

Efficient Asynchronous GCN Training

on a GPU Cluster

Yi Zhang

A Thesis

in

The Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

March 2021

© Yi Zhang, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Yi Zhang

Entitled: Efficient asynchronous GCN training on a GPU cluster

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (M. Comp. Sc.)

complies with the regulations of the University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining committee:

_____________________________________ Chair

 Dr. Sudhir Mudur

_____________________________________ Examiner

Dr. Sudhir Mudur

_____________________________________ Examiner

Dr. Tristan Glatard

_____________________________________ Supervisor

Dr. Dhrubajyoti Goswami

Approved by __

Dr. Sudhir Mudur, Chair of Department

__

 Dr. Mourad Debbabi, Dean

 Faculty of Engineering and Computer Science

Date __

 iii

ABSTRACT

Efficient asynchronous GCN training on a GPU cluster

Yi Zhang

A common assumption in traditional synchronous parallel training of Graph Convolutional

Networks (GCNs) using multiple GPUs is that load is perfectly balanced among all GPUs.

However, this assumption does not hold in a real-world scenario where there can be imbalances

in workloads among GPUs for various reasons. In a synchronous parallel implementation, a

straggler in the system can limit the overall speed-up of parallel training. To address these

issues, this research investigates approaches for asynchronous decentralized parallel training

for GCNs. The techniques investigated are based on graph clustering and gossiping. The

research specifically adapts the approach of Cluster-GCN, which uses graph partitioning for

SGD-based training, and combines with a novel gossip algorithm specifically designed for a

GPU cluster to periodically exchange gradients among randomly chosen partners. In addition,

it incorporates a work-pool mechanism for load balancing among GPUs. The gossip algorithm

is proven to be deadlock free. The implementation is done on a GPU cluster with 8 Tesla V100

GPUs per compute node, and PyTorch and DGL as the software platforms. Experiments are

conducted for different benchmark datasets. The results demonstrate superior performance, at

the compromise of minor accuracy loss in some runs, as compared to traditional synchronous

training which uses all-reduce to synchronously accumulate parallel training results.

 iv

Acknowledgments

I would like to express my gratitude to my supervisor Dr. Dhrubajyoti Goswami for his

guidance and encouragement.

I am thankful to my family for their support and love.

 v

Table of Contents

List of Figures .. vii

List of Tables ... viii

Chapter 1 Introduction .. 1

1.1 Background .. 1

1.2 Problem Statement and Motivation .. 2

1.3 Challenges and contributions ... 5

1.4 Thesis Outline .. 6

Chapter 2 Literature Review ... 7

2.1 Graph Convolutional Networks (GCNs) ... 7

2.2 Mini batch Stochastic Gradient Descent (SGD) GCNs .. 8

2.2.1 Traditional Sampling Based GCN Training ... 9

2.2.2 Graph-partition based GCN Training ... 11

2.2.3 Subgraph Based GCN Training .. 12

2.3 Parallel SGD-based Deep Learning Training .. 12

2.3.1 Overview of Parallelism Strategies ... 13

2.3.2 Synchronous Stochastic Gradient Descent (SGD) ... 15

2.3.3 Asynchronous Stochastic Gradient Descent (SGD) using Gossiping .. 16

2.3.4 Periodic Gradient Averaging .. 20

2.4 GCN Training on GPUs .. 21

2.4.1 Existing Deep Learning Frameworks ... 21

2.4.2 Synchronization Using All-reduce ... 22

2.4.3 Implementation Using CPU/GPU Cluster ... 23

Chapter 3 Graph-partition based Synchronous Data Parallel Implementation 25

3.1 Baseline Implementation for GCN Training on a Single GPU .. 25

3.2 Synchronous GPU Parallel Implementations (AllReduce-GCN) ... 27

3.2.1 Synchronous GPU Parallel using All-reduce ... 27

3.2.2 Optimization with Periodic Gradient Averaging ... 31

3.2.3 Theoretical Discussion ... 33

3.3 Experimental Evaluations ... 33

 vi

3.3.1 Setup and Datasets ... 34

3.3.2 Experimental Results .. 36

3.4 Summary and Limitations of AllReduce-GCN .. 42

Chapter 4 Graph-partition based Asynchronous Data Parallel Implementation 44

4.1 Asynchronous Training based on Gossip ... 44

4.2 Asynchronous GPU Parallel Implementation Version 1 .. 46

4.3 Asynchronous GPU Parallel Implementation Version 2 (GossipGCN) .. 49

4.3.1 GossipGCN on a GPU cluster .. 50

4.3.2 Work-pool .. 56

4.3.3 Optimization with Periodic Gradient Averaging ... 57

4.3.4 Theoretical Discussion ... 58

4.4 Experimental Evaluations ... 60

4.4.1 Implementation Details.. 60

4.4.2 Preliminary Experimental Results for Implementation Version 1 ... 61

4.4.3 Experimental Results for GossipGCN ... 62

4.5 Summary... 68

Chapter 5 Conclusion and Future Works ... 70

Reference ... 72

 vii

List of Figures

Figure 1.1 Gossip algorithm for distributed system and single compute node. 4

Figure 2.1 Example of 2D convolution and graph convolution. (Figure courtesy of [20]) 8

Figure 2.2 Mini batch Stochastic Gradient Descent (SGD). (Figure courtesy of [13]) 9

Figure 2.3 Sampling in GraphSAGE. (Figure courtesy of [23]) ... 10

Figure 2.4 Comparison of neighbourhood expansion. (Figure courtesy of [8]) 11

Figure 2.5 Architectures of parallelism strategies (Figure courtesy of [34]) 13

Figure 2.6 Centralized Synchronous and asynchronous SGD. (Figure courtesy of [43]) 17

Figure 2.7 Centralized network and gossip-based decentralized network 18

Figure 2.8 Example of all-reduce call on four processors. (Figure courtesy of [12]) 22

Figure 3.1 Scheme of synchronous graph-partition based GCN using all-reduce. 29

Figure 3.2 Synchronous data parallel AllReduce-GCN. (Figure courtesy of [60]) 30

Figure 3.3 Barrier of AllReduce-GCN with periodic synchronization. 32

Figure 3.4 Speed up of AllReduce-GCN for Reddit and Amazon dataset. 38

Figure 3.5 Speed up of AllReduce-GCN for Reddit Dataset. .. 41

Figure 3.6 Speed up of AllReduce-GCN for Amazon Dataset. ... 41

Figure 3.7 Fixed workload divide mechanism for AllReduce-GCN. 43

Figure 4.1 Deadlock in gossip averaging. .. 45

Figure 4.2 An example run using 4 GPUs ... 53

Figure 4.3 Gradient averaging scheme for GossipGCN. ... 53

Figure 4.4 Gossip scheme with work-pool. ... 54

Figure 4.5 GossipGCN with periodic gradient averaging. .. 57

Figure 4.6 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon

dataset with averaging_interval = 1. .. 66

Figure 4.7 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon

dataset with averaging_interval = 20. .. 67

Figure 4.8 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon

dataset with averaging_interval = 100. .. 67

 viii

List of Tables

Table 3.1 Datasets for experimental evaluations ... 35

Table 3.2 Frameworks and libraries... 35

Table 3.3 Hyperparameters used for experiments ... 36

Table 3.4 Speed up of AllReduce-GCN for Reddit dataset. .. 38

Table 3.5 Speed up of AllReduce-GCN for Amazon dataset .. 38

Table 3.6 AllReduce-GCN for Reddit dataset (4 GPUs) ... 39

Table 3.7 AllReduce-GCN for Reddit dataset (8 GPUs) ... 39

Table 3.8 AllReduce-GCN for Amazon dataset (4 GPUs) .. 39

Table 3.9 AllReduce-GCN for Amazon dataset (8 GPUs) .. 39

Table 3.10 Speed up of AllReduce-GCN for Reddit Dataset .. 40

Table 3.11 Speed up of AllReduce-GCN for Amazon Dataset ... 40

Table 4.1 Asynchronous GPU parallel implementation version 1 for Reddit dataset (4 GPUs)

.. 62

Table 4.2 GossipGCN for Reddit dataset (4 GPUs) .. 63

Table 4.3 GossipGCN for Reddit dataset (8 GPUs) .. 63

Table 4.4 GossipGCN for Amazon dataset (4 GPUs) ... 63

Table 4.5 GossipGCN for Amazon dataset (8 GPUs) ... 64

Table 4.6 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit dataset. 64

Table 4.7 Speed up comparison of AllReduce-GCN and GossipGCN for Amazon dataset. .. 64

Table 4.8 Comparison of parallel training for Reddit Dataset (8 GPUs)................................. 65

Table 4.9 Comparison of parallel training for Amazon Dataset (8 GPUs) 65

 1

Chapter 1 Introduction

1.1 Background

Research on graph convolutional networks (GCNs) has increasingly gained popularity

in recent years; this can mainly be attributed to powerful representational capacity of graphs.

GCNs are widely used in many areas including social science [1, 2], chemical and biological

research [3, 4], knowledge graphs [5] and many other disciplines.

GCNs evolve from convolutional neural networks (CNNs). Previously, researchers use

graph embedding technologies to carry out deep learning training on graph-related data.

However, there are defects in these methods, e.g., lack of generality for direct embedding and

computational inefficiency caused by no parameters shared between nodes. The motivation of

developing GCNs also roots in the natural features of graphs. Different from images and natural

languages, graph nodes do not have a specific order, and an edge in a graph is not just the

feature of nodes but also represents the information of dependency between two nodes. GCNs

propagate on each node respectively, ignoring the input order of nodes. Moreover, the

propagation is guided by the graph structure (edges) instead of using it as part of features [6].

 The goal of GCN is to solve various graph-related tasks by using neural network models.

GCNs can be used for different tasks, including node classification, link prediction and graph

classification. GCNs develop a state embedding, which holds information of graph nodes and

the structure of the graph. This state embedding can be used to generate an output such as the

node label. The outline of GCN was first defined in [7], and the original work extends recursive

neural networks (RNN). Since then, a lot of different graph neural network models have been

proposed, but there doesn’t exist a systematic categorization for GCNs until recently.

GCNs play an important role in deep learning research, however one common problem

with any variant of GCN training is due to neighbourhood expansion, i.e., in computing the

loss on a node at current layer, it recursively requires the neighbouring nodes’ information at

previous layers, which leads to an exponential increase in time complexity due to GCN depth.

This problem is one of the causes for shallow structure and scalability limitation for GCNs and

is known as the Neighborhood Expansion Problem (NEP). Traditional CNNs can have up to

hundreds of layers, while GCNs usually have no more than 3 layers. Moreover, increasing

memory consumption in the recursive steps restricts the graph size that can be fitted in the

training.

 2

Cluster-GCN [8] and GraphSAINT [9] propose two different ways to overcome NEP

by performing training on smaller subgraphs instead of using the original large graph. Cluster-

GCN uses clustering methods to partition the original graph into subgraphs and prepare mini

batches from the subgraphs. GraphSAINT constructs mini batches by sampling the input graph

but builds a complete GCN at each iteration with the sampled data. Both methods lead to a

heuristic model as final output and have the advantage of restricting neighbourhood expansion

to a relatively smaller range in subgraphs. In our research, we use a similar technique based on

subgraph training.

With the advancement of hardware and the increasing size of datasets, there is a high

demand for parallel deep learning training. Large input data for deep learning models consume

longer time for the training process, which encourages exploring parallel strategies to improve

the speed up. Previous research has explored parallel training for GCNs on CPUs and

distributed systems, e.g., GraphLab [10] and PowerGraph [11]. In recent years, parallel GCN

training on GPUs has gained popularity with the wide employment of deep learning

frameworks like PyTorch [12] whose support on GPUs has matured. This has opened the

possibilities of exploring GPU computational power in GCN training.

Generally, there are two well-known parallelization strategies, namely data parallelism

(DP) and model parallelism (MP). As presented in [13], a new trend appears recently

combining DP and MP. Although model parallelism and hybrid parallelism are useful in

specific scenarios, considering the simplicity and generality, data parallelism is the dominant

approach in parallel training for GCNs. Despite the advantages of data parallelism, one of the

major bottlenecks for this methodology is the gradient averaging in each iteration. Workers

need to communicate local gradients with other workers, and this communication overhead

degrades training speed up. In recent years, many algorithms have been proposed to moderate

the drawbacks caused by gradient synchronization. In this research, we explore the opportunity

of improving GCN training speed up by using asynchronous gradient averaging method based

on the idea of gossiping.

1.2 Problem Statement and Motivation

The performance of traditional GPU synchronous data parallel training for GCNs

depends on the speed and workload of each GPU. A common assumption is that GPUs of the

same make and model would process their mini batches at the same pace. However,

experiments show that this assumption is not valid in a real-world scenario, where the cluster

 3

nodes may not be dedicated to a single job; moreover, the training workload sizes on GPUs

may differ. In a synchronous parallel training, GPUs may calculate gradients at different paces,

which causes faster workers to sit idle when waiting for a straggler. Section 3.3 illustrates this

scenario with experimentation.

In traditional sampling-based GCN models, the sampling (batch-preparation) time and

“real-training” time (gradient calculation and model updating) are usually measured together

as the model training time. But in graph-partition based GCN such as Cluster-GCN, the batch-

preparation is done independently before the training starts. So, when applying the synchronous

gradient averaging methods to this kind of GCN models, the delays caused by stragglers

become obvious in the training phase. The motivation of our research is to overcome the

drawback caused by the synchronization of gradients.

To overcome the performance bottleneck caused by the synchronization delay due to

idling, in this research we investigate an asynchronous parallel training methodology of GCNs

based on the idea of gossiping (GossipGCN). Although gossiping-based asynchronous parallel

training has been explored for CNNs in distributed systems, to the best of our knowledge there

is limited research on asynchronous parallel training of GCNs on a GPU cluster.

Previous research has investigated gossip algorithm for CNN training using GPUs in a

distributed system. Such a system consists of multiple compute nodes, where each compute

node consists of one CPU connected with one or more GPUs, and multiple connected CPUs

form a distributed cluster. Usually the gradient calculation and weight updates are done on

GPUs inside a compute node while the communication for averaging gradients using gossip

runs among CPUs [14-16]. Averaging of gradients among GPUs within a compute node is

usually achieved by using all-reduce (Figure 1(a)) or using the CPU as a central server. In a

centralized system with a parameter server, the central server may cause communication

bottleneck. For a decentralized system as in Figure 1.1 (a), the collective communication (all-

reduce) among GPUs can be achieved using NVIDIA Collective Communications Library

(NCCL) [17], which provides fast communication backend among GPUs. As discussed before,

there are performance bottlenecks with this approach as well.

 4

Figure 1.1 Gossip algorithm for distributed system and single compute node.

As a major difference, in our work, we investigate the gradient averaging among GPUs

in a compute node using gossip (Figure 1.1 (b)). To the best of our knowledge, this is the first

such attempt to use gossip in asynchronous training of CNN or GCN inside a compute node.

This is further elaborated in the following.

In addition, previous experiments of asynchronous gradient averaging methods are

done for CNN related problems such as image classification. As far as we know, there is very

limited research about using asynchronous algorithms for GCNs. Although there are

similarities between CNNs and GCNs, the model construction, information propagation and

dataset performance are different. And the benchmark results gathered in previous research

cannot be used for GCN related problems. So, we propose to have an initial investigation on

using gossip gradient averaging for GCN training on a GPU cluster.

Our research adapts the algorithm of Cluster-GCN [8] and focuses on the model

training phase. We design and implement an asynchronous decentralized data parallel training

method for graph convolutional networks (GCNs) with an adjustable averaging interval and

compare its performance with the synchronous counterpart. Since PyTorch is the new trend to

carry out graph related deep learning, the proposed algorithm is implemented using PyTorch.

 5

1.3 Challenges and contributions

In order to implement gossip algorithm for gradient averaging among GPUs, the major

challenge is to ensure deadlock avoidance. The deadlock happens when the dependencies of

workers end up in a loop. Previous studies propose different methods to avoid deadlocks during

gossiping, however, they are not suitable for asynchronous GCN training on GPUs. To

implement an efficient deadlock avoidance algorithm for GCN training on GPUs, we propose

a new method to use shared variables to control gossip-neighbor information. The efficiency

of this method is achieved by keeping minimum message passing among workers and

dynamically choosing available workers. In addition, by mapping each GPU with a process, it

is convenient to use quick get and put methods for light weighted data such as process index.

Moreover, to improve the speed up and reduce time wasted on waiting idly, we

implemented a work-pool mechanism to make the best use of the computing capacity of each

worker. In the synchronous AllReduce-GCN method, each GPU has to train the same number

of mini batches since they need to average gradients in every iteration. In our proposed method,

we allow fast workers to request more mini batches whenever they are free, thus the calculation

capacity of each GPU is fully used. We also incorporate the periodic synchronization method

with the work-pool mechanism, and the synchronization interval can be determined empirically.

We present an asynchronous and decentralized data parallel algorithm (GossipGCN)

for graph neural network training. Experiments are carried out on node classification tasks. The

following are the highlights of the approach:

• Partitioning of the original input graph into subgraphs based on random

clustering and doing parallel training on the subgraphs.

• Design and implementation of a gossiping-based algorithm using PyTorch

which averages gradients among randomly chosen partner GPUs at set intervals.

• The gossip algorithm is proven to be deadlock-free.

• Partner selection is more random than the previous gossip algorithms on GPUs

known to us.

• Enhanced efficiency by adopting a work-pool based strategy where workers

(GPUs) are assigned works dynamically rather than a static work assignment.

 6

1.4 Thesis Outline

 The rest of this thesis is organized as follows. Chapter 2 presents research background

and related works. Chapter 3 elaborates the implementation of graph-partition based

synchronous data parallel GCN training and discusses its limitations. Experiments are done to

evaluate the effects of periodic gradient averaging on synchronous approach. Chapter 4

discusses the design and implementation of the proposed algorithm and related proofs.

Experimental results with various benchmark datasets are also included in this chapter. Finally,

Chapter 5 concludes this research by summarizing our work, followed by a discussion on future

works.

 7

Chapter 2 Literature Review

Graph convolutional networks (GCNs) have become a popular tool for deep learning

tasks on graph data. They are widely applied to different domains including social science [1,

2], chemical and biology research [3, 4], knowledge graphs [5] and traffic networks [18, 19].

GCNs belong to an important branch of graph neural networks (GNNs). GNNs are evolving

fast in recent years and different variants are proposed, such as graph convolutional networks

(GCN), graph attention network (GAT) and jump knowledge network (JK-Networks). [20]

conducts a comprehensive survey on GNNs and proposes a new taxonomy for categorization

of related works. [21] provides a generalized GNN benchmarking framework, which facilitates

evaluation of different GNN architectures. Among the different versions of GNNs, graph

convolutional networks (GCNs) set the foundation in early works and have a long-lasting

influence on deep learning research. With increasing size of input graphs and the advancement

of hardware and parallel methodologies, parallel training of GCNs has gained a lot of attention

and different parallel strategies are proposed.

In this chapter, we first provide a brief background of GCNs and its relationship with

convolutional neural networks (CNNs). Then we discuss mini batch Stochastic Gradient

Descent (SGD) GCNs and its variants. Subsequently, we provide a review of different schemes

for parallel GCN training and various optimization methods. Finally, we conclude this chapter

with a discussion of GCN training on GPUs.

2.1 Graph Convolutional Networks (GCNs)

Encouraged by the popularity of convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), a large number of studies are done for deep learning research on

graph data, and the concept of graph convolutional networks (GCNs) appears. Traditional

neural networks like CNNs organize the node features in a specific order, which is actually not

suitable for graph related data. In a graph, there doesn’t exist any natural order for the nodes,

and GCNs use message passing between nodes to capture the dependency of graphs.

To have a more straightforward understanding, an example of relations between CNNs

and GCNs is illustrated in Figure 2.1. In CNNs for image processing problems, it usually uses

a convolution kernel and pooling layers to transform information. Graph dependency

information (represented by edges) is considered as a feature of nodes. While in GCNs,

information is propagated on each node respectively through message passing, and the state of

 8

nodes is updated by a weighted sum of the neighbor nodes’ states. The propagation ignores the

input order of nodes and is guided by the graph structure (edges in the graph).

Figure 2.1 Example of 2D convolution and graph convolution. (Figure courtesy of [20])

Using a fixed number of layers with different weights, graph convolutional networks models

the dependency of graph nodes. In each layer, it acquires the embeddings by gathering

information from workers. The first complete definition of GCN is presented in [22]. The

authors propose a model derived from convolutional neural networks to solve graph-related

deep learning problems. The proposed model is scalable. At the same time, it encodes features

of nodes and graph structure. This work is critical for later research on graph convolutional

networks and promotes the widespread adoption of GCNs in graph related deep learning

problems. Different variants of GCNs include GraphSAGE [23], FastGCN [24] and graph

convolutional networks with variance reduction [25].

2.2 Mini batch Stochastic Gradient Descent (SGD) GCNs

 The pioneer work of GCN training [22] uses full-batch gradient descent, where

gradients are calculated with the complete input data and weights are updated after each epoch.

This method is not scalable because of slow convergence and increasing memory requirement

for large input data. To cope with the scalability problem of GCN training, [23] propose a mini

batch stochastic gradient descent (SGD) algorithm for large-scale graphs, where weights are

updated after each iteration based on gradients generated from training a mini batch. A mini

batch is a subset of training examples and is smaller than the original input graph. This method

requires less memory compared with full-batch gradient descent and has a better converge rate

In 2D convolution, a filter is

used to gather information of

each pixel and its neighbors.

In graph convolution, information is

gathered along edges using

propagation.

 9

since multiple updates are conducted in one epoch. An illustration of mini batch SGD is shown

in Figure 2.2.

 In mini batch SGD, computing loss on a single node is dependent on the embeddings

of its neighbors at the previous layer, and this process continues recursively based on the GCN

depth, thus it leads to time consumption grows exponentially to GCN layer numbers. The

problem caused by such dependency is known as neighbourhood expansion problem. Previous

studies propose various solutions to reduce side effects of such a problem, a typical solution is

to use sampling methods to prune the neighbors of a node to reduce expended neighbors [23,

24]. Sampling methods limit the size of neighbor samples for each node; however, the overhead

still grows quickly with the GCN depth. Two innovative methods [8, 9] are proposed since

2019 and offer new perspectives to deal with the neighbourhood expansion problem using

graph partition methods and subgraph based GCN training.

Figure 2.2 Mini batch Stochastic Gradient Descent (SGD). (Figure courtesy of [13])

2.2.1 Traditional Sampling Based GCN Training

The essential idea of sampling is to have an accurate estimation of GCN embeddings

by reducing dependent neighbor nodes. There are many different sampling methods that can

be used for mini batch SGD training of GCN models, and some of them are supported in

flatforms and libraries such as PyTorch [26] and DGL [27]. As mentioned in a survey [28],

there are mainly two types of sampling methods: neighborhood sampling and layer-wise

sampling. An example of the sampling method is shown in Figure 2.3.

 Neighborhood sampling methods samples the neighbors for each node during training.

One of the well-known neighborhood sampling methods is presented in GraphSAGE [23]. The

author suggests to sample a fixed-size set of neighbors for the calculations. Using this method

can guarantee to have a predictable space and time complexity for each iteration. This work

 10

sets the foundation for lots of later research on neighborhood sampling, and different variants

are proposed to optimize GraphSAGE. [29] presents an advancing data-driven sampling

method to address the high variance in training, and it achieves a better accuracy than the

original version of GraphSAGE.

 Another variant of neighborhood sampling is illustrated in PinSage [30] to use highly

efficient random walks to estimate the graph embeddings for GCNs. In addition, PinSage

proposes an efficient MapReduce model inference algorithm for constructing embeddings.

According to their experiments, this method works well on large-scale graphs with billions of

nodes and edges.

 Even though the neighborhood sampling has great achievement in mitigating

neighbourhood expansion, the number of dependent nodes still grows exponentially to GCN

depth, which causes time and memory consumptions increase rapidly. To overcome the issue

of over expansion, FastGCN [24] proposed a layer-wise sampling method, where a layer is

considered integrated and restrain the number of sampled nodes per layer. The proposed

method also incorporates importance sampling to reduce approximation variance. [31]

illustrates another adaptive sampling method in which the sampling is done in a top-down

manner. This method is proven to be effective on classification accuracy and has faster

convergence rate.

Figure 2.3 Sampling in GraphSAGE. (Figure courtesy of [23])

 11

2.2.2 Graph-partition based GCN Training

In GCN training based on traditional sampling methods, although efforts are made to

cope with the neighbourhood expansion Problem, a large portion of training time is still taken

by gathering neighbor nodes’ information recursively from previous layers. Cluster-GCN [8]

proposes a different methodology for solving this issue. At each iteration, the algorithm

conducts training on a subgraph instead of the entire GCN layers as in traditional sampling

methods. The subgraphs are identified by a graph clustering algorithm, such as Metis or random

partition. As illustrated in Figure 2.4, Cluster-GCN constrains neighbourhood expansion within

the subgraph, and the number of expanded neighbor nodes are less than using the traditional

sampling methods, thus avoiding expensive increase of time and memory consumptions.

Figure 2.4 Comparison of neighbourhood expansion. (Figure courtesy of [8])

Sampling from a subgraph leads to a loss of graph information, thus it causes lower

accuracy. Moreover, although using clustering methods (e.g. Metis) can result in minimum

edges cut in graph partition, it introduces the issue that similar nodes tend to be partitioned in

the same group. Since subgraphs may be an inaccurate representation for the original graph, it

can lead to biased estimation for GCN training. To compensate for the missing links and

increased variance brought by biased clustering, Cluster-GCN introduces a method that groups

the partitioned subgraphs randomly and recovers the missing links within the group.

The authors carry out experiments using median and large size data to compare

performance of Cluster-GCN and other state-of-the-art sampling methods, such as

GraphSAGE and FastGCN. Results show that the proposed method can achieve equivalent test

 12

accuracy compared with previous methods and enjoys a much faster training speed. In addition,

Cluster-GCN improves memory efficiency impressively and enables training on deeper GCN.

Their examination on a 5-layer Cluster-GCN improves the prediction accuracy on the PPI

datasets to 99.36 (F1-score).

In our research, we adapt the approach of Cluster-GCN for the ease of graph

partitioning on GPUs, but unlike the original work we use a random clustering instead of Metis

[32] to create the subgraphs. In our experiments, random clustering is found to provide better

performance than Metis and could lead to the desired accuracy with properly chosen model

and hyperparameters. One explanation is that the result of the training is a heuristic model and

with large enough subgraph size the needed information can be maintained.

2.2.3 Subgraph Based GCN Training

GraphSAINT [9] uses a similar idea of restricting neighbourhood expansion as in

Cluster-GCN by using subgraphs. It uses the sampling method to get subgraphs and builds the

GCN on these subgraphs. In addition, the authors propose a normalization technique to reduce

bias and exploit the possibility of combining the algorithm with different GCN variants.

In the research of GraphSAINT, the author states that their method is faster than

Cluster-GCN and has better accuracy. But in the paper, they only conduct experiments using

original codes of Cluster-GCN, which is implemented with Metis method and original GCN

model, thus it consumes a long time to prepare the mini batches and leads to lower accuracy

than GraphSAINT. We reproduced the comparison of the two methods using the same

aggregator (GraphSage). The code for GraphSAINT is taken from the authors’ GitHub post

[9], and for Cluster-GCN, we use the example code in DGL GitHub library [33]. Instead of

using Metis for graph clustering as suggested in the original paper [8], we use a random

clustering method for Cluster-GCN. It turns out that the revised version of Cluster-GCN has a

similar performance as GraphSAINT in both time consumption and accuracy. Besides, Cluster-

GCN is easier to implement compared with GraphSAINT.

2.3 Parallel SGD-based Deep Learning Training

Parallel training for GCN models has gained popularity recently. Because of the quickly

increasing number of neighbor nodes in each layer, usually it is difficult for GCNs to train

models with deep depth. In addition, increasing data size for modern deep learning tasks

 13

consumes longer time to train the models. Nowadays, with the development of hardware and

parallel programming technologies, GCNs is able to accomplish various training tasks. In this

section, we discuss the commonly used parallelism strategies and the different synchronization

methods for gradient averaging in deep learning training. Optimization methods such as local

stochastic gradient descent and periodic averaging are also discussed in this section.

2.3.1 Overview of Parallelism Strategies

As mentioned above, the two major categories for parallel SGD-based deep learning

training are data parallelism (DP) and model parallelism (MP). Figure 2.5 illustrates the

architectures for the two parallel strategies. Recent research [13] also proposes a combination

for DP and MP. Among these choices, data parallelism is the prevailing approach because of

its simplicity and generality.

Figure 2.5 Architectures of parallelism strategies (Figure courtesy of [34])

GCN models are suitable for synchronous data parallel, since there is no order for the

nodes, and the propagation is done on each node respectively. In data parallelism, each worker

has a replica of a deep learning model. The local models are trained in parallel with independent

subsets of input data. Multiple mini batches can be trained simultaneously, thus it reduces time

consumption for passing the whole input set. The workers use synchronization methods to

average gradients and then apply the same gradient to update weights. The batch for a step in

each worker is called a mini batch, and a collection of mini batches from all workers is called

a global batch. So, the number of parallel workers affect the global batch size, which has an

influence on the final accuracy achieved for the model. To get a desired accuracy, it may

 14

require more iterations for data parallel training compared with baseline training on the same

datasets. Additionally, the increasing number of workers brings more overheads in

synchronization and communication processes. Even though data parallelism has these

potential drawbacks, it is still the most popular parallelization strategy, because it is relatively

easy to implement and broadly supported in major deep learning frameworks, such as PyTorch

[12] and TensorFlow [35].

Model parallelism (MP) is used for deep learning models that are too large to be fit in

a single device. In MP, the model data flow graph (DFG) is split in parallel on different workers,

and all devices work together for passing a mini batch in training. Since the model is divided

across multiple workers, the forward and backward propagations require communication

between workers in a sequential fashion. This is the reason why MP is also considered as

“Model Serialization”, because it actually uses a serial approach for gradients calculation.

Since each training step takes less time than using a single device, speed up can be achieved

by using this approach. However, the scalability in MP is limited by GCN model’s algorithm

and implementation. It is also difficult to maximize speed up of MP since it depends on model

DFG and system hardware. If the parallel overhead is too large, it may overshadow the profit

of using MP.

For a deep learning model which is sequential in nature and doesn’t have parallel

branches, another strategy to parallel is using pipelining. In this approach, the layers of the

model are grouped and assigned to independent devices. In one training step, a mini batch is

divided into several micro-batches. Each worker processes one micro-batch simultaneously

and follows the sequence. In a certain way, this approach can also be considered as an

implementation instance of MP. Research [36] has been done to use graph computation

optimizations and pipelining methods to optimize model parallelism. It proposes a framework

to combine the graph and dataflow models and achieves promising performance on both small

and large real-world graphs.

A new hybrid approach is presented in [13] to combine data parallelism and model

parallelism to push forward the speed up limitation of using DP or MP alone. The authors

propose to have multiple devices for a single worker. Inside each worker, it applies model

parallelism with its devices to accelerate each training step. Then data parallelism is applied

among the workers. If a system has a large number of devices and using data parallelism alone

can’t take full advantage of the computation resources, then using the hybrid parallelism can

push the limit of speed up further. Their experiments show that if speed up gain from MP can

 15

overcome increased overhead and efficiency losses, using this hybrid implementation can

improve training speed up.

In reality, there is no single solution for the choice of parallelism approaches because

of model properties and system configurations. Because of the parallel nature of graph nodes

and propagation process, DP is widely adopted and the implementation is easier with help of

deep learning platforms and libraries, such as PyG [26] and DGL [27]. Although data

parallelism has lots of advantages, one of the main bottlenecks for DP is the gradient

synchronization. Two major types of gradient synchronization methodologies are discussed

below, specifically synchronous and asynchronous data parallelism.

2.3.2 Synchronous Stochastic Gradient Descent (SGD)

According to [37], current gradient synchronization algorithms can be grouped into

four categories: (1) communication synchronization (synchronous, asynchronous, etc.); (2)

system architectures (all-reduce, gossip, etc.); (3) compression techniques; (4) parallelism of

communication and computing. Different synchronization patterns can integrate with different

system architectures. For example, synchronous communication can work with the all-reduce

method, which is a very common gradient synchronization approach in GCN training.

Synchronous SGD has been studied for years and is a common way to implement data

parallelism for deep learning training. The convergence of synchronous SGD for deep learning

problems are discussed in [38, 39]. For synchronous SGD, each worker fetches a mini batch

and calculates local gradients, then local gradients get averaged and the model is updated.

Depending on the system architecture, there are centralized and decentralized variants for

synchronous data parallel implementations.

In a centralized implementation, the model is stored in a parameter server, usually it

can be the CPU memory. In each iteration, each worker (e.g. GPU) fetches the model saved in

the parameter server and gets a mini batch to compute gradients. After finishing computing,

workers send the stochastic gradients back to the parameter server, and the gradients are

averaged on the parameter server when all results are returned. The model is updated with the

averaged gradients, then the next iteration starts by sending out the updated model and new

mini batches to workers.

Another variant of synchronous SDG is proposed in [40] to maximize the time spent

on useful computations. The algorithm is called Stale Synchronous Parallel (SSP). It allows

parallel workers to read stale values from a local cache and continue training using the old

 16

model. This approach reduces time that workers spend on waiting idly for the values from a

central storage over the network, thus improving the ratio of time for useful computations.

However, there is an iteration gap when parallel workers get a different number of mini batches

locally. If this iteration gap is too large, the fastest worker needs to pause and wait for the

slowest one. The authors provide a proof for the correctness of this algorithm and conduct

experiments on various deep learning problems. The paper states that SSP achieves faster

converge speed compared with fully synchronous systems at that time.

The problem of centralized synchronous SGD is that the communication through the

parameter server can be the bottleneck. To overcome the communication bottleneck,

decentralized synchronous SGD is presented in [41, 42]. For decentralized synchronous SGD,

each worker keeps a local copy of the model and fetches a mini batch to calculate stochastic

gradient locally. In each iteration, the gradients are averaged through a collective

communication among workers, which is usually done using all-reduce. Then the gradients are

identical on each worker, and the local model is updated using the averaged gradients.

Although there is no need for a centralized parameter server, this approach still falls in a model-

centralized topology, since all local models are identical after synchronization at each step,

which is equivalent to having a global model.

The decentralized synchronous SGD using the all-reduce method (AllReduce-SGD) is

widely accepted and promoted. In PyTorch [26], the contributors optimize the all-reduce call

by organizing parameter gradients into buckets and parallelizing computing and

communication. Even with all these efforts, there is an unavoidable defect of synchronous SGD.

If there exists a straggler (slow worker) in the system, it will affect the overall training speed

extremely. Since synchronization needs to be performed at each iteration, the fast workers have

to wait in idle for the slow ones. Besides, frequent synchronization requires large bandwidth

for communication among workers.

2.3.3 Asynchronous Stochastic Gradient Descent (SGD) using Gossiping

In synchronous SGD, all parallel workers need to communicate with other workers to

average stochastic gradients in each iteration, which leads to high communication cost. Besides,

since there is a barrier at each step to synchronize, the fast workers have to stay idle and wait

for the slow ones. All these add to the time consumption and bandwidth burden of synchronous

SGD. To overcome these disadvantages, research has been done to minimize the overhead

caused by gradient synchronization, and asynchronous stochastic gradient descent

 17

(asynchronous SGD) is proposed recently. Basically, asynchronous SGD breaks the

synchronization in each iteration and reduces the idling and communication time significantly

in the training process. Figure 2.6 illustrates the schemes of synchronous and asynchronous

SGD.

Figure 2.6 Centralized Synchronous and asynchronous SGD. (Figure courtesy of [43])

Similar to the synchronous version, asynchronous SGD has many different variants,

including centralized and decentralized schemes. Centralized asynchronous SGD uses a

parameter server to store the global model and manage the gradient averaging and parameter

updating, while in decentralized versions, workers communicate with each other in a

decentralized fashion such as gossiping. Thus, decentralized asynchronous SGD gets rid of the

communication bottleneck at parameter server.

In centralized asynchronous SGD, a model is stored initially on the parameter server.

Parallel workers obtain current model parameters and a mini batch to calculate gradients locally.

Once the calculation work is done in a worker, it sends the gradients back to the parameter

server. The global model is updated asynchronously, and each worker does not need to wait

for its peers. The worker gets a new set of parameters from the parameter server immediately

after finishing previous work and fetches a mini batch to continue the calculation of gradients.

Centralized asynchronous SGD is widely used for various deep learning problems.

However, it still suffers from the communication bottleneck and slow convergence caused by

a centered parameter server. In addition, centralized systems are vulnerable to potential central

point failure, which will cause the whole system to shut down. To eliminate the communication

bottleneck and central point failure issues, decentralized asynchronous algorithms are widely

 18

adopted in recent studies of various deep learning problems. These kinds of algorithms are

more tolerant to slow workers and worker failures. Many implementations of decentralized

asynchronous SGD use gossip algorithm, where workers can choose a random neighbor to

average gradients [15, 16]. Figure 2.7 shows a comparison of centralized network and gossip-

based decentralized network.

Figure 2.7 Centralized network and gossip-based decentralized network

[44] proposes a decentralized non-gradient-based algorithm for solving optimization

problems. They develop a distributed asynchronous iterative algorithm with gossiping methods

for achieving optimization over undirected networks. [45] presents theoretical analysis and

proves decentralized SGD algorithms can outperform centralized counterparts since less

communication cost is required on the busiest node. Their experiments show that in low

bandwidth or high latency systems, decentralized SGD outperforms centralized algorithms up

to one order of magnitude.

Asynchronous parallel training based on gossiping has been investigated in previous

research to improve training performance. Gossip algorithm [46] is initially used for consensus

problems, e.g., to compute the mean of data distributed in different computing nodes. In gossip,

a node (computer) randomly chooses a partner to exchange information, and after a period of

time, it is guaranteed to achieve robust information exchange among all nodes. The correctness

and usage of gossip algorithm for distributed data aggregation is discussed in prior studies [46-

49]. In deep learning training, using gossip can break the synchronization barrier of all-reduce

across iterations by requiring to synchronize only between pair(s) of nodes in point-to-point

data communication and hence reduce synchronization overhead of all-reduce in the presence

of stragglers.

 19

[50] presents a method using request-based methods to apply the gossip algorithm on

the distributed averaging problem. The authors propose to send requests to workers before real

gossip happens, and the gossip only occurs when a worker accepts the request. This method

guarantees that deadlocks are avoided, however the requests sent among processes add to the

communication overhead.

An asynchronous decentralized SGD algorithm is proposed in [15]. The authors present

AD-PSGD algorithm that performs well in a heterogeneous environment and enjoys an optimal

converge rate. According to their theoretical analysis and experiments, the algorithm achieves

linear speed up and a similar epoch-wise convergence rate compares with the synchronous all-

reduce counterpart. The proposed method adopts the traditional sampling methods for getting

mini batches and uses a gossiping-style algorithm for averaging stochastic gradients. To

eliminate deadlocks, the authors suggest dividing the workers into two groups, explicitly active

set and passive set. Active set is responsible for sending the gradient averaging request to a

random worker in the passive set, then the passive neighbor will return its local gradients, and

the two workers update their local models with the same averaged gradients. This work

provides an efficient asynchronous SGD algorithm using gossiping and has an important

influence on our research.

Stochastic Gradient Push (SGP) is presented in [16] incorporates The PUSHSUM

gossip algorithm with stochastic gradient descent for solving deep learning problems. Previous

synchronous and asynchronous algorithms use different methods to calculate an exact inter-

node average gradient, while SGP propose to compute approximate averages using PUSHSUM

method. The author proves that with a properly chosen step-size, their method has a similar

convergence as the SGD algorithm. Experiments are done for image classification and neural

machine translation tasks, and the results show that SGP is robust in systems with stragglers

and overall speed up for deep learning training is improved.

The advantages of asynchronous SGD are shown in the above discussions. To

summarize, it is more tolerant for heterogeneous environments and can reduce the effect of

stragglers, and less communication cost relieves burden on the network bandwidth. In spite of

these benefits, this methodology has a potential disadvantage caused by asynchronous model

updating. For example, a worker A takes mini batch i and its parallel neighbor B gets mini

batch i+1. When worker A finishes calculating gradients and tries to get the next mini batch

i+2 and updated parameters, worker B may not finish calculations and the parameters get by A

are not updated based on mini batch i+1. This means that the next iteration carried out on A is

based on outdated parameters and the gradients may have variance.

 20

Research has been done to address the issue caused by update delays and proves the

correctness of asynchronous SGD. Theoretical analyses of asynchronous SGD are presented in

[51, 52]. The authors theoretically prove that despite asynchronous delays, the convergence is

achievable with linear speed up.

2.3.4 Periodic Gradient Averaging

In synchronous and asynchronous parallel SGD solutions, previous research shows that

a linear speed up is achievable in theory, however, the scalability of such speed up is limited

due to the communication overhead caused by synchronization. To reduce the communication

cost, another type of optimization is proposed that reducing synchronization frequency can

lower the communication overhead significantly. Research [53, 54] suggests performing

gradient averaging periodically among the workers. This kind of approach is known as local

SGD or periodic averaging. It has been discussed theoretically in recent years and shows

promising results practically.

In AllReduce-SGD, synchronization happens in each iteration, it has high statistical

efficiency but requires expensive communication cost. While in local SGD, synchronization is

performed at a certain time interval. The extreme situation is that only one-time

synchronization happens at the end, which is also called one-shot averaging. It requires very

little communication in one-shot averaging, but the gradients are averaged only once. So, there

is a trade-off for training speed and accuracy, and local SGD tries to find the balance point to

maximize the performance. A theoretical proof of synchronous and asynchronous local SGD

convergence is given in the paper [53].

Some early studies related to interval synchronization include the work of [55]. The

authors study parallel deep learning problems under communication constraints and proposed

Elastic Averaging SGD method (EASGD) to reduce the number of communications between

parallel workers and the central machine. The algorithm enables the master worker to update

the model when parallel workers finish local updates after a certain communication period. The

authors present different variants of the algorithms, including both synchronous and

asynchronous versions. Their experiments verify the communication efficiency of the proposed

algorithm.

[54] carries out study on periodic averaging and provides theoretical analysis on deep

learning problems. The authors also present a scheme for deciding synchronization frequency

and the conditions that affect speed up performance. They conduct experiments to show that

 21

with properly chosen communication frequency, periodic averaging can achieve close to linear

speed up.

In addition to experimental proof of the efficiency on model averaging, [56] elaborates

on the theoretical exploration for the methodology. Their research provides a complete and

rigorous theoretic guarantee of convergence for model averaging on deep learning problems

and gives guidelines on how often the gradient averaging should be done during the training to

achieve linear speed up.

2.4 GCN Training on GPUs

2.4.1 Existing Deep Learning Frameworks

The community of deep learning research has grown rapidly in recent years. Compared

with pioneer researchers in this field, nowadays implementations of GCNs and other neural

networks are becoming more convenient with the support of various open-source software

libraries and deep learning frameworks. The well-known frameworks include TensorFlow [57]

and PyTorch [58].

TensorFlow is developed by Google Brain team and was initially released in 2015. It

has gained great popularity among researchers and developers since its debut. Some important

benchmark GCNs are originally proposed and implemented using TensorFlow, such as the first

version of GCN, GraphSAGE, and FastGCN. TensorFlow has a leading position in the deep

learning field until PyTorch is launched.

PyTorch is a deep learning framework developed by Facebook's AI Research lab

(FAIR). More recent works on graph neural networks are done using PyTorch because of its

robust support for GPU related training. It defines a tensor class (torch.Tensor), which can be

easily transformed to Nvidia GPU. PyTorch supports implementation of neural networks on

GPU using CUDA extensions and facilitates GCN implementation with help of PyG (PyTorch

Geometric Library) [26]. This opens the possibilities to take advantage of GPU computational

power for GCN training.

In addition to including CUDA to its library, PyTorch provides different choices of

backend support such as NVIDIA Collective Communications Library (NCCL) [17]. NCCL

follows the widely used Message Passing Interface (MPI). It provides fast communications for

multiple GPUs and is compatible with various multi-GPU parallelization models. For now,

PyTorch only supports NCCL collective communications, such as Broadcast, AllReduce and

 22

AllGather. Point to Point communication among GPUs can be mimicked by creating subgroups

for processes.

Although using such frameworks will limit certain low-level implementation flexibility

and optimizations, the advantage of its simplicity and general applicability still attract more

and more users. It also accelerates research of GCN-related problems and helps to focus on the

optimization of algorithms rather than low level implementations. In our research, we choose

PyTorch as the base framework for its strong support of GPU-related computing and a

comprehensive library for distributed and parallel deep learning training.

2.4.2 Synchronization Using All-reduce

All-reduce is a collective communication operation normally used in distributed deep

learning. The all-reduce algorithm collects the target data in all workers to a single variable

and returns the result to all processes in the same community. For example, there are p parallel

workers, and each worker has a data Dp. Then the result of all-reduce can be represented as:

Dallreduce = D1 Op D2 Op … Op Dp ,

where Op is an operator such as SUM, MAX and MIN. An example of all-reduce call on four

processors is displayed in Figure 2.8. Some important libraries such as MPI [59] and NCCL

[17] have included build-in support for all-reduce call, which makes implementation for

parallel GCN training more convenient.

Figure 2.8 Example of all-reduce call on four processors. (Figure courtesy of [12])

 23

The performance of synchronous GCN training is satisfying in scenarios where all

workers calculate gradients at the same pace. Since there is a barrier at the end of each iteration,

where all processes need to execute the same line of code to average gradients, a straggler in

the system will slow down the overall training time significantly.

Efforts have been made to parallelize communication and computation during the

training process to alleviate the drawback caused by the synchronous barrier. For example,

PyTorch distributed data parallel (DDP) library [12] proposes a method to group gradients into

several “buckets”. When all gradients in the same bucket are ready, it executes gradient

averaging for that portion of gradients right away, without waiting for other gradients in

different buckets. Although this optimization achieves better speed up than the purely

synchronous version, it still needs to wait for all gradients are averaged to end the iteration.

2.4.3 Implementation Using CPU/GPU Cluster

To cope with the problem of communication bottleneck in synchronous deep learning

training using the all-reduce method, different asynchronous algorithms are proposed. Early

research of parallel deep learning training on a CPU/GPU cluster normally uses CPU or a single

GPU as the parameter server for asynchronous gradient averaging. However, as explained in

previous sections, such centralized implementations usually suffer from speed up bottleneck at

the central node. Recently, decentralized strategies have been proposed for parallel training in

distributed systems, which typically use GPU for calculations and use CPU for gradient

averaging.

In the work of [15], the authors propose a gossiping asynchronous decentralized

algorithm for SGD training (AD-PSGD) and suggest to calculate gradients and update weights

on GPU devices and execute communications on CPU. This approach helps to parallelize

communication and calculation by running two separate threads on CPU and GPU respectively.

Their experiments show that the proposed algorithm works well on distributed systems with

32 compute nodes with 4 GPUs on each node. With a close examination of their

implementation, we notice that the asynchronous averaging only happens on the CPU level,

while within each compute node, the gradients averaging among different GPUs still follows

the synchronous all-reduce scheme. Another asynchronous decentralized parallel SGD

approach is presented in [16]. Similarly, the asynchronous gradient averaging method is

implemented for different compute nodes.

 24

We notice in previous research, the asynchronous decentralized gradient averaging

algorithms are proposed for multiple compute nodes, where asynchronous communication

happens among CPUs, however, there is limited research for asynchronous gradient averaging

for multiple GPUs within a single compute node. Because of the differences between CPUs

and GPUs, it is not easy to apply previous methods directly to achieve asynchronous parallel

training on GPUs.

 25

Chapter 3 Graph-partition based Synchronous Data

Parallel Implementation

In this chapter we first present the implementation for graph-partition based GCN using

a single GPU, which sets the baseline for our research. The implementation is inspired by

Cluster-GCN [8]. Then, we design and implement a synchronous GPU-parallel GCN

(AllReduce-GCN). We use a random partition method to prepare mini batches and the all-

reduce method to average gradients. We also illustrate an optimization method by reducing the

gradient averaging frequency following the concept of periodic gradient averaging. In addition,

we summarize previous theoretical discussions on the convergence and correctness of

synchronous parallel training and periodic gradient averaging.

Experiments are carried out using datasets with different sizes. The results demonstrate

the limitations for synchronous graph-partition based GCN. Reducing gradient averaging

frequency can help to reduce communication overhead. However, because of the

synchronization barrier in the training, the speed up is still limited, especially in a

heterogeneous environment with workers at different paces.

3.1 Baseline Implementation for GCN Training on a Single GPU

The pseudocode for graph-partition based GCN on a single GPU is shown in Algorithm

1. In such an implementation, the input graph is first partitioned into n subgraphs using the

random partition method. These subgraphs are used as mini batches for the training. Then a

model is initialized on the GPU. During the training, one mini batch is used for gradient

calculation in one iteration, and the model is updated based on the gradients. An epoch is

reached when all the subgraphs are passed through the GCN training for one time. Usually,

GCN training requires multiple epochs until the model parameters become stable. Since there

is a single worker during the training, there is no need to do gradient averaging.

Algorithm 1: Baseline GCN training using a single GPU based on graph partitioning.

Input: Graph G, feature X, label Y

Output: GCN model with trained weights

1. Partition input graph into n subgraphs G_1, G_2, … G_n

2. Initialize model on the GPU, define loss function, optimizer and epoch number e

 26

3. for each epoch in total epochs e do

4. for each mini batch (subgraph) in subgraph_set do

5. Get mini batch features and labels

6. Calculate gradients

7. Update weights

8. end for

9. end for

We adapt the algorithm proposed in Cluster-GCN, but different from the original

research, we use a random clustering method instead of Metis to get subgraphs. The

pseudocode for the random clustering method is illustrated in Algorithm 2. To partition a graph

into n subgraphs, we first initialize n empty subgraphs. Then we go through each node in the

original graph and assign the node randomly to a subgraph. After all nodes are assigned, the

edges for local nodes in subgraphs are retrieved from the parent graph. Then, features and

labels of the nodes are copied from the original graph to subgraphs.

Algorithm 2: Graph random partition.

Input: Graph G

Output: A set of partitioned subgraphs

1. Initialize n empty subgraphs

2. for node in graph G do

3. Assign the node randomly to a subgraph

4. end for

5. for each subgraph do

6. Build subgraph with local nodes and retrieved edges

7. Copy node data (features and labels) from the parent graph G

8. end for

In our experiments, we find out that the random clustering method is much faster than

Metis and produces the desired accuracy with properly chosen model and hyperparameters.

One of the explanations is that the result of the training is a heuristic model and random

 27

partition avoids the problem of biased clustering. Using Metis may cause nodes of similar

labels to be partitioned in the same subgraph, but random partition can ensure the same

probability of nodes appearing in any subgraph. Another reason is that the authors of the

original paper only conduct experiments using the original version of GCN, which has a

relatively lower accuracy compared to other advanced models (e.g. GraphSage). We conduct

the experiments based on the open sourced code examples in DGL GitHub [33] by using

GraphSage aggregator. The accuracy improved by using a superior model can minimize the

variance brought by different clustering methods. Considering the time consumption for the

graph partition phase, we decide to use the random partition method in our research.

By using graph-partition based GCN, the mini batch preparation phase and the “real-

training” phase (gradient calculation and weight update) are separated. In our research, we

compare the later one (“real-training” phase) for different algorithms. Since the graph partition

phase is the same for different implementations discussed in this work, the graph partition time

is not included when comparing speed up.

3.2 Synchronous GPU Parallel Implementations (AllReduce-GCN)

In this section, we present a decentralized synchronous GPU-parallel algorithm

(AllReduce-GCN) for graph-partition based GCN. We elaborate the implementation details

and an optimization method of reducing synchronization frequency. Previous theoretical

discussions for the related algorithms are presented in this section. Experimental results and

related datasets details are also provided.

3.2.1 Synchronous GPU Parallel using All-reduce

In a decentralized graph-partition based GCN training, the input graph is first

partitioned into n subgraphs and these subgraphs are used as sample mini batches for the

training. Each GPU in a compute node is a worker assigned with a mini batch. Each worker

initializes a local model and gets n/p portions of subgraphs (mini batches). During the training,

at each iteration every worker processes a mini batch locally and then averages local gradients

with all other workers for updating the model parameters. Different from the baseline GCN

training on a single GPU, where gradient averaging is done after processing each mini batch

once, in parallel GCN training the gradient averaging is done after processing every p mini

batches; as a result, there is a difference in accuracy. The gradient averaging step is usually

 28

done by using a reduction operator in all-reduce which synchronizes among all the workers.

Same as the baseline training on a single GPU, it requires multiple epochs until the model

parameters become stable. The pseudocode of a decentralized synchronous GPU parallel

implementation for graph-partition based GCN training is illustrated in Algorithm 3.

Algorithm 3: Synchronous GPU-parallel GCN training based on graph partitioning

Input: Graph G, feature X, label Y

Output: GCN model with trained weights

1. Partition input graph into n subgraphs G_1, G_2, … G_n

2. Start p workers, and each GPU is assigned with 1 worker

3. Initiate model on each worker, define loss function, optimizer and epoch number e

4. Divide subgraphs evenly among workers, with n/p subgraphs in each worker’s

subgraph_set

5. /* Each worker does the following */

6. for each epoch in total epochs e do

7. for each mini batch (subgraph) in subgraph_set do

8. Get mini batch features and labels

9. Calculate local gradients

10. Average gradients with other workers using all-reduce

11. Update weights

12. end for

13. end for

As shown in Algorithm 3, lines 1 to 4 demonstrate the preparation work before the

training starts. The epoch number e is determined empirically and is set before the training

starts. The instructions starting from line 5 to the end are executed in each worker. In each

iteration, one mini batch is taken from the subgraph_set and passed to the local model stored

in GPU for training. Lines 8 and 9 get subgraph (mini batch) features and labels from the CPU,

and the data is used to calculate local gradients using forward and backward propagation. In

line 10, local gradients are averaged with all the workers using the all-reduce method. Then in

line 11, the model parameters are updated using the averaged gradients. The training is finished

when the required epochs are passed.

 29

Although it is possible to map multiple threads on a single GPU if the model is small

enough, the communication speed of all-reduce call is affected greatly because of the

competition for GPU bandwidth. In addition, when a NCCL collective communication (e.g.

all-reduce) is running, it blocks other jobs and waits for other peers to join, which can be a

bottleneck for overall training speed. Moreover, if the GPU is busy and doesn’t have enough

free computing ability for all jobs, it will store the jobs in a stack and take one to execute

whenever it is free. So even with multiple threads mapped to one GPU, the mini batches may

get trained in a sequential manner in such a scenario. Considering all these effects, practically

we map only one thread with each GPU.

Figure 3.1 shows the overall scheme of the implementation for synchronous graph-

partition based GCN using the all-reduce method (AllReduce-GCN). The subgraphs (mini

batches) are prepared in advance using the same random partition method as for the baseline

counterpart using one GPU, which is illustrated in the previous section. During the training,

the features and labels of nodes in the training sample are sent to GPU, so the memory

consumption can be estimated using the size of the samples. For each iteration, gradients are

calculated in parallel, and the optimization is done by PyTorch backend implementation.

Figure 3.1 Scheme of synchronous graph-partition based GCN using all-reduce.

In the parallel implementation, a training sample in one worker is also called a mini

batch, and the collection of mini batches on all workers in one iteration is called a global batch.

Since the gradients are averaged at each step, actually the model is updated based on a larger

 30

batch compared with the baseline implementation. For example, the batch size for the baseline

version is x, and in the parallel implementation there are p workers, the batch size for each

iteration is changed to px. In another word, the baseline GCN implementation trains each mini

batch one by one and uses the previous gradients to update parameters of the model. So, each

mini batch is trained based on information gathered from previous samples. While in parallel

GCN, multiple mini batches are trained simultaneously. These differences have influence on

the final results for the model and lead to variance in accuracy.

To have a fair comparison for the speed up, we use the same batch size for the baseline

and parallel implementations, so the total amount of training work is identical for different

algorithms. But since gradient transmission and averaging need to take extra time, it adds to

the overall workload and time consumption for parallel GCN. We choose the refined

hyperparameters for the baseline implementation that give the best results and use the same

hyperparameters for parallel implementations. Experiments show that parallel GCN training

has a better speed up than the baseline one. However, according to the reasons stated above,

the accuracy of parallel GCN training is affected. So, there is a trade-off for accuracy and

training speed in practice.

PyTorch has an optimization to parallelize communication and computation in each

iteration with its DistributedDataParallel module. We have compared the optimized version

with the normal implementations, the training speeds have a small difference for the tested

datasets. Because the major bottleneck is the averaging gradient in each step, and even with

the optimization, it still needs to wait for all parallel workers to finish the calculation and

average gradients. In Figure 3.2, we illustrate how the barrier of synchronization causes faster

workers to stay idle and adds up to communication overhead.

Figure 3.2 Synchronous data parallel AllReduce-GCN. (Figure courtesy of [60])

 31

3.2.2 Optimization with Periodic Gradient Averaging

As discussed in Chapter 2, there are various methods to mitigate the consequences

caused by the communication bottleneck. The periodic gradient averaging is discussed in

previous research to reduce communication overhead. In this section, we propose an optimized

implementation for AllReduce-GCN by reducing synchronization frequency.

Inspired by the concept of local SGD [53] and model averaging [56], we implement a

periodic gradient averaging optimization for the AllReduce-GCN. We define an

averaging_interval to control gradient averaging frequency and initiate a variable count to

track the number of mini batches trained in the workers. Instead of executing the

synchronization in each step, we allow the parallel workers to train multiple mini batches

locally and perform synchronization in a certain interval. The modified pseudocode for

AllReduce-GCN is presented in Algorithm 4.

Algorithm 4: Optimization for AllReduce-GCN using periodic gradient averaging

Input: Graph G, feature X, label Y

Output: GCN model with trained weights

1. Partition input graph into n subgraphs G_1, G_2, … G_n

2. Start p workers, and each GPU is assigned with 1 worker

3. Initiate model on each worker, define loss function, optimizer and epoch number e

4. Define averaging_interval, and initiate count with 0

5. Divide subgraphs evenly among workers, with n/p subgraphs in each worker’s

subgraph_set

6. /* Each worker does the following */

7. for each epoch in total epochs e do

8. for each mini batch (subgraph) in subgraph_set do

9. Increment count by 1

10. Get mini batch features and labels

11. Calculate local gradients

12. if count is multiple of averaging_interval then

13. Average gradients with other workers using all-reduce

14. Update weights

15. end for

 32

16. end for

Since gradients are averaged periodically, the time for gradient transmission and

averaging calculation is reduced. However, the speed up achievement is still limited by the

synchronization barrier as shown in Figure 3.3. All parallel workers need to pass the same

number of iterations until reaching the gradient averaging point. Since it is hard to guarantee

that all GPUs can execute the jobs at the same pace, if there is a slower worker, other faster

workers need to wait for the slower worker to catch up. This implementation doesn’t take full

advantage of the computing capability for fast workers, because the workload is divided evenly

for all GPUs regardless of their available computing capacity.

Considering this situation, we find it is not a superior strategy to divide the amount of

work in a naive data parallel fashion. A solution for this is to assign mini batches dynamically

in the training process, whenever a worker finishes a current job, it can request for the next

mini batch. This work-pool scheme can reduce the idling time for faster workers. However,

this strategy is not compatible with synchronous GPU-parallel implementation using the all-

reduce method. Since all workers need to average gradients together, it requires the parallel

worker to train the same number of samples at the end. To balance the workloads among

different workers, we propose to have a work pool mechanism in an asynchronous GCN

training algorithm, which is explained in Chapter 4.

Figure 3.3 Barrier of AllReduce-GCN with periodic synchronization.

 33

3.2.3 Theoretical Discussion

In this section, we conclude previous theoretical discussions for the related algorithms

of AllReduce-GCN. The topics include convergence and correctness of the baseline Cluster-

GCN on a single GPU, synchronous data parallel training and periodic gradient averaging.

A theoretical discussion on baseline ClusterGCN is already presented in [8]. The

ClusterGCN algorithm is inspired by mini-batch SGD, which computes gradients based on a

mini batch in each iteration. The baseline ClusterGCN algorithm follows similar

methodologies and convergence steps for SGD, however with a different approach to sample

mini batches. A detailed comparison can be found in the original paper and is beyond the scope

of this research.

 For synchronous data parallel training, theoretical discussions are carried out in

previous study [61]. A formal mathematical proof for the algorithm can be found in the paper.

The general idea is that the converge can be achieved by averaging stochastic gradients

computed at the same predictor. With synchronous parallel implementations, each compute

node keeps a copy of the same model and the weights are updated with same averaged gradients,

so it is identical to have a global model that takes training results of all mini batches. [62]

summarizes a proof strategy for data parallel training in the paper. They show that since all

compute nodes perform SGD training based on the same data distribution, with a fixed and

small enough learning rate, models converge to the same limit. The averaging of gradients

reduces variance is also proved.

 Previous works [53, 56] have analysed the effect of periodical averaging of gradients

at certain intervals (i.e. averaging interval discussed in section 3.3). Those studies show that

periodical synchronization can lead to the same convergence rate as of performing gradient

averaging at each iteration. Detailed proofs and results can be found in those works. It has been

shown that if the synchronization interval is selected properly, then the divergence among

different workers can be controlled and the models finally converge to the same local minimum.

3.3 Experimental Evaluations

In this section, we provide information for the experiment setup and datasets used in

our research. We also illustrate experimental results for the baseline implementation using a

single GPU and synchronous GPU-parallel implementation for graph-partition based GCN

 34

(AllReduce-GCN). In addition, we test the AllReduce-GCN with different gradient averaging

intervals and analyze the results.

3.3.1 Setup and Datasets

The initial implementation of Cluster-GCN is provided by the author of the original

paper [8]. They propose to use the Metis graph clustering method and the original version of

graph convolutional network with diagonal enhancement. DGL GitHub [33] provides another

version of Cluster-GCN implementation using GraphSAGE aggregator and ignoring diagonal

enhancement. Although different in details, both implementations achieve the reported F1

score 96.6 for Reddit datasets. Our baseline implementation is based on the open-sourced

sample codes discussed above.

The experiments are carried out for the task of node classification using two benchmark

datasets (Reddit and Amazon datasets). Table 3.1 provides the detailed information of the two

datasets. In the table, “s” stands for single-label classification, and “m” stands for multi-label

classification. The two datasets are used for multi-class problems where the class number is

more than two. The difference for the two datasets is that in single-label classification, each

node is classified into a unique class, while in multi-label classification, a node can be

categorized into any number of classes. Both datasets are used widely in GCN research as

benchmarks to compare performances of different algorithms. Thus, we use them in our

research to test the implemented algorithms.

Reddit dataset is originally created in the research of GraphSAGE [23] by gathering

post data on Reddit online discussion forum. It predicts the community that a post belongs to.

Nodes in the graph represent posts, and edges between two nodes stand for the connection that

the same user comments on both posts. Features are collected concatenating the embedding of

post titles, comments, scores and the numbers of comments. Labels stand for the communities

of posts. As shown in table 3.1, Reddit dataset has 41 classes in total and each node belongs to

one class.

Amazon dataset is created in the study of GraphSAINT [9]. The task is to predict the

product categories for the items. Nodes in the graph are products listed on Amazon website.

Edges between the nodes means that the same person buys both products. Features are collected

and organized to represent the reviews of the products. Labels stand for the categories of the

products. In this dataset, a product can belong to more than one category. The authors of

GraphSAINT have cleaned the database by removing rare categories that have a few products.

 35

The total number of classes for this dataset is 107. We use the same datasets as they present in

the original paper.

Table 3.1 Datasets for experimental evaluations

Dataset Nodes Edges Feature Classes Train/Val/Test

Reddit 232,965 114,848,857 602 41 (s) 0.66/0.10/0.24

Amazon 1,598,960 132,169,734 200 107 (m) 0.80/0.10/0.10

In the following content, we illustrate the setup for our experiments. We evaluate the

baseline GCN and AllReduce-GCN on a GPU cluster. The GPU cluster has a submit node, a

master node and two compute nodes. Each compute node has 72C CPU, 450 GB of RAM, 7

TB of storage space, and 8 GPUs (Tesla V100). In our experiments, we use one compute node

of this cluster. Since the cluster is shared by students and researchers, it is unavoidable to have

multiple jobs submitted to the GPU cluster at the same time. Because of the different workloads

for GPUs at different time periods, the time consumptions for a same training job vary a lot in

different tests. This is a real-world scenario when training GCNs on a GPU cluster. We take

records of all tests and calculate the averaged values for evaluation.

The algorithms are implemented using PyTorch DistributedDataParallel [12] and Deep

Graph Library (DGL) [27] as our deep learning framework. As explained in Chapter 2,

PyTorch has included CUDA and NCCL to facilitate deep learning training on GPUs, and

PyTorch Geometric Library (PyG) [26] makes it more convenient to implement graph neural

networks. DGL is a Python package for deep learning on graphs and has gained popularity in

recent years. Anaconda is used to create the testing environment. Table 3.2 shows the versions

of related frameworks and libraries.

Table 3.2 Frameworks and libraries

Name Version

Python Python 3.8.5

CUDA CUDA 10.1

PyTorch pytorch==1.5.1, torchvision==0.6.1, cudatoolkit=10.1

PyG torch-geometric and dependencies for torch-1.5.0

DGL dgl-cuda10.1<0.5

 36

We use torch.distributed.all_reduce to achieve the synchronous gradient averaging in

GCN training. Since our implementation is based on graph partition to get mini batches, it is

unfair to compare with the methods implemented with traditional sampling methods. So, we

take the implementation of graph-partition based GCN using a single GPU as the baseline for

speed up calculations. Times are measured for the training phase, including gradient averaging

time. Because of the different label categorization strategies of the two datasets, we use

different loss functions for them. For Reddit, we use torch.nn.CrossEntropyLoss(), and for

Amazon dataset we use torch.nn.BCEWithLogitsLoss(). Since the graph partition phase can be

done before the real training phase, and the partition time is the same regardless of the training

strategies, we store the partitioned subgraphs in a place and exclude the partition time when

comparing speed ups. Table 3.3 shows the hyperparameters used for the baseline and parallel

experiments on the two datasets. F1 scores are used to evaluate the accuracies of the final

models.

Table 3.3 Hyperparameters used for experiments

Dataset name Reddit Amazon

Subgraph number 40 640

Learning rate 1e-2 1e-2

Epoch number 30 30

Hidden GCN Layer 2 2

Hidden GCN units 128 512

Dropout 0.2 0.1

3.3.2 Experimental Results

We carry out experiments for the two datasets in different time periods. The results

show that with the same hyperparameters and subgraphs (mini batches), the baseline GCN

training can result in the same solution (same F1 score). However, the time consumptions are

very different in various scenarios. With different subgraphs (mini batches), baseline training

can lead to a similar solution with minor difference in accuracy.

Cluster-GCN with random partitioning which uses a single GPU is used as the baseline

for performance and accuracy evaluations. We observe from experiments that the training

speed depends largely on the status of the GPU cluster. The synchronous AllReduce-GCN with

 37

gradient averaging at each iteration gives a disappointing outcome in some scenarios. We can

see from the experiments that it takes even longer time for parallel training on multiple GPUs

than training on a single GPU in some tests. This is because the fast workers need to wait for

the slowest worker in each iteration for averaging gradients.

Although the GPU models are of same make (Tesla V100), they work at different pace

if the computation competency is not large enough to execute all jobs at the same time. In most

scenarios, the GPUs receive multiple jobs from different users. Based on the free calculation

ability, a GPU may add the job to a stack if it cannot execute it immediately. Once it has free

resources, it will take a job from the stack and run it. So, this leads to different execution times

for the same job at different runs.

In addition, the collective GPU communication has an effect on the training speed for

AllReduce-GCN. In synchronous AllReduce-GCN, there is only one all-reduce call at one time

among all the workers. However, we cannot make sure that other jobs running on the GPU

cluster don’t require GPU communications at the same time. If there are multiple GPU

communication calls, the jobs will compete for the bandwidth among GPUs. This will cause a

delayed training time for synchronous GCN training using the all-reduce method. We observe

this time variation in our tests for AllReduce-GCN using 4 and 8 GPUs.

Compared with baseline GCN training, parallel training has an accuracy loss, the main

reason is that parallel training of graph-partition based GCN uses a different batch size for

weight updates. During the tests, we use the same hyperparameters for both baseline and

parallel training. The hyperparameters are tuned for baseline training, so it can produce an

optimal solution when using a single GPU.

Since the hyperparameters are the same, the mini batch size remains same for the

baseline and parallel training. In parallel training, one mini batch is trained at each worker

simultaneously, then the gradients are averaged, and the weight is updated using the averaged

gradients. So, the update in each iteration is actually based on information of mini batches

trained at all workers. The total mini batches used for one iteration is called a global batch. The

different global batch sizes influence the training behaviour and lead to different final models.

This explains why we observe different accuracies for parallel training on multiple GPUs.

Figure 3.4 shows speed up for Reddit and Amazon dataset using different numbers of

GPUs. The values used in the figure are illustrated in Tables 3.4 and 3.5. Since the training

times vary in different runs, we use the averaged values to produce the figures in this section.

 38

Table 3.4 Speed up of AllReduce-GCN for Reddit dataset.

GPU number 1 4 8

Speed up - 1.87 2.93

F1 score 0.9655 0.9637 0.9609

Table 3.5 Speed up of AllReduce-GCN for Amazon dataset

GPU number 1 4 8

Speed up - 1.74 2.81

F1 score 0.7828 0.7745 0.7721

Figure 3.4 Speed up of AllReduce-GCN for Reddit and Amazon dataset.

The sublinear speed up shown above is mainly because of the synchronization barrier

and communication overhead. As explained in the synchronous AllReduce-GCN algorithm,

there is a barrier at the end of each iteration where all workers need to communicate and

average gradients. If there is a slow worker, the fast workers need to wait for the gradient

averaging and stay idle. So, the speed up of the system is limited by the slowest worker. In

some extreme situations, it may be even slower to use multiple GPUs than using a single fast

 39

GPU. In addition, the transmission of gradients causes extra communication overhead. When

the size of the gradients is small, it may have little influence on the speed up, but when the size

is large, it may result in longer training time.

We also carry out tests using different gradient averaging intervals for the synchronous

AllReduce-GCN. According to empirical experience, we test performing gradient averaging in

every 20 and 100 iterations. Tables 3.6 and 3.7 show the results of synchronous AllReduce-

GCN training for Reddit dataset with different synchronization intervals (averaging_interval)

on 4 and 8 GPUs. Table 3.8 and 3.9 show the experimental results for Amazon dataset.

Table 3.6 AllReduce-GCN for Reddit dataset (4 GPUs)

Averaging_interval 1 20 100

Time / sec 16.01 14.08 13.66

F1 score 0.9637 0.9501 0.9508

Table 3.7 AllReduce-GCN for Reddit dataset (8 GPUs)

Averaging_interval 1 20 100

Time / sec 10.21 10.11 10.07

F1 score 0.9609 0.9449 0.9435

Table 3.8 AllReduce-GCN for Amazon dataset (4 GPUs)

Averaging_interval 1 20 100

Time / sec 103.65 87.13 79.31

F1 score 0.7745 0.7473 0.7472

Table 3.9 AllReduce-GCN for Amazon dataset (8 GPUs)

Averaging_interval 1 20 100

Time / sec 64.18 59.13 53.20

F1 score 0.7721 0.7189 0.7187

 40

Figure 3.5 and 3.6 illustrate the comparisons of synchronous AllReduce-GCN training

for Reddit and Amazon datasets using different synchronization intervals. The values used for

producing the figures are elaborated in Table 3.10 and 3.11.

Table 3.10 Speed up of AllReduce-GCN for Reddit Dataset

GPU number 1 4 8

Speed

up

averaging_interval =

1

- 1.87 2.93

averaging_interval =

20

- 2.13 2.96

averaging_interval =

100

- 2.19 2.97

Table 3.11 Speed up of AllReduce-GCN for Amazon Dataset

GPU number 1 4 8

Speed

up

averaging_interval =

1

- 1.74 2.81

averaging_interval =

20

- 2.07 3.05

averaging_interval =

100

- 2.27 3.39

 41

Figure 3.5 Speed up of AllReduce-GCN for Reddit Dataset.

Figure 3.6 Speed up of AllReduce-GCN for Amazon Dataset.

We can see from the above figures that reducing synchronization frequency can help to

achieve a bit more speed up, especially when the size of gradients is very large. This is because

 42

by reducing the averaging frequency, time is saved for gradient transmission among GPUs.

However, the speed up achievement is still limited by the communication barrier. In the

optimization implementation, the gradient averaging occurs in a certain interval of local

iterations. This means that the numbers of mini batches trained locally in the parallel workers

are identical. So, fast workers still need to wait for slower ones to catch up and average

gradients.

It is already known from previous research that one-shot averaging can lead to low

accuracy of the final model. In one-shot averaging, gradients are only synchronized for one

time at the end of the training. In our experiments, we also observe that the synchronization

frequency has an influence on the accuracy of the final solution. So, there is a trade-off for

accuracy and speed up.

3.4 Summary and Limitations of AllReduce-GCN

In recent years, communication among GPUs has become more convenient with the

development of GPU backend platforms like NCCL [17]. To get rid of the bottleneck of a

centralized parameter server and passing messages between GPUs and CPUs, a decentralized

parallel stochastic gradient descent algorithm is widely adopted in current implementations of

parallel GCNs training with multiple GPUs.

In our research, we implement a synchronous decentralized data parallel GCN based

on graph partition method (AllReduce-GCN). We focus on the speed up for the training phase.

We also implement an optimization for AllReduce-GCN by using periodic gradient averaging.

In such an implementation, each worker synchronizes with other workers using all-

reduce at the end of processing a mini batch. The synchronization step works well with the

assumption that each GPU computes the gradients at the same pace. However, in a real-world

scenario, this assumption is not valid due to two reasons: the compute node can be busy with

multiple jobs; secondly, partition of the input graph cannot guarantee exactly the same size for

partitioned subgraphs, which can lead to load imbalances. Our experiments on a GPU cluster

with Tesla V100 GPUs illustrate the load-imbalance and resultant idling in a realistic situation.

Although PyTorch supports optimizations of parallel communication among GPUs with the

DistributedDataParallel module, it does not solve the problem of synchronization delays due

to idling [12].

 43

Another bottleneck with algorithm 3 and 4 is that the mini batches are divided statically

among the workers, which adds up the workload differences across multiple iterations. With

the optimization method of periodic gradient averaging, it helps a bit to improve the speed up

by reducing the time of gradient transmission, but it cannot solve the major communication

bottleneck caused by synchronous training. An example of such work division on 4 workers is

shown in Figure 3.7.

To address the previous issues of bottleneck in the synchronous implementations, we

propose an asynchronous training algorithm (GossipGCN) based on gossiping designed for

GPUs. GossipGCN is motivated by limitations of traditional synchronous GCN training

algorithms on GPUs. The algorithm incorporates dynamic workload assignment based on a

work-pool strategy. In the following chapter, we describe the proposed asynchronous GPU

parallel implementations in detail.

Figure 3.7 Fixed workload divide mechanism for AllReduce-GCN.

 44

Chapter 4 Graph-partition based Asynchronous Data

Parallel Implementation

In this chapter, we present an asynchronous parallel algorithm for GCN training called

GossipGCN. The algorithm employs graph partitioning as a mechanism for preparing the

training mini batches and (asynchronous) gossiping for periodic averaging of gradients among

randomly paired workers (GPUs). The methodology proposed in Cluster-GCN [8] is adapted.

The algorithm is proven to be deadlock-free. A work-pool based mechanism is used for

dynamic assignment of workloads to workers (GPUs), which enhances efficiency by reducing

idling. The algorithm is implemented on a GPU cluster using PyTorch [58] and DGL [27]. The

details are in the following.

4.1 Asynchronous Training based on Gossip

GossipGCN is motivated by limitations of traditional synchronous GCN training

algorithms on GPUs. In chapter 3, we have discussed why synchronous GPU-parallel

implementation for GCN has a speed up limitation because of the averaging gradient among

all workers. To improve speed up of parallel training on a single node, we propose to use

decentralized gossip algorithm to average gradients among GPUs and implement a work-pool

based mechanism to maximize the usage of computation ability of fast workers.

Gossip is used to solve consensus problems and is widely used in many application

areas, especially in distributed environments. Previous research [14-16] has shown that gossip

is an effective method for asynchronous gradient averaging in SGD-based CNN training in a

distributed environment. In such a distributed environment, the gradient calculation and weight

updates are usually carried out on GPUs while the asynchronous communication for averaging

gradients runs on CPUs on a multi-CPU platform. Until now, gossip methods are mainly used

for synchronization among compute nodes using CPUs, applying gossip algorithm to average

gradients inside a compute node with multiple GPUs is not well studied yet.

One major challenge of gossip is to effectively and efficiently prevent deadlock.

Deadlock can occur when the dependencies of workers result in a cycle. For example, worker

A randomly picks a gossip partner B, while B is waiting to partner with C, and C sends a

request to A. In this case, there is a cyclic dependency which is a necessary condition for

deadlock. Previous works propose different solutions to prevent deadlocks in gossiping. Figure

 45

4.1 shows the scheme of random gossiping and an example of deadlock. In [50], a request-

based protocol is used to avoid cyclic dependencies. GossipGraD [14] introduces a virtual

organization of compute nodes so that deadlock is not possible. In [15], the workers are divided

into two fixed sets, the active and passive sets. A worker in the active set can pick a gossip

partner only from the passive set, thus essentially preventing a cycle and hence deadlock.

Figure 4.1 Deadlock in gossip averaging.

Even though the previous solutions can guarantee deadlock prevention, they are not

suitable for asynchronous GCN training on GPUs due to the following reasons. The request-

based solution needs to send additional requests in order to determine gossip partners, which

adds up to communication overhead in a communication-constrained GPU backend.

GossipGraD imposes a fixed gossip scheduling, which is not efficient in a dynamic system

with stragglers, as in GCN training. The solution based on fixed active-passive sets puts

restrictions on who can select who as a gossip partner and thus it is only a pseudo

implementation of the original randomized gossip algorithm.

Another challenge for implementing decentralized gossip method among GPUs is to

achieve one to one communication efficiently. According to NCCL documentation, since

NCCL 2.7 point-to-point communication can be achieved using ncclSend and ncclRecv.

However, in PyTorch, receive and send between two specific GPUs are not supported yet. We

propose a workaround method by using subgrouping method to achieve point-to-point

communication among GPUs.

 46

4.2 Asynchronous GPU Parallel Implementation Version 1

In a preliminary attempt, we try to implement asynchronous GPU parallel training by

adapting previous methods to solve the gossip deadlock problem. For example, we try to send

pre-requests to workers before the real gossip happens. However, the acknowledging and

replying process takes a long time. This adds to the communication overhead, so it is not a

proper way to implement gossip for GPUs. We also try to use scheduled paring with a fixed

gossip pattern. But since the gossip partners are fixed, there is information loss during the

training process. This method can’t guarantee a satisfying accuracy.

One working method that we implement for asynchronous GPU parallel training is

inspired by the approach used in [15]. The paper proposes to use the property of bipartite graph

to avoid deadlocks. It suggests dividing the workers into two groups, specifically active set and

passive set. Workers in the active set can pick a worker only from the passive set for

synchronization. As explained in Chapter 2, the original paper implements gossip

communication only for CPUs with traditional sampling methods. In our approach, different

from the original implementation, we achieve gossip among GPUs and use graph-partition

based GCN.

The following are the main steps of the proposed asynchronous algorithm version 1.

First, we partition the input graph into n subgraphs, which are used as mini batches. Then the

epoch number and averaging interval are decided empirically, and a shared queue is initialized

with mini batch ids to function as a work-pool. Suppose there are an even number of parallel

workers, we set half of them as active workers and the other half as passive workers. Available

passive worker ids are stored in a shared queue. And each passive worker is assigned a shared

variable to store its gossip partner. When the training starts, each worker takes a mini batch

from the work-pool and calculates local gradients. Then for an active worker, if the averaging

interval is met, it picks a gossip partner from the available worker list and tells the

corresponding passive worker through the shared variable assigned to it. For a passive worker,

it reads from its corresponding variable to get the gossip partner id and average gradients with

the partner. When the averaging is finished, each worker updates its local model and requests

one more mini batch from the work-pool until all jobs are done.

Algorithm 5 shows the pseudocode for asynchronous GPU parallel implementation

version 1 with active and passive sets of workers.

 47

Algorithm 5: Gossip gradient averaging using active & passive worker sets

Input: Graph G, feature X, label Y

Output: GCN model with trained weights

 /* Master does the following from lines 1-8 */`

1. Partition input graph into n subgraphs G_0, G_1, … G_n-1

2. Set epoch number as e, a pre-set value determined empirically

3. Initialize work_pool = [0,1, … n-1, 0, 1, … n-1, … 0, 1, … n-1]. /* The shared

work_pool queue stores the mini batch indexes. Each index is stored e times */

4. Separate p workers into active and passive sets, each with size of p/2

5. Initialize shared variable available_workers with passive worker ids

available_workers = [0, 1, … p/2-1]

6. Initialize shared variables p_0, p_1, … p_p/2-1 with -1 for passive workers

/* These variables are used to store each passive worker’s gossip partner id. -1

represents not paired */

7. Start p workers, and each GPU is mapped with 1 worker

8. Initialize model on each GPU

9. Initialize averaging_interval

10. if proc_id belongs to active set then

11. /* Each active worker does the following from line 12-29 */

12. Initialize count = 0

13. Initialize partner = -1

14. while work_pool is not empty do

15. Remove a mini batch index i from work_pool

16. Increment count by 1

17. Get G_i features and labels from CPU

18. Calculate local gradients using G_i

19. if count is a multiple of averaging_interval then

20. Lock available_workers

21. if available_workers not empty then

22. partner = randomly choose an id x from available_workers

23. Set corresponding partner’s gossip id p_x to proc_id

24. remove partner from available_workers

 48

25. Unlock available_workers

26. if partner > -1 then

27. Average gradients with partner

28. Reset partner = -1

29. Update weights for local model

30. else

31. /* Each passive worker does the following from line 32-54 */

32. while work_pool is not empty do

33. Set local variable partner to -1

34. Remove a mini batch index i from work_pool

35. Get G_i features and labels from CPU

36. Calculate local gradients using G_i

37. Lock the corresponding variable p_ proc_id

38. Set partner = p_ proc_id

39. Set p_ proc_id value to -1 and unlock

40. if partner > -1 then

41. Average gradients with partner

42. Lock available_workers

43. Add proc_id back to available_workers

44. Unlock available_workers

45. Update weights for local model

46. /* Clean-up step */

47. Lock available_workers

48. Remove proc_id back from available_workers

49. Unlock available_workers.

50. Lock the corresponding variable p_ proc_id

51. Set partner = p_ proc_id

52. Set p_ proc_id value to -1 and unlock

53. if partner > -1 then

54. Average gradients with partner

This implementation makes sure that a dependency loop will never happen during the

gossip process, but it limits the gossip possibilities for parallel workers and is not a real

 49

reflection for the original version of the gossip algorithm. Since the gossip partner needs to be

in different sets, it restricts the choices of partners for gradient averaging among parallel

workers. According to our experiments, although the training speed is faster than using the all-

reduce method, the accuracy of the final solution decreases. Detailed experimental results are

shown in section 4.4. Another potential defect of this implementation is the limited scalability.

Since it needs to allocate a shared variable for each passive worker to store gossip pairing

information, the number of needed shared variables will increase with the number of parallel

workers.

Since the shared variables need a lock mechanism to maintain the correctness, we also

consider if it will cause competition for accessing the resource. Theoretically, this lock

mechanism adds to the waiting time for processes. According to our experiments, we find out

that in most scenarios, this communication overhead is minor compared with the speed up

achieved by using asynchronous gradient averaging.

To improve the training speed up with stable accuracy, we propose a novel way to

implement asynchronous GPU parallel training. The new proposal (GossipGCN) guarantees

the correctness of the algorithm by following the original version of gossip, which means each

parallel worker is able to choose a gossip partner if it’s not paired yet. Compared with

implementation version 1, the new implementation gives more choices for the parallel workers

when picking gossip partners by getting rid of the active and passive sets division. Detailed

implementation of the proposed algorithm is elaborated in the following section.

4.3 Asynchronous GPU Parallel Implementation Version 2

(GossipGCN)

In this section, we propose a second version of asynchronous decentralized data parallel

GCN based on graph partition method (GossipGCN). The essential idea for this

implementation is similar to the version 1. We remove the synchronization barrier at the end

of iterations by using the gossip algorithm to average gradients. But different from version 1,

we get rid of the division of passive and active sets. Parallel workers can choose any available

worker as the gossip partner. Details of the algorithm are in the following.

 50

4.3.1 GossipGCN on a GPU cluster

The following are the main steps of our proposed algorithm, GossipGCN. Step 1(Graph

partition): the original input graph is partitioned into n number of subgraphs, which are used

as sample mini batches. Step 2 (Initialize work-pool): initialize a central work-pool queue

containing the subgraph ids, repeated for the total number of epochs fixed a priori. Step 3

(Initialization): Initialize shared variables to keep track of gossip partner information. Each

worker (GPU) initiates a local model, defines loss function and other hyperparameters. Step 4

(Gradient calculation): If the work-pool is not empty, each worker picks a work (mini batch)

from the work-pool and calculates local gradients. Otherwise, go to step 7. Step 5 (Gradient

averaging): Check if the averaging interval is met, if not, directly go to step 6. Otherwise, each

worker checks if some gossip partner is waiting to average gradients with the current worker.

If so, it averages gradients with the partner. If no partner is waiting, it randomly picks a partner

from the list of available workers. Step 6 (Update): Each worker updates its local parameters

and repeats from Step 4. Step 7 (Clean up): Check if any gossip-partner is waiting to average

gradients with the current worker (legacy averaging call). If so, average with the partner using

the most recent gradients. Step 8 (Finalization): The master waits until all workers finish

training, then it compares local solutions of all workers and chooses the best one as the final

solution.

More detailed pseudocode of GossipGCN is provided in the Algorithm 6 below.

Algorithm 6: GossipGCN on a GPU cluster

Input: Graph G, feature X, label Y

Output: GCN model with trained weights

/* Master does the following from lines 1-8 */

1. Partition input graph into n subgraphs G_0, G_1, … G_n-1. The subgraphs are the mini

batches

2. Set epoch number as e, a pre-set value determined empirically

3. Initialize work_pool = [0,1, … n-1, 0, 1, … n-1, … 0, 1, … n-1] /* The shared

work_pool queue stores the mini batch indexes. Each index is stored e times */

4. Initialize gossip_partner = [-1, -1, … -1, -1] /* Array gossip_partner stores gossip

paired workers, -1 represents not paired. The size of the array is p, the number of worker

processes. */

 51

5. Initialize available_workers = [0, 1, 2, … p-1] /* Array available_workers stores

available worker ids. Initially all workers are available */

6. Start p worker processes, each GPU is mapped with 1 worker

7. Initialize model on each GPU

8. Initialize averaging_interval. /* The averaging_interval determines how many mini

batches are processed by a worker before averaging gradients with a gossip partner */

/* Each worker does the following from lines 9-54 */

9. Initialize count = 0

10. Initialize partner = -1

11. while work_pool is not empty do

12. Remove a mini batch index i from work_pool

13. Increment count by 1

14. Get G_i features and labels from CPU

15. Calculate local gradients using G_i

16. if count is multiple of averaging_interval then

17. Lock available_workers.

18. Lock gossip_partner

19. Set my_partner = gossip_partner[proc_id] /* proc_id is process id of worker*/

20. if my_partner == -1 then

21. Remove proc_id from available_workers

22. if available_workers is not empty then

23. partner = randomly choose an id from available_workers

24. remove partner from available_workers

25. gossip_partner[proc_id] = partner

26. gossip_partner [partner] = proc_id

27. else

28. Add proc_id to available_workers

29. else

30. partner = my_partner

31. Unlock available_workers

32. Unlock gossip_partner

33. if partner > -1 then

34. /* Introduce default barrier among paired-up processes */

35. Average gradients with partner

 52

36. Lock available_workers

37. Lock gossip_partner

38. Reset gossip_partner[proc_id] = -1

39. Add proc_id to available_workers

40. Unlock available_workers

41. Unlock gossip_partner

42. Reset partner = -1

43. Update weights for local model

44. end while

/* Clean-up steps */

45. Lock available_workers

46. Lock gossip_partner

47. if proc_id is in available_workers then

48. Remove proc_id from available_workers

49. else

50. my_partner = gossip_partner[proc_id]

51. Average gradients with my_partner using the gradients in last iteration

52. Reset gossip_partner[proc_id] = -1

53. Unlock available_workers

54. Unlock gossip_partner

/* Master chooses the final solution */

55. Compare the accuracies of models on each GPU, select the best one as final model

In the previous, the value of averaging_interval is determined empirically, and it sets a

compromise between performance and accuracy, i.e. more frequent pairing with a gossip

partner could give a more accurate model however at the cost of performance. Figure 4.2 shows

an example scenario of how the values of gossip_partner and available_workers are changed

when 4 GPUs are used for training. Note that any failed pairing (i.e., a worker who could not

pair up with a gossip partner for various reasons) is handled during the clean-up steps (lines

45-54 in Algorithm 2).

 53

Figure 4.2 An example run using 4 GPUs

As a major difference with the synchronous all-reduce in Algorithm 3 and 4, here only

two of the workers (i.e. gossip partners) need to synchronize with each other to exchange their

local gradients. So, a straggler can affect only its partner as compared to all the other workers

in a synchronous approach as illustrated in Figure 4.3. Moreover, dynamic work loading by

using the work-pool can greatly reduce any load imbalances among GPUs and hence

significantly enhance efficiency.

Figure 4.3 Gradient averaging scheme for GossipGCN.

In the synchronous algorithm, all workers get the same number of mini batches for the

training. However, in the asynchronous method using gossip algorithm, parallel workers may

have different numbers of iterations according to their training speed. Fast workers can get

more mini batches than the slower ones. The advantage for GossipGCN is that it maximizes

 54

the usage of calculation capability for fast workers, since it allows fast GPUs to have more

workload. But this may lead to a potential problem of decreased accuracy, because the

gradients calculated in two workers are based on different numbers of iterations. This problem

is known as gradient staleness. The shuffling of synchronization workers can help to mitigate

this problem.

The previous algorithm has been implemented on a GPU cluster using PyTorch as the

deep learning framework. PyTorch has become an important tool for GCN training and has

gained popularity in recent years due to its robust support for GPUs. PyTorch supports

implementation of neural networks on GPU using CUDA extensions and facilitates GCN

implementation with the help of PyG (PyTorch Geometric Library) [26]. In addition, PyTorch

integrated NCCL backend can perform direct GPU-to-GPU communication, thus bypassing

the CPU. This makes it possible for direct and efficient gossip-pairing and communication

among GPUs, which could not be possible in the past. More about implementation details and

experimental results are presented in Section 4.4.

Figure 4.4 illustrates the architecture of the proposed algorithm GossipGCN and shows

how the gossiping averaging gradient is achieved using the shared variables. The workers first

request an id from the work_pool and calculate gradients locally. For p number of parallel

workers, the shared variable gossip_partner is initialized with a list of size p filled by “-1”,

which means there is no neighbor to synchronize at the beginning. The index of this list

represents process id, and the value at index i represents the gossip neighbor id for process i.

The other shared variable available_workers represents available workers for gradient

averaging and is initialized with all processes’ ids. When local gradients are ready, each worker

gets the values in gossip_partner and available_workers.

Figure 4.4 Gossip scheme with work-pool.

 55

Since each process is mapped with one GPU, the process id can represent the GPU id

that calculates the local gradients. The gossip partner id of the current process my_sync can be

obtained at the index of the current process id by calling gossip_partner[proc_id]. There are

two cases for the value of my_sync. In one case, if the value of my_sync is -1, it means the

current process has no workers waiting for pair-up, so it can pick an id from available_workers.

After picking the gossip neighbor, available_workers and gossip_partner will be updated

respectively. The value of my_sync is updated to the selected neighbor’s process id. And the

two processes’ ids are removed from available_workers, indicating that the two workers are

already paired and cannot be chosen by a third worker to synchronize. In the other case, if the

value of my_sync is not -1, it means there is another process waiting to average gradients with

the current process.

After the value of my_sync is determined, which means the gossip partner is known.

The two GPUs will average their gradients and update weights with the same gradients. When

the update is done, each process can put the process id back to available_workers and reset the

corresponding value in the gossip_partner. This finishes the iteration, and the workers are

ready to ask for next mini batches from the work_pool until it becomes empty.

After the training phase, we implement a clean-up step to avoid program. Because it is

possible that when the work-pool is empty, a worker already puts the current process id back

to available_workers, and another worker asks to average gradients with it. So, in the clean-up

step, each worker checks if there is any remaining gradient averaging request. If the value at

gossip_partner[proc_id] is not -1, it means there is a worker waiting to average gradients.

Then, the current worker will use the old gradients in the last iteration to perform gradient

averaging and safely end the process.

Since the spare computing capacity of each GPU can be very different, it is possible

that different workers get various numbers of mini batches, which means the local iteration

numbers are different. If GPUs work at extremely different pace, the slower worker may not

have enough iterations to reach a desired accuracy. Although exchanging parameters with other

workers can help to gather more information, it may still result in a low accuracy. On the other

hand, the fast worker can get more mini batches to train the local model and can reach a better

accuracy. To get the optimal solution, we compare the accuracies of all local models in parallel

workers and choose the best one as the final optimal solution.

 56

4.3.2 Work-pool

As discussed in Chapter 3, one of the disadvantages for synchronous AllReduce-GCN

is that the mini batch numbers are fixed and divided evenly for all workers. This is not a good

methodology since it wastes the computational capacity on fast workers and leads to a large

idling time. The synchronization barrier at the end of the iterations prevents the AllReduce-

GCN to adapt a dynamic loading mechanism. This limitation is discussed detailly in the

previous chapter.

To improve the speed up and reduce time wasted on waiting idly, we implemented a

work-pool mechanism to make the best use of the computing capacity of each worker. In our

proposed method (GossipGCN) we create a shared queue to store the ids of mini batches. Each

worker can request a mini batch from the work-pool whenever it is free. In addition, we modify

the traditional two-level for loop in deep learning to using a single level while loop. This

improves the parallel level for the algorithm and is illustrated in Algorithm 6.

In such an implementation, we first use the same random partition method as in

AllReduce -GCN to get n subgraphs:

G = [G_0, G_1, … G_n-1].

Since each subgraph is a mini batch, the index queue I for the mini batches is:

I = [0, 1, 2, … n-1].

We define epoch number is e, so, the total work amount for all epoch can be represented

as the mini batch index queue:

work_pool = [0,1, … n-1, 0, 1, … n-1, … 0, 1, … n-1]

 epoch 1 epoch 2 epoch e

The shared variable work_pool is accessible to all parallel workers. During the training,

each worker requests an index from work_pool and sends the corresponding mini batch to the

GPU for calculating stochastic gradients. After the current iteration is finished, a worker can

request another mini batch index from work_pool until it is empty.

The correctness of the algorithm is maintained by internally implemented locking

semantics of the multiprocessing.Queue module in PyTorch. It blocks competitive requests and

allows getting the index one by one. Using this mechanism makes sure the same amount of

 57

data is trained as using the all-reduce method, and it helps to reduce idling time for GPUs since

a faster GPU is possible to do more work.

4.3.3 Optimization with Periodic Gradient Averaging

In this section, we discuss the periodic gradient averaging method used in GossipGCN

Although using gossip method can reduce the idling time for fast GPUs, gradient transmission

and waiting for a slow gossip partner still cause large communication overhead. Similar to

AllReduce-GCN (Algorithm 4), the periodic gradient averaging is used to reduce GPU

communication frequency. This method helps push the speed up limit for parallel GCN training

further. Figure 4.5 shows the scheme of GossipGCN with periodic gradient averaging.

Figure 4.5 GossipGCN with periodic gradient averaging.

In Algorithm 6, firstly, a gradient averaging interval (averaging_interval) is set before

the training starts. Then during the training process, each worker keeps a variable count to track

the number of mini batches trained locally. Workers request a mini batch id from the work-

pool in each iteration and calculate gradients respectively. The value of count is initialized to

0 and is incremented by 1 after a mini batch is taken. If count is a multiple of

averaging_interval, it means the gradient averaging interval is reached and the worker will

execute the averaging. The synchronization interval is chosen empirically and can be different

for various datasets.

 58

It is mentioned previously that asynchronous GCN training using gossip method can

cause iteration gaps among parallel workers. Although using periodic gradient averaging

allows fast workers to make full usage of the calculation capacity, the iteration gap between

the slowest worker and the fastest worker is enlarged at the same time. So, there is a trade-off

between accuracy and training speed. Even though continuous gossiping with random workers

can help to reduce the effect of iteration gaps, if the gap is too large, it may cause huge loss in

accuracy. So, it is important to keep the iteration gap within a safe threshold. We have tested

our algorithm using various gradient averaging intervals. The experimental results are

elaborated in section 4.4.

4.3.4 Theoretical Discussion

In this section, we present proofs and theoretical analysis for the proposed algorithm

GossipGCN. We prove that GossipGCN is deadlock-free and guarantees the training can be

finished properly when the program ends. In the following discussion, the assumptions are that

hardware, software, and network are fault free and hence processes do not crash or wait

indefinitely due to external factors.

Lemma 1 (Deadlock): GossipGCN is deadlock-free.

Proof: All workers acquire the locks of the shared arrays, available_workers and

gossip_partner in the same order. This guarantees that there cannot be a circular wait in

acquiring of the locks and hence no deadlock is possible.

Next, we show that no deadlock is possible in pairing-up with a gossip partner (lines

19-30 in Algorithm 6). We prove this by contradiction. Assume that there exists a deadlock in

the gossip-pairing. Then there must be a circular wait involving at least 3 workers, say workers

A, B, and C such that worker A is waiting to exchange gradients with worker B, worker B is

waiting to exchange gradients with worker C, and worker C is waiting to exchange gradients

with worker A. Suppose worker A is the first one to grab both the locks of available_workers

and gossip_partner. In that case, worker A will update its pairing information with worker B

in gossip_partner (lines 25-26) and also remove itself and worker B from available_workers

(lines 21 and 24). So, subsequently when worker B grabs the locks, there is no possibility that

worker B would choose worker C as partner because its partner is already set as worker A (line

 59

19); similarly, when worker C grabs the locks, there is no possibility that it would choose

worker A as its partner. As a result, circular wait is not possible and hence there is no deadlock.

This concludes the proof.

Lemma 2 (Termination): In GossipGCN, each worker terminates without indefinitely waiting

for its gossip partner to exchange information.

Proof: A worker A pairs up with its randomly selected gossip partner (worker B) if and only

if the work-pool is not empty and the averaging interval is met (lines 11-30 in Algorithm 6).

Subsequently, worker A waits for worker B to exchange gradients at an implicit barrier for

exchanging information (line 35). There are two scenarios where worker B will meet the

barrier and exchange information with worker A as follows. Case 1: worker B meets the barrier

at line 35 and exchanges information with worker A. Case 2: worker B meets the barrier at line

51, which is reached because the work-pool is empty and the while loop (line 11) is exited by

worker B. In either case, worker A and B always meet at the barrier and exchange information.

As a result, none of the workers will wait indefinitely and hence will terminate normally. This

concludes the proof.

Gossip algorithm is first used for consensus problems, and the goal is to exchange

messages with workers until a consensus is made. Previous research has been done to prove

that gossip algorithm can be used to solve averaging problems [46, 63, 64]. In such problems,

each node in the network has a local value and needs to achieve a global average of the values

at all nodes in the network.

One of the basic gossip methods is making randomly paired workers to average their

values until it converges to the global average. This method is also called Pairwise Gossip and

is proposed in [46]. Suppose a parallel worker i has a value xi, in each gossip step, it needs to

randomly choose a neighbor j and average value with it. After the averaging, the values at both

workers become:

xi(t+1) = xj(t+1) = 0.5 xi(t) + 0.5 xj(t) .

The authors also suggest that the pairwise gossip method is not only suitable for

averaging problems but also applicable to calculate global minimum or maximum. The

convergence of gossip algorithm is proved in [63]. It shows that the consensus can be achieved

given the condition that the gossip pairs are chosen equally at random. [48] provides theoretical

 60

proof for the correctness of a large set of asynchronous gossip-based algorithms. A detailed

mathematical proof can be found in the original paper.

In recent years, gossip algorithm is applied to deep learning problems for calculating

gradient averages among parallel workers. Theoretical analysis for asynchronous parallel

training is given in previous research [14-16]. It is proved that the convergence can be achieved

among all local models, and it is consistent with baseline training if the iteration number is

large enough. The completed proof is provided in [15]. A strategy for proving gossip algorithm

on parallel training is given in [14]. Because of gradient averaging, a lemma is taken that

parallel compute nodes have the same cost function. Since shuffling of gossip pairs ensures

that the training samples are considered multiple times in different workers over time, the local

cost functions are optimized based on all samples. Detailed proofs and results can be found in

those works mentioned above.

4.4 Experimental Evaluations

In this section, we present evaluations for the proposed algorithms using the same

datasets (Reddit and Amazon dataset) as described in Chapter 3. Detailed information about

the datasets is given in Table 3.1. We evaluate the performance of GossipGCN with various

gradient averaging intervals, and the intervals are chosen according to empirical experience.

Since synchronous all-reduce is the most popular approach for gradient averaging on GPUs,

the performance of GossipGCN is compared with the all-reduce counterpart AllReduce-GCN

(refer to Chapter 3) for various averaging intervals.

4.4.1 Implementation Details

In this research, since the graph partition phase is the same for different

implementations, we measure the partition time separately from the real training time

(calculating stochastic gradients and updating model). The averaged partition times are 1.57

seconds for Reddit dataset and 198.42 seconds for Amazon dataset. For both datasets, the

hyperparameters used in experiments are the same as the ones used for synchronous

AllReduce-GCN. Details of the hyperparameters can be found in Table 3.3. We implement a

work-pool mechanism and a gossip algorithm to communicate gradients among GPUs. The

implementation is done using PyTorch [12] and the baseline implementation is presented in

the previous chapter. The backend for GPU communication is NCCL embedded in PyTorch.

 61

The experiments are done using a single compute node (8 GPUs) as presented before. We use

the averaged values of experimental data to produce the tables and figures in this section.

One challenge of the proposed implementations is to share variables among different

workers. There are different ways to share data among processes, one convenient method is to

use torch.multiprocessing.Queue [58]. The shared variable work_pool is implemented using

multiprocessing.Queue in PyTorch. The torch.multiprocessing module is a replacement for the

multiprocessing module of Python [65] and shares the same operations. The data sent through

multiprocessing.Queue (mp.Queue) is moved to shared memory and other processes can access

it through a handler. Since there is a speed limitation for the pipe, mp.Queue is fast for light

weight data but slow for large data such as a subgraph. So, we store the mini batch ids instead

of the original subgraphs in the shared queue.

The mp.Queue class implements locking mechanisms internally to maintain correctness.

It temporarily blocks competing requests, for example, when two processes ask for mini batch

ids at the same time. Theoretically, the locking semantics may cause bottlenecks. But, since it

is very fast for light weight data (e.g. small integers), the time spent on waiting for locks can

be ignored. Our experiments prove that the locking mechanism has little effect on the speed up

of parallel-GPU training.

Since the mp.Queue class is fast for exchanging information among processes, we

create two shared variables (available_workers and gossip_partner) using mp.Queue to

maintain the correctness of the gossip algorithm and avoid deadlocks. This implementation not

only guarantees the correctness of the gossip algorithm but also avoids the high cost of sending

messages for broadcasting neighbor ids.

Another challenge of the implementation is one-to-one communication between GPUs

using PyTorch. Since local model and stochastic gradients are stored in GPU, we use embedded

NCCL backends in PyTorch to perform gradient averaging. Since PyTorch does not support

NCCL point-to-point communication for now, we create subgroups for the paired processes

using torch.distributed.new_group and call torch.distributed.all_reduce within the subgroups

to mimic point-to-point communication.

4.4.2 Preliminary Experimental Results for Implementation Version 1

In the preliminary experiments for the asynchronous GPU parallel implementation

version 1, we test parallel training on 4 GPUs for the Reddit dataset. We observe that although

the training speed is faster than AllReduce-GCN, there is an accuracy loss for this

 62

implementation. The accuracy also drops when the averaging interval grows as shown in Table

4.1. The main reason for this accuracy loss is that the fixed division for active and passive

workers limits the choices of gossip partners. Since workers cannot average gradients with

other workers in the same set, it reduces the chance to get complete information from mini

batches that are trained in parallel workers.

Table 4.1 Asynchronous GPU parallel implementation version 1 for Reddit dataset (4 GPUs)

Averaging_interval 1 20 100

Time / sec 13.19 10.28 9.77

F1 score 0.9532 0.9514 0.9513

It is also observed in the experiments that the performance of this implementation is

not stable for a system with stragglers. When slow workers reside in the active set and fast

workers reside in the passive set, the gradients may be averaged only a few times, especially

when using periodic averaging. As we use a work-pool to allocate jobs, fast workers can get

more mini batches than slow workers. However, workers in the passive set cannot pick another

worker to average gradients. The total number of gradient averaging times are decided by the

number of mini batches trained by workers in the active set. If these workers are slow, then the

total number of gradient averaging times are small. This results in a low accuracy because a

large portion of mini batches are only used for local model update.

In a real-world scenario, the workloads in GPUs may be very different. Thus, GPUs of

the same make can work at different paces. According to our experiments, the gossip

implementation version 1 is not a superior solution for asynchronous GPU parallel training.

We propose a second version for the gossip training implementation (GossipGCN), and the

experimental results are discussed in the following section.

4.4.3 Experimental Results for GossipGCN

Our experiments show that in most scenarios, the proposed GossipGCN can achieve

better performance compared to the synchronous AllReduce-GCN. Tables 4.2 ~ 4.5 illustrate

the parallel training times and accuracies of GossipGCN for Reddit and Amazon dataset using

 63

different numbers of GPUs. Tables 4.6 and 4.7 elaborate the speed up comparisons for

AllReduce-GCN and GossipGCN for the two datasets. Tables 4.8 and 4.9 show comparisons

of accuracy and locally trained mini batch numbers for AllReduce-GCN and GossipGCN using

8 GPUs.

As the results illustrate, GossipGCN outperforms AllReduce-GCN in training speed. It

is also noticeable that the training finishes faster with a larger averaging interval, which can be

attributed to a smaller communication overhead with a larger averaging interval. The results

also illustrate that the work-pool strategy in GossipGCN balances workload among different

GPUs which is unlike the fixed workload in AllReduce-GCN.

Table 4.2 GossipGCN for Reddit dataset (4 GPUs)

Averaging_interval 1 20 100

Time / sec 12.46 11.74 10.62

F1 score 0.9573 0.9599 0.9613

Table 4.3 GossipGCN for Reddit dataset (8 GPUs)

Averaging_interval 1 20 100

Time / sec 9.62 7.44 5.68

F1 score 0.9502 0.9566 0.9538

Table 4.4 GossipGCN for Amazon dataset (4 GPUs)

Averaging_interval 1 20 100

Time / sec 73.80 56.81 51.97

F1 score 0.7537 0.7545 0.7518

 64

Table 4.5 GossipGCN for Amazon dataset (8 GPUs)

Averaging_interval 1 20 100

Time / sec 61.65 41.39 29.42

F1 score 0.7222 0.7393 0.7401

Table 4.6 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit dataset.

GPU number 1 4 8

AllReduce-

GCN

Speed up

averaging_interval = 1 - 1.87 2.93

averaging_interval = 20 - 2.13 2.96

averaging_interval = 100 - 2.19 2.97

GossipGCN

Speed up

averaging_interval = 1 - 2.40 3.11

averaging_interval = 20 - 2.55 4.02

averaging_interval = 100 - 2.82 5.27

Table 4.7 Speed up comparison of AllReduce-GCN and GossipGCN for Amazon dataset.

GPU number 1 4 8

AllReduce-

GCN

Speed up

averaging_interval = 1 - 1.74 2.81

averaging_interval = 20 - 2.07 3.05

averaging_interval = 100 - 2.27 3.39

GossipGCN

Speed up

averaging_interval = 1 - 2.44 2.93

averaging_interval = 20 - 3.17 4.36

averaging_interval = 100 - 3.47 6.13

 65

Table 4.8 Comparison of parallel training for Reddit Dataset (8 GPUs)

Algorithm

AllReduce Gossip

averaging_

interval = 1

averaging_

interval =

20

averaging_

interval =

100

averaging_

interval = 1

averaging_

interval = 20

averaging_

interval =

100

Time (in

seconds)

10.21 10.11 10.07 9.62 7.44 5.68

F1-score 0.9609 0.9449 0.9435 0.9502 0.9566 0.9538

Number of

mini batches

in each GPU

150 | 150 | 150 | 150 |150 | 150 | 150 | 150 130 | 127 |

188 | 204 |

119 | 162 |

123 | 147

122 | 123 |

215 | 264 |

108 |173 |

102 | 93

108 | 91 |

92 | 301 |

134 | 227 |

143 |104

Table 4.9 Comparison of parallel training for Amazon Dataset (8 GPUs)

Algorithm

AllReduce Gossip

averaging_

interval = 1

averaging_

interval =

20

averaging_

interval =

100

averaging_

interval = 1

averaging_

interval = 20

averaging_

interval = 100

Time (in

seconds)

64.18 59.13 53.20 61.65 41.39 29.42

F1-score 0.7721 0.7189 0.7187 0.7222 0.7393 0.7401

Number of

mini batches

in each GPU

2400 | 2400 | 2400 | 2400 |

2400 | 2400 | 2400 | 2400

2237 | 2816 |

2105 | 2214 |

2386 | 2761 |

2552 | 2129

2310 | 2483 |

2905 | 2831 |

2014 | 1936 |

 2673 | 2048

2599 | 2316 |

3185 | 2954 |

2006 | 1728 |

2864 | 1548

It can be observed from the experiments that parallel GCN training suffers accuracy

loss, irrespective of whether it is based on all-reduce or Gossip, as compared to the baseline

training on single GPU. The reason for accuracy loss in parallel training is that information of

multiple mini batches is gathered to make one update of the model; while in the baseline

training on single GPU one mini batch is trained at one step of model update; hence successive

training of mini batches is done with updated models. This can affect the accuracy of the final

output model [66]. For GossipGCN, it experiences accuracy loss because of the same reason

for parallel training. Moreover, since different workers may train various numbers of subgraphs

when using GossipGCN, the iteration gap can lead to lower accuracy.

 66

However, it can be seen that GossipGCN has smaller accuracy loss with higher

averaging interval as compared to AllReduce-GCN. Intuitively, lower averaging frequency can

cause loss in accuracy. In AllReduce-GCN, accuracy loss is affected greatly by reducing

averaging frequency, since some information may be lost in the training. However, in

GossipGCN, the algorithm is more flexible in requesting jobs, and the fast worker can train

more subgraphs locally. The parameters of the local model in the fast GPU are updated based

on more information of the mini batches, thus the accuracy of the output model is higher than

the AllReduce-GCN. To minimize the effect of accuracy loss, we compare the local models on

each GPU and choose the best one as the final output model.

Figures 4.6 ~ 4.8 exhibit the speed up comparison for AllReduce-GCN and GossipGCN

using different averaging intervals. From the figures we can see that by reducing gradient

averaging frequency, GossipGCN can achieve a higher speed up compared with AllReduce-

GCN. By comparing the results, we observe that using gossip averaging method can push the

speed up limit further with periodic gradient averaging.

It is also observed from experiments that there is a rare scenario when all GPUs are

totally free. This only happens when there is no other job running on the GPUs. In this scenario,

the training can be done very fast. Since all calculations and gradient averaging are done

immediately and no workers wait idlily, changing averaging intervals has little influence on

the total training time. However, this situation happens very occasionally, in most scenarios,

performing periodic gradient averaging can help to improve the training speed.

Figure 4.6 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon

dataset with averaging_interval = 1.

 67

Figure 4.7 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon

dataset with averaging_interval = 20.

Figure 4.8 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon

dataset with averaging_interval = 100.

 68

We can see from experimental results that there is a trade-off for the training speed and

accuracy. Taking both training time and accuracy into consideration, performing gradient

averaging in each iteration is not the best choice. GossipGCN with periodic synchronization

increases the speed up largely with minor accuracy loss on a real-world GPU cluster where the

status of each GPU changes fast. For different datasets and systems, the averaging interval can

be adjusted in experiments to get the superior performance.

Another issue we notice is that multiple NCCL calls will compete for the

communication bandwidth among GPUs. If there are multiple jobs requesting communication

between GPUs using all-reduce or other collective calls, the training time may be affected.

AllReduce-GCN has only one NCCL call (the all-reduce call) at one time, while in GossipGCN,

it is possible that multiple NCCL calls happen at the same time when more than two sets of

paired workers start to average gradients.

According to the experimental results, we see that in most scenarios, using GossipGCN

achieves better speed up than AllReduce-GCN, since GossipGCN eliminates the

synchronization barrier for all parallel workers and only needs to average gradient with one

neighbor. In a rare scenario, the GPUs have enough calculation capability to run all submitted

jobs simultaneously, and there is only one collective call such as all-reduce among different

GPUs in one compute node. Since the problem of synchronization barrier is not obvious in this

case and multiple collective calls in GossipGCN slow down the training speed, AllReduce-

GCN has better speed up than GossipGCN. However, this scenario happens very occasionally,

and it is almost impossible to maintain. In most scenarios, even though multiple GPU collective

calls cause more overheads in GossipGCN, the gains of reducing idling time is greater than the

overheads. Generally speaking, GossipGCN has better performance than AllReduce-GCN.

4.5 Summary

In this chapter, we first provide a preliminary implementation of asynchronous and

decentralized approach for GCN deep learning on a GPU cluster using the active and passive

sets of workers. Then, to achieve better performance, we present a second version of the

asynchronous GCN training using gossip algorithm to exchange stochastic gradients

(GossipGCN). We also implement a work pool mechanism to balance workloads among

workers. It is proved that the proposed algorithm is deadlock-free. Experiments show that

GossipGCN outperforms AllReduce-GCN in most scenarios with periodic gradient averaging.

 69

Generally, it achieves better speed up for graph-partition based GCN training with a stable

accuracy. The algorithm is superior to the synchronous counterpart, especially in a non-

dedicated system, where the workload on each GPU varies and keeps changing with time.

 70

Chapter 5 Conclusion and Future Works

Graph convolutional networks (GCNs) play an important role in deep learning for graph

related data and are widely used in many disciplines. Our research is based on a novel GCN

algorithm (Cluster-GCN) that uses graph partition method instead of traditional sampling

method to get mini batches.

In this thesis, we present an asynchronous and decentralized algorithm (GossipGCN)

for GCN deep learning on a GPU cluster. We implement a work-pool mechanism and a gossip

algorithm for GPUs to average stochastic gradients. Our method is especially suitable for a

dynamic training system, where the workload on each GPU varies and keeps changing with

time. In addition, inspired by local SGD and model averaging, we explore how gradient

averaging frequency can affect training speed and accuracy.

In the synchronous GPU-parallel implementation (AllReduce-GCN), reducing gradient

averaging frequency can help to accelerate the overall training when the gradient size is large.

However, in a system with stragglers, there is a limit for the speed up because of the all-reduce

barrier for gradient averaging. In GossipGCN, we use Gossip to remove the synchronization

barrier. It only requires gradient averaging among two workers. In addition, the work-pool

mechanism helps to balance the workload for all workers.

We implement the algorithms using PyTorch [58] and DGL [27] as the deep learning

platform and libraries. The experiments are carried out using datasets of different sizes (Reddit

and Amazon datasets). Generally, results show that GossipGCN achieves a better speed up and

a more stable accuracy than the traditional synchronous counterpart on a real-world GPU

cluster in most scenarios, especially when the GPUs are busy with multiple jobs and calculate

stochastic gradients in different paces.

In the future, we suggest conducting further research on comparison of partition

methods to better understand if different partition methods have an effect on training time and

accuracy. Additionally, we only concentrate on the parallelizing training phase in our research,

and there exist various parallel graph partitioning methods (e.g. [67]). It will help to achieve

better overall GCN training speed up if we can partition the input graph and prepare mini

batches in a parallel fashion. Moreover, our research focuses on asynchronous training within

a single compute node. In the future, if we have access to more resources, we suggest carrying

out further research to integrate the proposed method with existing asynchronous training

 71

methods in a distributed system with multiple compute nodes. Finally, the proposed algorithm

can also be modified to adapt with different variants of GCNs.

 72

Reference

[1] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “DeepInf: Social Influence

Prediction with Deep Learning,” in Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, London United Kingdom, Jul.

2018, pp. 2110–2119, doi: 10.1145/3219819.3220077.

[2] M. Zhang and Y. Chen, “Link Prediction Based on Graph Neural Networks,” in

Proceedings of the 32nd International Conference on Neural Information Processing

Systems, 2018, pp. 5171–5181.

[3] E. Choi et al., “Learning the Graphical Structure of Electronic Health Records with

Graph Convolutional Transformer,” in Proceedings of the AAAI Conference on Artificial

Intelligence, 2020, vol. 34, pp. 606--613.

[4] S. Rhee, S. Seo, and S. Kim, “Hybrid Approach of Relation Network and Localized

Graph Convolutional Filtering for Breast Cancer Subtype Classification,” in Proceedings

of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, pp.

3527–3534, doi: 10.24963/ijcai.2018/490.

[5] D. Nathani, J. Chauhan, C. Sharma, and M. Kaul, “Learning Attention-based

Embeddings for Relation Prediction in Knowledge Graphs,” in Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, 2019, pp. 4710–4723.

[6] J. Zhou et al., “Graph Neural Networks: A Review of Methods and Applications,”

ArXiv181208434 Cs Stat, Jul. 2019, [Online]. Available:

http://arxiv.org/abs/1812.08434.

[7] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,”

in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.,

Montreal, Que., Canada, 2005, vol. 2, pp. 729–734, doi: 10.1109/IJCNN.2005.1555942.

[8] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-GCN: An

Efficient Algorithm for Training Deep and Large Graph Convolutional Networks,” in

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, Anchorage AK USA, Jul. 2019, pp. 257–266, doi:

10.1145/3292500.3330925.

[9] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “GraphSAINT: Graph

Sampling Based Inductive Learning Method,” presented at the International Conference

on Learning Representations, 2019.

 73

[10] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,

“Distributed GraphLab: a framework for machine learning and data mining in the cloud,”

Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727, Apr. 2012, doi:

10.14778/2212351.2212354.

[11] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Distributed

graph-parallel computation on natural graphs.,” in 10th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 12), 2012, pp. 17–30.

[12] “PyTorch DistributedDataParallel.” 2020, [Online]. Available:

https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel.

[13] S. Pal et al., “Optimizing Multi-GPU Parallelization Strategies for Deep Learning

Training,” IEEE Micro, vol. 39, no. 5, pp. 91–101, Sep. 2019, doi:

10.1109/MM.2019.2935967.

[14] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya, “GossipGraD: Scalable

Deep Learning using Gossip Communication based Asynchronous Gradient Descent,”

CoRR, vol. abs/1803.05880, 2018, [Online]. Available: http://arxiv.org/abs/1803.05880.

[15] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous Decentralized Parallel

Stochastic Gradient Descent,” in Proceedings of the 35th International Conference on

Machine Learning, 2018, vol. 80, pp. 3043--3052, [Online]. Available:

http://proceedings.mlr.press/v80/lian18a.html.

[16] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic Gradient Push for

Distributed Deep Learning,” in International Conference on Machine Learning, 2019, pp.

344--353.

[17] “NVIDIA Collective Communications Library (NCCL).” 2020, [Online]. Available:

https://developer.nvidia.com/nccl.

[18] J. Hu, C. Guo, B. Yang, and C. S. Jensen, “Stochastic Weight Completion for Road

Networks Using Graph Convolutional Networks,” in 2019 IEEE 35th International

Conference on Data Engineering (ICDE), Macao, Macao, Apr. 2019, pp. 1274–1285, doi:

10.1109/ICDE.2019.00116.

[19] X. Geng et al., “Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing

Demand Forecasting,” Proc. AAAI Conf. Artif. Intell., vol. 33, pp. 3656–3663, Jul. 2019,

doi: 10.1609/aaai.v33i01.33013656.

[20] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey

on Graph Neural Networks,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–21, 2020,

doi: 10.1109/TNNLS.2020.2978386.

 74

[21] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking

Graph Neural Networks,” ArXiv200300982 Cs Stat, Jul. 2020, Accessed: Nov. 27, 2020.

[Online]. Available: http://arxiv.org/abs/2003.00982.

[22] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph

Convolutional Networks,” presented at the International Conference on Learning

Representations (ICLR 2017), 2017.

[23] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning on

Large Graphs,” in Proceedings of the 31st International Conference on Neural

Information Processing Systems, 2017, pp. 1025–1035.

[24] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast Learning with Graph Convolutional

Networks via Importance Sampling,” presented at the International Conference on

Learning Representations, 2018.

[25] J. Chen, J. Zhu, and L. Song, “Stochastic Training of Graph Convolutional Networks

with Variance Reduction,” in Proceedings of the International Conference on Machine

Learning, 2018, pp. 942–950.

[26] “PyTorch Geometric Library (PyG).” 2020, [Online]. Available: https://pytorch-

geometric.readthedocs.io/en/latest/.

[27] “Deep Graph Library (DGL).” 2020, [Online]. Available:

https://docs.dgl.ai/index.html#.

[28] Z. Zhang, P. Cui, and W. Zhu, “Deep Learning on Graphs: A Survey,” IEEE Trans.

Knowl. Data Eng., 2020.

[29] J. Oh, K. Cho, and J. Bruna, “Advancing GraphSAGE with A Data-Driven Node

Sampling,” presented at the ICLR 2019 workshop on Representation Learning on Graphs

and Manifolds, 2019.

[30] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph

Convolutional Neural Networks for Web-Scale Recommender Systems,” in Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, London United Kingdom, Jul. 2018, pp. 974–983, doi:

10.1145/3219819.3219890.

[31] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive Sampling Towards Fast

Graph Representation Learning,” in Advances in Neural Information Processing Systems,

2018, pp. 4558–4567.

[32] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning

irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, 1998.

 75

[33] “DGL Examples.,” 2020. https://github.com/dmlc/dgl/tree/master/examples.

[34] X. Qi, “Intro Distributed Deep Learning,” Intro Distributed Deep Learning, 2017.

https://xiandong79.github.io/Intro-Distributed-Deep-Learning.

[35] “Distributed training with TensorFlow,” 2020.

https://www.tensorflow.org/guide/distributed_training.

[36] L. Ma et al., “NeuGraph: Parallel Deep Neural Network Computation on Large

Graphs,” in 2019 {USENIX} Annual Technical Conference ({USENIX} {ATC} 19),

Renton, WA, 2019, pp. 443–458, [Online]. Available:

https://www.usenix.org/system/files/atc19-ma_0.pdf.

[37] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-Efficient Distributed

Deep Learning: A Comprehensive Survey,” ArXiv200306307 Cs Eess, Mar. 2020,

Accessed: Nov. 20, 2020. [Online]. Available: http://arxiv.org/abs/2003.06307.

[38] S. Ghadimi, G. Lan, and H. Zhang, “Mini-batch stochastic approximation methods for

nonconvex stochastic composite optimization,” Math. Program., vol. 155, no. 1–2, pp.

267–305, Jan. 2016, doi: 10.1007/s10107-014-0846-1.

[39] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online

prediction using mini-batches,” J. Mach. Learn. Res., pp. 165–202, 2012.

[40] Q. Ho et al., “More Effective Distributed ML via a Stale Synchronous Parallel

Parameter Server,” in Advances in neural information processing systems, 2013, pp.

1223–1231.

[41] X. Jia et al., “Highly Scalable Deep Learning Training System with Mixed-Precision:

Training ImageNet in Four Minutes,” ArXiv180711205 Cs Stat, Jul. 2018, Accessed:

Nov. 24, 2020. [Online]. Available: http://arxiv.org/abs/1807.11205.

[42] C.-H. Chu et al., “Efficient and Scalable Multi-Source Streaming Broadcast on GPU

Clusters for Deep Learning,” in 2017 46th International Conference on Parallel

Processing (ICPP), Bristol, United Kingdom, Aug. 2017, pp. 161–170, doi:

10.1109/ICPP.2017.25.

[43] I. Zafar, G. Tzanidou, R. Burton, N. Patel, and L. Araujo, Hands-On Convolutional

Neural Networks with TensorFlow. Packt Publishing, 2018.

[44] Jie Lu, Choon Yik Tang, P. R. Regier, and T. D. Bow, “A gossip algorithm for

convex consensus optimization over networks,” in Proceedings of the 2010 American

Control Conference, Baltimore, MD, Jun. 2010, pp. 301–308, doi:

10.1109/ACC.2010.5530844.

 76

[45] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can Decentralized

Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel

Stochastic Gradient Descent,” in Proceedings of the 2017 Conference on Neural

Information Processing Systems, 2017, vol. 30, [Online]. Available:

https://proceedings.neurips.cc/paper/2017/file/f75526659f31040afeb61cb7133e4e6d-

Paper.pdf.

[46] S. Boyd, A. Ghosh, B. Prabbakar, and D. Shah, “Gossip algorithms: design, analysis

and applications,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE

Computer and Communications Societies., Miami, FL, USA, 2005, vol. 3, pp. 1653–

1664, doi: 10.1109/INFCOM.2005.1498447.

[47] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast Gossip

Algorithms for Consensus,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2748–2761,

Jul. 2009, doi: 10.1109/TSP.2009.2016247.

[48] F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted Gossip:

Distributed Averaging using non-doubly stochastic matrices,” in 2010 IEEE International

Symposium on Information Theory, Austin, TX, USA, Jun. 2010, pp. 1753–1757, doi:

10.1109/ISIT.2010.5513273.

[49] P. Jesus, C. Baquero, and P. S. Almeida, “A Survey of Distributed Data Aggregation

Algorithms,” IEEE Commun. Surv. Tutor., vol. 17, pp. 381–404, 2014.

[50] J. Liu, S. Mou, A. S. Morse, B. D. O. Anderson, and C. (Brad) Yu, “Request-based

gossiping without deadlocks,” Automatica, vol. 93, pp. 454–461, Jul. 2018, doi:

10.1016/j.automatica.2018.03.001.

[51] A. Agarwal and J. C. Duchi, “Distributed Delayed Stochastic Optimization,” in

Proceedings of the 51st IEEE Conference on Decision and Control (CDC), 2012, pp.

5451–5452.

[52] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic gradient for

nonconvex optimization,” in Proceedings of the 28th International Conference on Neural

Information Processing Systems, 2015, vol. 2, pp. 2737–2745.

[53] S. U. Stich, “Local SGD Converges Fast and Communicates Little,” presented at the

International Conference on Learning Representations, 2019.

[54] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. R. Cadambe, “Local SGD with

Periodic Averaging: Tighter Analysis and Adaptive Synchronization,” presented at the

the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 2019.

 77

[55] S. Zhang, A. Choromanska, and Y. LeCun, “Deep learning with Elastic Averaging

SGD,” presented at the 3rd International Conference on Learning Representations, 2015.

[56] H. Yu, S. Yang, and S. Zhu, “Parallel Restarted SGD with Faster Convergence and

Less Communication: Demystifying Why Model Averaging Works for Deep Learning,”

in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, vol. 33, no. 01,

pp. 5693–5700.

[57] “TensorFlow.,” 2020. https://www.tensorflow.org/.

[58] “PyTorch,” 2020. https://pytorch.org/.

[59] W. Kendall, “MPI Reduce and Allreduce,” 2020.

https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/.

[60] E. Yang, D.-K. Kang, and C.-H. Youn, “BOA: batch orchestration algorithm for

straggler mitigation of distributed DL training in heterogeneous GPU cluster,” J.

Supercomput., vol. 76, no. 1, pp. 47–67, Jan. 2020, doi: 10.1007/s11227-019-02845-2.

[61] F. Faghri, I. Tabrizian, I. Markov, D. Alistarh, D. Roy, and A. Ramezani-Kebrya,

“Adaptive Gradient Quantization for Data-Parallel SGD,” presented at the the conference

on Neural Information Processing Systems (NeurIPS 2020), 2020.

[62] M. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized stochastic gradient

descent.,” in Advances in neural information processing systems 23 (2010), 2010, pp.

2595–2603.

[63] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate

information,” in 44th Annual IEEE Symposium on Foundations of Computer Science,

2003. Proceedings., Cambridge, MA, USA, 2003, pp. 482–491, doi:

10.1109/SFCS.2003.1238221.

[64] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On Distributed Averaging

Algorithms and Quantization Effects,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp.

2506–2517, Nov. 2009, doi: 10.1109/TAC.2009.2031203.

[65] “Python multiprocessing,” multiprocessing — Process-based parallelism, 2020.

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.

[66] “DataParallel results in a different network compared to a single GPU run,” 2020.

https://discuss.pytorch.org/t/dataparallel-results-in-a-different-network-compared-to-a-

single-gpu-run/28635.

[67] B. Goodarzi, M. Burtscher, and D. Goswami, “Parallel graph partitioning on a cpu-

gpu architecture,” in 2016 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), 2016, pp. 58–66.

 78

