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Abstract

StarGAN-v2 compression using knowledge distillation

Paras Kapoor

Image-to-image translation is used in a broad variety of machine vision and computer graph-

ics applications. These involve mapping grey-scale images to RGB images, deblurring of

images, style transfer, transfiguring objects, to name a couple. In addressing complex image-

to-image translation issues, Generative Adversarial Networks (GANs) are at the forefront.

StarGAN-v2 is a state of the art method for multi-modal multi-domain image-to-image

translation that produces different images from a single input image over multiple domains.

However, at a parameter count of more than 50M, StarGAN-v2 has a computation bottle-

neck and consumes more than 60G MACs (Multiply-Accumulate Operations to calculate

computation expense, 1 MAC = 2 FLOPs) to create one 256 × 256 image, preventing

its widespread adoption. This thesis focuses on the task of compressing StarGAN-v2 using

knowledge distillation. Using depthwise separable convolutional layers and reduced channels

for intermediate layers, we develop efficient architectures for different StarGAN-v2 modules.

In a GAN mini-max optimization environment, the efficient networks are trained with a

combination of different distillation losses along with the original objective of StarGAN-v2.

Without losing image quality, we reduce the size of the original framework by more than

20× and the computation requirement by more than 5×. The feasibility of the proposed

approach is demonstrated by experiments on CelebA-HQ and AFHQ datasets.

iii



Acknowledgments

First of all, I would like to express my deepest appreciation to my supervisor, Dr. Tien

D. Bui for leading me into the area of deep learning and image processing. He helped me

pick the courses needed to build a strong basis for my deep learning and computer vision

skills. He encouraged me to study the area of compression of deep learning and coordinated

my research work. I truly appreciate his support during the course of my master’s degree.

In addition, I want to thank all people who have helped me with my study, research and

thesis, including every member of my lab for their constructive feedback. Next, I would like

to thank the instructors of my courses who taught me useful skills and knowledge, essential

for my research work. Last but not least, I have to thank my parents for their sacrificial

love and unceasing encouragement.

iv



Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Mathematical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Convolutional Neural Network (CNNs) . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Fully Connected (FC) Layer . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Residual Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 Regular Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . 5

2.2.4 Depthwise Separable and Pointwise Convolutional Layers . . . . . . 5

2.2.5 ReLU and Leaky ReLU Layers . . . . . . . . . . . . . . . . . . . . . 6

2.2.6 Instance Normalization (IN) and Adaptive Instance Normalization

(AdaIN) Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.7 Bilinear Upsampling Layer . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . . . . . 8

v



2.3.1 Exponential Moving Average (EMA) . . . . . . . . . . . . . . . . . . 9

2.3.2 Non Saturating Adversarial Loss . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Zero-Centered Gradient Penalty . . . . . . . . . . . . . . . . . . . . 10

2.4 StarGAN-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Network Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Image Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Training Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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Chapter 1

Introduction

This chapter gives an introduction to our research work. The purpose of our research is

defined in section 1.1. Section 1.2 explains our contribution in the research. Finally, the

framework of the thesis is described in section 1.3.

1.1 Problem Description

Over a couple of years, applications of Generative Adversarial Networks (GANs) [5], espe-

cially image-to-image translation, have seen incredible development. As the abundance of

datasets for high-fidelity natural image synthesis has increased, deeper and complex neu-

ral networks have been proposed. However, the growth in the scale of the neural network

and computational specifications, also make them difficult to use on embedded computers.

StarGAN-v2 [6] is one such state of the art technique that has allowed different images to

be translated across numerous domains in a single framework. Nonetheless, at a parameter

count of more than 50M, StarGAN-v2 has a computational bottleneck, consuming more

than 60G MACs to generate one 256× 256 image, preventing its widespread adoption.

1.2 Contributions

The goal of this work is to reduce the size and computation requirements of StarGAN-v2

[6] leading to its widespread adoption to edge devices. Our contributions to the research

1



work in this thesis are as follows:

• We design efficient network modules of StarGAN-v2 using depthwise separable con-

volutional [7] layers.

• We develop a combination of various knowledge distillation [8] losses operating on

different modules of StarGAN-v2 to be used along with the original objective in a

GAN minimax optimization [5] setting.

• Without losing image quality, we reduce the size of the original StarGAN-v2 frame-

work by more than 20× and the computation requirement by more than 5× on bench-

mark datasets.

1.3 Thesis Structure

The thesis is organized as follows. As needed to follow the rest of the work, Chapter 2

includes an introduction to CNNs [9], GANs [5], and StarGAN-v2 [6]. A review of recent

work in the field of GAN compression and the motivation for our research can be found

in the chapter 3. Chapter 4 offers a detailed explanation from a mathematical viewpoint

of our proposed method of compressing StarGAN-v2 [6]. Chapter 5 presents the findings

of different experiments carried out to investigate the network power design space and

determine the efficiency of the image generation of our proposed system. Finally, the chapter

6 outlines our core observations and suggests potential future avenues for study. This thesis

is intended for a reader with an understanding of GANs and compression of neural networks

in general.

2



Chapter 2

Background

This chapter provides the requisite context to understand the remainder of the thesis. A few

important mathematical concepts are detailed in section 2.1. Section 2.2 provides a brief

introduction to convolution neural networks and different layers used to construct complex

networks. Section 2.3 explains generative adversarial networks and minimax objective [5].

Section 2.4 describes all StarGAN-v2 [6] system components. Finally, Section 2.5 defines

the necessary criteria for scoring the quality and diversity of images produced.

2.1 Mathematical Concepts

A few mathematical concepts for general understanding of the thesis are explained in the

following sub-sections.

2.1.1 Vector Norms

A vector norm is used to calculate the size or length of a vector x of dimension N . In

machine learning, norms are essential to formulate loss functions. L1 and L2 are the two

most popular norm functions used to calculate magnitude of a vector. L1 norm calculates

the sum of absolute values of a vector as shown in Eq. 1. L2 norm is calculated as the

square root of the sum of the squared vector values as shown in Eq. 2.

3



L1(x) =

N∑
i=1

|xi| (1)

L2(x) =

(
N∑
i=1

x2i

) 1
2

(2)

2.2 Convolutional Neural Network (CNNs)

Convolutional neural networks (CNNs) [9] are networks specialized in analyzing data with

a grid-like topology, and are thus widely used in image recognition tasks. CNNs typically

consists of convolution layers, fully connected layers and normalization layers explained in

the following sub-sections.

2.2.1 Fully Connected (FC) Layer

Fully connected layers have connections from the previous layer with all the neurons and

have connections from the next layer with all the neurons. An example of the 3 feed forward

linear layers (input layer, hidden layer and output layer) network is seen in Figure 2.1. In

shallow CNN models, FC layers are necessary, to cover the whole spatial dimension of an

input image [10].

Input Layer Hidden Layer Output Layer

Figure 2.1: A Representation of Fully Connected Layer

4



2.2.2 Residual Layer

Residual layers [11] are essential to train very deep neural networks. The problem of vanish-

ing gradient with an increasing number of layers is solved by residual connections, allowing

information to flow from initial layers to final layers using skip connections as seen in Figure

2.2.

W
eight   Layer

W
eight   Layer

Figure 2.2: An illustration of Residual Layer

2.2.3 Regular Convolutional Layer

Convolutional layers are the core building blocks of CNNs, it helps in feature detection. In

order to create an output feature map as seen in Figure 2.3, a standard convolution layer

usually takes an input feature map, convolves multiple filters each with the same number

of channels as input. Each filter slides over the input data, multiplying the element with

the portion of the input it is currently on, and then summing up the input data.

2.2.4 Depthwise Separable and Pointwise Convolutional Layers

In light-weight models, the depthwise separable convolutional [7] and pointwise convolu-

tional [12] layers are used extensively because they require a smaller number of parameters

and dot products compared to regular convolutional layers. Each kernel of a filter in a

depthwise separable convolutional layer, convolves separately with only 1 channel of the

input feature map to give a single output. Pointwise convolutional layers consist of filters of

5



Input Feature Map

Output 
Feature Map

Regular Convolution
Filters

Figure 2.3: An Illustration of a Regular Convolutional Layer

shape 1× 1 with depth equal to input feature map. As seen in Figure 2.4, these layers are

commonly stacked together to obtain efficiency without significantly damaging performance.

Input Feature Map

Output 
Feature Map

Depthwise Separable and Pointwise
Convolution Filters

Figure 2.4: An Illustration of Depthwise Separable and Pointwise Convolutional Layers

2.2.5 ReLU and Leaky ReLU Layers

A ReLU [13] layer is composed of rectified linear unit nodes that are piece-wise linear

function. For values greater than zero, the function is linear, but negative values are often

6



stated as zero, as seen in Figure 2.5. When training a neural network using backpropagation,

it is a nonlinear function with a lot of the attractive properties of a linear activation function.

However, neurons with high negative values are trapped at 0 in the ReLU layers, causing

them to effectively die during training. Leaky ReLU [14] is an extention of ReLU with a

non-zero gradient for negative input values as shown in Figure 2.5.

X

Y

ReLU Activation Function

X

Y

Leaky ReLU Activation Function

Figure 2.5: Non-Linear Activation Functions

2.2.6 Instance Normalization (IN) and Adaptive Instance Normalization

(AdaIN) Layers

Instance Normalization (IN) [15] is a representative method which was adopted during style

transition to discard instance-specific contrast information from an image. IN performs style

normalization by normalizing feature statistics, which have been found to hold an image’s

style details. For each channel and each sample, the mean and variance are separately

measured across spatial dimensions. Adaptive instance normalization (AdaIN) [16] is a

simple extension to IN. In order to fit the input type statistics, the AdaIN layer aligns

the channel-wise mean and variance of the material image. Similar to IN, the statistics in

AdaIN are computed across spatial locations.

7



2.2.7 Bilinear Upsampling Layer

In the context of image processing, upsampling is a technique for increasing the size of

an image. When perfect image transformation with pixel matching is difficult, bilinear

upsampling is used, so that pixels can be measured and assigned acceptable intensity values.

It takes into account the nearest neighbourhood 2 × 2 of known pixel values surrounding

the calculated position of the unknown pixel and then takes a weighted average of these 4

pixels to reach its actual, interpolated value.

2.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [5] are a family of generative networks that,

through a two-player mini-max game, discover an underlying distribution behind a data

generation mechanism. GANs are extensively used in applications involving image synthe-

sis. As seen in Figure 2.6 GANs consists of two network modules a Generator (G) and a

Discriminator (D) trained in an adversarial manner. Generator learns to take in a random

input z and create a sample indistinguishable from the actual sample distribution. Dis-

criminator is trained to decide whether a given sample came from the generator or from a

collection of actual samples.

GANs are conditioned to find a Nash Equilibrium [5] in a minimax optimization setting as

seen in Eq. (3).

min
G

max
D

[Ex∼pdata [log(D(x))] + Ez∼pZ [log(1−D(G(z)))]] (3)

One such balance is where the generator models the actual distribution exactly, so that the

discriminator does not do better than 50% percent. This is the balance that is anticipated,

but the techniques of GANs also suffer from problems of convergence and mode falling. For

a variety of reasons, a GAN may fail to converge during training. As a type of cat-and-

mouse game of attempting to find a Nash equilibrium, the generator and discriminator will

oscillate. The gradient will be very minimal if the discriminator becomes too good and

8
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Figure 2.6: Flowchart of Generative Adversarial Network

too optimistic, then virtually little is discovered by the generator. Mode dropping happens

when any of the modes of the goal distribution are not generated by the generator. This can

occur when the generator overfits a particular mode, but can also occur when the generator

gives up attempting to create more complicated examples. To stabilize GANs, different

strategies and losses are applied, including a few described in the following sub-sections.

2.3.1 Exponential Moving Average (EMA)

Exponential Moving Average (EMA) [17, 18] increases the stability of GANs training by

limiting cycles around the nash equilibrium with vanishing amplitude. The generator pa-

rameters are averaged over time outside the training loop as shown in Eq. (4). As β

approaches 1, averaging effectively computes longer time windows.

θ
(t)
EMA = βθ

(t−1)
EMA + (1− β)θ

(t)
EMA (4)
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2.3.2 Non Saturating Adversarial Loss

A succinct equation that intuitively illustrates the adversarial essence of the rivalry between

the generator and the discriminator is the mini-max formulation. However, distinct loss

functions for the generator and the discriminator are used in operation. A adjustment to the

generator loss to solve the saturation issue is the Non-Saturating GAN Loss [5]. It is a slight

shift involving the generator maximizing the log of the probabilities of discrimination for

produced images instead of minimizing the log of the probabilities of inverted discrimination

for generated images, as seen in Eq. (5).

max
G

[log(D(G(z)))] (5)

where G is the generator, D is the discriminator and z is the input noise.

2.3.3 Zero-Centered Gradient Penalty

A zero-centered gradient penalty [1] is used as a regularization to penalize the discriminator

for deviating from the Nash equilibrium and addressing the problem of gradient explosion

in discriminators. As seen in Eq. (6), the squared L2 norm of gradients of the discriminator

D with respect real input data x is penalized.

RD(x) = ED(x)[||∇D(x)||22] (6)

2.4 StarGAN-v2

StarGAN-v2, as seen in Figure 2.7, converts images from one domain to different images of

several target domains.

2.4.1 Network Modules

Four network modules form the structure of StarGAN-v2. All the modules are multi-headed

but the generator, with the number of heads equal to the number of domains.
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Figure 2.7: Diverse image synthesis using StarGAN-v2. Reprinted from [1].

Generator

Generator transforms an input image to an output image reflecting the input style code of

a specific domain as shown in Figure 2.8.

Image Discriminator

For multiple domains seen in Figure 2.9, Image Discriminator recognizes the input image

as genuine or fake.

Style Encoder

The style encoder extracts the style code from an input image and its domain label to allow

the generator to synthesize reference-guided images, as seen in Figure 2.10.
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Figure 2.9: Image Discriminator Network flowchart

Mapping Network

Mapping network transforms latent code sampled from random Gaussian noise into multi-

domain type codes, enabling the generator to synthesize latent images as seen in Figure

2.11.
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2.4.2 Image Synthesis

StarGAN-v2 translates input image using reference image as shown in Figure 2.12 and also

using latent code as shown in Figure 2.13.

2.4.3 Training Objectives

Let X , Y be the sets of images and possible domains and Z be the set of all possible latent

codes. Denoting the generator as G, style encoder as E, mapping network as F , and image

discriminator as D. During training, an image x ∈ X with its original domain label y ∈ Y,

two latent codes z1 ∈ Z, z2 ∈ Z, and a target reference image x̃ ∈ X with its target domain
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Figure 2.13: Flowchart of latent-guided image synthesis by generator and mapping network

label ỹ ∈ Y are sampled in each iteration. Following target style codes are generated for

both latent-guided and reference-guided synthesis.

sz1 = F (z1, ỹ) sz2 = F (z2, y) sx̃ = E(x̃, ỹ) sx = E(x, y)

The framework is trained using the following objectives:
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Adversarial Objective

Input image x and style codes s̃ ∈ sz1 , sx̃ are taken by the generator to produce images in

the target domain. The image discriminator D learns to determine the difference between

their respective domain’s actual and generated images as seen in Eq. (7). The mapping

network and type encoder learn to have the style code s̃ that is likely to be found in the

target domain ỹ, and G learns to use and create photos that are indistinguishable from

actual domain images ỹ.

Ladv = Ex,y[log(Dy(x))] + Ex,ỹ,z[log(1−Dỹ(G(x, s̃)))] (7)

Style reconstruction

Style reconstruction loss similar to the previous approaches [19, 20], forces the generator G

to utilize the style code s̃ ∈ sz1 , sx̃ when generating the image. It is an L1 loss as seen in Eq.

(8). At test time, the learned encoder E allows G to transform an input image, reflecting

the style of a reference image.

Lsty = Ex,ỹ,z[||s̃− Eỹ(G(x, s̃))||1] (8)

Style diversification

The generator G is regularized with diversity sensitive loss [21, 20] to enable generator to

produce diverse images. The style codes to be used are produced by mapping network F

from two sampled latent codes z1 and z2. Maximizing the regularization term forces G,

via an L1 loss as seen in Eq. (9) to explore the image space and discover meaningful style

features to generate diverse images.

Lds = Ex,ỹ,z1,z2 [||G(x, sz1)−G(x, sz2)||1] (9)
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Preserving source characteristics

The cycle consistency loss [22, 23, 24] is used to ensure that the generated image properly

maintains the domain invariant (e.g. pose) characteristics of the source image via an L1

loss as seen in Eq. (10). The generator G learns to maintain the original characteristics of

the input image x by modifying its form diligently by allowing the generator G to recreate

x with the approximate style code sx.

Lcyc = Ex,y,ỹ,z[||x−G(G(x, s̃), sx)||1] (10)

Full objective

The full objective of StarGAN-v2 is summarized in Eq. (12).

Lorg = Ladv + λstyLsty − λdsLds + λcycLcyc (11)

=⇒ min
G,E,F

max
D

[Lorg] (12)

where λsty, λds, and λcyc are hyperparameters for each loss term.

2.5 Metrics

Quantitative metrics are essentials to objectively measure the quality and diversity of im-

ages. Two important metrics are explained in the following sub-sections.

2.5.1 Frećhet Inception Distance (FID)

Frećhet Inception Distance (FID) [25] measures the discrepancy between two sets of images.

A lower FID indicates better quality images. Conversely, a higher score indicates a lower

quality image and the relationship may be linear. Assuming the feature embeddings follow

a multidimensional Gaussian distribution, mean and covariance matrices are obtained for
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both real (mr, Cr) and synthetic data (m,C). FID score is calculated using the Eq. (13)

where Tr() refers to sum of diagonal elements of a matrix.

FID = ||m−mr||22 + Tr(C + Cr − 2(CCr)
1
2 ) (13)

2.5.2 Learned Perceptual Image Patch Similarity (LPIPS)

Learned similarity of perceptual image patch (LPIPS) [2] tests the diversity of images pro-

duced using the L1 distance between features extracted from AlexNet [26] pretrained from

ImageNet. In the channel dimension, deep embedding of each image patch is normalised

and then averaged over the spatial dimension and over all layers. Higher distance means

more diverse images and lower means similar images.

Figure 2.14: Calculation of Learned Perceptual Image Patch Similarity. Reprinted from [2].

2.6 Summary

In this chapter, the components that build up a convolution neural network, mechanics of

GANs particularly StarGAN-v2, and metrics to objectively evaluate GANs were discussed.

In the next chapter, recent techniques developed to compress GANs and the motivation of

our research work will be explained.
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Chapter 3

Related Work

This segment addresses recent work undertaken to compress and speed-up GANs. The

section 3.1 offers information on important techniques required by recent compression tech-

niques for GANs. Section 3.2 describes NAS and KD based compression methods combined

into a single target. The section 3.3 explains strategies that use pruning and KD to achieve

successful networks. Only techniques based on KD are stated in the section 3.4. Finally,

the section 3.5 presents descriptions of the limitations of the present research work for our

objective.

3.1 Prerequisite Techniques

Following are some techniques essential to understand recently developed methods for com-

pressing GANs:

3.1.1 Knowledge Distillation (KD)

Knowledge distillation (KD) [8] is a way of transmitting information that allows a single

network with a relatively limited number of parameters to benefit from a set of networks or

a network with a large number of parameters. The larger model is known as the instructor

and the smaller model is known as the pupil. The aim of economically deploying a valid

model is accomplished through training a large data model, leveraging its better capacity
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to acquire succinct representations of information, and then distilling that knowledge into

the smaller model, which would not be able to absorb it on its own, through training it to

learn the large model’s soft performance. A student can learn to adapt the instructor to

every activation layer.

3.1.2 Neural Architecture Search (NAS)

Neural architecture search (NAS) [27] is a technique for automating complex deep neural

network design. The networks designed by NAS are on par or outperform hand-designed

architectures. NAS is closely related to hyperparameter optimization and is a subfield of

automated machine learning (AutoML) [28]. Strategy to steps for NAS can be categorized

according to the search space, search strategy and performance estimation strategy used:

(1) The search space defines all the potential architectures.

(2) The search strategy defines the approach to explore the search space.

(3) The performance estimation strategy evaluates the performance of a possible archi-

tecture from its design without constructing and training it.

3.1.3 Neural Network Pruning

The process of decreasing the size of a network by deleting parameters is neural network

pruning [29]. In this algorithm, the network is first trained to convergence. Afterwards, each

parameter or structural element in the network is issued a score, and the network is pruned

based on these scores. Pruning lowers the network’s accuracy, so it is trained to recover

better (known as fine-tuning). The pruning and fine-tuning method is also iterated several

times, progressively decreasing the size of the network. There are two types of pruning

strategies, structured pruning and unstructured pruning. Unstructured pruning generates

a sparse neural network, by setting individual weights to zero, whereas structured pruning

eliminates entire neurons, filters, or channels.
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3.2 NAS and KD Based Techniques

Following methods use KD and NAS together to compress GANs:

3.2.1 GAN Compression

Figure 3.1: A figure demonstrating GAN Compression method. Reprinted from [3].

A general-purpose tool for compressing conditional GANs is GAN Compression [3]. It

decreases the computation of regularly used conditional GAN models like pix2pix [30],

CycleGAN [24], and GauGAN [31] by 9 − 21× while retaining visual fidelity. It utilizes

neural architecture search (NAS) to obtain a compressed model through weight sharing and

knowledge distillation (KD) of intermediate representations of the original model. Following

are the steps involved:

(1) A smaller once-for-all [32] student generator G is distilled with a pre-trained instructor

generator Ĝ, comprising all feasible channel numbers by weight sharing.

(2) At each training phase, different channel numbers for G are sampled such that all

channel numbers can be served by one generator.

(3) Many sub-generators are isolated from the once-for-all generator with various channel

numbers and their output is measured.
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(4) Finally, given the compression ratio target and output target (FID or mAP) and

fine-tuned to achieve the final compressed model, the best sub-generator is selected.

3.2.2 AutoGAN Distiller

AutoGAN Distiller (AGD) [33] is a differentiable NAS and KD-based system that customizes

the search space for tasks with various properties. It searches for categories of operators

in addition to channel widths, and tests a super-resolution task in addition. Through

knowledge distillation, the search is driven by the original GAN model, thus satisfying the

compression. AGD is fully autonomous, standalone (i.e. no qualified discriminators are

required) and broadly applicable to different models of GAN.

Operator search is performed for the following operators:

• Conv 1× 1, Conv 3× 3

• Residual Block (“ResBlock”) (2 layers of Conv 3× 3, with a skip connection)

• Depthwise Block (“DwsBlock”) (Conv 1 × 1 + DepthwiseConv 3 × 3 + Conv 1 × 1,

with a skip connection)

The operator for each layer is searched in a differentiable manner [34, 35]. The design

parameter αi is used for the i-th layer to decide the operator for the current layer, and

the αi softmax value denotes the chance of selecting this operator. For any iteration of the

scanning process, all candidate operators are activated and the output is the weighted sum

of all operators calculated by all α softmax values.

To create a slimmer generator, width search is performed. Each kernel of convolution with

a maximum width is called a superkernel. The scan is then done for the φ expansion ratio

to use just a subset of the superkernel input/output dimensions. φ ∈ [13 ,
1
2 ,

3
4 ,

5
6 , 1] and the

architecture parameter γi controls the probability of choosing each expansion ratio in the

i-th layer. For estimated differential sampling of φ and γi, Gumbel-Softmax is used. Each

time, only one most likely expansion ratio is enabled during the searching process, which

saves both memory and computing costs. The training objective of AGD framework is

shown in Eq. (14).
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min
G,α,γ

1

N

N∑
i=1

d(G(xi, α, γ), G0(xi)) + λF (α, γ) (14)

Here, d(., .) is a distance metric for the knowledge distillation between the compact generator

G and the pre-trained one G0, F is the computational budget determined by the network

architecture, α and γ are the architecture parameters controlling the operator and width of

each layer, respectively, and λ is the trade-off parameter. Note that both d(., .) and F are

functions of α and γ.

3.3 Neural Network Pruning and KD Based Techniques

Following methods use KD and neural network pruning together to compress GANs:

3.3.1 GAN Slimming (GS)

GAN Slimming (GS) [36] is a coherent optimization system combining the distillation of

information, channel pruning, and quantization for GAN compression. With limited visual

output loss, GS compresses CartoonGAN [37], a state-of-the-art style transfer network, by

up to 47×.

min
G

max
D

LGAN (15)

LGAN = Ey∈Y [log(D(y))] + Ex∈X [1− log(D(G(x)))] (16)

Ldist(W,γ) = E[d(G(x;W,γ), G0(x))] (17)

LCP (γ) = ||γ||1 (18)

GS integrates the typical minimax optimization question in GAN where D is the discrimi-

nator jointly trained by minimax optimization with efficient generator G as shown in Eqs.
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(15) and (16). A model distillation loss term Ldist as shown in Eq. (17) is used to enforce

the small generator G to mimic the behaviour of original large generator G0 where d(., .) is

Perceptual loss [38]. G is slimmed from G0, through channel pruning and quantization. For

channel pruning, approach similar to [39] with L1 norm on the trainable scale parameters

in the normalization layers to encourage channel sparsity as shown in Eq. (18). By default,

both activation and kernel weights are quantized uniformly to 8-bit (i.e., m = n = 8).

3.3.2 Co-Evolutionary Compression

Co-evolutionary compression for unpaired image translation [4] obtains compressed gener-

ator with less than 1
4 parameters compared to the original one while maintaining the image

translation performance. In fact, generators are encoded as two populations for two image

domains and optimized to iteratively investigate the most relevant convolution filters, as

seen in Figure 3.2. Fitness of each individual is calculated using the number of parameters,

a discriminator-aware regularization in Eq. (19), and the cycle consistency in Eq. (20) into

a joint loss as shown in Eq. (21). Where G1 and G2 are the compressed generators, D1 is

the discriminator in the original network, || ||2 is L2 norm and N () is the total number of

parameters.

LDisA =
1

m

m∑
i=1

||D1(G1(xi))−D1(Ĝ1(xi))||22 (19)

Lcyc =
1

m

m∑
i=1

||G2(Ĝ1(xi))− xi||22 (20)

Ĝ1 = arg min
G1

N (G1) + γ(LDisA + Lcyc) (21)

Two populations are kept in the unpaired image conversion task for the two generator

networks, respectively. In order to obtain portable architectures of adequate performance,

these two communities are alternatively updated by leveraging the best individuals in the

previous iteration.
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Figure 3.2: The diagram of the Co-Evolutionary method for learning efficient generators.
Reprinted from [4].

3.4 KD Based Techniques

Following methods use KD to compress GANs:

3.4.1 Distilling portable GANs

Distilling portable GANs for image translation [40] uses various knowledge distillation losses

to train a student generator (GS) of fewer parameters from the original heavy teacher

generator (GT ). L1 loss is used to transfer low-level information from GT to GS over

generated images as shown in Eq. (22). GS acquires high-level information from GT via

Lperc loss as shown in Eq. (23) where DT is the teacher discriminator. An adversarial

learning process is established to optimize GS and DS as seen in Eq. (24). The images

from GT are used as real samples as seen in Eq. (25), which allows GS to mimic real images

as well as the images generated by GT . To promote the capability of GS , Ltri is included

to measure the L1 distances between real images, and images generated by GS and GT as
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shown in Eq. (26). All the losses are combined with pre-defined hyper-parameters into a

single knowledge distillation objective as seen in Eq. (27) where x, y are real input data

and labels.

L1(GS) =
1

n

n∑
i=1

||GT (xi)−GS(xi)||21 (22)

Lperc(GS) =
1

n

n∑
i=1

||D̂T (GT (xi))− D̂T (GS(xi))||21 (23)

LGAN (GS , DS) = Ex,y[log(DS(x, y)] + Ex[log(1−DS(x,GS(x)))] (24)

LGT
(DS) =

1

n

n∑
i=1

DS(GT (xi),True) (25)

Ltri(DS) =
1

n

n∑
i=1

[
||D̂S(yi)− D̂S(GT (xi))||1 − ||D̂S(yi)− D̂S(GS(xi))||1

]
(26)

LKD(GS , DS) = LGAN (G,D) + β1L1(GS) + γ1Lperc(GS)+

β2LGT
(DS) + γ2Ltri(DS)

(27)

3.4.2 Compressing GANs

Compressing GANs based on knowledge distillation [41] uses mean square error as shown

in Eq. (28) between the images generated from the student generator GS and the teacher

generator GT as an additional loss to GAN adversarial training of Eq. (29) where DS is the

student discriminator. Both losses are combined into a joint loss using a hyper-parameter

α as shown in Eq. (30). It can compress teacher GANs at ratios 1669 : 1, 58 : 1 and 87 : 1

on MNIST, CIFAR-10, and Celeba-A datasets.
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LMSE(GS) =
1

n

n∑
i=1

||GT (xi)−GS(xi)||22 (28)

LGAN = Ex∈pdata [log(DS(x))] + Ez∈N (0,1)[1− log(DS(GS(z)))] (29)

min
GS

max
DS

L = min
GS

[
max
DS

LGAN + αLMSE(GS)

]
(30)

3.5 Inapplicable to StarGAN-v2

While recently developed approaches can provide very high compression and speed-up ratios

with minor performance loss, for the following reasons, they are not specifically applicable

to StarGAN-v2:

(1) Current techniques compress only a single generator network, while StarGAN-v2 is a

multi-network system.

(2) Most approaches operate on deterministic generator networks, while StarGAN-v2 uses

random Gaussian noise to produce diverse images from a single source image.

3.6 Summary

In this chapter, recent approaches to compress GANs using KD, NAS and neural network

pruning techniques were mentioned. Then, the motivation of our research objective was

explained. Our proposed method for compressing StarGAN-v2 will be mentioned in the

next chapter.
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Chapter 4

Method

This chapter provides our proposed algorithm in detail. We look at all of the architectural

changes needed to obtain efficient models in section 4.1. Section 4.2 implements a style

discriminator network that is essential for the transfer of teacher knowledge to the student

mapping network. In order to guide the effective student model towards convergence, sec-

tion 4.3 implements all the required knowledge distillation losses. Finally, we explain the

complete aim of our training system in section 4.4.

4.1 Efficient Architecture Development

Knowledge distillation is most successful when there is a high degree of correlation between

teacher and student model architectures. Therefore, we use the original generator, discrim-

inator, style encoder,and mapping network as our baseline student architectures. Since our

primary aim is to obtain memory efficient networks for resource constrained environments,

we focus on altering the baseline models with efficient layers and reduced channels.

4.1.1 Residual Blocks (ResBlk)

Residual Blocks (ResBlk) [11] are used extensively in StarGAN-v2 architectures. Figure 4.1

displays all the layers of a typical residual block used for downsampling the input activation

maps, with the regular convolutional layers being computationally expensive.
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Stride = 1
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Stride = 2
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Figure 4.1: An illustration of intermediate layers of a Residual Blocks used for encoding

4.1.2 Mobile Residual Blocks (MobileResBlk)

Mobile Residual Blocks (MobileResBlk) contain efficient depthwise convolution and point-

wise convolution [7] layers. The former is a spatial convolution while the latter is a channel

wise convolution that operates on the channel dimensions. MobileResBlks are used in place

of all the ResBlks for the encoding parts of all the modules of StarGAN-v2.

x

Average Pool,
Stride = 2

Average Pool, Stride = 2

Instance
Norm ReLu Depthwise Separable Conv 3*3, Stride = 1 Pointwise Conv 1*1, Stride = 1

Instance
NormReLuDepthwise Separable Conv 3*3, Stride = 1

Pointwise Conv 1*1, Stride = 1 + F(x)

Figure 4.2: An illustration of intermediate layers of a Mobile Residual Blocks used for
encoding

4.1.3 Generator

Generator contains multiple residual blocks for encoding and decoding. The network is

defined to have a maximum channel width for each layer. Table 4.1 displays an example of

original generator architecture with 512 maximum number of channels [6]. All the residual

blocks used for encoding with are replaced with mobile residual blocks. The maximum

number of channels is obtained empirically on standard dataset performance. Table 4.2

displays the proposed generator architecture with 128 maximum number of channels for

any intermediate convolution layer.
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LAYER RESAMPLE NORM OUTPUT SHAPE PARAMETERS

RGB Image - - 256× 256× 3 0

Conv1× 1 - - 256× 256× 64 1792
ResBlk AvgPool IN 128× 128× 128 119232
ResBlk AvgPool IN 64× 64× 256 476032
ResBlk AvgPool IN 32× 32× 512 1902336
ResBlk AvgPool IN 16× 16× 512 4721664

ResBlk - IN 16× 16× 512 4721664
ResBlk - IN 16× 16× 512 4721664
ResBlk - AdaIN 16× 16× 512 4852736
ResBlk - AdaIN 16× 16× 512 4852736

ResBlk Upsample AdaIN 32× 32× 512 4852736
ResBlk Upsample AdaIN 64× 64× 256 2000896
ResBlk Upsample AdaIN 128× 128× 128 525312
ResBlk Upsample AdaIN 256× 256× 64 143872
Conv1× 1 - - 256× 256× 3 323

Total 33892995

Table 4.1: Original Generator architecture with 512 as maximum channel width

LAYER RESAMPLE NORM OUTPUT SHAPE PARAMETERS

RGB Image - - 256× 256× 3 0

Conv1× 1 - - 256× 256× 64 1792
MobileResBlk AvgPool IN 128× 128× 128 22208
MobileResBlk AvgPool IN 64× 64× 128 36096
MobileResBlk AvgPool IN 32× 32× 128 36096
MobileResBlk AvgPool IN 16× 16× 128 36096

MobileResBlk - IN 16× 16× 128 36096
MobileResBlk - IN 16× 16× 128 36096
ResBlk - AdaIN 16× 16× 128 328448
ResBlk - AdaIN 16× 16× 128 328448

ResBlk Upsample AdaIN 32× 32× 128 328448
ResBlk Upsample AdaIN 64× 64× 128 328448
ResBlk Upsample AdaIN 128× 128× 128 328448
ResBlk Upsample AdaIN 256× 256× 64 143872
Conv1× 1 - - 256× 256× 3 323

Total 1990915

Table 4.2: Proposed Generator architecture with 128 as maximum channel width

4.1.4 Style Encoder

The style encoder includes numerous residual blocks and FC layers that are shared between

all branches of the domain. Table 4.3 demonstrates the original style encoder network

with a maximum 512 channel count on every hidden layer. All residual blocks are replaced

29



with mobile residual blocks, and the maximum channel count is obtained empirically on

standard dataset performance. Table 4.4 shows the 128 maximum number of channels in

our proposed style encoder architecture.

LAYER RESAMPLE NORM OUTPUT SHAPE PARAMETERS

RGB Image - - 256× 256× 3 0

Conv1× 1 - - 256× 256× 64 1792
ResBlk AvgPool - 128× 128× 128 118976
ResBlk AvgPool - 64× 64× 256 475520
ResBlk AvgPool - 32× 32× 512 1901312
ResBlk AvgPool - 16× 16× 512 4719616
ResBlk AvgPool - 8× 8× 512 4719616
ResBlk AvgPool - 4× 4× 512 4719616

LReLU - - 4× 4× 512 0
Conv4× 4 - - 1× 1× 512 4194816
LReLU - - 1× 1× 512 0

ReShape - - 512 0
Linear×3 - - 3× 64 98496

Total 20949760

Table 4.3: Original Style Encoder architecture with 512 as maximum channel width

LAYER RESAMPLE NORM OUTPUT SHAPE PARAMETERS

RGB Image - - 256× 256× 3 0

Conv1× 1 - - 256× 256× 64 1792
MobileResBlk AvgPool - 128× 128× 128 21952
MobileResBlk AvgPool - 64× 64× 128 35584
MobileResBlk AvgPool - 32× 32× 128 35584
MobileResBlk AvgPool - 16× 16× 128 35584
MobileResBlk AvgPool - 8× 8× 128 35584
MobileResBlk AvgPool - 4× 4× 128 35584

LReLU - - 4× 4× 128 0
Conv4× 4 - - 1× 1× 128 4194816
LReLU - - 1× 1× 128 0

ReShape - - 128 0
Linear×3 - - 3× 64 262272

Total 488704

Table 4.4: Proposed Style Encoder architecture with 128 as maximum channel width
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4.1.5 Mapping Network

Mapping network comprises several FC layers shared between all domain branches with

ReLU non-linearity. In the intermediate layers, the network has a limit on the overall

number of hidden modules. Table 4.5 displays the original 512 maximum hidden node

architecture. We get a similar architecture with empirically obtained maximum hidden node

count on standard dataset efficiency. Table 4.6 shows our proposed network, decreasing

the maximum number of hidden nodes to 128.

TYPE LAYER ACTIVATION OUTPUT SHAPE PARAMETERS

Shared Latent z - 16 0

Shared Linear ReLU 512 8704
Shared Linear ReLU 512 262656
Shared Linear ReLU 512 262656
Shared Linear ReLU 512 262656

Unshared Linear ReLU 512 262656
Unshared Linear ReLU 512 262656
Unshared Linear ReLU 512 262656
Unshared Linear - 64 32832

Total 1617472

Table 4.5: Original Mapping Network architecture with 512 as maximum hidden nodes

TYPE LAYER ACTIVATION OUTPUT SHAPE PARAMETERS

Shared Latent z - 16 0

Shared Linear ReLU 128 2176
Shared Linear ReLU 128 16512
Shared Linear ReLU 128 16512
Shared Linear ReLU 128 16512

Unshared Linear ReLU 128 16512
Unshared Linear ReLU 128 16512
Unshared Linear ReLU 128 16512
Unshared Linear - 64 8256

Total 109504

Table 4.6: Proposed Mapping Network architecture with 128 as maximum hidden nodes
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4.2 Style Discriminator

The mapping network creates style codes from latent codes based on random Gaussian noise.

We introduce the style discriminator as seen in Figure 4.3 in order to transfer knowledge

from teacher to student mapping network via adversarial learning [42]. It is a multi-task

network which contains multiple linear output branches, one for each domain. As shown

in Figure 4.4, each branch of the style discriminator learns a binary classification that

determines if the style code is created by adversarial loss by the teacher mapping network

or the student mapping network of its domain. The style discriminator capacity is close

to the student mapping network. For non-linear activation Leaky-ReLU layers are used in

intermediate layers.
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Linear Output Unit for Each Domain

Domain Label

Figure 4.3: Workflow of Style Discriminator. The input domain specific style code is clas-
sified as originated from teacher or student mapping network.
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Figure 4.4: Flowchart of style code distillation in adversarial setting.

4.3 Distillation Losses

Inspired by the success of knowledge distillation in recent works [6, 33, 36, 4, 40], we add

multiple model distillation losses to enforce student modules to mimic the behaviour of orig-

inal networks of StarGAN-v2 framework. We do not use a pre-trained teacher discriminator

in our training.

Denoting our pre-trained teacher generator as GT , style encoder as ET , mapping network

as FT and similarly, student generator as GS , style encoder as ES , mapping network as FS ,

image discriminator as D, and style discriminator as DS .

Let X , Y be the sets of images and possible domains and Z be the set of all possible latent

codes. During training, we randomly sample an image x ∈ X with its original domain label

y ∈ Y, two latent codes z1 ∈ Z, z2 ∈ Z, and a target reference image x̃ ∈ X with its target

domain label ỹ ∈ Y. We generate target style codes using teacher networks:

sz1 = FT (z1, ỹ) sz2 = FT (z2, y) sx̃ = ET (x̃, ỹ) sx = ET (x, y)
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4.3.1 Image Adversarial Losses

We generate images from GT and GS using sz1 , sx̃, and x. The image discriminator D

learns to assess the divergence between images generated by GT and GS . D maximizes the

divergence, while GS minimizes it as shown in Eqs. (31) and (32). In this way, GS learns

to mimic GT implicitly.

L1GS ,D
= Ex,z1,ỹ[log(Dỹ(GT (x, sz1)) + log(1−Dỹ(GS(x, sz1)))] (31)

L2GS ,D
= Ex,x̃,ỹ[log(Dỹ(GT (x, sx̃)) + log(1−Dỹ(GS(x, sx̃)))] (32)

Teacher Style
Encoder

Target
 Domain

Label

Teacher Style
Encoder

Student Image Discriminator

REAL FAKE

Target Reference Image

Teacher
Generator

Student
Generator

Source
Image

Figure 4.5: Flowchart of reference-guided image synthesis by teacher and student.

4.3.2 Style Adversarial Losses

We generate style codes from FS using z1, z2, y, and ỹ. The style discriminator DS learns

to assess the divergence between style codes generated by FT and FS . DS maximizes the
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Figure 4.6: Flowchart of latent-guided image synthesis by teacher and student.

divergence, while FS minimizes it as shown in Eqs. (33) and (34). In this way, FS learns

to mimic FT implicitly.

L1FS ,DS = Ez1,ỹ[log(DS
ỹ (sz1)) + log(1−DS

ỹ (FS(z1, ỹ)))] (33)

L2FS ,DS = Ez2,y[log(DS
y (sz2)) + log(1−DS

y (FS(z2, y)))] (34)

4.3.3 Style Utilization Losses

The student style encoder ES learns to extract style code similar to target style codes over

the images generated by GS using sz1 , sx̃, and x. Meanwhile, GS learns to utilize target

style codes via L1 loss. This objective is similar to previous approaches [19, 20] as shown

in Eqs. (35) and (36).

L1GS ,ES
= Ex,z1,ỹ||sz1 − ES(GS(x, sz1), ỹ)||1 (35)
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L2GS ,ES
= Ex,x̃,ỹ||sx̃ − ES(GS(x, sx̃), ỹ)||1 (36)

4.3.4 Source Attributes Preservation Losses

The student generator learns to preserve the domain invariant characteristics of input image

x while generating images using sz1 and sx̃. We employ the cycle consistency loss [22, 23, 24]

by reconstructing the source image from generated images using sx via L1 loss as shown in

Eqs. (37) and (38).

L1GS
= Ex,z1,ỹ||x−GS(GS(x, sz1), sx)||1 (37)

L2GS
= Ex,x̃,ỹ||x−GS(GS(x, sx̃), sx)||1 (38)

4.4 Full Objective

Our full objective utilizes the original training objective loss Lorg from Eq. (12) along with

our distillation losses combined into minimax optimization setting as shown in Eq. (39).

min
GS ,ES ,FS

max
DS ,D

[Lorg + L1GS ,D
+ L2GS ,D

+ L1FS ,DS+

L2FS ,DS + L1GS ,ES
+ L2GS ,ES

+ L1GS
+ L2GS

]

(39)

4.5 Summary

In this chapter, in our proposed approach, architectural adaptation to StarGAN-v2 networks

for efficiency and loss function for distillation was explained. Experimental analyses of our

research method and comparisons with the original StarGAN-v2 networks will be done in

the next chapter.
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Chapter 5

Experiments

This chapter contains information about the experiments performed to test the approach

suggested. The datasets and measurement metrics used for analysis are defined in sections

5.1 and 5.2. The specifics related to training are given in the 5.3 section. Finally, qualitative

and quantitative distinctions are made between the proposed methodology and the initial

framework in section 5.4.

5.1 Datasets

For our assessments, we use the datasets CelebA-HQ [18] and AFHQ [6]. As seen in the

Figure 5.1, the CelebA-HQ dataset is split into two male and female realms. As seen in

Figure 5.2, the AFHQ dataset comprises three cat, dog, and wildlife domains. As seen in

Table 5.1, we observe the train and validation splits. As originally used in StarGAN-v2,

all images are resized to 256× 256.

CelebA-HQ AFHQ
Male Female Cat Dog Wildlife

Train 10057 17943 5153 4739 4738

Val 1000 1000 500 500 500

Table 5.1: Train-Validation splits for CelebA-HQ and AFHQ datasets.
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Figure 5.2: Sample Training Images of AFHQ
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5.2 Evaluation Metrics

To measure the visual quality and the diversity of images produced, FID and LPIPS are

used. For comparison, the computational requirements and size of networks is also com-

puted. For latent-guided synthesis, each test image from a source domain is translated into

a target domain using 10 latent vectors sampled randomly from a regular Gaussian distri-

bution. Similarly, for reference-guided synthesis each test image from the source domain

is transformed using 10 reference images randomly sampled from the target domain test

collection.

5.2.1 FID

The FID is calculated between the translated images and training images in the target

domain. For each pair of image domains (e.g. female, male for CelebA-HQ), the FID values

are measured and recorded the average value separately for reference-guided synthesis and

latent-guided synthesis.

5.2.2 LPIPS

The average pair distance is determined between all outputs produced from the same input

(i.e. 45 pairs). Finally, for reference-guided synthesis and latent-guided synthesis, the

LPIPS is computed separately by means of averages over all test images.

5.2.3 MACs and Parameter Count

The total number of parameters combined in the Generator, Style Encoder, and Mapping

Network are listed as the framework size. Similarly, by aggregating MACs count of a single

forward pass of each module, the total computing cost for the system is calculated.

5.3 Implementation Details

Details regarding the training parameters, data augmentation and network parameters is

given below:
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5.3.1 Training Parameters

Each experiment was run on a Tesla P100 32GB GPU containing Cuda (10.0), Python

(3.8.5), Numpy (1.19.1) and Pytorch (1.6.0). A batch size of 8 is used and training is

performed for 100K iterations with checkpoints stored after each 10K iterations in each

experiment. Each training cycle takes approximately 3 days. Adam optimizer [43] is used

with β1 = 0 and β2 = 0.99. For training without distillation, the learning rates for G, D

and E are set to 10−4, while that of F is set to 10−6, whereas with distillation the learning

rates for all the networks is set to 10−4. All the experiments are performed with a fixed

random seed value 777.

5.3.2 Data Augmentation

Following data augmentation techniques are applied on the images of both source and target

domains:

• Images are horizontally flipped with a probability of 0.5.

• A random crop of Size ∈ [0.8, 1.0] and Aspect Ratio ∈ [0.9, 1.1] is extracted from

original image and resized to 256× 256.

5.3.3 Loss Parameters

For CelebA-HQ, λsty = 1, λds = 1, and λcyc = 1, and for AFHQ, λsty = 1, λds = 2, and

λcyc = 1 are used. To stabilize the training, the weight λds is linearly decayed to zero over

the 100K iterations. A non-saturating adversarial loss with zero-centered gradient penalty

is used for training.

5.3.4 Network Parameters

The weights of all the networks are initialized with He [44] initialization and all biases are

set to zero, except for the biases associated with the scaling vectors of AdaIN that are set

to one. Exponential Moving Averages (EMA) is applied on all the modules excluding the

Discriminator’s parameters. Lengths are set at 16 and 64 for the latent code and style
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code. Pretrained networks with maximum hidden layer channels set to 512 are used as

teacher networks. In order to control the capacity of the whole framework α is defined as a

single global parameter for the maximum number of channels in convolution layers and the

maximum number of hidden nodes in linear layers for all the networks. Experiments are

done with different values of α ∈ [64, 96, 128, 160] and the score of best scoring checkpoint

is reported after evaluation of all the checkpoints for each α.

5.4 Results

In Tables 5.2 and 5.3 a summary of evaluation scores on test images by using our proposed

method with different values of α on both CelebA-HQ and AFHQ datasets is reported.

At α = 64 and 96 we can see a huge drop in performance whereas the scores at α = 128

and α = 160 are close to that of the original method. We obtain a higher compression

rate at α = 128 compared to α = 160, thus achieving a better balance of compression and

performance. Figures 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 display images generated by

the original and our proposed method at α = 128, for reference-guided and latent-guided

image synthesis on test images. At α = 128, our method compresses original StarGAN-v2

framework by more than 20× in size and by more than 5× in MACs and produces images

with high quality and diverse styles across all domains on both CelebA-HQ and AFHQ

datasets as good as the original StarGAN-v2.

5.5 Summary

In this chapter, details related to standard datasets and training parameters used have been

listed. Then the performancee of networks trained using our proposed method at various

capacities was compared with original networks. In the next chapter, the potential scope

of our research work will be provided.
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Dataset Method
Latent-Guided Reference-Guided

Synthesis Synthesis
FID LPIPS FID LPIPS

AFHQ

Original 16.09 0.451 19.73 0.431
Ours (α = 64) 26.65 0.492 30.49 0.448
Ours (α = 96) 23.52 0.446 24.21 0.425

Ours (α = 128) 20.69 0.437 21.60 0.415
Ours (α = 160) 20.95 0.421 21.32 0.408

CelebA-HQ

Original 13.76 0.451 23.88 0.388
Ours (α = 64) 20.69 0.423 27.17 0.381
Ours (α = 96) 19.30 0.425 26.23 0.382

Ours (α = 128) 18.41 0.417 25.18 0.385
Ours (α = 160) 18.91 0.419 26.24 0.380

Table 5.2: Quantitative evaluation of our proposed method on validation images. FID(the
lower the better) and LPIPS (the higher the better) for both latent and reference guided
synthesis are reported.

Dataset Method
Size (M) MACs (G)

(E+G+F) (E+G+F)

AFHQ

Original 58.10 65.30
Ours (α = 64) 0.81 (71×) 5.37 (12×)
Ours (α = 96) 1.62 (35×) 8.54 (7×)

Ours (α = 128) 2.71 (21×) 11.53 (5×)
Ours (α = 160) 3.94 (14×) 13.47 (4×)

CelebA-HQ

Original 66.82 62.03
Ours (α = 64) 0.89 (75×) 5.35 (11×)
Ours (α = 96) 1.79 (37×) 8.09 (7×)

Ours (α = 128) 3.00 (22×) 10.92 (5×)
Ours (α = 160) 4.40 (15×) 12.49 (4×)

Table 5.3: Individual size and MACs of generator (G), style encoder (E), and mapping
network (F) combined are reported for networks trained with our proposed method.
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Figure 5.3: Reference-guided image synthesis using original networks of AFHQ test images.
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Figure 5.4: Reference-guided image synthesis using proposed (α=128) networks of AFHQ
test images.
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Figure 5.5: Reference-guided image synthesis using original networks of CelebA-HQ test
images.
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Figure 5.6: Reference-guided image synthesis using proposed (α=128) networks of
CelebA-HQ test images.
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Source Images

Figure 5.7: Latent-guided image synthesis using original networks of AFHQ test images.
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Source Images

Figure 5.8: Latent-guided image synthesis using proposed (α=128) networks of AFHQ
test images.
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Source Images

Figure 5.9: Latent-guided image synthesis using original networks of CelebA-HQ test
images.
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Source Images

Figure 5.10: Latent-guided image synthesis using proposed (α=128) networks of CelebA-
HQ test images.
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Chapter 6

Conclusions and Future Work

This chapter will give the conclusion and future work of this thesis.

6.1 Conclusions

In this thesis we examined the problem of StarGAN-v2 deployment in resource constraint

environments. We explored recent techniques on compressing GANs and defined the need

to develop a novel approach to obtain light-weight StarGAN-v2 networks. This work con-

tributes to a method of compressing a multi-network framework. We also introduced style

discriminator by drawing ideas on distilling knowledge via adversarial loss. We also intro-

duced efficient architecture for different modules of StarGAN-v2. These models are intended

to be memory efficient as well as applicable to different datasets. Finally, we looked at the

image translation performance of student models trained using our proposed knowledge

distillation based method.

The core contribution of our work is in defining an end-to-end training algorithm to dis-

till the knowledge from a multi-network framework. Experimentally, we observed that at

a compression factor of approximately 20× in size and 5× in MACs, a reasonable bal-

ance between compression and performance is obtained. Additionally, we examined the

performance of networks at different network capacities and observed that the FID score

improvements reduces upon increasing the capacity, a potential drawback to our approach.
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6.2 Future Work

Concerning the future work, we plan on extending this work to explore following major

ideas:

(1) Include neural architecture search as a part of optimization to obtain a more compet-

itive compression factor without reducing performance.

(2) Explore techniques to filter the knowledge from teacher networks. Not all images and

style codes generated from teacher networks are of reasonable quality to be distilled.
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