
TIMETABLE-BASED ROUTING IN FIXED SCHEDULE

DYNAMIC NETWORKS

Cristian Oswaldo Rodriguez Santiago

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

March 2021

© Cristian Oswaldo Rodriguez Santiago, 2021

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Cristian Oswaldo Rodriguez Santiago

Entitled: Timetable-based Routing in Fixed Schedule Dynamic

Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

20

Mourad Debbabi, Ph.D., Interim Dean

Faculty of Engineering and Computer Science

D r . L . O p a t r n y

D r . D . P a n k r a t o v

D r . J . O p a t r n y

D r . L . N a r a y a n a n

- - - - - - - - - - - - - - - - -

21

D r . H . H a r u t y u n y a n

March 25th

Abstract

Timetable-based Routing in Fixed Schedule Dynamic Networks

Cristian Oswaldo Rodriguez Santiago

A fixed schedule dynamic network has a set of nodes (eg. vehicles or satellites)

that move using a known schedule and trajectory, so that the connections between

nodes in the network appear and disappear in a predictable manner. We study the

problem of finding a foremost journey in such a network: given a query time, source

and destination node, we find a temporal path that arrives at the earliest time at

the destination. We give a new approach to the problem that uses a timetable sorted

in order of the start time of connections, and describe three algorithms using this

approach. We prove their correctness and give tight bounds on their worst-case time

complexities. We also show extensive experimental results that show that our new

algorithms outperforms the previous best algorithm given in [21].

iii

Acknowledgments

I thank my God for providing me the strength and courage to complete this work.

I would like to express a sincere gratitude and appreciation to my supervisor Dr.

Lata Narayanan; for her patience, dedication and commitment.

Thanks to all my family, especially my mother Adelina and my sister Camila, for

their love and support. I also would like to manifest a deep appreciation to Dr. Luis

Felipe Urquiza, a generous and good friend of mine.

To all my brothers and sisters in Christ members of First Filipino Baptist Church

of Montréal and Bible Study Fellowship of Montréal, thank you all for your prayers.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem definition . 3

1.3 Our results . 4

1.4 Organization . 5

2 Related work 6

2.1 Dynamic graph models . 6

2.1.1 Snapshots . 7

2.1.2 Whole graph . 8

2.1.3 Log file . 8

2.1.4 Distributed graph over servers 9

2.2 Journey computation . 9

2.2.1 Dijkstra’s algorithms extensions 11

2.3 Connection scan algorithm . 12

3 Timetable-Based journey computation 16

3.1 Preliminaries . 16

3.1.1 Evolving graph . 16

3.1.2 Connection . 20

3.1.3 Timetable . 20

3.1.4 Duplicated timetable . 21

v

3.1.5 Journey . 21

3.2 Ferreira’s algorithm with tq support 23

3.3 Timetable-Based Algorithms . 24

3.3.1 Pure-Timetable . 26

3.3.2 Hybrid Timetable-Evolving Graph 30

3.3.3 Timetable with Auxiliary Graph 33

3.4 Journey extraction . 35

4 Data sets 36

4.1 Evolving graph and timetable generation 36

4.1.1 SUMO . 37

4.1.2 STK . 39

4.1.3 STM . 41

4.2 Characteristics of data sets . 42

4.2.1 Time slots . 42

4.2.2 Number of connections . 43

4.2.3 Presence ratio . 43

4.2.4 Dynamic ratio . 47

5 Experimental results 52

5.1 Computed journey characteristics analysis 52

5.1.1 SUMO . 53

5.1.2 STK . 54

5.1.3 STM . 55

5.2 Performance analysis . 55

5.2.1 Effect of varying the number of nodes 56

5.2.2 Effect of varying the transmission range 60

6 Conclusions 65

Bibliography 66

vi

List of Figures

1 Least cost journeys from A to D at time no earlier than 0. The number

above any node v on the journey is the cost of the specific least cost

journey from A to the node D. 10

2 Fixed-schedule Evolving Graph data structure [53]. 17

3 Evolving Graph example. 18

4 Evolving Graph data structure example. 19

5 C data structure. 20

6 C data structure example. 21

7 Complexity analysis example. 31

8 Road network for SUMO simulation. 37

9 SUMO data parsing. 38

10 SUMO different density of nodes and transmission ranges. 39

11 Satellite STK data parsing. 40

12 STK screenshot. 40

13 STM data parsing. 41

14 SUMO number of connections. 44

15 Number of connections in SUMO data set as the transmission range

reaches its limit. 44

16 STK number of connections. 45

17 STM number of connections. 45

18 Presence ratio example. 46

19 SUMO presence ratio. 46

20 STK presence ratio. 47

21 STM presence ratio. 47

22 Schedule with intervals switching between active and non-active. . . . 48

23 Schedule with only one interval. 48

vii

24 Schedule with one interval with three consecutive time steps. 48

25 SUMO dynamic ratio. 49

26 SUMO comparison between presence ratio and dynamic ratio. 50

27 STK dynamic ratio. 51

28 STM dynamic ratio. 51

29 SUMO varying the number of nodes. 53

30 SUMO varying the transmission range. 53

31 STK varying the number of nodes. 54

32 STK varying the transission range. 54

33 STM varying the transmission range. 55

34 SUMO number of hops varying the number of nodes. 56

35 SUMO running time varying the number of nodes. 57

36 STK number of hops varying the number of nodes. 58

37 STK running time varying the number of nodes. 59

38 SUMO number of hops varying the transmission range. 60

39 SUMO running time varying the transmission range. 61

40 STK number of hops varying the transmission range. 62

41 STK running time varying the transmission range. 63

42 STM number of hops. 64

43 STM running time varying the transmission range. 64

viii

List of Tables

1 Time slots. 43

ix

Chapter 1

Introduction

1.1 Motivation

Advances in wireless technologies, vehicular networking, and automobiles have made

it possible to conceive of heterogeneous vehicular networks comprising vehicles, road-

side units, as well as pedestrians. Intelligent transportation systems (ITS) consider

vehicles as network components responsible for sending, receiving and routing pack-

ets within the vehicular ad hoc network (VANET). Each vehicle is equipped with

a radio antenna called an on-board unit or OBU. In such network, vehicle connec-

tivity is classified as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and

Vehicle-to-Pedestrian (V2P). V2V involves data exchange between two or more vehi-

cles while V2I considers the interaction between vehicles and the road environment.

V2P includes pedestrians as potential network members [4]. One emerging type of

connectivity is V2X known as Vehicle-to-Everything which also includes communica-

tion with IT networks and data centers [31].

Among the applications that VANETs support are urban sensing, interactive

entertainment, comfort, efficiency and safety [13]. Due to its potential, Transport

Canada created the Advance Connectivity and Automation in the Transportation

System (ACATS) program whose aim is to prepare Canadian roads for connected

and automated vehicle deployments to support V2V, V2I and V2X communication

[4]. For instance, Montréal is currently working with EasyMile [17] and Transdev [27]

to implement an automated shuttle near the Olympic Stadium area to reduce the

number of on-road collisions [4]. Another V2V application developed in collaboration

1

with many truck companies and supported by U.S. Department of Transportation

and the European Union is the SARTRE project which estimates to reduce emissions

and increase safety and comfort. It forms road trains on highways where the leading

car takes the responsibility for the entire road train and every car mimics its actions.

This allows the drivers to focus their attention on other things [39].

In vehicular ad hoc networks, V2V communication is challenging because commu-

nication links are transient, causing the network topology to keep changing. There is

therefore no permanent route between any two nodes in the network. Indeed at any

given time step, it may not be possible to guarantee a route between any given source

and destination. The situation could be even worse: for a given source-destination

pair, it may be that there is no time at which there is a route between them. How-

ever, by storing packets at intermediate nodes, it may be possible to deliver the packet

eventually to the destination. It is for this reason that such networks have been var-

iously called delay or disruption-tolerant, or intermittently-connected networks over

the last couple of decades.

This thesis considers a particular type of vehicular network: Fixed Schedule Dy-

namic Network (FSDN) also known as Time Varying Communication Network (TVCN)

[29]. Such a network has a fixed set of nodes, which move in the given terrain using a

pre-determined schedule and trajectory, i.e. route/path in the terrain. As two nodes

in the network move within transmission range, a communication link or connection

is created. As the nodes move away from each other, the connection is broken, and

may or may not re-appear, depending on the trajectories of the nodes. Indeed a

single pair of nodes may be part of many different connections at different times; all

these connections are said to correspond to the same edge. Since the trajectories of

the nodes are known, the network is dynamic but in a predictable manner; for each

connection, we know in advance (roughly) when it will start and when it will end.

Examples of FSDN networks include networks created by public transport buses,

Low Earth orbiting satellites (LEO), etc. For instance, Unmanned Aerial Vehicles

(UAVs) have a predictable circular flight pattern, so they are able to compute routes

withing the UAV network at any time [48] [3] [40]. They can support applications

such as tactical military applications, humanitarian aid missions, drug blockage en-

forcement. DakNet [42] provides internet access in developing nations; some links in

2

the Daknet network can be predicted due to the mobility patterns of public trans-

portation vehicles [28]. LEO satellite networks are classified as FSDN as well since the

position of each satellite is deterministic due to its trajectory around the earth and

links between satellites can be estimated [19]. Another example where the presence

of the links can be estimated is Wireless Sensor Networks (WSNs) where connections

between sensors appear and disappear based on a sleep schedule due to their energy

constraints [20].

FSDNs can be represented by dynamic graphs, which have received a lot of at-

tention recently [29]. There are many models of such graphs that have been studied,

and we describe these in Chapter 2. For now, we restrict ourselves to saying that a

dynamic graph G is defined as a pair (G,SG) where G = (V,E) is a graph with a

set of nodes V and a set of edges E and SG = G0, G1, . . . , Gk is an ordered sequence

of sub graphs Gi. Each Gi has a set of nodes Vi and a set of edges Ei active in the

time interval [ti, ti + 1[. Two nodes are adjacent in G if they are adjacent in any

Gi. A common representation for such graphs is to use the base graph G, and for

each edge, store a sorted list of distinct and maximal time intervals in which it is

alive. A temporal path in a dynamic graph is a sequence of (vi, ti), where each vi ∈ V ,

so that the pair (vi, vi+1) is connected at time ti, and furthermore, the ti’s form a

non-decreasing sequence.

1.2 Problem definition

In this thesis, we study the problem of one-to-one routing in an FSDN represented

by an evolving graph G. In particular, at a given time, given a source node s and

destination node t in G, and a query time tq, we wish to compute a temporal path

in the network that minimizes the arrival time at the destination. Such a path is

sometimes called a foremost journey in the network.

We assume that time is slotted into discrete time slots, and that the mobility of the

nodes/vehicles/satellites is such that the transmission time for a packet is negligible

compared to the minimum duration of a connection. Note that we are not guaranteed

a source-destination path in the network at any given time; so while several hops in

the network may be traversed almost instantaneously, there may be time intervals

where it is not possible to make progress towards the destination.

3

This problem was introduced in [21], and the authors gave an algorithm based

on Dijkstra’s shortest path algorithm, that used an evolving graph data structure to

represent the network. Their algorithm was shown to take O(|E|(log I + log |V |))
time where E is the set of edges and I is the maximum number of time intervals in

which an edge is present.

1.3 Our results

We give a new timetable-based approach for the foremost journey computation prob-

lem, and describe three variants of this approach. The timetable T stores the con-

nections that appear in the FSDN in order of their start time.

• Our first algorithm, called Pure-Timetable takes time O(|V ||E| + |T |) and

space O(|T |). In addition to the timetable of connections, we use an auxil-

iary timetable to save connections that were not useful when they started but

may prove to be useful later.

• Our second algorithm is a hybrid approach that uses both the timetable of con-

nections, and the evolving graph data structure of [21] and takes O(|E| log I +

|T |+ |V |) time and space O(|T |).

• Our final variant called Timetable with Auxiliary Graph uses both the timetable

of connections, and an auxiliary graph data structure created and maintained

during processing of the timetable T . This last variant finds the route between

any source-destination pair in O(|E|+ |T |+ |V |) time and space O(|T |).

Note that |T | = O(|E|I). It is clear from the above that Hybrid Timetable-

Evolving Graph and Timetable with Auxiliary Graph improve over the classic algo-

rithm of Ferreira [21] in some situations. We also do extensive simulations of our

algorithms, using random data sets, as well as actual data sets derived from the

Société de transport de Montréal and satellite positions that validate the superior

performance of our algorithms.

4

1.4 Organization

In Chapter 2, we review the literature concerning dynamic graph models, journey

computation and previous algorithms proposed for our problem and related problems.

Chapter 3 defines the data structures and the algorithms that we propose describing

each timetable-based variant along with Ferreira’s algorithm [21]. In Chapter 4 we

detail the procedure to obtain the timetables and evolving graphs which are the

inputs for our experiments; then, we provide some metrics to characterize each data

set. Finally, Chapter 5 discusses the performance of each algorithm and explains the

attributes of the computed journeys; e.g., number of hops, journey duration. We

conclude with some directions for future research in Chapter 6.

5

Chapter 2

Related work

This chapter reviews the literature related to the scope of this work. In Section 2.1,

we review the mathematical models that are employed to represent dynamic graphs.

Then in Section 2.2, we discuss the previously proposed algorithms related to journey

calculation in communication networks. Finally, we describe an algorithm designed to

find foremost journeys for passengers in transportation networks, called Connection

Scan Algorithm in Section 2.3.

2.1 Dynamic graph models

In the literature, there are two types of work on dynamic graph. In the first type,

researchers have considered how to support operations that modify the initial state

of the graph such as edge insertion, edge deletion, node insertion and node deletion,

as soon as they happen. In this work, a dynamic graph is also known as a streaming

graph [5] and is modeled with data structures such as STINGER [18], cuSTINGER

[23], EvoGraph [47], AIMS [51], Hornet [7]. As an example, Green’s algorithm [22]

is a well-known algorithm that updates the value of betweenness centrality 1 metric

[24] [49] as soon as a change in the graph topology occurs.

The scope of this work focuses on the second type of dynamic graph where the

presence of an edge depends on a given time within the timespan of the graph, and

can be known or predicted in advance. For instance, Low Earth Orbiting (LEO)

1The betweenness centrality of a node v is defined as CB(v) =
∑

s6=z 6=v σsz(v)/σsz where σsz is
the number of shortest paths between node s and node z while σsz(v) is the number of shortest
paths between node s and node z that pass through node v [24].

6

satellite systems have links in different orbital planes where each endpoint belongs to a

different cluster of satellites. At some point, they are out of range due to their relative

movement. Such networks are called Fixed Schedule Dynamic Networks (FSDN); the

changes to the topology of such a network and can be predicted ahead of time [21].

There have been efforts to formulate a dynamic graph model that successfully

captures the dynamic behavior of a network. However, there is a lack of consensus

among those models since the approach to formulate each is different. According

to [56], dynamic graph models can be grouped in four main categories: sequence of

snapshots, whole graph, log file and distributed graph over servers. The following

subsections have a brief overview of each dynamic graph model.

2.1.1 Snapshots

Models based on a sequence of snapshots have a static graph per time step. For exam-

ple, the authors in [54], propose algorithms to capture the Most Frequently Changing

Component (MFCC) given a sequence of snapshots. There is a notion introduced

in [43] for sequence of static graphs called Evolving Graph Sequence (EGS). They

formulate a framework called FVF for efficient query processing in EGSs. Also, a

Dynamic Behavioral Mixed-Membership Model (DBMM) is studied in [45] to iden-

tify the roles that nodes play in social networks. Normally, every snapshot in the

sequence is encoded as a triple (Vi, Ei, ti) where the set of nodes Vi and the set of

edges Ei are present at ti time step [41].

The downside of this kind of model is that it requires a lot of space to store each

snapshot. However, to overcome this problem and improve its memory performance

some techniques have been studied. For instance, the authors in [44] improve the FVF

framework including a preprocessing step that consist of identifying similar snapshots

and group them into clusters, then two representative graphs are extracted. Similar

approaches are proposed in [45] and [57]. Authors in [45] define a method to cluster

snapshots that have similar query frequency and [57] formulates a procedure that

chooses snapshots with lowest variance.

7

2.1.2 Whole graph

The idea of the whole graph model is to represent a dynamic graph as one single

graph. The key aspect is the introduction of time intervals where nodes or edges are

considered present (sometimes termed valid, alive, or active). This can be represented

by a presence function [9] for both nodes and edges, which given a specific time instant,

outputs if they are alive or not.

The formalization of this whole graph approach is given in [21] and [9], also known

as FSDN and Time-Varying Graphs (TVGs), respectively. Depending on the appli-

cation the model may vary but the approach is the same. For example, the authors in

[32] use labels for each edge to denote the time interval when they are alive. Another

model similar to TVG called Temporally Evolving Graph (TEG) is described in [26]

and [25]. Authors in [35] propose a model called Space-Time Varying Graph (STVG);

they define adjacency between nodes based on places and events across time.

The authors of [50] propose what they term a unifying model for representing

time-varying graphs. Basically, they claim that their model can unify both whole

graph and snapshot models. They represent edges as a quadruple (u, ta, v, tb): u and

v are the source and target nodes, ta and tb represent the time interval. Then, they

identify four types of edges based on their temporal characteristics. Spatial edges

connect two different nodes at the same time ta = tb and u 6= v. Temporal edges

connect the same node but at different time ta 6= tb and u = v. Mixed edges link

two different nodes at different time ta 6= tb and u 6= v and Spatial-Temporal edges

link the same node at the time ta = tb and u = v . Afterwards, they prove that any

dynamic graph that is modeled with snapshots or whole graph and has those type of

edges can be represented with their unifying model.

2.1.3 Log file

Log file models are similar to snapshot models but they follow a materialization

procedure [56]. This procedure stores snapshots along with delta log files to store

the changes in the topology. It saves memory space since it is not required to store

the whole snapshot but it requires an additional processing power to construct the

snapshot using the log files.

There are three strategies to materialize snapshots: Time-based, Operation-based

and Similarity-based [56] [52]. Time-based materialization fixes the elapsed time

8

between two materialized snapshots. Operation-based materialization establishes a

constant number of events to materialize a snapshot. Similarity-based materialization

keeps a threshold between two snapshots to be considered similar.

The authors of [52] call their model snapshot plus log which is a similarity-based

model since they cluster snapshots according to the distribution of historical queries.

They assert that the other two materialization strategies may result in a storage or

processing power degradation. TGraph [38], ChronoGraph [8] and Immortalgraph

[36] are examples of time-based models while DeltaGraph [30] considers the number

of events as the main criteria to materialize a snapshot.

2.1.4 Distributed graph over servers

The models described above are organized by time: the dynamic behavior is indexed

by the time it takes place. The models that belong to the category of distributed

graph over servers are called entity-centric as their formulation focuses on nodes and

their history during the timespan of the dynamic graph [33]. Nodes are organized in

subsets which are handled by a set of servers. Each server maintains the history of a

subset of nodes [56]. For instance, HiNode [33] saves the history of each node using

Interval Trees and B-Trees. The authors of [34] introduce materialization techniques

and parallel complex graph data processing to reduce the memory usage while the

model in [55] involves delta log files in its storage in order to reduce the update time.

2.2 Journey computation

Paths are to static graphs as journeys are to dynamic graphs. Journeys incorporate

the time domain to travel between a source node and a destination node within the

network. In static graphs, the shortest path between two nodes is the one that has

the minimum cost in terms of number of hops, delay, etc. For dynamic graphs, a

journey is undertaken at a given time t. There are three commonly studied notions

of least cost [53].

• Shortest journey: It ignores the time domain and among all possible jour-

neys, it has the least number of hops between the source node and the destina-

tion node, starting from the source node at time no earlier than t.

9

• Fastest journey: It has the minimum difference between arrival time and

departure time, starting from the source node no earlier than time t.

• Foremost journey: It has the earliest arrival time at the destination, starting

from the source node at time no earlier than t.

(a) Dynamic graph. (b) Shortest journey.

(c) Fastest journey. (d) Foremost journey.

Figure 1: Least cost journeys from A to D at time no earlier than 0. The number
above any node v on the journey is the cost of the specific least cost journey from A
to the node D.

Figure 1 shows a dynamic graph and illustrates the three types of journeys de-

scribed above. For example, for the dynamic graph shown in Figure 1a, the Figures 1b,

1c, 1d, show the shortest, fastest, and foremost journeys respectively.

We describe some algorithms to compute journeys. The first one and the most

expensive one in terms of running time is Matrix Multiplication Algorithm [58] [28]. It

uses adjacency matrices for each time step and multiplies them to calculate shortest,

fastest and foremost journeys. The authors in [58] show that their approach takes

O(|V |4) time 2 per time step to compute shortest journeys. The second one is a family

2Using faster matrix multiplication algorithms [6], it may be possible to improve the complexity
of their approach.

10

of algorithms that are extensions or modifications of original Dijkstra’s algorithm [16].

Finally, the last algorithm, proposed in the context of finding journeys for passengers

in scheduled train or subway transportation networks, is Connection Scan Algorithm

(CSA) [15]. We describe below further details about Dijkstra’s algorithm extensions.

2.2.1 Dijkstra’s algorithms extensions

Algorithm 1: Ferreira’s Algorithm [21]

Input: G, source
1 Make all d(v)←∞ but for d(source)← 0
2 Initialize min− heap Q
3 Put (source, key(source)← 1) as Q’s root
4 while key(root(Q)) 6=∞ do
5 x← Q.removeMin()
6 for each open neighbor v in adjacency list of x do
7 fx(v)← min time (x, v) is available after key(x)
8 Insert v in Q if it was not there already.
9 if fx(v) < d(v) then

10 d(v)← fx(v)
11 key(v)← fx(v) + 1
12 parent(v)← x
13 Q.update(v)

14 Close x and insert it in the shortest paths tree

The first author who introduced an algorithm to compute foremost journeys in

Evolving Graphs is Ferreira [21]. This is also our main reference to compare the

performance of our proposed algorithms, so we give the pseudocode in Algorithm 1

and describe it in detail here. This algorithm has an evolving graph G and source

node as inputs. The following chapter defines G in detail, but as we can see the

algorithm uses a priority queue Q. Every node v in G has a d(v) attribute which

contains the estimate of the earliest time v can be reached. This value is initialized

to zero for the source node and infinity for all other nodes. A node is closed if the

estimate is the final correct value, and it is open otherwise. As in Dijkstra’s algorithm,

we remove the node x with least d value from the priority queue, and relax all its

neighbors, after which x can be closed. It is the relaxation step that differs from

Dijkstra. For each open neighbor v of x, we need to compute fx(v), the next time

11

there is a connection between x and v. This calculation involves looking into the

schedule of the edge (x, v) to know when v can be reached, and can be performed

in O(log I) time using binary search, where I is the maximum number of intervals

in which an edge is active. Line 11 of Algorithm 1 sets d(v) to be fx(v) + 1. This

is because the author considers a delay of one unit of time to forward a packet to

its neighbor. One potential bottleneck is Q.update(v), if the value of v changes its

priority has to be updated, which takes O(log |V |) time.

As proved in [21] and outlined above, for each edge adjacent to a closed vertex,

Algorithm 1 performs O(log I + log |V |), where I is the max number of time intervals

in which an edge is present. |V | is the number of nodes. Thus the algorithm takes

time O(|E|(log I + log |V |)).
Algorithms for shortest and fastest journey computation were introduced in [53].

These algorithms are also modifications or extensions of Dijkstra’s algorithm [16].

Some speed-up techniques have been introduced to find shortest journeys faster. For

example, the author in [25] extends bidirectional Dijkstra’s algorithm and Landmark-

based A* to compute shortest journeys in TEG’s. Another speed-up technique incor-

porated in [25] is Contraction Hierarchies (CH). Basically, CH allows to add shortcuts

into the original TEG so the algorithm is able to bypass nodes that are not important

during shortest journey calculation. The downside of CH incorporation is that it adds

a huge pre-processing overhead.

2.3 Connection scan algorithm

Connection Scan Algorithm (CSA) [15] was designed as a route planning algorithm for

public transit systems, involving a combination of trains, buses, trams, for example.

Users of such algorithms may not only want to find the earliest arrival time to reach a

certain destination, but may also have other criteria, such as minimizing the number

of hops. Train and bus stops are connected by footpaths which incur a certain delay.

CSA outputs a sequence of footpaths-vehicles that a traveler has to follow in order

to reach a desired destination from a given source position, that optimizes the given

criteria.

In CSA, the public transportation system is modeled as a timetable which is a

quadruple of stops, connections, trips, and footpaths (S, C, T ,F), respectively. The

12

Algorithm 2: Connection Scan Algorithm [15]

Input : source, τ , target, S, C, T , F
Output: The minimum arrival time over all journeys that depart after τ at

source and arrive at target

1 for all stops x do
2 S[x]←∞
3 for all trips x do
4 T [x]← false

5 for all footpaths f from source do
6 S[farr−stop]← τ + fdur

7 Find first connection c0 departing not before τ using binary search in C

8 for all connections c increasing by cdep−time starting at c0 do

9 if S[target] ≤ cdep−time then
10 break

11 if T [ctrip] is true or S[cdep−stop] ≤ cdep−time then
12 T [ctrip]← true
13 if carr−time < S[carr−stop] then

14 for all footpaths f from carr−stop do
15 S[farr−stop]← min{S[farr−stop], carr−time + fdur}

16 return S[target]

footpath graph F has the stops listed in S as nodes and the edges are the foot-

paths that the traveler can walk. The weight for each edge fdur is the time that

it takes to walk from one stop to another. Note that each stop has a self-loop

whose (non-zero) weight is the time taken to transfer at the stop. T is the set of

trips which are scheduled vehicles. Connections in C describe how vehicles drive;

they are modeled as departure stop, arrival stop, departure time and arrival time

(cdep, carr, cdep−time, carr−time), respectively. A trip is described as a sequence of con-

nections driven by the same physical vehicle.

Algorithm 2 shows the earliest arrival Connection Scan Algorithm variant [15].

The inputs are the quadruple timetable, a source stop, a target stop and the departure

time τ . This algorithm assumes that connections are ordered by departure time

and the footpath graph is stored as adjacency lists. If we contrast this algorithm

13

with Dijkstra’s algorithms extensions then we see that there is no priority queue

to keep a tentative arrival time. Instead, it keeps two arrays; S array maintains

the earliest tentative arrival time for each stop and T array keeps track which trips

have been boarded. One connection c is reachable if the traveler is at the departure

stop cdep−stop before departure time cdep−time or the trip flag T [ctrip] is set. This flag

indicates that a connection that belongs to the same trip was boarded before and

the traveler can remain seated. Once the algorithm finds a reachable c connection;

the algorithm modifies the tentative arrival time at the stops reachable by foot from

the arrival stop carr−stop. This Connection Scan Algorithm variant already includes

three optimizations. One called stopping criterion in line 9 which ends the execution

after finding a connection such that its departure time is greater than the tentative

arrival time at target. The second one known as starting criterion in line 7 that

finds a connection c0 whose departure is not before τ using binary search. The last

optimization limits the iteration of outgoing footpaths when the time at S[carr−stop]

is greater than carr−time in line 13.

CSA journey extraction

Algorithm 2 only outputs the earliest arrival time at the target stop but there is no

information about the journey. A journey in [15] is an alternating sequence of legs

and footpaths that indicates the passenger how to travel within the network; it must

start and end with a footpath. In this context, a leg is a pair of connections that

belong to the same trip; the first one is the enter connection lenter and the latter is the

exit connection lexit. Logically, lenter must appear before lexit in the timetable. There

is a footpath between legs, this leg transition is called transfer; it must follow the

transfer model that the authors in [15] propose. Basically, the transfer model tells

the feasibility of boarding a departing connection c′ at stop c′dep−stop coming from

a connection c arriving at stop carr−stop. In other words, it is possible to board a

departing connection that belongs to another trip as long as the passenger is at the

departure stop before the departure time. Note that, loops in this model allow the

passenger to transfer at the same stop. They call the duration fdur of the loop as

change time and every other footpath that is not a loop is called interstop footpath

[15].

They propose two ways to extract a journey. The first one uses something that

14

the authors in [15] call journey pointers which requires an extension of the current

data structures. The second one extracts the journey without journey pointers but

needs more complex tasks and data structures. Depending on the scenario, one is

better than the other in terms of running time. If only one journey from a source

stop towards a target stop is needed then the approach without journey pointers is

faster. But, if many journeys from one source stop towards many target stops are

needed then the journey pointers approach is faster and easiest to implement.

Journey pointer calculation requires a modification of T array and an addition

of a new J array that holds the journey pointers for each stop. Instead of saving

a boolean flag in T for each trip, it holds the ID of the first reached connection for

each trip. J array keeps triples that consist of the exit connection, the final footpath

and the enter connection. Algorithm 2 shows that at line 15 the journey pointer can

be easily calculated since the exit connection and the final footpath are right there.

But, there is no information about the enter connection. So, to complete the triple

the algorithm queries the modified T array to retrieve the ID of the enter connection.

Once the algorithm finishes its execution; it is enough to follow the pointers and back

track the journey starting at the target stop until the source stop is found.

Journey extraction without journey pointers requires two adjacency matrices. One

matches the trips IDs with the journey IDs. So, the algorithm is able to iterate the

connections that belong to the same trip fast. The second adjacency matrix encodes

the stop ID with a sorted list which contains the IDs of the arriving connections

at that stop. The algorithm uses a subroutine to calculate the enter connection,

the exit connection and the footpath to form the triple. As described earlier, the

enter connection is hard to calculate. So, to overcome this problem this approach

builds a set of candidate enter connections for each exit connection. Then, the list

of connections that belong to the same trip of a candidate connection is retrieved. A

valid enter connection is the x connection within that list such that the time at the

departure stop is less than or equal to the x departure time S[xdep−stop] ≤ xdep−time.

Finally, the candidate sets are pruned and the journey is extracted.

15

Chapter 3

Timetable-Based journey

computation

In this chapter, we describe a timetable-based approach to computing foremost jour-

neys in FSDN, that is inspired by the Connection Scan Algorithm described in the

previous chapter. First, in Section 3.1 we give some basic definitions and describe

the data structures used, starting with the Evolving Graph G definition introduced in

[21]. Then, we specify our definitions of connection, timetable, duplicated timetable

and journey.

In Section 3.2 we describe a slight modification in the original Ferreira’s algorithm

[21] to support the query time tq. Then Section 3.3, presents what we call Timetable-

based Algorithms. So, we propose the following algorithms: Hybrid Timetable-

Evolving Graph, Pure-Timetable, Timetable with Auxiliary Graph. The name of

each algorithm has to do with the approach to handle non-relaxed connections. Fi-

nally, in Section 3.4 a simple journey extraction algorithm is presented.

3.1 Preliminaries

3.1.1 Evolving graph

The authors in [53] define G as a system G = (G,SG) where G = (V,E) is a graph

with a set of nodes V and a set of edges E and SG = G0, G1, . . . , Gs is an ordered

sequence of subgraphs Gi of G. Each Gi has a set of nodes Vi and a set of edges Ei

running in the interval [ti, ti + 1[. Two nodes are adjacent in G if they are adjacent

16

in any Gi.

Figure 2: Fixed-schedule Evolving Graph data structure [53].

Alternatively, G can be defined as G = (VG, EG) as Equations 1 and 2 show. So,

each edge e in EG has a set of ordered intervals PE(e) defining the edge schedule

which contains the time steps when e is present. In addition, each node v in VG has

its own ordered schedule PV (v) indicating the time steps when v is present in G [53].

Furthermore, the authors provide some notions of node, edge and evolving graph

activity: the activity of a vertex v as δV (v) = |PV (v)|, the activity of an edge e as

δE(e) = |PE(e)|, the node activity of an evolving graph as δV = max{δV (v), v ∈ VG},
the edge activity of an evolving graph as δE = max{δE(e), e ∈ EG} and finally the

activity of an evolving graph as δ = max(δV , δE).

EG =

j⋃
i=0

Ei : j ≤ s ∴M = |EG| ≤ |E| = m (1)

VG =

j⋃
i=0

Vi : j ≤ s ∴ N = |VG| ≤ |V | = n (2)

17

Figure 3: Evolving Graph example.

Similar to weighted static graphs, G can be weighted too. So, there is a cost

to traverse an edge. For instance, the cost can be represented as physical distance,

power, hops, delay, etc. If the weight or cost of edge traversal belongs to the time

domain then G defines a function ζ(u, v) which models the time that it takes to

traverse from node u to node v.

Ferrerira’s algorithm is first described in [21] and the data structure used G is

described in detail in [53]. As shown in Figure 2, G is coded as a linked adjacency

list. To indicate when an edge is present and how long takes to traverse it, each

neighbor v has its own sorted edge schedule PE(e) given as time steps intervals and

ζ(u, v) attached to it. Also, each node u in G has a sorted list of intervals PV (v) to

point the time steps when it appears. In other words, G’s model considers that there

may be time steps when a node disappears [21]. The authors prove that the size of

G in the worst case is O(M +M ∗ δE +N ∗ δV) = O(M ∗ δ).
For the scope of this work we make three considerations regarding G’s coding and

interpretation. First, we consider that every Gi in SG has the same set of nodes

V0 = V1 = · · · = Vs. Therefore the node schedule PV (v) is not needed since every

node is always present and never disappears. Our implementation of G therefore

requires only the edge schedule PE(e) as time step intervals for every neighbor. For

instance, Figure 3 shows an example of an Evolving Graph. The label in each edge is

18

the schedule with the intervals that indicates when the edge is present or alive. Also,

Figure 4 shows how Figure 3 would be coded with our considerations for the Evolving

Graph data structure.

Figure 4: Evolving Graph data structure example.

Second, we assume instantaneous edge traversal. In other words, there is negligible

delay or cost for ζ. The assumption of negligible delay is justified for the FSDN that

we consider such as bus networks and satellite networks. The two technologies used

in vehicular networks are IEEE 802.11p and LTE. The authors of [37] define the mean

delay to be the ratio between the summation of all end-to-end delays and the number

of received packets. They show that the end-to-end delay with IEEE 802.11p is less

than 100ms for 90% of the beacons with 25 vehicles running on the road network while

for 50 vehicles; 40% of the beacons have a delay less than 100ms. LTE technology is

even better, achieving an end-to-end delay less than 60ms depending on the beacon

19

transmission frequency. Considering that satellite networks have optic links capable

of transferring 2,50Gbps over a distance of 2500km [10], and cover only about 3 km

in one second, it is reasonable to consider that the duration of connections is longer

than end-to-end transmission takes place. A similar calculation holds for buses.

3.1.2 Connection

A connection c = (csource, ctarget, cstart, cend) corresponds to a temporal edge in an

evolving graph G. Basically, a connection expresses the existence of a link between

nodes csource and ctarget in the time interval [cstart, cend[. There are two fundamental

logical restrictions for this definition regarding the endpoints and time. The first one

is csource 6= ctarget and the second one is cend > cstart. We say a connection c is active

at time t if cstart ≤ t < cend.

3.1.3 Timetable

A timetable T is another way to represent an evolving graph: it is a pair (V, C) of a

set of nodes V and an ordered sequence of lists of connections C = {C0, C1, . . . , Cs},
where Ci is the set of the connections that start at time ti, as Figure 5 shows. We

denote the first and last time step in the timetable as Tstart = t0 and Tend = ts,

respectively.

Figure 6 illustrates an example, and shows the timetable representation of the

graph in Figure 3.

Figure 5: C data structure.

20

Figure 6: C data structure example.

3.1.4 Duplicated timetable

We define an operation using T which returns another timetable Td that we call

duplicated timetable. This operation Td = duplicate(T) is specified in Algorithm 3.

The main particularity of Td is that each Ct holds the connections that are active at

time t. It is clear that the size of the duplicated timetable could be much bigger than

the original timetable.

Algorithm 3: Duplication

Input : T
Output: Td

1 Initialize Td ← ∅
2 for each connection c increasing by cstart in T starting at Tstart do
3 i← cstart + 1
4 while i < cend do
5 Ci.insert(c)
6 i← i+ 1

3.1.5 Journey

A journey J (source, target) in an evolving graph G is a temporal path from source

to target, that is, it is a sequence of pairs of nodes vi and time steps ti:

J (source, target) = {(v0, t0), . . . , (vj, tj)}, vi ∈ V (3)

where v0 = source ∧ vj = target ∧ ti ≤ ti+1 ∀ 0 ≤ i < j

21

In terms of the timetable representation, note that in order for a packet to travel

from node vi to vi+1 at time ti+1 there must be an active connection c ∈ C at time

ti+1 such that:

csource = vi ∧ ctarget = vi+1 ∧ cstart ≤ ti+1 < cend (4)

We define dep(J) = t0 and arr(J) = tj. Informally, we call these the departure

time, and arrival time of the journey J .

We say a journey J is foremost if arr(J) is as small as possible. As shown in

[53], there exists a foremost journey such that every prefix of the journey is also a

foremost journey; such a journey is called a ubiquitous foremost journey.

We denote by δ(s, v, tq), the earliest time that v can be reached departing from s

at time tq. Then δ(s, v, tq) = t if and only if there is a foremost journey J = J (s, v)

with dep(J) = tq and arr(J) = t.

Algorithm 4: Connection Relaxation Algorithm

Input: c

1 if d(csource) > cstart then
2 d(ctarget)← d(csource)
3 else
4 d(ctarget)← cstart

5 parent(ctarget)← csource

We now describe a fundamental primitive used in our algorithms, called connection

relaxation. Recall that the process of edge relaxation in shortest path algorithms such

as Dijkstra and Bellman-Ford for static graphs involves checking if going through an

edge (u, v) can lower the cost of reaching the vertex v, and accordingly updating

the estimated cost of reaching v. In the evolving graphs that we are investigating,

edges have zero weight, but are transient. Therefore, we examine a connection, and

if source of the connection has already been reached while the target has not, then

we can reset the arrival time at the target appropriately as described in Algorithm

4. The condition d(csource) > cstart noted in line 1, tests if csource has been reached

after the connection c has already started. In this case, d(ctarget) is set to d(csource).

Otherwise, csource holds the packet until c starts at which time it can pass it to ctarget.

Thus d(ctarget) is set equal to cstart. Afterwards, parent(ctarget) is set to indicate csource

as the predecessor of ctarget.

22

Notice that when Algorithm 4 relaxes a connection, it sets a parent reference

from the target of the connection to the source of the connection. While in our

description of algorithms, we generally are concerned with the arrival time of the

foremost journey, it should be clear that by following the references that each node

holds in parent(v), we can extract the corresponding journey from source to target.

3.2 Ferreira’s algorithm with tq support

Algorithm 5: Ferreira’s Algorithm with tq support

Input: G, source, target, tq
1 Make all d(v)←∞ except d(source)← tq
2 Initialize min− heap Q
3 Put (source, key(source)← tq) as Q’s root
4 while key(root(Q)) 6=∞ do
5 x← Q.removeMin()
6 Stop if x = target
7 for each open neighbor v of x do
8 fx(v)← min time (x, v) is available after key(x)
9 Insert v in Q if it was not there already.

10 if fx(v) < d(v) then
11 key(v)← d(v)← fx(v)
12 parent(v)← x
13 Q.update(v)

Algorithm 5 shows Ferreira’s algorithm [21] that supports tq as input. The differ-

ence between Algorithm 1 and Algorithm 5 is that d(source) is set to tq instead of

zero. This is because the earliest time that source can be reached is not zero anymore

but tq. Since, we consider no delay for edge traversing the variables key(source) and

i are set to tq instead of one. Also, the no delay assumption is showed in line 13 once

a node is relaxed it sets the value of d(v) and key(v) equal to fx(v).

Another added feature is the stop statement in line 6. If the node x that is inserted

in the shortest path tree is equal to target then it means that the algorithm found

the foremost journey J (source, target). So, it is not necessary to continue running

the algorithm.

The complexity of this algorithm which is O(|E|(log I+log |V |)) remains the same

23

as explained in the previous chapter since its complexity does not depend on tq but in

the total number of processed nodes and table look-up for valid schedule times. Also,

its correctness proof is the same since instead of starting at time zero, this version

starts at time tq which is the earliest time during Algorithm 5 running.

3.3 Timetable-Based Algorithms

In this section, we describe a new timetable-based approach to find a foremost journey

in an evolving graph. We then describe three new algorithms using this new approach

which we call: Pure-Timetable, Hybrid Timetable-Evolving Graph, Timetable with

Auxiliary Graph and prove their correctness and tight bounds on their space and time

complexities.

The key advantage of our timetable-based approach over Ferreira’s algorithm is

that we use faster array-based operations on the timetable of connections, rather

than priority-queue operations. As in Ferreira’s algorithm, we maintain an array d[]

containing estimates of the earliest arrival time at every node in the network. The

main idea is to process connections in sorted order of the start time of connections.

When processing a connection, if one of its endpoints has already been reached, we

can relax the connection to obtain the earliest arrival time at the other end of the

connection. We will show that as soon as node is reached via a connection for the

first time, we will have the earliest arrival time at the node.

The main difficulty that arises is that connections are not eligible to be relaxed

when they start, but they could be useful later on. For example, suppose c1 =

(a, b, t1, t1 + 2) and c2 = (x, a, t1 + 1, t1 + 2). Then c1 appears before c2 in the

timetable. It is possible that neither a nor b is reachable at time t1. However, x may

be reachable at time t1 + 1 when connection c2 is processed. This implies that a is

also reachable at time t1 + 1, and via connection c1 which is still active at time t1 + 1,

the node b is also reachable at t1 +1. Thus we cannot simply discard connection c1 at

time t1 if it is not useful then; it may be useful later. It is not hard to see that even

with connections starting at the same time, their order in the timetable can make a

difference to whether or not they can be immediately useful.

A related difficulty arises from the fact that to find a journey starting at time t, we

cannot simply start with connections starting at time t, as there may be pre-existing

24

connections that are still alive at time t that can be used.

Our three algorithms utilize different approaches to solve the two problems de-

scribed above.

Algorithm 6: Pure-Timetable

Input: T , source, target, tq
1 Initialize(d, location)
2 d(source)← tq
3 Initialize(Taux)
4 RelaxationF lag ← false

5 for t← location to s do
6 for each connection c in Ct do

7 Orient c so that d(csource) ≤ d(ctarget)

8 if d(csource) < cend and d(ctarget) =∞ then

9 Relax(c)
10 RelaxationF lag ← true
11 Stop if ctarget = target

12 else if d(csource) =∞ and d(ctarget) =∞ and cend > tq then

13 Taux.insert(c)

14 while RelaxationF lag is set do
15 RelaxationF lag ← false
16 for each connection r in Taux do

17 Orient r so that d(rsource) ≤ d(rtarget)

18 if d(rsource) < rend and d(rtarget) =∞ then

19 Relax(r)
20 Stop if rtarget = target

21 Taux.remove(r)
22 RelaxationF lag ← true

23 else if d(rtarget) 6=∞ or rend ≤ t then

24 Taux.remove(r)

25

3.3.1 Pure-Timetable

The first timetable based algorithm that we describe is Algorithm 6 which we call

Pure-Timetable. This approach uses an auxiliary timetable Taux to store connections

that were ineligible to be relaxed when first processed, but might still be eligible to

be relaxed later.

The first step is Initialize(d, location). The initialization of d involves setting

d(v) to infinity for every node v element of V . The location variable is set to the

smallest t such that there is a connection starting at t that is still active at time tq.

To do this, we use a the duplicated timetable generated with Algorithm 3, in which

connections are duplicated in every time step that they are active; this table is used

only for this purpose. Next we set Taux, the auxiliary timetable to empty, and set

to false the boolean flag RelaxationF lag, which indicates if there was a relaxation

of any edge while processing connections that are active at time t. This flag will be

used to determine if Taux is to be scanned again.

In the event of finding a connection c that can not be relaxed, then there are

some conditions to meet in order to save a connection in Taux. These conditions are

d(csource) =∞, d(ctarget) =∞ and cend > tq. In other words, one connection is saved

only if both ends; csource and ctarget are not being reached yet and the connection is

still active after tq. One thing to recall and notice is that connections in T are ordered

by cstart and connections are added to Taux as T is scanned. Then, connections in

Taux keep the same order that they have in T .

The proof of correctness of our Pure-Timetable algorithm involves the following

lemmas that we prove as follows:

Lemma 3.3.1 For every t, at the end of the iteration of the outer loop corresponding

to time t, the table Taux contains all connections r satisfying:

d(rsource) = d(rtarget) =∞∧ rstart ≤ t ∧ rend ≥ max (t, tq)

Proof. The conditions to meet in order to save a connection r in Taux are:

d(rsource) = ∞, d(rtarget) = ∞ and, since r ∈ Ct we have rend > t ≥ tq. In other

words, a connection r is saved only if both ends; rsource and rtarget have not been

reached yet and the connection is still active. Since connections that start after time

t have not yet been processed, it is clear that rstart ≤ t. On the other hand, while

26

scanning Taux, connections that are no longer active are removed. Therefore, at the

end of iteration of the outer loop for time t, the connections that Taux holds are the

set of all still-active connections r for which neither endpoint has yet been reached

and that are still alive at time t. �

Lemma 3.3.2 Once d(v) is set to an integer value, it will never change again.

Proof. Note that the d-value of any node is set either in line 2, or inside a call to a

Relax procedure; such a procedure is only called in lines 9 and 19 of the algorithm.

In both cases, the connection c is relaxed only if its target v satisfies d(v) =∞. Once

d(v) is set to an integer value, no connection with v as target can be relaxed again.

�

Lemma 3.3.3 During the iteration of the outer loop corresponding to time t ≥ tq, if

we call Relax(c), then d(ctarget) is set to t.

Proof. First note that when the Relax procedure is called for a connection c in T
(in line 9), we can assume inductively that d(csource) ≤ t = cstart, therefore when c

is relaxed, d(ctarget) is set to t. Now consider the case when the Relax procedure is

called for a connection r in Taux in line 19. By Lemma 3.3.1, we know that when we

started processing connections in Ct, for all connections in Taux, we must have had

d(rsource) = d(rtarget) = ∞. Since the connection r is now eligible to be relaxed, it

must be that some other connection c in T with cstart = t and ctarget = rsource was

relaxed. As argued earlier, in this case, d(ctarget) = d(rsource) must have been set to

t. Therefore, when r is relaxed, d(rtarget) will be set to t. �

Lemma 3.3.4 During the iteration of the outer loop corresponding to time t < tq,

any call to Relax(c) leads to d(ctarget) = tq.

Proof. Consider the first iteration of the outer loop corresponding to a time t < tq.

This means there is a connection c that started before tq but was still alive at time t.

Since the only node for which the d value is not∞ is source, if neither endpoint of c is

source, then the condition for relaxation is not met, and c is added to Taux. Therefore,

the first connection c which will be relaxed must have source as an endpoint, and

since d(csource) = tq > t = d(cstart), according to the logic of the relaxation algorithm,

27

d(ctarget) is set to d(csource) = tq. A similar logic applies to subsequent connections

that are relaxed in Ct for t < tq (even if neither endpoint is source).

Now consider the case when the Relax procedure is called for a connection r in Taux
in line 19. By Lemma 3.3.1, we know that when we started processing connections

in Ct, for all connections in Taux, we must have had d(rsource) = d(rtarget) =∞. Since

the connection r is now eligible to be relaxed, it must be that some other connection

c in T with cstart = t and ctarget = rsource was relaxed. As argued earlier, in this case,

d(ctarget) ← d(rsource) must have been set to tq > t. Therefore, when r is relaxed,

d(rtarget) will be set to tq.

�

We now show that Algorithm 6 correctly sets d(v) = δ(s, v, tq), recall that δ(s, v, tq)

is the earliest time that v can be reached departing from s at time tq, for every vertex

v in the evolving graph.

To do this, we need some new notation. We define T (s, tq, t) to be the set of all

nodes whose earliest arrival time is t, starting from s at time tq. That is,

T (s, tq, t) = {u | t = δ(s, u, tq)} (5)

Lemma 3.3.5 For every t with tq ≤ t ≤ ts, at the end of the iteration corresponding

to time t in Algorithm 6, for every u ∈ T (s, tq, t), we have d(u) = δ(s, u, tq) = t.

Proof. We give a proof by contradiction. Let t be the minimum start time such

that there exists a v ∈ T (s, tq, t) such that after the iteration of the outer loop

corresponding to time t, we have d(v) 6= t. We claim that then d(v) =∞. First note

that the value of d(v) can only be set according to connections being relaxed along a

journey from s to v, and therefore, it is impossible that d(v) < t. By Lemma 3.3.2,

it cannot be that d(v) was set to an integer value > t. We conclude that d(v) =∞.

If there are many such vertices, we pick v so that it has a foremost journey J
starting from s at time tq such that J has the minimum number of hops among all

such vertices. Note that there may be many such min-hop foremost journeys, we

pick an arbitrary one of them. Now consider the previous vertex u on this journey.

It follows from the definition of v as a node with a min-hop foremost journey with

arrival time t that d(u) must be set correctly to δ(s, u, tq). Note that there must be

28

such a previous vertex, as v 6= source, since d(source) is correctly set to tq by the

algorithm. We consider the following two cases for u.

1. δ(s, u, tq) = t: Then there must be a connection c from u to v that is active at

time t, in other words, cend > t.

If cstart = t, then c would be processed while scanning connections in T . If

d(u) = t at the time c is processed, then the connection c would be relaxed and

d(v) would be set to t, a contradiction. If d(u) 6= t at the time c is processed,

then it must be that d(u) = ∞. Therefore c would be added to Taux. By

assumption d(u) is set to t during some iteration of the while-loop while Taux
is processed. In the next iteration of the while loop, the connection c would be

relaxed and d(v) would be set to t, a contradiction.

If instead cstart < t then since d(u) = d(v) = ∞ and cend ≥ t, when the

outer loop iteration corresponding to time t starts, c would be part of Taux by

Lemma 3.3.1. As in the previous case, by assumption d(u) is set to t during

some iteration of the while loop in which Taux is processed. In the next iteration

of the loop, the connection c is relaxed and d(v) would be set to t.

2. δ(s, u, tq) = t′ < t: By the minimality of t, we infer that the value of d(u) is set

to t′. Also, there is an active connection c from u to v at time t. This connection

must start at time t, otherwise v would be reachable before time t. Therefore

c would be found and relaxed during Ct scanning since d(u) is already set to t′

which is less than t. According to the relaxation logic shown in Algorithm 4

d(v) is set to t, a contradiction.

�

Observing that the size of Taux never exceeds that of T , we are ready to prove the

main theorem of this section:

Theorem 3.3.1 Algorithm 6 finds the foremost journey from any source node to any

target node in an evolving graph G = (V,E) with timetable T in time O(|V ||E|+ |T |),

using space O(|T |).

29

Proof. The correctness of Algorithm 6 follows from Lemmas 3.3.1 to 3.3.5. We

now prove an upper bound on the time complexity. First we note that Taux can be

implemented as a doubly linked list so that insertion and deletion operations can

be performed in O(1) time. Also, we can ensure that its size is always at most

|E|, by checking for every edge, before inserting a connection corresponding to the

edge, if such a connection already exists, and if it does, simply updating with the new

connection. It is clear that every instruction in the inner for loop can be implemented

in O(1) time, for a total cost of O(|T |).
It remains to analyze the complexity of the while loop. Notice that the while

loop is executed only when an edge is relaxed, that is, when the d value of a node is

changed. By Lemma 3.3.2, once the d(v) value is set it will never be set again. So the

condition for the while loop to execute can be satisfied at most |V |−1 times. Together

with the fact that the size of Taux is at most |E|, and each instruction in the for-loop

scanning Taux can be executed in O(1) time, we conclude that the total time taken

to execute the while loop over all iterations of the outer loop is O(|V ||E|) = O(|V |3).
We have shown that the total time taken by Algorithm 6 is O(|V ||E|+ |T |). �

We now give in Figure 7 an example of an evolving graph on which Algorithm 6

takes Ω(|V ||E|+ |T |) demonstrating that the above analysis is tight. The base graph

consists of a path of n/2 nodes connected to a clique of n/2 nodes (i.e. Kn/2). The

schedule of edges is described as follows: the edges in the clique are always alive, while

on the path, the connection between node i and node i + 1 starts only in time step

i. In this example we start at time step zero, so at the end of processing connections

starting at time step 0, the size of Taux is equal to number of edges in Kn/2, that is,

there are Θ(n2) connections in Taux. In each of the subsequent n/2 time steps, exactly

one connection is processed and relaxed, which necessitates scanning the entire Taux.

However, none of these iterations causes any connection to be removed from Taux,

which therefore has size n/2(n/2 − 1) for n/2 steps. The total cost paid is lower

bounded by n/2(n/2)(n/2− 1) = Θ(n3) = Θ(|V ||E|).
In this context the total cost of the previous example is Θ(V 3).

3.3.2 Hybrid Timetable-Evolving Graph

In this section, we describe a hybrid algorithm that uses both a timetable and the

evolving graph representation of a dynamic network. The pseudocode is given in

30

Figure 7: Complexity analysis example.

Algorithm 7. Like Algorithm 6, we process connections in order of start time from a

timetable. Instead of storing potentially useful connections in an auxiliary timetable,

in this new algorithm, while we process all connections starting at time t, we store

in a queue any vertices whose d-values are changed. Subsequently, we explore the

connected components containing these vertices in the graph created by connections

that are alive at time t, by doing a breadth-first search starting at these nodes. To

find the connections that are alive at time t, we use the evolving graph data structure

of Ferreira [53]. Note that unlike in Pure-Timetable, here we start scanning the

timetable at the first time there is a connection starting after time tq.

We proceed to prove the correctness of the algorithm.

Lemma 3.3.6 Algorithm 7 sets d(u) = δ(s, u, tq) = tq for every node u ∈ T (s, tq, tq)

after the execution of line 6.

Proof. The only node in Q when ExploreConnectedComponent is called in line 6

is source where d(source) = tq. It is easy to see that ExploreConnectedComponent

simply performs a BFS-like procedure, only considering connections that are alive at

time tq. Thus, every node u for which there is a journey from source at time tq is

explored, and d(u) is set to t. �

Lemma 3.3.7 For every t > tq, at the end of the iteration of the main loop cor-

responding to time t, Algorithm 7 sets d(u) = δ(s, u, tq) = t for every node u ∈
T (s, tq, t).

Proof. We give a proof by induction. Assume inductively that when we start the

iteration of the loop for some t > tq, we have d(u) = δ(s, u, tq) = t′ for every node

31

Algorithm 7: Hybrid Timetable-Evolving Graph

Input: G, T , source, target, tq

1 Initialize(d)
2 location← beginning of Ctq+1

3 d(source)← tq
4 Initialize queue Q
5 Q.enqueue(source)
6 ExploreConnectedComponent(Q, target, tq)

7 for t← location to s do
8 for each connection c in Ct do

9 Orient c so that d(csource) ≤ d(ctarget)

10 if d(csource) 6=∞ and d(ctarget) =∞ then

11 Relax(c)
12 Stop if ctarget = target

13 Q.enqueue(ctarget)

14 ExploreConnectedComponent(Q, target, t)

15 Function ExploreConnectedComponent(Q, target, t)
16 while Q 6= ∅ do
17 v ← Q.dequeue()
18 for each edge (v, u) do
19 for each interval in edge (v, u) do
20 if d(u) =∞ then
21 if start(v, u) ≤ t < end(v, u) then
22 d(u)← t
23 parent(u)← v
24 Stop if u = target
25 Q.enqueue(u)

u ∈ T (s, tq, t
′) for every t′ < t. Note that the base case follows from Lemma 3.3.6.

Observe that Q is empty at this point, since the termination condition of the while

loop in ExploreConnectedComponent is that Q is empty. Consider a vertex v ∈
T (s, tq, t) which has a predecessor u ∈ T (s, tq, t

′) with t′ < t in a foremost journey

from s. Then there must be a connection c from u to v starting at time t. By

the inductive assumption, we have d(u) = t′, and after relaxing the connection c,

d(v) = t, and v will be inserted into the queue. It is clear that any edge relaxed while

32

scanning connections in Ct results in d(v) being set to t for some vertex v. Therefore

all vertices in Q have d-value equal to t after all connections in Ct are scanned.

When ExploreConnectedComponent is called, once again, a BFS is performed using

connections that are alive at time t and any vertex u that is reachable from a vertex

v in Q will have d(u) = t. This finishes the proof. �

Theorem 3.3.2 Algorithm 7 finds the foremost journey from any source node to any

target node in an evolving graph G = (V,E) with timetable T in time O(|E| log I +

|V |+ |T |) using space O(|T |).

Proof. The correctness of the algorithm follows from Lemmas 3.3.6 to 3.3.7. We

proceed to analyze Algorithm 7 in terms of complexity. The main challenge is to

analyze the total time taken by ExploreConnectedComponent; it is easy to see that

all other operations take at most O(|T |+ |V |) time. Observe that nodes are enqueued

only one time because lines 5, 13, 25 enqueue node v only if d(v) is set. Thus the total

time dedicated to queue operations over the entire algorithm is equal to O(|V |). For

each dequeued node, we explore the schedule of each neighbor using binary search. So,

in total there are |E| edges and the maximum number of time intervals that an edge

is active is I. Thus, the algorithm spends in the worst case O(|E| log I + |V |+ |T |)).
Finally, observe that the evolving data structure uses constant space for every entry

in the timetable, and has size O(|T |). �

The previous analysis is tight: take an evolving graph whose base graph is a path,

which has only one edge active per time step. Then there is one connection that is

found in each iteration of the main loop, and only one node whose d-value is set, and

which is added to the queue. Afterwards, that node is dequeued and its neighbors

have to be explored, which takes Ω(|E| log I) time. Clearly we also need O(|V |+ |T |)
time to queue the vertices and scan the timetable.

3.3.3 Timetable with Auxiliary Graph

Our last algorithm, called Timetable with Auxiliary Graph, combines the merits of

the previous algorithms. Instead of storing connections that may be useful later in

a separate table as in Pure-Timetable, we create and maintain a graph of currently

active connections, and explore this graph, which is of size |E|, rather than exploring

33

Algorithm 9: Timetable with Auxiliary Graph

Input: T , Td, source, target, tq
1 Initialize(d,G,Q)
2 location← beginning of Ctq+1

3 d(source)← tq
4 Q.enqueue(source)

5 ExploreGraph(G,Q, target, tq)

6 for t← location to s do
7 for each connection c in Ct do

8 Orient c so that d(csource) ≤ d(ctarget)

9 if d(csource) 6=∞ and d(ctarget) =∞ then

10 Relax(c)
11 Stop if ctarget = target

12 Q.enqueue(ctarget)

13 else if d(csource) =∞ and d(ctarget) =∞ then

14 G.addEdge(csource, ctarget, cstart, cend)

15 ExploreGraph(G,Q, target, t)

16 Function ExploreGraph(G,Q, target, t)
17 while Q 6= ∅ do
18 v ← Q.dequeue()
19 for each edge e = (v, u, estart, eend) do
20 if t < eend and d(v) 6=∞ and d(u) =∞ then
21 Relax(connection(e))
22 Stop if u = target
23 G.remove(e)
24 Q.enqueue(u)

25 else if d(u) 6=∞ or eend ≤ t then
26 G.remove(e)

the entire evolving graph as in Hybrid Timetable-Evolving Graph. The pseudocode

is given in Algorithm 9. The correctness can be proved in a very similar way to the

previous algorithms, and the upper bound on the running time follows from the fact

that exploration occurs in a graph of size |E|; the complexity analysis is otherwise

identical to Algorithm 7. The auxiliary graph uses space O(min(|E|, |T |)). We obtain:

34

Theorem 3.3.3 Algorithm 9 finds the foremost journey from any source node to any

target node in an evolving graph G = (V,E) with timetable T in time O(|E|+ |V |+
|T |), using space O(|T |).

3.4 Journey extraction

Algorithm 10: Journey Extraction

Input : target
Output: J

1 J ← ∅
2 j ← target

3 while j 6= null do
4 J .insert(j, d(j))
5 j ← parent(j)

Algorithm 10 shows how we extract a journey after any presented algorithm in

this work finds the target node. Each node has a reference to its predecessor which is

set during the journey calculation. The reference is saved as parent, so it is enough

to follow those references until there is an null value, as line 3 tests. The output is

a linked list J that describes how to reach the target node starting from the source

node.

35

Chapter 4

Data sets

In this chapter we describe the procedure that we follow to generate evolving graphs

and timetables, the data sets we use, and their characteristics. In Section 4.1, we

present three different data sets which provide information about the position of

nodes, and describe how we generate evolving graphs from them. In Section 4.2

once the data structures are generated for each data set; we describe some of their

characteristics such as time slots, number of connections, presence ratio, dynamic

ratio.

4.1 Evolving graph and timetable generation

We use three different data sets in our experiments. The first one is SUMO; it

stands for Simulation of Urban Mobility [1], and refers to a well-known simulator that

simulates the mobility of vehicles in a given road network. The second one is STK

which stands for Systems Tool Kit [11]. This provides information about the position

of real satellites all over the world. The last one is Société de Transport de Montréal

(STM) [14]. It gives the real-time position of buses in the public transportation

system of Montréal, Canada. Thus, we have three different type of nodes: vehicles,

satellites and buses. Given a set of nodes and their positions, and a transmission

range, we calculate edges and connections based on the euclidean distance between

each pair of nodes. If this distance is within the transmission range at a given time,

then there is a connection between the pair of nodes. The nodes are said to have an

edge between them if there is ever a connection between them.

36

We decided to include these three data sources for the following reasons: mobility

nature, type and number of nodes. Regarding the mobility nature, SUMO provides

random mobility while STK and STM have real mobility. We consider different

numbers of buses in SUMO and STK networks, but the number of buses in STM is

fixed; we always use the entire set of buses in our experiments.

We now give more details on each of these data sets.

4.1.1 SUMO

Figure 8: Road network for SUMO simulation.

SUMO is an open source vehicle traffic simulator that includes tools such as

netgenerate, jtrrouter, randomTrips.py to model and simulate traffic [1].

Figure 9 shows the schema to obtain the position of each vehicle and parse it

into a Evolving Graph and Timetable. The tool netgenerate outputs road networks

represented as graphs where intersections are nodes and streets are edges. We use

netgenerate to have the road network shown in Figure 8 saved as a xml file called

net.net.xml. This road network is a grid, each cell is a square of 2000m length.

A trip is a pair of source and destination edges in the road network. We use

randomTrips.py which is part of SUMO simulation suite to generate random trips

for each vehicle. The trips are saved in file called flows.xml. A route in SUMO is

a description of the edges that a vehicle has to take to depart from a given source

edge and arrive to a given destination. To generate the route for each vehicle we

use jtrrouter which is a SUMO tool to calculate the routes for each vehicle. The

file jtrrouter.jtrrcfg provides configuration parameters like turning ratios, loop al-

lowance and all destinations acceptance. We provide 25/50/25 as turning ratio. It

37

means a vehicle turns right with probability 25%, goes straight with probability 50%

and turns left with probability 25%. Also, we allow loops in route calculation. Finally,

we have routes.xml which encodes the edges that each vehicle has to take during its

trip.

Figure 9: SUMO data parsing.

The way we provide the input to SUMO is shown in Figure 9. The sumo.sumocfg

file is a configuration file where we specify the simulation time. It starts at time 0

and ends at time 120, each time step represents one second in SUMO. The output

is fcd.fcd which has the position of each vehicle at every time step. So, our Parser

module calculates the edges between each vehicle given a transmission range at every

time step and outputs a Evolving Graph and Timetable files.

We have 10 different densities of nodes and 14 transmission ranges. The first set of

nodes has 100 nodes and the last one has 1000 nodes, in between there are set of nodes

in 100 steps. The transmission range starts with 200m up to 1500m in 100m steps.

Each density of nodes has 100 different random mobility SUMO simulations running

for 120 seconds on the road network shown in Figure 8 whose side is 6000m long.

For instance, Figure 10 shows different density of nodes with different transmission

ranges at time step 60.

As a result, if we combine every density of nodes with every transmission range

then we have 14000 different Evolving Graphs and Timetables to run our experi-

ments. Each experiment chooses 100 random pairs of source − target nodes and a

38

random tq. Therefore, overall we have 1400000 time measurements for each algo-

rithm. An important point to note is that a source− target pair is only included in

the calculation of averages if the target is reachable from the source node; if not, it

is simply discarded, and another pair is chosen. To determine reachability, we simply

run Ferriera’s algorithm.

(a) 100 nodes - 200m. (b) 100 nodes - 1500m.

(c) 1000 nodes - 200m. (d) 1000 nodes - 1500m.

Figure 10: SUMO different density of nodes and transmission ranges.

4.1.2 STK

The evolving graph and timetable generation for the STK data source is simple.

Figure 11 shows that STK outputs a file called positions.csv. It has the position of

each satellite at every time step as a three-dimensional coordinate. Then, to generate

the evolving graph and timetable we calculate the euclidean distance at every time

step between every pair of satellites. If the distance is within a given transmission

range then we consider the existence of a connection between them.

39

Figure 11: Satellite STK data parsing.

Figure 12: STK screenshot.

40

Figure 12 shows an example of how two satellites and their trajectory around the

world look like in STK.

We start with 100 satellites and end up with 1000 satellites in 100 steps. One

important feature to highlight of this data set is that it has a built-up approach.

In other words, the mobility is the same for every set of satellites except for the

100 new added satellites. Regarding the transmission range, it starts with 500km

and ends up with 6000km in 500km steps. If we combine each density of nodes and

transmission ranges then we have 120 different Evolving Graphs and Timetables to

run our experiments. Each experiment chooses 10000 random pairs of source−target
satellites and a random tq. Thus, they provide 1200000 time measurements for each

algorithm. Note that once again, we only include a (source, target) pair, if target is

reachable from source.

4.1.3 STM

Figure 13: STM data parsing.

STM has a developer API available at https://api.stm.info which makes the

bus real-time position publicly available. They use the GTFS Realtime [12] specifi-

cation to define the position of each bus. GTFS Realtime stands for General Transit

Feed Specification that allows public transportation systems to provide real-time up-

dates regarding their transit services.

41

https://api.stm.info

We have developed an automatic Requester, as Figure 13 shows, which requires

the URL, an API developer key provided by STM, and the frequency. The frequency

tells how often the automatic Requester requests the position of the buses to the STM

servers. Each response is saved as a position.bin file. After a period of time many

position.bin files are collected, we decode the GTFS binary data contained in each

file and save all in one single plain-text file called positions.csv. Finally, we calculate

the euclidean distance between each pair of buses and create a connection between a

pair of nodes in a time step if they are within a given transmission range.

The main characteristic of this data source is that the number of nodes is constant

equal to 1152 buses, that is, we use all buses. So, the transmission range is the only

variable that we can modify. We start with 150m and end up with 2000m in 50m steps.

Thus, we have 38 different Evolving Graphs and Timetables to run our algorithms.

Similarly as SUMO and STK data set, each experiment chooses 10000 random pairs

of source − target buses and a random tq. Therefore, each algorithm has 380000

samples to compare their performance. We only include a (source, target) pair, if

target is reachable from source.

4.2 Characteristics of data sets

This section describes some characteristics of our data sets, namely: time slot char-

acteristics, number of connections, presence ratio, and dynamic ratio. The time slot

characteristics lets us know how many time slots the evolving graph or the timetable

has and how long each time slot lasts in real time. The number of connections as its

name suggest tells the size of the timetable. This attribute is useful in terms of order

of magnitude.

We define two metrics in the following sections called presence ratio and dynamic

ratio. Basically, presence ratio is a comparison between the dynamic graph and its

static graph equivalent. Dynamic ratio is a comparison between the actual number of

on-off transitions of each edge and its maximum possible value of on-off transitions.

4.2.1 Time slots

Table 1 summarizes the main characteristics regarding time slots. The slot duration

means the real elapsed time between each time step. The total duration refers to the

42

Data
Set

Mobility
Nature

Max-Min
Connections

Number of
Time Slots

Slot
Duration

Total
Duration

SUMO random 92007-209 120 1 second 120 seconds
STK real 2278948-1048 194 7.5 minutes 24 hours
STM real 317302-51300 1684 12.8 seconds 6 hours

Table 1: Time slots.

whole duration of simulation or data collection. In other words, the total duration is

equal to slot duration times the number of time slots. STM data set is the one with

the greatest number of time steps while STK has the biggest slot duration around 7.5

minutes.

4.2.2 Number of connections

Figures 14, 16 and 17 show the average number of connections for every data set. As

expected, the number of connections grows as we increase either the number of nodes

or the transmission range.

The slope for SUMO and STM data sets in Figures 17b and 14b is constant as

we increase the transmission range, however in Figure 16b the slope of STK data set

grows faster at the beginning but then it tends to decrease as the transmission range

increases. This is because the transmission range has a limit. In other words, there

is a point where the transmission is so big that the network is completely connected.

Figure 15 shows an evidence of our previous statement. It is an experiment in SUMO

data set which its transmission range limit is around 6500m. As we can see, after

6000m there is no more new connections since every node is connected to every other

node in the network.

Figures 14a, 16a and 17a show how the number of connections increases as we

increase the number of nodes.

4.2.3 Presence ratio

In order to know how present the edges are in an Evolving Graph G we compare the

average degree of every node during the lifespan of G with the number of neighbors.

Equation 6 shows how we calculate the presence ratio; s is the number of time steps,

43

100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

·104

Number of Nodes

N
u
m
b
er

of
C
on

n
ec
ti
on

s

200[m]

600[m]

1000[m]

1400[m]

(a) Varying the number of nodes.

200 400 600 800 1000 1200 1400 1600

0

2

4

6

8

·104

Transmission Range[m]

N
u
m
b
er

o
f
C
o
n
n
ec
ti
o
n
s

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Varying the transmission range

Figure 14: SUMO number of connections.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

Transmission Range [m]

N
u
m
b
er

of
C
on

n
ec
ti
o
n
s

100 Nodes
200 Nodes
300 Nodes
400 Nodes
500 Nodes
600 Nodes
700 Nodes
800 Nodes
900 Nodes
1000 Nodes

Figure 15: Number of connections in SUMO data set as the transmission range reaches
its limit.

degree(v, t) is the degree of node v at time t while degree(v) is the number of neigh-

bors. For example, lets consider the dynamic graph of Figure 18 where every edge

is present for two time steps. If we calculate the presence ratio we have Equation 7

which shows that it is equal to 0.20. So in average the edges are present 20% of the

time. So, if the presence ratio is equal to one then it means that every edge is present

44

100 200 300 400 500 600 700 800 900 1000

0

0,5

1

1,5

2

·106

Number of Nodes

N
u
m
b
er

o
f
C
o
n
n
ec
ti
o
n
s

1000[km]

2500[km]

4000[km]

5500[km]

(a) Varying the number of nodes.

0 1000 2000 3000 4000 5000 6000

0

0,5

1

1,5

2

2,5
·106

Transmission Range[km]

N
u
m
b
er

of
C
o
n
n
ec
ti
on

s

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Varying the transmission range

Figure 16: STK number of connections.

950 1000 1050 1100 1150 1200 1250 1300 1350

0,5

1

1,5

2

2,5

3

·105

Number of Nodes

N
u
m
b
er

of
C
on

n
ec
ti
on

s

200[m]

400[m]

600[m]

800[m]

1000[m]

1200[m]

1400[m]

1600[m]

1800[m]

2000[m]

(a) 1152 nodes

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0,5

1

1,5

2

2,5

3

·105

Transmission Range[m]

N
u
m
b
er

of
C
on

n
ec
ti
on

s

1152 Nodes

(b) Varying the transmission range

Figure 17: STM number of connections.

all the time in G.

presenceRatio(G) =

∑
v∈V

s∑
i=0

degree(v, ti)

s ∗
∑
v∈V

degree(v)
(6)

=

10∑
i=0

degree(A, i) +
10∑
i=0

degree(B, i) +
10∑
i=0

degree(C, i) +
10∑
i=0

degree(D, i)

10 ∗ (degree(A) + degree(B) + degree(C) + degree(D))

=
4 + 6 + 6 + 4

10 ∗ (2 + 3 + 3 + 2)

=
20

10 ∗ 10

=
1

5

(7)

45

Figure 18: Presence ratio example.

100 200 300 400 500 600 700 800 900 1000

0,2

0,3

0,4

0,5

0,6

Number of Nodes

P
re
se
n
ce

R
at
io

200[m]

600[m]

1000[m]

1400[m]

(a) Varying the number of nodes

200 400 600 800 1000 1200 1400 1600

20

30

40

50

60

Transmission Range[m]

P
re
se
n
ce

R
at
io

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Varying the transmission range

Figure 19: SUMO presence ratio.

Figures 19, 20 and 21 show how the presence ratio varies as we increase the

transmission range or the number of nodes. For the SUMO data set, increasing the

number of nodes for a given transmission range does not impact the presence ratio

as increasing the transmission range for a given density of nodes does. Figure 19b

shows that for smaller transmission ranges the slop is high and it tends to decrease

as the transmission range increases. This behavior can be described as some sort of

saturation since the slope grows slower as we are getting close to presence ratio equal

one. The maximum values in Figures 19a and 19b are around 0.6 which means that

the edges are present on average sixty percent of the time.

Figure 20a shows that STK data set has the maximum presence ratio at 200 nodes

for every transmission range. After the curve reaches this peak; it decreases and then

tends to be constant as we increase the number of nodes. If we take a closer look

at Figure 20a then we realize that if we increase the number of nodes for a given

transmission range then the presence ratio does not change. In Figures 20b and 21b,

we see constant slope; as transmission range increases, the presence ratio increases

46

100 200 300 400 500 600 700 800 900 1000
0

0,05

0,1

0,15

0,2

0,25

0,3

Number of Nodes

P
re
se
n
ce

R
at
io

1000[km]

2500[km]

4000[km]

5500[km]

(a) Varying the number of nodes

0 1000 2000 3000 4000 5000 6000
0

0,05

0,1

0,15

0,2

0,25

0,3

Transmission Range[km]

P
re
se
n
ce

R
a
ti
o

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Varying the transmission range

Figure 20: STK presence ratio.

950 1000 1050 1100 1150 1200 1250 1300 1350

1

1,5

2

2,5

3

3,5

4

4,5

5

·10−2

Number of Nodes

P
re
se
n
ce

R
at
io

200[m]

400[m]

600[m]

800[m]

1000[m]

1200[m]

1400[m]

1600[m]

1800[m]

(a) 1152 nodes

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1

2

3

4

5

·10−2

Transmission Range[m]

P
re
se
n
ce

R
at
io

1152 Nodes

(b) Varying the transmission range

Figure 21: STM presence ratio.

linearly. Since the space where STK and STM are running is big compared to SUMO

we do not saturate the presence ratio as fast as we do for SUMO.

4.2.4 Dynamic ratio

The presence ratio metric gives us an overall measure on how present the edges are

in G but there is no information about their dynamicity. In other words, we want to

know in average how many intervals the edges have. For example, let’s consider an

edge between node v and node a in G with the following schedule: [0, 1[, [2, 3[, [4, 5[.

Figure 22 shows the plot of the previous schedule. This type of schedule is considered

as highly dynamic because it has the highest frequency switching between active and

non-active at every time step. In the other hand, the lowest frequency is shown in

Figure 23 which has only one interval.

If we compare the plots of Figures 22 and 24; we find out that they have the same

47

0 1 2 3 4 5

0

1

Time step

A
ct
iv
e

Figure 22: Schedule with intervals switching between active and non-active.

0 1 2 3 4 5

0

1

Time step

A
ct
iv
e

Figure 23: Schedule with only one interval.

0 1 2 3 4 5

0

1

Time step

A
ct
iv
e

Figure 24: Schedule with one interval with three consecutive time steps.

48

100 200 300 400 500 600 700 800 900 1000

1,688

1,69

1,692

1,694

1,696

1,698

·10−2

Number of Nodes

D
y
n
am

ic
R
a
ti
o

200[m]

600[m]

1000[m]

1400[m]

(a) Varying the number of nodes

200 400 600 800 1000 1200 1400 1600

1,688

1,69

1,692

1,694

1,696

1,698

1,7
·10−2

Transmission Range[m]

D
y
n
a
m
ic

R
at
io

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Varying the transmission range

Figure 25: SUMO dynamic ratio.

presence ratio equal to 0.5 but Figure 24 is less dynamic because it has only one

transition between active and non-active.

dynamicRatio(G) =

∑
v∈V

∑
a∈neighbors(v)

scheduleSize(v, a)

degree(v)

|V | ∗ s+ 1

2

=

2 ∗
∑
v∈V

∑
a∈neighbors(v)

scheduleSize(v, a)

degree(v)

|V | ∗ (s+ 1)

(8)

Equation 8 shows the summation of the average number of intervals of every node

in G divided by the maximum frequency of every schedule. scheduleSize(v, a) returns

the number of intervals in the edge (v, a). degree(v) is the number of neighbors of v.

|V | is the number of nodes in V and s is the number of time steps.

The numerator of Equation 8 can be equal to the denominator only if every

neighbor of every node has a schedule with (s+ 1)/2 intervals which is the maximum

possible frequency. Therefore, dynamicRatio(G) = 1 means that G has nodes with

neighbors highly dynamic switching at every time step.

Figures 25, 27, 28 show how the dynamic ratio behaves according to the variation

of the number of nodes or transmission range. SUMO data set displays in Figure

25a very tiny variations as the number of nodes increases for a given transmission

range. This behaviour shows that an increment in the number of nodes does not have

49

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1,66

1,67

1,68

1,69

1,7

1,71

1,72

1,73

1,74

1,75

·10−2

Transmission Range[m]

D
y
n
am

ic
R
at
io

100 Nodes
200 Nodes
300 Nodes
400 Nodes
500 Nodes
600 Nodes
700 Nodes
800 Nodes
900 Nodes
1000 Nodes

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

P
re
se
n
ce

R
at
io

Figure 26: SUMO comparison between presence ratio and dynamic ratio.

a significant impact in the dynamic ratio since it measures the number of intervals

in each schedule. In other words, it is not about the number of neighbors but the

times they connect and disconnect. The transmission range provides more stable

connections if we increment its value as we can see in Figure 25b. But, around 800m,

nodes tend to have more intervals again. Thus, an increment in the transmission

range causes more stable connections but if the increment is high enough it will add

new neighbors that connect and disconnect more often. To show an evidence of our

previous reasoning, for SUMO data set we increase the transmission range up to

8500m to see how the dynamic ratio behaves.

Figure 26 shows two plots; the first one is the dynamic ratio at the left axis

while the second plot shows the presence ratio at the right axis. The presence ratio

seems to have a logarithmic behaviour as we increase the transmission range. We

also see the same concave curve that we see in Figure 25b for the first transmission

ranges. At 2000m the network experiences a significant increment in its dynamic

ratio meaning that there are more neighbors that connect and disconnect more often.

Then, at 3000m the edges become stable with less intervals. Further transmission

ranges provokes more peaks but less pronounced until it fades reaching its possible

minimum value around 0.0166. Notice that at 2000m, 4000m and 6000m when the

50

100 200 300 400 500 600 700 800 900 1000

0,02

0,04

0,06

0,08

0,1

0,12

Number of Nodes

D
y
n
am

ic
R
at
io

1000[km]

2500[km]

4000[km]

5500[km]

(a) Varying the number of nodes

0 1000 2000 3000 4000 5000 6000

0,02

0,04

0,06

0,08

0,1

0,12

Transmission Range[km]

D
y
n
a
m
ic

R
a
ti
o

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Varying the transmission range

Figure 27: STK dynamic ratio.

950 1000 1050 1100 1150 1200 1250 1300 1350

2

2,2

2,4

2,6

2,8

·10−3

Number of Nodes

D
y
n
am

ic
R
at
io

200[m]

400[m]

600[m]

800[m]

1000[m]

1200[m]

1400[m]

1600[m]

1800[m]

2000[m]

(a) 1152 nodes

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1,8

2

2,2

2,4

2,6

2,8

·10−3

Transmission Range[m]

D
y
n
am

ic
R
at
io

1152 Nodes

(b) Varying the transmission range

Figure 28: STM dynamic ratio.

network has a peak in the dynamic ratio the network experiences a small interruption

in the presence ratio along its smooth tendency.

Figure 27a shows that for STK data set the dynamic ratio is constant for the first

transmission ranges. For larger transmission ranges, the curves tend to have a low

peak at 200 nodes and a high peak at 700 nodes. If we look closely to the same density

of nodes in Figure 20a; we find out that the network at 200 Nodes is experiencing

the same phenomenon that we described earlier for SUMO. For the same density of

nodes when there is a peak in the dynamic ratio there is low point in the presence

ratio. But, for 700 nodes we have peaks in both ratios. This means that the new

added edges because of the increment of the transmission range are not disconnecting

that often.

The dynamic ratio for STM data set in Figure 28b has the same shape of presence

ratio in Figure 21b. It is showing that an increment in the transmission range provokes

more present intervals.

51

Chapter 5

Experimental results

In this chapter we analyse the performance of the algorithms but first in Section 5.1 we

analyse the characteristics of the computed journeys considering the average journey

duration and the average of distinct journey durations. Finally, in Section 5.2, we

examine and compare in terms of running time and number of hops the performance

of our timetable-based algorithms against Ferreira’s algorithm. We study how the

algorithms behave by modifying either the transmission range or the number of nodes.

We use the Timer Boost C++ [46] library to measure the running time.

5.1 Computed journey characteristics analysis

We subtract the arrival time or d(target) from the query time tq to have the travel

time or journey duration. If the duration is equal to zero then the target node is

reachable instantaneously from the source node. The number of distinct journey

durations/arrival times is computed by finding the number of different T (s, tq, t) sets.

This gives us a more qualitative idea of how much time is spent waiting. For example,

suppose there are only two distinct journey durations, 0 and Tend − tq, then clearly

at least for one of the possible destinations, a packet has to wait a long time before

being transmitted. On the other hand, if there are Tend−tq distinct journey durations

possible, then it is likely that for many journeys, packets don’t spend too much time

waiting to be transmitted. The previous variables gives us a sense about the temporal

properties of the journey but there is no information regarding its physical properties.

This is why we consider and plot the number of hops in the next section. For instance,

52

100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

Number of Nodes

J
ou

rn
ey

D
u
ra
ti
on

[t
im

e
st
ep
s]

200[m]

600[m]

1000[m]

1400[m]

(a) Journey duration.

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

Number of Nodes

N
u
m
b
er

o
f
T
(s
,t

q
,t
)
se
ts

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Number of journey durations.

Figure 29: SUMO varying the number of nodes.

200 400 600 800 1000 1200 1400 1600

0

5

10

15

20

25

30

Transmission Range[m]

J
ou

rn
ey

D
u
ra
ti
on

[t
im

e
st
ep
s]

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(a) Journey duration.

200 400 600 800 1000 1200 1400 1600

1

2

3

4

5

6

7

8

9

Transmission Range[m]

N
u
m
b
er

of
T
(s
,t

q
,t
)
se
ts

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Number of journey durations.

Figure 30: SUMO varying the transmission range.

it may be possible to have an instantaneous journey d(target)−tq = 0 but with |V |−1

hops.

5.1.1 SUMO

We proceed to analyze SUMO journeys data set by fixing the transmission range

and modifying the number of nodes. Figures 29a and 29b, show the average journey

duration, and number of distinct journey durations respectively. As we can see, there

is a maximum value for the average journey duration around 27 time steps for 200m

transmission range with 500 nodes. We also have the maximum number of T sets

at the same coordinate. We appreciate in Figure 29b the same number of T sets for

different density of nodes, for instance 100 and 1000 nodes. But comparing it with

Figure 29a then we find out that for 100 nodes the packet is on hold for many time

steps while for 100 nodes the journey tends to be instantaneous.

Figures 30a and 30b show the variables described before but fixing the number of

53

nodes and varying the transmission range. There is longer journey duration for lower

transmission ranges which means that the packet is on hold at some nodes while for

longer transmission ranges the journey tends to be instantaneous. The number of T

sets is high for lower transmission ranges and it tends to decrease as the transmission

range increases.

Overall, we conclude that for the SUMO data set, the journey duration decreases

as the number of nodes (i.e. density of nodes) increases, or as the transmission range

(i.e. density of edges) increases.

5.1.2 STK

100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

Number of Nodes

J
ou

rn
ey

D
u
ra
ti
on

[t
im

e
st
ep
s]

1000[km]

2500[km]

4000[km]

5500[km]

(a) Journey duration.

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

Number of Nodes

N
u
m
b
er

of
T
(s
,t

q
,t
)
se
ts

1000[km]

2500[km]

4000[km]

5500[km]

(b) Number of journey durations.

Figure 31: STK varying the number of nodes.

We perform the same analysis for STK data set. If we compare Figures 31a and

31b the we find out that both plots tend to have the same shape. For instance, for

a fixed transmission range of 1000km the journey duration and the number of T sets

0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

Transmission Range[km]

J
o
u
rn
ey

D
u
ra
ti
on

[t
im

e
st
ep
s]

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(a) Journey duration.

0 1000 2000 3000 4000 5000 6000

0

5

10

15

20

Transmission Range[km]

N
u
m
b
er

of
T
(s
,t

q
,t
)
se
ts

100 Nodes
400 Nodes
700 Nodes
1000 Nodes

(b) Number of journey durations.

Figure 32: STK varying the transission range.

54

have the same decreasing tendency. This means that the packet is not on hold for

many time steps. The same happens for 4000km and 5500km but with the opposite

tendency; the packet tends to travel more but without holding much.

Figures 32a, 32b show the effect of varying the transmission range with a constant

number of nodes in the journey characteristics. An increment in the transmission

range for lower number of nodes provokes less journey duration while for higher

number of nodes the journey duration reaches a lower point and tends to increase.

5.1.3 STM

0 200 400 600 800 1000 1200 1400 1600 1800 2000

250

300

350

400

450

Transmission Range[m]

J
ou

rn
ey

D
u
ra
ti
on

[t
im

e
st
ep
s]

1152 Nodes

(a) Journey duration.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

30

40

50

60

70

80

90

100

Transmission Range[m]

N
u
m
b
er

of
T
(s
,t

q
,t
)
se
ts

1152 Nodes

(b) Number of journey durations.

Figure 33: STM varying the transmission range.

Figures 33a, 33b show the behavior of the journey durations. The range for the

transmission range that we have for STM data set is wider. This data set has a lot

more time slots than the previous data sets; this is why for the first transmission

range 150m we have a journey duration around 450 time steps along with almost one

hundred T sets. An increment in the transmission range originates a reduction in

both variables.

5.2 Performance analysis

This section studies the performance of our algorithms in terms of running time.

Since a sequence of connections can be traversed instantaneously, different journeys

with the same duration can have different numbers of hops. So we also compare

the number of hops in journeys produced by the different algorithms. As we did

55

previously, we fix either the number of nodes or the transmission range and vary the

non-fixed variable to measure the running time.

100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

Number of Nodes

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 200[m]

100 200 300 400 500 600 700 800 900 1000

6

8

10

12

14

16

18

Number of Nodes

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 600[m]

100 200 300 400 500 600 700 800 900 1000

5

6

7

8

9

10

11

12

Number of Nodes

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 1000[m]

100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

Number of Nodes

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 1400[m]

Figure 34: SUMO number of hops varying the number of nodes.

5.2.1 Effect of varying the number of nodes

In this section, we keep the transmission range fixed, and study the effect of varying

the number of nodes. As stated earlier, for the STM data set, we only have one

number of nodes, so the experiments in this section are only for the SUMO and STK

data sets.

SUMO: Number of hops

Figures 34a to 34d show the effect of varying the number of nodes for fixed trans-

mission range on the number of hops in the foremost journeys produced by the four

algorithms we study. There are two things to note here. The first is that even though

all algorithms compute journeys with the same arrival time for a given input, their

behavior in terms of number of hops in the journey is quite different, especially at

56

higher transmission ranges. We see that Hybrid Timetable-Evolving Graph always

finds paths with the fewest number of hops, while Pure-Timetable appears to find

the journey with the highest number hops.

The second thing to note is that for low transmission range, the average number

of hops increases with increasing number of nodes for all algorithms, while for higher

transmission ranges, the number of hops does not appear to be affected by the num-

ber of nodes in the network, once there are enough nodes in the network. A likely

explanation is that at low transmission ranges, nodes that are far apart are unreach-

able, and therefore discarded, so when the number of nodes is small, then they are

close by in the network, and the foremost journey has few hops. As the number of

nodes grows, we are able to reach nodes at greater distance, and greater number of

hops. For higher transmission ranges, as seen in Figure 29, the journey duration is

zero or close to zero, and all nodes are essentially reachable immediately, so that the

number of hops does not change with increased number of nodes.

100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

2000

Number of Nodes

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 200[m]

100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

2000

Number of Nodes

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 600[m]

100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

2000

Number of Nodes

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 1000[m]

100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

2000

2500

Number of Nodes

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 1400[m]

Figure 35: SUMO running time varying the number of nodes.

57

SUMO: Running time

Figures 35a to 35d show the running time of all 4 algorithms for networks with

transmission range 200m, 600m, 1000m and 1400m. As expected, for each of those

transmission ranges, the running time of all the algorithms increases with increasing

number of nodes. We see that in all cases, and nearly all densities, Hybrid Timetable-

Evolving Graph has the best running time. While for smaller transmission range,

the Pure-Timetable and Timetable with Auxiliary Graph algorithms are worse than

Ferriera’s algorithm, for larger transmission ranges, the running time of Ferreira is

the worst, and grows faster with the number of nodes than the other algorithms.

STK: Number of hops

100 200 300 400 500 600 700 800 900 1000

5

10

15

20

Number of Nodes

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 1000[km]

100 200 300 400 500 600 700 800 900 1000

4

6

8

10

12

14

Number of Nodes

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 2500[km]

100 200 300 400 500 600 700 800 900 1000

4

6

8

10

12

14

16

18

Number of Nodes

H
o
p
s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 4000[km]

100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16

Number of Nodes

H
o
p
s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 5500[km]

Figure 36: STK number of hops varying the number of nodes.

We see a sudden increment in the number of hops in Figure 36a around 600-700

nodes for the STK data set. Figure 36b also has a sudden increment but it occurs

around 200-300 nodes and it is less pronounced. Figure 36c has two sudden changes;

Figure 36d has the same shape but its slope tends to be more constant. It seems that

58

the built-up approach for this data set provokes this effect; after a certain number

of nodes more nodes are reachable with almost the same number of hops. Note that

Hybrid Timetable-Evolving Graph tends to output journeys with fewer hops while

Pure-Timetable outputs journeys with more hops.

STK: Running time

100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

4000

Number of Nodes

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 1000[km]

100 200 300 400 500 600 700 800 900 1000

0

0,2

0,4

0,6

0,8

1

·104

Number of Nodes
T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 2500[km]

100 200 300 400 500 600 700 800 900 1000

0

0,5

1

1,5

2

2,5

3

3,5

·104

Number of Nodes

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 4000[km]

100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

·104

Number of Nodes

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 5500[km]

Figure 37: STK running time varying the number of nodes.

Figures 37a to 37d show the running time of all 4 algorithms for networks with

transmission range 1000km, 2500km, 4000km and 5500km. We see that in all cases,

and nearly all densities, Timetable with Auxiliary Graph has the best or close to the

best running time. While for smaller transmission range, Pure-Timetable has the

best running time no matter the node density, for larger transmission range, Pure-

Timetable becomes the worst algorithm, and its running time increases sharply with

the number of nodes.

59

5.2.2 Effect of varying the transmission range

In this section, we keep the number of nodes fixed, and study the effect of varying

the transmission range for each of our three data sets.

SUMO: Number of hops

200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

Transmission Range[m]

H
o
p
s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 100 Nodes

200 400 600 800 1000 1200 1400 1600

5

10

15

20

25

Transmission Range[m]

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 400 Nodes

200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

Transmission Range[m]

H
o
p
s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 700 Nodes

200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

Transmission Range[m]

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 1000 Nodes

Figure 38: SUMO number of hops varying the transmission range.

Figures 38a to 40d show the effect of increasing the transmission range on the

number of hops in journeys produced by the 4 algorithms. We see once again that

Hybrid Timetable-Evolving Graph produces journeys with the fewest hops while Pure-

Timetable generally produces journeys with more hops. An interesting observation

is that for higher number of nodes, the number of hops decreases with transmission

range for all algorithms, as one might expect. For 100 nodes and 400 nodes however,

the number of hops in the journey first increases with increasing transmission range,

and then decreases. This is likely because, for small number of nodes and small

transmission range, many pairs of nodes are unreachable, As the transmission range

grows, more pairs of nodes become reachable, with multi-hop paths. But as the range

60

grows even more, all nodes become reachable, but the number of hops in the journeys

starts decreasing.

SUMO: Running time

200 400 600 800 1000 1200 1400 1600

10

20

30

40

Transmission Range[m]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 100 Nodes

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

Transmission Range[m]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 400 Nodes

200 400 600 800 1000 1200 1400 1600
200

400

600

800

1000

1200

1400

Transmission Range[m]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 700 Nodes

200 400 600 800 1000 1200 1400 1600

500

1000

1500

2000

2500

Transmission Range[m]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 1000 Nodes

Figure 39: SUMO running time varying the transmission range.

Figures 39a to 39d show the running time of all 4 algorithms for networks of

100, 400, 700, and 1000 nodes respectively. We see that in all cases, as transmission

range grows, all our algorithms outperform Ferreira’s algorithm. In general, Hybrid

Timetable-Evolving Graph has the best time for all transmission ranges and for all

numbers of nodes studied, and the running time of all timetable-based algorithms

appears to stabilise with transmission range as it increases, while Ferreira’s algorithms

takes more running time with increasing transmission range.

STK: Number of hops

Figure 40 shows the number of hops varying the transmission range in STK data

set. As in the case of the SUMO data set, the number of hops first increases as we

61

0 1000 2000 3000 4000 5000 6000

2,5

3

3,5

4

4,5

5

5,5

6

6,5

Transmission Range[km]

H
o
p
s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 100 Nodes

0 1000 2000 3000 4000 5000 6000

4

6

8

10

12

14

Transmission Range[km]

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 400 Nodes

0 1000 2000 3000 4000 5000 6000
4

6

8

10

12

14

16

18

20

Transmission Range[km]

H
op

s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 700 Nodes

0 1000 2000 3000 4000 5000 6000

6

8

10

12

14

16

18

20

22

Transmission Range[km]

H
o
p
s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 1000 Nodes

Figure 40: STK number of hops varying the transmission range.

increment the transmission range, and then later generally decreases. The peak is

shifted left for higher number of nodes. A similar explanation holds as in the case of

the SUMO data set; the curves are less smooth because this is not a random data

set. Once again Hybrid Timetable-Evolving Graph produces journeys with the lowest

number of hops.

STK: Running time

Figures 41a to 41d show the running time of all 4 algorithms for networks of 100,

400, 700, and 1000 nodes. We see that in all cases, and for nearly all transmission

ranges, Timetable with Auxiliary Graph has the best running time. While Pure-

Timetable works well for 100-node networks, as the number of nodes increases, the

running time of Pure-Timetable degrades, especially for higher transmission ranges,

becoming worse than Ferriera’s approach. Hybrid Timetable-Evolving Graph also

consistently has very good running time, becoming close to the time taken by Timetable

with Auxiliary Graph for larger numbers of nodes.

62

0 1000 2000 3000 4000 5000 6000

0

20

40

60

80

100

120

140

Transmission Range[km]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(a) 100 Nodes

0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

Transmission Range[km]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(b) 400 Nodes

0 1000 2000 3000 4000 5000 6000

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

·104

Transmission Range[km]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(c) 700 Nodes

0 1000 2000 3000 4000 5000 6000

0

1

2

3

4

5

·104

Transmission Range[km]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

(d) 1000 Nodes

Figure 41: STK running time varying the transmission range.

STM: Number of hops

Figure 42 shows the effect of increasing the transmission range on the number of

hops in journeys produced by the different algorithms. As in the SUMO and STK

data sets, the number of hops first increases with increasing transmission range, and

then decreases. A similar explanation holds. Finally, Hybrid Timetable-Evolving

Graph produces journeys with the fewest hops, while Pure-Timetable produces jour-

neys with the most hops.

STM: Running time

As stated earlier, for the STM data set, we only have one number of nodes, ie. 1152

buses. Figure 43 shows the running time obtained or different values of transmission

range. It can be seen that for all algorithms, the running time increases as the

transmission range increases, which is to be expected, since the number of connections

increases as well. For nearly all transmission ranges, all our algorithms perform better

63

0 200 400 600 800 1000 1200 1400 1600 1800 2000

5

10

15

20

25

30

Transmission Range[m]

H
o
p
s

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

Figure 42: STM number of hops.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

2000

3000

4000

5000

6000

7000

8000

Transmission Range[m]

T
im

e[
µ
s]

Ferreira
Hybrid

Pure Timetable
Auxiliary Graph

Figure 43: STM running time varying the transmission range.

than Ferreira’s algorithm. For lower transmission ranges, Hybrid Timetable-Evolving

Graph has the best running time, while for higher transmission ranges, Timetable

with Auxiliary Graph has the best running time.

64

Chapter 6

Conclusions

In this thesis, we studied the problem of finding the foremost journey between a

source and target node in a FSDN. We proposed a new timetable-based approach

for routing in FSDN, and described three variants of this approach. We proved the

correctness of our algorithms and gave tight bounds on their complexity.

Our first algorithm, called Pure-Timetable, uses only a timetable data structure,

and takes time O(|V ||E| + |T |). Our second algorithm, called Hybrid Timetable-

Evolving Graph , uses both a timetable data structure and the evolving graph data

structure of [21], and takes time O(|E| log I + |T | + |V |). Our last algorithm, called

Timetable with Auxiliary Graph, uses both a timetable data structure and a static

graph data structure containing all edges currently active in the dynamic graph. It

takes time O(|E|+ |T |+ |V |). Here |T | is the total number of connections, and I is

the maximum number of connections corresponding to an edge.

We also validated the performance of our algorithms using extensive simulations

run on SUMO, the STK satellite data set, and the STM bus network data set. Our re-

sults showed that our algorithms, particularly, Hybrid Timetable-Evolving Graph and

Timetable with Auxiliary Graph are faster than the previous algorithm given by Fer-

reira [21] for almost all sizes of network and all transmission ranges. We also showed

that Hybrid Timetable-Evolving Graph produces journeys with fewer hops than the

other algorithms.

We considered no delay for edge traversal since the minimum duration of a con-

nection is big enough to consider propagation delay negligible in our setting. In future

work, it would be interesting to modify our algorithms for the case when a connection

65

takes a certain number of time steps to be traversed. Also, there was no propaga-

tion model [2] for the wireless communication between vehicles, buses and satellites.

It would be interesting to experiment with the speed and type of the vehicles and

pick one propagation model in SUMO simulations to see if they impact the journey

characteristics.

66

Bibliography

[1] P. Alvarez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd, R. Hilbrich,

L. Lücken, J. Rummel, P. Wagner, and E. Wießner. Microscopic traffic simu-

lation using SUMO. In The 21st IEEE International Conference on Intelligent

Transportation Systems. IEEE, 2018.

[2] V. S. Anusha, G. Nithya, and S. Rao. A comprehensive survey of electromagnetic

propagation models. In 2017 International Conference on Communication and

Signal Processing (ICCSP), pages 1457–1462. IEEE, 2017.

[3] M. Y. Arafat and S. Moh. Routing protocols for unmanned aerial vehicle net-

works: A survey. IEEE Access, 7:99694–99720, 2019.

[4] S. Bakhtiari. ACATS project final report. Technical report, Canadian Urban

Transit Research and Innovation Consortium, 2020.

[5] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler. Practice of

streaming and dynamic graphs: Concepts, models, systems, and parallelism.

Computing Research Repository (CoRR), 2020.

[6] M. Bläser. Fast matrix multiplication. Theory of Computing, pages 1–60, 2013.

[7] F. Busato, O. Green, N. Bombieri, and D. Bader. Hornet: An efficient data

structure for dynamic sparse graphs and matrices on GPUs. In 2018 IEEE High

Performance extreme Computing Conference (HPEC), pages 1–7. IEEE, 2018.

[8] J. Byun, S. Woo, and D. Kim. Chronograph: Enabling temporal graph traver-

sals for efficient information diffusion analysis over time. IEEE Transactions on

Knowledge and Data Engineering, 32(3):424–437, 2020.

67

[9] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying

graphs and dynamic networks. Intl. Journal of Parallel, Emergent and Dis-

tributed Systems, 27(5):387–408, 2012.

[10] S. Chaudhary, N. Chaudhary, S. Sharma, and B Choudhary. High speed inter-

satellite communication system by incorporating hybrid polarization-wavelength

division multiplexing scheme. Journal of Optical Communications, 39(1):87–92,

2017.

[11] Ansys Company. Systems tool kit (STK). https://www.agi.com, 2020. Windows

version 12.0.

[12] Google Technology Company. GTFS realtime overview. https://developers.

google.com/transit/gtfs-realtime, Jul 2019. [Online] August 12, 2020.

[13] F. Cunha, L. Villas, A. Boukerche, G. Maia, A. Viana, R. Mini, and A. Loureiro.

Data communication in VANETs: Protocols, applications and challenges. Ad Hoc

Networks, 44:90–103, 2016.

[14] Société de transport de Montréal. Developers. http://www.stm.info/en/

about/developers. [Online] accessed August 12, 2020.

[15] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Connection scan algorithm.

Journal of Experimental Algorithmics (JEA), 23:1–56, 2018.

[16] E. Dijkstra et al. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[17] EasyMile. Ez10 passenger shuttle. https://easymile.com/vehicle-solutions/ez10-

passenger-shuttle. [Online] accessed March 1, 2021.

[18] D. Ediger, R. McColl, J. Riedy, and D. Bader. Stinger: High performance data

structure for streaming graphs. In 2012 IEEE Conference on High Performance

Extreme Computing, pages 1–5. IEEE, 2012.

[19] E. Ekici, I. F. Akyildiz, and M. D. Bender. Datagram routing algorithm for

LEO satellite networks. In Proceedings IEEE INFOCOM 2000. Conference on

Computer Communications. Nineteenth Annual Joint Conference of the IEEE

68

h
h

Computer and Communications Societies (Cat. No.00CH37064), volume 2, pages

500–508 vol.2, 2000.

[20] W. Fang, M. Mukherjee, L. Shu, Z. Zhou, and G. P. Hancke. Energy utiliza-

tion concerned sleep scheduling in wireless powered communication networks.

In 2017 IEEE International Conference on Communications Workshops (ICC

Workshops), pages 558–563, 2017.

[21] A. Ferreira. On models and algorithms for dynamic communication networks:

The case for evolving graphs. In Proc. ALGOTEL, 2002.

[22] O. Green. High performance computing for irregular algorithms and applica-

tions with an emphasis on big data analytics. PhD thesis, Georgia Institute of

Technology, 2014.

[23] O. Green and D. Bader. custinger: Supporting dynamic graph algorithms

for GPUs. In 2016 IEEE High Performance Extreme Computing Conference

(HPEC), pages 1–6. IEEE, 2016.

[24] O. Green, R. McColl, and D. Bader. A fast algorithm for streaming betweenness

centrality. In 2012 International Conference on Privacy, Security, Risk and Trust

and 2012 International Confernece on Social Computing, pages 11–20. IEEE,

2012.

[25] W. Huo. Query processing on temporally evolving social data. PhD thesis, UC

Riverside, 2013.

[26] W. Huo and V. Tsotras. Efficient temporal shortest path queries on evolving

social graphs. In Proceedings of the 26th International Conference on Scientific

and Statistical Database Management, pages 1–4, 2014.

[27] Transdev Canada Inc. Autonomous mobility. https://www.transdev.ca/en/our-

solutions/autonomous-mobility/, Jul 2020. [Online] accessed March 1, 2021.

[28] G. Khanna, S. K. Chaturvedi, and S. Soh. On computing the reliability of

opportunistic multihop networks with mobile relays. Quality and Reliability En-

gineering International, 35(4):870–888, 2019.

69

h

[29] G. Khanna, S. Soh, S. K. Chaturvedi, and K. Chin. On enumeration of spanning

arborescences and reliability for network broadcast in fixed-schedule dynamic

networks. IEEE Transactions on Network Science and Engineering, 2020.

[30] U. Khurana and A. Deshpande. Efficient snapshot retrieval over historical graph

data. In 2013 IEEE 29th International Conference on Data Engineering (ICDE),

pages 997–1008. IEEE, 2013.

[31] K. Kiela, V. Barzdenas, M. Jurgo, V. Macaitis, J. Rafanavicius, A. Vasjanov,

L. Kladovscikov, and R. Navickas. Review of V2X–IoT standards and frameworks

for its applications. Applied Sciences, 10(12):4314, 2020.

[32] G. Koloniari and K. Stefanidis. Social search queries in time. In Proc. 7th

Workshop Personalized Access, Profile Manage., Context Awareness Databases,

pages 1–4, 2013.

[33] A. Kosmatopoulos, A. Gounaris, and K. Tsichlas. Hinode: implementing a

vertex-centric modelling approach to maintaining historical graph data. Com-

puting, 101(12):1885–1908, 2019.

[34] A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R. Spillane, J. Vijayan, J. Hwang,

and W. Han. The G* graph database: efficiently managing large distributed

dynamic graphs. Distributed and Parallel Databases, 33(4):479–514, 2015.

[35] I. Maduako and M. Wachowicz. A space-time varying graph for modelling places

and events in a network. International Journal of Geographical Information

Science, 33(10):1915–1935, 2019.

[36] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, E. Chen,

and W. Chen. Immortalgraph: A system for storage and analysis of temporal

graphs. ACM Transactions on Storage (TOS), 11(3):1–34, 2015.

[37] Z. H. Mir and F. Filali. LTE and IEEE 802.11p for vehicular networking: a

performance evaluation. EURASIP Journal on Wireless Communications and

Networking, 2014(1):1–15, 2014.

[38] V. Z. Moffitt and J. Stoyanovich. Towards sequenced semantics for evolving

graphs. In EDBT, pages 446–449, 2017.

70

[39] M. Nasimi, M. A. Habibi, and H. D. Schotten. Platoon–assisted vehicular cloud

in VANET: Vision and challenges. arXiv preprint arXiv:2008.10928, 2020.

[40] R. A. Nazib and S. Moh. Routing protocols for unmanned aerial vehicle-aided

vehicular Ad Hoc networks: A survey. IEEE Access, 8:77535–77560, 2020.

[41] P. Ni, M. Hanai, W. J. Tan, and W. Cai. Efficient closeness centrality compu-

tation in time-evolving graphs. In Proceedings of the 2019 IEEE/ACM Interna-

tional Conference on Advances in Social Networks Analysis and Mining, pages

378–385, 2019.

[42] A. Pentland, R. Fletcher, and A. Hasson. DakNet: rethinking connectivity in

developing nations. Computer, 37(1):78–83, 2004.

[43] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying historical evolving

graph sequences. Proceedings of the VLDB Endowment, 4(11):726–737, 2011.

[44] C. Ren, E. Lo, B. Kao, X. Zhu, R. Cheng, and D. W. Cheung. Efficient processing

of shortest path queries in evolving graph sequences. Information Systems, 70:18–

31, 2017.

[45] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson. Modeling dynamic

behavior in large evolving graphs. In Proceedings of the sixth ACM international

conference on Web search and data mining, pages 667–676, 2013.

[46] B. Schäling. The boost C++ libraries, chapter 38: Boost.Timer. Boris Schäling,

2011.

[47] D. Sengupta and S. L. Song. Evograph: On-the-fly efficient mining of evolving

graphs on GPU. In International Supercomputing Conference, pages 97–119.

Springer, 2017.

[48] V. R. Syrotiuk and C. J. Colbourn. Routing in mobile aerial networks. In

WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Net-

works, pages 9–pages, 2003.

[49] A. Tripathy and O. Green. Scaling betweenness centrality in dynamic graphs.

In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages

1–7. IEEE, 2018.

71

[50] K. Wehmuth, A. Ziviani, and E. Fleury. A unifying model for representing time-

varying graphs. In 2015 IEEE International Conference on Data Science and

Advanced Analytics (DSAA), pages 1–10. IEEE, 2015.

[51] M. Winter, R. Zayer, and M. Steinberger. Autonomous, independent manage-

ment of dynamic graphs on GPUs. In 2017 IEEE High Performance Extreme

Computing Conference (HPEC), pages 1–7. IEEE, 2017.

[52] L. Xiangyu, L. Yingxiao, G. Xiaolin, and Y. Zhenhua. An efficient snapshot

strategy for dynamic graph storage systems to support historical queries. IEEE

Access, 8:90838–90846, 2020.

[53] B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost

journeys in dynamic networks. International Journal of Foundations of Computer

Science, 14(02):267–285, 2003.

[54] Y. Yang, J. X. Yu, H. Gao, J. Pei, and J. Li. Mining most frequently changing

component in evolving graphs. World Wide Web, 17(3):351–376, 2014.

[55] A. Zaki, M. Attia, D. Hegazy, and S. Amin. Efficient distributed dynamic graph

system. In 2015 IEEE Seventh International Conference on Intelligent Comput-

ing and Information Systems (ICICIS), pages 465–471. IEEE, 2015.

[56] A. Zaki, M. Attia, D. Hegazy, and S. Amin. Comprehensive survey on dynamic

graph models. International Journal of Advanced Computer Science and Appli-

cations, 7(2):573–582, 2016.

[57] M. Zameni, M. Moshtaghi, and C. Leckie. Efficient query processing on road

traffic network. In 2016 IEEE International Conference on Pervasive Computing

and Communication Workshops (PerCom Workshops), pages 1–6. IEEE, 2016.

[58] Z. Zhang, C. Jiang, S. Guo, Y. Qian, and Y. Ren. Temporal centrality-balanced

traffic management for space satellite networks. IEEE Transactions on Vehicular

Technology, 67(5):4427–4439, 2017.

72

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem definition
	Our results
	Organization

	Related work
	Dynamic graph models
	Snapshots
	Whole graph
	Log file
	Distributed graph over servers

	Journey computation
	Dijkstra's algorithms extensions

	Connection scan algorithm

	Timetable-Based journey computation
	Preliminaries
	Evolving graph
	Connection
	Timetable
	Duplicated timetable
	Journey

	Ferreira algorithm with tq support
	Timetable-Based Algorithms
	Pure-Timetable
	Hybrid Timetable-Evolving Graph
	Timetable with Auxiliary Graph

	Journey extraction

	Data sets
	Evolving graph and timetable generation
	SUMO
	STK
	STM

	Characteristics of data sets
	Time slots
	Number of connections
	Presence ratio
	Dynamic ratio

	Experimental results
	Computed journey characteristics analysis
	SUMO
	STK
	STM

	Performance analysis
	Effect of varying the number of nodes
	Effect of varying the transmission range

	Conclusions
	Bibliography

