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ABSTRACT 

 

Efficient asynchronous GCN training on a GPU cluster 

 

Yi Zhang 

 

A common assumption in traditional synchronous parallel training of Graph Convolutional 

Networks (GCNs) using multiple GPUs is that load is perfectly balanced among all GPUs. 

However, this assumption does not hold in a real-world scenario where there can be imbalances 

in workloads among GPUs for various reasons. In a synchronous parallel implementation, a 

straggler in the system can limit the overall speed-up of parallel training. To address these 

issues, this research investigates approaches for asynchronous decentralized parallel training 

for GCNs. The techniques investigated are based on graph clustering and gossiping. The 

research specifically adapts the approach of Cluster-GCN, which uses graph partitioning for 

SGD-based training, and combines with a novel gossip algorithm specifically designed for a 

GPU cluster to periodically exchange gradients among randomly chosen partners. In addition, 

it incorporates a work-pool mechanism for load balancing among GPUs. The gossip algorithm 

is proven to be deadlock free. The implementation is done on a GPU cluster with 8 Tesla V100 

GPUs per compute node, and PyTorch and DGL as the software platforms. Experiments are 

conducted for different benchmark datasets. The results demonstrate superior performance, at 

the compromise of minor accuracy loss in some runs, as compared to traditional synchronous 

training which uses all-reduce to synchronously accumulate parallel training results. 
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Chapter 1 Introduction 

1.1 Background 

 

Research on graph convolutional networks (GCNs) has increasingly gained popularity 

in recent years; this can mainly be attributed to powerful representational capacity of graphs. 

GCNs are widely used in many areas including social science [1, 2], chemical and biological 

research [3, 4], knowledge graphs [5] and many other disciplines.  

GCNs evolve from convolutional neural networks (CNNs). Previously, researchers use 

graph embedding technologies to carry out deep learning training on graph-related data. 

However, there are defects in these methods, e.g., lack of generality for direct embedding and 

computational inefficiency caused by no parameters shared between nodes. The motivation of 

developing GCNs also roots in the natural features of graphs. Different from images and natural 

languages, graph nodes do not have a specific order, and an edge in a graph is not just the 

feature of nodes but also represents the information of dependency between two nodes. GCNs 

propagate on each node respectively, ignoring the input order of nodes. Moreover, the 

propagation is guided by the graph structure (edges) instead of using it as part of features [6].

 The goal of GCN is to solve various graph-related tasks by using neural network models. 

GCNs can be used for different tasks, including node classification, link prediction and graph 

classification. GCNs develop a state embedding, which holds information of graph nodes and 

the structure of the graph. This state embedding can be used to generate an output such as the 

node label. The outline of GCN was first defined in [7], and the original work extends recursive 

neural networks (RNN). Since then, a lot of different graph neural network models have been 

proposed, but there doesn’t exist a systematic categorization for GCNs until recently.  

GCNs play an important role in deep learning research, however one common problem 

with any variant of GCN training is due to neighbourhood expansion, i.e., in computing the 

loss on a node at current layer, it recursively requires the neighbouring nodes’ information at 

previous layers, which leads to an exponential increase in time complexity due to GCN depth. 

This problem is one of the causes for shallow structure and scalability limitation for GCNs and 

is known as the Neighborhood Expansion Problem (NEP). Traditional CNNs can have up to 

hundreds of layers, while GCNs usually have no more than 3 layers. Moreover, increasing 

memory consumption in the recursive steps restricts the graph size that can be fitted in the 

training. 



 2 

Cluster-GCN [8] and GraphSAINT [9] propose two different ways to overcome NEP 

by performing training on smaller subgraphs instead of using the original large graph. Cluster-

GCN uses clustering methods to partition the original graph into subgraphs and prepare mini 

batches from the subgraphs. GraphSAINT constructs mini batches by sampling the input graph 

but builds a complete GCN at each iteration with the sampled data. Both methods lead to a 

heuristic model as final output and have the advantage of restricting neighbourhood expansion 

to a relatively smaller range in subgraphs. In our research, we use a similar technique based on 

subgraph training. 

With the advancement of hardware and the increasing size of datasets, there is a high 

demand for parallel deep learning training. Large input data for deep learning models consume 

longer time for the training process, which encourages exploring parallel strategies to improve 

the speed up. Previous research has explored parallel training for GCNs on CPUs and 

distributed systems, e.g., GraphLab [10] and PowerGraph [11]. In recent years, parallel GCN 

training on GPUs has gained popularity with the wide employment of deep learning 

frameworks like PyTorch [12] whose support on GPUs has matured. This has opened the 

possibilities of exploring GPU computational power in GCN training.  

Generally, there are two well-known parallelization strategies, namely data parallelism 

(DP) and model parallelism (MP). As presented in [13], a new trend appears recently 

combining DP and MP. Although model parallelism and hybrid parallelism are useful in 

specific scenarios, considering the simplicity and generality, data parallelism is the dominant 

approach in parallel training for GCNs. Despite the advantages of data parallelism, one of the 

major bottlenecks for this methodology is the gradient averaging in each iteration. Workers 

need to communicate local gradients with other workers, and this communication overhead 

degrades training speed up. In recent years, many algorithms have been proposed to moderate 

the drawbacks caused by gradient synchronization. In this research, we explore the opportunity 

of improving GCN training speed up by using asynchronous gradient averaging method based 

on the idea of gossiping.  

1.2 Problem Statement and Motivation 

 

The performance of traditional GPU synchronous data parallel training for GCNs 

depends on the speed and workload of each GPU. A common assumption is that GPUs of the 

same make and model would process their mini batches at the same pace. However, 

experiments show that this assumption is not valid in a real-world scenario, where the cluster 
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nodes may not be dedicated to a single job; moreover, the training workload sizes on GPUs 

may differ. In a synchronous parallel training, GPUs may calculate gradients at different paces, 

which causes faster workers to sit idle when waiting for a straggler. Section 3.3 illustrates this 

scenario with experimentation.  

In traditional sampling-based GCN models, the sampling (batch-preparation) time and 

“real-training” time (gradient calculation and model updating) are usually measured together 

as the model training time. But in graph-partition based GCN such as Cluster-GCN, the batch-

preparation is done independently before the training starts. So, when applying the synchronous 

gradient averaging methods to this kind of GCN models, the delays caused by stragglers 

become obvious in the training phase. The motivation of our research is to overcome the 

drawback caused by the synchronization of gradients.  

To overcome the performance bottleneck caused by the synchronization delay due to 

idling, in this research we investigate an asynchronous parallel training methodology of GCNs 

based on the idea of gossiping (GossipGCN). Although gossiping-based asynchronous parallel 

training has been explored for CNNs in distributed systems, to the best of our knowledge there 

is limited research on asynchronous parallel training of GCNs on a GPU cluster. 

Previous research has investigated gossip algorithm for CNN training using GPUs in a 

distributed system. Such a system consists of multiple compute nodes, where each compute 

node consists of one CPU connected with one or more GPUs, and multiple connected CPUs 

form a distributed cluster. Usually the gradient calculation and weight updates are done on 

GPUs inside a compute node while the communication for averaging gradients using gossip 

runs among CPUs [14-16]. Averaging of gradients among GPUs within a compute node is 

usually achieved by using all-reduce (Figure 1(a)) or using the CPU as a central server. In a 

centralized system with a parameter server, the central server may cause communication 

bottleneck. For a decentralized system as in Figure 1.1 (a), the collective communication (all-

reduce) among GPUs can be achieved using NVIDIA Collective Communications Library 

(NCCL) [17], which provides fast communication backend among GPUs. As discussed before, 

there are performance bottlenecks with this approach as well.  
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Figure 1.1 Gossip algorithm for distributed system and single compute node. 

 

As a major difference, in our work, we investigate the gradient averaging among GPUs 

in a compute node using gossip (Figure 1.1 (b)). To the best of our knowledge, this is the first 

such attempt to use gossip in asynchronous training of CNN or GCN inside a compute node. 

This is further elaborated in the following.  

In addition, previous experiments of asynchronous gradient averaging methods are 

done for CNN related problems such as image classification. As far as we know, there is very 

limited research about using asynchronous algorithms for GCNs. Although there are 

similarities between CNNs and GCNs, the model construction, information propagation and 

dataset performance are different. And the benchmark results gathered in previous research 

cannot be used for GCN related problems. So, we propose to have an initial investigation on 

using gossip gradient averaging for GCN training on a GPU cluster.  

Our research adapts the algorithm of Cluster-GCN [8] and focuses on the model 

training phase. We design and implement an asynchronous decentralized data parallel training 

method for graph convolutional networks (GCNs) with an adjustable averaging interval and 

compare its performance with the synchronous counterpart. Since PyTorch is the new trend to 

carry out graph related deep learning, the proposed algorithm is implemented using PyTorch. 
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1.3 Challenges and contributions 

 

In order to implement gossip algorithm for gradient averaging among GPUs, the major 

challenge is to ensure deadlock avoidance. The deadlock happens when the dependencies of 

workers end up in a loop. Previous studies propose different methods to avoid deadlocks during 

gossiping, however, they are not suitable for asynchronous GCN training on GPUs. To 

implement an efficient deadlock avoidance algorithm for GCN training on GPUs, we propose 

a new method to use shared variables to control gossip-neighbor information. The efficiency 

of this method is achieved by keeping minimum message passing among workers and 

dynamically choosing available workers. In addition, by mapping each GPU with a process, it 

is convenient to use quick get and put methods for light weighted data such as process index. 

Moreover, to improve the speed up and reduce time wasted on waiting idly, we 

implemented a work-pool mechanism to make the best use of the computing capacity of each 

worker. In the synchronous AllReduce-GCN method, each GPU has to train the same number 

of mini batches since they need to average gradients in every iteration. In our proposed method, 

we allow fast workers to request more mini batches whenever they are free, thus the calculation 

capacity of each GPU is fully used. We also incorporate the periodic synchronization method 

with the work-pool mechanism, and the synchronization interval can be determined empirically.   

We present an asynchronous and decentralized data parallel algorithm (GossipGCN) 

for graph neural network training. Experiments are carried out on node classification tasks. The 

following are the highlights of the approach:  

• Partitioning of the original input graph into subgraphs based on random 

clustering and doing parallel training on the subgraphs. 

• Design and implementation of a gossiping-based algorithm using PyTorch 

which averages gradients among randomly chosen partner GPUs at set intervals.  

• The gossip algorithm is proven to be deadlock-free. 

• Partner selection is more random than the previous gossip algorithms on GPUs 

known to us. 

• Enhanced efficiency by adopting a work-pool based strategy where workers 

(GPUs) are assigned works dynamically rather than a static work assignment. 
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1.4 Thesis Outline 

 

 The rest of this thesis is organized as follows. Chapter 2 presents research background 

and related works. Chapter 3 elaborates the implementation of graph-partition based 

synchronous data parallel GCN training and discusses its limitations. Experiments are done to 

evaluate the effects of periodic gradient averaging on synchronous approach. Chapter 4 

discusses the design and implementation of the proposed algorithm and related proofs. 

Experimental results with various benchmark datasets are also included in this chapter. Finally, 

Chapter 5 concludes this research by summarizing our work, followed by a discussion on future 

works.  
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Chapter 2 Literature Review 
 

Graph convolutional networks (GCNs) have become a popular tool for deep learning 

tasks on graph data. They are widely applied to different domains including social science [1, 

2],  chemical and biology research [3, 4], knowledge graphs [5] and traffic networks [18, 19]. 

GCNs belong to an important branch of graph neural networks (GNNs). GNNs are evolving 

fast in recent years and different variants are proposed, such as graph convolutional networks 

(GCN), graph attention network (GAT) and jump knowledge network (JK-Networks). [20] 

conducts a comprehensive survey on GNNs and proposes a new taxonomy for categorization 

of related works. [21] provides a generalized GNN benchmarking framework, which facilitates 

evaluation of different GNN architectures. Among the different versions of GNNs, graph 

convolutional networks (GCNs) set the foundation in early works and have a long-lasting 

influence on deep learning research. With increasing size of input graphs and the advancement 

of hardware and parallel methodologies, parallel training of GCNs has gained a lot of attention 

and different parallel strategies are proposed.  

In this chapter, we first provide a brief background of GCNs and its relationship with 

convolutional neural networks (CNNs). Then we discuss mini batch Stochastic Gradient 

Descent (SGD) GCNs and its variants. Subsequently, we provide a review of different schemes 

for parallel GCN training and various optimization methods. Finally, we conclude this chapter 

with a discussion of GCN training on GPUs. 

2.1 Graph Convolutional Networks (GCNs) 

Encouraged by the popularity of convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), a large number of studies are done for deep learning research on 

graph data, and the concept of graph convolutional networks (GCNs) appears. Traditional 

neural networks like CNNs organize the node features in a specific order, which is actually not 

suitable for graph related data. In a graph, there doesn’t exist any natural order for the nodes, 

and GCNs use message passing between nodes to capture the dependency of graphs.  

To have a more straightforward understanding, an example of relations between CNNs 

and GCNs is illustrated in Figure 2.1. In CNNs for image processing problems, it usually uses 

a convolution kernel and pooling layers to transform information. Graph dependency 

information (represented by edges) is considered as a feature of nodes. While in GCNs, 

information is propagated on each node respectively through message passing, and the state of 
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nodes is updated by a weighted sum of the neighbor nodes’ states. The propagation ignores the 

input order of nodes and is guided by the graph structure (edges in the graph).  

 

  

 

Figure 2.1 Example of 2D convolution and graph convolution. (Figure courtesy of [20]) 

  

Using a fixed number of layers with different weights, graph convolutional networks models 

the dependency of graph nodes. In each layer, it acquires the embeddings by gathering 

information from workers. The first complete definition of GCN is presented in [22]. The 

authors propose a model derived from convolutional neural networks to solve graph-related 

deep learning problems. The proposed model is scalable. At the same time, it encodes features 

of nodes and graph structure. This work is critical for later research on graph convolutional 

networks and promotes the widespread adoption of GCNs in graph related deep learning 

problems. Different variants of GCNs include GraphSAGE [23], FastGCN [24] and graph 

convolutional networks with variance reduction [25]. 

2.2 Mini batch Stochastic Gradient Descent (SGD) GCNs 

 

 The pioneer work of GCN training [22] uses full-batch gradient descent, where 

gradients are calculated with the complete input data and weights are updated after each epoch. 

This method is not scalable because of slow convergence and increasing memory requirement 

for large input data. To cope with the scalability problem of GCN training, [23] propose a mini 

batch stochastic gradient descent (SGD) algorithm for large-scale graphs, where weights are 

updated after each iteration based on gradients generated from training a mini batch. A mini 

batch is a subset of training examples and is smaller than the original input graph. This method 

requires less memory compared with full-batch gradient descent and has a better converge rate 

In 2D convolution, a filter is 

used to gather information of 

each pixel and its neighbors. 

In graph convolution, information is 

gathered along edges using 

propagation. 
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since multiple updates are conducted in one epoch. An illustration of mini batch SGD is shown 

in Figure 2.2. 

 In mini batch SGD, computing loss on a single node is dependent on the embeddings 

of its neighbors at the previous layer, and this process continues recursively based on the GCN 

depth, thus it leads to time consumption grows exponentially to GCN layer numbers. The 

problem caused by such dependency is known as neighbourhood expansion problem. Previous 

studies propose various solutions to reduce side effects of such a problem, a typical solution is 

to use sampling methods to prune the neighbors of a node to reduce expended neighbors [23, 

24]. Sampling methods limit the size of neighbor samples for each node; however, the overhead 

still grows quickly with the GCN depth. Two innovative methods [8, 9] are proposed since 

2019 and offer new perspectives to deal with the neighbourhood expansion problem using 

graph partition methods and subgraph based GCN training.  

 

 

Figure 2.2 Mini batch Stochastic Gradient Descent (SGD). (Figure courtesy of [13])  

 

2.2.1 Traditional Sampling Based GCN Training 

 

The essential idea of sampling is to have an accurate estimation of GCN embeddings 

by reducing dependent neighbor nodes. There are many different sampling methods that can 

be used for mini batch SGD training of GCN models, and some of them are supported in 

flatforms and libraries such as PyTorch [26] and DGL [27]. As mentioned in a survey [28], 

there are mainly two types of sampling methods: neighborhood sampling and layer-wise 

sampling. An example of the sampling method is shown in Figure 2.3. 

 Neighborhood sampling methods samples the neighbors for each node during training. 

One of the well-known neighborhood sampling methods is presented in GraphSAGE [23]. The 

author suggests to sample a fixed-size set of neighbors for the calculations. Using this method 

can guarantee to have a predictable space and time complexity for each iteration. This work 
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sets the foundation for lots of later research on neighborhood sampling, and different variants 

are proposed to optimize GraphSAGE. [29] presents an advancing data-driven sampling 

method to address the high variance in training, and it achieves a better accuracy than the 

original version of GraphSAGE. 

 Another variant of neighborhood sampling is illustrated in PinSage [30] to use highly 

efficient random walks to estimate the graph embeddings for GCNs. In addition, PinSage 

proposes an efficient MapReduce model inference algorithm for constructing embeddings. 

According to their experiments, this method works well on large-scale graphs with billions of 

nodes and edges. 

 Even though the neighborhood sampling has great achievement in mitigating 

neighbourhood expansion, the number of dependent nodes still grows exponentially to GCN 

depth, which causes time and memory consumptions increase rapidly. To overcome the issue 

of over expansion, FastGCN [24] proposed a layer-wise sampling method, where a layer is 

considered integrated and restrain the number of sampled nodes per layer. The proposed 

method also incorporates importance sampling to reduce approximation variance. [31] 

illustrates another adaptive sampling method in which the sampling is done in a top-down 

manner. This method is proven to be effective on classification accuracy and has faster 

convergence rate. 

 

 

Figure 2.3 Sampling in GraphSAGE. (Figure courtesy of [23]) 

 



 11 

2.2.2 Graph-partition based GCN Training 

 

In GCN training based on traditional sampling methods, although efforts are made to 

cope with the neighbourhood expansion Problem, a large portion of training time is still taken 

by gathering neighbor nodes’ information recursively from previous layers. Cluster-GCN [8] 

proposes a different methodology for solving this issue. At each iteration, the algorithm 

conducts training on a subgraph instead of the entire GCN layers as in traditional sampling 

methods. The subgraphs are identified by a graph clustering algorithm, such as Metis or random 

partition. As illustrated in Figure 2.4, Cluster-GCN constrains neighbourhood expansion within 

the subgraph, and the number of expanded neighbor nodes are less than using the traditional 

sampling methods, thus avoiding expensive increase of time and memory consumptions.  

 
 

Figure 2.4 Comparison of neighbourhood expansion. (Figure courtesy of [8]) 

 

Sampling from a subgraph leads to a loss of graph information, thus it causes lower 

accuracy. Moreover, although using clustering methods (e.g. Metis) can result in minimum 

edges cut in graph partition, it introduces the issue that similar nodes tend to be partitioned in 

the same group. Since subgraphs may be an inaccurate representation for the original graph, it 

can lead to biased estimation for GCN training. To compensate for the missing links and 

increased variance brought by biased clustering, Cluster-GCN introduces a method that groups 

the partitioned subgraphs randomly and recovers the missing links within the group.  

The authors carry out experiments using median and large size data to compare 

performance of Cluster-GCN and other state-of-the-art sampling methods, such as 

GraphSAGE and FastGCN. Results show that the proposed method can achieve equivalent test 



 12 

accuracy compared with previous methods and enjoys a much faster training speed. In addition, 

Cluster-GCN improves memory efficiency impressively and enables training on deeper GCN. 

Their examination on a 5-layer Cluster-GCN improves the prediction accuracy on the PPI 

datasets to 99.36 (F1-score). 

In our research, we adapt the approach of Cluster-GCN for the ease of graph 

partitioning on GPUs, but unlike the original work we use a random clustering instead of Metis 

[32] to create the subgraphs. In our experiments, random clustering is found to provide better 

performance than Metis and could lead to the desired accuracy with properly chosen model 

and hyperparameters. One explanation is that the result of the training is a heuristic model and 

with large enough subgraph size the needed information can be maintained. 

 

2.2.3 Subgraph Based GCN Training 

 

GraphSAINT [9] uses a similar idea of restricting neighbourhood expansion as in 

Cluster-GCN by using subgraphs. It uses the sampling method to get subgraphs and builds the 

GCN on these subgraphs. In addition, the authors propose a normalization technique to reduce 

bias and exploit the possibility of combining the algorithm with different GCN variants. 

In the research of GraphSAINT, the author states that their method is faster than 

Cluster-GCN and has better accuracy. But in the paper, they only conduct experiments using 

original codes of Cluster-GCN, which is implemented with Metis method and original GCN 

model, thus it consumes a long time to prepare the mini batches and leads to lower accuracy 

than GraphSAINT. We reproduced the comparison of the two methods using the same 

aggregator (GraphSage). The code for GraphSAINT is taken from the authors’ GitHub post 

[9], and for Cluster-GCN, we use the example code in DGL GitHub library [33]. Instead of 

using Metis for graph clustering as suggested in the original paper [8], we use a random 

clustering method for Cluster-GCN. It turns out that the revised version of Cluster-GCN has a 

similar performance as GraphSAINT in both time consumption and accuracy. Besides, Cluster-

GCN is easier to implement compared with GraphSAINT. 

2.3 Parallel SGD-based Deep Learning Training 

 

Parallel training for GCN models has gained popularity recently. Because of the quickly 

increasing number of neighbor nodes in each layer, usually it is difficult for GCNs to train 

models with deep depth. In addition, increasing data size for modern deep learning tasks 
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consumes longer time to train the models. Nowadays, with the development of hardware and 

parallel programming technologies, GCNs is able to accomplish various training tasks. In this 

section, we discuss the commonly used parallelism strategies and the different synchronization 

methods for gradient averaging in deep learning training. Optimization methods such as local 

stochastic gradient descent and periodic averaging are also discussed in this section. 

2.3.1 Overview of Parallelism Strategies 

 

As mentioned above, the two major categories for parallel SGD-based deep learning 

training are data parallelism (DP) and model parallelism (MP). Figure 2.5 illustrates the 

architectures for the two parallel strategies. Recent research [13] also proposes a combination 

for DP and MP. Among these choices, data parallelism is the prevailing approach because of 

its simplicity and generality.  

 
 

Figure 2.5 Architectures of parallelism strategies (Figure courtesy of [34]) 

 

GCN models are suitable for synchronous data parallel, since there is no order for the 

nodes, and the propagation is done on each node respectively. In data parallelism, each worker 

has a replica of a deep learning model. The local models are trained in parallel with independent 

subsets of input data. Multiple mini batches can be trained simultaneously, thus it reduces time 

consumption for passing the whole input set. The workers use synchronization methods to 

average gradients and then apply the same gradient to update weights. The batch for a step in 

each worker is called a mini batch, and a collection of mini batches from all workers is called 

a global batch. So, the number of parallel workers affect the global batch size, which has an 

influence on the final accuracy achieved for the model. To get a desired accuracy, it may 
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require more iterations for data parallel training compared with baseline training on the same 

datasets. Additionally, the increasing number of workers brings more overheads in 

synchronization and communication processes. Even though data parallelism has these 

potential drawbacks, it is still the most popular parallelization strategy, because it is relatively 

easy to implement and broadly supported in major deep learning frameworks, such as PyTorch 

[12] and TensorFlow [35].  

Model parallelism (MP) is used for deep learning models that are too large to be fit in 

a single device. In MP, the model data flow graph (DFG) is split in parallel on different workers, 

and all devices work together for passing a mini batch in training. Since the model is divided 

across multiple workers, the forward and backward propagations require communication 

between workers in a sequential fashion. This is the reason why MP is also considered as 

“Model Serialization”, because it actually uses a serial approach for gradients calculation. 

Since each training step takes less time than using a single device, speed up can be achieved 

by using this approach. However, the scalability in MP is limited by GCN model’s algorithm 

and implementation. It is also difficult to maximize speed up of MP since it depends on model 

DFG and system hardware. If the parallel overhead is too large, it may overshadow the profit 

of using MP.  

For a deep learning model which is sequential in nature and doesn’t have parallel 

branches, another strategy to parallel is using pipelining. In this approach, the layers of the 

model are grouped and assigned to independent devices. In one training step, a mini batch is 

divided into several micro-batches. Each worker processes one micro-batch simultaneously 

and follows the sequence. In a certain way, this approach can also be considered as an 

implementation instance of MP. Research [36] has been done to use graph computation 

optimizations and pipelining methods to optimize model parallelism. It proposes a framework 

to combine the graph and dataflow models and achieves promising performance on both small 

and large real-world graphs. 

A new hybrid approach is presented in [13] to combine data parallelism and model 

parallelism to push forward the speed up limitation of using DP or MP alone. The authors 

propose to have multiple devices for a single worker. Inside each worker, it applies model 

parallelism with its devices to accelerate each training step. Then data parallelism is applied 

among the workers. If a system has a large number of devices and using data parallelism alone 

can’t take full advantage of the computation resources, then using the hybrid parallelism can 

push the limit of speed up further. Their experiments show that if speed up gain from MP can 
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overcome increased overhead and efficiency losses, using this hybrid implementation can 

improve training speed up.  

In reality, there is no single solution for the choice of parallelism approaches because 

of model properties and system configurations. Because of the parallel nature of graph nodes 

and propagation process, DP is widely adopted and the implementation is easier with help of 

deep learning platforms and libraries, such as PyG [26] and DGL [27]. Although data 

parallelism has lots of advantages, one of the main bottlenecks for DP is the gradient 

synchronization. Two major types of gradient synchronization methodologies are discussed 

below, specifically synchronous and asynchronous data parallelism. 

2.3.2 Synchronous Stochastic Gradient Descent (SGD) 

 

According to [37], current gradient synchronization algorithms can be grouped into 

four categories: (1) communication synchronization (synchronous, asynchronous, etc.); (2) 

system architectures (all-reduce, gossip, etc.); (3) compression techniques; (4) parallelism of 

communication and computing. Different synchronization patterns can integrate with different 

system architectures. For example, synchronous communication can work with the all-reduce 

method, which is a very common gradient synchronization approach in GCN training. 

Synchronous SGD has been studied for years and is a common way to implement data 

parallelism for deep learning training. The convergence of synchronous SGD for deep learning 

problems are discussed in [38, 39]. For synchronous SGD, each worker fetches a mini batch 

and calculates local gradients, then local gradients get averaged and the model is updated. 

Depending on the system architecture, there are centralized and decentralized variants for 

synchronous data parallel implementations.  

In a centralized implementation, the model is stored in a parameter server, usually it 

can be the CPU memory. In each iteration, each worker (e.g. GPU) fetches the model saved in 

the parameter server and gets a mini batch to compute gradients. After finishing computing, 

workers send the stochastic gradients back to the parameter server, and the gradients are 

averaged on the parameter server when all results are returned. The model is updated with the 

averaged gradients, then the next iteration starts by sending out the updated model and new 

mini batches to workers.  

Another variant of synchronous SDG is proposed in [40] to maximize the time spent 

on useful computations. The algorithm is called Stale Synchronous Parallel (SSP). It allows 

parallel workers to read stale values from a local cache and continue training using the old 
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model. This approach reduces time that workers spend on waiting idly for the values from a 

central storage over the network, thus improving the ratio of time for useful computations. 

However, there is an iteration gap when parallel workers get a different number of mini batches 

locally. If this iteration gap is too large, the fastest worker needs to pause and wait for the 

slowest one. The authors provide a proof for the correctness of this algorithm and conduct 

experiments on various deep learning problems. The paper states that SSP achieves faster 

converge speed compared with fully synchronous systems at that time. 

The problem of centralized synchronous SGD is that the communication through the 

parameter server can be the bottleneck. To overcome the communication bottleneck, 

decentralized synchronous SGD is presented in [41, 42]. For decentralized synchronous SGD, 

each worker keeps a local copy of the model and fetches a mini batch to calculate stochastic 

gradient locally. In each iteration, the gradients are averaged through a collective 

communication among workers, which is usually done using all-reduce. Then the gradients are 

identical on each worker, and the local model is updated using the averaged gradients. 

Although there is no need for a centralized parameter server, this approach still falls in a model-

centralized topology, since all local models are identical after synchronization at each step, 

which is equivalent to having a global model. 

The decentralized synchronous SGD using the all-reduce method (AllReduce-SGD) is 

widely accepted and promoted. In PyTorch [26], the contributors optimize the all-reduce call 

by organizing parameter gradients into buckets and parallelizing computing and 

communication. Even with all these efforts, there is an unavoidable defect of synchronous SGD. 

If there exists a straggler (slow worker) in the system, it will affect the overall training speed 

extremely. Since synchronization needs to be performed at each iteration, the fast workers have 

to wait in idle for the slow ones. Besides, frequent synchronization requires large bandwidth 

for communication among workers. 

2.3.3 Asynchronous Stochastic Gradient Descent (SGD) using Gossiping 

 

In synchronous SGD, all parallel workers need to communicate with other workers to 

average stochastic gradients in each iteration, which leads to high communication cost. Besides, 

since there is a barrier at each step to synchronize, the fast workers have to stay idle and wait 

for the slow ones. All these add to the time consumption and bandwidth burden of synchronous 

SGD. To overcome these disadvantages, research has been done to minimize the overhead 

caused by gradient synchronization, and asynchronous stochastic gradient descent 
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(asynchronous SGD) is proposed recently. Basically, asynchronous SGD breaks the 

synchronization in each iteration and reduces the idling and communication time significantly 

in the training process. Figure 2.6 illustrates the schemes of synchronous and asynchronous 

SGD. 

 
 

Figure 2.6 Centralized Synchronous and asynchronous SGD. (Figure courtesy of [43]) 

 

Similar to the synchronous version, asynchronous SGD has many different variants, 

including centralized and decentralized schemes. Centralized asynchronous SGD uses a 

parameter server to store the global model and manage the gradient averaging and parameter 

updating, while in decentralized versions, workers communicate with each other in a 

decentralized fashion such as gossiping. Thus, decentralized asynchronous SGD gets rid of the 

communication bottleneck at parameter server. 

In centralized asynchronous SGD, a model is stored initially on the parameter server. 

Parallel workers obtain current model parameters and a mini batch to calculate gradients locally. 

Once the calculation work is done in a worker, it sends the gradients back to the parameter 

server. The global model is updated asynchronously, and each worker does not need to wait 

for its peers. The worker gets a new set of parameters from the parameter server immediately 

after finishing previous work and fetches a mini batch to continue the calculation of gradients. 

Centralized asynchronous SGD is widely used for various deep learning problems. 

However, it still suffers from the communication bottleneck and slow convergence caused by 

a centered parameter server. In addition, centralized systems are vulnerable to potential central 

point failure, which will cause the whole system to shut down. To eliminate the communication 

bottleneck and central point failure issues, decentralized asynchronous algorithms are widely 
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adopted in recent studies of various deep learning problems. These kinds of algorithms are 

more tolerant to slow workers and worker failures. Many implementations of decentralized 

asynchronous SGD use gossip algorithm, where workers can choose a random neighbor to 

average gradients [15, 16]. Figure 2.7 shows a comparison of centralized network and gossip-

based decentralized network. 

 

 

Figure 2.7 Centralized network and gossip-based decentralized network 

 

[44] proposes a decentralized non-gradient-based algorithm for solving optimization 

problems. They develop a distributed asynchronous iterative algorithm with gossiping methods 

for achieving optimization over undirected networks. [45] presents theoretical analysis and 

proves decentralized SGD algorithms can outperform centralized counterparts since less 

communication cost is required on the busiest node. Their experiments show that in low 

bandwidth or high latency systems, decentralized SGD outperforms centralized algorithms up 

to one order of magnitude.  

Asynchronous parallel training based on gossiping has been investigated in previous 

research to improve training performance. Gossip algorithm [46] is initially used for consensus 

problems, e.g., to compute the mean of data distributed in different computing nodes. In gossip, 

a node (computer) randomly chooses a partner to exchange information, and after a period of 

time, it is guaranteed to achieve robust information exchange among all nodes. The correctness 

and usage of gossip algorithm for distributed data aggregation is discussed in prior studies [46-

49]. In deep learning training, using gossip can break the synchronization barrier of all-reduce 

across iterations by requiring to synchronize only between pair(s) of nodes in point-to-point 

data communication and hence reduce synchronization overhead of all-reduce in the presence 

of stragglers.  
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[50] presents a method using request-based methods to apply the gossip algorithm on 

the distributed averaging problem. The authors propose to send requests to workers before real 

gossip happens, and the gossip only occurs when a worker accepts the request. This method 

guarantees that deadlocks are avoided, however the requests sent among processes add to the 

communication overhead.  

An asynchronous decentralized SGD algorithm is proposed in [15]. The authors present 

AD-PSGD algorithm that performs well in a heterogeneous environment and enjoys an optimal 

converge rate. According to their theoretical analysis and experiments, the algorithm achieves 

linear speed up and a similar epoch-wise convergence rate compares with the synchronous all-

reduce counterpart. The proposed method adopts the traditional sampling methods for getting 

mini batches and uses a gossiping-style algorithm for averaging stochastic gradients. To 

eliminate deadlocks, the authors suggest dividing the workers into two groups, explicitly active 

set and passive set. Active set is responsible for sending the gradient averaging request to a 

random worker in the passive set, then the passive neighbor will return its local gradients, and 

the two workers update their local models with the same averaged gradients. This work 

provides an efficient asynchronous SGD algorithm using gossiping and has an important 

influence on our research. 

Stochastic Gradient Push (SGP) is presented in [16] incorporates The PUSHSUM 

gossip algorithm with stochastic gradient descent for solving deep learning problems. Previous 

synchronous and asynchronous algorithms use different methods to calculate an exact inter-

node average gradient, while SGP propose to compute approximate averages using PUSHSUM 

method. The author proves that with a properly chosen step-size, their method has a similar 

convergence as the SGD algorithm. Experiments are done for image classification and neural 

machine translation tasks, and the results show that SGP is robust in systems with stragglers 

and overall speed up for deep learning training is improved. 

The advantages of asynchronous SGD are shown in the above discussions. To 

summarize, it is more tolerant for heterogeneous environments and can reduce the effect of 

stragglers, and less communication cost relieves burden on the network bandwidth. In spite of 

these benefits, this methodology has a potential disadvantage caused by asynchronous model 

updating. For example, a worker A takes mini batch i and its parallel neighbor B gets mini 

batch i+1. When worker A finishes calculating gradients and tries to get the next mini batch 

i+2 and updated parameters, worker B may not finish calculations and the parameters get by A 

are not updated based on mini batch i+1. This means that the next iteration carried out on A is 

based on outdated parameters and the gradients may have variance.  
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Research has been done to address the issue caused by update delays and proves the 

correctness of asynchronous SGD. Theoretical analyses of asynchronous SGD are presented in 

[51, 52]. The authors theoretically prove that despite asynchronous delays, the convergence is 

achievable with linear speed up. 

2.3.4 Periodic Gradient Averaging 

 

In synchronous and asynchronous parallel SGD solutions, previous research shows that 

a linear speed up is achievable in theory, however, the scalability of such speed up is limited 

due to the communication overhead caused by synchronization. To reduce the communication 

cost, another type of optimization is proposed that reducing synchronization frequency can 

lower the communication overhead significantly. Research [53, 54] suggests performing 

gradient averaging periodically among the workers. This kind of approach is known as local 

SGD or periodic averaging. It has been discussed theoretically in recent years and shows 

promising results practically.  

In AllReduce-SGD, synchronization happens in each iteration, it has high statistical 

efficiency but requires expensive communication cost. While in local SGD, synchronization is 

performed at a certain time interval. The extreme situation is that only one-time 

synchronization happens at the end, which is also called one-shot averaging. It requires very 

little communication in one-shot averaging, but the gradients are averaged only once. So, there 

is a trade-off for training speed and accuracy, and local SGD tries to find the balance point to 

maximize the performance. A theoretical proof of synchronous and asynchronous local SGD 

convergence is given in the paper [53].  

Some early studies related to interval synchronization include the work of [55]. The 

authors study parallel deep learning problems under communication constraints and proposed 

Elastic Averaging SGD method (EASGD) to reduce the number of communications between 

parallel workers and the central machine. The algorithm enables the master worker to update 

the model when parallel workers finish local updates after a certain communication period. The 

authors present different variants of the algorithms, including both synchronous and 

asynchronous versions. Their experiments verify the communication efficiency of the proposed 

algorithm. 

[54] carries out study on periodic averaging and provides theoretical analysis on deep 

learning problems. The authors also present a scheme for deciding synchronization frequency 

and the conditions that affect speed up performance. They conduct experiments to show that 
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with properly chosen communication frequency, periodic averaging can achieve close to linear 

speed up. 

In addition to experimental proof of the efficiency on model averaging, [56] elaborates 

on the theoretical exploration for the methodology. Their research provides a complete and 

rigorous theoretic guarantee of convergence for model averaging on deep learning problems 

and gives guidelines on how often the gradient averaging should be done during the training to 

achieve linear speed up.  

2.4 GCN Training on GPUs 

2.4.1 Existing Deep Learning Frameworks 

 

The community of deep learning research has grown rapidly in recent years. Compared 

with pioneer researchers in this field, nowadays implementations of GCNs and other neural 

networks are becoming more convenient with the support of various open-source software 

libraries and deep learning frameworks. The well-known frameworks include TensorFlow [57] 

and PyTorch [58].  

TensorFlow is developed by Google Brain team and was initially released in 2015. It 

has gained great popularity among researchers and developers since its debut. Some important 

benchmark GCNs are originally proposed and implemented using TensorFlow, such as the first 

version of GCN, GraphSAGE, and FastGCN. TensorFlow has a leading position in the deep 

learning field until PyTorch is launched. 

PyTorch is a deep learning framework developed by Facebook's AI Research lab 

(FAIR). More recent works on graph neural networks are done using PyTorch because of its 

robust support for GPU related training. It defines a tensor class (torch.Tensor), which can be 

easily transformed to Nvidia GPU. PyTorch supports implementation of neural networks on 

GPU using CUDA extensions and facilitates GCN implementation with help of PyG (PyTorch 

Geometric Library) [26]. This opens the possibilities to take advantage of GPU computational 

power for GCN training. 

In addition to including CUDA to its library, PyTorch provides different choices of 

backend support such as NVIDIA Collective Communications Library (NCCL) [17]. NCCL 

follows the widely used Message Passing Interface (MPI). It provides fast communications for 

multiple GPUs and is compatible with various multi-GPU parallelization models. For now, 

PyTorch only supports NCCL collective communications, such as Broadcast, AllReduce and 
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AllGather. Point to Point communication among GPUs can be mimicked by creating subgroups 

for processes. 

Although using such frameworks will limit certain low-level implementation flexibility 

and optimizations, the advantage of its simplicity and general applicability still attract more 

and more users. It also accelerates research of GCN-related problems and helps to focus on the 

optimization of algorithms rather than low level implementations. In our research, we choose 

PyTorch as the base framework for its strong support of GPU-related computing and a 

comprehensive library for distributed and parallel deep learning training.  

2.4.2 Synchronization Using All-reduce 

 

All-reduce is a collective communication operation normally used in distributed deep 

learning. The all-reduce algorithm collects the target data in all workers to a single variable 

and returns the result to all processes in the same community. For example, there are p parallel 

workers, and each worker has a data Dp. Then the result of all-reduce can be represented as: 

 

Dallreduce  =  D1 Op D2 Op … Op Dp , 

 

where Op is an operator such as SUM, MAX and MIN. An example of all-reduce call on four 

processors is displayed in Figure 2.8. Some important libraries such as MPI [59] and NCCL 

[17] have included build-in support for all-reduce call, which makes implementation for 

parallel GCN training more convenient. 

 

 

Figure 2.8 Example of all-reduce call on four processors. (Figure courtesy of [12]) 
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The performance of synchronous GCN training is satisfying in scenarios where all 

workers calculate gradients at the same pace. Since there is a barrier at the end of each iteration, 

where all processes need to execute the same line of code to average gradients, a straggler in 

the system will slow down the overall training time significantly.  

Efforts have been made to parallelize communication and computation during the 

training process to alleviate the drawback caused by the synchronous barrier. For example, 

PyTorch distributed data parallel (DDP) library [12] proposes a method to group gradients into 

several “buckets”. When all gradients in the same bucket are ready, it executes gradient 

averaging for that portion of gradients right away, without waiting for other gradients in 

different buckets. Although this optimization achieves better speed up than the purely 

synchronous version, it still needs to wait for all gradients are averaged to end the iteration. 

 

2.4.3 Implementation Using CPU/GPU Cluster 

 

To cope with the problem of communication bottleneck in synchronous deep learning 

training using the all-reduce method, different asynchronous algorithms are proposed. Early 

research of parallel deep learning training on a CPU/GPU cluster normally uses CPU or a single 

GPU as the parameter server for asynchronous gradient averaging. However, as explained in 

previous sections, such centralized implementations usually suffer from speed up bottleneck at 

the central node. Recently, decentralized strategies have been proposed for parallel training in 

distributed systems, which typically use GPU for calculations and use CPU for gradient 

averaging.  

In the work of [15], the authors propose a gossiping asynchronous decentralized 

algorithm for SGD training (AD-PSGD) and suggest to calculate gradients and update weights 

on GPU devices and execute communications on CPU. This approach helps to parallelize 

communication and calculation by running two separate threads on CPU and GPU respectively. 

Their experiments show that the proposed algorithm works well on distributed systems with 

32 compute nodes with 4 GPUs on each node. With a close examination of their 

implementation, we notice that the asynchronous averaging only happens on the CPU level, 

while within each compute node, the gradients averaging among different GPUs still follows 

the synchronous all-reduce scheme. Another asynchronous decentralized parallel SGD 

approach is presented in [16]. Similarly, the asynchronous gradient averaging method is 

implemented for different compute nodes.  
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We notice in previous research, the asynchronous decentralized gradient averaging 

algorithms are proposed for multiple compute nodes, where asynchronous communication 

happens among CPUs, however, there is limited research for asynchronous gradient averaging 

for multiple GPUs within a single compute node. Because of the differences between CPUs 

and GPUs, it is not easy to apply previous methods directly to achieve asynchronous parallel 

training on GPUs. 
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Chapter 3 Graph-partition based Synchronous Data 

Parallel Implementation 
 

In this chapter we first present the implementation for graph-partition based GCN using 

a single GPU, which sets the baseline for our research. The implementation is inspired by 

Cluster-GCN [8]. Then, we design and implement a synchronous GPU-parallel GCN 

(AllReduce-GCN). We use a random partition method to prepare mini batches and the all-

reduce method to average gradients. We also illustrate an optimization method by reducing the 

gradient averaging frequency following the concept of periodic gradient averaging. In addition, 

we summarize previous theoretical discussions on the convergence and correctness of 

synchronous parallel training and periodic gradient averaging.  

Experiments are carried out using datasets with different sizes. The results demonstrate 

the limitations for synchronous graph-partition based GCN. Reducing gradient averaging 

frequency can help to reduce communication overhead. However, because of the 

synchronization barrier in the training, the speed up is still limited, especially in a 

heterogeneous environment with workers at different paces. 

3.1 Baseline Implementation for GCN Training on a Single GPU 

 

The pseudocode for graph-partition based GCN on a single GPU is shown in Algorithm 

1. In such an implementation, the input graph is first partitioned into n subgraphs using the 

random partition method. These subgraphs are used as mini batches for the training. Then a 

model is initialized on the GPU. During the training, one mini batch is used for gradient 

calculation in one iteration, and the model is updated based on the gradients. An epoch is 

reached when all the subgraphs are passed through the GCN training for one time. Usually, 

GCN training requires multiple epochs until the model parameters become stable. Since there 

is a single worker during the training, there is no need to do gradient averaging. 

___________________________________________________________________________ 

Algorithm 1: Baseline GCN training using a single GPU based on graph partitioning. 

___________________________________________________________________________ 

Input: Graph G, feature X, label Y 

Output: GCN model with trained weights 

1. Partition input graph into n subgraphs G_1, G_2, … G_n  

2. Initialize model on the GPU, define loss function, optimizer and epoch number e 
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3. for each epoch in total epochs e do 

4.       for each mini batch (subgraph) in subgraph_set do 

5.              Get mini batch features and labels 

6.              Calculate gradients 

7.         Update weights 

8.       end for 

9. end for 

___________________________________________________________________________ 

 

We adapt the algorithm proposed in Cluster-GCN, but different from the original 

research, we use a random clustering method instead of Metis to get subgraphs. The 

pseudocode for the random clustering method is illustrated in Algorithm 2. To partition a graph 

into n subgraphs, we first initialize n empty subgraphs. Then we go through each node in the 

original graph and assign the node randomly to a subgraph. After all nodes are assigned, the 

edges for local nodes in subgraphs are retrieved from the parent graph. Then, features and 

labels of the nodes are copied from the original graph to subgraphs. 

___________________________________________________________________________ 

Algorithm 2: Graph random partition. 

___________________________________________________________________________ 

Input: Graph G 

Output: A set of partitioned subgraphs 

1. Initialize n empty subgraphs 

2. for node in graph G do 

3.       Assign the node randomly to a subgraph 

4. end for  

5. for each subgraph do 

6.       Build subgraph with local nodes and retrieved edges 

7.       Copy node data (features and labels) from the parent graph G 

8. end for  

___________________________________________________________________________ 

 

In our experiments, we find out that the random clustering method is much faster than 

Metis and produces the desired accuracy with properly chosen model and hyperparameters. 

One of the explanations is that the result of the training is a heuristic model and random 
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partition avoids the problem of biased clustering. Using Metis may cause nodes of similar 

labels to be partitioned in the same subgraph, but random partition can ensure the same 

probability of nodes appearing in any subgraph. Another reason is that the authors of the 

original paper only conduct experiments using the original version of GCN, which has a 

relatively lower accuracy compared to other advanced models (e.g. GraphSage). We conduct 

the experiments based on the open sourced code examples in DGL GitHub [33] by using 

GraphSage aggregator. The accuracy improved by using a superior model can minimize the 

variance brought by different clustering methods. Considering the time consumption for the 

graph partition phase, we decide to use the random partition method in our research. 

By using graph-partition based GCN, the mini batch preparation phase and the “real-

training” phase (gradient calculation and weight update) are separated. In our research, we 

compare the later one (“real-training” phase) for different algorithms. Since the graph partition 

phase is the same for different implementations discussed in this work, the graph partition time 

is not included when comparing speed up.  

 

3.2 Synchronous GPU Parallel Implementations (AllReduce-GCN) 

 

In this section, we present a decentralized synchronous GPU-parallel algorithm 

(AllReduce-GCN) for graph-partition based GCN. We elaborate the implementation details 

and an optimization method of reducing synchronization frequency. Previous theoretical 

discussions for the related algorithms are presented in this section. Experimental results and 

related datasets details are also provided. 

3.2.1 Synchronous GPU Parallel using All-reduce 

 

In a decentralized graph-partition based GCN training, the input graph is first 

partitioned into n subgraphs and these subgraphs are used as sample mini batches for the 

training. Each GPU in a compute node is a worker assigned with a mini batch. Each worker 

initializes a local model and gets n/p portions of subgraphs (mini batches). During the training, 

at each iteration every worker processes a mini batch locally and then averages local gradients 

with all other workers for updating the model parameters. Different from the baseline GCN 

training on a single GPU, where gradient averaging is done after processing each mini batch 

once, in parallel GCN training the gradient averaging is done after processing every p mini 

batches; as a result, there is a difference in accuracy. The gradient averaging step is usually 
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done by using a reduction operator in all-reduce which synchronizes among all the workers. 

Same as the baseline training on a single GPU, it requires multiple epochs until the model 

parameters become stable. The pseudocode of a decentralized synchronous GPU parallel 

implementation for graph-partition based GCN training is illustrated in Algorithm 3. 

___________________________________________________________________________ 

Algorithm 3: Synchronous GPU-parallel GCN training based on graph partitioning 

___________________________________________________________________________ 

Input: Graph G, feature X, label Y 

Output: GCN model with trained weights 

1. Partition input graph into n subgraphs G_1, G_2, … G_n 

2. Start p workers, and each GPU is assigned with 1 worker 

3. Initiate model on each worker, define loss function, optimizer and epoch number e 

4. Divide subgraphs evenly among workers, with n/p subgraphs in each worker’s 

subgraph_set 

5. /* Each worker does the following */ 

6. for each epoch in total epochs e do 

7.       for each mini batch (subgraph) in subgraph_set do 

8.              Get mini batch features and labels 

9.              Calculate local gradients 

10.              Average gradients with other workers using all-reduce 

11.              Update weights 

12.       end for 

13. end for 

___________________________________________________________________________ 

 

As shown in Algorithm 3, lines 1 to 4 demonstrate the preparation work before the 

training starts. The epoch number e is determined empirically and is set before the training 

starts. The instructions starting from line 5 to the end are executed in each worker. In each 

iteration, one mini batch is taken from the subgraph_set and passed to the local model stored 

in GPU for training. Lines 8 and 9 get subgraph (mini batch) features and labels from the CPU, 

and the data is used to calculate local gradients using forward and backward propagation. In 

line 10, local gradients are averaged with all the workers using the all-reduce method. Then in 

line 11, the model parameters are updated using the averaged gradients. The training is finished 

when the required epochs are passed. 
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Although it is possible to map multiple threads on a single GPU if the model is small 

enough, the communication speed of all-reduce call is affected greatly because of the 

competition for GPU bandwidth. In addition, when a NCCL collective communication (e.g. 

all-reduce) is running, it blocks other jobs and waits for other peers to join, which can be a 

bottleneck for overall training speed. Moreover, if the GPU is busy and doesn’t have enough 

free computing ability for all jobs, it will store the jobs in a stack and take one to execute 

whenever it is free. So even with multiple threads mapped to one GPU, the mini batches may 

get trained in a sequential manner in such a scenario. Considering all these effects, practically 

we map only one thread with each GPU.  

Figure 3.1 shows the overall scheme of the implementation for synchronous graph-

partition based GCN using the all-reduce method (AllReduce-GCN). The subgraphs (mini 

batches) are prepared in advance using the same random partition method as for the baseline 

counterpart using one GPU, which is illustrated in the previous section. During the training, 

the features and labels of nodes in the training sample are sent to GPU, so the memory 

consumption can be estimated using the size of the samples. For each iteration, gradients are 

calculated in parallel, and the optimization is done by PyTorch backend implementation.   

 

 
 

Figure 3.1 Scheme of synchronous graph-partition based GCN using all-reduce. 

 

In the parallel implementation, a training sample in one worker is also called a mini 

batch, and the collection of mini batches on all workers in one iteration is called a global batch. 

Since the gradients are averaged at each step, actually the model is updated based on a larger 
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batch compared with the baseline implementation. For example, the batch size for the baseline 

version is x, and in the parallel implementation there are p workers, the batch size for each 

iteration is changed to px. In another word, the baseline GCN implementation trains each mini 

batch one by one and uses the previous gradients to update parameters of the model. So, each 

mini batch is trained based on information gathered from previous samples. While in parallel 

GCN, multiple mini batches are trained simultaneously. These differences have influence on 

the final results for the model and lead to variance in accuracy.  

To have a fair comparison for the speed up, we use the same batch size for the baseline 

and parallel implementations, so the total amount of training work is identical for different 

algorithms. But since gradient transmission and averaging need to take extra time, it adds to 

the overall workload and time consumption for parallel GCN. We choose the refined 

hyperparameters for the baseline implementation that give the best results and use the same 

hyperparameters for parallel implementations. Experiments show that parallel GCN training 

has a better speed up than the baseline one. However, according to the reasons stated above, 

the accuracy of parallel GCN training is affected. So, there is a trade-off for accuracy and 

training speed in practice.  

PyTorch has an optimization to parallelize communication and computation in each 

iteration with its DistributedDataParallel module. We have compared the optimized version 

with the normal implementations, the training speeds have a small difference for the tested 

datasets. Because the major bottleneck is the averaging gradient in each step, and even with 

the optimization, it still needs to wait for all parallel workers to finish the calculation and 

average gradients. In Figure 3.2, we illustrate how the barrier of synchronization causes faster 

workers to stay idle and adds up to communication overhead. 

 

Figure 3.2 Synchronous data parallel AllReduce-GCN. (Figure courtesy of [60]) 
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3.2.2 Optimization with Periodic Gradient Averaging 

 

As discussed in Chapter 2, there are various methods to mitigate the consequences 

caused by the communication bottleneck. The periodic gradient averaging is discussed in 

previous research to reduce communication overhead. In this section, we propose an optimized 

implementation for AllReduce-GCN by reducing synchronization frequency.  

Inspired by the concept of local SGD [53] and model averaging [56], we implement a 

periodic gradient averaging optimization for the AllReduce-GCN. We define an 

averaging_interval to control gradient averaging frequency and initiate a variable count to 

track the number of mini batches trained in the workers. Instead of executing the 

synchronization in each step, we allow the parallel workers to train multiple mini batches 

locally and perform synchronization in a certain interval. The modified pseudocode for 

AllReduce-GCN is presented in Algorithm 4. 

___________________________________________________________________________ 

Algorithm 4: Optimization for AllReduce-GCN using periodic gradient averaging 

___________________________________________________________________________ 

Input: Graph G, feature X, label Y 

Output: GCN model with trained weights 

1. Partition input graph into n subgraphs G_1, G_2, … G_n 

2. Start p workers, and each GPU is assigned with 1 worker 

3. Initiate model on each worker, define loss function, optimizer and epoch number e 

4. Define averaging_interval, and initiate count with 0 

5. Divide subgraphs evenly among workers, with n/p subgraphs in each worker’s 

subgraph_set 

6. /* Each worker does the following */ 

7. for each epoch in total epochs e do 

8.       for each mini batch (subgraph) in subgraph_set do 

9.              Increment count by 1 

10.              Get mini batch features and labels  

11.              Calculate local gradients 

12.              if count is multiple of averaging_interval then 

13.               Average gradients with other workers using all-reduce  

14.              Update weights 

15.       end for 
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16. end for 

___________________________________________________________________________ 

 

Since gradients are averaged periodically, the time for gradient transmission and 

averaging calculation is reduced.  However, the speed up achievement is still limited by the 

synchronization barrier as shown in Figure 3.3. All parallel workers need to pass the same 

number of iterations until reaching the gradient averaging point. Since it is hard to guarantee 

that all GPUs can execute the jobs at the same pace, if there is a slower worker, other faster 

workers need to wait for the slower worker to catch up. This implementation doesn’t take full 

advantage of the computing capability for fast workers, because the workload is divided evenly 

for all GPUs regardless of their available computing capacity.  

Considering this situation, we find it is not a superior strategy to divide the amount of 

work in a naive data parallel fashion. A solution for this is to assign mini batches dynamically 

in the training process, whenever a worker finishes a current job, it can request for the next 

mini batch. This work-pool scheme can reduce the idling time for faster workers. However, 

this strategy is not compatible with synchronous GPU-parallel implementation using the all-

reduce method. Since all workers need to average gradients together, it requires the parallel 

worker to train the same number of samples at the end. To balance the workloads among 

different workers, we propose to have a work pool mechanism in an asynchronous GCN 

training algorithm, which is explained in Chapter 4. 

 

 

Figure 3.3 Barrier of AllReduce-GCN with periodic synchronization. 
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3.2.3 Theoretical Discussion 

 

In this section, we conclude previous theoretical discussions for the related algorithms 

of AllReduce-GCN. The topics include convergence and correctness of the baseline Cluster-

GCN on a single GPU, synchronous data parallel training and periodic gradient averaging. 

A theoretical discussion on baseline ClusterGCN is already presented in [8]. The 

ClusterGCN algorithm is inspired by mini-batch SGD, which computes gradients based on a 

mini batch in each iteration. The baseline ClusterGCN algorithm follows similar 

methodologies and convergence steps for SGD, however with a different approach to sample 

mini batches. A detailed comparison can be found in the original paper and is beyond the scope 

of this research. 

 For synchronous data parallel training, theoretical discussions are carried out in 

previous study [61]. A formal mathematical proof for the algorithm can be found in the paper. 

The general idea is that the converge can be achieved by averaging stochastic gradients 

computed at the same predictor. With synchronous parallel implementations, each compute 

node keeps a copy of the same model and the weights are updated with same averaged gradients, 

so it is identical to have a global model that takes training results of all mini batches. [62] 

summarizes a proof strategy for data parallel training in the paper. They show that since all 

compute nodes perform SGD training based on the same data distribution, with a fixed and 

small enough learning rate, models converge to the same limit. The averaging of gradients 

reduces variance is also proved.  

 Previous works [53, 56] have analysed the effect of periodical averaging of gradients 

at certain intervals (i.e. averaging interval discussed in section 3.3). Those studies show that 

periodical synchronization can lead to the same convergence rate as of performing gradient 

averaging at each iteration. Detailed proofs and results can be found in those works. It has been 

shown that if the synchronization interval is selected properly, then the divergence among 

different workers can be controlled and the models finally converge to the same local minimum. 

3.3 Experimental Evaluations 

 

In this section, we provide information for the experiment setup and datasets used in 

our research. We also illustrate experimental results for the baseline implementation using a 

single GPU and synchronous GPU-parallel implementation for graph-partition based GCN 
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(AllReduce-GCN). In addition, we test the AllReduce-GCN with different gradient averaging 

intervals and analyze the results. 

3.3.1 Setup and Datasets 

 

The initial implementation of Cluster-GCN is provided by the author of the original 

paper [8]. They propose to use the Metis graph clustering method and the original version of 

graph convolutional network with diagonal enhancement. DGL GitHub [33] provides another 

version of Cluster-GCN implementation using GraphSAGE aggregator and ignoring diagonal 

enhancement. Although different in details, both implementations achieve the reported F1 

score 96.6 for Reddit datasets. Our baseline implementation is based on the open-sourced 

sample codes discussed above. 

The experiments are carried out for the task of node classification using two benchmark 

datasets (Reddit and Amazon datasets). Table 3.1 provides the detailed information of the two 

datasets.  In the table, “s” stands for single-label classification, and “m” stands for multi-label 

classification. The two datasets are used for multi-class problems where the class number is 

more than two. The difference for the two datasets is that in single-label classification, each 

node is classified into a unique class, while in multi-label classification, a node can be 

categorized into any number of classes. Both datasets are used widely in GCN research as 

benchmarks to compare performances of different algorithms. Thus, we use them in our 

research to test the implemented algorithms. 

Reddit dataset is originally created in the research of GraphSAGE [23] by gathering 

post data on Reddit online discussion forum. It predicts the community that a post belongs to. 

Nodes in the graph represent posts, and edges between two nodes stand for the connection that 

the same user comments on both posts. Features are collected concatenating the embedding of 

post titles, comments, scores and the numbers of comments. Labels stand for the communities 

of posts. As shown in table 3.1, Reddit dataset has 41 classes in total and each node belongs to 

one class.  

Amazon dataset is created in the study of GraphSAINT [9]. The task is to predict the 

product categories for the items. Nodes in the graph are products listed on Amazon website. 

Edges between the nodes means that the same person buys both products. Features are collected 

and organized to represent the reviews of the products. Labels stand for the categories of the 

products. In this dataset, a product can belong to more than one category. The authors of 

GraphSAINT have cleaned the database by removing rare categories that have a few products. 
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The total number of classes for this dataset is 107. We use the same datasets as they present in 

the original paper. 

Table 3.1 Datasets for experimental evaluations 

Dataset Nodes Edges Feature Classes Train/Val/Test 

Reddit 232,965 114,848,857 602 41 (s) 0.66/0.10/0.24 

Amazon 1,598,960 132,169,734 200 107 (m) 0.80/0.10/0.10 

 

In the following content, we illustrate the setup for our experiments. We evaluate the 

baseline GCN and AllReduce-GCN on a GPU cluster. The GPU cluster has a submit node, a 

master node and two compute nodes. Each compute node has 72C CPU, 450 GB of RAM, 7 

TB of storage space, and 8 GPUs (Tesla V100). In our experiments, we use one compute node 

of this cluster. Since the cluster is shared by students and researchers, it is unavoidable to have 

multiple jobs submitted to the GPU cluster at the same time. Because of the different workloads 

for GPUs at different time periods, the time consumptions for a same training job vary a lot in 

different tests. This is a real-world scenario when training GCNs on a GPU cluster. We take 

records of all tests and calculate the averaged values for evaluation.   

The algorithms are implemented using PyTorch DistributedDataParallel [12] and Deep 

Graph Library (DGL) [27] as our deep learning framework. As explained in Chapter 2, 

PyTorch has included CUDA and NCCL to facilitate deep learning training on GPUs, and 

PyTorch Geometric Library (PyG) [26] makes it more convenient to implement graph neural 

networks. DGL is a Python package for deep learning on graphs and has gained popularity in 

recent years. Anaconda is used to create the testing environment. Table 3.2 shows the versions 

of related frameworks and libraries. 

 

Table 3.2 Frameworks and libraries 

Name Version 

Python Python 3.8.5 

CUDA CUDA 10.1 

PyTorch pytorch==1.5.1, torchvision==0.6.1, cudatoolkit=10.1 

PyG torch-geometric and dependencies for torch-1.5.0 

DGL dgl-cuda10.1<0.5 
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We use torch.distributed.all_reduce to achieve the synchronous gradient averaging in 

GCN training. Since our implementation is based on graph partition to get mini batches, it is 

unfair to compare with the methods implemented with traditional sampling methods. So, we 

take the implementation of graph-partition based GCN using a single GPU as the baseline for 

speed up calculations. Times are measured for the training phase, including gradient averaging 

time. Because of the different label categorization strategies of the two datasets, we use 

different loss functions for them. For Reddit, we use torch.nn.CrossEntropyLoss(), and for 

Amazon dataset we use torch.nn.BCEWithLogitsLoss(). Since the graph partition phase can be 

done before the real training phase, and the partition time is the same regardless of the training 

strategies, we store the partitioned subgraphs in a place and exclude the partition time when 

comparing speed ups. Table 3.3 shows the hyperparameters used for the baseline and parallel 

experiments on the two datasets. F1 scores are used to evaluate the accuracies of the final 

models. 

 

Table 3.3 Hyperparameters used for experiments 

Dataset name Reddit Amazon 

Subgraph number 40 640 

Learning rate 1e-2 1e-2 

Epoch number 30 30 

Hidden GCN Layer  2 2 

Hidden GCN units 128 512 

Dropout 0.2 0.1 

 

3.3.2 Experimental Results 

 

We carry out experiments for the two datasets in different time periods. The results 

show that with the same hyperparameters and subgraphs (mini batches), the baseline GCN 

training can result in the same solution (same F1 score). However, the time consumptions are 

very different in various scenarios. With different subgraphs (mini batches), baseline training 

can lead to a similar solution with minor difference in accuracy.  

Cluster-GCN with random partitioning which uses a single GPU is used as the baseline 

for performance and accuracy evaluations. We observe from experiments that the training 

speed depends largely on the status of the GPU cluster. The synchronous AllReduce-GCN with 
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gradient averaging at each iteration gives a disappointing outcome in some scenarios. We can 

see from the experiments that it takes even longer time for parallel training on multiple GPUs 

than training on a single GPU in some tests. This is because the fast workers need to wait for 

the slowest worker in each iteration for averaging gradients. 

Although the GPU models are of same make (Tesla V100), they work at different pace 

if the computation competency is not large enough to execute all jobs at the same time. In most 

scenarios, the GPUs receive multiple jobs from different users. Based on the free calculation 

ability, a GPU may add the job to a stack if it cannot execute it immediately. Once it has free 

resources, it will take a job from the stack and run it. So, this leads to different execution times 

for the same job at different runs. 

In addition, the collective GPU communication has an effect on the training speed for 

AllReduce-GCN. In synchronous AllReduce-GCN, there is only one all-reduce call at one time 

among all the workers. However, we cannot make sure that other jobs running on the GPU 

cluster don’t require GPU communications at the same time. If there are multiple GPU 

communication calls, the jobs will compete for the bandwidth among GPUs. This will cause a 

delayed training time for synchronous GCN training using the all-reduce method. We observe 

this time variation in our tests for AllReduce-GCN using 4 and 8 GPUs. 

Compared with baseline GCN training, parallel training has an accuracy loss, the main 

reason is that parallel training of graph-partition based GCN uses a different batch size for 

weight updates. During the tests, we use the same hyperparameters for both baseline and 

parallel training. The hyperparameters are tuned for baseline training, so it can produce an 

optimal solution when using a single GPU.  

Since the hyperparameters are the same, the mini batch size remains same for the 

baseline and parallel training. In parallel training, one mini batch is trained at each worker 

simultaneously, then the gradients are averaged, and the weight is updated using the averaged 

gradients. So, the update in each iteration is actually based on information of mini batches 

trained at all workers. The total mini batches used for one iteration is called a global batch. The 

different global batch sizes influence the training behaviour and lead to different final models. 

This explains why we observe different accuracies for parallel training on multiple GPUs.  

Figure 3.4 shows speed up for Reddit and Amazon dataset using different numbers of 

GPUs. The values used in the figure are illustrated in Tables 3.4 and 3.5. Since the training 

times vary in different runs, we use the averaged values to produce the figures in this section.  
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Table 3.4 Speed up of AllReduce-GCN for Reddit dataset. 

GPU number 1 4 8 

Speed up  - 1.87 2.93 

F1 score 0.9655 0.9637 0.9609 

 

 

Table 3.5 Speed up of AllReduce-GCN for Amazon dataset 

GPU number 1 4 8 

Speed up  - 1.74 2.81 

F1 score 0.7828 0.7745 0.7721 

 

 

 

 

Figure 3.4 Speed up of AllReduce-GCN for Reddit and Amazon dataset. 

 

The sublinear speed up shown above is mainly because of the synchronization barrier 

and communication overhead. As explained in the synchronous AllReduce-GCN algorithm, 

there is a barrier at the end of each iteration where all workers need to communicate and 

average gradients. If there is a slow worker, the fast workers need to wait for the gradient 

averaging and stay idle. So, the speed up of the system is limited by the slowest worker. In 

some extreme situations, it may be even slower to use multiple GPUs than using a single fast 
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GPU. In addition, the transmission of gradients causes extra communication overhead. When 

the size of the gradients is small, it may have little influence on the speed up, but when the size 

is large, it may result in longer training time.  

We also carry out tests using different gradient averaging intervals for the synchronous 

AllReduce-GCN. According to empirical experience, we test performing gradient averaging in 

every 20 and 100 iterations. Tables 3.6 and 3.7 show the results of synchronous AllReduce-

GCN training for Reddit dataset with different synchronization intervals (averaging_interval) 

on 4 and 8 GPUs. Table 3.8 and 3.9 show the experimental results for Amazon dataset.  

 

Table 3.6 AllReduce-GCN for Reddit dataset (4 GPUs) 

Averaging_interval 1 20 100 

Time / sec 16.01 14.08 13.66 

F1 score 0.9637 0.9501 0.9508 

 

Table 3.7 AllReduce-GCN for Reddit dataset (8 GPUs) 

Averaging_interval 1 20 100 

Time / sec 10.21 10.11 10.07 

F1 score 0.9609 0.9449 0.9435 

 

Table 3.8 AllReduce-GCN for Amazon dataset (4 GPUs) 

Averaging_interval 1 20 100 

Time / sec 103.65 87.13 79.31 

F1 score 0.7745 0.7473 0.7472 

 

Table 3.9 AllReduce-GCN for Amazon dataset (8 GPUs) 

Averaging_interval 1 20 100 

Time / sec 64.18 59.13 53.20 

F1 score 0.7721 0.7189 0.7187 
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Figure 3.5 and 3.6 illustrate the comparisons of synchronous AllReduce-GCN training 

for Reddit and Amazon datasets using different synchronization intervals. The values used for 

producing the figures are elaborated in Table 3.10 and 3.11.  

 

Table 3.10 Speed up of AllReduce-GCN for Reddit Dataset  

GPU number 1 4 8 

Speed 

up 

averaging_interval = 

1 

- 1.87 2.93 

averaging_interval = 

20 

- 2.13 2.96 

averaging_interval = 

100 

- 2.19 2.97 

 

Table 3.11 Speed up of AllReduce-GCN for Amazon Dataset 

GPU number 1 4 8 

Speed 

up 

averaging_interval = 

1 

- 1.74 2.81 

averaging_interval = 

20 

- 2.07 3.05 

averaging_interval = 

100 

- 2.27 3.39 
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Figure 3.5 Speed up of AllReduce-GCN for Reddit Dataset. 

 

 

 
 

Figure 3.6 Speed up of AllReduce-GCN for Amazon Dataset. 

 

We can see from the above figures that reducing synchronization frequency can help to 

achieve a bit more speed up, especially when the size of gradients is very large. This is because 
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by reducing the averaging frequency, time is saved for gradient transmission among GPUs. 

However, the speed up achievement is still limited by the communication barrier. In the 

optimization implementation, the gradient averaging occurs in a certain interval of local 

iterations. This means that the numbers of mini batches trained locally in the parallel workers 

are identical. So, fast workers still need to wait for slower ones to catch up and average 

gradients. 

It is already known from previous research that one-shot averaging can lead to low 

accuracy of the final model. In one-shot averaging, gradients are only synchronized for one 

time at the end of the training. In our experiments, we also observe that the synchronization 

frequency has an influence on the accuracy of the final solution. So, there is a trade-off for 

accuracy and speed up. 

3.4 Summary and Limitations of AllReduce-GCN 

 

In recent years, communication among GPUs has become more convenient with the 

development of GPU backend platforms like NCCL [17]. To get rid of the bottleneck of a 

centralized parameter server and passing messages between GPUs and CPUs, a decentralized 

parallel stochastic gradient descent algorithm is widely adopted in current implementations of 

parallel GCNs training with multiple GPUs.  

In our research, we implement a synchronous decentralized data parallel GCN based 

on graph partition method (AllReduce-GCN). We focus on the speed up for the training phase. 

We also implement an optimization for AllReduce-GCN by using periodic gradient averaging.  

In such an implementation, each worker synchronizes with other workers using all-

reduce at the end of processing a mini batch. The synchronization step works well with the 

assumption that each GPU computes the gradients at the same pace. However, in a real-world 

scenario, this assumption is not valid due to two reasons: the compute node can be busy with 

multiple jobs; secondly, partition of the input graph cannot guarantee exactly the same size for 

partitioned subgraphs, which can lead to load imbalances. Our experiments on a GPU cluster 

with Tesla V100 GPUs illustrate the load-imbalance and resultant idling in a realistic situation. 

Although PyTorch supports optimizations of parallel communication among GPUs with the 

DistributedDataParallel module, it does not solve the problem of synchronization delays due 

to idling [12].  



 43 

Another bottleneck with algorithm 3 and 4 is that the mini batches are divided statically 

among the workers, which adds up the workload differences across multiple iterations. With 

the optimization method of periodic gradient averaging, it helps a bit to improve the speed up 

by reducing the time of gradient transmission, but it cannot solve the major communication 

bottleneck caused by synchronous training. An example of such work division on 4 workers is 

shown in Figure 3.7. 

To address the previous issues of bottleneck in the synchronous implementations, we 

propose an asynchronous training algorithm (GossipGCN) based on gossiping designed for 

GPUs. GossipGCN is motivated by limitations of traditional synchronous GCN training 

algorithms on GPUs. The algorithm incorporates dynamic workload assignment based on a 

work-pool strategy. In the following chapter, we describe the proposed asynchronous GPU 

parallel implementations in detail.  

 

 

Figure 3.7 Fixed workload divide mechanism for AllReduce-GCN. 
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Chapter 4 Graph-partition based Asynchronous Data 

Parallel Implementation 
 

In this chapter, we present an asynchronous parallel algorithm for GCN training called 

GossipGCN. The algorithm employs graph partitioning as a mechanism for preparing the 

training mini batches and (asynchronous) gossiping for periodic averaging of gradients among 

randomly paired workers (GPUs). The methodology proposed in Cluster-GCN [8] is adapted. 

The algorithm is proven to be deadlock-free. A work-pool based mechanism is used for 

dynamic assignment of workloads to workers (GPUs), which enhances efficiency by reducing 

idling. The algorithm is implemented on a GPU cluster using PyTorch [58] and DGL [27]. The 

details are in the following. 

4.1 Asynchronous Training based on Gossip 

 

GossipGCN is motivated by limitations of traditional synchronous GCN training 

algorithms on GPUs. In chapter 3, we have discussed why synchronous GPU-parallel 

implementation for GCN has a speed up limitation because of the averaging gradient among 

all workers. To improve speed up of parallel training on a single node, we propose to use 

decentralized gossip algorithm to average gradients among GPUs and implement a work-pool 

based mechanism to maximize the usage of computation ability of fast workers. 

Gossip is used to solve consensus problems and is widely used in many application 

areas, especially in distributed environments. Previous research [14-16] has shown that gossip 

is an effective method for asynchronous gradient averaging in SGD-based CNN training in a 

distributed environment. In such a distributed environment, the gradient calculation and weight 

updates are usually carried out on GPUs while the asynchronous communication for averaging 

gradients runs on CPUs on a multi-CPU platform. Until now, gossip methods are mainly used 

for synchronization among compute nodes using CPUs, applying gossip algorithm to average 

gradients inside a compute node with multiple GPUs is not well studied yet. 

One major challenge of gossip is to effectively and efficiently prevent deadlock. 

Deadlock can occur when the dependencies of workers result in a cycle. For example, worker 

A randomly picks a gossip partner B, while B is waiting to partner with C, and C sends a 

request to A. In this case, there is a cyclic dependency which is a necessary condition for 

deadlock. Previous works propose different solutions to prevent deadlocks in gossiping. Figure 
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4.1 shows the scheme of random gossiping and an example of deadlock. In [50], a request-

based protocol is used to avoid cyclic dependencies. GossipGraD [14] introduces a virtual 

organization of compute nodes so that deadlock is not possible. In [15], the workers are divided 

into two fixed sets, the active and passive sets. A worker in the active set can pick a gossip 

partner only from the passive set, thus essentially preventing a cycle and hence deadlock. 

 

Figure 4.1 Deadlock in gossip averaging. 

 

Even though the previous solutions can guarantee deadlock prevention, they are not 

suitable for asynchronous GCN training on GPUs due to the following reasons. The request-

based solution needs to send additional requests in order to determine gossip partners, which 

adds up to communication overhead in a communication-constrained GPU backend. 

GossipGraD imposes a fixed gossip scheduling, which is not efficient in a dynamic system 

with stragglers, as in GCN training. The solution based on fixed active-passive sets puts 

restrictions on who can select who as a gossip partner and thus it is only a pseudo 

implementation of the original randomized gossip algorithm. 

Another challenge for implementing decentralized gossip method among GPUs is to 

achieve one to one communication efficiently. According to NCCL documentation, since 

NCCL 2.7 point-to-point communication can be achieved using ncclSend and ncclRecv. 

However, in PyTorch, receive and send between two specific GPUs are not supported yet. We 

propose a workaround method by using subgrouping method to achieve point-to-point 

communication among GPUs.  
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4.2 Asynchronous GPU Parallel Implementation Version 1 

 

In a preliminary attempt, we try to implement asynchronous GPU parallel training by 

adapting previous methods to solve the gossip deadlock problem. For example, we try to send 

pre-requests to workers before the real gossip happens. However, the acknowledging and 

replying process takes a long time. This adds to the communication overhead, so it is not a 

proper way to implement gossip for GPUs. We also try to use scheduled paring with a fixed 

gossip pattern. But since the gossip partners are fixed, there is information loss during the 

training process. This method can’t guarantee a satisfying accuracy. 

One working method that we implement for asynchronous GPU parallel training is 

inspired by the approach used in [15]. The paper proposes to use the property of bipartite graph 

to avoid deadlocks. It suggests dividing the workers into two groups, specifically active set and 

passive set. Workers in the active set can pick a worker only from the passive set for 

synchronization. As explained in Chapter 2, the original paper implements gossip 

communication only for CPUs with traditional sampling methods. In our approach, different 

from the original implementation, we achieve gossip among GPUs and use graph-partition 

based GCN.  

The following are the main steps of the proposed asynchronous algorithm version 1. 

First, we partition the input graph into n subgraphs, which are used as mini batches. Then the 

epoch number and averaging interval are decided empirically, and a shared queue is initialized 

with mini batch ids to function as a work-pool. Suppose there are an even number of parallel 

workers, we set half of them as active workers and the other half as passive workers. Available 

passive worker ids are stored in a shared queue. And each passive worker is assigned a shared 

variable to store its gossip partner. When the training starts, each worker takes a mini batch 

from the work-pool and calculates local gradients. Then for an active worker, if the averaging 

interval is met, it picks a gossip partner from the available worker list and tells the 

corresponding passive worker through the shared variable assigned to it. For a passive worker, 

it reads from its corresponding variable to get the gossip partner id and average gradients with 

the partner. When the averaging is finished, each worker updates its local model and requests 

one more mini batch from the work-pool until all jobs are done.  

Algorithm 5 shows the pseudocode for asynchronous GPU parallel implementation 

version 1 with active and passive sets of workers.  
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___________________________________________________________________________ 

Algorithm 5: Gossip gradient averaging using active & passive worker sets 

___________________________________________________________________________ 

Input: Graph G, feature X, label Y 

Output: GCN model with trained weights 

 /* Master does the following from lines 1-8 */` 

1. Partition input graph into n subgraphs G_0, G_1, … G_n-1  

2. Set epoch number as e, a pre-set value determined empirically 

3. Initialize work_pool = [0,1, … n-1, 0, 1, … n-1, …  0, 1, … n-1]. /* The shared 

work_pool queue stores the mini batch indexes. Each index is stored e times */ 

4. Separate p workers into active and passive sets, each with size of p/2 

5. Initialize shared variable available_workers with passive worker ids 

available_workers = [0, 1, … p/2-1] 

6. Initialize shared variables p_0, p_1, … p_p/2-1 with -1 for passive workers  

/* These variables are used to store each passive worker’s gossip partner id. -1 

represents not paired */ 

7. Start p workers, and each GPU is mapped with 1 worker 

8. Initialize model on each GPU 

9. Initialize averaging_interval 

10. if proc_id belongs to active set then 

11.         /* Each active worker does the following from line 12-29 */ 

12.         Initialize count = 0 

13.         Initialize partner = -1 

14.         while work_pool is not empty do 

15.                   Remove a mini batch index i from work_pool 

16.                   Increment count by 1 

17.                   Get G_i features and labels from CPU 

18.                   Calculate local gradients using G_i 

19.                   if count is a multiple of averaging_interval then 

20.                     Lock available_workers 

21.                    if available_workers not empty then 

22.                                 partner = randomly choose an id x from available_workers 

23.                                 Set corresponding partner’s gossip id p_x to proc_id 

24.                                 remove partner from available_workers 
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25.                    Unlock available_workers 

26.                    if partner > -1 then 

27.            Average gradients with partner 

28.                 Reset partner = -1 

29.                   Update weights for local model 

30. else 

31.        /* Each passive worker does the following from line 32-54 */ 

32.         while work_pool is not empty do 

33.                   Set local variable partner to -1 

34.        Remove a mini batch index i from work_pool 

35.                   Get G_i features and labels from CPU 

36.                   Calculate local gradients using G_i 

37.                   Lock the corresponding variable  p_ proc_id  

38.                   Set partner = p_ proc_id 

39.                   Set p_ proc_id value to -1 and unlock 

40.                   if partner > -1 then 

41.           Average gradients with partner  

42.                                Lock available_workers 

43.                                Add proc_id back to available_workers 

44.                                Unlock available_workers 

45.                    Update weights for local model 

46.         /* Clean-up step */ 

47.         Lock available_workers 

48.         Remove proc_id back from available_workers 

49.         Unlock available_workers. 

50.         Lock the corresponding variable p_ proc_id 

51.         Set partner = p_ proc_id 

52.         Set p_ proc_id value to -1 and unlock 

53.         if partner > -1 then 

54.                Average gradients with partner 

___________________________________________________________________________ 

 

This implementation makes sure that a dependency loop will never happen during the 

gossip process, but it limits the gossip possibilities for parallel workers and is not a real 
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reflection for the original version of the gossip algorithm. Since the gossip partner needs to be 

in different sets, it restricts the choices of partners for gradient averaging among parallel 

workers. According to our experiments, although the training speed is faster than using the all-

reduce method, the accuracy of the final solution decreases. Detailed experimental results are 

shown in section 4.4. Another potential defect of this implementation is the limited scalability. 

Since it needs to allocate a shared variable for each passive worker to store gossip pairing 

information, the number of needed shared variables will increase with the number of parallel 

workers. 

Since the shared variables need a lock mechanism to maintain the correctness, we also 

consider if it will cause competition for accessing the resource. Theoretically, this lock 

mechanism adds to the waiting time for processes. According to our experiments, we find out 

that in most scenarios, this communication overhead is minor compared with the speed up 

achieved by using asynchronous gradient averaging.  

To improve the training speed up with stable accuracy, we propose a novel way to 

implement asynchronous GPU parallel training. The new proposal (GossipGCN) guarantees 

the correctness of the algorithm by following the original version of gossip, which means each 

parallel worker is able to choose a gossip partner if it’s not paired yet. Compared with 

implementation version 1, the new implementation gives more choices for the parallel workers 

when picking gossip partners by getting rid of the active and passive sets division. Detailed 

implementation of the proposed algorithm is elaborated in the following section. 

4.3 Asynchronous GPU Parallel Implementation Version 2 

(GossipGCN) 

In this section, we propose a second version of asynchronous decentralized data parallel 

GCN based on graph partition method (GossipGCN). The essential idea for this 

implementation is similar to the version 1. We remove the synchronization barrier at the end 

of iterations by using the gossip algorithm to average gradients. But different from version 1, 

we get rid of the division of passive and active sets. Parallel workers can choose any available 

worker as the gossip partner. Details of the algorithm are in the following. 
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4.3.1 GossipGCN on a GPU cluster 

 

The following are the main steps of our proposed algorithm, GossipGCN. Step 1(Graph 

partition): the original input graph is partitioned into n number of subgraphs, which are used 

as sample mini batches. Step 2 (Initialize work-pool): initialize a central work-pool queue 

containing the subgraph ids, repeated for the total number of epochs fixed a priori. Step 3 

(Initialization): Initialize shared variables to keep track of gossip partner information. Each 

worker (GPU) initiates a local model, defines loss function and other hyperparameters. Step 4 

(Gradient calculation): If the work-pool is not empty, each worker picks a work (mini batch) 

from the work-pool and calculates local gradients. Otherwise, go to step 7. Step 5 (Gradient 

averaging): Check if the averaging interval is met, if not, directly go to step 6. Otherwise, each 

worker checks if some gossip partner is waiting to average gradients with the current worker. 

If so, it averages gradients with the partner. If no partner is waiting, it randomly picks a partner 

from the list of available workers. Step 6 (Update): Each worker updates its local parameters 

and repeats from Step 4. Step 7 (Clean up): Check if any gossip-partner is waiting to average 

gradients with the current worker (legacy averaging call). If so, average with the partner using 

the most recent gradients. Step 8 (Finalization): The master waits until all workers finish 

training, then it compares local solutions of all workers and chooses the best one as the final 

solution.  

More detailed pseudocode of GossipGCN is provided in the Algorithm 6 below.  

___________________________________________________________________________ 

Algorithm 6: GossipGCN on a GPU cluster 

___________________________________________________________________________ 

Input: Graph G, feature X, label Y 

Output: GCN model with trained weights 

/* Master does the following from lines 1-8 */ 

1. Partition input graph into n subgraphs G_0, G_1, … G_n-1. The subgraphs are the mini 

batches 

2. Set epoch number as e, a pre-set value determined empirically 

3. Initialize work_pool = [0,1, … n-1, 0, 1, … n-1, …  0, 1, … n-1] /* The shared 

work_pool queue stores the mini batch indexes. Each index is stored e times */ 

4. Initialize gossip_partner = [-1, -1, …  -1, -1] /* Array gossip_partner stores gossip 

paired workers, -1 represents not paired. The size of the array is p, the number of worker 

processes. */ 
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5. Initialize available_workers = [0, 1, 2, … p-1] /* Array available_workers stores 

available worker ids. Initially all workers are available */  

6. Start p worker processes, each GPU is mapped with 1 worker 

7. Initialize model on each GPU 

8. Initialize averaging_interval. /* The averaging_interval determines how many mini 

batches are processed by a worker before averaging gradients with a gossip partner */ 

/* Each worker does the following from lines 9-54 */ 

9. Initialize count = 0 

10. Initialize partner = -1 

11. while work_pool is not empty do 

12.       Remove a mini batch index i from work_pool  

13.       Increment count by 1 

14.       Get G_i features and labels from CPU   

15.       Calculate local gradients using G_i 

16.       if count is multiple of averaging_interval then 

17.             Lock available_workers.  

18.             Lock gossip_partner  

19.             Set my_partner = gossip_partner[proc_id] /* proc_id is process id of worker*/ 

20.             if my_partner == -1 then 

21.              Remove proc_id from available_workers 

22.              if available_workers is not empty then  

23.                         partner = randomly choose an id from available_workers 

24.                          remove partner from available_workers 

25.     gossip_partner[proc_id] = partner 

26.       gossip_partner [partner] = proc_id 

27.                   else 

28.                        Add proc_id to available_workers 

29.             else 

30.              partner = my_partner 

31.             Unlock available_workers 

32.             Unlock gossip_partner 

33.             if partner > -1 then 

34.    /* Introduce default barrier among paired-up processes */ 

35.              Average gradients with partner  
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36.    Lock available_workers 

37.    Lock gossip_partner 

38.              Reset gossip_partner[proc_id] = -1  

39.              Add proc_id to available_workers 

40.    Unlock available_workers 

41.     Unlock gossip_partner 

42.    Reset partner = -1 

43.       Update weights for local model 

44. end while 

/* Clean-up steps */ 

45. Lock available_workers 

46. Lock gossip_partner 

47. if proc_id is in available_workers then 

48.       Remove proc_id from available_workers 

49. else 

50.       my_partner = gossip_partner[proc_id] 

51.       Average gradients with my_partner using the gradients in last iteration 

52.       Reset gossip_partner[proc_id] = -1 

53. Unlock available_workers 

54. Unlock gossip_partner 

/* Master chooses the final solution */ 

55. Compare the accuracies of models on each GPU, select the best one as final model 

___________________________________________________________________________ 

 

In the previous, the value of averaging_interval is determined empirically, and it sets a 

compromise between performance and accuracy, i.e. more frequent pairing with a gossip 

partner could give a more accurate model however at the cost of performance. Figure 4.2 shows 

an example scenario of how the values of gossip_partner and available_workers are changed 

when 4 GPUs are used for training. Note that any failed pairing (i.e., a worker who could not 

pair up with a gossip partner for various reasons) is handled during the clean-up steps (lines 

45-54 in Algorithm 2). 
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Figure 4.2 An example run using 4 GPUs 

 

As a major difference with the synchronous all-reduce in Algorithm 3 and 4, here only 

two of the workers (i.e. gossip partners) need to synchronize with each other to exchange their 

local gradients. So, a straggler can affect only its partner as compared to all the other workers 

in a synchronous approach as illustrated in Figure 4.3. Moreover, dynamic work loading by 

using the work-pool can greatly reduce any load imbalances among GPUs and hence 

significantly enhance efficiency.  

 

 

Figure 4.3 Gradient averaging scheme for GossipGCN. 

 

In the synchronous algorithm, all workers get the same number of mini batches for the 

training. However, in the asynchronous method using gossip algorithm, parallel workers may 

have different numbers of iterations according to their training speed. Fast workers can get 

more mini batches than the slower ones. The advantage for GossipGCN is that it maximizes 
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the usage of calculation capability for fast workers, since it allows fast GPUs to have more 

workload. But this may lead to a potential problem of decreased accuracy, because the 

gradients calculated in two workers are based on different numbers of iterations. This problem 

is known as gradient staleness. The shuffling of synchronization workers can help to mitigate 

this problem. 

The previous algorithm has been implemented on a GPU cluster using PyTorch as the 

deep learning framework. PyTorch has become an important tool for GCN training and has 

gained popularity in recent years due to its robust support for GPUs. PyTorch supports 

implementation of neural networks on GPU using CUDA extensions and facilitates GCN 

implementation with the help of PyG (PyTorch Geometric Library) [26]. In addition, PyTorch 

integrated NCCL backend can perform direct GPU-to-GPU communication, thus bypassing 

the CPU. This makes it possible for direct and efficient gossip-pairing and communication 

among GPUs, which could not be possible in the past. More about implementation details and 

experimental results are presented in Section 4.4. 

Figure 4.4 illustrates the architecture of the proposed algorithm GossipGCN and shows 

how the gossiping averaging gradient is achieved using the shared variables. The workers first 

request an id from the work_pool and calculate gradients locally. For p number of parallel 

workers, the shared variable gossip_partner is initialized with a list of size p filled by “-1”, 

which means there is no neighbor to synchronize at the beginning. The index of this list 

represents process id, and the value at index i represents the gossip neighbor id for process i. 

The other shared variable available_workers represents available workers for gradient 

averaging and is initialized with all processes’ ids. When local gradients are ready, each worker 

gets the values in gossip_partner and available_workers.  

 

Figure 4.4 Gossip scheme with work-pool. 
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Since each process is mapped with one GPU, the process id can represent the GPU id 

that calculates the local gradients. The gossip partner id of the current process my_sync can be 

obtained at the index of the current process id by calling gossip_partner[proc_id]. There are 

two cases for the value of my_sync. In one case, if the value of my_sync is -1, it means the 

current process has no workers waiting for pair-up, so it can pick an id from available_workers. 

After picking the gossip neighbor, available_workers and gossip_partner will be updated 

respectively. The value of my_sync is updated to the selected neighbor’s process id. And the 

two processes’ ids are removed from available_workers, indicating that the two workers are 

already paired and cannot be chosen by a third worker to synchronize. In the other case, if the 

value of my_sync is not -1, it means there is another process waiting to average gradients with 

the current process.  

After the value of my_sync is determined, which means the gossip partner is known. 

The two GPUs will average their gradients and update weights with the same gradients. When 

the update is done, each process can put the process id back to available_workers and reset the 

corresponding value in the gossip_partner. This finishes the iteration, and the workers are 

ready to ask for next mini batches from the work_pool until it becomes empty. 

After the training phase, we implement a clean-up step to avoid program. Because it is 

possible that when the work-pool is empty, a worker already puts the current process id back 

to available_workers, and another worker asks to average gradients with it. So, in the clean-up 

step, each worker checks if there is any remaining gradient averaging request. If the value at 

gossip_partner[proc_id] is not -1, it means there is a worker waiting to average gradients. 

Then, the current worker will use the old gradients in the last iteration to perform gradient 

averaging and safely end the process.  

Since the spare computing capacity of each GPU can be very different, it is possible 

that different workers get various numbers of mini batches, which means the local iteration 

numbers are different. If GPUs work at extremely different pace, the slower worker may not 

have enough iterations to reach a desired accuracy. Although exchanging parameters with other 

workers can help to gather more information, it may still result in a low accuracy. On the other 

hand, the fast worker can get more mini batches to train the local model and can reach a better 

accuracy. To get the optimal solution, we compare the accuracies of all local models in parallel 

workers and choose the best one as the final optimal solution. 
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4.3.2 Work-pool 

 

As discussed in Chapter 3, one of the disadvantages for synchronous AllReduce-GCN 

is that the mini batch numbers are fixed and divided evenly for all workers. This is not a good 

methodology since it wastes the computational capacity on fast workers and leads to a large 

idling time. The synchronization barrier at the end of the iterations prevents the AllReduce-

GCN to adapt a dynamic loading mechanism. This limitation is discussed detailly in the 

previous chapter. 

To improve the speed up and reduce time wasted on waiting idly, we implemented a 

work-pool mechanism to make the best use of the computing capacity of each worker. In our 

proposed method (GossipGCN) we create a shared queue to store the ids of mini batches. Each 

worker can request a mini batch from the work-pool whenever it is free. In addition, we modify 

the traditional two-level for loop in deep learning to using a single level while loop. This 

improves the parallel level for the algorithm and is illustrated in Algorithm 6.  

In such an implementation, we first use the same random partition method as in 

AllReduce -GCN to get n subgraphs: 

G = [G_0, G_1, … G_n-1]. 

 

Since each subgraph is a mini batch, the index queue I for the mini batches is: 

I = [0, 1, 2, … n-1]. 

 

We define epoch number is e, so, the total work amount for all epoch can be represented 

as the mini batch index queue: 

work_pool = [0,1, … n-1, 0, 1, … n-1, …  0, 1, … n-1]  

 

      epoch 1      epoch 2              epoch e 

 

The shared variable work_pool is accessible to all parallel workers. During the training, 

each worker requests an index from work_pool and sends the corresponding mini batch to the 

GPU for calculating stochastic gradients. After the current iteration is finished, a worker can 

request another mini batch index from work_pool until it is empty.  

The correctness of the algorithm is maintained by internally implemented locking 

semantics of the multiprocessing.Queue module in PyTorch. It blocks competitive requests and 

allows getting the index one by one. Using this mechanism makes sure the same amount of 
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data is trained as using the all-reduce method, and it helps to reduce idling time for GPUs since 

a faster GPU is possible to do more work.  

4.3.3 Optimization with Periodic Gradient Averaging 

 

In this section, we discuss the periodic gradient averaging method used in GossipGCN 

Although using gossip method can reduce the idling time for fast GPUs, gradient transmission 

and waiting for a slow gossip partner still cause large communication overhead. Similar to 

AllReduce-GCN (Algorithm 4), the periodic gradient averaging is used to reduce GPU 

communication frequency. This method helps push the speed up limit for parallel GCN training 

further. Figure 4.5 shows the scheme of GossipGCN with periodic gradient averaging. 

 

 

Figure 4.5 GossipGCN with periodic gradient averaging. 

 

In Algorithm 6, firstly, a gradient averaging interval (averaging_interval) is set before 

the training starts. Then during the training process, each worker keeps a variable count to track 

the number of mini batches trained locally. Workers request a mini batch id from the work-

pool in each iteration and calculate gradients respectively. The value of count is initialized to 

0 and is incremented by 1 after a mini batch is taken. If count is a multiple of 

averaging_interval, it means the gradient averaging interval is reached and the worker will 

execute the averaging. The synchronization interval is chosen empirically and can be different 

for various datasets.  
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It is mentioned previously that asynchronous GCN training using gossip method can 

cause iteration gaps among parallel workers. Although using periodic gradient averaging 

allows fast workers to make full usage of the calculation capacity, the iteration gap between 

the slowest worker and the fastest worker is enlarged at the same time. So, there is a trade-off 

between accuracy and training speed. Even though continuous gossiping with random workers 

can help to reduce the effect of iteration gaps, if the gap is too large, it may cause huge loss in 

accuracy. So, it is important to keep the iteration gap within a safe threshold. We have tested 

our algorithm using various gradient averaging intervals. The experimental results are 

elaborated in section 4.4.  

 

4.3.4 Theoretical Discussion 

 

In this section, we present proofs and theoretical analysis for the proposed algorithm 

GossipGCN. We prove that GossipGCN is deadlock-free and guarantees the training can be 

finished properly when the program ends. In the following discussion, the assumptions are that 

hardware, software, and network are fault free and hence processes do not crash or wait 

indefinitely due to external factors. 

 

Lemma 1 (Deadlock): GossipGCN is deadlock-free. 

 

Proof: All workers acquire the locks of the shared arrays, available_workers and 

gossip_partner in the same order. This guarantees that there cannot be a circular wait in 

acquiring of the locks and hence no deadlock is possible. 

Next, we show that no deadlock is possible in pairing-up with a gossip partner (lines 

19-30 in Algorithm 6).  We prove this by contradiction. Assume that there exists a deadlock in 

the gossip-pairing. Then there must be a circular wait involving at least 3 workers, say workers 

A, B, and C such that worker A is waiting to exchange gradients with worker B, worker B is 

waiting to exchange gradients with worker C, and worker C is waiting to exchange gradients 

with worker A. Suppose worker A is the first one to grab both the locks of available_workers 

and gossip_partner. In that case, worker A will update its pairing information with worker B 

in gossip_partner (lines 25-26) and also remove itself and worker B from available_workers 

(lines 21 and 24). So, subsequently when worker B grabs the locks, there is no possibility that 

worker B would choose worker C as partner because its partner is already set as worker A (line 
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19); similarly, when worker C grabs the locks, there is no possibility that it would choose 

worker A as its partner. As a result, circular wait is not possible and hence there is no deadlock. 

This concludes the proof. 

 

Lemma 2 (Termination): In GossipGCN, each worker terminates without indefinitely waiting 

for its gossip partner to exchange information.  

 

Proof:  A worker A pairs up with its randomly selected gossip partner (worker B) if and only 

if the work-pool is not empty and the averaging interval is met (lines 11-30 in Algorithm 6). 

Subsequently, worker A waits for worker B to exchange gradients at an implicit barrier for 

exchanging information (line 35).  There are two scenarios where worker B will meet the 

barrier and exchange information with worker A as follows. Case 1: worker B meets the barrier 

at line 35 and exchanges information with worker A. Case 2: worker B meets the barrier at line 

51, which is reached because the work-pool is empty and the while loop (line 11) is exited by 

worker B. In either case, worker A and B always meet at the barrier and exchange information. 

As a result, none of the workers will wait indefinitely and hence will terminate normally. This 

concludes the proof.   

 

Gossip algorithm is first used for consensus problems, and the goal is to exchange 

messages with workers until a consensus is made. Previous research has been done to prove 

that gossip algorithm can be used to solve averaging problems [46, 63, 64]. In such problems, 

each node in the network has a local value and needs to achieve a global average of the values 

at all nodes in the network.  

One of the basic gossip methods is making randomly paired workers to average their 

values until it converges to the global average. This method is also called Pairwise Gossip and 

is proposed in [46]. Suppose a parallel worker i has a value xi, in each gossip step, it needs to 

randomly choose a neighbor j and average value with it. After the averaging, the values at both 

workers become: 

xi(t+1) = xj(t+1) = 0.5 xi(t) + 0.5 xj(t) . 

  

The authors also suggest that the pairwise gossip method is not only suitable for 

averaging problems but also applicable to calculate global minimum or maximum. The 

convergence of gossip algorithm is proved in [63]. It shows that the consensus can be achieved 

given the condition that the gossip pairs are chosen equally at random. [48] provides theoretical 
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proof for the correctness of a large set of asynchronous gossip-based algorithms. A detailed 

mathematical proof can be found in the original paper. 

In recent years, gossip algorithm is applied to deep learning problems for calculating 

gradient averages among parallel workers. Theoretical analysis for asynchronous parallel 

training is given in previous research [14-16]. It is proved that the convergence can be achieved 

among all local models, and it is consistent with baseline training if the iteration number is 

large enough. The completed proof is provided in [15]. A strategy for proving gossip algorithm 

on parallel training is given in [14]. Because of gradient averaging, a lemma is taken that 

parallel compute nodes have the same cost function. Since shuffling of gossip pairs ensures 

that the training samples are considered multiple times in different workers over time, the local 

cost functions are optimized based on all samples. Detailed proofs and results can be found in 

those works mentioned above. 

4.4 Experimental Evaluations 

 

In this section, we present evaluations for the proposed algorithms using the same 

datasets (Reddit and Amazon dataset) as described in Chapter 3. Detailed information about 

the datasets is given in Table 3.1. We evaluate the performance of GossipGCN with various 

gradient averaging intervals, and the intervals are chosen according to empirical experience. 

Since synchronous all-reduce is the most popular approach for gradient averaging on GPUs, 

the performance of GossipGCN is compared with the all-reduce counterpart AllReduce-GCN 

(refer to Chapter 3) for various averaging intervals. 

4.4.1 Implementation Details 

 

In this research, since the graph partition phase is the same for different 

implementations, we measure the partition time separately from the real training time 

(calculating stochastic gradients and updating model). The averaged partition times are 1.57 

seconds for Reddit dataset and 198.42 seconds for Amazon dataset. For both datasets, the 

hyperparameters used in experiments are the same as the ones used for synchronous 

AllReduce-GCN. Details of the hyperparameters can be found in Table 3.3. We implement a 

work-pool mechanism and a gossip algorithm to communicate gradients among GPUs. The 

implementation is done using PyTorch [12] and the baseline implementation is presented in 

the previous chapter. The backend for GPU communication is NCCL embedded in PyTorch. 
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The experiments are done using a single compute node (8 GPUs) as presented before. We use 

the averaged values of experimental data to produce the tables and figures in this section. 

One challenge of the proposed implementations is to share variables among different 

workers. There are different ways to share data among processes, one convenient method is to 

use torch.multiprocessing.Queue [58]. The shared variable work_pool is implemented using 

multiprocessing.Queue in PyTorch. The torch.multiprocessing module is a replacement for the 

multiprocessing module of Python [65] and shares the same operations. The data sent through 

multiprocessing.Queue (mp.Queue) is moved to shared memory and other processes can access 

it through a handler. Since there is a speed limitation for the pipe, mp.Queue is fast for light 

weight data but slow for large data such as a subgraph. So, we store the mini batch ids instead 

of the original subgraphs in the shared queue.  

The mp.Queue class implements locking mechanisms internally to maintain correctness. 

It temporarily blocks competing requests, for example, when two processes ask for mini batch 

ids at the same time. Theoretically, the locking semantics may cause bottlenecks. But, since it 

is very fast for light weight data (e.g. small integers), the time spent on waiting for locks can 

be ignored. Our experiments prove that the locking mechanism has little effect on the speed up 

of parallel-GPU training. 

Since the mp.Queue class is fast for exchanging information among processes, we 

create two shared variables (available_workers and gossip_partner) using mp.Queue to 

maintain the correctness of the gossip algorithm and avoid deadlocks. This implementation not 

only guarantees the correctness of the gossip algorithm but also avoids the high cost of sending 

messages for broadcasting neighbor ids.  

Another challenge of the implementation is one-to-one communication between GPUs 

using PyTorch. Since local model and stochastic gradients are stored in GPU, we use embedded 

NCCL backends in PyTorch to perform gradient averaging. Since PyTorch does not support 

NCCL point-to-point communication for now, we create subgroups for the paired processes 

using torch.distributed.new_group and call torch.distributed.all_reduce within the subgroups 

to mimic point-to-point communication. 

4.4.2 Preliminary Experimental Results for Implementation Version 1 

 

In the preliminary experiments for the asynchronous GPU parallel implementation 

version 1, we test parallel training on 4 GPUs for the Reddit dataset. We observe that although 

the training speed is faster than AllReduce-GCN, there is an accuracy loss for this 
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implementation. The accuracy also drops when the averaging interval grows as shown in Table 

4.1. The main reason for this accuracy loss is that the fixed division for active and passive 

workers limits the choices of gossip partners. Since workers cannot average gradients with 

other workers in the same set, it reduces the chance to get complete information from mini 

batches that are trained in parallel workers.  

 

Table 4.1 Asynchronous GPU parallel implementation version 1 for Reddit dataset (4 GPUs) 

Averaging_interval 1 20 100 

Time / sec 13.19 10.28 9.77 

F1 score 0.9532 0.9514 0.9513 

 

 

It is also observed in the experiments that the performance of this implementation is 

not stable for a system with stragglers. When slow workers reside in the active set and fast 

workers reside in the passive set, the gradients may be averaged only a few times, especially 

when using periodic averaging. As we use a work-pool to allocate jobs, fast workers can get 

more mini batches than slow workers. However, workers in the passive set cannot pick another 

worker to average gradients. The total number of gradient averaging times are decided by the 

number of mini batches trained by workers in the active set. If these workers are slow, then the 

total number of gradient averaging times are small. This results in a low accuracy because a 

large portion of mini batches are only used for local model update.  

In a real-world scenario, the workloads in GPUs may be very different. Thus, GPUs of 

the same make can work at different paces. According to our experiments, the gossip 

implementation version 1 is not a superior solution for asynchronous GPU parallel training. 

We propose a second version for the gossip training implementation (GossipGCN), and the 

experimental results are discussed in the following section. 

4.4.3 Experimental Results for GossipGCN 

 

Our experiments show that in most scenarios, the proposed GossipGCN can achieve 

better performance compared to the synchronous AllReduce-GCN. Tables 4.2 ~ 4.5 illustrate 

the parallel training times and accuracies of GossipGCN for Reddit and Amazon dataset using 
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different numbers of GPUs. Tables 4.6 and 4.7 elaborate the speed up comparisons for 

AllReduce-GCN and GossipGCN for the two datasets. Tables 4.8 and 4.9 show comparisons 

of accuracy and locally trained mini batch numbers for AllReduce-GCN and GossipGCN using 

8 GPUs. 

As the results illustrate, GossipGCN outperforms AllReduce-GCN in training speed. It 

is also noticeable that the training finishes faster with a larger averaging interval, which can be 

attributed to a smaller communication overhead with a larger averaging interval. The results 

also illustrate that the work-pool strategy in GossipGCN balances workload among different 

GPUs which is unlike the fixed workload in AllReduce-GCN. 

 

Table 4.2 GossipGCN for Reddit dataset (4 GPUs) 

Averaging_interval 1 20 100 

Time / sec 12.46 11.74 10.62 

F1 score 0.9573 0.9599 0.9613 

 

 

Table 4.3 GossipGCN for Reddit dataset (8 GPUs) 

Averaging_interval 1 20 100 

Time / sec 9.62 7.44 5.68 

F1 score 0.9502 0.9566 0.9538 

 

 

Table 4.4 GossipGCN for Amazon dataset (4 GPUs) 

Averaging_interval 1 20 100 

Time / sec 73.80 56.81 51.97 

F1 score 0.7537 0.7545 0.7518 
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Table 4.5 GossipGCN for Amazon dataset (8 GPUs) 

Averaging_interval 1 20 100 

Time / sec 61.65 41.39 29.42 

F1 score 0.7222 0.7393 0.7401 

 

 

Table 4.6 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit dataset. 

GPU number 1 4 8 

AllReduce-

GCN 

Speed up 

averaging_interval = 1 - 1.87 2.93 

averaging_interval = 20 - 2.13 2.96 

averaging_interval = 100 - 2.19 2.97 

GossipGCN 

Speed up 

averaging_interval = 1 - 2.40 3.11 

averaging_interval = 20 - 2.55 4.02 

averaging_interval = 100 - 2.82 5.27 

 

 

Table 4.7 Speed up comparison of AllReduce-GCN and GossipGCN for Amazon dataset. 

GPU number 1 4 8 

AllReduce-

GCN 

Speed up 

averaging_interval = 1 - 1.74 2.81 

averaging_interval = 20 - 2.07 3.05 

averaging_interval = 100 - 2.27 3.39 

GossipGCN 

Speed up 

averaging_interval = 1 - 2.44 2.93 

averaging_interval = 20 - 3.17 4.36 

averaging_interval = 100 - 3.47 6.13 
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Table 4.8 Comparison of parallel training for Reddit Dataset (8 GPUs) 

Algorithm 

AllReduce Gossip 

averaging_ 

interval = 1 

averaging_ 

interval = 

20 

averaging_ 

interval = 

100 

averaging_ 

interval = 1 

averaging_ 

interval = 20 

averaging_ 

interval = 

100 

Time (in 

seconds) 

10.21 10.11 10.07 9.62 7.44 5.68 

F1-score 0.9609 0.9449 0.9435 0.9502 0.9566 0.9538 

Number of 

mini batches 

in each GPU 

150 | 150 | 150 | 150 |150 | 150 | 150 | 150 130 | 127 | 

188 | 204 | 

119 | 162 | 

123 | 147 

122 | 123 | 

215 | 264 | 

108 |173 |  

102 | 93 

108 | 91 |  

92 | 301 | 

134 | 227 |  

143 |104 

 

 

Table 4.9 Comparison of parallel training for Amazon Dataset (8 GPUs) 

Algorithm 

AllReduce Gossip 

averaging_ 

interval = 1 

averaging_ 

interval = 

20 

averaging_ 

interval = 

100 

averaging_ 

interval = 1 

averaging_ 

interval = 20 

averaging_ 

interval = 100 

Time (in 

seconds) 

64.18 59.13 53.20 61.65 41.39 29.42 

F1-score 0.7721 0.7189 0.7187 0.7222 0.7393 0.7401 

Number of 

mini batches 

in each GPU 

2400 | 2400 | 2400 | 2400 | 

2400 | 2400 | 2400 | 2400 

2237 | 2816 | 

2105 | 2214 | 

2386 | 2761 | 

2552 | 2129 

2310 | 2483 | 

2905 | 2831 | 

2014 | 1936 | 

 2673 | 2048 

2599 | 2316 | 

3185 | 2954 | 

2006 | 1728 | 

2864 | 1548 

 

 

It can be observed from the experiments that parallel GCN training suffers accuracy 

loss, irrespective of whether it is based on all-reduce or Gossip, as compared to the baseline 

training on single GPU. The reason for accuracy loss in parallel training is that information of 

multiple mini batches is gathered to make one update of the model; while in the baseline 

training on single GPU one mini batch is trained at one step of model update; hence successive 

training of mini batches is done with updated models. This can affect the accuracy of the final 

output model [66]. For GossipGCN, it experiences accuracy loss because of the same reason 

for parallel training. Moreover, since different workers may train various numbers of subgraphs 

when using GossipGCN, the iteration gap can lead to lower accuracy.  
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However, it can be seen that GossipGCN has smaller accuracy loss with higher 

averaging interval as compared to AllReduce-GCN. Intuitively, lower averaging frequency can 

cause loss in accuracy. In AllReduce-GCN, accuracy loss is affected greatly by reducing 

averaging frequency, since some information may be lost in the training. However, in 

GossipGCN, the algorithm is more flexible in requesting jobs, and the fast worker can train 

more subgraphs locally. The parameters of the local model in the fast GPU are updated based 

on more information of the mini batches, thus the accuracy of the output model is higher than 

the AllReduce-GCN. To minimize the effect of accuracy loss, we compare the local models on 

each GPU and choose the best one as the final output model. 

Figures 4.6 ~ 4.8 exhibit the speed up comparison for AllReduce-GCN and GossipGCN 

using different averaging intervals. From the figures we can see that by reducing gradient 

averaging frequency, GossipGCN can achieve a higher speed up compared with AllReduce-

GCN. By comparing the results, we observe that using gossip averaging method can push the 

speed up limit further with periodic gradient averaging. 

It is also observed from experiments that there is a rare scenario when all GPUs are 

totally free. This only happens when there is no other job running on the GPUs. In this scenario, 

the training can be done very fast. Since all calculations and gradient averaging are done 

immediately and no workers wait idlily, changing averaging intervals has little influence on 

the total training time. However, this situation happens very occasionally, in most scenarios, 

performing periodic gradient averaging can help to improve the training speed. 

 

 

Figure 4.6 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon 

dataset with averaging_interval = 1. 
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Figure 4.7 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon 

dataset with averaging_interval = 20. 

 

 

 

 

 

Figure 4.8 Speed up comparison of AllReduce-GCN and GossipGCN for Reddit and Amazon 

dataset with averaging_interval = 100. 
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We can see from experimental results that there is a trade-off for the training speed and 

accuracy. Taking both training time and accuracy into consideration, performing gradient 

averaging in each iteration is not the best choice. GossipGCN with periodic synchronization 

increases the speed up largely with minor accuracy loss on a real-world GPU cluster where the 

status of each GPU changes fast. For different datasets and systems, the averaging interval can 

be adjusted in experiments to get the superior performance. 

Another issue we notice is that multiple NCCL calls will compete for the 

communication bandwidth among GPUs. If there are multiple jobs requesting communication 

between GPUs using all-reduce or other collective calls, the training time may be affected. 

AllReduce-GCN has only one NCCL call (the all-reduce call) at one time, while in GossipGCN, 

it is possible that multiple NCCL calls happen at the same time when more than two sets of 

paired workers start to average gradients.  

According to the experimental results, we see that in most scenarios, using GossipGCN 

achieves better speed up than AllReduce-GCN, since GossipGCN eliminates the 

synchronization barrier for all parallel workers and only needs to average gradient with one 

neighbor. In a rare scenario, the GPUs have enough calculation capability to run all submitted 

jobs simultaneously, and there is only one collective call such as all-reduce among different 

GPUs in one compute node. Since the problem of synchronization barrier is not obvious in this 

case and multiple collective calls in GossipGCN slow down the training speed, AllReduce-

GCN has better speed up than GossipGCN. However, this scenario happens very occasionally, 

and it is almost impossible to maintain. In most scenarios, even though multiple GPU collective 

calls cause more overheads in GossipGCN, the gains of reducing idling time is greater than the 

overheads. Generally speaking, GossipGCN has better performance than AllReduce-GCN. 

4.5 Summary  

 

In this chapter, we first provide a preliminary implementation of asynchronous and 

decentralized approach for GCN deep learning on a GPU cluster using the active and passive 

sets of workers. Then, to achieve better performance, we present a second version of the 

asynchronous GCN training using gossip algorithm to exchange stochastic gradients 

(GossipGCN). We also implement a work pool mechanism to balance workloads among 

workers. It is proved that the proposed algorithm is deadlock-free. Experiments show that 

GossipGCN outperforms AllReduce-GCN in most scenarios with periodic gradient averaging. 
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Generally, it achieves better speed up for graph-partition based GCN training with a stable 

accuracy. The algorithm is superior to the synchronous counterpart, especially in a non-

dedicated system, where the workload on each GPU varies and keeps changing with time.  
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Chapter 5 Conclusion and Future Works 
 

Graph convolutional networks (GCNs) play an important role in deep learning for graph 

related data and are widely used in many disciplines. Our research is based on a novel GCN 

algorithm (Cluster-GCN) that uses graph partition method instead of traditional sampling 

method to get mini batches.  

In this thesis, we present an asynchronous and decentralized algorithm (GossipGCN) 

for GCN deep learning on a GPU cluster. We implement a work-pool mechanism and a gossip 

algorithm for GPUs to average stochastic gradients. Our method is especially suitable for a 

dynamic training system, where the workload on each GPU varies and keeps changing with 

time. In addition, inspired by local SGD and model averaging, we explore how gradient 

averaging frequency can affect training speed and accuracy.  

In the synchronous GPU-parallel implementation (AllReduce-GCN), reducing gradient 

averaging frequency can help to accelerate the overall training when the gradient size is large. 

However, in a system with stragglers, there is a limit for the speed up because of the all-reduce 

barrier for gradient averaging. In GossipGCN, we use Gossip to remove the synchronization 

barrier. It only requires gradient averaging among two workers. In addition, the work-pool 

mechanism helps to balance the workload for all workers. 

We implement the algorithms using PyTorch [58] and DGL [27] as the deep learning 

platform and libraries. The experiments are carried out using datasets of different sizes (Reddit 

and Amazon datasets). Generally, results show that GossipGCN achieves a better speed up and 

a more stable accuracy than the traditional synchronous counterpart on a real-world GPU 

cluster in most scenarios, especially when the GPUs are busy with multiple jobs and calculate 

stochastic gradients in different paces. 

In the future, we suggest conducting further research on comparison of partition 

methods to better understand if different partition methods have an effect on training time and 

accuracy. Additionally, we only concentrate on the parallelizing training phase in our research, 

and there exist various parallel graph partitioning methods (e.g. [67]). It will help to achieve 

better overall GCN training speed up if we can partition the input graph and prepare mini 

batches in a parallel fashion. Moreover, our research focuses on asynchronous training within 

a single compute node. In the future, if we have access to more resources, we suggest carrying 

out further research to integrate the proposed method with existing asynchronous training 
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methods in a distributed system with multiple compute nodes. Finally, the proposed algorithm 

can also be modified to adapt with different variants of GCNs. 
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