
Characterizing Image Classification Difficulties through
Reduced-Dimension Class Convex Hull Analysis

Shawn McGrory

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical and

Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

November 2020

© Shawn McGrory, 2020

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Chair of Department or Graduate Program Director

______________________________________ Chair

Approved by __

Mourad Debbabi, Interim Dean
Gina Cody School of Engineering and Computer Science

Shawn McGrory

Characterizing Image Classification Difficulties through Reduced-Dimension Class Convex Hull Analysis

Master of Applied Science (Electrical and Computer Engineering)

Dr. Hassan Rivaz

 ______________________________________ External Examiner
Dr. Charalambos Poullis

 ______________________________________ Internal Examiner
Dr. Hassan Rivaz

______________________________________ 7KHVLV Supervisor�V�
Dr. Krzysztof Skonieczny

_______________________________________ Thesis Supervisor(s)

Dr. Akshay Kumar Rathore

ABSTRACT

Characterizing Image Classification Difficulties through

Reduced-Dimension Class Convex Hull Analysis

Shawn McGrory

The ability to correctly recognize natural terrain is regarded as a critical actor in autonomous

path planning success. Following recent promise shown by deep learning algorithms, much

research has directed focus towards conveying these successes to visual terrain classification,

however the scarcity of work directing informed neural network design has proved limiting

to these efforts. This work presents an algorithm that can be used to quantify the difficulty

of specific image classification tasks and to investigate the characteristics of particular dif-

ficulties and trends in a way that is interpretable by humans. An accompanying analytical

procedure characterizes such image classification difficulties; identifying what makes some

images easily distinguishable exemplars of their class and what makes others readily con-

fused with other classes. Case studies are presented of insights identified through selected

example analyses of terrain image classification datasets: discussing relative intensities of

terrain classes from images taken by Mars rovers, and the impact of color gradients in sepa-

rating sand from bedrock in color images of terrain, and its implications for remote sensing

hardware used to supply classifier input. Additional investigations cover more general im-

age datasets: the MNIST hand written digits dataset, and key background color features

in CIFAR-10. We validated the technique’s potential to architecture design through com-

parisons to various neural networks, discovering characteristics mutual between predicted

difficulty and classification error. The results presented in this paper provide a jumping

off point for the analysis of terrain classification difficulty, and can inform designers of au-

tonomous vehicles how challenging it can be to distinguish classes of terrain and provide

insight into the risk associated with making traverse decisions.

iii

Acknowledgements

While I will begin by expressing my gratitude towards my supervisor, Dr. Krzysztof Skonieczny,

however there are no words to convey this sentiment in full. Thank you for your endless pa-

tience, encouragement, and dedication to helping your students. Without your guidance and

support, it is unlikely I would have yet settled on a research topic, let alone have completed

this Thesis.

I must also express my deepest thanks to Dr. Michael P. Furlong, whose expertise inspired

this project and has been deeply involved since its conception. I would also like to thank

Mission Control Space Services Inc., from which members consistently provided invaluable

collaboration, serving as a guiding force throughout this work.

To my colleagues, Dr. Meysam Effati, Jean Sebastien Fiset, Amin Haeri, Adriana Daca,

Parna Niksirat, Dr. Amir Nassiraei, Tyson Boer, and all those met through my studies:

I thank you for your encouragement and advice throughout these years, but most of all, I

thank you for the endless source of inspiration you have provided; while it may not have

been realized, you have each helped to steer this research.

Lastly, I express my thanks to my family, and girlfriend, whose support throughout these

years have made this all possible.

iv

Contents

List of Figures viii

List of Tables xviii

1 INTRODUCTION 1

1.1 Literature Review . 4

1.1.1 Attributes Considered Explicitly . 6

1.1.2 Attributes Considered Implicitly . 10

1.2 Contributions . 13

1.3 Thesis Outline . 14

2 ALGORITHM 15

2.1 Dimensionality Reduction . 16

2.1.1 Analysis of Dimensionality Reducing Methods 17

2.1.2 Principal Component Analysis . 18

2.1.3 Discovering the Effects of Sample Variation using PCA 22

2.2 Convex Hull . 27

2.2.1 Determining Overlap . 28

2.2.2 Determining Vertices . 30

2.2.3 Special Case for Vertices - Class Generalization 30

2.3 ReDiHull Algorithm . 32

3 ANALYSIS 34

3.1 Analytical Procedure . 35

v

3.1.1 Identifying Characteristics’ Locations 35

3.1.2 Determining Characteristic-Related Image Attributes 37

3.1.3 Validating / Visualizing Determined Characteristics-Related Image

Attributes . 40

3.2 Example Application of Analytical Procedure 41

3.3 Quantifying Difficulty Between Classes . 46

4 RESULTS 48

4.1 Martian Terrain . 52

4.1.1 Observation(s) using ReDiHull . 52

4.1.2 Comparing ReDiHull Sample Difficulty to Neural Network Sample Dif-

ficulty . 55

4.2 Canadian Space Agency Mars Emulation Terrain 56

4.2.1 Observation(s) using ReDiHull . 56

4.2.2 Curiosity MastCam Images . 61

4.2.3 Shared Characteristics: Martian terrain and CSA MET 65

4.3 CIFAR-10 . 70

4.3.1 Observation(s) using ReDiHull . 70

4.3.2 Comparing Difficulty Measure with Network Performance 71

4.4 MNIST . 75

4.4.1 Neural Networks’ performance on MNIST 78

5 CONCLUSIONS 80

Appendices 86

A Martian Terrain - Supplementary Results 87

A.1 ReDiHull & Neural Network Sample Difficulty 87

A.2 ReDiHull-Computed Dataset Difficulty . 91

A.3 Neural Network Error Matrices . 92

vi

B CSA MET - Supplementary Results 94

B.1 ReDiHull & Neural Network Sample Difficulty 94

B.2 ReDiHull-Computed Dataset Difficulty . 97

B.3 Neural Network Error Matrices . 98

C CIFAR-10 - Supplementary Results 100

C.1 ReDiHull-Computed Dataset Difficulty . 100

C.2 Neural Network Error Matrices . 101

D MNIST - Supplementary Results 104

D.1 ReDiHull & Neural Network Sample Difficulty 104

D.2 ReDiHull-Computed Dataset Difficulty . 123

D.3 Neural Network Error Matrices . 124

vii

List of Figures

1.1 Examples of terrain-images within the Martian Terrain dataset [1]. Sand

(left), bedrock (center), and rock-strewn (right). 1

1.2 Increasing difficulty, from left to right, of rock-strewn terrain samples (true

label) w.r.t bedrock terrain samples (predicted label) computed by ReDiHull

(top-row) and several neural network architectures. 2

1.3 Increasing difficulty, from left to right, of sand terrain samples (true label)

w.r.t rock-strewn terrain samples (predicted label) computed by ReDiHull

(top-row) and several neural network architectures. 2

1.4 Increasing difficulty, from left to right, of digit Eight samples (true label) w.r.t

digit Seven samples (predicted label) computed by ReDiHull (top-row) and

several neural network architectures. 3

1.5 Hypothetical scenario illustrating potential vulnerability of the similarity mea-

sure applied in [2] . 10

1.6 Examples of the characters generated by Ho and Baird [3] used to predict the

Bayes error rate . 12

1.7 Block diagram of the proposed system. Chapter 2 discusses the details con-

cerning the algorithm block, including its output; Chapter 3 outlines the an-

alytical procedure developed for interpreting the algorithm outputs; Chapter

4 details the datasets applied as inputs to this system, as well as the resulting

outputs. 14

2.1 Comparison of reconstruction error per number of latent variables. Evaluated

using the MNIST’s test subset of 10 000 images. 17

viii

2.2 2D basis functions for the Discrete Cosine Transform, Principal Component

Analysis, and Independent Component Analysis 18

2.3 Example of the directions of maximal variance computed using PCA. 19

2.4 Image samples from the CIFAR-10 Bird class ordered by increasing difficulty

(left to right) according to ReDiHull. 20

2.5 (a) An image captured by the ”Opportunity” rover on Sol 2174 depicting

rock-strewn Martian terrain. (b) A zoomed-in section of the original image.

This section contains (c) the four neighboring patch samples extracted from

this scene. 25

2.6 (a) The four rock-strewn terrain samples and corresponding plot color. (b)

The projection of the four samples onto two PCA loading vectors; projections

onto w2 are shown on the horizontal axis while projections onto w3 are shown

on the vertical axis. 26

2.7 A change in dimensionality affects the overlap of classes in the latent space.

The black points encompassed by the blue convex hull in a 2-dimensional space

are no longer found to be overlapping with the convex hull when examined

within a 3-dimensional space. 27

2.8 ReDiHull algorithm presented for a binary classification task. 33

3.1 Example distributions describing (Left) the probability that a sample from a

reference-class overlaps with the convex hull of a given hull-class at a given

dimension; (Right) the probability that a sample from a reference-class sepa-

rates from the convex hull of a given hull-class at a given minimum number

of dimensions. 36

3.2 Examples of distributions without abnormal behaviours. 37

3.3 Examples of distributions which contain abnormal spikes, indicating the pos-

sibility of valuable separating features. 37

3.4 Example of visualizations developed, allowing for analysis of sequential his-

tograms within a compact figure. 39

ix

3.5 Examples of difficulty spectra which summarize difficulties in discerning (a)

sand samples from sand bedrock samples; (b) digit Nine samples from digit

Seven samples, from the CSA MET and MNIST datasets respectively. . . . 40

3.6 Probability distribution that a digit Zero sample will separate from the convex

hull of digit Eight, given a dimensionality d and the knowledge that the sample

was overlapping in a d−1 dimensional space 41

3.7 Projected value histograms for the 1st component using the MNIST digit Zero

as the reference-class and digit Eight as the hull-class. As noted, the presence

of a trend helps to predict the change in samples’ visual characteristics with

increasing sample difficulty. 42

3.8 Projected value histograms for the 2nd component using the MNIST digit

Zero as the reference-class and digit Eight as the hull-class. 43

3.9 Projected value histograms for the 5th component using the MNIST digit

Zero as the reference-class and digit Eight as the hull-class. The behaviour

illustrated suggests the 5th component is as separating feature. 44

3.10 Difficulty spectra; these figures summarize modes of difficulty between classes.

This visualization depicts increasing difficulty of digit Zero samples (true la-

bel / refernce class) w.r.t digit Eight samples (predicted label / hull class)

computed by ReDiHull . 44

4.1 Examples of terrain image samples within the Martian terrain dataset [1].

From left to right bedrock, rock-strewn, and sand. 52

4.2 Select results obtained for the Martian terrain dataset introduced by [1]. From

the first to last row - separation probability distributions, projected value

histograms, and difficulty spectra for (a) Bedrock images separated from Sand

and (b) Sand images separated from Bedrock 54

4.3 Increasing difficulty of sand terrain samples (true label) w.r.t bedrock terrain

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures . 55

x

4.4 Increasing difficulty of bedrock terrain samples (true label) w.r.t sand terrain

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 55

4.5 Select results obtained for the CSA MET dataset. From the first to last

row - probability of separation distributions, projected values histograms, and

difficulty spectra for (a) Bedrock images separated from Sand (b) Sand images

separated from Bedrock . 57

4.6 The top-11 PCA loading vectors computed for the CSA MET dataset. . . . 58

4.7 100 samples each of color sand (left) and bedrock (right) images from the

CSA MET dataset. Bedrock images include sub-regions of bluish stone and

non-blue soil. 58

4.8 Grayscale (left) and blue channel (right) of CSA MET bedrock images. Blue

channel shows higher contrast. 59

4.9 Grayscale (left) and blue channel (right) of CSA MET sand images, with little

discernible difference in contrast. 60

4.10 Resulting PCA projected value histograms for the 11th component using the

CSA MET terrains Sand as the reference-class and Bedrock as the hull-class. 60

4.11 The spectral response of the NavCam cameras [4], annotated to show the

range of blue-light wavelengths. As the band-pass filter rejects this range of

signals, classifiers applied to NavCam images cannot leverage the separating

feature discovered using the CSA MET dataset. 61

4.12 (a) sand and (b) bedrock terrain patches generated for the MastCam image

analysis. 62

4.13 (a) Grayscale (b) blue channel (c) red channel data for bedrock images cap-

tured by the Curiosity rover MastCam. Blue channel shows higher contrast

than gray, whereas red channel data shows reduced contrast. 64

4.14 (a) Grayscale (b) blue channel (c) red channel data for sand images captured

by the Curiosity rover MastCam, noting little discernible difference in contrast

between the three. 64

xi

4.15 Top row presents 100 patch samples from the CSA MET terrain classes (a)

Sand, (b) Bedrock, and (c) Gravel. Sand terrain class converted to grayscale.

Bottom row presents 64 samples from the Martian terrain image classes (d)

Sand, (e) Bedrock, and (f) Rocks. 66

4.16 For the left-hand column, starting from the top row, we are shown CSA MET

PCA projected value histograms for the first component using (a) hull-class as

Bedrock and reference-class as Sand, (c) hull-class as Bedrock and reference-

class as Gravel, (e) hull-class as Gravel and reference-class as Bedrock. For the

right-hand column, starting from the top row, we are shown Martian terrain

PCA projected value histograms for the first component using (b) hull-class as

Bedrock and reference-class as Sand, (d) hull-class as Bedrock and reference-

class as Rocks, (f) hull-class as Rocks and reference-class as Bedrock. 68

4.16 (Cont.) For the left-hand column, starting from the top row, we are shown

CSA MET PCA projected value histograms for the first component using (g)

hull-class as Gravel and reference-class as Sand, (i) hull-class as Sand and

reference-class as Gravel, and (k) hull-class as Sand and reference-class as

Bedrock. For the right-hand column, starting from the top row, we are shown

Martian terrain PCA projected value histograms for the first component us-

ing (h) hull-class as Rocks and reference-class as Sand, (j) hull-class as Sand

and reference-class as Rocks, and (l) hull-class as Sand and reference-class as

Bedrock. 69

4.17 Resulting visualizations from applying our algorithm and analytical procedure

to CIFAR-10. (a) shows the probability of separation for a given dimensional-

space when separating Deer from the Horse class convex hull. (b) shows the

histograms of projected values, allowing for interpretation of the behavior

observed in the probability distribution. 73

4.18 (a) First layer weights learned by several convolutional neural networks, (b)

the first layer weight most activated for Deer images, learned by a deep fully-

connected network. 74

4.19 Difficulty spectra produced for MNIST digit Eight 76

xii

4.20 MNIST difficulty spectra produced for images from digit Zero which are in-

creasingly difficult to separate from digit One. 77

A.1 Increasing difficulty of sand terrain samples (true label) w.r.t bedrock terrain

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 87

A.2 Increasing difficulty of sand terrain samples (true label) w.r.t rock-strewn ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several

neural network architectures. 88

A.3 Increasing difficulty of rock-strewn terrain samples (true label) w.r.t bedrock

terrain samples (predicted label) computed by ReDiHull (top-row) and several

neural network architectures. 88

A.4 Increasing difficulty of rock-strewn terrain samples (true label) w.r.t sand ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several

neural network architectures. 89

A.5 Increasing difficulty of bedrock terrain samples (true label) w.r.t sand terrain

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 90

B.1 Increasing difficulty of bedrock image samples (true label) w.r.t gravel image

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 94

B.2 Increasing difficulty of bedrock image samples (true label) w.r.t sand image

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 94

B.3 Increasing difficulty of bricks image samples (true label) w.r.t black sand image

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 95

B.4 Increasing difficulty of bricks image samples (true label) w.r.t gravel image

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 95

xiii

B.5 Increasing difficulty of sand image samples (true label) w.r.t bedrock image

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 95

B.6 Increasing difficulty of sand image samples (true label) w.r.t bricks image

samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 96

D.1 Increasing difficulty of digit One samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 104

D.2 Increasing difficulty of digit One samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 105

D.3 Increasing difficulty of digit One samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 105

D.4 Increasing difficulty of digit One samples (true label) w.r.t digit Four samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 106

D.5 Increasing difficulty of digit One samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 106

D.6 Increasing difficulty of digit Two samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 107

D.7 Increasing difficulty of digit Two samples (true label) w.r.t digit Four samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 107

xiv

D.8 Increasing difficulty of digit Two samples (true label) w.r.t digit Five samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 108

D.9 Increasing difficulty of digit Two samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 108

D.10 Increasing difficulty of digit Two samples (true label) w.r.t digit Seven samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 109

D.11 Increasing difficulty of digit Three samples (true label) w.r.t digit Seven sam-

ples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 109

D.12 Increasing difficulty of digit Four samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 110

D.13 Increasing difficulty of digit Four samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 110

D.14 Increasing difficulty of digit Four samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 111

D.15 Increasing difficulty of digit Four samples (true label) w.r.t digit Eight samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 111

D.16 Increasing difficulty of digit Five samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 112

D.17 Increasing difficulty of digit Five samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 112

xv

D.18 Increasing difficulty of digit Five samples (true label) w.r.t digit Nine samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 113

D.19 Increasing difficulty of digit Six samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 113

D.20 Increasing difficulty of digit Six samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 114

D.21 Increasing difficulty of digit Six samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 114

D.22 Increasing difficulty of digit Six samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 115

D.23 Increasing difficulty of digit Six samples (true label) w.r.t digit Seven samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 115

D.24 Increasing difficulty of digit Six samples (true label) w.r.t digit Nine samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 116

D.25 Increasing difficulty of digit Seven samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 116

D.26 Increasing difficulty of digit Seven samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 117

D.27 Increasing difficulty of digit Seven samples (true label) w.r.t digit Three sam-

ples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 117

xvi

D.28 Increasing difficulty of digit Seven samples (true label) w.r.t digit Four samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 118

D.29 Increasing difficulty of digit Seven samples (true label) w.r.t digit Nine samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 118

D.30 Increasing difficulty of digit Eight samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 119

D.31 Increasing difficulty of digit Eight samples (true label) w.r.t digit Seven sam-

ples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures. 119

D.32 Increasing difficulty of digit Nine samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 120

D.33 Increasing difficulty of digit Nine samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 120

D.34 Increasing difficulty of digit Six samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 121

D.35 Increasing difficulty of digit Six samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 121

D.36 Increasing difficulty of digit Nine samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 122

D.37 Increasing difficulty of digit Nine samples (true label) w.r.t digit Seven samples

(predicted label) computed by ReDiHull (top-row) and several neural network

architectures. 122

xvii

List of Tables

4.1 Convolutional Neural Networks used in experiments; parameter configurations

for CIFAR-10 shown. 49

4.2 Deep Neural Networks used in experiments; parameter configurations for

CIFAR-10 shown. 50

4.3 Standard deviations of pixel values for terrains indicated in each columns.

We note that for both sets of images: sand demonstrates minor differences

in standard deviation between grayscale and blue-channel variants whereas

bedrock demonstrates considerable differences between grayscale and blue-

channel standard deviations. Additionally for Curiosity MastCam images,

the same behaviour is noted when comparing red and blue channel statistics. 63

4.4 CIFAR-10 difficulty quantified using KL divergence. 72

4.5 Average sample prediction error [%] for ”cnn-2l-16u” trained and evaluated

on the CIFAR-10 dataset . 72

4.6 Confusion matrix for ”cnn-1l-16u” trained and evaluated on the MNIST dataset

[%] . 78

4.7 Confusion matrix for ”cnn-2l-16u” trained and evaluated on the MNIST dataset

[%] . 79

A.1 Martian Terrain difficulty quantified using KL divergence 91

A.2 Average sample prediction error matrix for ”dnn-bl” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%] 92

A.3 Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%] 92

xviii

A.4 Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%] 93

A.5 Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%] 93

A.6 Average sample prediction error matrix for ”cnn-2l-16u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%] 93

B.1 CSA MET difficulty quantified using KL divergence. 97

B.2 Average sample prediction error matrix for ”dnn-bl” trained and evaluated

on the CSA MET dataset [%] . 98

B.3 Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the CSA MET dataset [%] . 98

B.4 Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the CSA MET dataset [%] . 99

B.5 Average sample prediction error matrix for ”cnn-2l-16u” trained and evaluated

on the CSA MET dataset [%] . 99

B.6 Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the CSA MET dataset [%] . 99

C.1 CIFAR-10 difficulty quantified using KL divergence 100

C.2 Average sample prediction error matrix for ”dnn-bl” trained and evaluated

on the CIFAR-10 dataset [%] . 101

C.3 Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the CIFAR-10 dataset [%] . 102

C.4 Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the CIFAR-10 dataset [%] . 102

C.5 Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the CIFAR-10 dataset [%] . 103

C.6 Average sample prediction error [%] for ”cnn-2l-16u” trained and evaluated

on the CIFAR-10 dataset . 103

xix

D.1 MNIST difficulty quantified using KL divergence. 123

D.2 Average sample prediction error matrix for ”dnn-bl” trained and evaluated

on the MNIST dataset [%] . 124

D.3 Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the MNIST dataset [%] . 125

D.4 Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the MNIST dataset [%] . 125

D.5 Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the MNIST dataset [%] . 126

D.6 Average sample prediction error matrix for ”cnn-2l-16u” trained and evaluated

on the MNIST dataset [%] . 126

xx

Chapter 1

INTRODUCTION

Deep learning and convolutional neural networks (CNNs) have shown particular promise in

general image classification tasks. Starting with AlexNet [5], CNNs have dominated com-

petitions that evaluate performance on standardized image datasets, such as the ImageNet

Large-Scale Visual Recognition Challenge. In response, autonomous robotics has seen con-

siderable interest directed at transferring these successes to their own applications, fueling

active research into deep learning algorithms for visual terrain classification [6][7][8][9][10];

terrain classes typically include sand, rocks, gravel, and sometimes bedrock, asphalt, or grass.

Example images are shown in figure 1.1.

Figure 1.1: Examples of terrain-images within the Martian Terrain dataset [1]. Sand (left),

bedrock (center), and rock-strewn (right).

Terrain classification has yet to consistently reach the prediction performance of general

1

Figure 1.2: Increasing difficulty, from left to right, of rock-strewn terrain samples (true

label) w.r.t bedrock terrain samples (predicted label) computed by ReDiHull (top-row) and

several neural network architectures.

Figure 1.3: Increasing difficulty, from left to right, of sand terrain samples (true label) w.r.t

rock-strewn terrain samples (predicted label) computed by ReDiHull (top-row) and several

neural network architectures.

object recognition, and there is no large publicly available common benchmark dataset, akin

to ImageNet, specifically for terrain classification making comparing approaches problematic.

In addition to the dearth of available training data, terrain classification may fundamentally

be a more difficult task than general object recognition.

Particularly relevant to this issue is the scarcity of knowledge regarding network design,

and even further limited knowledge of how to design neural networks for specific tasks such as

terrain classification. Instead, typically manual or automated neural architecture search are

employed, requiring the training and evaluation of many architectures [11][12][13]. Further,

there is not yet a widely accepted metric for quantifying how difficult or complex a particular

2

Figure 1.4: Increasing difficulty, from left to right, of digit Eight samples (true label) w.r.t

digit Seven samples (predicted label) computed by ReDiHull (top-row) and several neural

network architectures.

dataset is to classify using neural networks. There is at least consensus that any finite

network’s performance may be constrained by its capacity [14]; the capacity of a network

is a quantity related to the number of architecture design parameters. Without a difficulty

metric for comparing to previously evaluated datasets, though, each new classification task

again requires training and evaluating many architectures of varying capacity.

This work presents an analysis technique that can be used to quantify the difficulty of

specific image classification tasks and to investigate the characteristics of particular diffi-

culties and trends in a way that is interpretable by humans. It then applies this technique

specifically to terrain classification for planetary rovers, as well as demonstrates preliminary

work targeting general image classification. Finally, we produce quantitative and qualitative

comparisons of difficulties predicted via our method and difficulties observed for various deep

learning architectures. A preview of the types of results that will be developed are shown in

figures 1.2 through 1.4.

3

1.1 Literature Review

In order to guide the design of classifiers to accomplish a task, it is necessary to under-

stand the difficulty of that classification task. Datasets of different complexity may be more

efficiently learned by classifiers of differing capacity. Estimating dataset complexity can

guide the search for neural networks that are simple enough to fit in constrained operational

hardware, but complex enough to solve the problem.

As noted by [15], estimating dataset complexity is an underdeveloped problem. Prior

work in dataset complexity estimation can be broken down into two categories. The first

category analyzes image classification complexity in terms of engineered features, such as

texture and colour, or higher-level abstractions like “objectness” and clutter. The second

category consists of data-driven approaches to modelling the difficulty of learning a task.

The first category relies on features that humans can observe in the dataset that could

explain confusing or ambiguous data points. Features include, but are not limited to, image

quality [16], object variations [17][18][19], and scene information [20][21]. These approaches

rely on the measurement or identification of features to predict the difficulty of a recognition

task. [17] developed a metric which considers difficulty as a function of images’ clutter - a

quantity based on the number of possibly-object containing windows sampled before a true

class-object is found. Others who explored difficulty prediction through measurement of

image characteristics include [19] who considered difficulty as related to various pixel value

statistics, as well as [22] who also considered somewhat similar statistics, however relating

them to time required by a human to produce an image’s annotation.

These limitations are of particular significance when considered for predicting terrain

classification difficulties: in general, samples within terrain classes cannot be accurately

described by a single pattern or feature as they lack commonality. To illustrate this, consider

the samples of digit Eight presented within figure 1.4. It is clear that variation exists between

samples, however, we may accurately presume that any and all samples within this digit

class can be described as demonstrating a self-intersecting loop-like structure. In contrast,

terrains classes are not likely to demonstrate these types of unifying features. As consequence

of this property, characteristics and scenarios widely regarded as relating to difficulty, e.g.

4

occlusions, cannot be confidently presumed as introducing difficulties to terrain classification

and similar data.

While using human-identifiable characteristics may allow for more interpretable architec-

ture design, these methods make strong assumptions regarding the content and meaning of

image characteristics and statistics that relate to difficulty. First, they assume the character-

istics are static and globally relevant. Human operators may select features that satisfy their

preconceived notions of difficulty, and may not truly represent the data in the dataset. Sec-

ondly, features that are designed to work in a dataset may not be generally applicable across

different kinds of datasets, creating a new design burden with each new dataset analyzed.

Given that any collection of predetermined features are unlikely to capture task-agnostic im-

age classification complexity, researchers have developed complexity metrics that are derived

from empirical analysis of the datasets.

The second category of complexity metrics use measures of difficulty of working with the

dataset directly, instead of relying on features identified through a qualitative assessment

of images. [15] estimates dataset complexity through the performance of different “probe

networks” on the classification task. The complexity of the networks required to achieve good

performance are used as a proxy for dataset complexity. [18] used human response time in a

visual search task as a predictor of image difficulty. While the approach could be conceivably

applied to classification problems, the metric really measures the complexity of individual

images and not the dataset as a whole. Naturally, the complexity of the dataset could be

estimated through an analyses of the complexity of the constituent images, but recruiting

sufficient human labour to complete this task may be prohibitive. It should be noted that

although these methods do not explicitly consider visually observable image attributes, visual

similarity between difficult images is commonly seen.

As mentioned earlier, measures of dataset complexity based on hand-engineered features

have the advantage of being interpretable to humans designing classifiers, but they may

not generalize across datasets. Conversely, data-driven measures of dataset complexity can

generalize across datasets, but they don’t elucidate what about the dataset makes it complex

to classify.

5

1.1.1 Attributes Considered Explicitly

Russakovsky et al. [17] developed a metric for estimating the difficulty of a joint classification

and localization task. The authors propose a technique to obtain an image’s difficulty using

a measure of ”clutter” - a quantitative description of how many possibly-object containing

windows must be sampled before sufficient localization is achieved, using intersection over

union as this criterion:

IOU
(
B̂, B

)
=

area
(
B̂ ∩ B

)
area

(
B̂ ∪ B

) ≥ 0.5

Where B is the true object-region and B̂ is a predicted region, such as those described

as possibly-object containing windows.

Next, the authors sample one thousand windows Wm = {Wm
1 ,W

m
2 , ...W

m
1000 } for each

image m then rank them based on their probability of containing any object, i.e. objectness.

The type of object potentially contained within a window or whether the potential object

corresponds to any of the provided classes is not considered in this step.

With Wm as an ordered set, they count the k number of windows which must be evaluated

before IOU (Wm
k , B

m
i) ≥ 0.5 where the image m contains Bm

1 , B
m
2 , ..., labelled objects. This

process corresponds to the OBJ measure of the image:

OBJ (m) = min{k : maxi IOU (Wm
k , B

m
i) ≥ 0.5}

Finally, the clutter of a class may then be computed as:

CLUTTER = log2

(
1

M

∑
m

OBJ(m)

)
Conceptually, the resulting metric returns a higher value when applied to images or

scenarios which are more difficult to localize. While this is less likely to be problematic in

an object detection setting, their application does not consider how dissimilar an object is

from its labelled class. In other words, it may be straightforward to identify that a labelled

region indeed contains an object however this does not guarantee that a correct prediction

of the object’s class may be obtained with similar effort.

Vijayanarasimhan and Grauman [22] explored image difficulty estimation to improve

the efficiency of an active learning routine for training a multi-instance multi-label (MIML)

6

[23] system. Active learning is a training paradigm in which the ”student” classification

algorithm may query a ”teacher,” in this case a human, for additional information regarding

a given training example. Multi-instance multi-label problems differ from traditional image

classification in that each image may contain multiple classes, as well as multiple instances

of a given class.

In their work, the active learning system may query a user to obtain one of three possible

annotation types: segmentation and labelling of any and all instances within an image,

segmentation of a single instance, or an image-level label describing whether any such object

is contained within the image. These three scenarios correspond to tasks demanding a

decreasing amount of manual effort, and moreover, may result in varying amounts of benefit

to the system. As such, the authors devise a method to estimate the value of information

of a potential query - a quantity they obtain based on the trade-off between required effort

and information benefit.

An image’s required effort is defined as the (normalized) time required by human anno-

tators to complete the relevant segmentation task. Using the acquired measurements, they

create a system which when given an image, returns a cost estimation for the candidate

annotation(s) in terms of predicted time required for the task(s).

This cost function does not map the image directly to a time prediction, rather, the

authors extract low-level features to serve as predictors. Considered features include a his-

togram of oriented gradients, edge density, color histogram, and grayscale histogram. Using

multiple kernel learning, they find that edge density significantly outweighs other features

as a predictor.

The total cost of a dataset is computed as the sum of the annotation costs and prediction

risk carried by unlabelled, labelled, and partially labelled images. Using this, they determine

the information benefit, or value of information as the predicted change in total cost.

Within the perspective of our work, measurements of human subjects’ activities is seen

as significantly limiting. With that being said, their system, particularly their designation

of the value of information attributed to a certain representation, is of great interest.

Work done by Liu et al. [19] attempted to predict the cost of segmenting an image. To do

so, authors considered segmentation difficulty as being linearly related to an image’s low level

7

statistics and texture properties. For each image within the studied Berkeley segmentation

dataset, four representations are obtained - CIE LAB color, grayscale, local binary pattern

(LBP), and log gradient. From each of these representations, they extract the mean and

variance of pixel values. Denoting an image representation x flattened into a 1 × m sized

vector x = 〈p1, p2, ..., pm〉 the mean µ and variance σ2 may be computed as follows:

µ =
1

m

∑
p∈x

σ2 =

√
1

m

∑
p∈x

(p− µ)2

Next, they construct histograms for the color, grayscale, and LBP representation, as well

as a log histogram for the log gradient representation. For each of these four histograms,

they compute the entropy and variance.

Additionally, they determine the maximal bin-count within the LBP’s histogram for use

as a feature. The final features considered are slopes and intercepts obtained by approxi-

mating the log histogram of log gradients as a piecewise function comprised of two linear

equations - one positive slope and one negative slope.

Concatenation of all listed features produces a 29-variable length feature vector X for

each image. Using the images’ f-measures [24] as the output variable y they model a basic

linear equation of the form:

y = Xβ + ε

As the authors’ work is focused on object segmentation, the intermediate recognition

task exists, albeit implicitly; the problem does not require prediction of a class label, solely

correct segmentation of the depicted object. With that being said, the algorithm must

be able to identify the correct object within the image. Thus while their technique lacks

consideration of the individual class definitions, they are still capable of obtaining relevant

difficulty estimates. Moreover, each image generally contains a single object-class, further

reducing the need for incorporation of class definitions and their individual difficulties.

8

Rahman and Fairhurst [2] proposed a process for measuring dataset complexity based

on the similarity between class’ binarized image content. Binarization is achieved through

the use of 1-bit, single channel images. In other words - a pixel value of 0 denotes ”off”

and 1 denotes ”on”. They express class similarity Sijkl by determining the number of shared,

positive pixel values between binarized images, where the pixel value of an image at the xth

column and yth row is obtained as P (x, y). Given a pixel position, the kth image of the ith

class, and the lth image of jth class, they simply compare pixel values between images:

ζ (Pi,k (x, y) , Pj,l (x, y)) =

1 Pi,k (x, y) = Pj,l (x, y) = 1

0 otherwise

The function ζ is essentially a direct true-false comparison between pixel values at iden-

tical positions. Obtaining this comparison over all possible combinations of image pairs for

the two selected classes allows them to obtain the between-class similarity measure:

Sijkl =

ncols−1∑
x=0

nrows−1∑
y=0

ζ (Pi,k (x, y) , Pj,l (x, y))

The chosen method of determining similarity between images is too naive for most prob-

lems; neglecting to consider any information besides mutual, positive pixel values results in

a metric which may yield questionable statistics when applied to a task with more varied

perturbations of size, position, and/or orientation. As example, consider the images shown

in figure 1.5, where 1.5(a) and 1.5(b) are images sampled from the same class I and 1.5(c) is

sampled from class J . Although 1.5(a) and 1.5(c) both depict image-concentric squares, the

similarity produced for this pair of images is zero-valued. In contrast, the similarity between

1.5a and 1.5c is non-zero, despite being significantly different.

In summary, while work was demonstrated for datasets of handwritten and machine-

printed alphanumeric characters, these datasets characterized as having minimal signal noise

and/or within-class variations. Images having such characteristics are less likely to contain

instances afflicted by the potential limitations of the similarity measure used.

9

(a) (b) (c)

Figure 1.5: Hypothetical scenario illustrating potential vulnerability of the similarity mea-

sure applied in [2]

1.1.2 Attributes Considered Implicitly

Ionescu et al. [18] present image difficulty as related to the time required by a human to

complete an accompanied recognition task. This is somewhat similar to [22], however rather

then measure the time required to segment the image, they measure the time required to

detect whether an object is in an image. The response times of human-annotators were

recorded using images from the PASCAL VOC 2012 dataset. Subjects were presented an

image and object name from 20 possible objects, then required to determine whether the

given object is visible within the image.

To gain insight into the influence of observable image properties on visual search difficulty,

they compute Kendall’s τ correlation between images’ rankings produced by the measured

response times and seven attributes potentially inducing challenge: (i) number of objects,

(ii) objects’ area relative to image size, (iii) objects’ position relative to the image center,

(iv) number of different classes, (v) number of truncated objects, (vi) number of occluded

objects, (vii) number of objects marked as difficult. These statistics were computed using

information supplied in the PASCAL dataset’s annotation files.

The more strongly correlated attributes (i), (ii), (iii), and (iv) resulted in abs (τ) ≈ 0.30

while (v), (vi), and (vii) resulted in abs (τ) ≈ 0.22. To consider the statistics jointly, they

train a ν-support vector regression model. This yields the highest correlation τ = 0.36

among these tests.

These results were then used as a performance baseline to design a system for obtaining

10

higher-confidence predictions of image complexity. The proposed system utilized two CNN

models to obtain deep features of an input image. These features were then concatenated

and further processed to obtain complexity predictions with a Kendall’s τ = 0.47.

Of course, the process of measuring response times for humans will be unfeasible for

many scenarios. It remains to be seen how this difficulty measure can be applied to other

datasets, especially those which are significantly different than that which was used.

The work by Scheidegger et al. [15] determines dataset complexity using ”probe nets” -

this technique basically translates to the performance achievable by various sized deep learn-

ing architectures. The authors estimate image classification difficulty, or required effort, as

a quantity found in relation to the networks’ size and accuracy. The authors also considered

k-means and silhouette scoring as comparative methods for predicting dataset complexity.

They found that the probe nets were significantly better at estimating dataset complexity

(R2 = 0.89− 0.99) compared to k-means and silhouette scores (R2 ≈ 0.31). It is important

to note that these results, while promising, are limited by the fact that the authors applied a

single network as reference. In further detail, each methods’ correlation coefficient was com-

puted in reference to the performance of a ResNet-20 neural network architecture evaluated

on the tested datasets.

Another potential concern is that the degree to which the measured complexity depends

on the utilized architecture(s) is unknown. Such a system may predict a certain dataset as

being complex, when in reality, an architecture or algorithm more suited to the evaluated

dataset was not considered.

Earlier work by Ho and Baird [3] proposed a method for estimating the intrinsic difficulty

of an image classification problem - that is, estimating the minimum achievable error dictated

by the task, regardless of the applied classification system. This fundamental limit is known

as the Bayes error [14]. To illustrate an instance of how and why this limit may manifest,

consider a hypothetical image classification dataset for which labels were produced by human

annotators. During this process, a few images from class J were accidentally duplicated and

assigned to class K. Although they likely account for a minute amount of the total sample,

the dataset now contains identical images with differing class assignments. Without this

additional knowledge, any system, no matter its capacity, will achieve a non-zero error rate.

11

Labelling error is, of course, not the only potential source of inherent error. Common among

any such source is that they may be described as an insufficiency of the given training data

in representing the class.

(a) (b)

Figure 1.6: Examples of the characters generated by Ho and Baird [3] used to predict the

Bayes error rate

While a task’s performance ceiling is valuable knowledge, it does not provide sufficient

information to fully characterize the task’s difficulty. To elaborate, the intrinsic error of a

problem may advise whether to continue expanding the capacity of a given system, however,

is likely incapable of directing which type of classification algorithm to use or revealing

behaviors which guide more computationally efficient design modifications. Moreover, using

irreducible error alone is unlikely to yield accurate representations of dataset difficulty.

12

1.2 Contributions

We attempt to consolidate the positive aspects of both approaches noted in the literature

review, seeking to estimate dataset difficulty. The following are the primary contributions

of our work:

• We propose a novel algorithm for organizing images with respect to their classification

difficulty, as defined by the number of principal components required to construct a

space in which the latent representation of an image of class A is separated from the

convex hull of latent images of another class B.

• We detail a framework for identifying human-interpretable characteristics related to

the classification difficulty of particular image classes.

• We present case studies of our method applied to terrain classification on Martian

terrain and Mars analogue terrain, object classification, and handwritten digit clas-

sification.We demonstrate our method’s potential through comparative analysis with

various deep learning models.

13

Figure 1.7: Block diagram of the proposed system. Chapter 2 discusses the details concern-

ing the algorithm block, including its output; Chapter 3 outlines the analytical procedure

developed for interpreting the algorithm outputs; Chapter 4 details the datasets applied as

inputs to this system, as well as the resulting outputs.

1.3 Thesis Outline

In the next chapter, we outline the ReDiHull algorithm, its main components - a dimension-

ality reducing method and class model, and its output data. Chapter 3 provides detailed

instructions for producing and analyzing derived data to learn characteristics of a given

image classification dataset, and outlines a method to quantify difficulty between classes.

Chapter 4 both illustrates and discusses select results obtained by applying the algorithm

and analysis for four different image classification datasets, and where applicable, includes

comparisons of statistics resulting from several deep learning architectures.

14

Chapter 2

ALGORITHM

Our proposed algorithm is an iterative search for a reduced dimensionality representation

where all classes in a dataset are contained in non-overlapping subspaces. In this chapter,

we explain the ReDiHull (reduced-dimensionality class-convex hull) algorithm underlying

our method. The algorithm begins by learning a reduced-dimensionality representation

of the input data (subsection 2.1.2). Within this representation, we examine each class-

subspace (subsection 2.2), recording the data points contributing to between-class overlap.

We repeat the process, incrementing the dimensionality of the reduced-representation, until

between-class overlap is eliminated or a maximally-sized space is reached. We use the number

of dimensions needed to separate out the different classes as the measure of classification

complexity.

For sections within this chapter, we will use X to refer to the input dataset. We assume

X ∈ Rn×m is a sequence of n number of samples {xi}n−1i=0 , produced by flattening images of

equal height, width, and depth, into m-length vectors. We also assume X is normalized by

subtracting the empirical mean x̄ =
1

n

n∑
i=0

xi from each flattened image.

15

2.1 Dimensionality Reduction

Incremental analysis of the latent representation Z produced for input data X allows us

to make inferential observations of both the amount and type(s) of information required to

separate classes. We will denote the transformation f which maps our input X ∈ Rn×m to

a latent representation Zd ∈ Rn×d as:

f(X, d) : X→ Zd (2.1)

In order for interpretable results to be extracted, the dimensionality reducing model and

resulting representation have the following requirements:

1. Latent variables and/or the corresponding latent representations are ordered with re-

spect to their score, given by a predefined metric,

2. The dimensionality reducing method should be reproducible, such that the order ob-

tained in 1 is consistent between trials,

3. The change in distance between any two points produced by a change in their repre-

sentation’s dimensionality Rd → Rd+1 must be greater than or equal to zero.

We necessitate criteria 1 and 2 to ensure the validity and robustness of the resulting

method. Without these requirements, extracted characteristics cannot be confidently relied

upon as they may be the result of trial-dependent factors (e.g. variables initialized using

random values). As consequence of these two criteria, dimensionality reduction techniques

based on convex functions are more likely to be found suitable; techniques whose computation

produces a unique solution are guaranteed to satisfy these requirements.

The final requirement 3, while critical to the proposed method, is perhaps the easiest

to satisfy; it is only relevant to rarely-encountered, abstract scenarios. For example, if the

chosen function for (2.1) is stochastic, or the implementation does not follow the definition

of a ”pure function1,” then this requirement may be of concern. This is imposed to ensure

coherency of the methods results as well as to further constrain the system’s outputs to being

a property of the input dataset, rather than a property of the chosen method.

1A pure function describes a function having immutable properties: for any given succession of function

calls which use identical input values, the function will return identical output values

16

2.1.1 Analysis of Dimensionality Reducing Methods

To help guide our selection, we began by comparing the efficacy of several dimensionality

reducing methods. Considerable motivation for performing this analysis was owed to uncer-

tainty regarding the expressive power of non-linear methods / non-linear units compared to

linear counterparts.

Experiments were conducted using (i) MNIST and (ii) CIFAR-10 to train and evaluate the

following dimensionality reducing models: PCA, non-negative matrix factorization (NMF),

an autoencoder (HAE) with the configuration presented in [25], independent component

analysis (ICA) using the logarithm of the hyperbolic cosine as the neg-entropy function,

ICA using the natural exponential function as the neg-entropy function, and ICA using a

third-degree polynomial as the neg-entropy function.

Shown in figure 2.1, the deep autoencoder out-performs other methods for a latent rep-

resentation using fewer than thirty variables. At this point, the deep autoencoder and PCA

share the same reconstruction error.

Figure 2.1: Comparison of reconstruction error per number of latent variables. Evaluated

using the MNIST’s test subset of 10 000 images.

While the autoencoder was found to produce a superior dimensionality reducing function,

17

its performance compared to PCA was not significant enough to justify its potential to intro-

duce uncertainty. Autoencoders, like other deep learning algorithms, constitute a non-convex

optimization problem; subsequent trials are not guaranteed to produce similar performance

or even converge to local optima. Further, we found the networks to demonstrate capricious

performance in response to the introduction of minor architectural variation.

2.1.2 Principal Component Analysis

For this study, we use principal component analysis (PCA) for dimensionality reduction.

PCA is an orthogonal, linear transformation, that projects samples into a coordinate system

whose axes encode the directions of greatest variation within the applied training data. PCA

satisfies the first imposed requirement by ranking principal components with respect to the

amount of variation they capture. Compliance with the second requirement is guaranteed

by the transformation’s orthogonality. PCA is one of several dimensionality reduction tech-

niques that satisfy the requirements, and is one that is widely used and for which multiple

efficient implementations exist.

(a) (b) (c)

Figure 2.2: (a) DCT basis functions, (b) PCA loading vectors, (c) ICA basis; Sourced from

[26].

As PCA is the linear transform, optimal for retained variance, it is inherently useful

for applications where the most important information is undefined / unknown. Being

linear, we surmise that there may be non-linear methods capable of retaining more variance

using fewer variables, however preliminary experiments suggest that the particular choice of

18

dimensionality reduction technique does not produce much difference in the context of our

algorithm.

Figure 2.3: Example of the directions of maximal variance computed using PCA.

Other conceptually relevant properties lie in the ranking and types of features learned

for applying PCA to image data; We observed that under this application, PCA uncovers

2D-frequency features, ranked with the lowest frequencies first. Referring to figure 2.2, we

are shown that these features and rankings are in fact quite similar to the basis functions

of the discrete cosine transform [26]. As consequence of this property, PCA leads to similar

findings as other works, such as [18], which found that cluttered images - in other words,

images with higher frequency content - resulted in more challenging tasks. An exemplar of

this relation is shown in figure gained 2.4, obtained by applying PCA-based ReDiHull to

CIFAR-10.

Definitions

We will denote the linear transformation obtained through PCA as:

Z = X Wᵀ (2.2)

Where each of the d columns in matrix Wᵀ represents a computed loading vector w(d)

19

Figure 2.4: Image samples from the CIFAR-10 Bird class ordered by increasing difficulty

(left to right) according to ReDiHull.

with the first column as the first obtained. The number of possible loading vectors is finite,

limited by either the number of samples or number of features d ≤ min(n, n). We define

this limiting value as:

k = max(d) (2.3)

In the context of (2.1), a projection onto k loading vectors is equivalent to (2.2), i.e

f (X, k) = Zk = X Wᵀ. We may also achieve a latent representation in terms of d < k

number of latent variables by substituting the matrix W with the submatrix obtained by

removing its k− d last columns, i.e. Zd = X Wᵀ
d where

Wd =


w1,1 · · · wd,1 · · · wk,1

w1,2 · · · wd,2 · · · wk,2

...
. . .

...

w1,m · · · wd,m · · · wk,m

 −→


w1,1 · · · wd,1

...
. . .

...

w1,m · · · wd,m



Another operation which will be frequently used is obtaining a reduced representation

specific to a single latent variable located at index (d). We achieve this as the projection

onto w (d) a single loading vector having the dth highest ranking:

Z(d) = X wᵀ
(d) (2.4)

Computing PCA

To begin, we obtain the first loading vector as the unit vector which satisfies:

w(1) = arg max
||w ||=1

(wXᵀ X wᵀ) (2.5)

20

Since w(1) is a unit vector, (2.5) is rewritten as,

w(1) = arg max
||w ||=1

(
wXᵀ X wᵀ

w wᵀ

)
(2.6)

The solution to equation (2.6) is obtained as the eigenvector having the largest eigenvalue for

Xᵀ X. This is satisfied when w corresponds to this eigenvector. With w(1) obtained, we may

now remove the information it captures from the input dataset, allowing us to compute w(2).

We proceed to removing the variance which has been accounted for by w(1). This produces

a new representation of the input data, denoted as X̃d. for which the process is repeated by

replacing instances of X with (X̃). i.e.

X̃1 = X−Z(1)w(1)

Prior to computing each subsequent loading vector w(d) the variance-removed representation

must be updated as follows:

X̃d = X̃d−1 − Z(d)w(d) (2.7)

Where for d = 1, we use X̃d−1 = X. As a final step, we write (2.6) in a general form:

w(d+1) = arg max
||w ||=1

wX̃
ᵀ
dX̃dw

ᵀ (2.8)

While the formulation given only allows for computation of single loading vectors, sequen-

tially, methods exist permitting the computation all columns of matrix W simultaneously.

In fact, recalling that the solution to (2.6) was given as the eigenvector having the largest

eigenvalue for Xᵀ X we may extend this logic, realizing that eigenvalue decomposition of the

covariance matrix of X would yield all possible loading vectors.

It follows that the entire matrix W can also be determined using singular value decompo-

sition (SVD), however, considering both the size of images and number of samples contained

within a typical image dataset, the computation of Xᵀ X demands a significant amount of

resources which are not always available.

Moreover, we have found that for the majority of datasets applied to our algorithm, the

stopping criteria is reached using a very small number of loading vectors. Computational

resources can be consumed more efficiently by determining loading vectors on an as-needed

basis. As consequence, we have found that solving (2.8) to obtain loading vectors sequentially

21

is preferable. Our implementation solves each wd using the randomized SVD algorithm

proposed by Halko et al. [27]

2.1.3 Discovering the Effects of Sample Variation using PCA

We summarize the conceptual role of PCA in our algorithm as well as introduce a visual

reference leading to next section (2.2) on convex hulls through presentation of a case study:

In this case study, we examine the relational effects induced by variation within class samples.

This is carried out using the rock-strewn terrain class from the Martian terrain dataset [1].

Specific details regarding this dataset and its preprocessing can be found in 4.1.

The images shown in figure 2.5 depict four neighboring patch samples assigned to the rock-

strewn terrain class. While they all share the rock-strewn terrain label, they are certainly

not identical: differences in samples’ horizontal and/or vertical positions has introduced

within-class variation.

Given the observed variation between samples, determining its effect on the class may

prove informative. Such an analysis requires (i) a method of reducing the images’ dimen-

sionality, and (ii) a technique to model the class boundaries. The combination of these will

allow us to study the variation’s effect on the class boundaries with respect to a few, isolated

variables.

As this section has already determined PCA as a suitable answer to (i), let us begin

by obtaining the reduced dimensionality representation of the samples. This is achieved

by computing PCA against the entire Martian terrain training set, then transforming the

samples through projection onto the resultant PCA loading vectors. Projecting the four

rock-strewn samples from figure 2.5 onto the first 5 PCA loading vectors yields2:

2While the absolute values are conserved, projections’ signs were flipped to avoid confusion within figure

2.6

22

x1W
ᵀ
5 =

[
11.40 −2.28 3.68 0.40 −0.03

]
x2W

ᵀ
5 =

[
11.22 2.39 2.99 0.76 0.17

]
x3W

ᵀ
5 =

[
11.01 −2.35 −3.57 0.62 0.02

]
x4W

ᵀ
5 =

[
11.76 2.13 −2.91 0.78 0.37

]
Returning to figure 2.5, a simple, visual comparison between samples allows us to as-

sociate the given action (shifted sampling positions) with an effect (qualitative differences

between images). Now, we may compare samples quantitatively, allowing us to obtain a

similar, cause-effect association, within the context of the images’ projections. Proceeding

with this comparison, we note that for the first loading vector, only minor differences be-

tween samples’ projections are observed. Continuing to the second loading vector, we observe

low variation within the paired samples x1 and x3, and similarly low variation within the

pair formed by samples x2 and x4. In contrast, comparisons made between these pairs (i.e.

comparing x1 to x2) demonstrate considerable difference.

By repeating this procedure for the remaining values, we may associate the shifts to

sampling positions as affecting projected values onto loading vectors w2 and w3. To better

visualize the identified effects, we provide the result of plotting samples with respect to these

two components in figure 2.6.

The identified variation in projected values does reveal a potentially limiting property of

PCA: its lack of invariance with regard to simple perturbations when applied to images. As

all pixel values are considered simultaneously - that is, without concern for local inter-pixel

relations - small deviations in an object’s position or rotation may translate into large differ-

ences between projected samples. For many applications, this presents significant concern -

PCA may be described as an optimal transform for minimizing reconstruction error, however

the differences in projected values may transfer into the model’s efficacy in reconstructing

the original image. With that being said, while an invariant transform may produce a more

efficient reduced representation, the invariance may also limit or even remove our ability to

study the effects of the variation introduced. For example, replacing PCA with a technique

invariant to positional changes may result in all four images having similar projections. Re-

23

producing this example hypothetically, the use of some invariant transform might lead to

the conclusion that these positional changes will have no influence on dataset difficulty as

they have little impact on the projected values.

24

(a)

(b) (c)

Figure 2.5: (a) An image captured by the ”Opportunity” rover on Sol 2174 depicting rock-

strewn Martian terrain. (b) A zoomed-in section of the original image. This section contains

(c) the four neighboring patch samples extracted from this scene.

25

(a)

(b)

Figure 2.6: (a) The four rock-strewn terrain samples and corresponding plot color. (b) The

projection of the four samples onto two PCA loading vectors; projections onto w2 are shown

on the horizontal axis while projections onto w3 are shown on the vertical axis.

26

2.2 Convex Hull

At each incrementally higher-dimension latent representation, the overlap (or conversely the

separation) of classes is determined. We model a class-occupied subspace as the convex hull

produced by its constituent samples. Employing this definition allows us to evaluate our

ability to distinguish between classes within a latent space, regardless of the corresponding

transformation’s relation to this criterion.

Figure 2.7: A change in dimensionality affects the overlap of classes in the latent space.

The black points encompassed by the blue convex hull in a 2-dimensional space are no longer

found to be overlapping with the convex hull when examined within a 3-dimensional space.

Whenever a convex-hull is referenced, we refer to its corresponding class as the hull-class

ψ whose subset of dataset samples is given by Xψ. The convex-hull itself may be determined

as the set of all convex combinations of points x ⊂ Xψ. As our analysis is performed

exclusively on the latent representation f(X) we provide the convex-hull’s definition [28]

accordingly, written in terms of z ⊂ Zψ.

Conv(Zψ
d) ≡


|Xψ |−1∑
i=0

Aizi

∣∣∣∣∣∣ ∀i : Ai ≥ 0 ∧
|Xψ |−1∑
i=0

Ai = 1

 (2.9)

27

2.2.1 Determining Overlap

Now, with a hull-class ’ role defined, the next step it to form a class-pair (ω, ψ) for which

to compute overlap, through selection of a reference-class ω. It follows from (2.9) that if a

point q ⊂ Zω is not within the set of possible convex combinations produced by Conv(Zψ),

it is not contained within the convex hull.

Due to a combination of the algorithms’ time complexities and inefficiencies related to

implementation, we determine whether a point overlaps with a convex hull using two meth-

ods, whose selection is made based on the current value of d. We found that computing the

convex hulls is done in near linear time for dimensions 1 through 5, however computation

time increases rapidly when past this range. The linear programming approach follows a

log-like curve, thus cumulative time increases rapidly for the lower dimensions.

d ≤ 5 For scenarios within this condition, we determine overlap by first computing the

convex hull vertices for points Zψ, then computing the vertices of Conv
(
q ∪ Z̄

ψ
)

, where Z̄

represents the vertex subset of Z. If q overlaps with the convex hull of Zψ, then it will not

be within the set of vertices produced by Conv
(
q ∪ Z̄

ψ
)

.

d > 5 While the process described for d ≤ 5 is relatively quick for small values of d,

computation times for larger dimensional spaces increases quite rapidly. As a result, we

follow a different procedure for d > 5. In theory, we pose this as a linear programming

problem of the following form:

Find q

subject to q =
nψ−1∑
i=0

Aizi

where,
nψ−1∑
i=0

Ai = 1

and Ai ≥ 0 for all i = 0, ..., nψ − 1

28

This may be recognized as a linear feasibility problem, where q is a point belonging to

the projected reference class ω and zi is a point belonging to the projected hull class ψ.

To implement this in practice, we formulate a linear optimization using the interior point

method described by [29]:

Minimize cᵀA

subject to Aẑ = q̂

and A ≥ 0

However, we do not need to perform the optimization; we want to determine the feasibility

of the problem with regards to its constraints. Feasibility indicates whether or not the point

is within the convex hull. The variable c is set to zero as it can be any arbitrary vector.

ẑ =



z1,1 z2,1 · · · zN,1

z1,2 z2,2 · · · zN,2
...

...
. . .

...

z1,m z2,m · · · zN,m

1 1 · · · 1


where zi,j ∈ Zψ

q̂ =
[
q1,1 · · · q1,m 1

]
where q1,j ∈ Zω

While the linear programming formulation spares us from having to compute the convex

hulls, feasibility is determined at minimum |{X} − {Xψ}| times for each class. We have

found this is prohibitive for datasets containing many classes, where each class is comprised

of many points. To overcome this challenge, we reduce each set of hull-points Zψ to its set

of vertices, relevant to each of the examined projective spaces.

The use of convex hulls for dataset modelling has seen success in various classification

and image processing solutions [30][31][32][33]. Given the role of convex hulls within our

outlined technique, it is important to bring attention to nearest convex hull (NCH) classifiers.

Introduced in [34], these types of systems consider classes as the representation gained by

their convex hull(s), allowing unlabelled samples to be assigned to their nearest convex hull.

As result, NCH classifiers share a high degree of conceptual overlap with both k-nearest

29

neighbor and support vector machines (SVM) algorithms. In fact, the formulation of SVMs

and convex hulls are so closely related that the SVM separating plane for a binary class

problem can be interpreted geometrically as the plane located at the midpoint of the two.

2.2.2 Determining Vertices

Here we describe the process employed for determining the convex hull vertices of a class.

In short, this method determines class vertices simply by following the routine described in

section 2.2.1, using the input class pair for which the hull-class has the same label as the

reference-class i.e. ψ = ω. At a given dimensional space, the samples within this self-test

determined non-overlapping are equivalent to the convex-hull vertices within that space.

Furthermore, samples found to be vertices at some dimension d are also vertices for all

subsequent dimensions.

Now, it may be apparent that if the hull-class and reference-class share the same defini-

tions, then for any xi ⊂ Xω it is also true that xi ⊂ Xψ. As consequence, it will be impossible

to separate any xi from the convex-hull Conv
(
Xψ
)
, regardless of their representations. To

circumvent this, we calculate overlap for each xi using the convex-hull which has this specific

point removed from its hull-defining set of points Conv
(
{Xψ} \ xi

)
.

2.2.3 Special Case for Vertices - Class Generalization

While described in the context of vertex determination, following this procedure allows us

to simultaneously obtain statistics regarding the class’ generalization. Discussed in further

detail later on, determining overlap at each dimension using a self-test ψ = ω provides the

ability to gain a sense of how generalized a class is. The premise is that the effort required

to separate an image from its own convex-hull relates to the class’ generalization.

It should be noted that some aspects concerning the class generalization are still not

fully understood; as we are redefining the hull for each tested point Conv
(
{Xψ} \ xi

)
we

are guaranteed to have separable points, no matter how well our training points represent

the class. Now, while this is the correct behavior for extracting vertices, it is less desired for

obtaining measures of class generalization. Consider we instead had two subsets for each class

30

- one for defining the hull and another for use as reference points. Under the scenario ψ = ω

we would have |Xψ∪Xω| = 0 thus the convex-hull may be defined consistently between each

tested xi ⊂ Xω. The counter argument to this, however, is that partitioning class examples

into two distinct sets will reduce the reliability of each class’ extracted statistics through

decreased number of samples. To elaborate, the subset of points which define Xψ will now

be smaller than it was previously. Additionally, the same class’ subset of reference points

Xω will also have a reduced number of samples.

While there are likely other methods capable of modelling the class-subspaces with higher

fidelity, the technique itself is not meant to be a classifier - it is meant to highlight modes

of potential difficulty which may be used to design a classifier. Selecting a more advanced

method may dampen the effects or possibly eliminate them; the consequence being the loss

of ability to associate such flaws with the original data. By using a naive method, the

underlying issues are more likely to be kept in tact, thus allowing the ability to identify

whether or not they are present.

31

2.3 ReDiHull Algorithm

The previous sections discussed the two central pieces of our ReDiHull algorithm: a dimensionality-

reducing technique and class convex hull model. Here, we summarize the algorithm, allowing

for understanding of its output.

As the dimensionality of the reduced-dimension representation is incrementally increased,

between-class overlap can decrease, as illustrated in figure 2.7. The number of dimensions

needed to separate out the different classes is a measure of classification complexity.

ReDiHull is summarized in pseudo-code, shown as algorithm 2.8. We have as input (i) a

reference-class subset, either training or testing, and (ii) a hull-class subset. We initialize the

algorithm at dimension d = 1, with the set of overlapping points initialized with the entire

reference-class subset, i.e., Θ(ψ ω)
 = Xω. The algorithm is presented in a form which produces

full enumeration of overlaps at each d for a given class pair, by operating recursively.

Application of the algorithm results in the sequence Θ which stores the computed sets

of overlapping points in order of increasing space-dimensionality. From this definition, it

appears that for d = 0, ..., k we have Θd ⊆ Xω thus for a worst case scenario translates to

storing k copies of the Xω subset of images. This is an inefficient allocation of resources

and should be avoided in practice. Instead, it is much more desirable to implement Θ as

containing the indices of overlapping samples from Xω at each dimension.

While algorithm 2.8 is presented as a binary-class problem, expanding its use is quite

simple; in order to apply the algorithm to datasets having more classes, one need simply

apply ReDiHull to all possible class-pair permutations. The order in which class-pairs are

analyzed does not matter in general, unless “reduced” convex hulls are used.

Recall that a convex hull may be reduced to its vertices without loss of accuracy - we

leverage this property to decrease computational burden. Given a class ψ we may obtain

its reduced convex hull as its subset of convex hull vertices within a d-dimensional repre-

sentation. Under this circumstance, the selection of any ψ which constitutes a first-time

occurrence should analyze the class-pair satisfying (ψ, ω) = (ψ, ψ) before any other. In

other words, whenever a certain class “J” is selected to serve as the hull-defining class and

the class “J” has never been selected as the hull-defining class in previous iterations, then

32

Algorithm 1: ReDiHull Algorithm

Input: Θ
(ψ ω)
d− , Xψ, d

begin

Zψ
d ←− f

(
Xψ, d

)
Θ

(ψ ω)
d ←−

{
q | ∀ q : q ⊂ Θ

(ψ ω)
d− and f (q, d) ∈ Conv

(
Zψ
d

)}
if
∣∣∣Θ(ψ ω)

d

∣∣∣ > 0 and d < k then

ReDiHull
(
Θ

(ψ ω)
d , Xψ, d+1

)
end

end

Figure 2.8: ReDiHull algorithm presented for a binary classification task.

the reference-class should be chosen as class “J” as well.

33

Chapter 3

ANALYSIS

The ReDiHull algorithm, detailed in chapter 2, awards us Θ = {Θ0, ..., Θd} the sets of

points from class ω which overlap with hull-class ψ in each examined latent space. This

section outlines the procedure(s) applied to the algorithm’s output, allowing us to uncover

valuable characteristics hidden within the given dataset - characteristics such as those lending

themselves to increased difficulty in distinguishing an ω-labelled image from the images of

class ψ.

While the analysis will produce identical results when applied to output as is, we have

found it to be conceptually advantageous to apply a simple transformation such that we

instead examine the change in sets of overlapping points with respect to the change in

dimensionality of the projective space. For a set of overlapping points at dimensionality

d−1 and set of overlapping points at dimensionality d the change is simply the difference

between the two sets:

Ξd = Θd −Θd−1

where Θd−1 = {∅} for d = 0
(3.1)

We refer to subset Ξd as the points which were separated at dimensionality-d. All visu-

alized statistics, described in the sections 3.1.1 through 3.1.3, are obtained from the trans-

formed algorithm output given by (3.1).

34

3.1 Analytical Procedure

We begin by using the output to create empirical probability distributions, later analyzed

to identify regions of potential class characteristics. Next, we attempt to explain behav-

iors occurring within these regions by examining the latent variables and transformed image

values. Where applicable, we visualize regions’ constituent images, allowing for qualitative

validation of extracted characteristics. In summary, we identify the dimensionality ranges

where potential characteristics occur, we then determine why they occurred and what char-

acteristic they relate to. Finally, we verify the resulting observations produced to describe

general, class-pair difficulty.

3.1.1 Identifying Characteristics’ Locations

Here we define the distributions representing the empirical probability of a point being

separated at a given dimension. Following this definition, we explain the types of phenomena

that we seek to identify within these distributions.

Now, let us consider a situation in which we are given Ξd the subset of test class ω’s

points which were separated from the convex hull formed by class ψ using a d-dimensional

space. This subset Ξd corresponds to a fraction of class ω’s total points and as such, this

value is the empirical probability that a random point belonging to class ω, which overlaps

with the convex hull formed by class ψ in a d−1 dimensional space, will be separated by

incrementing to a d-dimensional space:

P
(
q /∈ Conv(Zψ

)
| d, q ⊂ Zω) =

|Ξd |
|Xω |

where
⋃d=D

d=1
Ξd = Xω

(3.2)

By repeating this over each dimensional space for which overlap exists, we obtain an em-

pirical separation probability distribution for a given class pair such as those in figure 3.1. It

is important to note that this probability distribution gives a measure of dataset complexity.

Distributions with long tails extending to high values of d are capturing complexity that

requires many dimensions to separate out.

35

Figure 3.1: Example distributions describing (Left) the probability that a sample from

a reference-class overlaps with the convex hull of a given hull-class at a given dimension;

(Right) the probability that a sample from a reference-class separates from the convex hull

of a given hull-class at a given minimum number of dimensions.

Continuing in the context of figure 3.1, we note an underlying primary distribution which

is uni-modal and spans the full range of dimensions shown. From our experiments, we have

observed that this type of uni-modal shape occurs for the majority of image classes, albeit

with slight variations.

In order to ascertain regions related to meaningful characteristics, we identify abnormal

phenomena within the obtained distributions. Abnormality is determined relative to the

primary distribution - a primary distribution being that which one would expect had the

abnormality not occurred. As reference, such distributions are presented in figure 3.2. To

contrast the distributions from figure 3.2, distributions containing abnormal behaviours are

shown within figure 3.3. In the context of figure 3.3(c), we note that at the fifth dimension

an acute spike in separability relative to the primary distribution is observed. We have

found that these types of spikes are particularly useful in determining separating character-

istics ; naturally-occurring characteristics which invoke a high degree of separability between

respective image classes.

36

(a) (b) (c) (d)

Figure 3.2: Examples of distributions without abnormal behaviours.

(a) (b) (c) (d)

Figure 3.3: Examples of distributions which contain abnormal spikes, indicating the pos-

sibility of valuable separating features.

3.1.2 Determining Characteristic-Related Image Attributes

In the previous step, we defined a separation probability distribution, then summarized

trends and phenomena occurring within these distributions that may relate to potentially

valuable dataset characteristics. The following step allows us to discover the attributes tied

to the identified regions of interest. In order to achieve this goal, we construct projected

value histograms from which we examine the latent model applied to samples forming the

probability distribution.

For any determined probability distribution, there is a set of separated samples asso-

ciated with each dimension, Ξd. Now we analyze the transformed values f(Ξd) at each

dimension. As an example, studying the transformed values might allow us to learn that a

class’ behavior at a certain dimensionality d is due to a strong, positive correlation with the

kth latent variable1, relative to the other classes. While this allows us to understand why

the abnormality occurred, the supplementary information provided by visualizing the latent

1In the case of PCA, the kth latent variable is the kth principal component.

37

variables allow us to describe the image characteristic it relates to.

Description of the Projected Value Histograms

In order to enable visual analysis of the distributions of projected values as a function of

projected-space dimensionality, we were required to develop a somewhat unique visualization.

As earlier discussed, studying the changes in PCA projected values with regard to changes

in overlap may be of considerable value. Visualization of 1-D projected values for a single

set of points is easily achieved using histograms or scatter plots. Higher dimensional data

and/or comparison between multiple sets of samples is also possible using similar techniques,

e.g. plotting the 2-D histograms adjacent to each other within a 3-D space, or using a 3-D

mesh approximation. In attempting to apply these to our own task, we found the depth

as limiting to our analyses due to the information it obscured. Dividing the results into

multiple figures was somewhat of an improvement, however, it introduced the need to study

hundreds to thousands of additional figures.

Responding to these issues, we developed visualizations which are conceptually tanta-

mount to plotting the histograms adjacent to one another along a shared, perpendicular axis,

producing a 3-dimensional ”histogram stack,” then rotating the stack about this shared axis

such that the histograms’ vertical axis is now perpendicular to the page. An example of the

resulting visualization is presented in figure 3.4.

Now, specific details concerning these plots are discussed, using figure 3.4 as a contextual

reference. Each plot corresponds to projections onto a single latent variable at index (d)

indicated on the far-left. Within the referred figure, we are shown projections onto the

latent variable at index (7). For this single latent feature, the maximum and minimum

values, max
(
Z(d)

)
and min

(
Z(d)

)
, are determined from the training set, then used to create

representations of the positive and negative extremal observations, indicated by the tip of the

upwards and downwards facing arrows respectively. The values may be seen by examining

the chart’s vertical axis as the maximum and minimum values are also used to define the

histogram.

We partition the linear range formed by these extremal values into 40 bins of equal

width. Application of a histogram allows for the 3D topology generated by the distribution

38

Figure 3.4: Example of visualizations developed, allowing for analysis of sequential his-

tograms within a compact figure.

of projected values to be visualized within a 2D space. Densely-distributed regions are shown

using darker-colored bins whereas bins containing no elements are white. While each plot

corresponds to projections onto a single latent feature, a plot’s horizontal axis may extend

to dimensionalities for which projected values Z(d) have no contribution to separability. To

distinguish between dimensionalities less than d and greater than or equal to d, histogram

data is shown in grayscale for the former-defined range. Within the context of figure 3.4,

although we are shown projections relevant to the 7th component, we are shown projections

shown for samples separated prior to the inclusion of this component, as well as those which

precede it. The black piecewise-linear trendline(s) show the change in mean of projected

values between d−1 and d for the projection of separated images Ξd. The opacity of a

curve segment is proportional to the number of points separated at d, with a higher opacity

indicating more points separated. Trends that may be present and thus captured are also

considered class characteristics.

39

The standard deviations of projected values at each dimension are displayed as well, with

downwards pointing chevrons denoting one standard deviation above the mean.

3.1.3 Validating / Visualizing Determined Characteristics-Related

Image Attributes

When possible, we have found it beneficial to produce a visualization of the determined

characteristic(s) using the images which form the abnormality or trend which was used

to identify them. The qualitative information gained through these visualizations allows

us to describe characteristic behaviors with greater certainty. Often, the combination of

number of samples and dimensionality range for which the behavior is defined impedes our

ability to extract useful information when all images are viewed simultaneously. To overcome

this challenge, we substitute each dimension-specific image subset with a corresponding

generalization (e.g. mean).

Description of the Image Difficulty Spectra

(a) (b)

Figure 3.5: Examples of difficulty spectra which summarize difficulties in discerning (a)

sand samples from sand bedrock samples; (b) digit Nine samples from digit Seven samples,

from the CSA MET and MNIST datasets respectively.

Once again, the data forming these figures extends from the obtained class pair sets

of separated samples associated with each dimension. To obtain a generalization x̄ of the

images separated at each dimension, we simply compute the mean of the n = |Ξd| number

of images within each set x̄ =
1

n

n∑
i=1

xi. An example of this these types of visualizations is

shown in figure 3.5.

40

3.2 Example Application of Analytical Procedure

Here we summarize the analytical procedure through description of a case study. In this

example, we detail the analysis of results obtained from the MNIST digits dataset. More

specifically, we utilize the results obtained from selecting digit Zero as the reference class

and digit Eight as the hull class.

ω = Zero ; ψ = Eight

Figure 3.6: Probability distribution that a digit Zero sample will separate from the con-

vex hull of digit Eight, given a dimensionality d and the knowledge that the sample was

overlapping in a d−1 dimensional space

As previously discussed, we begin our analysis by examining the empirical distribution

P
(
q /∈ Conv

(
Zψ
)
| d, q ⊂ Zω

)
from (3.2) which describes the probability that some random

image q from class ω will require d dimensions to separate from the convex hull formed by ψ,

given that samples from both classes are represented in terms of the top d number of latent

variables. The probability distribution obtained for separating Zeros from the convex hull

of digit Eight is shown in figure 3.6.

We search figure 3.6 for trends or anomalous behavior. From these results, it would seem

41

that there is a main, uni-modal curve over dimensions 1 through 9. Relative to this uni-

modal curve, there is a significant rise in separability at the fifth dimension. This observed

spike constitutes an anomaly, which possibly indicates some information relevant to the task

of distinguishing digit Zero from Eight.

In summary, we would like to produce explanations relevant to (i) the uni-modal trend

between dimensions 1 through 9, and (ii) the spike at dimension 5. To achieve this will

require use of the histograms of projected values shown in figures 3.7 and 3.9.

Figure 3.7: Projected value histograms for the 1st component using the MNIST digit Zero

as the reference-class and digit Eight as the hull-class. As noted, the presence of a trend helps

to predict the change in samples’ visual characteristics with increasing sample difficulty.

Starting with 3.7, we note the negative, linear trend. This trend indicates that as images

of digit Zero become more difficult to distinguish from digit Eight, they generally have a

lower projected value with respect to the latent variable shown to the left. This observation

provides partial explanation for the main curve identified in figure 3.6. Also of interest is

that the trend seems to dissipate for d ≥ 6. Interpreting the latent variable as an attribute

suggests that as the difficulty of this task increases, Zeros will become progressively thinner,

as Zω
(1) has a large, positive value at d = 1 which decreases as d increases. Moreover, we

42

expect that for d ≥ 6 this trend will no longer apply.

Figure 3.8: Projected value histograms for the 2nd component using the MNIST digit Zero

as the reference-class and digit Eight as the hull-class.

A contrasting example is shown in figure 3.8. It can be seen that between d ≥ 2 and

d ≤ 4 there is no significant difference in projected values of separated samples, with respect

to this latent variable; this latent variable is at index (d) = 2 thus we expect any related

behavior to become apparent for d ≥ 2 however a trend only appears when d ≥ 5.

To explain the anomalous spike identified at d = 5 we refer to figure 3.9 as it displays

the histograms of separated samples’ projected values for (d) = 5. It appears that the sharp

rise in separability occurs as a result of this latent variable. We draw this conclusion by

noting the clear difference of Zω
(5) when comparing between samples separated at d ≤ 5 and

d ≥ 6. Interpreting the latent variable, it would seem that more positive values correspond to

vertical Zeroes whereas more negative values indicate examples written at a more horizontal

angle. In this context, a ”vertical” Zero describes an ellipse whose longer radius aligns

parallel with the vertical axis, while its shorter radius aligns with the horizontal axis.

43

Figure 3.9: Projected value histograms for the 5th component using the MNIST digit Zero

as the reference-class and digit Eight as the hull-class. The behaviour illustrated suggests

the 5th component is as separating feature.

Summarizing all gathered information, we expect that as task difficulty increases,

the Zeros depicted within images will:

• Appear increasingly thinner until d ≥ 6 when this attribute is no longer relevant.

• Appear to be drawn more angled or horizontal for d ≤ 5.

• Appear to be drawn more vertical for d ≥ 6.

Figure 3.10: Difficulty spectra; these figures summarize modes of difficulty between classes.

This visualization depicts increasing difficulty of digit Zero samples (true label / refernce

class) w.r.t digit Eight samples (predicted label / hull class) computed by ReDiHull

44

Now as a final step, we attempt to verify the validity of these extracted characteristics

using the difficulty spectrum shown in figure 3.10. Using this visualization, it appears that

our assessment is acceptable: the less difficult Zeroes are thicker, more circular, and hor-

izontally oblong, whereas more difficult examples are thinner, less circular, and vertically

oblong.

45

3.3 Quantifying Difficulty Between Classes

Thus far, discussion of our technique has focused on extracting qualitative characteristics

related to difficulty. To enable comparison with classifier performance, we propose quanti-

fying dataset difficulty with the Kullback-Leibler divergence between separation probability

distributions.

Our analysis procedure seeks image characteristics that promote between-class separa-

bility (i.e. separating features) in the distributions outlined above, corresponding to spikes

in separability. The procedure described distinguishes a single reference class from a single

hull-class, thus observations resulting from this procedure are specific to particular reference-

hull-class pairs. It is worth noting that due to asymmetry between class convex hulls, a

characteristic shown to help distinguish class “A” from class “B” may not be as helpful

to distinguish B from A. Further, a characteristic that aids in distinguishing class A from

class B may also reduce our ability to associate class B samples with itself, due to the char-

acteristic’s effect on class B ’s convex hull. The resulting practical implications are that a

measure which predicts the ability to distinguish a reference class from a hull class should

simultaneously consider (i) the probability distribution of separating a reference class from

a hull class and (ii) the probability distribution of separating the hull class’ samples from its

own convex hull.

We explore the use of Kullback–Leibler (KL) divergence to achieve a measure instilled

with these considerations. KL divergence is described as a measure of relative entropy

between two distributions; given two distributions P and Q, their KL divergence DKL (P ||Q)

provides a summary of the dissimilarity between them. It is computed as:

DKL (P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3.3)

Redefining (3.3) in the context of our work yields:

DKL (P ||Q) =
∑
d

P
(
x /∈ Conv(Zψ)

)
log

(
P
(
x /∈ Conv(Zψ)

)
P (x /∈ Conv(Zω))

)
(3.4)

In which x ∈ Conv(Z) within a d−1 dimensional space, and x shares the same label as

ω but is not a member of the samples used to define the ω-class convex hull, i.e. x /∈ Zω. It

46

should be noted that the distributions applied to (3.4) are those defined by (3.2).

If either distribution contains zero-valued entries, computation will produce DKL = ∞.

To overcome this challenge, we apply additive smoothing to all probability distributions,

ensuring no points have zero probability. We added a pseudo-sample to each entry, emulating

a dataset in which at least one sample was separated at each dimension, for any class pair.

The change in overlapping points at each dimension (3.1) is updated such that |Ξ∗| = |Ξ |+1

where | · | denotes the cardinality of the set.

Another common approach to circumventing this issue is to skip any entries that would

produce a value of DKL (P ||Q) = ∞ however we found this solution to produce inaccurate

results. In the context of our work, zero-valued entries may correspond to features respon-

sible for separating a reference-class from a hull-class without sacrificing the integrity of the

reference-class’ convex hull.

Using the smoothed probability distributions as inputs, we compute the KL divergences

for class pairs, and these results are compared to a corresponding confusion matrix of a

baseline classifier’s performance; results gained using CIFAR-10 are presented in section 4.3,

while others may be found in appendices A.2, B.2, C.1, and D.2.

Pairwise class difficulty can be extended to an N -class datasets through the construction

of a matrix of pairwise class-difficulties, D, di,j = DKL(Classi||Classj). Given this matrix,

we could then apply a matrix norm to ||M || = ||D+DT ||, a symmetric matrix, which should

get smaller as the separation difficulty increases. We could also take the determinant of M ,

which should likewise decrease in value as the dataset gets more difficult to separate.

47

Chapter 4

RESULTS

To demonstrate the utility of ReDiHull, we examine results generated for two terrain clas-

sification datasets: the Martian Terrain dataset [1] and a new CSA MET dataset [35], as

well as two general image classification datasets: MNIST handwritten digits [36], and the

small-scale, object image dataset CIFAR-10 [37]. For each dataset, we present results from

two source categories: results obtained using our proposed technique and results obtained

through training and evaluating several deep learning architectures.

For results obtained using the proposed technique, we highlight specific class analyses

on these datasets in order to illustrate the outlined technique for improved clarity of its

application and demonstrate concise examples of the types of extracted characteristics and

their potential utility. Most importantly, these results demonstrate the ability to discover

image-characteristics of recognition difficulty which may not generally be presumed to cause

challenges.

Each dataset was partitioned into three subsets - training, validation, and testing. The

specific quantities applied to each dataset are detailed within their respective sections. Re-

gardless of the dataset or selected class, convex hull points are retrieved from the training

subset.

The same procedure is applied to all datasets studied: We begin by computing the PCA

loading vectors against all training samples in the selected dataset. This results in a single

PCA model, used to express samples by a varying amount of latent variables. As a single

PCA model is used per dataset, the learned transformations are agnostic of the samples’

48

type in shape out shape units size stride activation param.
cn

n
-2

l-
16

u

0 input (1x32x32x3) (1x32x32x3) - - - - -

1 conv2d (1x32x32x3) (1x32x32x16) 16 (3x3) 1 relu 448

2 maxpool (1x32x32x16) (1x16x16x16) - (2x2) 2 - -

3 conv2d (1x16x16x16) (1x16x16x16) 16 (3x3) 1 relu 2320

4 maxpool (1x16x16x16) (1x8x8x16) - (2x2) 2 - -

5 dense (1x1024) (1x10) 10 - - softmax 10250

- out (1x10) - - - - - -

cn
n

-1
l-

16
u

0 input (1x32x32x3) (1x32x32x3) - - - - -

1 conv2d (1x32x32x3) (1x32x32x16) 16 (3x3) 1 relu 448

2 maxpool (1x32x32x16) (1x16x16x16) - (2x2) 2 - -

3 dense (1x4096) (1x10) 10 - - softmax 40970

- out (1x10) - - - - - -

Table 4.1: Convolutional Neural Networks used in experiments; parameter configurations

for CIFAR-10 shown.

class labels.

Once the PCA model is obtained, we apply ReDiHull to both the training and validation

subsets. This produces two individual sets of statistics, enabling comparative validation of

resulting observations. As discussed in chapter 2, the samples used to define convex hulls

are determined from the training subset and maintained for training and validation trials.

Maintaining the same convex hull between training and validation is necessary to produce

reliable analyses, the convex hull serves as a non-parametric model of class extent. All results

presented were obtained from the validation subsets.

The ability to compare results our technique to those deep learning algorithms were

achieved using the architectures shown in tables 4.1 and 4.2. As noted, all convolutional

layers comprised of a relu-activated, 2D spatial convolution, followed by a 2D maxpooling

operation. Convolutions used 16 (3 × 3) kernels, 1 × 1 strides, and padding such that

input dimensions are conserved. Maxpooling operations used 2 × 2 windows with a 1 × 1

49

type in shape out shape units activation param.

dn
n

-2
l-

8u

0 input (1x32x32x3) (1x3072) - - -

1 dense (1x3072) (1x8) 8 relu 24584

2 dense (1x8) (1x8) 8 relu 72

3 dense (1x8) (1x10) 10 softmax 90

- out (1x10) - - - -

dn
n

-1
l-

8u

0 input (1x32x32x3) (1x3072) - - -

1 dense (1x3072) (1x8) 8 relu 24584

2 dense (1x8) (1x10) 10 softmax 90

- out (1x10) - - - -

dn
n

-b
l 0 input (1x32x32x3) (1x3072) - - -

1 dense (1x3072) (1x10) 10 softmax 24584

- out (1x10) - - - -

Table 4.2: Deep Neural Networks used in experiments; parameter configurations for CIFAR-

10 shown.

50

stride. Each intermediate dense operations (table 4.2) contain 8 hidden units, to which relu

activations are applied.

All datasets use identical architecture configurations, each trained from scratch using

stochastic gradient descent, where training and optimization hyperparameters were deter-

mined for each dataset independently. To account for the likelihood of variation between

identical networks, each architecture was trained 100 times, resulting in 500 models per

dataset. From these, at most twenty networks are selected, using those that achieved the

highest overall validation accuracy, so long as it met a certain threshold (network accuracy

≥ one standard deviation above the mean accuracy between all models).

With the exception of sand terrain classes, both the Martian terrain and CSA MET

datasets are afflicted by sample sets of significantly limited size. We have found these prop-

erties - class imbalances and limited number of samples - to introduce a high-degree of

uncertainty for networks trained using these datasets. As such, we use CIFAR-10 [37] to

compare the results of the KL divergence described in 3.3 to performance results of networks

trained and evaluated using the same dataset. With that being said, although both absolute

and relative prediction errors of were found too unstable to use for meaningful comparison,

the ordering of difficult examples remained mostly consistent, as can be seen by comparing

various network results in appendices A.1 and B.1.

51

Figure 4.1: Examples of terrain image samples within the Martian terrain dataset [1].

From left to right bedrock, rock-strewn, and sand.

4.1 Martian Terrain

The Martian terrain dataset, labelled by Shukla and Skonieczny in [1], serves as an example

of a real-world scenario. Samples depict bedrock, sand, or rock-strewn terrains, selected

from a subset of images captured by the Opportunity Mars Exploration Rover during its

deployment. Due to the terrains’ lack of structured-features, high visual similarity, and multi-

scale variations, the dataset contains many unique classification challenges not typically seen

within object image datasets.

4.1.1 Observation(s) using ReDiHull

Figure 4.2 compares the statistics extracted when attempting to separate Bedrock from

Sand ’s convex hull, to the opposite scenario of trying to separate Sand from Bedrock ’s convex

hull. In either corresponding separability probability distribution, there are no notable spikes

of potential interest. Additionally, while Bedrock displays a clear, single modal probability

distribution, no general behavior is apparent for the case of separating Sand from Bedrock.

Moving on to the distributions of projected values onto the first loading vector, it is evident

that Bedrock images requiring more dimensions to separate from sand have a projected

value near zero, whereas those requiring few dimensions have a large, positive projected

value. Conversely, Sand images which separate in few dimensions from Bedrock ’s convex

hull have a large negative projection onto this loading vector. As Sand images require more

52

dimensions to separate, there is a clear trend that negative-valued projections tend towards

zero.

By applying these explanations to the corresponding sets of difficulty spectra, our in-

terpretations have a clear qualitative meaning - Bedrock images which are more difficult to

distinguish from Sand are in general darker, which corresponds to difficulty arising during

circumstances of low light or low exposure. In contrast, Sand images which are more diffi-

cult to distinguish from Bedrock are lighter overall, alluding to classification difficulty when

Sand images are captured with high exposure. Extending upon this, we note that similar

trends are observable in figures 4.3 4.4 which demonstrate sand and bedrock samples causing

difficulty to neural networks.

53

(a) (b)

Figure 4.2: Select results obtained for the Martian terrain dataset introduced by [1]. From

the first to last row - separation probability distributions, projected value histograms, and

difficulty spectra for (a) Bedrock images separated from Sand and (b) Sand images separated

from Bedrock

54

4.1.2 Comparing ReDiHull Sample Difficulty to Neural Network

Sample Difficulty

Figure 4.3: Increasing difficulty of sand terrain samples (true label) w.r.t bedrock ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures

Figure 4.4: Increasing difficulty of bedrock terrain samples (true label) w.r.t sand ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures.

55

4.2 Canadian Space Agency Mars Emulation Terrain

Developed by Mission Control Space Services, the CSA MET dataset [35] is composed of

terrain images captured at the Canadian Space Agency Mars Emulation Terrain site in

Quebec, Canada. This dataset shares a similar purpose to the Martian terrain set - for use

in training and evaluating an autonomous soil assessment system used for autonomous path

planning and risk assessment. The datasets differ in that the CSA MET samples are 3-

channel (RGB) color images as opposed to the Martian terrain datasets’ grayscale NavCam

images. Further, the task in the CSA MET dataset is semantic segmentation rather than

image classification.

The goal of segmentation is to partition images such that each pixel is assigned a class

label. To analyze segmentation datasets using our technique, we partition the the annotated

images into smaller, square patches, providing sample images of unmixed terrain classes.

The images were captured at a resolution of 1080p - i.e. a width of 1920 pixels, height of

1080 pixels. They were then resized, without aspect-ratio preservation, to a size of 512x512

pixels. Annotations were produced for the resized images.

At the time of writing, the autonomous soil assessment system uses a neural network to

segment terrain images. More specifically, we use the MobileNetV2 architecture [38]. To

determine our image patch size, we solve for the value of ks as ks = win
wout

. Using the values

specified by the authors, we set win = 224 as the input size of the network and wout = 7

as the output size following the tenth network operation. This produces a value of 32 × 32

for the patch width and height. This procedure approximates the first ten operations of

MobileNetV2 as a single convolution operation. We exclude from analysis the final, eleventh

operation that produces the output predictions.

4.2.1 Observation(s) using ReDiHull

The first observation to discuss is the presence of a large spike in separability near the

eleventh dimension when either black sand, sand, or gravel is applied as a reference-class

and bedrock or gravel is applied as a hull-class. Figure 4.5b (top-right) shows the separation

probability distribution for separating sand from bedrock.

56

(a) (b)

Figure 4.5: Select results obtained for the CSA MET dataset. From the first to last row

- probability of separation distributions, projected values histograms, and difficulty spectra

for (a) Bedrock images separated from Sand (b) Sand images separated from Bedrock

57

Figure 4.6: The top-11 PCA loading vectors computed for the CSA MET dataset.

Figure 4.7: 100 samples each of color sand (left) and bedrock (right) images from the CSA

MET dataset. Bedrock images include sub-regions of bluish stone and non-blue soil.

Recalling the discussion from section 3, we had noted that, in most situations, a spike in

separability corresponds to the projection onto a distinguishing or separating feature.

Figure 4.6 shows the first 11 PCA loading vectors computed for this dataset. Note that

the 11th loading vector is the first to encode a color gradient, where part of the filter is blue

and the other part is non-blue.

Figure 4.7 shows 100 samples each of sand and bedrock images from the CSA MET

dataset. It is clear that the bedrock class contains many images with distinct sub-regions

(of bluish stone and non-blue soil), aligning with the main information that component 11

encodes. Sand images do not contain such color-distinct sub-regions.

To explicitly quantify the gradient in blueness between stone and soil sub-regions of

bedrock images, as opposed to simply a gradient in brightness that could have been captured

by loading vectors 2 and 4 for example, grayscale images of the bedrock are compared

58

Figure 4.8: Grayscale (left) and blue channel (right) of CSA MET bedrock images. Blue

channel shows higher contrast.

to the bedrock images’ blue channel in figure 4.8. The blue channel data clearly shows

higher contrast than the grayscale data; this higher contrast is further quantified by a higher

standard deviation in pixel values for the blue channel (σ = 45) vs. grayscale (σ = 35).

On the other hand, there is very little difference between grayscale and blue channel for

sand (see figure 4.9; σ = 17 vs. σ = 19).

Now looking at the projected value histogram for the 11th loading vector in figure 4.10,

the large spike in separations of sand from bedrock at component 11 has a projected value

centered very near 0. Combining all the information discussed above suggests that sand im-

ages become distinguishable from bedrock, in the color CSA MET dataset, when it becomes

clear the sand images do not include much of a color gradient.

59

Figure 4.9: Grayscale (left) and blue channel (right) of CSA MET sand images, with little

discernible difference in contrast.

Figure 4.10: Resulting PCA projected value histograms for the 11th component using the

CSA MET terrains Sand as the reference-class and Bedrock as the hull-class.

60

Figure 4.11: The spectral response of the NavCam cameras [4], annotated to show the

range of blue-light wavelengths. As the band-pass filter rejects this range of signals, classifiers

applied to NavCam images cannot leverage the separating feature discovered using the CSA

MET dataset.

4.2.2 Curiosity MastCam Images

To investigate the potential of the separating feature noted for the CSA MET dataset, we

produce a similar color analysis using Martian terrain images captured by the NASA Mars

Science Laboratory (MSL) ”Curiosity” rover. As images within the CSA MET dataset de-

picted emulated terrain, it was uncertain whether the discovered feature could be transferred

and/or leveraged by systems designed to classify Martian terrain.

Within the same context, much of the literature consulted focused on Martian terrain

classification enabled by Navigational camera (NavCam) images [1][6][7]. To the best of our

knowledge, all NavCam modules deployed, both current and previous, have applied a red

band-pass filter, abating signals within the blue light range [4]; the spectral response of the

NavCam camera is included in figure 4.11, annotated to indicate the range of wavelengths

corresponding to blue-light.

61

(a) (b)

Figure 4.12: (a) sand and (b) bedrock terrain patches generated for the MastCam image

analysis.

Following the pre and post-processing procedures outlined by Shukla and Skonieczny [1]:

44 source scenes were selected, 23 sand-depicting scenes and 21 bedrock-depicting scenes.

The PDS Imagine Node generally provides multiple products for a given data record cor-

responding to different types and/or levels of processing. To ensure coherency of the data,

only ”DRCX” type data records were selected, i.e. those which have been decompressed,

radiometrically corrected, and color corrected [39].

Next, we extract non-overlapping, 128× 128 sized patch samples from the source scenes.

Sand and bedrock terrain depicted within the resulting images should be easily identifiable

as well as mostly homogeneous - that is absent of visible rocks, rover tracks, or other cir-

cumstances introducing label uncertainty. In response, we manually validate the resulting

image (i.e. patch) samples, discarding those which do not fit the criteria for suitable terrain

image content, as described in the works done by Rothrock [6] and Shukla [1]. For visual

reference, a subset of both terrains’ resulting image samples can be found within figure 4.12.

To assess the potential existence of a similar color-related separating discovered within

CSA MET, we apply the same statistical color analysis used. As presented in table 4.3,

we find a similar statistical relation to occur for the Curiosity MastCam sand and bedrock

images, as well as when comparing images’ red and blue channel data. The corresponding

62

CSA MET MastCam

Sand Bedrock Sand Bedrock

Blue 19 45 24 32

Gray 17 35 24 25

Red 26 22

Table 4.3: Standard deviations of pixel values for terrains indicated in each columns. We

note that for both sets of images: sand demonstrates minor differences in standard devia-

tion between grayscale and blue-channel variants whereas bedrock demonstrates considerable

differences between grayscale and blue-channel standard deviations. Additionally for Curios-

ity MastCam images, the same behaviour is noted when comparing red and blue channel

statistics.

qualitative differences can be noted within figures 4.13 and 4.14.

63

(a) (b) (c)

Figure 4.13: (a) Grayscale (b) blue channel (c) red channel data for bedrock images

captured by the Curiosity rover MastCam. Blue channel shows higher contrast than gray,

whereas red channel data shows reduced contrast.

(a) (b) (c)

Figure 4.14: (a) Grayscale (b) blue channel (c) red channel data for sand images captured

by the Curiosity rover MastCam, noting little discernible difference in contrast between the

three.

64

4.2.3 Shared Characteristics: Martian terrain and CSA MET

Our results from analyzing the CSA MET dataset revealed similarities between the CSA

MET and Martian terrain datasets. Through our analysis we found we can identify terrestrial

terrain images that resemble Martian terrain images, and that could act as surrogate terrain

data for training neural networks. Martian data is limited, so assembling large, visual analog

training sets from terrestrial data enables the use of deep learning for planetary terrain

classification.

The CSA MET dataset contained terrain classes that were not represented in the Martian

terrain dataset. In order to compare samples, we established class-correspondences. The

Martian terrain dataset has three terrain types - Bedrock, Rocks, and Sand. The CSA MET

dataset has seven terrain types - Bedrock, Black Sand, Gravel, Outcrop, as well as Sky, and

Vegetation classes, which we excluded from our experiments. Because the Martian terrain

dataset does not contain samples resembling CSA MET’s Black Sand or Outcrop terrains

they were also excluded from comparison. The remaining CSA MET classes of Gravel,

Bedrock, and Sand, are qualitatively similar to the Martian terrain terrain classes of Rocks,

Bedrock, and Sand, respectively. Figure 4.15 is provided to illustrate the samples’ visual

similarities.

The PCA projection histograms in figure 4.16, noting the similarity between the first-

computed loading vector of each dataset - for either dataset, the direction of maximal variance

appears to coincide with overall image exposure. Now, examining each row individually, it

seems that these loading vectors also share in their relation to general trends of inter-class

difficulty. Within the first row, corresponding to Sand as a reference-class and Bedrock

as a hull-class, we can see that Sand images which require fewer dimensions to separate

have large, negative projections. As the number of dimensions to separate increases, images

generally tend towards more positive projected values. In the next row, the reference-class is

maintained while the hull-class is set to Gravel for CSA MET and Rocks for Martian terrain.

Under this scenario, the absolute projected values diminish as the number of dimensions to

separate increases, creating a cone-like distribution, observable within both columns.

We continue to the third row of figure 4.16, which compares the datasets’ results for use

65

(a) (b) (c)

(d) (e) (f)

Figure 4.15: Top row presents 100 patch samples from the CSA MET terrain classes (a)

Sand, (b) Bedrock, and (c) Gravel. Sand terrain class converted to grayscale. Bottom row

presents 64 samples from the Martian terrain image classes (d) Sand, (e) Bedrock, and (f)

Rocks.

66

of Gravel or Rock as a reference-class and Bedrock as a hull-class. For either dataset, this

formulation demonstrates a less pronounced version of the trend discussed for first row of

figure 4.16. On the fourth row, Gravel and Rock are maintained as reference-classes while

the hull-class is set to Sand. Under these conditions, it appears that the datasets share an

absence of any discernible relation to the number of dimensions required for separation in

regards to the first PCA loading vector.

The fifth row of figure 4.16 compares the projected value histograms when Bedrock is

used as the reference-class and Gravel or Rocks as the hull-class. In either column, a negative

trend is identifiable, indicating that Bedrock samples tend towards more negative projections

with increasing number of dimensions to separate. This trend is similar to that discussed

within the Martian terrain results section, wherein Bedrock was used as the reference-class

and Sand as the hull-class. Now moving to the final row of figure 4.16, we are incapable

of identifying any parallels with certainty; apart from differences within the terrain images

themselves, this may possibly be explained by the relatively low number of Bedrock images

within the Martian terrain dataset. In other words, while the Martian terrain results seem

to indicate a negative trend, the observation may subside if more Bedrock were available.

67

(a) (b)

(c) (d)

(e) (f)

Figure 4.16: For the left-hand column, starting from the top row, we are shown CSA MET

PCA projected value histograms for the first component using (a) hull-class as Bedrock and

reference-class as Sand, (c) hull-class as Bedrock and reference-class as Gravel, (e) hull-class

as Gravel and reference-class as Bedrock. For the right-hand column, starting from the top

row, we are shown Martian terrain PCA projected value histograms for the first component

using (b) hull-class as Bedrock and reference-class as Sand, (d) hull-class as Bedrock and

reference-class as Rocks, (f) hull-class as Rocks and reference-class as Bedrock.

68

(g) (h)

(i) (j)

(k) (l)

Figure 4.16: (Cont.) For the left-hand column, starting from the top row, we are shown

CSA MET PCA projected value histograms for the first component using (g) hull-class as

Gravel and reference-class as Sand, (i) hull-class as Sand and reference-class as Gravel, and

(k) hull-class as Sand and reference-class as Bedrock. For the right-hand column, starting

from the top row, we are shown Martian terrain PCA projected value histograms for the first

component using (h) hull-class as Rocks and reference-class as Sand, (j) hull-class as Sand

and reference-class as Rocks, and (l) hull-class as Sand and reference-class as Bedrock.

69

4.3 CIFAR-10

We apply our technique to CIFAR-10 - an image classification dataset depicting 10 classes

of real-world objects and animals [37]. For results shown, the dataset was split into 50 000

training images and 10 000. From this evaluation, we choose to highlight observations made

in regards to the Deer class, then validate their relevance to classification through qualitative

comparison of first layer features computed by various neural networks discriminating Deer

from other classes.

4.3.1 Observation(s) using ReDiHull

We begin our discussion by examining the probability distribution shown in figure 4.17. Do-

ing so reveals a large spike in separability at seventeen dimensions, which, as mentioned in

section 3.1.1, constitutes an anomalous behavior, with regard to the dominant trend. To

determine the cause of the observed behavior, we refer to the corresponding projected value

distribution (figure 4.17). Through analysis of the projected data, it is clear that the char-

acteristic related to this behavior is that images belonging to the Deer class have a stronger,

positive correlation with the seventeenth loading vector, relative to images belonging to the

Horse class. To the left of the projected value distribution, we are shown that the seven-

teenth loading vector encodes green (positive) to magenta (negative) overall image content.

Summarizing these observations - images containing a significant amount of green content

are likely to depict a Deer. Moreover, the result shown in figure 4.18 allows us to confirm this

observation’s relevance, demonstrating the convolutional neural networks’ affinity towards

learning parameters that capture green color-information, and the deep fully-connected net-

works’ association of the color green to the Deer class.

Noting that the separating feature is horizontally symmetric, there is potential relevance

to applications seeking to build more efficient networks via weight sharing and/or directing

networks to leverage compressible features. For example, this observation could be applied

to enforce a simple feature detector, leveraging the separability observed for green-colored

content. As mostly-green images usually correspond to Deer, a high-confidence prediction

could be quickly obtained for preliminary decision making, while simultaneously testing for

70

additional features to refine the prediction. Moreover, the feature itself is mostly uniform

thus it is likely that it may be compressed significantly. If we assume some prior knowledge

of the problem, the observation for separating Deer from other classes may lead one to

formulate a converse application for this characteristic. Green colored background does not

form a causal relation with Deer, thus preventing a classifier from associating this feature

with Deer images may result in a more robust system. The work by Dieleman, De Fauw,

and Kavukcuoglu [40] and that by Cohen and Welling [41] have produced far more advanced

interpretations and methods of applying feature symmetry. Further, motivating networks

to learn weights expressing fewer unique values - similar to the non-uniqueness observed via

the separating feature’s color uniformity - has seen success by Raghavan et al. in achieving

high performing, compressible networks [42].

4.3.2 Comparing Difficulty Measure with Network Performance

To obtain performance values used to compare with KL divergence, we trained and evaluated

the architectures detailed in table 4.1 and 4.2. For comparative reference, the classification

rates for the ”cnn-2l-16u” model are presented in table 4.5 and the corresponding KL diver-

gence values are shown in table 4.4.

It should be noted when interpreting KL divergence tables, larger values indicate better

performance. From (3.3), we may deduce that DKL will be large for values Q << P . Trans-

lating this to our method - larger values of DKL are computed for separating features which

(i) induce a high degree of separability between class ω and class ψ, while simultaneously

(ii) having little to no effect on ω’s convex hull.

Note that all 4 class pairings that are confused the most by the classifier (confused at

least 10% of the time) in table 4.5 have very low (i.e. poor) KL divergence, 0.06-0.11 in table

4.4. For less extreme examples of classification difficulty, KL divergence has some further

correlation with the confusion matrix, though with some false positives and false negatives.

71

Hull Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 0.27 0.36 0.30 0.53 0.31 1.24 0.37 0.13 0.31

Automobile 0.87 1.34 0.46 1.39 0.47 1.45 0.45 0.49 0.10

Bird 0.11 0.22 0.23 0.12 0.22 0.13 0.16 0.18 0.21

Cat 0.51 0.18 0.47 0.63 0.07 0.55 0.09 0.52 0.22

Deer 0.11 0.26 0.10 0.34 0.23 0.06 0.23 0.25 0.22

Dog 0.65 0.25 0.51 0.08 0.81 0.69 0.11 0.56 0.28

Frog 0.18 0.25 0.20 0.24 0.19 0.20 0.18 0.31 0.23

Horse 0.47 0.08 0.48 0.15 0.51 0.11 0.70 0.62 0.08

Ship 0.20 0.20 0.59 0.32 0.68 0.50 1.61 0.49 0.15

Truck 0.81 0.06 1.27 0.34 1.21 0.52 1.55 0.30 0.51

Table 4.4: CIFAR-10 difficulty quantified using KL divergence.

Predicted Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 2.2 5.2 2.2 2.5 1.1 0.9 1.4 7.7 3.3

Automobile 2.4 0.8 1.0 0.5 0.6 0.9 0.7 2.9 8.8

Bird 5.3 0.8 5.9 7.9 6.6 5.5 4.1 1.5 1.0

Cat 2.2 1.2 6.1 5.6 14.0 6.3 3.7 1.7 1.7

Deer 2.2 0.5 7.9 5.7 4.7 6.0 6.5 1.1 0.6

Dog 1.3 0.5 5.5 12.2 4.0 2.7 5.2 1.0 0.9

Frog 0.8 0.8 4.5 5.9 5.0 3.3 1.1 0.8 0.7

Horse 1.7 0.7 3.7 3.7 5.5 5.7 1.0 0.5 1.6

Ship 7.1 3.8 1.6 1.6 1.0 0.9 0.8 0.7 3.1

Truck 3.1 7.9 0.9 1.6 0.8 1.1 0.7 2.0 2.8

Table 4.5: Average sample prediction error [%] for ”cnn-2l-16u” trained and evaluated on

the CIFAR-10 dataset

72

(a)

(b)

Figure 4.17: Resulting visualizations from applying our algorithm and analytical procedure

to CIFAR-10. (a) shows the probability of separation for a given dimensional-space when

separating Deer from the Horse class convex hull. (b) shows the histograms of projected

values, allowing for interpretation of the behavior observed in the probability distribution.

73

(a)

(b)

Figure 4.18: (a) First layer weights learned by several convolutional neural networks, (b)

the first layer weight most activated for Deer images, learned by a deep fully-connected

network.

74

4.4 MNIST

Produced by [36], the MNIST dataset contains monochrome images of handwritten digits.

For the context of this work, MNIST assumes the role of a less challenging image classification

task, with even simple models capable of achieving below 10% error. To produce the results

discussed herein, we designated 50 000 images to a training set, 10 000 to a validation set,

and the remaining 10 000 to a test set.

The first set of results, shown in figure 4.19 demonstrate that relational difficulty is not

necessarily a commutative property. In the left column digits appear more Eight-like with

increasing dimensions required to separate them. The right column shows the result of at-

tempting to separate digit Eight images from the hull digit of the respective row. Comparing

between columns reveals that variational modes which lead a digit to appear more Eight-like

are not the same as those which lead a Eight to appear more like the utilized hull digit. For

example, in the row comparing (ψ : Eight, ω : Four) to (ψ : Four, ω : Eight) the within-

class variation leading to increased difficulty in distinguishing Four from Eight are not the

same as the those leading to increased difficulty in distinguishing Eight from Four. Addi-

tionally, separating digit Eight images from the hull of digit Four requires more dimensions

than the reversed scenario. This is behavior is also noted for classification.

The validation set performance of two convolutional neural networks are shown in tables

4.6 and 4.7 respectively. Referring to these results, it can be seen that when either model

is tasked with classifying images of digit Four, half of the erroneous classifications recorded

are due to prediction of digit Nine. The reversed scenario, in which the classifiers attempt

to predict images of digit Nine, only see a quarter of its error correspond to digit Four.

Another observation warranting discussion is phenomena wherein visually distinct sub-

groups invoke different levels of difficulty. For this, we refer to figure 4.20. Similar to the

previously discussed results, examples which require more dimensions to achieve separability

appear increasingly similar to the respective convex hull-defining digit. Applying a more

thorough examination reveals that the similarity can be attributed to distinct variations of

digit One.

The images of digit Zero which required 3 dimensions to separate from digit One are

75

Hull Class

Zero

One

Two

Three

Four

Five

Six

Seven

Nine

Figure 4.19: Difficulty spectra produced for MNIST digit Eight

76

those which are most similar to the variation of digit One drawn at 45◦, sans-serif. Those

which required 4 and 5 dimensions to separate appear more similar to Ones drawn at 45◦and

0◦(vertical) angles and with serif. Finally, the images which separated at dimensions 6 and

7 bear resemblance to vertical, sans-serif examples of digit One.

Figure 4.20: MNIST difficulty spectra produced for images from digit Zero which are

increasingly difficult to separate from digit One.

Images in this dataset contain little to no variation in contrast, number of objects, or

object’s position(s). As such, using a metric which uses such attributes as a basis might

provide indication that classification of MNIST images is not overtly difficult as a whole,

however, such attributes would not sufficiently describe the specific class-pair difficulties

observed using our method. With the exception of serif differences, the digit variations

lending themselves to increased difficulty are mostly linear transformations (e.g. rotation,

scale, skew).

77

4.4.1 Neural Networks’ performance on MNIST

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 0.0 0.3 0.1 0.0 0.2 0.4 0.2 0.2 0.2

1 0.1 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0

2 0.3 0.6 0.6 0.1 0.0 0.2 0.6 0.4 0.2

3 0.1 0.0 0.3 0.0 0.7 0.0 0.2 0.3 0.2

4 0.1 0.1 0.2 0.0 0.0 0.3 0.2 0.1 1.0

5 0.2 0.0 0.1 1.2 0.0 0.6 0.1 0.3 0.1

6 0.7 0.3 0.1 0.0 0.3 0.3 0.0 0.3 0.0

7 0.1 0.5 1.2 0.4 0.2 0.0 0.0 0.3 0.6

8 0.6 0.1 0.6 0.4 0.2 0.3 0.4 0.5 0.7

9 0.3 0.4 0.1 0.4 1.1 0.5 0.0 1.1 0.6

Table 4.6: Confusion matrix for ”cnn-1l-16u” trained and evaluated on the MNIST dataset

[%]

78

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 0.0 0.2 0.0 0.0 0.1 0.3 0.1 0.2 0.1

1 0.0 0.3 0.1 0.2 0.0 0.2 0.1 0.1 0.0

2 0.3 0.4 0.5 0.1 0.0 0.1 0.5 0.4 0.0

3 0.1 0.0 0.2 0.0 0.5 0.0 0.2 0.3 0.2

4 0.1 0.1 0.1 0.0 0.0 0.2 0.2 0.2 1.1

5 0.2 0.0 0.0 0.9 0.0 0.4 0.1 0.2 0.3

6 0.5 0.2 0.0 0.1 0.2 0.4 0.0 0.2 0.0

7 0.0 0.3 1.0 0.3 0.1 0.0 0.0 0.2 0.7

8 0.7 0.1 0.6 0.4 0.2 0.3 0.4 0.3 0.6

9 0.2 0.3 0.1 0.4 0.7 0.4 0.0 0.8 0.3

Table 4.7: Confusion matrix for ”cnn-2l-16u” trained and evaluated on the MNIST dataset

[%]

79

Chapter 5

CONCLUSIONS

In this paper we developed an analysis technique for quantifying the difficulty of specific

image classification tasks, and investigated the human-interpetability of our results. By

extracting human-interpretable features we hope to provide meaningful insight into what

makes a dataset challenging to classify. Further, understanding data set complexity can be

used to guide the design of neural networks, enabling autonomous vehicles to be better able

to predict terrain trafficablility.

To this end we designed the ReDiHull algorithm for estimating dataset classification

complexity. We used the ReDiHull to quantify the complexity of two terrain image datasets

and conducted a preliminary analysis of terrain datasets collected on Mars by NASA’s Jet

Propulsion Laboratory and at the Canadian Space Agency Mars Emulation Terrain. Data

derived from the statistical analysis was used to produce image difficulty visualisations,

allowing us to identify anomalies and trends, and uncovering image characteristics that help

distinguish between different classes of terrain.

The case studies presented in this work demonstrate that light-toned bedrock is easier

to distinguish from sand, and darker sand is easier to distinguish from bedrock. In color

images, distinguishing sand from bedrock gets an important boost from sand’s lack of color

gradient. Expanding off this observation, we conducted preliminary research assessing its

possible application to directing classification systems design for Martian rovers.

Further, we investigated the algorithms relevance to deep learning algorithms, supporting

its potential in detecting samples which are harder to correctly classify, as well as observing

80

demonstrable links between deep neural networks and the separating features discovered

using the algorithm.

Our initial implementation of the ReDiHull algorithm uses Principle Component Analysis

in order to project images into a reduced dimensionality space. PCA was selected because

of its ease of use and efficient implementations. It remains an open question as to whether

other projection methods would provide superior analysis of dataset complexity, and what

is the interplay between projection method and the complexity of neural networks to learn

a given classification task.

The results presented in this paper provide a jumping off point for the analysis of terrain

classification difficulty, and can inform designers of autonomous vehicles how challenging it

can be for autonomous vehicles to distinguish classes of terrain, which can aid in the design

of autonomous systems, as well as provide insight into the risk associated with making

traverse decisions. As AI becomes an increasing component of trafficability analysis, dataset

complexity estimation becomes an important tool in the toolbox for deploying autonomous

vehicles.

81

Bibliography

[1] D. K. Shukla and K. Skonieczny, “Simple texture descriptors for classifying monochrome

planetary rover terrains,” in 2017 IEEE International Conference on Robotics and Au-

tomation (ICRA), May 2017, pp. 5495–5502.

[2] A. F. R. Rahman and M. C. Fairhurst, “Measuring classification complexity of image

databases: a novel approach,” in Proceedings 10th International Conference on Image

Analysis and Processing, 1999, pp. 893–897.

[3] Tin Kam Ho and H. S. Baird, “Estimating the intrinsic difficulty of a recognition prob-

lem,” in Proceedings of the 12th IAPR International Conference on Pattern Recognition,

Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5), vol. 2, Oct 1994, pp.

178–183 vol.2.

[4] J. N. Maki, J. F. Bell, K. E. Herkenhoff, S. W. Squyres, A. Kiely, M. Klimesh,

M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner,

A. Collins, M. Wadsworth, S. T. Elliot, A. Dingizian, D. Brown, E. C. Hagerott,

L. Scherr, R. Deen, D. Alexander, and J. Lorre, “Mars exploration rover engineering

cameras,” Journal of Geophysical Research E: Planets, vol. 108, 12 2003. [Online].

Available: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003JE002077

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JE002077

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2003JE002077

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-

lutional neural networks,” in Advances in neural information processing systems, 2012,

pp. 1097–1105.

82

[6] B. Rothrock, R. Kennedy, C. Cunningham, J. Papon, M. Heverly, and M. Ono, “Spoc:

Deep learning-based terrain classification for mars rover missions,” in AIAA SPACE

2016, 2016, p. 5539.

[7] R. Gonzalez and K. Iagnemma, “Deepterramechanics: Terrain classification and slip

estimation for ground robots via deep learning,” arXiv preprint arXiv:1806.07379, 2018.

[8] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and M. Hutter, “Where

should i walk? predicting terrain properties from images via self-supervised learning,”

IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1509–1516, 2019.

[9] Y. Iwashita, K. Nakashima, A. Stoica, and R. Kurazume, “Tu-net and tdeeplab: Deep

learning-based terrain classification robust to illumination changes, combining visible

and thermal imagery,” in 2019 IEEE Conference on Multimedia Information Processing

and Retrieval (MIPR). IEEE, 2019, pp. 280–285.

[10] R. Zhou, L. Ding, H. Gao, W. Feng, Z. Deng, and N. Li, “Mapping for planetary

rovers from terramechanics perspective,” in 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 1869–1874.

[11] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J.

Mach. Learn. Res., vol. 13, no. null, p. 281–305, Feb. 2012.

[12] A. Zela, A. Klein, S. Falkner, and F. Hutter, “Towards automated deep

learning: Efficient joint neural architecture and hyperparameter search,” CoRR, vol.

abs/1807.06906, 2018. [Online]. Available: http://arxiv.org/abs/1807.06906

[13] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures

for scalable image recognition,” CoRR, vol. abs/1707.07012, 2017. [Online]. Available:

http://arxiv.org/abs/1707.07012

[14] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA:

MIT Press, 2016, http://www.deeplearningbook.org.

83

[15] F. Scheidegger, R. Istrate, G. Mariani, L. Benini, C. Bekas, and A. C. I.

Malossi, “Efficient image dataset classification difficulty estimation for predicting

deep-learning accuracy,” CoRR, vol. abs/1803.09588, 2018. [Online]. Available:

http://arxiv.org/abs/1803.09588

[16] Y. Luo and X. Tang, “Photo and video quality evaluation: Focusing on the subject,” in

Computer Vision – ECCV 2008, D. Forsyth, P. Torr, and A. Zisserman, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 386–399.

[17] O. Russakovsky, J. Deng, Z. Huang, A. C. Berg, and L. Fei-Fei, “Detecting avocados to

zucchinis: What have we done, and where are we going?” in 2013 IEEE International

Conference on Computer Vision, Dec 2013, pp. 2064–2071.

[18] R. Tudor Ionescu, B. Alexe, M. Leordeanu, M. Popescu, D. P. Papadopoulos, and

V. Ferrari, “How hard can it be? estimating the difficulty of visual search in an image,”

in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June

2016.

[19] D. Liu, Y. Xiong, K. Pulli, and L. Shapiro, “Estimating image segmentation difficulty,”

vol. 6871, 08 2011, pp. 484–495.

[20] B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans in a single

image by bayesian combination of edgelet part detectors,” vol. 1, 11 2005, pp. 90 – 97

Vol. 1.

[21] L. Marchesotti, C. Cifarelli, and G. Csurka, “A framework for visual saliency detection

with applications to image thumbnailing,” 11 2009, pp. 2232 – 2239.

[22] S. Vijayanarasimhan and K. Grauman, “What’s it going to cost you?: Predicting effort

vs. informativeness for multi-label image annotations.” 01 2009, pp. 2262–2269.

[23] B. Schölkopf, J. Platt, and T. Hofmann, Multi-Instance Multi-Label Learning with Ap-

plication to Scene Classification, 2007, pp. 1609–1616.

84

[24] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries

using local brightness, color, and texture cues,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 26, no. 5, pp. 530–549, 2004.

[25] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. [Online]. Available:

https://science.sciencemag.org/content/313/5786/504

[26] M. Vasconcelos and N. Vasconcelos, “Natural image statistics and low-complexity fea-

ture selection,” IEEE transactions on pattern analysis and machine intelligence, vol. 31,

pp. 228–44, 03 2009.

[27] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM

review, vol. 53, no. 2, pp. 217–288, 2011.

[28] R. T. Rockafellar, Convex analysis, ser. Princeton Mathematical Series. Princeton, N.

J.: Princeton University Press, 1970.

[29] E. Andersen and K. Andersen, “The mosek interior point optimizer for linear program-

ming: An implementation of the homogeneous algorithm,” vol. 33, 01 1999.

[30] J. M.A and H. Fleyeh, “Convex hulls in image processing: A scoping review,” American

Journal of Intelligent Systems, vol. 2016, pp. 48–58, 05 2016.

[31] K. Zhao, A. Wiliem, S. Chen, and B. C. Lovell, “Manifold convex hull (mach): Satisfying

a need for spd,” in 2016 IEEE International Conference on Image Processing (ICIP),

2016, pp. 251–255.

[32] X. Zhou and Y. Shi, “Nearest neighbor convex hull classification method for face

recognition,” in Computational Science - ICCS 2009, 9th International Conference,

Baton Rouge, LA, USA, May 25-27, 2009, Proceedings, Part II, ser. Lecture Notes in

Computer Science, G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. J. Dongarra,

and P. M. A. Sloot, Eds., vol. 5545. Springer, 2009, pp. 570–577. [Online]. Available:

https://doi.org/10.1007/978-3-642-01973-9 64

85

[33] H. Cevikalp, D. Larlus, M. Neamtu, B. Triggs, and F. Jurie, “Manifold based local

classifiers: Linear and nonlinear approaches,” Signal Processing Systems, vol. 61, pp.

61–73, 10 2010.

[34] G. Nalbantov, P. Groenen, and J. Bioch, “Nearest convex hull classification,” Erasmus

University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute,

Econometric Institute Research Papers EI 2006-50, Dec. 2006. [Online]. Available:

https://ideas.repec.org/p/ems/eureir/8217.html

[35] K. Raimalwala, M. Faragalli, E. Smal, M. Battler, E. Reid, B. Stefanuk, and

K. Skonieczny, “Enabling autonomy in commercial-class lunar missions,” 2020.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278 – 2324, 12 1998.

[37] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of

Toronto, 05 2012.

[38] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted residuals

and linear bottlenecks: Mobile networks for classification, detection and segmentation,”

CoRR, vol. abs/1801.04381, 2018. [Online]. Available: http://arxiv.org/abs/1801.04381

[39] M. Malin and K. Edgett, “Mast camera (mastcam), mars hand lens imager (mahli),

and mars descent imager (mardi) experiment data record (edr) and reduced data record

(rdr) pds data products. jpl d-75410, sis-sci035-msl,” 9 2013.

[40] S. Dieleman, J. D. Fauw, and K. Kavukcuoglu, “Exploiting cyclic symmetry in

convolutional neural networks,” CoRR, vol. abs/1602.02660, 2016. [Online]. Available:

http://arxiv.org/abs/1602.02660

[41] T. S. Cohen and M. Welling, “Group equivariant convolutional networks,” 2016.

[42] A. Raghavan, M. R. Amer, and S. M. Chai, “Bitnet: Bit-regularized

deep neural networks,” CoRR, vol. abs/1708.04788, 2017. [Online]. Available:

http://arxiv.org/abs/1708.04788

86

Appendix A

Martian Terrain - Supplementary

Results

A.1 ReDiHull & Neural Network Sample Difficulty

Figure A.1: Increasing difficulty of sand terrain samples (true label) w.r.t bedrock ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures.

87

Figure A.2: Increasing difficulty of sand terrain samples (true label) w.r.t rock-strewn ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures.

Figure A.3: Increasing difficulty of rock-strewn terrain samples (true label) w.r.t bedrock

terrain samples (predicted label) computed by ReDiHull (top-row) and several neural net-

work architectures.

88

Figure A.4: Increasing difficulty of rock-strewn terrain samples (true label) w.r.t sand ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures.

89

Figure A.5: Increasing difficulty of bedrock terrain samples (true label) w.r.t sand ter-

rain samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures.

90

A.2 ReDiHull-Computed Dataset Difficulty

Predicted Class

Bedrock Rocks Sand

Bedrock 1.54 1.65

Rocks 0.64 0.63

Sand 1.23 0.64

Table A.1: Martian Terrain difficulty quantified using KL divergence

91

A.3 Neural Network Error Matrices

Predicted Class

Bedrock Rocks Sand

Bedrock 16.3 10.4

Rocks 12.8 16.2

Sand 11.1 14.8

Table A.2: Average sample prediction error matrix for ”dnn-bl” trained and evaluated on

the Martian Terrain (original Dhara JPL) dataset [%]

Predicted Class

Bedrock Rocks Sand

Bedrock 13.9 14.1

Rocks 14.9 17.6

Sand 10.2 13.8

Table A.3: Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%]

92

Predicted Class

Bedrock Rocks Sand

Bedrock 15.0 13.6

Rocks 15.0 16.3

Sand 12.0 14.6

Table A.4: Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%]

Predicted Class

Bedrock Rocks Sand

Bedrock 14.7 17.0

Rocks 18.6 16.3

Sand 13.6 12.7

Table A.5: Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%]

Predicted Class

Bedrock Rocks Sand

Bedrock 16.8 11.2

Rocks 21.4 16.0

Sand 17.4 16.3

Table A.6: Average sample prediction error matrix for ”cnn-2l-16u” trained and evaluated

on the Martian Terrain (original Dhara JPL) dataset [%]

93

Appendix B

CSA MET - Supplementary Results

B.1 ReDiHull & Neural Network Sample Difficulty

Figure B.1: Increasing difficulty of bedrock image samples (true label) w.r.t gravel im-

age samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures.

Figure B.2: Increasing difficulty of bedrock image samples (true label) w.r.t sand image

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

94

Figure B.3: Increasing difficulty of bricks image samples (true label) w.r.t black sand

image samples (predicted label) computed by ReDiHull (top-row) and several neural network

architectures.

Figure B.4: Increasing difficulty of bricks image samples (true label) w.r.t gravel image

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

Figure B.5: Increasing difficulty of sand image samples (true label) w.r.t bedrock image

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

95

Figure B.6: Increasing difficulty of sand image samples (true label) w.r.t bricks image

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

96

B.2 ReDiHull-Computed Dataset Difficulty

Predicted Class

Bedrock Sand Black Sand Gravel Bricks

Bedrock 1.18 0.54 1.05 1.68

Sand 2.71 2.50 4.53 4.68

Black sand 0.59 1.13 0.71 1.16

Gravel 0.32 1.51 0.27 0.31

Bricks 0.55 1.00 0.69 0.21

Table B.1: CSA MET difficulty quantified using KL divergence.

97

B.3 Neural Network Error Matrices

Predicted Class

Bedrock Sand Black Sand Gravel Bricks

Bedrock 10.7 5.6 15.7 2.6

Sand 14.9 9.5 5.6 1.1

Black sand 2.0 7.5 8.1 13.5

Gravel 7.0 4.0 11.0 18.3

Bricks 2.4 0.8 10.0 11.6

Table B.2: Average sample prediction error matrix for ”dnn-bl” trained and evaluated on

the CSA MET dataset [%]

Predicted Class

Bedrock Sand Black Sand Gravel Bricks

Bedrock 8.0 4.0 11.4 3.6

Sand 9.0 12.0 5.0 1.0

Black sand 2.2 8.5 8.4 12.2

Gravel 5.2 3.1 9.2 22.0

Bricks 2.2 0.5 11.1 11.0

Table B.3: Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the CSA MET dataset [%]

98

Predicted Class

Bedrock Sand Black Sand Gravel Bricks

Bedrock 6.2 3.7 12.1 3.5

Sand 6.3 11.4 4.0 0.8

Black sand 2.1 9.3 6.6 12.5

Gravel 5.4 2.8 8.5 23.8

Bricks 2.1 0.7 12.2 10.4

Table B.4: Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the CSA MET dataset [%]

Predicted Class

Bedrock Sand Black Sand Gravel Bricks

Bedrock 11.7 2.6 3.0 4.8

Sand 5.1 9.2 0.9 0.8

Black sand 2.7 9.1 6.4 10.2

Gravel 0.7 0.3 8.1 15.5

Bricks 2.3 0.6 8.8 4.4

Table B.5: Average sample prediction error matrix for ”cnn-2l-16u” trained and evaluated

on the CSA MET dataset [%]

Predicted Class

Bedrock Sand Black Sand Gravel Bricks

Bedrock 11.7 3.5 4.4 4.7

Sand 5.6 9.8 1.3 1.0

Black sand 2.8 8.5 6.2 10.8

Gravel 1.3 0.3 10.4 15.4

Bricks 2.5 0.7 12.6 5.7

Table B.6: Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the CSA MET dataset [%]

99

Appendix C

CIFAR-10 - Supplementary Results

C.1 ReDiHull-Computed Dataset Difficulty

Hull Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 0.27 0.36 0.30 0.53 0.31 1.24 0.37 0.13 0.31

Automobile 0.87 1.34 0.46 1.39 0.47 1.45 0.45 0.49 0.10

Bird 0.11 0.22 0.23 0.12 0.22 0.13 0.16 0.18 0.21

Cat 0.51 0.18 0.47 0.63 0.07 0.55 0.09 0.52 0.22

Deer 0.11 0.26 0.10 0.34 0.23 0.06 0.23 0.25 0.22

Dog 0.65 0.25 0.51 0.08 0.81 0.69 0.11 0.56 0.28

Frog 0.18 0.25 0.20 0.24 0.19 0.20 0.18 0.31 0.23

Horse 0.47 0.08 0.48 0.15 0.51 0.11 0.70 0.62 0.08

Ship 0.20 0.20 0.59 0.32 0.68 0.50 1.61 0.49 0.15

Truck 0.81 0.06 1.27 0.34 1.21 0.52 1.55 0.30 0.51

Table C.1: CIFAR-10 difficulty quantified using KL divergence

100

C.2 Neural Network Error Matrices

Predicted Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 2.7 3.2 2.3 2.1 2.0 1.4 2.9 7.2 3.3

Automobile 3.1 2.2 2.5 1.9 2.2 2.1 2.4 4.1 6.8

Bird 3.8 2.0 4.1 5.6 4.1 4.9 4.1 2.5 1.8

Cat 2.4 2.7 4.5 4.1 6.1 5.1 3.3 2.2 2.6

Deer 2.4 1.7 6.0 3.9 4.2 5.8 4.7 1.6 1.6

Dog 2.6 2.3 4.6 6.3 4.5 4.1 3.8 2.5 1.8

Frog 1.3 1.9 4.5 5.5 5.4 4.2 2.9 1.2 1.8

Horse 2.8 2.2 4.0 3.4 4.7 3.6 2.8 2.1 3.1

Ship 7.2 4.0 2.2 2.1 1.4 2.0 1.1 1.6 4.7

Truck 3.7 7.2 1.9 2.1 1.7 1.6 2.1 2.9 4.4

Table C.2: Average sample prediction error matrix for ”dnn-bl” trained and evaluated on

the CIFAR-10 dataset [%]

101

Predicted Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 2.7 3.7 2.1 2.3 1.7 1.2 2.5 7.5 3.3

Automobile 3.1 1.7 2.2 1.5 1.9 1.7 2.0 4.1 7.9

Bird 4.4 1.8 4.0 6.3 3.9 5.4 4.1 2.3 1.7

Cat 2.6 2.5 4.3 3.9 6.7 5.6 3.4 2.4 2.5

Deer 2.8 1.4 6.4 3.7 3.7 6.6 4.9 1.5 1.5

Dog 2.3 2.0 4.2 6.9 4.0 4.3 4.0 2.5 1.8

Frog 1.4 1.6 5.0 5.5 6.1 4.3 2.5 1.2 1.5

Horse 3.1 2.1 3.7 3.4 4.7 3.8 2.4 1.8 3.5

Ship 6.6 4.0 1.9 2.0 1.5 2.0 1.0 1.3 4.6

Truck 3.6 8.9 1.3 2.0 1.3 1.5 1.6 2.9 4.6

Table C.3: Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the CIFAR-10 dataset [%]

Predicted Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 2.6 3.7 2.2 2.7 1.9 1.3 2.5 8.3 2.9

Automobile 3.0 1.5 2.1 1.3 1.8 1.5 1.8 4.3 7.9

Bird 4.0 1.6 4.4 6.7 4.4 5.3 3.9 2.1 1.5

Cat 2.1 2.2 4.1 3.9 7.5 5.6 3.2 2.1 2.3

Deer 2.7 1.2 6.4 4.1 4.1 6.4 4.3 1.4 1.3

Dog 1.9 1.6 4.1 7.3 4.0 4.4 3.7 2.1 1.5

Frog 1.2 1.4 4.7 5.9 5.9 4.8 2.3 1.0 1.4

Horse 2.8 2.0 3.9 3.7 4.8 4.3 2.4 1.6 3.2

Ship 7.1 4.0 1.9 2.3 1.4 2.1 1.0 1.2 4.0

Truck 3.4 8.3 1.3 2.2 1.3 1.7 1.5 2.7 4.9

Table C.4: Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the CIFAR-10 dataset [%]

102

Predicted Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 2.2 4.6 2.0 2.4 1.0 1.0 1.2 8.2 3.5

Automobile 3.1 0.9 1.3 0.7 0.7 0.9 0.8 4.0 9.3

Bird 5.3 0.8 6.1 8.1 6.5 5.1 4.2 1.7 1.1

Cat 2.3 1.2 6.1 6.1 11.7 5.6 3.7 1.8 1.6

Deer 2.4 0.5 7.9 6.0 4.2 5.4 6.0 1.2 0.7

Dog 1.4 0.6 6.6 12.0 4.4 2.7 5.4 1.2 0.9

Frog 1.0 0.8 4.3 6.2 5.3 3.0 1.3 0.7 0.7

Horse 1.7 0.6 3.6 4.1 5.4 5.4 1.0 0.6 1.7

Ship 7.9 3.9 1.5 1.4 1.0 0.9 0.7 0.6 3.8

Truck 3.6 7.8 1.0 1.5 0.9 1.0 0.7 2.2 3.6

Table C.5: Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the CIFAR-10 dataset [%]

Predicted Class

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane 2.2 5.2 2.2 2.5 1.1 0.9 1.4 7.7 3.3

Automobile 2.4 0.8 1.0 0.5 0.6 0.9 0.7 2.9 8.8

Bird 5.3 0.8 5.9 7.9 6.6 5.5 4.1 1.5 1.0

Cat 2.2 1.2 6.1 5.6 14.0 6.3 3.7 1.7 1.7

Deer 2.2 0.5 7.9 5.7 4.7 6.0 6.5 1.1 0.6

Dog 1.3 0.5 5.5 12.2 4.0 2.7 5.2 1.0 0.9

Frog 0.8 0.8 4.5 5.9 5.0 3.3 1.1 0.8 0.7

Horse 1.7 0.7 3.7 3.7 5.5 5.7 1.0 0.5 1.6

Ship 7.1 3.8 1.6 1.6 1.0 0.9 0.8 0.7 3.1

Truck 3.1 7.9 0.9 1.6 0.8 1.1 0.7 2.0 2.8

Table C.6: Average sample prediction error [%] for ”cnn-2l-16u” trained and evaluated on

the CIFAR-10 dataset

103

Appendix D

MNIST - Supplementary Results

D.1 ReDiHull & Neural Network Sample Difficulty

Figure D.1: Increasing difficulty of digit One samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

104

Figure D.2: Increasing difficulty of digit One samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.3: Increasing difficulty of digit One samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

105

Figure D.4: Increasing difficulty of digit One samples (true label) w.r.t digit Four samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.5: Increasing difficulty of digit One samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

106

Figure D.6: Increasing difficulty of digit Two samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.7: Increasing difficulty of digit Two samples (true label) w.r.t digit Four samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

107

Figure D.8: Increasing difficulty of digit Two samples (true label) w.r.t digit Five samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.9: Increasing difficulty of digit Two samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

108

Figure D.10: Increasing difficulty of digit Two samples (true label) w.r.t digit Seven sam-

ples (predicted label) computed by ReDiHull (top-row) and several neural network architec-

tures.

Figure D.11: Increasing difficulty of digit Three samples (true label) w.r.t digit Seven

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

109

Figure D.12: Increasing difficulty of digit Four samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.13: Increasing difficulty of digit Four samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

110

Figure D.14: Increasing difficulty of digit Four samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.15: Increasing difficulty of digit Four samples (true label) w.r.t digit Eight sam-

ples (predicted label) computed by ReDiHull (top-row) and several neural network architec-

tures.

111

Figure D.16: Increasing difficulty of digit Five samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.17: Increasing difficulty of digit Five samples (true label) w.r.t digit Three sam-

ples (predicted label) computed by ReDiHull (top-row) and several neural network architec-

tures.

112

Figure D.18: Increasing difficulty of digit Five samples (true label) w.r.t digit Nine samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.19: Increasing difficulty of digit Six samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

113

Figure D.20: Increasing difficulty of digit Six samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.21: Increasing difficulty of digit Six samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

114

Figure D.22: Increasing difficulty of digit Six samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.23: Increasing difficulty of digit Six samples (true label) w.r.t digit Seven samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

115

Figure D.24: Increasing difficulty of digit Six samples (true label) w.r.t digit Nine samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.25: Increasing difficulty of digit Seven samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

116

Figure D.26: Increasing difficulty of digit Seven samples (true label) w.r.t digit Two sam-

ples (predicted label) computed by ReDiHull (top-row) and several neural network architec-

tures.

Figure D.27: Increasing difficulty of digit Seven samples (true label) w.r.t digit Three

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

117

Figure D.28: Increasing difficulty of digit Seven samples (true label) w.r.t digit Four

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

Figure D.29: Increasing difficulty of digit Seven samples (true label) w.r.t digit Nine

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

118

Figure D.30: Increasing difficulty of digit Eight samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.31: Increasing difficulty of digit Eight samples (true label) w.r.t digit Seven

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

119

Figure D.32: Increasing difficulty of digit Nine samples (true label) w.r.t digit Zero samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.33: Increasing difficulty of digit Nine samples (true label) w.r.t digit One samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

120

Figure D.34: Increasing difficulty of digit Six samples (true label) w.r.t digit Two samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.35: Increasing difficulty of digit Six samples (true label) w.r.t digit Three samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

121

Figure D.36: Increasing difficulty of digit Nine samples (true label) w.r.t digit Six samples

(predicted label) computed by ReDiHull (top-row) and several neural network architectures.

Figure D.37: Increasing difficulty of digit Nine samples (true label) w.r.t digit Seven

samples (predicted label) computed by ReDiHull (top-row) and several neural network ar-

chitectures.

122

D.2 ReDiHull-Computed Dataset Difficulty

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 7.4 3.9 3.1 5.9 2.0 4.8 5.7 3.4 3.4

1 8.9 6.4 5.3 6.4 7.1 7.4 7.0 6.9 7.3

2 2.6 3.7 2.1 2.8 3.1 2.7 3.1 2.5 3.6

3 3.9 4.2 3.0 6.0 2.1 5.4 4.1 2.2 2.9

4 4.6 6.5 3.9 3.8 4.3 4.1 2.6 3.9 0.5

5 2.6 6.1 3.6 1.2 4.2 4.0 3.7 2.5 2.0

6 2.8 5.3 3.0 5.3 2.4 2.7 5.7 5.0 3.5

7 6.8 4.4 3.5 3.3 3.6 5.9 7.6 4.7 2.2

8 3.5 3.0 1.5 0.3 3.3 1.4 3.8 2.1 1.0

9 5.6 5.4 4.6 2.8 0.7 3.7 6.2 1.3 3.3

Table D.1: MNIST difficulty quantified using KL divergence.

123

D.3 Neural Network Error Matrices

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 0.0 0.4 0.4 0.1 1.5 0.9 0.3 0.3 0.1

1 0.0 0.9 0.5 0.0 0.3 0.3 0.3 1.9 0.1

2 0.7 1.2 2.7 0.8 0.7 1.3 1.0 3.7 0.6

3 0.3 0.2 2.4 0.1 4.1 0.3 1.2 2.8 1.2

4 0.2 0.3 0.8 0.3 0.3 1.2 0.9 1.3 5.7

5 1.2 0.4 0.9 4.7 1.3 1.7 0.9 5.1 1.1

6 1.1 0.3 1.5 0.2 1.3 2.0 0.2 0.6 0.1

7 0.1 0.9 1.9 1.0 0.8 0.2 0.0 0.5 4.9

8 0.8 1.2 1.7 3.8 1.3 4.6 1.2 0.9 2.0

9 0.7 0.6 0.2 1.2 5.0 1.0 0.1 4.3 1.7

Table D.2: Average sample prediction error matrix for ”dnn-bl” trained and evaluated on

the MNIST dataset [%]

124

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 0.0 0.6 0.6 0.4 1.4 1.2 0.5 0.7 0.2

1 0.0 1.0 0.9 0.1 0.2 0.2 0.2 1.8 0.1

2 1.3 1.3 3.2 1.2 0.5 1.5 1.2 3.0 0.4

3 0.4 0.4 2.9 0.2 3.8 0.2 1.3 2.5 0.8

4 0.3 0.2 0.7 0.2 0.3 1.3 0.7 1.0 6.3

5 1.5 0.3 0.7 6.2 1.1 1.9 0.5 4.1 1.1

6 1.4 0.2 1.4 0.1 1.6 1.9 0.2 0.8 0.1

7 0.3 0.9 2.1 1.4 0.9 0.1 0.0 0.5 5.0

8 1.1 1.3 1.4 3.5 1.2 3.8 1.6 0.7 2.3

9 0.8 0.4 0.2 1.6 5.3 0.7 0.1 3.8 1.6

Table D.3: Average sample prediction error matrix for ”dnn-1l-8u” trained and evaluated

on the MNIST dataset [%]

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 0.0 0.8 0.3 0.2 1.3 1.4 0.3 0.4 0.2

1 0.0 0.9 0.8 0.0 0.4 0.3 0.4 1.8 0.1

2 1.4 1.1 2.8 0.9 0.4 1.4 1.4 2.2 0.2

3 0.4 0.4 3.0 0.1 4.9 0.2 1.6 2.5 1.0

4 0.4 0.1 0.8 0.2 0.4 1.5 0.6 0.8 4.9

5 1.9 0.5 0.6 5.1 1.0 2.3 0.4 4.1 1.2

6 1.9 0.3 1.4 0.1 1.6 2.0 0.1 0.7 0.0

7 0.4 0.8 2.1 1.5 0.6 0.1 0.1 0.3 3.6

8 0.6 1.3 1.6 2.6 1.5 3.5 1.5 0.7 2.1

9 0.9 0.4 0.2 1.1 5.7 1.1 0.1 3.1 1.8

Table D.4: Average sample prediction error matrix for ”dnn-2l-8u” trained and evaluated

on the MNIST dataset [%]

125

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 0.0 0.3 0.1 0.0 0.2 0.4 0.2 0.2 0.2

1 0.1 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0

2 0.3 0.6 0.6 0.1 0.0 0.2 0.6 0.4 0.2

3 0.1 0.0 0.3 0.0 0.7 0.0 0.2 0.3 0.2

4 0.1 0.1 0.2 0.0 0.0 0.3 0.2 0.1 1.0

5 0.2 0.0 0.1 1.2 0.0 0.6 0.1 0.3 0.1

6 0.7 0.3 0.1 0.0 0.3 0.3 0.0 0.3 0.0

7 0.1 0.5 1.2 0.4 0.2 0.0 0.0 0.3 0.6

8 0.6 0.1 0.6 0.4 0.2 0.3 0.4 0.5 0.7

9 0.3 0.4 0.1 0.4 1.1 0.5 0.0 1.1 0.6

Table D.5: Average sample prediction error matrix for ”cnn-1l-16u” trained and evaluated

on the MNIST dataset [%]

Predicted Class

0 1 2 3 4 5 6 7 8 9

0 0.0 0.2 0.0 0.0 0.1 0.3 0.1 0.2 0.1

1 0.0 0.3 0.1 0.2 0.0 0.2 0.1 0.1 0.0

2 0.3 0.4 0.5 0.1 0.0 0.1 0.5 0.4 0.0

3 0.1 0.0 0.2 0.0 0.5 0.0 0.2 0.3 0.2

4 0.1 0.1 0.1 0.0 0.0 0.2 0.2 0.2 1.1

5 0.2 0.0 0.0 0.9 0.0 0.4 0.1 0.2 0.3

6 0.5 0.2 0.0 0.1 0.2 0.4 0.0 0.2 0.0

7 0.0 0.3 1.0 0.3 0.1 0.0 0.0 0.2 0.7

8 0.7 0.1 0.6 0.4 0.2 0.3 0.4 0.3 0.6

9 0.2 0.3 0.1 0.4 0.7 0.4 0.0 0.8 0.3

Table D.6: Average sample prediction error matrix for ”cnn-2l-16u” trained and evaluated

on the MNIST dataset [%]

126

