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ABSTRACT

Design of Stochastic Computing Architectures using Integrated Optics

Hassnaa El-Derhalli, Ph.D.

Concordia University, 2021

Approximate computing (AC) is an emerging computing approach that allows

to trade off design energy efficiency with computing accuracy. It targets error resilient

applications, such as image processing, where energy consumption is of major con-

cern. Stochastic computing (SC) is an approximate computing paradigm that leads

to energy efficient and reduced hardware complexity designs. In this approach, data is

represented as probabilities in bit streams format. The main drawback of this comput-

ing paradigm is the intrinsic serial processing of bit streams, which negatively impacts

the processing time. Nanophotonics technology is characterized by high bandwidth

and high signals propagation speed, which has the potential to support the electrical

domain in computations to speed up the processing rate. The major issues in optical

computing (OC) remain the large size of silicon photonics devices, which impact the

design scalability. In this thesis, we propose, for the first time, an optical stochastic

computing (OSC) approach, where we aim to design SC architectures using integrated

optics. For this purpose, we propose a methodology that has libraries for optical pro-

cessing and interfaces, e.g., bit stream generator. We design all-optical gates for the

computation and develop transmission models for the architectures. The methodol-

ogy allows for design space exploration of technological and system-level parameters
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to optimize design performance, i.e., energy efficiency, computing accuracy, and la-

tency, for the targeted application. This exploration leads to multiple design options

that satisfy different design requirements for the selected application.

The optical processing libraries include designing a polynomial architecture that

can execute any arbitrary single input function. We explore the design parameters by

implementing a Gamma correction application for image processing. Results show a

4.5× increase in the errors, which leads to 47× energy saving and 16× faster process-

ing speed. We propose a reconfigurable polynomial architecture to adapt design order

at run-time. The design allows the execution of high order polynomial functions for

better accuracy or multiple low order functions to increase throughput and energy

efficiency. Finally, we propose the design of combinational filters. The purpose is to

investigate the design of cascaded gates architectures using photonic crystal (PhC)

nanocavities. We use this device to design a Sobel edge detection filter for image

processing. The resulting architecture shows 0.85nJ/pixel energy consumption and

51.2ns/pixel processing time. The optical interface libraries include designing different

architectures of stochastic number generators (SNG) that are either electrical-optical

or all-optical to generate the bit streams. We compare these SNGs in terms of com-

puting accuracy and energy efficiency. The results show that all implementations can

lead to the same level of computing accuracy. Moreover, using an all-optical SNG to

design a fully optical 8-bit adder results in 98% reduction in hardware complexity and

70% energy saving compared to a conventional optical design.
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Chapter 1

Introduction

In this chapter, we first present the motivation of this PhD thesis and the problem

statement. Then, we introduce the state-of-the-art for both stochastic and optical

computing architectures. We present the proposed methodology and highlight the

contributions of the thesis. Finally, we describe the thesis organization.

1.1 Motivation

The last decades witnessed a turnover in the concept of the computing paradigm.

Due to intensive data processing in applications, such as image processing and the

internet of things (IoT), there is a significant need for more resources, which in return

increase the power consumption. Moreover, many computing systems nowadays are

embedded and hence require energy efficient hardware. For example, the number of

IoT-connected devices worldwide increased from 3.8 billion in 2015 to 7 billion in

2018 [1]. Furthermore, it is expected to reach 21 billion devices by 2025 [2]. These

devices include smartphones and tablets, which require a computing approach that

saves processing energy.
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Approximate computing (AC) is an energy efficient technique that produces

inexact results to reduce power consumption [3]. Therefore, this technique is suitable

for error tolerant applications, such as image processing and signal processing [4]. One

of the commonly known AC approaches is stochastic computing (SC) that emerged

in the 60s [5]. In SC, numbers are represented as probabilities using stochastic bit

streams [6]. The weight of all bits in a bit stream is the same, i.e., there are no least

and most significant bits as in weighted binary numbers. In some conventional AC

architectures [4], the approximation comes from truncating the least significant bits

(LSB), and the accuracy can be enhanced by reducing the number of truncated bits.

While in SC, the approximation results from generating bit streams and the accuracy

is improved by increasing the bit stream length (BSL). Unlike AC, SC does not require

any change in the design of the computing architecture since the accuracy can be

controlled by only modifying the BSL. Figure 1.1 shows the main building blocks

of an SC architecture. It is composed of one processing unit and two interfaces,

i.e., stochastic number generator (SNG) and de-randomizer. The SNG receives a

binary number and generates the equivalent probability in a bit stream format. The

probability is evaluated as the ratio of the number of ’1’s in the bit stream to the

total number of bits, i.e., BSL. The bit stream is processed serially by the computing

unit. Then, the output bit stream is converted back to a binary number using a

de-randomizer unit. Since all bits in the stream have the same weight, a flip in a bit

results in a small change in the probability; hence it is suitable for domains where

soft and transient errors are of major concern [7].

Randomizer
(SNG)

Computing 
Unit

De-randomizer
(Counter)

Binary
number

Stochastic
bit stream

Stochastic
bit stream

Binary
number
k-bitk-bit m-bit m-bit

Figure 1.1: SC blocks.
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SC is an energy efficient approach characterized by reduced hardware complex-

ity. Elementary arithmetic operations can be implemented using simple logic gates.

For example, 2-input multiplication and 2-input addition can be implemented using

a single 2-input AND gate and a 2×1 multiplexer, respectively [8]. Since bit streams

are processed serially, this represents a tremendous drawback in the processing time.

Moreover, in order to increase the computing accuracy, longer bit streams are required,

which significantly impacts the computation latency. Researchers have investigated

parallel design techniques to overcome the slow computation speed [9]. However, such

approaches may lead to significant area and power overhead, and thus drastically

limits the interest in this computing paradigm. Therefore, there is a need to find a

technology that can accelerate the processing time of the SC approach.

Due to light propagation characteristics, such as low latency and high band-

width, nanophotonics technology is considered as a good candidate to overcome the

throughput limitations induced by the electrical domain [10]. Silicon photonics tech-

nology allows the combination of electrical and optical devices in the same design [11].

Therefore, silicon photonics devices can be manufactured using the same facilities

available for CMOS [12]. Companies, such as Intel and IBM, have started using

integrated optics for high speed communications in data centers. For example, In-

tel 100G optical transceivers, available in the market, allow a data transfer rate of

100Gbps [13]. In 2019, Intel announced the design of 400G transceivers that transfer

data at 400Gbps rate [14,15]. IBM offers optics transceivers that support a speed up to

32Gbps [16]. According to [17], optical interconnects can be considered as a good can-

didate to be integrated in distributed and parallel computing systems for chip to chip

or even on-chip communication. Recently, nanophotonics has been widely investigated

in the design of optical interconnects, where different topologies based on system-level
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simulation have been proposed [18–21]. In these designs, wavelength division multi-

plexing (WDM) is exploited to allow the propagation of multiple wavelength signals

on the same waveguide. This leads to an increase in the bandwidth and a reduction

in hardware utilization. The first demonstration of on-chip optical interconnects is

proposed in [22]. In this work, a prototype of an on-chip electronic-photonics system

is fabricated that contains a processor and a memory communicating through optical

transceivers. It is worth mentioning that optical interconnects can feature low energy

dissipation per transmitted bit [10] due to the absence of the capacitive charging/dis-

charging in the wires of electrical interconnect. The design of approximate optical

interconnects has been recently proposed, where the data that has a small impact on

the accuracy can be transmitted with low power [23]. In [24], the energy efficiency

can be further optimized by truncating data, which can be adapted at run-time.

Nanophotonics technology has been investigated for the use in computation.

While CMOS-based architectures depend on the flow of electrons to perform the com-

putation, optical technology relies on photon propagation. Nanophotonics cannot be

considered as a replacement for CMOS technology in the computing domain. It can be

used to support the computation by accelerating the processing time for specific appli-

cations. WDM allows for parallel computation, which increases processing throughput

since multiple signals are propagated and processed simultaneously. In [25], WDM is

used to design an arithmetic logic unit (ALU) for optical field-programmable gate ar-

ray (FPGA), where multiple operations are executed in parallel. In 2020, Intel showed

the design of a reconfigurable optical computer to accelerate solving partial differen-

tial equations in 10’s of picoseconds [6]. In 2017, researchers from MIT developed

an optical accelerator for convolutional neural networks (CNN), which demonstrates

two orders of magnitude speed up, i.e., photodetection rate of 100GHz, compared to
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electronics implementation [26]. However, such an approach involves bulky optical

devices, i.e., scaled in mm2, which does not allow the implementation of thousands of

devices on a chip, hence limiting the scalability of nanophotonic accelerators. Archi-

tectures of cascaded devices, i.e., devices connected in series, also encounter another

problem due to the propagated signal power losses. This raises the need for an ap-

proach that leads to a reduction in the number of devices and hence enhances the

scalability and cascadability of optical architectures. This can be achieved using the

SC paradigm due to the reduced hardware complexity provided by the approach.

To sum up, the major bottleneck in the performance of SC architecture is the

high latency induced by serial processing of bit streams. Nanophotonics technology

could contribute to speeding up the computation. However, scalability remains one of

the main issues in the optical computing (OC) domain that could be enhanced using

the SC approach in designing optical architectures.

The objective of this thesis is to design, for the first time, SC architectures us-

ing integrated optics. Both SC and optical technology have a complementary nature.

We mainly aim to benefit, on the one hand, from the acceleration provided by opti-

cal devices to overcome the slow processing in SC and, on the other hand, from the

reduced number of devices used in SC to increase design scalability in optical com-

puting. We propose the design of optical stochastic computing (OSC) architectures

that can execute polynomial functions and combinational filters. We focus mainly on

implementing the computing part using all-optical gates. We explore the design space

at system-level and device-level parameters to optimize the power consumption and

evaluate the computing accuracy and processing time of a given application.
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Figure 1.2: (a) SNG and (b) de-randomizer.

1.2 State-of-the-Art

In this section, we present the most relevant related work of SC and OC architectures.

1.2.1 Stochastic Computing

In SC, numbers are presented as probabilities. The SNG converts a binary number

to a bit stream of a given length. A common implementation of SNG is using Linear

Feedback Shift Register (LFSR) [27] and a comparator, as shown in Figure 1.2(a).

The generation of bit streams is performed as follows: A binary number (BN ) of

size m requires a minimum BSL of size 2m. An LFSR of m bits is also needed to

generate m-1 sequences, i.e., a pseudo-random number (PRN ), since a sequence of

zeros cannot be reached. A PRN is compared against a BN. If PRN < BN then

bit ’1’ is generated, otherwise bit ’0’ is generated. At each clock cycle, the LFSR is

shifted, a comparison is performed, and a new bit in the bit stream is generated. To

convert the bit stream back to a binary number, a de-randomizer unit is required. It

is commonly implemented using a counter, shown in Figure 1.2(b), that counts the

number of ’1’s in the bit stream.

One of the state-of-the-art SC architectures is the reconfigurable SC (ReSC)

proposed in [28]. The architecture is implemented using a combinational circuit that
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can execute any arbitrary single input function by converting it to a Bernstein poly-

nomial [29]. The inputs must be uncorrelated, i.e., each bit stream is generated from

a separate SNG. In [30], another reconfigurable SC architecture is proposed, which is

based on sequential logic. It allows for a trade-off between hardware complexity and

computing accuracy by changing some configurations, such as the number of states

and the number of inputs. The design can reduce hardware complexity and improve

energy efficiency by 30% and 40% compared to conventional design, respectively.

SC can also target application-specific architectures for different domains. Con-

trast stretching [31] and edge detection [32] are image processing filters that can be

implemented using combinational and sequential logic elements. For example, the

edge detection filter proposed in [32] is composed of MUXs and XOR gates to per-

form addition and absolute value subtraction operations, respectively. For instance,

for medical applications, the design of retinal implants for blind people using SC for

image processing is proposed in [33]. The chip is located in the retina and receives

a stream of data to be processed in real-time. The implementation of finite impulse

response (FIR) filters using SC has also been widely studied. However, most designs

suffer from limited scalability as the filter order increases, which is due to the low

accuracy of stochastic scaled-adders [6]. For example, an m-tap filter will down-scale

the result by 1/2m-1. For this purpose, a non-scaled adder was proposed in [34], where

the design contains combinational circuits and a counter. This results in high design

area and hence power consumption. In the communication domain, SC is proposed

for decoding low-density parity-check (LDPC) codes [35], which is an error correction

code used for reliable transmission over noisy channels. The parity check and equality

check operations can be implemented using SC circuits [7].
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Neural networks (NNs) are useful in many applications, such as character recog-

nition, speech recognition, and spell checking. NNs are composed of multiple layers,

where each layer contains multiple neurons. Therefore, the design of NNs require

significant hardware resources and result in high power consumption. Hence, their

implementations have been investigated in the context of SC [36]. Figure 1.3 illus-

trates the structure of a neuron implemented using the SC approach, where three

primary operations are presented. Multiplication and addition can be implemented

using AND gates and MUXs, respectively. The activation function can be designed

using a finite state machine (FSM) to implement tanh or exponentiation circuits.

In [37], a design of CNN using stochastic computing is proposed, where the imple-

mentation of the summation using parallel counter is studied instead of using MUX.

The output of the counter is a binary number used as an input to a non-stochastic

activation function. The design is tested for handwriting recognition, where the re-

sults showed an increase in the area compared to MUX implementation but with an

enhancement in the accuracy. The results also demonstrated a 151× improvement

in power consumption with a 2.86% increase in the error compared to conventional

binary design. A CNN relying on hybrid bit stream-binary is proposed in [38]. The

design of the first layer is based on deterministic bit streams for accurate and fast

computing. The results show 19× area reduction and 16× power saving compared to

the non-pipelined fixed point binary design.

As can be seen, SC can be integrated into many domains, such as image and

signal processing, medical and communication applications. It can reduce design area

and save energy consumption; however, the high processing time, due to the high BSL

required to control the accuracy, remains the major problem of this approach, which

moves the interest to other faster AC approaches.
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Figure 1.3: The basic structure of a neuron [36].

1.2.2 Optical Computing Architectures

A remarkable achievement in OC was noticed more than 70 years ago. The main focus

was on exploiting Fourier transform properties of lenses to implement applications,

such as pattern recognition [39]. The invention of lasers [40] enabled the development

of coherent processors, e.g., for information processing [41]. However, the domain

faced issues related to the performance and high fabrication cost of optical devices.

At the same time, the rapid development in digital computing architectures and the

high performance of electrical processing decreased the interest in OC. However, the

research in OC processors continued, where significant progress in areas, such as opti-

cal memory and pattern recognition, was achieved. Moreover, OC architectures were

designed for other applications, such as matrix operation [42] and NNs [43]. Later

on, many research targeted the design of digital OC [44, 45], where vertical-cavity

surface-emitting lasers (VCSELs) were used as a source of light. Nowadays, there are

companies specialized in designing accelerators for machine learning (ML) domains,

such as LightON [46] and lightmatter [47]. For example, Lightmatter integrates op-

tical devices with electrical circuits on the same chip, where optical modulators are
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used to perform matrix-vector multiplication. The modulators are arranged as two-

dimensional matrix. The configuration (operating state) of the modulators and the

propagation of the input signals through the devices leads to matrix multiplication,

i.e., the amplitude of the input signal is multiplied by the transfer matrix.

Silicon photonics is an emerging technology that uses silicon material to fabricate

optical devices. For instance, a silicon-on-insulator (SOI) platform allows using the

same manufacturing process as CMOS technology. Due to its compatibility with

CMOS technology, silicon photonics devices can be integrated on the same chip with

electronics devices [48]. Examples of silicon photonics devices are Mach-Zehnder

interferometer (MZI) [49], microring resonator (MRR) [50], and directional coupler

(DC) [51]. Another material that can be used to fabricate photonic devices is III/V

semiconductors [52]. It can be bonded directly on SOI waveguides, which allows the

fabrication of other devices, such as photonic crystal (PhC) nanocavities [53] and PhC

nanolasers [54].

MZI, MRR, and PhC nanocavity can be used to either modulate, switch, or

filter optical signals. They can be controlled either electrically or optically. Electrical

control can be achieved by applying an external electrical signal that changes the

refractive index of the material, and hence modulates the phase and amplitude of the

propagated signal. This can be achieved in three different ways: i) electro-optic ef-

fect [55], where the refractive index of the material changes with the applied electrical

field; ii) thermo-optic effect [56], where the refractive index changes by changing the

temperature of the material; and iii) free-carrier induced electro-refractive effect [57],

where the refractive index changes by modifying the carrier concentration in the mate-

rial. It is worth mentioning that the electro-optic effect has the fastest response time.

Optical devices can be controlled optically using high power optical signal (usually
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in mW). This induces a nonlinear effect, such as the two-photon absorption (TPA)

effect and the optical Kerr effect [58]. This type of control is faster and less power

consuming than an electrically controlled method since it enables the optical signal

propagation from the input to the output of the architecture without the need for

electro-optics (E/O) or opto-electronic (O/E) conversion [59].

In addition to the modulators and filters, any optical architecture requires: i)

waveguides for light propagation and to connect between optical devices; ii) lasers as

light sources to emit optical signals; and iii) photodetectors to receive the processed

signal, which are detailed as follows:

� Waveguides: Silicon photonics waveguides are fabricated on SOI substrates.

They are recently characterized by low optical propagation losses, i.e., 0.1-

1dB/cm [60].

� Lasers: They are responsible for injecting an optical signal of sufficient power

into the design for processing. Lasers can be off-chip or on-chip [61] to integrate

all-optical devices on the same chip. However, heating issues still need more

investigation [62]. Throughout this thesis, we consider using off-chip lasers.

� Photodetectors: They are used to convert the received optical signal to the

electrical domain [63]. In order for the photodetector to be efficient for the OC

domain, it needs to have: i) high operating rate, i.e. in Gb/s [64]; ii) low dark

current (few nA); iii) high responsivity (0.6-1A/W) [65,66]; and iv) low bit-error

rate (BER) (10-12 to 10-18). In an OC architecture, a photodetector is normally

connected to a transimpedance amplifier (TIA) to amplify the received signal.

Then, a comparator is used to produce the equivalent binary bit of the received

light power, i.e., ’1’ or ’0’.
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OC architectures using silicon photonics devices have been investigated in or-

der to design accelerators. In the following, we present some of these architectures

according to the optical devices used in the implementation:

� The MZI, shown in Figure 1.4(a), is commonly used as an electro-optics modu-

lator and switch. It is the most mature device among silicon photonics devices.

For instance, MZI is used in [67] to design a reconfigurable mesh required to en-

able different functionalities in the architecture of microwave processors, which can

support fiber-wireless communication, especially in 5G and IoT domains. MZI is

also used in the design of fully optical NN in [26]. The proposed design is com-

posed of 56 MZIs, each of them has two phase shifters; one to split the input power

between MZI waveguides and the other is used to control the phase of the input

signal. The design shows 10× speed up compared to the electrical domain. It is

also demonstrated in the design of any arbitrary linear function [68]. For example,

the interference of the input signal through the mesh can represent a linear vector-

matrix product, where the input signals and mesh represent the vector and matrix,

respectively.

� The MRR, shown in Figure 1.4(b) and (c), is used as modulator and add-drop

filter to design reconfigurable architectures. One of these architectures is the recon-

figurable directed logic (RDL) [72], which is designed based on the sum of products

concept of combinational circuits. This design has two stages; the calculation of

the products of the function and then the sum of these products. The design re-

quires O/E conversion between stages, which contributes to an increase in power

consumption. In [25], an optical lookup table (OLUT) relying on MRRs is designed,

where WDM allows executing multiple functions in parallel. The design reduces

the number of MRRs used by two orders of magnitude compared to RDL. In [73], a
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(a) MZI (b)  MRR as modulator (c) MRR as add-drop filter

(d) DC (e) PhC nanocavity

Figure 1.4: Silicon photonics devices: (a) MZI [49], (b) MRR as modulator [69], (c)
MRR as add-drop filter [70], (d), DC [71], and (e) PhC nanocavity [53].

4×4 swirl reservoir topology designed using nonlinear MRRs is implemented. The

design is composed of an input layer, a swirl topology that contains 16 nodes rep-

resenting the reservoir, and the output layer. The performance of the design is

evaluated by implementing a 2-bit delayed XOR task, where studies on the input

power and wavelength detuning are conducted to choose an operating point of the

reservoir. The results show that the design can reach a 2.5×10-4 error rate.

� The DC, shown in Figure 1.4(d), is used in the design of full adders, where a

carry-in signal remains propagating in the optical domain [74]. The design can

be cascaded for an n-bit ripple carry adder, which requires duplicating hardware

resources and hence limits the scalability of the design. An optical multiplier was

proposed in [75], which relies on the optical full adder design in [74]. The per-

formance of the design is compared to a CMOS Wallace tree multiplier [76]. The

results show that the design in [75] is 3× faster than the electrical one.
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� The PhC nanocavity, shown in Figure 1.4(e), is proposed in the design of an all-

optical random access memory (RAM) [77], where the device is used as a bistable

switch. The optical RAM reports a memory time of 1μs compared to 250ns demon-

strated in [78]. Writing, storage, reading, and erasing operations are demonstrated.

An all-optical-gate (AOG) is designed in [53] using PhC nanocavity. The nonlinear

effect is based on TPA, which causes a blue shift in the resonant wavelength of the

device. Hence the device can act as a switch to pass or block the transmitted signal.

� Phase change material (PCM) [79] has been studied recently in the imple-

mentation of photonics applications. PCM can switch between two states, i.e.,

amorphous and crystalline, by applying an electrical or optical signal. Switching

between these two states involves changing material properties, which makes PCM

suitable to design non-volatile data storage [79]. By applying a pump signal above

a threshold value, the PCM is in the write (amorphous) state, while erasing (re-

crystallization) can be achieved by applying a train of decreasing energy pulses as

proposed in [79]. Hence, allowing multi-level access by storing bits between the full

amorphous state and full crystallization state. The PCM has been recently inves-

tigated in the design of on-chip in-memory processing, such as the implementation

of scalar multiplication using a single PCM cell [80], as shown in Figure 1.5(a). In

this design, the input signal power is multiplied by the transmittance of the device,

which is controlled by another signal representing the write operation. This led to

the design of matrix-vector multiplication, i.e., using multiple PCM cells, as shown

in Figure 1.5(b). In this case, the addition is performed by combining multiple

scalar products using a power splitter, which causes a 50% loss in the resulted

power. The main challenge of using this device for computing is the need to reduce

the power consumption required to change the state (phase) of the cell, especially
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(a) (b)

Figure 1.5: (a) PCM as scalar multiplier and (b) two PCMs used to implement matrix
vector multiplication [80].

for multi-level operations. In [81], the design of a photonic hardware accelerator

using PCM is proposed that can perform parallel matrix-vector multiplication op-

erations at a rate of several Tera multiply-accumulate per second (TMAC/s) to

process images using convolution filters.

These OC architectures aim to accelerate the processing speed. However, they may

rely on bulky devices, such as MZI (scaled in mm2). Although other architectures use

MRR in their implementations, which has a smaller footprint than MZI, i.e., scaled

in 100s μm2, MRR’s area is still relatively high for on-chip computing. Furthermore,

in the above-stated architectures, the power losses of the propagated signals represent

an issue, especially for designs that are composed of cascaded stages, such as the

adder designed using DC [75]. This requires converting the signal to the electrical

domain and regenerating it again (O/E and E/O conversions) or increasing the power

of the data signal, which could result in triggering an undesired nonlinear effect.

These solutions have a significant impact on the energy consumption and design area.

However, design scalability remains an issue with the currently available devices.

Therefore, another computing approach that relies on serial data processing can help

in reducing the hardware complexity. Moreover, optical devices with smaller footprints

can further contribute to this reduction, eventfully enhance design scalability.
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1.3 Proposed Methodology

As mentioned earlier, the SC approach extensively reduces hardware complexity, while

its intrinsic serial processing affects computing throughput. Therefore, the aim of this

thesis is to investigate the use of integrated photonic devices to design SC architec-

tures, which would contribute in accelerating the computing architectures. This would

also help in achieving a scalable design for OC architectures. A general overview of

our proposed methodology is depicted in Figure 1.6. The inputs to the methodology

are: i) an application represented as a mathematical function; ii) the input data to

be processed; and iii) the technological and system-level parameters to be explored.

Based on the application, a computing architecture is selected and the design space

is explored for a given set of design parameters. Therefore, the methodology has two

main phases. The first phase is the design of optical SC libraries. This includes the

libraries for the OC part and the interfaces. We aim to design an architecture that

executes polynomial functions and architectures that are composed of combinational

gates, such as filters in image processing. The second phase is to explore the design

space of an OSC architecture and evaluate the performance, i.e., energy efficiency,

computing accuracy, and processing time. These phases are detailed as follows:

1. Optical Stochastic Computing Libraries: In general, libraries are reusable

blocks that can be customized to fulfill different requirements. Hence the proposed

designs should be generic. Moreover, the proposed architectures are independent

of the devices, where the integration of a new modulator or switch requires using

the transmission model of this device. In this thesis, we propose to design libraries

for optical processing and optical interfaces as follows:
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Figure 1.6: Proposed methodology.

Optical processing libraries

– Architectures that execute polynomial functions. Our design is based on the

state-of-the-art ReSC architecture [28] that executes Bernstein polynomial

functions. The design is implemented using devices working under different

physical effects.

– Reconfigurable architectures that can be configured to execute one or more

Bernstein polynomial functions simultaneously. The design needs addi-

tional devices to switch between different configurations.

– Combinational filter architectures, such as edge detection filter. For this

purpose, we investigate the use of PhC nanocavities to design all-optical

cascaded gates architectures.
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� Optical interfaces libraries

– SNG architectures to generate the required bit streams for stochastic pro-

cessing. We propose different implementations of SNG dedicated to OSC.

– A De-randomizer circuit that converts an output optical signal to a binary

number. For this purpose, we use a photodetector followed by a counter to

generate the binary number.

2. Design Space Exploration: The design flow allows optimizing the energy ef-

ficiency of the architecture and evaluating the computing accuracy for the given

application. This is detailed as follows:

� Energy optimization: The aim is to optimize the design energy efficiency

according to the targeted application-level computing accuracy through a re-

duction in the total energy consumption. Since the proposed architectures

involve numerous parameters, at both system and device levels, that impact

energy consumption per computed bit, we develop a transmission model for

each architecture that takes into account these parameters. We use C pro-

gramming language to develop the transmission models and evaluate the en-

ergy consumption of the designs.

� Accuracy evaluation: There are three sources of error in the design of

OSC architectures. Errors related to i) SC domain due to the generation

of bit streams; ii) optical domain due to transmission robustness; and iii)

the architecture itself, such as the order in polynomial functions. We use

MATLAB to calculate the computing accuracy for a given application.

As an output, the methodology provides design options characterized by application-

level energy efficiency, computing accuracy, and processing time. This exploration

results in multiple design options to execute a given application.
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1.4 Thesis Contributions

Stochastic computing is an energy efficient paradigm, where data is processed serially.

This significantly impacts the processing time and hence designing an architecture

using nanophotonics technology can accelerate the processing speed. On the other

hand, SC can enhance the scalability of optical architectures due to the reduced

number of devices used in the design. Therefore, the main objective of this thesis is to

investigate the design of SC architectures using integrated optics. In the following, we

list the main contributions of this thesis along with references to related publications

provided in the Biography section at the end of this document.

� The design of an OSC architecture for polynomial functions. The proposed de-

sign can execute any arbitrary single input function by changing the polynomial

coefficients. The proposed design is generic and can execute a polynomial func-

tion of different orders. We develop a transmission model to estimate energy

consumption and propose two design methods to explore device-level parameters

in order to optimize laser power consumption [Bio-Cf2].

� A framework to explore the design of OSC architectures for polynomial func-

tions. The proposed framework allows the optimization of the design energy

efficiency according to application-level computing accuracy. We evaluate the

computing accuracy using an image processing application, i.e. Gamma correc-

tion function, considering multiple combinations of polynomial order, BSL, and

BER [Bio-Jr2].

� A reconfigurable OSC architecture for polynomial functions. The order of the

proposed architecture can be configured during execution time according to the
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design requirements. We explore the design space at device-level and system-

level parameters. We estimate the energy consumption and evaluate the com-

puting accuracy by implementing a Gamma correction application. We explore

a trade-off between energy consumption, computing accuracy, processing time,

and design throughput [Bio-Cf1].

� A cascaded gates OSC architecture based on PhC nanocavities. We develop

a transmission model of the device that involves device parameters, such as

resonant wavelength and wavelength detuning, and propose the design of all-

optical logic gates using nanocavities. We exploit the different quality factors

feature in nanocavities to design all-optical cascaded multiplexers that are useful

in image processing filters. We explore laser power, BER and BSL to optimize

energy consumption and evaluate computing accuracy by implementing edge

detection application. This work is a collaboration with Thales in France. They

provided us with the device’s characteristics and experimental results in order

to validate our transmission model [Bio-Jr1, Bio-Tr1].

� Different implementations of SNG architectures. The one based on LFSR with

modulators is used from Chapters 2 to 4 in this thesis [Bio-Jr1]. Another two

designs based on on-chip directly modulated lasers and all-optical SNG are also

proposed. A comparison between these implementations is conducted in the

context of edge detection application to estimate the energy efficiency and eval-

uate the computing accuracy. We use all-optical SNG to design an all-optical

n-bit adder and compare its performance with conventional optical architecture.
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1.5 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we present the design

of OSC architectures for polynomial functions and propose a transmission model

to optimize energy consumption. We explore system-level parameters, such as

architecture order, BSL and BER. We estimate energy consumption according to

computing accuracy by implementing a Gamma correction application. In Chapter 3,

we describe a reconfigurable architecture for polynomial functions. The design is

based on the architecture proposed in Chapter 2. In this design, the architecture

order can be configured during run-time to enhance the computing accuracy or to

increase the design throughput.

In Chapter 4, we present the design of all-optical gates, i.e., NOT gate, XOR

gate, and multiplexer, using PhC nanocavities. We develop the device transmission

model and investigate the design of cascaded gates architectures using nanocavities.

We target the design of edge detection filters. System-level exploration of laser power,

BSL and BER is carried out to process gray-scale images.

In Chapter 5, we discuss different SNG designs that can be used with OSC ar-

chitectures. The designs are either based on LFSR (electrical part) or are fully optical

(using lasers). We use an edge detection application to compare these designs in terms

of computing accuracy and energy consumption. We also compare our proposed de-

sign of an all-optical n-bit adder with a conventional design in the optical domain in

terms of energy consumption, processing time, and hardware complexity. Finally, we

conclude the thesis in Chapter 6 and provide future research directions.
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Chapter 2

Optical Stochastic Computing

Architecture for Polynomial

Functions

In this chapter, we present the design of the first OSC architecture in the optical

processing library. The design aims to execute polynomial functions of n order. It

is based on the ReSC architecture in the electrical domain that targets the imple-

mentation of Bernstein polynomial functions [29]. We first give an overview of the

ReSC architecture, then present the silicon photonics devices used in the design. We

propose a methodology to explore the system-level and device-level parameters, which

allows optimizing energy efficiency according to application-level computing accuracy.
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2.1 Overview

The ReSC architecture [28] corresponds to the implementation of Bernstein polyno-

mial function of order n, given in Equation 2.1, in stochastic domain.

B(x) =
n∑

i=0

Bi,n(x) (2.1)

where x is the input, n is the polynomial order, Bi,n(x) is the Bernstein basis poly-

nomial of order n:

Bi,n(x) =

(
n

i

)
xi(1− x)n−i (2.2)

and bi is the Bernstein polynomial coefficient:

bi =
i∑

j=0

(
i
j

)
(
n
j

)aj (2.3)

As illustrated in Figure 2.1(a), the ReSC architecture is implemented using a com-

binational circuit; an adder and a multiplexer. The computation is carried out as

follows: i) n SNGs generate n stochastic bit streams of data input x from x1 to xn;

ii) n + 1 SNGs generate bit-streams for the Bernstein polynomial coefficients z0 to

zn; iii) the streams of the coefficients are multiplexed to the output according to the

sum of input data (x1 to xn); and iv) the number of the received ones are counted

to de-randomize the data. We illustrate the configuration of the ReSC architecture

using the following 3rd order polynomial function:

f(x) =
1

4
+

9

8
x− 15

8
x2 +

5

4
x3 (2.4)
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Figure 2.1: (a) ReSC architecture with (b) an example of 3rd order polynomial function.

where a0=1/4, a1=9/8, a2=-15/8, and a3=5/4 are the polynomial coefficients. By

using Equation 2.3, the Bernstein polynomial coefficients are b0=2/8, b1=5/8, b2=3/8,

and b3=6/8. From Equation 2.1, the 3rd order Bernstein polynomial function is:

f(x) =
2

8
B0,3(x) +

5

8
B1,3(x) +

3

8
B2,3(x) +

6

8
B3,3(x) (2.5)

Figure 2.1(b) illustrates the implementation of the 3rd order ReSC architecture as-

suming x=0.5 and BSL=8. Three SNGs convert x into bit streams x1 to x3, and four

SNGs convert polynomial coefficients b0 to b3 into bit streams z0 to z3. The streams

of the coefficients are multiplexed to the output according to the sum of input data

(x1 to x3). Finally, the resulted bit stream is converted to a binary number equals 0.5.

Since the hardware complexity is low, i.e., two computation units, the design is ideal

for the transposition of SC architecture into the optical domain.

2.2 Silicon Photonics

In the following, we introduce the silicon photonics devices that we use in designing

the ReSC architecture.

� MZI: a 1×1 MZI modulator is shown in Figure 2.2. The input signal power is
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equally split and transmitted to two parallel waveguides. On one arm, the signal

continues propagating at speed related to the silicon refractive index. On the other

arm, the refractive index is modified using the electro-optic effect, where the signal

slows down and a π phase shift is obtained in case ’1’ is applied. Hence, depending

on the applied voltage, constructive and destructive interferences can be obtained

when both signals are combined at the output, i.e., output=’1’ and ’0’, as shown

in Figure 2.2(a) and (b), respectively. The transmission of the device is given by:

TMZI [v] =

⎧⎪⎪⎨
⎪⎪⎩
IL%, v = 0 Constructive state

IL% × ER%, v = 1 Destructive state

(2.6)

where IL is the insertion ratio defined as the loss of signal power due to the trans-

mission through the device. ER is the extinction ratio defined as the ratio between

the transmission of data as ’1’ and as ’0’. ILdB and ERdB are the conversion results

of the ratio to dB of IL% and ER%, respectively.

V=0

TC
MZI

V=1 π phase shift

TDMZI

(a) Constructive state (a) Destructive state

Figure 2.2: MZI device.

� MRR as Modulator: Figure 2.3 illustrates a modulator implemented using an

MRR controlled by a voltage applied to its positive-intrinsic-negative (PIN) junc-

tion [82]. In the initial state, i.e., no voltage is applied as shown in Figure 2.3(a),

the MRR resonant wavelength is set to λ2. This leads to the coupling of the light

at wavelength λ2 into the ring, which results in a small fraction of signal power
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V=0 V=1

(a) OFF state (b) ON state

Figure 2.3: MRR device.

transmitted, i.e., output=’0’. When a voltage is applied, as shown in Figure 2.3(b),

the refractive index of the MRR is blue shifted, i.e., most of the input signal power

is transmitted to the output, i.e., output=’1’. Equation 2.7 is the through trans-

mission θt of the MRR modulator to the output as defined in [83].

ϕt(λsignal, λres) =
a(λres)(1− r21)(1− r22)

1− 2a(λres)r1r2cos[θ(λsignal, λres)] + [a(λres)r1r2]2
(2.7)

where r1 and r2 are the self-coupling coefficients, λres and λsignal are the MRR

resonant wavelength and signal wavelength, respectively. Δλ is the wavelength

shift between OFF and ON states, a is the single-pass amplitude transmission, and

θ is the single-pass phase shift.

� All-optical Add-drop Filter (AOF): Figure 2.4 shows an optically controlled

MRR using two-photon absorption (TPA) effect [84]. High intensity pump signal at

λpump shifts the ring refractive index. The wavelength of the pump signal is slightly

detuned from the AOF resonance wavelength. The next resonance wavelength λref

is used for the filtering operation. The resonant wavelength is blue shifted, when

the pump signal is applied. In case no pump signal is applied (Figure 2.4(a)), the

probe signals (λ1 and λ2) continue propagating on the same waveguide. In case

a pump signal is applied (Figure 2.4(b)), the resonant wavelength of the AOF is
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φd(λ2, λref)
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Figure 2.4: AOF device.

shifted to λ2, which leads to the transmission of the probe signal λ2 to the drop

port. Equation 2.8 is the transmission of the optical signal to the drop port [83].

ϕd(λsignal, λres) =
a2(λres)r

2
2 − 2a(λres)r1r2cos[θ(λsignal, λres)] + r21

1− 2a(λres)r1r2cos[θ(λsignal, λres)] + [a(λres)r1r2]2
(2.8)

2.3 Proposed Methodology

The proposed methodology relies on the design of Bernstein polynomial architecture

using integrated optics. The design shall be generic to target polynomial functions

of different orders. As illustrated in Figure 2.5, the inputs of the design flow are: i)

technological parameters of the optical devices; ii) system-level parameters (n, BSL,

and BER); and iii) an application described as a mathematical function, e.g., Gamma

correction function. For each set of parameters, the energy is optimized and the

computing accuracy is evaluated at the application-level. The performance of the

design is evaluated according to the total energy consumption, computing accuracy

(between output data produced with approximation and with error-free processing)

and processing time. In the following, we detail the energy efficiency optimization

and computing accuracy evaluation.
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Figure 2.5: Proposed methodology for design space exploration of polynomial
architectures.

Energy optimization: The aim is to optimize the energy efficiency through a

reduction of laser power consumption, which is expected to consume most of the

energy in the architecture. For this purpose, we propose two design methods in

Section 2.4, i.e., MRR-first and MZI-first, that allow exploring the parameters of

the devices, i.e., MZI and MRR, in order to optimize the lasers’ energy. We use the

MRR-first design method to explore the distance between resonance wavelengths

(WLS ), i.e., λ0 to λn of the MRRs. It is worth mentioning that the SNG design is

not taken into consideration when estimating the energy.

Accuracy estimation: The purpose is to estimate the application-level com-

puting accuracy of the architecture. Based on the mathematical function f(x)

corresponding to the targeted application, the ReSC architecture is configured by

defining the polynomial coefficients b0 to bn of the function considering the order

of the architecture. During the simulation, the polynomial coefficients are used to
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generate the corresponding n + 1 stochastic numbers (SN), i.e., z0 to zn, for an

n order architecture. The length of the generated bit stream is defined by BSL.

In the context of image processing, input pixels are sequentially processed. Each

pixel leads to n stochastic bit streams, i.e., x1 to xn, for an n order architecture.

We evaluate the mean error distance (MED), taking into account the transmission

of the signals through the devices. MED is calculated wrt the error-free image

processed using f(x). We consider errors related to i) Bernstein polynomial ap-

proximation (MEDBerns approx); ii) generated stochastic numbers (MEDBSL); and iii)

optical transmission (MEDTrans). This allows quantifying the impact of each type

of error on the computing accuracy.

2.4 Proposed Architecture

We first present the design of the optical ReSC architecture. Then, we introduce the

design of the optical interfaces, i.e., SNG and de-randomizer, followed by the design

methods.

1. Optical Bernstein Polynomial Design

The optical circuit is composed of an adder and a multiplexer, similarly to

the ReSC circuit introduced in Section 2.1. The adder is composed of MZIs

devices that are controlled by the input data xi. A high power optical signal

OPLaser pump, that is continuously emitted by a laser source, is equally distributed

among the MZIs. Depending on the MZIs status; constructive or destructive

interference, the OPControl is produced. The MZI is selected in the design be-

cause it is a non-resonance mature device and it is not affected by high power signal.
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Figure 2.6: OSC architecture of a 2nd order polynomial function. (a) The optical circuit.
The transmissions of the signals at λ2, λ1, and λ0 to the drop port of the AOF are shown

in (b), (c), and (d), respectively.
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The multiplexer is implemented using an all-optical add-drop filter (AOF) receiving

optical signals modulated by coefficients zj. The resonant wavelength of the AOF

depends on the intensity of the pump signal output by the adder. By controlling

the resonant wavelength of the AOF, it is possible to extract a coefficient signal,

thus implementing the multiplexing operation. The output signal is received by a

photodetector, where E/O conversion is carried out.

A 2nd Bernstein polynomial is shown in Figure 2.6(a). It contains two MZIs, three

MRRs modulators and an AOF. The MRRs are controlled by the coefficients z0,

z1, and z2 to modulate the probe signals at wavelengths λ0, λ1, and λ2. Three

different scenarios are obtained based on the values of x1 and x2.

� x1=x2=1: In Figure 2.6(b), both MZIs are in the destructive state. Therefore,

OPControl is highly attenuated and the AOF resonance wavelength is tuned to

the nearest wavelength; λ2. Hence, the optical probe signal at λ2 is selected and

dropped to the output.

� x1 �=x2: In Figure 2.6(c), one MZI is in the constructive state and the other is

in the destructive state. Approximately half of the input power tunes the AOF

to the resonance wavelength λ1. Therefore, the input signal at wavelength λ1 is

transmitted to the output.

� x1=x2=0: In Figure 2.6(d), both MZIs are in the constructive state. The

maximum power is transmitted to control the AOF. Hence, the AOF resonance

wavelength is tuned to λ0.

As can be seen from Figure 2.6(b),(c), and (d), the AOF is initially tuned to the

resonance wavelength λref , where λref=λpump+FSR, in order to avoid the crosstalk

with the modulated signal. When OPControl is applied, the refractive index of the
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AOF tunes its resonance wavelength to one of the probe signals wavelength using

a nonlinear effect. Therefore, the right coefficient is selected and transmitted to

the output. Figure 2.7 illustrates the transmission of the control and coefficients

signals that correspond to the bit streams generated from SNGs, which control the

modulators, i.e., MZIs and MRRs. The figure also shows the transmission of the

output signal received by the photodetector. In the following, we introduce the

design of the SNG and the de-randmizer.

z0

z1

z2

Output

OPcontrol

tx1=x2=1
x1≠x2

x1=x2=0

1 10 0 0 00 0

0

0

0

1
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11
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1 1 1

0000

0 0 0

0 0

0

Figure 2.7: The transmission of the output signal according to the OPcontrol power and
the coefficients; z0,z1 and z2.

2. Optical Interfaces

� SNG: Our proposed design of SNG is composed of electrical and optical parts.

The electrical part contains the LFSR of size m and a comparator. An input

binary number of size m bits is compared against an m-bit random number
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generated by the LFSR. Hence, bit stream of length=2m is generated, which

controls the operation of an optical part, i.e., a modulator. As a result, a

CW signal emitted from an off-chip laser is either modulated or transmitted,

which represents the stochastic bit streams in the optical domain. We shall

call this design an SNG-based LFSR + modulator. This design is used in this

thesis from Chapter 2 to Chapter 4. Figure 2.8 illustrates the design of an

SNG that takes an 8-bit binary number as an input and generates BSL=256

to control an MZI modulator.

0
1
0

FF FF FF FF FF FF FF FF

LFSR

Binary number

m=8-bit m=8-bit

<

λP
Modulator

FF <

λP

XOR-gate D flip flop Comparator

Laser source

BSL=256

Electrical part

1 1 10 0
Optical part

Figure 2.8: SNG-based LFSR + modulator.

� De-randomizer: Figure 2.9 shows the de-randomizer circuit required to

convert the received light (equivalent to stochastic bit stream) to a binary

number. The received light is converted to the equivalent current using pho-

todetector. A TIA is used to convert the current to a voltage that is then

compared against a threshold voltage, where bit ’0’ or bit ’1’ is generated.

Then, the number of ’1’s are counted to generate the binary number.
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Figure 2.9: De-randomizer for OSC architecture.

3. Generic Architecture and Design Parameters

The architecture we propose is generic and can be implemented for an n order

Bernstein polynomial function, as illustrated in Figure 2.10. It involves n MZIs

and n+1 MRRs to modulate the data and the coefficients, respectively. The optical

power of the pump laser is equally distributed to the MZIs using n-outputs and n-

inputs splitter and combiner, respectively. The use of WDM allows the propagation

of probe signals on the same waveguide separated by wavelength spacing (WLS ),

i.e., the distance between two consecutive signals. WLS is a key parameter that

is used to optimize laser powers consumption. Small WLS increases the crosstalk

between probe signals, which requires high probe laser powers. However, it leads to

a reduction in pump laser power required to shift the AOF. Therefore, as described

in Figure 2.5, the exploration of WLS is essential as it involves a trade-off between

pump laser power and probe laser powers.

Table 2.1 summarizes the design parameters. The system-level parameters, n,

BSL, and BER, correspond to the order of the implemented polynomial function

(ReSC specific), the length of the generated bit streams (SC domain specific) and
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Figure 2.10: Generic architecture for OSC circuit.

the transmission error rate (optical domain specific), respectively. Since all pa-

rameters affect the computing accuracy, multiple combinations can lead to designs

demonstrating the same computing accuracy but with different energy efficiency

and processing time. As an example, we illustrate in Figure2.11 output optical sig-

nals (i.e. signals received by the photodetectors) corresponding to two scenarios:

a) high BSL / high BER and b) low BSL / low BER. We assume the same polyno-

mial order and the same application-level computing accuracy for both scenarios.

In scenario a), the targeted accuracy is obtained thanks to the high number of
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Table 2.1: System-level and technological parameters.

Name Description Unit

System-level

n Polynomial order -

BSL Bit Stream Length -

BER Bit-Error Rate -

MZI

ILdB Insertion Loss
dB

IL% %

ERdB Extinction Ratio
dB

ER% %

MRR

λi Resonant wavelength in OFF state nm

Δλ Resonant wavelength shift between ON and OFF states nm

θt Through transmission Equation 2.7 %

WLS Wavelength spacing between probe signals nm

AOF

λref Resonant wavelength when no pump power is injected nm

FSR Free Spectral Range nm

OTE Optical Tuning Efficiency nm/mW

θd Drop transmission Equation 2.8 %

Laser η Lasing efficiency %

Photodetector
R Responsivity A/W

in Internal noise current A

transmitted bits, which increases the processing time but allows to lower the con-

straints on the error transmission rate (i.e., high BER). This allows reducing the

wavelength spacing, thus leading to energy reduction opportunities. In scenario

b), we assume that the application-level accuracy is reached thanks to the robust

transmission (i.e., low BER). This allows reducing BSL, thus shortening the trans-

mission time. Hence, while both scenarios lead to the same computing accuracy,

they show different latency and energy efficiency figures, which are relevant options

for system designers. However, the design of such architecture is time consuming

and challenging, since it involves heterogeneous devices working under different

physical effects and being characterized by their own parameters, which requires a

design space exploration.
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2.5 Implementation and Modeling

We present the analytical models to evaluate the computing accuracy and estimate

the transmission robustness required to evaluate the energy efficiency of the design.

The models are developed considering the technological and system-level parameters.

2.5.1 Error Evaluation

We consider the following three sources of error:

� εBerns approx: results from the approximation of Bernstein polynomial function,

which includes the polynomial order and the coefficients. The Bernstein polynomial

coefficients of order n are computed by solving the function defined in [28]. The

function is given as: ∫ 1

0

(f(x)−
n∑

i=0

biBi,n(x))
2dx (2.9)

The higher the order, the more accurate the approximated Bernstein polynomial

function and hence the lower the errors. The distance between the approximated

function B(x) and the input function f(x) is given by:

εBerns approx = B(x)− f(x) (2.10)
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� εBSL: is induced by the generation of stochastic bit streams using SNGs, where BSL

drives the accuracy. This error is defined by the distance between processed data

Y (x) (produced by the architecture for a given BSL and an error-free transmission)

and B(x):

εBSL = Y (x)− B(x) (2.11)

� εTrans: results from the transmission error of the signal using integrated optics

technology. It occurs on the photodetector side and it is defined by BER, i.e., the

ratio of incorrectly transmitted bits. εTrans is the distance between Ý (x) (produced

by the architecture for a given BSL and a given BER and Y (x):

εTrans = Ỳ (x)− Y (x) (2.12)

We use the MED metric to quantify the architecture computing accuracy to pro-

cess streams of data (e.g., pixels arrays in image processing application). For this

purpose, we define MEDTotal as the sum of the individual MEDs contributions, i.e.,

MEDBerns approx, MEDBSL, and MEDTrans, resulting from the three previously de-

fined types of error, where M is the number of processed data and i is the data at

the ith position in the stream:

MEDTotal =
1

M

( M∑
i=1

| εBerns approx(i) | +
M∑
i=1

| εBSL(i) | +
M∑
i=1

| εTrans(i) |
)

(2.13)

2.5.2 Transmission Model

We define the wavelength spacing WLS as the wavelength distance between two con-

secutive probe signals.

WLS = λi+1 − λi (2.14)
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The transmission of the probe signal i to the output is given in Equation 2.15.

Ts,z[i] = ϕt(λi, λi −Δλ× zi)︸ ︷︷ ︸
Transmission through
the modulating MRR

×
n∏

w=0,w �=i

ϕt(λi, λw −Δλ× zw)

︸ ︷︷ ︸
Transmission through
the other modulators

×ϕd(λi, λref −ΔAOF (x))︸ ︷︷ ︸
Transmission through

the AOF

(2.15)

For example, if coefficient zi is ‘1’, this value will detune the MRRi by Δλ. Hence,

MRRi is in ON state and a maximum power of the probe signal at λi is passed through

the MRR. The signal will also experience different attenuation by the other MRRs

depending on their states, which are determined by their coefficients zw. Then, the

signal is dropped to the output by the AOF where the transmission depends on the

detuning value ΔAOF . When zi is ‘0’, theMRRi is tuned to the resonance wavelength

of λi (OFF state). The probe signal at λi experiences high attenuation and the same

transmission steps are repeated. The transmission of the probe signals to the output

depends on the AOF for which the initial resonant wavelength is λref (i.e., the resonant

wavelength in case no control power is applied). The AOF detuning is defined as:

ΔAOF = OPLaser pump ×OTE × 1

n

n∑
i=1

TMZI
i [xi] (2.16)

where OTE is the optical tuning efficiency measured in (nm/mW). The detuning of

the AOF depends on the transmission of OPLaser pump through n parallel MZIs, which

in turn depends on the corresponding modulated data Xi as defined in Equation (2.6).

The MZIi has a constructive interference, when xi is ‘0’ and a destructive interference,

when xi is ‘1’.

SNR = OPLaser probe × R

in
× (Ts,zi=1[i]−

n∑
w=0,w �=i

Ts,zw=1[w]) (2.17)
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where in and R are the photodetector internal noise and responsivity, respectively.

Ts,zi=1[i ] is the transmission of the signal at λi as ‘1’ while the remaining signals are

transmitted as ‘0’. On the other hand, Ts,zw=1[w ] is the transmission of the crosstalk

signals as ‘1’ while the signal at λi is transmitted as ‘0’.

The BER is given in Equation 2.18 assuming ON/OFF key modulation (OOK) of the

probe signals.

BER =
1

2
erfc(

SNR

2
√
2
) (2.18)

2.5.3 Design Methods

The performance and energy efficiency of the architecture depend on many devices

characteristics and related parameters that need to be explored. We propose two

methods that can be used to optimize laser powers. These two methods are MRR first

and MZI first. Following is a brief description of each method:

� MRR-First: This method allows exploring MZI characteristics and minimizes

the required pump laser power OPLaser pump according to MRRs parameters.

For this purpose, the MRRs resonant wavelengths λi are first defined according

to WLS. The transmission Ts,z[i] then allows estimating the worst-case SNR

for a given probe laser power OPLaser probe, or finding the minimum laser power

needed to reach a given BER. Then, according to the AOF resonant wavelength

λref and the MZI’s IL, the minimum pump power is computed. Eventually, ER

is given by the pump signal attenuation required to tune the AOF to λn, i.e.,

the right-most signal wavelength.
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� MZI-First: this method allows exploring MRRs characteristics and minimiz-

ing the required probe laser power. For this purpose, the pump laser power

is specified and the MZI’s IL and ER are selected. This allows estimating the

power level of the control signal to tune the AOF. For a given λref , it is possi-

ble to define λi and vice-versa. Eventually, BER and laser probe power can be

defined according to the objective (power, robustness, speed).

2.6 Simulation Results

In this section, we explore the design of OSC architecture for polynomial functions by

implementing a Gamma correction application. We illustrate the processing at the

bit-level and the application-level. We explore the impact of the design parameters

on the application-level computing accuracy. Then, we optimize the energy efficiency

through exploring the WLS for different polynomial orders. Following the Gamma

correction application, we explore the design space for optimizing energy efficiency

according to the computing accuracy.

2.6.1 Case Study: Gamma Correction Application

Gamma correction function [85] is a nonlinear operation that controls the luminance

of an image, which is defined by:

f(x) = xγ (2.19)

where γ is the correction value. A γ value less than one maps dark pixels to a lager

range of values, allowing enhancing the details of the dark area of the source im-

ages. In the following, we assume γ=0.45 for all simulation results, which is one of
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the values used in modern TV systems to correct the illuminance of videos and im-

ages [86]. We use this application to illustrate the design space exploration proposed

in the methodology (Section 2.3). For this purpose, we implement a 2nd order poly-

nomial architecture and define the design parameters. We illustrate the simulation

for processing one bit and a single image.

1. Definition of Technological Parameters

To design a 2nd order polynomial architecture, three MRRs are needed. We assume

wavelengths around 1550nm, since silicon material is transparent to this wave-

length, which leads to low propagation losses [87]. We also assume WLS=1nm

for illustration purposes. Then, MRR2, MRR1, and MRR0 are tuned at reso-

nance wavelengths λ2=1550nm, λ1=1549nm, and λ0=1548nm, respectively. For

the AOF, we select λref to be detuned by 0.1nm from λ2, i.e., λref=1550.1nm. We

also assume OTE=0.01nm/mW [84] and ILdB=4.5dB [88]. Following MRR-first

design method presented in Section 2.5.3, we define OPLaser probe=1mW and we set

OPLaser pump to 574mW, which is the minimum power required to detune the AOF

to λ0 (rightmost signal). ERdB=23dB is required to detune the AOF to λ1 and λ2.

On the other hand, the minimum laser probe power can be evaluated according

to the MZI-first method by considering ranges of values for IL and ER typically

observed in the literature [89, 90]. In this study, we assume a 2nd order polyno-

mial function. Figure 2.12(a) illustrates the results for OPLaser pump=0.6W and

BER=10−6. By assuming the MZI device in [90] (ILdB=6.5 and ERdB=7.5), the

required laser probe power would be 0.26mW. Obviously, the minimum value of

OPLaser probe rises with the increase in ILdB and the reduction of ERdB, which is

explained as follows: the lower the total transmission in the MZIs, the smaller

the wavelength spacing and the higher the signal crosstalk. Increasing the probe
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(b)targeted BER, and (c) MZIs speed and phase shifter length.

laser power not only has a negative effect on the circuit energy efficiency, but it

can also induce a nonlinear effect in the filter, which would lead to an undesired

shift in its resonant wavelength. This could be avoided by increasing the pump

power instead, which leads to a design trade-off involving the power of the pump

and probe signals. We also evaluate the opportunities for laser power reduction by

leveraging constraints of the optical signal transmission robustness.

As illustrated in Figure 2.12(b), targeting 10−2 BER instead of 10−6 leads to a 50%

power reduction. The lack of accuracy in the optical domain could be alleviated by

transmitting longer streams of bits in the stochastic domain. This also allows ex-

ploring a trade-off between computing accuracy and transmission robustness, which

involves device characteristics related to the speed and the area (Figure 2.12(c)).

For instance, a high modulation speed (e.g., 60Gb/s [90]) and a high laser power
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could be combined to reduce the bit streams transmission rate, thus maximizing

the circuit throughput.

2. Bit-Level Processing

We illustrate the transmission of one bit for the given application. First, we use

Equation 2.9 to evaluate the polynomial coefficients, which leads to b0=0.209,

b1=0.8927, and b2=0.969. Then, the stochastic bit streams of the coefficients are

generated (z0 to z2) to control the MRRs. For processing a pixel, n bit streams (x1

to xn) are generated to control the MZIs.

Figure 2.13 illustrates the transmission through the three MRRs and the AOF, as

well as the transmission of the probe signals represented by the vertical arrows.

We assume different combinations of coefficients and data inputs (pixel) as follows:

� z0=0, z1=1, z2=0 and x1=x2=1 (Figure 2.13(a))

The coefficients lead to detuning the resonance wavelength of MRR1, hence

probe signal at λ1 has high transmission, while probe signals at λ0 and λ2 are

attenuated. Since x1=x2=1, the resonance wavelength of the AOF is shifted

to λ2, and thus ’0’ is transmitted to the output. The total power received at

the photodetector is 0.0952mW.

� z0=1, z1=1, z2=0 and x1=x2=0 (Figure 2.13(b))

The coefficients result in detuning MRR0 and MRR1, which lead to high

transmission of probe signals at λ0 and λ1, while probe signal at λ2 is

attenuated. The data inputs x1=x2=1 result in shifting the AOF resonance

wavelength to λ0. Therefore, ’1’ is transmitted to the receiver side with total

power of 0.482mW.
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Figure 2.13: The transmission of MRRs and AOF. a) probe signal at λ2 is transmitted
as ‘0’, b) probe signal at λ0 is transmitted as ‘1’, and c) the optical power received by the

photodetector for all input combinations.

Figure 2.13(c) reports the power received by the photodetector for all combinations

of data inputs and coefficients signals. The optical power range of (0.092-0.099mW)

and (0.477-0.482mW) implies the transmission of ’0’ and ’1’, respectively. For a

targeted BER, we can compute laser powers according to the transmission of the

architecture to ensure a proper detection of ’0’ and ’1’ at the receiver side.

3. Execution of Image Processing Application

We illustrate the processing of a Gamma correction application at a scale of one

image by implementing a 4th order polynomial architecture. The corresponding

coefficients are b0=0.129, b1=0.797, b2=0.613, b3=0.95, and b4=0.988. We run the

simulation assuming BSL = 1024 and BER = 10−1. We compare the simulation

result with i) the error-free results (f(x) = x0.45); and ii) the approximated results

corresponding to the 4th order Bernstein polynomial function. Figure 2.14(a) shows
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for n = 4, BSL = 1024, and BER = 10−1. (b) The corresponding results for processing an

image.

the resulting output pixels according to input pixels in the range [0, 1]. This range

corresponds to the probabilities of the stochastic numbers (for instance, a proba-

bility of 0.5 corresponds to a stream of bits composed of 512 ones and 512 zeroes).

In the graph, curve (1) represents the error-free output and curve (2) is the result

provided by the approximated 4th order Bernstein polynomial function. Curve (3)

is the simulation result, which integrated the errors induced by SNG and the trans-

mission errors in the optical domain. The resulting higher approximation measured
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using simulation can be observed clearly in the range [0, 0.01]. The approximation

thus depends on the application, the design parameters and the input data. For this

purpose, we run simulation on standard 160× 160 pixels image (in Figure 2.14(b))

assuming error-free transmission (i.e. BER = −∞) and BER = 10−1, and we

calculate their respective MED wrt error-free processing (image(b-1)). This allows

the evaluation of the approximation induced by the Bernstein polynomial function

only (image(b-2)), which is low compared to the additional approximation gener-

ated by combining SC and optical technology (image(b-3)). In the following, we

carry out a comprehensive study of application-level computing accuracy, taking

into account the impact of system-level parameters.

2.6.2 Application-level Computing Accuracy

We study the impact of the three types of errors, namely εBerns approx, εBSL, and

εTrans (see Section 2.5.1) using Gamma correction application. For this purpose, we

assume a 4th order ReSC architecture with BSL = 1024 and BER = 10−1. Exhaus-

tive simulations are carried out for inputs pixels ranging from 0 to 1, assuming a

step of 1/1024, which corresponds to the minimal reachable quantum for the assumed

BSL. Figure 2.15(a) reports εBerns approx, the relative errors induced by the use of

an approximated 4th order polynomial with respect to the application function. As

already observed in Figure 2.14, the approximation is less accurate for darker pixels,

which can be improved using higher order architectures. Figure 2.15(b) reports εBSL,

the distance between pixels processed using error-free optical transmission and the

approximated function (Figure 2.15(a)). As can be seen in the figure, the error fol-

lows the pseudo-random generation of stochastic bit streams using LFSR. It can be

reduced by optimizing the seed value for the LFSR [91] or by increasing BSL, which,
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however, will impact the processing time. Both εBerns approx and εBSL depend on the

application and the order of the approximated polynomial function. Figure 2.15(c)

reports εTrans, which corresponds to the error distance between the data processed,

taking into account the optical transmission wrt. result assuming error-free trans-

mission (Figure 2.15(b)). Since we assume BER = 10−1, the worst-case error occurs

for an input value of 0. For this value, the bit stream contains only zeros and each

transmission error induces a bit flip to one, which leads to a maximum positive error

of 0.1. The opposite situation occurs for an input value of 1. For input value 0.5, the

error is minimized since, in our model, bit flips to zero and bit flips to one tend to

compensate each other. The error can be reduced by decreasing BER, which, however,

significantly impacts the energy efficiency, as discussed in the following.
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Figure 2.15: Errors for data input ranging from 0 to 1: (a) εBerns approx for 4th order, (b)
εBSL for 4th order and BSL=1024, (c) εTrans for BER = 10−1.

In order to evaluate the impact of system-level parameters, i.e., n, BSL, and

BER, on the computing accuracy, we simulate the processing of 160×160 pixels images

and we evaluate the errors using MEDTotal metric. We assume 2 ≤ n ≤ 6, 256 ≤
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BSL ≤ 4096. Figure 2.16(a), (b), and (c) provide the results for BER = 10−1,

3 × 10−2 and 10−3, respectively. Figure 2.16(d) illustrates the resulting processed

images for selected parameters combinations with the correspondingMEDTotal, which

allow to define the acceptable range of MEDTotal that is sometimes very subjective

depending on the application. As illustrated in the figure, MEDTotal ranges from

0.04 to 0.077 for BER = 10−1 and it decreases to [0.027 − 0.058] and [0.015 − 0.05]

for BER = 3 × 10−2 and 10−3, respectively, thus highlighting the impact of the

error transmission on the computing accuracy. We also notice an overlap between

the ranges, which indicates that the same computing accuracy can be reached for

multiple combinations of BER, BSL and n. As an example, MEDTotal = 0.05 is

reached for the following combinations: i) n = 4, BSL = 4096, BER = 10−1; and

ii) n = 3, BSL = 265, BER = 3 × 10−2. In some cases, it is also possible to
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reach the same accuracy by keeping one of the parameters. For instance, the 2nd

order architecture leads to MEDTotal = 0.058 for the combinations [BSL = 4096,

BER = 10−1] and [BSL = 256, BER = 3× 10−2]. Similarly, the use of BER = 10−3

leads to MEDTotal = 0.02 for the combinations [n = 6, BSL = 1024] and [n =

3, BSL = 4096]. This validates the ability of the methodology to explore energy

efficiency, processing time and accuracy trade-off, which contributes to reduce the

design efforts to satisfy application level requirements.

Indeed, BER directly depends on the circuit power consumption (i.e., laser

power and modulation power), which can be tuned at run-time [92] and without

involving any modification in the hardware, which is required in case the order is

changed. Furthermore, increasing the accuracy through an adaptation of the BER

can be obtained without impacting the computing latency, as opposed to the BSL for

which latency linearly increases with the length of the streams. Overall, while the main

design parameters (i.e., n, BSL and BER) equally contribute to the computing errors,

they have different impacts on the hardware complexity, power consumption and

processing time. In the following, we optimize the design energy efficiency according

to the proposed methodology.

2.6.3 Energy Efficiency Optimization

In this experiment, we optimize the energy efficiency per computed bit for a targeted

BER. This calls forWLS exploration to find the minimum total laser powers consump-

tion for n order polynomial architectures. For this purpose, we assume BER = 10−3,

1Gb/s modulation speed and 20% lasing efficiency. Figure 2.17(a) reports the en-

ergy consumption for pump laser and n+1 probe lasers as well as the total lasers for

n = 2, 4, and 6. As can be seen, for WLS < 0.125nm, the total energy consumption
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is dominated by the probe lasers. This is due to the high crosstalk between probe

signals for low WLS. Whereas for WLS > 0.125nm, the pump laser dominates the

energy consumption to allow a larger wavelength shift by the AOF. We search for the

optimal WLS for architectures with n ranging from 2 and 16. We observe that the

optimal WLS ranges from 0.158nm to 0.151nm. Considering the small variation, we

assume 0.155nm as the optimal WLS for all orders. In figure 2.17(b), we evaluate the

energy per bit for different design orders. The results show that for the optimal WLS,

an energy saving up to 79.8% can be obtained, which validates the scalability of the

design for higher orders. This allows the exploration of the resulting designs in order

to optimize the performance metrics.
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2.6.4 Accuracy and Energy Design Trade-off

We aim to optimize the accuracy and energy efficiency to execute the Gamma cor-

rection application. For this purpose, all the parameter combinations shown in Fig-

ure 2.16 are considered, which leads to 8 designs. For each design, we estimate the

laser energy consumption per processed pixel. The pixel processing is also estimated,

taking into account BSL and by assuming a 1Gbit/s modulation speed.

As illustrated in Figure 2.18, eight designs (i.e., so called D1 − D8 in the

following) are on the Pareto front: D1 is the most energy efficient solution with

4.17nJ/pixel and MEDTotal = 0.077, while D8 is the most accurate one (196nJ/pixel

and MEDTotal = 0.017). The 47× increase in the energy consumption is due to the

use of i) higher order (6 for D8 against 2 for D1); ii) lower BER (10-3 for D8 against

10-1 for D1); and iii) higher BSL (4096 for D8 against 256 for D1). It is also worth
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mentioning that the processing time of D1 is 16× faster than for D8 (256ns/pixel

for D1 wrt. 4μs/pixel for D8), which is due to the shorter BSL. Compared to D1,

D2 allows reducing the error from 0.078 to 0.058 (-25%) at the cost of a 4.7% energy

consumption increase. Since this can be achieved by adapting the laser power, no

modification of the hardware is needed, thus allowing the user to switch between D1

to D2 at run-time. However, further reducing the error (i.e., using D3 instead of D2)

calls for a third order polynomial function, which involves different hardware since

D1 to D8 are static architectures; hence the order cannot be adapted during run-

time. Interestingly, switching at run-time between D4 and D5 is also possible in case

reconfigurable SNGs are used. Indeed, both designs involve the same hardware for

the OC part; the only difference is in the interfaces since D4 and D5 rely on 512 and

1024 bit-stream lengths, respectively. Using D5 instead of D4 leads to 2× increase in

the energy consumption while offering a 27% reduction in the error.

2.7 Summary

In this chapter, we proposed the design of an OSC architecture for polynomial func-

tions. We presented the design of a generic Bernstein polynomial architecture for

n-order polynomial function. In addition, we defined the analytical model for the

signal transmission. We proposed design methods for optimizing laser power con-

sumption according to device characteristics. The computing accuracy is evaluated

by considering errors induced by i) polynomial function approximation; ii) stochastic

number generation; and iii) the transmission of optical signals. The latter depends

on device parameters such as resonance wavelength, etc., which can be explored by

the designer. We simulated the execution of Gamma correction to process 160×160

pixels images. Results showed that reducing the mean error from 0.077 to 0.017 can
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be achieved at the cost of 47× energy consumption and 16× processing time. The

results showed that it is possible to reach the same computing accuracy for different

polynomial orders by compensating the reduced accuracy of lower order polynomial

with higher BSL and lower BER.

Overall, we found out that the order n is the main design parameter to con-

sider when both accuracy and energy efficiency need to be optimized. Based on our

observations, and by considering the technological parameters and design method,

BER and BSL are intrinsically needed to be maximized and minimized, respectively,

for energy efficiency purpose. However, they would become key design parameters to

explore in case processing speed and laser power consumption are optimized. All in

all, these observations call for a reconfigurable architecture, in which the order of the

polynomial function can be adapted, together with the BSL and/or the laser power

consumption, according to users’ constraints and objectives, as will be explained in

the next chapter.
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Chapter 3

Reconfigurable Optical Stochastic

Computing Architecture for

Polynomial Functions

The architecture proposed in Chapter 2 is static, where any change in the design

requirements needs the design of a new architecture. Since designing computing ar-

chitectures using silicon photonics devices remains costly, this calls for an adaptable

design able to meet application-specific objectives. Therefore, in this chapter, we

propose a reconfigurable OSC architecture allowing online adaptation of computing

accuracy, energy efficiency, and throughput that meet different requirements. The

reconfigurable architecture is based on the Bernstein polynomial design proposed in

Chapter 2, where the order can be configured during run-time. This allows the exe-

cution of a single function of high order to enhance the accuracy or multiple functions

simultaneously for higher throughput and energy efficiency.
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3.1 Proposed Methodology

In the proposed methodology, shown in Figure 3.1, one or more applications repre-

sented as mathematical functions, i.e., f1(x1) to fm(xm), can be implemented simulta-

neously using polynomial architectures. This requires a reconfigurable design, where

the order can be adapted according to the requirements, i.e., computing accuracy, en-

ergy efficiency, and design throughput. This allows for parallelism at instruction and

data levels, where different applications can be executed at the same time to process

the same input (instruction parallelism) or the same application can be implemented

multiple times to process different input data in parallel (data parallelism). Based

on the selected scenario, we explore the technological and system-level parameters.

In order to optimize the energy consumption, we use the same approach proposed

in the methodology of Chapter 2, where WLS is explored using the MRR-first de-

sign method to estimate the minimum energy consumption of the lasers. Evaluating

computing accuracy is carried out using a Gamma correction application, where we

consider the same sources of error introduced in Chapter 2, i.e., εBerns approx, εBSSL

and εTrans. As a result, we evaluate the total energy consumption, computing accu-

racy, using the MED metric, and processing time for a given set of design parameters.

The design can be generic to implement n order functions. To illustrate the efficiency

of the proposed methodology, we propose the design of an architecture that can be

reconfigured to execute: i) 4th order function for high accuracy processing; or ii) two

2nd order functions for energy efficiency and high throughput purposes as detailed in

the following.
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Figure 3.1: Proposed methodology for design space exploration of reconfigurable
polynomial architectures.

3.2 Proposed Architecture

In this section, we introduce the optical devices used in the design and the proposed

reconfigurable architecture. We present a design method to explore different design

parameters for energy optimization.

3.2.1 Directional Coupler

Since the design is based on the optical polynomial architecture proposed in Chapter

2, the same optical devices are used, i.e., MZIs, MRRs and AOFs. For the configura-

tion process, an additional device is required to direct the data signals to the correct

output. We propose to use DC for this purpose, but first, a brief description of device

operation is presented.
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Figure 3.2: DC device.

Figure 3.2 shows a DC composed of two parallel arms implemented using waveg-

uides. The device operates in two states: when no voltage is applied, the intrinsic

refractive index of the waveguides leads to coupling of the signal from a waveguide

to another, i.e., cross state (Figure 3.2(a)). When a voltage is applied, the change

in the refractive index leads to a 50% reduction of the coupling length. Thus, the

signals continue propagating on the same waveguide, i.e., bar state (Figure 3.2(b)).

The device transmission is defined by:

TDC [v] =

⎧⎪⎪⎨
⎪⎪⎩
ILcross%, v = 0 Cross state

ILbar%, v = 1 Bar state

(3.1)

In the following, we propose the design of the reconfigurable architecture and

detail the functionality of the DC in the design.

3.2.2 Reconfigurable Bernstein Polynomial Architecture

Figure 3.3 illustrates the proposed reconfigurable architecture. It allows executing

polynomial functions on input data XA and XB according to Bernstein coefficients

(input b0..b2 and b3..b5). Two configurations are available: Cfg1×4 allows executing a

4th order function on the data (i.e., XA=XB) and Cfg2×2 leads to two 2nd order func-

tions processed in parallel (i.e., XA �= XB). Depending on the selected configuration,

the results are output either on Y1×4 (for Cfg1×4) or Y2×2 A and Y2×2 B (for Cfg2×2).
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Figure 3.3: Proposed reconfigurable architecture for polynomial functions.

The reconfigurability involves a symmetrical architecture: two sets of adders and

modulators are designed using MZIs and MRRs, respectively. Each one is responsible

for generating optical signals corresponding to the related input data (i.e., XA or

XB) and coefficients (b0..b2 or b3..b5). The data signals are generated as follows:

from data XA (resp. XB), streams of bits XA1 and XA2 (resp. XB1 and XB2) are

generated using independent SNGs; their outputs modulate MZIs, thus leading to

constructive state (’1’) or destructive state (’0’) on signals at λpump (see mark 1�

in Figure 3.3). Eventually, for each pair of MZIs, three optical power levels can be

obtained: 0 for 00, 1 for 01/10 and 2 for 11 (see 2�). The optical signals corresponding

to coefficients bi are obtained through modulation of MRRs at λi using SNGs, where

0 ≤ i ≤ 5 (see 3�). Data and coefficient signals are combined into a waveguide prior
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Figure 3.4: Cfg1×4 executes a single 4th order function.

entering a reconfigurable multiplexer implemented using DCs and AOFs (see 4�).

The configuration depends on the states of the DCs, as detailed in the following:

� Configuration Cfg1×4 involves both DCs in the cross state, i.e., cfg=1, as

shown in Figure 3.4. The two groups of data and coefficient signals are combined

into the same waveguide as follows (see 5�): while the coefficient signals are

combined without interfering due to WDM, data signals cumulate with each

other since they both propagate at λpump. This leads to five pump power levels

able to detune the AOF to five wavelengths at which the coefficient signals

propagate. The signal at the wavelength selected by the AOF is dropped to

output Y1×4. This configuration thus allows executing a 4th order function.

� Configuration Cfg2×2 involves both DCs in the bar state, i.e., cfg=0, as shown

in Figure 3.5. The two groups of data and coefficient signals continue propagat-

ing independently from each other (see 6�). For each group, the pump signal

detunes the corresponding AOF to one of the three wavelengths propagating

the coefficient signals (i.e., λ0..λ2 for Y2×2 A and λ3..λ5 for Y2×2 B). This allows

simultaneous execution of two 2nd order functions.
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Figure 3.5: Cfg2×2 executes two 2nd order functions.

Since DCs enable the switching between a single 4th order function (Cfg1×4)

and two 2nd order functions (Cfg2×2), the architecture allows exploring accuracy and

throughput trade-off at run-time. For image processing applications, the high poly-

nomial order available in Cfg1×4 configuration is suitable to meet objectives related

to computing accuracy. On the other hand, the parallelism available in Cfg2×2 con-

figuration accelerate the processing, either using data-level parallelism (by applying

the same filter on multiple images simultaneously) or instruction-level parallelism (by

applying multiple filters on the same image). However, compared to static architec-

ture proposed in Chapter 2, this adaptability leads to area and energy overhead. This

calls for design optimization with the key challenges introduced in the following.

3.2.3 Design Method

The laser powers are key design parameters to optimize. Indeed, while the laser powers

should be minimized for energy efficiency purpose, enough optical power should be

injected to ensure that the design works properly and the computations are correct.
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The reconfigurability of the architecture leads to additional constraints, since the

same injected pump power should control either a single AOF (Cfg1×4) or two AOFs

(Cfg2×2). While existing methods allow adapting laser powers at run-time [92], they

lead to a significant control overhead we intend to avoid in the context of SC as they

would impact both latency and area. Instead, we aim to optimize, at design time, the

laser powers taking into account the characteristics of the involved devices, i.e., MZI,

MRR, DC and AOF, and system-level parameters, such as BER. For this purpose,

we investigate the wavelengths of the coefficient signals, since they affect both lasers

pump and probe powers.

First, we define two groups of wavelengths to be processed in parallel under

Cfg2×2 configuration. Each group contains consecutive wavelengths; hence the pump

power is equally distributed to two AOFs. The total wavelengths range (i.e., from λ0

to λ5) is also equally distributed, which allows using the same optical tuning efficiency

for all the AOFs. Second, we define for each AOF an initial resonant wavelength λref

allowing to minimize the covered wavelength distance. For Cfg2×2, λref is defined

as close as possible to the right-most wavelength in the group (λ2 and λ5 for Y2×2 A

and Y2×2 B, respectively), which is given by the minimum optical power received by

the AOF (i.e., 00), hence it depends on the MZI and DC insertion losses. Finally, a

large WLS leads to low crosstalk between the coefficient signals, which minimizes the

required lasers probe powers. On the other hand, this requires higher pump power to

cover a larger wavelength distance by the AOF. Therefore, the optimal spacing, i.e.,

the spacing minimizing the total laser power, is searched analytically by exploring the

WLS. The design calls for a transmission model we define in the following.
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3.3 Implementation and Modeling

The configuration proposed in Section 3.2.2, allows run-time adaptation of accuracy,

energy-efficiency and throughput that comes with power overhead. In this section,

we detail the signal transmission model of the reconfigurable architecture. It allows

evaluating SNR, from where the laser energy consumption is estimated. The model is

unified and is thus applicable for the two configurations. The configuration is defined

by cfg, which controls the state of the DCs (i.e. Cfg2×2 and Cfg1×4 lead to bar state

and cross state, respectively). The coefficient signal λi propagates through i) the

modulating MRRi; ii) modulators MRRw dedicated to other signals; iii) a DC; and

iv) an AOF, as defined by:

Ts,z[i] = ϕt(λi, λi −Δλ× zi)︸ ︷︷ ︸
Modulating MRR transmission

×
n∏

w=0,w �=i

ϕt(λi, λw −Δλ× zw)

︸ ︷︷ ︸
Other MRRs transmission

×

TDC [cfg]︸ ︷︷ ︸
DC Transmission

×ϕd(λi, λref −ΔAOF )︸ ︷︷ ︸
AOF transmission

(3.2)

The detuning of the AOF depends on the transmission of the pump signal through

the MZIs and the DCs. It is given by:

ΔAOF = OPLaser pump ×OTE × 1

n

k∑
h=j

TMZI [xh]× TDC [cfg] (3.3a)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h = {A1, A2} , Cfg2×2

{B1, B2}

h = {A1, A2, B1, B2} , Cfg1×4

(3.3b)
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where OTE assumed to be 0.01nm/mW as in Chapater 2. TMZI [Xj] is the trans-

mission through the MZIs, for which the states (constructive or destructive) depend

on the data input Xj. Equation 3.3b indicates which MZIs will be considered in the

transmission according to the selected configuration: either the pump signals are sep-

arated (Cfg2×2), or they remain combined (Cfg1×4). We use Equations 2.17 and 2.18

to calculate SNR and BER, respectively.

Regarding computing accuracy, we assume the three sources of error introduced

in Chapter 2, i.e., εBerns approx, εBSSL and εTrans. Moreover, we use MED metric

to evaluate the total computing accuracy, i.e., MEDTotal, at the application-level as

presented in Section 2.5.1.

3.4 Simulation Results

In this section, we evaluate the performances of the proposed reconfigurable architec-

ture using the Gamma correction application. We also evaluate the energy and area

overhead compared to a non-reconfigurable version of the architecture.

3.4.1 Accuracy and Throughput Trade-off

We use the Gamma correction image processing application with γ=0.45 to execute

a 2nd order (Cfg2×2) and 4th order (Cfg1×4) architectures. For this purpose, the

Bernstein coefficients (b0 to b2) and (b0 to b4) are calculated for Cfg2×2 and Cfg1×4,

respectively, using Equation 2.9. Figure 3.6 shows the outputs from processing

input data x [0, 1] using an error free function f(x), and approximated 2nd and 4th

order polynomial functions. As expected, the approximation level increases with the

reduced polynomial order, which impacts the error and leads to design trade-off we

explore in the following.
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Figure 3.6: Error free function f(x) and approximate polynomial functions for Cfg1×4

and Cfg2×2.

To evaluate the architecture, we simulate the processing of 160× 160 pixels im-

ages for BSL ranging from 28 to 212 and BER = 10−3. We explore the WLS, which

leads to optimal WLS=0.155nm. The computing accuracy is calculated using MED,

which is obtained by comparing the pixels processed using our architecture with the

error free results. Cfg1×4 leads to sequential processing of the pixels (Figure 3.7(a)).

For this purpose, each pixel is sent to XA and XB and the 5 coefficients are dis-

tributed to the MRRs. Cfg2×2 is used to process two pixels simultaneously for high

throughput purposes (Figure 3.7(c)). In this case, XA and XB receive different pixels

and the same coefficients are sent to the two groups of MRRs. By assuming 1Gbps

modulation speed and BSL = 210, the average processing time per pixel are 1024ns
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Figure 3.7: Image processed for (a) Cfg1×4: pixels are serially processed, and (c) Cfg2×2:
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through MRRs for Cfg1×4 and Cfg2×2, respectively. (b) mark 3� and (d) marks 5� 7� are
the transmissions towards the photodetectors for Cfg1×4 and Cfg2×2, respectively.
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and 512ns for Cfg1×4 and Cfg2×2, respectively. Figure 3.7(b) and (d) show the signal

transmissions for Cfg1×4 and Cfg2×2, respectively. For Cfg1×4, we assume a value ’1’

for the coefficient signals at λ2 and λ4 and a value ’0’ for the remaining λ, thus leading

to the transmissions illustrated in 1� and 2�. The signals are merged and propagate

to the same AOF. We assume a received 53mW pump signal power (corresponding

to XA1 = XB2 = 1 and XA2 = XB1 = 0), allowing to detune the AOF from λref

to λ2 (see 3�), thus leading to the transmission of 110�W to Y1×4. For Cfg2×2, we

assume the transmission of ’1’ at λ2, λ4, and λ5 (see 4� and 5�). The groups of

signals propagate to two AOFs, which are detuned independently from each other.

The assumed data inputs values lead to the transmission of the signals at λ1 and λ5

to Y2×2 A (10μW) and Y2×2 B (90μW), respectively (see 6� and 7�).

3.4.2 Static vs Reconfigurable Architectures

Table 3.1 reports the energy and area overheads of the reconfigurable architecture

compared to the static architecture defined in Chapter 2. For a fair comparison, we

design our architecture to ensure that Cfg1×4 and Cfg2×2 achieve the same accuracy

as the 4th and 2nd order static architectures, respectively. We also assume that both

static and reconfigurable architectures can adapt the BSL during run-time [93]. The

simulation results show that they lead to 53% and 36.8% energy overhead, respectively,

which is mainly due to the losses induced by the DCs on the propagation path.

We also evaluate the impact of BSL on the computing accuracy and energy

efficiency. For this purpose, we evaluate the error and the energy efficiency of all ar-

chitectures for BSL ranging from 28 to 212. As can be seen in Figure 3.8, the proposed

architecture allows covering MEDTotal ranging from 0.05 to 0.017, while static archi-

tectures cover [0.05− 0.03] and [0.04− 0.017] for 2nd and 4th order, respectively. The
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Table 3.1: Energy and area overhead evaluation.

Static Architecture Reconfigurable Architecture

n=4 n=2 abs Wrt. n=4 Wrt. n=2

Energy efficiency nJ/pixel 34 19
Cfg1x4:52

Cfg2x2:26

+53%

-23.5%

+173%

+36.8

Accuracy MEDTotal 0.023 0.034
Cfg1x4:0.023

Cfg2x2:0.034

-

+47.8%

-32.4%

-

No. of optical

devices

Pump laser 1

5

4

0

5

1

1

1

3

2

0

3

1

1

1

6

4

2

6

3

3

Probe laser

MZI

DC

MRR

AOF

Photodetector

Accuracy/energy

adaptability

Order -
√

BSL
√ √

improvement in the reachable range of accuracy (+65% and +43.5%) demonstrates

the benefits of adapting the polynomial order to satisfy application-level requirements.

Interestingly, adapting the polynomial order is, in some cases, more energy

efficient than adapting the BSL. For instance, assuming a 2nd order static architecture

in Figure 3.8, reducing the error from 0.04 to 0.03 can be achieved by increasing the

BSL from 29 (see 1� in the figure) to 212 (see 2�), which results in 67nJ/pixel. Using

the proposed architecture, the same accuracy can be achieved by switching from

Cfg2×2 (see 3�) to Cfg1×4 (see 4�), which leads to 26nJ/pixel. It is worth noticing

that, in addition to the 61.2% energy saving, a 8× throughput is achieved thanks to

a lower BSL (29 for 4� wrt. 212 for 2�).

As can be observed, although the proposed architecture leads to area overhead,

it covers a large range of computing accuracy, which is needed to adapt to user re-

quirements. This high adaptability allows, depending on the targeted accuracy, to

improve the energy efficiency or the throughput compared to the static architecture.
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3.5 Summary

In this chapter, we proposed a reconfigurable OSC architecture that allows adapting

the order of the executed polynomial functions for accuracy, energy efficiency, and

throughput purposes. Compared to a static architecture, in which the order is de-

fined at design time, the reconfigurable architecture increases the range of reachable

accuracy by 65%, which is a key to meet users’ requirements. However, it leads up

to 53% energy overhead. We also demonstrated that, in some cases, adapting the

polynomial order is more energy efficient than adapting the BSL.

While Bernstein polynomial architecture is limited to single input function im-

plementation, other applications may be based on processing multiple inputs, where

the design can be composed of cascaded gates, such as combinational filters. This

will require the exploration of other device’s characteristics, as will be discussed in

the next chapter.
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Chapter 4

Optical Stochastic Computing

Architecture for Combinational

Filters

In this chapter, we investigate the use of PhC nanocavities to design SC architectures.

PhC nanocavity is an energy efficient device of a small footprint. It is characterized

by different quality factors around resonant wavelengths. We aim to take advantage

of this feature to explore the design of SC architectures that involve cascaded gates

and multi-wavelength signaling, such as combinational filters. In order to implement

such architectures, we aim to design all-optical logic gates using PhC nanocavities.

4.1 Overview

In this section, we give a brief overview of the objective of this chapter and introduce

the state-of-the-art SC edge detection filter architecture.
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4.1.1 All-optical Architecture

Silicon photonics devices, such as MZI and MRR, have been widely investigated

in the design of OC architectures [25, 68]. In these approaches, optical signals are

modulated by electrical signals, which calls for E/O and O/E converters. To cope

with this limitation, the design of all-optical gates using MRR has been investigated

in [84]. The switching operation is obtained by applying a high power (typically few

mW) optical control signal in order to modulate a lower power optical data signal

(typically few 100s �W). In MRRs, this is achieved by injecting control and data

signals on different resonant wavelength, where the wavelength detuning obtained

from the control signal will modify the transmission of the data signal. This way, the

data signals remain in the optical domain during their processing from the inputs

to the outputs, which prevent from the need for EO/OE converters. Therefore,

all-optical architectures have the potential to operate at higher speeds compared to

optical architectures involving electrically controlled devices. However, to trigger

nonlinear effects needed for the all-OC architectures, one has to take into account the

wavelength detuning achievable in the MRR, which mostly depends on the quality

factor (Q factor). Since the Q factor is intrinsically the same for all resonances, the

modulation obtained on the data signal is necessarily limited by the shift triggered

by the control signal. PhC nanocavities do not share this limitation since each

resonance can show a different Q factor. Hence, using such a device can lead to ER

unreachable with MRR, which is essential for the design of computing architectures

involving cascaded gates. Furthermore, PhC demonstrates 10ps switching speed,

100fJ switching energy consumption and 10× compactness compared to MRRs [94],

which makes the device an ideal candidate for all-OC architectures.
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The design of all-optical gates is necessary to implement all-OC architectures.

In the context of SC, the design of an all-optical XOR gate and Multiplexer (MUX)

is essential since they represent an absolute value subtractor and an adder, respec-

tively. The implementation of an architecture that involves cascaded gates, such as

stochastic edge detection filter with cascaded multiplexers, in the optical domain is

challenging. It requires a device with different Q factors and wavelength detuning to

transmit a group of signals propagating at multiple wavelengths. The design of such

architecture involves a large design space to explore at both device and system levels,

such as Q factors, resonance wavelength, and wavelength detuning. In this chapter,

we investigate the use of PhC nanocavities to design all-optical cascaded gates for

SC architectures in the context of image processing applications, such as edge detec-

tion filters. For this purpose, we develop an all-optical XOR gate and a multiplexer

(MUX) using nanocavities. We propose a transmission model of the nanocavities

taking into account Q factors and resonance wavelengths, which allows exploring the

design space. Thales in France provided us with the device’s characteristics. We use

their experimental results to validate our transmission model. As a case study, we

implement a Sobel edge detection filter, which involves cascaded XOR gate and MUX

for absolute value subtraction and addition. The design of the cavities is explored to

trade off power consumption, computing accuracy and processing time.

4.1.2 Stochastic Computing Edge Detection Filter

In [33], the design of stochastic edge detection filter is proposed. It is based on

Robert’s cross operator (Figure 4.1), where two 2×2 filters are applied to an image to

find the gradient vector at each pixel. The filters rely on absolute value subtraction

and addition implemented using XOR gate and MUX, respectively, as follows:
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Figure 4.1: Stochastic implementation of edge detection filter using Robert’s cross
operator [33] with XOR as an absolute value subtractor and MUX as an adder.

� Absolute Value Subtractor: Figure 4.2(a) illustrates an XOR gate imple-

menting a subtractor. This operation requires positively correlated bit streams

with maximum overlap between ’1’s and ’0’s [95]. In the example, bit streams

A=01010110 and B=01110110 are positively correlated with probability pA=4/8

and pB=5/8, respectively, which leads to pY=1/8. In general, the output of the

XOR gate can be written as:

pY =

⎧⎪⎪⎨
⎪⎪⎩
pA − pB, pA > pB

pB − pA, pB > pA

(4.1)

which can be expressed as:

pY = |pA − pB| (4.2)

MUX

11000111 (5/8)

01001001 (3/8)

01100011 (4/8)

11000101 (4/8)
A

B

Sel

YXOR Y

01010110 (4/8)

01110110 (5/8)
00100000 (1/8)

A

B

(a) Absolute value subtractor (b) Scaled-adder

Figure 4.2: (a) XOR gate as absolute value subtractor and (b) 2×1 MUX as scaled adder.
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� Scaled-adder: This operation can be implemented using 2×1 MUX, as shown

in Figure 4.2(b). The selection line has a probability of 1/2, which allows to

downscale the output in order to keep the probability in the range [0,1]. While

the bit streams to be added can be either uncorrelated or correlated [6], the

selection line needs to be uncorrelated with the inputs. The output of the MUX

is given as:

pY = (1− psel)pA + pselpB (4.3)

since psel=1/2, the equation can be written as:

pY =
1

2
(pA + pB) (4.4)

The main drawback of this implementation is the reduced accuracy of the output

due to downscaling the results by half. This can be overcome by doubling the

BSL, which, however, increases the latency. The design proposed in this chapter

relies on cascaded MUXs, which induce precision loss but allow to maintain

low hardware complexity. The impact of the precision loss on the application

accuracy is evaluated, which allows choosing the most suitable BSL.

A common issue in SC architectures is the overhead induced by SNGs in terms

of area and power. To overcome this issue, an adder allowing to reduce the number

of LFSRs has been proposed in [32]. The selection line of the MUX is connected to

the least significant bit (LSB) of the LFSR used to generate the MUX data inputs.

The optical adder, we propose, relies on this efficient design. Since the same LFSR

is used to generate correlated inputs [33], our design contains only a single LFSR to

generate the bit streams for the XOR inputs and the selection lines of the MUXs.
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4.2 Proposed Methodology

The proposed methodology, shown in Figure 4.3, targets combinational filters archi-

tectures. For a given application, we plan to explore the technological parameters,

such as Q factors and resonant wavelength of the devices, and system-level parame-

ters, i.e., laser powers, BER, and BSL, where energy consumption is optimized and

computing accuracy is evaluated as follows:

Energy efficiency 
(nJ/pixel)

Computing 
accuracy

Processing time
(ns/pixel)

Performance evaluation

Energy Optimization Design space exploration

Technological 
parameters

Application
function

Accuracy estimation

Compute ED (Error Distance)
EDBSL and EDTrans

Generate SN for
MUXs selection 

lines

Generate SN for 
input pixels of 

gates

Sel0…SelN-1 …

Input 
Data

Combinational 
filter

Stochastic computing 
libraries using 

integrated optics

SNG

Interfaces

De-randomizer

Optical processing

Lasers powers BSL

System-level parameters

Explore WLSn at 
stage n

Evaluate min. BER at 
stage n

Calculate total lasers 
energy (pJ/bit)

λ0..

BER

Figure 4.3: Proposed methodology for design space exploration of combinational filter
architectures.

Energy Optimization: The energy is optimized by exploring the WLS be-

tween input signals at each stage in order to find the minimum BER. This

requires exploring the Q factors and wavelength detuning of the gates in each

stage. The exploration is repeated for each stage until the last stage of the

cascaded architecture is reached, where the targeted BER at the photodetector

is satisfied.
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� Accuracy Evaluation: This requires the generation of bit streams that con-

trol the logic gates. This can be divided into: i) generation of bit streams that

correspond to the input data, i.e., the pixels of an image, which control the

operation of logic gates, such as XOR in edge detection filter; and ii) generation

of bit streams for the selection lines of the MUXs, which have a probability of

0.5. As discussed in the previous section, these bit streams can be taken directly

from the LFSR register. We use the error distance (ED) metric to compute the

accuracy. Unlike polynomial architectures, there are only two sources of error for

combinational filter architecture: i) error from the generated bit streams EDBSL;

and ii) error from optical transmission EDTrans. For the total error, we use the

peak signal-to-noise ratio (PSNR) metric to evaluate computing accuracy.

4.3 Photonics Crystal Nanocavity

In this section, we introduce the PhC nanocavity device used to implement all-optical

logic gates. The physical properties of the device and the implementation of an

inverter are first detailed. Then, the design of the XOR gate and MUX are presented.

Finally, a transmission model of the nanocavity is proposed.

4.3.1 Nanocavity Device Overview

PhC nanocavities are emerging devices that feature higher switching speed, improved

compactness and higher energy efficiency compared to MRRs. Unlike MRRs, nanocav-

ities can demonstrate different Q factors around resonance wavelengths, which would

contribute to increasing wavelength detuning and hence SNR. This leads to new op-

portunities to design architectures involving cascaded gates and data propagating

through multiple wavelengths.
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Figure 4.4: Photographs of the studied PhC nanocavity. a) A III-V semiconductor PhC
cavity bonded on top of a silicon waveguide. b) Scanning electronic microscope top view

photographies of III-V PhC cavities.

In this section, we use PhC nanocavity to implement all-optical logic gates. The

structure is made of III-V semiconductor bonded on top of a silicon waveguide, as

illustrated in Figure 4.4(a). The PhC cavity itself consists of a waveguide drilled with

holes (Figure 4.4(b)). PhC nanocavity is a resonator that can act as a filter allowing

only the resonant optical frequency to pass through. The implementation of fully

optical gates using such cavity involves the triggering of nonlinear effect. This can be

achieved using a high power optical signal to control the transmission of lower power

optical signals. It has been shown that a fast (10ps) nonlinear response is possible

with only about 100fJ of energy [94], substantially outperforming MRRs [96].

4.3.2 All-optical NOT Gate

As previously mentioned, the design of all-optical logic gates using nanocavity involves

triggering nonlinear effects. We illustrate this principle using the implementation of
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an all-optical NOT gate. As shown in Figure 4.5(a), the NOT gate has an input In,

which corresponds to the pump signal injected into the nanocavity. The value of In

is given by its optical power P[NOT] (i.e., low power means ’0’ and high power means

’1’). Therefore, input signal In controls the value of the output signal Out, which

corresponds to the output Out of the NOT gate. The design of the nanocavity allows

two (or more) resonances separated by FSR. One resonance, in this case λ̂P[NOT], is

used to effectively inject a pump signal at λP, which induces the spectral shift of the

other resonances, i.e., λ̂S[NOT ]. This modifies the transmission of the output signal at

λS. The signal at λS is always injected into the cavity as ’1’, as shown in Figure 4.5(a).

The operation of all-optical NOT gate is explained as follows:

� In=’0’ corresponds to P[NOT ]=’Low’ (Figure 4.5(b)): in this case, the nanocavity is

off-resonance, i.e., λ̂S[NOT ] �= λS. Thus, the transmission of the signal at λS to the

output is maximized, which leads to Out=’1’.

� In=’1’ corresponds to P[NOT ]=’High’ (Figure 4.5(c)): The pump power detunes the

resonance of the nanocavity by Δλ[NOT ]. The resonance of the cavity is then aligned

to the output signal wavelength at λS, i.e., λ̂S[NOT ] = λS. This leads to a strong

attenuation of the signal and hence Out=’0’.

The fabrication process allows controlling numerous parameters, such as Q fac-

tors and resonance wavelengths. The design allows defining different Q factors for

each resonance, as shown in Figure 4.5. Since we assume one pump and one output

signals, it is possible to define Q factors QP [NOT ] and QS[NOT ] at resonances λ̂P [NOT ]

and λ̂S[NOT ], respectively. We define the ratio between QS[NOT ] and QP [NOT ] as the

figure of merit (M[NOT ]) of the cavity (M[NOT ] = QS[NOT ]/QP [NOT ]). A nanocavity

with a large figure of merits would allow maintaining efficient coupling of the pump
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Figure 4.5: An all-optical NOT gate implemented using nanocavity: (a) logic gate and
the equivalent nanocavity device representation, (b) gate transmission for logic input ’0’

and (c) gate transmission for logic input ’1’.

signal power into the device, while significantly changing the transmission around

the output signal wavelength. This would result in a large gap between the cavity

transmission for data ’1’ (i.e., no pump is applied) and data ’0’ (i.e., a pump signal is

applied), i.e., extinction ratio. The impact of the figure of merits is further discussed

in Section 4.4. In the following, we propose the implementation of an all-optical XOR

gate and a MUX, which we use for the design of edge detection filter.
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4.3.3 Design of All-optical XOR Gate and MUX

The design of an edge detection circuit requires XOR gate and MUX. The following

introduces their implementation using nanocavity devices.

� 2-input XOR gate: A 2-input XOR gate is implemented using two cascaded

nanocavities, as illustrated in Figure 4.6(a). They are equal in Q factors but dif-

ferent in the FSR. Nanocavities marked 1� and 2� resonate at λ̂S[X1] and λ̂S[X2],

respectively. Inputs In1 and In2, common for both cavities, are injected as pump

signals into the cavities. The pump signals propagating at λp[1] and λp[2] are close

in values to achieve the desired detuning. The signal at λS is always ’1’. It is tuned

to match the resonance wavelength of the nanocavity marked 1� (λ̂S[X1] = λS) and

hence initially, when no pump signal is injected (In1=In2=0), the signal is attenu-

ated leading to Out=’0’, as shown in Figure 4.6(b). When one of the pump signals

is high (i.e., In1 �= In2), the resonance wavelengths of both cavities are shifted by

Δλ[XOR] ≈ 1/2(λ̂S[X2]− λ̂S[X1]). Since none of the resonance wavelengths is aligned

with λS, this leads to the transmission of the signal at λS with maximized power,

i.e., Out=’1’, as shown in Figure 4.6(c). When the two pump signals are high

(In1=In2=’1’), as shown in Figure 4.6(d), the resonance wavelengths of both cavi-

ties are detuned by Δλ[XOR] = (λ̂S[X2] − λ̂S[X1]). Therefore, resonance wavelength

λ̂S[X2] is tuned to λS. Since λ̂S[X1] �= λS, this leads to the transmission of the signal

at λS by the first device marked 1� and to its attenuation by the second device

marked 2�, hence Out=’0’.

� 2×1 MUX: A 2×1 MUX is composed of a nanocavity resonating at λ̂S[MUX] and

controlled by the pump signal Sel, as illustrated in Figure 4.7(a). The pump signal

allows selecting the input signal (i.e., In1 or In2) to be transmitted to the output

80



In1 In2 Δλ[XOR] Out
0 0 0 0
1 0 1

0 1 1

1 1 0

Wavelength

Tr
an

sm
iss

io
n

T [
X1

] a
nd

 T
[X

2]

(d) In1=In2=1

(a)

XOR

In1

In2

Out

(c) In1 ≠ In2

λS=

(b) In1=In2=0

2-input gate
[X1], [X1]

In1 at λP[1] In2 at λP[2]

λS

‘1’ at
λS

2-input gate
[X2], [X2]

Out at 
λS

2-input XOR gate

① ②

Δλ[XOR]

Δλ[XOR]

① ②

λP[1]

λP[1],λP[2]

Tr
an

sm
iss

io
n

T [
X1

] a
nd

 T
[X

2]

Tr
an

sm
iss

io
n

T [
X1

] a
nd

 T
[X

2]

Figure 4.6: Nanocavity operating as (a) a 2-input XOR gate implemented using two
cascaded nanocavities. (b), (c), and (d) are the gate transmissions for different inputs

scenarios.

Out. The selection is achieved by detuning the resonance of the nanocavity away

from the required input signal. For this purpose, when no pump signal is injected

(Sel=’0’), the resonance wavelength of the nanocavity is aligned with λS[1], i.e.,

the wavelength of In1, hence signal In1 is attenuated and signal In2 is transmitted

to the output, as shown in Figure 4.7(b), i.e., Out=In2. When a pump signal is

injected (Sel=’1’), the nanocavity is detuned to λS[2] (Δλ[MUX] = λS[1]−λS[2]), thus

leading to Out=In1, as illustrated in Figure 4.7(c).
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Figure 4.7: Nanocavity operating as (a) a 2×1 MUX. (b) and (c) MUX transmission.

The MUXs operate on multiple signals at different wavelengths and with multiple

spacing. The nanocavities implementing MUXs thus need to be carefully defined,

taking into account the resonant wavelength, the transmission bandwidth (i.e., Q

factor) and the detuning. In the following, we propose a model estimating the wave-

length detuning and the transmission of a nanocavity, taking into account key device

parameters and the applied pump power.
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4.4 Nanocavity Model

We propose a model allowing to design nanocavity based logic gates. The model allows

i) estimating the wavelength detuning (Δλ[gate]) according to the applied pump power

(P[gate]); and ii) the calculation of signal transmission (T[gate]). Table 4.1 summarizes

the device parameters, where [gate] indicates the logic gate that is implemented using

nanocavity, i.e., NOT, XOR, MUX, etc.

Inputs device parameters λ̂P [gate] and FSR, shown in Figure 4.8, allow to evaluate

λ̂S[gate] (mark 1�), when no pump power is applied. QP [gate] (mark 2�) is obtained

fromQS[gate] andM[gate], which depend on the fabrication process and the cavity layout

(e.g. width and length). The optical tuning efficiency (OTE[gate]) is obtained through

device characterizations (mark 3�) and through linear extrapolation to a polynomial

function (mark 4�), which requires the targeted device parameters. The detuning

(mark 5�) is calculated by taking into account QP [gate], the applied pump power

(P[gate]), and the OTE[gate]. Finally, the transmission of the nanocavity is evaluated

Table 4.1: Device parameters.

Parameter Description Unit

λ̂P [gate]

Resonance Wavelength around pump signal

(when no pump power is injected)
nm

λ̂S[gate]

Resonance Wavelength around input signal

(when no pump power is injected)
nm

FSR Free spectral range (FSR=λ̂P [gate]-λ̂S[gate]) nm

QP [gate] Quality factor around λ̂P [gate] -

QS[gate] Quality factor around λ̂S[gate] -

M[gate] Figure of merit(M[gate]=QS[gate]/QP [gate]) -

OTE[gate]

Optical tuning efficiency (the detuning of the

nanocavity according to the applied pump power)
-
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Figure 4.8: Proposed model.

using Lorentzian approximation (mark 6�) [92].

We illustrate in Figure 4.9 and 4.10 two scenarios using our model: i) different

QS[gate]/same M[gate]; and ii) same QS[gate]/different M[gate], respectively.

� M[gate]=1 leads to the same Q factor at pump and input signals resonances, as

illustrated in Figure 4.9(a) for QP [gate] = QS[gate]= 700, 1500, and 4000. The

corresponding detuning (Δλ[gate]) of the cavity is plotted for pump power ranging

from 0 to 300μW, as shown in Figure 4.9(b). As it can be observed, the higher

QP [gate], the smaller the maximum detuning Δλ[gate] max, which is due to the reduced

coupling of the pump with the cavity. The transmission of the input signal at

λS according to the applied power is shown in Figure 4.9(c). While 70% signal

transmission can be obtained for all QS[gate], the use of high QP [gate] can lead to

pump power reduction since the maximum transmission is reached earlier (50μW
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Figure 4.9: (a) Transmission of nanocavity devices of (QS[gate]= 700, 1500, 4000,
M[gate]=1). (b) The corresponding wavelength detuning (Δλ[gate]) of (a). (c) The
corresponding transmission of input signal according to the applied pump power.

and 270μW for QS[gate]=4000 and QS[gate]=700, respectively).

� M[gate] �= 1 leads toQP [gate]=700 andQP [gate]=2100 forM[gate]=1.5 andM[gate]=0.5,

respectively, assuming QS[gate]=1050 (Figure 4.10(a)). As can be seen in Fig-

ure 4.10(c), the maximum signal transmission reaches 0.3 and 0.8 for M[gate]=0.5

and M[gate]=1.5, respectively. Reaching high ER of the input signal is thus possible

for high M[gate], thus leading to opportunities to reduce the data signal power.
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Figure 4.10: (a) Transmission of nanocavity devices of (QS[gate]=1050, M[gate]=1.5, 1,
0.5). (b) The corresponding wavelength detuning (Δλ[gate]) of (a). (c) The corresponding

transmission of input signal according to the applied pump power.

4.5 Proposed Edge Detection Filter Architecture

In this section, we investigate the design of a stochastic filter application using pho-

tonic nanocavities. Detecting edges in an image can be implemented using first deriva-

tives by sliding two dimensional filters over the pixels. The application of the filters

involves subtracting and adding the input pixels with each other. In SC, absolute

value subtraction and addition can be implemented using XOR gates and MUXs,
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respectively. The implementation of the gates in the optical domain has been dis-

cussed in the previous section. We then discuss the main design challenges related to

computing accuracy and energy consumption.

4.5.1 Architecture Overview

The architecture we propose is generic and characterized by a size N . It is composed

of one stage of 2N XOR gates (for the subtraction) followed by N MUX stages (for

the addition). Each MUX stage is composed of 2N/2n MUXs, where n is the stage

position in the addition tree (1 � n � N).

1. Design Patterns

The architecture involves the following design patterns:

� Two XOR gates followed by a MUX allow implementing a sub-sum function. As

illustrated in Figure 4.11(a), two input signals at λS[i] and λS[i+1] are injected

into XOR[i] and XOR[i+1], respectively (mark 1� in the figure), where i is the

position of the XOR in the range 1 � i � 2N . For each gate, the transmission of

the input signal to the output is controlled by a pump signal (mark 2�) generated

by an SNG (mark 3�), as detailed later. The multiplexer MUX[j1,1] receives the

signals transmitted through the XORs (mark 4�), where [j1, 1] is the MUX at

position j1 in stage n = 1 and 1 � j1 � 2N/2. Depending on the pump signal

generated from SNG5 (mark 5�), the multiplexer either transmits the signal at

λS[i] or λS[i+1].

� Three MUXs allow implementing a sum function, as shown in Figure 4.11(b).

The aim of the MUXs is to sum signals propagating at several wavelengths:

a MUX at stage n receives two sets of 2n/2 signals ( 6� and 7�) and outputs a
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Figure 4.11: The The OC architecture of edge detection filters: a) proposed design
pattern to implement subtraction and addition using XOR gates and MUXs; b) design
pattern to implement a tree adder; c) architecture for the 3×3 Sobel operator example.

single set of 2n signals. For example, each input of the MUX at n=3 is composed

of 4 signals wavelengths and its output is composed of 8 wavelengths. In this

design, only one signal will propagate to the output, other signals will be filtered

through the MUXs. However, the number of wavelengths that can potentially

carry the signal increases with the MUX stage. This calls for a MUX design

taking into account the number of signals to process and the distance between

the wavelengths.
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2. Sobel Filter Architecture Example

Figure 4.11(c) illustrates the design of a Sobel filter, where a 3×3 window slides

over the entire image to compute the gradient vector of the image. As shown in

the figure, the design patterns are repeated through the entire architecture (see the

blue and green dashed boxes). Each XOR receives two input pixels as pump sig-

nals, thus leading to a subtraction. The resulting signals propagate to the MUXs

(that implement an adder-tree) and the output signal is transmitted to the pho-

todetector. In order to keep the architecture symmetrical, we duplicate the input

pixels for which coefficients 2 and -2 are applied in the Sobel filter. For instance,

XOR[7] and XOR[8] are duplicated from XOR[5] and XOR[6], respectively. In op-

tical domain, the design of the architecture requires i) eight lasers (i.e., one per

XOR gate) emitting input signals at different wavelengths; and ii) 23 pump lasers

(i.e., two per XOR gate and one per MUX).

3. Stochastic Number Generators (SNG)

The cavities are controlled by pump signals corresponding to stochastic numbers.

As illustrated in Figure 4.12. Different SNGs are used for the XOR gates and the

MUXs. However, in the proposed architecture, the same LFSR is used for the

SNGs of all logic gates. The operation of the SNG according to the logic gates is

detailed as follows:

� As shown in Figure 4.12(a), the XOR gates require SNG-based LFSR + mod-

ulator, introduced in Chapter 2, where each SNG has its own comparator and

modulator. The pump signal (P[XOR,i]) emitted from an off-chip laser is either

injected into the nanocavity or modulated depending on the value of the bit in

the bit streams that controls the modulators. In order to avoid crosstalk, each
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Figure 4.12: SNGs for (a) XOR gates and (b) MUXs.

pump signal uses a dedicated wavelength. To generate correlated inputs, the

same LFSR is used to generate the bit streams inputs for all XOR gates.

� As shown in Figure 4.12(b), the selection line of the MUX only requires the

generation of bit streams with the same number of zeros and ones (probability

of 0.5) to generate P[MUX,jn,n] values. For this purpose, a modulator is directly

controlled by a bit in the LFSR, i.e., no need for a comparator. In order to

reduce the area and power overhead, the same LFSR (used for the XOR gates)

is used to control several MUXs. This can be achieved without loss of accuracy

by selecting bits at different positions.

4. Transmission Spectrum and Device Characteristics

As previously explained, the number of signals crossing the cavities increases with

the stages. Figure 4.13 illustrates transmission examples corresponding to the ar-

chitecture in Figure 4.11(c), where eight signals propagate using eight wavelengths.

As detailed in the following, i) the distance between the wavelengths; and ii) the

Q factor are key design parameters as they directly impact crosstalk and switching

energy:

� WLSn corresponds to the wavelength spacing at stage n of the MUX. The wave-

lengths are then regularly spaced following a hierarchy that suits the MUX tree.
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Figure 4.13: The transmission of two XOR gates and one MUX per stage.

In the example, WLS1 is the distance between two consecutive signals in the

first MUX stage, e.g., between λS[1] and λS[2], λS[3] and λS[4], etc. WLS2 is the

distance between two consecutive sets of wavelengths in the second stage, e.g.,

between {λS[1],λS[2]} and {λS[3],λS[4]}, {λS[5],λS[6]} and {λS[7],λS[8]}, etc.

� QS[gate,n] corresponds to the cavity Q factor at stage n. Indeed, assuming the

same Q factor for all cavities in a stage allows using the same laser power per

stage. Moreover, we assume both XOR gates and the MUXs in the first stage
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to have the same Q factor. We define QS[XOR], without n, as the Q factor of

the XOR gate around the input signal. Moreover, as the wavelength distance

between signals to be multiplexed increases, the bandwidth of the cavity increases

(i.e., QS[MUX,n] > QS[MUX,n+1]).

To summarize, the design of the proposed architecture involves exploring nu-

merous parameters, such as laser powers, wavelength distances and Q factors. In the

following, we further discuss their optimization according to computing accuracy and

power consumption purposes.

4.5.2 Design Challenges

The design of such an architecture involves the optimization of computing accuracy,

power consumption and processing time. The following summarizes key technological

and system-level parameters we consider for the optimization of the architecture:

� BSL and BER: computing accuracy depends on BSL (stochastic domain specific)

and BER (optical domain specific). While both techniques result in power con-

sumption, a reduction in the BER should be preferred, since it can be achieved

without impacting the processing time.

� Input signal power: the architecture is composed of cascaded gates, which results

in signal attenuation. In order to ensure a proper operation of the design, an

input signal should be injected with a high enough optical power (typically 3μW

to 10μW).

� Pump signal power: it controls the wavelength detuning of the nanocavity and

ranges from 100μW to 10mW scale. To prevent the input signal from detuning the

cavity, we assume that its power should not exceed 10% of the pump power.
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� Wavelength spacing: it impacts the power consumption as follows: small WLS

increases crosstalk and hence results in high BER. This requires high laser powers

for the input signals to overcome the crosstalk. On the contrary, larger WLS con-

tributes to a reduction in input signal power but calls for higher pump power to

cover the larger wavelength detuning.

4.6 Implementation and Model

In this section, we present an analytical model to evaluate the error induced from

the SC technique and the optical transmission. Moreover, we develop a transmission

model for the edge detection filter to estimate the power consumption. We also define

the required design parameters for the exploration methodology.

4.6.1 Error Evaluation

Two types of errors are considered: i) errors related to SC domain; and ii) errors

related to optical domain as discussed in the following:

� EDBSL: an error distance induced by the approximation when generating stochastic

bit streams. This error is defined as:

EDBSL = |Ý − Y | (4.5)

where Y is the error-free result and Ý is the approximated result for a given BSL.

� EDTrans: an error distance induced by the optical transmission. It is given as:

EDTrans = | ´́Y − Ý | (4.6)
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where
´́
Y is the approximated result considering given BSL (related to Ý ) and BER.

As a result, the total error (worst-case error) can be defined as:

EDTotal = EDBSL + EDTrans (4.7)

We use PSNR as a metric to evaluate the computing accuracy when processing an

image as follows:

PSNRTotal = 10× log10
( MAX2

I

MSETotal

)
(4.8)

where MAXI is the maximum pixel in the error free image defined as 255 for 8-bit

pixels. MSETotal is the Mean Square Error given as:

MSETotal =
1

M ×K

M∑
i=1

K∑
j=1

EDTotal(i, j)
2 (4.9)

where M and K are the number of rows and columns in the image, respectively.

EDTotal(i,j) is the total error distance from processing a pixel at position (i,j) in

the image.

4.6.2 Edge Detection Transmission Model

In order to estimate the BER of the architecture, we need to define the transmission

of the signals. As defined in Section 4.5, an edge detection architecture of size N

is composed of 2N XOR gates, where each gate is designed using two nanocavities

connected in series. Each XOR gate transmits one of 2N input signals through N

MUXs. The transmission (T[i]) of input signal i, propagating at λS[i] through two
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nanocavities of the XOR gate and N MUXs is given as:

T[i] = T[X1](λS[i], λ̂S[X1,i], P{1,2}[XOR,i])︸ ︷︷ ︸
Transmission through the first cavity in XOR gate

×

T[X2](λS[i], λ̂S[X2,i], P{1,2}[XOR,i])︸ ︷︷ ︸
Transmission through the second cavity in XOR gate

×

N∏
n=1

T[MUX](λS[i], λ̂S[MUX,jn,n], P[MUX,jn,n])

︸ ︷︷ ︸
Transmission through N MUXs

(4.10)

where jn = �i/2n� is the MUX position in stage n and 1 � jn � 2N/2n.

From the signal transmission, SNR is calculated as follows:

SNR = OLPInput × R

I
×

(
T[i] −

M∑
k=1
k �=i

T[K]

)
(4.11)

where OLPInput is the laser power of input signal at λS[i] injected into the XOR gate.

R and I are the photodetector responsivity and internal noise, respectively. T[i], in

this case, is the transmission of signal i as ’1’, while the other crosstalk signals k are

transmitted as ’0’. T[k] is the transmission of the crosstalk signals k as ’1’ while signal

i is transmitted as ’0’, where M = 2N . The BER assuming ON/OFF Key (OOK)

modulation of the input signals is given in Equation 2.18.

4.6.3 Nanocavity Design Parameters

The evaluation of T[i] depends on λS[i], λ̂S[gate], and P[gate] parameters, which we define

in the following:

� Signal Wavelengths, Cavity Resonances and Spacing: As previously ex-

plained, WLSn corresponds to the shifting distance of the cavities located in stage
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n. Based on Figure 4.13, we assume WLS3 > WLS2 > WLS1. In the XOR stage,

each gate will operate on a signal propagating at λS[i], where i is the row input

number (1 � i � 2N). We set to 1542nm the baseline wavelength λS[1] (i.e., signal

used to propagate the first top input signal in Figure 4.11(c)). The subsequent

signal wavelengths are assigned as follows:

λS[i] = λS[1] −
N∑

n=1

(
	 i− 1

2n − 1

mod2

)
×WLSn (4.12)

For each XOR gate, we set the first and second resonance (i.e., λ̂S[X1,i] and λ̂S[X2,i])

according to the signal wavelength λS[i] and the assumed detuning Δλ[XOR]:

λ̂S[X1,i] = λS[i] (4.13)

λ̂S[X2,i] = λ̂S[X1,i] +Δλ[XOR] (4.14)

The resonance at rest of each MUX is defined by the mean wavelength of the first

set of input signals:

λ̂S[MUX,jn,n] =
λS[2n(i−1)+1] + λS[2n(i−1)+2n−1]

2
(4.15)

where jn = �i/2n� is the MUX position in stage n.

� Pump Power: we assume the same pump laser powers (OLPP) injected into the

cavities located in the same stage. The pump powers received by XOR gates are
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defined by:

P{1,2}[XOR,i] =

⎧⎪⎪⎨
⎪⎪⎩
OLPP [XOR] × IL%, zv = 1

OLPP [XOR] × IL% × ER%, zv = 0

(4.16)

where zv is the bit streams of the input pixels for XOR gate. The pump powers

received by the MUXs are given as:

P[MUX,jn,n] =

⎧⎪⎪⎨
⎪⎪⎩
OLPP [MUX,n] × IL%, LFSR bitn−1 = 1

OLPP [MUX,n] × IL% × ER%, LFSR bitn−1 = 0

(4.17)

To ensure that the input power signal does not contribute to the detuning of the

nanocavity, we set the maximum power of the input signal to 10% of the cavity

pump power.

� Algorithm: We summarize the steps we follow to explore the design space as:

1. Define input parameters: figure of merits (M[gate]), wavelength of input signal

(λS[1]), and targeted BER at the photodetector.

2. From the experimental results, use QS[gate], QP [gate], λ̂S[gate] and λ̂P [gate] to

calibrate the PhC nanocavity model. Validate that the transmissions model

and measurements are well correlated.

3. For XOR gate design, explore Δλ[XOR] and Qs[XOR] to minimize laser power.

This requires setting the resonance wavelengths of the XOR gate; λ̂S[X1,1] and

λ̂S[X2,1] according to Equations 4.13 and 4.14, respectively.

4. For the MUX design, iterate from stage 1 to N to:

(a) Set the resonance wavelength of the MUX[1,1] to λS[1] (Equation 4.15).
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(b) ExploreWLS1 andQs[MUX,1] to minimize BER at the output stage, and se-

lect the desired BER. This allows defining λS[2] according to Equation 4.12

and the resonance wavelength of XOR[2] and MUX[1,2] according to Equa-

tions 4.13 - 4.15.

(c) Repeat step 4.b to explore WLS2 and Qs[MUX,2]. By selecting a BER,

λS[3] and λS[4] are now evaluated using the corresponding WLS2 (Equa-

tion 4.12). Accordingly the resonance wavelengths of XOR[3], XOR[4], and

MUX[2,1] are defined (Equations 4.13 - 4.15).

(d) Repeat step 4.b again for the next stage until stage N . At this point, all

WLS are defined. This allows calculating the wavelengths of the rest of

input signals and the resonance wavelengths of the remaining devices.

5. According to the input laser powers and pump laser powers, estimate the

energy per bit (Equations 4.16 and 4.17).

6. Process an image and evaluate the application-level computing accuracy for a

given BSL and input laser powers (Equations 4.5 - 4.9).

4.7 Simulation Results

In this section, we target a NOT gate of a given Q factor and compare the transmission

and detuning using our proposed model and the experimental characteristics provided

by Thales in France. We evaluate the laser powers for a NOT gate and present

the valid range of wavelength detuning. We introduce the design of XOR gate and

MUX by exploring the design space in each stage. We process an image using the

proposed architecture and we evaluate the computing accuracy, energy consumption

and processing time.
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4.7.1 Model Calibration

In the following, we detail the model calibration according to the experimental results

for a NOT gate. As it can be observed from the transmission results reported in Fig-

ure 4.14(a), the gate is characterized by resonance wavelengths at λ̂S[NOT ]=1592.5nm

(around input signal) and λ̂P [NOT ]=1568.8nm (around pump signal), which leads to

FSR=24nm. At λ̂S[NOT ] and λ̂P [NOT ] resonances, the 3dB bandwidth of the nanocav-

ity is 1.44nm and 0.65nm, respectively, which induces M[NOT ]=0.5. We calibrate the

model using these parameters and, as it can be seen in the figure, a good correlation

is obtained.

Figure 4.14(b) shows the measured nonlinear cavity detuning (Δλ[NOT ]) cor-

responding to pump power ranging from 0 to 250μW for a cavity Q factor=700.

Depending on the Q factor and the material used, these numbers might change. In

fact, the resonator here has been designed for maximized speed, hence low Q, trading

off with energy efficiency. A different balance would target an order of magnitude

larger Q. Figure 4.14(c) illustrates the transmission of the cavity at λ̂S[NOT ] under

178μW pump power. This leads to around 1.6nm blue shift of the resonance, which

we observe for both measurement and model, thus validating the calibration.

In the following, we explore the impact of the signal detuning (Δλ[NOT ] =

λ̂S[NOT ] − λS) on the laser powers, where λ̂S[NOT ] is the cavity resonance at rest. We

consider a nanocavity with QS[NOT ]=2000, M[NOT ]=2 and λ̂S[NOT ]=1542nm. In Fig-

ure 4.15(a), we assume transmission scenarios for Δλ[NOT ]=0.05nm, 0.1nm, 0.19nm,

and 0.35nm. Two optical signals are injected: OLPInput and OLPP correspond to

the optical power of input signal and pump signal, respectively. As illustrated in

Figure 4.15(a), Δλ[NOT ]=0.05 (mark 1�) requires the lowest OLPP value due to the

small shift in the resonant wavelength. On the other hand, this results in a rather low
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0.7dB ER, which is compensated by using a high OLPInput value. Higher Δλ[NOT ],

such as 0.1nm (mark 2�), 0.19nm (mark 3�), and 0.35nm (mark 4�), leads to an

increase in the ER=1.7dB, 4.3dB, and 6.9dB, respectively. This contributes to lower

OLPInput but induces higher OLPP due to the larger wavelength detuning distance.
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Figure 4.15: For a nanocavity of QS[NOT ] = 2000 and M[NOT ] = 2: (a) The transmission
assuming Δλ[NOT ] = 0.05, 0.1, 0.19, and 0.35nm. (b) Laser powers according to Δλ[NOT ]

ranges from 0 to 0.5nm.
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To further explore the design space, we investigate the design power consumption

by considering laser powers, i.e., OLPInput and OLPP . We assume BER = 10−1 and

Δλ[NOT ] ranging from 0 to 0.5nm. We define the valid range when OLPInput accounts

for 10% or less of OLPP . As it can be seen in Figure 4.15(b), the power consumption

is dominated by OLPInput for Δλ[NOT ] < 0.1nm. At Δλ[NOT ]=0.05nm (mark 1�),

we obtain OLPP=2.9μW and OLPInput=19.1μW (for a total power of 22μW). This

implies an input signal power (injected by OPLInput) exceeding 10% of the pump

signal power (injected by OPLP ). Therefore,Δλ[NOT ]=0.05nm is an invalid option.

Although Δλ[NOT ]=0.1nm (mark 2�) leads to optimal total power consumption, it is

not a valid design option, since the OLPInput accounts for 39% of the total power re-

ceived by the cavity. From Δλ[NOT ]=0.19nm (mark 3�) to Δλ[NOT ] max=1.13nm, the

design becomes valid but leads to power overhead. Hence the power is dominated by

OLPP due to the large wavelength distance needed to reach the input signal. For ex-

ample, Δλ[NOT ]=0.35nm (mark 4�) involves OLPP=33.9μW and OLPInput=0.7μW,

which increases the power consumption by 2.7× compared to the optimal Δλ[NOT ].

Each nanocavity of a given QS[NOT ] has a unique range of wavelength detuning that

varies between 0 and Δλ[NOT ] max. However, the minimum detuning is specified ac-

cording to the ratio of the injected input power to the pump power signals. In the

following, we explore the power consumption in the design of XOR gates considering

nanocavities of different Q factors.

4.7.2 Design of XOR Gate

As previously defined, an XOR gate is composed of two cascaded nanocavities with

the same Q factor but with resonances separated by Δλ[XOR]. We assume M[XOR]=2

and QS[XOR]=[2000; 3500; 5000; 8000]. Figure 4.16(a) illustrates the total power
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consumption for Δλ[XOR] ranging from 0 to 1nm and for a targeted BER = 10−1. As

it can be seen in the figure, QS[XOR]=8000 and 2000 lead to a valid Δλ[XOR] range of

[0.17-0.28]nm and [0.45-1.13]nm, respectively, and involve a total power consumption

ranging from 39μW to 94μW and 104μW to 276μW, respectively. Hence, the lower

QS[XOR], the larger the valid range of Δλ[XOR] and the more increases the power

103



overhead. As also can be observed from the figure, a total power=82.5μW can be

obtained for QS[XOR]=8000, 5000, and 3500 under Δλ[XOR] =0.27nm, 0.335nm, and

0.365nm, respectively (see 1�). This demonstrates that the same power efficiency can

be obtained for different cavities (QS[XOR]) and wavelength detuning (Δλ[XOR]).

In the following, we explore QS[XOR] and Δλ[XOR] with the aim to find design

parameters that minimize the XOR power consumption. The results are reported

in Figure 4.16(b). For the sake of clarity, the design parameters corresponding to

cavities detailed in Figure 4.16(a) are highlighted in Figure 4.16(b) (mark 1�). As a

first observation, we note that the higher QS[XOR] and the lower Δλ[XOR], the lower the

power consumption, which is due to the reduced amount of energy needed to shift the

cavity. Overall, the cavities laser power consumption ranges from 34.7μW (at Δλ[XOR]

=0.14nm and QS[XOR]=10000) to 398.2μW (at Δλ[XOR]=1nm and QS[XOR]=2000).

As discussed earlier, we use the same parameters for the cavities located in the XOR

stage and the first MUX stage. In the following, we explore the remaining design

parameters for MUX stages.

4.7.3 Design of MUX

In the following, we explore the MUX design parameters. For this purpose, we target

a BER = 5× 10−1 at the photodetector, which corresponds to BER at stage n=3 of

the MUX (BER[MUX,3]), and we explore the design space from the first stage to the

last stage, by defining the inter-stage BER to be reached. We use the corresponding

parameters (QS[MUX,n], WLSn) from stage n to explore the design space of stage n+1.

� Stage n=1: we assume 3μW input signals powers (OLPInput) injected in the

XOR gates, we also assume the following ranges for Q factors and WLS1: 1 <

QS[MUX,1] < 10000 and 0 < WLS1 < 1.2nm. As shown in Figure 4.17(a), the ex-

ploration results in BER[MUX,1] ranges between 10−4 and 5×10−1. As can be seen, a
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high QS[MUX,1] leads to more accurate designs. For example, QS[MUX,1]=10000 and

5000 result in BER[MUX,1]= [10−4 - 4×10−4] and [4×10−4 - 5×10−2], respectively.

Moreover, the higher WLS1, the lower BER[MUX,1], which is due to the reduced

crosstalk. We choose QS[MUX,1]=10000 and WLS1=0.215nm, which lead to the

lowest possible BER for the covered design space (BER[MUX,1] = 10−4). The cor-

responding transmission is plotted in the caption of Figure 4.17(a). The data signals

propagate at λS[1]=1542nm (i.e., baseline wavelength obtained through experimen-

tal results) and λS[2]=1541.785nm (i.e., baseline wavelength minus the 0.215nm

spacing). The detuning of the cavity to λS[2] is obtained with a 32μW pump power.

The selected signal is transmitted to the MUX output with a power of 1.2μW.

� Stage n=2: We assume the parameters defined in stage n=1 (i.e.,

QS[MUX,1]=10000 and WLS1=0.215nm) and we explore the same ranges of val-

ues for QS[MUX,2] and WLS2. Figure 4.17(b) shows the resulting BER at stage

n=2 (BER[MUX,2]), which is overall higher than BER[MUX,1] due to: i) the higher

crosstalk induced by additional input signals to process (2 and 4 input signals at

n=1 and n=2, respectively); and ii) the lower received data signal power (3μW

and 1.2μW at n=1 and n=2, respectively). We target 10−2 for BER[MUX,2], which

we obtain with QS[MUX,2]=1900 and WLS2=1.19nm (for a 210μW pump power).

The resulting transmission is shown in the caption. In addition to the input signals

at λS[1] and λS[2], we inject signals at λS[3]=1540.81nm and λS[4]=1540.595nm: the

distance between λS[3] and λS[4] is 0.215nm and the distance between {λS[1], λS[2]}
and {λS[3], λS[4]} is 1.19nm.

� Stage n=3: The design of the MUX at stage n=3 (MUX[1,3]) is explored assuming

QS[MUX,2]=1900 andWLS2=1.19nm. As reported in Figure 4.17(c), QS[MUX,3]=500

and WLS3=4.35nm lead to the targeted 5 × 10−1 BER. The 8 signals received
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Figure 4.17: Achievable BER at each stage for nanocavities with M[MUX] = 2: (a) Stage
n = 1 with 1 < QS[MUX,1] < 10000 and 0 < WLS1 < 1.2nm. (b) Stage n = 2 with

1 < QS[MUX,2] < 10000 and 0 < WLS2 < 1.2nm. (c) Stage n = 3 with
1 < QS[MUX,3] < 1000 and 3 < WLS3 < 10nm.
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by MUX[1,3] and the corresponding cavity transmission are illustrated in the cap-

tion. The selected value for WLS3 leads to λS[5]=1537.65nm, λS[6]=1537.435nm,

λS[7]=1536.46nm, and λS[8]=1536.245nm. The selection of signals λS[4−8] is achieved

by applying a 670μW pump power.

As it has been observed, the design space considerably shrinks from a stage to another,

which is mostly due to the increasing number of signals to process. This calls for

increasing wavelength spacing and thus reducing QS[gate]. As a matter of fact, we

found that the highest possible Q factor should be preferred for the design of the

XOR gates. Regarding the error rate, which inevitably increases as signals propagate

through the stages, it can be overcome by increasing the power laser and the BSL,

as discussed in the following.

4.7.4 Application-level Design Comparison

In the following, we evaluate the application level computing accuracy, energy con-

sumption and processing time of the architecture. For a comparison purpose, we

assume injected input power signals at 3μW and 4μW, and we target 5 × 10−1 and

10−1 BER, respectively. By following the algorithm defined in Section 4.6.3, we ob-

tain Design A and Design B, for which the Q factors and wavelength spacings are

reported in Table 4.2.

In order to evaluate the computing accuracy at the application level, we process

512 × 512 pixels images assuming BSL=256, 512, and 1024. This results in three

designs for each set of parameters, as illustrated in Figure 4.18(b) and (c). The

error is calculated with respect to the error free image shown in Figure 4.18(a). As

expected, the accuracy increases with BSL. For instance, in Figure 4.18(b), PSNRTotal

is reduced from 20 to 26.4 when BSL is increased from 256 to 1024. Furthermore, the
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(a) Error free image

(1) BSL=256, PSNRTotal=23

(3) BSL=1024, PSNRTotal= 26.4

(b) OLPInput=3μW

(1) BSL=256, PSNRTotal=20 

(3) BSL=1024, PSNRTotal=27.6

(2) BSL=512, PSNRTotal=22.4 (2) BSL=512, PSNRTotal=26.4

(c) OLPInput=4μW

Figure 4.18: Processed image: (a) error free, and PSNRTotal for (b) OLPInput=3�W and
(c) OLPInput=4�W assuming BSL=256, 512, and 1024.

Table 4.2: Device/system-level parameters, and performance of two designs target
PSNRTotal=26.4.

Computing accuracy
PSNRTotal=26.4

Design A Design B
OLPInput 3μW 4μWInput

parameters BSL 1024 512
QS[XOR]=QS[MUX,1] 10000 7700

QS[MUX,2] 1900 1600
Device

parameters
QS[MUX,3] 500 200

WLS1 (nm) 0.215 0.275
WLS2 (nm) 1.19 1.41

System-level
parameters

WLS3 (nm) 4.35 11.3
BER 5×10−1 10−1

Energy consumption
(nJ/pixel)

0.9 0.85
Performance

Processing time
(ns/pixel)

102.4 51.2

use of BSL=1024 for Design A and BSL=512 for Design B results in PSNRTotal=26.4,

thus leading to opportunities to explore the power and processing time trade-off.
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For this purpose, we evaluate the energy per computed pixel assuming 10ps pump

pulse width under 10GHz repetition rate and 20% lasing efficiency. As reported in

Table 4.2, Design B results in 5.6% energy saving and 2× reduction in processing time

compared to Design A. This indicates that for the assumed set of device parameters,

BSL has a higher negative impact on energy consumption compared to BER due

to the higher static energy. Therefore, a small BSL is preferred for higher energy

efficiency and faster processing architecture. Furthermore, while a higher injected

input signal power contributes to reduce the BER, it also significantly reduces the

design space due to the higher crosstalk. This calls for cavities with a higher figure of

merits (M[gate]), as will be discussed in the future work chapter.

4.8 Summary

In this chapter, we investigated the use of PhC nanocavity to design an OSC archi-

tecture. We proposed a generic transmission model for the nanocavity, which showed

a good correlation with experimental measurements for a NOT gate of QP[NOT]=2400

and M[NOT]=0.5, hence validating the proposed model. We used the model to design

the XOR gate and MUX of different device parameters. We showed that an XOR gate

of QS[XOR]=10000 and wavelength detuning equals 0.14nm leads to 34.7μW power con-

sumption. We designed an edge detection filter that relies on the proposed XOR gate

and MUX. At the application level, images were processed for various laser powers and

BSL. The results showed that the assumed set of device parameters, BSL has a higher

negative effect on the energy consumption compared to BER. The resulting architec-

ture showed 0.85nJ/pixel energy consumption and 51.2ns/pixel processing time. So

far, we generated the bit streams using off-chip lasers and LFSR. In the next chapter,

we will introduce other SNG designs for OSC architectures.
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Chapter 5

Optical Stochastic Number

Generator Architectures

In this chapter, we propose the design of another two SNGs that can be used to

generate the stochastic bit streams. One design is based on the use of an on-chip

directly modulated laser controlled by the electrical bit streams and the other targets

the design of all-optical SNG using a single laser. We consider all the proposed

designs of SNGs, including the one proposed in Chapter 2, to conduct a comparison in

terms of energy consumption and computing accuracy using edge detection application

proposed in Chapter 4.

5.1 Overview

SNG is responsible for generating stochastic bit streams that represent the data to

be processed. Many works address the design of SNG for SC. The most popular one

is using an LFSR and a comparator [6], as presented in Chapter 1. In [97], the bit
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streams are generated using a weighted binary generator (WBG). It is composed of

an LFSR and a stage of invertors followed by two stages of AND gates to gener-

ate weighted bit streams of non-overlapping ’1’s. Eventually, all these weighted bit

streams are ORed to generate the final bit stream. Emerging technologies can also

be used to generate random numbers. For example, memristors can randomly switch

their state (OFF/ON) by applying bias voltage less than the device threshold volt-

age [98]. Random numbers can also be generated from amplifying thermal noise in

magnetic tunnel junctions (MTJ) devices [99]. In the optical domain, the design of

random number generators has been widely investigated. The proposed designs rely

on the use of chaotic lasers [100,101] to generate random numbers. However, they are

designed for the communication domain’s encryption process and are not suitable for

unconventional computations, such as SC.

In Chapters 2 to 4 of this thesis, we consider the design of SNG-based LFSR +

modulators, shown in Figure 5.1(a), where off-chip CW lasers are considered. In this

chapter, we propose another two designs of SNGs: i) SNG-based LFSR + on-chip

directly modulated lasers, shown in Figure 5.1(b), and ii) all-optical SNG, shown in

Figure 5.1(c). The SNG-based LFSR + on-chip directly modulated lasers relies on

the use of on-chip lasers that can be modulated directly by the bit streams generated

from the electrical part of the SNG, i.e., LFSR and comparator. All-optical SNG

uses lasers to directly generate random pulses, where an analog signal controls the

laser’s operation. Therefore, when the input is a binary number, an A/D conversion

is required to generate the analog signal. In the following, we explain in detail the

operation of each design.
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Digital  
input

Electrical 
LFSR Modulator

laser

(a) SNG-based LFSR + modulator (b) SNG-based LFSR + on-chip 
directly modulated laser

(c) All-optical SNG 

1,..,1,0 Digital 
input

Electrical 
LSFR

Modulated
laser

1,..,1,0

Red: Electrical domain
Blue: optical domain

Analog 
input

Off-chip 
CW laser

Figure 5.1: Three implementations of SNG: (a) SNG-based LFSR + modulator, (b)
SNG-based LFSR + on-chip directly modulated laser, and (c) all-optical SNG.

5.2 Proposed Designs

In this section, we introduce the implementations of three SNGs that can be used

with OSC architectures.

� SNG-based LFSR + modulator: As mentioned in Chapter 2, this design relies

on electrical SNG to generate bit streams. An m-bit input binary number (BN ) is

compared against an m-bit pseudo-random number (PRN ) generated from LFSR.

Accordingly, bit ’0’ or ’1’ is generated to control the operation of a modulator, i.e.,

either to transmit or to modulate a CW optical signal injected from an off-chip

laser.

� SNG-based LFSR + on-chip directly modulated Laser: In this design, the

bit streams generated from the electrical part of the SNG control the emission of

the on-chip laser [102]. Bit=’0’ results in no signal emission (OFF state); otherwise,

a signal is emitted (ON state), as shown in Figure 5.2. The use of on-chip lasers

eliminates the need for modulators, allowing the implementation of the entire design

on the same chip. Unlike the first SNG implementation with continuous laser
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emission, here, the power consumption depends on the value of the data to be

processed. For example, the number of ’1’s in the bit stream of a small data value

is low. Hence, the device is OFF during most of the processing time compared to

a high data value. This is beneficial, especially when used to process dark images.

FF FF FF FF FF FF FF FF

LFSR

Binary number

m=8-bit m=8-bit

<

λP

0
1
0
.
1FF < λP

XOR-gate D flip flop Comparator Modulated laser

BSL=256

0   1   0                   1
Optical part

Electrical part

Figure 5.2: SNG-based LFSR + modulated laser

� All-optical SNG: As shown in Figure 5.3, the design relies on using lasers to gen-

erate random optical pulses. The bias power specifies the density of the generated

pulses, i.e., small power leads to low pulses density, which increases with the bias

value. In the scope of collaboration with Thales in France, they fabricate on-chip

nanolasers based on PhC nanocavities [54]. They provided us with the simula-

tion results of a stream of random pulses for probability 0.5, which needs 38fJ/bit

excitation energy. The nanolaser is optically pumped with a CW signal and the

excitation energy is controlled by applying an electrical bias power. Since we only

have the probability of 0.5, in this chapter, we assume a fixed value for the bias and

hence we are not considering the design of D/A convertor. It is worth mentioning

that the probability of the emitted pulses is evaluated as the ratio between the high

emitted pulses to the total number of pulses in the stream.
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Bias power

Optical signal

Nanolaser

Figure 5.3: All-optical SNG using nanolasers

Regarding computing accuracy, while in SNG-based LFSR designs, the approx-

imation in the results depends on the LFSR, in all-optical SNG, the approximation

depends on the randomness of the pulses generated by the lasers. In the following, we

use the edge detection architecture, proposed in Chapter 4, with different SNG im-

plementations to evaluate the computing accuracy and estimate energy consumption.

It is worth mentioning that the same study could be performed on the optical ReSC

architecture for polynomial functions proposed in Chapter 2.

5.3 Optical SNGs Comparison

In the following, we assume all the proposed implementations of SNG to process a

512×512 pixels image using an edge detection filter. We estimate the energy con-

sumption and compute the accuracy for the entire architecture using different SNG

designs. The electrical part of the SNG, i.e., LFSR and comparators, is designed using

TSMC 65nm CMOS technology [103].

5.3.1 Energy Consumption

We estimate the energy consumption of an edge detection filter assuming two scenarios

for SNG: i) SNG-based LFSR + modulator with off-chip lasers (Chapter 4); and ii)
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SNG-based LFSR + on-chip directly modulated lasers. For this purpose, we consider

the optical pump power from Section 4.7.3 used to detune the nanocavities, i.e.,

32μW, 210μW, and 670μW for XOR gates and MUXs in stage 1, 2 and the last

stage, respectively. Figure 5.4(a) shows these optical powers for off-chip lasers with

lasing efficiency of 25% [104]. For on-chip lasers, we assume lasers of 30mW power
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Figure 5.4: Edge detection filter with (a) SNG-based LFSR + modulator with off-chip
lasers of 25% lasing efficiency and SNG-based LFSR + on-chip directly modulated lasers
of 30mW power consumption and 5% lasing efficiency. (b) A scale-down of on-chip directly

modulated lasers.
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consumption with 5% lasing efficiency [102], as shown in Figure 5.4(a). As can be

seen, the on-chip lasers can provide enough power for detuning the nanocavities. This

indicates that the SNG-based LFSR + directly on-chip modulated lasers can be used

to drive the proposed OSC architecture. A 30mW power consumption of on-chip laser

in [104] provides more optical power than what is required for each gate. In Figure

5.4(b), we scale down the optical power for on-chip lasers to match the same optical

power required by nanocavities. We keep the lasing efficiency of 25% for off-chip lasers

and 5% for on-chip lasers. In this case, the energy consumption of on-chip lasers is 5×
higher than the energy consumption of off-chip lasers, i.e., the total laser powers for

on-chip lasers=34.6mW compared to 6.92mW for off-chip lasers. In order to compute

the total energy consumption of the architecture using different SNG implementations,

we need to break down the hardware complexity as discussed in the following.

Table 5.1 reports the breakdown of both designs’ hardware complexity. Each

design requires one LFSR and eight comparators to generate correlated inputs. SNG-

based LFSR + modulators requires additional 23 modulators to control 23 nanocav-

ities, where we assume plasmonic modulators of 110fJ/bit energy consumption at

72Gbps [105]. It is worth mentioning that the lasers used to generate the CW for

the input signals (λ1 to λ8), not shown in the table, are taken into account when

calculating the total energy consumption. As can be seen, SNG-based LFSR + mod-

ulators can slightly save more energy per bit compared to SNG-based LFSR + on-chip

modulated laser, 3.3pJ/bit and 3.6pJ/bit at 10GHz (the operating frequency of the

nanocavities and the electrical part of the SNG), respectively. However, the energy

per bit is considered as the worst-case scenario for an on-chip laser since it is assumed

to emit an optical signal in this case. As mentioned earlier, the on-chip laser is only
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Table 5.1: Hardware complexity and power consumption of SNG-based LFSR designs.

Off-chip CW laser

SNG-based LFSR + modulator

SNG-based LFSR + on-chip

directly modulated laser

Hardware complexity

1: LFSR

8: Comparators

23: Nanocavities

23: Lasers

23: Modulators -

Power consumption

(mW)

0.8: LFSR + comparators

6.92: Lasers 34.6: Lasers

184: Modulators -

ON when the processed data=’1’. Therefore, in order to demonstrate whether on-

chip lasers can outperform off-chip lasers, in the following, we evaluate the energy

consumption at the scale of an image, where a huge number of bits, i.e., ’0’s and ’1’s,

are processed.

We process two source images of 512×512 pixels, shown in Figure 5.5. Image

(A) is brighter with 25% of the total bits in the bit streams of the image pixels

being ’1’s (assuming BSL=256), while in image (B), the total number of ’1’ is 10%

of the whole bit streams in the image assuming the same BSL. The total energy

consumption of the architecture using SNG-based LFSR + modulators is 222μJ/image

for both images, since off-chip lasers continuously emit the signals . While the total

energy consumption using SNG-based LFSR + on-chip directly modulated lasers is

61μJ/image and 24μJ/image for the images (A) and (B), respectively, since on-chip

lasers only emit when the processed data is ’1’. This indicates that the design with on-

chip directly modulated lasers is more energy efficient than using off-chip CW lasers

when processing a set of data at the application-level. Hence, it is suitable for AC

architectures where reducing energy consumption is a crucial design requirement.

An on-chip directly modulated laser is a good option to have a fully on-chip inte-

grated architecture. However, it is still composed of an electrical part to generate the
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Energy Consumption 
(μJ/image)

Image (A) Image(B)

Design using SNG-based 
LFSR + modulator 222 222

Design using SNG-based LFSR+ 
on-chip directly modulated laser 61 24

Image (A)
25% of bits in the streams =‘1’

Image (B)
10% of bits in the streams =‘1’

Figure 5.5: Total energy consumption for processing images (A) and (B).

bit streams, whereas an all-optical SNG provides another alternative of a fully on-chip

integrated design without involving any electrical part, i.e., when analog input is as-

sumed. In the following, we discuss an all-optical SNG implementation, where we first

compare the resulting computing accuracy at the application-level with the accuracy

evaluated using SNG-based LFSR architecture. Then, we discuss an enhancement of

design scalability using a fully OSC architecture compared to a conventional optical

design from the literature.
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5.4 Towards All-optical Stochastic Computing

Architectures

For edge detection filters of larger size, i.e., 7×7 and 9×9, the designs are composed

of seven and nine stages of cascaded MUXs, respectively. This involves an increase in

the number of SNGs and the number of gates needed for the designs. Hence, finding

an implementation that reduces hardware complexity in the SNG circuit becomes

essential. Therefore, all-optical SNG that includes only one laser is worth to be

investigated for all-OSC architecture.

In the following, we first evaluate the computing accuracy of all-optical SNG for

detecting the edges of an image processed using the optical Sobel filter proposed in

Chapter 4. For this purpose, we assume two scenarios for SNG implementations:

� An electrical SNG-based LFSR that can be implemented either using LFSR +

modulators or LFSR + on-chip directly modulated lasers.

� A combination of SNG-based LFSR and all-optical SNG to inject bit streams

into the input of the XOR gates and the selection lines of the MUXs, respectively.

Since we were only provided with random pulses of p=0.5 for the all-optical

SNG, we cannot use it to represent the pixels of the image.

Figure 5.6 shows the processed images for the two scenarios. As can be seen, these

scenarios have the same level of accuracy, which indicates that the randomness of the

generated pulses by nanolasers is close to the randomness of the LFSR. Hence, the

all-optical SNG is a good candidate for SC architectures and a perfect replacement

for LFSR to design all-OSC architectures. It can also be considered a key factor to

increase the design scalability of OSC architectures as it is composed of a single laser.
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(a) PSNRTotal=23
An SNG-based LFSR

(b) PSNRTotal=23.3
A mix of SNG-based LFSR and all-optical SNG

Figure 5.6: Processed images using (a) SNG-based LFSR and (b) a mix of SNG-based
LFSR and all-optical SNG.

As mentioned earlier, OC suffers from scalability problems due to the large

size and the high number of devices the data signal has to propagate through. The

SC approach can overcome this issue since it contributes to reducing the hardware

complexity of the design. To further illustrate this point, we compare the design of an

n-bit adder using our work, i.e., all-optical SNG and all-optical adder, and the work

proposed in [75] (ripple carry adder). For the adder in [75], at each stage i (1 ≤ i ≤ n),

two inputs, Ai and Bi, electrically control MZI and DC devices. Increasing the size of

the adder to n-bit requires duplicating the stage design n times, where the carry-out

(Couti) from one stage propagates as carry-in (Cini+1) to the next stage. As can be

Table 5.2: Hardware complexity of n-bit adder proposed in [75] and our work.

Devices proposed design in [75] Our work
Lasers 2n+1 3

photodetector n+1 1
OR gate n -
MZI 2n -
DC 3n -

nanocavity - 1
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Figure 5.7: The design of an n-bit adder proposed in (a) [75] and (b) our work.

seen in Figure 5.7(a), Couti remains propagating in the optical domain from one stage

to the next. On the other hand, to design an n-bit adder using our work, we need

one all-optical MUX for the adder using PhC nanocavity, as proposed in Chapter 4,

and three all-optical SNGs to generate the random pulses for inputs A and B, and

the selection line Sel, as shown in Figure 5.7(b). Table 5.2 reports the number of

devices, including lasers and photodetectors, required to design an n-bit adder using

both designs. As can be seen, the number of devices using the OSC approach remains

constant as opposed to the design proposed in [75], where the number of devices,

including the interfaces, linearly increases with the data size.

Figure 5.8 shows the number of optical devices required for the computations

(solid lines), i.e., without the interfaces. In order to design an 8-bit adder, 50 devices

are required for the work in [75] (blue color) as opposed to one nanocavity for our de-

sign (red color). The figure also illustrates the processing time (dashed lines) required

to perform two inputs n-bit addition assuming 10GHz operating rate for both designs.
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Moreover, we assume the same processing time for SNG-based LFSR and all-optical

SNG considering. Hence, by increasing the adder size, the number of pulses generated

by the all-optical SNG increases, which negatively impacts the processing time of our

design. For example, an 8-bit addition results in 0.1ns processing time for the design

in [75] compared to 25.6ns for our design. It is worth mentioning that for the design

in [75], the Cin signal has to propagate through n stages and its power needs to be

divided equally between two DCs at each stage, which leads to a significant increase in

the signal power losses. In order to ensure correct transmission of the signal, Cin has

to be injected with enough power, which impacts the energy efficiency of the design.

For example, assuming an 8-bit adder and a DC with IL=2dB [106], in order to re-

ceive the Cout at the receiver side with a total power of 20μW, Cin has to be injected

with 305mW from a laser. This value will increase with the data size. In our design,

to receive the same output power of 20μW, the total injected laser powers remains

constant, i.e., 0.36mW, for any data size, since there is only one device used for an

n-bit data. Figure 5.9 illustrates the energy consumption per n-bit adder. Our design
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(red bars) consumes more energy compared to the design with propagated Cin (blue

bars) for small size of data, i.e., 1-bit to 5-bit adders. As the adder size increases, the

design with propagated Cin starts to consume more energy due to the increase in the

number of stages Cin has to propagate through. Assuming a 20% lasing efficiency

for both designs, the energy consumption of an 8-bit adder is 140pJ/operation and

47pJ/operation for the design in [75] and our design, respectively. The increase in the

Cin laser power with the adder size could eventually trigger the undesired nonlinear

effect. Therefore, O/E and E/O conversion may be needed instead of increasing the

laser power, which also leads to an increase in the energy consumption of the design.

To sum up, an all-OSC architecture results in the same computing accuracy

as an architecture designed using SNG-based LFSR. It also leads to a significant

reduction in the number of devices used in the design compared to its counterpart

designs in the literature. It also saves energy when larger size of data is processed,

allowing to scale up the design while impacting the processing time.
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5.5 Summary

In this chapter, we proposed three designs of SNG suitable for OSC architectures.

Their implementation involves SNG-based LFSR and all-optical SNG. The SNG-

based LFSR is composed of electronics components, i.e., LFSR and comparator, while

all-optical SNG involves lasers that generate random pulses. Hence, the all-optical

SNG can further reduce the hardware complexity of the design. The results demon-

strated that the edge detection design using the SNG-based LFSR + on-chip directly

modulated lasers saves more energy compared to the design implemented using the

SNG-based LFSR + modulator, i.e., 61μJ/image energy consumption compared to

222μJ/image, respectively. Hence, an SNG using on-chip directly modulated lasers

is more suitable for SC since it reduces energy consumption. In terms of comput-

ing accuracy, the all-optical SNG implementation leads to close approximation, i.e.,

PSNRTotal around 23, with SNG-based LFSR. This indicates that the randomness of

the sequence generated using nanolasers is suitable for SC architectures. Assuming an

n-bit adder, the proposed design of all-OSC architecture maintains the same number

of devices, i.e., one nanocavity and three lasers. Moreover, it saves energy with the

increase in the adder size, which enhances scalability and impacts processing time.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this PhD thesis, we proposed a novel computing domain based on integrated optics

to design stochastic computing (SC) architectures for processing time and scalability

enhancement. Our aim is to combine the positive features from each domain; high

signal propagation speed in the optical domain with energy efficient and small design

footprint from the SC approach. In order to investigate the design of optical stochastic

computing (OSC) architectures, we proposed a methodology that contains libraries

of architectures. Each library includes the design implementation along with the

transmission and error evaluation models. Furthermore, we proposed libraries for

the architecture interfaces with three different implementations of stochastic number

generator (SNG), i.e., based on linear feedback shift register (LFSR) and fully optical.

In the proposed architectures, we designed the computing parts to be fully optical

since we aim to design all-OSC architectures. The methodology allows exploring the

design of OSC by taking into account the technological and system-level parameters.
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The exploration targets a given application, leading to multiple design options that

satisfy different design requirements. In the following, we briefly summarize each of

the main contributions of this thesis.

The first contribution is the design of an n order Bernstein polynomial architec-

ture. The design can execute any single input function by changing the coefficients

inputs. The design is composed of Mach-Zehnder interferometer (MZI) and microring

resonator (MRR) as modulators and MRR as an all-optical add-drop filter (AOF) that

works as a MUX. We developed the transmission model in order to optimize energy

consumption. For this purpose, we proposed design methods that allow exploring the

technological parameters of the devices in order to find the optimal WLS. In order to

evaluate the computing accuracy, we implemented a Gamma correction application

for image processing. We considered three sources of error: i) error related to the

order of the architecture; ii) error related to the generated bit streams in SC; and iii)

error related to the optical transmission. We explored the design space at the system

level, i.e., n, BSL and BER, where the results showed that it is possible to reach the

same computing accuracy for different polynomial orders. This is achieved by com-

pensating the reduced accuracy of lower order polynomial with higher BSL and lower

BER. In addition to reducing the hardware complexity, this result demonstrates that

maintaining a certain level of accuracy can be achieved by increasing the processing

time (higher BSL) or by increasing the laser powers (lower BER). It is worth men-

tioning that the designs resulting from the exploration are considered static, which

means that each design requires a different architecture.

In the second contribution, we proposed the design of a reconfigurable archi-

tecture of the Bernstein polynomial. In this design, we can reconfigure the design
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order at run-time to trade off computing accuracy with design throughput. The ar-

chitecture can execute one 4th order function for higher accuracy or two 2nd order

functions for higher throughput. For this purpose, an architecture of a 2nd order is

duplicated, more AOFs and photodetectors are added, and DCs are used that are con-

figured during run-time to direct the coefficients signals to the correct output. The

same exploration method used in the static architecture is used in the reconfigurable

architecture to find the optimal WLS. Furthermore, a Gamma correction application

has been used to evaluate the computing accuracy, assuming the same three sources

of error presented in the first contribution. The reconfigurable architecture leads up

to 53% energy overhead compared to the static design due to the additional devices.

However, it increases the range of reachable accuracy by 65%, which is a key to meet

users’ requirements.

In the third contribution, we investigated the design of cascaded combinational

filters using PhC nanocavity. The interest in the nanocavity is due to its physical

characteristics, i.e., energy efficiency of 100fJ, compact size < 10μm2, high modulation

speed of 10GHz. Moreover, it has different Q factors around resonance wavelengths,

which allows designing cascaded gates, such as cascaded MUXs, where multiple sig-

nals propagate at different wavelengths. For this purpose, we proposed a transmission

model for PhC nanocavities. The model takes into account key device parameters,

such as Q factors, the figure of merits, resonance wavelengths, and the detuning in-

duced by optical signals. We calibrated our model with the experimental results

and explored the device parameters by implementing XOR gates and MUXs using

nanocavity. We proposed the implementation of an optical stochastic Sobel edge de-

tection filter. This requires implementing multiple stages of MUXs using nanocavity.

Moreover, we explored system-level parameters, i.e., laser power, BER and BSL, and
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evaluated the computing accuracy by processing an image. We showed that it is

possible to implement the filter using a design of Q factors=7700 for XOR gates and

7700, 1600, and 200 for MUXs. The resulting architecture showed 0.85nJ/pixel energy

consumption and 51.2ns/pixel processing time.

Finally, we proposed three implementations for SNG design; i) SNG-based LFSR

+ modulators; ii) SNG-based LFSR + on-chip directly modulated lasers; and iii) all-

optical SNG. When processing an image using a Sobel filter, the results showed that

an SNG implementation using on-chip directly modulated lasers led to energy saving

by 72% compared to off-chip lasers. Regarding all-optical SNG, the randomness of

the pulses generated by lasers maintains the same accuracy as SNG designed using

LFSR for detecting the edges of an image. Towards the design of all-OSC, the results

showed that for an 8-bit adder, a 70% energy saving and 98% reduction in the number

of devices can be achieved compared to a conventional optical adder but with an

increase in the processing time.

Our study led to the conclusion that it is beneficial to integrate both SC and OC

in the same domain (OSC). SC’s features enable expanding the design in the optical

domain to accommodate data of larger size with a significant saving in the energy and

area. Compared to the conventional OC architectures, the increase in the processing

time is expected due to the serial processing. However, this increase can be considered

a fair trade-off to gain scalability, which is a primary issue in OC architectures. The

scalability is not only limited to a design with a large data size but also to the design

of complex architectures, such as neural networks, which are only implemented on a

small scale in the optical domain.

The study also highlights the fact that optical devices, in general, are still imma-

ture. However, in our proposed designs, we focused on demonstrating the feasibility
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of the OSC domain and exploring the design parameters that impact energy con-

sumption, computing accuracy and processing time. In order for silicon photonics

to suit in the OC domain, it requires devices of tens fJ energy efficiency, few μm2

footprint, and modulation speed greater than 50GHz. Based on the progress in the

optical domain in the last few decades, it is expected to see a leap within few years in

the development of new devices to meet different computing requirements. It is worth

mentioning that the proposed computing architectures in this thesis are independent

of the optical devices. Using another higher performance device can be easily inte-

grated into the design since our architectures’ transmission models are generic. This

only requires replacing the transmission model of the device with the new one and ex-

ploring its technological parameters for energy optimization. The steps for the design

space exploration in the methodology will remain the same.

6.2 Future Work

Combining the SC approach with integrated optics can accelerate the processing time

of the design to overcome the main limitation in SC. This also increases the process-

ing time compared to conventional OC architectures since maintaining an acceptable

computing accuracy requires increasing the BSL or the number of generated pulses.

However, the proposed computing paradigm enhances design scalability compared to

conventional OC. Hence, it is more energy efficient when the hardware needs to be

increased to execute more complex functions or to process a larger size of data.

Based on the study presented in this thesis, we propose several future work

directions that can be divided into short-term, medium-term and long-term plans as

follows:
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� Short-term

– Regarding PhC nanocavities, our results emphasized the importance to explore

the figure of merit M[gate] parameter, as increasing this parameter can enhance

the energy efficiency of the design by avoiding the need to modify the BER

and BSL parameters. It allows to increase the range of wavelength detuning,

which increases the design space, i.e., higher Q factors can be explored. Our

proposed design space exploration can be used; however, the transmission model

needs to be more accurate by taking into account the transient response of the

devices, hence, working closer to the physical level. Moreover, our transmission

model of PhC nanocavity should take into consideration the impact of the probe

signals’ powers on the wavelength detuning range. In addition to the pump power,

increasing probe power would shift the resonance wavelength of the device away

from the required data wavelength and hence can lead to a low transmission

power of the input signal.

– Regarding lasers, the use of pulse-based lasers saves energy consumption, as pre-

sented in Chapter 2; however, this requires synchronization at the photodetector,

especially for high operating frequencies, i.e., 10GHz and above. This is chal-

lenging due to the lower responsivity of the photodetector at this rate. In order

to achieve this, we need to use a model for the photodetector that takes into

account the technological parameters. The model should be able to calculate

the responsivity parameter according to the operating rate. Extra hardware is

needed to monitor the photodetector responsivity and compare it with a thresh-

old value selected at the design time. When the responsivity falls below the

threshold value, the laser power should be increased accordingly.
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� Medium-term

– Finite impulse response (FIR) filter is important in signal processing as it can be

used to implement low pass filters. In its current architecture in the literature,

FIR filter has several drawbacks that include high design area and high processing

time. Investigating the design of OSC FIR filter is interesting to overcome these

limitations. Hence, an all-optical SNG will be used to generate the pulses for

the inputs. The FIR filter is composed of addition and multiplication operations,

which will be implemented using MUXs and XNOR gates, respectively. These

gates can be designed using PhC nanocavities, where each one requires only a

single nanocavity, unlike the design of XOR gates, where two cascaded nanocav-

ities are needed, as proposed in Chapter 4. Moreover, optical delay elements are

required; hence, one of the designs proposed in the literature can be used. For

example, in [107], a reconfigurable optical delay is designed using cascaded MZI.

The OSC FIR filter can be compared to existing optical FIR filters in terms of

energy consumption, area, processing time and computing accuracy.

– Neural networks (NNs) allow modeling nonlinear processes. The number of layers

and neurons in the network adds significant overhead on the design area and

power consumption, which limit the design scalability. According to [108], the

basic components of NN can reach up to few millimeters in dimension, which

raises the need for the OSC approach. We propose using PhC nanocavity to

design XNOR gate and MUX for multiplication and addition, respectively. An

all-optical SNG with analog input will be used to generate the pulses for the

inputs and the weights. Nanolasers can also be investigated in the activation

function design, i.e., when the accumulated energy at the nanolaser reaches a

threshold value, a pulse will be generated.
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� Long-term

– Integration of all-optical accelerators in optical networks on chip (ONoC).

Indeed, optical accelerators can be considered part of optical interconnects,

where data is optically processed during its propagation at a high rate from

one module to the next. There are designs for reconfigurable ONoC [109]

from the literature that can be used to connect the proposed computing ar-

chitectures. Moreover, a controller will be designed to configure the optical

interconnect (the data path) in order to direct the data to the correct comput-

ing architecture based on the targeted application. Then, depending on the

design requirements, i.e., computing accuracy and energy efficiency, the con-

figuration of the design can be adapted. These designs involve costly EO/OE

that the ONoC and the accelerators would share in order to reduce energy and

area overhead.
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phone sur les Technologies de Conception des Systèmes Embarqués Hétérogènes
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