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Abstract

Modeling and Solving Resource Constrained Project Scheduling Problems with
Remanufacturing Activities

Tiansheng Zhang

Resource constrained project scheduling problem (RCPSP) is one of the most important prob-

lems in industrial engineering and production management. Owing to environmental concerns,

companies are paying more attention to the remanufacturing of end-of-life products. In this thesis,

a mathematical model is developed considering remanufacturing activities in resource constrained

project scheduling problem. The mathematical model considers recycle rate in multiple opera-

tion modes and several components of cost, including bonus, penalty, and others. A set of project

network instance are generated using RanGen1 for evaluation. To solve the model, a three-stage

heuristic method is developed in CPLEX 12.8 environment. Result shows that proposed method

can reach a close-to-optimal solution within acceptable time limit.
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Chapter 1 Introduction 
 

In this chapter, we introduce the general information of resource constrained project scheduling 

problem (RCPSP) and remanufacturing system. The challenges are discussed with the outline 

of the thesis provided at the end of this chapter. 

 

1.1 Resource constrained project scheduling 
  

Since the structure of supply chain are getting more and more complex in recent decades, 

modern companies are gradually reorganizing themselves into a modular and project-oriented 

structure to avoid possible impact generated by activities delay. According to Bounds, project 

management is estimated to be an 850 million industry and is expected to grow by 20 percent 

each year [2]. Though many projects are started each year, only 26% of them are finished on 

time and within budget limit, which makes project management a more important subject [2].  
 

Project scheduling originates from project management. In 1950s quantitative methods such as 

Critical Path Method (CPM) and Project Evaluation Review Techniques (PERT) are proposed 

to manage projects. These approaches give good estimation on project life circle if no resource 

conflict appears, which often is not the case. With the requirement of resource allocation 

appears, project management problems are more difficult to solve.  
  

Resource constrained project scheduling problem (RCPSP) is proposed in late 1970s by 
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Pritsker et al. [53]. It is used to reach an optimal objective with respect to scarce resources. 

With different variants and extensions, RCPSP may reach various result with different 

constraints.  

 

1.2 Remanufacturing system 
  

The definition of remanufacturing is raised when build a single item which requires tremendous 

amount of resource to build. During World War II large scale project remanufacturing was put 

on high importance since productivity was in severe shortage in both civil and military fields. 

Cars need to be kept running and weapons need to be recycled and refurbished to satisfy the 

fast consumption.  
  

Remanufacturing process aims to bring end-of-life assembly product back to like-new status 

with repairing and replacing components [3]. Comparing to traditional manufacturing, 

remanufacturing provides high-quality products with lower energy and resource consumption, 

while the profit margin is higher.  
  

For remanufacturing enterprises, the challenge is to deal with highly varied production line 

caused by difference quality of recycled products. Disassembled components are inspected and 

stored for further reassembly. Furthermore, recycled components from a same batch may take 

different time to get prepared, makes it difficult to schedule the reuse. 
 

One of the difficulties in remanufacturing enterprise is to create a disassembly schedule with 

consideration of recycled item usage and holding cost. An early remanufacturing activity may 
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lead to unnecessary inventory stockpile while a late activity may result in delay on activities 

that requires refurbished item and lateness of whole project. Including remanufacturing 

schedule in a resource-constrained project scheduling problem can effectively decrease 

possibility of project delay.  

  

1.3 Motivations and Challenges 
  

Both RCPSP and remanufacturing have been thoroughly researched in the past several decades, 

respectively. However, research on the impact of remanufacturing on RCPSP is not rich. 

RCPSP focus on reasonable resource allocation over time to achieve a specific goal with known 

number of resources. For large scale project dealing with single or small-batch items, 

remanufacturing of several core parts can greatly save costs and shorten projects durations. But 

remanufacturing activities and RCPSP are usually considered separately since remanufacturing 

activities produce non-renewable resources instead of consumption.  
  

The way remanufacturing activities do is to produce non-renewable resources while use 

renewable resources. Normal non-renewable resources are acquired from external source and 

does not need to be processed by workers and machines. Costs related to them are order 

placement cost, material purchase cost and inventory holding cost. For remanufacturing 

activities, resources need to be preprocessed before used by other activities. Because 

remanufacturing activities has a disassembly hierarchy and produce non-renewable resource 

which need additional cost for holding, remanufacturing activities should be considered 
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separately in RCPSP without losing its characteristics.  
 

Also, for refurbishment project, material requirement is not known until further inspection on 

items and non-renewable resources need to be ordered after project initiates. This can add 

additional complexity to problem solving. Besides, recycled materials may take different time 

to be prepared. Normal remanufacturing scheduling only focus on item disassembly hierarchy, 

which may lead to a local optimal for whole project. Integrating remanufacturing activities into 

resource-constrained project scheduling problem gives a more comprehensive consideration 

on refurbishment project scheduling.  

 

1.4 Contribution 
  

This research proposed a mathematical model for multi-mode resource constrained project 

scheduling project scheduling problem with remanufacturing activity and cumulative resources. 

The model integrates remanufacturing activity and cumulative resource as new components for 

RCPSP, which reduce the uncertainty of remanufacturing project and increase efficiency. 

Remanufacturing activities are considered in resource constrained project scheduling problem 

with the production and consumption of cumulative resource in multiple operation modes for 

the first time.  

 

A three-stage heuristic method is proposed to quickly reach a suboptimal solution with 

acceptable accuracy in practical situation. 18 RanGen1 generated instance are used to verify 

the efficiency of proposed heuristic method, and the results are compared with solution 
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generated by CPLEX embedded solver.  

 

1.5 Outline 
 

In the next chapter, literatures researching resource-constrained project scheduling problem 

(RCPSP) and remanufacturing scheduling will be reviewed. A mathematical model for RCPSP 

with remanufacturing activities will be demonstrated in Chapter 3. In Chapter 4, a three-stage 

heuristic method to solve problem will be presented. Chapter 5 gives a summary and future 

prospection on this study.
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CHAPTER 2: Literature Review 

 
2.1 Introduction 

  

In recent decades, rapid progress has been seen in the field of project scheduling. Mathematical 

basis has been consolidated. Various methods are proposed for solving this NP-complete 

problem. Extensions and variants considering practical situations are introduced. In this chapter, 

a literature review related to resource-constrained project scheduling problem is given.  

 

2.2 Project Management Tools 
  

Project management can date back to at least 4000 years ago when ancient architectures 

projects are organized without modern methods and tools but only estimations. Before resource 

constrained project scheduling is proposed, tools like Gantt Chart and CPM are widely used 

for scheduling. Resource constraints are usually considered separate to project schedule.  

 

2.2.1 Gantt Chart 
  

Gantt chart, also known as harmonogram, is invented by Henry Gantt to demonstrate project 

schedules. A Gantt chart lists all tasks to be complete on vertical axis and time intervals on 

horizontal axis [4]. Gantt chart can clearly demonstrate start-end relationship for all tasks and 

non-complete work breakdown structure, but not enough to show precedence network for 
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whole project. Therefore, tracing the impact of delay on whole project is hard on large scale 

project.  

  

2.2.2 Critical Path Method 
  

Critical Path Method (CPM) is an algorithm developed by Morgan R. Walker and James E. 

Kelley for scheduling a set of activities [5]. It uses four components to construct a model: a set 

of activities organized in work breakdown structure (WBS) directed by project aim; durations 

needed to complete activities; precedence relationship of activities; logical points indicating 

start and end, also known as milestones. 
  

Critical path method generates a critical path through activities network which has the longest 

path. Other paths from start node to sink node that have shorter durations are called sub-critical 

path or non-critical path. A critical path determines minimum time needed to complete project 

if no task on this path is delayed, while some activities on non-critical path can be postponed 

without delay the whole project. The activities on critical path are supposed to be started once 

their precedence tasks are completed such that the project can be finished on earliest possible 

time.  
 

Critical path method gives a good estimate on project makespan and provides earliest start time 

and latest start time for all tasks, which makes it possible for project manager to allocate 

additional resources to crash project duration and transform the project into a time-cost tradeoff 

problem. By shorten duration of tasks on critical path, the critical path may change, and non-
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critical path may become critical path, which can be further altered for shorter project 

makespan. 

  

2.2.3 Project Evaluation and Review Technique 
  

The Project Evaluation and Review Technique (PERT) is a statistical tool for project 

management developed by The US Navy. It is applied increasingly to Critical Path Method 

despite their difference [6]. 
 

PERT makes it possible to schedule a project without knowing the accurate duration of its tasks 

by considering uncertainty and provides estimations on project. Usually, four types of time are 

required for PERT scheduling: optimistic time, pessimistic time, most likely time and expected 

time, representing the minimum time required, the maximum time required, the best estimate 

when activity goes normal and the average time if activity is repeated under the same conditions. 
 

PERT is often used with CPM for better project management. With different duration 

estimation Given by PERT, project managers are able to allocate more cash and resources into 

activities more likely to be critical, thus reduce the uncertainty of project.  

 

2.3 Resource constrained project scheduling problem 
   

Project duration is one of the most important factors when implementing a project. Improper 

managing a project may cause late completion of the project, which reduce possible profit. 

Many researchers have proposed methods to minimize makespan of a project.  For multimode 



9 
 

project scheduling, due to the introduction of non-renewable resource, minimizing overall 

project cost is considered as an important objective function. Among the research in RCPSP 

problem, many put their focus on easy-accessible general-purpose tools for integer 

programming problem and mixed-integer problem, which can be easily understood and 

deployed by practitioners without excessive background knowledge.  
 

Kolisch [7] proposed a new RSM-based priority rule for parallel scheduling scheme. The 

concept of Generally Forbidden Pairs, Temporarily Forbidden Pairs and Current Schedulable 

Pairs are introduced. The earliest schedulable time ∏(𝑖, 𝑗)
𝑟  considering resource 𝑟   in 

Decision Set 𝐷𝑛 at stage 𝑛 for any activity pair (𝑖,  𝑗) can be calculated.  A priority value 

𝑣(𝑖) can be obtained with latest start time and 𝐸(𝑖, 𝑗), the earliest time to schedule activitiy 𝑗 

if activity 𝑖 is scheduled at time 𝑡𝑛. IRSM (Improved RSM) priority rule choose the activity 

with smallest 𝑣(𝑖) to schedule at each stage.  
 

Hartmann [8] proposed a precedence feasible based permutation genetic algorithm for RCPSP. 

An activity sequence is denoted as an individual 𝐼 = (𝑗1
𝐼 , 𝑗2

𝐼 ,  … , 𝑗𝐽
𝐼), in which 𝑗𝑛

𝐼  denotes the 

𝑛th scheduled activity. An activity sequence corresponds uniquely to a schedule with serial 

scheduling scheme. Two new sequences are created from two old sequences using crossover 

and mutation, then given an individual fitness. Four type of selection operators are used to 

choose an individual with highest fitness. This permutation-based GA method achieves better 

optimal value with less CPU time compared to other Genetic algorithm. 
 

In Alcaraz and Maroto [10], a robust genetic algorithm has been proposed for resource 
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allocation in project scheduling. Activity list representation is used with an additional gene 

called forward-backward gene denoting the mode this sequence is constructed. Three types of 

crossover are suggested, including Precedence set crossover, Forward-backward crossover 

(FBC) and Two-point forward-backward crossover (TP-FBC). The crossover keeps relative 

position of selected gene from one parent on its scheduling direction. Then mutation operator 

is applied after crossover and alters a gene position. FBC and TP-FBC gives good max 

deviation and optimal in ProGen-generated instance.  
 

Merkle, Middendorf and Schemeck [11] introduce an ant colony optimization (ACO) on 

RCPSP with both serial and parallel schedule generation scheme are used for sequencing. The 

ACO algorithm use heuristic information 𝜂𝑖𝑗 and pheromone information 𝜏𝑖𝑗 to denote how 

good it is to put activity 𝑗 at place 𝑖. The probability of schedule activity j at place i, denoted 

as 𝑝𝑖𝑗, is the ratio of product of 𝜂𝑖𝑗  and 𝜏𝑖𝑗 in summation of all schedulable activity. After a 

sequence is obtained, Serial Schedule Generation Scheme is used to obtain an optimal schedule. 

Six type of heuristics are considered.  
 

Hartmann [12] proposed a self-adapting genetic algorithm for RCPSP. The algorithm is 

interpreted by activity-list representation. An individual contains an activity sequence and a 

decoding method. A specific schedule is decoded with serial or parallel SGS from activity list 

λ. Two random integers 𝑞1 and 𝑞2 are selected for crossover. For ProGen-generated instance, 

self-adapting GA gives better average critical path lower bound in 1000 iterations and 5000 

iterations, respectively.  
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A simulated annealing (SA) algorithm is discussed by Bouleimen and Lecocq to minimize 

project makespan [13]. A new search scheme is used to replace traditional SA search scheme. 

For a current solution 𝑥, a neighbour point 𝑥′ is generated by shifting a random activity to a 

position between its earliest predecessor and latest successor. The difference Δ = 𝑓(𝑥′) −

𝑓(𝑥) is calculated, and 𝑥′ is accepted as new 𝑥 if Δ ≤ 0 or with possibility 𝑃 = 𝑒(−Δ/𝑇) if 

𝑃 is within acceptance range. 
 

An exact branch-and-cut method is proposed in Zhu [17] for MRCPSP. A cut procedure is used 

to reduce variables and constraints after each branching and tighten the linear programming 

relaxations. During branching procedure, a local search is applied on the neighborhood of 

current solution for early-stage advantage. Some problem-specific information is used to 

accelerate the obtaining of LP bounds. Numerical experiments are implemented on 20- and 30-

activity benchmark problems developed by Kolisch et al. and at least 502 of J30 problem set 

are reported with better solutions. 
 

Valls, Ballestin and Quintanilla [19] demonstrated a Hybrid Genetic Algorithm (HGA) for 

deterministic RCPSP. This HGA uses an improved crossover operator to identify combine 

good parts of generated solutions instead of random selected part. Besides, two parents in a 

couple are chosen in different manner. One is selected as the fittest individual in population 

and the other is randomly selected. And a scheme called Double Justification is introduced to 

obtain a left and right active schedule. Experiment shows that HGA improves most tested 

algorithms in solution quality sense.  
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A Hybrid Scatter Search/electromagnetism Method is applied to RCPSP by Debels et al. [20] 

They use an improved random-key representation by eliminating time scaling and timing 

anomalies problem.  
 

Jarboui et al. [21] introduce a combinatorial particle swarm optimization technique for multi -

mode RCPSP. A dummy variable for each particle is created to allow transition between 

combinatorial status and continuous status. The velocity of a particle in next moment depends 

on its current velocity, distance from best location of itself and best overall location. The paper 

uses this method for mode optimization of an existing schedule. 
 

Mendes et al. [22] proposed a genetic algorithm based on random key representation. A delay 

time for each activity is introduced in chromosome along with priority. The fitness of a solution 

is defined by makespan and potential for improvement.  
 

Zheng and Wang [24] developed a Multi-agent optimization algorithm for RCPSP. Several 

groups of agents proceed towards optimal solution under guide of local best agents and global 

best agents. Solutions are improved through social behavior and right-shift based self-learning 

with adjustment to environment. Experiments shows that MAOA works efficiently on medium 

and large-scale problems. 
 

Drezet and Billaut [28] considered a situation in labor arrangement company where resource 

requirement varying with time. Resource in this research is software company employee with 

different skill level to execute activities. Resource request may vary with time between a 
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minimum and maximum level. Like realistic situation, employees may work only for a certain 

amount of time.  
 

Mika et al. [27] considered setup time application in multi-mode RCPSP. Setup time is a pre-

process for general-purpose resource to get prepared for execution of activity. It depends on 

the target activity, involved resource type and specific activity sequence. Furthermore, concept 

of location is introduced as different activity process location can affect its successors’ setup 

time in MRCPSP.  
 

Neumann and Schwindt [29] discussed a situation where a resource is produced by an activity 

and requested by another activity, which causes a storage cost during time lag. This so-called 

cumulative resource is maintained between a minimum level and maximum level through 

consumption and replenish from activities, which may cause extra holding costs or resource 

conflict. Instead of using activity representation, they use events to represent consumption and 

replenish point for cumulative resource.  
 

A bonus-penalty policy under multi-mode RCPSP with material ordering is discussed by 

Zoraghi et al. [30]. In this research non-renewable resource need to be ordered in advance. 

Objective is to minimize total cost which consists of material order cost, holding cost, earliness 

bonus and tardiness penalty. Untimely non-renewable resource order or inappropriate method 

may result in tardiness penalty or extra inventory cost. They used a hybrid heuristic method 

which has an inner search stage and a multi-algorithm-based outer search stage.  
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In multi-mode RCPSP, two or more activities need to be operated in a fixed mode set. This 

mode identity constraint is discussed by Salewski et al. [31] All jobs are partitioned into finite 

config subsets and considered as temporal subsets. Earliest start time and latest finish time are 

also calculated in subset format, which greatly decrease complexity.  
 

Erenguc et al. [32] allows the reduction of activities in project at additional resource cost. For 

each mode of an activity, a normal duration and a crashed duration are given. Resource 

constraints are expressed conceptually in this research. Actual activity duration varies between 

two given duration under selected mode with additional cost spent on it. Mode cost, crash cost 

and tardiness penalty comprise final cost which is to be minimized. Actual duration is 

considered as a variable. Crashing activity can be considered as a special situation of multi -

mode projects.  
 

In supply chain management, quality is considered important but hard to be quantified. Li and 

Womer [33] proposed a model with quality level constraint. For each activity mode, a different 

quality level is given. Quality level works as a constraint. A minimum reliability must be 

satisfied for all activity quality level summation. Objective is to minimize project duration, but 

total inventory cost is also discussed under general temporal constraints and variable resource 

capacity. A similar approach is used to maximize quality level when observing budgets and 

deadline in Tareghian[34]. 
 

Tiwari et al. [35] discussed quality under heterogeneous resource circumstances. In their 

research, an activity can be started with a resource with low level skill and completed in a 
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rework mode. This two-step scheme can be considered as a special case of varying resource 

request with multi-mode activity. A new job can only be started after the rework of its 

predecessor is done. This rework mode usually happens in a multi-stage activity which requires 

consolidation after first step, like new employee training or Integrated Processing. Rework 

mode provides the possibility for more flexible scheduling at additional resource cost.  
 

Demeulemeester et al. [36] demonstrated a computational result for discrete time/cost trade-

off problem. Duration of activity is a non-increasing function of additional cost. With given 

amount of cost, a minimum project duration is found with a deterministic procedure. Their 

algorithm uses a backtracking technique which continuously improve project deadline. 

Resource constraints are not considered in their model. 
 

Drexl et al. [37] considered cases in which activities are not allowed to be scheduled during 

certain periods, which is called forbidden periods. This forbidden period is related to real world 

time. For example, a job that must be finished without pause but is scheduled at the end of a 

day, which causes a suspension of ongoing process. Forbidden periods provide an approach for 

scheduling considering vacations, temporary shutdown and other situations that pause 

processing jobs.  
 

In RCPSP, we usually assume that successor activities can be initiated as soon as their 

predecessor finish. In practical situation, an activity may not be started right after its 

predecessor. Concept of minimal time-lags is introduced as work continuity constraint by 

Vanhoucke [38]. Duration is substitute with time-lag which depends on two related activities 
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and their unit level in order to match repetitive characteristic of construction projects. By using 

unit notation, repeating activities are integrated as one activity with same property. 
 

In mechanical manufacturing, a material needs to be processed as soon as possible after a post-

process. In that case, a successor of post-process must be started within deteriorate time. This 

leads to a maximal time-lag concept similar to minimal time-lag. Bartusch et al. [39] considered 

general time-window constraints in job shop scheduling problem. Four types of time-lags are 

considered: start-to-start lags (S-S), start-to-finish lags (S-F), finish-to-start lags (F-S), finish-

to-finish lags (F-F) are transformed into a standardized form.  
 

A general case of precedence relationship is release date and due date of activities. A release 

date is a moment only after which certain activity can be started. Similarly, a due date is a 

moment before which a job must be finished. Essentially a release date can be transformed into 

a start-to-start lag between dummy start and considered activity, while a due date can be viewed 

as a finish-to-start lag between designated activity and dummy source. Due to technical issues, 

project may take more time than expected to be complete and due date is violated. Özdamar et 

al. [40], Neumann et al [41] and Klein et al [42] discussed circumstances where due date can 

be violated by paying some penalty cost. Objective is usually to maximize net present value, 

but tardiness itself is sometimes considered as objective.  
 

In industrial practice, an activity can have more than one execution mode due to resource 

variations. This leads to multimode resource constrained project scheduling (MRCPSP). When 

executed in different mode, an activity consumes different number of resources and yields 
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different duration. Vanhoucke et al [43] generalized MRCPSP with metaheuristic approach.  
 

An extension on activity finish time is discussed by Hartmann and Kolisch [9]. The extension 

forbids certain activities to finish at the same period. This is related to the case in large-scale 

experiments where there are multiple samples to record, or in factories where storage is not 

enough to hold all middle products.  
 

Möhring, Schulz, Stork and Uetz[14] demonstrated a minimum cut method for solving project 

scheduling problem. They use a Lagrangian relaxation method turn original problem into a 

minimum cut problem. 
 

Arkhipov et al. [24] developed a pseudo-polynomial algorithm to determine lower bound on 

the RCPSP problem makespan with time-dependent resource capacities. The idea is based on 

continuous assessment on resources capacities and workload. Start time and deadline of 

activities are modified repeatedly with constraints of resource under time horizon 𝑇, which is 

narrowed by binary search in the end of a cycle.  
 

A Tabu search method for RCPSP with schedule-dependent setup time is proposed by Mika et 

al. Besides traditional renewable resources, a new type of resources called setup-required 

resources for preparing multi-purpose resources is introduced. The setup time consists of 

sequence-independent setup time, sequence-dependent setup time and schedule-dependent 

setup time and is related to setup-required resources locations. This separation can decrease 

activity complexity for large project. And satisfying result can be obtained by Tabu search 
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metaheuristic. 

 

2.4 Remanufacturing system 
 

In recent decades, remanufacturing receives much attention for its potential to reduce 

environment pressure, pollution, and the revenue it brings to project. By remanufacture used 

items, project managers can reduce material cost, simplify supply chain, and schedule setup 

time more precisely. For project involving single item with high value, remanufacturing, 

instead of fabricating a new item, can considerably decrease lead time and cost needed for the 

project. 
 

One of the hardest parts of remanufacturing scheduling is disassembly scheduling since 

recycled material and item demands are highly unstable and unpredictable. To establish 

connection between supply and demands, bill of material (BOM) and materials requirement 

planning (MRP) system are used for remanufacturing management.  
 

Gupta and Taleb [43] introduced concept of disassembly scheduling. Reversed materials 

requirement planning (RMRP) is used to satisfy material requirement for components and 

subassemblies instead of assemblies. RMRP provides convenient access for floor material 

handling and inventory management, but it is hard to tell the source of demand for leaf items. 

In this procedure, requirement of material is set as final objective.  
 

Taleb, Gupta and Brennan [45] present a disassembly structure graph considering part 

commonality. Commonality denotes that an item has more than one parent or can be yield from 
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disassembling a common part. In their algorithm, common parts are split into separate 

categories stem from different parent items. Common parts in different categories, though they 

denote the same real-world items, are labeled with distinct number. They also show how 

material requirement can be met when leaf items have material commonality.  

 

 

 
Fig 2.1 Disassembly structure with part commonality [44] 

 

After Gupta and Taleb proposed their RMRP procedure, various extensions are introduced for 

remanufacturing. Lee and Xirouchakis [44] considered cost minimization as their objective. In 

their model, requirement is stated as leaf material. Root items are disassembled into leaf i tems 

to satisfy periodical leaf item demands, and scraped components require holding cost each 

period. Final cost consists of disassembly operation cost, material ordering cost, inventory 

holding cost and setup time cost. A mathematical model is construct and a two-stage heuristic 

method is used to solve the problem.  
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The model proposed by Gupta and Taleb is discussed in a more graphic way and not a 

mathematical model. An integer programming model is proposed by Lee et al. [46] to 

demonstrate the ordering and disassembly of end-of-life products over a planning horizon with 

various extensions. The model starts in a basic form considering only single product 

disassembly without part commonality. Objective of their integer model consists 4 parts: 

disassembly operation cost, setup cost, material holding cost and purchasing cost. For part 

commonality scenario in single product case, stock level constraint is changed such that 

inventory balance for each non-root item comes from multiple parent items, and demands are 

shown in leaf item.  
 

Though many scheduling methods of disassembly activity has been proposed, few research in 

mathematical essence of disassembly scheduling was done. In Kim et al. [47], they proved that 

a disassembly scheduling with assembly product structure is a NP-hard problem, which means 

a heuristic method is needed for solving the problem. They used a Lagrangian relaxation 

method to obtain upper and lower bound of each node on a branch-and-bound tree. The node 

is taken as new incumbent solution if its next activity in sequence has better lower bound and 

considered as current optimal.  
 

Inventory level is always a concern for project managers. Keep a high level of inventory 

increases robustness of manufacturing system but results in extra holding cost. Low inventory 

level saves inventory cost while brings high possibility of stock depleted. Furthermore, 

disassembly capacity is not unlimited in practical situation especially for large scale 
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disassembly activity and large single items. Kim, Lee and Xirouchakis [48] considered a 

situation where capacity for disassembling activity is limited. In each time period, disassembly 

activity can only happen limited times. The objective is to minimize add-up cost of setup cost, 

inventory cost and disassembly cost. While a peak hour demand may still occur, it is not 

possible to massively disassembly items for large material requests in next period.  
 

Capability for remanufacturing is not unlimited in most cases. In given time period, one type 

of parent items can be disassembled only for a certain amount of time. For example, if a large 

amount of leaf items is demanded at time 𝑡, it may not be feasible to disassemble parent items 

to acquire the leaf items needed in previous period 𝑡 − 1, given that capacity is constrained. 

Kim et al. [49] discussed a case in single item scenario without part commonality with capacity 

constraint. Their objective is to minimize the number of disassembled root item. Only limited 

number of items can be disassembled in each period.   
 

In this chapter, literature concerning resource constrained project scheduling problem and 

remanufacturing scheduling are discussed. For RCPSP, different variants and extensions 

considering for temporal constraints, resource constraints and objective functions in practical 

situation greatly increase complexity and lead to application of different solution methodology. 

For remanufacturing, scenario concerning single product without part commonality is mainly 

discussed. In next chapter, we will present a mathematical model to demonstrate RCPSP with 

remanufacturing activity.
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Chapter 3 Mathematical Model 

 
3.1 Introduction 
 

In this chapter, resource constrained project scheduling problem (RCPSP) with 

remanufacturing activities is studied. We give general definitions of parameters, decision 

variables and resource constraints. Basic assumptions will be given. Mechanism of 

remanufacturing process will be discussed. The model is based on Zoraghi [30] with variants 

of remanufacturing features. An Activity-on-Node (AoN) network will be used to present 

activities and their precedence. The model is developed as a multi-mode resource constrained 

project scheduling problem (MRCPSP). Each activity can be processed in multiple execution 

mode at different resource consumption rate and durations. A multi-mode project network 

diagram will be used for definition demonstration.  

 

3.2 Definitions 
  

An activity can be operated in different modes. Each mode consumes different number of 

renewable resources and non-renewable resource and yields different activity durations. All 

activities are non-preemptive, which means a project must be finished once it is started without 

pause and interruption.  

 

3.2.1 Activity 
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An activity has a set of predecessors and a set of successors. There are four types of time lags: 

finish-to-start time lag, finish-to-finish time lag, start-to-start time lag and start-to-finish time 

lag. All four types can be transferred to finish-to-start (F-S) time lag with consideration of 

activity duration. A F-S time lag is the minimal time period from the complete of an activity 

to its successor. An activity cannot be started until its predecessor finish. Once an activity 

initiates, it occupies certain amount renewable resource and consumes non-renewable resource 

and cumulative resource. For remanufacturing activities, they produce cumulative resource 

which can be used later by other activities.  

A dummy start and a dummy end are added to original project. They have only one mode that 

consumes no resource with a task duration of zero.  

 

3.2.2 Resource 
 

Three types of resources are considered in this study: renewable resources, non-renewable 

resources, and cumulative resources. A renewable resource can be used repeatably and refresh 

in each period, such as labor and machine. Once it is occupied by one activity, it cannot be 

used by other activity until current activity is finished. A non-renewable resource is a resource 

that has a limit of total usage, such as materials. When used by an activity, it is consumed and 

cannot be used anymore in project scope. Cumulative resource is a non-renewable resource. 

The difference between non-renewable resource and cumulative resource is that non-renewable 

resources are acquired from external supplier via orders and cumulative resource can only be 

supplied from remanufacturing activities. A non-renewable resource delivery can be obtained 
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by placing an order that specifies material amount.   

All these three resources can have different types. In our study, 𝑅𝑟  types of renewable 

resources, 𝑅𝑛  types of non-renewable resources and 𝑅𝑐  types of cumulative resources are 

considered. In each period, amount of available resource is refreshed. The inventory level for 

non-renewable resources and cumulative resources are zero at the beginning of activi ties. An 

order needs to be placed for non-renewable resources supply from external source. A 

remanufacturing activity need to be done to obtain cumulative resource supplement.  

Before project begins, requirement of resources by different activities and modes are known 

for deterministic until project complete, and the initial amounts of non-renewable resources 

and remanufacturing activities are zero.  

 

3.2.3 Remanufacturing activity 
 

Remanufacturing activities occupies renewable resources and produce cumulative resources 

for later used. Remanufacturing activities has no predecessors and successors. They can be 

operated at any time if renewable resource satisfies the condition. It is assumed that material 

required for remanufacturing are obtained previously and does not have a cost.  

Remanufacturing activity can be considered as a predecessor for activities that required 

remanufactured items. Successors cannot be initiated unless remanufactured items are 

prepared. Since disassembly tree exist, multiple remanufacturing activities may provide 

cumulative resources for one manufacturing task, and one remanufacturing activity may only 

be start after its required item is disassembled from parent item.  
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In the problem, two types of remanufacture items are discussed. In the first hierarchy, all three 

remanufacturing activities produce same cumulative resource, but they are in precedence 

relation. This denotes a type of product which yields multiple recycled components that has 

different process time. Second one may generate 2 type of remanufactured items in 

remanufacturing activity 2 and 3.  

In this study, disassembly structure is a single product structure without part commonality. 

Only one type of root item is considered at the same time, and different parent items can’t be 

scraped into same child item.  

 

3.2.4 Cost  
 

The objective of this study is to minimized total cost spent on project. There are six types of 

cost: order cost, non-renewable resources ordering cost, non-renewable resource inventory 

holding cost, cumulative resource holding cost, bonus and penalty for earliness and tardiness 

of project.  

Order cost is a fixed cost for placing an order. It is related to issuing a payment or invoice, 

cargo inspection, moving received goods to stock and other activity that are not related to order 

size. In mathematical model, a fixed amount of order cost is issued when an order for non-

renewable resource is placed.  

Non-renewable resource is usually related to consumable materials. Basic number of materials 

are needed for each single task, but increased material investment can accelerate task 

completion. Therefore, a trade-off between extra material purchase and bonus/penalty 
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regarding project completion exist, and non-renewable resources need to be considered as a 

variable.  

Inventory level is one of the most important factors for project managers. High stock level can 

strengthen production robustness against unpredictable material delivery delay but increase 

cost for inventory management. Low stock level can greatly reduce inventory holding cost 

while brings high risk of stockout. In our model, no backlogging is allowed. 

Cumulative resources are produced by remanufacturing activities. Since remanufacturing 

activities are dependent from normal tasks, it is possible to finish all disassemble activity before 

starting a normal activity. However, early disassemble activities result in extra holding cost for 

recycled cumulative resource. In single item disassembly hierarchy without part commonality, 

recycled child items tend to be high value precision component that requires special 

environment to store. Remanufacturing activities, therefore, should be scheduled along with 

normal activities. Since non-renewable resource and cumulative resource are determined after 

the inspection, no opportunity cost is incurred, which means inventory cost is related to 

material storage. 

For each project there is a due date to follow. If a project is finished before due date, a bonus 

specific to completion date will be paid to contractor. In contrast, a penalty with respect to 

finish date will be applied if project completion time does not meet due date as a compensation 

for not fulfilling contract.    

 

3.3 Assumptions 
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This model is based on research proposed by Zoraghi [30] and Lee et al [46]. In this 

mathematical model, project will be demonstrated in an Activity-on-Node (AoN) network 

𝐺(𝑉, 𝐸). All activities are non-preemptive, which means one activity must be kept running 

until it is complete and cannot be paused for reallocating resources. All activities have known 

and determined duration and consumption for each mode. A dummy start and a dummy end 

are added to original project network. Dummy start takes no resources and time to operated 

and is the predecessor of all activities. Conversely, dummy end requires no resource and time 

and is the successor of all activities.  

Remanufacturing activities and normal activities are independent in precedence relations but 

share same renewable resources. Available number of renewable resources is given in advance. 

Inventory size for non-renewable and cumulative resources has a limit. For renewable 

resources, once used by an activity, it will stay occupied and cannot be applied on other 

activities until current process is finished. Non-renewable resources will be restocked to ensure 

no back logging happens. To get restocked, an order with specific resource number and type 

will be placed. A delivery lead time is needed for orders to fulfill. Cumulative resource can 

only be supplied received when remanufacturing activities is finished. Non-renewable resource 

and cumulative resource are both consumed once activity starts, and a delivered order can only 

be available from the second day. 

Order cost for each material type is fixed and purchase cost for each unit of non-renewable 

resource is known and constant. Inventory cost is the same for nun-renewable resource and 
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cumulative resource per unit per period. There is a known due date for entire project when 

project begins. If project is finished before due date, a bonus per date will be earned. In contrast, 

a penalty will be applied according to tardiness.  

 

3.4 Mathematical model 
 

The mathematical model will use Fig 3.1 as demonstration. Parameters, sets, decision variables 

and objective functions are shown below. Remanufacturing activities are related to normal 

activities through cumulative resource, and precedence among remanufacturing activities are 

determined by recycled cumulative resources. To operate a remanufacturing activity, a set -up 

cost is usually needed. In our model, set-up cost is considered as a part of non-renewable 

resource purchase cost.  

 

 
Fig 3.1 Sample project networks and information 

 

Notations 
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Sets:  
 

 𝑇𝑃 =  {0, 1, … , 𝑇}, Set of time period 

𝐴𝑀 =  {1, 2, … , 𝑀}, Set of normal manufacturing activities 

𝐴𝑅 =  {1, 2, … , 𝑅}, Set of remanufacturing activities 

𝑅𝑆 =  {1, 2, … , 𝑆}, Set of renewable resources 

𝑅𝑁 =  {1, 2, … , 𝑁}, Set of non-renewable resources 

𝑅𝐶 =  {1, 2, … , 𝐶}, Set of cumulative resources 

𝑀𝑖, Set of modes of activity 𝑖, 𝑖𝜖  𝐴𝑁 ∪ 𝐴𝑅  

𝐸 = {(𝑖, 𝑗)| 𝑖, 𝑗 ∈ 𝐴𝑁 ∪ 𝐴𝑅} , Set of precedence relations,  
 

Parameters 
 

𝑂𝑛, Order cost for nonrenewable resource 𝑛 each time per order 

𝑃𝑛, Price for per unit of non-renewable resource 𝑛  

𝐻𝑛, Holding cost for per unit of non-renewable resource 𝑛 per time period 

𝐿𝑐, Holding cost for per unit of cumulative resource 𝑐 per time period 

𝑃, Penalty applied for late finish after due date per day 

𝐵, Bonus applied for early finish before due date per day  

𝐷𝐷, Due date of project  

𝑁𝐿, A large number 

𝑅𝑠, Max capacity of renewable resources 𝑠 that can be used in each time period  

𝐷𝑛, Delivery lead time of non-renewable resource 𝑛 after placing order 

𝑑𝑖𝑚, Duration of activity 𝑖 when operate in mode 𝑚 
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𝑤𝑖𝑚𝑠, Consumption of renewable resource 𝑠 when activity 𝑖 operates in mode 𝑚  

𝑡𝑖𝑚𝑛, Consumption of non-renewable resource 𝑛 when activity 𝑖 operates in mode 𝑚 

𝑢𝑖𝑚𝑐, Consumption of cumulative resource 𝑐 when activity 𝑖 operates in mode 𝑚 

𝑣𝑖𝑚𝑐, Produced cumulative resource 𝑐 when remanufacturing activity 𝑖 operates in mode 𝑚 
 

Decision Variables 
 

𝑠𝑖𝑚𝑡 =  {
1, if activity 𝑖 starts at time 𝑡 in mode 𝑚              
0, otherwise                                                                  

   
 

𝑟𝑒𝑚𝑡 =  {
1, if remanufacturing activity 𝑒 starts at time 𝑡 in mode 𝑚                 
0, otherwise                                                                                                        

  
 

𝑜𝑛𝑡 = {
1, nonrenewable resource 𝑛 is ordered at time 𝑡
0, otherwise                                                                    

  
 

𝑖𝑛𝑡, inventory level of nonrenewable resource 𝑛 at time 𝑡  

𝑣𝑐𝑡, inventory level of cumulative resource 𝑐 at time 𝑡  

𝑚𝑛𝑡, the amount of nonrenewable resource 𝑛 ordered at time 𝑡  

 

 
 

Objective Function 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ ∑ 𝑂𝑛 × 𝑜𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+  ∑ ∑ 𝑃𝑛 × 𝑚𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+  ∑ ∑ 𝐻𝑛 × 𝑖𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+  ∑ ∑ 𝐿𝑐 × 𝑣𝑐𝑡

𝑇

𝑡=1

𝐶

𝑐=1

+ ∑ 𝑃 × (𝑡 − 𝐷𝐷) × 𝑠𝑀𝑚𝑡

𝑇

𝑡=𝐷𝐷+1

+ ∑ 𝐵 × (𝑡 − 𝐷𝐷) × 𝑠𝑀𝑚𝑡

𝐷𝐷−1

𝑡=𝐸𝐹

,                                                                            (1) 
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Constraints 
 

∑ ∑ 𝑠𝑖𝑚𝑡 × (𝑡 + 𝑑𝑖𝑚)

𝑇

𝑡=1

𝑀𝑖

𝑚=1

≤ ∑ ∑ 𝑠𝑗𝑚𝑡 × 𝑡

𝑇

𝑡=1

𝑀𝑗

𝑚=1

, ∀(𝑖, 𝑗) ∈ 𝐸,                                                        (2) 

∑ ∑ ∑ 𝑠𝑖𝑚𝑤 ×

𝑀𝑖𝑛{𝑡,𝐿𝑆𝑖}

𝑤=𝑀𝑎𝑥{𝑡−𝑑𝑖𝑚,𝐸𝑆𝑖}

𝑀𝑖

𝑚=1

𝑀

𝑖=1

𝑤𝑖𝑚𝑠 + ∑ ∑ ∑ 𝑟𝑒𝑚𝑤 ×

𝑀𝑖𝑛{𝑡,𝐿𝑆𝑒}

𝑤=𝑀𝑎𝑥{𝑡−𝑑𝑒𝑚,𝐸𝑆𝑒}

𝑀𝑒

𝑚=1

𝑅

𝑒=1

𝑤𝑒𝑚𝑠 ≤ 𝑅𝑠,             

∀𝑠 ∈ 𝑅𝑆, ∀𝑡 ∈ 𝑇𝑃,                                                                                                                               (3) 

𝑖𝑛𝑡 = 𝑖𝑛,𝑡−1 +  𝑚𝑛,𝑡−𝐷𝑛
−  ∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑡𝑖𝑚𝑛

𝑀𝑖

𝑚=1

𝑀

𝑖=1

, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃 ,                                     (4) 

∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑡𝑖𝑚𝑛

𝑀𝑖

𝑚=1

𝑀

𝑖=1

≤ 𝑖𝑛,𝑡−1, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃,                                                                        (5) 

𝑣𝑐𝑡 =  𝑣𝑐,𝑡−1 + ∑ ∑ 𝑟𝑒𝑚,𝑡−𝑑𝑒𝑚
× 𝑣𝑒𝑚𝑐

𝑀𝑒

𝑚=1

𝑅

𝑒=1

− ∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑢𝑖𝑚𝑐

𝑀𝑖

𝑚=1

𝑀

𝑖=1

,                                                  

 ∀𝑐 ∈ 𝑅𝐶, ∀𝑡 ∈ 𝑇𝑃,                                                                                                                              (6) 

∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑢𝑖𝑚𝑐

𝑀𝑖

𝑚=1

𝑀

𝑖=1

≤ 𝑣𝑐,𝑡−1, ∀𝑐 ∈ 𝑅𝐶, ∀𝑡 ∈ 𝑇𝑃,                                                                        (7) 

∑ ∑ 𝑠𝑖𝑚𝑡

𝑇

𝑡=1

= 1

𝑀𝑖

𝑚=1

, ∀𝑖 ∈ 𝐴𝑀,                                                                                                              (8) 

∑ ∑ 𝑟𝑒𝑚𝑡

𝑇

𝑡=1

= 1

𝑀𝑖

𝑚=1

, ∀𝑒 ∈ 𝐴𝑅,                                                                                                              (9) 

𝑚𝑛𝑡 ≤ 𝑜𝑛𝑡 × 𝑁𝐿, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃,                                                                                           (10) 

𝑖𝑛0 = 0, ∀𝑛 ∈ 𝑅𝑁,                                                                                                                             (11) 

𝑖𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃,                                                                                                            (12) 

𝑣𝑐0 = 0, ∀𝑐 ∈ 𝑅𝐶,                                                                                                                             (13) 

𝑣𝑐𝑡 ≥ 0, ∀𝑐 ∈ 𝑅𝐶, ∀𝑡 ∈ 𝑇𝑃,                                                                                                            (14) 

𝑚𝑛𝑡 ∈ 𝑍, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃,                                                                                                          (15) 
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Objective is to minimize total cost spent to finish projects. Objective function consists of 6 

terms: order cost for non-renewable material; purchase cost for non-renewable material; 

inventory holding cost for non-renewable resource; inventory holding cost for cumulative 

resources; penalty for project late finish and bonus for project early finish.  

13 constraints are used in model. Precedence relations are guaranteed by inequality (2). 

Inequality (3) makes sure that renewable resource usage is respect in each period. Equation (4) 

describes that current non-renewable inventory level depends on last period inventory, 

delivered orders and total consumption in this period. Inequality (5) ensures that activities can 

only use non-renewable resource from previous day. Cumulative resource inventory is 

calculated by Equation (6), as cumulative resource will be restocked when remanufacturing 

activity is completed. Inequality (7) ensures that an activity cannot be scheduled unless there 

is enough cumulative resource in previous day. Equation (8) makes sure all normal activities 

are processed once and in only one mode, and remanufacturing activities is constrained by 

cumulative resource non-negative inventory cost. Equation (9) implies that one 

remanufacturing activity can only be executed once and only once. Inequality (10) enforces a 

non-renewable resource delivery is only considered if an order is placed. Equation (11) and 

(12) show that non-renewable resource inventory level is zero when project starts and must be 

non-negative integer. Equation (13) and (14) give zero initial inventory and non-negative 

integer constraint to cumulative resource. Equation (15) enforce material purchase amount to 

be non-negative integer. 
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A mathematical model is presented in this chapter. Relative terms, definitions and assumptions 

are demonstrated. Remanufacturing activities is considered as an extension to Zoraghi’s model. 

Recycled product is considered as cumulative resource, which is consumed and restocked when 

activity starts. 

In next chapter, a three-phase heuristic algorithm will be proposed to solve this mathematical 

model. 18 small size instances generated by RanGen1 will be used for demonstration.
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Chapter 4 Solution, Method and Testing Examples 
 

It is known that resource constrained project scheduling problem is a NP-complete problem. 

For practical project planning, project managers usually use commercial scheduling and 

optimization software, which takes long to solve a single case.  

Therefore, a three-phase heuristic method is proposed for solving RCPSP with remanufacturing 

activities. In this section, 20 small instances generated by RanGen1 are used for evaluation. 

To demonstrate the algorithm, a sample project with 3 possible operation modes for each 

activity is used. Details are shown below.  

 

 

Fig 4.1 Sample project for algorithm demonstration 
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4.1 Three-stage heuristic method 
 

As it was mentioned, a resource constrained project scheduling problem is a NP-complete 

problem. Multi-mode RCPSP with remanufacturing activities, therefore, is more complex. 

Computational cost for generating an optimal solution grows exponentially with project scale. 

Exact method like Branch-and-Bound may take days to solve a small-scale project. For large-

scale project, classic methods often fail to find a solution. 

Heuristic methods are approach that ensures a feasible solution that is not guaranteed optimal 

within limited times or attempts, which solve a problem with acceptable time cost. One way to 

generate a heuristic method is to break the problem into several sub-problems. Each sub-

problem has an objective function and constrains by several constraints from original problems. 

The output from previous sub-problem is taken as the input for next sub-problem. 

To solve this multi-mode resource constrained project scheduling problem with 

remanufacturing activities, we break the problem into three subproblem and develop a three-

phase heuristic method. Each subproblem uses only parts of project data to save computing 

time.  

Objective in first phase is determine feasible mode set considering cumulative resource. Since 

remanufacturing activities can be implemented in different modes with different cumulative 

resource yields, certain modes may not be chosen together, or resource conflict may happen 

for normal activities. Mode sets for remanufacturing activities gives additional resource 
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constraint on normal activities. Second, an activity schedule based on mode set determined 

from phase one is generated, which minimize the sum of penalty, bonus and cumulative 

resource inventory cost, or to minimize the project finish time within all feasible mode space. 

In phase three, with the schedule obtained from previous phase, we make arrangement on non-

renewable material order time and order number.  

This objective is achieved by determining proper remanufacturing activity mode and time lag 

with related manufacturing activities. We use natural date variable as the coding method, which 

allows easier scheduling for resource ordering. With determined remanufacturing mode and 

time lag, a virtual precedence between remanufacturing activities and manufacturing activities 

can be calculated and project network is simplified. A partial schedule for remanufacturing 

activities and their virtual successor manufacturing activities can be acquired. In second phase, 

activity mode is decided with minimal product of resource demand and per unit cost. In the 

third phase, a schedule is generated with serial scheduling.  

 
Fig 4.2 Flowchart of algorithm 

 

4.1.1 Stage One 
 

First phase is to obtain a substantial precedence set which ensure the cost spent on cumulative 

resource is minimized. As stated earlier, cumulative resource recycled by remanufacturing 
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activities is one of the non-deterministic factors for overall inventory cost. By matching 

remanufacturing activities and normal activities by specific cumulative resource, a feasible 

mode set can be determined if remanufacturing mode is known, and search space for 

remanufacturing activity schedule can be narrowed.  

Cost directly related to remanufacturing activity consists of one part: inventory cost for 

cumulative resource before they are used. It is possible that not all remanufacturing activities 

are completed, as long as cumulative resource inventory does not deplete during project 

makespan. Consequently, the objective is to minimize unused cumulative resources at the end.  

In original problem, 𝑠𝑖𝑚𝑡  and 𝑟𝑒𝑚𝑡  denote the initiation time 𝑡  of normal activity 𝑖  and 

remanufacturing activity 𝑒 in mode 𝑚, respectively. In the first phase, activity start time is 

not considered. Only activity mode is considered. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =   ∑ (∑ ∑ 𝑟𝑒𝑚 ∗ 𝑣𝑒𝑚𝑐

𝑀𝑒

𝑚=1

𝑅

𝑒=1

− ∑ ∑ 𝑠𝑖𝑚 ∗ 𝑢𝑖𝑚𝑐

𝑀𝑖

𝑚=1

𝑀

𝑖=1

)

𝑅𝐶

𝑐

                     (15) 

In this model, 𝑟𝑒𝑚 and 𝑠𝑖𝑚 denotes operate mode for remanufacturing activity 𝑒 and normal 

activity 𝑖, which can be obtained from equation 

𝑟𝑒𝑚 =  ∑ 𝑟𝑒𝑚𝑡

𝑇

𝑡

, ∀𝑒 ∈ 𝐴𝑅, ∀𝑚 ∈ 𝑀𝑒                                                         (16) 

𝑠𝑖𝑚 =  ∑ 𝑠𝑖𝑚𝑡

𝑇

𝑡

, ∀𝑖 ∈ 𝐴𝑀, ∀𝑚 ∈ 𝑀𝑖                                                          (17) 

And constraint (6), (7), (8), (12) and (13). 

The objective function (15) aims to find a combination of two types of activity such that 



38 
 

cumulative resource inventory level is minimized. Since cumulative resource inventory must 

be non-negative, remanufacturing activity are forced to initiate before normal activities start. 

Constraint (16) and (17) indicate that activity initiate time is not considered.  

In sample project, cumulative resource that can be produced varies from 8 units to 12 units, 

depending on which mode is chosen, while total usage varies from 6 units to 12 units. If 

remanufacturing 1 (R1) operates in mode 1 (M1) while remanufacturing activity 2 (R2) in 

mode 2 (M2), 9 units of cumulative resource is produced, and normal activity cannot choose a 

mode set which consumes more than 9 units of cumulative resource, and two sets of precedence 

are set: whether A3 operates in M2. Besides, R2 is forced to become a predecessor of activity 

5, since activity 3 and 5 will consume a minimal amount of 4 cumulative resource. Furthermore, 

if R1 process in mode 1, activity 1 cannot be operated in mode 2, which consumes 4 cumulative 

resources, before R2 finish. It is known that solution space decreases as precedence constraints 

increase. Given that R1 and R2 mode are both set, additional successors will be added for R2 

to ensure non-negative inventory constraint.  
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Fig 4.3 Sample project with R1 set to M1, A3 not set to M2 

 

Table 4.1 Precedence and forbidden set for R1M1 and A3M1 
R1 mode R2 A3 mode Forbidden set 

3 5 A3M1 (A5, A6M1), (A5M2, A6), (A5M3, A6M2) 

3 6 A3M1 
(A5M2, A6M1), (A5M3, A6M1),  

(A5M2, A6M2) 

3 7 A3M1 (A5M2, A6M1) 

 

Table 4.2 Precedence and forbidden set for R1M1 and A3M3 
R1 mode R2 A3 mode Forbidden set 

3 5 A3M3 
(A5M2, A6M1), (A5M2, A6M2),  

(A5M3, A6M1),  

3 6 A3M3 (A5M2, A6M1) 

3 7 A3M3 None 

 

When normal activity 3 is set to mode 2, A3 becomes a successor of R2, and tighter forbidden 

set appears, since R1M1 can only produce 3 unit of cumulative resource which is not sufficient 

until R2 finish. As it is known, a tight forbidden set implies more precedence pairs. Search 

space for solution is further limited, as it can be seen in Fig 4.3 and Table 4.3. 
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Fig 4.4 Sample project with R1 set to M1, A3 set to M2 
 

Table 4.3 Precedence and forbidden set for R1M1 and A3M2 
R1 mode R2 A3 mode Forbidden set 

3 5 A3M2 All combination besides (A5M1, A6M3) 

3 6 A3M2 (A5, A6M1), (A5M2, A6), (A5M3, A6M2) 

3 7 A3M2 
(A5M2, A6M1), (A5M3, A6M1), (A5M2, 

A6M2) 

 

To easily append additional precedence set, a two-step algorithm is used.  

 

Step 1 
 

The start phase focus on total amount of cumulative resource. As it is mentioned, availability 

for cumulative resource is an integer between 8 and 12 unit, depends on remanufacturing 

activity operation mode. For each integer we can obtain a resource infeasible mode set in which 

the combination requires more resource than total production from all remanufacturing activity. 
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Cumulative resource production and consumption table us shown below.  

 

Table 4.4 Cumulative resource consumption distribution for manufacturing sets 

Resource consumption 6 7 8 9 10 11 12 

Number of mode set 1 3 6 7 6 3 1 

 

Table 4.5 Cumulative resource production distribution for manufacturing sets 

Resource Production 8 9 10 11 12 

Feasible mode set 10 17 23 26 27 

 

Table 4.6 Cumulative resource production distribution for remanufacturing sets 

Resource Production 8 9 10 11 12 

Remanu activity set 1 2 3 2 1 

 

Since RanGen1 can only produce network with renewable resource, here we use standardized 

cumulative production and usage data. If remanufacturing activity operates in low output mode, 

it consumes less renewable resource while producing less cumulative resource, and vice versa. 

In instance problem, we have a total of 9 mode possible mode set for remanufacturing activities 

and 27 mode set for cumulative-resource-consuming activities. These mode sets can be 

obtained in advance.  

 

Step 2 
 

The mode sets we obtained in step 1 do not specify actual activity mode and virtual precedence. 

In step 2 an enumeration is applied for each remanufacturing mode set to get its corresponding 

manufacturing mode sets. 

In example problem, we start from 8 unit of resource production. Only R1M1 and R2M1 can 
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produce a total of 8 unit of cumulative resource with R1 produce 3 unit and R2 produce 5 unit. 

Therefore, R1 must be complete one day earlier before the initiation of A3, and R2 becomes 

predecessor of A5 and A6 for any mode. The number of mode combination is finite and can be 

exhausted prior to calculation as a preprocess.  

 

4.1.2 Stage Two 
 

From first phase, multiple combination of activity modes related to remanufacturing activity is 

obtained, and corresponding forbidden set are determined. Original problem us therefore 

transferred to a traditional multi-mode resource constrained scheduling problem. In the second 

phase the objective is to minimize total project makespan, which means to minimize the sum 

of penalty and bonus, as non-renewable material resource order does not affect project finish 

time once the schedule is generated. Besides, cumulative resource needs to be considered in 

this phase, as the inventory cost for cumulative resource is determined with generated schedule.  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =   ∑ ∑ 𝐿𝑐𝑣𝑐𝑡

𝑇

𝑡=1

𝐶

𝑐=1

+  ∑ 𝑃(𝑡 − 𝐷𝐷)𝑠𝑀𝑚𝑡

𝑇

𝑡=𝐷𝐷+1

+  ∑ 𝐵(𝑡 − 𝐷𝐷)𝑠𝑀𝑚𝑡

𝐷𝐷−1

𝑡=𝐸𝐹

       (18) 

Subject to Constraint (2)(3)(6)(7)(8)(9)(13)(14). 

In this phase, non-renewable resource is not considered, as non-renewable resource 

consumption is positively correlated to project duration. As it can be seen, project yields zero 

penalty and non-zero bonus if finished before due date. On contrast, penalty will apply, and 

zero bonus will be received if project finish after due date. Remanufacturing activities, on the 

other hand, should be scheduled properly. If recycled cumulative resource stays in inventory 
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too long, those components yield high inventory cost. This term forces remanufacturing 

activities to be scheduled only when resource is needed by another task. 

Objective function (18) in this phase contains no information about non-renewable resource 

order, purchase, and inventory. To decrease calculating time for model, constraints concerning 

material ordering are also excluded without affecting final result.  

Constraint (2) ensures precedence relations between normal activities and remanufacturing 

activities are followed. Constraint (3) requires that renewable resource capacity must be 

respected. As mentioned, this problem is a NP-hard problem, which means solution space 

grows exponentially as time space increase.  We use time earliest start and latest start of each 

activity to formulate a time window that contains all possible start time for each activity. In 

constraint (6), cumulative resource stock is calculated. In practical situation, recycled resource 

requires additional time before they can be put into use. Cumulative resource restock happens 

after remanufacturing activity completes, and inequality (7) shows this restock cannot be used 

until next time point. Equality (8) and (9) gives guarantees that each task must be done once 

and only once. Constraint (13) and (14) ensure non-negative value and initial storage for 

cumulative resource.  

 

 

4.1.3 Stage Three 
 

From previous stage, a schedule that minimize cumulative resource inventory cost, project 

penalty and project bonus is obtained. In this schedule, the start time and execute mode for 



44 
 

each activity are determined. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =   ∑ ∑ 𝑂𝑛𝑜𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+  ∑ ∑ 𝑃𝑛𝑚𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+  ∑ ∑ 𝐻𝑛𝑖𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

                     (19) 

Subject to constraint (4)(5)(10)(11)(12)(15).  

In objective function (19), non-renewable material order place time and purchase quantity are 

to be decided. In this function, 𝑜𝑛𝑡  and 𝑚𝑛𝑡  are independent, while 𝑖𝑛𝑡  follows these two 

variables, and this is why we put non-renewable resource inventory term in phase three.  

Equality (4) calculates inventory level of non-renewable resource from previous inventory, 

material received and consumption each day. Inequality (5) denotes that an activity which 

consumes more non-renewable material than previous day’s inventory cannot be scheduled. As 

cumulative resource cost is calculated in stage two, no remanufacturing part is involved in 

phase three. Constraint (10) enforces an order to be placed if any amount of non-renewable 

resource is purchased, while Constraint (15) ensures that amount of purchased material is a 

non-negative integer. Constraint (11) and (12) indicates that inventory level is 0 when project 

starts and must be non-negative in project makespan.  

 

4.2 Testing Examples 
 

In this research, we use 18 small instance contains 5 manufacturing activities and 2 

remanufacturing activities generated by RanGen1 network generator to evaluate the solution 

method.  

RanGen1 is a project network generator proposed by Demeulemeester et al. [53]. With proper 
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parameter setting, a large number of projects with renewable resource can be generated.  

RanGen1 use 5 parameters to generate networks: activity number, order strength, number of 

resource types, resource factor and resource constrainedness. Activity number is a positive 

constant that does not include dummy start and dummy ends. It is positive related to CPU-

calculation time, means that the larger project is, the more time it requires to generate a feasible 

schedule.  

The definition of Order Strength (OS) is  

𝑂𝑆 =
2|𝐸|

𝑛(𝑛 − 1)
 

, where |𝐸| is the number of precedence and 𝑛(𝑛−1)

2
 is the maximum possible amount of 

precedence in this project. OS weighs the significance of project complexity. A larger OS value 

means more precedence relationship between activities in concerned project, while much 

precedence can be invalidated by preprocess.  

Resource factor (RF) determines the density of resource usage matrix by individual activity. It 

is defined by Copper [54] as follows:  

𝑅𝐹 =  
1

𝑛𝑆
∑ ∑ {

1, 𝑖𝑓 𝑟𝑖𝑠 => 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆

𝑠=1

𝑛

𝑖=1

 

Where 𝑆  denotes number of renewable resources, 𝑛  denotes number of manufacturing 

resources and 𝑟𝑖𝑠 denotes amount of renewable resource 𝑠 during process. RF is a number 

between 0 and 1. If RF is close to 1, activities tend to use more resource type. Conversely, if 

RF is close to 0, activities tend to use only 1 resource or do not use any renewable resource at 

all.  
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Resource constrainedness (RC) is introduced by Patterson [55] as follows:  

𝑅𝐶𝑘 =  
�̅�𝑘

𝑎𝑘
  

where �̅�𝑘 denotes average amount of renewable resource 𝑘 required by all activities and 𝑎𝑘 

denotes amount of renewable resource 𝑘  during whole project. RC is implemented as a 

measure for average resource tightness. Generally, if 𝑅𝐶𝑘 is close to 0, more activities use 

resource k can be carried out at the same time. 𝑅𝐶𝑘 is 1 means all activities will use resource 

𝑘, and activities in this project can only be processed one by one.  

The network generated by RanGen1 is saved in Patterson format. In a Patterson format file, 

renewable resource type number, available number of resources. resource usage for each task, 

duration and successors are given. The time window for activities indicating earliest start (ES) 

and latest start (LS) is calculated based on each individual project.  

In Demeulemeester et al. [53], RanGen1 is not capable of directly generating multi-mode 

project instance. To introduce multi-mode project, two tradeoff functions are given: time/cost 

and time/resource tradeoff function and resource/resource tradeoff function. In this paper the 

resource/resource tradeoff function with modified work content weight is use for generating 

the second and third activity mode. To generate a resource usage set, we assign a work content 

𝑊𝑖  to each activity 𝑖 , and a work content weight 𝑤𝑖𝑠  to each activity 𝑖  and renewable 

resource type 𝑠, for which 𝑊𝑖 =  ∑ 𝑤𝑖𝑘𝑟𝑖𝑚𝑠
𝑆
𝑠=1 . To keep 𝑊𝑖 and 𝑤𝑖𝑠 constant, we randomly 

increase or decrease a resource demand, and do the opposite on another resource. Non-

renewable resource consumption is considered the same as activity duration.  
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Generated instance consists of 5 manufacturing activities, a dummy start and dummy end. 

Besides, a small project consists of 2 remanufacturing activities is added parallelly to original 

project. The remanufacture part does not have precedence relationship with normal part. 

Instead, the connection is established through cumulative resources. Cumulative resource 

produced in each mode is related to overall Resource Strength. Since RanGen1 is only capable 

of generating renewable resource usage, non-renewable resource is linear to activity duration 

and cumulative resource total usage is between lowest and highest possible recycle amount 

from remanufacturing activity with a random distribution on three activity. 

 

4.3 Working Instance 
 

In this section we use Instance 2 for demonstration.  

There are two renewable resources, one non-renewable resource and one cumulative resource 

in this instance. Normal manufacturing activities are labelled with number 1 to 7, while two 

remanufacturing activities are labelled as R1 and R2. For normal activities, total renewable 

resource usage and activity duration are of negative correlation. For each time period a normal 

activity occupies, a unit of non-renewable resource is consumed. Renewable resource has a 

capacity of 10 units for each type, which will be occupied by an initiated activity, and released 

after the activity finish. For non-renewable resource, an order with specified amount of 

resource needs to be placed, and the resource will be available the second day they arrive. 

Cumulative renewable resource consumption is preset for three normal activities with possible 

choice of two, three and four units, which may result in a combination of total usage from 6 to 
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12 units.  

As it is mentioned, we assume that remanufacturing activities do not consume non-renewable 

resource, and the cumulative resource consumption indicates the capability of production in 

each mode. Renewable resource consumption and cumulative resource production are 

positively correlated to duration in each mode.  

From Fig 4.4 we notice that all A4, A5 and A6 have a predecessor R1, as they cannot be 

scheduled without cumulative resource. Furthermore, R2 becomes the predecessor of A5 and 

A6 or A4 and A6, depending on whether A4 or A6 is scheduled first.  

 

 

Fig 4.5 Information for Instance 2 
 

The optimal schedule and heuristic schedule are shown in Table 4.5.  
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Table 4.7 Schedule for optimal solution and heuristic solution 

Activity Mode-N 

Start Time- 

N 

Mode-

H 

Start Time- 

H 

6 0 24 0 23 

5 1 18 1 17 

4 0 17 0 16 

3 0 10 0 10 

2 2 3 2 8 

1 1 2 1 2 

0 0 1 0 1 

Remanufacture 1 0 10 0 9 

Remanufacture 0 0 3 0 3 

 

Heuristic method yields a schedule close to optimal method, while postpone activity 2 for 5 

days and order non-renewable resource for activity 2 and 3 separately, which makes a trade-

off between non-renewable resource inventory cost and order cost.  

The average renewable resource usage is shown in figures and tables as below.  

 

 
Fig 4.6 Renewable resource 1 usage for Instance 2 
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Fig 4.7 Renewable resource 2 usage for Instance 2 

 

Table 4.8 Average renewable resource usage for Instance 2 

 Normal Heuristic 

R1 0.357 0.373 

R2 0.504 0.500 

 

CPLEX solver considers all possible sequences of activities and mode combination, while 

heuristic method takes three steps to render a feasible schedule. In first stage, all possible 

cumulative resource production levels and consumption levels are enumerated in Excel. Only 

cumulative resource combination with same input and output level will be matched, which 

reduce cumulative resource inventory cost.  

For each project, 10 units of renewable resource 1 and renewable resource 2, respectively, are 

available and refresh daily. The average renewable usage denotes the ratio of occupied 

renewable resource to total availability, which can be used to monitor the efficiency of resource 

allocation. In this instance, the heuristic method proposes a schedule with slightly higher 

resource 1 usage while maintains a shorter schedule. Non-renewable resource and cumulative 
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resource can only be used one day after they are prepared, which result in the resource usage 

of 0 in CPLEX solver.  

In Instance 2, mode 0 is selected for both remanufacturing activity 1 and 2, providing 8 units 

of cumulative resource in total. Consequently, activity 3, 4 and 5 will consume 8 units of 

remanufactured resource in total, which has 6 possible mode set. In step 2, cumulative resource 

inventory and project bonus and penalty is minimized, and a schedule of all activity is provided. 

Since additional precedence constraints are created, the complexity of sequencing is reduced, 

and a schedule with minimized remanufactured resource inventory cost and bonus can be 

quickly obtained. Since cumulative resource production is determined once the 

remanufacturing activity mode is considered, it must be minimized in step 2. In step 3, based 

on generated schedule and resource requirement, the schedule for non-renewable resource 

order is calculated to ensure minimized material purchase cost, inventory cost and order cost. 

In this model, an order for non-renewable resource takes one day to fulfill and one day to get 

the arrived material prepared, which means an order takes at least two day to function and 

generates inventory cost for at least one day. For optimal solution, 4 orders are placed at time 

0, time 14 and time 15, which incurs a non-renewable resource inventory cost of 64 and an 

order cost of 60. The heuristic method placed 5 orders in total with the order cost of 75 in total 

and 60 units of non-renewable resource inventory cost. 
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Fig 4.8 Non-renewable resource inventory level for Instance 2 

 

 

 
Fig 4.9 Cumulative resource inventory level for Instance 2 

 

 

Result for Instance 2 from optimal solution and heuristic solution is shown in table 4.6. From 

the result, there is a 1% gap between two solutions. However, it takes more than 2 hours for 

CPLEX solver to obtain optimal solution, while the heuristic method takes only 7 seconds to 
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get a suboptimal solution. 

 

 

Table 4.9 Cost by category for Instance 2 
  Bonus CRInventory MaterialP NRInventory OrderCost Penalty ObjectValue 

Optimal -28 44 225 64 60 28 421 

Heurictic -21 44 225 60 75 21 425 

 

 
4.4 Experiment result 
 

The instances are tested in IBM ILOG CPLEX 12.8 environment. Original problems are not 

able to be solved within 2 hours with embedded CPLEX solver, and known optimal solution is 

obtained by using embedded solver for a 2-hour computation and the results are taken as known 

optimal. Phase 1 of cumulative resource leveling is obtained by enumeration, while Phase 2 

and Phase3 are coded in ILOG CPLEX.  

In proposed model, objective function is to minimize total project cost. Since there is no 

research considering remanufacturing activity situation in MRCPSP, the instances are acquired 

from RanGen1 with 2 renewable resource with 1 non-renewable resource and 1 cumulative 

resource added. Therefore, the known optimal solution is obtained from CPLEX embedded 

solver.  

RanGen1 requires following network-related parameters to generate project network: number 

of activities, Order-strength value, number of resources, resource factor value and resource 

constrainedness value. The order strength denotes how well the project network is sequenced. 

A bigger order strength means more precedence relations between activities. Renewable 
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resource has a default capacity of 10 for each resource type. Resource factor denotes how 

intense the resource is used. This value is set to 0.9 or 1, which means there is at most one 

activity requires only one renewable resource type, while all other activities requires both two 

renewable resource to initiate. Resource constrainedness is the measure for average resource 

usage. A big constrainedness value means that an activity tends to use more renewable 

resource, which makes it less possible to operate two activities parallelly due to resource 

constraint. This value is set to be 0.5 or 0.75. Table 4.4 gives an overall description of all 

parameters for generating instances used in this paper. 

 

Table 4.10 Parameters used in RanGen1 for generating instances 
Parameter for generating instance 

Non-dummy activity number 5 

Remanufacturing activity number 2 

Order Strength 0.5/0.75 

Renewable/Non-renewable/Cumulative resource types 2/1/1 

Renewable resource capacity 10/10 

Resource Factor 0.9/1 

Resource Constrainedness 0.5/0.75 

Cumulative Resource produce interval [8, 12] 

Cumulative Resource consumption interval [6, 12] 

 

The objective function is to minimize total cost on remanufacturing project. Table 4.4 and 4.5 

shows the result of possible mode selection in step one for the 18 instances used in this paper. 

Table 4.6 shows virtual precedence relation considering resource consumption.  

The result for project bonus is shown in Fig 4.9. Since project duration and cumulative resource 

cost are the first to be minimized, heuristic method provides shorter project duration compared 

to embedded solver in normal case. For few instances, when cumulative resource inventory 
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cost is high, a trade-off between cumulative resource inventory and project duration may be 

made to minimize object value in step 2. Averagely, heuristic method provides a schedule with 

47% more bonus than normal method, which is efficient when dealing with time-sensitive 

projects. 

 

 

Fig 4.10 Bonus 
 

Fig 4.10 show inventory cost for cumulative resource. For projects on a single high-value 

product, cumulative resource is usually recycled, inspected, and remanufactured at the very 

beginning of project when disassemble product external structure, then reused in later 

assembly. Since recycled components requires further inspection before reuse, it is not sure 

how much storage should be allocated for remanufactured resource in advance. Besides, some 

of the components may deteriorate after recycled. Therefore, it is efficient for remanufacturing 
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project to minimize cumulative resource inventory level in step 2. On average, heuristic method 

shows 0.9% percent gap in cumulative resource cost. However, the average inventory time 

before reuse from heuristic method is slightly lower than normal method. 

 

 

Fig 4.11 Cumulative resource inventory cost 
 

Non-renewable resource cost consists of three parts: purchase cost, inventory cost, and order 

cost. Purchase cost is related to activity duration. Inventory denotes the how long materials 

will be stored before use. Order cost is a fixed number whenever an order for non-renewable 

resource is placed. In Fig 4.11 non-renewable resource purchase cost for each instance is 

shown. On average, heuristic method incurs 21% more purchase cost than optimal solution.  
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Fig 4.12 Non-renewable resource purchase cost 

As for non-renewable inventory cost, heuristic method shows 21% percent gap compared to 

optimal solutions, which is similar to purchase cost. The inventory gap comes from higher 

volume of material purchase. The average storage time before process for each unit of non-

renewable resource is similar to optimal method, which means heuristic method is capable of 

reducing redundant inventory.  
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Fig 4.13 Non-renewable resource inventory cost 
 

Order cost is independent from volume of purchased material. Purchase large quantity of non-

renewable resource incurs low order cost while gives heavy pressure on inventory 

management, while frequent order generates additional process fee without reduce inventory 

cost. The result for order cost is shown is Fig 4.13. The result from heuristic method is 10% 

higher averagely than optimal method.  
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Fig 4.14 Non-renewable resource order cost 
 

 

The results in Fig 4.14 show 10% gap between heuristic method and normal method. In practice 

situation, project schedule requires frequent adjustment with respect to actual progress, which 

requires a fast method to generate a schedule for reference. In Table 4.11 we can see heuristic 

method takes 20 seconds in average to reach a suboptimal solution with satisfied accuracy, 

consider that remanufacturing activities need to be scheduled.  

 

0

50

100

150

200

250

300

Non-renewable resource order cost

OrderCost OrderCost-Heuristic



60 
 

 

Fig 4.15 Total cost 
 

Table 4.11 Cost and time consumption for each instance 
  B BH CI CH MP MH NI NIH O OH Cost CH TimeH Gap 

I1 78 90 140 130 120 150 120 150 30 50 332 390 0:12 17% 

I2 -28 -21 44 44 225 225 64 60 60 75 421 425 0:07 1% 

I3 42 42 40 40 198 198 110 110 24 24 330 330 0:07 0% 

I4 27 33 72 72 90 120 60 80 12 12 207 251 0:11 21% 

I5 33 57 70 70 100 145 40 58 36 36 213 252 0:13 18% 

I6 12 42 228 132 90 144 105 168 12 15 423 417 0:52 -1% 

I7 -15 -15 98 98 52 56 17 18 24 24 206 211 0:05 2% 

I8 198 198 140 140 144 144 192 192 15 15 293 293 0:07 0% 

I9 8 48 171 171 210 315 168 252 48 48 589 738 0:25 25% 

I10 40 34 99 90 66 84 84 98 48 48 257 286 0:07 11% 

I11 70 70 132 132 60 60 98 84 75 100 295 306 0:06 4% 

I12 102 102 132 132 225 225 150 160 44 44 449 459 0:19 2% 

I13 40 50 104 104 418 513 330 405 260 260 1072 1232 0:17 15% 

I14 52 117 140 160 132 154 144 168 50 50 414 415 0:53 0% 

I15 88 176 126 210 270 342 315 399 60 60 683 835 0:37 22% 

I16 80 128 81 81 276 348 161 203 20 20 458 524 0:45 14% 

I17 -84 -60 120 112 130 160 117 144 45 45 496 521 0:44 5% 

I18 63 90 204 204 36 44 63 77 30 30 270 265 0:10 -2% 
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The result for all 18 instances is shown in Table 4.11. For 18 tested instance, CPLEX solver 

takes 2 hours to obtain a known-optimal solution, while heuristic method takes 20 seconds 

averagely to get a suboptimal solution, which is acceptable in practical situation. 

 

 

4.5 Summary 
 

In this chapter, a three-phase heuristic method for solving RCPSP with remanufacturing 

activity is proposed. In first stage, considering actual cumulative resource consumption and 

production, a set of virtual precedence relations based on resource balance is generated. In step 

2, a scheduling problem aims to minimize the sum of cumulative resource inventory cost and 

bonus is solved. Original precedence and resource-based precedence are used here. In step 3, 

a schedule for non-renewable resource purchase and inventory is generated to minimize non-

renewable material related cost based on activity schedule from step 2.  

The heuristic method takes acceptable computation time to obtain a suboptimal schedule. For 

18 test instances, heuristic method obtains solution with 10% gap from CPLEX solver on 

average. The result also shows that proposed heuristic method provides better solution when 

time becomes important, with 47% better result on bonus than CPLEX solver. Since non-

renewable resource related costs are highly relevant, proposed heuristic method is not efficient 

on products which cannot recover important core components.
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Chapter 5 Summary and Future work 
 

In this thesis, we consider remanufacturing activity in multi-mode resource constrained project 

scheduling problems. The disassembly structure is introduced into material ordering in the 

form of resource production and consumption. The integration of remanufacturing and RCPSP 

provides an effective provides an effective model for project scheduling. An integer 

programming model is developed to demonstrate this problem where remanufacturing activity 

can produce resource needed by normal activity. This thesis aims to provide a practical method 

for scheduling a project considering cumulative resource usage on an easy-accessible 

computing system such as personal computer while maintains relative accurate result to known 

optimal solution in large-scale project. The problem is a NP-hard problem which cannot be 

solved by exact methods.  To do so, a three-phase heuristic method is developed in order to 

minimize total project cost under penalty and bonus policy.  

Though commercial software provides accessible solution for models, it takes long time to 

solve a model, which is not acceptable in practical situation. Besides, off-shelf model requires 

excessive knowledge in order to adjust parameters for quick convergence to better solution, 

and usually cost much to obtain a commercial license. In large scale projects, off-shelf 

optimization methods do not guarantee a global optimal solution. The proposed three-phase 

heuristic method can quickly reach a suboptimal solution in practical case.  

A set of 18 RanGen1 generated instances is used to validate the efficiency of proposed model. 



63 
 

As all instances use same cumulative resource information, remanufactured resource 

production and consumption combinations are enumerated in Excel to generate virtual 

precedence which reduced complexity in step 2. The second step use original precedence and 

virtual precedence to schedule the project in order to minimize sum of cumulative resource, 

bonus, and penalty. In last stage, a non-renewable resource order schedule is generated based 

on activity schedule from previous step to minimize non-renewable resource related cost. The 

second step and third step are implemented in ILOG CPLEX 12.8. 

For future work, as the second step still use classic scheduling function, different meta-heuristic 

method can be used to accelerate the second phase. Besides, a solution pool can be generated 

to store all partial schedule in step 2 within acceptable gap range, which increase the chance to 

improve suboptimal schedule in step 3. 
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Appendix A 

 
/********************************************* 

 * OPL 12.8.0.0 Model 

 * Author: tszha 

 * Creation Date: Aug 14, 2020 at 5:48:23 PM 

 *********************************************/ 

 

 using CP; 

  

 int T = ... ; //Time period numbers 

 int M = ... ; //Manufacturing activity number 

 int R = ... ; //Remanufacturing activity number 

 int S = ... ; //Renewable resource number 

 int N = ... ; //Non-renewable resource number 

 int C = ... ; //Cumulative resource number 

 int D = ... ; //Activity mode number 

  

 range TP = 0..T-1; //Time set 

 range AM = 0..M-1; //Manufacturing activity set 

 range AR = 0..R-1; //Remanufacturing activity set 

 range RS = 0..S-1; //Renewable resource set 

 range RN = 0..N-1; //Non-renewable resource set 

 range RC = 0..C-1; //Cumulative resource set 

 range MI = 0..D-1; //Mode set 

  

 int PN = ...; // Penalty for late finish per day 

 int BN = ...; // Bonus for early finish per day 

 int DDL = ...; // Due date for project 

 int MN = ...; // A large number 

  

 int O[RN] = ...; // Order cost for non-renewable resource n 

 int P[RN] = ...; // Purchase cost for each unit of NR resource n 

 int H[RN] = ...; // Holding cost for NR n per unit period 

 int L[RC] = ...; // Holding cost for CR c per unit period 

  

 int RR[RS] = ...; // Max capacity of renewable resource s 

 int DL[RN] = ...; // Delivery lead time of NR resource n 
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 int d[AM][MI] = ...; // Duration of normal activity i operate in mode m 

 int r[AM][RS][MI] = ...; // Renewable resource s consumption when i in mode m 

 int t[AM][RN][MI] = ...; // Non-renewable resource s consumption when i in mode m 

 int u[AM][RC][MI] = ...; // Cumulative resource s consumption when i in mode m 

 int dr[AR][MI] = ...; // Duration of Remanufacturing activity i operate in mode m 

 int rr[AR][RS][MI] = ...; // Renewable resource s consumption when e in mode m 

 int vr[AR][RC][MI] = ...; // Cumulative resource s production when e in mode m 

  

 int esm[AM] = ...; // Earliest start time of normal activity i 

 int lsm[AM] = ...; // Latest start time of normal activity i 

 int esr[AR] = ...; // Earliest start time of remanufacturing activity i 

 int lsr[AR] = ...; // Latest start time of remanufacturing activity i 

  

 dvar boolean st[AM][MI][TP]; // 1 if normal activity i starts in mode m at time t 

 dvar boolean rt[AR][MI][TP]; // 1 if remanufacturing activity e starts in mode m at 

time t 

 dvar boolean o[RN][TP]; // 1 if an order is placed for resource n at time t 

 dvar int+ il[RN][TP]; // inventory level of non-renewable resource n at time t 

 dvar int+ ic[RC][TP]; // invenroty level of cumulative resource c at time t 

 dvar int+ no[RN][TP]; // Non-renewable resource n order number at time t 

  

 tuple Precedence {int pred; int succ; } 

  

 //{Precedence}  

  

 {Precedence} PredN = ...; // Precedence set for normal activities 

 {Precedence} PredR = ...; // Precedence set for remanufacturing activities 

  

  

  

 dexpr int OrderCost = sum(rn in RN, tp in TP) O[rn]* o[rn][tp]; 

 dexpr int MaterialCost = sum(rn in RN, tp in TP) P[rn]* no[rn][tp]; 

 dexpr int NRInventoryCost = sum(rn in RN, tp in TP) H[rn]* il[rn][tp]; 

 dexpr int CRInventoryCost = sum(rc in RC, tp in TP) L[rc]* ic[rc][tp]; 

 dexpr int Penalty = sum(mi in MI, tp in TP: ((tp>=DDL+1) && (tp<=T))) PN *(tp- 

DDL)*st[M-1][mi][tp]; 

 dexpr int Bonus = sum(mi in MI, tp in TP: ((tp>=esm[M-1]) && (tp<=DDL-1))) BN *(DDL- 

tp)*st[M-1][mi][tp]; 

  

execute { 
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  cp.param.TimeLimit = 3600; 

} 

  

 minimize OrderCost+ MaterialCost+ NRInventoryCost+ CRInventoryCost+ Penalty- Bonus; 

  

 subject to  

  

 { 

  Constraint1: forall (<i,j> in PredN) //Normal activity precedence constraint 

   sum(mi in MI, tp in TP: (tp >=esm[i] && tp<=lsm[i])) st[i][mi][tp]* 

(tp+d[i][mi])<= sum(mi in MI, tp in TP: (tp>= esm[j]&& tp<= lsm[j])) st[j][mi][tp]* 

tp; 

  

  Constraint2: forall (<i,j> in PredR) //Remanufacturing activity precedence 

constraint 

   sum(mi in MI, tp in TP: (tp >=esr[i] && tp<=lsr[i])) rt[i][mi][tp]* 

(tp+dr[i][mi])<= sum(mi in MI, tp in TP: (tp>= esr[j]&& tp<= lsr[j])) rt[j][mi][tp]* 

tp; 

   

  Constraint3: forall (rs in RS, tp in TP) // Renewable resource capacity 

constraint 

   sum(i in AM, mi in MI, tm in TP: (tm <=tp && tm >=tp-d[i][mi]+1)) 

(st[i][mi][tm]* r[i][rs][mi])+ sum(j in AR, mi in MI, tr in TP: (tr >=tp-dr[j][mi]+1 

&& tr<=tp)) (rt[j][mi][tr]* rr[j][rs][mi])<= RR[rs]; 

    

  Constraint4: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource 

inventory level constraint(no initial) 

  il[rn][tp] == il[rn][tp-1] + no[rn][tp-DL[rn]] - sum(mi in MI, i in AM) 

t[i][rn][mi] * st[i][mi][tp];  

   

 Constraint5: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource 

consumption constraint(same day production cannot be used) 

  sum(mi in MI, i in AM) t[i][rn][mi] * st[i][mi][tp] <= il[rn][tp-1]; 

   

 Constraint6: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource 

consumption constriant 

  ic[rc][tp] == ic[rc][tp-1] + sum(mi in MI, e in AR, tr in TP: (tr == maxl(tp-

dr[e][mi], 0))) vr[e][rc][mi] * rt[e][mi][tr] - sum(mi in MI, j in AM) u[j][rc][mi] * 

st[j][mi][tp];  
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  Constraint7: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource 

consumption constraint 

   sum(mi in MI, i in AM) u[i][rc][mi] * st[i][mi][tp] <= ic[rc][tp-1]; 

    

  Constraint8: forall (i in AM) // Once and only once constraint for manufacturing 

activity 

   sum(mi in MI, tp in TP) st[i][mi][tp] == 1; 

    

  Constraint9: forall (i in AR) // Once and only once constraint for 

remanufacturing activity 

   sum(mi in MI, tp in TP) rt[i][mi][tp] == 1; 

    

  Constraint10: forall (rn in RN, tp in TP) // Large number Constriant 

   no[rn][tp] <= o[rn][tp]*MN;  

    

  Constraint11: forall (rn in RN) // Initial inventory level constriant 

   il[rn][0] == 0; 

    

  Constraint12: forall (rn in RN, tp in TP) // Positive integer inventory 

constraint  

   il[rn][tp] >= 0; 

    

  Constraint13: forall (rc in RC) // Initial inventory level constriant 

   ic[rc][0] == 0; 

    

  Constraint14: forall (rc in RC, tp in TP) // Positive integer inventory 

constraint  

   ic[rc][tp] >= 0; 

    

  Constraint15: forall (rc in RC, tp in TP) // Material order non-negative 

constraint 

   no[rc][tp] >= 0;  

   

  Constraint16: sum (mi in MI, tp in TP) rt[0][mi][tp] == 1; //  

    

  Constraint17: sum (mi in MI, tp in TP) rt[R-1][mi][tp]* tp <= sum (mi in MI, tp 

in TP)st[M-1][mi][tp]* tp ; // R2 must finish before M6 

    

  Constraint18: sum (mi in MI, tp in TP) rt[0][mi][tp]* tp >= 1; // R1 must start 

after time 1 

    



73 
 

  Constraint19: st[0][0][1] == 1; 

   

  Constraint20: sum (tp in TP) st[M-1][0][tp] == 1; 

   

  Constraint21: forall(am in AM) 

   sum(mi in MI, tp in TP: (tp >=esm[am] && tp<=lsm[am])) st[am][mi][tp] == 1; 

   

  Constraint22:forall(ar in AR) 

   sum(mi in MI, tp in TP: (tp >=esr[ar] && tp<=lsr[ar])) rt[ar][mi][tp] == 1; 

 

 } 



74 
 

Appendix B 

 
/********************************************* 

 * OPL 12.8.0.0 Model 

 * Author: tszha 

 * Creation Date: Dec 3, 2020 at 6:11:48 PM 

 *********************************************/ 

 

 using CP; 

  

 int T = ... ; //Time period numbers 

 int M = ... ; //Manufacturing activity number 

 int R = ... ; //Remanufacturing activity number 

 int S = ... ; //Renewable resource number 

 int N = ... ; //Non-renewable resource number 

 int C = ... ; //Cumulative resource number 

 int D = ... ; //Activity mode number 

  

 range TP = 0..T-1; //Time set 

 range AM = 0..M-1; //Manufacturing activity set 

 range AR = 0..R-1; //Remanufacturing activity set 

 range RS = 0..S-1; //Renewable resource set 

 range RN = 0..N-1; //Non-renewable resource set 

 range RC = 0..C-1; //Cumulative resource set 

 range MI = 0..D-1; //Mode set 

  

 int PN = ...; // Penalty for late finish per day 

 int BN = ...; // Bonus for early finish per day 

 int DDL = ...; // Due date for project 

 int MN = ...; // A large number 

  

 int O[RN] = ...; // Order cost for non-renewable resource n 

 int P[RN] = ...; // Purchase cost for each unit of NR resource n 

 int H[RN] = ...; // Holding cost for NR n per unit period 

 int L[RC] = ...; // Holding cost for CR c per unit period 

  

 int RR[RS] = ...; // Max capacity of renewable resource s 

 int DL[RN] = ...; // Delivery lead time of NR resource n 
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 int d[AM][MI] = ...; // Duration of normal activity i operate in mode m 

 int r[AM][RS][MI] = ...; // Renewable resource s consumption when i in mode m 

 int t[AM][RN][MI] = ...; // Non-renewable resource s consumption when i in mode m 

 int u[AM][RC][MI] = ...; // Cumulative resource s consumption when i in mode m 

 int dr[AR][MI] = ...; // Duration of Remanufacturing activity i operate in mode m 

 int rr[AR][RS][MI] = ...; // Renewable resource s consumption when e in mode m 

 int vr[AR][RC][MI] = ...; // Cumulative resource s production when e in mode m 

  

 int esm[AM] = ...; // Earliest start time of normal activity i 

 int lsm[AM] = ...; // Latest start time of normal activity i 

 int esr[AR] = ...; // Earliest start time of remanufacturing activity i 

 int lsr[AR] = ...; // Latest start time of remanufacturing activity i 

  

 dvar boolean st[AM][MI][TP]; // 1 if normal activity i starts in mode m at time t 

 dvar boolean rt[AR][MI][TP]; // 1 if remanufacturing activity e starts in mode m at 

time t 

 //dvar boolean o[RN][TP]; // 1 if an order is placed for resource n at time t 

 //dvar int+ il[RN][TP]; // inventory level of non-renewable resource n at time t 

 dvar int+ ic[RC][TP] ; // invenroty level of cumulative resource c at time t 

 dvar int+ no[RN][TP]; // Non-renewable resource n order number at time t 

  

 tuple Precedence {int pred; int succ; } 

  

 //{Precedence}  

  

 {Precedence} PredN = ...; // Precedence set for normal activities 

 {Precedence} PredR = ...; // Precedence set for remanufacturing activities 

  

  

  

 //dexpr int OrderCost = sum(rn in RN, tp in TP) O[rn]* o[rn][tp]; // Total order 

cost 

 dexpr int MaterialCost = sum(rn in RN, tp in TP) P[rn]* no[rn][tp]; // Total non-

renewable resource purchase cost 

 //dexpr int NRInventoryCost = sum(rn in RN, tp in TP) H[rn]* il[rn][tp]; // total 

non-renewable material inventory cost 

 dexpr int CRInventoryCost = sum(rc in RC, tp in TP) L[rc]* ic[rc][tp]; // total 

cumulative resource inventory cost 

 dexpr int Penalty = sum(mi in MI, tp in TP: ((tp>=DDL+1) && (tp<=T))) PN *(tp- 

DDL)*st[M-1][mi][tp]; // Penalty 
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 dexpr int Bonus = sum(mi in MI, tp in TP: ((tp>=esm[M-1]) && (tp<=DDL-1))) BN *(DDL- 

tp)*st[M-1][mi][tp]; // Bonus 

 dexpr int Production[rc in RC] = sum(ar in AR, mi in MI, tp in TP) rt[ar][mi][tp]* 

vr[ar][rc][mi]; 

 dexpr int Consumption[rc in RC] = sum(am in AM, mi in MI, tp in TP) st[am][mi][tp]* 

u[am][rc][mi]; 

   

  

  

execute { 

  cp.param.TimeLimit = 1800; 

} 

  

 minimize CRInventoryCost+ Penalty- Bonus+ MaterialCost; 

  

 subject to  

  

 { 

  Constraint1: forall (<i,j> in PredN) //Normal activity precedence constraint 

   sum(mi in MI, tp in TP: (tp >=esm[i] && tp<=lsm[i])) st[i][mi][tp]* 

(tp+d[i][mi])<= sum(mi in MI, tp in TP: (tp>= esm[j]&& tp<= lsm[j])) st[j][mi][tp]* 

tp; 

  

  Constraint2: forall (<i,j> in PredR) //Remanufacturing activity precedence 

constraint 

   sum(mi in MI, tp in TP: (tp >=esr[i] && tp<=lsr[i])) rt[i][mi][tp]* 

(tp+dr[i][mi])<= sum(mi in MI, tp in TP: (tp>= esr[j]&& tp<= lsr[j])) rt[j][mi][tp]* 

tp; 

   

  Constraint3: forall (rs in RS, tp in TP) // Renewable resource capacity 

constraint 

   sum(i in AM, mi in MI, tm in TP: (tm <=tp && tm >=tp-d[i][mi]+1)) 

(st[i][mi][tm]* r[i][rs][mi])+ sum(j in AR, mi in MI, tr in TP: (tr >=tp-dr[j][mi]+1 

&& tr<=tp)) (rt[j][mi][tr]* rr[j][rs][mi])<= RR[rs]; 

    

  /*Constraint4: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource 

inventory level constraint(no initial) 

  il[rn][tp] == il[rn][tp-1] + no[rn][tp-DL[rn]] - sum(mi in MI, i in AM) 

t[i][rn][mi] * st[i][mi][tp];  
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 Constraint5: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource 

consumption constraint(same day production cannot be used) 

  sum(mi in MI, i in AM) t[i][rn][mi] * st[i][mi][tp] <= il[rn][tp-1]; 

 */ 

 Constraint6: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource 

consumption constriant 

  ic[rc][tp] == ic[rc][tp-1] + sum(mi in MI, e in AR, tr in TP: (tr == maxl(tp-

dr[e][mi], 0))) vr[e][rc][mi] * rt[e][mi][tr] - sum(mi in MI, j in AM) u[j][rc][mi] * 

st[j][mi][tp];  

   

  Constraint7: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource 

consumption constraint 

   sum(mi in MI, i in AM) u[i][rc][mi] * st[i][mi][tp] <= ic[rc][tp-1]; 

    

  Constraint8: forall (i in AM) // Once and only once constraint for manufacturing 

activity 

   sum(mi in MI, tp in TP) st[i][mi][tp] == 1; 

    

  Constraint9: forall (i in AR) // Once and only once constraint for 

remanufacturing activity 

   sum(mi in MI, tp in TP) rt[i][mi][tp] == 1; 

    

  /*Constraint10: forall (rn in RN, tp in TP) // Large number Constriant for NR 

order 

   no[rn][tp] <= o[rn][tp]*MN;  

    

  Constraint11: forall (rn in RN) // Initial inventory level constriant 

   il[rn][0] == 0; 

    

  Constraint12: forall (rn in RN, tp in TP) // Positive integer inventory 

constraint  

   il[rn][tp] >= 0; 

  */  

  Constraint13: forall (rc in RC) // Initial inventory level constriant 

   ic[rc][0] == 0; 

    

  Constraint14: forall (rc in RC, tp in TP) // Positive integer inventory 

constraint  

   ic[rc][tp] >= 0; 
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  /*Constraint15: forall (rc in RC, tp in TP) // Material order non-negative 

constraint 

   no[rc][tp] >= 0;  

  */ 

   

  Constraint16: sum (mi in MI, tp in TP) rt[0][mi][tp] == 1; //  

    

  Constraint17: sum (mi in MI, tp in TP) rt[R-1][mi][tp]* tp <= sum (tp in TP) 

st[M-1][0][tp]* tp ; // R2 must finish before M6 

    

  Constraint18: sum (mi in MI, tp in TP) rt[0][mi][tp]* tp >= 1; // R1 must start 

after time 1 

    

  Constraint19: st[0][0][1] == 1; 

   

  Constraint20: sum (tp in TP) st[M-1][0][tp] == 1; 

   

  Constraint21: sum(mi in MI) st[1][mi][1] == 0; 

   

  Constraint25: sum(mi in MI) st[2][mi][1] == 0; 

   

  // Concept constraint 

   

  Constarint22: forall (rc in RC) // Total production and consumption must be equal 

   Production[rc] == Consumption[rc]; 

    

  //Constarint22: forall(rc in RC) // Total production and consumption must be 

equal 

  // sum(mi in MI, e in AR, tp in TP) vr[e][rc][mi] * rt[e][mi][tp] == 12; 

   

  Constraint23: forall(am in AM) 

   sum(mi in MI, tp in TP: (tp >=esm[am] && tp<=lsm[am])) st[am][mi][tp] == 1; 

   

  Constraint24: forall(ar in AR) 

   sum(mi in MI, tp in TP: (tp >=esr[ar] && tp<=lsr[ar])) rt[ar][mi][tp] == 1; 

   

 } 
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Appendix C 

 
 

/********************************************* 

 * OPL 12.8.0.0 Model 

 * Author: tszha 

 * Creation Date: Dec 13, 2020 at 12:06:44 PM 

 *********************************************/ 

 

 using CP; 

  

 int T = ... ; //Time period numbers 

 int M = ... ; //Manufacturing activity number 

 int R = ... ; //Remanufacturing activity number 

 int S = ... ; //Renewable resource number 

 int N = ... ; //Non-renewable resource number 

 int C = ... ; //Cumulative resource number 

 int D = ... ; //Activity mode number 

  

 range TP = 0..T-1; //Time set 

 range AM = 0..M-1; //Manufacturing activity set 

 range AR = 0..R-1; //Remanufacturing activity set 

 range RS = 0..S-1; //Renewable resource set 

 range RN = 0..N-1; //Non-renewable resource set 

 range RC = 0..C-1; //Cumulative resource set 

 range MI = 0..D-1; //Mode set 

  

 int PN = ...; // Penalty for late finish per day 

 int BN = ...; // Bonus for early finish per day 

 int DDL = ...; // Due date for project 

 int MN = ...; // A large number 

  

 int O[RN] = ...; // Order cost for non-renewable resource n 

 int P[RN] = ...; // Purchase cost for each unit of NR resource n 

 int H[RN] = ...; // Holding cost for NR n per unit period 

 int L[RC] = ...; // Holding cost for CR c per unit period 

  

 int RR[RS] = ...; // Max capacity of renewable resource s 

 int DL[RN] = ...; // Delivery lead time of NR resource n 
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 int d[AM][MI] = ...; // Duration of normal activity i operate in mode m 

 int r[AM][RS][MI] = ...; // Renewable resource s consumption when i in mode m 

 int t[AM][RN][MI] = ...; // Non-renewable resource s consumption when i in mode m 

 int u[AM][RC][MI] = ...; // Cumulative resource s consumption when i in mode m 

 int dr[AR][MI] = ...; // Duration of Remanufacturing activity i operate in mode m 

 int rr[AR][RS][MI] = ...; // Renewable resource s consumption when e in mode m 

 int vr[AR][RC][MI] = ...; // Cumulative resource s production when e in mode m 

 int AMD[AM][0..2] = ...; 

 int ARD[AR][0..2] = ...; 

  

 int esm[AM] = ...; // Earliest start time of normal activity i 

 int lsm[AM] = ...; // Latest start time of normal activity i 

 int esr[AR] = ...; // Earliest start time of remanufacturing activity i 

 int lsr[AR] = ...; // Latest start time of remanufacturing activity i 

  

 int st[AM][MI][TP] ; //1 if normal activity i starts in mode m at time t 

 int rt[AR][MI][TP] ; //1 if remanufacturing activity e starts in mode m at time t 

  

 dvar boolean o[RN][TP]; // 1 if an order is placed for resource n at time t 

 //dvar int+ ic[RC][TP]; //invenroty level of cumulative resource c at time t 

 dvar int+ il[RN][TP]; // inventory level of non-renewable resource n at time t 

 dvar int+ no[RN][TP]; // Non-renewable resource n order number at time t 

  

 tuple Precedence {int pred; int succ; } 

  

 //{Precedence}  

  

 {Precedence} PredN = ...; // Precedence set for normal activities 

 {Precedence} PredR = ...; // Precedence set for remanufacturing activities 

  

  

  

  

 dexpr int OrderCost = sum(rn in RN, tp in TP) O[rn]* o[rn][tp]; // Total order cost 

 dexpr int MaterialCost = sum(rn in RN, tp in TP) P[rn]* no[rn][tp]; // Total non-

renewable resource purchase cost 

 dexpr int NRInventoryCost = sum(rn in RN, tp in TP) H[rn]* il[rn][tp]; // total non-

renewable material inventory cost 

 //dexpr int CRInventoryCost = sum(rc in RC, tp in TP) L[rc]* ic[rc][tp]; // total 

cumulative resource inventory cost 
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 //dexpr int Penalty = sum(mi in MI, tp in TP: ((tp>=DDL+1) && (tp<=T))) PN *(tp- 

DDL)*st[M-1][mi][tp]; // Penalty 

 //dexpr int Bonus = sum(mi in MI, tp in TP: ((tp>=esm[M-1]) && (tp<=DDL-1))) BN 

*(DDL- tp)*st[M-1][mi][tp]; // Bonus 

  

execute { 

  cp.param.TimeLimit = 1800; 

} 

 

execute{ 

 for (var am in AM){ 

  for (var mi in MI){ 

   for (var tp in TP){ 

    st[am][mi][tp] =0;  

   }   

  } 

  st[AMD[am][0]][AMD[am][1]][AMD[am][2]] =1;  

 }; 

  

 for (var ar in AR){ 

  for (var mi in MI){ 

   for (var tp in TP){ 

    rt[ar][mi][tp] =0;  

   }   

  }  

  rt[ARD[ar][0]][ARD[ar][1]][ARD[ar][2]] =1; 

 }; 

} 

  

 minimize OrderCost+ MaterialCost+ NRInventoryCost; 

  

 subject to  

  

 { 

  /*Constraint1: forall (<i,j> in PredN) //Normal activity precedence constraint 

   sum(mi in MI, tp in TP: (tp >=esm[i] && tp<=lsm[i])) st[i][mi][tp]* 

(tp+d[i][mi])<= sum(mi in MI, tp in TP: (tp>= esm[j]&& tp<= lsm[j])) st[j][mi][tp]* 

tp; 

  

  Constraint2: forall (<i,j> in PredR) //Remanufacturing activity precedence 

constraint 
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   sum(mi in MI, tp in TP: (tp >=esr[i] && tp<=lsr[i])) rt[i][mi][tp]* 

(tp+dr[i][mi])<= sum(mi in MI, tp in TP: (tp>= esr[j]&& tp<= lsr[j])) rt[j][mi][tp]* 

tp; 

   

  Constraint3: forall (rs in RS, tp in TP) // Renewable resource capacity 

constraint 

   sum(i in AM, mi in MI, tm in TP: (tm <=tp && tm >=tp-d[i][mi]+1)) 

(st[i][mi][tm]* r[i][rs][mi])+ sum(j in AR, mi in MI, tr in TP: (tr >=tp-dr[j][mi]+1 

&& tr<=tp)) (rt[j][mi][tr]* rr[j][rs][mi])<= RR[rs]; 

  */ 

  Constraint4: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource 

inventory level constraint(no initial) 

  il[rn][tp] == il[rn][tp-1] + no[rn][tp-DL[rn]] - sum(mi in MI, i in AM) 

t[i][rn][mi] * st[i][mi][tp];  

   

 Constraint5: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource 

consumption constraint(same day production cannot be used) 

  sum(mi in MI, i in AM) t[i][rn][mi] * st[i][mi][tp] <= il[rn][tp-1]; 

  

 /*Constraint6: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource 

consumption constriant 

  ic[rc][tp] == ic[rc][tp-1] + sum(mi in MI, e in AR, tr in TP: (tr == maxl(tp-

dr[e][mi], 0))) vr[e][rc][mi] * rt[e][mi][tr] - sum(mi in MI, j in AM) u[j][rc][mi] * 

st[j][mi][tp];  

   

  Constraint7: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource 

consumption constraint 

   sum(mi in MI, i in AM) u[i][rc][mi] * st[i][mi][tp] <= ic[rc][tp-1]; 

    

  Constraint8: forall (i in AM) // Once and only once constraint for manufacturing 

activity 

   sum(mi in MI, tp in TP) st[i][mi][tp] == 1; 

    

  Constraint9: forall (i in AR) // Once and only once constraint for 

remanufacturing activity 

   sum(mi in MI, tp in TP) rt[i][mi][tp] == 1; 

  */  

  Constraint10: forall (rn in RN, tp in TP) // Large number Constriant 

   no[rn][tp] <= o[rn][tp]*MN;  

    

  Constraint11: forall (rn in RN) // Initial inventory level constriant 



83 
 

   il[rn][0] == 0; 

    

  Constraint12: forall (rn in RN, tp in TP) // Positive integer inventory 

constraint  

   il[rn][tp] >= 0; 

    

  /*Constraint13: forall (rc in RC) // Initial inventory level constriant 

   ic[rc][0] == 0; 

    

  Constraint14: forall (rc in RC, tp in TP) // Positive integer inventory 

constraint  

   ic[rc][tp] >= 0; 

  */  

  Constraint15: forall (rc in RC, tp in TP) // Material order non-negative 

constraint 

   no[rc][tp] >= 0;  

   

  /*Constraint16: sum (mi in MI, tp in TP) rt[0][mi][tp] == 1; //  

    

  Constraint17: sum (mi in MI, tp in TP) rt[R-1][mi][tp]* tp <= sum (mi in MI, tp 

in TP)st[M-1][mi][tp]* tp ; // R2 must finish before M6 

    

  Constraint18: sum (mi in MI, tp in TP) rt[0][mi][tp]* tp >= 1; // R1 must start 

after time 1 

    

  Constraint19: st[0][0][1] == 1; 

   

  Constraint20: sum (tp in TP) st[M-1][0][tp] == 1; 

   

  Constraint21: forall (am in AM) 

   st[AMD[am][0]][AMD[am][1]][AMD[am][2]] == 1; 

    

  Constraint22: forall (ar in AR) 

   rt[ARD[ar][0]][ARD[ar][1]][ARD[ar][2]] == 1; 

  */ 
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Instance 12 

 

Instance 13 

 

 

 

 

 

 



91 
 

Instance 14 
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Instance 16 
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Instance 18 
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Appendix E 
 

Instance # 1 

Deadline 35 

Penalty 5 

Bonus 6 

Order cost 10 

NR resource price 10 

NR resource inventory cost 10 

CR resource inventory cost 10 

Renewable resource caps 10, 10 

 

 

Instance # 2 

Deadline 20 

Penalty 7 

Bonus 3 

Order cost 15 

NR resource price 15 

NR resource inventory cost 4 

CR resource inventory cost 4 

Renewable resource caps 10, 10 

 

 

Instance # 3 

Deadline 35 

Penalty 4 

Bonus 3 

Order cost 6 

NR resource price 9 

NR resource inventory cost 5 

CR resource inventory cost 5 

Renewable resource caps 10, 10 
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Instance # 4 

Deadline 35 

Penalty 4 

Bonus 3 

Order cost 3 

NR resource price 6 

NR resource inventory cost 4 

CR resource inventory cost 8 

Renewable resource caps 10, 10 

 

Instance # 5 

Deadline 44 

Penalty 4 

Bonus 3 

Order cost 9 

NR resource price 5 

NR resource inventory cost 2 

CR resource inventory cost 7 

Renewable resource caps 10, 10 

 

Instance # 6 

Deadline 41 

Penalty 4 

Bonus 3 

Order cost 3 

NR resource price 6 

NR resource inventory cost 7 

CR resource inventory cost 12 

Renewable resource caps 10, 10 

 

Instance # 7 

Deadline 16 

Penalty 15 

Bonus 15 

Order cost 8 

NR resource price 4 

NR resource inventory cost 1 

CR resource inventory cost 7 

Renewable resource caps 10, 10 



95 
 

 

Instance # 8 

Deadline 42 

Penalty 12 

Bonus 9 

Order cost 3 

NR resource price 9 

NR resource inventory cost 12 

CR resource inventory cost 7 

Renewable resource caps 10, 10 

 

Instance # 9 

Deadline 31 

Penalty 7 

Bonus 8 

Order cost 12 

NR resource price 15 

NR resource inventory cost 12 

CR resource inventory cost 19 

Renewable resource caps 10, 10 

 

Instance # 10 

Deadline 37 

Penalty 4 

Bonus 2 

Order cost 12 

NR resource price 6 

NR resource inventory cost 7 

CR resource inventory cost 9 

Renewable resource caps 10, 10 

 

Instance # 11 

Deadline 26 

Penalty 11 

Bonus 7 

Order cost 25 

NR resource price 12 

NR resource inventory cost 14 

CR resource inventory cost 12 

Renewable resource caps 10, 10 
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Instance # 12 

Deadline 39 

Penalty 7 

Bonus 6 

Order cost 11 

NR resource price 15 

NR resource inventory cost 10 

CR resource inventory cost 12 

Renewable resource caps 10, 10 

 

Instance # 13 

Deadline 25 

Penalty 12 

Bonus 10 

Order cost 20 

NR resource price 19 

NR resource inventory cost 15 

CR resource inventory cost 13 

Renewable resource caps 10, 10 

 

Instance # 14 

Deadline 31 

Penalty 11 

Bonus 13 

Order cost 10 

NR resource price 11 

NR resource inventory cost 12 

CR resource inventory cost 10 

Renewable resource caps 10, 10 

 

Instance # 15 

Deadline 30 

Penalty 19 

Bonus 22 

Order cost 15 

NR resource price 18 

NR resource inventory cost 21 

CR resource inventory cost 14 

Renewable resource caps 10, 10 
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Instance # 16 

Deadline 40 

Penalty 9 

Bonus 8 

Order cost 5 

NR resource price 12 

NR resource inventory cost 7 

CR resource inventory cost 9 

Renewable resource caps 10, 10 

 

Instance # 17 

Deadline 22 

Penalty 12 

Bonus 12 

Order cost 9 

NR resource price 10 

NR resource inventory cost 9 

CR resource inventory cost 8 

Renewable resource caps 10, 10 

 

Instance # 18 

Deadline 30 

Penalty 8 

Bonus 9 

Order cost 6 

NR resource price 4 

NR resource inventory cost 7 

CR resource inventory cost 12 

Renewable resource caps 10, 10 

 

 




