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Abstract

Quantization of Calogero-Painlevé system
and Multi-particle quantum Painlevé equations II − V I

Fatane Mobasheramini, Ph.D.
Concordia University, 2021

In this dissertation, we implement canonical quantization within the framework of the so–
called Calogero-Painlevé correspondence for isomonodromic systems. The classical systems
possess a group of symmetries and in the quantum version, we implement the (quantum)
Hamiltonian reduction using the Harish-Chandra homomorphism. This allows reducing the
matrix operators to Weyl–invariant operators on the space of eigenvalues. We then consider
the scalar quantum Painlevé equations as Hamiltonian systems and generalize them to multi–
particle systems; this allows us to formulate the multi–particle quantum time–dependent
Hamiltonians for the Schrödinger equation ℏ∂tΨ = HJΨ, J = II, . . . , V I .

We then generalize certain integral representations of solutions of quantum Painlevé
equations to the multi-particle case. These integral representations are in the form of special
β ensembles of eigenvalues and can be constructed for all the Painlevé equations except the
first one. They play the role, in the quantum world, of rational solutions in the classical
world.

These special solutions exist only for particular values of the quantum Hamiltonian
reduction parameter (or coupling constant) κ. We elucidate the special values of the
corresponding parameters appearing in the quantized Calogero–Painlevé equations II −V I.
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Chapter 1

Introduction

The six Painlevé equations were discovered by [33, 14, 15] as a result of the search for
second–order nonlinear ordinary differential equations in the complex plane with Painlevé
property which implies the only movable singularities are the poles (a very rare property of
nonlinear equations). These equations are only solvable in terms of special functions, and it
has been proven that they admit exact solutions such as hypergeometric solutions, algebraic
or rational solutions. Ever since their discovery, these equations were extensively studied
by mathematicians and physicists, and still, they are of great importance because of their
applications in different areas. These equations can be regarded as completely integrable
equations due to the fact that they arise as reductions of the soliton equations [12], which
are solvable by inverse scattering. Their other applications include quantum gravity and
string theory [5, 16, 6], topological field theories [7], random matrices [35, 13], β–models [4],
and stochastic growth processes [25].

Historically, the Hamiltonian structure of the Painlevé equations was studied by [27, 8, 32]
as they all can be written as a time-dependent Hamiltonian system

q̈ = −V (q; t).

For some potential function V of dependent and independent variables.
This perspective makes the study of Painlevé equations as a classical integrable system
slightly complicated. However, these equations admit a natural generalization in terms of a
canonical transformation to the case of multi-particle with an interaction of Calogero type
[26] (rational, trigonometric, or elliptic). This work which is finalized by K. Takasaki [34]
yields a new system of multi-component Hamiltonian operators named Calogero-Painlevé
correspondence. This system was obtained by applying a change of variable to Painlevé
equations that converts them to differential equations of the form

q̈ = −∂qV (q, t).
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Here, we list the Hamiltonian operators in this system:

H̃I =
n∑︂

j=1

(︄
p2

j

2 − 2q3
j − tqj

)︄
+ g2

4
∑︂
j ̸=k

1
(qj − qk)2

H̃II =
n∑︂

j=1

(︄
p2

j

2 − 1
2
(︂
q2

j + t

2
)︂2

− αqj

)︄
+ g2

4
∑︂
j ̸=k

1
(qj − qk)2

H̃III =
n∑︂

j=1

(︄
p2

j

2 − α

4 e
qj + βt

4 e
−qj − γ

8 e
2qj + δt2

8 e−2qj

)︄
+ g2

4
∑︂
j ̸=k

1
sinh2

(︂
(qj − qk)/2

)︂
H̃IV =

n∑︂
j=1

(︄
p2

j

2 − 1
2
(︂qj

2
)︂6

− 2t
(︂qj

2
)︂4

− 2(t2 − α)
(︂qj

2
)︂2

+ β
(︂qj

2
)︂−2

+ g2
4
∑︂
j ̸=k

(︄
1

(qj − qk)2 + 1
(qj + qk)2

)︄)︄

H̃V =
n∑︂

j=1

(︄
p2

j

2 − α

sinh2(qj/2)
− β

cosh2(qj/2)
+ γt

2 cosh(qj) + δt

8 cosh(2qj)
)︄

+ g2
4
∑︂
j ̸=k

(︄
1

sinh2
(︂
(qj − qk)/2

)︂ + 1
sinh2

(︂
(qj + qk)/2

)︂)︄

H̃V I =
n∑︂

j=1

(︄
p2

j

2 +
3∑︂

l=0
g2

l ℘(qj + ωl)
)︄

+ g2
4
∑︂
j ̸=k

(︄
℘(qj − qk) + ℘(qj + qk)

)︄

(1.1.1)

where ℘ is the Weierstrass function, α, β, γ, δ are arbitrary constants, g0, . . . , g4 are the
coupling constants, and the coefficients ωl, l = 0, ..., 3 take the following values

(ω0, ω1, ω2, ω3) = (0, 1/2,−(1 + τ)/2, τ/2)

for τ being the modular parameter that is considered to play the role of the independent
time variable t.
The integrability of the system (1.1.1) is proved in [3] as the isomonodromic formulation in
terms of a 2N × 2N Lax pair matrices, where N is the number of particles.

This means there are 2 × 2 block (of N components) matrices ∗ A and B, such that the
system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ℏ
∂

∂z
Φ(z; t) = A(z; q, p, t)Φ(z; t)

ℏ
∂

∂t
Φ(z; t) = B(z; q, p, t)Φ(z; t)

is compatible and hence has a joint fundamental solution Ψ(z; t). This implies that the
∗Each of the components of the matrices A and B are N × N matrices themselves.
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matrices A,B satisfy the zero-curvature equation:

ℏ∂tA− ℏ∂zB + [A,B] = 0

for ℏ a formal parameter in C. Through this isomonodromic formulation, a system of
multi-component Hamiltonian operators corresponding to the Calogero-Painlevé equations
is obtained. These equations are presented in chapter 3 together with the full detail and the
result of the work of [3].

On a parallel track, the integrability of the classical Calogero-Painlevé equations has
brought an ever-increasing curiosity about their quantization. As a result, the discussion
about the integrability of such a system and their corresponding solutions has appeared in
the work of mathematicians and mathematical physicists such as H. Nagoya [31], K. Okamoto
[32], A. Zabrodin and A. Zotov [37].

In [37], Zabrodin and A. Zotov show that Calogero-like Painlevé equations I-VI can be
represented in the form of the non-stationary Schrödinger equation in imaginary time.

The statement of their theory proceeds as follows. For all the six Calogero-Painlevé
equations I-VI in the classic form with the standard Hamiltonian operators H(p, q, t) , there
is a system of linear problems ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂zΨ = U(z, t, q, q̇)Ψ

∂tΨ = V (z, t, q, q̇)Ψ

where Ψ =
(︄
ψ1

ψ2

)︄
, and U , and V satisfy the zero-curvature equation

∂tU − ∂zV + [U, V ] = 0

and the function Ψ = e
∫︁

H(q̇,q,t′)dt′
ψ1 satisfies the non-stationary standard Schrödinger

equation
∂tΨ = HΨ

with
H =

(︂1
2∂

2
z + V (z, t)

)︂
. (1.1.2)

The equation (1.1.2) should be viewed as a natural quantization of the classical Calogero-like
Hamiltonian operator

H(p, q, t) = p2

2 + V (q; t).

By extending the Calogero-Painlevé correspondence to the auxilary linear problems
associated to the Painlevé equations, the authors of this paper [37] formulate the Hamiltonian
system that has the interpretation as "quantized" Hamiltonian system in one particle
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case. One of the motivations of this thesis is to provide the Hamiltonian system
corresponding to the quantum Calogero-Painlevé correspondence (a canonical quantization
of the Hamiltonians in [3]) in the case of N particles.

The logic that we follow is similar to [3]: we start from the formulation of the multi-
particle Hamiltonians in loc. cit. where the classical position and momenta are non-
commutative symbols (i.e. matrices) with a canonical Poisson bracket. The canonical
quantization is then of the form

qij −→ qij , pij −→ ℏ
∂

∂qji

in terms of the canonical coordinates p and q.
The construction of the Hamiltonians is subordinated to the requirement that the

resulting non-commutative isomonodromic equations that express the compatibility of
the matrices remain the same. This implies a certain ordering of the operators in the
Hamiltonians which is not the same as the one presented in [3] (where the matrices were
classical). Through these computations, we adopt the definition of the Harish-Chandra
homomorphism that plays an important key in the theory of quantum Hamiltonian reduction.
As a result of this quantization, we obtain a multi-particle quantized Hamiltonian system
that satisfies the Schrödinger equation of a similar form to (1.1.2).

Further in this project, we compare the result of this quantization to what H. Nagoya
[31] introduces as quantum Painlevé Hamiltonian system for a single particle wave function
with coordinate z.

We generalize these Hamiltonian operators to the case of N particles with coordinates
zρ, ρ = 1, ..., N .

We also extend the integral representation of solutions in [31] to the multi-component
integral solution of the Schrödiner equation for N -particle quantum Painlevé equations.
These integral representations are defined only for quantum Painlevé equation II−V I; these
solutions should be understood as the quantum counterpart of rational solutions and it is well
known that the first Painlevé equation does not admit rational solutions, which heuristically
explains the absence of integral representations for solutions thereof. Intriguingly, these
integral representations are presented as some type of β integrals that appear in other areas
such as conformal field theory [22], β-ensembles [2], the theory of orthogonal polynomials,
and hypergeometric functions.

Finally, we show that under some constraints on the parameters of the Hamiltonian
operators obtained in chapter 3 and chapter 4, these generalized Nagoya integrals provide
solutions for the quantization of the multi-particle Hamiltonian systems described in the first
part.

4



Outline
• The abstract theories and fundamental definitions required to understand this work

will be presented in chapter 2.

• In chapter 3 we first present the isomonodromic formulation (3.1.6) for Calogero-
Painlevé system. Moreover, we introduce the quantization that later on, will
be applied to the Hamiltonian operators corresponding to the Calogero-Painlevé
correspondence. Furthermore, the definition of the Harich-Chandra homomorphism
[10] will be presented to help us simplify the quantization in terms of the eigenvalues
of the matrix operators. At the end of this chapter, we state the quantized Hamiltonian
system for Calogero-Painlevé correspondence.

• At the beginning of the chapter 4, the single-particle Hamiltonian system corresponding
to the quantum Painlevé equations will be presented. This system that is defined by
H. Nagoya [31], satisfies the Schrödinger equation ℏ∂tΨ = HΨ with Ψ an integral
solution. We succeed in generalizing this system to N particles and construct the new
Hamiltonian system with integral solutions corresponding to each equation.

• In chapter 5, we conclude that the two systems from the previous chapters are equal
under some constraints on the parameters of the Hamiltonian operators from both
systems.

• Finally, in chapter 6, we provide a summary of the works that have been done in
the same stream, and we discuss the connections, overlapping topics, and comparisons
between these works and our project.
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Chapter 2

Abstract theory

2.1 Painlevé equations

2.1.1 Singularities of ODEs
In general, there are two types of singular points for ordinary differential equations (ODEs):
fixed and movable. Consider the nth order equation in the complex plain

dny

dxn
+ pn−1(x)dn−1y

dxn−1 + · · · + p1(x)dy
dx + p0(x)y = 0 (2.1.1)

If all the coefficients p0(x), . . . , pn−1(x) are analytic in the neighbourhood of a point x0, and
x0 is a regular point of the ODE, then there exists a unique solution of the equation (2.1.1)
such that this solution, and its first (n − 1) derivatives take arbitrarily assigned values at
x = x0. This solution is expressible as a Taylor series in (x− x0), convergent at least within
the circle centered at x0 and passing through the singular point of the coefficients lying close
to x0. Hence, the singular points of the unique solution can be located only at singularities
of the coefficients, which are fixed singularities as they only depend on the equation, not the
particular solution.

This well-known consideration shows that solutions of linear ODEs possess only fixed
singularities and they are located (at most) only at the points where the coefficients of the
equation have a singularity (typically the singularities of the coefficients are poles). However,
nonlinear ODEs do not have this property. The solution of a nonlinear ordinary differential
equation can have both movable and fixed singularities. The “movable” singularities are
those that depend on the representative in the general solution (i.e. their location depends
on the initial data).

6



2.1.2 Second order ODEs
Consider ordinary differential equations of the form

d2y

dx2 = F

(︄
dy
dx, y, x

)︄
(2.1.2)

where F is a rational function of dy
dx and y, and an analytic function of x.

Picard posed the problem of finding equations of the form (2.1.2) with solutions whose
only poles are the movable singularities, i.e., the location of singularities of any of the
solutions other than poles are independent of the particular solution chosen and depends
only on the equation.

This problem was solved by Painlevé and this property of ODEs is called the "Painlevé
property". Ordinary differential equations possessing this property are called "Painlevé type".
Painlevé and his students (and then followers) showed there are only fifty types of equations
of the form (2.1.2) having the Painlevé property. Within a few years of research, they
found out that all but six of these equations are genuinely “transcendental”, while the rest
are integrable in terms of the previously known functions or could reduce to one of the
remaining six nonlinear ODEs.

These fifty equations are generalizable by the Möbius transformation

Y (X) = a(x)y + b(x)
c(x)y + d(x) , X = ϕ(x) (2.1.3)

where a(x), b(x), c(x), d(x), and ϕ(x) are analytic in x.
The new six nonlinear ordinary differential equations with solutions having singularities

only at poles, define new transcendental functions (i.e. analytical functions which are,
generically, not expressible in terms of the algebraic operations such as addition, subtraction,
multiplication, division, raising to a power, and extracting a root, and generally, not
obtainable from applying any of these operations on the solutions of linear differential
equations with rational coefficients). They are called Painlevé equations I-VI and are defined

7



as

PI : d2y

dx2 =6y2 + x,

PII : d2y

dx2 =2y3 + xy + α,

PIII : d2y

dx2 =1
y

(︄
dy
dx

)︄2

− 1
x

dy
dx + y2

4x2

(︄
α + βx

y2 + γy + δx2

4y3

)︄
,

PIV : d2y

dx2 = 1
2y

(︄
dy
dx

)︄2

+ 3
2y

3 + 4xy2 + 2(x2 − α)y + β

y
,

PV : d2y

dx2 =
{︄

1
2y + 1

y − 1

}︄(︄
dy
dx

)︄2

− 1
x

dy
dx + (y − 1)2

x2

(︄
α
β

y2 + γx

(y − 1)2 + δx2(y + 1)
(y − 1)3

)︄
,

PV I : d2y

dx2 =1
2

{︄
1
y

+ 1
y − 1 + 1

y − x

}︄(︄
dy
dx

)︄2

−
{︄

1
x

+ 1
x− 1 + 1

y − x

}︄
dy
dx+

+ y(y − 1)(y − x)
x2(x− 1)2

{︄
α + βx

y2 + γ(x− 1)
(y − 1)2 + δx(x− 1)

(y − x)2

}︄
,

(2.1.4)
where α, β, γ, and δ are arbitrary constants. In the above list, the third equation is slightly
modified and the original one can be obtained by a simple change of variable (x, y) → (x2, xy).
The solutions to these equations are called Painlevé transcendents.

Later we show that the Painlevé equations are irreducible in general, but for special values
of the parameters the equations PII − PV I have rational solutions and admit one-parameter
families of solutions expressible in terms of the classical transcendental functions:

• Painlevé II Airy functions

• Painlevé III Bessel functions

• Painlevé IV Weber-Hermite functions

• Painlevé V Whittaker functions

• Painlevé VI hypergeometric functions

2.1.3 Physical application
Painlevé equations were discovered from a mathematical point of view. Nonetheless, they
later have been proven to have several applications in physics such as: spin-spin correlation
function of the two-dimensional Ising model [36], quantum gravity [5], the asymptotic
behaviour of solutions of the mKdV equation [1], the one-particle reduced density matrix of
the one-dimensional Bose gas [20], general relativity, and nonlinear optics.

8



2.2 Calogero-Painlevé correspondence
The Painlevé equations were the result of the research by Painlevé himself, Gambier and
Fuchs [14] who gave the general form of the sixth Painlevé equation. To do so, Fuchs
proposed two different approaches:

• isomonodromic deformations: In this approach, PV I is interpreted as a differential
equation describing isomonodromic deformations of a linear ordinary differential
equation on the Riemann sphere.

• elliptic integrals: In this approach, a new expression of PV I is derived in terms of the
Weierstrass ℘-function.

Painlevé took the second approach. Later, Okamoto [32] uncovered the Hamiltonian aspects
of the six equations and discovered the underlying affine Weyl group symmetries of PV I .

Manin [28] revived the almost forgotten work of Fuchs and Painlevé after almost ninety
years. Manin’s remarkable idea is to use the elliptic modulus τ , rather than t, as an
independent variable. The outcome is a Hamiltonian system with a Hamiltonian in the
normal form

H = P 2

2 + V (q)

where V is the potential function which is a linear combination of the Weierstrass ℘-function
and its shift by three half periods. This is a nonautonomous system because the Hamiltonian
depends on the “time” τ through the τ -dependence of the ℘-function.

Levin and Olshanetsky [26] pointed out that Manin’s equation resembles the so called
Calogero–Moser systems (we study this system in more detail in the next section).
More precisely, the Hamiltonian operator H is identical to the rank-one elliptic model
of Inozemtsev’s integrable generalization of the Calogero-Moser system [19]. Levin and
Olshanetsky called this relation the “Painlevé–Calogero correspondence.”

Later, K. Takasaki [34] shows that this correspondence can be extended to the other
Painlevé equations and it comes from the important principle of degeneration cascade of the
six Painlevé equations:

Takasaki shows that the Painlevé side of this correspondence for all the six equations is
a multi-dimensional extension of the Painlevé equations and therefore, they are called the
multi-component version of PI-PV I . The Hamiltonian system generating these equations was
introduced in the previous chapter in equation (1.1.1).

The crucial problem proposed by Takasaki is whether one can find an isomonodromic
description of the multi-component Calogero-Painlevé correspondence.

9



2.2.1 Isomonodromic description
In [3], the authors answer Takasaki’s question by introducing the isomonodromic formulation
of the six Calogero-Painlevé equations in Takasaki’s list.

Theorem 2.2.1. All the Hamiltonian systems in (1.1.1) have an isomonodromic formulation
in terms of 2N × 2N Lax pair, where N is the number of particles.

In each of the systems corresponding to this isomonodromic description, the dynamical
variables appear as the eigenvalues of an N×N non-commutative matrix q. The Hamiltonian
operators in [3] are obtained by Kazhdan-Kostant-Sternberg [24] Hamiltonian reduction on
the Lax system for the matrix Painlevé equations introduced by Kawakami [23], except
for PII which possesses Lax system closer to the standard Flaschka-Newell Lax pair [12].
One important result of the isomonodromic formulation is that all the equations satisfy
the Painlevé property, i.e., the solutions q(t) have only movable poles when considered as
functions of the complex time t.

Another important result of this paper is that the space of the initial data of each equation
can be identified with a suitable manifold of monodromy data, which is an algebraic variety.

This work is explained in more detail in chapter 3.

2.2.2 Hamiltonian reduction
In this section, we provide the definitions and the basic idea of Hamiltonian reduction that
plays a key role in the construction of the isomonodromic description in chapter 3. First, we
need to review some definitions related to Poisson manifolds [9].

Definition 2.2.2. Let A be a commutative algebra over a field F . Then A is a Poisson
algebra if it is equipped with a Lie bracket {, } satisfying the Leibniz’s law

{a, bc} = {a, b}c+ b{a, c}.

Definition 2.2.3. M is a 2N-dimensional Poisson manifold if its structure algebra C∞(M)
is equipped with a Poisson bracket.

Definition 2.2.4. A morphism of Poisson manifolds M and N , is a map ϕ : M → N that
induces a homomorphism of Poisson algebras C∞(M) → C∞(N). Precisely, it is a map that
preserves structure.

If M is smooth, then a Poisson structure on M is defined by a Poisson bivector Π. In
particular, when M is symplectic with a closed and nondegenerate 2-form ω, then it is
Poisson with Π = ω−1.

For any Poisson manifold M , there is a homomorphism

v : C∞(M) → VΠ(M) (2.2.1)
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from the Lie algebra of functions on M to the Lie algebras of the vector fields on M preserving
the Poisson structure.

Example 2.2.5. Let M = T ∗X where X is a smooth manifold. A 1-form η on T ∗X is
defined as follows: Let π : T ∗X → X be the projection map. Then given v ∈ T(x,p)(T ∗X),
then the action of the one–form η on v is computed by first projecting it into the tangent
bundle using dπ : T (T ∗X) → TX, and then applying the two–form on X on the projection.
Therefore, if xi’s are local coordinates on X, and pi’s are the linear coordinates in the fibers
of T ∗X with respect to the basis dxi, then η = ∑︁

i pidxi.
Now if we suppose ω = dη, then ω is a symplectic structure on M and in local coordinates
we have

ω =
∑︂

i

dpi ∧ dxi.

Let M be a Poisson manifold and G a Lie group acting on M by Poisson automorphisms. Let
g be the Lie algebra of G, hence there is a homomorphism of Lie algebras ϕ : g → VΠ(M).

Definition 2.2.6. A moment map (or momentum map) is G-equivariant map µ : M → g∗,
if the pullback map µ∗ : g → C∞(M) satisfies the equation

v (µ∗(a)) = ϕ(a) (2.2.2)

where v is given by (2.2.1).

Theorem 2.2.7. Let M be a Poisson manifold with the action of the Lie group G preserving
the Poisson structure. Then the algebra of G-invariants C∞(M)G is a Poisson algebra.

Definition 2.2.8. The manifold

M//G := µ−1(0)/G (2.2.3)

which is obtained by, first, restricting to a fixed point and then quotienting by the group
action, is called the Hamiltonian reduction of M with respect to G.

Remark 2.2.9. Both C∞(M//G) and M//G are Poisson manifolds.

Corollary 2.2.10. In the setting of Definition 2.2.8 if M is symplectic, then so is M//G.

2.2.2.1 KKS reduction and Calogero-Moser system

Definition 2.2.11. Let G be a Lie group with g the Lie algebra on G, and g∗ the dual
space to g. Also, let ad∗ denote the representation of the Lie algebra g on g∗ induced by the
coadjoint representation of the Lie group G that is defined by

Ad∗ : G → Aut(g∗). (2.2.4)

11



Then for ν ∈ g∗ the coadjoint orbit Oν is a submanifold of g∗ that carries a natural
symplectic structure. In fact, on each Oν there is a closed, non–degenerate two-form ω

inherited from g so that

ω(ad∗
Xv, ad∗

Y v) := ⟨v, [X, Y ]⟩, v ∈ Oν , X, Y ∈ g (2.2.5)

where ⟨, ⟩ represents the angular bracket.
Definition 2.2.12. Suppose M is a Poisson manifold with a Hamiltonian action of the Lie
group G and moment map µ : M → g∗. Let us choose a closed coadjoint orbit O of G.
Then µ−1(O)/G is called the Hamiltonian reduction on M with respect to G. We denote this
scheme by R(M,G,O).
Remark 2.2.13. Hamiltonian reduction can be defined along any closed G-invariant subsets
of g∗.

Example 2.2.14. This example is quite central to the development of the theory of
(classical) Calogero-Moser systems (and their generalization to Painlevé case). Suppose
M = T ∗MatN(C), and G = PGLN(C) acting on M (so g = slN(C)).

Using a trace form we can identify g∗ with g, and M with

MatN(C) ⊕ MatN(C).

By conjugations:
g · (X, Y ) = (gXg−1, gY g−1).

Given a point p = (X, Y ) ∈ M and an element L ∈ g the corresponding vector field
L ∈ TpM is then given by the formula

L(X, Y ) = ([L,X], [L, Y ]). (2.2.6)

To find the moment map we need to find the Hamiltonian, HL that generates the above
vector field. Since the symplectic form ω on M is Tr(dY ∧ dX) and its corresponding
symplectic potential is θ = Tr(Y dX), we deduce that the Hamiltonian associated to the
element L is

HL(X, Y ) = Tr
(︂
L[X, Y ]

)︂
= ⟨L, µ(X, Y )⟩ . (2.2.7)

Then equation (2.2.7) implies that the moment map is given by µ(X, Y ) = [X, Y ]. To see
this we need to verify that the above Hamiltonian generates the equation (2.2.6). Indeed

{Yba, HL} = − ∂

∂Xab

HL = − ∂

∂Xab

∑︂
b,c

Xbc[Y, L]cb = [L, Y ]ba (2.2.8)

and similarly
{Xba, HL} = ∂

∂Yab

HL = ∂

∂Yab

∑︂
b,c

Ybc[L,X]cb = [L,X]ba. (2.2.9)
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The zero–level set of the moment map µ−1(0) is then defined by the equation [X, Y ] = 0
and it is a commuting scheme, denoted by Comm(N). Hence M//G = Comm(N)/G with
the ring of functions being A = C[Comm(N)]G.

Concerning the above definition of the quotient Comm(N)/G the following theorem is
proven in [10]:

Theorem 2.2.15. The quotient Comm(N)/G is reduced and it is isomorphic to C2N/SN ,
where SN denotes the symmetric group. Therefore

A = C[Comm(N)]G = C[x1, . . . , xN , y1, . . . , yN ]SN . (2.2.10)

Accordingly, the Poisson algebra is induced from the standard symplectic structure on C2N .

A more general Hamiltonian reduction can be defined on a different level set of the
moment map; one can fix µ0 ∈ g∗ and consider µ−1(µ0); the stabilizer in G of µ0 acts on
this level set and one can construct the quotient. Denoting the stabilizer by Gµ0 then the
“point” symplectic reduction is the statement that the quotient

Jµ0 := µ−1(µ0)/Gµ0

is naturally a symplectic manifold.
An equivalent, but different, construction is called the “coadjoint orbit” symplectic

reduction. In this case one considers the co-adjoint orbit Oµ0 passing through the same
value µ0 and quotients µ−1(Oµ0) by the whole Lie group G.

The proof can be found in Thm. 1.2.4 of [29]; here it is sufficient to make some simple
dimensional considerations. If dimM = m, dimG = s and µ0 is a regular value then

dim Oµ0 + dimGµ0 = dimG. (2.2.11)

On the other hand, the dimension of a fixed level set is

dimµ−1(µ0) = dimM − dimG (2.2.12)

and therefore the dimension of the inverse of the whole orbit is

dimµ−1(Oµ0) = dimM + dim Oµ0 − dimG = dimM − dimGµ0 . (2.2.13)

Then the dimension of the quotient of µ−1(µ0) by Gµ0 and that of µ−1(Oµ0) by G are equal:

dimµ−1(µ0) − dimGµ0 = dimM − dimG− dimGµ0 = dimµ−1(Oµ0) − dimG. (2.2.14)

It is this point of view which is more amenable to a quantum description (later on).
Now consider M and G as defined in Example 2.2.14, and O be the orbit of the matrix

proportional to diag(−1,−1, . . . ,−1, N − 1). This can be described more invariantly as the
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set of traceless matrices T in slN such that T + 1 has rank 1. In the original paper [24] the
matrix is presented as

µ0 = c

⎡⎢⎢⎢⎢⎢⎣
0 1 . . . 1
1 0 1 . . . 1

. . .
1 . . . 1 0

⎤⎥⎥⎥⎥⎥⎦ .

Definition 2.2.16. [24] The scheme CN := R(M,G,O) is called the Calogero-Moser space.

Thus, CN is the space of conjugacy classes of pairs of N ×N matrices (X, Y ) such that the
matrix XY − Y X + 1 has rank 1.

Corollary 2.2.17. The action of G on µ−1(O) is free, hence CN is a smooth symplectic
variety of dimension 2N .

2.2.3 Hamiltonians and integrable systems
In a classical mechanical system, the phase space is a Poisson manifold M that is usually
symplectic and equal to T ∗X, where X is another manifold that is called configuration space.
The dynamics of such systems are defined by Hamiltonians H ∈ C∞(M) whose flow is that
attached to the vector field v(H). If qi’s are the coordinates on M , then the Hamiltonian
equations are defined as

dqi

dt = {H, qi}

where t is time.
If M is symplectic, then Darboux theorem assures us that there are coordinates qi, pi

locally defined on M for which the symplcetic form is ω = ∑︁
i dpi ∧ dqi. These coordinate

are called canonical coordinates with the property

{pi, qj} = δij, {pi, pj} = {qi, qj} = 0.

In these coordinates the Hamiltonian equations are written as

dqi

dt = ∂H

∂pi

,
dpi

dt = −∂H

∂qi

.

Conservation laws and symmetries. On a 2-dimensional manifold M , the conservation
of energy says that the Hamiltonian is constant along the trajectories of the system. So they
can be explicitly solved. However, for 2N -dimensional symplectic manifold with N > 1 this
becomes complicated. Hence, we take advantage of the symmetries in classical mechanics.

If a classical system has a symmetry, then that symmetry can be used to reduce the order
of the system and that, basically, is the Hamiltonian reduction.
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The scheme. Let a Lie group G act freely on M preserving the Hamiltonian H, and let
µ : M → g∗ be a moment map. We also assume the vector field v(H) is transversal to the
G-orbits.

If y = y(t) is a solution of Hamiltonian equations then µ(y(t)) is constant. Therefore,
the Hamiltonian flow descends to the symplectic manifold R(M,G,O) = µ−1(O)/G. Here
O runs over orbits of the coadjoint representation of G, with the same Hamiltonian. These
manifolds have smaller dimensions than the dimension of M .

On the other hand, knowing y∗(t) in R(M,G,O), an image of a trajectory, we can find
y(t) explicitly.

Definition 2.2.18. An integrable system on a symplectic manifold M of dimension 2N
is a collection of smooth functions H1, . . . , HN on M such that they are in involution:

{Hi, Hj} = 0, ∀1 ≤ i, j ≤ N

and the differentials dHi are linearly independent on a dense open set in M .

Knowing the Hamiltonian flow given by H on M , and assuming that H can be included
in an integrable system H = H1, . . . , HN (H1, . . . , HN are the first integrals of the flow),
one can use the involution and use HN to reduce the order of the system from 2N to
2N − 2. Repeating this scheme, eventually we reduce the 2N -dimensional system to a 2-
dimensinal one which can be integrated in quadratures, therefore, so does the flow of the
original manifold.

How to construct an integrable system by Hamiltonian reduction: Let M be a
symplectic manifold, and let H1, . . . , HN be smooth functions on M such that {Hi, Hj} = 0
and dHi’s are linearly independent everywhere. Suppose G is a structure preserving Lie group
acting on M , with the moment map µ : M → g∗. Moreover, let O be a coadjoint orbit of G.
Consider the assumption on the action of G on µ−1(O) such that the symplectic manifold
R(M,G,O) carries a collection of functions H1, . . . , HN with the property {Hi, Hj} = 0
and dHi’s linearly independent everywhere. One assures that for N = 1

2dimR(M,G,O) the
collection H1, . . . , HN is an integrable system on M . Therefore, the Hamiltonian flow can
be solved in quadratures.

Example 2.2.19. The integrable system called "Calogero-Moser system" is an example of a
system constructed by the Hamiltonian reduction, by Kazhdan, Kostant, Sternberg [24].
In this case M = T ∗MatN(C), regarded as the set of pairs of matrices (X, Y ) with the usual
symplectic from ω = Tr(dY ∧ dX). Let

Hi = Tr(Y i), i = 1, . . . , N. (2.2.15)

One can easily show that {Hi, Hj} = 0 (where {, } is the Poisson bracket), but since there
are few of them, they do not form an integrable system.
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Now, let G = PGLN(C) acting on M by conjugation, and let O be the coadjoint orbit
of G consisting of the traceless matrices T such that T + 1 has rank 1 (i.e., the orbit of the
matrix diag(−1,−1, . . . ,−1, N − 1)).

Then by Hamiltonian reduction, the system H1, . . . , HN reduces to a system of functions
on the Calogero-Moser space CN = R(M,G,O), such that they are in involution. Since
the space CN is 2N-dimensional, H1, . . . , HN form an integrable system on this space. This
system is called the (rational) Calogero-Moser system.

On CN , the flow corresponding to Hamiltonians Hi from the equation (2.2.15), can be
described by the formula

g
(i)
t (X, Y ) = (X + iY i−1t, Y ). (2.2.16)

This is a consequence of the set up for CN , as it is in the space of matrices, and in general,
the motion of a free particle on such spaces is defined by gt(X, Y ) = (X + 2Y t, Y ).

To be able to represent the explicit Hamiltonians, we need to understand the coordinates
on CN .

CN , coordinates and Hamiltonians. To introduce the coordinates on CN , we restrict
our attention to the open set UN ⊂ CN consisiting of conjugacy classes of pairs (X, Y ) for
which the matrix X is diagonalizable with distinct eigenvalues. This set is dense in CN . A
point P ∈ UN can be represented by (X, Y ), with X = diag(x1, . . . , xN), xi ̸= xj. In this
case, the entries of T := XY − Y X are (xi − xj)yij, which means the diagonal entries are
zero. Since T + 1 has rank 1, its entries κij have the form aibj for some numbers ai, bj.
Also, since κii = 1, then bj = a−1

j , so κij = aia
−1
j . By conjugating (X, Y ) by the matrix

diag(a1, . . . , aN) we can reduce the situation to the case ai = 1, so κij = 1, therefore the
entries of the matrix T + 1 have the form 1 − δij.

This representation for P is unique up to the action of the symmetry group SN . So, we
get

(xi − xj)yij = 1, i ̸= j.

Therefore
yij = 1

xi − xj

, if i ̸= j.

As a result we have the following proposition:

Proposition 2.2.20. Let CN
reg be the open set of (x1, . . . , xN) ∈ CN such that xi ̸= xj, for

i ̸= j. Then there exists an isomorphism of algebraic varieties

ξ : T ∗(CN
reg/SN) → UN

given by the formula (x1, . . . , xN , p1, . . . , pN) → (X, Y ), where X = diag(x1, . . . , xN), and
Y = Y (x, p) := (yij),

yij = 1
xi − xj

, i ̸= j, yii = pi.
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The Hamiltonians of the Calogero-Moser system in the defined coordinates have the
following form

H = Tr(Y (x, p)2) =
∑︂

i

p2
i −

∑︂
i,j
i ̸=j

1
(xi − xj)2 . (2.2.17)

The reduction procedure that was explained, guarantees the complete integrability of H,
and gives an explicit formula for the first integral:

Hi = Tr
(︂
Y (x, p)i

)︂
Furthermore, the explicit form of the solution is provided by this procedure; assume x(t),
p(t) is the solution with the initial condition x(0), p(0), and let (X0, Y0) = ξ(x(0), p(0)).
Then xi(t) are the eigenvalues of the matrix Xt := X0 + 2tY0 and pi(t) = x′

i(t).

2.2.4 Quantum version of the Hamiltonian reduction
The quantized version of the Hamiltonian reduction is very similar to the classical version.
First, we need to quantize the concept of the moment map.

In the quantum setting one cannot expect to “fix” the value of the moment map since in
general, the moment operators do not commute: hence the “fixed moment” description of
the Hamiltonian reduction is inadequate. The point of view that best translates is that of
“co-adjoint orbit reduction”. However, in the co-adjoint orbit point of view this is possible
because of the following considerations. A coadjoint orbit is characterized by the value
of the Casimir elements of the universal enveloping algebra U(g); these, by definition, are
commuting elements. When quantizing a phase space that carries a Hamiltonian G action,
the action of the Lie algebra g is represented by, typically, quantum (differential) operators.
The Casimirs commute by definition and hence there is a common joint eigenspace in the
Hilbert space where the quantum system is set up. In other words, the quantum version of
the Hamiltonian reduction should be thought of as a Hilbert space carrying a representation
of the group G and with fixed values of the Casimirs of the group.

In algebraic terms the above ideas are translated in the following setup:

Definition 2.2.21. Let g be a Lie algebra, and A be an associative algebra so that there
exists a Lie algebra map

ϕ : g → Der(A)

where Der(A) is the Lie algebra of derivations of A. Then the associative algebra
homomorphism µ : U(g) → A is quantum moment map for (A, ϕ) if for any L ∈ g and
a ∈ A:

[µ(L), a] = ϕ(L)a.

In the above definition [, ] indicates the commutator operator.
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Remark 2.2.22. Suppose that A is a deformation quantization of a Poisson algebra A0

equipped with a g-action ϕ0 and a classical moment map µ0. Suppose that ϕ = ϕ0modℏ.
A quantization of µ0 is a quantum moment map µ : U(g) → A[ℏ−1] such that for a ∈ g we
have

µ(a) = ℏ−1µ0(a) +O(1). (2.2.18)

Hamiltonian reduction. Considering A, g, and the quantum moment map µ as in the
previous definition, the space of all elements a ∈ A for which [µ(L), a] = 0 for all L ∈ g, is a
subalgebra of A denoted by Ag. To see this consider a, a′ ∈ Ag. Then, for all L ∈ g

[µ(L), aa′] = [µ(L), a]a′ + a[µ(L), a′] = 0. (2.2.19)

Then for J ⊂ A the left ideal generated by µ(g), Jg := J ∩Ag is a 2-sided ideal of Ag whose
elements have the form a = ∑︁

i aiµ(Li), ai ∈ A, and Li ∈ g.
Indeed, suppose c ∈ Ag, a ∈ Jg where a = ∑︁

i aiµ(Li) for ai ∈ A, Li ∈ g. Then:

ac =
∑︂

i

aiµ(Li)c =
∑︂

i

aicµ(Li) ∈ Jg,

ca =c
∑︂

i

aiµ(Li) =
∑︂

i

caiµ(Li) ∈ Jg,

Moreover, for d = ∑︁
i diµ(Li) ∈ Jg, with di ∈ A, it is obvious that a− d ∈ Jg.

Then algebra A//g := Ag/Jg defines a quantum Hamiltonian reduction of A with respect
to the quantum moment map µ.

Computing a quantum Hamiltonian reduction is usually difficult. For example, consider
A = D(g), namely, the algebra of differential operators on a reductive Lie algebra g acting
on A by the adjoint action on itself. To describe A//g we need to construct the Harish-
Chandra homomorphism [17] HC : D(g)g → D(h)W , with h a Cartan subalgebra, and D(h)W

indicating the Weyl-invariant differential operators. This is done through the following steps
[10]:

• Consider the classic Harish-Chandra isomorphism ζ : C[g]g → C[h]W which provides
an action of D(g)g on C[h]W that is given by Weyl-invariant differential operators,

• To avoid the poles on the reflection hyperplane, take the homomorphism HC′ :
D(g)g → D(hreg)W , with hreg the complement of h or the set of its regular points
(this homomorphism is called the radial part homomorphism),

• by twisting the map HC ′ by δ = ∏︁
α>0(α, x), x ∈ h and α running over the positive

roots of g,
HC(D) := δ ◦ HC′(D) ◦ δ−1 ∈ D(hreg)W

the poles will disappear.
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Theorem 2.2.23. The homomorphism HC : D(g)g → D(h)W defines an isomorphism
D(g)//g = D(h)W .

Similar to the Hamiltonian reduction along a closed orbit (or any closed G-invariant
subset) of g∗, the quantum analog of the reduction must be constructed with respect to
a 2-sided ideal I ⊂ U(g): Let µ : U(g) → A be the quantum moment map, and J(I) =
Aµ(I) ⊂ A, so J(I)g is a 2-sided ideal. As previously was explained, the algebra

R(A, g, I) := Ag/J(I)g

is the Hamiltonian reduction with respect to the ideal I.
The quantization of Kazhdan-Kostant-Sternberg Hamiltonian reduction plays a key role

in the next chapter of this dissertation. Therefore, as an example of the application of
the Harish-Chandra homomorphism in quantum Hamiltonian reduction, we look at the
quantization of the Kazhdan-Kostant-Sternberg construction of the Calogero-Moser space.

Example 2.2.24. Let g = glN , A = D(g) as described above. Let κ be a complex number
and Vκ be the representation of slN on the space of functions of the form

(x1. . . . .xN)κf(x1, . . . , xN)

where (x1, . . . , xN) are the coordinates in CN , and f is a Laurent polynomial of homogeneity
degree 0. Under the natural projection map g → slN and a pullback to g, we regard Vκ as a
g-module. Let Iκ be the annihilator of Vκ in U(g). Then the homomorphism

HCκ : D(g)g → R(A, g, Iκ)

is called the deformed Harish-Chandra homomorphism.
The algebra R(A, g, Iκ) acts naturally on the space Eκ (space of g-equivariant functions
with values in Vκ) on the neighbourhood of hreg in greg, the set of matrices with different
eigenvalues. An equivariant function on such a neighbourhood with values in Vκ is completely
determined by its values in hreg, and the only restriction for these values is that they lie in
Vκ[0] the zero-weight subspace of Vκ.

Note that the space Vκ[0] is 1-dimensional spanned by the function (x1, . . . , xN)κ.
Therefore, Eκ is isomorphic to C[hreg].
The algebra R(A, g, Iκ) with the above description, is a quantization of the Calogero-
Moser space.

In the following section we introduce the quantum Hamiltonian operator corresponding
to this space.
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2.2.5 Quantum integrable system
The phase space in quantum mechanical systems is a noncommutative algebra A; in our
case, concretely in the next chapter, it will be the algebra of operator of multiplication by a
matrix Q and differentiation with respect to its entries. The Hamiltonians H are operators
defined on an Hilbert space H with a representation of the noncommutative algebra A. For
a given Hamiltonian H the Schrödinger equation describes the dynamics of such systems for
wave function ψ(t) ∈ H

ℏψ̇ = Hψ

where ℏ is the Planck constant which we will consider as a formal parameter∗

In general, assume that the algebra A is a deformation quantization of the phase space M ,
and the Hamiltonian H ∈ A is a deformation quantization of a classical Hamiltonian ˜︂H ∈˜︁A = C∞(M). Considering these, the quantum mechanics can be regarded as a deformation
of classical mechanics.
Supposing M = T ∗X with X a Riemannian manifold, we have

˜︂H = p2

2 + U(x) (2.2.20)

where x ∈ X, p represents the momentum and U(x) is a function on X that defines the
potential. Under the necessary assumptions, the quantization operator takes the form

H = ℏ2∂
2
x

2 + U(x) (2.2.21)

which converts the Schrödinger equation to

ℏ
∂ψ

∂t
= H(x, ℏ ∂

∂x
, t)ψ. (2.2.22)

Construction of quantum integrable system by quantum reduction. We recall the
counterpart construction from the classical integrable system: Let Ã be the function algebra
on a symplectic manifold M , and suppose µ̃ : M → g∗ be the classical moment map.

Now suppose the functions H̃1, . . . , H̃N that are in involution, reduce to a classical
integrable system R(M,G,O).
Now suppose A is a deformation quantization of Ã, and µ : g → ℏ−1A defines the quantum
moment map.
Also, suppose I ⊂ U(gh) is an ideal which is the deformation of Ĩ an ideal of Ã that vanishes
on the closed orbit O. Assume H1, . . . , HN is a commuting system of g-invariants which is a
quantization of the system H̃1, . . . , H̃N . Suppose the algebra R(A, g, I) is a quantization of

∗To be precise, ℏ in this Thesis will denote the Planck’s constant mutliplied by the imaginary unit. This
is only for convenience reason in the writing of the formulæ. We will still call it “Planck” constand without
further note.
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the symplectic manifold R(M,G,O). Then the system H1, . . . , HN descends to commuting
elements in R(A, g, I), that quantize H̃1, . . . , H̃N . Hence, they are a quantum integrable
system that is called the quantum reduction of the system H1, . . . , HN .

Continuation of example (2.2.24): Consider again g = glN and M = T ∗g =
{(X, Y )|X, Y ∈ g}. Recall that the reduced phase space is the space of matrices X, Y

whose commutator is a rank–one perturbation of the identity, modulo conjugations. In
this case the orbit is of dimension 2N and it is uniquely determined by the value of just
one Casimir function, for example the fundamental one Tr(µ2), with µ(X, Y ) = [X, Y ] (all
other Casimirs are then uniquely determined by the rank-one condition). In this case the
commuting Hamiltonians are Hj = Tr(Y j), j = 1, . . . N , with the Calogero Hamiltonian
being H2 (see definition (2.2.17)).

The quantization proceeds as follows: one replaces the algebra of functions of X, Y by
the algebra of differential operators on g. Denoting now by Q the point of g (i.e. a matrix)
then X → q (the matrix of multiplication operators by the entries of Q) and Y → p, where
pab = ℏ ∂

∂Qba
.

The Hamiltonians are correspondingly quantized simply by replacing Y by p and become
the differential operators with constant coefficients given by ˆ︂Hi = Tr(pi), i = 1, . . . , N . The
group PGLN acts on the functions of Q by gΨ(Q) := Ψ(gQg−1) and hence the Lie algebra
acts by sending the elementary matrix Eσρ ∈ slN to the operator

ϕ(Eσρ) = Eσρ =
N∑︂

ℓ=1

(︄
Qσℓ

∂

∂Qρℓ

−Qℓρ
∂

∂Qℓσ

)︄
= 1

ℏ

N∑︂
ℓ=1

(︂
qσℓpℓρ − qℓρpσℓ

)︂
= (2.2.23)

= 1
ℏ

[q,p]σρ + δρσ. (2.2.24)

Hence for L ∈ slN we have the simple formula for the quantum operator that is formally the
same as the classical one:

ℏˆ︂HL = Tr
(︂
L[q,p]

)︂
,

on account that TrL = 0.
This is a homomorphism of Lie algebras, namely

[ˆ︂HL,ˆ︂HK ] = ℏˆ︂H[L,K], ∀L,K ∈ g, (2.2.25)

which can thus be extended to the universal enveloping algebra U(g). In this case the algebra
Ag is simply the algebra of differential operators that are invariant under conjugation action.
In practical terms, this is the associative algebra generated by the differential operators of
the form

Tr
(︂
qℓ1pℓ2qℓ3 · · ·

)︂
,

which are clearly conjugation invariant.
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To construct the ideal I which is appropriate to the quantization of the Kazhdan–
Kostant-Sternberg scheme, Etingof has shown [10] that we should proceed as follows; define
a representation of g (called the “Cherednik representation”) as in the Example 2.2.24, of
which we now flesh out the details. The g module Vκ consists of rational functions of ξ1, . . . ξN

of homogeneity degree zero, multiplied by the factor ∏︁ ξκ
j , with κ a formal parameter (hence

these are now functions of homogeneity κN). The representation, γ : g = slN → End(Vκ)
is the natural infinitesimal action of SLN on the variables ξ⃗ and can be pulled–back to the
reductive algebra glN ; in concrete terms this means that the matrix unit Eab ∈ glN is sent
to the operator (of homogeneity degree zero)

γ(Eab) = ξa
∂

∂ξb

− ξb
∂

∂ξa

. (2.2.26)

This representation is then extended to the universal enveloping algebra U(g). The kernel
of this representation is the ideal

Iκ := Ker(γ).

Then the quantization of the Hamiltonians ˆ︂Hj = Tr(pj) consists in considering them as
acting on the image in A of the quotient (U(g)/Iκ)g which can be shown to be equal to
Ag/ϕ(Iκ)g.

Again, in practical terms it is then more expedient to consider directly the action of U(g)
on the representation space Vκ; then it is shown in [10] that the action of the g–invariant
operators on Ag/ϕ(Iκ)g is isomorphic to an action of the operators in the Cartan subalgebra
h of diagonal matrices on the zero–weight subspace

Vκ[0] :=
⋂︂

H∈h

Ker(ϕ(H)). (2.2.27)

These Hamiltonians descend to a quantum integrable system in the algebra R(A, g, I)
because they commute.

We will show how to perform practically this reduction and obtain simple differential
operators on h in the next chapter. For example, if we apply the above scheme, the Calogero-
Moser Hamiltonian reduces to

H =
N∑︂

i=1
∂2

i −
∑︂
i,j
i ̸=j

κ(κ+ 1)
(xi − xj)2 (2.2.28)

and the higher Hamiltonians ˆ︂Hj = Tr(pj) become differential operators of the general form

N∑︂
ℓ=1

∂j
xℓ

+ lower order terms. (2.2.29)

In the lower order terms, in general, there are expressions that exhibit a pole along the
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mirrors of the fundamental reflections of the Weyl group, which in our case simply means
the diagonals xi = xj, i ̸= j.

In Chapter 3 of this dissertation, we explicitly compute the Hamiltonian reduction of all
possible operators up to order 2 with terms of the form Tr(qap2), a = 0, 1, . . . . The logic
of the computation can be extended in principle to operators of higher order but we did not
pursue the issue because it was not instrumental to our goals. To our knowledge, there is no
explicit formula for this reduction, or the Harish–Chandra homomorphism in the literature,
even at the level of the second-order operators that we have computed for this thesis.
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Chapter 3

Isomonodromic system and the
quantization

3.1 Isomonodromic Formulation
In [3] the authors provided the answer to a conjecture postulated by K. Takasaki in [34].
Takasaki considered the de-autonomization of the Calogero systems proposed by Inozemtsev
[19] by observing that for Painlevé VI the rank-one Inozemtsev system reduces to the
autonomous version of the Hamiltonian form of Painlevé VI. This leads to the postulation
of the deautonomized version and the conjecture that these deautonomized Hamiltonians
should be describing the isomonodromic deformations of an appropriate system. For this
reason Takasaki coined the term “Painlevé–Calogero correspondence”.

The core idea of [3] is as follows; they consider a (complexified) phase space consisting
of pairs of N ×N matrices p,q, identified with the cotangent bundle of X = MatN×N(C).
The starting point of these computations is a Lax system of type⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂z
Φ(z; t) = A(z; q,q−1,p, t)Φ(z; t),

∂

∂t
Φ(z; t) = B(z; q,q−1,p, t)Φ(z; t).

(3.1.1)

In the above representation, A and B are 2 × 2 block matrices with blocks of arbitrary size
N . These matrices depend rationally on parameter z ∈ CP1, called the spectral parameter,
and they are polynomials in matrices q,p of size N × N . The matrices q,p depend on t

both implicitly and explicitly.
The compatibility condition on the system (3.1.1) results in the zero-curvature equation
represented by

∂tA− ∂zB + [A,B] = 0. (3.1.2)

Remark 3.1.1. The original work of [3] consists also of a type of Lax system for PIII in
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terms of {q,q−1,p}. This exceptional case is excluded from the computations in this project.

Considering the set up as above, the (complex) symplectic form is then

ω = Tr( p ∧ q) =
∑︂
i,j

pij ∧ qji ⇔ {pab, qcd} = δadδbc. (3.1.3)

Consider a Hamiltonian H(p,q) which is conjugation invariant

H(p,q) = H(CpC−1, CqC−1)

with C ∈ GLN(C), then Noether’s theorem guarantees the conservation of the associated
momentum M = [p,q]. This allows us to fix a particular value of the momentum M and
investigate the reduced system on the leaf of this value. If the momentum M is fixed to be
of the form

M = [p, q] = ig(1 − vT v), with v := (1, . . . , 1) (3.1.4)

then one can apply a theorem used in the classical theory of Calogero system and due to
Kazhdan, Kostant, and Sternberg [24] which allows us to diagonalize q = CXC−1 with
X = diag(x1, . . . , xN) and in such a way that the matrix Y = C−1pC is of the form

Y = diag(y1, . . . , yN) +
[︄

ig

xj − xk

]︄N

j,k=1
. (3.1.5)

The variables yj’s are the momenta conjugated to the eigenvalues xj in the reduced system.
Then the first result of [3] was that all the Calogero–Painlevé systems of [34] are the reduction
on the particular value of the momentum (3.1.4) of a list of conjugation-invariant hamiltonian
systems:
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˜︂HI = Tr

(︄
p2

2 − q3

2 − tq
4

)︄

˜︂HII = Tr

(︄
p2

2 − 1
2(q2 + t

2)2 − θq
)︄

t˜︂HIII = Tr

(︄
p2q2 −

(︂
q2 + (θ0 − θ1)q − t

)︂
p − θ1q

)︄

˜︂HIV = Tr

(︄
pq
(︂
p − q − t

)︂
+ θ0p − (θ0 + θ1)q

)︄

t˜︂HV = Tr

(︄
p(p + t)q(q − 1) + (θ0 − θ2)pq + θ2p + (θ0 + θ1)tq

)︄

t(t− 1)˜︂HV I = Tr

(︄
qpqpq − tpq2p + tpqp − pqpq − θqpq + t(θ0 + θ1)pq+

+ (θ0 + θt)pq − θ0tp − 1
4(k2 − θ2)q

)︄
.

(3.1.6)

where θ0, θ1, θ2, θt, k, are arbitrary parameters in C and for the case V I, θ = θ0+θ1+θt. These
Hamiltonians should be thought of as non–commutative polynomials in p,q generalizing the
Okamoto Hamiltonians for the six Painlevé equations.

They showed that these Hamiltonians describe the isomonodromic deformations of a
ODE in the z–plane for a matrix Φ(z) of size 2N × 2N , which reduces, for N = 1 to the
classical Lax pair formulation for Painlevé equations (see, e.g. [21]).

Painlevé VI. We start the explanations corresponding to the details of these computations
by the Painlevé VI case; the starting point is the Lax system given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ
∂z

=
⎛⎝A0

z
+ A1

z − 1 + At

z − t

⎞⎠Φ = A(z)Φ,

∂Φ
∂t

= −

⎛⎝ At

z − t
+B

⎞⎠Φ = B(z)Φ,

(3.1.7)

where the matrices are explicitly given by
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A0 :=

⎡⎢⎣ −1 − θt
q
t

− 1

0 0

⎤⎥⎦ , A1 :=

⎡⎢⎢⎢⎢⎣
−qp + 1

2(k + θ) 1

(θ − qp)qp + 1
4(k2 − θ2) qp + 1

2(k − θ)

⎤⎥⎥⎥⎥⎦ ,

At :=

⎡⎢⎢⎢⎣
qp − θ0 −q

t

t(−θ0 + pq)p −pq

⎤⎥⎥⎥⎦ , B :=

⎡⎢⎢⎢⎢⎢⎢⎣
t
(︃

[q,p]+ − θ0

)︃
+ θq − [qp,q]+

t(t− 1) 0

−θ0p + pqp 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
(3.1.8)

The expression [X, Y ]+ stands here for the anti-commutator of the noncommutative symbols
X, Y , namely [X, Y ]+ = XY + Y X. The partitioning is in N × N block, and all scalars
are automatically considered mutliple of the identity matrix of size N . The isomonodromic
equations consist in the “zero-curvature” equations for the pair

∂A(z)
∂t

− ∂B(z)
∂z

+ [A(z),B(z)] = 0 (3.1.9)

and, with some elementary algebra, they become the following evolutionary system for the
operators p,q: {︄

q̇ = A(q,p)
ṗ = B(q,p), (3.1.10)

where the non-commutative polynomials A,B are given by

t(t− 1)A(q,p) := − θ0t+ (θ0 + θt)q + (θ0 + θ1)tq − θq2 − 2qpq + t[p,q]+
− [tp,q2]+ + [qpq,q]+

t(t− 1)B(q,p) :=1
4(k2 − θ2) − (θ0 + θt)p − (θ0 + θ1)tp + θ[q,p]+ − tp2+

+ t[q,p2]+ + p(2q − q2)p − [q,pqp]+.

The key observation, which is the initial thrust of our project, is the following: in the above
derivation of the zero curvature equations the symbols p,q can be taken in some arbitrary
non-commutative algebra. In the case of [3] where p,q are matrices, the above equations
turn out, by inspection, to be Hamiltonian equations with respect to symplectic structure
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(3.1.3) with a Hamiltonian given by

t(t− 1)H =Tr
(︃

qpqpq − tpq2p + tpqp − pqpq − θqpq + t(θ0 + θ1)pq + (θ0 + θt)pq−

− θ0tp − 1
4(k2 − θ2)q

)︃
.

(3.1.11)
Analogous considerations apply to each of the other cases, and the result of these

computation is summarized bellow.

Painlevé V. The initial consideration of this computation is the Lax system
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Φ
∂z

=
⎛⎝− tE + A0

z
+ A1

z − 1

⎞⎠Φ,

∂Φ
∂t

= BΦ,

(3.1.12)

where the matrices are given by

E :=
⎡⎣ 0 0

0 1

⎤⎦ , A0 :=

⎡⎢⎢⎣
Z1 − Z1q Z1Z2

t− tq tZ2

⎤⎥⎥⎦ , A1 :=

⎡⎢⎢⎣
S1 S1S2

tq tqS2

⎤⎥⎥⎦ ,

B :=

⎡⎢⎢⎢⎢⎢⎣
0 1

t
(Z1Z2 + S1S2)

1 −z + tq + [p,q] + 1 − θ0 − 2θ1 − θ2

t

⎤⎥⎥⎥⎥⎥⎦
(3.1.13)

where

Z1 := qp + θ0 + θ1, Z2 := q2p − qp + (θ0 + θ1)q − θ1

t
,

S1 := qpq − pq + (θ0 + θ1)q + θ2, S2 := −qp − p + θ0 + θ1

t
.

The resulting equations of motion are obtained as the following⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q̇ = [p,q2]+ − [p,q]+ + t(q2 − q) + (θ0 − θ2)q + θ2

t

ṗ = −[p2,q]+ + p2 − t([p,q]+ + θ0 + θ1) + (θ2 − θ0 + t)p
t

(3.1.14)
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which results in the Hamiltonian operator

t˜︂HV = Tr

(︄
p(p + t)q(q − 1) + (θ0 − θ2)pq + θ2p + (θ0 + θ1)tq

)︄
(3.1.15)

Painlevé IV. The computation starts with the Lax system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ
∂z

=

⎡⎢⎢⎢⎢⎢⎣
−pq
z

qp + θ0 + θ1 − pqp + θ0p
z

1 + q
z

−z + t+ qp + θ0

z

⎤⎥⎥⎥⎥⎥⎦Φ,

∂Φ
∂t

=

⎡⎢⎢⎣
0 −qp − θ0 − θ1

−1 z − q − t

⎤⎥⎥⎦Φ,

(3.1.16)

with the following equations of motion for p and q:⎧⎪⎪⎨⎪⎪⎩
q̇ = [p,q]+ − q2 − tq + θ0

ṗ = [p,q]+ − p2 + tpθ0 + θ1

(3.1.17)

and the Hamiltonian operator

˜︂HIV = Tr
(︂
pq
(︂
p − q − t

)︂
+ θ0p − (θ0 + θ1)q

)︂
(3.1.18)

Painlevé III. The Lax system to start with is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ
∂z

=

⎡⎢⎢⎢⎢⎢⎣
qp + θ1

z − 1 t− qpq + θ1q
z − 1

−p − 1
z

+ p
z − 1

θ0

z
− pq
z − 1

⎤⎥⎥⎥⎥⎥⎦Φ,

∂Φ
∂t

=

⎡⎢⎢⎢⎢⎢⎣
pq − θ0

t
z

1
t

−qp + θ1

t

⎤⎥⎥⎥⎥⎥⎦Φ,

(3.1.19)
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which yields the following equations of motion:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q̇ = [p,q2]+ − q2 + (θ1 − θ0)q + t

t

ṗ = −[p2,q]+ + [p,q]+ − (θ1 − θ0)p + θ1

t

(3.1.20)

resulting in the Hamiltonian operator

t˜︂HIII = Tr

(︄
p2q2 −

(︂
q2 + (θ0 − θ1)q − t

)︂
p − θ1q

)︄
(3.1.21)

Remark 3.1.2. The Hamiltonian (3.1.21) is one of the Hamiltonian operators corresponding
to the Calogero-Painlevé III equation. Depending on the choice of the spectral type we either
can obtain the above operator or one of the below operators:

Type D7 : tH = Tr(pqpq − θpq + tp + q),

Type D8 : tH = Tr(pqpq + pq − q − tq−1).

Painlevé II. The Lax system to begin with is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ
∂z

=

⎡⎢⎢⎢⎢⎢⎣
i
z2

2 + iq2 + i
t

2 zq − ip − θ

z

zq + ip − θ

z
−iz

2

2 − iq2 − i
t

2

⎤⎥⎥⎥⎥⎥⎦Φ,

∂Φ
∂t

=

⎡⎢⎢⎢⎣
i
z

2 q

q −iz2

⎤⎥⎥⎥⎦Φ,

(3.1.22)

resulting in the following equations of motion:⎧⎪⎪⎨⎪⎪⎩
q̇ = p

ṗ = 2q3 + tq + θ

(3.1.23)

and the Hamiltonian operator

˜︂HII = Tr

(︄
p2

2 − 1
2(q2 + t

2)2 − θq
)︄

(3.1.24)
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Painlevé I. For the first Painlevé equation, the Lax system to initiate the computation is
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ
∂z

=

⎡⎢⎢⎢⎣
p z − q

z2 + zq + q2 + t

2 −p

⎤⎥⎥⎥⎦Φ,

∂Φ
∂t

=

⎡⎢⎢⎢⎢⎣
0 1

2

z

2 + q 0

⎤⎥⎥⎥⎥⎦Φ,

(3.1.25)

which gives the following equations of motion:⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̇ = p

ṗ = 3
2q2 + t

4

(3.1.26)

resulting in the Hamiltonian operator

˜︂HI = Tr

(︄
p2

2 − q3

2 − tq
4

)︄
(3.1.27)

3.2 Quantization
In view of the considerations above, we want to consider the canonical quantization of the
symplectic structure (3.1.3). The main logic is that we keep equations (3.1.10), (3.1.14),
(3.1.17), (3.1.20), (3.1.23), and (3.1.26), and seek a Hamiltonian formulation with quantum
Hamiltonians. The canonical quantization in “Schrödinger” representation amounts to
considering the entries of q as multiplication operators and the entries of p as corresponding
differential operators as follows:

qij −→ qij and pij −→ ℏ
∂

∂qji

. (3.2.1)

The effect of this canonical quantization is that we cannot simply take the expressions
(3.1.6) as Hamiltonians generating the relevant equations of motions like (3.1.10), (3.1.14),
(3.1.17), (3.1.20), (3.1.23), and (3.1.26), because there are issues of normal ordering. To
explain the issue we point out that in the classical case the expressions Tr(pq) and Tr(qp)
coincide, but if p,q are quantum operators (3.2.1) then these two expressions differ. This
should explain why the quantum version of the Hamiltonians (3.1.6) will be slightly different
due to the fact that the correct scheme depends on the non-commutativity of the traces in
this case. Note that the commutation relations that lead to these Hamiltonian operators
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read the following equations for each of the Calogero-Painlevé equations:

ℏq̇ = [HJ ,q] and ℏṗ = [HJ ,p] J ∈ (I, . . . , V I) (3.2.2)

Therefore the correct Hamiltonian operators to which we apply the quantization, are the
following operators

t˜︂HIII = Tr

(︄
p2q2 + q2p2

2 − q2p + pq2

2 − (θ0 − θ1)qp + tp − θ1q
)︄
,

˜︂HIV = Tr

(︄
pqp − pq2 + q2p

2 − tpq + θ0p − (θ0 + θ1)q
)︄
,

t˜︂HV = Tr

(︄
p2q2 + q2p2

2 − p2q + qp2

2 + t(pq2 + q2p)
2 + (θ0 − θ2 − t)pq+

+ θ2p + (θ0 + θ1)tq
)︄
,

t(t− 1)˜︂HV I = Tr

(︄
qpqpq − tpq2p + tpqp − pqpq + qpqp

2 − θqpq + t(θ0 + θ1)pq+

+ (θ0 + θt)pq − θ0tp − 1
4(k2 − θ2)q

)︄
.

(3.2.3)
whereas the Painlevé I and Painlevé II Hamiltonians remain formally the same. Note that
we use p,q here and below to denote the quantum operators, without further notice.

Example 3.2.1. We compute the both quantum and classical commutator of p and
Tr(pqpq) to show the origin of the difference in the quantum Hamiltonians (3.2.3). We
start with the classical computation where {pij, qkℓ} = δiℓδjk:{︂

p, T r(pqpq
)︂
} = 2pqp. (3.2.4)

In computing this we have used also the cyclicity of the trace.
Vice versa, considering the quantized operators, the same expression yields

[p, T r(pqpq)] =
∑︂
i,j

∑︂
α,β,µ,ν

[︂
pij, pαβqβµpµνqνα

]︂
=

=
∑︂
i,j

∑︂
α,β,µ,ν

pαβ

(︂
pijqβµpµνqνα − qβµpµνqναpij

)︂ (3.2.5)

we add and subtract qβµpijpµνqνα to the expression inside the bracket, combining the terms
and using the commutation relation [pij, qkℓ] = ℏδiℓδjk:

[p, T r(pqpq)] =ℏ
∑︂
i,j

∑︂
α,β,µ,ν

pαβ (δiµδjβpµνqνα + δiαδjνqβµpµν) =

=ℏp2q + ℏpqp = 2ℏpqp + ℏ2p.
(3.2.6)
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Since the desired term in the equation of motion is 2ℏpqp we need to replace the term
Tr(pqpq) in the Hamiltonian with a “symmetrized” version 1

2Tr(pqpq + qpqp). Indeed,
one then similarly computes:

[p, 1
2Tr(pqpq + qpqp)] = 2ℏpqp (3.2.7)

which is one of the terms that appears in the expression of A in equation of motion (3.1.11).

3.2.1 Quantization in radial form
Having established the correct context of the quantization of the isomonodromic equations,
we proceed now to the quantum version of the Kazhdan-Kostant-Sternberg reduction (3.1.4).
The first step is to express the quantum Hamiltonians (3.2.3) in terms of the eigenvalues. The
fact that this is at all possible is simply a consequence of the invariance of the Hamiltonians
under conjugations. To do so, we need to use the Harish-Chandra homomorphism [10].

Definition 3.2.2. Let M be the manifold consisting of the diagonalizable matrices and
denote

D(M)G and D(Diag(GLn))W

the adjoint-invariant subset of differential operators over M and the Weyl-invariant subset
of differential operators over diagonal matrices, respectively.

The canonical isomorphism

Hc : D(M)G −→ D(Diag(GLn))W (3.2.8)

is called the Harish-Chandra map.

This means the following; for a character function Ψ(Q) (i.e. Ψ(Q) = Ψ(GQG−1),
G ∈ GLn) and L a differential operator invariant under the adjoint map we have

(LΨ)|Diag = Hc(L)(Ψ|Diag)

where Hc(L) is a differential operator on the eigenvalues.
Our goal now is to make this isomorphism completely explicit and subsequently express

all Hamiltonians in (3.2.3) as differential operators acting on the eigenvalues when applied
to character functions or pseudo-character functions, namely Ψ(q) = Ψ(GqG−1)eθ(G,q), with
θ an appropriate cocycle.

Explicit construction of the Harish-Chandra isomorphism. To make the Harish-
Chandra homomorphism (3.2.8) explicit, we write the matrix Q = Z + M with Z diagonal
and M off-diagonal: we then act with an infinitesimal conjugation up to order two in M to
diagonalize it. Concretely this means the following; we conjugate the matrix Q = Z +M by
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a matrix of the form G := eA(1)+A(2) where A(1) is assumed to be of first order in the entries
of M and A(2) of second order and both are off–diagonal matrices.

We then impose that the conjugation of Q by G is diagonal up to order 2. Then

e
ad

A(1)+A(2) (Z +M) = Z +M + [A(1) + A(2), Z +M ] + 1
2[A(1), [A(1), Z]] + O(3) =

= Z +M + [A(1), Z] + [A(1),M ] + [A(2), Z] + 1
2[A(1), [A(1), Z]] + O(3)

(3.2.9)
where O(3) denotes terms of order 3 or higher in the entries of M . We need to impose

that the result is a diagonal matrix up to the indicated order. Separating the equations
according to their order in M we obtain

[Z,A(1)] =M at order 1, (3.2.10)

[Z,A(2)] =[A(1),M ] + 1
2[A(1), [A(1), Z]] at order 2. (3.2.11)

The matrices A(1,2) are off-diagonal, and the adZ operator is invertible on the subspace of
off-diagonal matrices, so that we can solve the two equations above to obtain

A
(1)
ab = Mab

za − zb

A
(2)
ab = −1

2
[A(1), [A(1), Z]]ab

za − zb

= 1
2

[A(1),M ]ab

za − zb

= MacMcb

(za − zc)(za − zb)
.

(3.2.12)
Substituting (3.2.12) into (3.2.9) we obtain a diagonal matrix ˜︁Z which is a shift of the

marix Z as follows

˜︁Z =Z + 1
2[A(1),M ]D + O(3) = A(2) + 1

2diag
(︄∑︂

c

M∗c

z∗ − zc

Mc∗ −M∗c
Mc∗

zc − z∗

)︄
+ O(3) =

=Z + diag
(︄∑︂

d

M∗dMd∗

z∗ − zd

)︄
.

(3.2.13)
We now show how to use the above diagonalization to second order (3.2.13) to construct
the Harish–Chandra homomorphism; we anticipate that the reason why we expand up
to order 2 is that all the operators we consider are at most quadratic in the momenta p
and hence translate to differential operators of order 2. If we had to consider the Harish-
Chandra homomorphism for operators of higher order, we would have to perform the above
diagonalization up to the corresponding order.

Space of radial functions. When considering the quantum version of the Kazhdan-
Kostant-Sternberg reduction, as explained in chapter 2, the choice of the special value of
the momentum M (3.1.4) is replaced by the requirement that the quantum operators act on
specific representations. We start with a general discussion on equivariant functions.

Let V be a vector space carrying a representation γ ofG = GLN and let Ψ : MatN×N(C) =
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Lie(G) → V an γ–equivariant function in the sense that

Ψ(Q) = γ(g−1)Ψ(gQg−1) (3.2.14)

where g ∈ GLN(C) and γ : GLN(C) → Aut(V) is a representation. Let us denote

Hγ :=
{︄

Ψ : MatN×N(C) → V, γ–equivariant
}︄
. (3.2.15)

For simplicity we denote by the same symbol γ the representation of SLN , the corresponding
representation of the Lie algebra g = slN as well as its natural extension to the universal
enveloping algebra U(g). We recall that the zero–weight subspace of the SLN–representation
V is

V(0) :=
⋂︂

H∈h

Kerγ(H) (3.2.16)

where h is the Cartan subalgebra of slN (traceless diagonal matrices).

Lemma 3.2.3. Let D ⊂ MatN×N(C) consist of the subspace of diagonal matrices. Then any
equivariant function Ψ restricts to a function from D to V(0).

Proof. Consider a matrix g = eϵH with H ∈ h; then Ψ(Q) = γ(e−ϵH)Ψ(eϵHQe−ϵH).
Restricting Q = Z ∈ D we have Ψ(Z) = γ(e−ϵH)Ψ(Z). We now take the derivative with
respect to ϵ at ϵ = 0 and we obtain γ(−H)Ψ(Z) = 0. Since H is arbitrary in h it follows
that Ψ(Z) ∈ V(0). ■

Following [10], the quantum Hamiltonian reduction that correspond to the Kazdan-
Kostant-Sternberg orbit, consists in taking a particular representation γ of slN ; the main
feature of the g–module (which we denote by Vκ) is that the zero weight space Vκ(0) is
unidimensional. We denote with c a spanning element. Specifically, Vκ consists of the space
of functions of the form

F (ξ1, . . . , ξN) =
⎛⎝ N∏︂

j=1
ξj

⎞⎠κ

f(ξ⃗) (3.2.17)

where f(ξ⃗) is a rational function with zero degree of homogeneity. The representation of the
Lie algebra slN is then the one obtained by restriction of the following glN representation

γ(Eab) = ξa
∂

∂ξb

, a, b = 1, . . . , N. (3.2.18)

It is easy then to see that Vκ(0) = C{∏︁N
j=1 ξ

κ
j }.

Keeping this in mind we illustrate the type of computations needed to compute the
extended Harish–Chandra homomorphism in the following example.

Example 3.2.4. To illustrate the type of computations necessary, we consider the quantum
radial reduction of the operator Tr(qkp2). Using the form of the quantum operators p,q we
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obtain

Tr(qkp2)Ψ(Q) =
(︄ ∑︂

ρ,σ,τ

(qk)ρσpστpτρ

)︄
Ψ(Q) =

(︄
ℏ2 ∑︂

ρ,σ,τ

(qk)ρσ∂qτσ∂qρτ

)︄
Ψ(Q). (3.2.19)

Since the function Ψ is γ–equivariant and the operator is Ad–invariant we can write
Ψ(Q) = γ(g−1)Ψ(Z) where g is the matrix diagonalizing Q and Z is the diagonal matrix of
its eigenvalues (this can be done on the set of diagonalizable matrices Q whose complement of
non–diagonalizable matrices is of zero measure and hence inessential to our considerations).
We then consider matrices of the form Q = Z + M with Z diagonal and M off–diagonal
and its diagonalization up to order 2 as in (3.2.9). We then need to perform the derivatives
and, at the end of the computation, restrict them to the locus of diagonal matrices Q = Z.
Using equation (3.2.13) and the matrices A(1,2) introduced in (3.2.11) we can continue the
above computation by noticing that the terms involving the multiplication operator q can be
directly evaluated at Q = Z setting M = 0:

Tr(qkp2)Ψ(Q) =
(︄
ℏ2 ∑︂

ρ,σ,τ

δρσz
k
σ∂qτσ∂qρτ

)︄
γ(e−A(1)−A(2))Ψ( ˜︁Z) =

=
(︄
ℏ2∑︂

σ,τ

zk
σ∂qτσ∂qστ

)︄
γ(e−A(1)−A(2))Ψ( ˜︁Z).

(3.2.20)

The second order operator ∑︁ρ,σ zσ∂qσρ∂qρσ written in terms of Z,M becomes the operator∑︂
ρ

zk
ρ∂

2
zρ

+
∑︂
ρ,σ
ρ̸=σ

zk
ρ∂Mσρ∂Mρσ ; the part involving the derivatives with respect to zρ can be directly

evaluated at Q = Z while we postpone the evaluation of the part involving the derivatives in
Mρ,σ:

(3.2.20) =ℏ2∑︂
σ

zk
σ∂

2
zσ

Ψ(Z) + ℏ2 ∑︂
σ,τ

σ ̸=τ

zk
σ∂Mτσ∂Mστγ(e−A(1)−A(2))Ψ( ˜︁Z)

⏞ ⏟⏟ ⏞
∗

(3.2.21)

where ˜︁Z = Z + diag
(︄∑︁

d
M⋆dMd⋆

z⋆−zd

)︄
as in (3.2.13). Consider now the term marked with an

asterisk: since ˜︁Z −Z is a quadratic expression in the entries of M , if we differentiate once
Ψ or γ by Mρσ, by the chain rule there will be a multiplication by entries of M in the result.
Thus, subsequent evaluation at M = 0 will eliminate these terms. Therefore we need to
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consider the second order operator acting on γ or Ψ separately. When acting on Ψ we have

∑︂
ρ,σ
ρ̸=σ

zk
σ∂Mσρ∂MρσΨ( ˜︁Z)

⃓⃓⃓⃓
⃓
M=0

=
∑︂
ρ,σ
ρ̸=σ

zk
σ

∂

∂Mσρ

(︄
Mσρ∂zσΨ
zσ − zρ

+ Mσρ∂zρΨ
zρ − zσ

)︄ ⃓⃓⃓⃓
⃓
M=0

=

=
∑︂
ρ,σ
ρ̸=σ

zk
σ

(︄
∂zσ − ∂zρ

zσ − zρ

)︄
Ψ(Z).

(3.2.22)

For the computation of the second term involving the representation γ we note that

∂MστA
(1) =

∑︂
σ,τ

σ ̸=τ

Eστ

zσ − zτ

, ∂Mτσ∂MστA
(1) = 0

∂MστA
(2) =

∑︂
σ,τ,ν

ν ̸=σ ̸=τ

MτνEσν

(zσ − zτ )(zσ − zν) +
∑︂
σ,τ,µ

µ̸=σ ̸=τ

MµσEµτ

(zµ − zσ)(zµ − zτ ) , ∂Mτσ∂MστA
(2) = 0.

(3.2.23)
Therefore the action of these differential operators on the group element e−A(1)−A(2) gives
(retaining the terms up to order 2 in M in the expansion of the exponential, since all higher
order terms will give zero contribution when evaluated at M = 0)

∂Mστ e
−A(1)−A(2) = −∂MστA

(1) − ∂MστA
(2) + [∂MστA

(1), A(1)]+
2

∂Mτσ∂Mστ e
−A(1)−A(2)

⃓⃓⃓⃓
⃓
M=0

= − [Eτσ, Eστ ]+
2(zσ − zτ )2 .

(3.2.24)

Here Eτσ denote the elementary matrices. Note also that EτσEστ = Eττ are diagonal matrices
and [Eτσ, Eστ ]+ = Eττ + Eσσ. Hence, the equation (3.2.21) yields

Tr(qkp2)Ψ(Q) =ℏ2∑︂
σ

zk
σ∂

2
zσ

Ψ(Z)+

+ℏ2 ∑︂
σ,τ

σ ̸=τ

zk
σ

(︄
− γ([Eτσ, Eστ ]+)

2(zσ − zτ )2 Ψ( ˜︁Z) +
(︄
∂zσ − ∂zτ

zσ − zτ

)︄
γ(e−A(1)−A(2))Ψ( ˜︁Z)

)︄⃓⃓⃓⃓
⃓
M=0

.

(3.2.25)
To complete the computation, we recall that under the assumption for the representation

space Vκ (see (3.2.18)) we easily see that γ(EστEτσ) = κ(κ+ 1)IdVκ(0). Recall also (Lemma
3.2.3) that Ψ evaluated on diagonal matrices takes values in the zero weight space Vκ(0).
Therefore we conclude that γ([EτσEστ ]+) reduces simply to the multiplication by 2κ(κ+ 1).

This leads finally to the result
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Tr(qkp2)Ψ(Q) =
(︄
ℏ2∑︂

σ

zk
σ∂

2
zσ

− ℏ2κ(κ+ 1)
∑︂
σ,τ

σ ̸=τ

zk
σ

(zσ − zτ )2 + ℏ2 ∑︂
σ,τ

σ ̸=τ

zk
σ∂zσ − zk

τ ∂zτ

zσ − zτ

)︄
Ψ(Z)−

− ℏ2
k−1∑︂
j=1

∑︂
σ

zj
σ

∑︂
τ

zk−j−1
τ ∂zτ Ψ(Z) − ℏ2(N − k)

∑︂
τ

zk−1
τ ∂zτ Ψ(Z).

(3.2.26)

Throughout the following section, we use this method to obtain the quantized Calogero-
Painlevé I-VI Hamiltonian operators.

3.3 Quantized Calogero-Painlevé I-VI
We apply the quantum Hamiltonian KKS reduction explained in the previous sections to
the list of Hamiltonians (3.2.3).

Moreover, note that unlike the classical case, in the quantum case we have non-
commutative operator-valued matrices p and q so that Tr(pq) is not equal to Tr(qp). For
example, we have the following

Tr(pq) =Tr(qp) + ℏN2

Tr(pqp) =Tr(qp2) + ℏNTr(p)
Tr(qpq) =Tr(q2p) + ℏNTr(q)
Tr(pq2) =Tr(q2p) + 2ℏNTr(q)

Tr(p2q2) =Tr(q2p2) + 2ℏNTr(qp) + 2ℏTr(q)Tr(p) + ℏ2N(1 +N2) .

(3.3.1)

Calogero-Painlevé I. We start from the Hamiltonian operator corresponding to Calogero-
Painlevé I and we apply it to the γ–equivariant wave function Ψ(Q), and then we apply the
quantization (3.2.1) to the result.

˜︂HIΨ(Q) =Tr
(︄

p2

2 − q3

2 − tq
4

)︄
Ψ(Q) =

(︄
1
2
∑︂
ρ,σ

pρσpσρ − 1
2
∑︂
ρ,σ,τ

qρσqστqτρ − t

4
∑︂
ρ,σ

δρσqρσ

)︄
Ψ(Q)

(3.3.2)
applying the quantization yields

˜︂HIΨ(Q) =ℏ2

2
∑︂
ρ,σ

∂qσρ∂ρσγ(e−A(1)−A(2))Ψ( ˜︁Z)⏞ ⏟⏟ ⏞
∗

−1
2
∑︂
ρ,σ,τ

δρσzσδστzτδτρzργ(e−A(1)−A(2))Ψ( ˜︁Z)−

− t

4
∑︂

ρ

zρΨ(Z)

(3.3.3)
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where ˜︁Z = Z + diag
(︄∑︁

d
M⋆dMd⋆

z⋆−zd

)︄
as in (3.2.13). Note that the terms involving only the

multiplication operator q can be directly evaluated at Q = Z setting M = 0. The second
order operator ∑︁ρ,σ ∂qσρ∂qρσ in terms of Z,M becomes the operator

∑︂
ρ

∂2
zρ

+
∑︂
ρ,σ
ρ̸=σ

∂Mσρ∂Mρσ as

illustrated in the example of the operator Tr(qkp2); according to the general result of the
Example 3.2.4, we substitute the following for the term (∗)
∑︂
ρ,σ

∂qσρ∂ρσγ(e−A(1)−A(2))Ψ( ˜︁Z) =

=
(︄
ℏ2∑︂

σ

∂2
zσ

− ℏ2κ(κ+ 1)
∑︂
σ,τ

σ ̸=τ

1
(zσ − zτ )2 + ℏ2 ∑︂

σ,τ
σ ̸=τ

∂zσ − ∂zτ

zσ − zτ

)︄
Ψ(Z)

(3.3.4)
Therefore, the quantized Hamiltonian operator corresponding to Calogero-Painlevé I will be
the following

˜︂HI = ℏ2

2
∑︂
ρ,σ
ρ̸=σ

∂zσ − ∂zρ

zσ − zρ

− ℏ2κ(κ+ 1)
2

∑︂
ρ,σ
ρ̸=σ

1
(zσ − zρ)2 + ℏ2

2
∑︂

ρ

∂2
zρ

−
∑︂

ρ

(︄
z3

ρ

2 + tzρ

4

)︄
(3.3.5)

Calogero-Painlevé II. Similar to the previous case, we apply the Hamiltonian operator
corresponding to Calogero-Painlevé II to the γ–equivariant wave function Ψ(Q), and then
we apply the quantization (3.2.1) to the result:

˜︂HIIΨ(Q) =Tr
(︂p2

2 − 1
2(q2 + t

2)2 − θq
)︂
Ψ(Q) =

=
(︄
ℏ2

2
∑︂
ρ,σ

∂qσρ∂qρσ − 1
2
∑︂
ρ,σ

(︂
(δ2

σρq
2
ρσ) + t

2
)︂2

− θδσρqρσ

)︄
Ψ(Q).

(3.3.6)

Following the same logic used in the example (3.2.4) we can continue the computation

˜︂HIIΨ(Q) =ℏ2

2
∑︂
ρ,σ

∂qσρ∂qρσγ(e−A(1)−A(2))Ψ( ˜︁Z) − 1
2
∑︂

ρ

(z2
ρ + t

2)2Ψ(Z) − θ
∑︂

ρ

zρΨ(Z).

(3.3.7)
The term including the derivatives with respect to q will result in differential operators with
respect to z and M , hence

(3.3.7) =ℏ2

2
∑︂

ρ

∂2
zρ

Ψ(Z) + ℏ2

2
∑︂
ρ,σ
ρ̸=σ

∂Mσρ∂Mρσ

(︂
γ(e−A(1)−A(2))Ψ( ˜︁Z)

)︂
⏞ ⏟⏟ ⏞

∗

−1
2
∑︂

ρ

(z2
ρ + t

2)2Ψ(Z)−

− θ
∑︂

ρ

zρΨ(Z).

(3.3.8)
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The term indicated by the asterisk is dealt with in complete analogy to the similarly
marked term in (3.2.21). We thus obtain

˜︂HIIΨ(Q) =

=ℏ2

2
∑︂

ρ

∂2
zρ

Ψ(Z) + ℏ2

2
∑︂
ρ,σ
ρ̸=σ

(︄
−1

2γ
(︄

[Eρσ, Eσρ]+
(zσ − zρ)2

)︄
+ γ(e−A(1)−A(2))

(︄
∂zρ − ∂zσ

zρ − zσ

)︄)︄
Ψ( ˜︁Z)−

− 1
2
∑︂

ρ

(z2
ρ + t

2)2Ψ(Z) − θ
∑︂

ρ

zρΨ(Z).

(3.3.9)
Hence, putting these all together, we obtain

˜︂HIIΨ(Q) =ℏ2

2
∑︂

ρ

∂2
zρ

Ψ(Z) − ℏ2κ(κ+ 1)
2

∑︂
ρ,σ
ρ̸=σ

1
(zρ − zσ)2 Ψ(Z) + ℏ2

2
∑︂
ρ,σ
ρ̸=σ

∂zρ − ∂zσ

zρ − zσ

Ψ(Z)−

− 1
2
∑︂

ρ

(z2
ρ + t

2)2Ψ(Z) − θ
∑︂

ρ

zρΨ(Z).

(3.3.10)
The equation takes a more convenient form if we apply to the wave function a gauge
transformation of the form

Ψ(Z) = exp
[︄
−1
ℏ
∑︂

α

(︄
z3

α

3 + t

2zα

)︄]︄
Φ(Z). (3.3.11)

As a result, the Schrödinger equation ℏ∂tΨ(Z) = ˜︂HIIΨ(Z) is transformed into the one with
the new Hamiltonian

ĤII =ℏ2

2
∑︂
ρ,σ
ρ̸=σ

∂zσ − ∂zρ

zσ − zρ

− ℏ2κ(κ+ 1)
2

∑︂
ρ,σ
ρ̸=σ

1
(zσ − zρ)2 + ℏ2

2
∑︂

ρ

∂2
zρ

− ℏ
∑︂

ρ

(︃
z2

ρ + t

2

)︃
∂zρ+

+
(︃1

2 − θ − ℏN
)︃∑︂

ρ

zρ.

(3.3.12)

Calogero-Painlevé III. In this section, we apply the Hamiltonian operator corresponding
to Calogero-Painlevé III to the γ–equivariant wave function Ψ(Q), and then we apply the
quantization (3.2.1) to the result:

t˜︂HIIIΨ(Q) = Tr

(︄
p2q2 + q2p2

2 − q2p + pq2

2 − (θ0 − θ1)qp + tp − θ1q
)︄

Ψ(Q) (3.3.13)

40



by applying the quantization and permuting the operators p and q we obtain

t˜︂HIIIΨ(Q) =
(︄
ℏ2 ∑︂

ρ,σ,τ,η

qρσqστ∂qητ∂qρη + ℏ2N
∑︂
ρ,σ

qσρ∂qσρ + ℏ2∑︂
ρ,σ

δρσqρσ

∑︂
τ

∂qττ −

− ℏ
∑︂
ρ,σ,τ

qρσqστ∂qρτ − (ℏN + θ1)
∑︂
ρ,σ

δρσqρσ − (θ0 − θ1)ℏ
∑︂
ρσ

qρσ∂qρσ+

+ tℏ
∑︂

ρ

∂qρρ + ℏ2N(1 +N2)
2

)︄
Ψ(Q).

(3.3.14)

Following the same argument as the example (3.2.4) and combining the similar terms the
quantized Hamiltonian operator for Calogero-Painlevé III is obtained as following

t˜︂HIII =ℏ2 ∑︂
ρ,σ
ρ̸=σ

z2
σ∂zσ − z2

ρ∂zρ

zσ − zρ

+
∑︂

ρ

(︄
ℏ2z2

ρ∂
2
zρ

− ℏ
(︂
z2

ρ + (−2ℏ + θ0 − θ1)zρ − t
)︂
∂zρ−

− (ℏN + θ1)zρ

)︄
− ℏ2κ(κ+ 1)

2
∑︂
ρ,σ
ρ̸=σ

z2
ρ + z2

σ

(zσ − zρ)2 + ℏ2N(1 +N2)
2 .

(3.3.15)

Calogero-Painlevé IV. Similar to the previous cases, we apply the Hamiltonian operator
corresponding to Calogero-Painlevé IV to the γ–equivariant wave function Ψ(Q), and then
we apply the quantization (3.2.1) to the result:

HIV Ψ(Q) = Tr

(︄
pqp − pq2 + q2p

2 − tpq + θ0p − (θ0 + θ1)q
)︄

Ψ(Q) (3.3.16)

by commuting the operators and combining the similar terms we obtain

HIV Ψ(Q) =
(︄ ∑︂

ρ,σ,τ

qστpρσpτρ −
∑︂
ρ,σ,τ

qρσqστpτρ − t
∑︂
ρ,σ

qσρpρσ + (θ0 + ℏN)
∑︂
ρ,σ

δρσpρσ−

− (θ0 + θ1 + ℏN)
∑︂
ρ,σ

δρσqρσ − tℏN2
)︄

Ψ(Q)
(3.3.17)

we apply the quantization and the same procedure as in the example (3.2.4) is considered,
therefore the computation continues as the following

HIV Ψ(Q) =
(︄
ℏ2 ∑︂

ρ,σ,τ

qστ∂qσρ∂qρτ − ℏ
∑︂
ρ,σ,τ

qρσqστ∂qρτ − tℏ
∑︂
ρ,σ

qσρ∂qσρ + ℏ(θ0 + ℏN)
∑︂

ρ

∂qρρ−

− (θ0 + θ1 + ℏN)
∑︂

ρ

qρρ − tℏN2
)︄

Ψ(Q).

(3.3.18)
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Note that, according to equations (3.2.23), the first derivatives with respect to q will vanish
as we reduce to the eigenvalues and put M = 0, the multiplication operator q will be
substituted by z directly, and the second derivatives follow the same pattern as the example
(3.2.4); putting all these together results in the quantized Calogero-Painlevé IV to be the
following operator

˜︂HIV =ℏ2 ∑︂
ρ,σ
ρ̸=σ

zσ∂zσ − zρ∂zρ

zσ − zρ

+
∑︂

ρ

(︄
ℏ2zρ∂

2
zρ

− ℏ
(︂
z2

ρ + tzρ − θ0 − ℏ
)︂
∂zρ

)︄

− ℏ2κ(κ+ 1)
∑︂
ρ,σ
ρ̸=σ

zρ

(zσ − zρ)2 − (ℏN + θ0 + θ1)
∑︂

ρ

zρ − tℏN2.
(3.3.19)

Calogero-Painlevé V. To start the computation of the quantum Calogero-Painlevé V,
we apply the Hamiltonian operator corresponding to this equation in the list (3.2.3) to the
γ-equivariant wave function Ψ(Q), and then we apply the quantization. The computation
reads the following procedure:

t˜︂HV Ψ(Q) =

Tr

(︄
p2q2 + q2p2

2 − p2q + qp2

2 + t(pq2 + q2p)
2 + (θ0 − θ2 − t)pq + θ2p + (θ0 + θ1)tq

)︄
Ψ(Q)

(3.3.20)
using the proper permutations of the multiplication operator q and the differential operator
p and applying the quantization (3.2.1) we obtain

(3.3.20) =
(︄
ℏ2 ∑︂

ρ,σ,τ,η

qρσqστ∂qητ∂qρη + ℏ2∑︂
ρ,σ

δρσqρσ

∑︂
τη

δτη∂qτη − ℏ2 ∑︂
ρ,σ,τ

qρσ∂qτσ∂qρτ +

+ tℏ
∑︂
ρ,σ,τ

qρσqστ∂qρτ +
(︂
ℏ2N + (θ0 − θ2 − t)ℏ

)︂∑︂
ρ,σ

qρσ∂qρσ+

+
(︂
θ2ℏ − ℏ2N

)︂∑︂
ρ,σ

δρσ∂qρσ +
(︂
ℏNt+ (θ0 + θ1)t

)︂∑︂
ρσ

δρσqρσ + ℏ2N(1 +N2)
2 +

+ (θ0 − θ2 − t)ℏN2
)︄

Ψ(Q).

(3.3.21)
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Applying the same logic as in the example (3.2.4) for multiplication operator q and the first
and second derivative terms, the computation continues as follows

(3.3.21) =ℏ2∑︂
ρ

z2
ρ∂

2
zρ

Ψ(Z) + ℏ2 ∑︂
ρ,σ
ρ̸=σ

z2
ρ∂Mσρ∂Mρσγ(e−A(1)−A(2))Ψ( ˜︁Z) + ℏ2∑︂

ρ

zρ

∑︂
σ

∂zσΨ(Z)−

− ℏ2∑︂
ρ

zρ∂
2
zρ

Ψ(Z) − ℏ2 ∑︂
ρ,σ
ρ̸=σ

zρ∂Mσρ∂Mρσγ(e−A(1)−A(2))Ψ( ˜︁Z) + tℏ
∑︂

ρ

z2
ρ∂zρΨ(Z)+

+
(︂
ℏ2N + (θ0 − θ2 − t)ℏ

)︂∑︂
ρ

zρ∂zρΨ(Z) + ℏ(θ2 − ℏN)
∑︂

ρ

∂zρΨ(Z)+

+ t
(︂
ℏN + θ0 + θ1

)︂∑︂
ρ

zρΨ(Z) +
(︄

(θ0 − θ2 − t)N2ℏ + Nℏ2(1 +N2)
2

)︄
Ψ(Z).

(3.3.22)
Finally, applying the result of the computations for the example (3.2.4), combining similar

terms, and rearranging, we obtain the quantum Calogero-Painlevé V Hamiltonian operator
to be the following

t˜︂HV =ℏ2 ∑︂
ρ,σ
ρ̸=σ

zσ(zσ − 1)∂zσ − zρ(zρ − 1)∂zρ

zσ − zρ

+ ℏ2∑︂
ρ

zρ(zρ − 1)∂2
zρ

− ℏ2κ(κ+ 1)
∑︂
ρ,σ
ρ̸=σ

zρ(zρ − 1)
(zσ − zρ)2

+ ℏ
∑︂

ρ

(︄
tz2

ρ +
(︂
2ℏ + (θ0 − θ2 − t)

)︂
zρ + θ2 − ℏ

)︄
∂zρ + t(ℏN + θ0 + θ1)

∑︂
ρ

zρ+

+
(︄

(θ0 − θ2 − t)N2ℏ + Nℏ2(1 +N2)
2

)︄
.

(3.3.23)

Calogero-Painlevé VI. In order to compute the quantized Hamiltonian operator
corresponding to the sixth Calogero-Painlevé equation, similar to the previous cases, we
apply the Hamiltonian operator in the list (3.2.3) assiciated to Calogero-Painlevé VI to the
γ-equivariant wave function Ψ(Q), so the computation starts with the following equation

t(t− 1)˜︂HV IΨ(Q) =Tr
(︄

qpqpq − tpq2p + tpqp − pqpq + qpqp
2 − θqpq + t(θ0 + θ1)pq+

+ (θ0 + θt)pq − θ0tp − 1
4(k2 − θ2)q

)︄
Ψ(Q).

(3.3.24)
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Then using the permutation relations and applying the quantization (3.2.1) one obtains

(3.3.24) =
⎛⎝ℏ2 ∑︂

ρ,σ,τ,η,ν

qρσqτηqνρ∂qτσ∂qνη + ℏ2∑︂
ρ,σ

δρσqρσ

∑︂
τη

qτη∂qητ +

+ ℏ(2ℏN − θ)
∑︂
ρ,σ,τ

qρσqτρ∂qτσ +
(︃
ℏ2N2 − θℏN − 1

4(k2 − θ2)
)︃∑︂

ρ,σ

δρσqρσ−

− ℏ2(t+ 1)
∑︂

ρ,σ,τ,η

qστqτη∂qσρ∂qρσ − tℏ2∑︂
ρ,σ

δρσqρσ

∑︂
τ,η

δτη∂qτη−

− ℏ (ℏN(t− 1) − t(θ0 + θ1) − (θ0 + θt))
∑︂
ρ,σ

qρσ∂qρσ + tℏ2 ∑︂
ρ,σ,τ

qστ∂qσρ∂qρτ +

+ tℏ(ℏN − θ0)
∑︂
ρ,σ

δρσ∂qρσ + ℏN2
(︄
t(θ0 + θ1) + (θ0 + θt) − ℏN

2

)︄⎞⎠Ψ(Q).

(3.3.25)
We apply the reduction instructions for q terms and the partial derivative term, the
computation continues as

(3.3.25) =ℏ2∑︂
ρ

z3
ρ∂

2
zρ

Ψ(Z) + ℏ2 ∑︂
ρ,σ
ρ̸=σ

z2
ρzσ∂Mσρ∂Mρσγ(e−A(1)−A(2))Ψ( ˜︁Z)+

+ ℏ2∑︂
ρ

zρ

∑︂
σ

zσ∂zσΨ(Z) + ℏ(2ℏN − θ)
∑︂

ρ

z2
ρ∂zρΨ(Z)+

+
(︃
ℏ2N2 − θℏN − 1

4(k2 − θ2)
)︃∑︂

ρ

zρΨ(Z) − tℏ2∑︂
ρ

z2
ρ∂zρΨ(Z)−

− tℏ2 ∑︂
ρ,σ
ρ̸=σ

z2
ρ∂Mσρ∂Mρσγ(e−A(1)−A(2))Ψ( ˜︁Z) − tℏ2∑︂

ρ

zρ

∑︂
σ

∂zσΨ(Z)−

− ℏ (tℏN + ℏN − t(θ0 + θ1) − (θ0 + θt))
∑︂

ρ

zρ∂zρΨ(Z) + tℏ2∑︂
ρ

zρ∂
2
zρ

Ψ(Z)+

+ tℏ
∑︂
ρ,σ
ρ̸=σ

zρ∂Mσρ∂ρσγ(e−A(1)−A(2))Ψ( ˜︁Z) + tℏ(ℏN − θ0)
∑︂

ρ

∂zρΨ(Z)−

− ℏ2∑︂
ρ

z2
ρ∂

2
zρ

Ψ(Z) − ℏ2 ∑︂
ρ,σ
ρ̸=σ

zρzσ∂Mσρ∂Mρσγ(e−A(1)−A(2))Ψ( ˜︁Z)+

+ ℏN2
(︄
t(θ0 + θ1) + (θ0 + θt) − ℏN

2

)︄
Ψ(Z).

(3.3.26)
The rest of the computations follows the instruction of the example (3.2.4), and the
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Hamiltonian operator corresponding to the quantum Calogero-Painlevé VI is obtained as

t(t− 1)˜︂HV I =

=ℏ2 ∑︂
ρ,σ
ρ̸=σ

zσ(zσ − 1)(zσ − t)∂zσ − zρ(zρ − 1)(zρ − t)∂zρ

zσ − zρ

+ ℏ2∑︂
ρ

zρ(zρ − 1)(zρ − t)∂2
zρ

+ ℏ
∑︂

ρ

(︄
(3ℏ − θ)z2

ρ +
(︂

− ℏ(1 + t) + t(θ0 + θ1) + θ0 + θt

)︂
zρ

+ t(ℏ − θ0)
)︄
∂zρ − ℏ2κ(κ+ 1)

∑︂
ρ,σ
ρ̸=σ

z2
ρzσ − tz2

ρ + tzρ − zρzσ

(zσ − zρ)2

+
(︂
N2ℏ2 − θNℏ − 1

4(k2 − θ2)
)︂∑︂

ρ

zρ − N3ℏ2

2 + tℏN2(θ0 + θ1) + ℏN2(θ0 + θt)

(3.3.27)
To have a symmetric representation for the second term of the third line, we use the following
equality

∑︂
ρ,σ
ρ̸=σ

z2
ρzσ − tz2

ρ + tzρ − zρzσ

(zσ − zρ)2 =
∑︂
ρ,σ
ρ̸=σ

zρ(zρ − 1)(zρ − t) + zσ(zσ − 1)(zσ − t)
(zσ − zρ)2 +

+ (N − 1)ℏ2∑︂
ρ

zρ − N(N − 1)ℏ2

2

(3.3.28)

which is obtained by adding and subtracting the symmetric compensate of each monomial
in the numerator.

Therefore, the final representation of the Hamiltonian operator for the sixth quantum
Calogero-Painlevé equation is the following operator

t(t− 1)˜︂HV I =

=ℏ2 ∑︂
ρ,σ
ρ̸=σ

zσ(zσ − 1)(zσ − t)∂zσ − zρ(zρ − 1)(zρ − t)∂zρ

zσ − zρ

+ ℏ2∑︂
ρ

zρ(zρ − 1)(zρ − t)∂2
zρ

+

+ ℏ
∑︂

ρ

(︄
(3ℏ − θ)z2

ρ +
(︂

− ℏ(1 + t) + t(θ0 + θ1) + θ0 + θt

)︂
zρ+

+ t(ℏ − θ0)
)︄
∂zρ − ℏ2κ(κ+ 1)

2
∑︂
ρ,σ
ρ̸=σ

zρ(zρ − 1)(zρ − t) + zσ(zσ − 1)(zσ − t)
(zσ − zρ)2 +

+
(︃
N2ℏ2 − θNℏ − 1

4(k2 − θ2) + (N − 1)κ(κ+ 1)ℏ2
)︃∑︂

ρ

zρ−

− N3ℏ2

2 + tℏN2(θ0 + θ1) + ℏN2(θ0 + θt) − ℏ2N(N − 1)κ(κ+ 1)
2 .

(3.3.29)
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Chapter 4

Integral solution of the multi-particle
quantum Painlevé equations

4.1 Quantum Painlevé system
Nagoya in [31], introduced the Hamiltonian operators corresponding to the quantum Painlevé
equations in the case of a single particle, satisfying the Schrödinger equation

ℏ
∂

∂t
Φ(z, t) = HJ(z, ℏ ∂

∂z
, t)Φ(z, t) J = II, III, IV , V, V I (4.1.1)

where Hamiltonian operators HJ are obtained from the polynomial Hamiltonian operators of
the Painlevé equations by substituting the operators z, ℏ ∂

∂z
into the canonical coordinates.

These operators are defined as

HII =1
2(ℏ∂z)2 − (z2 + t

2)ℏ∂z + az

tHIII =z2(ℏ∂z)2 − (z2 + bz + t)ℏ∂z + az∗

HIV =z(ℏ∂z)2 − (z2 + tz + b)ℏ∂z + a(z + t)
tHV =z(z − 1)(ℏ∂z)2 +

(︂
tz2 − (b+ c+ t)z + b

)︂
ℏ∂z

+ a(b+ c− a+ ℏ + t− tz)
t(t− 1)HV I =z(z − 1)(z − t)(ℏ∂z)2 −

(︂
(a+ b)(z − 1)(z − t) + cz(z − t)

+ dz(z − 1)
)︂
ℏ∂z + (b+ c+ d+ ℏ)a(z − t)

(4.1.2)

He showed that the quantum Hamiltonians (4.1.2) admit special solutions in integral
form when the parameters take certain specific values: in fact, the wave function Φ in Eq.

∗The coefficient of z in [31] is shifted by the parameter b, however, based on our generalization, the
generated coefficient of z is a itself.
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(4.1.1) can be taken in the following form

ΦJ
m(z, t) =

∫︂
Γ

∏︂
1≤i<j≤m

(ui − uj)2ℏ∏︂
i

(z − ui)ΘJ(ui, t)dui. (4.1.3)

Here Γ = ∏︁
j γj is a cartesian product of “admissible” contours uj ∈ γj that can be chosen

on the Riemann surface of the “master” function ΘJ . By this we mean that

• ΘJ(uj) is single valued along γj;

•
∫︁

γj
uk

j ΘJ(uj)duj is a convergent integral and not identically zero (as an expression in
k ∈ N);

• The contours are pairwise non-intersecting if ℏ ̸∈ 1
2N

For example for J = II the contours can be taken as contours starting from infinity along
one of the three directions arg(uj) = 2π

3 k, k = 0, 1, 2 and ending at infinity along any of the
remaining ones. We could also take a circle, but then the Cauchy theorem would imply that
the integral

∫︁
uτ ΘII(u)du is zero. The requirement that the different γj’s do not intersect

is due to the fact that if ℏ ̸∈ 1
2N then the power of the Vandermonde term in the integrand

(4.1.3) yields a non-single valued function.
The master functions ΘJ(ui, t) (J = II, III, IV , V, V I) are the weight functions defined

below:
ΘII = exp

(︃
−(uit+ 2

3u
3
i )
)︃

ΘIII = u−b−1
i exp

(︃
t

ui

− ui

)︃
ΘIV = u−b−1

i exp
(︄

−(uit+ u2
i

2 )
)︄

ΘV = u−b−1
i (1 − ui)−c−1exp(uit)

ΘV I = u−a−b−1
i (1 − ui)−c−1(t− ui)−d.

(4.1.4)

With the positions (4.1.4) and formula (4.1.3) the functions ΦJ
m satisfy the Schrödinger

equations (4.1.1) provided that the parameters a, b, c, d satisfy the following condition⎧⎨⎩a = mℏ and b+ c+ d = (m− 1)ℏ J = V I

a = mℏ J = II, III, IV , V
(4.1.5)

We want to generalize this result of Nagoya’s to our multi-particle quantum Hamiltonians
(3.3.12, 3.3.15,3.3.19, 3.3.23, 3.3.27) by providing a multi–particle extension of the integral
formulæ (4.1.3).
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4.2 Integral representations for the quantum Painlevé–
Calogero Schrödinger wave functions

We now explain the general approach behind the extension of Nagoya’s formulæ. We start
from an Ansatz of the form

Ψ(zρ; t) =
∫︂

Γ

∏︂
1≤i<j≤m

(ui − uj)2ℏ
N∏︂

ρ=1

m∏︂
i=1

(zρ − ui)ΘJ(ui, t)dui (4.2.1)

Observe that, similarly to Nagoya’s result, these are polynomials in the zρ’s of total degree
Nm and of degree m in each of the variables zρ. With the Ansatz (4.2.1) in place we
verify, by a direct calculation on a case-by-case basis, that they satisfy a multi-variate
generalization of (4.1.1) and identify the corresponding Hamiltonian operator. The result
of these computations, whose details are reported in the following sections, are summarized
in the following table (for readability, the range of greek indices is assumed to be 1, . . . , N
without explicit mention):
Quantum Calogero–Painlevé II

HII = ℏ
2
∑︂
ρ,σ
ρ̸=σ

∂zρ − ∂zσ

zρ − zσ

+ ℏ2

2
∑︂

ρ

∂2
zρ

− ℏ
∑︂

ρ

(z2
ρ + t

2)∂zρ +mℏ
∑︂

ρ

zρ (4.2.2)

Quantum Calogero–Painlevé III

tHIII = ℏ
∑︂
ρ,σ
ρ̸=σ

z2
ρ∂zρ − z2

σ∂zσ

zρ − zσ

+
∑︂

ρ

(︂
ℏ2z2

ρ∂
2
zρ

− ℏ(z2
ρ + (b+N − 1)zρ + t)∂zρ +mℏzρ

)︂
(4.2.3)

Quantum Calogero–Painlevé IV

HIV = ℏ
∑︂
ρ,σ
ρ̸=σ

zρ∂zρ − zσ∂zσ

zρ − zσ

+
∑︂

ρ

(︂
ℏ2zρ∂

2
zρ

− ℏ
(︂
z2

ρ + tzρ + b
)︂
∂zρ +mℏzρ

)︂
+ ℏNmt (4.2.4)

Quantum Calogero–Painlevé V

tHV =ℏ
∑︂
ρ,σ
ρ̸=σ

zρ(zρ − 1)∂zρ − zσ(zσ − 1)∂zσ

zρ − zσ

+ ℏNm
(︂
b+ c+ t− ℏ(m− 1) −N + 1

)︂
+

+
∑︂

ρ

(︂
ℏ2zρ(zρ − 1)∂2

zρ
+ ℏ

(︂
tz2

ρ − (b+ c+ t)zρ + b
)︂
∂zρ −mℏtzρ

)︂ (4.2.5)
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Quantum Calogero–Painlevé VI

t(t− 1)HV I =

=ℏ
∑︂
ρ,σ
ρ̸=σ

zρ(zρ − 1)(zρ − t)∂zρ − zσ(zσ − 1)(zσ − t)∂zσ

zρ − zσ

+
∑︂

ρ

ℏ2zρ(zρ − 1)(zρ − t)∂2
zρ

−

− ℏ
∑︂

ρ

((a+ b)(zρ − 1)(zρ − t) + czρ(zρ − t) + (d+N − 1)zρ(zρ − 1)) ∂zρ−

− ℏm(N − 1 − ℏm)
∑︂

ρ

zρ − ℏmN(ℏm+ 1 −N)t

(4.2.6)
We claim that the generalized wave functions (4.2.1) are indeed solutions to the
quantum Calogero Hamiltonians (3.3.12, 3.3.15, 3.3.19, 3.3.23, 3.3.27) constructed by
canonical quantization of the non-commutative Hamiltonians of the classical isomonodromic
noncommutative equations of [3]. The identification requires to choose the parameters in a
special way. The details of these result are presented in the next chapter.

Planck constant ℏ = 1. According to the result that will be presented in the next chapter,
when ℏ = 1 and some of the other parameters including κ take some specific values, our
claim regarding the generalized wave functions being solutions to the Schrödinger equation
for quantum Calogero-Painlevé system holds true. (For details see chapter (5))

We now briefly comment on the value of the Planck constant ℏ = 1: observing the
original integral representation of Nagoya (4.1.3) and the generalized one (4.2.1), we see that
for ℏ = 1 the integrand contains the square of the Vandermonde determinant of the variables
uj. This type of expression is very familiar in the context of Random Matrices [30]: it is the
Jacobian of the change of variables from the Lebesgue measure on Hermitean matrices (or
normal matrices) to the unitary-radial coordinates. Specifically, if M is a Hermitean matrix
of size m × m and we write it at M = V DV with D = diag(u1, . . . , um) and V ∈ U(m,C),
then the Lebesgue measure (up to inessential multiplicative constant) is

dM = ∆(u)2dV
∏︂
j

duj , (4.2.7)

where ∆(u) = ∏︁
i<j(ui − uj). This expression is also valid if the uj’s are allowed to take

complex values along specified curves (but now dM is the measure on m × m normal
matrices). This allows us to rewrite the integral formulæ as matrix integrals; for example
for Painlevé II we have

ΦII
m (z⃗, t) =

∫︂ ∏︂
ρ

det(zρ −M)e−Tr( 2
3 M3+tM)dM, (4.2.8)

which expresses the wave function as the expectation value of the product of characteristic
polynomials. Similar expressions hold for the other cases. Therefore it appears that the class
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of generalized Nagoya solutions (4.2.1) and the wave–functions of the quantum Calogero–
Painlevé Hamiltonians intersect on the class of solutions that are related to matrix integrals
of the form (4.2.8) only (and their similar expressions for the other master functions (4.1.4)).

During the coming sections, we provide the detailed computations of generalizing the
quantum Hamiltonian operators (4.1.2) to several particles.

The starting point of all the following computations is to take the integral representation
(4.2.1)

Ψ(zρ; t) =
∫︂

Γ

∏︂
1≤i<j≤m

(ui − uj)2ℏ∏︂
ρ,i

(zρ − ui)ΘJ(ui, t)dui (4.2.9)

and apply to it the direct sum of the second–order parts in the quantum Hamiltonians (4.1.2).
For the sake of simplicity of the notation in the following computations, we denote by⟨︂
Ψ(u1, ..., um)

⟩︂
the un-normalized expectation value as follows:

⟨︂
Ψ(u1, ..., um)

⟩︂
:=
∫︂

Γ

∏︂
1≤i<j≤m

(ui − uj)2ℏ∏︂
i

ΘJ(ui, t)Ψ(u1, ..., um)dui. (4.2.10)

4.2.1 Quantum Painlevé II
Define P (z⃗) = ∏︁

ρ,i(z⃗ρ − ui) and ∆ = ∏︁
1≤i<j≤m(ui − uj), then

∑︂
ρ

∂2
z⃗ρ
P =

∑︂
ρ

P
∑︂
i ̸=j

1
(z⃗ρ − ui)(z⃗ρ − uj)

=

=
∑︂

ρ

P
∑︂
i ̸=j

(︂ 1
(z⃗ρ − ui)(ui − uj)

− 1
(z⃗ρ − uj)(ui − uj)

)︂ (4.2.11)

This yields

ℏ2∑︂
ρ

∂2
z⃗ρ

Ψ =ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

(︂ 1
(z⃗ρ − ui)(ui − uj)

− 1
(z⃗ρ − uj)(ui − uj)

)︂⟩︄
=

=2ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

1
(z⃗ρ − ui)(ui − uj)

⟩︄
=

=ℏ
∫︂ ∑︂

i

∂ui
(∆2ℏ)

∑︂
ρ

1
z⃗ρ − ui

P
∏︂
k

Θ(uk)dui.

(4.2.12)

We now use integration by parts in the integrand and obtain:

= − ℏ
∫︂

∆2ℏ∑︂
ρ

∑︂
i

∂ui

(︄
1

z⃗ρ − ui

P
∏︂
k

Θ(uk)
)︄
dui =

= − ℏ
∫︂

∆2ℏ∑︂
ρ

∑︂
i

(︄
P

(z⃗ρ − ui)2 + Pui

z⃗ρ − ui

− 2u2
i + t

z⃗ρ − ui

P

)︄∏︂
k

Θ(uk)dui.

(4.2.13)
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After simplifying we obtain

ℏ2

2
∑︂

ρ

∂2
z⃗ρ

Ψ = −ℏ
2
∑︂
ρ,σ
ρ̸=σ

∂z⃗ρ − ∂z⃗σ

z⃗ρ − z⃗σ

Ψ + ℏ
∑︂

ρ

(z⃗2
ρ + t

2)∂z⃗ρΨ − ℏm
∑︂

ρ

z⃗ρΨ + ℏN∂tΨ. (4.2.14)

Rearranging the terms appropriately, we obtain the Schrödinger equation with the
Hamiltonian (4.2.2):

HII = ℏ
2
∑︂
ρ,σ
ρ̸=σ

∂z⃗ρ − ∂z⃗σ

z⃗ρ − z⃗σ

+ ℏ2

2
∑︂

ρ

∂2
z⃗ρ

− ℏ
∑︂

ρ

(z⃗2
ρ + t

2)∂z⃗ρ +mℏ
∑︂

ρ

z⃗ρ. (4.2.15)

4.2.2 Quantum Painlevé III
The initial set up matches the previous case, except that we need to consider the direct sum
of the operators z⃗2

ρ∂
2
z⃗ρ

acting on the wave function. To this end we observe that:

∑︂
ρ

z⃗2
ρ∂

2
z⃗ρ
P (z⃗) =

∑︂
ρ

P
∑︂
i ̸=j

z⃗2
ρ

(z⃗ρ − ui)(z⃗ρ − uj)
=

=
∑︂

ρ

P
∑︂
i ̸=j

(︂
1 + u2

i

(z⃗ρ − ui)(ui − uj)
−

u2
j

(z⃗ρ − uj)(ui − uj)
)︂
.

(4.2.16)

This yields

ℏ2∑︂
ρ

z⃗2
ρ∂

2
z⃗ρ

Ψ =ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

(︂
1 + u2

i

(z⃗ρ − ui)(ui − uj)
−

u2
j

(z⃗ρ − uj)(ui − uj)
)︂⟩︄

=

=ℏ2Nm(m− 1)Ψ + ℏNmΨ + ℏN2mΨ − ℏN
∑︂

σ

z⃗σ∂z⃗σΨ − ℏ
∑︂

ρ

z⃗ρ

∑︂
σ

∂z⃗σΨ+

+ ℏ
∑︂

ρ

(z⃗2
ρ + bz⃗ρ + t)∂z⃗ρΨ − ℏbNmΨ − ℏNmΨ + ℏ

∑︂
ρ

∂z⃗ρΨ − ℏm
∑︂

ρ

z⃗ρΨ−

− ℏN
⟨︄∑︂

i

uiP

⟩︄
− ℏ

∑︂
ρ,σ
ρ̸=σ

z⃗2
ρ∂z⃗ρ − z⃗2

σ∂z⃗σ

z⃗ρ − z⃗σ

Ψ + ℏ
∑︂

ρ

z⃗ρ

∑︂
σ

∂z⃗σΨ − ℏ
∑︂

ρ

z⃗ρ∂z⃗ρΨ+

+ ℏ(N − 1)
∑︂

σ

z⃗σ∂z⃗σΨ.

(4.2.17)
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Rearranging the terms we obtain the following expression:

ℏ2∑︂
ρ

z⃗2
ρ∂

2
z⃗ρ

Ψ = − ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗2
ρ∂z⃗ρ − z⃗2

σ∂z⃗σ

z⃗ρ − z⃗σ

Ψ + ℏ
∑︂

ρ

(z⃗2
ρ + bz⃗ρ + t)∂z⃗ρΨ −mℏ

∑︂
ρ

z⃗ρΨ+

+ tℏN∂tΨ + ℏ2Nm(m− 1)Ψ + ℏN2mΨ − bNmℏΨ − ℏ
∑︂

ρ

z⃗ρ∂z⃗ρΨ−

− ℏN
⟨︄∑︂

i

( t
ui

+ ui)P
⟩︄
.

(4.2.18)
In order to handle the remaining expectation value we need to derive some further identities:
consider the Euler differential operator

E :=
∑︂

i

ui∂ui
. (4.2.19)

Applying this operator E to the integrand of ΦIII
m ,

∏︂
1≤i<j≤m

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)u−b−1
i e

( t
ui

−ui) (4.2.20)

gives the following expression:

∑︂
i

ui∂ui

(︄ ∏︂
1≤i<j≤m

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)u−b−1
i e

( t
ui

−ui)
)︄

=

=
∑︂

i

ui

⎡⎣∏︂
i<j

(ui − uj)2ℏ

⎛⎝(2ℏ)
∑︂
i ̸=j

1
ui − uj

⎞⎠∏︂
ρ,i

(z⃗ρ − ui)u−b−1
i e

( t
ui

−ui)+

+
∏︂
i<j

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)
(︄∑︂

ρ

−1
z⃗ρ − ui

)︄
u−b−1

i e
( t

ui
−ui)+

+
∏︂
i<j

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)u−b−1
i e

( t
ui

−ui)
(︄

−b− 1
ui

− t

u2
i

− 1
)︄⎤⎦

(4.2.21)

=
∑︂

i

ui

⎡⎣2ℏ
∑︂
i ̸=j

1
ui − uj

−
∑︂

ρ

1
z⃗ρ − ui

− b+ 1
ui

− t

u2
i

− 1
⎤⎦∆2ℏP

∏︂
i

Θ(ui)

=∆2ℏ

⎡⎣ℏm(m− 1)P +NmP −
∑︂

ρ

z⃗ρ∂ρP − (b+ 1)mP −
∑︂

i

( t
ui

+ ui)P
⎤⎦∏︂

i

Θ(ui).
(4.2.22)

Then we observe that∫︂ ∑︂
j

uj∂uj

(︄
∆2ℏP

∏︂
i

Θ(ui)dui

)︄
=
∫︂ ∑︂

j

∂uj

(︄
uj∆2ℏP

∏︂
i

Θ(ui)dui

)︄
−mΨ(z⃗) (4.2.23)
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and the first integral is zero because it is a divergence of a vector. Therefore,
∫︂

E
(︄

∆2ℏP
∏︂

i

Θ(ui)dui

)︄
⏞ ⏟⏟ ⏞

=−mΨ

=ℏm(m− 1)Ψ +NmΨ −
∑︂

ρ

z⃗ρ∂z⃗ρΨ − (b+ 1)mΨ−

−
⟨︄∑︂

i

( t
ui

+ ui)P
⟩︄ (4.2.24)

=⇒ ⟨︄∑︂
i

( t
ui

+ ui)P
⟩︄

= ℏm(m− 1)Ψ +NmΨ −
∑︂

ρ

z⃗ρ∂z⃗ρΨ − bΨ. (4.2.25)

Substituting the left side into the equation (4.2.18) results in the following conclusion

tℏN∂tΨ =
∑︂

ρ

(︂
ℏ2z⃗2

ρ∂
2
zρ

− ℏ(z⃗2
ρ + (b+N − 1)z⃗ρ + t)∂z⃗ρ +mℏz⃗ρ

)︂
Ψ + ℏ

∑︂
ρ,σ
ρ̸=σ

z⃗2
ρ∂z⃗ρ − z⃗2

σ∂z⃗σ

z⃗ρ − z⃗σ

Ψ

(4.2.26)
hence, the general Hamiltonian operator for quantum Painlevé III equation is given by

tHIII = ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗2
ρ∂z⃗ρ − z⃗2

σ∂z⃗σ

z⃗ρ − z⃗σ

+
∑︂

ρ

(︂
ℏ2z⃗2

ρ∂
2
z⃗ρ

− ℏ(z⃗2
ρ + (b+N − 1)z⃗ρ + t)∂z⃗ρ +mℏz⃗ρ

)︂
. (4.2.27)

4.2.3 Quantum Painlevé IV
We follow the same general scheme and consider the sum of the zρ∂

2
zρ term applied to P :

∑︂
ρ

z⃗ρ∂
2
z⃗ρ
P =

∑︂
ρ

z⃗ρP
∑︂
i ̸=j

1
(z⃗ρ − ui)(z⃗ρ − uj)

=

=
∑︂

ρ

P
∑︂
i ̸=j

(︂ ui

(z⃗ρ − ui)(ui − uj)
− uj

(z⃗ρ − uj)(ui − uj)
)︂
.

(4.2.28)

This yields

ℏ2∑︂
ρ

z⃗ρ∂
2
z⃗ρ

Ψ =ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

(︂ ui

(z⃗ρ − ui)(ui − uj)
− uj

(z⃗ρ − uj)(ui − uj)
)︂⟩︄

=2ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

ui

(z⃗ρ − ui)(ui − uj)

⟩︄

=ℏ
∫︂ ∑︂

i

∂ui
(∆2ℏ)

∑︂
ρ

ui

z⃗ρ − ui

P
∏︂
k

Θ(uk)dui

= − ℏ
∫︂

∆2ℏ∑︂
ρ

∑︂
i

∂ui

(︄
(−1 + z⃗ρ

z⃗ρ − ui

)P
∏︂
k

Θ(uk)
)︄
dui

(4.2.29)
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which gives

ℏ2∑︂
ρ

z⃗ρ∂
2
z⃗ρ

Φ = − ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗ρ∂z⃗ρ − z⃗σ∂z⃗σ

z⃗ρ − z⃗σ

Φ + ℏ
∑︂

ρ

(z⃗2
ρ + tz⃗ρ + b)∂z⃗ρΦ−

− ℏNmtΦ + ℏN∂tΦ − ℏm
∑︂

ρ

z⃗ρΦ.
(4.2.30)

Rearranging the terms in the above expression, the general Hamiltonian operator for
quantum Painlevé IV equation is given by

HIV = ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗ρ∂z⃗ρ − z⃗σ∂z⃗σ

z⃗ρ − z⃗σ

+
∑︂

ρ

(︂
ℏ2z⃗ρ∂

2
z⃗ρ

− ℏ(z⃗2
ρ + tz⃗ρ + b)∂z⃗ρ +mℏz⃗ρ

)︂
+ ℏNmt. (4.2.31)

4.2.4 Quantum Painlevé V
We start from the same set up as previous operators

∑︂
ρ

z⃗ρ(z⃗ρ − 1)∂2
z⃗ρ
P =

∑︂
ρ

P
∑︂
i ̸=j

z⃗ρ(z⃗ρ − 1)
(z⃗ρ − ui)(z⃗ρ − uj)

=

=
∑︂

ρ

P
∑︂
i ̸=j

(︄
1 + ui(ui − 1)

(z⃗ρ − ui)(ui − uj)
− uj(uj − 1)

(z⃗ρ − uj)(ui − uj)

)︄ (4.2.32)

This yields

ℏ2∑︂
ρ

z⃗ρ(z⃗ρ − 1)∂2
z⃗ρ

Ψ = ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

(︂
1 + ui(ui − 1)

(z⃗ρ − ui)(ui − uj)
− uj(uj − 1)

(z⃗ρ − uj)(ui − uj)
)︂⟩︄

(4.2.33)

=ℏ2Nm(m− 1)Ψ + 2ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

ui(ui − 1)
(z⃗ρ − ui)(ui − uj)

⟩︄

=ℏ2Nm(m− 1)Ψ + ℏ
∫︂ ∑︂

i

∂ui
(∆2ℏ)

∑︂
ρ

ui(ui − 1)
z⃗ρ − ui

P
∏︂
k

Θ(uk)dui

(4.2.34)

ℏ2∑︂
ρ

z⃗ρ(z⃗ρ − 1)∂2
z⃗ρ

Ψ = − ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗ρ(z⃗ρ − 1)∂z⃗ρ − z⃗σ(z⃗σ − 1)∂z⃗σ

z⃗ρ − z⃗σ

Ψ−

− ℏ
∑︂

ρ

(tz⃗2
ρ − (b+ c+ t)z⃗ρ + b)∂z⃗ρΨ − ℏNm(b+ c+ t)Ψ+

+mℏt
∑︂

ρ

z⃗ρΨ + ℏNt∂tΨ + ℏ2Nm(m− 1)Ψ + ℏNm(N − 1)Ψ

(4.2.35)

54



Therefore, the general Hamiltonian operator for quantum Painlevé V equation is given by

tHV =ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗ρ(z⃗ρ − 1)∂z⃗ρ − z⃗σ(z⃗σ − 1)∂z⃗σ

z⃗ρ − z⃗σ

+
∑︂

ρ

(︄
ℏ2z⃗ρ(z⃗ρ − 1)∂2

z⃗ρ
+

+ ℏ
(︂
tz⃗2

ρ − (b+ c+ t)z⃗ρ + b
)︂
∂z⃗ρ −mℏtz⃗ρ

)︄
+ ℏNm(b+ c+ t)−

− ℏ2Nm(m− 1) − ℏNm(N − 1)

(4.2.36)

4.2.5 Quantum Painlevé VI
The Laplacian operator applied to P yields

∑︂
ρ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂2
z⃗ρ
P =

∑︂
ρ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)P
∑︂
i ̸=j

1
(z⃗ρ − ui)(z⃗ρ − uj)

= P
∑︂

ρ

∑︂
i ̸=j

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)
(z⃗ρ − ui)(z⃗ρ − uj)

= P
∑︂

ρ

∑︂
i ̸=j

(︄(︂
z⃗ρ − (t+ 1) + ui + uj

)︂
+ ui(ui − 1)(ui − t)

(ui − uj)(z⃗ρ − ui)
−

− uj(uj − 1)(uj − t)
(ui − uj)(z⃗ρ − uj)

)︄
.

(4.2.37)
This yields

ℏ2∑︂
ρ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂2
z⃗ρ

Ψ =ℏ2
⟨︄
P
∑︂

ρ

∑︂
i ̸=j

(︄(︂
z⃗ρ − (t+ 1) + ui + uj

)︂
+ ui(ui − 1)(ui − t)

(ui − uj)(z⃗ρ − ui)
−

− uj(uj − 1)(uj − t)
(ui − uj)(z⃗ρ − uj)

)︄⟩︄
.

(4.2.38)
Upon rearranging of the terms we obtain the equation

ℏ2∑︂
ρ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂2
z⃗ρ

Ψ = −ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂z⃗ρ − z⃗σ(z⃗σ − 1)(z⃗σ − t)∂z⃗σ

z⃗ρ − z⃗σ

Ψ+

+ t(t− 1)ℏ∂tΨ + ℏ
∑︂

ρ

(︂
(a+ b)(z⃗ρ − 1)(z⃗ρ − t) + cz⃗ρ(z⃗ρ − t) + dz⃗ρ(z⃗ρ − 1)

)︂
∂z⃗ρΨ−

− ℏ
∑︂

ρ

z⃗2
ρ∂z⃗ρΨ + ℏ

∑︂
ρ

z⃗ρ∂z⃗ρΨ + (2ℏNm− ℏm− ℏ2m2)
∑︂

ρ

z⃗ρΨ+

+ (ℏ2Nm− ℏtN2m− ℏN2m+m2ℏ2Nt− dℏNmt+ ℏNmt+ (b+ d)ℏNm)Ψ+

+ (ℏN2 − ℏ2N)
⟨︄∑︂

i

uiP

⟩︄
+ t(t− 1)ℏN

⟨︄∑︂
i

d

t− ui

P

⟩︄
.

(4.2.39)
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Now, instead of applying the Euler operator, we consider the operator

L :=
∑︂

i

∂ui

(︂
ui(1 − ui)

)︂
. (4.2.40)

We apply L to the integrand

J(u⃗, z⃗) :=
∏︂

1≤i<j≤m

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)u−a−b−1
i (1 − ui)−c−1(t− ui)−d. (4.2.41)

After some calculations we obtain

LJ(u⃗, z⃗) =
∑︂

i

[︄
(1 − 2ui)

∏︂
i<j

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)u−a−b−1
i (1 − ui)−c−1(t− ui)−d+

+ ui(1 − ui)
∏︂
i<j

(ui − uj)2ℏ
(︂
2ℏ
∑︂
i ̸=j

1
ui − uj

)︂∏︂
ρ,i

(z⃗ρ − ui)u−a−b−1
i (1 − ui)−c−1(t− ui)−d+

+ ui(1 − ui)
∏︂
i<j

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)
(︂∑︂

ρ

−1
z⃗ρ − ui

)︂∏︂
i

u−a−b−1
i (1 − ui)−c−1(t− ui)−d+

+ ui(1 − ui)
∏︂
i<j

(ui − uj)2ℏ∏︂
ρ,i

(z⃗ρ − ui)
ua+b+1

i (1 − ui)c+1(t− ui)d

(︂−a− b− 1
ui

+ c+ 1
1 − ui

+ d

t− ui

)︂]︄
(4.2.42)

=∆2ℏ
[︄
mP − 2

∑︂
i

uiP − 2ℏ(m− 1)
∑︂

i

uiP −m
∑︂

ρ

z⃗ρP −N
∑︂

i

uiP +NmP−

−
∑︂

ρ

z⃗ρ(1 − z⃗ρ)∂z⃗ρP + (−a− b− d− 1)mP + tdmP + (a+ b+ c+ d+ 2)
∑︂

i

uiP−

− t(t− 1)
∑︂

i

d

t− ui

P

]︄∏︂
i

Θ(ui).

(4.2.43)
Integrating (4.2.43), one obtains zero beacause the integrand LJ can be viewed as the
divergence of a vector field. Therefore,

t(t− 1)
⟨︄∑︂

i

d

t− ui

P

⟩︄
=(−ℏm+Nm+ (−b− d)m+ tdm)Ψ+

+ (−2ℏ(m− 1) −N + a+ b+ c+ d)
⟨︄∑︂

i

uiP

⟩︄
−

−m
∑︂

ρ

z⃗ρΨ −
∑︂

ρ

z⃗ρ(1 − z⃗ρ)∂z⃗ρΨ

(4.2.44)
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Substituting the LHS into the equation (4.2.39) yields the following result:

ℏ2∑︂
ρ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂2
z⃗ρ

Ψ = −ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂z⃗ρ − z⃗σ(z⃗σ − 1)(z⃗σ − t)∂z⃗σ

z⃗ρ − z⃗σ

Ψ+

+ t(t− 1)ℏ∂tΨ + ℏ
∑︂

ρ

(︄
(a+ b)(z⃗ρ − 1)(z⃗ρ − t) + cz⃗ρ(z⃗ρ − t)+

+ dz⃗ρ(z⃗ρ − 1)
)︄
∂z⃗ρΨ + ℏ(1 −N)

∑︂
ρ

z⃗ρ(1 − z⃗ρ)∂z⃗ρΨ+

+ ℏm(N − 1 − ℏm)
∑︂

ρ

z⃗ρΨ + ℏmN(ℏm+ 1 −N)tΨ

(4.2.45)
Therefore, the general Hamiltonian operator for quantum Painlevé VI equation is given by

t(t− 1)HV I =

=ℏ
∑︂
ρ,σ
ρ̸=σ

z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂z⃗ρ − z⃗σ(z⃗σ − 1)(z⃗σ − t)∂z⃗σ

z⃗ρ − z⃗σ

+
∑︂

ρ

ℏ2z⃗ρ(z⃗ρ − 1)(z⃗ρ − t)∂2
z⃗ρ

−

− ℏ
∑︂

ρ

(︄
(a+ b)(z⃗ρ − 1)(z⃗ρ − t) + cz⃗ρ(z⃗ρ − t) + (d+N − 1)z⃗ρ(z⃗ρ − 1)

)︄
∂z⃗ρ−

− ℏm(N − 1 − ℏm)
∑︂

ρ

z⃗ρ − ℏmN(ℏm+ 1 −N)t

(4.2.46)

Remark 4.2.1. All these operators reduce to the Hamiltonian operators in (4.1.2) for N = 1.

Remark 4.2.2. The reason why quantum Painlevé I is excluded from the calculations in this
section is that no transcendental function is proved to be close to expressions for the solution
of Painlevé I. Therefore, there is no integral representation for the wave function satisfying
the Schrödinger equation for quantum Painlevé I.

In the next chapter, we proceed with a comparison between the Hamiltonian system
obtained in Chapter 3 as a quantization of the Calogero-Painlevé system, and the generalized
Hamiltonian operators that we computed in the current chapter.
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Chapter 5

Results

5.1 The equivalence of the two systems
We now claim that the generalized wave functions (4.2.1) are indeed solutions to the
quantum Calogero Hamiltonians (3.3.12, 3.3.15, 3.3.19, 3.3.23, 3.3.27) constructed by
canonical quantization of the non-commutative Hamiltonians of the classical isomonodromic
noncommutative equations of [3]. The identification requires to choose the parameters in a
special way. Consider for example (3.3.12) and (4.2.2):

H̃II =ℏ2

2
∑︂
ρ,σ
ρ̸=σ

∂zρ − ∂zσ

zρ − zσ

− ℏ2κ(κ+ 1)
2

∑︂
ρ,σ
ρ̸=σ

1
(zσ − zρ)2 + ℏ2

2
∑︂

ρ

∂2
zρ

− ℏ
∑︂

ρ

(︃
z2

ρ + t

2

)︃
∂zρ+

+
(︃1

2 − θ − ℏN
)︃∑︂

ρ

zρ,

HII =ℏ
2
∑︂
ρ,σ
ρ̸=σ

∂zρ − ∂zσ

zρ − zσ

+ ℏ2

2
∑︂

ρ

∂2
zρ

− ℏ
∑︂

ρ

(︃
z2

ρ + t

2

)︃
∂zρ +mℏ

∑︂
ρ

zρ.

The first observation is that in the two Hamiltonians the second and first-order differential
parts have different powers of ℏ; they coincide only for ℏ = 1 (we exclude the trivial case
ℏ = 0). We commented on this in Section 4.2.

Then there is the Calogero-like potential term in (3.3.12) which is absent in (4.2.2); this
forces us to choose κ = 0. These values mean that the GLn representation in V is the trivial
one in the quantization scheme. These constraints determine the value of θ and it turns out
to be θ = 1

2 −N −m.
The other observation for Calogero-Painlevé II is summarized in the following Lemma:

Lemma 5.1.1. Considering ∆ = ∏︁
1≤α<β≤N(zα − zβ) be a Vandermonde polynomial in z⃗,

then the action of quantum Hamiltonian operator HII on the generalized wave functions, is
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equivalent to the action of ∆−R˜︂HII∆R on the integral representation of the wave function:

∆−R˜︂HII∆RΨ(Z) = HIIΨ(Z) (5.1.1)

for R and the scalar κ determined as each of the following pairs(︃
R = 1

ℏ
− 1, κ = 1

ℏ
− 1

)︃
,

(︃
R = 1

ℏ
− 1, κ = −1

ℏ

)︃
, ℏ ̸= 0 (5.1.2)

Under this circumstances, the parameter θ is determined by

θ = ℏ(1 −m) +N(1 − 2ℏ) − 1
2 . (5.1.3)

Proof. Considering ∆ = ∏︁
1≤α<β≤N(zα − zβ), and the Hamiltonians ˜︂HII and HII as (3.3.12)

and (4.2.2), the direct computation of (5.1.1) gives⎛⎝ℏ∑︂
ρ,σ
ρ<σ

∂zρ − ∂zσ

zρ − zσ

+ ℏ2

2
∑︂

ρ

∂2
zρ

− ℏ
∑︂

ρ

(︃
z2

ρ + t

2

)︃
∂zρ +mℏ

∑︂
ρ

zρ

⎞⎠Ψ(Z)−

− ∆−R

⎛⎝ℏ2 ∑︂
ρ,σ
ρ<σ

∂zρ − ∂zσ

zρ − zσ

− ℏ2κ(κ+ 1)
∑︂
ρ,σ
ρ<σ

1
(zσ − zρ)2 + ℏ2

2
∑︂

ρ

∂2
zρ

− ℏ
∑︂

ρ

(︃
z2

ρ + t

2

)︃
∂zρ+

+
(︃1

2 − θ − ℏN
)︃∑︂

ρ

zρ

⎞⎠∆RΨ(Z) = 0.

(5.1.4)
Note that

∂zρ

(︂
∆R

)︂
=R∆R

∑︂
α̸=ρ

1
zρ − zα

,

∂2
zρ

(︂
∆R

)︂
= R2∆R

⎛⎝∑︂
α̸=ρ

1
zρ − zα

⎞⎠2

−R∆R
∑︂
α̸=ρ

1
(zρ − zα)2 .

(5.1.5)
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Therefore, the equation (5.1.4) continues⎛⎝ℏ∑︂
ρ,σ
ρ<σ

∂zρ − ∂zσ

zρ − zσ

+ ℏ2

2
∑︂

ρ

∂2
zρ

− ℏ
∑︂

ρ

(︃
z2

ρ + t

2

)︃
∂zρ +mℏ

∑︂
ρ

zρ

⎞⎠Ψ(Z)−

−

⎛⎝ℏ2 ∑︂
ρ,σ
ρ<σ

∂zρ − ∂zσ

zρ − zσ

+ ℏ2R
∑︂
ρ,σ
ρ<σ

1
zρ − zσ

⎛⎝∑︂
α̸=ρ

1
zρ − zα

−
∑︂
α̸=σ

1
zσ − zα

⎞⎠−

− ℏ2κ(κ+ 1)
∑︂
ρ,σ
ρ<σ

1
(zσ − zρ)2 + ℏ2

2
∑︂

ρ

∂2
zρ

+ ℏ2R
∑︂

ρ

∑︂
α̸=ρ

∂zρ

zρ − zσ

+

+ ℏ2

2
∑︂

ρ

⎛⎝R2
(︄∑︂

α̸=ρ

1
zρ − zα

)︄2

−R
∑︂
α̸=ρ

1
(zρ − zα)2

⎞⎠− ℏ
∑︂

ρ

(︃
z2

ρ + t

2

)︃
∂zρ−

− ℏR
∑︂

ρ

(︃
z2

ρ + t

2

)︃∑︂
α̸=ρ

1
zρ − zα

+
(︃1

2 − θ − ℏN
)︃∑︂

ρ

zρ

⎞⎠Ψ(Z) = 0.

(5.1.6)

By straightforward manipulation of indices one can show that the following relations are
true: ∑︂

ρ,σ
ρ<σ

∂zρ − ∂zσ

zρ − zσ

=2
∑︂
ρ,σ
ρ<σ

∂zρ

zρ − zσ

,

∑︂
ρ

(︃
z2

ρ + t

2

)︃∑︂
α̸=ρ

1
zρ − zα

=(N − 1)
∑︂

ρ

zρ.

(5.1.7)

Also, one can prove (done in the next Lemma)

∑︂
ρ,σ
ρ̸=σ

1
zρ − zσ

⎛⎝∑︂
α̸=ρ

1
zρ − zσ

−
∑︂
α̸=σ

1
zσ − zα

⎞⎠ =2
∑︂
ρ,σ
ρ̸=σ

∑︂
α̸=ρ,σ

1
(zρ − zσ)(zα − zρ) + 2

∑︂
ρ,σ
ρ<σ

1
(zρ − zσ)2

=2
∑︂
ρ,σ
ρ<σ

1
(zρ − zσ)2

(5.1.8)
putting all together, and simplifying the similar terms, equation (5.1.6) yields

(5.1.6) =
(︂
ℏ − ℏ2 − ℏ2R

)︂∑︂
ρ,σ
ρ<σ

∂zρ − ∂zσ

zρ − zσ

Ψ(Z) + ℏ2κ(κ+ 1)
∑︂
ρ,σ
ρ<σ

1
(zσ − zρ)2 Ψ(Z)−

− 2ℏ2R
∑︂
ρ,σ
ρ<σ

1
(zσ − zρ)2 Ψ(Z) −R(R − 1)ℏ2∑︂

ρ

∑︂
α̸=ρ

1
(zρ − zα)2 Ψ(Z)+

+
(︃
mℏ − ℏR(N − 1) − 1

2 + θ + ℏN
)︃

Ψ(Z) = 0.

(5.1.9)

To have the equation (5.1.9) satisfied, we need to have the following relations to be true for
R, κ, and the parameter θ:
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• We either get
R = 1

ℏ
− 1,

κ = 1
ℏ

− 1,

θ = ℏ(1 −m) +N(1 − 2ℏ) − 1
2

(5.1.10)

• or
R = 1

ℏ
− 1,

κ = −1
ℏ
,

θ = ℏ(1 −m) +N(1 − 2ℏ) − 1
2 .

(5.1.11)

■

Lemma 5.1.2. For an arbitrary a, and zα, α = 1, ..., N the following equality holds true:

∑︂
α

∑︂
β ̸=α

∑︂
τ ̸=α,β

za
α

(zα − zτ )(zα − zβ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 a = 0, 1

N(N − 1)(N − 2)
3 a = 2

(N − 1)(N − 2)∑︁α zα a = 3

(5.1.12)

Proof. Consider the term P (z) = ∏︁N
α=1(z − zα). We compute the following residue

res
z=∞

za

(︄
P ′(z)
P (z)

)︄3

dz. (5.1.13)

This can be done in two ways; first note that we can express P
′

P
as the sum of Logarithmic

derivatives
P ′(z)
P (z) =

∑︂
α

d
dz ln (z − zα) =

∑︂
α

1
z − zα

(5.1.14)

using the geometric series expansion one obtains

∑︂
α

1
z − zα

=1
z

∑︂
α

(︄
1 + zα

z
+ z2

α

z2 + O(3)
)︄

=N
z

+
∑︁

α zα

z2 + O(3)
(5.1.15)
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Hence, for the computation of the residue, we have

res
z=∞

za

(︄
P ′(z)
P (z)

)︄3

dz = res
z=∞

za

(︄
N3

z3 + 3N2∑︁
α zα

z4 + 3N (∑︁α zα)2

z5 + O(6)
)︄

(5.1.16)

depending on the value of a, the final answer of this computation varies, concerning the
proof of this Lemma, we only compute the result for a = 0, 1, 2, 3.

Computing the residue at infinity one obtains

res
z=∞

za

(︄
P ′(z)
P (z)

)︄3

dz =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 a = 0, 1
−N3 a = 2
−3N2∑︁

α zα a = 3
(5.1.17)

from complex analysis, we know that the sum of residues at poles plus the residue at infinity

is zero, since the poles of za

(︄
P ′

P

)︄3

are located at zα’s, we have

∑︂
α

res
z=zα

za

(︄
P ′

P

)︄3

dz + res
z=∞

za

(︄
P ′

P

)︄3

dz = 0 (5.1.18)

To compute the the first term in equation (5.1.18), we proceed via a different approach; we
first compute the exponent which results in the following expression:

∑︂
α

res
z=zα

za

(︄
P ′

P

)︄3

dz =
∑︂

α

res
z=zα

za

(︄∑︂
τ

1
z − zτ

)︄3

=
∑︂

α

res
z=zα

za

⎛⎜⎜⎜⎜⎜⎝
∑︂

τ

1
(z − zτ )3 + 3

∑︂
ζ,τ
ζ ̸=τ

1
(z − zζ)(z − zτ )2 +

∑︂
ζ,τ,β
ζ ̸=τ,β
τ ̸=β

1
(z − zζ)(z − zτ )(z − zβ)

⎞⎟⎟⎟⎟⎟⎠ .
(5.1.19)
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Applying Cauchy’s residue theorem for the poles at zα’s with different orders, one gets

(5.1.19) =
∑︂

α

⎛⎝a(a− 1)
2 za−2

α + 3
∑︂
τ ̸=α

za
α

(zα − zτ )2 + 3
∑︂
β ̸=α

(︄
aza−1

α

zβ − zα

− za
α

(zβ − zα)2

)︄
+

+ 3
∑︂
β,ρ
β ̸=ρ

β ̸=α,ρ ̸=α

za
α

(zα − zβ)(zα − zρ)

⎞⎠

=
∑︂

α

⎛⎜⎜⎜⎜⎜⎝
a(a− 1)

2 za−2
α + 3

∑︂
β ̸=α

aza−1
α

zα − zβ

+ 3
∑︂
β,ρ
β ̸=ρ

β ̸=α,ρ ̸=α

za
α

(zα − zβ)(zα − zρ)

⎞⎟⎟⎟⎟⎟⎠ .

(5.1.20)

One concludes

∑︂
α

res
z=zα

za

(︄
P ′

P

)︄3

dz =
∑︂

α

⎛⎜⎜⎜⎜⎜⎝
a(a− 1)

2 za−2
α + 3

∑︂
β ̸=α

aza−1
α

zα − zβ

+ 3
∑︂
β,ρ
β ̸=ρ

β ̸=α,ρ ̸=α

za
α

(zα − zβ)(zα − zρ)

⎞⎟⎟⎟⎟⎟⎠
= − res

z=∞
za

(︄
P ′

P

)︄3

dz.

(5.1.21)
From equation (5.1.17) we have the following observations:

• For a = 0: ∑︂
β,ρ
β ̸=ρ

β ̸=α,ρ ̸=α

1
(zα − zβ)(zα − zρ) = 0. (5.1.22)

• For a = 1:
3
∑︂
α,β
β ̸=α

1
zα − zβ

+ 3
∑︂

α,β,ρ
α̸=β,ρ

β ̸=ρ,ρ̸=α

zα

(zα − zβ)(zα − zρ) = 0. (5.1.23)

By a simple manipulation of indices or using the fact that the function 1
zα − zβ

is

anti-symmetric, one gets the first term of the equation (5.1.23) to be zero, therefore:
∑︂

α,β,ρ
α̸=β,ρ

β ̸=ρ,ρ̸=α

zα

(zα − zβ)(zα − zρ) = 0. (5.1.24)
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• For a = 2:
N + 6

∑︂
α,β
β ̸=α

zα

zα − zβ

+ 3
∑︂

α,β,ρ
α̸=β,ρ

β ̸=ρ,ρ̸=α

z2
α

(zα − zβ)(zα − zρ) = N3. (5.1.25)

For the second term of the equation (5.1.25) consider the following; let S =∑︁
α,β
β ̸=α

zα

zα − zβ

, by adding and subtracting zβ in the numerator we get

∑︂
α,β
β ̸=α

zα

zα − zβ

=
∑︂
α,β
β ̸=α

(1) +
∑︂
α,β
β ̸=α

zβ

zα − zβ⏞ ⏟⏟ ⏞
=−S

(5.1.26)

hence
2S = N(N − 1) =⇒ S = N(N − 1)

2 . (5.1.27)

Therefore, the equation (5.1.25) gives

∑︂
α,β,ρ
α̸=β,ρ

β ̸=ρ,ρ̸=α

z2
α

(zα − zβ)(zα − zρ) =N
3 −N − 3N(N − 1)

3

=N(N − 1)(N − 2)
3 .

(5.1.28)

• For a = 3:

3
∑︂

α

zα + 9
∑︂
α,β
β ̸=α

z2
α

zα − zβ

+ 3
∑︂

α,β,ρ
α̸=β,ρ

β ̸=ρ,ρ̸=α

z3
α

(zα − zβ)(zα − zρ) = 3N2∑︂
α

zα (5.1.29)

with the same analogy as the previous case, for the second term we get

∑︂
α,β
β ̸=α

z2
α

zα − zβ

= (N − 1)
∑︂

α

zα. (5.1.30)

Hence, the equation (5.1.29) gives

∑︂
α,β,ρ
α̸=β,ρ

β ̸=ρ,ρ̸=α

z3
α

(zα − zβ)(zα − zρ) =
(︂
N2 − 3N + 2

)︂∑︂
α

zα

=(N − 1)(N − 2)
∑︂

α

zα.

(5.1.31)

■
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The Lemma 5.1.1 is actually the manifestation of a more general result which is contained
in the following theorem:

Theorem 5.1.3. Define the two sequences of differential operators

Ha := ℏ2∑︂
ρ

za
ρ∂

2
zρ

+ 2ℏ
∑︂
ρ,σ
ρ<σ

za
ρ∂zρ − za

σ∂zσ

zρ − zσ

˜︂Ha := ℏ2∑︂
ρ

za
ρ∂

2
zρ

+ 2ℏ2 ∑︂
ρ,σ
ρ<σ

za
ρ∂zρ − za

σ∂zσ

zρ − zσ

− ℏ2κ(κ+ 1)
∑︂
ρ,σ
ρ<σ

za
ρ + za

σ

(zρ − zσ)2 +

+ 2(1 − ℏ2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 a = 0, 1

N(N − 1)(N − 2)
3 a = 2

(N − 1)(N − 2)∑︁ρ zρ a = 3 .

(5.1.32)

Then we have the following identity

Ha = ∆−R ◦ ˜︂Ha ◦ ∆R (5.1.33)

provided that R = 1
ℏ

− 1 and κ = 1
ℏ

− 1 or κ = −1
ℏ

.

Proof. Define
La :=

∑︂
ρ

za
ρ∂

2
zρ

Ma :=
∑︂
ρ,σ
ρ<σ

za
ρ∂zρ − za

σ∂zσ

zρ − zσ

.
(5.1.34)

To start the proof of this theorem we apply both operations Ha and ˜︂Ha on a wave function
Ψ(z).

Note that, following the instruction of computations for the Lemma 5.1.1, and using the
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equations in (5.1.8), the action of the operators ∆−RLa∆R on and ∆−RMa∆R on Ψ(Z) gives

∆−RLa∆RΨ(Z) =LaΨ(Z) + 2RMaΨ(Z) + R(R − 1)
∑︂

ρ

za
ρ

∑︂
α̸=ρ

1
(zρ − zα)2 Ψ(Z)+

+ 2R2∑︂
ρ

za
ρ

∑︂
α,β
α̸=β

ρ̸=α,β

1
(zρ − zα)(zρ − zβ)Ψ(Z),

∆−RMa∆RΨ(Z) =MaΨ(Z) + 2R
∑︂

ρ

∑︂
α,σ
α̸=σ

ρ̸=α,σ

za
ρ

(zρ − zσ)(zρ − zα)Ψ(Z)+

+ 4R
∑︂
ρ,σ
ρ<σ

za
ρ

(zρ − zσ)2 Ψ(Z).

(5.1.35)

Therefore, the equation (5.1.33) yields

2ℏ(ℏR + ℏ − 1)MaΨ(Z) + ℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

za
ρ

(zρ − zσ)2 Ψ(Z)+

+ 2ℏ2R(R + 2)
∑︂

ρ

∑︂
α,σ
α̸=σ

ρ̸=α,σ

za
ρ

(zρ − zσ)(zρ − zα)Ψ(Z).
(5.1.36)

To obtain zero for the above computation, first we must have the following pair of equalities
for the first two terms to vanish(︄

κ = 1
ℏ

− 1, R = 1
ℏ

− 1
)︄

or
(︄
κ = −1

ℏ
, R = 1

ℏ
− 1

)︄
. (5.1.37)

In order to discuss the different determinations for the remaining terms in equation (5.1.36)
depending on the value of a, we recall the result of the Lemma 5.1.12. ■

Note 5.1.4. For ℏ = 1 the values of R, κ, and θ reduce to result of the first observation.

Using Theorem 5.1.3 in the various cases of the Hamiltonian Calogero–Painlevé operators
and direct computations, allows us to express the Hamiltonians (4.2.2–4.2.6) as special cases
of (3.3.12–3.3.27), and identify the parameters θ0, θ1, θ2, θt, θ, k, a, b, c and d.

The result of these computations results in two observations. Similar to the case of the
Calogero-Painlvé II, one observation forces the values of ℏ to be equal to 1 and κ = 0 in order
for the mentioned Hamiltonians to represent the same systems. The second observation,
which is the general case including the special case of the first observation, determines the
value of parameters for arbitrary non-zero ℏ, and results in the value of κ to be an expression
in terms of ℏ.
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The details of the case by case study of Calogero-Painlevé III-VI is stated in the following
sections:

5.1.1 Calogero-Painlevé III
Similar to the case of second Calogero-Painlevé, the first result of the comparison between
(3.3.15) and (4.2.27) forces ℏ = 1 and κ = 0, that determines the value of other parameters
as

θ0 = b−m+ 1 θ1 = −N −m. (5.1.38)

The result of the second observation is the following Lemma:

Lemma 5.1.5. Considering ∆ = ∏︁
1≤α<β≤N(zα − zβ) be a Vandermonde polynomial in z⃗,

then the action of quantum Hamiltonian operator tHIII on the generalized wave functions, is
equivalent to the action of ∆−Rt˜︂HIII∆R on the integral representation of the wave function:

tHIIIΨ(Z) = ∆−Rt˜︂HIII∆RΨ(Z) (5.1.39)

for R and the scalar κ determined as

κ = 1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1, ℏ ̸= 0. (5.1.40)

Under this circumstances, the parameter θ0 and θ1 are determined by

θ0 = b+ ℏ(1 −m), θ1 = −ℏ(m+ 1) −N + 1. (5.1.41)

Proof. The proof of this Lemma is a conclusion of Theorem 5.1.3 for a = 2. We have:

tHIII =tH2 − ℏ
∑︂

ρ

(︂
z2

ρ + (b+N − 1)zρ + t
)︂
∂zρ +mℏ

∑︂
ρ

zρ,

t˜︂HIII =t˜︂H2 − ℏ
∑︂

ρ

(︂
z2

ρ + (−2ℏ + θ0 − θ1)zρ + t
)︂
∂zρ − (ℏN + θ1)

∑︂
ρ

zρ + ˜︁Θ (5.1.42)

where Θ is a constant. from the computations of the proof of theorem (5.1.3), we obtain(︂
∆−Rt˜︂HIII∆R − tHIII

)︂
Ψ(Z) =2ℏ(ℏR + ℏ − 1)M2Ψ(Z)+

+ ℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

z2
ρ

(zρ − zσ)2 Ψ(Z)−

− ℏ
∑︂

ρ

(−2ℏ + θ0 − θ1 − b−N + 1) zρ∂zρΨ(Z)+

+ (ℏ(N −m) − θ1 − ℏR(N − 1))
∑︂

ρ

zρΨ(Z) + ΘΨ(Z).

(5.1.43)
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Where Θ is a constant that can be easily disregarded as a simple gauge transformation can
be applied to omit it.

Equation 5.1.43 will be equal to zero if we have the following relations for the parameters:

κ =1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1, ℏ ̸= 0

θ0 =b+ ℏ(1 −m), θ1 = −ℏ(m+ 1) −N + 1.
(5.1.44)

■

5.1.2 Calogero-Painlevé IV
In the case of Calogero-Pinlevé IV, the constraints of the values of ℏ = 1 and κ = 0, which
comes from the comparison between the first-order differential parts in (3.3.19) and (4.2.31),
and the Calogero-like potential term in (3.3.19) which does not appear in (4.2.31), determines
the value of the other parameters by

θ0 = −b− 1 θ1 = b−m. (5.1.45)

The second observation, reads the same relations for R and κ as in the equation (5.1.40)
according to the following Lemma:

Lemma 5.1.6. Considering ∆ = ∏︁
1≤α<β≤N(zα − zβ) be a Vandermonde polynomial in z⃗,

then the action of quantum Hamiltonian operator HIV on the generalized wave functions, is
equivalent to the action of ∆−R˜︂HIV ∆R on the integral representation of the wave function:

HIV Ψ(Z) = ∆−R˜︂HIV ∆RΨ(Z) (5.1.46)

for R and the scalar κ determined as

κ = 1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1, ℏ ̸= 0. (5.1.47)

Under this circumstances, the parameter θ0 and θ1 are determined by

θ0 = −b− ℏ, θ1 = b+ 1 −N −mℏ. (5.1.48)

Proof. The proof of this Lemma is also a conclusion of Theorem 5.1.3 for a = 1. We recall
the equation (5.1.36):

HIV =H1 − ℏ
∑︂

ρ

(︂
z2

ρ + tzρ + b
)︂
∂zρ +mℏ

∑︂
ρ

zρ +mNℏt,

˜︂HIV =˜︂H1 − ℏ
∑︂

ρ

(︂
z2

ρ + tzρ − θ0 − ℏ
)︂
∂zρ − (ℏN + θ0 + θ1)

∑︂
ρ

zρ − tN2ℏ
(5.1.49)
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from the computations of the proof of theorem (5.1.3), we obtain(︂
∆−R˜︂HIV ∆R −HIV

)︂
Ψ(Z) =

2ℏ(ℏR + ℏ − 1)M1Ψ(Z) + ℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

zρ

(zρ − zσ)2 Ψ(Z)−

− (ℏN + θ0 + θ1 + ℏR(N − 1) + ℏm)
∑︂

ρ

zρΨ(Z) + ℏ (θ0 + ℏ + b) ∂zρΨ(Z) + T (ℏ, t)Ψ(Z)

(5.1.50)
where T (ℏ, t) is a constant that can always be gauged away from the operators. According
to the result of the Lemma 5.1.12, this expression vanishes for the following determinations
of R, κ, theta0, and θ1:

κ =1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1,

θ0 = − b− ℏ, θ1 = b+ 1 −N −mℏ.
(5.1.51)

■

5.1.3 Calogero-Painlevé V
For Calogero-Painlevé V, to have the relation t˜︂HV Ψ(Z) = tHV Ψ(Z) satisfied, we have to
consider ℏ = 1 and κ = 0 which yields

θ0 = −c− 1 θ1 = −N −m+ c+ 1 θ2 = b+ 1. (5.1.52)

However, to have the equation

tHV Ψ(Z) = ∆−Rt˜︂HV ∆RΨ(Z) (5.1.53)

to be true, we prove that the constant ℏ remains arbitrary (and non-zero). The statement
of these computations is the following Lemma:

Lemma 5.1.7. Considering ∆ = ∏︁
1≤α<β≤N(zα − zβ) be a Vandermonde polynomial in z⃗,

then the action of quantum Hamiltonian operator tHV on the generalized wave functions, is
equivalent to the action of ∆−Rt˜︂HV ∆R on the integral representation of the wave function
for the values of R and the scalar κ to be

κ = 1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1, ℏ ̸= 0. (5.1.54)

Subsequently, the parameters θ0 and θ1, and θ2 are determined by

θ0 = c− ℏ, θ1 = c+ 1 −N −mℏ, θ2 = b+ ℏ. (5.1.55)
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Proof. According to the result of the theorem (5.1.3) and the instructions of the proof of the
Lemma (5.1.5) and (5.1.6), we have the following:

tHV =t(H2 −H1) + ℏ
∑︂

ρ

(︂
tz2

ρ − (b+ c+ t)zρ + b
)︂
∂zρ −mℏt

∑︂
ρ

zρ + τ(t) + η,

t˜︂HV =t(˜︂H2 − ˜︂H1) + ℏ
∑︂

ρ

(︂
tz2

ρ + (2ℏ + θ0 − θ2 − t)zρ + θ2 − ℏ
)︂
∂zρ + t(ℏN + θ0 + θ1)

∑︂
ρ

zρ+

+ ˜︁τ(t) + ˜︁η.
(5.1.56)

where τ(t) and ˜︁τ(t) are constant functions of t, and η and ˜︁η are arbitrary constants.
Therefore, one gets(︂

∆−Rt˜︂HV ∆R − tHV

)︂
Ψ(Z) =

2ℏ(ℏR + ℏ − 1)M2Ψ(Z) + ℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

z2
ρ

(zρ − zσ)2 Ψ(Z)−

− 2ℏ(ℏR + ℏ − 1)M1Ψ(Z) + ℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

zρ

(zρ − zσ)2 Ψ(Z)+

+ ℏ
∑︂

ρ

(2ℏ + θ0 − θ2 + b+ c) zρ∂zρΨ(Z) + ℏ
∑︂

ρ

(θ2 − ℏ − b) ∂zρΨ(Z)+

+ t (Nℏ + θ0 + θ1 +mℏ +Rℏ(N − 1))
∑︂

ρ

zρΨ(Z) + T (t)Ψ(Z) + ΘΨ(Z)

(5.1.57)

For T (t) a constant function of t, and Θ a constant, both of which can be gauged away. If
the parameters of the equation 5.1.57 take the following values, then the equation 5.1.53 is
satisfied:

κ =1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1, ℏ ̸= 0

θ0 = − c− ℏ, θ1 = c+ 1 −N −mℏ, θ2 = b+ ℏ.
(5.1.58)

■

5.1.4 Calogero-Painlevé VI
Finally, for Calogero-Painlevé VI with the conditions of ℏ = 1 and κ = 0 we have the same
Hamiltonian operators from equations (3.3.29) and (4.2.46), with the following determination
of the other parameters:

θ0 = a+ b+ 1 θ1 = c+ 1 θt = d+N

k = ±
√︂

(θ − 2N)2 + 4m(N − 1 −m)
(5.1.59)

The second observation in this case results in the following Lemma:

Lemma 5.1.8. Considering ∆ = ∏︁
1≤α<β≤N(zα − zβ) be a Vandermonde polynomial in z⃗,
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then the action of quantum Hamiltonian operator HV I on the generalized wave functions, is
equivalent to the action of ∆−R˜︂HV I∆R on the integral representation of the wave function

∆−R˜︂HV I∆RΨ(Z) = HV IΨ(Z) (5.1.60)

for the values of R and the scalar κ to be the same as

κ = 1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1, ℏ ̸= 0 (5.1.61)

and the other parameters determined by

θ0 = a+ b+ ℏ, θ1 = c+ ℏ, θt = d+N + ℏ − 1,

k = ±
√︂

(θ − 2Nℏ)2 + 4ℏm(N − 1 − ℏm) + 4(N − 1)(1 − ℏ) +N(N − 1)(1 − ℏ)(3ℏ − θ).
(5.1.62)

Proof. Adapting the definitions 5.1.34, we have the following definition for the operators
HV I and ˜︂HV I :

t(t− 1)HV I = t(t− 1)(H3 − (1 + t)H2 + tH1) − ℏ
∑︂

ρ

(︄
(a+ b+ c+ d+N − 1)z2

ρ + t(a+ b)−

− ((1 + t)(a+ b) + tc+ d+N − 1) zρ

)︄
∂zρ − ℏm(N − 1 − ℏm)

∑︂
ρ

zρ + τ(t) + η,

t(t− 1)˜︂HV I = t(t− 1)(˜︂H3 − (1 + t)˜︂H2 + t˜︂H1) + ℏ
∑︂

ρ

(︄
(3ℏ − θ)z2

ρ + t(ℏ − θ0)+

+ (−ℏ(1 + t) + t(θ0 + θ1) + θ0 + θt) zρ

)︄
∂zρ +

(︄
N2ℏ2 − θNℏ − 1

4(k2 − θ2)+

+ κ(κ+ 1)(N − 1)ℏ2
)︄∑︂

ρ

zρ + ˜︁τ(t) + ˜︁η
(5.1.63)

where τ(t) and ˜︁τ(t) are constant functions of t, and η and ˜︁η are constants. By substituting
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the equation 5.1.63 into the equation 5.1.60 we obtain:

(∆−R˜︂HV I∆R −HV I)Ψ(Z) =

2ℏ(ℏR + ℏ − 1)M3Ψ(Z) + ℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

z3
ρ

(zρ − zσ)2 Ψ(Z)−

− 2(1 + t)ℏ(ℏR + ℏ − 1)M2Ψ(Z) − (1 + t)ℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

z2
ρ

(zρ − zσ)2 Ψ(Z)+

+ 2tℏ(ℏR + ℏ − 1)M1Ψ(Z) + tℏ2 (R(R + 1) − κ(κ+ 1))
∑︂
ρ,σ
ρ<σ

zρ

(zρ − zσ)2 Ψ(Z)+

+ ℏ
∑︂

ρ

⎛⎝(3ℏ − θ + a+ b+ c+ d+N − 1)z2
ρ + t(ℏN − θ0 + a+ b)+

+
(︂

− ℏ(1 + t) + t(θ0 + θ1) + θ0 + θt − (1 + t)(a+ b) − tc− d−N + 1
)︂
zρ

⎞⎠∂zρΨ(Z)+

+
⎛⎝Rℏ(3ℏ − θ)N(N − 1) +N2ℏ2 − θℏN − 1

4(k2 − θ2) + κ(κ+ 1)(N − 1)ℏ2+

+ ℏm(N − 1 − ℏm)
⎞⎠∑︂

ρ

zρΨ(Z) + T (t)Ψ(Z) + ΘΨ(Z)

(5.1.64)
where T (t) = τ̃(t) − τ(t), and Θ = η̃ − η.
Equation 5.1.64 will be equal to zero if the parameters in the equation take the following
values:

κ = 1
ℏ

− 1 or κ = −1
ℏ
, R = 1

ℏ
− 1, ℏ ̸= 0. (5.1.65)

This determines the value of the rest of the parameters

θ0 = a+ b+ ℏ, θ1 = c+ ℏ, θt = d+N + ℏ − 1,

k = ±
√︂

(θ − 2Nℏ)2 + 4ℏm(N − 1 − ℏm) + 4(N − 1)(1 − ℏ) +N(N − 1)(1 − ℏ)(3ℏ − θ)
(5.1.66)

where θ = θ0 + θ1 + θt. Note that T (t) and Θ can be omitted by choice of suitable
transformations. ■

Remark 5.1.9. In all the cases the parameters obtained from the second observation reduce
to the corresponding ones from the first observation when ℏ = 1.
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Chapter 6

Conclusion and Related Works

6.1 Concluding notes
In recent years, there have been different approaches to "quantum Painlevé equations" using
as starting point, the linear differential equation of rank 2 classically associated to the
Painlevé equations, or the theory of topological recursion associated to semiclassical spectral
curves.

In [37], the authors start from the system of linear equations (Lax system) associated to
the Painlevé equations I-VI written in the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂zΨ = U(z, t)Ψ

∂tΨ = V (z, t)Ψ
. (6.1.1)

where Ψ =
(︄
ψ1

ψ2

)︄
, and the complex-valued matrices U , and V are considered in general to

have the forms
U =

(︄
a b

c d

)︄
, V =

(︄
A B

C D

)︄
(6.1.2)

Since the matrices U and V are traceless, the zero-curvature equation of the form

∂zV − ∂tU + [V, U ] = 0 (6.1.3)

yields ⎧⎪⎪⎪⎨⎪⎪⎪⎩
at = Az + bC − cB = 0
bt − Bz + 2aB − 2bA = 0
ct − Cz + 2cA− 2aC = 0.

(6.1.4)

After applying a suitable change of variables and gauge transformation, they obtain a
pair of compatible PDEs for a scalar wave function ψ (obtained from the (1, 1) entry of the
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matrix Ψ) ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂

1
2∂

2
z − 1

2(∂zlogb)∂z +W (z, t)
)︂
ψ = 0

∂tψ =
(︂

1
2∂

2
z + U(z, t)

)︂
ψ

(6.1.5)

where W and U are the potentials that are described explicitly in terms of the entries of the
matrices U, V .

The first equation in (6.1.5) has apparent singularities but otherwise exhibits the same
(generalized) monodromy associated to (6.1.1) (in PSL2), while the second equation describes
the isomonodromic deformation of the former and is presented in the form of a non-stationary
Schrödinger equation with imaginary time.

The Hamiltonian operators corresponding to each Painlevé equation I-VI from the
second equation of the system (6.1.5) are, in particular, a natural quantization of those
corresponding to the Calogero-like Painlevé equations (those obtained from the first equation
of the system (6.1.5)). These operators that are called the quantum Calogero-Painlevé
Hamiltonian system, are obtained in single variable representation.

The question then arises as to whether a similar description is possible in the multi-
particle case; the naïve approach of considering the matrices as 2 × 2 blocks does not lead
to equations of the same type as (6.1.5). The quantization of the Hamiltonians from [3]
does not seem to be the direct analogue of (6.1.5) because it is an equation where the wave
equation plays the role rather of the (scalar) “quantum tau function”.

Also, in [11], the authors use the topological recursion on spectral curves of different
genera which results in wave functions that satisfy a family of partial differential equations.
In fact, these PDEs are the quantization of the original spectral curves. As an application
of their theorem, they introduce a system of PDEs corresponding to Painlevé transcendents
whose assigned Hamiltonian system has significant similarities to the system of Hamiltonian
operators that we introduced in this paper for the quantum Calogero-Painlevé system.

Finally, we comment on the possible relationship with equations of the Knizhnik-
Zamolodchikov (KZ) type. For the single–particle case, in [31], H. Nagoya provides a
representation-theoretic correspondence between the Schrödinger equation for quantum
Painlevé VI (single-particle) and the Knizhnik-Zamolodchikov (KZ) equation, and between
the Schrödinger equation for quantum Painlevé II-V(single-particle) and the confluent KZ
equations that are defined in [22]. We also mention the work of J. Harnad [18] where the
author proposed a quantization of the Schlesinger system; this is a generalization of the sixth
Painlevé equation to include more than four Fuchsian singularities in the corresponding Lax
pair. It is reasonable that our current work corresponds to a reduction thereof for the case
of Painlevé VI.

As an example, we mention the case of quantum Painlevé VI and the KZ equation. To do
so, we briefly review the definition of the confluent KZ equation and the usual KZ equation.

74



Verma modules. [22] Set g = sl2 and g[z] = g ⊗ C[z]. Suppose e, f, h to be the standatd
basis of g, For non-negative integer r, denote by g(r) and g′

(r) the truncated Lie algebra
g(r) = g[z]/zr+1g[z] and g′

(r) = zg[z]/zr+1g[z]. For an (r + 1)-tuple γ = (γ0, . . . , γr−1, γr),
a confluent Verma module M(γ) of Poincaré rank r is a cyclic g(r)-module generated by 1γ

such that
(e⊗ zp)1γ = 0, (h⊗ zp)1γ = γp1γ (0 ≤ p ≤ r).

For the Lie subalgebra g′
(r) = zg[z]/zr+1g[z], a confluent Verma module M ′(γ) of Poincaré

rank r with parameters γ = (γ0, . . . , γr−1, γr) is a cyclic g′
(r) ⊕ C(h ⊗ z0)-module generated

by 1γ such that

(e⊗ zp)1γ = 0, (h⊗ zp)1γ = γp1γ (0 ≤ p ≤ r), (h⊗ z0)1γ = 0,

and e⊗ zr and f ⊗ zr act as zero operators on M ′(γ).
Let differential operators Dk (0 ≤ k ≤ r − 1) be defined as

Dk =
r−k∑︂
p=1

pγk+p
∂

∂γp

acting on M(γ) as

Dk(x⊗ zp) = p(x⊗ zp+k) (x ∈ g, 0 ≤ p ≤ r), Dk(1γ) = 0

Here x⊗ zp is regarded as an operator on M(γ).
Let z1, . . . , zn be distinct points in C and let r1, . . . , rn, r∞ be non-negative integers. Set

a =
(︂
⊕n

i=1g
(i)
)︂

⊕ g(∞), where g(i) = g(ri) (i = 1, . . . , n) and g(∞) = g′
(r∞). Consider now a

family of a-modules
M(γ) = M (1) ⊗ · · · ⊗M (n) ⊗M (∞),

parametrized by γ = (γ(1), . . . , γ(n), γ(∞)), where

M (i) =M(γ(i)), γ(i) =
(︂
γ

(i)
0 , . . . , γ(i)

ri

)︂
,

M (∞) =M ′(γ(∞)), γ(∞) =
(︂
γ

(∞)
1 , . . . , γ(∞)

r∞

)︂
.

Set 1γ = 1γ(1) ⊗ · · · ⊗ 1γ = 1γ(n) ⊗ 1γ = 1γ(∞) .
The confluent KZ equations in [22] are differential systems for unknown functions Ψ(z, y)

taking values in M(γ) with respect to the following differential operators

∂

∂zi

(i = 1, . . . , n),

D
(i)
k (i = 1, . . . , n), (k = 0, . . . , ri − 1),

D
(∞)
k (k = 1, . . . , r∞ − 1).
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If ri = 0 and r∞ = 0, then the confluent KZ equations are equal to the usual KZ equations.
It was shown in [22] that the confluent KZ equations have integral formulas of confluent
hypergeometric type of solutions.

Case of PVI. Let n = 3, ri = 0, z1 = 0, z2 = t, z3 = 1 and γ
(i)
0 /∈ Z (1 ≤ i ≤ 3). Then

M = M(γ(1)
0 )⊗M(γ(2)

0 )⊗M(γ(3)
0 ) and the KZ equation for an unknown function Ψ(t) taking

values in M is defined by

κ
∂Ψ(t)
∂t

=
(︄

Ω(1,2)

t
+ Ω(2,3)

t− 1

)︄
Ψ(t) (6.1.6)

Here κ is a complex parameter and Ω(i,j) are the Casimir operators:

Ω(1,2) = e(1)f (2) + f (1)e(2) + 1
2h

(1)h(2), Ω(2,3) = e(2)f (3) + f (2)e(3) + 1
2h

(2)h(3),

where x(i) : M → M is the linear operator acting as x on ith tensor factor and as identities
on the others. (for the rest of notes x⊗ z0 is abbreviated to x for x = e, f, h.)

Let Wm (m ∈ Z≥0) be the space of singular vectors of the weight ∑︁3
i γ

(i)
0 − 2m in M ,

namely

Wm =
{︄
v ∈ M

⃓⃓⃓⃓
⃓

3∑︂
i=1

e(i)(v) = 0,
3∑︂

i=1
h(i)(v) =

(︄ 3∑︂
i=1

γ
(i)
0 − 2m

)︄
v

}︄

In order to write down a basis of Wm, the authors take the differential realizations C[xi](1 ≤
i ≤ 3) of g, that is the act of the basis e, f, h on C[xi] as follows:

e = ∂

∂xi

, h = −2xi
∂

∂xi

+ γ
(i)
0 , f = −x2

i

∂

∂xi

+ γ
(i)
0 xi.

Note that if γ(i)
0 /∈ Z, then C[xi] are isomorphic to Verma modules M(γ(i)

0 ). So the assumption
is M(γ(i)

0 ) = C[xi].
The space of singular vectors Wm can be written by

Wm =
m⨁︂

i=0
C(x1 − x2)i(x1 − x3)m−i

The Hamiltonian Ω(1,2)

t
+ Ω(2,3)

t−1 is denoted by HKZ, now let ˜︂HKZ(m) be defined as

˜︂HKZ(m) = ℏ2
(︄
HKZ

λ1λ2

t
− λ2(λ3 −m)

t− 1

)︄
.

The linear isomorphism Tm : Wm → ⨁︁m
i=0 C (m ∈ Z≥0) is defined as

Tm

(︂
(x1 − x2)i(x1 − x3)m−i

)︂
= xi (0 ≤ i ≤ m).
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The result of these scheme is the following theorem:

Theorem 6.1.1. For γ(i)
0 /∈ Z(1 ≤ i ≤ 3) and m ∈ Z≥0, the action of HKZ on the space

of singular vectors of weight ∑︁3
i−1 γ

(i)
0 − 2m is equivalent to the action of the quantized

Hamiltonian HV I (as in (4.1.2)) on the subspace ⨁︁m
i=0 Cxi with a = mℏ or b+c+d = (m−1)ℏ.

In particular

Tm ◦ ˜︂HKZ(m) =
(︄
HV I

(︂
x, ℏ

∂

∂x
, a, b, c, d, t

)︂
+ a(b+ c+ d+ ℏ)

t− 1

)︄
◦ Tm

defines linear maps from Wm to ⨁︁m
i=0 Cxi with some relations between the parameters.

As is written above (and similarly for the rest of the operators in (4.1.2)), the correspondences
are proved directly by showing relations between the integral representations for the solutions
to the quantum Painlevé equations and solutions to the (confluent) KZ equations. In this
case, our work in this project should play a similar role for sln special solutions of the KZ
equations. We plan to address this possible relationship in further researches and our future
works.
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