 0.50 0 0.34 0 0 0.84 2 

S16 0 0 0 0 0 0 1 

S20 0 0 0 0 0 0 2 

S21 1 0.25 0.67 0 0 1.92 3 

S24 0 0 0 0 0 0 0 

# of total 
correct 
answers 

5.75 2.75 5.33 2 5 20.83 Level 5 – 2 students, 
L.4 – 0 st. L.3 – 3 st. 
L.2 – 8 st, L.1 – 1 st. 
L.0 – 1 st.  

% of 
correct 

38 18 36 13 33 28  
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answers 
among 15 
students 

Legend: 

1) formula acceptable = 0.50, domain acceptable = 0.25, range acceptable = 0.25, otherwise = 0 

2) graph acceptable = 0.25, explanation satisfactory = 0.25, domain acceptable = 0.25, range acceptable = 0.25, 

otherwise = 0 

3) the value of the height in part i) acceptable = 0.34, the value of the height in part ii) acceptable = 0.33,  the value 

of the height in part iii) acceptable = 0.33,  otherwise = 0 

4) coordinates of the inflection point acceptable = 1, otherwise = 0 

5) justification of the inflection point satisfactory = 1, otherwise = 0 

6) sum of numbers in this row and columns 2 to 6. 

I now present a table listing the assessments of students’ solutions from the point of view of level of 

mental actions for algebraic, graphical and verbal representations of the given dynamic situation (Table 

8) 

Table 8. Distribution of each student’s engaged mental actions for graphical, verbal and algebraic representations of the 
function 

Student’s 
code 

Student’s engaged 
mental Action for 
algebraic 
representation 

Student’s engaged 
mental Action for 
graphical 
representation 

Student’s engaged 
mental Action for 
verbal 
representation 

S1 – S24 MA1 – MA5 MA1 – MA5 MA1 – MA5 

S1 MA2 MA2 MA5 

S2 MA2 MA0 MA1 

S4 MA2 MA2 MA2 

S5 MA2 MA2 MA0 

S6 MA5 MA5 MA3 

S7 MA2 MA2  MA2 

S9 MA2 MA0 MA0 

S11 MA3 MA3 MA1 

S12 MA2 MA2 MA1 

S13 MA3 MA3 MA1 

S14 MA2 MA2 MA1 

S16 MA1 MA1 MA1 

S20 MA2 MA2 MA0 

S21 MA3 MA2 MA0 

S24 MA0 MA0 MA0 

 

Two students (numbered 1 and 6), which amounts for 13% of the students, provided a response being 

evaluated as representing Level 5 of covariational reasoning. This means that only two students 

exhibited behaviors that support Mental Action 5 for algebraic or graphical or verbal representation of 
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the dynamic situation by coordinating the instantaneous rate of change of the values of the output 

variable with respect to continuous changes in the input variable for the entire domain (Student 1 did 

this coordination verbally while Student 6 did it algebraically and graphically). Student 1 verbalized an 

awareness of the instantaneous rate of change of the function with respect to continuous changes in the 

input variable (verbal sign of MA5) in her response to question 2b. It appears that Student 1 has a strong 

conceptual thinking of functions since she was able to develop meaningful verbal and geometrical 

constructions of the dynamic situation given in Problem 2 (Vinner, 1997). Recall that I also had the same 

conclusion when analyzing the student’s solution to Problem 1. However, she constructed a valid graph 

without representing relative magnitudes of the independent variable (no graphical sign of MA3) and 

was unable provide a correct formula for the volume of water as a function of the height of the water 

(no algebraic sign of MA3). It seems that that the student has a weak analytical thinking of functions 

because she was unable to develop a meaningful analytical expression of the dynamic event when 

solving Problem 2 (Vinner, 1997). Contrary, Student 6’s solution is indicative of him, algebraically and 

graphically, coordinating the instantaneous rate of change of the dependent variable with continuous 

changes in the independent variable (algebraic and graphical signs of MA5) while his response to 

question 2b is also suggestive of him verbally coordinating the amount of change of the output while 

thinking changes in the input (verbal sign of MA3), showing evidences of him not only having strong 

analytical thinking, but also having strong or good conceptual thinking of functions identifiable as he was 

making logical connections between the functional concepts and procedures related to the given 

dynamic situation without missing  control mechanism (Vinner, 1997). I note that the student provided a 

correct graph of the height function in Problem 2 while he provided a correct graph of the volume 

function, instead of the height function which was asked in Problem 1. Recall that I concluded that he 

has a good or moderate conceptual thinking when analyzing his answers to Problem 1. 

Three students (numbered 11, 13 and 21), that is 20% of participants, exhibited behaviors supporting 

MA3 for algebraic representation of the function, so their covariational reasoning have reached Level 3 

since they were able to coordinate the amount of change of the output with respect to changes in the 

input algebraically. It appears that these students have a good or moderate analytical thinking since they 

were able to develop a suitable analytical expression of the dynamic situation (Vinner, 1997). Students 

11 and 13 both algebraically and graphically coordinated the amount of change of the output while 

considering changes in the input (algebraic and graphical signs of MA3) in their solutions. Student 21 

also algebraically coordinated the amount of change of the dependent variable while thinking changes 

in the independent variable since he provided a correct formula, including the correct domain and range 
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of the volume function, in his response to question 2a and obtained some correct values of the height of 

water in his answers to question 2c (algebraic signs of MA3). However, he failed in representing relative 

magnitudes of the dependent and independent variables when constructing his graph in question 2b, so 

no graphical evidence of MA3 appears while the direction of change of the output with respect to input 

is visible on his graph (graphical sign of MA2). On the other hand, the three students did not show a 

strong conceptual understanding of the function since they were unable to develop a meaningful verbal 

construction of the given dynamic situation in Problem 2 (they engaged in MA1 or MA0 for verbal 

representation of the function). Recall: Student 11 engaged in MA3 for verbal representation of the 

function while Student 13 engaged in MA2 and Student 21 engaged in MA0 when answering Problem 1. 

Hence, we can say that Students 13 and 21 have a weak conceptual thinking of functions because they 

failed in developing meaningful constructions related to the functional concepts in both problems and 

also missing control stage in their solutions (Vinner, 1997). 

Furthermore, eight students (numbered 2, 4, 5, 7, 9, 12, 14 and 20), amounting for 53% of respondents, 

provided a solution being representative of Level 2 of covariational reasoning since these students were 

able to coordinate the direction of change of the output with respect to input algebraically or graphically 

or sometimes verbally. Six of them (Students 4, 5, 7, 12, 14 and 20) provided responses supporting MA2 

for both algebraic and graphical representations of the given functional situation. It seems that these six 

students do not have a strong analytical thinking or understanding of functions because they were 

unable to develop an acceptable algebraic expression of the volume function with its correct domain 

and range and also a suitable geometrical construction of the height function in Problem 2. Students 4 

and 7 (whose solutions are similar) were able to coordinate the direction of change of the output while 

considering changes in the input all together algebraically, graphically and verbally (signs of MA2) while 

Students 5, 12, 14 and 20 exhibited behaviors supporting MA2 for algebraic and graphical 

representations of the situation and Students 2 and 9 produced behaviors being supportive of MA2 for 

only algebraic representation of the given dynamic situation, being indicative of them having a poor 

analytical understanding of functions. On the other hand, Students 12 and 14 engaged in MA1 for 

verbalization of the situation in Problem 2 while they engaged in either MA1 or MA2 for verbal 

representation of the function in Problem 1, being supportive of them having a weak conceptual 

understanding of functions. Also, Student 20 engaged in MA0 for verbalization of the situations in both 

problems 1 and 2, being indicative of him lacking essential conceptual understanding of functions. 
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While Student 16’s covariational reasoning has reached only Level 1 since he made a correct 

coordination between the two variables algebraically, graphically and verbally, Student 24’s 

covariational reasoning remained at Level 0 since he failed in making this coordination. It appears that 

these two students have very poor (or do not have an) analytical and conceptual thinking of functions 

due to them being unable to develop meaningful constructions  between the functional concepts and 

procedures associated with the dynamic situation, and also missing control stage in their solutions 

(Vinner, 1997). These outcomes are consistent with the results found in the analysis of the students’ 

responses to Problem 1. Recall: we had similar conclusion as Students 16 having weak conceptual 

thinking while Student 24 not having essential conceptual thinking when analyzing the students’ 

responses to Problem 1 (Student 16 engaged in MA1 for graphical and verbal representations of the 

function and that Student 24 engaged in MA0 for both representations of the function in Problem 1). 

Three students (numbered 2, 9 and 24) were unable to make coordination between the variables 

graphically (no graphical sign of MA1). Especially, two of them (Students 9 and 24) did not exhibit 

behaviors that support MA1 for graphical representation nor for verbal representation of the given 

dynamic situation (no verbal and graphical signs of MA1).  

The data shows that the majority of students (86.66%) failed in coordinating the instantaneous rate of 

change of the function with continuous changes in the independent variable for the entire domain of 

the function graphically or verbally or algebraically (no signs of MA5). More than half of students 

(66.66%), algebraically or graphically or verbally, did not coordinate the amount of change of the output 

while picturing changes in the input (no signs of MA3). Almost three quarter of students (73.33%) failed 

in coordinating the direction of change of the output with respect to changes in the input verbally (no 

verbal sign of MA2), and five of these students (numbered 5, 9, 20, 21 and 24), which makes 33% of all 

students, did not coordinate the two variables verbally (no verbal sign of MA1). I have observed the 

same outcome in the analysis of the Students 20’s, 21’s and 24’s responses to Problem 1. Therefore, we 

can claim that these three students do not have an essential conceptual thinking of functions being 

necessary for modeling dynamic situations. On the contrary, it seems that Students 1 and 6 have a 

strong or good conceptual thinking of functions.  

Most of respondents (79%), except Students 6, 11, 13 and 21 who seemed to have had strong or good or 

moderate analytical thinking of the function, were not able to coordinate the amount of change of the 

output while picturing changes in the input algebraically (no algebraic signs of MA3).  Because of that, 

they were not able to develop a suitable analytical construction of the dynamic situation; it seems that 
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they have had a weak analytical thinking of the function when responding Problem 2 (Vinner, 1997). On 

the other hand, I can determine that at least 47% of participants (Students 12, 13, 14, 16, 20, 21 and 24) 

have weak conceptual thinking of functions based on the consideration of the students’ responses to 

both Problems 1 and 2 which I discuss further in the section 5.3.  

5.2.2.2 Example of a response representing Level 5 of covariational reasoning 

There are two students whose solutions were assessed as representing Level 5 of covariational 

reasoning, Students 1 and 6. I present an analysis of Student 6’s solution.  

5.2.2.2.1 Student 6: A Level 5 solution with strong graphical, algebraic and verbal representations of the 

dynamic situation 

The student 6’s solution is long and detailed, so I will present it partially considering the parts that are 

most relevant for our assessment. In question 2a with the given values of radius of the spherical part of 

the flask as 1 unit and the distance from neck to the bottom of the flask as 1 and 4/5 units, student 6 

first calculated the value of radius of the cylindrical part of the bottle by using the Pythagorean Theorem 

as it is shown in Figure 31. 

 

Figure 31. Student 6’s use of Pythagorean Theorem 

He then pictured the spherical part of the bottle on the Cartesian coordinate system as seen in Figure 32. 

  

Figure 32. Student 6’s image of spherical section of the flask 
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He noticed that the area under a curve which is half of the circle with center at (0, 0) and radius 1 can be 

represented with the equation:            . He found the radius of the horizontal disc at level y to 

be:     √     when the water reaches height h, and realized that             by knowing the 

fact that the area   of the disc of radius R equals to    . He then integrated this area function from -1 

to h as follows: 

   ∫    √      
 

  

         
 

 
   

 

 
      

 

 
    

 

 
  

(beginning of Student 6’s response to question 2a)  

(algebraic signs of MA1 and MA2) 

After integration, he wrote as “shift 1 unit to the right” for the height of water (here, it seems that he 

visualized the height on the horizontal axis since it is independent variable) and obtained the following 

formula for the volume of water in the spherical section of the flask as a function of height h: 

                   
 

 
        

 

 
  

                 
 

 
        

 

 
   

          
 

 
        

 (Student 6’s volume formula for the spherical cap written in question 2a) 

(algebraic sign of MA3) 

He then visualized the cylindrical section of the flask on Cartesian coordinate system (Figure 33): 

 

Figure 33. Student 6’s image of cylindrical section of the flask 

He first found the radius of the cylindrical part of the flask as   √    
 

 
    

 

 
 when the water in the 

neck reaches height h, plugged this value of the radius of the neck into the formula of the area of the 
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disc (for the base of the cylinder),            
 

 
  , and then integrated the area function from 0 to h 

in order to find the formula for the volume of water in the cylinder as: 

   ∫    
 

 
  

 

 

    
 

  
   

(Student 6’s next response to question 2a)  

After writing “shift    
 

 
  units up”, he then calculated the volume of water in the spherical cap when 

the water reaches height   
 

 
 as: 

   
 

 
    

 

 
 
 

 
     

 

 
   

   

   
  

(Student 6’s following answer to question 2a) 

(algebraic signs of MA1 and MA2) 

After writing “shift  
 

 
  units to the right” (again here, it seems that he imagined the height of water on 

the horizontal axis), he found the formula for the total volume of water in the flask by adding the 

volume of the spherical cap at height   
 

 
  to the volume of the cylindrical section when the water 

reaches height   
 

 
 : 

     
 

 
  

   

   
   

 

  
    

 

 
  

   

   
  

       
 

  
   

  

   
  

(Student 6’s volume formula for the cylindrical part written in question 2a) 

(algebraic sign of MA3) 

He then wrote the formula for the volume V of water as a function of the height h of the water as 

follows (algebraic signs of MA3, evidence of having strong analytical thinking of the function)  

      {
    

 

 
               

 

 
 

  
    

  

   
       

 

 
   

  

 

 

(Student 6’s final volume formula written in question 2a) 
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It seems that he made a typing error by making   
 

 
 for both intervals of the domain which is however 

not invalidating the definition of the function as       is continuous in   and both branches give the 

same value of the function at   
 

 
 . He wrote correctly the domain and range of the volume function 

as:  

              
  

 
                      

  

 
       

   

   
   

(Student 6’s final response to question 2a) 

(algebraic sign of MA3). 

For question 2b, student 6 correctly constructed the graph of the height of water as a function of the 

volume of water with clear indications of the values of the dependent variable with respect to the 

values of the independent variable as seen in Figure 34: 

  

Figure 34. Image of Student 6’s graph in question 2b 

(graphical signs of  MA1, MA2 , MA3 and MA5, but not of MA4 since no secant lines exist) 

For the explanation on how he sketched his graph, the student mentioned clearly that the graph of h(V) 

is a reflection of the graph of V(h) in the line V = h. To further justify his action on the construction of his 

graph, he used the fact that the volume function V(h) is bijective, so its inverse h(V) exists (verbal sign of 

MA3, and also sign of having strong or good conceptual thinking of the dynamic situation): 

how; reflect the graph of V(h) about the line V = h, what makes the graph correct; the 

function V(h) is bijective => There exists its inverse h(V) by reflecting V(h) about V = h 

(Student 6’s response for the explanation of his graph in question 2b) 

By using the fact that the graph of h(V) is a reflection of the graph of V(h) in the line V = h, he then 

determined the domain and range of the height function h(V) as: 
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  ,               

  

 
  

(Student 6’s final response to question 2b) 

(algebraic sign of MA3) 

Since he is aware of the fact that the volume function V(h) is bijective, and its inverse h(V) whose graph 

is reflecting the graph of V(h) in the line V = h, we can say that this student view function as a process 

which accepts input and produces output. In addition to that the algebraic evidences of MA1, MA2 and 

MA3 that we have found in question 2a, we also found graphical evidences of MA1, MA2, MA3 and MA5 

in question 2b. It is noteworthy to mention that this student constructed the graph of V(h) when he was 

asked to sketch a graph of the height of water as a function of the volume of water in Problem 1 while 

he did not repeat the same error in question 2b and correctly constructed the graph of h(V), being 

suggestive of him possession of a strong control mechanism vital for absence of pseudo-thoughts. 

For question 2c, he wrote the following two results for the parts i) and ii) without showing any 

calculation or claiming to have used computing software like ‘Wolfram Mathematica’: 

c) height of the water:  

                  

            
 

 
     

(Student 6’s answers for parts i) and ii) of question 2c) 

It is not clear how he calculated the heights of water when the volume is 2 and 4 litres. But, it is clear 

that when the volume is 2 litres, the height of water must be less than 1 dm (          and when the 

volume is 4 litres, the height of water must be less than 1.8 dm (         ). Therefore, these 

answers are not considered as correct (these are his only answers which were not accepted because 

they lack explanation).  

On the other hand, he provided a correct answer for the part iii) in question 2c when the volume of 

water equals to 5 litres. He concluded that “in the interval  
   

   
    

   

   
 , the graph is linear => the 

slope is constant” and then made the following calculations by using the fact that the slope is constant in 

order to find the height of water as           when the volume is 5 litres:  
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,   

   

   
    

  

 
,         

  
 

  

   
   

   
 

  
 

 
 
 

   
   

  
   
   

 
      

   
   

   

 
  

 
 

  

 
         

(Student 6’s response for part iii) of question 2c) 

(algebraic signs of MA4 and MA5 for the linear part of the bottle) 

In his response to the part iii) of question 2c, the student exhibited some behaviors supporting MA4 and 

MA5 since he explicitly mentioned about the rate of change of the volume of water for the cylindrical 

section of the bottle in his solution (e.g. ‘the slope is constant’) and also considered its value (e.g. ‘
 

  
 ’) 

in his calculations. 

In his response to question 2d, he first wrote as “Yes, the inflection point is at   
 

 
     ”. He took the 

first and second derivative of the volume function for the spherical cap of the flask and set up the 

second derivative of the volume function equal to zero in order to find the value of the height of water 

as h = 1 at the inflection point: 

         
 

 
               

 

 
 

               

                       

(Student 6’s next response to question 2d) 

(algebraic sign of MA5 for the spherical part of the bottle) 

He identified the inflection point of V(h) as    
 

 
   where the second derivative of the volume function 

changes sign (algebraic sign of MA5): 

{          
                    

                        
 

 

         
 

 
    is the inflection point of V(h) 

(Student 6’s following answer to question 2d) 

By using the fact that h(V) is the inverse of V(h), he concluded that: 

with h(V) being the inverse of V(h), the inflection point is then interval, -i.e.   
 

 
      

and hence is the inflection point of h(V) (Student 6’s final response to question 2d). 
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In his response to question 2b, this student already recognized that the volume function V(h) is bijective 

and its inverse is h(V) whose graph is reflecting the graph of V(h) in the line V = h. In his response to 

question 2d, he again used the inverse relation between the two functions V(h) and h(V) and 

determined the inflection point of h(V) as the point,   
 

 
      where its second derivative changes sign. 

Thus, this is renewed evidence of the student having strong analytical and conceptual thinking of 

functions (Vinner, 1997).  

Based on his responses to the questions asked in Problem 2, we have observed that the student 

graphically, verbally and algebraically coordinated the two variables (MA1), the direction of change of 

the output while considering the input (MA2) and the amount of change of the output with respect to 

changes in the input (MA3). These results are consistent with the results that we found when analyzed 

the student’s responses to Problem 1 (recall: he graphically and verbally coordinated the amount of 

change of the output while thinking changes in the input in the first problem). In Problem 2, he also 

exhibited behaviors that support MA4 and even MA5 for both graphical and algebraic representations of 

the function. Thus, we can claim that his covariational reasoning has reached Level 5 in Problem 2 (while 

it was reached Level 3 in Problem 1). 

5.2.2.3 Example of responses representing Level 3 of covariational reasoning 

There were three students whose solutions were assessed as representing Level 3 of covariational 

reasoning, students 11, 13 to 21. I first present an analysis of student 11’s solution.  

5.2.2.3.1 Student 11: a Level 3 solution; leaving the integrals unevaluated, dividing the graph into four 

intervals 

In question 2a, like Student 6, Student 11 also pictured the flask on the Cartesian coordinate system as 

seen in Figure 35. 
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Figure 35. Student 11’s image of the flask 

She then used the Pythagorean theorem in order to find the value of the radius of the cylindrical section 

of the flask which is r1 and the radius of the horizontal disc representing the area under the graph of the 

function, that is r(h), when the water reaches height h as: 

  √        √        √            

      √          √          √      

(beginning of Student 11’s response to question 2a) 

By considering the area   of the disc of radius r(h) as                    , she integrated this 

area function from 0 to h (but without evaluating the integral)  in order to find the formula for the 

volume of water in the spherical part of the flask when the water reaches height h, and           , 

as follows: 

When water level lower than 1.8 dm,            

   ∫     
 

 

 ∫             
 

 

 

(Student 11’s next response to question 2a) 

(algebraic signs of MA1, MA2 and MA3)  

She used the same procedure for the cylindrical section of the flask. She plugged the value of the radius 

of the neck into the area formula of the disc with radius r1, such as                  , and then 

integrated this area function from 1.8 to h (but without evaluating the integral again)  in order to find 
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the formula for the volume of water in the cylindrical part of the flask when the water reaches height h, 

and               , as follows: 

When water level higher than 1.8 dm,                

   ∫      
 

   

 ∫            
 

   

 ∫         
 

   

 

(Student 11’s following answer to question 2a) 

(algebraic signs of MA1, MA2 and MA3)  

She then calculated the value of the volume of water in the spherical cap when the water reaches height 

      (at this time, she evaluated the integral), and added this value as           to the formula 

for the volume of water in the cylindrical part of the flask when the water reaches height       in 

order to find the formula for the total volume of water in the flask (again without evaluating the 

integration in the formula for the volume of water in the cylinder) as: 

   ∫             
   

 

         
    

 
                         

        ∫         
 

   

        

(Student 11’s next answer to question 2a) 

(algebraic signs of MA1, MA2 and MA3) 

As conclusion, she wrote the following formula for the volume V of water as a function of the height h of 

the water (student 11’s final response to question 2a) (evidence of having good or moderate analytical 

thinking of the dynamic situation): 

   

{
 
 

 
        ∫         

 

   

               

∫             
 

 

             

 

Like Student 6, she also set up height       for both intervals of the domain. Most importantly, the 

student did not evaluate the integrals in the formulas for the volume of water when the water reaches 

height h with        , and height h with           even though she calculated the integral in 

the formula for the volume of water in the spherical part of the flask when water reaches height      . 

In addition to that, she did not write the domain and range of the volume function.  



111 
 

In question 2b, the student constructed a similar graph to the one she drew when answering Problem 1, 

the graph being divided into four intervals. The graph represents the height of water as a function of the 

volume of water with the values of the dependent variable (as 1dm, 1.8dm and 2.8dm) but without all 

relative magnitudes of the independent variable (she represented the points of the input variable with 

letters as a, b, c and d on her graph) as seen in Figure 36: 

  

Figure 36. Image of Student 11’s graph 

(graphical signs of MA1, MA2 and MA3). 

Without justification about the construction of the graph, the student calculated the value of the 

volume of water when the water reaches height               in order to find the domain and 

range of the height function (sign of having good analytical thinking of the function): 

b) when     volume = 0 

when      , volume         ∫         
   

   
 

                        

             

So, the domain of the function is            

the range of the function is            

(Student 11’s final response to question 2b) 

(algebraic signs of MA3) 

As observed in the student’s response above, she analytically conceptualized the amount of change of 

the height of water while considering changes in the volume of water and found the correct domain and 

range of the height function (even though she did not provide the domain and range of the volume 

function in question 2a), considered as evidence of MA3 for algebraic representation of the function. On 
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the other hand, she did not explicitly mention about the inverse relationship between the height 

function and the volume function. Since the student was unable to transform her algebraic expression of 

the dynamic situation to an acceptable graphical construction, she may not have overcome yet the 

cognitive obstacle labeled as CO-ATG: Cognitive obstacle of being unable to transform an algebraic 

representation of function to its graphical one. 

When constructing the graph of h(V), the student labeled the axes with the correct  names of variables 

(graphical sign of MA1) and constructed a smooth curve rising from the left to the right as being in the 

correct direction (graphical sign of MA2) although her smooth curve is incorrect. Besides these, she 

plotted three essential points representing the relative magnitudes of the output variable as h = 1 dm, h 

= 1.8 dm and h = 2.8 dm on the vertical axis (graphical sign of MA3), but while picturing four symbolic 

magnitudes of the input variable represented by the letters a, b, c and d.  It is not clear what the values 

of the letters a and b are, however, we can notice that          and          from her algebraic 

expressions. 

In question 2c, the student found the value of the volume of water in the spherical cap when the water 

reaches height       and concluded that “so, when if the volume of water is less than 4.06944 dm3 the 

height is lower than 1.8dm” (verbal sign of MA1): 

c) when height is 1.8 dm 

  ∫             
   

 
                dm³ 

(beginning of Student 11’s answer to question 2c) 

When responding to part i) of question 2c, she used the formula for the volume of water in the spherical 

part of the flask and her procedural knowledge in order to find the height of water, as          , 

when the volume of water equals to 2 litres: 

i) 2 litres 

  ∫             
 

 

   

   
  

 
 

 

    
 

                             

(Student 11’s solution to part i) of question 2c)     

(algebraic signs of MA3) 
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By using the same procedure, she found the height of water, as          , when the volume of 

water reaches to 4 litres, in part ii) of question 2c: 

ii) 4 litres 

  ∫             
 

 

   

   
  

 
 

 

    
 

                              

(Student 11’s solution to part ii) of question 2c)    

(algebraic signs of MA3) 

In part iii) of question 2c, she noticed that she needed to use the formula for the total volume of water 

in the flask that she found in question 2a, that is the value of the volume of water (          

           ) in the spherical cap when the water reaches height        added to the formula for the 

volume of water in the cylindrical part of the flask when the water reaches height      . Consequently, 

the student found the height of water as            when the volume of water equals to 5 litres by 

performing the following computations: 

iii) 5 litres 

  ∫         
 

   

        ∫         
 

   

           

                              

                              

                                 

(Student 11’s solution to part iii) of question 2c)   

(algebraic signs of MA3) 

When analyzing the student’s responses to parts i), ii) and iii) of question 2c, we emphasize that the 

student evaluated at this time the integrals in the formulas for the total volume of water, as opposed to 

finalizing these integrals in her response to question 2a. Therefore, by evaluating the integrals in the 

formulas, not only she overcame what could have been classified as a cognitive obstacle (Herscovics, 

1989) but she also provided satisfactory evidence of algebraic representation of the function for MA1, 

MA2 and MA3.  
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On the other hand, as we have observed of the student picturing the function as a generalized process 

in her responses to questions 2a and 2b (even though her smooth curve is incorrect), we make the same 

observation in her responses to question 2c, which suggests of her having a good analytical thinking of 

the function (Vinner, 1997).  

In her response to question 2d, the student first answered ‘Yes. The graph of the function h(V) have a 

point of inflection”. After that, she wrote the formula for the volume of water in the spherical cap 

without evaluating the integral in the formula, took the first derivative and the second derivative of the 

volume function, and then set up the second derivative of the function equal to zero to find the value of 

the height of water h = 1 and justify the inflection point as follows: 

  ∫       
 

 

 ∫             
 

 

 

                      

                            

(Student 11’s answer to question 2d)  

She plugged the value of the height of water, h = 1, into the formula for the volume of water in spherical 

part of the flask in order to find the value of the volume of water at the inflection point: 

     ∫             
 

 

     
 

 
    

 

 
   

(Student 11’s following answer to question 2d) 

The student then concluded that “so the coordinates of the inflection point is   
 

 
     ”. Her response to 

question 2d suggests that she has good understanding of the fundamental theorem of calculus. 

However, neither she mentioned the inverse relationship between the volume function V(h) and the 

height function h(V), nor she described the inflection point as a point where the second derivative of the 

volume function changes sign. Hence, there is no sufficient algebraic evidence for MA5 although we see 

some signs which support mental action 5 such as representing the instantaneous rate of change of the 

volume function for the spherical part of the flask as the first derivative of the function (e.g.        

        ).  

In addition to graphical evidences of MA1, MA2 and MA3 being obtained from her responses to 

question 2b, we also found satisfactory algebraic evidences of MA1, MA2 and MA3 in her solutions to 

questions 2a, 2b, 2c and 2d. These results are consistent with the results that we found when analyzing 
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the student’s responses to Problem 1 involving the verbal and graphical representations of the height 

function Recall that the student’s covariational reasoning was assessed to have reached Level 3 in her 

solution of Problem 1 when she, verbally and graphically, coordinated the amount of change of the 

output while picturing changes in the input. Therefore, considering all evidence, we can say that Student 

11 reasons covariationally at Level 3.  

5.2.2.3.2 Student 13’s responses to Problem 2: A Level 3 solution, incorrect graph of V(h) 

In problem 2a, Student 13 first claimed that “there will have 3 functions for this height”, found the radius 

of the cylindrical section of the flask as     dm by using Pythagorean Theorem, and visualized the flask 

as seen in Figure 37. 

 

Figure 37. Student 13’s image of the flask 

For the first expression of the function, the student wrote as follows: 

           range     
 

 
      

      ∫                 
 

 
  

 

 
     

  

 
   

(Student 13’s first answer to question 2a) 

(algebraic signs of MA1, MA2 and MA3) 

The student considered the domain of the function as       and the range as     
  

 
, and then 

integrated the area of the disc with radius √         , that is                 , from 0 to 1 

(instead of integrating it from 0 to h) in order to find  the formula for the volume of water in the first 

part of the spherical section of the bottle when the water reaches height h, and      . Despite the 

fact that the student did not consider the upper bound of the independent variable correctly in the 
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integral formula for the volume of water in the first part of the spherical part of the flask, he found 

correctly the formula for the volume of water as           
  

 
 . 

Continuing on the second expression of the function, the student’s solution is: 

             range   
 

 
             

      ∫                 
 

 
  

   

 
      

  

 
      

 

 
  

 

 
  

      
  

 
   (Student 13’s next answer to question 2a) 

(algebraic signs of MA1, MA2 and MA3) 

The student stated the domain of the function as         and the range as 
  

 
         , 

integrated the area of the disc with radius √          from 1 to 1.8 (instead of integrating it from 1 

to h) and added the result to the value of the volume of water when the water is at height    , that is 

  

 
, to be able to obtain the formula for the total volume of water in the spherical section of the bottle 

when the water reaches height h, and        . Although the student found the correct volume 

formula, he again did not consider the upper bound of the independent variable correctly on the sign of 

integral of the formula for the volume of water in the second part of the spherical section of the flask 

(repeating the same mistake as in the first part of the solution). 

For the third expression of the function, the student stated: 

               range                    

                              

(Student 13’s last response to question 2a) 

(algebraic evidences of MA1, MA2 and MA3) 

The student stated the domain of the volume function for the cylindrical part of the bottle as 

          and the range as                and found the value of the volume of water in the 

spherical cap as        when the water reaches height      . He then added this value to the 

formula for the volume of water in the cylindrical part of the flask when the water reaches height 

     , that is             )         , to be able to obtain the formula for the total volume of 

water in the flask as shown above. 
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The student algebraically expressed the name of the input and output variables by letters h as the height 

of water and V as the volume of water (algebraic sign of MA1) and coordinated the direction of change 

of the output while considering changes in the input (algebraic sign of MA2). Although the student did 

not provide explicitly the domain and the range of the volume function, instead, he wrote the domain 

and range of the function for each section of the flask (for the first part of the spherical section, the 

second part of the spherical section and cylindrical section), he obtained the correct formula for the 

total volume of water as a function of the height of water (algebraic sign of MA3), supportive evidence 

for concluding that he has good or moderate analytical thinking of the situation. It seems that the 

student reasons the given functional situation covariationally at Level 3. 

In question 2b, the student wrote the correct domain and an incorrect range of the volume function 

(instead of considering the height function as posed in the question) as “Domain          Range 

          ”. It is not clear how the student found the value of volume of water as       when the 

water reaches height       even though he wrote the correct value as       when responding 

question 2a. He then constructed an incorrect graph of the volume of water as a function of the height 

of water without any explanation (he drew the same graph when answering Problem 1) as shown in 

Figure 38 below. 

 

Figure 38. Image of Student 13’s graph 

(graphical signs of MA1, MA2 and MA3) 

When constructing his graph of V(h) in question 2b, the student labeled the axes with the correct  

names of variables (graphical sign of MA1) and constructed a smooth curve rising from the left to the 

right as being in the correct direction (graphical sign of MA2) although his graph is not correct. In 

addition, he also graphically coordinated the amount of change of the output with respect to changes in 

the input by representing some relative magnitudes of the dependent and independent variables 

(graphical sign of MA3) although he incorrectly wrote the value of volume of water as      , instead of 

     , when the water reaches height      . In addition to algebraic signs of MA1, MA2 and MA3 
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that we observed in question 2a, we also observed graphical signs of MA1, MA2 and MA3 in question 2b. 

It seems that his covariational reasoning has remained at Level 3 in Problem 2. These results are in line 

with the results that we obtained when analyzing his responses to Problem 1 (Recall: he graphically 

coordinated the amount of change of the output while considering changes in the input in Problem 1). 

However, since he was unable to discriminate between the input and output variables, the student did 

not exhibit behavior supporting the act of understanding labeled “U(f)-5: Discrimination between the 

dependent and independent variables” and has not overcome yet the corresponding epistemological 

obstacle labeled “EO(f)-5: Regarding the order of variables as irrelevant” (Sierpinska, 1992) when 

responding question 2b (we had the same conclusion in the analysis of his responses to Problem 1), 

although he identified the dependent and independent variables correctly when answering question 2a. 

Since the student was not able to transform his algebraic formula representing the functional 

relationship of the dynamic situation to a suitable geometrical construction, he may not have overcome 

yet the cognitive obstacle labeled as CO-ATG: Cognitive obstacle of being unable to transform an 

algebraic representation of function to its graphical one. 

For the parts i), ii) and iii) of question 2c, the student gave the following answers without showing any 

computation: 

i) since 
  

 
           , height will be 1 dm, ii) since                   , height 

will be 1.8 dm, iii) since                  , height will be 2.8 dm (Student 13’s 

response to question 2c) 

In his response to question 2c, the student did not exactly calculate the three values of the height of 

water for the three different values of the volume of water that were given in the question. He just 

projected or guessed some values of the height of water in his mind. These incorrect numerical values 

were not considered as evidence of covariational reasoning. 

In question 2d, the student responded as follows: 

d)            
  

 
             

                                       , when          ,     

 (Student 13’s solution to question 2d) 

The student first wrote the formula for the volume of water (including its domain as [0, 1.8] without the 

mention of the name of the independent variable) in the spherical cap of the flask, took the first and 
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second derivative of this volume function, set up the second derivative of the volume function equal to 

zero in order to obtain the value of the height of water as h = 1 at the inflection point, and concluded 

that “So, h = 1 will be inflection point” without considering the coordinates of the inflection point of h(V) 

which was asked in the question. 

The student showed that the second derivative of the volume function changes sign at height h = 1 as: 

d)  --------0.5--------1---------1.5--------- 

                              

          Increasing   decreasing  

(Student 13’s last response to question 2d) 

When answering question 2d, he failed to write the coordinates of the inflection point of the height 

function. Like Student 12, Student 13 mistakes the “coordinates” with the “point” in the domain 

(possibly, these two students may have a misconception about coordinates of a point). In addition, the 

student did not mention the inverse relationship between the volume function V(h) and the height 

function h(V). In his solution, he exhibited some behaviors supporting Mental Action 5 such as 

representing the instantaneous rate of change of the volume function for the spherical section of the 

bottle as the first derivative of the function (e.g.                 ) and stating that the inflection 

point is the point where the second derivative of the function changes sign. However, these evidences 

are insufficient to assess that his covariational reasoning has reached level 5 (and even MA4) since he 

did not coordinate the instantaneous rate of change of the output (with respect to continuous changes 

in the input) for the entire domain.  

5.2.2.4 Examples of students’ responses representing Level 2 of covariational reasoning 

These are eight students (numbered 2, 4, 5, 7, 9, 12, 14 and 20) whose solutions were assessed to be 

representative for Level 2 of covariational reasoning.  

5.2.2.4.1 Student 12’s responses to Problem 2: A Level 2 solution, using the letter ‘x’ in his formula 

In question 2, student 12 visualized the bottle on the Cartesian coordinate system by rotating 90 degree 

to the right as seen in the (Figure 39).  
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Figure 39. Student 12’s image of the bottle 

In his response above, the student found the radius of the cylindrical section of the flask which is 

        (dm that is not written) when the water reaches height x, and 
 

 
   

  

 
 , and the radius of 

the horizontal disc representing the area under the graph of the function that is     √         

when the water reaches height x, and     
 

 
. 

In question 2a, the student pictured the area of the disc with radius 0.6 dm as           

        and the area of the disc with radius     as                       . He then integrated 

these two area formulas from 0 to h to be able to obtain the formula for the volume of water in the 

spherical section of the bottle, and the formula for the volume of water in the cylindrical section of the 

bottle as reproduced below: 

a) V(h) must be piecewise function: 

     ∫                
 

 
        

 

 
      

     ∫            
 

 
      

 

 
 
  

 
  

(Student 12’s first answer to question 2a) 

In his response above, the student did not mention the name of the independent variable when 

specifying the intervals; he wrote  rather than  , and   instead of  

. Although the student considered the interval of the independent variable to be 

, he was unable to consider the lower bound of the independent variable correctly in the 

integral of the formula for the volume of water in the cylindrical part of the flask; he wrote  

 instead of  . In addition, the student used the name of the variable of 
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integration as the same as the upper bound of the input (like student 11) using a constant C for a 

definite integral. 

Without showing the computation, the student provided the following formula for the volume of water 

as a function of the height of the water: 

Therefore:           
  

 
        

  

 
                  

  

   
      

 

 
 
  

 
  

(Student 12’s next response to question 2a) 

We note in his expression above that the student used the letter “x” in the rule of the function (in the 

right side of the equation of the second formula) while he used the letter “h” for the name of the 

independent variable in the left side of the equation. We also observed this type of notational 

inconsistencies when we analyzed the student’s responses to Problem 1 (e.g. he also used the letter “x” 

for the independent variable in his formula when answering the first problem).  

Without further calculation once again, the student wrote the domain and range of the volume function 

and called the name of the independent variable as “height of flask” and the name of the dependent 

variable as “volume for flask”: 

Domain:    
  

 
  (limited by height of flask), Range:    

    

   
  (limited by max volume 

for flask) (Student 12’s final answer to question 2a) 

The student expressed algebraically the name of the input and output variables by the letters h (and 

also “x”) for the height of water representing the input and V as the volume of water being the output 

(algebraic sign of MA1). He also algebraically coordinated the direction of change of the dependent 

variable while considering changes in the independent variable (algebraic sign of MA2), but he wrote the 

incorrect lower bound of the independent variable on the integration of the formula for the volume of 

water in the cylindrical part of the flask and used the letter “x” instead of  “h” in the rule of the volume 

function which resulted in providing the wrong formula in terms of “x” even though he provided the 

correct domain and range of the volume function (no sufficient algebraic signs of MA3). As such, we see 

have supporting evidences of algebraic representation of the function for mental actions 1 and 2, thus, 

we can say that this student’s covariational reasoning has reached Level 2. Recall that the student’s 

covariational reasoning was also assessed at Level 2 on the results of Problem 1. 

In question 2b, the student did not provide the domain and range of the height function. He constructed 

an incorrect graph of the volume of water (Figure 40) as a function of the height of water without 
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justification (while he drew a correct graph of the height of water as a function of the volume of water 

when answering Problem 1).  

  

Figure 40. Image of Student 12’s graph  

(graphical signs of MA1 and MA2). 

Constructing his graph of V(h) in question 2b, the student labeled the axes with the correct  names of 

variables (graphical sign of MA1) and constructed a smooth curve rising from the left to the right as 

being in the correct direction (graphical sign of MA2) although his graph is not correct. He was unable to 

coordinate the amount of change of the output while considering changes in the input, graphically and 

verbally. Thus, his covariational reasoning remained at Level 2. 

The student did not exhibit behavior supporting the act of understanding labeled “U(f)-5: Discrimination 

between the dependent and independent variables” and has not overcome yet the corresponding 

epistemological obstacle labeled “EO(f)-5: Regarding the order of variables as irrelevant” (Sierpinska, 

1992). He failed in expressing the values of the dependent variable on the graph and wrote the value of 

the independent variable as 4 (representing the point being near to the starting point of the neck on his 

graph) positioned earlier than the value 
  

 
 of the independent variable representing upper bound of the 

input. It is not clear why the student represented the number 4 (and how he found this number) as less 

than the number  
  

 
 on his graph. The student may not have overcome yet the common cognitive 

obstacle of being unable to transform a algebraic representation of a function to its graphical one 

labeled as CO – ATG since he was not able to transform his algebraic expression (being in terms of ‘x’) to 

a graphical construction. 

For the parts i), ii) and iii) of question 2c, the student wrote the three corresponding values of the height 

of water for the three different values of the volume of water without the mention of the names of the 

variables and without any calculation which shows how he obtained these values: 
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c) i) 2L = 0.97dm, ii) 4L = 1.744dm, iii) 5L = 2.621dm 

(Student 12’s response to question 2c) 

To question 2d, the student responded as follows: 

 d) Yes, inflection point = 
 

 
  . This is mathematically the point where h’’ (V)= 0, and 

where concavity changes. From a real-world perspective, this is how much water is in 

the flask when it is most thick. (Student 12’s response to question 2d) 

When the student wrote as “inflection point = 
 

 
  ”, he did not specify the name of the variable (height 

or volume) which represents the value 
 

 
  , and did not provide any computation about how he found 

this value. Although the coordinates of the inflection point of h(V) were asked in the question, the 

student wrote the inflection point of V(h) and ignored the ‘coordinates’ of the inflection point of the 

height function completely (having misconception about coordinates of a point like student 13). This is 

renewed evidence of that the student was unable to discriminate between the dependent and 

independent variables, so he has not overcome yet the epistemological obstacle “EO(f)-5: Regarding the 

order of variables as irrelevant” (Sierpinska, 1992).  

As the student’s solution does not show any calculation of first and second derivative of the function, or 

any other procedure, his mention of the inflection point as “the point where h(V)’’ = 0, and where 

concavity changes” in his response to question 2d suggests memorized associations and may be an 

example of rote learning. The student who seems to have weak analytical and conceptual thinking of the 

functional situation did not talk either about the inverse relationship between the height function and 

the volume function. This concludes the lack of higher MAs values in our assessment of the student’s 

covariational reasoning.  

5.2.2.4.2 Student 20’s responses to Problem 2: A Level 2 solution, pseudo thoughts, linear graph of V(h) 

In her response to question 2a, she first wrote as “total height = 10 cm + 8 cm + 10 cm = 28 cm”, then 

added the volume formulas of sphere and of cylinder, being as   
 

 
    +      and found the volume 

of water as          by assigning the value of radius r (in both formulas of sphere and cylinder) as 9 

cm: 

     
 

 
          

 

 
                          

(Student 20’s first solution to question 2a) 
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She then claimed that “Domain; (0, 28), Range; (0, 5598.3)”. It seems that the student added 10 cm to 

the 8 cm and divided it by two in order to find the value of radius as 9 cm. But, she used this value of 

radius in both formulas of sphere and cylinder. Her uncontrolled memorized associations are suggestive 

of her being in both pseudo-conceptual and pseudo-analytical thoughts like Student 16. 

While she provided her memorized volume formulas of sphere and cylinder in terms of ‘h’ and ‘V’ in her 

first response above, she provided an another formula being in terms of ‘x’ and ‘y’ in her following 

response to question 2a (Figure 41): 

 

Figure 41. Image of Student 20’s second solution to question 2a 

I note that she provided a similar response to question 1a in Problem 1 as well, being suggestive of the 

student having weak analytical and conceptual thinking of functions. 

From her answers, we can say that she imaged the independent variable as the height of water being in 

terms of the letter ‘x’ since it equals to 28 and the dependent variable as the volume of water being in 

terms of the letter ‘y’ since it equals to 5598.3. We can also say that she pictured the volume function as 

linear, so divided the value of volume of water to the value of height of water and found the second 

formula for the volume function as            . Her uncontrolled memorized associations are 

renewed evidence of her being in both pseudo-conceptual and pseudo-analytical thoughts when 

responding to both Problems 1 and 2. 

From her responses to question 2a, we see some algebraic evidence of her coordinating between the 

two variables, the height of water as h or x and the volume of water as V or y (algebraic sign of MA1). 

We also see some evidence of her coordinating the direction of change of the output while picturing 

changes in the input algebraically (algebraic sign of MA2).  

In question 2b, she used her last obtained formula being as             in order to tabulate the 

values of the independent and dependent variables and to construct a graph of the volume function 

instead of the height function (Figure 42): 
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Figure 42. Image of Student 20’s graph and table 

She then again claimed that “Domain; (0, 28), Range; (0, 5598.3)” as she did in her response to question 

2a. In her answers above, we see more evidence of the student being in both pseudo-analytical and 

pseudo-conceptual modes of thinking. In her graph of V(h), she labeled the axes with the correct  names 

of variables (graphical sign of MA1) and constructed a straight line rising from the left to the right 

(graphical sign of MA2). We see also evidence of her symbolically/numerically coordinating the direction 

of change of the output while thinking changes in the input on the table she constructed (algebraic sign 

of MA2). Like Student 16, this student also did not exhibit behavior supporting the act of understanding 

labeled “U(f)-5: Discrimination between the dependent and independent variables” and has not 

overcome yet the corresponding epistemological obstacle labeled “EO(f)-5: Regarding the order of 

variables as irrelevant” (Sierpinska, 1992) when responding question 2b. 

For parts i), ii) and iii) of question 2c, she found the following answers by using her formula of 

          in which the letter ‘y’ being the volume of water and the letter ‘x’ being the height of 

water: 

c) 2 litres = 2000 cm3 ; x = 10 cm, 4L = 4000 cm3 ; x = 20 cm, 5L = 5000 cm3 ; x = 25 cm 

(Student 20’s response to question 2c) 

From her responses to question 2c, we see more algebraic evidence of her coordinating the direction of 

change of the output while thinking changes in the input (algebraic sign of MA2). Thus, based on her 

responses to questions 2a, 2b and 2c, we can claim that her covariational reasoning attained at Level 2. 

In her response to question 2d, she wrote that “no, there are no point of inflection”.  

5.2.2.5 Examples of a response representing Level 1 of covariational reasoning 

There is only one student (numbered 16) whose solution was assessed to be representative for Level 1 

of covariational reasoning.  
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5.2.2.5.1 Student 16’s responses to Problem 2: A Level 1 solution, pseudo thoughts 

For question 2a, Student 16 who also seems to have weak analytical and conceptual thinking of 

functions provided the following responses without supporting calculation or justification: 

a)     {
 

 
                  

                   
, Domain: [1, 28] for both, Range: [4.2, 9.952] 

(Student 16’s response to question 2a) 

The first thing we notice in his response is that the student used uncontrolled memorized volume 

formulas of the sphere and cylinder to represent the volume formulas in the spherical cap and the 

cylindrical part of the flask (strong evidence of pseudo-analytical behavior). We also notice that he used 

the height h instead of radius r in his volume formula of sphere. Beside this, he did not plug the value of 

the radius of the spherical cap of the flask (given as 1 dm = 10 cm) into his volume formula. While he 

used the radius r in his volume formula of cylinder, he did not attempt to find the value of this radius r 

nor did he try to find the value of the volume of water when the height reaches 18 cm and add this 

value to his second volume formula. Like Students 1 and 5, he totally ignored the value of the volume of 

water, in his second volume formula, when the height of water reaches 18 cm. Furthermore, it is not 

clear how he found the incorrect domain and the range of the volume function in his answer. It is also 

not clear if the domain of the function is height or volume in his response since he did not name the 

domain of the function. Based on his response to question 2a, we see some algebraic evidence of him 

coordinating between two variables, the height h and the volume V (algebraic sign of MA1).  

For question 2b, he constructed a similar graph to the one he sketched when answering question 1a, 

and labeled the vertical axis as V being volume and the horizontal axis as h being height (which should 

be the opposite) without any explanation (only graphical sign of MA1 since the direction of change of 

the volume with respect to height on his graph is not clear). He wrote the same volume formula that he 

provided in his response to question 2a, and then claimed that “the Domain –possible inputs of h ranges 

from 1cm to 27cm, and Range; output from the domain [4.2, 51592]”. Neither his graph including the 

identifications of dependent and independent variables nor domain and range are correct. In his 

response to question 2b, the student did not exhibit behavior supporting the act of understanding 

labeled “U(f)-5: Discrimination between the dependent and independent variables” and has not 

overcome yet the corresponding epistemological obstacle labeled “EO(f)-5: Regarding the order of 

variables as irrelevant” (Sierpinska, 1992). 
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In question 2c, the student used the volume formulas he obtained in question 2a, but incorrectly, so he 

obtained uncontrolled illogical answers. For the part i) of question 2c, he used his volume formula of 

cylinder, that is       , instead of using his volume formula of sphere (evidence of pseudo-analytical 

and pseudo- conceptual behaviors). He then claimed that r (being the radius of cylinder) approximately 

equals to h and found the height of water as        when there is 2 litres water in the flask. In the 

part ii) of question 2c, he used his volume formula of sphere, that is   
 

 
   , and found the height of 

water as          when there is 4 litres water in the flask. By looking into his two responses to the 

parts i) and ii) of question 2c, we observe that the student actually claims incorrectly that  the height of 

water is lower when there is more water in the flask. This is a strong evidence of the student being not 

only in pseudo-analytical mode of thinking but also in pseudo-conceptual mode of thinking. For part iii) 

of question 2c, he used his volume formula of sphere again instead of using the volume formula of 

cylinder (renewed evidence of pseudo-analytical and pseudo- conceptual behaviors), and found the 

height of water as           when there is 5 litres water in the flask. From his response to part iii), 

we again have the same observation of that the student continues claiming the height of water is lower 

when there is even more water in the flask (more evidence of pseudo- conceptual behavior). 

Based on his responses to question 2a, 2b and 2c, we can say that the student was unable to coordinate 

the direction of change of the output while thinking changes in the input algebraically graphically and 

verbally (no algebraic, graphical and verbal signs of MA2). Hence, we can say that his covariational 

reasoning remained at Level 1 (Recall: his covariational reasoning has also reached Level 1 when 

answering Problem 1). 

In his response to question 2d, he wrote the following answer being similar to his response to question 

1c; 

d) h(V) has no inflection point, at always increases always and there’s no change, like 

that. So no. However, if the entire graph is considered, its inflection point would be at 

(0,0) (Student 16’s response to question 2d) 

From his answers to question 2d, we can claim that the student has a misconception about the point of 

inflection.  

5.2.2.6 Examples of a response representing Level 0 of covariational reasoning 

There is one student (numbered 24) whose solution was assessed to be representative for Level 0 of 

covariational reasoning.  
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5.2.2.6.1 Student 24’s responses to Problem 2: A Level 0 solution  

While we see no response to other questions, student 24 provided the following answer to question 2a 

(Figure 43): 

 

Figure 43. Image of Student 24’s response to question 2a 

We note that Student 24 did not identify the name of the dependent and independent variables, we 

thus conclude that his covariational reasoning has not reached Level 1. 

5.2.3 Analysis from the point of view of students’ common pseudo-thoughts, obstacles and 

misconceptions 

I start with the data tabulated in Table 9 which shows the assessments of students’ solutions from the 

point of view of common pseudo-thoughts, obstacles (epistemological, didactical and cognitive) and 

misconceptions. 

Table 9. Distribution of each student’s engaged common pseudo-thoughts, obstacles, misconceptions 

Student’s 
code 

Student’s 
engaged 
pseudo-
thoughts 

Student’s 
engaged 
epistemological 
obstacles 

Student’s 
engaged 
didactical 
obstacles 

Student’s 
engaged 
cognitive 
obstacles 

Student’s 
engaged 
misconceptions 

S1 --- --- --- CO-GTA, CO-VTA MC-CP 

S2 --- EO(f)-3, EO(f)-5 DO-XY --- --- 

S4 --- --- --- --- --- 

S5 --- EO(f)-5 --- --- --- 

S6 --- --- --- --- --- 

S7 --- --- --- --- --- 

S9 --- --- --- --- --- 

S11 --- --- --- CO-ATG --- 

S12 --- EO(f)-5 DO-XY CO-ATG MC-CP 

S13 --- EO(f)-5 --- CO-ATG MC-CP 

S14 --- --- --- CO-ATG --- 

S16 PSA and PSC EO(f)-5, EO(f)-11 --- --- --- 
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S20 PSA and PSC EO(f)-5, EO(f)-7, 
EO(f)-11 

DO-XY --- MC-IP 

S21 --- --- --- --- --- 

S24 --- EO(f)-3 --- --- --- 

Abbreviation: 

PSA: Pseudo-analytical thought,   

PSC: Pseudo-conceptual thought,  

MC-IP: Misconception about the inflection point 

MC-CP: Misconception about ‘coordinates’ of a point 

DO-XY: Didactical obstacle involved in representing variables with the letters ‘x’ and ‘y’ 

CO-ATG: Cognitive obstacle of being unable to transform an algebraic representation of function to its graphical 

one 

CO-GTA: Cognitive obstacle of being unable to transform a graphical representation of function to its algebraic one 

CO-VTA: Cognitive obstacle of being unable to transform a verbal representation of function to its algebraic one 

“EO(f)-3: Regarding changes as phenomena; focusing on how things change, ignoring what changes” (Sierpinska, 

1992, p.36) 

“EO(f)-5: Regarding the order of variables as irrelevant” (Sierpinska, 1992, p.38) 

“EO(f)-7: A Pythagorean philosophy of number: everything is number” (Sierpinska, 1992, p.41) 

“EO(f)-11: only relationships describable by analytic formulae are worthy of being given the name of functions” 

(Sierpinska, 1992, p.46) 

I now present the data tabulated in Table 10 which lists the assessments of students’ solutions from the 

point of view of common pseudo-thoughts, obstacles (epistemological, didactical and cognitive) and 

misconceptions for both Problems 1 and 2. 

Table 10. Distribution of each student’s engaged common pseudo-thoughts, obstacles, misconceptions 

Stude
nt’s 
code 

Student’s 
engaged 
pseudo-
thoughts 

Student’s engaged 
epistemological 
obstacles 

Student’s 
engaged 
didactical 
obstacles 

Student’s 
engaged 
cognitive 
obstacles 

Student’s 
engaged 
misconceptions 

 Prob.1 Prob.2 Prob.1 Prob.2 Prob.1 Prob.2 Prob.1 Prob.2 Prob.1 Prob.2 

S1 --- --- --- --- --- --- --- CO-
GTA 
and 
CO-
VTA 

--- MC-CP 

S2 --- --- --- EO(f)-3 
EO(f)-5 

--- DO-XY --- --- --- --- 

S4 --- --- --- --- --- --- --- --- --- --- 

S5 --- --- --- EO(f)-5 --- --- --- --- --- --- 

S6 --- --- --- --- --- --- --- --- --- --- 

S7 --- --- --- --- --- --- --- --- --- --- 

S9 --- --- --- --- --- --- --- --- --- --- 
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S11 --- --- --- --- --- --- CO-
VTG 

CO-
ATG 

--- --- 

S12 PSA --- EO(f)-
11 

EO(f)-5 DO-XY DO-XY CO-
GTV 

CO-
ATG 

--- MC-
CP 

S13 --- --- EO(f)-5 
EO(f)-

16 

EO(f)-5 --- --- --- CO-
ATG 

--- MC-
CP 

S14 --- --- --- --- --- --- CO-
GTV 

CO-
ATG 

--- --- 

S16 PSA 
and 
PSC 

PSA 
and 
PSC 

EO(f)-
11 

EO(f)-5 
EO(f)-

11 

--- --- --- --- --- --- 

S20 PSA 
and 
PSC 

PSA 
and 
PSC 

EO(f)-7 
EO(f)-

11 

EO(f)-5 
EO(f)-7 
EO(f)-

11 

DO-XY DO-XY CO-
GTV 
and 
CO-
VTG 

--- --- MC-IP 

S21 --- --- EO(f)-3 
EO(f)-7 

EO(f)-16 

--- --- --- --- --- MC-IP  --- 

S24 --- --- EO(f)-3 EO(f)-3 --- --- --- --- MC-IP  --- 

Abbreviation (other abbreviations are already given above under Table 9): 

CO-GTV: Cognitive obstacle of being unable to transform a graphical representation of function to its verbal one 

CO-VTG: Cognitive obstacle of being unable to transform a verbal representation of function to its graphical one 

 “EO(f)-16: The changes of a variable are changes in time” (Sierpinska, 1992, p.55) 

I have observed that Students 16 and 20 had common pseudo-conceptual and pseudo-analytical 

thoughts (Vinner, 1997) when answering Problem 2 since they may not have overcome the most 

common epistemological obstacle “EO(f)-11: only relationships describable by analytic formulae are 

worthy of being given the name of functions” (Sierpinska, 1992, p.46). We concluded the existence of 

the same pseudo-thoughts and epistemological obstacle in these students while analyzing of the 

students’ responses to Problem 1.  

Moreover, six students (numbered 2, 5, 12, 13, 16 and 20), making 40% of participants, did not exhibit 

behaviors supporting the act of understanding labeled “U(f)-5: Discrimination between the dependent 

and independent variables”. Thus, they may not have overcome yet the corresponding common 

epistemological obstacle labeled “EO(f)-5: Regarding the order of variables as irrelevant” (Sierpinska, 

1992), since they were unable to discriminate between the output and input variables (Recall: Student 

13 had this epistemological obstacle when answering both Problems 1 and 2). Students 2 and 24 may 

not have overcome the common epistemological obstacle of ‘ignoring what changes’ which is identified 

as “EO(f)-3: Regarding changes as phenomena; focusing on how things change, ignoring what changes” 
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(Sierpinska, 1992, p.36) since Student 24 totally ignored what changes (in both Problems 1 and 2) while 

Student 2 was unable to identify the name of the variables in his graphical representation of the height 

function. Students 20 have not overcome yet the epistemological obstacle “EO(f)-7: A Pythagorean 

philosophy of number: everything is number” (Sierpinska, 1992, p.41) since she used some imagined 

numerical values in her solutions (to both Problems 1 and 2). It seems that “EO(f)-11, EO(f)-5 and EO(f)-3” 

are the most common epistemological obstacles among college level Calculus students, observation 

consistent with the results obtained for Problem 1 (Recall: we have found that “EO(f)-11, EO(f)-3 and 

EO(f)-16” are the most common epistemological obstacles when analyzing the students’ responses to 

Problem 1). 

It appears that four students (numbered 11, 12, 13 and 14) which makes 27% of students were unable 

to make a ‘transformation from an algebraic expression of a function to its graphical one’, which is the 

common cognitive obstacle labeled as CO – ATG (Recall: the three students (numbered 11, 12, and 14) 

had a cognitive obstacle of being unable to transform either a graphical representation of the function 

to its verbal one or a verbal representation of the function to its graphical one). On the other hand, it 

seems that Student 1 was not able to make a ‘transformation from graphical and verbal representations 

of a function to its algebraic one’, which are the cognitive obstacles labeled as CO – GTA and CO – VTA 

since she was unable to find a correct formula although her correct graph is well explained by words in 

her solution to Problem 2. Hence, I can say that these five students, amounting for 33% of respondents, 

may not have overcome yet cognitive obstacles involved in moving different representations of 

functions. Since we estimate that students paid little attention to verbal representation of the function 

asked in Problem 2 and so most of them did not provide sufficient verbalization in their responses to 

question 2b, it will be realistic not to consider whether students were able to transform from an 

algebraic or a graphical representation of the function to its verbal one in Problem 2. Students 2, 12 and 

20 used the letters ‘x’ or/and ‘y’ in their algebraic expressions when responding Problem 2. Recall: 

Students 12 and 20 also used these letters in their responses to Problem 1. This is potentially due to 

students practicing too often standard examples while engaged in mathematical activities that are in 

terms of ‘x’ and ‘y’, creating thus inadvertently a common didactical obstacle (labeled as DO – XY) which 

Students 12 and 20 displayed frequently. 

Lastly, I have observed that students 1, 12 and 13 have a misconception about the ‘coordinates’ of a 

point, while Student 20 has a misconception about what constitutes a point of inflection of a graph of a 

function.   
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5.3 COMPARATIVE ANALYSIS OF THE RESULTS OBTAINED FOR PROBLEMS 1 AND 2 

I note that, in this section, I considered the results of fifteen students who participated in both Problems 

1 and 2. I try to answer the research questions summarized under the sub-titles below. 

5.3.1 How do college level Calculus students reason functional situations that rely on variables varying 

dynamically? Particularly, at what level do Calculus students generally reason dynamic functional 

situations covariationally?  

I first present a table showing level(s) of each student’s covariational reasoning reached in Problems 1 

and 2 (Table 11). 

Table 11. Distribution of level(s) of covariational reasoning, for each student, reached in Problem 1 and 2 

Student’s 
code 

Student’s 
covariational 
reasoning reached 
in Problem 1 

Student’s 
covariational 
reasoning reached 
in Problem 2 

S1 – S24 Level 0 – 5 Level 0 – 5 

S1 5 5 

S2 5 2 

S4 5 2 

S5 5 2  

S6 3 5 

S7 4 2 

S9 3 2 

S11 3 3 

S12 2 2 

S13 3 3 

S14 2 2 

S16 1 1 

S20 2 2 

S21 0 3 

S24 0 0 

 

As seen in Table 11, Students 11 and 13 seemed to have reasoned the given functional situations 

covariationally at Level 3 when answering both problems. Student 1’s behaviors are supportive of that 

she reasoned the given events covariationally at Level 5 in both Problems 1 and 2, but this outcome is 

based on only verbal signs of MA5 since she even did not exhibit behaviors which support graphical or 

algebraic signs for MA3 in both problems. So, one doubts about her covariational reasoning reached 

level 5. On the other hand Student 6 whose covariational reasoning always attained at Level 3 when 

answering Problem 1 provided remarkable solution in Problem 2 which suggests he reasoned the 

dynamic situations covariationally at Level 5. Moreover, Students 12, 14 and 20 exhibited behaviors that 
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are indicative of them reasoning the events covariationally at Level 2. The table also indicates that 

Student 16’s responses are supportive of him reasoning the situations covariationally at Level 1 in both 

problems while Student 24’s answers suggest that he was even unable to reason the events 

covariationally at Level 1. On the other hand, Students 2, 4 and 5, whose covariational reasoning 

seemed to have reached Level 5 in Problem 1, provided responses representing only Level 2 of 

covariational reasoning in Problem 2. It seems that Student 7 whose covariational reasoning appeared 

to have reached Level 4 in Problem 1 reasoned the given event covariationally only at Level 2 when 

responding Problem 2 while Student 9 whose covariational reasoning reached Level 3 when answering 

Problem 1 provided responses, in Problem 2, which represent only Level 2 of covariational reasoning. 

Student 21 whose covariational reasoning remained at Level 0 in Problem 1 exhibited behaviors being 

supportive of him reasoning the dynamic situation at Level 3 when responding Problem 2. Based on 

these results, we conclude that only four students (numbered 1, 6, 11 and 13), making 27% of the 

fifteen students, are consistently able to reason dynamic situations covariationally at Level 3 or Level 5 

while the remaining are not able. Five students (numbered 12, 14, 16, 20 and 24) from the remaining 

ones, amounting for 33% of the fifteen, are consistently unable to reason dynamic events covariationally 

at Level 3.  

Most of the twenty-four Calculus students (79%) were unable to coordinate the instantaneous rate of 

change of the function with continuous changes in the input variable for the entire of the function 

graphically or verbally (no Level 5 reasoning), most of these respondents (75% of all students) were not 

able to coordinate the average rate of change of the output while picturing uniform increments of the 

input (no Level 4 reasoning) and half of all participants were unable to coordinate the amount of change 

of the output while imagining changes in the input variable (no Level 3 reasoning) when responding to 

Problem 1. The one third of participants was even not able to coordinate between the two variables 

verbally while almost quarter (21%) of students were unable to make coordination between the two 

variables neither verbally nor graphically (no Level 1 reasoning).  

We see more dramatic results in the analysis of the fifteen students’ solutions to Problem 2. Majority of 

the fifteen Calculus students (87%) were unable to coordinate the instantaneous rate of change (or the 

average rate of change) of the dependent variable with continuous changes in the independent variable 

algebraically or graphically or verbally while two third (67%) of participants were not able to coordinate 

the amount of change of the output while thinking changes in the input when solving Problem 2.  
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We have observed that most of Calculus students are unable to reason dynamic function situations 

covariationally at Level 5. This indicates that Calculus students fail in conceptualizing how two varying 

quantities change together in tandem since they are not able to keep track of the quantities’ values 

varying simultaneously and so to observe some patterns in the changing nature of the instantaneous 

rate. This outcome is consistent with what Carlson and her colleagues found in their works (Carlson et 

al., 2002, Carlson & Oehrtman, 2004; Carlson, Madison & West, 2010; Carlson, Oehrtman & Engelke, 

2010; Carlson, Madison & West, 2015; Oehrtman, Carlson, & Thompson, 2008). We have also observed 

that many Calculus students are unable to develop not only Level 5 or Level 4 but also Level 3 

covariational reasoning since they are not able to recognize some regularities in relationship between 

the values of two continuously varying variables in a dynamic function situation. Thus, we can say that 

Calculus students generally reason dynamic events covariationally at Level 2 (the direction level) and 

sometimes at Level 3 (the quantitative coordination level) but not at Level 5 (the instantaneous rate 

level) or Level 4 (the average rate level).  

5.3.1.1 What can we, as educators, conclude about Calculus students’ conceptual and analytical 

thinking of functions in the context of modelling dynamic situations? 

I now present a table listing each student’s engaged mental actions for graphical, verbal and algebraic 

representations of the situations being associated with Problems 1 and 2 (Table 12). 

Table 12. Distribution of each student’s engaged mental actions for graphical, verbal or algebraic representations of the 
situation for each problem 

Student’
s code 

Student’s 
engaged 
mental action 
for graphical 
representation 

Student’s 
engaged 
mental action 
for verbal 
representation 

Student’s 
engaged 
mental action 
for algebraic 
representation 

Student’s 
engaged 
mental action 
for graphical 
representation 

Student’s 
engaged 
mental action 
for verbal 
representation 

S1 – S24 PROBLEM 1 PROBLEM 2 

S1 MA2 MA5 MA2 MA2 MA5 

S2 MA2 MA5 MA2 MA0 MA1 

S4 MA2 MA5 MA2 MA2 MA2 

S5 MA5  MA4  MA2 MA2 MA0 

S6 MA3 MA3 MA5 MA5 MA3 

S7 MA2  MA4 MA2 MA2  MA2 

S9 MA2 MA3 MA2 MA0 MA0 

S11 MA3 MA3 MA3 MA3 MA1 

S12 MA2 MA1 MA2 MA2 MA1 

S13 MA3 MA2 MA3 MA3 MA1 

S14 MA2 MA2 MA2 MA2 MA1 

S16 MA1 MA1 MA1 MA1 MA1 

S20 MA2 MA0 MA2 MA2 MA0 

S21 MA0 MA0 MA3 MA2 MA0 
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S24 MA0 MA0 MA0 MA0 MA0 

 

When looking Table 12, we see couple of regularities in some students’ engaged mental actions for both 

problems. For instance, one common pattern belongs to Student 6 who exhibited behaviors which 

always suggest MA3 in both problems and even of MA5 in problem 2. We can say that this student has 

the strongest conceptual and analytical thinking of functions among the fifteen students. The second 

participant who seems to have good or moderate conceptual and analytical thinking is Student 11 who 

always engaged in MA3 except the verbal representation case in problem 2 which was evaluated as MA1 

(This is may be due to her putting less attention to verbalization of the situation). It appears that 

Student 13’s behaviors are suggestive of also MA3 for both graphical and algebraic representations but 

MA2 or MA1 for verbal representations of the given events, which is indicative of him having a weak 

conceptual thinking while a good analytical thinking of functions. Contrary, Student 1’s engaged mental 

actions often support MA2 for both graphical and algebraic representation of the situations while MA5 

for verbal representation in both problems. Probably, this student does not have a strong procedural 

thinking while she has a necessary conceptual understanding of functions.  

Student 4’s behaviors are supportive of MA2 for almost all cases except the verbal representation case 

in problem 1 which was considered as MA5. Student 7 also engaged in mental actions generally being 

indicative of MA2 except for verbal representation of the situation given in problem 1 being suggestive 

of MA4. It looks like that both Students 4 and 7 have good or strong conceptual thinking while weak 

analytical thinking of functions. 

Student 12 provided responses indicate MA2 for both graphical and algebraic representations while 

MA1 for verbal representations of the situations in both problems. Student 14’s solutions suggest him 

having MA2 for almost all cases except the verbal representation case in the second problem which is 

evaluated as MA1 and Student 20’s answers support MA2 for both graphical and algebraic 

representations while no mental action is observed for verbal representations of the events in both 

problems. These outcomes are suggestive of them having weak both conceptual and analytical 

understanding of functions. Student 16 always engaged in MA1 for all cases while Student 24 engaged in 

no mental action for all cases, being strongly indicative of them lacking both conceptual and analytical 

understanding of functions. 

Student 2 exhibited behaviors which support MA5 for only verbal representation of the function in 

Problem 1 while MA2 or MA2 for either algebraic or graphical representation of the situations. This 
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student may have a good conceptual thinking while a weak analytical thinking of functions. Moreover, 

Student 5 may also have a good conceptual understanding since he provided responses which suggest 

MA4 or MA5 for either verbal or graphical representation of the function in Problem 1 while he may 

have a weak analytical understanding since his behaviors are suggestive of MA2 for algebraic 

representation of the situation in Problem 2. Similarly, it seems that Student 9 has a good or moderate 

conceptual thinking since he engaged in MA3 for verbalization of the situation in Problem 1 while a 

weak analytical thinking due to him engaging MA2 for algebraic expression of the situation in Problem 2. 

Contrary, Student 21 appeared to have a good or moderate analytical thinking because of he engaged in 

MA3 for analytical representation in Problem 2 while he has a weak conceptual thinking to due him 

engaging MA2 or MA0 for either verbal or graphical representations of the situations when solving the 

dynamic tasks.  

In summary, we have found that 54% of twenty-four participants (numbered 12, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22, 23, and 24) appeared to have a weak conceptual thinking of functions when answering 

Problem 1 while at least 47% of fifteen students (numbered 12, 13, 14, 16, 20, 21, and 24) appeared to 

have a poor conceptual understanding of functions when responding both Problems 1 and 2. This result 

is in line with the previous research results (Even, 1992; Monk, 1992). On the other hand, 79% of fifteen 

respondents (except Students 6, 11, 13 and 21 who seemed to have a strong or moderate analytical 

understanding) seemed to have poor analytical thinking of functions when solving Problem 2. I note that 

many Calculus students having weak conceptual and analytical thinking of functions fail in 

conceptualizing how two varying variables change together in tandem. 

I present a table listing each student’s engaged mental actions for verbal representations of the 

functional situations in Problems 1 and 2 (Table 13). 

Table 13. Distribution of each student’s engaged mental actions for verbal representations of the situations in both problems 

Student’s 
code 

Student’s engaged 
mental Action for 
verbal 
representation 

Student’s engaged 
mental Action for 
verbal 
representation 

S1 – S24 PROBLEM 1 PROBLEM 2 

S1 MA5 MA5 

S2 MA5 MA1 

S4 MA5 MA2 

S5 MA4  MA0 

S6 MA3 MA3 

S7 MA4 MA2 

S9 MA3 MA0 

S11 MA3 MA1 
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S12 MA1 MA1 

S13 MA2 MA1 

S14 MA2 MA1 

S16 MA1 MA1 

S20 MA0 MA0 

S21 MA0 MA0 

S24 MA0 MA0 

 

From Table 13, while we see consistent results for seven students’ mental actions (marked in bold), we 

observe some inconsistencies for the remaining eight students’ engaged mental actions. All these eight 

students whose behaviors were supporting higher MAs levels for verbal representation of the function 

in Problem 1 provided responses which are suggestive them engaging lower MAs levels for verbal 

representation of the dynamic event in Problem 2. This may be suggestive of them putting less attention 

on verbal representation of function in the second problem since it was mostly analytical. 

It is noticed in the table that Student 1’s behaviors support MA5 and Student 6’s answers indicate MA3 

for verbal representation of the events in both problems. These two students seemed to have essential 

conceptual understanding of functions in the context of modeling dynamic events. In addition, while 

Students 12 and 16 exhibited behaviors being supportive of MA1 for verbalization of the functional 

situation in both problems, Students 20, 21 and 24 did not provide responses being indicative of even 

MA1. These five students appeared to lack essential conceptual understanding of functions being 

required for modeling dynamic situations. It seems that Students 13 and 14 also do not have strong or 

good conceptual understanding of functions due to them being unable to develop more meaningful 

verbal constructions of the given situations in both problems. In the cases of the six students (2, 4, 5, 7, 

9 and 11), we observe a dramatic decrease on students’ engaged MA level for verbal representation of 

function (e.g. Student 2’s engaged mental action is MA5 in Problem 1 while MA2 in Porblem2). Probably, 

these students have a strong or good conceptual understanding of functions but they do not show their 

conceptual understanding every time, especially when the task is mostly analytical. However, it is clear 

that seven students (numbered 12, 13, 14, 16, 20, 21 and 24), which makes 47% of fifteen respondents, 

do not have a strong or good conceptual thinking (or understanding) of functions being necessary for 

modeling dynamic situations. 

I present a table listing each student’s engaged mental actions for graphical representations of the 

functional events in Problems 1 and 2 (Table 14). 

Table 14. Distribution of each student’s engaged mental actions for graphical representations of the situations in both problems 
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Student’s 
code 

Student’s engaged 
mental Action for 
graphical 
representation 

Student’s engaged 
mental Action for 
graphical 
representation 

S1 – S24 PROBLEM 1 PROBLEM 2 

S6 MA3 MA5 

S11 MA3 MA3 

S13 MA3 MA3 

S1 MA2 MA2 

S4 MA2 MA2 

S7 MA2  MA2  

S12 MA2 MA2 

S14 MA2 MA2 

S20 MA2 MA2 

S16 MA1 MA1 

S24 MA0 MA0 

S5 MA5  MA2 

S2 MA2 MA0 

S9 MA2 MA0 

S21 MA0 MA2 

 

When we look at the data for graphical representations of the situations, being differently from verbal 

representations, we realize that there are more stable results but still with low levels of students’ 

engaged mental actions. Ten students (1, 4, 7, 11, 12, 13, 14, 16, 20 and 24) engaged in same mental 

action in both problems while the remaining five students (2, 5, 6, 9 and 21) engaged in different mental 

actions. We observe that some of these five students’ mental action levels increased while the other 

students’ mental actions levels decreased when responding Problem 2. For instance, we see an increase 

from MA3 to MA5 for Student 6’s engaged mental action. This is due to him constructing an inverse 

graph of the height function in Problem 1, which was considered as violation of MA4 and MA5 for 

graphical representation of the function. On the other hand, he corrected his mistake by applying a 

control mechanism and constructed a valid graph of the height function in problem 2. We thus conclude 

that this student has necessary conceptual and analytical understanding of functions. While we make an 

observation of Student 6 correcting his mistake in problem 2, oppositely, Student 5 who correctly 

sketched a graph of the height function in problem 1 makes the same mistake in problem 2 by 

constructing the graph of the volume function, so while he engaged in MA5 when answering Problem 1, 

he engaged in only MA2 when responding Problem 2. Even though Students 11 and 13 engaged in MA3 

for the graphical representation of function, they constructed incorrect graphs of the functions in both 

Problems 1 and 2.  



139 
 

Moreover, six students (1, 4, 7, 12, 14 and 20) engaged in MA2 and Student 16 engaged in MA1 while 

Student 24 did not even engage in MA1 when solving both problems. At least half of these students 

(numbered 12, 14 and 20) do not have necessary conceptual and algebraic understanding of functions. 

On the other hand, Students 2 and 9 who seemed not to have essential analytical understanding 

engaged in MA2 when responding Problem 1 while engaged in MA0 when answering Problem 2. 

Contrary, Student 21 who appeared to have weak conceptual understanding engaged in MA0 when 

answering Problem 1 while engaged in MA2 when solving Problem 2.  

I present a table listing each student’s engaged mental actions for algebraic representation of the 

functional situation given in Problem 2 (Table 15). 

Table 15. Distribution of each student’s engaged mental actions for algebraic representation of the situation in problem 2 

Student’s 
code 

Student’s engaged 
mental action for 
algebraic 
representation 

S1 – S24 PROBLEM 2 

S6 MA5 

S11 MA3 

S13 MA3 

S21 MA3 

S1 MA2 

S2 MA2 

S4 MA2 

S5 MA2 

S7 MA2 

S9 MA2 

S12 MA2 

S14 MA2 

S16 MA1 

S20 MA2 

S24 MA0 

 

For the data of algebraic representation of the function, we observe that only Student 6 engaged in MA5 

while Students 11, 13 and 21 engaged in MA3. These four students appeared to have had a strong or 

good or moderate analytical understanding of function due them being able to develop a suitable 

analytical construction of the given dynamic situation in Problem 2. While Student 16 engaged in MA1 

and Student 24 engaged in MA0, the remaining nine students exhibited behaviors which suggest MA2 

for algebraic representation of function. It seems that these eleven students, amounting for 79% of 

participants, do not have the strong or good analytical thinking (or understanding) of functions being 

required for modeling dynamic situations.  
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I present a table listing each student’s engaged mental actions for verbal representation of the 

functional situation in Problem 1 and for algebraic representation of the functional event in Problem 2 

(Table 16).  

Table 16. Distribution of each student’s engaged mental actions for verbal representation of the function in Problem 1 and for 
algebraic representation of the function in Problem 2 

Student’s 
code 

Student’s engaged 
mental Action for 
verbal 
representation 

Student’s engaged 
mental action for 
algebraic 
representation 

S1 – S24 PROBLEM 1 PROBLEM 2 

S1 MA5 MA2 

S2 MA5 MA2 

S4 MA5 MA2 

S5 MA4  MA2 

S6 MA3 MA5 

S7 MA4 MA2 

S9 MA3 MA2 

S11 MA3 MA3 

S12 MA1 MA2 

S13 MA2 MA3 

S14 MA2 MA2 

S16 MA1 MA1 

S20 MA0 MA2 

S21 MA0 MA3 

S24 MA0 MA0 

 

As seen in the table, it seems that only two students (numbered 6 and 11) whose solutions are 

supportive of at least MA3 for both representations of the functions have necessary conceptual and 

analytical understanding of functions for modeling dynamic situations. It looks like Student 13 is having 

necessary analytical thinking while not having a strong conceptual thinking of functions. Six students 

(numbered 1, 2, 4, 5, 7 and 9) appeared not to have strong algebraic understanding of functions (since 

they were unable to develop a valid algebraic construction) but may have good or moderate conceptual 

understanding (since they were able to provide a sufficient verbalization of the given situation in 

Problem 1). Another five students (numbered 12, 14, 16, 20 and 24) who did not engage in MA3 for both 

representations of the situations seemed to have neither essential conceptual understanding nor 

analytical understanding of functions. On the other hand, Student 21 who appeared to lack an essential 

conceptual thinking when responding Problem 1 seemed to have a necessary analytical thinking of 

functions when answering Problem 2. 
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As having powerful data, I now present a table showing the correlation between students’ engaged 

mental actions for graphical representations of the situations in Problem 1 and 2, and algebraic 

representation of the situation in Problem 2 (Table 17). 

Table 17. Distribution of each student’s engaged mental actions for graphical representations of the situations in both problems 
and algebraic representation of the situation in Problem 2 

Student’s 
code 

Student’s engaged 
mental Action for 
graphical 
representation 

Student’s engaged 
mental Action for 
graphical 
representation 

Student’s engaged 
mental action for 
algebraic 
representation 

S1 – S24 PROBLEM 1 PROBLEM 2 PROBLEM 2 

S6 MA3 MA5 MA5 

S11 MA3 MA3 MA3 

S13 MA3 MA3 MA3 

S1 MA2 MA2 MA2 

S4 MA2 MA2 MA2 

S7 MA2  MA2  MA2 

S12 MA2 MA2 MA2 

S14 MA2 MA2 MA2 

S20 MA2 MA2 MA2 

S16 MA1 MA1 MA1 

S24 MA0 MA0 MA0 

S5 MA5  MA2 MA2 

S2 MA2 MA0 MA2 

S9 MA2 MA0 MA2 

S21 MA0 MA2 MA3 

 

As noticed on the table above, the data for eleven students (marked in bold) are consistent and we 

observe significant correlation between students’ engaged mental actions for graphical representations 

of the situations in both problems and algebraic representation of the function in the second problem. 

Only three students (numbered 6, 11 and 13) engaged in at least MA3 and six students (numbered 1, 4, 

7, 12, 14 and 20) always engaged in only MA2  while Student 16 regularly engaged in MA1 and Student 

24 engaged in MA0 for all three cases represented on the table. 

I present a table showing the correlation between students’ engaged mental actions for graphical 

representations of the situations in Problem 1 and 2, algebraic representation of the situation in 

Problem 2 and verbal representation of the situation in Problem 1 (Table 18). 

Table 18. Distribution of each student’s engaged mental actions for graphical representations of the situations in both problems, 
algebraic representation of the situation in Problem 2 and verbal representation of the situation in Problem 1 

Student’s 
code 

Student’s engaged 
mental Action for 
graphical 

Student’s engaged 
mental Action for 
graphical 

Student’s engaged 
mental action for 
algebraic 

Student’s engaged 
mental Action for 
verbal 
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representation representation representation representation 

S1 – S24 PROBLEM 1 PROBLEM 2 PROBLEM 2 PROBLEM 1 

S6 MA3 MA5 MA5 MA3 

S11 MA3 MA3 MA3 MA3 

S13 MA3 MA3 MA3 MA2 

S1 MA2 MA2 MA2 MA5 

S4 MA2 MA2 MA2 MA5 

S7 MA2  MA2  MA2 MA4 

S12 MA2 MA2 MA2 MA1 

S14 MA2 MA2 MA2 MA2 

S20 MA2 MA2 MA2 MA0 

S16 MA1 MA1 MA1 MA1 

S24 MA0 MA0 MA0 MA0 

S5 MA5  MA2 MA2 MA4 

S2 MA2 MA0 MA2 MA5 

S9 MA2 MA0 MA2 MA3 

S21 MA0 MA2 MA3 MA0 

 

I note that the results of verbal representation on the function of Problem 2 is not considered in the 

table above due to very low MA levels which may be the result of students not focusing on verbalization 

in question 2b. The students may have considered that they have addressed the verbalization in 

Problem 1, or that it is redundant given their algebraic work shown. In Table 18, while we notice 

frequent consistencies between graphical and algebraic representations of the situations, we observe 

much less consistencies between these two representations and verbal representation of the situation.  

We observe that only two students (numbered 6 and 11) who have necessary conceptual and analytical 

thinking of functions engaged in at least MA3 for all cases of representations while Student 14 engaged 

in MA2, Student 16 engaged in MA1 and Student 24 engaged in MA0 for all four cases. Student 13 also 

frequently engaged in MA3 for all cases except for verbal representation (in Problem) 1 being assessed 

as MA2. Students 1, 4 and 7 engaged in MA2 for all cases except for verbalization of the function (in 

Problem 1) being assessed either MA5 or MA4. On the other hand, Students 12 and 20 also frequently 

engaged in MA2 except for verbal representation being assessed as MA1 or MA0. For the remaining four 

students (numbered 2, 5, 9 and 21) we have very inconsistent outcomes changing from MA5 to MA0. 

5.3.1.2 How college level Calculus students being unable to reason dynamic function situations 

covariationally is related to Calculus students having a weak conceptual or/and analytical 

thinking of functions?  

I now present a table listing each student’s engaged minimum and maximum covariational reasoning 

(CV) levels based on consideration of the ‘and’ and ‘or’ conjunctions (without considering verbal 
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representation of the situation in Problem 2) and my conclusions about student’ conceptual and 

analytical thinking of the functions (Table 19).  

Table 19. Distribution of each student’s engaged minimum and maximum CV levels and my conclusions about students’ 
conceptual and analytical thinking of functions 

Student’s 
code 

Max CV level 
reached (or 
conjunction) 
in Problem 1 

Max CV level 
reached (or 
conjunction) 
in Problem 2 

Min CV level 
reached (and 
conjunction) 
in Problem 1  

Min CV level 
reached (and 
conjunction) in 
Problem 2 
(without 
considering 
verbal 
representation) 

My conclusions 
about student’ 
conceptual and 
analytical thinking 
of functions  

S1 5 5 2 2 Good conceptual 
and weak analytical 

S2 5 2 2 0 Good conceptual 
and weak analytical 

S4 5 2 2 2 Good conceptual 
and weak analytical 

S5 5 2 4 2 Good conceptual 
and weak analytical 

S6 3 5 3 5 Good conceptual 
and good analytical 

S7 4 2 2 2 Good conceptual 
and weak analytical 

S9 3 2 2 0 Good conceptual 
and weak analytical 

S11 3 3 3 3 Good conceptual 
and good analytical 

S12 2 2 1 2 Weak conceptual 
and weak analytical 

S13 3 3 2 3 Weak conceptual 
and good analytical 

S14 2 2 2 2 Weak conceptual 
and weak analytical 

S16 1 1 1 1 Weak conceptual 
and weak analytical 

S20 2 2 0 2 Weak conceptual 
and weak analytical 

S21 0 3 0 2 Weak conceptual 
and good analytical 

S24 0 0 0 0 Weak conceptual 
and weak analytical 

 

As seen on Table 19, we observe a certain correlation between students’ engaged maximum/minimum 

CV levels and students’ conceptual and analytical thinking of the functions. The first clear observation 

we make is that Student 6 (being the only student) who seemed to have good conceptual and analytical 
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thinking of functions were able to reason the dynamic situations covariationally at higher levels, such as 

Level 3 or Level 5. Student 5 who seemed to have a good conceptual thinking of functions was able 

reason the events covariationally sometimes at level 5 while sometimes at level 2 due to him having 

weak analytical understanding of functions. Two students (numbered 11 and 13) who seemed to have a 

good analytical thinking were also often able to reason the situations covariationally at higher level, such 

as Level 3. On the other hand, five students (numbered 1, 2, 4, 7 and 9) who appeared to have a weak 

analytical thinking of functions were able reason the events covariationally sometimes at higher levels, 

such as level 5 or level 3, while generally at lower levels, such as level 2. 

Four students (numbered 12, 16, 20 and 24) who seemed to have weak conceptual and analytical 

thinking of functions were generally reason dynamic events covariationally at lower levels, such as Level 

2, 1 or 0. Student 14 who also seemed to have weak conceptual and analytical thinking of functions was 

able to reason the situations covariationally at Level 2. Student 21 who seemed to have a weak 

conceptual thinking were inconsistently reasoning the events covariationally at different levels, such as 

level 0, 2 or 3. These results indicate that Calculus students who have a weak conceptual or/and 

analytical thinking of functions tend to reason dynamic functional situations covariationally at lower 

levels.  

5.3.2 What are common epistemological, didactical and cognitive obstacles, pseudo-thoughts and 

misconceptions in preventing college level Calculus students to successfully complete a dynamic 

function task?  

We have observed that almost one third (29%) of twenty-four students relied on their procedural 

associations instead of focusing on the conceptual elements of the dynamic task given in Problem 1 

while more than half of these respondents were in pseudo-analytical mode (and sometimes also in 

pseudo-conceptual mode) of thinking since they have not overcome yet the common epistemological 

obstacle labeled as “EO(f)-11: only relationships describable by analytic formulae are worthy of being 

given the name of functions” (Sierpinska, 1992, p.46). Some of these students (numbered 16 and 20) 

continued having both pseudo-conceptual and pseudo-analytical thoughts when responding Problem 2. 

The quarter of participants may not have overcome yet another common epistemological obstacle 

labeled as “EO(f)-3: Regarding changes as phenomena; focusing on how things change, ignoring what 

changes” (Sierpinska, 1992, p.36) due to them being unable to identify the name of the variables when 

responding Problem 1 while one fifth of students may not have overcome yet the epistemological 

obstacle “EO(f)-16: The changes of a variable are changes in time” (Sierpinska, 1992, p.55) since they 
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considered the independent variable as time.  Almost half (40%) of fifteen students may not have 

overcome yet the epistemological obstacle labeled as “EO(f)-5: Regarding the order of variables as 

irrelevant” (Sierpinska, 1992, p.38) when answering Problem 2 due to them being unable to discriminate 

between the output and input variables. Hence, we conclude that “EO(f)-3, EO(f)-5, EO(f)-11 and EO(f)-

16” are the common epistemological obstacles among college level Calculus students. 

One fifth of twenty-four participants had a common cognitive obstacle labeled as CO – GTV since they 

were not able to transform a graphical representation of the function to its verbal one in Problem 1 

while some students had a cognitive obstacle labeled as CO – VTG since they were unable to transform a 

verbal representation of the function to its graphical one. Hence, we conclude that almost one third of 

twenty-four students may not have overcome yet cognitive obstacles involved in moving between 

different representations of functions (in Problem 1). More than quarter (27%) of fifteen respondents 

had a common cognitive obstacle labeled as CO – ATG due to them being unable to transform an 

algebraic expression of the functional situation to its graphical one while one student had the cognitive 

obstacles labeled as CO – GTA and CO – VTA due to her being unable to obtain a correct formula 

although her valid graph is well explained by words in her solution to Problem 2. Thus, we conclude that 

one third of fifteen students may not have overcome yet cognitive obstacles involved in moving 

between different representations of functions (in Problem 2), being consistent with our previous 

conclusion. We also conclude that the cognitive obstacles labeled as CO – GTV and CO – ATG are the 

common cognitive obstacles among Calculus students. 

We have observed that some Calculus students may not have overcome yet a common didactical 

obstacle labeled as DO – XY: Didactical obstacle involved in representing variables with the letters ‘x’ 

and ‘y’ due to them frequently practicing typical examples, in mathematical activities, that are often in 

terms of ‘x’ and ‘y’. Finally, we have observed that some Calculus students have a common 

misconception about the concept of inflection point while others have a common misconception about 

the coordinates of a point. 

5.3.2.1 Is there a certain correlation between Calculus students having obstacle(s) or/and pseudo-

thought(s) or/and misconception(s), Calculus students having weak conceptual or/and 

analytical understanding of functions, and Calculus students being unable to reason dynamic 

events covariationally at a higher level?  

I present the data displaying students’ pseudo-thought(s) or/and misconception, students’ obstacle(s) 

(epistemological, didactical and cognitive), students’ engaged minimum/maximum covariational 
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reasoning (CV) levels (without considering verbal representation of the function in Problem 2) and 

students’ conceptual and analytical thinking of functions (Table 20): 

Table 20. Distribution of students’ pseudo-thought(s) or/and misconception, students’ obstacle(s), students’ engaged 
minimum/maximum covariational reasoning (CV) levels and students’ conceptual and analytical thinking of functions 

Student’
s code 

Student’s engaged 
pseudo-thoughts and 
misconceptions 

Student’s engaged 
obstacles 
(epistemological, 
didactical and 
cognitive) 

Student’s engaged 
minimum /maximum 
CV levels from 0 to 5 
(without considering 
verbal representation 
in Problem 2) 

Student’s 
conceptual and 
analytical thinking 
of functions 

 Problem 1 Problem2 Problem 1 Problem 2 Problem 1  Problem 2  

S1 --- MC-CP --- CO-GTA 
CO-VTA 

2/5 2/5 Good conceptual 
and weak analytical 

S2 --- --- --- EO(f)-3 
EO(f)-5 
DO-XY 

2/5 0/2 Good conceptual 
and weak analytical 

S4 --- --- --- --- 2/5 2/2 Good conceptual 
and weak analytical 

S5 --- --- --- EO(f)-5 4/5 2/2 Good conceptual 
and weak analytical 

S6 --- --- --- --- 3/3 5/5 Good conceptual 
and good analytical 

S7 --- --- --- --- 2/4 2/2 Good conceptual 
and weak analytical 

S9 --- --- --- --- 2/3 0/2 Good conceptual 
and weak analytical 

S11 --- --- CO-VTG CO-ATG 3/3 3/3 Good conceptual 
and good analytical 

S12 PSA MC-CP EO(f)-11 
DO-XY 

CO-GTV 

EO(f)-5 
DO-XY 

CO-ATG 

1/2 2/2 Weak conceptual 
and weak analytical 

S13 --- MC-CP EO(f)-5 
EO(f)-16  

EO(f)-5 
CO-ATG 

2/3 3/3 Weak conceptual 
and good analytical 

S14 --- --- CO-GTV CO-ATG 2/2 2/2 Weak conceptual 
and weak analytical 

S16 PSA, PSC PSA, PSC EO(f)-11 EO(f)-5 
EO(f)-11 

1/1 1/1 Weak conceptual 
and weak analytical 

S20 PSA, PSC PSA, PSC, 
MC-IP 

EO(f)-7 
EO(f)-11 
DO-XY 

CO-GTV 
CO-VTG 

EO(f)-5 
EO(f)-7 

EO(f)-11 
DO-XY 

0/2 2/2 Weak conceptual 
and weak analytical 

S21 MC-IP --- EO(f)-3 
EO(f)-7 

EO(f)-16 

--- 0/0 2/3 Weak conceptual 
and good analytical 

S24 MC-IP --- EO(f)-3 EO(f)-3 0/0 0/0 Weak conceptual 
and weak analytical 

Abbreviations for obstacles, pseudo-thoughts and misconceptions are given in the sections 5.1.3 and 5.2.3. 
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According to the data represented on the table above, we can say that there are some visible 

correlations between Calculus students having obstacle(s), pseudo-thought(s), or/and a misconception 

or/and a weak conceptual thinking or/and a weak analytical thinking of functions and students being 

unable to reason dynamic function situations covariationally at higher levels. 

First of all, I would like to note that Student 6 (being the only student in my study), who has had good 

conceptual and analytical understanding of functions and seemed not to have any obstacle, pseudo-

thought or misconception, and so consequently, he was able to reason the dynamic situations 

covariationally at higher levels. Student 11, who seemed to have only two cognitive obstacles was 

consistently able to reason the dynamic situations covariationally at Level 3 due to her having good 

conceptual and analytical thinking of functions. Student 13 had couple of obstacles and a misconception 

due to him having a weak conceptual understanding of functions but he generally was able to reason 

the events covariationally at Level 3 since he has had a good analytical thinking like Student 11. Student 

1 who has had a weak analytical thinking and two cognitive obstacles (and a misconception) was still 

able to reason the events covariationally at higher level due to her having a good conceptual thinking of 

functions.  

Students 4, 7 and 9 who seemed not to have had any obstacle but had a weak analytical thinking were 

often able to reason the dynamic situations covariationally at Level 2. Student 5 who appeared to have 

one obstacle sometimes reasoned the dynamic event covariationally at Level 2 due to him having a 

weak analytical thinking. Student 2 who seemed to have had couple of obstacles and a weak analytical 

understanding tend to reason dynamic events covariationally at Level 2 (while sometimes at Level 5 due 

to him having a good conceptual thinking). 

The remaining six students (numbered 12, 14, 16, 20, 21 and 24) who had couple of obstacles or/and 

pseudo thought(s) or/and a misconception and weak conceptual and analytical thinking of functions 

were often unable to reason the dynamic situations covariationally at a higher level (except Student 21 

whose covariational reasoning sometimes has reached Level 3 due to him having a good analytical 

thinking of functions).  

The results suggest that majority of Calculus students, who have obstacle(s) or/and pseudo-thought(s) 

or/and misconception(s) due to them having weak analytical or/and conceptual understanding of 

functions, consequently tend to reason dynamic functional situations covariationally at a lower level. 
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6 CONCLUSIONS, RECOMMENDATIONS AND DIRECTIONS OF FUTURE 

POSSIBLE RESEARCH 

This chapter consists of the sections of conclusions, recommendations and directions of future possible 

research. 

6.1 CONCLUSIONS 

As mentioned in the literature review, there are some concerns about the necessity of teaching the set-

theoretic definition in early calculus courses since many students have enourmous difficulties in 

understanding of the set-theoretic definition of function (Even & Bruckheimer, 1998; Herscovics, 1989; 

Malik, 1980; Markovits et al., 1986; Sierpinska, 1992; Vinner, 1983; Vinner & Dreyfus, 1989). On the 

other hand, some researchers suggest that students need to have foundational understandings, such as, 

rate of change, accumulation and continuous covariation, and reasoning abilities, such as a process 

conception of function and a covariational conception of function in order to succeed in Pre-calculus and 

Calculus courses (Breidenbach, Dubinsky, Hawks & Nichols, 1992; Carlson, 1998; Carlson, Jacobs, Coe, 

Larsen & Hsu, 2002; Carlson & Oehrtman, 2004; Carlson, Oehrtman & Engelke, 2010; Carlson, Madison 

& West, 2010; Carlson, Madison & West, 2015; Monk, 1992; Oehrtman, Carlson, & Thompson, 2008; 

Thompson & Carlson, 2017). Unfortunately, investigations revealed that students enroll in Pre-Calculus 

or Calculus courses without learning key concepts of functions (Madison & West, 2010; Carlson, 

Oehrtman & Engelke, 2010; Carlson, Carlson, Madison & West, 2015), having strong conceptual thinking 

or understanding of functions (Even, 1992; Monk, 1992) due to highy procedural orientation in 

mathematics education (Kaldrimidou & Ikonomou, 1998; Oehrtman, Carlson & Thompson; 2008) moving 

flexibly, fluidly and powerfully between different types of representations of functions (Carlson, 1998; 

Carlson & Oehrtman, 2004; Oehrtman, Carlson, & Thompson, 2008), having a process conception of 

function (Breidenbach, Dubinsky, Hawks & Nichols, 1992; Monk, 1992) and so developing a strong 

covariational conception of function (Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Thompson & Carlson, 

2017), being necessary for Pre-Calculus and Calculus students to succeed in more advanced 

mathematics courses. These students often have common obstacles, such as epistemological (Sajka, 

2003; Sierpinska, 1992; Sierpinska, 2019), cognitive (Herscovics, 1989) and didactical (Bachelard, 

1938/1983; Brousseau, 1997), or/and pseudo-thoughts (Vinner, 1997) or/and misconceptions (Carlson 

1998; Giovaniello, 2017). My conclusions, which I describe below, are similar with these conclusions. 
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Covariational reasoning plays an important role in the development of fundamental mathematical 

notions related to functions. To be able to understand key concepts of calculus, a student needs to grasp 

the idea of continuous covariation and thus conceptualize variables of a dynamic situation as varying 

smoothly and continuously in smaller and smaller bits. In our study, we have observed that Calculus 

students are unable to reason dynamic function situations covariationally at Level 5. This means that 

Calculus students fail in conceptualizing how two varying variables change together in tandem since 

they are not able to keep track of the variables’ values changing simultaneously and so to recognize 

some patterns in the changing nature of the instantaneous rate. This result is consistent with other 

results found by Carlson and her colleagues in their works (Carlson et al., 2002, Carlson & Oehrtman, 

2004; Carlson, Madison & West, 2010; Carlson, Oehrtman & Engelke, 2010; Carlson, Madison & West, 

2015; Oehrtman, Carlson, & Thompson, 2008). 

My study revealed that majority of the twenty-four Calculus students (79%) were unable to coordinate 

the instantaneous rate of change of the function with continuous changes in the input variable for the 

entire domain of the function graphically or verbally (no Level 5 reasoning), most of these students (75% 

of all students) were not able to coordinate the average rate of change of the output while envisioning 

uniform increments of the input (no Level 4 reasoning) and half of all respondents were unable to 

coordinate the amount of change of the output while thinking changes in the input variable (no Level 3 

reasoning) when responding to Problem 1. The one third of participants was even unable to coordinate 

between the two variables verbally while almost quarter (21%) of students were not able to make 

coordination between the two variables neither verbally nor graphically (no Level 1 reasoning). We have 

observed more dramatic results in the analysis of the fifteen students’ solutions to Problem 2. Majority 

of these fifteen Calculus students (87%) were not able to coordinate the instantaneous rate of change 

(or the average rate of change) of the dependent variable with continuous changes in the independent 

variable algebraically or graphically or verbally while two third (67%) of respondents were unable to 

coordinate the amount of change of the output while picturing changes in the input when solving 

Problem 2.  

Based on these results, I conclude that many College level Calculus students are unable to develop not 

only Level 5 or Level 4 but also Level 3 covariational reasoning, coordinating the amount of change of 

the output with respect to changes in the input variable. This means that Calculus students fail in 

thinking how two varying quantities changes simultaneously since they are unable to observe some 

regularities in relationship between the values of two continuously changing quantities in a dynamic 
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function event. Then, one might ask the following question: Why Calculus students are not able to 

reason dynamic events covariationally? My results may shine a light on this question as well.  

I have found that more than half (54%) of twenty-four participants have a weak conceptual thinking of 

functions when answering Problem 1 (and at least 47% of fifteen students seemed to have a poor 

conceptual thinking of functions when responding both Problem 1 and 2). These results are consistent 

with previous research results (Even, 1992; Monk, 1992). On the other hand, more than three quarter 

(79%) of fifteen respondents appeared to have a weak analytical thinking of functions when solving 

Problem 2. I conclude that many Calculus students having weak conceptual and analytical understanding 

of functions contribute them failing to think how two varying quantities change together in tandem. 

I have found that more than quarter (29%) of twenty-four participants relied on their memorized 

procedural associations formed in mathematical activities of school curriculum instead of focusing on 

the conceptual aspects of the given dynamic situation, consequently, were unable to move easily 

between the two representations of the function when responding Problem 1 and so to think about how 

the two varying quantities, height and volume, change together in tandem. More than half of these 

students had pseudo-analytical thoughts (and sometimes also pseudo-conceptual thoughts) since they 

have not overcome yet the common epistemological obstacle labeled as “EO(f)-11: only relationships 

describable by analytic formulae are worthy of being given the name of functions” (Sierpinska, 1992, 

p.46). Some of these respondents (numbered 16 and 20) also had both pseudo-conceptual and pseudo-

analytical thoughts when responding Problem 2. Besides this, a quarter of participants may not have 

overcome yet another common epistemological obstacle labeled as “EO(f)-3: Regarding changes as 

phenomena; focusing on how things change, ignoring what changes” (Sierpinska, 1992, p.36) while 

almost quarter of students (21%) may not have overcome yet the epistemological obstacle “EO(f)-16: 

The changes of a variable are changes in time” (Sierpinska, 1992, p.55) when answering Problem 1. In 

addition, Almost half (40%) of fifteen participants may not have overcome yet another common 

epistemological obstacle labeled as “EO(f)-5: Regarding the order of variables as irrelevant” (Sierpinska, 

1992, p.38) while some students (numbered 2 and 24) have not overcome yet the epistemological 

obstacle “EO(f)-3” when answering Problem 2. Thus, we conclude that “EO(f)-3, EO(f)-5, EO(f)-11 and 

EO(f)-16” are the common epistemological obstacles among college level Calculus students. These 

Calculus students who had pseudo-thought(s) or/and epistemological obstacle(s) were often unable to 

recognize some patterns in the relationship between the two continuously varying quantities and 

picture how these two quantities changes simultaneously, being indicative of some correlation between 
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students having epistemological obstacle(s) or/and pseudo-thought(s) and them being unable to reason 

dynamic events covariationally. Consequently, these students were unable to move flexibly, fluidly and 

powerfully between different representations of the dynamic functional situations due to them having 

not only epistemological obstacle(s) but also cognitive and didactical obstacles. 

The study revealed further that almost one third (29%) of twenty-four students may not have overcome 

yet cognitive obstacles involved in moving different representations of a function (particularly CO – GTV 

or CO – VTG) when responding to Problem 1. On the other hand, one third of fifteen participants may 

not have overcome yet cognitive obstacles materializing in translating one type representation of a 

function to another type when responding to Problem 2 (particularly CO – ATG or CO – GTA or CO – VTA).  

The data suggests that the cognitive obstacles labeled as CO – GTV and CO – ATG are the common 

cognitive obstacles among Calculus students. Many of Calculus students, except Students 1, 11 and 13, 

who had cognitive obstacles were unable to reason the given dynamic events covariationally at Level 3 

while almost all these students, except Student 1, were not able to reason the situations covariationally 

at Level 5, being suggestive a certain correlation between students having cognitive obstacles and being 

unable to reason dynamic events covariationally at higher level. 

Moreover, when answering Problem 2, a fifth (20%) of fifteen students used the letters ‘x’ and ‘y’ in 

their algebraic expressions so they may not have overcome yet a common didactical obstacle involved in 

representing variables in terms of ‘x’ and ‘y’ (labeled as DO – XY). Most of these students (except 

Student 2) had this didactical obstacle also when responding Problem 1. These students also had 

multiple epistemological obstacles, pseudo-thought(s) and a misconception and, consequently, were 

unable to reason the dynamic situations covariationally at Level 3. On the other hand, some students 

had a misconception about the point of inflection in Problem 1 while more than quarter of respondents 

had a misconception about either coordinates of a point or the inflection point when answering Problem 

2. At least half of these students also seemed to be unable to reason the given dynamic events 

covariationally at Level 3. 

Regarding the ‘APOS theory’ mentioned in the literature review, I can conclude that at least half of 

twenty-four students seemed not to conceptualize a function as a generalized process which accepts 

input and produces output when responding Problem 1 while more than three quarter (80%) of fifteen 

respondents (except Students 6, 11 and 13) appeared not to have a process conception of function 

when responding Problem 2. Most of these students had weak conceptual understanding or/and 

analytical understanding of functions, were unable to move flexibly between different representations 
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of the functional situations and had common obstacles, such as epistemological, cognitive, didactical, 

or/and pseudo-thought(s), or/and a misconception when solving the two dynamic tasks. Consequently, 

these students were unable to reason the given dynamic situations covariationally at higher levels such 

as Level 5 or Level 4 or even Level 3. 

In my study only one student (numbered 6), who had essential conceptual and analytical thinking of 

functions and did not have any obstacle, pseudo-thought or misconception, was able to move flexibly, 

fluidly and powerfully between different representations of the functional situations, had a strong 

process conception of function and so was able to reason the two dynamic events covariationally at 

higher levels such as Level 5 or Level 3.  

All twelve respondents, except Students 5 and 6, whose covariational reasoning has reached at least 

Level 3 were not able to move flexibly and fluidly between graphical and verbal representations of the 

function when answering Problem 1 and almost half of these respondents have not had overcome yet at 

least one obstacle, such as cognitive or epistemological or didactical. The remaining twelve students, 

except Students 14 and 24, whose covariational reasoning has not reached Level 3 had at least couple of 

obstacles (epistemological, cognitive or/and didactical), pseudo-thought(s) or/and a misconception due 

to them having a weak conceptual understanding of functions. These students who often do not have a 

process conception of function were also unable to move flexibly and fluidly between graphical and 

verbal representations of the function when responding to Problem 1. Although I identified only one 

obstacle (epistemological) and a misconception for Student 24 due to him not providing sufficient 

solutions to both Problems 1 and 2, he is the only student whose covariational reasoning has reached 

Level 0 in both problems and he is not able to move between different representations of functions at 

all, showing that he lacks not only essential conceptual and analytical thinking of functions but also a 

process conception of function. 

On the other hand, four students (numbered 1, 11, 13 and 21) whose covariational reasoning has 

reached at least Level 3 were not able to move flexibly and fluidly between various representations of 

the function situation when answering Problem 2 and have not overcome yet at least one obstacle, such 

as cognitive or epistemological. The remaining ten students whose covariational reasoning has not 

reached even Level 3 did not have a process conception of function and were generally unable to move 

flexibly and fluidly between different representations of the situation when responding Problem 2. One 

third of fifteen students, who had multiple obstacles or/and pseudo thought(s) or/and a misconception 

due to them having weak conceptual and analytical understanding of functions, were able to move 
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poorly or very poorly between different representations of the situations and so they were generally 

unable to reason the dynamic situations covariationally at higher levels 

The data indicates that most of college level Calculus students, who have obstacle(s) or/and pseudo-

thought(s) or/and misconception(s) due to them having weak analytical understanding or/and weak 

conceptual understanding of functions, are often unable to move flexibly, fluidly and powerfully 

between different representations of functions and so they fail to conceptualize a function as a process 

which maps values of one variable to values of another variable. Consequently, these students generally 

do not reason dynamic functional situations covariationally at higher levels. 

6.2 RECOMMENDATIONS 

The results question the readiness of Calculus students for subsequent mathematics courses, as well as 

the effectiveness of prior school curriculum in mathematics education on the topic of functions and 

related concepts. It is important to teach the key concepts related to functions, such as rate of change, 

accumulation and continuous covariation, through non-standard examples and dynamic events earlier in 

school curriculum in order to promote students to build strong conceptual and analytical thinking of 

functions before they enroll Calculus courses. It is preferable that educational system focuses on both 

conceptual and procedural orientations equally and encourages students to work with different 

representations of functions through dynamic tasks in mathematical education in order to help them to 

develop meaningful constructions between functional concepts and procedures and so to build a strong 

covariational conception of function. 

My other recommendation is consistent with what Dr. Sierpinska said in her 1992’s paper. On the one 

hand, functional situations first appear as typical examples of functions in school curriculum, and 

students discover dynamic models of relationships between variables much later by experience. On the 

other hand, functions first appeared as models of relationships in the history of mathematics in order to 

describe and predict functional situations. Therefore, it may be better if, in teaching, functions appear as 

models of relationships between variables before introducing some standard examples of functions and 

definitions related to functions (Sierpinska, 1992, p. 32 and 57). Building on this, I would like to 

recommend that students should also be encouraged to work with non-standard examples and non-

routine tasks in order to overcome the didactical obstacle involved in promoting typical examples in 

educational system. 
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6.3 DIRECTIONS OF FUTURE POSSIBLE RESEARCH 

In the literature review, I have mentioned about students lacking conceptual thinking or understanding 

of functions due to highy procedural orientation being dominant in mathematics education (Kaldrimidou 

& Ikonomou, 1998; Oehrtman, Carlson & Thompson; 2008). I would like to say a few words about 

Quebec’s educational system. There have been efforts in the Quebec’s educational program (at the pre-

university level) to engage students more in using functions as a modeling tool. This is to be achieved, 

among others, by means of “situational problems” as of March 20211. 

According to the first document in footnote, Quebec’s mathematics education in secondary cycle 

requires students to get involved in ‘solving a situational problem’, ‘using mathematical reasoning’ and 

‘communicating by using mathematical language’. In the page 18 of the first document, it is written as 

follows, regarding ‘solving a situational problem’: 

Solving a situational problem involves using a heuristic or discovery approach. In 

mathematics, this means being able to find a coherent solution to a situational problem 

under one of the following conditions: 

– The situation has not been previously presented in the learning process. 

– Finding a satisfactory solution involves using a new combination of rules or principles 

that the student may or may not have previously learned. 

– The solution or the way in which it is to be presented has not been encountered before. 

Solving a situational problem involves discernment, research and the development of 

strategies entailing the mobilization of knowledge. It also requires the students to carry 

out a series of actions such as: decoding the elements that can be processed 

mathematically, representing the situational problem by using a mathematical model, 

working out a mathematical solution, validating this solution and sharing the 

information related to the situational problem and the proposed solution.…….…….In 

arithmetic, the students use their number and operation sense as well as the 

                                                           

1
 (http://www.education.gouv.qc.ca/fileadmin/site_web/documents/PFEQ/chapter61.pdf and 

http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/pfeq/PFEQ_mathematique-
deuxieme-cycle-secondaire_EN.pdf and also https://ca.ixl.com/standards/quebec/math, see grades from 8 to 12, 
emphasizing word problems, for instance, please see sections 7-8 AR an 7-8 AL in grade 8 which represents 
Quebec’s secondary cycle 1 year 1 mathematical program).   

http://www.education.gouv.qc.ca/fileadmin/site_web/documents/PFEQ/chapter61.pdf
http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/pfeq/PFEQ_mathematique-deuxieme-cycle-secondaire_EN.pdf
http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/pfeq/PFEQ_mathematique-deuxieme-cycle-secondaire_EN.pdf
https://ca.ixl.com/standards/quebec/math
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relationships between these operations. They manipulate numerical expressions related 

to different sets of numbers, using processes for mental or written computation or using 

technology. They validate and interpret the numerical results in light of the context. In 

algebra, the students use different types of representations. They construct algebraic 

expressions, tables and graphs in order to generalize, interpret and solve the situational 

problem. They identify the unknown, solve equations to discover its value(s) and 

interpret them in light of the context. 

(p.18 of the first document in the footnote) 

It appears that Quebec’s mathematical program encourages students to work with ‘situational 

problems’. These problems involve ‘decoding elements being processed mathematically’, ‘representing 

the problem by a mathematical model’, ‘working out a mathematical solution’ and ‘validating the 

solution’. Students are encouraged to use different types of representations to construct algebraic 

expressions and graphical constructions of situations, and to find the value(s) of algebraic equations 

when solving situational problems. 

This being said about Quebec’s secondary school mathematical program, in my research, I concluded 

that around half of Calculus students seemed to have a strong or good or moderate conceptual 

understanding of functions while only quarter of Calculus students seemed to have a strong or good or 

moderate analytical understanding of functions. This may be a result of college level students feeling 

intimidated by ‘situational problems’. On the other hand, almost one third of twenty-four students 

relied on their procedural associations instead of focusing on the conceptual aspects of the given 

dynamic task in Problem 1. This may be a result of them feeling intimidated by ‘typical algebraic 

procedures/formulas’ formed in their earlier (or previous) mathematical education. However, there was 

no information about college level students’ previous mathematical experiences (and I have just glanced 

at Quebec’s secondary school mathematics program). Thus, a future research, aiming to study a 

correlation between Quebec’s pre-university treatment of functions and its effect on college level 

students enrolled in calculus courses, may look into college level Calculus students’ mathematical 

background and also Quebec’s earlier mathematics education in order to reach more general conclusion 

about the impact of Quebec’s mathematical program on college level students’ learning.  

I have observed that although Students 11 and 13 constructed incorrect graphs when responding both 

problems, I have determined that they exhibited behaviors that support MA3 for graphical 

representation of the dynamic situations since they correctly plotted points and represented relative 
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magnitudes of the input and output variables on their graphs. While I adopted Carlson et al.’s 

theoretical construct in which behaviors are listed as ‘plotting points/constructed secant lines’ for 

graphical representation of a function, I have changed the description of these behaviors for geometrical 

construction as ‘plotting points/representing relative magnitude(s) of input and output 

variables/possibly constructing secant line(s)’ in my adaptation. I note that no respondent constructed 

secant lines (graphical sign of MA4) when responding both problems. On the other hand, I think that 

‘constructing a smooth curve’ may also be a condition for graphical representation of a function at Level 

3 (instead of at Level 5) since we are interested in finding an algebraic expression representing a rule(s) 

of correspondence between changing quantities which should be represented by a correct smooth curve 

(not like the Student 11’s and 13’s curves) at this level. It may be also more appropriate to add a 

condition of ‘constructing the slope(s) of the tangent line(s)’ in the description of behaviors for graphical 

representation of a function at Level 5 since we are interested in finding instantaneous changes in the 

rate of change of the output (with respect to continuous changes in the input) which needs to be 

represented by the slope(s) of the line(s) tangent to the graph of the function. These suggestions for 

modifying the theoretical framework, as well as others, could be considered in future investigations 

when studying advanced mathematics students’ understanding of functions.  

Another future investigation may attempt to answer the following question: At what level Calculus 

students often move between different representations of a function? A future research project could 

rely on my theoretical construct and consider also each level of covariational reasoning as a level of 

ability to move between representations of a function. For instance, the examiner may describe Level 1 

of ability to move between representations of a function as follows; if an individual exhibits behaviors 

which are suggestive of her/him able to move between graphical, verbal and algebraic representations 

of a function at Level 1 which will require the individual to coordinate the two variables all graphically, 

verbally and (instead of ‘or’) algebraically, then his/her ability to move between the three 

representations of the function has reached Level 1. 
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APPENDIX A 

SUMMARY OF HISTORICAL DEVELOPMENT OF THE FUNCTION CONCEPT UP TO THE MIDDLE OF THE 

20TH
 CENTURY 

Antiquity Period 

In Babylonian mathematics (2000 BC), mathematicians created tables of squares, cubes, reciprocals, 

square/cube roots (all based on natural numbers), worked on tabulated functions by using sexagesimal 

numeral system and developed algebraic methods for solving equations. According to O’Connor & 

Robertson (2005), although the tables produced by Babylonian mathematicians characterize functions, 

the function concept was not present at that time since they did not think about the terms related to 

functions. 

In Greek mathematics dated back to 6th century BC, Pythagoreans discovered quantitative relationship 

between music and mathematics. They conceived the idea of function by measuring physical quantities 

like the length of a string. With the discovery of Pythagorean Theorem, Pythagoras also contributed to 

the development of mathematical analysis in antique times. The symptoms for conic sections, the first 

and second degree equations related to the conic sections were represented during the Ancient Greek 

period. These equations were introduced by equalities of areas of some rectangles or triangles.  

Youschkevitch states that “Until about the third century AD….No algebraic formula, no kind of literal 

algorithm, no analytical expression was ever introduced” (Youschkevitch, 1976/1977, p.41). Around AD 

200-300, Greek mathematician Diophantus of Alexandria who worked on algebraic equations and 

provided numerical solutions first introduced algebraic symbols like signs for the first six power of the 

unknown quantity and sign of equality.  

In Ptolemy’s ‘Almagest’ (around AD 150), a mathematical model related to astronomy presented as the 

Plotemaic System. In this geocentric model where the Earth is at the center of the universe, Ptolemy 

calculated the positions of sun, moon and planets continuously changing in time by using some 

procedures and tabulated functions with numerical examples and sometimes in a general manner by 

verbally or graphically. Ptolemy who used geometric theorems in his ‘Almagest’ produced a 

trigonometric table, by computing chords of a circle, which is equivalent to the table of the sine 

function’s values. He noticed that a chord chosen in a given circle is related to an arc corresponding to 
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the length of the chord. Although his discovery is directly related to a function, there is a doubt about 

his understanding of the notion of function (O’Connor & Robertson, 2005).  

Archimedes who lived between 287-212 BC worked on quadratures and cubatures, applied concepts of 

infinitesimals in his works in a way which is similar to the modern integral calculus and used the method 

of exhaustion in order to prove geometrical theorems like the area of a circle or volume of a spheroid. 

His famous works are the ‘Quadrature of the Parabola’, ‘Measurement of a Circle’ and ‘On the Sphere 

and Cylinder’. In his ‘Measurement of a Circle’ he actually calculated the area of a circle while he 

calculated the surface area of a sphere in his ‘On the Sphere and Cylinder’. Even if he came up with the 

same integral ∫     
 

 
 in his works, he failed in representing a general concept of a definite integral. 

Aristotle (around 350 BC) used the term ‘motion’ in sense of ‘change’ and categorized it in three main 

forms as; change with respect to quality (qualitative change or alteration), change with respect to 

quantity (quantitative change like increase-decrease) and local motion (change in place) which consists 

of both uniform motion in which equal distances corresponds to equal intervals of time and non-

uniform (difform) motion in which the velocity is changing. However, despite considerable progress, 

none of the above considerations led to a general concept of a function present in antiquity.  

Middle Ages 

In the 14th century, European mathematicians among whom Oresme were interested in changes of 

quantities and local motion, representing ideas of instantaneous velocity, acceleration and variable 

quantity. In his ‘Latitude of forms’, Oresme (1342-1382) who thought about measurable quantities been 

represented by points, lines and surfaces introduced the idea of a function explicitly on the x and y 

coordinates by distinguishing ‘latitude (latitudo)’ which represents the intensity of a quality (intensio) 

being along a vertical line from ‘longitude (longitudo)’ which represents extension of a quality (extensio) 

being along a horizontal line. He considered the intensity of qualities continuously changing in time. He 

applied this idea to his analysis of local motion in which the intensity was introduced as the velocity, the 

extension as the time and the area of the shape as the distance traveled.  

Oresme considered three main kinds of qualities: 1) Uniform quality in which a body is moving with a 

constant velocity and the line of intensity is parallel to the line of longitudes. The related figure is a 

rectangle. 2) Uniformly difform quality in which the velocity of a moving body is changing and the line of 

intensity is a straight line which represents the hypotenuse of a corresponding triangle. 3) Difformly 

difform qualities in which the acceleration of a body is changing, thus all other cases which are not 
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associated with uniform and uniformly difform qualities. He proved the mean speed rule known as the 

‘Merton Theorem’ (by finding the area of trapezoid) which was introduced by Heytesbury, Swineshead 

and Dumbleton in the 14th century. The theorem states that: ‘uniformly difform motion is equivalent to a 

uniform motion with a velocity equal to the velocity of the accelerated movement at the middle moment 

of time’ (Youschkevitch, 1976/1977, p 48). Even though Oresme considered ‘latitudes’ and ‘longitudes’ 

of a quality as dependent variable and independent variable quantities in a general form and developed 

functional relationship between these quantities both geometrically and mechanically, he too failed in 

providing general definitions of these concepts. Three centuries later, Galileo (1600s-until 1642) who 

also proved the mean speed theorem by method of indivisibles began to conceive the idea of function. 

In his work of motion, he introduced quantities and relations between variables by means of 

geometrical expressions and of straight line segments. By comparing two concentric circles in which 

one’s diameter is twice that of the smaller one, Galileo started to understand the idea of mapping 

between sets (O’Connor & Robertson, 2005). 

In sum, European mathematicians in the Middle Ages considered variables continuously changing in 

time while conceptualized geometrical and mechanical forms of functions. They also considered 

infinitesimals when solving problems related to the areas of figures, infinite geometric series and 

instantaneous velocities. However, no explicit definitions of the concepts of function and of changing 

quantities were present in the mathematics of the Middle Ages. 

Modern Period 

Before the modern era, tabulated functions were introduced verbally, geometrically and kinematically, 

but, analytical method of representing functions by means of algebraic equations and formulas was 

absent. Until the beginning of the 17th century, mathematicians already studied real and complex 

numbers, thought about the concept of function as a relation between sets of numbers, advanced in 

trigonometry and represented signs of mathematical operations and relations. At the end of the 16th 

century, Viète’s introduction of a new symbolic algebra revolutionized the development of the function 

concept and, after decades of works in rectilinear motions, curvilinear motions and the forces causing 

the motion became an object of study in the 17th century. 

Viète, Fermat and Descartes Eras 

Viète (1591) who is known as a founder of the new algebra used letters as symbols for both known 

(consonants) and unknown (vowels) quantities in his algebraic equations which were later used in the 
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infinitesimal calculus by his successors like Descartes, Newton and Leibniz. His literal systematic algebra 

was significant convention in symbolizing algebraic equations in a general form.  

Fermat who is known, along with Descartes, as the inventor of analytic geometry used (in his 1637 study, 

published in 1679) analytical methods of representing functions by the application of the new symbolic 

algebra to the study of geometry. He described unknown quantities in algebraic equations as continuous 

line segments in geometrical representations and developed methods for finding local maxima, local 

minima and tangent of differentiable functions by associating algebraic equations with curves and 

surfaces. 

At the time of Fermat writing his convention, Descartes who is famous for his legacy in the development 

of Cartesian Geometry (or Coordinate Geometry) also conceived the idea of representing functions 

analytically. His leading goal was to minimize the solution of algebraic equations to standard procedures 

and produce their real roots in terms of known quantities. In his volume ‘La Geometrie’ (1637), the 

letters near the end of the alphabet (e.g. x, y and z) represent unknown quantities in equations while 

letters near the beginning of the alphabet (e.g. a, b and c) represent known quantities. Descartes 

invented what is now known as a Cartesian coordinate system which created a link between algebra and 

geometry. Therefore, he was able to describe geometric figures algebraically by using the coordinates of 

the points which produce the figures, and solve geometric problems by using algebra or vice versa. In a 

Cartesian system, he associated a geometric curve in a plane with an equation, called x the variable on 

the horizontal line and y the variable on the vertical line, and considered the numerical coordinates in 

order to determine the unique position of points.  

Descartes pointed out that: 

“Prenant successivement infinies diverses grandeurs pour la ligne y, on en trouvera aussi infinies pour la 

ligne x, et ainsi on aura une infinité de divers points tels que celui qui est marqué C, par le moyen 

desquels on décrit la ligne courbe démandée.” (quoted from Youschkevitch, 1976/1977, p.52) 

He means that if we take successively an infinite number of different values for the line y, we will find an 

infinite number of values for the line x and so an infinite number of unique points C by means of which 

the required curve shall be obtained. By taking unique values for y and obtaining the associated values 

for x, he actually considered a dependence relation between changing quantities and was able to 

compute the values of one quantity with respect to a given values of another quantity.  
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Moreover, he distinguished between algebraic (geometrical) curves which can be defined by using 

algebraic equations and non-geometrical (mechanical) curves. He classified geometric curves in kinds; 

the first kind curves include conic sections (circle, parabola, ellipse and hyperbola) which are expressed 

by second degree equations, the second kind curves described by third and fourth degree equations, the 

third kind curves represented by fifth and sixth degree equations and so on. The main characteristic of 

geometric curves is that all the points of a geometric curve can be obtained by construction from lower 

order curves (e.g. parabola obtained by lines which represent sides of a rectangle). On the other hand, 

only some of points can be obtained in mechanical curves which do not involve precise and exact 

measurement (e.g. spirals). 

European mathematicians conceived the general notion of function during the 17th century as a relation 

between ‘quantities’ rather than ‘sets of numbers’ (which were considered by earlier mathematicians). 

By using analytical representations of functions by means of equations and formulas with strict rules, 

the 17th century mathematicians opened a new era in mathematical analysis. Application of the new 

symbolic algebra to geometry inspired other mathematicians like Newton and Leibniz and made a 

significant revolution in the development of infinitesimal calculus. 

Newton and Leibniz Eras 

Viète’ literal systematic algebra made it possible to build up a general theory of equations while 

Fermat’s and Descartes’ analytic geometry made it possible to apply this new algebra to geometry. 

Newton (1664-1670), independently, also represented functional relationships between quantities 

analytically. In addition, like Oresme and Galileo, he expressed basic concepts of kinematics like time 

and motion and a geometrical relationship between these concepts. As his predecessors, he imaged 

velocity continuously changing in time when studying on motions.  

In his Method of fluxions and infinite series (1670, published in 1736) which has been a leading treatise 

in the development of infinitesimal calculus, Newton had written out his theory of fluxions in which he 

called a changing quantity a ‘fluent’ and its rate of change (or its derivative) a ‘fluxion’ referring to its 

velocity. He introduced the independent variable as a correlated quantity and the dependent variable as 

a related quantity. Time was always considered as the universal independent variable by him while his 

focus was on velocities of variable quantities.  

In his work, he verbalized the two main problems of the calculus which are inverse of each other; the 

first problem (the problem of tangents), with a given distance, is subject to finding the velocity of 

motion, the second problem (the problem of quadrature), with a given velocity, is about determining 
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the distance of motion. The first problem refers to differentiation of functions while the second problem 

refers to integration of functions. Newton’s analytical representations of functions in finite expression or 

by sums of infinite power series played central role in the development of infinitesimal analysis. 

At the time of Newton was writing his discovery of differentiation and integration, independently, 

Leibniz developed the fundamental notations of infinitesimal calculus. In 1684, he expressed a new 

method for calculating maxima, minima and tangents. He introduced the differential of the ordinate   

as    and the differential of the abscissa   as    which is an arbitrary segment in a curve, then he 

concluded that the ratio 
  

  
 representing the slope of the tangent line of the curve is the same as the 

ratio of the ordinate to the subtangent. 

We see the word ‘function’ first, in the statement of ‘…other kinds of lines which, in a given figure, 

perform some function…’ (O’Connor & Robertson, 2005, p.2), in his work of ‘The inverse method of 

tangents, or about functions’ (1673) in which he explained line segments associated with a curve for 

both geometrical and transcendental curves. He introduced, like Newton, the inverse problem of finding 

ordinates with a given property of a curve’s tangent. In the same work, he defined functions as line 

segments formed by infinitely many straight lines associated with a fixed point and points of a given 

curve. In his explanation, he described these line segments as abscissas, ordinates and segments of 

tangents, normals, subtangents and subnormals (published in 1692 and 1694). Leibniz developed many 

notations that are still used in calculus today. He classified functions and curves as ‘algebraic’ ones 

expressed by an equation of a specific order and ‘transcendental’ ones expressed by equations of an 

infinite order (while Descartes categorized curves as ‘geometrical’ and ‘mechanical’). 

While Leibniz and Newton, independently, made all these outstanding discoveries which are 

fundamentals for both differential and integral calculus, a general definition of function was still absent 

at that period of time. 

Bernoulli and Euler Eras 

In 1694, J. Bernoulli send Leibniz a letter describing his discovery that the lengths, or areas under some 

curves represented by integrals could be expressed by means of infinite series which Leibniz already 

knew. In this letter, Bernoulli expressed a function as: “…a quantity somehow formed from 

indeterminate and constant quantities” (quoted from O’Connor & Robertson, 2005, p.2). In a letter from 

1696, he stated as “diverse quantities   ̅̅ ̅   ̅̅ ̅ are given by an indeterminate x and by constants… 

algebraically or transcendentally.” (quoted from Youschkevitch, 1976/1977, p.57) 
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Even though he provided a general idea of function by means of analytical representations, a general 

definition of function was not present in his letters or articles. After exchanging their ideas through 

letters, Bernoulli and Leibniz discussed about the most suitable notation for a function of one or more 

than one variable, and discriminated functions by means of indices (e.g.   ̅̅ ̅   ̅̅ ̅). 

In 1718, Bernoulli published the article in which he provided the first explicit definition of a function: 

“On appelle fonction d'une grandeur variable une quantité composée de quelque manière que ce soit de 

cette grandeur variable et de constants.” (quoted from Youschkevitch, 1976/1977, p.60) 

It basically means that we call function of a variable magnitude a quantity composed, in a certain 

manner, by that variable magnitude and constants. He conceived the concept of analytically 

represented functions, however, he did not explain how he obtained a function from the independent 

variable nor did he discriminate between single valued and multivalued functions.  

Leonhard Euler significantly contributed in the development of the notion of function with his 

‘Introductio in analysin infinitorum’ (1744, published in 1748) in which he started to introduce the 

definitions of basic concepts related to functions. Euler first defined a function of a variable quantity as 

an analytic expression formed, in any manner, by the variable quantity and constants: 

“A function of a variable quantity is an analytic expression composed in any way whatsoever of the 

variable quantity and numbers or constant quantities. Thus any analytic expression which, besides the 

variable z, contains also constant quantities is a function of that z; thus                  

 √         ,  etc. are functions of z”. (Euler, 1988, p.3) 

Euler first worked on standard algebraic operations in his analytical expressions, and then continued 

with transcendent operations and reached exponential-logarithmic functions and many other functions, 

resulting into infinite series, by integrating differential equations. He divided functions into two types, 

algebraic (divided into rational and irrational) and transcendental, depending on the nature of the 

analytic expression. He described the operations, such as addition, subtraction, multiplication, division, 

raising to a power and extraction of roots, involved in combining the variable quantity and constant 

quantities. He stated that any function can be expressed with an infinite series. This also involves certain 

algebraic operations by which variable and constant quantities can be arranged in a law of function. He 

spoke about multiples of functions and powers of functions, arising from a single operation, 

discriminated by the name of function. Euler did not consider constant functions as functions. He called 

constant functions as constant quantities which are determined. Changing the value of variable quantity 
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does not change the output value resulting in a constant function holding the same value. On the other 

hand, he claimed that ‘a function itself of a variable quantity will be a variable quantity’. But in reality, a 

function of a variable quantity could be a constant quantity. 

In his Introductio, Euler provided a most general form of analytically expressed function by means of 

infinite power series containing sum of infinite products as                          . In his 

representation, he considered powers of   to be any numbers by commenting as “to render this 

explanation broader, not only positive integral powers of z should be admitted, but any power. Thus 

there will be no doubt that any function of z could be transmuted into as infinite expression of the type 

                        the exponents ϕ, β, γ, δ etc. denoting any numbers” (quoted from 

Youschkevitch, 1976/1977, p.62).  

He understood the idea of that functions analytically expressible could be developed into infinite power 

series whose terms may contain not only positive exponents but also fractional or negative ones. Since a 

function   could be expressed by some series whose terms contain powers of  , therefore   could be 

represented in terms of   by inverting the series. Defining function by means of analytical expressions 

whose form is infinite power series played a major role in the development of geometry, mechanics and 

physics during the entire 18th century. 

Euler only considered analytic functions in Volume 1 of his Introductio while he mentioned about other 

type of functions in Volume 2 of his compendium. For Euler, the analytical law of a functional relation 

remains unchanged in a continuous function which could be introduced by just one expression while 

discontinuous functions (or mixed) could be represented by different laws for different intervals of the 

function’s domain. By defining continuous function with an analytic law or equation representing the 

relation between coordinates of points of a curve, Euler emphasized the importance of the singleness of 

an analytical law. He then described discontinuous curves as “all curves not determined by any definite 

equation, of the kind won’t to be traced by a free stroke of the hand.” (quoted from Youschkevitch, 

1976/1977, p.67) 

In his ‘Institutiones calculi differentialis’ (published in 1755), changed his definition of function provided 

in the Volume 1 of his ‘Introductio’ to the more global definition of function in which he considered a 

function as a dependence relation between quantities;  

“If some quantities so depend on other quantities that if the latter are changed the 

former undergo change, then the former quantities are called functions of the latter.” 



170 
 

(Euler, 1755, ‘Institutiones Calculi Differentialis’, quoted from Youschkevitch, 1976/1977, 

p.70) 

Introducing the more general definition of function as a dependence relation between variables and 

investigating relations between main properties of different classes of functions of one variable were 

important contributions in the development of the 18th century’s mathematics. Euler’s discoveries 

inspired many other mathematicians like Cauchy, Fourrier, Dirichlet, Bolzano and Weierstrass who 

contributed enormously to the general theory of analytic functions during the 19th century.  

Cauchy, Fourrier, Dirichlet, Bolzano, Weierstrass and Bourbaki Eras 

While only a single analytical expression of function was considered for almost two centuries until the 

end of 18th century, mathematicians started to think and study on different kinds of functions 

(differentiable or piecewise discontinuous), which might not be analytically expressible or might be 

represented by more than one analytic law. 

In his Fragment sur les fonctions discontinues (1780), Charles worked on examples involving 

discontinuous functions that were represented by different analytic expressions for different intervals 

could be expressed by one equation.  

In his ‘Memoire sur les fonctions continues’ (published in 1844), Cauchy provided a discontinuous 

function (in Euler’s sense) of      {
      
     

 expressible by a single equation    √   for every 

        which represents a continuous function. Cauchy also showed that an infinitely 

differentiable function at a given point could not be analytic at that point and gave the following 

example;       { 
         
            

 . 

In his Cours d'analyse (1821), Cauchy wrote the following statement in which he considered a 

dependence relation between quantities like Euler:  

“If variable quantities are so joined between themselves that, the value of one of these being given, one 

can conclude the values of all the others, one ordinarily conceives these diverse quantities expressed by 

means of the one of them, which then takes the name independent variable; and the other quantities 

expressed by means of the independent variable are those which one calls functions of this variable.” 

(quoted from O'Connor, J., & Robertson, E., 2005, p.5) 

On the one hand, Euler claimed that mixed functions are not representable by trigonometric series, on 

the other hand, Fourier (1805) rejected this idea and stated that even discontinuous arbitrary functions 
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could be representable by sinus and cosines of multiple arcs. However, he failed in doing sufficient 

analysis for the problem of expressing mixed functions with such trigonometric series. Representing 

functions by means of trigonometric series in which the coefficients of Fourier series of a given function 

     is equal to the integrals of the products                        motivated other 

mathematicians who started to produce general definitions of integral. 

In his Théorie analytique de la chaleur (published in 1821-1822), Fourier described a function a sequence 

of values or ordinates, each of which is arbitrary, in his definition of a function:  

“In general, the function f(x) represents a succession of values or ordinates each of which is arbitrary. An 

infinity of values being given of the abscissa x, there are an equal number of ordinates f(x). All have 

actual numerical values, either positive or negative or nul. We do not suppose these ordinates to be 

subject to a common law; they succeed each other in any manner whatever, and each of them is given as 

it were a single quantity.” (quoted from O'Connor, J., & Robertson, E., 2005, p.5) 

Dirichlet (1829-1837) found that a bounded function which is piecewise continuous and piecewise 

monotone over a given interval could be expressed by Fourier series converges to that function. Any 

arbitrary (discontinuous in Euler’s sense) curve being hand-drawn over a given interval could be 

introduced by a single analytic equation, so becomes a continuous curve. Like Lobathchevsky, Dirichlet 

(1835) also used the word ‘gradually’ meaning continuously in Cauchy’s sense in his more detailed 

definition of a continuous function, containing geometrical explanation, in which he imaged the 

different parts of a curve sharing a common law or different laws or no law:  

“Imagine a and b to be two fixed values and x a variable, which is supposed to assume one after the 

other all values between a and b. If to each x there corresponds a unique finite y in such a manner that 

while x runs continuously through the interval from a to b,          varies gradually also, then y is a 

continuous function of x for this interval. It is not at all necessary that y depends on x in this whole 

interval by the same law, and it is not even necessary to imagine a dependency expressible by 

mathematical operations…This definition does not prescribe a common law to the different parts of the 

curve; it can be thought of as being composed of parts of the most different kinds or completely without 

law.” (quoted from Youschkevitch, 1976/1977, p.78) 

Dirichlet introduced his famous function called ‘Dirichlet function’ which is discontinuous at each point 

of the interval      : 

     {
                           
                             

 . 



172 
 

Even though Lobathchevsky and Dirichlet considered discontinuous functions in their examples, it is not 

clear why their definitions are restricted to continuous functions. 

Bolzano (in a treaty from 1817 but published much later) first introduced the epsilon-delta method 

when defined the notion of limit. He also provided the modern definition of derivative. The definition of 

derivative is known today as: 

“Given a function     , the derivative       is understood to be the slope of the graph of   at each point 

  in the domain…Let      ℝ be a function defined on an interval  . Given  ∈  , the derivative of   at 

  is defined by  

         
   

         

   
 

provided this limit exists. In this case we say   is differentiable at  . If    exists for all points  ∈  , we 

say that   is differentiable on  .” (Understanding Analysis, Stephen Abbott, p.145-148) 

In his ‘Cours d’analyse’ (1821), Cauchy discussed infinitely small quantities and provided a verbal 

definition of limit based on these quantities without using the epsilon-delta method:  

“When the successive values attributed to a variable approach indefinitely a fixed value so as to end by 

differing from it by as little as one wishes, this last is called the limit of all the others.” (quoted from Kline, 

1990, p.951) 

By using the limits as basis, he then introduced the concepts of convergence, continuity and derivative. 

He defined continuity of functions by considering the fact that an infinitesimal change in the input 

variable produces an infinitesimal change in the output variable:  

"the function f(x) will remain continuous with respect to x between the given limits, if, between these 

limits, an infinitely small increment of the variable always produces an infinitely small increment of the 

function itself." (quoted from Kline, 1990, p.951) 

While Cauchy focused on the continuity of the sum of a convergent series of continuous functions 

without distinguishing between pointwise continuity and uniform continuity, Weierstrass (in 1842-1844) 

formalized the concept of uniform convergence, by standard notions, written today as: 

“Let      be a sequence of functions defined on a set    ℝ. Then,      converges uniformly on   to a 

limit function   defined on   if, for every number      there exists an  ∈    such that        

        whenever     and  ∈  ”.(Understanding Analysis, Stephen Abbott, p.177) 
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In 1854, Weierstrass provided the modern form of ε- δ definition of limit as: 

“Let      to be defined on an open interval about x₀, except possibly at x₀ itself. We say that      

approaches the limit   as x approaches x₀, and write                if, for every number      there 

exists a corresponding number     such that, for all x,                       ”. 

(Thomas and Finney, Calculus and Analytic Geometry, p.70) 

Weierstrass proved that a function being continuous over a closed interval could be expressed in that 

interval by a sum of convergent series of polynomials. The definitions of pointwise convergence and 

uniform convergence of sum of infinite series of functions were also provided during this period of time. 

It is evident that Euler’s general definition of a function was recognized and developed by his successors 

such as Cauchy, Lobathchevsky and Dirichlet who produced more detailed definition of a continuous 

function. Moreover, in 1939, Bourbaki provided the set-theoretic definition of function as a set of 

ordered pairs in which each element in the first set assigns to exactly one element in the second set: 

“Let E and F be two sets, which may or may not be distinct.  A relation between a variable element x of E 

and a variable element y of F is called a functional relation in y if, for all  ∈  , there exists a unique 

 ∈   which is in the given relation with x. We give the name of function to the operation which in this 

way associates with every element  ∈   the element  ∈   which is in the given relation x;  y is said to 

be the value of the function at the element x, and the function is said to be determined by the given 

functional relation.  Two equivalent functional relations determine the same function”. (quoted from 

Kleiner, 1989, p.299) 

Many correspondences, like discontinuous functions, functions with split domains and functions with 

exceptional points, were defined as functions after the introduction of the Dirichlet-Bourbaki definition. 

Mathematicians, until the end of the 18th century, avoided the idea of representing a function with 

multiple analytic expressions or without any expression by basically focusing on the idea of representing 

function with a single analytic law. The explicit definitions of fundamental concepts of calculus, such as 

the limit concept, pointwise/uniform convergence, continuity, derivative and the function concept, were 

not yet present since mathematicians prior to the 19th century did not much focus on the ideas of limit 

and infinite series of functions. From beginning of the 19th century, mathematicians started to work with 

different types of functions, such as piecewise discontinuous functions. Cauchy, Bolzano, Dirichlet and 

Weierstrass focussed on fundamental concepts of calculus and significantly contributed in the 

introduction of the limit concept including the formal ε - δ definition and the definitions of the concepts 
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of uniform convergence, continuity and derivative. After the introduction of these foundational 

definitions, studying infinite sums of functions and working with examples of continuous but nowhere 

differentiable functions became a target in mathematical analysis. 
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THE STATEMENT OF PROBLEM 1  

Suppose an evaporating flask (see picture below) is filling with water.  
 

 
 

a) Sketch a graph of the height of the water as a function of the amount of the water that is in the 
bottle.  

b) Explain why your graph represents this relationship.  
c) Does the graph of the function have a point of inflection? Justify your answer and, if yes, 

indicate clearly the inflection point on the graph.  
d) Is there an interval where the height of the water increases linearly with respect to the amount 

of the water? If yes, mark the interval on your graph. 
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THE STATEMENT OF PROBLEM 1  

This problem is about the evaporating flask being filled with water, as last week, but this time you are 

given the dimensions of the flask. We are assuming the radius of the sphere that forms the round part of 

the bottle is 1 unit (e.g., 1 dm = 10 cm) and the neck starts at 1 and 4/5 units from the bottom of the 

bottle; we also assume that the neck is 1 unit high. 

 

a) Find a formula for the volume V of water as a function of the height h of the water: V(h) = ?. 

What is the domain of this function? What is the range? 

b) Sketch a graph of the height as a function of the volume of the water, i.e., of the function h(V). 

Explain how you did it and what makes you sure you are right. What is the domain of this 

function? What is its range? 

c) What is the height of the water if there are, approximately, 

(i) 2 litres  

(ii) 4 litres 

(iii) 5 litres 

of water in the flask? Note: 1 litre = 1 dm³ 

d) Does the graph of the function h(V) have a point of inflection? If yes, what are its coordinates? 

Justify your response. 

 


