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ABSTRACT

Computational Learning Framework for Carbon Emissions 
Predictions Incorporating a RReliefF Driven Features Selection and 
an Iterative Neural Network Architecture Improvement

Antonio Marcio Ferreira Crespo, Ph.D. 

Concordia University, 2020 

Environmental protection is being progressively considered as paramount condition for the 

planet's continued habitability. After the Kyoto Protocol signature in 1997, governments, industry 

stakeholders and academia began to work on the development of effective and efficient 

environmentally driven policies and economic mechanisms, and the proper design of such 

parameters is critically dependent on carbon emissions projections. In such scenario, inaccurate 

carbon emissions predictions may be one of the root factors leading to the overall ineffectiveness 

of the European Union environmental regulatory framework.  

Therefore, the present thesis introduces a novel computational learning framework for 

carbon emissions prediction incorporating a RReliefF driven features selection and an iterative 

neural network architecture improvement. Our learning framework algorithmic architecture 

iteratively chains the features selection process and the backpropagation artificial neural network 

(NN/BP) architecture design based on the data assessment accomplished by the RReliefF 

algorithm. Thus a better features set - NN/BP architecture combination is obtained for each 

specific prediction target.  

The implemented framework was trained and validated with real world data obtained from 

the European Union (Eurostats), the International Energy Agency, the Organization for Economic 

Co-operation and Development, and the World Bank. The validation dataset comprised 26 

potential predictors covering the period 1990 - 2014. Additionally, a case study was conducted 

with a new dataset comprising data obtained from the World	 Resources	 Institute's	 Climate	

Data	 Explorer	 (CAIT), and the World Bank database. The case study dataset comprises 24 

potential predictors covering the period 1970 - 2014. 

The learning framework also features an Explainable Artificial Intelligence (XAI) module 

that provides explanations of the predictions in terms of global features impact and local features 

weights. The global model explanations are computed by means of partial dependence functions, 
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while local model explanations are computed by means of the interpretable	model-agnostic	

explanations	(LIME)	algorithm. 

The framework evaluation against current mainstream machine learning models, and its 

benchmarking comparing to recent published researches on carbon emissions prediction indicates 

that our research contribution is relevant and capable of supporting the improvement of 

environmental policies. The learning framework outcomes are also expected to provide some 

ground for future researches targeting carbon emissions causality analysis, as well as potential 

improvements on both ANNs and XAI techniques. 
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1 INTRODUCTION 
Environmental protection is being progressively considered as paramount condition for the 

planet's continued habitability. In the 21st century reality, development and sustainability can no 

longer be treated independently, and all environment protection initiatives shall be supported. The 

United Nations (UN) Conference on Environment and Development Rio Eco92 - Earth Summit, 

held by Rio de Janeiro in 1992, can be considered the first global attempt towards a blueprint for 

sustainable development. Since then, a series of important events fostered the progressive 

construction of an effective climate change avoidance regulatory framework. 

After the Kyoto Protocol signature in 1997, governments, industry stakeholders and academia 

began to work on the development of effective and efficient environmentally driven policies and 

economic mechanisms. In such context, the European Union (EU) current efforts in support to 

sustainable development and climate change avoidance comprises three main challenges, i.e. 

GHG emissions reduction, consistent increment on energy production from renewables 

(Renewable Energy Directive - RED), and increase in energy efficiency (Energy Efficiency 

Directive - EED). 

Within the EU environment protection framework, the European Union Emissions Trading 

System (EU-ETS) was launched in 2005, and it currently covers approximately 45% of EU28 

(EU27) polluting emissions. The EU-ETS implementation observed a staggered approach, and 

2020 is the last year of the third phase, as presented below. 

• EU-ETS phase 1 (2005-2007) - the absence of reliable data on actual emissions and 

consequent wrong estimations led to allowances surplus: 

− Allocated allowances: 6370 MtCO2-eq; 

− CO2 emissions: 6215 MtCO2. 

• EU-ETS phase 2 (2008-2012): 

− Allocated allowances: 11373 MtCO2-eq; 

− Carbon emissions: 9613 MtCO2. 

• EU-ETS phase 3 (2013-2020): 

− Allowances surplus in 2017: 1.6 billion. 

The observed evolution of the EU trading system indicates it sustained and substantial 

structural supply-demand imbalance that kept distorting the market and compromising the 

scheme effectiveness as an emissions reduction driver  (Crespo and Wang, 2020). 
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Moreover, notwithstanding the systematic and continued EU28 efforts and policies addressing 

the reduction of carbon emissions, the EU member States' projections converge to an EU-wide 

total GHG emissions reduction of at most 32%, which falls short of the 40% target for 2030. EU-

ETS specific projections indicate that the stationary installations could reach a 10% reduction on 

emissions between 2020-2030, which is insufficient for the accomplishment of the 2030 

reduction target of 43% compared to 2005 levels (International Energy Agency, 2020). 

Thus, inaccurate carbon emissions predictions may be one of the root factors leading to the 

overall ineffectiveness of the EU28 (EU27) environmental regulatory framework. Therefore the 

achievement of the European Union ambitious targets will require additional policies resulting 

from new holistic and creative approaches targeting carbon emissions predictions. 

In such scenario, and considering the findings related to the EU-ETS experience, our 

contribution explored the following research opportunities: a) market based climate change 

avoidance policies efficiency could be relevantly improved by a better accuracy on carbon 

emissions trends prediction; b) there is a crucial need for more accurate carbon emissions 

predictions better supporting each climate change avoidance initiative (i.e. EU-ETS, EED, RED) 

by considering the particularities of industry / economy sectors under their coverage; and c) 

machine Learning methods and techniques have the potential capacity to grasp such 

particularities from economic and energy consumption indicators, what might lead to more 

realistic carbon emissions forecasts.  

1.1 Research Objectives 
The present document records the research leading to the development of the Computational 

Learning Framework for Carbon Emissions Predictions Incorporating a RReliefF Driven Features 

Selection and an Iterative Neural Network Architecture Improvement. The design of such 

iterative learning framework fulfills the following research objectives: a) improve overall carbon 

emissions forecast accuracy by the ad hoc definition of the predictors set and of the neural 

network architecture according to specific economy/industry sectors, in the context of the 

European Union; b) provide explanations on the impacts of the selected features on the carbon 

emissions predictions, in order to effectively support the design and implementation of 

environmental initiatives and policies. 

The developed framework incorporates the state-of the-art RReliefF (Robnik-Šikonja and 

Kononenko, 2003) algorithm for the assessment and selection of the most relevant environmental 
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related predictors set. Such algorithm was innovatively engineered with a backpropagation neural 

network, aiming at the conformation of a forecast framework able to improve its architecture 

according to the selected predicting features. The framework evaluation against current 

mainstream machine learning models, and its benchmarking comparing to recent published 

researches on carbon emissions prediction indicates that our research contribution is relevant and 

capable of supporting the improvement of environmental policies effectiveness. 

Moreover, in order to better support the design of more effective CO2 related environmental 

policies, the designed prediction framework incorporates a module featuring an Explainable 

Artificial Intelligence (XAI) approach. In such module we implemented partial dependence 

functions for global model explanations (Friedman, 2001), and the local interpretable model-

agnostic explanations (LIME) algorithm (Ribeiro et al., 2016), for local model explanations. The 

two techniques combined accomplished the explanation of the learning framework predictions. 

1.2 Research Contribution 
Within our research we designed and implemented a computational learning framework for 

carbon emissions predictions incorporating a RReliefF driven features selection method, and an 

iterative neural network architecture improvement. 

The Relief family of algorithms (Kira and Rendell,1992; Robnik-Šikonja and Kononenko, 

2003) incorporates the ability to probabilistically qualify non-linear features' correlations in a 

dataset.  Such features assessment is accomplished by a non-parametric and non-myopic 

technique that runs in low order polynomial time. 

The RReliefF algorithm outcomes are attributes weights that feature a probabilistic 

interpretation, i.e. the weights are proportional to the difference between two conditional 

probabilities: the probability of the attribute's value being different conditioned on the given 

nearest hit, and on the nearest given miss. 

Within the learning framework, prediction candidates (features) are ranked based on the 

weights  computed by RReliefF, and iteratively used to jointly define the best features set as well 

as the best neural network architecture, in terms of prediction accuracy.  

The designed framework is composed by four modules, i.e.: 1) The Features Engineering 

Module (FEM); 2) the Model Generation Module (MGM), 3) the Model Evaluation Module 

(MEM), and 4) the Predictions Explanation Module (PEM), which will be described in session 4.  

The Features Engineering Module and the Model Generation Module iteratively interdependent 
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design comprises the core innovative contribution of our research. 

The learning framework features and corresponding taxonomy of our research approach is 

introduced below. 

• Theory / Domain: Computational Learning Theory / Statistical Learning Theory. 

• Learning Approach: Machine Learning. 

• Machine Learning (ML) Method: Supervised Learning; 

− ML Algorithm: ANN - BP. 

• Data Processing: 

− Features Engineering Method: RReliefF-BFE; 

− Search Method: Backward Feature Elimination (BFE); 

− Feature ‘Quality’Assessment Algorithm: RReliefF; 

− Ad hoc feature selection defined per economy/industry sector. 

• Explainable AI Approaches / Methods: 

− Global Explanation: marginal effects analysis / partial dependence functions - partial 

dependence plots; 

− Local Explanation: perturbation approach / Local Interpretable Model-agnostic 

Explanations - LIME. 

 
To the best of our knowledge, our proposed learning framework is the first to implement an 

iterative Neural Network architecture improvement supported by a Backward Feature 

Elimination search method driven by the RReliefF algorithm. The framework iteratively learns 

(NN/BP architecture, features subset) on ad hoc basis, i.e. specifically for each economy / 

industry sector. 
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2 BACKGROUND AND RELATED WORK 
 

2.1 European Union Emissions Trading System Effectiveness Analysis 
According to the recent European Environment Agency (EEA) Indicator Assessment on GHG 

emission trends and projections (European Environment Agency, 2018a), total EU GHG 

emissions reductions, excluding those ones deriving from land use, land use change and forestry 

(LULUCF), reached 22.4% and 21.9% bellow 1990 levels in 2016 and 2017 respectively.  

The 2017 reduction is equivalent to 15.3% bellow 2005 levels, while GHG emissions from 

sectors covered by the EU-ETS in the same year were 26.4% below 2005 levels, when 

considering scheme scope adjustment of approximately 331 MtCO2 for 2005. The EU GDP 

though grew by approximately 53% between 1990 and 2016. The European Union emission 

intensity with reference to the EU GDP decreased by almost 50% between 1990 and 2014 

(European Commission, 2015a). Figure 1 presents both emissions and emissions intensity of the 

economy trends between 2005 and 2017. When considering 2005 as reference, emissions 

intensity in 2017 is approximately 30% lower. 

	

	
Figure 1 - EU28 historical GHG emissions with scope adjustment and emission intensity. (Crespo and Wang, 2020) 
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Thus it is possible to imply that the EU continues to successfully decouple GHG emissions and 

GDP, and it is clear that the emissions intensity of the European economy had a marked decrease 

that reflected, to some extent, the systematic and consistent greening efforts addressing GHG 

emissions, as well as energy production and efficiency. However, additional factors contributed 

for the occurrence of such phenomenon. 

The reductions on GHG emissions and emission intensity of economy accomplished since 

1990 is attributed to a combination of several factors, e.g. use of renewables, less carbon 

intensive fuels, improvements in energy efficiency, economy structural changes and economic 

recession. An increased contribution of services and a lower share of the energy-intensive 

industries for total GDP, in association with the 2008 economic crises are amongst the most 

influential reducing factors. According to the World Bank database, the value added by EU 

industry (as percentage of its GDP, with reference to basic prices) decreased from about 29% in 

1990 to 21.98% in 2017, when services and industry respectively contributed with 74% and 

25.6% of EU GDP, with reference to purchaser prices (Crespo and Wang, 2020).  

Along with the 2008 economic crisis and the structural shift observed in the European 

economy, the GHG emissions reduction accomplished by the EU are mostly due to contributions 

provided by the power generation / fuel combustion sector, throughout all European climate 

change avoidance initiatives. Hereafter then it will be demonstrated that it was particularly true 

for the EU-ETS. 

2.2 EU-ETS GHG Emissions Trends 
In 2005 EU-ETS emissions represented approximately 45% of EU verified emissions, while in 

2017 such coverage comprised 40% of the total, when its reduction reached 26.4% of 2005 

levels, which is already below the 2020 reduction target.  

When considering the scheme scope adjustment, the EU-ETS emissions presented an almost 

continuous decrease trend throughout its phases, as can be observed in figure 2. The scope 

adjustment was designed to reflect the scheme coverage evolution, as previously described in 

table 1, and as such, it compensates for the increment in the number of States, installations and 

gases observed within 2005-2012. 
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Figure 2 - EU-ETS historical CO2 emissions with scope adjustment. (Crespo and Wang, 2020) 

Notwithstanding overall marked reduction, the industry sectors' contributions for the 

decreasing trend were not proportional. Figure 3 demonstrates that the overall reduction was due 

to the power generation segment contribution. The segment is the greater emitter, responsible for 

approximately 66% of EU-ETS emissions in 2017, which represents a clear evolution from the 

72% contribution in 2005. 

Overall EU emissions related to the production of heat and electricity decreased from 4355 

MtCO2 in 1990 to 3352 MtCO2 in 2016. Energy efficiency itself has notably grown, i.e. in 2005 

EU production marked more than 900 Mtoe, with a consistent decrease trend leading to 

approximately 760 Mtoe in 2015 and 755.4 Mtoe in 2016. 

Specifically regarding the installations under the EU-ETS, in addition to the contributions 

verified during phase 1 and 2, the power sector decreased its emissions from 1345 MtCO2 by the 

end of 2012 to 1148 MtCO2 in 2017, or 14.65% in 5 years, equivalent to a reduction of 20.44% 

compared to 2005 levels, not considering the scope adjustment. The continued power sector 

decrease trend, in contrast to the other stationary installations trend, may be explained by a 

combination of two possibly correlated factors, i.e. changes in the energy source mix and a 

differentiated policy for carbon allowances allocation (Crespo and Wang, 2020). 

The energy sources mix is continuously shifting to greener profiles; in 2005 renewables and 

fossil fuels (coal, oil, and natural gas) represented approximately 13.3% and 57.3% of the energy 

matrix, reaching 27.9% and 41.5% by 2016. In the same year, approximately 30% of the 

electricity consumed in the EU derived from renewable sources (RES), with the RES mix mainly 
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composed by hydropower (36%), wind (32%), solar photovoltaic (12%), and solid biomass 

(European Environment Agency, 2018b). 

And although solid, liquid and gaseous biofuels still provide the largest share of total 

renewable energy, being heavily used in heating, electricity generation and transport, wind and 

solar energy relative shares are consistently rising: in 2016, the EU produced 26.0 Mtoe from 

wind energy, more than five-fold increase compared with 2004; in the same year, solar energy 

(photovoltaic and thermal) provided 13.4 Mtoe, more than 19 times as much as in 2004. And 

importantly, as aforementioned from 2013 on the sector was not eligible to be granted allowances 

for free. (Crespo and Wang, 2020). 

The aviation segment still contributes with a small part of to EU-ETS emissions, however it 

currently shows a sharp increase trend. Estimates contained in the EEA Annual EU GHG 

Inventory 1990-2016 and Inventory Report 2018 indicates that worldwide international aviation 

emissions increased 115% between 1990 and 2016 (European Environment Agency, 2018c). 

During phase 3, so far, EU-ETS aviation emissions showed a consistent increase trend, with a 

variation of approximately 21.5% between 2013 and 2017. 

The aviation permits (EUAA) distribution was practically set on a fixed basis for the current 

EU-ETS phase, i.e. 36 MtCO2 annually, with 82% of the permits allocated for free, 15% 

distributed by auctioning, and 3% reserved for distribution to fast-growing aircraft operators and 

new entrants. When considering EU28, phase 3 allowances supply for aviation covered so far 

64.7% of its needs; as a consequence, the aircraft operators had to buy and surrender EUAs as 

complement, with annual figures around 17 MtCO2. Thus, the aviation industry did not have 

relevant influence on global EU-ETS performance. 

The other industrial stationary installations had a reduction right after the 2008 economic 

crises, which was followed by a rebound to pre 2008 levels by the end of 2013; since then such 

emissions remained practically stable. According to the European Environment Agency (2018a), 

the uncertainty for GHG emissions calculation is about 6%, and for trends calculation is 1%. 

(Crespo and Wang, 2020). 
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Figure 3 - EU28 emissions by industry sector. (Crespo and Wang, 2020) 

Figure 4 allows for a more detailed analysis of the other stationary installations emissions 

trends. Cement and steel related industries presented an important emissions reduction during 

EU-ETS first two phases, which was followed by stagnation around 150 MtCO2 in the third 

phase. Chemical industries in turn presented a marked increase and reached almost 80 MtCO2 in 

2017, which provided compensation for the cement and steel industries reductions. 
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Figure 4 - EU28 emissions by industry segment, excluding the power generation sector. (Crespo and Wang, 2020) 

Therefore, it is clear that the EU-ETS did not effectively drive GHG emissions reduction 

among installations outside the energy sector, and the scheme policy for the allocation of 

allowances might give some clues about such phenomenon. According to the EEA 2018-14 report 

(European Environment Agency, 2018d), in 2017 the installations producing iron and steel, coke, 

and metal ore, as well as the ones producing pulp, paper and cardboard had a substantial balance 

of free allocations compared to verified emissions, while the plants producing cement and lime, 

and chemicals had parity. Such conditions may partially explain the trends shown in figure 3, as 

discussed hereafter. 

2.3 EU-ETS Allowances Allocation Issues 
In phase 1, the pilot phase, the absence of reliable data on actual emissions and consequent 

wrong estimations led to allowances surplus that drove its price to zero by 2007. 6370 MtCO2-eq 
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allowances were allocated between 2005 and 2007, for emissions of approximately 6215 MtCO2. 

In such scenario, carbon price dropped to near €0/tCO2, hence the scheme did not drive a 

consistent industry greener trend nor presented significant cost-effective results during the pilot 

phase. During this phase the EU-ETS covered approximately 45% of total EU GHG emissions 

and presented an increase trend, despite the slight reduction observed on total EU emissions. 

Phase 2 had a marked reduction on emissions. With reference to 2005 levels, by the end of 

phase 2 first year EU-ETS installations emitted 5% less; by the end in 2012 its emissions were 

17% lower. Nevertheless such relevant reduction shall be put under perspective, because when 

the emissions intensity indicator is taken into consideration, it becomes clear that the reduction 

was mostly due to lower production levels driven by the 2008 economic crises. As can be 

observed in table 2, the emission intensity of the economy was 72.90% in phase 2 first year and 

72.92% in its last year, while EU-ETS contribution to EU emissions as a whole remained stable 

on about 42%. 

Table 1. EU28 total  emissions, EU-ETS emissions, EU emission intensity 
of GDP, and EU-ETS emissions coverage. 

Year	

EU	(EU28)	Verified	

GHG	Emissions	

(with	scope	

adjustment)	

EU-ETS	(EU28)	

Verified	GHG	

Emissions	(with	scope	

adjustment)	

EMISSION	

INTENSITY	

(Emissions/GDP	-	

2005	reference)	

EU-ETS	

Emissions	

Coverage	

2005	 5220	 2345	 100.00%	 44.92%	

2006	 5208	 2351	 93.58%	 45.14%	

2007	 5160	 2371	 80.23%	 45.95%	

2008	 5042	 2230	 72.90%	 44.23%	

2009	 4673	 1977	 75.60%	 42.31%	

2010	 4777	 2024	 77.81%	 42.37%	

2011	 4620	 1984	 69.66%	 42.94%	

2012	 4557	 1943	 72.92%	 42.64%	

2013	 4462	 1882	 68.48%	 42.18%	

2014	 4291	 1787	 63.71%	 41.65%	

2015	 4319	 1776	 72.80%	 41.12%	

2016	 4293	 1724	 72.01%	 40.16%	

2017	 4317	 1727	 69.12%	 40.00%	
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Therefore, although reliable emissions data were available in phase 2, a new large surplus of 

allowances and credits once again heavily impacted carbon prices. Along with the 2008 economic 

crises, the Directive 2004/101/EC also contributed to the persistence of such undesirable market 

imbalance. Total allowances allocation, comprising EUAs, CERs and ERUs, achieved 11373 

MtCO2e whilst verified emissions registered 9613 MtCO2. Such oversupply of allowances and 

the consequential carbon low price continued to negatively impact the scheme effectiveness in 

terms of emissions reduction accomplishment.  

As a whole, the first EU-ETS two phases were marked by difficulties in stabilizing of the 

carbon price, when the total allocated allowances registered an annual average of approximately 

2088 MtCO2, and verified emissions registered an annual average of approximately 1978 

MtCO2. In the same period the volume of auctioned allowances (EUA) increased from 0 to 115 

MtCO2, while 663 MtCO2e CER and 375 MtCO2e ERU were injected in the market, what 

clearly contributed to the undesirable and persistent surplus of allowances. By the end of 2012, 

more than 1 billion allowances were rolled over to the next phase and, in such scenario low-

carbon investments were postponed. Figure 5 presents the verified emissions progression, 

allowances allocation and carbon price for phase 2 and phase 3 up to 2017. (Crespo and Wang, 

2020). 

	

	
Figure 5 - EU-ETS historical emissions, allocated and surrended allowances, and carbon price 2005-2017. 

(Crespo and Wang, 2020) 
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These findings led the European Commission to carry out a thorough review of the system in 

order to improve its effectiveness for the third and current phase. Auctioning and benchmark 

respectively replaced free allocation and grandfathering as driving principles for allowances 

allocation. Hence in the first year of phase 3 the volume of auctioned allowances soared to 1103 

MtCO2.  

In order to address the persistent allowances surplus, the Commission followed some other 

strategies such as back-loading, cap and annual linear reduction factor review, scope extension, 

restriction on international credits utilization and the implementation of discretionary carbon 

price management mechanisms. Additionally, the power sector installations were enforced to buy 

all of the required allowances. 

A back-loading measure enforced by the Commission regulation (EU) 176/2014 postponed the 

auction of 900 million allowances, initially planned to be available between 2014 (400 million), 

2015 (300 million) and 2016 (200 million), and supposed to be back on market in 2019 (300 

million) and 2020 (600 million). The allowances surplus then started to decline in 2015, when the 

European Union emitted 10% of world GHG, and kept declining for the next two years.  

Nevertheless, the drastic reduction on the amount of permits allocated for free and the change 

from grandfathering to benchmark as the free allocation driving policy did not immediately 

impact the permits surplus nor the carbon price. In 2017 the allowances surplus still was about 

1.6 billion, and this substantial structural supply-demand imbalance keeps distorting the market 

and compromising the scheme effectiveness as an emissions reduction driver, e.g. other stationary 

installations emissions are stagnated near 2005 levels.  

Such scenario compelled the EU to put in place, from 2019 on, the Market Stability Reserve 

(MSR), a market resilience-improving mechanism that incorporated the aforementioned back-

loaded allowances (European Environment Agency, 2018c). The MSR aims at neutralizing the 

allowance surplus negative impacts, and at improving the system's resilience to future shocks. 

Thus an automatic rule-set process will adjust the annual supply of allowances to be auctioned 

when the number of units in circulation is outside a predefined range, i.e.: a) whenever the 

surplus exceeds 833 million units, 12% of the allowances in circulation are to be placed in the 

MSR instead of being auctioned; b) whenever the surplus is less than 400 million units, 100 

million allowances are to be released from the MSR via future auctions. The Decision (EU) 

2015/1814 even prescribed that the back-loaded permits supposed to re-enter the market in 2019 
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and 2020, as well as unused NER permits were directly deposited in the MSR. 

Besides the lack of accurate emissions information during the pilot phase and the unforeseen 

economic crises during phase two, it is difficult to state clearly the reasons why the EU-ETS 

governance framework was not able to address properly the persistent structural market 

imbalance. Nevertheless, a study developed by the International Emissions Trading Association 

(IETA) indicates that the effects accrued from the RED and the EED might have contributed for 

such distortion. According to the IETA estimates (International Emissions Trading Association, 

2015), for the period between 2008 and 2020, EED contribution for the surplus could reach about 

515 MtCO2, while RED could have reduced the demand for allowances in approximately 210 

MtCO2. Therefore, the lack of proper assessment on environmental policies overlapping effects 

should be considered as one of the reasons why the EU-ETS performance is not as expected. 

Finally, the EU-ETS features in support to the avoidance of carbon leakage also seem to 

jeopardize the scheme effectiveness by contributing for the allowances surplus persistence. The 

list of flaws may include the inadequate criteria for the definition of the industry segments 

exposed to carbon leakage risks, and an overestimating process for allowance allocation. 

By the end of the current phase though, a combination of factors positively impacted the 

carbon market. The scheme design improvements put in place during phase 3 combined with the 

adjustments planned for phase 4 seem to have effectively addressed the concerns towards the 

structural allowances surplus, which motivated market speculation on the increasing need for 

permits to cope with ascending industrial output levels. As a result, EUA prices soared from 

€5.52/tCO2 in January 2017 to €24.10/tCO2 in December 2018. However, the emissions figures 

for 2018 are yet to be published, thus it is not possible to assess how the carbon prices recent 

upward movement impacted the EU-ETS emissions trend. 

In summary, notwithstanding the planned EU-ETS design evolution and the accompanying 

policy improvements as regards to the Effort Sharing Decision (ESD), the Renewable Energy 

Directive (RED) and Energy Efficiency Directive (EED), the EU member States' projections 

converge to an EU-wide total GHG emissions reduction of at most 32%, which falls short of the 

40% target for 2030. EU-ETS specific projections indicate that the stationary installations could 

reach a 10% reduction on emissions between 2020-2030, which is insufficient for the 

accomplishment of the 2030 reduction target of 43% compared to 2005 levels. 

Therefore the achievement of the EU ambitious targets will require additional policies 
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resulting from new holistic and creative approaches targeting carbon emissions trends prediction 

and efficient allowances allocation processes. (Crespo and Wang, 2020). 

2.4 Carbon Emissions Prediction - Relevant Related Work 
A myriad of researches analyzed carbon emissions behavior, and attempted to predict it by 

means of several different approaches, methods and techniques, and considering different 

emissions impacting factors (predictors). Econometric approaches were used by Guan et al. 

(2008), Anger (2010), Li and Lu (2015), Robalino-Lopez et al. (2016), Scott et al. (2017), Mi et 

al. (2017). And Game Theory emerged as one of the preferred approaches to address decision-

making and supply chain challenges linked to carbon emissions and carbon policies, as in Chang 

and Chang (2016), Yang et al. (2017), Yang et al. (2018), and Xu et al. (2018). 

Whereas General Equilibrium Theory (Wang and Wang (2015), Gavard et al. (2016), Zhang et 

al. (2017)), Operational Research (Cui et al. (2017), Hong et al. (2018)), Index Number Theory 

(Wang et al. (2017), Solaymani et al. (2019)), Variational Inequality Theory (Allevi et al. (2018)), 

and Grey Systems Theory (Jiang et al. (2020)) also played an important role in support of such 

studies, a significant number of researches opted for the application of techniques within the 

Statistical and Computational Learning domain. Table 2 provides a summary of the reviewed 

studies. 

Table 2. Methodologies, techniques, and predicting variables for carbon emissions 
predictions. 

AUTHOR PROBLEM SCOPE PROBLEM ANALYSIS 
METHODOLOGY TECHNIQUE 

Guan et al. 
(2008) 

Analysis of carbon emissions behavior considering 
features such as population, carbon intensity, economic 
production structure, consumption pattern and 
consumption per capita. 

Environmental Analysis / 
Macroeconomic Analysis 

IPAT / Input-output Analysis / 
Structural Decomposition 
Analysis 

Anger 
(2010) 

Carbon policies impacts on aviation industry CO2 
emissions. 

Econometrics. 
General Equilibrium Theory. 

Energy-Environment-Economy 
model for Europe (E3ME). 

Chang 
(2010) 

Carbon emissions prediction (predictors: crude oil 
consumption, coal consumption, natural gas 
consumption). 

Statistical Analysis / Learning 
Multivariate co-integration 
Granger causality / Vector Error 
Correction Modeling 

Wang & 
Wang (2015) 

Price and market strategies impacts on oil refinery, iron 
/ steel processing, cement production and power 
generation carbon emissions. 

General Equilibrium Theory. Computable General Equilibrium 
(CGE). 

Li & Lu 
(2015) 

Carbon price prediction (predictors: GDP, carbon 
intensity, energy consumption). 

Signal Analysis / 
Econometrics. 

Empirical Model Decomposition 
(EMD). / Generalized 
Autoregressive Conditional 
Heteroskedastic Process 
(GACH). 

A. Robalino-
Lopez et al. 
(2016) 

Carbon emissions prediction (predictors: GDP, energy 
consumption, economy structure, energy intensity). 

Systems Theory / 
Econometrics 

Systems Dynamics / Kaya 
Identity 

Chang & 
Chang. 
(2016) 

Carbon emissions quotas allocation. Information Theory (Entropy) / 
Game Theory. 

Entropy Analysis / Shapley 
value. 
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AUTHOR PROBLEM SCOPE PROBLEM ANALYSIS 
METHODOLOGY TECHNIQUE 

Gavard et al. 
(2016) 

Emissions Trading Systems integration impacts on 
carbon prices General Equilibrium Theory. Computable General Equilibrium 

(CGE) 
Yang et al. 
(2017) 

Supply chain competition considering price and 
product greening level. Game Theory. Stackelberg Game. 

Zhang et al. 
(2017) 

Emissions Trading Systems integration and carbon 
quotas allocation efficiency impacts on carbon 
emissions. 

General Equilibrium Theory. Computable General Equilibrium 
(CGE). 

Scott et al. 
(2017) Industry production driven carbon emissions. Econometrics. 

Environmentally-extended 
Multi-region Input-Output 
Analysis (EE-IOA). 

Hong et al. 
(2017) 

Carbon allowance price prediction (predictors: oil 
brent, natural gas, coal). Statistical Learning. 

Predictive Regression 
Bagged (bootstrap aggregation) / 
Decision Tree 

Cui et al. 
(2017) 

Environmental policies impacts on airline pollution 
abatement costs. OR Data Envelopment Analysis 

(DEA). 

Wang et al 
(2017) 

Carbon emissions prediction based on 
energy use (predictors: sectoral energy intensity, energy 
consumption structure, production structure 
(technology), total production output (economy 
growth), final demand structure (consumption pattern), 
total final demand). 

Index Number Theory 
(Decomposition Analysis). 

Index Decomposition Analysis 
(logarithmic mean Divisia index 
- LMDI) / Structural 
Decomposition Analysis (D&L 
method). 

Mi et al. 
(2017) 

Analysis of carbon emissions behavior considering the 
following drivers: population, carbon intensity, 
consumption pattern and consumption volume. 

Environmental Analysis / 
Macroeconomic Analysis 

IPAT / Input-output Analysis / 
Structural Decomposition 
Analysis 

Liu et al. 
(2017) Carbon emissions predictions. 

Computational Learning 
Theory / Statistical Learning 
Theory / Chaos Theory 

Neural Networks 

Zhou et al. 
(2017) 

Carbon emissions prediction (predictors: thermal 
power capacity, thermal power generation, urbanization 
rate, GDP) 

Computational Learning 
Theory / Statistical Learning 
Theory 

Neural Networks / Particle 
Swarm Optimization (PSO) 

Sun et al. 
(2017) 

Carbon emissions prediction (predictors: coal 
consumption, primary industry GDP, secondary 
industry GDP, tertiary industry GDP, population, 
urbanization level, transport, power generation, steel 
production, total investments, final consumption). 

Computational Learning 
Theory / Statistical Learning 
Theory / Grey Systems Theory 

Neural Networks / Principal 
Component Analysis (PCA) / 
Grey Model 

Hong et al. 
(2018) Supply chain structure impacts on carbon emissions. OR Dynamic Programming. 

Allevi et al. 
(2018) Closed supply chain carbon emissions analysis. Variational Inequality Theory. Partial Differential Equations. 

Yang et al. 
(2018) 

Dual supply chain remanufacturing strategy impact on 
carbon emissions. Game Theory. Stackelberg Game. 

Zhou et al. 
(2018) 

Carbon emissions prediction (predictors: GDP, 
urbanization rate, electricity consumption, coal 
consumption, thermal power capacity) 

Statistical Learning / Grey 
Systems Theory 

Support Vector Machine (SVM) / 
Particle Swarm Optimization / 
Grey Relation Analysis 

Xu et al. 
(2018) 

Centralized/decentralized dual channel supply chain 
pricing and emissions abatement strategies. Game Theory. Stackelberg Game. 

Li et al. 
(2018) 

Carbon emissions prediction (predictors: energy 
consumption, i.e. coal, oil, and natural gas). 

Computational Learning 
Theory / Statistical Learning. 

Neural Networks 
Support Vector Machine (SVM) 

Song et al. 
(2019) 

Carbon allowance price prediction (predictors: 
demand-related policies). Stochastic Processes. Fuzzy Stochastic Differential 

Model. 
Solaymani et 
al. (2019) Carbon emissions drivers analysis. Index Number Theory 

(Decomposition Analysis). 
Logarithmic Mean Divisia Index 
(LMDI) Method. 

Sun et al. 
(2019) 

Carbon emissions prediction (predictors: coal 
consumption, primary sector GDP, secondary industry 
GDP, tertiary industry GDP, final consumption, 
population, power generation, exports, urbanization 
level (%), investments, transportation, fuel and power 
purchase price index, cement production, urban green 
areas, total retail sales of consumer goods, finished 
steel production,). 

Computational Learning 
Theory / Statistical Learning. 

Support Vector Machine / 
Particle Swarm Optimization/ 
Principal Component Analysis / 
Neural Networks 

Jiang et al. Carbon emissions prediction (predictors: inward Grey Systems Theory Grey Multivariable Verhulst 
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AUTHOR PROBLEM SCOPE PROBLEM ANALYSIS 
METHODOLOGY TECHNIQUE 

(2020) foreign direct investment, outward foreign direct 
investment) 

model. 

Wen et al. 
(2020) 

Carbon emissions prediction: total population, 
household consumption level, urbanization level, GDP 
per capita, primary industry GDP, secondary industry 
GDP, tertiary industry GDP, commercial department 
GDP, total energy consumption, and total retail sales of 
social consumer goods. 

Computational Learning 
Theory / Statistical Learning 
Theory / Evolutionary 
Computation 

Neural Networks / Particle 
Swarm Optimization / Random 
Forest / Support Vector Machine 
/ Genetic Algorithm 

 
The literature review provided fundamental insights on the existing carbon emissions 

impacting factors and how to apply them in emissions prediction models. It was noted that the 

researches benefiting from Computational Learning and Statistical Learning theories were the 

ones providing more information regarding how the predictors (or the availability / choice of 

different predictors) impacts prediction confidence level and accuracy. 

The literature review also allowed us to identify some very important challenges related to 

carbon emissions prediction, when considering the amount and diversity of potential predictors. 

Firstly, a particular predictor correlation to a specific target varies depending on the scenario / 

region. Secondly the systematic generation of trustworthy carbon emissions information started 

in the 1990 decade, and its availability is restricted to some parts of the world. 

Thirdly, carbon emissions can be characterized as a worldwide multisectoral interconnected 

phenomenon, e.g. the pollution outcomes international flights may have contributing components 

spread in all continents if we consider the airline headquarters location, the flight route (origin-

overfly area-destination), the aircraft manufacturer (engines manufacturer, fuselage manufacturer, 

tires manufacturer, etc.), the fuel producer (petroleum, biofuels). 

As an additional example, consider, a huge transnational enterprise may move its heavily 

polluting production to regions where carbon policies are less strict or even inexistent (carbon 

leakage). In such scenario, carbon emissions prediction models should be scalable in order to 

progressively cover broader scopes and process more data. 

However, such required scalability would lead to the use of an increasing number predictors 

(predicting model features space dimension), what would not be accompanied by additional 

instances, once the availability of trustworthy data is limited. Thus, any intended predicting 

model should be capable of addressing data related characteristics such as non-linearity, 

heteroskedasticity, endogeneity, and dimensionality. 

The overall insights accrued from the literature review drove us to choose a computational 

learning / statistical Learning approach for the design of our prediction framework. It was also 
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noted that, considering the nature of carbon emissions related data, it would be generally 

impossible to work with any parametric learning method. Additionally, fitting high-dimensional 

statistical models often requires the use of non-linear parameter estimation procedures 

(Javanmard and Montanari, 2014). Therefore, we opted for Neural Networks as the core learning 

model of our proposed predicting framework. 
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3 RESEARCH DATA 
The level of trust attributed to the outcomes of any Artificial Intelligence / Machine Learning 

(ML) implementation is assessed by processes such as verification and validation. The ML 

verification is defined as the process of determining that a model implementation and its 

associated data accurately represent the developer's conceptual description and specifications. 

The ML validation, often referred as ML evaluation, is described as the process of determining 

the degree to which a model outcome and its associated data properly address the real world 

problem from the perspective of the intended uses of the model. 

Therefore, the applicability and the reliability of a ML solution is strictly dependent upon the 

proper combination ML algorithm - data, i.e. the characteristics of the data are crucial in 

determining the ML algorithm to be used, as well as the features engineering method. Hereafter 

then we present and analyze the data used to verify and validate the proposed iterative learning 

framework. 

3.1 Learning Framework Validation Data 
Our research focused on the European Union - 28 States (EU28), and used datasets comprising 

data obtained from the European Union (Eurostat), International Energy Agency (IEA),  

Organization for Economic Co-operation and Development (OECD), and World Bank (WB) 

databases. The Learning Framework performance evaluation and benchmarking dataset is 

described as follows. 
• Sources: Eurostat (2020), IEA (2020), OECD (2020), World Bank (2020). 
• Scope: 
− EU28; 
− 1990 – 2017; 
− Total CO2 emissions / sectoral CO2 emissions; 
− 26 economic / energy indicators (candidate predictors). 

• Data Aggregation Levels: 
− Regional; 
− Annual; 
− Total Emissions / Energy Industries / Industries / Commerce – Public Services / Transport 

/ Residential / Aviation. 
 
Tables 3 and 4 introduce the prediction targets and potential predictors explored in our 

research. 
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Table 3. Learning framework validation prediction 
targets - MtCO2 / IEA. 

T1	-	Total	CO2	Emissions	
T2	-	CO2	Emissions	from	Energy	Industries	
T3	-	CO2	Emissions	from	Energy	Intensive	Industries	
T4	-	CO2	Emissions	from	Commercial	and	Public	Services	
T5	-	CO2	Emissions	from	Transport	
T6	-	CO2	Emissions	from	Residences	
T7	-	CO2	Emissions	from	Aviation	

 
Table 4. Learning framework validation candidate predictors. 

A1	-	GDP	(constant	million	2010	USD	/	World	Bank)	

	

A14	-	Final	Consumption	(expenditure	of	households	
current	prices	million	Euro	/	Eurostat)	

A2	-	GDP(current	prices	million	Euro	/	Eurostat)	

	

A15	-	Final	Consumption	(expenditure	current	prices	
million	Euro	/	Eurostat)	

A3	-	Population	(Eurostat)	
	

A16	-	Primary	Energy	Consumption	(Mtoe	/	IEA)	

A4	-	Temperature	(HDD	/	Eurostat)	
	

A17	-	Final	Energy	Consumption	(MTtoe	/	IEA)	

A5	-	Temperature	(CDD	/	Eurostat)	
	

A18	-	Energy	Use	(KGOE	per	capita	/	World	Bank)	

A6	-	Technology	Innovation	(GERD	per	GDP	/	OECD)	

	

A19	-	Energy	Intensity	Level	of	Primary	Energy	(MJ	/	
per	GDP	PPP	2011	USD	/	World	Bank)	

A7	-	Technology	Innovation	(GERD	million	PPP	2010	USD	/	
OECD)	

	

A20	-	Energy	Intensity	Level	of	Primary	Energy	(Kgoe	
per	GDP	PPP	2011	USD	/	World	Bank)	

A8	-	Technology	Innovation	(GERD	per	GDP	/	World	Bank)	

	

A21	-	Energy	Intensity	of	GDP	(Kgoe	per	thousand	Euro	
Chain	Linked	Volumes	2010	/	Eurostat)	

A9	-	Technology	Innovation	(GERD	million	2010	USD	/	World	
Bank)	

	

A22	-	Coal	Total	Primary	Energy	Supply	(Ktoe	/	IEA)	

A10	-	Technology	Innovation	(GERD	per	GDP	/	Eurostat)	
	

A23	-	Oil	Total	Primary	Energy	Supply	(Ktoe	/	IEA)	
A11	-	Technology	Innovation	(GDP	per	direct	material	input	PPP	
2010	USD	per	kg	/	OECD)	

	

A24	-	Natural	Gas	Total	Primary	Energy	Supply	(Ktoe	/	
IEA)	

A12	-	Technology	Innovation	(GDP	per	direct	material	input	PPP	
current	USD	per	kg	/	OECD)	

	

A25	-	Biofuels	and	Waste	Total	Primary	Energy	Supply	
(Ktoe	/	IEA)	

A13	-	Final	Consumption	(gross	national	expenditure	current	
USD	/	World	Bank)	 		

A26	-	Non	Combustion	Electricity	Generation	(Ktoe	/	
IEA)	

 

3.2 Data Analysis and Descriptive Statistics 
In this section we provide a deeper analysis of our data, which corroborated our choice for the 

design of a learning framework combining neural networks and the RReliefF algorithm. Firstly 

we submitted the data to a distribution analysis in order to assess the suitability of parametric and 

non-parametric ML methods. Secondly, prediction targets and candidate predicators were 

assessed for potential correlation. 

3.2.1	Data	Distribution	Analysis	
The prediction targets and the candidate predictors were assessed for Normal, LogNormal, 
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Weibull, and Gamma distributions, by means of the following tests: a) Chi-Square, b) Anderson-

Darling, c) Cramer-von Misses, and d) Kolmogorov-Smirnov. The distribution analysis outcomes 

are presented in Appendix 1, with all tests indicating the non-parametric nature of our research 

data.  

Among such tests, the Chi-Square significance is the strongest indicator that a distribution is a 

good fit, where a value greater than 0.05 indicates that the data may likely fit the distribution, and 

the higher the significance the better the distribution fit. Table 5 presents the Chi-Square 

significance values for our dataset, what corroborate our conclusion on the need for a non-

parametric ML method such as NN.   

Table 5. Chi-Square distribution test significance values. 

Normal LogNormal Gamma Weibull Normal LogNormal Gamma Weibull
T1 0 0 0 0.0004 A1 0 0 - 0.0004
T2 0.0007 0 0.0001 0.0048 A2 0.2875 0.0819 - 0.411
T3 0.0699 0.0286 0.0449 0.1076 A3 0.2335 0.2319 - 0.1921
T4 0.0018 0.0017 0.0018 0.0006 A4 0.4418 0.4456 0.4445 0.1177
T5 0.2726 0.1867 0.2159 0.4149 A5 0.7403 0.9326 0.9064 0.6198
T6 0.0037 0.0006 0.0012 0.0317 A6 0.0122 0.0179 0.016 0.0025
T7 0.0013 0 0.0001 0.0052 A7 0.643 0.3706 - 0.7653

A8 0.001 0.0019 0.0015 0.0001
A9 0.5328 0.5129 - 0.5075
A10 0.0178 0.0246 0.0223 0.0032
A11 0.0236 0.0385 0.0332 0.0051
A12 0.0087 0.0203 0.0158 0.0016
A13 0.0001 0.0001 - 0.0001
A14 0.2646 0.0795 - 0.3873
A15 0.3037 0.082 - 0.4162
A16 0.5339 0.5798 0.5659 0.2806
A17 0.6358 0.6357 0.6377 0.5899
A18 0.3493 0.3115 0.3245 0.5072
A19 0.3418 0.1561 0.2235 0.4834
A20 0.4753 0.3137 0.3792 0.5814
A21 0.488 0.3151 0.3832 0.7899
A22 0.028 0.0316 - 0.0063
A23 0 0 - 0.0005
A24 0.1974 0.0572 - 0.3792
A25 0.0105 0.0935 - 0.0242
A26 0.0216 0.0108 - 0.1238

Chi-Square	Distribution	Test	-	Significance	Value
Prediction	
Target FeatureDistribution Distribution

 

3.2.1	Data	Correlation	Analysis	
Pearson's coefficient is a test that measures the statistical association between two continuous 

variables as a function of the covariance observed between them. It provides information about 

the magnitude of the association, or correlation, as well as the direction of the relationship. 

The results of the Pearson correlation test are bound by some important assumptions regarding 

the tested data, i.e. the variables should be normally distributed, a feature linearity and 
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homoskedasticity. The test outcomes are values ranging -1 to +1, where +1 indicates a perfect 

positive relationship, -1 indicates a perfect negative relationship, and a 0 indicates no relationship 

exists; strong correlations are indicated by values between ± 0.5 and ± 1. The research data was 

submitted to the test, and table 6 presents the potential predictors listed in order of correlation 

strength.  

Table 6. Pearson correlation test coefficients for prediction target T1. 

 

The analysis of the Pearson's test outcomes flags down some important insights. The predictor 

A18 (Energy Use) shows the strongest correlation with the total CO2 emissions, what is in 

accordance with the knowledge accrued from the literature review. However, as regards to the 

predictor A3 (population), the test result is counterintuitive, as it indicates a strong negative 

relationship between population and CO2 emissions; the literature review also contradicts such 

negative correlation. 

Figure 3 provides the visualization of the predictors A18 and A3, and corroborates the 

Pearson's test outcome. A deeper analysis of the test outcome raises another important flag, i.e. 

the predictor A4 (Temperature HDD) shows an irrelevant correlation with total CO2 emissions, 

and considering the research scope (Europe 28), such outcome seems inconsistent with the real-

world energy consumption dynamics. 

(*)	p-value	is	less	than	0.05
Predictor Coefficient p-value Predictor Coefficient p-value (**)	p-value	is	less	than	0.01
A18	(WB) 0.9668816 1.07E-09 *** A7	(OECD) -0.8692267 1.23E-05 *** (***)	p-value	is	less	than	0.001
A6	(OECD) -0.9513449 1.52E-08 *** A9	(WB) -0.8683733 1.29E-05 ***
A10	(EU) -0.9453401 3.38E-08 *** A25	(IEA) -0.8499821 3.05E-05 ***
A23	(IEA) 0.9381434 7.88E-08 *** A3	(EU) -0.8264887 7.92E-05 ***
A16	(IEA) 0.9357116 1.03E-07 *** A24	(IEA) 0.7928254 2.49E-04 ***
A8	(WB) -0.9335975 1.28E-07 *** A15	(EU) -0.7707846 4.74E-04 ***
A22	(IEA) 0.9290128 2.02E-07 *** A14	(EU) -0.7617238 6.06E-04 ***
A17	(IEA) 0.9266759 2.51E-07 *** A2	(EU) -0.7524735 7.70E-04 ***
A11	(WB) -0.9137785 7.54E-07 *** A1	(WB) -0.6586972 5.52E-03 **
A12	(OECD) -0.910324 9.84E-07 *** A13	(WB) -0.5127864 4.22E-02 *
A21	(EU) 0.9017806 1.82E-06 *** A4	(EEA) 0.3722717 1.56E-01
A19	(WB) 0.8834384 5.73E-06 *** A5	(EEA) -0.1650201 5.41E-01
A20	(WB) 0.8834384 5.73E-06 *** A26	(IEA) -0.0055333 9.84E-01

Pearson	Product-moment	Correlation	/	Target:	Total	CO2	Emissions	(MtCO2)
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Figure 6 - Exploratory visualization for T1, A18, A3, and A4. 
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The combined analysis of table 6 and figure 6 indicates potential non-linearity between the 

variables, as well as eventual additional violations of the Pearson's test assumptions. Thus there is 

the need for a more sophisticated correlation analysis of the data, and as such, we submitted it to 

the Spearman correlation test and to the Hoeffding’s D Statistic test. 

Spearman correlation uses ranks instead of assumptions about the distributions of the two 

variables and, as such, it analyzes the association between variables according to ordinal 

measurement levels. Thus, the test does not assume that the variables are normally distributed, 

and it can be applied to the cases in which the Pearson's assumptions (continuous-level variables, 

heteroskedasticity, and normality) are not fulfilled. 

Similarly to the Pearson's test, Spearman analysis outcomes are values between -1 and +1, and 

the test results are representative once the data can be ordinally arranged and the scores on one 

variable can be monotonically related to the other variable. 

The Hoeffding’s D test (Hoeffding, 1948) measures the independence of the data sets by 

computing the distance between the product of the marginal distributions under the null 

hypothesis and the empirical bivariate distribution. The test is able to identify linear / non-linear, 

monotonic / non-monotonic functions, and also non-functional relationships. The test outcome is 

a value between -0.5 and +1 where larger values indicate stronger relationships, and there is no 

information about the variables correlation direction. 

We then continued the analysis of the potential abnormal results related to the predictors A3 

and A4. Table 7 presents the results of the aforementioned tests, and it is possible to observe that 

A3 increases its relative correlation level as the test sophistication is improved. Moreover, 

Spearman test result corroborates the abnormal negative relationship between population and 

total carbon emissions. 
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Table 7. Potential predictors ranking according to the specified tests outcomes, for T1. 

 

As regards to A4, the joint results imply that none of the tests were able to properly assess the 

correlation level between temperature and CO2 emissions. In such scenario, the next data 

analysis step comprised the use of a state-of-the-art computationally efficient, non-myopic, and 

non-parametric algorithm able to indicate and weight complex patterns of association, i.e. the 

RReliefF algorithm. Once a target variable is defined, RReliefF scores the correlated variables 

with values ranging from -1 (worst) to +1 (best). 

Table 8 presents the outcomes of the aforementioned analysis. The Hoeffding’s D test and the 

RReliefF algorithm do not provide information about the variables correlation direction, thus 

Pearson’s and Spearman’s outcomes are presented in terms of absolute value. 

Although the RReliefF score for feature A3 does not contradict the information obtained by the 

other tests, the analysis of the score attributed to feature A4 indicates a very high level of relative 

correlation between temperature (A4) and CO2 emissions, whilst such condition was not 

apparent in the other tests outcomes. Consequently, such discrepancy between the tests was 

Predictor Coefficient p-value Predictor Coefficient p-value Predictor Coefficien
t

p-value
A18	(WB) 0.9668816 1.07E-09 *** A18	(WB) 0.970588 4.72E-10 *** A18	(WB) 0.721872 1.00E-08 ***
A6	(OECD) -0.9513449 1.52E-08 *** A23	(IEA) 0.917647 5.53E-07 *** A10	(EU) 0.578183 1.00E-08 ***
A10	(EU) -0.9453401 3.38E-08 *** A16	(IEA) 0.914706 7.01E-07 *** A6	(OECD) 0.573296 1.00E-08 ***
A23	(IEA) 0.9381434 7.88E-08 *** A17	(IEA) 0.9 2.05E-06 *** A16	(IEA) 0.526377 1.00E-08 ***
A16	(IEA) 0.9357116 1.03E-07 *** A6	(OECD) -0.894118 3.01E-06 *** A23	(IEA) 0.505369 1.03E-08 ***
A8	(WB) -0.9335975 1.28E-07 *** A10	(EU) -0.888072 4.37E-06 *** A21	(EU) 0.478291 2.59E-08 ***
A22	(IEA) 0.9290128 2.02E-07 *** A22	(IEA) 0.879412 7.19E-06 *** A8	(WB) 0.477941 2.62E-08 ***
A17	(IEA) 0.9266759 2.51E-07 *** A8	(WB) -0.797059 2.18E-04 *** A17	(IEA) 0.445612 7.88E-08 ***
A11	(WB) -0.9137785 7.54E-07 *** A21	(EU) 0.788235 2.86E-04 *** A22	(IEA) 0.439309 9.76E-08 ***
A12	(OECD) -0.910324 9.84E-07 *** A19	(WB) 0.782353 3.41E-04 *** A9	(WB) 0.433707 1.18E-07 ***
A21	(EU) 0.9017806 1.82E-06 *** A20	(WB) 0.782353 3.41E-04 *** A19	(WB) 0.43254 1.23E-07 ***
A19	(WB) 0.8834384 5.73E-06 *** A9	(WB) -0.755882 7.06E-04 *** A20	(WB) 0.421919 1.76E-07 ***
A20	(WB) 0.8834384 5.73E-06 *** A11	(WB) -0.752941 7.61E-04 *** A7	(OECD) 0.396008 4.26E-07 ***
A7	(OECD) -0.8692267 1.23E-05 *** A12	(OECD) -0.752941 7.61E-04 *** A3	(EU) 0.39274 4.77E-07 ***
A9	(WB) -0.8683733 1.29E-05 *** A3	(EU) -0.75 8.20E-04 *** A25	(IEA) 0.39274 4.77E-07 ***
A25	(IEA) -0.8499821 3.05E-05 *** A25	(IEA) -0.75 8.20E-04 *** A15	(EU) 0.377451 8.02E-07 ***
A3	(EU) -0.8264887 7.92E-05 *** A7	(OECD) -0.747059 8.82E-04 *** A11	(WB) 0.360177 1.44E-06 ***
A24	(IEA) 0.7928254 2.49E-04 *** A15	(EU) -0.726471 1.44E-03 ** A12	(OECD) 0.360177 1.44E-06 ***
A15	(EU) -0.7707846 4.74E-04 *** A2	(EU) -0.705882 2.25E-03 ** A2	(EU) 0.312208 7.39E-06 ***
A14	(EU) -0.7617238 6.06E-04 *** A14	(EU) -0.705882 2.25E-03 ** A14	(EU) 0.312208 7.39E-06 ***
A2	(EU) -0.7524735 7.70E-04 *** A24	(IEA) 0.688235 3.20E-03 ** A24	(IEA) 0.236111 1.49E-04 ***
A1	(WB) -0.6586972 5.52E-03 ** A1	(WB) -0.597059 1.46E-02 * A1	(WB) 0.197362 4.52E-04 ***
A13	(WB) -0.5127864 4.22E-02 * A13	(WB) -0.505882 4.56E-02 * A4	(EEA) 0.076564 2.07E-02 *
A4	(EEA) 0.3722717 1.56E-01 A4	(EEA) 0.4 1.25E-01 A26	(IEA) 0.015173 1.92E-01
A5	(EEA) -0.1650201 5.41E-01 A26	(IEA) 0.229412 3.93E-01 A13	(WB) 0.014006 2.01E-01
A26	(IEA) -0.0055333 9.84E-01 A5	(EEA) -0.091176 7.37E-01 A5	(EEA) -0.00852 5.27E-01

Pearson	Product-moment	Correlation	/	
Target:	Total	CO2	Emissions	(MtCO2)

Spearman	Rank-order	Correlation	/	Target:	
Total	CO2	Emissions	(MtCO2)

Hoeffding's	D	Correlation	/	Target:	Total	
CO2	Emissions	(MtCO2)
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further investigated. 

Table 8. Data correlation tests comparative perspective for target T1. 

 

The aggregation level of the data is a characteristic that may adversely bound the effectiveness 

of such tests. Therefore, the next research step comprised the analysis of the CO2 emissions in a 

lower level of aggregation, i.e. the test of emissions data of specific industry / economy sectors. 

Figure 7 shows the comparison between the emissions from commercial and public services (T4) 

and temperature (A4). 

Feature
Pearson	

Correlation
Spearman	
Correlation

Hoeffding's	D	
Correlation

RReliefF Feature
Pearson	

Correlation
Spearman	
Correlation

Hoeffding's	D	
Correlation

RReliefF

A1 0.6587 0.5971 0.1974 0.0021 A14 0.7617 0.7059 0.3122 0.0103
A2 0.7525 0.7059 0.3122 0.0187 A15 0.7708 0.7265 0.3775 0.0086
A3 0.8265 0.7500 0.3927 0.0217 A16 0.9357 0.9147 0.5264 0.0801
A4 0.3723 0.4000 0.0766 0.1016 A17 0.9267 0.9000 0.4456 0.0728
A5 0.1650 0.0912 -0.0085 -0.0181 A18 0.9669 0.9706 0.7219 0.0698
A6 0.9513 0.8941 0.5733 0.0520 A19 0.8834 0.7824 0.4325 0.0525
A7 0.8692 0.7471 0.3960 0.0295 A20 0.8834 0.7824 0.4219 0.0525
A8 0.9336 0.7971 0.4779 0.0392 A21 0.9018 0.7882 0.4783 0.0636
A9 0.8684 0.7559 0.4337 0.0319 A22 0.9290 0.8794 0.4393 0.0558
A10 0.9453 0.8881 0.5782 0.0281 A23 0.9381 0.9176 0.5054 0.0578
A11 0.9138 0.7529 0.3602 0.0553 A24 0.7928 0.6882 0.2361 0.1191
A12 0.9103 0.7529 0.3602 0.0609 A25 0.8500 0.7500 0.3927 0.0104
A13 0.5128 0.5059 0.0140 -0.0295 A26 0.0055 0.2294 0.0152 0.0771
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Figure 7 - Exploratory visualization for T4 and A4. 
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The similarities among the curves are relevant, and table 9 confirms such observation by 

presenting the results of the Hoeffding’s D correlation analysis, where one may observe the 

feature A4 listed as the most relevant one when T4 is the target variable. The application of the 

Hoeffding’s D test to a carbon emissions dataset featuring a lower level of aggregation confirmed 

the outcome of the previous  RReliefF analysis. 

Table 9. Hoeffding's D statistic test for prediction target T4. 

 

Based on such conclusions, the next research step consisted of the expansion of the RReliefF 

analysis to our research dataset in its entirety, while taking the carbon emissions with a lower 

level of aggregation, i.e. total emissions split into sectoral emissions (table 1). Table 10 presents 

the results of the RReliefF scoring for our research data.  

And still analyzing the feature A4, it is possible to observe a strong correlation towards the 

target T6 (residential emissions), what is confirmed by the exploratory visualization in figure 8. 

Such findings confirmed the applicability of the RReliefF algorithm to assess (score and rank) the 

correlation level of our research data, and qualified its use in our learning framework features 

engineering process. 

 

Rank Feature 	Measure Rank Feature 	Measure
1 A4 0.2464 6.94E-05 *** 14 A1 0.0716 2.46E-02 *
2 A16 0.2369 1.45E-04 *** 15 A9 0.0670 2.87E-02 *
3 A17 0.2055 3.57E-04 *** 16 A11 0.0663 2.94E-02 *
4 A24 0.1967 4.60E-04 *** 17 A12 0.0663 2.94E-02 *
5 A18 0.1406 2.63E-03 ** 18 A3 0.0587 3.82E-02 *
6 A20 0.1228 4.53E-03 ** 19 A25 0.0587 3.82E-02 *
7 A19 0.1094 7.01E-03 ** 20 A23 0.0579 3.93E-02 *
8 A6 0.1083 7.27E-03 ** 21 A15 0.0497 5.23E-02
9 A10 0.0957 1.10E-02 * 22 A7 0.0409 7.18E-02
10 A8 0.0909 1.29E-02 * 23 A22 0.0236 1.37E-01
11 A21 0.0847 1.58E-02 * 24 A13 0.0018 3.36E-01
12 A2 0.0758 2.12E-02 * 25 A26 0.0000 3.64E-01
13 A14 0.0758 2.12E-02 * 26 A5 -0.0412 1.00E+00

p-value p-value
Hoeffding's	D	Association	-	Prediction	Target	T4
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Table 10. RReliefF scores for the research validation dataset. 

 

 

 

Predictor T1 T2 T3 T4 T5 T6 T7
A1 0.0269 0.0441 -0.0015 -0.0334 0.0348 -0.0018 0.0147
A2 0.0264 0.0397 0.0078 -0.0228 0.0316 0.0048 0.0164
A3 0.0373 0.0543 0.02 -0.0283 0.0383 -0.0078 0.0248
A4 0.0469 0.0149 -0.002 0.0891 -0.0086 0.124 -0.0563
A5 -0.1044 -0.0813 -0.0378 -0.065 -0.0236 -0.0839 0.0176
A6 0.0528 0.0355 0.0437 0.0239 0.0241 0.0325 -0.007
A7 0.0425 0.0447 0.0078 -0.0093 0.0278 0.0223 0.0003
A8 0.0568 0.039 0.0532 0.0241 0.0257 0.035 -0.0069
A9 0.0512 0.0533 0.0046 -0.0024 0.0305 0.0271 0.0003
A10 0.0538 0.0396 0.0503 0.0171 0.0333 0.0294 -0.0095
A11 0.067 0.0664 0.0336 0.0025 0.0379 0.0246 -0.0038
A12 0.0656 0.069 0.0349 0.0052 0.0397 0.0275 -0.0049
A13 -0.0161 -0.0136 0.0239 0.0113 0.0154 -0.0284 0.072
A14 0.017 0.0272 0.0149 -0.0204 0.0272 0.0027 0.0131
A15 0.0185 0.0292 0.0158 -0.0204 0.0275 -0.003 0.0219
A16 0.0582 0.0417 0.0455 0.0612 0.0288 0.0486 0.0303
A17 0.0283 -0.0017 0.0298 0.1019 0.0182 0.064 0.013
A18 0.0403 0.0183 0.0279 0.0773 0.0255 0.0571 0.0058
A19 0.0615 0.0582 0.0199 -0.0009 0.0287 0.0424 0.005
A20 0.0197 0.0231 0.0012 -0.0125 0.0159 0.0181 -0.0148
A21 0.0685 0.0622 0.0254 0.0042 0.0283 0.0496 0.0028
A22 0.1227 0.1367 -0.017 -0.0373 0.0652 0.0334 0.0038
A23 0.0476 0.0231 0.0483 0.055 0.0237 0.056 -0.0251
A24 0.0018 -0.0023 0.0091 0.0759 0.0279 0.0519 0.0039
A25 0.0243 0.0326 0.0342 -0.0114 0.0271 -0.0008 0.0117
A26 -0.0316 -0.0168 -0.0262 0.0437 -0.0138 0.0143 -0.0057

Continuous	Target	and	Continuous	Predictors	Variable	Importance	Weight	Analysis_RReliefF
Predictor	Importance	on	Target	Variable
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Figure 8 - Exploratory visualization for T6 and A4
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4 RESEARCH METHODS 
Our research main outcome comprises the design and implemention a computational learning 

framework for carbon emissions predictions incorporating a RReliefF driven features selection 

method, and an iterative neural network architecture construction. 

The Relief family of algorithms (Kira and Rendell,1992; Robnik-Šikonja and Kononenko, 

2003) incorporates the ability to qualify attributes in a dataset as a function of the Euclidean 

distance computed between neighbouring instances. Such non-parametric and non-myopic 

algorithms are able to capture non-linear relationships, and run in low-order polynomial time.  

The algorithms outcomes are attributes weights probabilistically computed (Robnik-Šikonja 

and Kononenko, 2003). Figure 9 graphically presents the designed framework, composed by four 

modules: the Features Engineering Module (FEM), the Model Generation Module (MGM), the 

Model Evaluation Module (MEM), and the Prediction Explanation Module (PEM). 

4.1 Features Engineering and RReliefF Algorithm 
In the proposed learning framework, the features engineering and the model generation (i.e. 

NN architecture design) are iteratively accomplished by two modules, i.e. the Features 

Engineering Module (FEM) and the Model Generation Module (MGM), as can be observed in 

figure 9. 

The FEM accomplishes the data dimensionality and quality treatment. Such combined 

treatment is done by a RReliefF driven Backwards Feature Elimination (BFE) aiming at: a) 

selecting relevant predictors, in order to reduce the dataset features space and avoid the 

dimensionality curse; b) reducing the computational complexity of the learning algorithm 

featured in the MGM; c) improving the accuracy of predictions; d) facilitating the interpretation 

of results, and; e) reducing the data storage space. The feature selection process observes the 

notation presented in table11. 
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Figure 9 - Computational Learning Framework modules. 
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Table 11. RRelief algorithm notation. 

Number of training instances:	!					(1)	
  

 

 

 

 

  

  

 

  

 

 

 
 
The RReliefF Algorithm, as presented in figure 10, uses as input a vector of attribute values 

[𝑨𝑨] and predicted value ! for each training instance !, and provide as outcome a vector 𝑾𝑾 

containing the score of the attributes. 

	
Figure 10 - RReliefF algorithm (Robnik-Šikonja and Kononenko, 2003). 

Number of features (attributes):	!					(2)	
Number of training instances (user defined; ! < !) used to update !:	!					(3)	

Vector of Attributes (features):	!!,!!, . . . ,!!					(4)	
Instance Space (examples):	!!, !!, . . . , !!					(5)	
!!  ∈  !:	randomly selected target instance     (6)	

!(∙):	prediction value     (7)	 !: nearest instances	!!     (8)	
!!": weights for different	!(∙)      (9)	 !!": weights for different attribute      (10)	
!!"&!"[!]: weights for different prediction and different attribute      (11)	

!(!, !) = !!(!,!)
!!(!,!)!

!!!
     (12)	 !!(!, !) = !!

!"#$(!! ,!!)
!

!

    (13)	
!"#$(!! , !!):	rank of instance !! in a sequence of instances ordered by the distance from	!!     (14)	

!:	user defined parameter contolling the influence of the distance     (15)	
!"## (!, !!, !!) = !"#$% (!,!!)!!"#$% (!,!!)

!"#(!)!!"#(!)      (16)	
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As observed in the algorithm steps 8 and 9, RReliefF uses equation 16 for the iterative update 

of features weights according to theirs probabilistic relevance for the predictions. The intuition 

behind such weights computation as an expression of probabilistic relevance is conveyed by 

equation 17. 

![!] = 𝑃𝑃!"##$|!"##$ ∙ 𝑃𝑃!"##$
𝑃𝑃!"##$

−
(1− 𝑃𝑃!"##$|!"##$) ∙ 𝑃𝑃!"##$

1− 𝑃𝑃!"##$
          (17)	

 
In the formulation of equation 17, 𝑃𝑃!"##$ represents the probability of having different values 

of !  within the nearest instances, 𝑃𝑃!"##$  represents the probability of having a different 

prediction within the nearest instances, and 𝑃𝑃!"##$ | !"##$ represents the probability of having a 

different prediction given a different value of ! within the nearest instances. 

4.2 Iterative Neural Network Architecture Design 
Within the FEM, the initial features !!…  !!" (potential predictors) are scored by the RReliefF 

algorithm, the features then are indexed and ranked based on the attributed scores, what leads to a 

rearranged feature set. Next step, the interaction with the MGM starts, i.e. the rearranged features 

set is fed to the Backpropagation Neural Network Architecture (NN/BP), the network is trained 

and the vector containing the current learning framework status (features subset, NN/BP 

architecture, NN/BP prediction accuracy) is stored. Subsequently, new features subsets are 

created by backward feature elimination, the NN/BP is trained with the new subset, and the 

learning framework status vector is updated. The NN/BP featured in the MGM has the following 

characteristics: 

• Feed-forward network 𝜈𝜈(𝑥𝑥) defined as follows: 

𝜈𝜈(𝑥𝑥) ∶= 𝑓𝑓!(!!𝑓𝑓!!!(!!!!. . . 𝑓𝑓!(!!𝑥𝑥). . . ))          (18)	
• Number of layers: 3;  
• Hidden layer activation function (transfer function): logistic (sigmoid), defined as 

follows: 

𝑓𝑓!!!(𝑥𝑥!) =
1

1+ !!!!           (19)	

• Training method: backpropagation; 

• Normalization method: unit interval; 

• Training cost (loss) function: residual sum of squares, defined as follows: 
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𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑦𝑦! − 𝜈𝜈(𝑥𝑥!))!
!

!!!
          (20)	

where: 

𝑦𝑦! is the !!! value of the target variable; 

𝑥𝑥! is the !!! value of the predicting variable; 

𝜈𝜈(𝑥𝑥!) is the predicted value of 𝑦𝑦!. 

As previously mentioned, the FEM and the MGM interact in an iterative way, and such 

interaction allows for an innovative BFE/RReliefF driven improvement for the NN/BP, i.e. the 

number of neurons in the hidden layer is changed along with the features subsets, and the 

learning framework status vector is updated accordingly. Once framework stop conditions are 

achieved, the status vector encloses the best features subset and the best NN/BP architecture in 

terms of prediction accuracy. 

4.3 Learning Framework Evaluation 
As observed in figure 9, the Model Evaluation Module (MEM) built in the implemented 

learning framework features the best NN/BP architecture (MGM outcome) and feeds it with the 

evaluation dataset. The module also features three additional ML models (Support Vector 

Machine - SVM, Gradient Boosting Machine - GBM, and Random Forest - RF), which are used 

to complement (benchmarking) the learning framework performance evaluation. The results of 

the benchmarking are presented in the next subsection, along with the overall assessment of the 

proposed framework performance. 

4.3.1	Original	Contribution	
To the best of our knowledge, our proposed learning framework is the first to implement an 

iterative neural network architecture improvement supported by a Backward Feature Elimination 

search method driven by the RReliefF algorithm (Crespo et al., 2021).  

The framework iteratively learns (NN/BP architecture, features subset) on ad hoc basis, i.e. 

specifically for each economy / industry sector. The implemented framework evaluation / 

validation processes benefited from real world data accrued by the EU, OECD, IEA, and the 

World Bank. The whole dataset covers the period 1990 - 2017, and the training and test datasets 

were determined in accordance to the Pareto principle for data sampling. 

Table 12 presents the accuracy (Root Mean Square Error - RMSE for the test dataset) of the 

proposed learning framework for the totality of the EU28 CO2 emissions as well as for sectoral 
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emissions. The table also presents the accuracy for the experiment control NN/BP, the framework 

featuring NN/BP supported by plain BFE (NN/BP-BFE), and the framework featuring NN/BP 

supported by RReliefF driven BFE (NN/BP-RReliefF/BFE). 

The accuracy figures in table 12 demonstrate the improved performance of the proposed 

learning framework when compared to the control NN/BP, as well as to other possible framework 

designs. The table also presents the number of predictors in the learned features subset, and the 

number of neurons in the hidden layer. 

As observed in table 12, the proposed approach combining backward feature elimination, 

RReliefF feature qualification, and iterative improvement of the NN/BP architecture effectively 

boosted the carbon emissions prediction accuracy for the EU28 scope dataset. 

The computational complexity of the neural network is 𝑂𝑂(ℎ!), where ℎ is the number of 

hidden layers and ! is the number of features (predictors), and the training process converged in 

less than 100 epochs, with a learning rate of 0.1. The RReliefF algorithm computational 

complexity is 𝑂𝑂(!.!.!), where ! is the number of training instances, and ! is the number of 

training instances used by the algorithm to update the weights. The computational environment 

featured the CPU Intel i9-9900k supported by the GPU NVIDIA RTX 2080 (8Gb) and 32 Gb 

DDR4 RAM, and the whole prediction process took approximately 1 hour (average) per 

prediction target. Appendix 2 encloses complete information about the computational 

environment used in the research. 
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Table 12. Computational learning framework evaluation figures (Crespo et al., 2021). 

Industry	/	Economy	
Sector	

Model	Parameters	/	
Prediction	Accuracy	

Metric	
Methods	

	 	 NN	Control	 NN-BFE	
NN-

RReliefF/BFE	
Proposed	
Framework	

Total	Emissions	(T1)	

#Predictors	 26	 15	 17	 21	

#	Neurons	HL	 3	 3	 3	 7	

RMSE	(MtCO2)	 692.5226	 191.9399	 145.2302	 143.2545	

	 	 	 	 	 	

Energy	Industries	
Emissions	(T2)	

#Predictors	 26	 9	 24	 18	

#	Neurons	HL	 3	 3	 3	 7	

RMSE	(MtCO2)	 264.1396	 55.5251	 80.3972	 53.0494	

	 	 	 	 	 	

Industry	Emissions	
(T3)	

#Predictors	 26	 8	 12	 20	

#	Neurons	HL	 3	 3	 3	 8	

RMSE	(MtCO2)	 139.3530	 5.6810	 7.6481	 5.6749	

	 	 	 	 	 	

Commercial	and	
Public	Services	
Emissions	(T4)	

#Predictors	 26	 11	 5	 18	

#	Neurons	HL	 3	 3	 3	 5	

RMSE	(MtCO2)	 15.8050	 10.9382	 9.0678	 6.4312	

	 	 	 	 	 	

Transport	Emissions	
(T5)	

#Predictors	 26	 21	 14	 21	

#	Neurons	HL	 3	 3	 3	 5	

RMSE	(MtCO2)	 63.3391	 29.1528	 40.6110	 26.5271	

	 	 	 	 	 	

Residential	(T6)	

#Predictors	 26	 12	 12	 16	

#	Neurons	HL	 3	 3	 3	 5	

RMSE	(MtCO2)	 99.7645	 24.2505	 22.3417	 21.9795	

	 	 	 	 	 	

Aviation	(T7)	

#Predictors	 26	 19	 13	 12	

#	Neurons	HL	 3	 3	 3	 4	

RMSE	(MtCO2)	 6.9858	 6.9283	 6.9406	 6.9285	
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4.3.2	Learning	Framework	Validation	
The validation of the original contribution provided by the proposed learning framework 

consisted of two different analysis. Firstly, its outcomes were compared to three current 

mainstream ML models (i.e. SVM, GBM, RF) using our research dataset. Secondly, our accuracy 

figures were benchmarked against the results of recently published researches targeting carbon 

emissions prediction. 

In the validation process we worked with mean absolute percentage error - MAPE as the 

accuracy metric, and focused on the prediction target T1 (total CO2 emissions). Thus the best 

performing model (MAPE performance) designed by our proposed learning framework features 7 

neurons in the hidden layer, and 16 predictors out of the candidates presented in table 3, i.e.: A18, 

A4, A23, A16, A8, A17, A10, A6, A22, A12, A11, A25, A9, A7, A24, and A26. 

The trained framework achieved 2.28% accuracy performance (MAPE) on the test dataset, and 

table 13 allows us to benchmark the result of the proposed learning framework with the results of 

other NN/BP implementations.  

Table 13. Computational learning framework benchmarking figures (MAPE) for 
prediction target T1 - Total EU28 Carbon Emissions-NN/BP specific (Crespo et al., 2021). 

	
Method	
	

	
Proposed	

Framework	

NN/BP	
(Zhou	
et	al.,	
2017)	

NN/BP	
(Sun	et	

al.,	
2017)	

NN/BP-
CT	(Liu	
et	al.,	
2017)	

NN/BP
-IPSO	
(Zhou	
et	al.,	
2017)	

NN/BP	
(Zhou	
et	al.,	
2018)	

NN/BP	
(Sun	et	

al.,	
2019)	

NN/BP-
PCA	(Sun	

et	al.,	
2019)	

NN/BP-
RF	(Wen	

et	al.,	
2020)	

Scope	
EU28	 China	 China	 China	 China	 China	 China	 China	 China	

1990	
2017	

1993	
2014	

1980	
2014	

1960	
2011	

1993	
2014	

1995	
2014	

1990	
2016	

1990	
2016	

1997	
2017	

Test	Instances	(years)	 5	 5	 5	 5	 5	 5	 5	 5	 4	
#	Predictors	 16	(26)	 5	 11	 3	 5	 5	 24	 24	 7	(17)	
MAPE	 2.28	 5.07	 5.49	 3.43	 2.53	 3.72	 4.03	 2.87	 8.09	

 

Table 14 compares the result of our proposed framework with the results of three ML models 

(GBM, RF, SVM) supported by plain BFE, and using our research dataset, as well as against the 

results of recently published researches models other than NN/BP. 

 

Comparison	
Parameters	
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Table 14. Computational learning framework benchmarking figures (MAPE) for the 
prediction target T1 - Total EU28 Carbon Emissions-mainstream ML models (Crespo et al., 
2021). 

	
Method	
	

	
	

	

Proposed	
Framework	

GBM-
BFE	

RF-
BFE	

SVM-
BFE	

Econometric	/	
System	

Dynamics	
[6]	

GM	(Sun	
et	al,	
2017)	

SVM-RF	
(Wen	et	

al.,	
2020)	

FGMVM	
(Jiang	et	

al.,	
2020)	

Scope	
EU28	 EU28	 EU28	 EU28	 Ecuador	 China	 China	 China	

1990	
2017	

1990	
2017	

1990	
2017	

1990	
2017	

1980	
2010	

1980	
2014	

1997	
2017	

2008	
2016	

Test	Instances	(years)	 5	 5	 5	 5	 -	 5	 4	 2	

#	Predictors	 16	(26)	 17	
(26)	

19	
(26)	

6	(26)	 25	 11	 7	(17)	 3	

MAPE	 2.28	 7.05	 7.98	 17.58	 15.96	 5.77	 13.37	 15.14	
 
The figures in tables 13 and 14 reinforce the relevance of the results accrued by our research, 

and confirm ANNs as a powerful algorithm capable of processing a large amount of non-linear 

and non-parametric data. The RReliefF algorithm, in turn, efficiently assess and rank the 

predicting variables (features) by effectively addressing non-linear relationships, time series, 

noisy and correlated features, as well as features interactions of high order (complex patterns 

associations). 

The iterative combination of these two algorithms produced a powerful and scalable prediction 

tool able to process huge datasets featuring complex and incomplete data. The improved ad hoc 

learning capability of our framework makes it potentially applicable to any region in the world, 

and for any level of data aggregation 

Whereas our original contribution represents an important step towards the better design and 

implementation of environment protection initiatives and policies, its effectiveness would be 

greatly enhanced once combined with an explainable Artificial Intelligence (XAI) technique, 

given the black-box nature of ANN algorithms. 

4.3 Predictions Explanation 
The learning framework evaluation process provided solid evidence on the effectiveness of our 

proof of concept (POC). However, the framework real-world applicability would immensely 

benefit from the potential understanding about how predictors (features) influenced the 

predictions. Such crucial knowledge would be key in supporting the design of effective carbon 

emissions reduction initiatives, policies and investments. 

In such scenario, global and local (i.e. time period and/or feature-wise restricted) predictors 

impact analysis could greatly support the conception and implementation of broad / focused, 

Comparison	
Parameters	
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short-medium-long term environmental actions, moreover those ones required due to the 

occurrence of disruptive events such as natural disasters or economic crises. 

4.3.1 Explainable Artificial Intelligence - XAI 
Within the AI / ML domain, explainability is understood as the extent to which the internal 

mechanics of an algorithm can be explained in human terms. Additionally, the proper 

understanding and application of the explainability concept requires the interpretability 

definition, i.e. the extent to which an AI / ML device allows for the understanding / anticipation 

of its behavior, upon changes in the inputs or on the algorithmic parameters. 

Explainable Artificial Intelligence (XAI) is one of the most recent and relevant research focus 

within the Computational / Statistical Learning and Data Science domains. Whereas traditional 

Software Engineering rely on mature testing and verification processes in order to guarantee the 

quality of the designed applications, AI devices and Machine Learning applications, most of the 

times, require additional analysis to assess whether they are trustworthy, as regards to the impacts 

of their outcomes on human beings. 

Regarding ML outcomes, it is critically important to ensure that its predictions accuracy 

performance relies on valid features (predictors) computations, i.e. the ML model is providing the 

right answer for the right reasons. Such requirement is particularly challenging when dealing with 

black-box ML models such as Artificial Neural Networks (ANN) and Support Vector Machines 

(SVM), moreover when their uses take place in areas such as diagnostic medicine, safety and 

security, public services, finance and insurance, and policy making. 

In such context, a ML solution featuring a global XAI capability would reveal the modeled 

relationship among predictors and prediction targets, yet eventually subject to relevant 

approximations. Additionally, the inclusion of local XAI capability would allow the model to 

provide insights accrued from explanations / interpretations derived from specific dataset 

portions. 

Specifically addressing our research, although ANNs are top performing, non-parametric and 

scalable algorithms, they lack the required algorithmic transparency (in terms of weights and 

bias) to adequately support policy making and decision-making processes targeting the complex 

environmental challenges. 

Therefore, in order improve the applicability of our POC, tool we added an XAI module 

(PEM) featuring the capacity to unravel the relationships between the predictors and the 
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predictions in both global and local perspectives.  

4.3.2 Global Explanations - Partial Dependency 
In order to unravel predictors-predictions relationships on a global level, the Predictions 

Explanation Module features a partial dependency technique based on Friedman (2001). Consider 

our prediction function 𝜈𝜈 (i.e. the ANN), data features 𝑋𝑋 = [!!,!!, . . . ,!!] =  [!!,!!!], where 

!! is the feature to have the partial dependency computed, and !!! = !!, . . . ,!!!!,!!!!, . . . ,!!  

for a total number of features (predictors) !, and ! training data records (instances).  The partial 

dependence function 𝜈𝜈! at !! is then defined by: 

𝜈𝜈!(!!) = 𝐸𝐸!!![𝜈𝜈(!!,!!!)] = ∫ 𝜈𝜈(!!,!!!) 𝑑𝑑𝑑𝑑(!!!)          (21) 

As demonstrated by equation 21, the partial dependence  𝜈𝜈! is expressed in terms of the 

expectation of 𝜈𝜈 over the marginal distribution of all features in to !!!. Given that each !! has its 

own dependence function, which provides the average value of 𝜈𝜈 when !! is fixed and !!! varies 

over its marginal distribution 𝑑𝑑𝑑𝑑(!!!). However, the true function 𝜈𝜈 and 𝑑𝑑𝑑𝑑(!!!) are not know, 

thus the Monte Carlo method is applied and the dependence function is practically estimated by 

averaging over the training data records: 

𝜈𝜈!(!!) =
1
! 𝜈𝜈 (!!,!!!!)

!

!!!
          (22) 

Finally, a specific feature global impact on the prediction is computed as the difference 

between the maximum dependence value minus the It is important to highlight that the partial 

dependence function relies on the assumption that the features in ! are not correlated. Although 

the violation of such assumption is expected to redound in inconsistent average computations (i.e. 

unlikely / impossible impact values), the numerical and graphical outcomes of the learning 

framework allows us to eventually identify and disregard such undesirable results. 

4.3.3 Local Explanations - Linear Interpretable Model-agnostic Models - LIME 
Regarding local explanations, the implemented XAI module applies a Perturbation Approach, 

according to which inputs in the neighbourhood of a specific instance are perturbed, and the 

consequential variations on the outputs are used to assess the predictive impact of this instance 

(Robnik-Šikonja and Bohanec, 2018).  

Among the methods within the XAI Perturbation-based approach, our learning framework was 

featured with the Local Interpretable Model-agnostic Explanations - LIME (Ribeiro et al., 2016). 

LIME is a scalable method that creates local interpretable surrogate models (explanations) around 
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a given instance in order to estimate how data points influence the global model predictions. 

LIME translates the explanation problem into an optimization problem. The search space 

comprises explanations generated by the local interpretable surrogate models 𝑔𝑔 ∈ 𝐺𝐺, where 𝐺𝐺 is a 

class of interpretable models. Locality is defined by a proximity measure 𝜋𝜋(𝑥𝑥, 𝑧𝑧) expressing the 

distance between an instance 𝑧𝑧 and 𝑥𝑥. The interpretability degree of the surrogate model is 

assessed by means of a complexity measure Ω(𝑔𝑔). Thus, by considering 𝑓𝑓(𝑥𝑥) the model to be 

explained,  the local fidelity measure ℒ (𝑓𝑓,𝑔𝑔,𝜋𝜋)  express how unfaithful 𝑔𝑔 is in approximating 𝑓𝑓 

in the locality 𝜋𝜋. Finally the LIME outcome ensuring both interpretability and local fidelity is 

defined by: 

𝜀𝜀 𝑥𝑥 = arg min ℒ 𝑓𝑓,𝑔𝑔,𝜋𝜋 + Ω 𝑔𝑔      (23) 
𝑔𝑔 ∈ 𝐺𝐺 

 
Within the learning framework XAI module, the model to be explained is defined as 

𝑓𝑓(𝑥𝑥) = 𝜈𝜈(𝑥𝑥) (i.e. the ANN). 𝐺𝐺  comprises ridge regression models for the perturbed sample 

𝑧𝑧′ ∈ 𝑍𝑍 (perturbed samples dataset), such that 𝑔𝑔(𝑧𝑧′) = 𝛽𝛽!  ∙  𝑧𝑧′.  The complexity measure Ω(𝑔𝑔) is 

expressed in terms of non-zero coefficients in the linear model, 𝜋𝜋 is defined by the Euclidian 

distance, and the local fidelity is computed as square loss. We thus define: 

ℒ(𝑓𝑓,𝑔𝑔,𝜋𝜋) = 𝜋𝜋(𝑥𝑥, 𝑧𝑧)
!,!∈!

 (𝜈𝜈(𝑧𝑧)− 𝑔𝑔(𝑧𝑧′))!     (24) 

From a general perspective, for each prediction to be explained, LIME algorithm permutes 

(perturbation) the observation n times; the statistics for each variable are extracted and 

permutations are then sampled from the variable distributions. The model to be explained then 

predicts the outcome of all permuted observations, and the algorithm calculates the Euclidian 

distance from all permutations to the original observation, and selects the m features with highest 

absolute weight in a ridge regression fit of the complex model outcome. 

Afterwards a simple model is fitted to the permuted data, explaining the complex model 

outcome with the m features from the permuted data weighted by its distance to the original 

observation. And finally, the algorithm extracts the feature weights from the simple model and 

use them to explain the local behavior of the complex model. 
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5 EXPERIMENTATION RESULTS AND DISCUSSION 
Upon validation of the developed learning framework, and in order to reinforce the 

applicability of our research contribution, we used a different datasets and different prediction 

targets, as presented hereafter. 

5.1 European Union (EU28) Total CO2 Emissions Case 
	

This case study targets EU28 total CO2 emissions (MtCO2, excluding land use, land-use 

change, and forestry - LULUCF), as recorded by the World Resources Institute's Climate Data 

Explorer (CAIT). The potential predictors, obtained from the World Bank (WB) database, include 

24 candidate indicators, covering the period 1970 - 2014 (as presented in table 15 below). 

Table 15. EU28 case study candidate predictors. 

A1	-Total	Energy	Use	(MtOE	/	WB) A13	-	Population	(WB)
A2	-	Fossil	Fuel	Energy	Use	(MtOE	/	WB) A14	-	Temperature	(Population	Weighted	HDD	/	Eurostat)
A3	-	Alternative	and	Nuclear	Energy	Use	(MtOE	/	WB) A15	-	Temperature	(Population	Weighted	CDD	/	Eurostat)
A4	-	Combustible	Renewables	and	Waste	Energy	Use	(MtOE	/	WB) A16	-	GDP	(Current	M	US$	/	WB)
A5	-	Total	Electricity	Production	(GWh	/	WB) A17	-	GNI	(Current	M	US$	/	WB)
A6	-	Total	Electricity	Use	(GWh	/	WB) A18	-	Final	consumption	expenditure	(current	M	US$	/	WB)
A7	-	Electricity	Production_Coal	(GWh	/	WB) A19	-	General	government	final	consumption	expenditure	(current	M	US$	/	WB)
A8	-	Electricity	Production_Oil	(GWh	/	WB A20	-	Households	and	NPISHs	Final	consumption	expenditure	(current	M	US$	/	WB)
A9	-	Electricity	Production_Natural	Gas	(GWh	/	WB) A21	-	Adjusted	net	national	income	(current	M	US$	/	WB)
A10	-	Electricity	Prodcution_Nuclear	(GWh	/	WB) A22	-	Air	transport_Freight	(million	ton-km	/	WB)
A11	-	Electricity	Production_Hydroelectric	(GWh	/	WB) A23	-	Air	transport_Passengers	carried	/	WB)
A12	-	Electricity	Prodcution_Renewables	(GWh	/	WB) A24	-	Education	expenditure	(current	M	US$	/	WB)

Candidate	Predictors	(prediction	model	features)

 
 

With the object of validating the learning framework with the new dataset, we conducted 4 

experiments and analyzed their accuracy performance. The training dataset for the control 

experiments (i.e. Control 1 and Control 2) consisted of the 1970 - 2005 period instances, and the 

learning framework predicted CO2 emissions for the period 2006 - 2014. The control 

experiments configuration relies on the Pareto principle for data sampling, and aims at assessing 

the framework performance under ideal conditions. 

The actual experiments (i.e. Experiment 1 and Experiment 2) have as training input the 

candidate predictors instances of the 1970 - 2009 period, and the predictions covers the 5 years 

period 2010 - 2014, what resembles the common EU-ETS CO2 emissions allocation timespan. 

Table 16 presents the framework accuracy performance, for all experiment configurations. 
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Table 16. Learning framework accuracy performance for different experiment 
configurations, for prediction target EU28 Total CO2 emissions. 

Experiment Learning	
Instances

Predicted	
Instances

#	Predictors	
(features)

#	Neuros	
HL

Error	Type RMSE	
(MtCO2)

MAE	
(MtCO2)

MPE	(%) MAPE	(%)

Test	Error 155.4359 120.1669 1.0530 3.5018

Training	Error 234.8836 177.4893 3.3558 4.2183

Training	Error 179.2002 145.3326 0.9703 3.4755

Test	Error 235.4859 187.3018 2.4809 4.9159

Experiment	1
40 5

19 7

Experiment	2 22 8

Control	1
36 9

21 9

Control	2 17 8

Experiment	Configuration	(Prediction	 Model	Complexity Best	Accuracy	Performance

 

As can be observed in table 16, the learning framework performed well in all experiment 

configurations, what confirms the proof of concept (POC) findings presented in chapter 5. 

Among the actual experiments, Experiment 2 presented the best accuracy performance for all 

computed metrics.  

In order to ensure the value of our implemented learning framework, we benchmarked  

experiment 2 against two multiple linear regression baseline models. The baseline model 1 

features all the 24 candidate predictors for this case study. Baseline model 2 features the 22 

predictors as selected by the learning framework, and the results are showed in table 17. 

Table 17. Learning framework accuracy performance for different experiment 
configurations, for prediction target EU28 Total CO2 emissions. 

Error	
Type

RMSE	
(MtCO2)

MAE	
(MtCO2)

MPE	(%) MAPE	(%)

Baseline	model	1 24 Test	Error 396.7206 354.2928 -10.3835 10.3835
Baseline	model	2 22 Test	Error 312.6989 283.5342 -8.2977 8.2977
Experiment	2 22 Test	Error 155.4359 120.1669 1.0530 3.5018

40 5

Prediction	Target:	Total	CO2	Emissions

Experiment
Learning	
Instances

Predicted	
Instances

#	
Predictors	
(features)

Accuracy	Performance

 

Regarding the baseline linear models, regularization techniques (Lasso, Ridge) did not increase 

the their accuracy performance and, as such, we confirm the value of our research contribution. 

Therefore, Experiment 2 configuration will be used hereafter in order to present and discuss all 

the outcomes provided by the implemented learning framework. 

5.1.1	Learning	Framework	Outcomes	and	Predictions	Explanation	
Experiment 2 configuration predicted CO2 emissions for the years 2010, 2011, 2012, 2013 and 

2014, with accuracy performance of 3.5018% MAPE and 155.4359 MtCO2 RMSE. Although 

such accuracy performance might reassure the relevance of our research contribution, the 
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potential explanation on how predictors contributed to the predictions would greatly improve its 

effectiveness in supporting the delineation of environment protection initiatives and policies. 

Therefore, we present hereafter the outcomes of XAI module featured in our learning framework. 

At this point it is extremely important to highlight that the exploration of the XAI domain is in 

its very beginning. Thus, this part of our contribution is not intended to provide definitive and 

robust explanations as regards to the predictors impacts. It is rather meant to provide educated 

insights useful for both research paths, i.e. XAI domain exploration, and Climate Change 

avoidance efforts. 

5.1.1.1	Global	Explanation	
The XAI global explanation method featured in our learning framework, as presented in 

section 4.3.2, provided the outcomes summarized in table 18. The features impacts are presented 

in three different forms, i.e.: a) the absolute partial dependence function outcome values 

('Impact'); b) the feature contribution percentage values ('Pct'); and c) the standardized outcome 

values, with the greater contribution set to 1 (Std_Impact). We then ranked the features according 

to their standardized impact on the predictions, as presented in figure 11. 

Table 18. Predictors global impact- EU28. 

 
 

The partial dependence function only indicates the absolute impact values, and such values are 

computed over the whole prediction period; in our research case, the impact figures refer to the 

period 2010 - 2014. Thereafter, the analysis of the ranked predictors clearly confirms how 

impacting the use of fossil fuel (feature A2) is. Such finding, however, only corroborates to the 

common understanding about the CO2 emissions dynamics, what leads us to a deeper analysis of 

predictors with less clear and/or straightforward impacts. 

Feature Impact Pct_Impact Std_Impact Feature Impact Pct_Impact Std_Impact
A1 144.132854 0.03646731 0.21281584 A21 144.694348 0.03660937 0.2136449
A10 318.319437 0.08053856 0.47000678 A22 81.230962 0.02055239 0.11993959
A11 223.392462 0.05652092 0.32984467 A23 138.388991 0.03501404 0.20433488
A13 91.2514313 0.02308769 0.13473507 A24 427.127003 0.10806816 0.63066392
A14 410.683082 0.10390765 0.60638406 A3 112.279696 0.02840808 0.16578384
A16 139.346322 0.03525626 0.2057484 A4 25.8080618 0.00652974 0.03810626
A17 118.048134 0.02986757 0.17430108 A5 108.234275 0.02738455 0.15981067
A18 47.8574516 0.0121085 0.07066275 A6 77.5376221 0.01961793 0.11448628
A19 29.4748616 0.00745749 0.04352039 A7 327.297902 0.08281022 0.48326371
A2 677.265635 0.17135618 1 A8 49.3176515 0.01247795 0.07281877
A20 56.323643 0.01425054 0.0831633 A9 204.37348 0.0517089 0.30176266

Partial	Dependence	Function	Outcomes	-	Total	CO2	Emissions	(T1)
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Figure 11 - Standardized features impact - EU28 Total CO2 

emissions. 

The second greater impacting feature, i.e. education expenditure (A24), makes an interesting 

research case, and definitely should lead us to further investigation. Figure 12 presents the scatter 

plot for the scaled values for total CO2 emissions (T1) and A24 for the training dataset. We 

observe in the figure the following elements: a) the least-squares linear regression curve (solid 

line); b) a loess non-parametric local regression curve (dashed line); c) the loess curves for the 

positive and negative root-mean-square residuals from the original loess curve (dot-dashed lines); 

and d) the univariate marginal boxplots. 
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Figure 12 - Scatter plot and linear models for T1 - A24. 

The regression curves were studied so that we could assess the possibility of implementing the 

predictions by means of simpler models. And the loess models on the residuals helped us to 

understand conditional spread and asymmetry in the error, also in the attempt to potentially solve 

the prediction problem with less complex models. Such models, however, performed very poorly 

on test data. 

Figure 13 presents the effect plot representing how our neural network architecture modeled 

the relationship between T1 and A24 in the context of our dataset (training data), considering the 

data complexities discussed in Chapter 3, and help us understand why the simpler models failed. 
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Figure 13 - Effect Plot for T1 - A24. 

Figure 13 presents a completely different model when compared to the simpler regression 

models. Moreover, in figure 14 we observe the outcomes of the partial dependence function, over 

the learning framework predictions (years 2010-2014), in terms of a partial dependence plot. 

Such plot depicts how the neural network model fitted the relationship between T1 and 24 over 

the test dataset, as explained in section 4.3.2, and corroborates the suitability of a more complex 

ML model. 

 
Figure 14 - Partial Dependence Plot for T1 - A24. 
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The third greater feature A14 (i.e. temperature - HDD) impacting dynamics study is also worth 

furthering in future work, mainly considering the findings presented in section 3.2.1. The 

following figure 15 combines the scatter plot, the effect plot, and the partial dependence plot for 

the predictor A14, and also allows us to accomplish a deeper analysis of its influence of the CO2 

emissions. 

Based on such analysis, we acknowledged, for instance, how important heating issues (heating 

methods, heating efficiency, commercial buildings and households thermal preparation, etc.) are 

in the context of CO2 emissions. We also know that climate and weather phenomena directly 

determine temperature patterns, usually conditioned by seasonal and / or specific local factors. In 

such scenario, a more granular analysis would greatly contribute to a better understanding of the 

predictor-prediction influence dynamics. 

 
Figure 15 - Scatter Plot, Effect Plot, and Partial Dependence Plot joint presentation for T1 - A14. 
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When it comes to the further investigation of the predictors impacting dynamics, it is important 

to bare in mind the ANN capacity to grasp complex non-linear relationships as well as eventual 

correlations among features. In such context, we might expect, for instance, an increase in energy 

production from oil leading to a reduction on total predicted CO2 emissions, once such increase 

drives to the reduction of energy production from coal, which is a more polluting process. 

The identification of the aforementioned phenomenon, similarly to the challenges faced on the 

T1-A14 relationship, requires the analysis of the predictors' impacts on a local level, which may 

be accomplished by means of the outcomes provided by the local explanation method featured in 

our learning framework. 

5.1.1.2	Local	Explanations	
In order to explore the potentialities of our learning framework local explanation capability, we 

will continue the analysis of the relationship between the predictor A14 (temperature HDD) and 

the total CO2 emissions. As explained in section 4.3.3, tables 19, 20, 21, 22, and 23 compiles the 

explanations of the predictions for the years 2010, 2011, 2012, 2013, and 2014 respectively, 

considering the local impact of each of the 22 predictors. 

In the tables we can observe the following values: a) the actual emissions; b) the learning 

framework surrogate linear model intercept (constant); c) the learning framework prediction 

accomplished by the surrogate linear model; d) the surrogate linear local model R-squared 

measure (R2); e) the computed features' weights (local Ridge regression model coefficients); f) 

the influence intervals. 

Regarding the influence intervals, the figures presented in the tables indicate the values of the 

predictor (observed / to be maintained) that had driven / would drive  such predictor to impact the 

prediction as indicated by the attributed feature weight. 

We then continued the investigation of temperature HDD (A14) impacts on the predictions, 

this turn by means of local explainability. The figures in table 19, for instance, indicate that 

temperature values kept under 0.632 (scaled value) led to a very mild negative impact (i.e. -

9.177758829) on total CO2 emissions in 2010.  



	 51	

Table 19. Prediction local explanation - EU28 2010. 

Actual	
Emissions

Surrogate	
Model	
Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	Weight Influence	Interval

A2 16.70921252 0.713	<	A2
A14 -9.177758829 0.632	<	A14
A1 26.23353674 0.788	<	A1
A8 102.0943548 0.665	<	A8
A7 -70.18413094 A7	<=	0.644
A13 43.04655374 A13	<=	0.406
A24 -128.7303733 A24	<=	0.124
A11 -202.095464 0.689	<	A11
A16 45.00174737 A16	<=	0.127
A20 15.64716751 A20	<=	0.137
A21 87.98202268 A21	<=	0.127
A4 -17.630824 0.5049	<	A4
A18 53.71611893 A18	<=	0.138
A17 -131.0937024 A17	<=	0.127
A19 16.69259266 0.138	<	A19	<=	0.400
A5 23.03029779 0.914	<	A5
A22 -0.007659697 0.741	<	A22
A10 -56.27366059 0.902	<	A10
A6 201.6021454 0.905	<	A6
A3 31.65827713 0.285	<	A3	<=	0.766
A23 19.64687642 A23	<=	0.109
A9 -21.83605346 0.566	<	A9

3709.97065 3658.06924 0.94102422

T1	-	Year	(case):	2010

3612.03796

 
 

In table 20, for the year 2011, we observe that temperature values kept under or (at most) equal 

to 0.337 (scaled value) led to a (slightly greater, whilst still very mild) negative impact (i.e. -

18.41449669) on emissions. As regards to 2012 (table 21), values kept between 0.438 and 0.632 

lead to a positive impact (i.e. 20.0605607) on emissions. On 2013 though, as presented in table 

22, the aforementioned temperature values led to a huge positive impact (i.e. 325.2005964) on 

total CO2 emissions. Finally, in the year 2014 (table 23) we observe that temperature values kept 

under or (at most) equal to 0.337 led to a huge negative impact (i.e. -264.9825967) on the 

emissions. And such findings indicate consistency between the global and the local explanations 

implemented techniques. The local explanation tables for the training dataset are compiled in 

Appendix 4. 
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Table 20. Prediction local explanation - EU28 2011. 

Actual	
Emissions

Surrogate	
Model	
Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A2 -44.708506 0.606	<	A2	<=	0.713
A14 -18.414497 A14	<=	0.337
A1 -22.844961 0.513	<	A1	<=	0.715
A8 -44.084863 0.461	<	A8	<=	0.665
A7 13.4062302 0.644	<	A7	<=	0.797
A13 -133.90062 A13	<=	0.406
A24 67.7996364 0.591	<	A24
A11 -2.8847993 A11	<=	0.457
A16 66.2222044 0.592	<	A16
A20 25.4649633 0.601	<	A20
A21 -121.46384 0.595	<	A21
A4 -44.433791 A4	<=	0.0681
A18 35.5982139 0.601	<	A18
A17 160.619934 0.592	<	A17
A19 -43.049409 0.592	<	A19
A5 8.3738199 0.372	<	A5	<=	0.639
A22 -44.840295 0.741	<	A22
A10 205.744496 0.274	<	A10	<=	0.805
A6 -42.347954 0.377	<	A6	<=	0.638
A3 15.0122752 A3	<=	0.285
A23 66.8022629 0.263	<	A23	<=	0.609
A9 -44.48793 0.566	<	A9

T1	-	Year	(case):	2011

3562.25376 3991.24147 0.998273983933.65891

 
 

Table 21. Prediction local explanation - EU28 2012. 

Actual	
Emissions

Surrogate	
Model	
Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A2 -268.14672 0.470	<	A2	<=	0.606
A14 20.0605607 0.438	<	A14	<=	0.632
A1 -131.18377 A1	<=	0.513
A8 -97.512199 0.461	<	A8	<=	0.665
A7 -33.237177 0.865	<	A7
A13 120.685974 A13	<=	0.406
A24 -148.97633 A24	<=	0.124
A11 -59.43559 A11	<=	0.457
A16 -58.506108 A16	<=	0.127
A20 -33.534844 A20	<=	0.137
A21 -112.67576 A21	<=	0.127
A4 91.9854981 0.5049	<	A4
A18 71.9225408 A18	<=	0.138
A17 -46.053591 A17	<=	0.127
A19 112.850595 A19	<=	0.138
A5 -12.209662 0.372	<	A5	<=	0.639
A22 -27.288562 A22	<=	0.140
A10 -14.089269 A10	<=	0.274
A6 28.4678414 0.638	<	A6	<=	0.905
A3 -80.055045 A3	<=	0.285
A23 -4.1697561 0.263	<	A23	<=	0.609
A9 -137.31215 0.224	<	A9	<=	0.566

T1	-	Year	(case):	2012

3513.81632 3812.08003 0.989709414630.49356
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Table 22. Prediction local explanation - EU28 2013. 

Actual	
Emissions

Surrogate	
Model	
Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A2 147.718748 A2	<=	0.470
A14 325.200596 0.438	<	A14	<=	0.632
A1 75.8844676 A1	<=	0.513
A8 173.586787 A8	<=	0.338
A7 -34.190307 0.644	<	A7	<=	0.797
A13 -105.17006 0.406	<	A13	<=	0.640
A24 148.949336 0.392	<	A24	<=	0.591
A11 -512.68439 0.689	<	A11
A16 -157.44196 0.592	<	A16
A20 74.5297742 0.404	<	A20	<=	0.601
A21 113.976237 0.595	<	A21
A4 -33.778555 0.5049	<	A4
A18 -32.521886 0.405	<	A18	<=	0.601
A17 16.6719962 0.592	<	A17
A19 13.606445 0.592	<	A19
A5 144.874964 0.372	<	A5	<=	0.639
A22 -134.6204 0.140	<	A22	<=	0.363
A10 145.787843 A10	<=	0.274
A6 2.07286224 0.377	<	A6	<=	0.638
A3 69.0586435 0.285	<	A3	<=	0.766
A23 -7.071713 0.263	<	A23	<=	0.609
A9 160.742994 0.224	<	A9	<=	0.566

T1	-	Year	(case):	2013

3433.93928 4203.03451 0.987069123607.85209

 
 

Table 23. Prediction local explanation - EU28 2014. 

Actual	
Emissions

Surrogate	
Model	
Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A2 -296.64813 A2	<=	0.470
A14 -264.9826 A14	<=	0.337
A1 -9.5412737 A1	<=	0.513
A8 -49.322855 A8	<=	0.338
A7 -137.60411 A7	<=	0.644
A13 168.094198 0.805	<	A13
A24 27.1974996 0.591	<	A24
A11 -22.139102 0.689	<	A11
A16 -168.80832 0.592	<	A16
A20 -18.279535 0.601	<	A20
A21 -54.195235 0.595	<	A21
A4 -69.215558 0.5049	<	A4
A18 -37.815498 0.601	<	A18
A17 -135.93829 0.592	<	A17
A19 -33.874442 0.592	<	A19
A5 75.7487551 A5	<=	0.372
A22 -13.194805 0.363	<	A22	<=	0.741
A10 151.741288 A10	<=	0.274
A6 -150.4886 A6	<=	0.377
A3 -80.407627 0.946	<	A3
A23 15.0448258 0.609	<	A23
A9 -260.21791 A9	<=	0.188

T1	-	Year	(case):	2014

3246.99368 3263.07105 0.966339964627.91838
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5.2 Canada Emissions Case 
The learning framework was also applied for the prediction of Canadian emissions. This case 

study targeted total CO2 emissions, as well as emissions from transportation, and residential 

buildings and commercial/public services. Table 24 presents the candidate predictors, i.e. 

Canadian economic/energy indicators gathered from the World Bank databases, covering the 

period 1960 - 2014. 

Table 24. Canada case study candidate predictors. 

A1	-Total	energy	use	(MtOE	/	WB) A13	-Merchandise	imports	(current	M	US$	/	WB)

A2	-	Alternative	and	nuclear	energy	use	(Mtoe	/	WB)
A14	-	Households	and	NPISHs	Final	consumption	expenditure	
(current	M	US$	/	WB)

A3	-	Combustible	renewables	and	waste	energy	use	
(Mtoe	/	WB)

A15	-	Final	consumption	expenditure	(current	M	US$	/	WB)

A4	-	Total	electricity	production	(GWh	/	WB)
A16	-General	government	final	consumption	expenditure	
(current	M	US$	/	WB)

A5	-	Electricity	production_Hydroelectric	(GWh	/	WB) A17	-	Urban	population	(WB)
A6	-	Electricity	production	from	oil,	gas	and	coal	(GWh	/	
WB)

A18	-	Food	production	index	(2004-2006	=	100	/	WB)

A7	-	Electricity	production_natural	gas	(GWh	/	WB) A19	-	Aquaculture	production	(metric	tons	/	WB)

A8	-	Electricity	production_coal	(GWh	/	WB)
A20	-	Transport	services	(%	of	commercial	service	exports	/	
WB)

A9	-	Electricity	production_oil	(GWh	/	WB
A21	-	Transport	services	(%	of	commercial	service	imports	/	
WB)

A10	-	Electricity	prodcution_Nuclear	(GWh	/	WB) A22	-	Transport	services	(%	of	service	exports,	BoP	/	WB)
A11	-	Electricity	production	from	renewable	sources,	
excluding	hydroelectric	(GWh	/	WB)

A23	-	Transport	services	(%	of	service	imports,	BoP	/	WB)

A12	-	Merchandise	exports	(current	M	US$	/	WB) A24	-	Merchandise	trade	(current	M	US$	/	WB)

Candidate	Predictors	(prediction	model	features)

 

Table 25 presents the performance of the learning framework on predicting CO2 emissions, as 

previously mentioned. The performance figures, for the three predicting targets, demonstrates the 

consistency and robustness of our research contribution 

Table 25. Learning framework accuracy performance for Canada case studies. 

#	
Predictors	
(features)

#	
Neuros	

HL
Error	Type

RMSE	
(MtCO2)

MAE	
(MtCO2)

MPE	(%) MAPE	(%)

Canada	-	Total 9 9 test 10.5362 9.9820 1.2744 1.9058

Canada	-	Transportation 13 9 test 5.2355 4.0486 2.4433 2.4433

Canada	-	Residential	
Buildings/Commercial-

Public	Services
12 8 test 2.9453 2.4345 1.1734 3.2677

Best	Accuracy	Performance

50	(1960-
2009)

5	(2010-
2014)

Experiment
Learning	
Instances

Predicted	
Instances

Canada	Case	Studies
Model	Complexity
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5.2.1	Canada	Total	CO2	Emissions	
The learning framework predicted total Canadian CO2 emissions with MAPE performance of 

1.9058%. The predicting model features 9 neurons (hidden layer) and 9 predictors, which were 

ranked by RReliefF as follows: A23 (transport services, % of service imports), A22 (transport 

services, % of service exports), A20 (transport services, % of commercial service exports), A21 

(transport services, % of commercial service imports), A1 (total energy use), A17 (urban 

population), A6 (electricity production from oil, gas and coal), A8 (electricity production from 

coal), and A3 (combustible renewables and waste energy). 

Table 26 and figure 16 present the global explanation outcomes for the Canadian total CO2 

emissions for the predictions 2010 - 2014. 

Table 26. Predictors global impact - Canada / total CO2 
emissions. 

Feature Impact Pct_Impact Std_Impact
A1 16.50184891 0.216323947 0.70326394
A17 23.46465952 0.307599941 1
A20 4.103792775 5.38E-02 0.174892492
A21 6.917601827 9.07E-02 0.294809384
A22 0.717612262 9.41E-03 3.06E-02
A23 6.937871511 9.09E-02 0.295673223
A3 3.489040442 4.57E-02 0.148693419
A6 8.460628872 0.110911004 0.360569002
A8 5.689986775 7.46E-02 0.242491768

Partial	Dependence	Function	Outcomes	-	Total	CO2	Emissions	/	
2010	-	2014
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Figure 16 - Standardized features impact - Canada total CO2 

emissions. 
 

As can be observed in figure 16, urban population and total energy use were the main drivers 

of CO2 emissions for the period 2010 - 2014. Such impacts can be better analyzed by means of 

the local explanations provided by the learning framework, as presented in tables 27, 28, 29, 30, 

and 31. 

Table 27. Prediction local explanation - Canada 2010 / total CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 20.2320708 A23	<=	0.143
A22 19.0529393 A22	<=	0.166
A20 -13.011613 A20	<=	0.165
A21 35.4211879 A21	<=	0.132
A1 126.375308 0.855	<	A1
A17 55.6209404 0.744	<	A17
A6 22.7066019 0.800	<	A6
A8 2.75491345 0.613	<	A8	<=	0.763
A3 -27.564087 0.533	<	A3	<=	0.805

Total	CO2	Emissions	-	Year	(case):	2010	/	MtCO2

548.3443575 0.78325513527.263262 306.756096
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Table 28. Prediction local explanation - Canada 2011 / total CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 31.4410302 0.143	<	A23	<=	0.293
A22 10.7273701 A22	<=	0.166
A20 18.7981503 A20	<=	0.165
A21 -2.585209 0.132	<	A21	<=	0.271
A1 172.766559 0.855	<	A1
A17 113.102245 0.744	<	A17
A6 4.510506 0.800	<	A6
A8 -13.163365 0.613	<	A8	<=	0.763
A3 -9.8646817 0.533	<	A3	<=	0.805

230.391147

Total	CO2	Emissions	-	Year	(case):	2011	/	MtCO2

556.1237521 0.83403484522.774854

 
 

Tables 27, 28, 29, 30, and 31 allows for a more detailed perspective on how each predictor 

impacted the total CO2 emissions in each particular case (year), and the local explanations 

present a high level of consistency with the global explanation outcomes. 

However, we may observe that urban population and total energy use, i.e. predictors A17 and 

A1 (whilst again indicated as the two most impacting drivers) appeared in a different order, with 

A1 being identified, from a local explanation perspective, as the most impacting predictor. Such 

discrepancies are to be subject to future investigation. 

 

Table 29. Prediction local explanation - Canada 2012 / total CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 19.8259389 A23	<=	0.143
A22 -11.774899 A22	<=	0.166
A20 31.153174 A20	<=	0.165
A21 28.9831467 A21	<=	0.132
A1 161.338818 0.855	<	A1
A17 79.1598358 0.744	<	A17
A6 8.42477553 0.565	<	A6	<=	0.800
A8 13.6126907 0.305	<	A8	<=	0.613
A3 7.00259064 0.805	<	A3

517.721728

Total	CO2	Emissions	-	Year	(case):	2012	/	MtCO2

540.9957849 0.84545818203.269713
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Table 30. Prediction local explanation - Canada 2013 / total CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 36.0820365 A23	<=	0.143
A22 7.80463291 A22	<=	0.166
A20 14.8018395 A20	<=	0.165
A21 36.082037 A21	<=	0.132
A1 107.478418 0.855	<	A1
A17 60.0863115 0.744	<	A17
A6 6.19191333 0.565	<	A6	<=	0.800
A8 17.5965745 0.305	<	A8	<=	0.613
A3 20.6944551 0.805	<	A3

519.188528 539.9633652 0.83471627233.145147

Total	CO2	Emissions	-	Year	(case):	2013	/	MtCO2

 

 

Table 31. Prediction local explanation - Canada 2014 / total CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 -8.2660458 A23	<=	0.143
A22 5.60502543 A22	<=	0.166
A20 11.9284325 A20	<=	0.165
A21 10.9882845 A21	<=	0.132
A1 169.377926 0.855	<	A1
A17 90.1071538 0.744	<	A17
A6 11.4888438 0.800	<	A6
A8 43.8837694 0.305	<	A8	<=	0.613
A3 -29.934835 0.805	<	A3

539.9862407 0.78252619540.614809 234.807686

Total	CO2	Emissions	-	Year	(case):	2014	/	MtCO2

 
 

As final insights, both the global and local explanations indicates that urban population, 

energy production and transportation are important drivers of  the Canadian CO2 emissions, thus 

requiring special attention as regards to the design and implementation of carbon policies and 

initiatives. 

5.2.2	Canada	Transportation	Sector	Emissions	
The learning framework predicted Canadian transportation sector CO2 emissions with MAPE 

performance of 2.4433%. The predicting model features 9 neurons (hidden layer) and 13 

predictors, which were ranked by RReliefF as follows: A22 (transport services, % of service 
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exports), A20 (transport services, % of commercial service exports), A23 (transport services, % 

of service imports), A21 (transport services, % of commercial service imports), A1 (total energy 

use), A3 (combustible renewables and waste energy), A8 (electricity production from coal), A17 

(urban population), A5 (hydroelectricity production), A6 (electricity production from oil, gas and 

coal), A4 (total electricity production), A2 (alternative and nuclear energy use), and A9 

(electricity production from oil). 

Table 32 and figure 17 present the global explanation outcomes for the Canadian transportation 

sector CO2 emissions for the predictions 2010 - 2014. 

Table 32. Predictors global impact - Canada / transport CO2 
emissions. 

Feature Impact Pct_Impact Std_Impact
A1 5.304277162 0.190890863 0.856336597
A17 1.81784139 0.06542066 0.293477144
A2 1.712584988 0.061632682 0.27648427
A20 2.014999421 7.25E-02 0.32530686
A21 0.92180542 3.32E-02 0.148818716
A22 0.595833834 2.14E-02 9.62E-02
A23 0.294364934 1.06E-02 4.75E-02
A3 1.654392745 5.95E-02 0.26708956
A4 3.121937568 0.112352605 0.504013895
A5 6.194149802 0.22291569 1
A6 1.697024026 6.11E-02 0.273972067
A8 0.813886067 2.93E-02 0.131395929
A9 1.643864644 5.92E-02 0.265389875

Partial	Dependence	Function	Outcomes	-Transport	CO2	
Emissions	/	2010	-	2014
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Figure 17 - Standardized features impact - Canada 

Transport CO2 emissions. 
 

As can be observed in figure 17, electricity production and total energy use were the most 

important factors for transportation CO2 emissions, in the period 2010 - 2014. Such impacts can 

be better analyzed by means of the local explanations provided by the learning framework, as 

presented in tables 33, 34, 35, 36, and 37. 
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Table 33. Prediction local explanation - Canada 2010 / transport CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A22 -3.877988483 A22	<=	0.166
A20 13.43889475 A20	<=	0.165
A23 0.443588579 A23	<=	0.143
A21 -5.643092001 A21	<=	0.132
A1 49.30024093 0.855	<	A1
A3 -5.885100777 0.533	<	A3	<=	0.805
A8 11.49114891 0.613	<	A8	<=	0.763
A17 13.44215089 0.744	<	A17
A5 -10.57513911 0.849	<	A5
A6 11.73627134 0.800	<	A6
A4 -21.76811904 0.859	<	A4
A2 20.80121646 0.855	<	A2
A9 19.54498551 0.250	<	A9	<=	0.403

Transport	-	Year	(case):	2010	/	MtCO2

164.671311 169.03715 0.9975548176.5880882

 
 

Table 34. Prediction local explanation - Canada 2011 / transport CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A22 -16.555381 A22	<=	0.166
A20 24.5858122 A20	<=	0.165
A23 14.8993744 0.143	<	A23	<=	0.293
A21 31.5650105 0.132	<	A21	<=	0.271
A1 48.7720091 0.855	<	A1
A3 12.8068542 0.533	<	A3	<=	0.805
A8 11.7611189 0.613	<	A8	<=	0.763
A17 5.79013813 0.744	<	A17
A5 -16.16365 0.849	<	A5
A6 -9.2580775 0.800	<	A6
A4 -36.491171 0.859	<	A4
A2 5.77857357 0.855	<	A2
A9 4.73772939 A9	<=	0.250

Transport	-	Year	(case):	2011	/	MtCO2

159.73277 0.91199492165.39467883.1663379
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Table 35. Prediction local explanation - Canada 2012 / transport CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A22 -1.5124353 A22	<=	0.166
A20 8.9185495 A20	<=	0.165
A23 -2.6660927 A23	<=	0.143
A21 3.36061322 A21	<=	0.132
A1 41.996091 0.855	<	A1
A3 -3.2322644 0.805	<	A3
A8 7.45107054 0.305	<	A8	<=	0.613
A17 17.3990555 0.744	<	A17
A5 -8.2746889 0.849	<	A5
A6 18.5933879 0.565	<	A6	<=	0.800
A4 5.0561166 0.859	<	A4
A2 -1.5539351 0.855	<	A2
A9 -2.3497643 0.250	<	A9	<=	0.403

Transport	-	Year	(case):	2012	/	MtCO2

160.453764 164.947719 0.9221045281.7620155

 
 

Table 36. Prediction local explanation - Canada 2013 / transport CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A22 -15.28407264 A22	<=	0.166
A20 0.788742313 A20	<=	0.165
A23 0.444386721 A23	<=	0.143
A21 26.87100834 A21	<=	0.132
A1 43.24603504 0.855	<	A1
A3 -0.297346538 0.805	<	A3
A8 13.09856584 0.305	<	A8	<=	0.613
A17 12.50770695 0.744	<	A17
A5 -20.16688416 0.849	<	A5
A6 18.10622615 0.565	<	A6	<=	0.800
A4 7.777174081 0.859	<	A4
A2 -2.943974714 0.855	<	A2
A9 4.802546374 0.250	<	A9	<=	0.403

76.6940003

Transport	-	Year	(case):	2013	/	MtCO2

161.599596 165.64411 0.98213673
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Table 37. Prediction local explanation - Canada 2014 / transport CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A22 -5.9683494 A22	<=	0.166
A20 8.69340426 A20	<=	0.165
A23 12.4600116 A23	<=	0.143
A21 16.7842689 A21	<=	0.132
A1 27.0804422 0.855	<	A1
A3 6.17168097 0.805	<	A3
A8 4.32171631 0.305	<	A8	<=	0.613
A17 11.5312003 0.744	<	A17
A5 -12.30918 0.849	<	A5
A6 9.42810137 0.800	<	A6
A4 4.28202308 0.859	<	A4
A2 2.69960938 0.855	<	A2
A9 -3.5629793 0.250	<	A9	<=	0.403

Transport	-	Year	(case):	2014	/	MtCO2

168.76135 169.9957188.3837607 0.91917546

 
 

Here it is important to make some important remarks, i.e. both the global and local 

explanations indicates that urban population, energy production and transportation are important 

drivers of the Canadian CO2 emissions, thus requiring special attention as regards to the design 

and implementation of carbon policies and initiatives. 

5.2.3	Canada	Residential	Buildings,	Commercial	and	Public	Services	Emissions	
The learning framework predicted Canadian residential buildings, commercial and public 

services CO2 emissions with MAPE performance of 3.2677%. The predicting model features 8 

neurons (hidden layer) and 12 predictors, which were ranked by RReliefF as follows: A23 

(transport services, % of service imports), A22 (transport services, % of service exports), A20 

(transport services, % of commercial service exports), A21 (transport services, % of commercial 

service imports), A1 (total energy use), A9 (electricity production from oil), A17 (urban 

population), A8 (electricity production from coal), A6 (electricity production from oil, gas and 

coal), A3 (combustible renewables and waste energy), A4 (total electricity production), and A5 

(hydroelectricity production). 

Table 38 and figure 18 present the global explanation outcomes for the Canadian residential 

buildings, commercial and public services CO2 emissions for the period 2010 - 2014. 
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Table 38. Predictors global impact - Canada / residential 
buildings, commercial and public services CO2 emissions. 

Feature Impact Pct_Impact Std_Impact
A1 4.35029658 0.17156639 0.81052022
A17 1.02606887 4.05E-02 0.19117077
A20 0.76932664 3.03E-02 0.14333616
A21 3.18881286 0.12575996 0.59411979
A22 1.1504513 4.54E-02 0.21434493
A23 1.15506031 4.56E-02 0.21520366
A3 1.59601161 6.29E-02 0.29735896
A4 3.35300812 0.13223547 0.62471163
A5 0.75717954 2.99E-02 0.14107298
A6 0.5861665 2.31E-02 0.1092109
A8 5.36728942 0.21167441 1
A9 2.05667348 8.11E-02 0.38318662

Partial	Dependence	Function	Outcomes	-	
Residential	Buildings	-	Commercial	and	Public	

Services	(T5)	/	2010	-	2014

 
 

 
Figure 18 - Standardized features impact - Canada 

residential buildings, commercial and public services CO2 
emissions. 
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Figure 18 indicates that energy generation and use, and transportation are key factors 

impacting CO2 emissions in Canada. Such impacts can be better analyzed by means of the local 

explanations provided by the learning framework, as presented in tables 39, 40, 41, 42, and 43. 

Table 39. Prediction local explanation - Canada 2010 / residential buildings, commercial 
and public services CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 6.87873336 A23	<=	0.143
A22 -2.2645985 A22	<=	0.166
A20 11.8422239 A20	<=	0.165
A21 1.4666742 A21	<=	0.132
A1 18.1348675 0.855	<	A1
A9 2.85E-02 0.250	<	A9	<=	0.403
A17 4.06061152 0.744	<	A17
A8 5.62769355 0.613	<	A8	<=	0.763
A6 -5.3170439 0.800	<	A6
A3 8.83770219 0.533	<	A3	<=	0.805
A4 -8.8764002 0.859	<	A4
A5 -6.9192541 0.849	<	A5

Residential	Buildings	-	Commercial	and	Public	Services	-	Year	(case):	2010	/	MtCO2

72.684752 86.99866786 0.8978598753.4989426

 

Table 40. Prediction local explanation - Canada 2011 / residential buildings, commercial 
and public services CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 2.13722616 0.143	<	A23	<=	0.293
A22 -13.629856 A22	<=	0.166
A20 0.60148034 A20	<=	0.165
A21 -3.5182392 0.132	<	A21	<=	0.271
A1 13.5076743 0.855	<	A1
A9 7.61678142 A9	<=	0.250
A17 2.84194329 0.744	<	A17
A8 7.37827349 0.613	<	A8	<=	0.763
A6 5.09601879 0.800	<	A6
A3 3.14010691 0.533	<	A3	<=	0.805
A4 -4.8216393 0.859	<	A4
A5 5.79449433 0.849	<	A5

Residential	Buildings	-	Commercial	and	Public	Services	-	Year	(case):	2011	/	MtCO2

76.133057 87.19823557 0.6596421261.0539707
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Table 41. Prediction local explanation - Canada 2012 / residential buildings, commercial 
and public services CO2 emissions.	

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 14.6950619 A23	<=	0.143
A22 -9.8126521 A22	<=	0.166
A20 6.1149378 A20	<=	0.165
A21 -1.2995322 A21	<=	0.132
A1 25.9086227 0.855	<	A1
A9 6.6245107 0.250	<	A9	<=	0.403
A17 -0.9301557 0.744	<	A17
A8 0.49242417 0.305	<	A8	<=	0.613
A6 -1.9832551 0.565	<	A6	<=	0.800
A3 -1.2067185 0.805	<	A3
A4 -16.942612 0.859	<	A4
A5 -5.9646728 0.849	<	A5

Residential	Buildings	-	Commercial	and	Public	Services	-	Year	(case):	2012	/	MtCO2

69.688505 78.79614622 0.8344790963.1001871

 

Table 42. Prediction local explanation - Canada 2013 / residential buildings, commercial 
and public services CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 15.0167766 A23	<=	0.143
A22 -11.978087 A22	<=	0.166
A20 -1.6314605 A20	<=	0.165
A21 -4.9442984 A21	<=	0.132
A1 20.9141958 0.855	<	A1
A9 -6.8733137 0.250	<	A9	<=	0.403
A17 1.66258621 0.744	<	A17
A8 10.1565083 0.305	<	A8	<=	0.613
A6 -3.3926595 0.565	<	A6	<=	0.800
A3 -0.4386881 0.805	<	A3
A4 1.32616775 0.859	<	A4
A5 -11.35387 0.849	<	A5

Residential	Buildings	-	Commercial	and	Public	Services	-	Year	(case):	2013	/	MtCO2

71.580904 75.26936623 0.8961468666.8055092
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Table 43. Prediction local explanation - Canada 2014 / residential buildings, commercial 
and public services CO2 emissions. 

Actual	
Emissions

Surrogate	
Model	

Intercept

Framework	
Surrogate	
Model	

Prediction

Surrogate	
Model	R2

Feature Feature	
Weight

Influence	Interval

A23 10.1041958 A23	<=	0.143
A22 -0.6973597 A22	<=	0.166
A20 -1.6038575 A20	<=	0.165
A21 9.64758103 A21	<=	0.132
A1 27.5331084 0.855	<	A1
A9 0.672578 0.250	<	A9	<=	0.403
A17 -2.3457831 0.744	<	A17
A8 3.25237888 0.305	<	A8	<=	0.613
A6 -1.7480318 0.800	<	A6
A3 -1.6217341 0.805	<	A3
A4 -6.9187134 0.859	<	A4
A5 -6.7662972 0.849	<	A5

Residential	Buildings	-	Commercial	and	Public	Services	-	Year	(case):	2014	/	MtCO2

77.095014 78.35733854 0.8850295948.8492732

 

As regards to residential buildings, commercial and public services, both the global and local 

explanations corroborate the relevance energy production and transportation for the Canadian 

CO2 emissions scenario. 

As final remarks, we highlight that the presented case studies demonstrated the capability of 

our learning framework to foster the understanding of the carbon emissions drivers' dynamics. 

The combination of predictions, global model explanations (features global impacts), and local 

model explanations (features local weights) conform consistent resources in support of new and 

improved environmental initiatives and policies.  
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6 CONCLUSIONS AND FUTURE WORK 
	

Environmentally sustainable development is globally recognized as a critical condition for the 

continuing habitability of the planet, and such fact has been consistently motivating several 

international efforts aimed at implementing a universally agreed framework able to support 

economic development and protect the environment concomitantly, such as the Kyoto Protocol. 

In such context, the proper understanding of the carbon emissions drivers and its dynamics is a 

key factor for the design and implementation of effective and efficient initiatives and polices, e.g. 

carbon markets. Thus, the accurate forecast of such emissions is one of the most important inputs 

for any decision-making process targeting climate change / global worming avoidance. 

Therefore, in our attempt to contribute to such global environmental challenge, we 

implemented a learning computational framework for carbon emissions predictions. Our 

framework features the capacity to iteratively improve the prediction features set and the 

backpropagation neural network (NN/BP) architecture according to the data statistical assessment 

computed by the RReliefF algorithm.  

In order to validate the implemented learning framework, we used real world data obtained 

from the European Union, International Energy Agency and World Bank, for the period 1990-

2017. The learning framework validation process consisted of predictions for 7 different CO2 

emissions targets whtihin the EU28 scope, i.e. total, energy industries, industrial, commercial and 

public services, transport, residential, and aviation. The learning framework's accuracy 

performance were substantially superior to 3 designed control models. 

The outcomes of the learning framework were then evaluated against different NN/BP based 

solutions (NN/BP, NN/BP-BFE, NN/BP-RReliefF/BFE, NN/BP-CT, NN/BP-IPSO, NN/BP-PCA, 

NN/BP-RF)), as well as different mainstream machine learning models (GBM-BFE, RF-BFE, 

SVM-BFE, SVM-RF). Our MAPE accuracy performance for EU28 total CO2 emissions reached 

2.28%. Such result demonstrated the effectiveness of our approach in terms of increased 

prediction accuracy when compared to other current research approaches. 

Although the Neural Network and RReliefF iterative integration effectively and efficiently 

addressed the carbon emissions prediction challenges, the proposition of policy improvements 

based on such predictions would require further analytical efforts towards a proper understanding 

of how each predictor contributed to the final predictions.  

Therefore, our learning framework was featured with an additional capability designed to 
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provide information on how the predictors impacted the predictions.  The prediction module thus 

computes global model explanations by means of partial dependence functions, and local model 

explanations by means of the interpretable model-agnostic explanations (LIME) algorithm. 

As a complement to the validation process, we conducted 4 additional case studies. In such 

case studies we targeted: a) EU28 total CO2 emissions with a different database (MAPE accuracy 

performance of 3.5018%); b) Canada total CO2 emissions (MAPE accuracy performance of 

1.9058%); c) Canada transport CO2 emissions (MAPE accuracy performance of 2.4433%); and 

d) Canada residential buildings, commercial and public services CO2 emissions (MAPE accuracy 

performance of 3.2677%).  

The learning framework outcomes for the case studies consisted of the emissions predictions, 

as well as the global and the local explanations of such predictions. The framework predictive 

performance, combined with the machine learning model global explanations (features global 

impacts), and local model explanations (features local weights) conforms a consistent means to 

support the design of new and improved environmental initiatives and policies, what allow us to 

conclude that our research objectives were accomplished. 

Finally, the learning framework outcomes are also expected to provide some ground for future 

researches targeting carbon emissions causality analysis, as well as potential improvements on 

both ANNs and XAI techniques. 
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Distribution Analysis of T1 

 
 
 
 
 

Skew	 -1.02	
Number	 28.00	
Mean	 3,711.65	
Median	 3,804.43	
Standard	
Deviation	
Missing	
Records	

261.03	
 

0.00	

 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.748 < 0.005 
LogNormal Anderson-Darling 2.024 < 0.005 
Weibull Anderson-Darling 1.163 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 28.361 0 
LogNormal Chi-Square 36.024 0 
Gamma Chi-Square 33.070 0 
Weibull Chi-Square 20.426 4e-04 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.307 < 0.005 
LogNormal Cramer-von Mises 0.346 < 0.005 
Weibull Cramer-von Mises 0.190 < 0.01 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.270 > 0.15 
LogNormal Kolmogorov-Smirnov 0.283 > 0.15 
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Distribution Analysis of T2 
 
 
 
 
 

Skew	 -1.07	
Number	 28.00	
Mean	 1,569.86	
Median	 1,599.50	
Standard	
Deviation	
Missing	
Records	

132.64	
 

0.00	

 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.271 < 0.005 
LogNormal Anderson-Darling 1.603 < 0.005 
Weibull Anderson-Darling 0.675 0.0841 

Type Test Statistic Significance 
Normal Chi-Square 19.127 7e-04 
LogNormal Chi-Square 25.263 0 
Gamma Chi-Square 22.848 1e-04 
Weibull Chi-Square 14.943 0.0048 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.197 0.006 
LogNormal Cramer-von Mises 0.243 < 0.005 
Weibull Cramer-von Mises 0.079 0.2206 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.201 > 0.15 
LogNormal Kolmogorov-Smirnov 0.217 > 0.15 
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Distribution Analysis of T3 
 
 
 
 
 
 

Skew	 0.01	
Number	 28.00	
Mean	 536.36	
Median	 558.50	
Standard	
Deviation	
Missing	
Records	

97.82	

0.00	

 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.813 0.0373 
LogNormal Anderson-Darling 1.157 0.0051 
Weibull Anderson-Darling 0.631 0.1052 

Type Test Statistic Significance 
Normal Chi-Square 8.671 0.0699 
LogNormal Chi-Square 10.823 0.0286 
Gamma Chi-Square 9.748 0.0449 
Weibull Chi-Square 7.595 0.1076 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.122 0.0587 
LogNormal Cramer-von Mises 0.186 0.0084 
Weibull Cramer-von Mises 0.083 0.1972 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.151 > 0.15 
LogNormal Kolmogorov-Smirnov 0.153 > 0.15 
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Distribution Analysis of T4 
 
 
 
 
 
 

Skew	 0.30	
Number	 28.00	
Mean	 173.32	
Median	 176.00	
Standard	
Deviation	
Missing	
Records	

12.82	

0.00	

 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.668 0.0846 
LogNormal Anderson-Darling 0.656 0.0895 
Weibull Anderson-Darling 0.948 0.0184 

Type Test Statistic Significance 
Normal Chi-Square 14.988 0.0018 
LogNormal Chi-Square 15.093 0.0017 
Gamma Chi-Square 15.040 0.0018 
Weibull Chi-Square 17.435 6e-04 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.103 0.1054 
LogNormal Cramer-von Mises 0.108 0.09 
Weibull Cramer-von Mises 0.136 0.0365 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.137 > 0.15 
LogNormal Kolmogorov-Smirnov 0.136 > 0.15 
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Distribution Analysis of T5 
 
 
 
 
 
 

Skew	 -0.53	
Number	 28.00	
Mean	 880.11	
Median	 892.50	
Standard	
Deviation	
Missing	
Records	

62.06	

0.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.629 0.1014 
LogNormal Anderson-Darling 0.790 0.0422 
Weibull Anderson-Darling 0.317 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 5.146 0.2726 
LogNormal Chi-Square 6.171 0.1867 
Gamma Chi-Square 5.784 0.2159 
Weibull Chi-Square 3.934 0.4149 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.102 0.1078 
LogNormal Cramer-von Mises 0.129 0.0466 
Weibull Cramer-von Mises 0.040 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.142 > 0.15 
LogNormal Kolmogorov-Smirnov 0.156 > 0.15 
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Distribution Analysis of T6 
 
 
 
 
 
 

Skew	 -0.69	
Number	 28.00	
Mean	 459.43	
Median	 476.50	
Standard	
Deviation	
Missing	
Records	

49.21	

0.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.014 0.012 
LogNormal Anderson-Darling 1.314 < 0.005 
Weibull Anderson-Darling 0.642 0.0978 

Type Test Statistic Significance 
Normal Chi-Square 15.546 0.0037 
LogNormal Chi-Square 19.473 6e-04 
Gamma Chi-Square 17.973 0.0012 
Weibull Chi-Square 10.583 0.0317 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.196 0.0062 
LogNormal Cramer-von Mises 0.245 < 0.005 
Weibull Cramer-von Mises 0.118 0.0646 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.205 > 0.15 
LogNormal Kolmogorov-Smirnov 0.225 > 0.15 

 
	
	 	



	 84	

Distribution Analysis of T7 
 
 
 
 
 
 

Skew	 -0.61	
Number	 28.00	
Mean	 137.11	
Median	 144.50	
Standard	
Deviation	
Missing	
Records	

27.97	

0.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.076 0.0084 
LogNormal Anderson-Darling 1.739 < 0.005 
Weibull Anderson-Darling 0.942 0.0189 

Type Test Statistic Significance 
Normal Chi-Square 17.935 0.0013 
LogNormal Chi-Square 26.380 0 
Gamma Chi-Square 22.822 1e-04 
Weibull Chi-Square 14.770 0.0052 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.180 0.0098 
LogNormal Cramer-von Mises 0.275 < 0.005 
Weibull Cramer-von Mises 0.148 0.024 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.195 > 0.15 
LogNormal Kolmogorov-Smirnov 0.218 > 0.15 
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Skew	 -0.28	
Number	 28.00	
Mean	 15,378,825.78	
Median	 15,717,123.54	

Distribution Analysis of A1 

Standard	
Deviation	
Missing	
Records	

2,220,731.80	
 

0.00	

 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.840 0.0318 
LogNormal Anderson-Darling 1.098 0.0074 
Weibull Anderson-Darling 0.695 0.0759 

Type Test Statistic Significance 
Normal Chi-Square 26.748 0 
LogNormal Chi-Square 33.069 0 
Weibull Chi-Square 20.358 4e-04 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.131 0.0438 
LogNormal Cramer-von Mises 0.172 0.0132 
Weibull Cramer-von Mises 0.106 0.0903 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.149 > 0.15 
LogNormal Kolmogorov-Smirnov 0.166 > 0.15 
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Skew	 -0.25	
Number	 23.00	
Mean	 11,634,951.08	
Median	 12,276,152.80	

Distribution Analysis of A2 

Standard	
Deviation	
Missing	
Records	

2,418,167.56	
 

5.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistic
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.369 0.4452 
LogNormal Anderson-Darling 0.668 0.0848 
Weibull Anderson-Darling 0.303 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 3.770 0.2875 
LogNormal Chi-Square 6.706 0.0819 
Weibull Chi-Square 2.877 0.411 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.060 0.3976 
LogNormal Cramer-von Mises 0.105 0.0978 
Weibull Cramer-von Mises 0.046 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.130 > 0.15 
LogNormal Kolmogorov-Smirnov 0.165 > 0.15 
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Standard	Deviation		11,135,535.42	
Missing	Records	 0.00	

Distribution Analysis of A3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.516 0.1994 
LogNormal Anderson-Darling 0.509 0.2075 
Weibull Anderson-Darling 0.618 0.1179 

Type Test Statistic Significance 
Normal Chi-Square 5.572 0.2335 
LogNormal Chi-Square 5.591 0.2319 
Weibull Chi-Square 6.096 0.1921 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.085 0.1878 
LogNormal Cramer-von Mises 0.083 0.1972 
Weibull Cramer-von Mises 0.103 0.098 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.119 > 0.15 
LogNormal Kolmogorov-Smirnov 0.120 > 0.15 

	
	  

Skew 0.08 
Number 28.00 
Mean 492,968,146.39 
Median 491,623,688.00 
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Skew	 0.47	
Number	 28.00	
Mean	 3,127.31	
Median	 3,121.67	

Distribution Analysis of A4 

Standard	
Deviation	
Missing	
Records	

167.72	

0.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.274 > 0.5 
LogNormal Anderson-Darling 0.230 > 0.5 
Weibull Anderson-Darling 0.839 0.0329 

Type Test Statistic Significance 
Normal Chi-Square 3.744 0.4418 
LogNormal Chi-Square 3.717 0.4456 
Gamma Chi-Square 3.725 0.4445 
Weibull Chi-Square 7.367 0.1177 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.036 > 0.5 
LogNormal Cramer-von Mises 0.032 > 0.5 
Weibull Cramer-von Mises 0.120 0.0593 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.094 > 0.15 
LogNormal Kolmogorov-Smirnov 0.088 > 0.15 
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Skew	 0.65	
Number	 28.00	
Mean	 73.28	
Median	 70.81	

Distribution Analysis of A5 

Standard	
Deviation	
Missing	
Records	

21.11	

0.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.460 0.2692 
LogNormal Anderson-Darling 0.163 > 0.5 
Weibull Anderson-Darling 0.504 0.2228 

Type Test Statistic Significance 
Normal Chi-Square 1.975 0.7403 
LogNormal Chi-Square 0.843 0.9326 
Gamma Chi-Square 1.022 0.9064 
Weibull Chi-Square 2.640 0.6198 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.070 0.2911 
LogNormal Cramer-von Mises 0.020 > 0.5 
Weibull Cramer-von Mises 0.078 0.2229 

Type Test Statistic Significance 
Normal Kolmogorov-

 
0.126 > 0.15 

LogNormal Kolmogorov-
 

0.072 > 0.15 
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Skew	 0.35	
Number	 23.00	
Mean	 1.76	
Median	 1.69	

Distribution Analysis of A6 

Standard	
Deviation	
Missing	
Records	

0.14	

5.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.088 0.0079 
LogNormal Anderson-Darling 1.002 0.013 
Weibull Anderson-Darling 1.203 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 10.913 0.0122 
LogNormal Chi-Square 10.083 0.0179 
Gamma Chi-Square 10.323 0.016 
Weibull Chi-Square 14.308 0.0025 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.192 0.007 
LogNormal Cramer-von Mises 0.176 0.0116 
Weibull Cramer-von Mises 0.216 < 0.01 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.239 > 0.15 
LogNormal Kolmogorov-Smirnov 0.229 > 0.15 
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Standard	Deviation			51,982.41	
Missing	Records	 5.00	

Distribution Analysis of A7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.314 > 0.5 
LogNormal Anderson-Darling 0.425 0.338 
Weibull Anderson-Darling 0.301 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 1.673 0.643 
LogNormal Chi-Square 3.140 0.3706 
Weibull Chi-Square 1.149 0.7653 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.048 > 0.5 
LogNormal Cramer-von Mises 0.061 0.3898 
Weibull Cramer-von Mises 0.048 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.108 > 0.15 
LogNormal Kolmogorov-Smirnov 0.136 > 0.15 

	
	  

Skew -0.02 
Number 23.00 
Mean 278,544.31 
Median 277,259.75 
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Skew	 0.37	
Number	 22.00	
Mean	 1.85	
Median	 1.78	

Distribution Analysis of A8 

Standard	
Deviation	
Missing	
Records	

0.14	

6.00	

 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.234 < 0.005 
LogNormal Anderson-Darling 1.153 0.0052 
Weibull Anderson-Darling 1.313 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 13.765 0.001 
LogNormal Chi-Square 12.585 0.0019 
Gamma Chi-Square 12.957 0.0015 
Weibull Chi-Square 18.699 1e-04 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.218 < 0.005 
LogNormal Cramer-von Mises 0.204 < 0.005 
Weibull Cramer-von Mises 0.232 < 0.01 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.240 > 0.15 
LogNormal Kolmogorov-Smirnov 0.231 > 0.15 
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Standard	Deviation			50,407.32	
Missing	Records	 6.00	

Distribution Analysis of A9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.270 > 0.5 
LogNormal Anderson-Darling 0.330 > 0.5 
Weibull Anderson-Darling 0.279 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 1.259 0.5328 
LogNormal Chi-Square 1.336 0.5129 
Weibull Chi-Square 1.357 0.5075 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.043 > 0.5 
LogNormal Cramer-von Mises 0.050 > 0.5 
Weibull Cramer-von Mises 0.045 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.109 > 0.15 
LogNormal Kolmogorov-Smirnov 0.115 > 0.15 

	
	  

Skew 0.01 
Number 22.00 
Mean 302,573.25 
Median 300,911.28 
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Skew	 0.18	
Number	 18.00	
Mean	 1.89	
Median	 1.88	

Distribution Analysis of A10 

Standard	
Deviation	
Missing	
Records	

0.12	

10.00	

 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.109 0.007 
LogNormal Anderson-Darling 1.104 0.0072 
Weibull Anderson-Darling 1.042 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 10.091 0.0178 
LogNormal Chi-Square 9.388 0.0246 
Gamma Chi-Square 9.602 0.0223 
Weibull Chi-Square 13.779 0.0032 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.186 0.0084 
LogNormal Cramer-von Mises 0.186 0.0085 
Weibull Cramer-von Mises 0.173 0.011 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.239 > 0.15 
LogNormal Kolmogorov-Smirnov 0.237 > 0.15 
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Skew	 0.26	
Number	 18.00	
Mean	 1.78	
Median	 1.75	

Distribution Analysis of A11 

Standard	
Deviation	
Missing	
Records	

0.17	

10.00	

 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.979 0.0152 
LogNormal Anderson-Darling 0.954 0.0175 
Weibull Anderson-Darling 0.944 0.0187 

Type Test Statistic Significance 
Normal Chi-Square 9.475 0.0236 
LogNormal Chi-Square 8.398 0.0385 
Gamma Chi-Square 8.721 0.0332 
Weibull Chi-Square 12.813 0.0051 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.167 0.0158 
LogNormal Cramer-von Mises 0.165 0.017 
Weibull Cramer-von Mises 0.157 0.0191 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.229 > 0.15 
LogNormal Kolmogorov-Smirnov 0.225 > 0.15 

	
	  



	 96	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Skew	 0.34	
Number	 18.00	
Mean	 2.27	
Median	 2.19	

Distribution Analysis of A12 

Standard	
Deviation	
Missing	
Records	

0.29	

10.00	

 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.008 0.0125 
LogNormal Anderson-Darling 0.957 0.0172 
Weibull Anderson-Darling 0.985 0.0149 

Type Test Statistic Significance 
Normal Chi-Square 11.655 0.0087 
LogNormal Chi-Square 9.801 0.0203 
Gamma Chi-Square 10.355 0.0158 
Weibull Chi-Square 15.283 0.0016 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.167 0.0156 
LogNormal Cramer-von Mises 0.160 0.0191 
Weibull Cramer-von Mises 0.163 0.0162 

Type Test Statistic Significance 
Normal Kolmogorov-

 
0.234 > 0.15 

LogNormal Kolmogorov-
 

0.229 > 0.15 
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Standard	Deviation		4,059,494.75	
Missing	Records	 0.00	

Distribution Analysis of A13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.777 < 0.005 
LogNormal Anderson-Darling 2.054 < 0.005 
Weibull Anderson-Darling 1.718 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 24.705 1e-04 
LogNormal Chi-Square 23.676 1e-04 
Weibull Chi-Square 24.238 1e-04 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.304 < 0.005 
LogNormal Cramer-von Mises 0.355 < 0.005 
Weibull Cramer-von Mises 0.294 < 0.01 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.252 > 0.15 
LogNormal Kolmogorov-Smirnov 0.249 > 0.15 

	
	  

Skew 0.10 
Number 28.00 
Mean 12,879,007.77 
Median 12,729,436.44 
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Standard	Deviation	1,283,106.32	
Missing	Records	 5.00	

Distribution Analysis of A14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.402 0.3825 
LogNormal Anderson-Darling 0.715 0.0652 
Weibull Anderson-Darling 0.324 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 3.971 0.2646 
LogNormal Chi-Square 6.773 0.0795 
Weibull Chi-Square 3.028 0.3873 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.065 0.3425 
LogNormal Cramer-von Mises 0.111 0.0838 
Weibull Cramer-von Mises 0.051 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.139 > 0.15 
LogNormal Kolmogorov-Smirnov 0.167 > 0.15 

	
	  

Skew -0.34 
Number 23.00 
Mean 6,477,584.49 
Median 6,831,333.30 
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Standard	Deviation	1,845,801.94	
Missing	Records	 5.00	

Distribution Analysis of A15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.450 0.289 
LogNormal Anderson-Darling 0.786 0.0431 
Weibull Anderson-Darling 0.378 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 3.635 0.3037 
LogNormal Chi-Square 6.703 0.082 
Weibull Chi-Square 2.845 0.4162 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.073 0.2601 
LogNormal Cramer-von Mises 0.122 0.0588 
Weibull Cramer-von Mises 0.059 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.143 > 0.15 
LogNormal Kolmogorov-Smirnov 0.174 > 0.15 

	
	  

Skew -0.34 
Number 23.00 
Mean 8,960,342.15 
Median 9,417,402.25 
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Skew	 0.35	
Number	 28.00	
Mean	 1,612.02	
Median	 1,603.87	

Distribution Analysis of A16 

Standard	
Deviation	
Missing	
Records	

65.39	

0.00	

 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.560 0.1513 
LogNormal Anderson-Darling 0.508 0.2085 
Weibull Anderson-Darling 0.877 0.025 

Type Test Statistic Significance 
Normal Chi-Square 3.145 0.5339 
LogNormal Chi-Square 2.870 0.5798 
Gamma Chi-Square 2.952 0.5659 
Weibull Chi-Square 5.066 0.2806 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.081 0.2072 
LogNormal Cramer-von Mises 0.072 0.27 
Weibull Cramer-von Mises 0.143 0.0288 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.121 > 0.15 
LogNormal Kolmogorov-Smirnov 0.119 > 0.15 
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Skew	 0.20	
Number	 28.00	
Mean	 1,125.39	
Median	 1,120.95	

Distribution Analysis of A17 

Standard	
Deviation	
Missing	
Records	

40.86	

0.00	

 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.461 0.2669 
LogNormal Anderson-Darling 0.434 0.3191 
Weibull Anderson-Darling 0.741 0.0568 

Type Test Statistic Significance 
Normal Chi-Square 2.549 0.6358 
LogNormal Chi-Square 2.550 0.6357 
Gamma Chi-Square 2.539 0.6377 
Weibull Chi-Square 2.811 0.5899 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.063 0.3642 
LogNormal Cramer-von Mises 0.058 0.4236 
Weibull Cramer-von Mises 0.123 0.0526 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.104 > 0.15 
LogNormal Kolmogorov-Smirnov 0.103 > 0.15 
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Skew	 -0.38	
Number	 28.00	
Mean	 3,411.78	
Median	 3,440.74	

Distribution Analysis of A18 

Standard	
Deviation	
Missing	
Records	

144.80	
 

0.00	

 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.423 0.3412 
LogNormal Anderson-Darling 0.465 0.2599 
Weibull Anderson-Darling 0.348 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 4.444 0.3493 
LogNormal Chi-Square 4.772 0.3115 
Gamma Chi-Square 4.655 0.3245 
Weibull Chi-Square 3.311 0.5072 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.071 0.2865 
LogNormal Cramer-von Mises 0.079 0.2231 
Weibull Cramer-von Mises 0.048 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.109 > 0.15 
LogNormal Kolmogorov-Smirnov 0.117 > 0.15 
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Skew	 -0.18	
Number	 28.00	
Mean	 4.61	
Median	 4.71	

Distribution Analysis of A19 

Standard	
Deviation	
Missing	
Records	

0.64	

0.00	

 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.650 0.0923 
LogNormal Anderson-Darling 0.769 0.0466 
Weibull Anderson-Darling 0.661 0.0899 

Type Test Statistic Significance 
Normal Chi-Square 4.506 0.3418 
LogNormal Chi-Square 6.642 0.1561 
Gamma Chi-Square 5.691 0.2235 
Weibull Chi-Square 3.464 0.4834 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.091 0.1486 
LogNormal Cramer-von Mises 0.111 0.0832 
Weibull Cramer-von Mises 0.092 0.1517 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.126 > 0.15 
LogNormal Kolmogorov-Smirnov 0.133 > 0.15 
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Skew	 -0.17	
Number	 27.00	
Mean	 0.11	
Median	 0.11	

Distribution Analysis of A20 

Standard	
Deviation	
Missing	
Records	

0.02	

1.00	

 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.515 0.2002 
LogNormal Anderson-Darling 0.601 0.1211 
Weibull Anderson-Darling 0.541 0.1885 

Type Test Statistic Significance 
Normal Chi-Square 3.517 0.4753 
LogNormal Chi-Square 4.752 0.3137 
Gamma Chi-Square 4.203 0.3792 
Weibull Chi-Square 2.861 0.5814 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.076 0.2376 
LogNormal Cramer-von Mises 0.092 0.1467 
Weibull Cramer-von Mises 0.078 0.222 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.117 > 0.15 
LogNormal Kolmogorov-Smirnov 0.122 > 0.15 
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Skew	 0.07	
Number	 23.00	
Mean	 148.25	
Median	 149.57	

Distribution Analysis of A21 

Standard	
Deviation	
Missing	
Records	

17.90	

5.00	

 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.329 > 0.5 
LogNormal Anderson-Darling 0.367 0.4487 
Weibull Anderson-Darling 0.349 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 2.430 0.488 
LogNormal Chi-Square 3.544 0.3151 
Gamma Chi-Square 3.055 0.3832 
Weibull Chi-Square 1.047 0.7899 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.049 > 0.5 
LogNormal Cramer-von Mises 0.055 0.452 
Weibull Cramer-von Mises 0.049 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.106 > 0.15 
LogNormal Kolmogorov-Smirnov 0.123 > 0.15 
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Standard	Deviation			52,462.21	
Missing	Records	 0.00	

Distribution Analysis of A22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.362 0.4589 
LogNormal Anderson-Darling 0.234 > 0.5 
Weibull Anderson-Darling 0.694 0.0763 

Type Test Statistic Significance 
Normal Chi-Square 10.876 0.028 
LogNormal Chi-Square 10.586 0.0316 
Weibull Chi-Square 14.326 0.0063 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.060 0.4019 
LogNormal Cramer-von Mises 0.042 > 0.5 
Weibull Cramer-von Mises 0.113 0.074 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.153 > 0.15 
LogNormal Kolmogorov-Smirnov 0.122 > 0.15 

	
	  

Skew 0.59 
Number 28.00 
Mean 325,040.18 
Median 322,506.50 
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Standard	Deviation			46,942.50	
Missing	Records	 0.00	

Distribution Analysis of A23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.921 < 0.005 
LogNormal Anderson-Darling 2.196 < 0.005 
Weibull Anderson-Darling 1.592 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 27.747 0 
LogNormal Chi-Square 31.821 0 
Weibull Chi-Square 20.082 5e-04 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.326 < 0.005 
LogNormal Cramer-von Mises 0.371 < 0.005 
Weibull Cramer-von Mises 0.234 < 0.01 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.255 > 0.15 
LogNormal Kolmogorov-Smirnov 0.270 > 0.15 

	
	  

Skew -0.82 
Number 28.00 
Mean 597,070.29 
Median 610,794.50 
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Standard	Deviation			47,855.79	
Missing	Records	 0.00	

Distribution Analysis of A24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 0.592 0.1275 
LogNormal Anderson-Darling 0.881 0.0242 
Weibull Anderson-Darling 0.408 > 0.25 

Type Test Statistic Significance 
Normal Chi-Square 6.024 0.1974 
LogNormal Chi-Square 9.162 0.0572 
Weibull Chi-Square 4.203 0.3792 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.074 0.2509 
LogNormal Cramer-von Mises 0.116 0.0736 
Weibull Cramer-von Mises 0.040 > 0.25 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.119 > 0.15 
LogNormal Kolmogorov-Smirnov 0.133 > 0.15 

	
	  

Skew -0.45 
Number 28.00 
Mean 382,520.00 
Median 390,437.50 
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Skew	 0.46	
Number	 28.00	
Mean	 93,340.86	
Median	 80,008.50	

Distribution Analysis of A25 

Standard	
Deviation	
Missing	
Records	

37,661.15	

0.00	

 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.235 < 0.005 
LogNormal Anderson-Darling 1.036 0.01 
Weibull Anderson-Darling 1.047 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 13.162 0.0105 
LogNormal Chi-Square 7.947 0.0935 
Weibull Chi-Square 11.221 0.0242 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.205 < 0.005 
LogNormal Cramer-von Mises 0.169 0.0149 
Weibull Cramer-von Mises 0.173 0.0111 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.185 > 0.15 
LogNormal Kolmogorov-Smirnov 0.156 > 0.15 
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Standard	Deviation			19,064.48	
Missing	Records	 0.00	

Distribution Analysis of A26 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goodness-of-Fit Statistics 
 

Type Test Statistic Significance 
Normal Anderson-Darling 1.714 < 0.005 
LogNormal Anderson-Darling 1.968 < 0.005 
Weibull Anderson-Darling 1.151 < 0.01 

Type Test Statistic Significance 
Normal Chi-Square 11.492 0.0216 
LogNormal Chi-Square 13.105 0.0108 
Weibull Chi-Square 7.239 0.1238 

Type Test Statistic Significance 
Normal Cramer-von Mises 0.295 < 0.005 
LogNormal Cramer-von Mises 0.336 < 0.005 
Weibull Cramer-von Mises 0.168 0.0137 

Type Test Statistic Significance 
Normal Kolmogorov-Smirnov 0.206 > 0.15 
LogNormal Kolmogorov-Smirnov 0.216 > 0.15 

	
	  

Skew -1.18 
Number 28.00 
Mean 282,341.36 
Median 290,680.00 
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APPENDIX	2	RESEARCH	IMPLEMENTATION	COMPUTATIONAL	ENVIRONMENT	
	
	
	
	
	

OS Windows	10	64	bits
Intel	i9-9900k	@	3.6	GHz
8	cores	-	16	threads
NVIDIA	GeForce	RTX	2080	@	1515	MHz
8	Gb	GDDR6	@	14	Gb/s

RAM 32.0	Gb	DDR4	@	3200	MHz
2	Tb	SATA	SSD	@	(i/o)	236	Mb/s
8	Tb	SATA	HD	@	(w)	4.74	Mb/s	//	(i/o)	0.66	Mb/s

Computational	Environment

CPU

Storage

GPU

	
	
	
	
	

Package Version
RReliefF R Fselector 0.31
Features	Space	Rearrangement Python script 3.6.0
Backward	Feature	Elimination Python script 3.6.0
NN/BP R nnet	 7.3-13
LIME R lime 0.5.1
Partial	Dependence	Function R pdp 0.7.0
SVM R e1071 1.7-3
GBM R gbm 2.1.5
RF R randomForest 4.6-14
Components	Interaction	(iteration) Python script 3.6.0

Specification
Learning	Framework	Implementation

LanguageComponent
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APPENDIX	3	LEARNING	FRAMEWORK	GLOBAL	EXPLANATION	OUTCOMES	
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Fossil Fuel Energy Use - Feature A2 
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Education Expenditure - Feature A24 
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Temperature HDD - Feature A24 
	

 
	  



	 116	

Electricity Production from Coal - Feature A7 
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Nuclear Electricity Production - Feature A10 
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Hydroelectric Energy Production - Feature A11 
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Natural Gas Electricity Production - Feature A9 
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Adjusted Net National Income - Feature A21 
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Total Energy Use - Feature A1 
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Gross Domestic Product (GDP) - Feature A16 
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Passengers Air Transport - Feature A23 
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Gross National Income (GNI) - Feature A17 
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Alternative and Nuclear Energy Use - Feature A3 
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Total Electricity Production - Feature A5 
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Population - Feature A13 
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Cargo Air Transport - Feature A22 
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Total Electricity Use - Feature A6 
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Households Final Consumption Expenditure - Feature A20 
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Oil Electricity Production - Feature A8 
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Final Consumption Expenditure - Feature A18 
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Government Final Consumption Expenditure - Feature A19 
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Combustible Renewables and Waste Energy - Feature A4 
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APPENDIX	4	LOCAL	EXPLANATIONS	-	TRAINING	DATASET	
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Local Explanations - 1970 /1971 
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Local Explanations - 1972 / 1973 
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Local Explanations - 1974 / 1975 
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Local Explanations - 1976 / 1977 
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Local Explanations - 1978 / 1979 
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Local Explanations - 1980 / 1981 

	
	 	



	 142	

Local Explanations - 1982 / 1983 
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Local Explanations - 1984 / 1985 
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Local Explanations - 1986 / 1987 
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Local Explanations - 1988 / 1989 
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Local Explanations - 1990 / 1991 
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Local Explanations - 1992 / 1993 
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Local Explanations - 1994 / 1995 
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Local Explanations - 1996 / 1997 
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Local Explanations - 1998 / 1999 
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Local Explanations - 2000 / 2001 
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Local Explanations - 2002 / 2003 
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Local Explanations - 2004 / 2005 
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Local Explanations - 2006 / 2007 
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Local Explanations - 2008 / 2009 
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