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Abstract

Localizing object Position by Using only Image-level Labels

Zhenfei Zhang

Weakly Supervised Object Localization (WSOL) task attracts more and more

attention in recent years, which aims to locate the object by using incomplete labels.

Considering the cost of annotation, especially ground-truth bounding box label and

training speed of detection task, it is very necessary to improve the performance of

WSOL that only requires image-level labels. Most current methods tend to utilize

Class Activation Map (CAM) that can only highlight the most discriminative parts

rather than the entire target. The common method to address this kind of limitation

is to hide the most obvious regions and let the model learn other parts of the target.

The main work of this thesis is to eliminate the limitations of current WSOL work and

improve the performance of localization. In chapter 3, we design an attention-based

selection strategy to dynamically hide the feature maps. In chapter 4, a new hiding

method is proposed to further improve the localization performance. In chapter 5,

we propose three method to eliminate the issues on CAM level. Our methods are

evaluated on CUB-200-2011 and ILSVRC 2016 datasets. Experiments demonstrate

that the proposed methods work very well and significantly improve the localization

performance.
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Chapter 1

Introduction

In this chapter, the brief introduction of our work will be given. Firstly, I will intro-

duce the Weakly Supervised Object Localization (WSOL) task and the motivation of

our work. Secondly, the outline of this thesis will be mentioned. Finally, I will give

the contribution of this thesis.

1.1 Motivation

In recent years, fully supervised object detection [20] [21] [22] [23] and image seg-

mentation [24] [25] [26] [27] have already achieved satisfactory results. However, it

requires both classification and ground-truth bounding box labels that are much ex-

pensive and time-consuming. Especially for the bounding box annotations, which can

show the location of the objects in training data. For each training object location,

the label is supposed to have 4 values that are the coordinates of the upper left and

lower right corners, the width and height of the box. Therefore, ground-truth bound-

ing box labels are much more complex than the classification labels and they are very

expensive to label by human hands. In order to save the costs and meet big data and

model speed requirements of further research, it is necessary and meaningful to do

weakly supervised [28] or unsupervised learning [29] in detection tasks.
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1.2 Weakly Supervised Object Localization

Weakly Supervised Object Localization (WSOL) task aims to recognize the object

position by using only image-level labels. Compared with Fully Supervised Learning,

WSOL uses incomplete labels to train the model, which is less time-consuming and

less redundant. Therefore, WSOL has attracted more and more attention.

By using only image-level labels, the model is trained to do the classification.

Class Activation Map (CAM) [8] has been widely used in WSOL techniques. CAM

[8] is generated from convolutional neural networks (CNNs) by using Global Average

Pooling [5], which covers the most discriminative regions of the target object. Basi-

cally, the Class Activation Map [8] is a heatmap that expresses the value of each pixel

from classification results. For the targeted pixels, the weights are much larger than

others.

In computer vision area, there are four similar tasks. Those are Object Detection

[20] [21] [22] [23] [1], Object Localization [2] [30], Image Segmentation [24] [25] [26]

[27] and Image Classification [31] [32] [33]. There is something different with these

four tasks.

Image Classification For the input data of classification tasks, normally there

is only one main target on the image. The aim of the classifier is to predict the main

object of the input image. The training labels are the classification labels that can

tell the model what the main object of input is .

Object Localization The input data is the same as the classification task. The

goal of localization is to tell us where the main body of this picture is. Instead of

only image-level labels, ground-truth bounding box annotations are required for this

task. Generally it uses a rectangle to express the location of the main target.

Object Detection This task is more complex than the first two, which lets

the model not only predict the category but also show the position of the object.

Moreover, the model needs to do the classification and localization for multiple objects

2



in one image. This mission is challenging because the multiple objects may belong to

different categories.

Image Segmentation Image Segmentation is similar to Object Detection to

some extent. For the output of an object detection task, it is supposed to be a rect-

angle that can show the targeted location. But for the output of image segmentation,

it should be a mask that can express the boundary of the target.

1.3 Thesis Outline

In this section, the outline of this thesis is given.

Chapter 2 mentions the related work that is utilized in this thesis. It includes

Convolutional Neural Network(CNN), Attention Mechanism and Class Activation

map. Meanwhile, the datasets and evaluation matrix are described in this chapter as

well.

Chapter 3 designs an attention-based selection strategy to detect the location

of objects effectively and flexibly. Current techniques have already illustrated that

hiding methods can effectively address the limitation of Class Activation Map [8].

However, almost all the hiding methods only try to remove the most discriminative

part blindly that will make the model learn more unhelpful information such as back-

ground. Our approach can eliminate the problems of current hiding methods, which

can remove much unhelpful information that will mislead the localization. Moreover,

a selection strategy is proposed to dynamically remove the part from different kinds

of images. Compared with current state-of-the-art techniques, the proposed method

works very well on localization accuracy without too much overhead on CUB-200-

2011 and ILSVRC 2016 datasets. In our perception, our method is the first work to

consider the different situations of training images. Therefore, our work provides new

insights to do the Weakly Supervised Object Localization task. The related paper:

3



• Zhenfei Zhang and Tien D.Bui. Attention-based Selection Strategy for Weakly

Supervised Object Localization. Accepted to International Conference on Pat-

tern Recognition. ICPR 2020.

Chapter 4 provides a dual hiding method for Weakly Supervised Object Local-

ization (WSOL) task. Our starting point is based on the strong relationship of each

pixel of convolutional feature map. We design a hiding method that can remove the

most discriminative part instead of pixels for both channel and spatial space. Accord-

ing to the experiments, we can see that the proposed method can effectively improve

the localization performance on CUB-200-2011 and ILSVRC 2016 datasets compared

with current WSOL techniques. The related paper:

• Zhenfei Zhang and Tien D.Bui. Attention-based Dual Hiding Method for

Weakly Supervised Object Localization. Submitted to International Conference

on Image Processing. ICIP 2021.

Chapter 5 is based on the three issues that make CAM ill-posed. Based on the

issues, we proposed three corresponding methods to eliminate them. Our proposed

two stage localization method does not introduce any hyperparameter that needs to be

set by experience. In our perception, our method is the first method that can evaluate

the bounding box without Ground-truth label and assign the optimal threshold to

different images. The improvement is very significant. The related paper:

• Zhenfei Zhang. Revisiting Class Activation Map: Two Stage Method for

Weakly Supervised Object Localization. Preparing to NeurIPS 2021.

Chapter 6 summaries the thesis with the main contribution of our work. More-

over, it provides the limitations and potential ideas of future work.
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1.4 Contribution of Authors

This section shows the contribution of each authors.

Attention-based Selection Strategy for Weakly Supervised Object Lo-

calization [18]

Zhenfei Zhang: Model design, implementing, model training, doing experiments,

results analysis, paper writing, editing and proofing.

Tien D.Bui: Research supervisor, advising, editing and proofing.

Attention-based Dual Hiding Method for Weakly Supervised Object

Localization [62]

Zhenfei Zhang: Model design, implementing, model training, doing experiments,

results analysis, paper writing, editing and proofing.

Tien D.Bui: Research supervisor, advising, editing and proofing.

Revisiting Class Activation Map: Two Stage Method for Weakly Su-

pervised Object Localization [66]

Zhenfei Zhang: Model design, implementing, model training, doing experiments,

results analysis, paper writing, editing and proofing.
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Chapter 2

Literature Review

In this section, I will give the background that is utilized in this thesis. First of all, a

brief description of some effective methods of weakly supervised object localization is

given, including the Class Activation map [8]. After that, we provide an introduction

of Convolutional Neural Network, Attention Mechanism and pre-trained model used.

Finally, the datasets and evaluation matrices of this work are provided.

2.1 Weakly Supervised Object localization

Weakly Supervised Object Localization (WOSL) task aims to recognize the object

by using only image-level labels. Class Activation Map (CAM) [8] has been widely

utilized in Weakly Supervised Object Localization task, which uses Global Average

Pooling [5] and Softmax [8] activation function to generate localization maps. For this

section, we will introduce Class Activation Map [8] first, which is the core technique

to do the Weakly Supervised Object Localization.
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Apart from CAM [8], some improved methods such as Grad-CAM [35], Grad-

CAM++ [36] and smooth Grad-CAM++ [37] that can output the weight of each

channel without changing the architecture of the pre-trained network. These meth-

ods are similar since they all obtain the weights from gradients of backpropagation.

However, the gradients may have noise and saturation problems that may affect the

final output. In 2020, Score-CAM [38] was proposed to obtain the weights without

using any gradients. We will not go into details of these methods since almost all the

WSOL techniques utilize CAM [8] as a visualization method.

2.1.2 Current Methods

As we mentioned in the last subsection, the main issue of CAM is that it can only

highlight the most discriminative region. If the target is the whole body of a human,

using CAM may only locate the head. That will affect the localization performance.

In order to eliminate this issue, various methods have been proposed to capture the

entire pattern. Hide-and-seek (HaS) [14] is a kind of augmentation method that

aims to hide patches of input images randomly. By removing the grid patches of

data, the model can focus on other targeted regions instead of only focusing on the

most discriminative part. Adversarial Complementary Learning (ACoL) [12] pro-

poses a new architecture to remove the most activated regions adversarially. In 2018,

Self-Produced Guidance (SPG) [11] was introduced as an architectural solution that

generates three masks (foreground, unsure, background) using three different layers

in Inception-V3 [17]. Attention-based Dropout Layer (ADL) [9] has proposed a new

attention module to remove the most important region with none additional over-

heads. The core of these methods is to hide the most discriminative part and make

the model learn other parts of the target.

Apart from hiding the most discriminative regions of the images, there are some

other methods such as CutMix [13], NL-CCAM [39] and DANet [10]. CutMix [13] is a

8



kind of data augmentation that the input images are cut and mixed with other images.

DANet [10] proposed two new loss functions that are hierarchical divergent activation

and discrepant divergent activation to learn entire patterns. For NL-CCAM [39], it

proposes a polynomial function to combine several class activation maps and utilize

non-local blocks to improve the relationship of targeted pixels.

2.2 Convolutional Neural Network

Deep learning [40] has been widely utilized in computer vision and natural language

processing. In 1989, LeCun introduced a convolutional network that is inspired by

brain cells. CNN is a kind of network to specially deal with grid structure data such

as image data, which performs very well in many domains. So in this section, we will

provide the details of CNN.

2.2.1 Convolution operation

Different from Artificial Neural Network (ANN), at least one layer of Convolutional

Neural Network uses convolution operation. In mathematics, convolution is a linear

operation on two real variable functions. There are two parameters of convolution

that are input and kernel function. Two-dimensional convolution is used for image

processing. The equation is:

V (i, j) = (I ∗K) (i, j) =
∑
h

∑
w

I (h,w)K (i− h, j − w) (1)

Where input I is an image and K is a convolutional kernel. w and h are the

width and height of the input image. Different from traditional feature extraction

methods [42] [43], CNN utilizes sliding convolution kernels to extract the feature.

With different kernels, the features are different as well. Convolution operation sat-

isfies the commutative law of equation. However, it is not an important property

9





size equal to the input. As for the full convolution, the output size is largest. The

function to calculate output size is:

o =

[
i+ 2p− k

s

]
+ 1 (3)

Where o and i are output and input dimension. p is padding and k is filter size. s is

the strides that indicates the kernel sliding distance.

2.2.2 CNN VS ANN

Compared with the Artificial Neural Network (ANN), there are two important thoughts

in CNN, which are sparse interactions and parameter sharing.

In the Artificial Neural Network (ANN), each input neuron is connected with all

the neurons in the next layer. However, there is only a local connection in CNN.

Instead of dealing the whole image, CNN utilizes convolutional kernels that are much

smaller than the image size. By sliding the kernels, the model can scan the whole

image. Sparse interactions can reduce the calculation amount and complexity. Pa-

rameter sharing means that it utilizes the same filter to generate the feature map.

Although parameter sharing can not reduce the operation time, it significantly lowers

the number of parameters.

Sparse interactions and parameter sharing are the motivation of researchers to

propose CNN. These two important thoughts provide possibilities for deeper network

structures.

2.2.3 The Typical Layer of CNN

Normally, a typical layer of CNN consists of three parts, those are convolutional layer,

activation function layer and pooling layer. The diagram of a typical layer is shown

in Figure 3.

Convolutional layer

11





However, if we use a linear activation function in every hiding layer, the hiding layers

do not work in this case. Thus, the network is still a single-layer perceptron because

of only performing linear transformation. In the multi-layer neural network, only

non-linear activation function is effective.

Common nonlinear activation functions are Sigmoid, tanh, ReLU [45].

For the Sigmoid, the function is:

y = sigmoid (x) =
1

1 + e−x
(4)

Sigmoid is normally used in two classification problems [46]. From the function

image we can see that there are almost no gradients when the input values are some-

what small or large. So in this case, the weights can not update normally. Moreover,

Sigmoid is not symmetrical with 0, which may make the model hard to converge. In

order to address the second issue, tanh activation can be used. The function is:

y = tanh (x) =
ex − e−x

ex + e−x
(5)

Tanh can effectively solve the second issue of Sigmoid activation function. How-

ever, the gradient vanishing problem still exists. The most common activation func-

tion in computer vision tasks is ReLU [45]. The function is:

y = ReLU (x) = max (0, x) (6)

ReLU activation function can effectively address the issues of Sigmoid and tanh.

ReLU has better performance and faster convergence speed with no complex index

calculation. In this work, the pre-trained CNN utilizes ReLU as the activation func-

tion. The plots of these functions are shown in Figure 4.

For the output layer, when the prediction has multiple categories, Softmax is

usually used. By using this function, we can obtain the normalized probability of

each class. The function is:
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CE = − 1

m

m∑
i=1

(
YilogŶi + (1− Yi) log

(
1− Ŷi

))
(8)

MSE =
1

m

m∑
i=1

(
Yi − Ŷi

)2
(9)

Where Yi and Ŷi are ground-truth labels and predictions. In our WSOL task, we

use MSE as a loss function. Because only image-level labels are used, we only use

classification loss to update the weights of the network.

2.2.5 Regularization

The core challenge of Machine learning is to design a method that can perform well on

both training data and new input test data. Regularization is a kind of way to improve

generalization ability. Some common methods such as Dropout [47], Early Stopping,

Data Augmentation and Batch Normalization. Early Stopping is used to stop training

when continued training can only obtain little or no improvement. The idea of Data

Augmentation is to increase the size of training set by doing transformation. CutMix

[13] is a type of Data Augmentation in WSOL task. Batch Normalization can adjust

the weights of each layer, thus each layer is trained from a similar starting point. We

utilize the idea of Dropout [47] in our work, so we will describe in much detail.

Dropout [47] is an effective method to eliminate over-fitting by dropout the nodes

of a network in some probability randomly. For the dropped neurons, they will not

work during training. The diagram is shown in Figure 7.

Dropout provides the probability for a deeper network. However, it is less ef-

fective on convolutional feature maps. There are two reasons for this limitation: 1)

Convolutional layers have much less parameters than fully connected layers, so there

is less probability to overfit, 2) Dropout can not abandon all the information because

there is a strong relationship between the pixels of aconvolutional feature map. In
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2.6 Evaluation Metrics

The same as most current WSOL work, we use Top-1 Localization accuracy and

Top-1 Classification accuracy to evaluate the performance of our hiding method. For

localization accuracy, the prediction is correct when both classification and location

results are equal to the ground-truth. The same as most work, we use intersection

over union (IoU) to identify whether the predicted bounding boxes are correct. IoU

has been widely used in detection tasks that are shown in Figure 10 .When the

value of IoU is greater than 50%, the model will count localization as correct. For

the classification accuracy, the result is correct only when classification prediction is

equal to the label.

2.7 Overview of Proposed method

In the previous subsections in this chapter, we described the related work used in

our proposed method. Our technique is to design a module that can be inserted into

the classification model to eliminate the limitations of current Weakly Supervised

Object Localization. The diagram is shown in Figure 11. The typical layer is similar

to Figure 3. The inputs of our method are feature maps from the pooling layer.

All the positions after the typical layer are potential places to perform the proposed

module. As we can see in the Figure 12, there are 5 potential positions (after each

Max-pooling layer) to apply our new module. How many times to perform a proposed

method can lead to best performance, we will discuss in the next two chapters. For

the output layer, we replace the fully connected layer with global average pooling

[5] layer and softmax activation function to obtain a weight vector. Heatmap of

each channel is generated by multiplying the weight vector with the output feature

map thus each feature map has a weight based on the training label. Finally, linear

addition is performed to generate the Class Activation Map [8] that can highlight the
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Chapter 3

Attention-based Selection Strategy

Weakly Supervised Object Localization (WSOL) task aims to recognize the object

position by using only image-level labels. Some previous techniques remove the most

discriminative parts for all input images or random images to capture the entire object

location. However, these methods can not perform the correct operation on different

images such as hiding the data or feature maps that should not be hidden. In this case,

both classification and localization accuracy will be affected. Meanwhile, just erasing

the most important regions tends to make the model learn the less discriminative parts

from outside of the objects. To address these limitations, we propose an Attention-

based Selection Strategy (ASS) method to choose images that do need to be erased.

Moreover, we use different threshold self-attention maps to reduce the impact of

unhelpful information in one of the branches of our selection strategy. Based on our

experiments, the proposed method is simple but effective to improve the performance

of WSOL. In particular, ASS achieves new state-of-the-art accuracy on CUB-200-2011

dataset and works very well on ILSVRC 2016 dataset.
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prediction and the red bounding box is ground truth.

To address this problem, various approaches [9] [10] [11] [12] [13] [14] have been

proposed and already achieved considerable improvements. Some techniques [9] [12]

[14] hide the most discriminative regions of training data or feature maps in order to

impel models to learn less discriminative but necessary parts. From their experiments,

we can conclude that hiding the most important parts during the training phase is

effective to capture the entire object. However, previous works perform the hiding

for all training or random data and do not consider the uniqueness of each input

image. Hence, both localization and classification results are affected. Meanwhile,

most methods highly depend on the high-level feature map, thus ignoring the general

(such as boundary ) information. As a result, the detection could be redundant

or incomplete. Something has to be aware of is that some previous works [12] [11]

introduce additional classifiers to obtain the most discriminative regions. Although

these methods have achieved satisfactory results, they are too heavy for the WSOL

task on both computations and memories.

In this chapter, we propose an attention-based selection strategy to detect the

location of objects effectively and flexibly. Our approach can eliminate some of the

problems mentioned above. We design a selection strategy that is inspired by active

learning. Active learning is used to proactively make annotation requests and sub-

mit some filtered data to experts for annotation when labeled data are scarce and

data without class-label are quite rich but manual labeling is very expensive. Our

approach is similar to active learning to some extent. Moreover, both high-level and

relatively low-level feature maps have been used to relieve the impact of regions in

the foreground but do not belong to the target object.

The contributions of this chapter include:

1) We reveal the limitations of the existing techniques. In order to solve these

problems, we propose an attention-based selection strategy (ASS) that can enhance
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both classification and localization performance.

2) Our method is more efficient with less overheads compared to previous tech-

niques.

3) Our work achieves new state-of-the-art accuracy on CUB-200-2011 [15] dataset

and works very well on ILSVRC 2016 [16] dataset.

3.2 Proposed Method

In this section, we will show the details of the proposed selection strategy. Our selec-

tion strategy is based on self-attention maps from convolutional feature maps. From

Figure ??, we can obtain three kinds of information, which are the most discrimi-

native parts, the estimated area of target objects and the unhelpful regions (such as

background).

The overall processing is shown in Figure 14. Self-attention map is generated by

doing channel-wise pooling of the feature map. By thresholding a self-attention map,

we can obtain a drop mask that hides the most discriminative regions of an input

image. Drop mask and raw feature map do the spatial-wise multiplication and the

output is delivered to the next layer. This case is the third part of our method, in

which we only need to hide the most important regions of the image. Note that the

outputs of other two situations do the spatial-wise multiplication with the original

feature map in the same way.

Our selection strategy has three main parts:

1) For the feature map with much non-targeted and indistinguishable information,

our method passes the combined drop mask to the next layer. The diagram is in Figure

15. We can see that the drop mask can not cover the targeted region of the object.

So for this kind of feature map, non-targeted information is more discriminative than

object. Therefore, our module drops these non-targeted parts and passes the dropped
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map.

Matt =

[
c∑

i=0

Fi

]
/c (10)

Where F ⊆ RH×W×C is a convolutional feature map. H and W are the height

and width, C is the number of channels. Because the value of each point represents

the weight of classification, Channelwise Average Pooling can recognize the most

discriminative parts.

Our selection strategy is based on a self-attention map from Eq.(10). From Figure

??, by using different thresholds on the self-attention map, we can obtain different

drop masks.

Mdrop =


li = 0, if li ≥ α · lmax

li = 1, else

(11)

Where Mdrop ⊆ RH×W is the drop mask that can hide relevant regions by using

threshold α. li is the value of ith pixel. So the essence of the drop mask is to hide

each pixel greater than the threshold. We set thresholds equal to 0.8 and 0.1 to

obtain the most activated parts and background respectively. Note that when we

use 0.1 as the threshold to drop some background regions, the condition in Eq.(11)

should be li < α · lmax. For convenience, we use Mdrop1 and Mdrop2 to express them

respectively. Figure 17 shows the self-attention map and different thresholding masks.

The numbers are the drop thresholds. We can see that by using different thresholds,

we can obtain various information from self-attention maps. Moreover, this self-

attention map is generated after using a combined drop mask in a relatively low-level

layer, and we can see that both the self-attention map and the most discriminative

region when the threshold is 0.8 have less non-targeted information. The second row

and the third row are the drop mask when threshold equals 0 and 1 respectively.From

the fourth to the last row, the threshold is from 0.9 to 0.1, each decrease by 0.1.

In the first part of our strategy, we want to find images with obvious foreground

but non-objective regions. Based on the drop mask, we can obtain the most activated
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Figure 17: The self-attention map and different thresholding masks.
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pixels of the feature map. If some non-targeted regions are much more obvious than

targets, it will mislead the localization results. For the good drop mask in Figure ??,

the dropout region is a continuous area that can hide the most discriminative part of

the object. But for the drop mask in Figure 15, the drop mask can only remove the

discrete pixels of the image. So in case, there is much non-targeted information in

the background region, which will affect the detector. Therefore, we use drop masks

to hide these unhelpful but discriminative pixels and some background regions. We

select this kind of feature map mostly from relatively low-level layers because they

have much more general information. The selected Mdrop1 of the feature maps needs

to satisfy two conditions:

1) Mdrop1 should have a certain number of activated pixels. If there are very few

points in the drop mask, the detector does not adequately understand the image in

this stage.

2) Important pixels have large dispersion and the most activated regions are dis-

crete. As we mentioned above, a good drop mask is supposed to have a continuous

region that can remove the most discriminative part of the object. So when the pix-

els are very discrete, the attention map can not focus on the target very well. In

this case, we use threshold to remove background and foreground but non-targeted

information, which can make the detector focus on the target better.

OnceMdrop1 meets all the conditions above, self-attention will be tough to show the

weights of targeted objects. One of the examples is shown in Figure 15. In this case,

we use Mdrop1 to hide regions that have much non-targeted information. Moreover,

we also use Mdrop2 to hide as much background as possible. Condition (1) is simple

to implement using the coordinate of each pixel. In mathematics, the variance has

been utilized to measure the dispersion of one-dimensional data. Therefore, we use

the summation of two single-dimensional data to express the dispersion of the most
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activated pixels.

Di = µ1(V ar(X) + V ar(Y )) + µ2P (12)

Where Di is dispersion of ith Mdrop1, X and Y are two arrays of axes, which can

obtain from the position of each activated pixel. P is the number of discrete points

of a drop mask. µ1 and µ2 are two parameters that express the influence level of two

values.

After the first selection, self-attention can obtain the drop masks with less non-

targeted information, which means drop masks are able to hide the most discrimi-

native regions of targets successfully. So in this case, our model simply delivers raw

feature maps for the feature maps with relatively small target areas and removes the

most activated regions for the remaining part of the feature maps. One of the exam-

ples is shown in Figure 16. In this case, our model outputs a map with all the values

equal to 1 by using threshold. So after doing spatial-wise multiplication with the raw

feature map, the model will deliver the original feature map to the next layer. We

set 0.3 as the threshold to obtain estimated area of target objects from Figure ??.

In general, our method divides images into three categories. The first class is the

image with much non-targeted and indistinguishable information, we use equation

Eq.(12) to measure the degree of the dispersion of the drop mask to judge whether

the drop mask can cover the targeted part or not. For the bad drop mask that can

not focus on the target, our method hides the non-targeted regions to make the model

learn the target region of this kind of images. The second type is the image with a

small target. We use a thresholding self-attention map that is shown in Figure 17.

When the threshold is 0.3, the drop mask can estimate the whole region of the object.

So we utilize the ratio of the estimated target area to the total area of the image to

identify small objects. For the image with a small object, our module just passes the

original feature map to the next stage. Finally, for the rest of the images, we only

hide the most discriminative part of them. Algorithm 1 shows the processing of our
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and conv5-3 layer. Note that the parameters above are the optimal setting based on

our experiment, different values may obtain different results. The backbone network

is pre-trained on ILSVRC and fine-tuned with the learning rate 0.001 and batch size

32. We trained our model using the GeForce RTX 2060 GPU.

3.3.2 Ablation Study

In this subsection, we use the results of the CUB-200-2011 [15] dataset to do some

ablation study.

Table 1 shows the different results according to the choice of positions to plug

our module. From these results, CAM [8] has the lowest classification error but the

highest localization error. We believe that CAM [8] only uses raw feature maps that

will make the model only focus on the most discriminative regions. We also find that

our method can further improve the localization accuracy when it is plugged into

both high-level layers and relatively low-level layers. Note that for the feature map

from the same image, our model may perform the different operations on different

plugged layers. Such as for the small object with much non-targeted information, our

model hides as much as unhelpful regions on the Pool3 layer. So for the Pool4 and

Conv 5-3 layers, the raw feature map will be delivered to the next layer.

Table 1: The different Results for the choice of positions to plug our module

Plugged position Top-1 cls.err Top-1 loc.err

N/A(CAM[8]) 23.86 66.05
conv 5-3 23.97 51.65
+ pool4 24.82 50.00
+ pool3 25.51 45.45
+ pool2 26.79 47.51
+ pool1 26.92 47.24

Table 2 illustrates the necessity to introduce our selection strategy for WSOL.

CAM [8] means the WSOL without any drop masks and CAM + Mdrop1 means that
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On CUB-200-2011 [15] dataset, although CAM[8] has the highest classification

accuracy, ASS outperforms VGGnet-CAM [8] by 20.6% on the localization accuracy.

Furthermore, our method achieves 45.45% of the Top-1 localization error, which is bet-

ter than the current state-of-the-art performance. On the ILSVRC 2016[16] dataset,

we can see that ASS improves both classification and localization results compared

with CAM [8]. Although ADL [9] obtains the best classification performance, ASS

obtains the similar result. Compared with ACoL [12] that has the best localization

accuracy apart from ours, our method improves the localization result but not very

obviously.

Table 3: Quantitative evaluation performance on CUB-200-2011 dataset

Method Top-1 cls.err Top-1 loc.err

VGGnet-CAM [8] 23.86 66.05
VGGnet-ACoL [12] 28.10 54.08
VGGnet-SPG [11] 24.50 50.00
VGGnet-ADL [9] 34.73 47.64
VGGnet-DANet [10] 24.60 47.48
VGGnet-Cutmix [13] - 47.47
VGGnet-ASS(Ours) 25.51 45.45

Table 4: Quantitative evaluation performance on ILSVRC 2016 dataset

Method Top-1 cls.err Top-1 loc.err

VGGnet-CAM [8] 33.40 57.20
VGGnet-ACoL [12] 32.50 54.17
VGGnet-ADL [9] 30.52 55.08
VGGnet-Cutmix [13] - 56.55
VGGnet-ASS(Ours) 30.59 53.76

For the parameters overheads, ASS is similar to ADL [9] and CAM [8], which

does not use any additional classifiers. For the computation overheads, compared

with augmentation methods such as Cutmix [13], which cuts one region of training
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data and mixes with other images. Ours has less calculation costs.

From Figure 21 , we can see that our approach obtains better results than CAM [8].

Moreover, in the fourth column of both figures, our method maintains the performance

of CAM [8] when relatively small objects are the inputs.

3.4 Conclusion

In this chapter, we propose a simple but effective method for Weakly Supervised

Object Localization task. We reveal the limitations of current methods and design a

selection strategy to eliminate them. Our method only hides the feature maps that

are necessary to hide. For the small objects that have already achieved good results

on CAM, our module delivers the raw feature map to the next layer. Moreover, our

approach can remove much unhelpful information that will mislead the localization.

Compared with current state-of-the-art techniques, our method works very well on

localization accuracy without too much overhead on CUB-200-2011 and ILSVRC 2016

datasets. In our perception, our method is the first work to consider the different

situations of training images. Therefore, our work provides new insights to do the

Weakly Supervised Object Localization task.
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Chapter 4

Attention-based Dual Hiding

Method

As we mentioned previously, most current methods tend to utilize Class Activation

Map (CAM) that can only highlight the most discriminative parts rather than the

entire target. The common method to address this kind of limitation is to hide the

most discriminative regions during training. However, considering that the pixels of

the feature maps from the convolutional layer have a strong relationship. Previous

removing techniques can not hide the most important information completely, thus

the limitation of Class Activation map may not be solved very well. In this chapter, we

propose an Attention-based Dual Hiding method, which can eliminate the limitations

of both CAM and current hiding techniques. Experiments demonstrate that the

proposed method works very well on CUB-200-2011 and ILSVRC 2016 datasets.

4.1 Introduction

Some current research illustrates that hiding methods can improve the performance of

Weakly Supervised Object Localization tasks. However, considering the characteris-

tics of the feature map from the convolutional network, there are strong relationships
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between each pixel of the convolutional feature map. Therefore, the current hiding

method can not remove the discriminative information very well. Thus, it may af-

fect the final results of the localization model. In this paper, we propose a Dual

Hiding method to eliminate the limitation of current hiding techniques. The Dual

method is inspired by [61]. Instead of only removing discriminative pixels, we utilize

spatial-softmax[6] and proposed an area hiding method to remove expected regions

of both channel and spatial level. Spatial-softmax is first used in [6] to generate the

coordinates of expected pixels. The overall method is shown in Figure 19. Proposed

technique can remove the most expected region of both channel and spatial space.

The inputs are feature maps from convolutional networks. For channel space, we

first use spatial-softmax to generate the probability distribution map of each channel.

After that, Global Average Pooling is performed to obtain the probability of each

channel. We select the top-1 channel that has much more classification information

to generate the most expected region. For the spatial space, by doing channel-wise

pooling, we can obtain a self-attention map that can show the important region of

the image. By combining the thresholding self-attention map and expected region,

the spatial drop mask is generated. The method to obtain the expected region of

spatial space is the same as channel level. We combine the channel drop mask and

spatial drop mask to obtain the final drop mask. For the last step, drop mask and

original feature map do element-wise multiplication. The output of multiplication

are the feature maps without important information. The diagram of area hiding is

shown in Figure 20.

The contributions of this work include:

1) Based on the limitations of current hiding methods. We propose a dual hiding

method that can better remove the most discriminative information and improve the

localization performance.

2) Compared with data augmentation and the technique that utilizes additional
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4.3 Experiment Results

In this section, the experiment results are provided.

4.3.1 Implementation Details

We utilize VGGnet[19] and ResNet[7] as backbone networks. The same as CAM[8], we

remove the fully connected layer with a global average pooling layer[5]. Our proposed

method is inserted into some positions of backbone networks. For example, we plug

our method after pool3, pool4 and conv5-3 layer of VGGnet[19]. The predicted

bounding boxes are generated in the same way as CAM[8]. For the drop mask of

self-attention, we set 0.8 and 0.9 as the threshold for those two backbone networks.

The network is pre-trained on ILSVRC dataset [16]and fine-tuned with learning rate

0.001 and batch size 32. We utilize GeForce RTX 2060 GPU to train our model.

4.3.2 Comparison with State-of-the-art Methods

Table 5: Quantitative evaluation performance on CUB-200-2011 dataset.

Method Top-1 cls.err Top-1 loc.err

VGGnet-CAM[8] 23.86 66.05
VGGnet-ACoL[12] 28.10 54.08
VGGnet-SPG[11] 24.50 50.00
VGGnet-ADL[9] 34.73 47.64
VGGnet-DANet[10] 24.60 47.48
VGGnet-Cutmix[13] - 47.47
VGGnet-AMH(Ours) 26.46 43.16
ResNet50-CAM[8] 21.51 58.83
ResNet50-ADL[9] 24.68 48.09
ResNet50-Cutmix[13] - 45.2
ResNet50-AMH(Ours) 25.17 44.47

In this section, we compare the performance of our method with current techniques

on CUB-200-2011 [15] and ILSVRC 2016 [16] datasets. The backbone networks are
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Table 6: Quantitative evaluation performance on ILSVRC 2016 dataset.

Method Top-1 cls.err Top-1 loc.err

VGGnet-CAM[8] 33.40 57.20
VGGnet-ACoL[12] 32.50 54.17
VGGnet-ADL[9] 30.52 55.08
VGGnet-Cutmix[13] - 56.55
VGGnet-AHD(Ours) 31.47 53.15
ResNet50-CAM[8] 23.94 54.65
ResNet50-AMH(Ours) 22.07 51.84

VGGnet [19] and ResNet50 [7]. Table 7 and Table 8 show the results of each dataset

respectively.

For the classification performance, CAM performs very well on birds dataset with

VGGnet [19]. But for the results on ILSVRC 2016 [16] dataset, classification accuracy

of CAM is not better than current method. For the localization results, our method

works very well on CUB-200-2011 [15] dataset using both VGGnet [19] and ResNet50

[7]. The results of bird dataset have significant improvement compared with current

techniques. For ILSVRC 2016 [16] dataset, although proposed method works better,

the improvement is not very obvious. After checking the bounding box labels of

ILSVRC 2016 [16] dataset, we noticed that for a group of same objects in one image,

the ground-truth bounding box of it covers only one of them. For example, there are 6

apples in the image, our method can detect all the apples and generate the predicted

bounding box. However, the label only shows one of them. That will absolutely

impact the final accuracy.

4.3.3 Ablation Study

In this section, we use the result on CUB-200-2011[15] dataset with VGGnet[19] to

provide some ablation study.

Table 7 shows the different results when our module is inserted into different
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For the overheads, our hiding method does not perform any augmentation or

introduces any additional classifier.

Table 7: The Different Results For The Choice of positions to plug our module.

Plugged position Top-1 cls.err Top-1 loc.err

N/A(CAM[8]) 23.86 66.05
conv 5-3 23.95 52.19
+ pool4 24.12 46.31
+ pool3 26.46 43.16
+ pool2 27.08 45.07
+ pool1 29.30 47.81

Table 8: The Different Results by using different drop masks.

Drop mask Top-1 cls.err Top-1 loc.err

N/A(CAM[8]) 23.86 66.05
drop mask of self-attention 24.13 45.04
+ Top-1 spatial region 24.25 44.47
+ Top-1 channel region 26.46 43.16
+ Top-2 spatial region 26.86 44.94
+ Top-2 channel region 27.15 46.80

Table 9: Ground-truth accuracy of each method. Since few methods provided the
value of this evaluation metric, we only show available methods in this table.

Method Ground-truth loc.err

VGGnet-CAM[8] 36.77
VGGnet-ADL[9] 30.64
VGGnet-AMH(Ours) 25.23

4.3.4 Results

In this section, we compare the performance of our method with current techniques

on CUB-200-2011[15] and ILSVRC 2016[16] datasets. The backbone networks are
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VGGnet[19] and ResNet[7]. Table 7 and Table 8 show the results of each dataset

respectively.

For the classification performance, CAM performs very well on birds dataset with

VGGnet[19]. But for the results on ILSVRC 2016[16] dataset, classification accu-

racy of CAM is not better than the current method. For the localization results,

our method works very well on CUB-200-2011[15] dataset using both VGGnet[19]

and ResNet50[7]. The results of the bird dataset have significant improvements com-

pared with current techniques. For ILSVRC 2016[16] dataset, although the proposed

method works better, the improvement is not very obvious. After checking the bound-

ing box labels of ILSVRC 2016[16] dataset, we noticed that for a group of the same

objects in one image, the ground-truth bounding box of it covers only one of them.

For example, there are 6 apples in the image, our method can detect all the ap-

ples and generate the predicted bounding box. However, the label only shows one

of them. That will absolutely impact the final accuracy. In [60], in order to eval-

uate the WSOL performance much more fair, [60] suggested future work providing

Ground-truth localization accuracy. Our method works better from table 9.

4.4 Conclusion

In this chapter, we proposed a dual hiding method for Weakly Supervised Object

Localization (WSOL) task. Our starting point is based on the strong relationship of

each pixel of convolutional feature map. According to the experiments, we can see

that the proposed method can effectively improve the localization performance on

CUB-200-2011 and ILSVRC 2016 datasets compared with current WSOL techniques.

The performance on ILSVRC 2016 dataset is not very satisfactory. We mentioned

the reason in the last subsection. Therefore, our feature work is supposed to improve

the performance of ILSVRC 2016 dataset.
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Chapter 5

Revisiting Class Activation Map

We reviewed the limitations of the Class Activation Map that can only highlight the

most discriminative region of the object. In order to eliminate the issue of CAM, the

hiding methods are proposed. In this chapter, I will revisit the processing of the Class

Activation Map and review the reasons that make the CAM such ill-posed. Based on

those reasons, we proposed corresponding solutions to improve the localization accu-

racy on CAM level. Proposed methods do not introduce any hyperparameters and

additional network. Proposed two stage localization method can evaluate each poten-

tial threshold and select the optimal threshold for different images.The localization

performance is improved significantly compared with current WSOL methods.

5.1 Introduction

Class Activation Map [8] has an issue that can only cover the most discriminative

part of the target. Current work has shown that hiding methods can promote the

CAM [8] to cover the entire pattern of the object. However, previous hiding methods

will introduce redundant thresholds or overheads, which will make the model harder

to train. Meanwhile, the pre-trained backbone greatly changed the architecture of the

network, which sacrifices the classification accuracy. The localization performance is
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5.2 Revisiting Class Activation Map

The biggest difference between the pre-trained backbone and the CAM model is the

Global Average Pooling between the last convolutional layer and fully connected layer.

PG =

[
w∑
i=1

h∑
j=1

P1ij,

w∑
i=1

h∑
j=1

P2ij, ......,

w∑
i=1

h∑
j=1

Pcij

]
/ (w × h) (15)

Where P ⊆ RH×W×C is the feature map from the last convolutional layer. H and

W are the height and width of feature map, C is channel number. The output of

Eq.(15) shows the weights of each channel.

Next step, we pass the weight of each channel to the fully connected layer to

compute the final Class Activation Map [8]. The equation of calculating the CAM

[8] is:

Mc =
k∑

k=1

wk,c · Pc (16)

Where M ⊆ RH×W is the Class Activation Map and P ⊆ RH×W×C is the feature map

from the last convolutional layer. c is the predicted classification result. We can see

in the Eq.(16) that the Class Activation map is generated from the weighted linear

summation of the feature maps. After obtaining Mc, the heatmap is normalized using

Min-Max normalization and resized to the input image size. We named the final Class

Activation map M f
c . Then we use a threshold to extract the bounding box of the

target, which is:

ηl = δl ·maxM f
c (17)

The δl in Eq.(17) is a number ranging from [0,1].
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5.4.1 Weighted Global Average Pooling

Inspired by the motivation in the last section. We proposed a weighted GAP that can

assign different weights to the feature map based on the classification. The weighted

matrix is:

Scij = eacij/
∑

i′j′
ai′j′ (18)

Where c is the channel of the feature map and (i, j) is the pixel coordinate.

By using Eq.(18), we can obtain a probability distribution that represents the pixel

weights based on the classification labels. By multiplying the feature maps with the

weights matrix, the weighted feature maps are generated that the targeted pixels will

be encouraged and the background region will be penalized. So the proposed WGAP

is:

PG =

[
w∑
i=1

h∑
j=1

P1ijS1ij,
w∑
i=1

h∑
j=1

P2ijS2ij, ......,
w∑
i=1

h∑
j=1

PcijScij

]
/ (w × h) (19)

Where P ⊆ RH×W×C is the feature map from the last convolutional layer. H and

W are the height and width of feature map, C is channel number. For the output of

WGAP, that will highly depend on the activated pixels, which is more beneficial to

store the spatial information. The diagram is figure 26.

5.4.2 Recombining the weights of FC layer

The weights of fully connected layer is used to encourage the positive feature maps

and inhibit the negative ones, which can be express like this:

Mc = Mp +Mn =

p∑
p=1

wp,c · Fp +
n∑

n=1

wn,c · Fn (20)
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points to determine a bounding box. When the points of border are less than 4, we

will not consider this threshold because there is no bounding box for this threshold.

The network is pre-trained on ILSVRC dataset [16] and fine-tuned with learning rate

0.0001 and batch size 32. We use GeForce RTX 2080 GPU to train the model.

5.5.2 Comparison with State-of-the-art Methods

Table 10: Quantitative evaluation performance on CUB-200-2011 dataset.

Method Top-1 cls.err Top-1 loc.err

VGGnet-CAM[8] 23.86 66.05
VGGnet-ACoL[12] 28.10 54.08
VGGnet-SPG[11] 24.50 50.00
VGGnet-ADL[9] 34.73 47.64
VGGnet-DANet[10] 24.60 47.48
VGGnet-Cutmix[13] - 47.47
VGGnet-EMIL[63] 25.23 42.54
VGGnet-MCI[64] 27.41 41.88
VGGnet-ICL[65] 26.6 42.5
VGGnet-RCAM(Ours) 24.06 38.09

We evaluate our method on CUB-200-2011 [15] dataset using VGGnet [19] as

backbone. From table 10, we can see that our method significantly improves the

localization performance with less classification sacrifice. Figure 30 shows the local-

ization examples. We can see that the Class Activation Map can cover the whole

pattern very well and the bounding box covers all the activated regions.

5.6 Ablation Study

We are using the contrast of each similarity map to select the optimal bounding box.

The figure 31 expresses a case of that. When the threshold is zero, the bounding box

has the same size as the image. 0.1 is the optimal threshold and 0.6 is the maximum
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Chapter 6

Summary and Future Work

In this chapter, I will give the overall conclusion of the proposed method and possible

future work direction.

6.1 Conclusion

In this thesis, we focus on the Weakly Supervised Object Localization task, which

can locate the object using incomplete labels. The most common limitation is that

the detector can only highlight the most discriminative part of the target. We believe

that it is because classification models only use the most obvious regions to identify

the categories of objects.

For the attention-based selection strategy, we design a selection method that can

dynamically generate drop masks based on different feature maps. Instead of the cur-

rent hiding method, our method is smarter and more flexible. In our perception, our

method is the first work to consider the different situations of training images. There-

fore, our work provides new insights to do the Weakly Supervised Object Localization

task.

Based on the first work, it can only hide the most discriminative pixels. Consid-

ering the strong relationship of each pixel in a convolutional feature map, we design
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a dual hiding method that can remove the regions in both channel and spatial space.

According to the experiments, we can see that the proposed method can effectively

improve the localization performance.

For the third work, we find some issues that make CAM [8] ill-posed. Based on the

issues, corresponding methods are proposed. Our method improves the localization

result very significantly without classification sacrifices and hyperparameters to be

set by experience. In our perception, the proposed two stage localization method is

the first work that can evaluate the potential bounding boxes and assign the optimal

thresholds to different images in WSOL tasks.

6.2 Future work

From the results in each section, the current localization accuracy still exist a big gap

compared with fully supervised object localization. So in this section, I will provide

some potential future work directions.

New loss function

Current WSOL methods highly depend on the classification loss function. How-

ever, based on the main work of localization, designing the loss function that is

suitable for localization is a possible future direction.

Using stronger transformer

Transformer has attracted more and more attention this year. Therefore, using

stronger transformer might be a feasible method.
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