
Modeling and Solving Resource Constrained Project
Scheduling Problems with Remanufacturing Activities

Tiansheng Zhang

A Thesis

in

The Department

of

Mechanical, Industrial and Aerospace Engineering (MIAE)

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Industrial Engineering) at

Concordia University

Montréal, Québec, Canada

April 2021

© Tiansheng Zhang, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Tiansheng Zhang

Entitled: Modeling and Solving Resource Constrained Project Scheduling Prob-

lems with Remanufacturing Activities

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Industrial Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Dr. Hossein Hashemi Doulabi

External Examiner
Dr. Dr. Osama Moselhi

Examiner
Dr. Name of Examiner One

Supervisor
Dr. Mingyuan Chen

Approved by
Martin D. Pugh, Chair
Department of Mechanical, Industrial and Aerospace Engineering
(MIAE)

2021
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Modeling and Solving Resource Constrained Project Scheduling Problems with
Remanufacturing Activities

Tiansheng Zhang

Resource constrained project scheduling problem (RCPSP) is one of the most important prob-

lems in industrial engineering and production management. Owing to environmental concerns,

companies are paying more attention to the remanufacturing of end-of-life products. In this thesis,

a mathematical model is developed considering remanufacturing activities in resource constrained

project scheduling problem. The mathematical model considers recycle rate in multiple opera-

tion modes and several components of cost, including bonus, penalty, and others. A set of project

network instance are generated using RanGen1 for evaluation. To solve the model, a three-stage

heuristic method is developed in CPLEX 12.8 environment. Result shows that proposed method

can reach a close-to-optimal solution within acceptable time limit.

iii

iv

Acknowledgement

First of all, I want to thank my supervisor Dr. Mingyuan Chen. 2020 is a really hard year for

me. Without Dr. Chen’s help and patient guidance, I would not be able to finish my thesis. It’s

a great experience to work with him.

I would like to express my gratitude to my office fellows Cesar, Omar, Yasser, Jaeir , Walaa,

Zenan and Ruo, for all the great advice and experience. It’s a pleasure to work in the office

with all of you.

I would like to thank my friends Neo, Ruozhu, Bo, Xingge, Xiangping and Giordano for their

support and knowledge you shared with me.

Also, I want to thank Ontario Northland company for technical support.

Most importantly, I want to express my gratitude for my beloved family. A lot happened during

my study, and they have been my best support to overcome every difficulty and finally reach

the destination.

v

Table of Contents

List of Tables and Figures .. vii

Chapter 1 Introduction ... 1

1.1 Resource constrained project scheduling.. 1

1.2 Remanufacturing System ... 2

1.3 Motivations and Challenges.. 3

1.4 Contribution ... 4

1.5 Outline... 5

Chapter 2 Literature Review .. 6

2.1 Introduction ... 6

2.2 Project Management Tools... 6

2.2.1 Gantt Chart .. 6

2.2.2 Critical Path Method ... 7

2.2.3 Project Evaluation and Review Technique.. 8

2.3 Resource constrained project scheduling problem...8

2.4 Remanufacturing.. 18

Chapter 3 Mathematical Model... 22

3.1 Introduction ... 22
.

3.2 Definitions...22

3.2.1 Activity .. 23

3.2.2 Resource...23

vi

3.2.3 Remanufacturing Activity... 24

3.2.4 Cost... .25

3.3 Assumptions .. 27

3.4 Mathematical model.. 28

Chapter 4 Solution, Method and Testing Examples 34

4.1 Three-stage heuristic method .. 35

4.1.1 Stage One.. 36

4.1.2 Stage Two ... 42

4.1.3 Stage Three ... 43

4.2 Testing Examples ..44

4.3 Working Instance ..47

4.4 Experiment Result ..53

4.5 Summary ... 61

Chapter 5 Summary and Future Research .. 62

References.. 64

Appendix A .. 69

Appendix B .. 74

Appendix C .. 79

Appendix D .. 84

Appendix E .. 93

vii

List of Tables and Figures

Figure 2.1 Disassembly structure with part commonality.. 19
Figure 3.1 Sample project networks and information... 28
Figure 4.1 Sample project for algorithm demonstration... 34
Figure 4.2 Flowchart of algorithm.. 36
Figure 4.3 Sample project with R1 set to M1, A3 not set to M2.. 39
Figure 4.4 Sample project with R1 set to M1, A3 set to M2.. 40
Figure 4.5 Information for Instance 2... 48
Figure 4.6 Renewable resource 1 usage for Instance 2... 49
Figure 4.7 Renewable resource 2 usage for Instance 2 .. 50
Figure 4.8 Non-renewable resource inventory level for Instance 2.................................... 52
Figure 4.9 Cumulative resource inventory level for Instance2... 52
Figure 4.10 Bonus... 55
Figure 4.11 Cumulative resource inventory cost.. 56
Figure 4.12 Non-renewable resource purchase cost .. 57
Figure 4.13 Non-renewable resource inventory cost.. 58
Figure 4.14 Non-renewable resource order cost .. 59
Figure 4.15 Total cost .. 60

Table 4.1 Precedence and forbidden set for R1M1 and A3M1.. 39
Table 4.2 Precedence and forbidden set for R1M1 and A3M3.. 39
Table 4.3 Precedence and forbidden set for R1M1 and A3M2 ... 40
Table 4.4 Cumulative resource consumption distribution for manufacturing sets 41
Table 4.5 Cumulative resource production distribution for manufacturing sets 41
Table 4.6 Cumulative resource production distribution for remanufacturing sets 41
Table 4.7 Schedule for optimal solution and heuristic solution .. 49
Table 4.8 Average renewable resource usage for Instance 2 .. 50
Table 4.9 Cost by category for Instance 2 .. 53
Table 4.10 Parameters used in RanGen1 for generating instances 54
Table 4.11 Cost and time consumption for each instance .. 60

1

Chapter 1 Introduction

In this chapter, we introduce the general information of resource constrained project scheduling

problem (RCPSP) and remanufacturing system. The challenges are discussed with the outline

of the thesis provided at the end of this chapter.

1.1 Resource constrained project scheduling

Since the structure of supply chain are getting more and more complex in recent decades,

modern companies are gradually reorganizing themselves into a modular and project-oriented

structure to avoid possible impact generated by activities delay. According to Bounds, project

management is estimated to be an 850 million industry and is expected to grow by 20 percent

each year [2]. Though many projects are started each year, only 26% of them are finished on

time and within budget limit, which makes project management a more important subject [2].

Project scheduling originates from project management. In 1950s quantitative methods such as

Critical Path Method (CPM) and Project Evaluation Review Techniques (PERT) are proposed

to manage projects. These approaches give good estimation on project life circle if no resource

conflict appears, which often is not the case. With the requirement of resource allocation

appears, project management problems are more difficult to solve.

Resource constrained project scheduling problem (RCPSP) is proposed in late 1970s by

2

Pritsker et al. [53]. It is used to reach an optimal objective with respect to scarce resources.

With different variants and extensions, RCPSP may reach various result with different

constraints.

1.2 Remanufacturing system

The definition of remanufacturing is raised when build a single item which requires tremendous

amount of resource to build. During World War II large scale project remanufacturing was put

on high importance since productivity was in severe shortage in both civil and military fields.

Cars need to be kept running and weapons need to be recycled and refurbished to satisfy the

fast consumption.

Remanufacturing process aims to bring end-of-life assembly product back to like-new status

with repairing and replacing components [3]. Comparing to traditional manufacturing,

remanufacturing provides high-quality products with lower energy and resource consumption,

while the profit margin is higher.

For remanufacturing enterprises, the challenge is to deal with highly varied production line

caused by difference quality of recycled products. Disassembled components are inspected and

stored for further reassembly. Furthermore, recycled components from a same batch may take

different time to get prepared, makes it difficult to schedule the reuse.

One of the difficulties in remanufacturing enterprise is to create a disassembly schedule with

consideration of recycled item usage and holding cost. An early remanufacturing activity may

3

lead to unnecessary inventory stockpile while a late activity may result in delay on activities

that requires refurbished item and lateness of whole project. Including remanufacturing

schedule in a resource-constrained project scheduling problem can effectively decrease

possibility of project delay.

1.3 Motivations and Challenges

Both RCPSP and remanufacturing have been thoroughly researched in the past several decades,

respectively. However, research on the impact of remanufacturing on RCPSP is not rich.

RCPSP focus on reasonable resource allocation over time to achieve a specific goal with known

number of resources. For large scale project dealing with single or small-batch items,

remanufacturing of several core parts can greatly save costs and shorten projects durations. But

remanufacturing activities and RCPSP are usually considered separately since remanufacturing

activities produce non-renewable resources instead of consumption.

The way remanufacturing activities do is to produce non-renewable resources while use

renewable resources. Normal non-renewable resources are acquired from external source and

does not need to be processed by workers and machines. Costs related to them are order

placement cost, material purchase cost and inventory holding cost. For remanufacturing

activities, resources need to be preprocessed before used by other activities. Because

remanufacturing activities has a disassembly hierarchy and produce non-renewable resource

which need additional cost for holding, remanufacturing activities should be considered

4

separately in RCPSP without losing its characteristics.

Also, for refurbishment project, material requirement is not known until further inspection on

items and non-renewable resources need to be ordered after project initiates. This can add

additional complexity to problem solving. Besides, recycled materials may take different time

to be prepared. Normal remanufacturing scheduling only focus on item disassembly hierarchy,

which may lead to a local optimal for whole project. Integrating remanufacturing activities into

resource-constrained project scheduling problem gives a more comprehensive consideration

on refurbishment project scheduling.

1.4 Contribution

This research proposed a mathematical model for multi-mode resource constrained project

scheduling project scheduling problem with remanufacturing activity and cumulative resources.

The model integrates remanufacturing activity and cumulative resource as new components for

RCPSP, which reduce the uncertainty of remanufacturing project and increase efficiency.

Remanufacturing activities are considered in resource constrained project scheduling problem

with the production and consumption of cumulative resource in multiple operation modes for

the first time.

A three-stage heuristic method is proposed to quickly reach a suboptimal solution with

acceptable accuracy in practical situation. 18 RanGen1 generated instance are used to verify

the efficiency of proposed heuristic method, and the results are compared with solution

5

generated by CPLEX embedded solver.

1.5 Outline

In the next chapter, literatures researching resource-constrained project scheduling problem

(RCPSP) and remanufacturing scheduling will be reviewed. A mathematical model for RCPSP

with remanufacturing activities will be demonstrated in Chapter 3. In Chapter 4, a three-stage

heuristic method to solve problem will be presented. Chapter 5 gives a summary and future

prospection on this study.

6

CHAPTER 2: Literature Review

2.1 Introduction

In recent decades, rapid progress has been seen in the field of project scheduling. Mathematical

basis has been consolidated. Various methods are proposed for solving this NP-complete

problem. Extensions and variants considering practical situations are introduced. In this chapter,

a literature review related to resource-constrained project scheduling problem is given.

2.2 Project Management Tools

Project management can date back to at least 4000 years ago when ancient architectures

projects are organized without modern methods and tools but only estimations. Before resource

constrained project scheduling is proposed, tools like Gantt Chart and CPM are widely used

for scheduling. Resource constraints are usually considered separate to project schedule.

2.2.1 Gantt Chart

Gantt chart, also known as harmonogram, is invented by Henry Gantt to demonstrate project

schedules. A Gantt chart lists all tasks to be complete on vertical axis and time intervals on

horizontal axis [4]. Gantt chart can clearly demonstrate start-end relationship for all tasks and

non-complete work breakdown structure, but not enough to show precedence network for

7

whole project. Therefore, tracing the impact of delay on whole project is hard on large scale

project.

2.2.2 Critical Path Method

Critical Path Method (CPM) is an algorithm developed by Morgan R. Walker and James E.

Kelley for scheduling a set of activities [5]. It uses four components to construct a model: a set

of activities organized in work breakdown structure (WBS) directed by project aim; durations

needed to complete activities; precedence relationship of activities; logical points indicating

start and end, also known as milestones.

Critical path method generates a critical path through activities network which has the longest

path. Other paths from start node to sink node that have shorter durations are called sub-critical

path or non-critical path. A critical path determines minimum time needed to complete project

if no task on this path is delayed, while some activities on non-critical path can be postponed

without delay the whole project. The activities on critical path are supposed to be started once

their precedence tasks are completed such that the project can be finished on earliest possible

time.

Critical path method gives a good estimate on project makespan and provides earliest start time

and latest start time for all tasks, which makes it possible for project manager to allocate

additional resources to crash project duration and transform the project into a time-cost tradeoff

problem. By shorten duration of tasks on critical path, the critical path may change, and non-

8

critical path may become critical path, which can be further altered for shorter project

makespan.

2.2.3 Project Evaluation and Review Technique

The Project Evaluation and Review Technique (PERT) is a statistical tool for project

management developed by The US Navy. It is applied increasingly to Critical Path Method

despite their difference [6].

PERT makes it possible to schedule a project without knowing the accurate duration of its tasks

by considering uncertainty and provides estimations on project. Usually, four types of time are

required for PERT scheduling: optimistic time, pessimistic time, most likely time and expected

time, representing the minimum time required, the maximum time required, the best estimate

when activity goes normal and the average time if activity is repeated under the same conditions.

PERT is often used with CPM for better project management. With different duration

estimation Given by PERT, project managers are able to allocate more cash and resources into

activities more likely to be critical, thus reduce the uncertainty of project.

2.3 Resource constrained project scheduling problem

Project duration is one of the most important factors when implementing a project. Improper

managing a project may cause late completion of the project, which reduce possible profit.

Many researchers have proposed methods to minimize makespan of a project. For multimode

9

project scheduling, due to the introduction of non-renewable resource, minimizing overall

project cost is considered as an important objective function. Among the research in RCPSP

problem, many put their focus on easy-accessible general-purpose tools for integer

programming problem and mixed-integer problem, which can be easily understood and

deployed by practitioners without excessive background knowledge.

Kolisch [7] proposed a new RSM-based priority rule for parallel scheduling scheme. The

concept of Generally Forbidden Pairs, Temporarily Forbidden Pairs and Current Schedulable

Pairs are introduced. The earliest schedulable time ∏(𝑖, 𝑗)
𝑟 considering resource 𝑟 in

Decision Set 𝐷𝑛 at stage 𝑛 for any activity pair (𝑖, 𝑗) can be calculated. A priority value

𝑣(𝑖) can be obtained with latest start time and 𝐸(𝑖, 𝑗), the earliest time to schedule activitiy 𝑗

if activity 𝑖 is scheduled at time 𝑡𝑛. IRSM (Improved RSM) priority rule choose the activity

with smallest 𝑣(𝑖) to schedule at each stage.

Hartmann [8] proposed a precedence feasible based permutation genetic algorithm for RCPSP.

An activity sequence is denoted as an individual 𝐼 = (𝑗1
𝐼 , 𝑗2

𝐼 , … , 𝑗𝐽
𝐼), in which 𝑗𝑛

𝐼 denotes the

𝑛th scheduled activity. An activity sequence corresponds uniquely to a schedule with serial

scheduling scheme. Two new sequences are created from two old sequences using crossover

and mutation, then given an individual fitness. Four type of selection operators are used to

choose an individual with highest fitness. This permutation-based GA method achieves better

optimal value with less CPU time compared to other Genetic algorithm.

In Alcaraz and Maroto [10], a robust genetic algorithm has been proposed for resource

10

allocation in project scheduling. Activity list representation is used with an additional gene

called forward-backward gene denoting the mode this sequence is constructed. Three types of

crossover are suggested, including Precedence set crossover, Forward-backward crossover

(FBC) and Two-point forward-backward crossover (TP-FBC). The crossover keeps relative

position of selected gene from one parent on its scheduling direction. Then mutation operator

is applied after crossover and alters a gene position. FBC and TP-FBC gives good max

deviation and optimal in ProGen-generated instance.

Merkle, Middendorf and Schemeck [11] introduce an ant colony optimization (ACO) on

RCPSP with both serial and parallel schedule generation scheme are used for sequencing. The

ACO algorithm use heuristic information 𝜂𝑖𝑗 and pheromone information 𝜏𝑖𝑗 to denote how

good it is to put activity 𝑗 at place 𝑖. The probability of schedule activity j at place i, denoted

as 𝑝𝑖𝑗, is the ratio of product of 𝜂𝑖𝑗 and 𝜏𝑖𝑗 in summation of all schedulable activity. After a

sequence is obtained, Serial Schedule Generation Scheme is used to obtain an optimal schedule.

Six type of heuristics are considered.

Hartmann [12] proposed a self-adapting genetic algorithm for RCPSP. The algorithm is

interpreted by activity-list representation. An individual contains an activity sequence and a

decoding method. A specific schedule is decoded with serial or parallel SGS from activity list

λ. Two random integers 𝑞1 and 𝑞2 are selected for crossover. For ProGen-generated instance,

self-adapting GA gives better average critical path lower bound in 1000 iterations and 5000

iterations, respectively.

11

A simulated annealing (SA) algorithm is discussed by Bouleimen and Lecocq to minimize

project makespan [13]. A new search scheme is used to replace traditional SA search scheme.

For a current solution 𝑥, a neighbour point 𝑥′ is generated by shifting a random activity to a

position between its earliest predecessor and latest successor. The difference Δ = 𝑓(𝑥′) −

𝑓(𝑥) is calculated, and 𝑥′ is accepted as new 𝑥 if Δ ≤ 0 or with possibility 𝑃 = 𝑒(−Δ/𝑇) if

𝑃 is within acceptance range.

An exact branch-and-cut method is proposed in Zhu [17] for MRCPSP. A cut procedure is used

to reduce variables and constraints after each branching and tighten the linear programming

relaxations. During branching procedure, a local search is applied on the neighborhood of

current solution for early-stage advantage. Some problem-specific information is used to

accelerate the obtaining of LP bounds. Numerical experiments are implemented on 20- and 30-

activity benchmark problems developed by Kolisch et al. and at least 502 of J30 problem set

are reported with better solutions.

Valls, Ballestin and Quintanilla [19] demonstrated a Hybrid Genetic Algorithm (HGA) for

deterministic RCPSP. This HGA uses an improved crossover operator to identify combine

good parts of generated solutions instead of random selected part. Besides, two parents in a

couple are chosen in different manner. One is selected as the fittest individual in population

and the other is randomly selected. And a scheme called Double Justification is introduced to

obtain a left and right active schedule. Experiment shows that HGA improves most tested

algorithms in solution quality sense.

12

A Hybrid Scatter Search/electromagnetism Method is applied to RCPSP by Debels et al. [20]

They use an improved random-key representation by eliminating time scaling and timing

anomalies problem.

Jarboui et al. [21] introduce a combinatorial particle swarm optimization technique for multi -

mode RCPSP. A dummy variable for each particle is created to allow transition between

combinatorial status and continuous status. The velocity of a particle in next moment depends

on its current velocity, distance from best location of itself and best overall location. The paper

uses this method for mode optimization of an existing schedule.

Mendes et al. [22] proposed a genetic algorithm based on random key representation. A delay

time for each activity is introduced in chromosome along with priority. The fitness of a solution

is defined by makespan and potential for improvement.

Zheng and Wang [24] developed a Multi-agent optimization algorithm for RCPSP. Several

groups of agents proceed towards optimal solution under guide of local best agents and global

best agents. Solutions are improved through social behavior and right-shift based self-learning

with adjustment to environment. Experiments shows that MAOA works efficiently on medium

and large-scale problems.

Drezet and Billaut [28] considered a situation in labor arrangement company where resource

requirement varying with time. Resource in this research is software company employee with

different skill level to execute activities. Resource request may vary with time between a

13

minimum and maximum level. Like realistic situation, employees may work only for a certain

amount of time.

Mika et al. [27] considered setup time application in multi-mode RCPSP. Setup time is a pre-

process for general-purpose resource to get prepared for execution of activity. It depends on

the target activity, involved resource type and specific activity sequence. Furthermore, concept

of location is introduced as different activity process location can affect its successors’ setup

time in MRCPSP.

Neumann and Schwindt [29] discussed a situation where a resource is produced by an activity

and requested by another activity, which causes a storage cost during time lag. This so-called

cumulative resource is maintained between a minimum level and maximum level through

consumption and replenish from activities, which may cause extra holding costs or resource

conflict. Instead of using activity representation, they use events to represent consumption and

replenish point for cumulative resource.

A bonus-penalty policy under multi-mode RCPSP with material ordering is discussed by

Zoraghi et al. [30]. In this research non-renewable resource need to be ordered in advance.

Objective is to minimize total cost which consists of material order cost, holding cost, earliness

bonus and tardiness penalty. Untimely non-renewable resource order or inappropriate method

may result in tardiness penalty or extra inventory cost. They used a hybrid heuristic method

which has an inner search stage and a multi-algorithm-based outer search stage.

14

In multi-mode RCPSP, two or more activities need to be operated in a fixed mode set. This

mode identity constraint is discussed by Salewski et al. [31] All jobs are partitioned into finite

config subsets and considered as temporal subsets. Earliest start time and latest finish time are

also calculated in subset format, which greatly decrease complexity.

Erenguc et al. [32] allows the reduction of activities in project at additional resource cost. For

each mode of an activity, a normal duration and a crashed duration are given. Resource

constraints are expressed conceptually in this research. Actual activity duration varies between

two given duration under selected mode with additional cost spent on it. Mode cost, crash cost

and tardiness penalty comprise final cost which is to be minimized. Actual duration is

considered as a variable. Crashing activity can be considered as a special situation of multi -

mode projects.

In supply chain management, quality is considered important but hard to be quantified. Li and

Womer [33] proposed a model with quality level constraint. For each activity mode, a different

quality level is given. Quality level works as a constraint. A minimum reliability must be

satisfied for all activity quality level summation. Objective is to minimize project duration, but

total inventory cost is also discussed under general temporal constraints and variable resource

capacity. A similar approach is used to maximize quality level when observing budgets and

deadline in Tareghian[34].

Tiwari et al. [35] discussed quality under heterogeneous resource circumstances. In their

research, an activity can be started with a resource with low level skill and completed in a

15

rework mode. This two-step scheme can be considered as a special case of varying resource

request with multi-mode activity. A new job can only be started after the rework of its

predecessor is done. This rework mode usually happens in a multi-stage activity which requires

consolidation after first step, like new employee training or Integrated Processing. Rework

mode provides the possibility for more flexible scheduling at additional resource cost.

Demeulemeester et al. [36] demonstrated a computational result for discrete time/cost trade-

off problem. Duration of activity is a non-increasing function of additional cost. With given

amount of cost, a minimum project duration is found with a deterministic procedure. Their

algorithm uses a backtracking technique which continuously improve project deadline.

Resource constraints are not considered in their model.

Drexl et al. [37] considered cases in which activities are not allowed to be scheduled during

certain periods, which is called forbidden periods. This forbidden period is related to real world

time. For example, a job that must be finished without pause but is scheduled at the end of a

day, which causes a suspension of ongoing process. Forbidden periods provide an approach for

scheduling considering vacations, temporary shutdown and other situations that pause

processing jobs.

In RCPSP, we usually assume that successor activities can be initiated as soon as their

predecessor finish. In practical situation, an activity may not be started right after its

predecessor. Concept of minimal time-lags is introduced as work continuity constraint by

Vanhoucke [38]. Duration is substitute with time-lag which depends on two related activities

16

and their unit level in order to match repetitive characteristic of construction projects. By using

unit notation, repeating activities are integrated as one activity with same property.

In mechanical manufacturing, a material needs to be processed as soon as possible after a post-

process. In that case, a successor of post-process must be started within deteriorate time. This

leads to a maximal time-lag concept similar to minimal time-lag. Bartusch et al. [39] considered

general time-window constraints in job shop scheduling problem. Four types of time-lags are

considered: start-to-start lags (S-S), start-to-finish lags (S-F), finish-to-start lags (F-S), finish-

to-finish lags (F-F) are transformed into a standardized form.

A general case of precedence relationship is release date and due date of activities. A release

date is a moment only after which certain activity can be started. Similarly, a due date is a

moment before which a job must be finished. Essentially a release date can be transformed into

a start-to-start lag between dummy start and considered activity, while a due date can be viewed

as a finish-to-start lag between designated activity and dummy source. Due to technical issues,

project may take more time than expected to be complete and due date is violated. Özdamar et

al. [40], Neumann et al [41] and Klein et al [42] discussed circumstances where due date can

be violated by paying some penalty cost. Objective is usually to maximize net present value,

but tardiness itself is sometimes considered as objective.

In industrial practice, an activity can have more than one execution mode due to resource

variations. This leads to multimode resource constrained project scheduling (MRCPSP). When

executed in different mode, an activity consumes different number of resources and yields

17

different duration. Vanhoucke et al [43] generalized MRCPSP with metaheuristic approach.

An extension on activity finish time is discussed by Hartmann and Kolisch [9]. The extension

forbids certain activities to finish at the same period. This is related to the case in large-scale

experiments where there are multiple samples to record, or in factories where storage is not

enough to hold all middle products.

Möhring, Schulz, Stork and Uetz[14] demonstrated a minimum cut method for solving project

scheduling problem. They use a Lagrangian relaxation method turn original problem into a

minimum cut problem.

Arkhipov et al. [24] developed a pseudo-polynomial algorithm to determine lower bound on

the RCPSP problem makespan with time-dependent resource capacities. The idea is based on

continuous assessment on resources capacities and workload. Start time and deadline of

activities are modified repeatedly with constraints of resource under time horizon 𝑇, which is

narrowed by binary search in the end of a cycle.

A Tabu search method for RCPSP with schedule-dependent setup time is proposed by Mika et

al. Besides traditional renewable resources, a new type of resources called setup-required

resources for preparing multi-purpose resources is introduced. The setup time consists of

sequence-independent setup time, sequence-dependent setup time and schedule-dependent

setup time and is related to setup-required resources locations. This separation can decrease

activity complexity for large project. And satisfying result can be obtained by Tabu search

18

metaheuristic.

2.4 Remanufacturing system

In recent decades, remanufacturing receives much attention for its potential to reduce

environment pressure, pollution, and the revenue it brings to project. By remanufacture used

items, project managers can reduce material cost, simplify supply chain, and schedule setup

time more precisely. For project involving single item with high value, remanufacturing,

instead of fabricating a new item, can considerably decrease lead time and cost needed for the

project.

One of the hardest parts of remanufacturing scheduling is disassembly scheduling since

recycled material and item demands are highly unstable and unpredictable. To establish

connection between supply and demands, bill of material (BOM) and materials requirement

planning (MRP) system are used for remanufacturing management.

Gupta and Taleb [43] introduced concept of disassembly scheduling. Reversed materials

requirement planning (RMRP) is used to satisfy material requirement for components and

subassemblies instead of assemblies. RMRP provides convenient access for floor material

handling and inventory management, but it is hard to tell the source of demand for leaf items.

In this procedure, requirement of material is set as final objective.

Taleb, Gupta and Brennan [45] present a disassembly structure graph considering part

commonality. Commonality denotes that an item has more than one parent or can be yield from

19

disassembling a common part. In their algorithm, common parts are split into separate

categories stem from different parent items. Common parts in different categories, though they

denote the same real-world items, are labeled with distinct number. They also show how

material requirement can be met when leaf items have material commonality.

Fig 2.1 Disassembly structure with part commonality [44]

After Gupta and Taleb proposed their RMRP procedure, various extensions are introduced for

remanufacturing. Lee and Xirouchakis [44] considered cost minimization as their objective. In

their model, requirement is stated as leaf material. Root items are disassembled into leaf i tems

to satisfy periodical leaf item demands, and scraped components require holding cost each

period. Final cost consists of disassembly operation cost, material ordering cost, inventory

holding cost and setup time cost. A mathematical model is construct and a two-stage heuristic

method is used to solve the problem.

19

disassembling a common part. In their algorithm, common parts are split into separate

categories stem from different parent items. Common parts in different categories, though they

denote the same real-world items, are labeled with distinct number. They also show how

material requirement can be met when leaf items have material commonality.

Fig 2.1 Disassembly structure with part commonality [44]

After Gupta and Taleb proposed their RMRP procedure, various extensions are introduced for

remanufacturing. Lee and Xirouchakis [44] considered cost minimization as their objective. In

their model, requirement is stated as leaf material. Root items are disassembled into leaf i tems

to satisfy periodical leaf item demands, and scraped components require holding cost each

period. Final cost consists of disassembly operation cost, material ordering cost, inventory

holding cost and setup time cost. A mathematical model is construct and a two-stage heuristic

method is used to solve the problem.

20

The model proposed by Gupta and Taleb is discussed in a more graphic way and not a

mathematical model. An integer programming model is proposed by Lee et al. [46] to

demonstrate the ordering and disassembly of end-of-life products over a planning horizon with

various extensions. The model starts in a basic form considering only single product

disassembly without part commonality. Objective of their integer model consists 4 parts:

disassembly operation cost, setup cost, material holding cost and purchasing cost. For part

commonality scenario in single product case, stock level constraint is changed such that

inventory balance for each non-root item comes from multiple parent items, and demands are

shown in leaf item.

Though many scheduling methods of disassembly activity has been proposed, few research in

mathematical essence of disassembly scheduling was done. In Kim et al. [47], they proved that

a disassembly scheduling with assembly product structure is a NP-hard problem, which means

a heuristic method is needed for solving the problem. They used a Lagrangian relaxation

method to obtain upper and lower bound of each node on a branch-and-bound tree. The node

is taken as new incumbent solution if its next activity in sequence has better lower bound and

considered as current optimal.

Inventory level is always a concern for project managers. Keep a high level of inventory

increases robustness of manufacturing system but results in extra holding cost. Low inventory

level saves inventory cost while brings high possibility of stock depleted. Furthermore,

disassembly capacity is not unlimited in practical situation especially for large scale

21

disassembly activity and large single items. Kim, Lee and Xirouchakis [48] considered a

situation where capacity for disassembling activity is limited. In each time period, disassembly

activity can only happen limited times. The objective is to minimize add-up cost of setup cost,

inventory cost and disassembly cost. While a peak hour demand may still occur, it is not

possible to massively disassembly items for large material requests in next period.

Capability for remanufacturing is not unlimited in most cases. In given time period, one type

of parent items can be disassembled only for a certain amount of time. For example, if a large

amount of leaf items is demanded at time 𝑡, it may not be feasible to disassemble parent items

to acquire the leaf items needed in previous period 𝑡 − 1, given that capacity is constrained.

Kim et al. [49] discussed a case in single item scenario without part commonality with capacity

constraint. Their objective is to minimize the number of disassembled root item. Only limited

number of items can be disassembled in each period.

In this chapter, literature concerning resource constrained project scheduling problem and

remanufacturing scheduling are discussed. For RCPSP, different variants and extensions

considering for temporal constraints, resource constraints and objective functions in practical

situation greatly increase complexity and lead to application of different solution methodology.

For remanufacturing, scenario concerning single product without part commonality is mainly

discussed. In next chapter, we will present a mathematical model to demonstrate RCPSP with

remanufacturing activity.

22

Chapter 3 Mathematical Model

3.1 Introduction

In this chapter, resource constrained project scheduling problem (RCPSP) with

remanufacturing activities is studied. We give general definitions of parameters, decision

variables and resource constraints. Basic assumptions will be given. Mechanism of

remanufacturing process will be discussed. The model is based on Zoraghi [30] with variants

of remanufacturing features. An Activity-on-Node (AoN) network will be used to present

activities and their precedence. The model is developed as a multi-mode resource constrained

project scheduling problem (MRCPSP). Each activity can be processed in multiple execution

mode at different resource consumption rate and durations. A multi-mode project network

diagram will be used for definition demonstration.

3.2 Definitions

An activity can be operated in different modes. Each mode consumes different number of

renewable resources and non-renewable resource and yields different activity durations. All

activities are non-preemptive, which means a project must be finished once it is started without

pause and interruption.

3.2.1 Activity

23

An activity has a set of predecessors and a set of successors. There are four types of time lags:

finish-to-start time lag, finish-to-finish time lag, start-to-start time lag and start-to-finish time

lag. All four types can be transferred to finish-to-start (F-S) time lag with consideration of

activity duration. A F-S time lag is the minimal time period from the complete of an activity

to its successor. An activity cannot be started until its predecessor finish. Once an activity

initiates, it occupies certain amount renewable resource and consumes non-renewable resource

and cumulative resource. For remanufacturing activities, they produce cumulative resource

which can be used later by other activities.

A dummy start and a dummy end are added to original project. They have only one mode that

consumes no resource with a task duration of zero.

3.2.2 Resource

Three types of resources are considered in this study: renewable resources, non-renewable

resources, and cumulative resources. A renewable resource can be used repeatably and refresh

in each period, such as labor and machine. Once it is occupied by one activity, it cannot be

used by other activity until current activity is finished. A non-renewable resource is a resource

that has a limit of total usage, such as materials. When used by an activity, it is consumed and

cannot be used anymore in project scope. Cumulative resource is a non-renewable resource.

The difference between non-renewable resource and cumulative resource is that non-renewable

resources are acquired from external supplier via orders and cumulative resource can only be

supplied from remanufacturing activities. A non-renewable resource delivery can be obtained

24

by placing an order that specifies material amount.

All these three resources can have different types. In our study, 𝑅𝑟 types of renewable

resources, 𝑅𝑛 types of non-renewable resources and 𝑅𝑐 types of cumulative resources are

considered. In each period, amount of available resource is refreshed. The inventory level for

non-renewable resources and cumulative resources are zero at the beginning of activi ties. An

order needs to be placed for non-renewable resources supply from external source. A

remanufacturing activity need to be done to obtain cumulative resource supplement.

Before project begins, requirement of resources by different activities and modes are known

for deterministic until project complete, and the initial amounts of non-renewable resources

and remanufacturing activities are zero.

3.2.3 Remanufacturing activity

Remanufacturing activities occupies renewable resources and produce cumulative resources

for later used. Remanufacturing activities has no predecessors and successors. They can be

operated at any time if renewable resource satisfies the condition. It is assumed that material

required for remanufacturing are obtained previously and does not have a cost.

Remanufacturing activity can be considered as a predecessor for activities that required

remanufactured items. Successors cannot be initiated unless remanufactured items are

prepared. Since disassembly tree exist, multiple remanufacturing activities may provide

cumulative resources for one manufacturing task, and one remanufacturing activity may only

be start after its required item is disassembled from parent item.

25

In the problem, two types of remanufacture items are discussed. In the first hierarchy, all three

remanufacturing activities produce same cumulative resource, but they are in precedence

relation. This denotes a type of product which yields multiple recycled components that has

different process time. Second one may generate 2 type of remanufactured items in

remanufacturing activity 2 and 3.

In this study, disassembly structure is a single product structure without part commonality.

Only one type of root item is considered at the same time, and different parent items can’t be

scraped into same child item.

3.2.4 Cost

The objective of this study is to minimized total cost spent on project. There are six types of

cost: order cost, non-renewable resources ordering cost, non-renewable resource inventory

holding cost, cumulative resource holding cost, bonus and penalty for earliness and tardiness

of project.

Order cost is a fixed cost for placing an order. It is related to issuing a payment or invoice,

cargo inspection, moving received goods to stock and other activity that are not related to order

size. In mathematical model, a fixed amount of order cost is issued when an order for non-

renewable resource is placed.

Non-renewable resource is usually related to consumable materials. Basic number of materials

are needed for each single task, but increased material investment can accelerate task

completion. Therefore, a trade-off between extra material purchase and bonus/penalty

26

regarding project completion exist, and non-renewable resources need to be considered as a

variable.

Inventory level is one of the most important factors for project managers. High stock level can

strengthen production robustness against unpredictable material delivery delay but increase

cost for inventory management. Low stock level can greatly reduce inventory holding cost

while brings high risk of stockout. In our model, no backlogging is allowed.

Cumulative resources are produced by remanufacturing activities. Since remanufacturing

activities are dependent from normal tasks, it is possible to finish all disassemble activity before

starting a normal activity. However, early disassemble activities result in extra holding cost for

recycled cumulative resource. In single item disassembly hierarchy without part commonality,

recycled child items tend to be high value precision component that requires special

environment to store. Remanufacturing activities, therefore, should be scheduled along with

normal activities. Since non-renewable resource and cumulative resource are determined after

the inspection, no opportunity cost is incurred, which means inventory cost is related to

material storage.

For each project there is a due date to follow. If a project is finished before due date, a bonus

specific to completion date will be paid to contractor. In contrast, a penalty with respect to

finish date will be applied if project completion time does not meet due date as a compensation

for not fulfilling contract.

3.3 Assumptions

27

This model is based on research proposed by Zoraghi [30] and Lee et al [46]. In this

mathematical model, project will be demonstrated in an Activity-on-Node (AoN) network

𝐺(𝑉, 𝐸). All activities are non-preemptive, which means one activity must be kept running

until it is complete and cannot be paused for reallocating resources. All activities have known

and determined duration and consumption for each mode. A dummy start and a dummy end

are added to original project network. Dummy start takes no resources and time to operated

and is the predecessor of all activities. Conversely, dummy end requires no resource and time

and is the successor of all activities.

Remanufacturing activities and normal activities are independent in precedence relations but

share same renewable resources. Available number of renewable resources is given in advance.

Inventory size for non-renewable and cumulative resources has a limit. For renewable

resources, once used by an activity, it will stay occupied and cannot be applied on other

activities until current process is finished. Non-renewable resources will be restocked to ensure

no back logging happens. To get restocked, an order with specific resource number and type

will be placed. A delivery lead time is needed for orders to fulfill. Cumulative resource can

only be supplied received when remanufacturing activities is finished. Non-renewable resource

and cumulative resource are both consumed once activity starts, and a delivered order can only

be available from the second day.

Order cost for each material type is fixed and purchase cost for each unit of non-renewable

resource is known and constant. Inventory cost is the same for nun-renewable resource and

28

cumulative resource per unit per period. There is a known due date for entire project when

project begins. If project is finished before due date, a bonus per date will be earned. In contrast,

a penalty will be applied according to tardiness.

3.4 Mathematical model

The mathematical model will use Fig 3.1 as demonstration. Parameters, sets, decision variables

and objective functions are shown below. Remanufacturing activities are related to normal

activities through cumulative resource, and precedence among remanufacturing activities are

determined by recycled cumulative resources. To operate a remanufacturing activity, a set -up

cost is usually needed. In our model, set-up cost is considered as a part of non-renewable

resource purchase cost.

Fig 3.1 Sample project networks and information

Notations

29

Sets:

 𝑇𝑃 = {0, 1, … , 𝑇}, Set of time period

𝐴𝑀 = {1, 2, … , 𝑀}, Set of normal manufacturing activities

𝐴𝑅 = {1, 2, … , 𝑅}, Set of remanufacturing activities

𝑅𝑆 = {1, 2, … , 𝑆}, Set of renewable resources

𝑅𝑁 = {1, 2, … , 𝑁}, Set of non-renewable resources

𝑅𝐶 = {1, 2, … , 𝐶}, Set of cumulative resources

𝑀𝑖, Set of modes of activity 𝑖, 𝑖𝜖 𝐴𝑁 ∪ 𝐴𝑅

𝐸 = {(𝑖, 𝑗)| 𝑖, 𝑗 ∈ 𝐴𝑁 ∪ 𝐴𝑅} , Set of precedence relations,

Parameters

𝑂𝑛, Order cost for nonrenewable resource 𝑛 each time per order

𝑃𝑛, Price for per unit of non-renewable resource 𝑛

𝐻𝑛, Holding cost for per unit of non-renewable resource 𝑛 per time period

𝐿𝑐, Holding cost for per unit of cumulative resource 𝑐 per time period

𝑃, Penalty applied for late finish after due date per day

𝐵, Bonus applied for early finish before due date per day

𝐷𝐷, Due date of project

𝑁𝐿, A large number

𝑅𝑠, Max capacity of renewable resources 𝑠 that can be used in each time period

𝐷𝑛, Delivery lead time of non-renewable resource 𝑛 after placing order

𝑑𝑖𝑚, Duration of activity 𝑖 when operate in mode 𝑚

30

𝑤𝑖𝑚𝑠, Consumption of renewable resource 𝑠 when activity 𝑖 operates in mode 𝑚

𝑡𝑖𝑚𝑛, Consumption of non-renewable resource 𝑛 when activity 𝑖 operates in mode 𝑚

𝑢𝑖𝑚𝑐, Consumption of cumulative resource 𝑐 when activity 𝑖 operates in mode 𝑚

𝑣𝑖𝑚𝑐, Produced cumulative resource 𝑐 when remanufacturing activity 𝑖 operates in mode 𝑚

Decision Variables

𝑠𝑖𝑚𝑡 = {
1, if activity 𝑖 starts at time 𝑡 in mode 𝑚
0, otherwise

𝑟𝑒𝑚𝑡 = {
1, if remanufacturing activity 𝑒 starts at time 𝑡 in mode 𝑚
0, otherwise

𝑜𝑛𝑡 = {
1, nonrenewable resource 𝑛 is ordered at time 𝑡
0, otherwise

𝑖𝑛𝑡, inventory level of nonrenewable resource 𝑛 at time 𝑡

𝑣𝑐𝑡, inventory level of cumulative resource 𝑐 at time 𝑡

𝑚𝑛𝑡, the amount of nonrenewable resource 𝑛 ordered at time 𝑡

Objective Function

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝑂𝑛 × 𝑜𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+ ∑ ∑ 𝑃𝑛 × 𝑚𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+ ∑ ∑ 𝐻𝑛 × 𝑖𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+ ∑ ∑ 𝐿𝑐 × 𝑣𝑐𝑡

𝑇

𝑡=1

𝐶

𝑐=1

+ ∑ 𝑃 × (𝑡 − 𝐷𝐷) × 𝑠𝑀𝑚𝑡

𝑇

𝑡=𝐷𝐷+1

+ ∑ 𝐵 × (𝑡 − 𝐷𝐷) × 𝑠𝑀𝑚𝑡

𝐷𝐷−1

𝑡=𝐸𝐹

, (1)

31

Constraints

∑ ∑ 𝑠𝑖𝑚𝑡 × (𝑡 + 𝑑𝑖𝑚)

𝑇

𝑡=1

𝑀𝑖

𝑚=1

≤ ∑ ∑ 𝑠𝑗𝑚𝑡 × 𝑡

𝑇

𝑡=1

𝑀𝑗

𝑚=1

, ∀(𝑖, 𝑗) ∈ 𝐸, (2)

∑ ∑ ∑ 𝑠𝑖𝑚𝑤 ×

𝑀𝑖𝑛{𝑡,𝐿𝑆𝑖}

𝑤=𝑀𝑎𝑥{𝑡−𝑑𝑖𝑚,𝐸𝑆𝑖}

𝑀𝑖

𝑚=1

𝑀

𝑖=1

𝑤𝑖𝑚𝑠 + ∑ ∑ ∑ 𝑟𝑒𝑚𝑤 ×

𝑀𝑖𝑛{𝑡,𝐿𝑆𝑒}

𝑤=𝑀𝑎𝑥{𝑡−𝑑𝑒𝑚,𝐸𝑆𝑒}

𝑀𝑒

𝑚=1

𝑅

𝑒=1

𝑤𝑒𝑚𝑠 ≤ 𝑅𝑠,

∀𝑠 ∈ 𝑅𝑆, ∀𝑡 ∈ 𝑇𝑃, (3)

𝑖𝑛𝑡 = 𝑖𝑛,𝑡−1 + 𝑚𝑛,𝑡−𝐷𝑛
− ∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑡𝑖𝑚𝑛

𝑀𝑖

𝑚=1

𝑀

𝑖=1

, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃 , (4)

∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑡𝑖𝑚𝑛

𝑀𝑖

𝑚=1

𝑀

𝑖=1

≤ 𝑖𝑛,𝑡−1, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃, (5)

𝑣𝑐𝑡 = 𝑣𝑐,𝑡−1 + ∑ ∑ 𝑟𝑒𝑚,𝑡−𝑑𝑒𝑚
× 𝑣𝑒𝑚𝑐

𝑀𝑒

𝑚=1

𝑅

𝑒=1

− ∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑢𝑖𝑚𝑐

𝑀𝑖

𝑚=1

𝑀

𝑖=1

,

 ∀𝑐 ∈ 𝑅𝐶, ∀𝑡 ∈ 𝑇𝑃, (6)

∑ ∑ 𝑠𝑖𝑚𝑡 × 𝑢𝑖𝑚𝑐

𝑀𝑖

𝑚=1

𝑀

𝑖=1

≤ 𝑣𝑐,𝑡−1, ∀𝑐 ∈ 𝑅𝐶, ∀𝑡 ∈ 𝑇𝑃, (7)

∑ ∑ 𝑠𝑖𝑚𝑡

𝑇

𝑡=1

= 1

𝑀𝑖

𝑚=1

, ∀𝑖 ∈ 𝐴𝑀, (8)

∑ ∑ 𝑟𝑒𝑚𝑡

𝑇

𝑡=1

= 1

𝑀𝑖

𝑚=1

, ∀𝑒 ∈ 𝐴𝑅, (9)

𝑚𝑛𝑡 ≤ 𝑜𝑛𝑡 × 𝑁𝐿, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃, (10)

𝑖𝑛0 = 0, ∀𝑛 ∈ 𝑅𝑁, (11)

𝑖𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃, (12)

𝑣𝑐0 = 0, ∀𝑐 ∈ 𝑅𝐶, (13)

𝑣𝑐𝑡 ≥ 0, ∀𝑐 ∈ 𝑅𝐶, ∀𝑡 ∈ 𝑇𝑃, (14)

𝑚𝑛𝑡 ∈ 𝑍, ∀𝑛 ∈ 𝑅𝑁, ∀𝑡 ∈ 𝑇𝑃, (15)

32

Objective is to minimize total cost spent to finish projects. Objective function consists of 6

terms: order cost for non-renewable material; purchase cost for non-renewable material;

inventory holding cost for non-renewable resource; inventory holding cost for cumulative

resources; penalty for project late finish and bonus for project early finish.

13 constraints are used in model. Precedence relations are guaranteed by inequality (2).

Inequality (3) makes sure that renewable resource usage is respect in each period. Equation (4)

describes that current non-renewable inventory level depends on last period inventory,

delivered orders and total consumption in this period. Inequality (5) ensures that activities can

only use non-renewable resource from previous day. Cumulative resource inventory is

calculated by Equation (6), as cumulative resource will be restocked when remanufacturing

activity is completed. Inequality (7) ensures that an activity cannot be scheduled unless there

is enough cumulative resource in previous day. Equation (8) makes sure all normal activities

are processed once and in only one mode, and remanufacturing activities is constrained by

cumulative resource non-negative inventory cost. Equation (9) implies that one

remanufacturing activity can only be executed once and only once. Inequality (10) enforces a

non-renewable resource delivery is only considered if an order is placed. Equation (11) and

(12) show that non-renewable resource inventory level is zero when project starts and must be

non-negative integer. Equation (13) and (14) give zero initial inventory and non-negative

integer constraint to cumulative resource. Equation (15) enforce material purchase amount to

be non-negative integer.

33

A mathematical model is presented in this chapter. Relative terms, definitions and assumptions

are demonstrated. Remanufacturing activities is considered as an extension to Zoraghi’s model.

Recycled product is considered as cumulative resource, which is consumed and restocked when

activity starts.

In next chapter, a three-phase heuristic algorithm will be proposed to solve this mathematical

model. 18 small size instances generated by RanGen1 will be used for demonstration.

34

Chapter 4 Solution, Method and Testing Examples

It is known that resource constrained project scheduling problem is a NP-complete problem.

For practical project planning, project managers usually use commercial scheduling and

optimization software, which takes long to solve a single case.

Therefore, a three-phase heuristic method is proposed for solving RCPSP with remanufacturing

activities. In this section, 20 small instances generated by RanGen1 are used for evaluation.

To demonstrate the algorithm, a sample project with 3 possible operation modes for each

activity is used. Details are shown below.

Fig 4.1 Sample project for algorithm demonstration

35

4.1 Three-stage heuristic method

As it was mentioned, a resource constrained project scheduling problem is a NP-complete

problem. Multi-mode RCPSP with remanufacturing activities, therefore, is more complex.

Computational cost for generating an optimal solution grows exponentially with project scale.

Exact method like Branch-and-Bound may take days to solve a small-scale project. For large-

scale project, classic methods often fail to find a solution.

Heuristic methods are approach that ensures a feasible solution that is not guaranteed optimal

within limited times or attempts, which solve a problem with acceptable time cost. One way to

generate a heuristic method is to break the problem into several sub-problems. Each sub-

problem has an objective function and constrains by several constraints from original problems.

The output from previous sub-problem is taken as the input for next sub-problem.

To solve this multi-mode resource constrained project scheduling problem with

remanufacturing activities, we break the problem into three subproblem and develop a three-

phase heuristic method. Each subproblem uses only parts of project data to save computing

time.

Objective in first phase is determine feasible mode set considering cumulative resource. Since

remanufacturing activities can be implemented in different modes with different cumulative

resource yields, certain modes may not be chosen together, or resource conflict may happen

for normal activities. Mode sets for remanufacturing activities gives additional resource

36

constraint on normal activities. Second, an activity schedule based on mode set determined

from phase one is generated, which minimize the sum of penalty, bonus and cumulative

resource inventory cost, or to minimize the project finish time within all feasible mode space.

In phase three, with the schedule obtained from previous phase, we make arrangement on non-

renewable material order time and order number.

This objective is achieved by determining proper remanufacturing activity mode and time lag

with related manufacturing activities. We use natural date variable as the coding method, which

allows easier scheduling for resource ordering. With determined remanufacturing mode and

time lag, a virtual precedence between remanufacturing activities and manufacturing activities

can be calculated and project network is simplified. A partial schedule for remanufacturing

activities and their virtual successor manufacturing activities can be acquired. In second phase,

activity mode is decided with minimal product of resource demand and per unit cost. In the

third phase, a schedule is generated with serial scheduling.

Fig 4.2 Flowchart of algorithm

4.1.1 Stage One

First phase is to obtain a substantial precedence set which ensure the cost spent on cumulative

resource is minimized. As stated earlier, cumulative resource recycled by remanufacturing

37

activities is one of the non-deterministic factors for overall inventory cost. By matching

remanufacturing activities and normal activities by specific cumulative resource, a feasible

mode set can be determined if remanufacturing mode is known, and search space for

remanufacturing activity schedule can be narrowed.

Cost directly related to remanufacturing activity consists of one part: inventory cost for

cumulative resource before they are used. It is possible that not all remanufacturing activities

are completed, as long as cumulative resource inventory does not deplete during project

makespan. Consequently, the objective is to minimize unused cumulative resources at the end.

In original problem, 𝑠𝑖𝑚𝑡 and 𝑟𝑒𝑚𝑡 denote the initiation time 𝑡 of normal activity 𝑖 and

remanufacturing activity 𝑒 in mode 𝑚, respectively. In the first phase, activity start time is

not considered. Only activity mode is considered.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ (∑ ∑ 𝑟𝑒𝑚 ∗ 𝑣𝑒𝑚𝑐

𝑀𝑒

𝑚=1

𝑅

𝑒=1

− ∑ ∑ 𝑠𝑖𝑚 ∗ 𝑢𝑖𝑚𝑐

𝑀𝑖

𝑚=1

𝑀

𝑖=1

)

𝑅𝐶

𝑐

 (15)

In this model, 𝑟𝑒𝑚 and 𝑠𝑖𝑚 denotes operate mode for remanufacturing activity 𝑒 and normal

activity 𝑖, which can be obtained from equation

𝑟𝑒𝑚 = ∑ 𝑟𝑒𝑚𝑡

𝑇

𝑡

, ∀𝑒 ∈ 𝐴𝑅, ∀𝑚 ∈ 𝑀𝑒 (16)

𝑠𝑖𝑚 = ∑ 𝑠𝑖𝑚𝑡

𝑇

𝑡

, ∀𝑖 ∈ 𝐴𝑀, ∀𝑚 ∈ 𝑀𝑖 (17)

And constraint (6), (7), (8), (12) and (13).

The objective function (15) aims to find a combination of two types of activity such that

38

cumulative resource inventory level is minimized. Since cumulative resource inventory must

be non-negative, remanufacturing activity are forced to initiate before normal activities start.

Constraint (16) and (17) indicate that activity initiate time is not considered.

In sample project, cumulative resource that can be produced varies from 8 units to 12 units,

depending on which mode is chosen, while total usage varies from 6 units to 12 units. If

remanufacturing 1 (R1) operates in mode 1 (M1) while remanufacturing activity 2 (R2) in

mode 2 (M2), 9 units of cumulative resource is produced, and normal activity cannot choose a

mode set which consumes more than 9 units of cumulative resource, and two sets of precedence

are set: whether A3 operates in M2. Besides, R2 is forced to become a predecessor of activity

5, since activity 3 and 5 will consume a minimal amount of 4 cumulative resource. Furthermore,

if R1 process in mode 1, activity 1 cannot be operated in mode 2, which consumes 4 cumulative

resources, before R2 finish. It is known that solution space decreases as precedence constraints

increase. Given that R1 and R2 mode are both set, additional successors will be added for R2

to ensure non-negative inventory constraint.

39

Fig 4.3 Sample project with R1 set to M1, A3 not set to M2

Table 4.1 Precedence and forbidden set for R1M1 and A3M1
R1 mode R2 A3 mode Forbidden set

3 5 A3M1 (A5, A6M1), (A5M2, A6), (A5M3, A6M2)

3 6 A3M1
(A5M2, A6M1), (A5M3, A6M1),

(A5M2, A6M2)

3 7 A3M1 (A5M2, A6M1)

Table 4.2 Precedence and forbidden set for R1M1 and A3M3
R1 mode R2 A3 mode Forbidden set

3 5 A3M3
(A5M2, A6M1), (A5M2, A6M2),

(A5M3, A6M1),

3 6 A3M3 (A5M2, A6M1)

3 7 A3M3 None

When normal activity 3 is set to mode 2, A3 becomes a successor of R2, and tighter forbidden

set appears, since R1M1 can only produce 3 unit of cumulative resource which is not sufficient

until R2 finish. As it is known, a tight forbidden set implies more precedence pairs. Search

space for solution is further limited, as it can be seen in Fig 4.3 and Table 4.3.

40

Fig 4.4 Sample project with R1 set to M1, A3 set to M2

Table 4.3 Precedence and forbidden set for R1M1 and A3M2
R1 mode R2 A3 mode Forbidden set

3 5 A3M2 All combination besides (A5M1, A6M3)

3 6 A3M2 (A5, A6M1), (A5M2, A6), (A5M3, A6M2)

3 7 A3M2
(A5M2, A6M1), (A5M3, A6M1), (A5M2,

A6M2)

To easily append additional precedence set, a two-step algorithm is used.

Step 1

The start phase focus on total amount of cumulative resource. As it is mentioned, availability

for cumulative resource is an integer between 8 and 12 unit, depends on remanufacturing

activity operation mode. For each integer we can obtain a resource infeasible mode set in which

the combination requires more resource than total production from all remanufacturing activity.

41

Cumulative resource production and consumption table us shown below.

Table 4.4 Cumulative resource consumption distribution for manufacturing sets

Resource consumption 6 7 8 9 10 11 12

Number of mode set 1 3 6 7 6 3 1

Table 4.5 Cumulative resource production distribution for manufacturing sets

Resource Production 8 9 10 11 12

Feasible mode set 10 17 23 26 27

Table 4.6 Cumulative resource production distribution for remanufacturing sets

Resource Production 8 9 10 11 12

Remanu activity set 1 2 3 2 1

Since RanGen1 can only produce network with renewable resource, here we use standardized

cumulative production and usage data. If remanufacturing activity operates in low output mode,

it consumes less renewable resource while producing less cumulative resource, and vice versa.

In instance problem, we have a total of 9 mode possible mode set for remanufacturing activities

and 27 mode set for cumulative-resource-consuming activities. These mode sets can be

obtained in advance.

Step 2

The mode sets we obtained in step 1 do not specify actual activity mode and virtual precedence.

In step 2 an enumeration is applied for each remanufacturing mode set to get its corresponding

manufacturing mode sets.

In example problem, we start from 8 unit of resource production. Only R1M1 and R2M1 can

42

produce a total of 8 unit of cumulative resource with R1 produce 3 unit and R2 produce 5 unit.

Therefore, R1 must be complete one day earlier before the initiation of A3, and R2 becomes

predecessor of A5 and A6 for any mode. The number of mode combination is finite and can be

exhausted prior to calculation as a preprocess.

4.1.2 Stage Two

From first phase, multiple combination of activity modes related to remanufacturing activity is

obtained, and corresponding forbidden set are determined. Original problem us therefore

transferred to a traditional multi-mode resource constrained scheduling problem. In the second

phase the objective is to minimize total project makespan, which means to minimize the sum

of penalty and bonus, as non-renewable material resource order does not affect project finish

time once the schedule is generated. Besides, cumulative resource needs to be considered in

this phase, as the inventory cost for cumulative resource is determined with generated schedule.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝐿𝑐𝑣𝑐𝑡

𝑇

𝑡=1

𝐶

𝑐=1

+ ∑ 𝑃(𝑡 − 𝐷𝐷)𝑠𝑀𝑚𝑡

𝑇

𝑡=𝐷𝐷+1

+ ∑ 𝐵(𝑡 − 𝐷𝐷)𝑠𝑀𝑚𝑡

𝐷𝐷−1

𝑡=𝐸𝐹

 (18)

Subject to Constraint (2)(3)(6)(7)(8)(9)(13)(14).

In this phase, non-renewable resource is not considered, as non-renewable resource

consumption is positively correlated to project duration. As it can be seen, project yields zero

penalty and non-zero bonus if finished before due date. On contrast, penalty will apply, and

zero bonus will be received if project finish after due date. Remanufacturing activities, on the

other hand, should be scheduled properly. If recycled cumulative resource stays in inventory

43

too long, those components yield high inventory cost. This term forces remanufacturing

activities to be scheduled only when resource is needed by another task.

Objective function (18) in this phase contains no information about non-renewable resource

order, purchase, and inventory. To decrease calculating time for model, constraints concerning

material ordering are also excluded without affecting final result.

Constraint (2) ensures precedence relations between normal activities and remanufacturing

activities are followed. Constraint (3) requires that renewable resource capacity must be

respected. As mentioned, this problem is a NP-hard problem, which means solution space

grows exponentially as time space increase. We use time earliest start and latest start of each

activity to formulate a time window that contains all possible start time for each activity. In

constraint (6), cumulative resource stock is calculated. In practical situation, recycled resource

requires additional time before they can be put into use. Cumulative resource restock happens

after remanufacturing activity completes, and inequality (7) shows this restock cannot be used

until next time point. Equality (8) and (9) gives guarantees that each task must be done once

and only once. Constraint (13) and (14) ensure non-negative value and initial storage for

cumulative resource.

4.1.3 Stage Three

From previous stage, a schedule that minimize cumulative resource inventory cost, project

penalty and project bonus is obtained. In this schedule, the start time and execute mode for

44

each activity are determined.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝑂𝑛𝑜𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+ ∑ ∑ 𝑃𝑛𝑚𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

+ ∑ ∑ 𝐻𝑛𝑖𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

 (19)

Subject to constraint (4)(5)(10)(11)(12)(15).

In objective function (19), non-renewable material order place time and purchase quantity are

to be decided. In this function, 𝑜𝑛𝑡 and 𝑚𝑛𝑡 are independent, while 𝑖𝑛𝑡 follows these two

variables, and this is why we put non-renewable resource inventory term in phase three.

Equality (4) calculates inventory level of non-renewable resource from previous inventory,

material received and consumption each day. Inequality (5) denotes that an activity which

consumes more non-renewable material than previous day’s inventory cannot be scheduled. As

cumulative resource cost is calculated in stage two, no remanufacturing part is involved in

phase three. Constraint (10) enforces an order to be placed if any amount of non-renewable

resource is purchased, while Constraint (15) ensures that amount of purchased material is a

non-negative integer. Constraint (11) and (12) indicates that inventory level is 0 when project

starts and must be non-negative in project makespan.

4.2 Testing Examples

In this research, we use 18 small instance contains 5 manufacturing activities and 2

remanufacturing activities generated by RanGen1 network generator to evaluate the solution

method.

RanGen1 is a project network generator proposed by Demeulemeester et al. [53]. With proper

45

parameter setting, a large number of projects with renewable resource can be generated.

RanGen1 use 5 parameters to generate networks: activity number, order strength, number of

resource types, resource factor and resource constrainedness. Activity number is a positive

constant that does not include dummy start and dummy ends. It is positive related to CPU-

calculation time, means that the larger project is, the more time it requires to generate a feasible

schedule.

The definition of Order Strength (OS) is

𝑂𝑆 =
2|𝐸|

𝑛(𝑛 − 1)

, where |𝐸| is the number of precedence and 𝑛(𝑛−1)

2
 is the maximum possible amount of

precedence in this project. OS weighs the significance of project complexity. A larger OS value

means more precedence relationship between activities in concerned project, while much

precedence can be invalidated by preprocess.

Resource factor (RF) determines the density of resource usage matrix by individual activity. It

is defined by Copper [54] as follows:

𝑅𝐹 =
1

𝑛𝑆
∑ ∑ {

1, 𝑖𝑓 𝑟𝑖𝑠 => 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆

𝑠=1

𝑛

𝑖=1

Where 𝑆 denotes number of renewable resources, 𝑛 denotes number of manufacturing

resources and 𝑟𝑖𝑠 denotes amount of renewable resource 𝑠 during process. RF is a number

between 0 and 1. If RF is close to 1, activities tend to use more resource type. Conversely, if

RF is close to 0, activities tend to use only 1 resource or do not use any renewable resource at

all.

46

Resource constrainedness (RC) is introduced by Patterson [55] as follows:

𝑅𝐶𝑘 =
�̅�𝑘

𝑎𝑘

where �̅�𝑘 denotes average amount of renewable resource 𝑘 required by all activities and 𝑎𝑘

denotes amount of renewable resource 𝑘 during whole project. RC is implemented as a

measure for average resource tightness. Generally, if 𝑅𝐶𝑘 is close to 0, more activities use

resource k can be carried out at the same time. 𝑅𝐶𝑘 is 1 means all activities will use resource

𝑘, and activities in this project can only be processed one by one.

The network generated by RanGen1 is saved in Patterson format. In a Patterson format file,

renewable resource type number, available number of resources. resource usage for each task,

duration and successors are given. The time window for activities indicating earliest start (ES)

and latest start (LS) is calculated based on each individual project.

In Demeulemeester et al. [53], RanGen1 is not capable of directly generating multi-mode

project instance. To introduce multi-mode project, two tradeoff functions are given: time/cost

and time/resource tradeoff function and resource/resource tradeoff function. In this paper the

resource/resource tradeoff function with modified work content weight is use for generating

the second and third activity mode. To generate a resource usage set, we assign a work content

𝑊𝑖 to each activity 𝑖 , and a work content weight 𝑤𝑖𝑠 to each activity 𝑖 and renewable

resource type 𝑠, for which 𝑊𝑖 = ∑ 𝑤𝑖𝑘𝑟𝑖𝑚𝑠
𝑆
𝑠=1 . To keep 𝑊𝑖 and 𝑤𝑖𝑠 constant, we randomly

increase or decrease a resource demand, and do the opposite on another resource. Non-

renewable resource consumption is considered the same as activity duration.

47

Generated instance consists of 5 manufacturing activities, a dummy start and dummy end.

Besides, a small project consists of 2 remanufacturing activities is added parallelly to original

project. The remanufacture part does not have precedence relationship with normal part.

Instead, the connection is established through cumulative resources. Cumulative resource

produced in each mode is related to overall Resource Strength. Since RanGen1 is only capable

of generating renewable resource usage, non-renewable resource is linear to activity duration

and cumulative resource total usage is between lowest and highest possible recycle amount

from remanufacturing activity with a random distribution on three activity.

4.3 Working Instance

In this section we use Instance 2 for demonstration.

There are two renewable resources, one non-renewable resource and one cumulative resource

in this instance. Normal manufacturing activities are labelled with number 1 to 7, while two

remanufacturing activities are labelled as R1 and R2. For normal activities, total renewable

resource usage and activity duration are of negative correlation. For each time period a normal

activity occupies, a unit of non-renewable resource is consumed. Renewable resource has a

capacity of 10 units for each type, which will be occupied by an initiated activity, and released

after the activity finish. For non-renewable resource, an order with specified amount of

resource needs to be placed, and the resource will be available the second day they arrive.

Cumulative renewable resource consumption is preset for three normal activities with possible

choice of two, three and four units, which may result in a combination of total usage from 6 to

48

12 units.

As it is mentioned, we assume that remanufacturing activities do not consume non-renewable

resource, and the cumulative resource consumption indicates the capability of production in

each mode. Renewable resource consumption and cumulative resource production are

positively correlated to duration in each mode.

From Fig 4.4 we notice that all A4, A5 and A6 have a predecessor R1, as they cannot be

scheduled without cumulative resource. Furthermore, R2 becomes the predecessor of A5 and

A6 or A4 and A6, depending on whether A4 or A6 is scheduled first.

Fig 4.5 Information for Instance 2

The optimal schedule and heuristic schedule are shown in Table 4.5.

49

Table 4.7 Schedule for optimal solution and heuristic solution

Activity Mode-N

Start Time-

N

Mode-

H

Start Time-

H

6 0 24 0 23

5 1 18 1 17

4 0 17 0 16

3 0 10 0 10

2 2 3 2 8

1 1 2 1 2

0 0 1 0 1

Remanufacture 1 0 10 0 9

Remanufacture 0 0 3 0 3

Heuristic method yields a schedule close to optimal method, while postpone activity 2 for 5

days and order non-renewable resource for activity 2 and 3 separately, which makes a trade-

off between non-renewable resource inventory cost and order cost.

The average renewable resource usage is shown in figures and tables as below.

Fig 4.6 Renewable resource 1 usage for Instance 2

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Renewable resource 1 Usage

R1 R1-H

50

Fig 4.7 Renewable resource 2 usage for Instance 2

Table 4.8 Average renewable resource usage for Instance 2

 Normal Heuristic

R1 0.357 0.373

R2 0.504 0.500

CPLEX solver considers all possible sequences of activities and mode combination, while

heuristic method takes three steps to render a feasible schedule. In first stage, all possible

cumulative resource production levels and consumption levels are enumerated in Excel. Only

cumulative resource combination with same input and output level will be matched, which

reduce cumulative resource inventory cost.

For each project, 10 units of renewable resource 1 and renewable resource 2, respectively, are

available and refresh daily. The average renewable usage denotes the ratio of occupied

renewable resource to total availability, which can be used to monitor the efficiency of resource

allocation. In this instance, the heuristic method proposes a schedule with slightly higher

resource 1 usage while maintains a shorter schedule. Non-renewable resource and cumulative

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Renewable resource 2 Usage

R2 R2-H

51

resource can only be used one day after they are prepared, which result in the resource usage

of 0 in CPLEX solver.

In Instance 2, mode 0 is selected for both remanufacturing activity 1 and 2, providing 8 units

of cumulative resource in total. Consequently, activity 3, 4 and 5 will consume 8 units of

remanufactured resource in total, which has 6 possible mode set. In step 2, cumulative resource

inventory and project bonus and penalty is minimized, and a schedule of all activity is provided.

Since additional precedence constraints are created, the complexity of sequencing is reduced,

and a schedule with minimized remanufactured resource inventory cost and bonus can be

quickly obtained. Since cumulative resource production is determined once the

remanufacturing activity mode is considered, it must be minimized in step 2. In step 3, based

on generated schedule and resource requirement, the schedule for non-renewable resource

order is calculated to ensure minimized material purchase cost, inventory cost and order cost.

In this model, an order for non-renewable resource takes one day to fulfill and one day to get

the arrived material prepared, which means an order takes at least two day to function and

generates inventory cost for at least one day. For optimal solution, 4 orders are placed at time

0, time 14 and time 15, which incurs a non-renewable resource inventory cost of 64 and an

order cost of 60. The heuristic method placed 5 orders in total with the order cost of 75 in total

and 60 units of non-renewable resource inventory cost.

52

Fig 4.8 Non-renewable resource inventory level for Instance 2

Fig 4.9 Cumulative resource inventory level for Instance 2

Result for Instance 2 from optimal solution and heuristic solution is shown in table 4.6. From

the result, there is a 1% gap between two solutions. However, it takes more than 2 hours for

CPLEX solver to obtain optimal solution, while the heuristic method takes only 7 seconds to

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Non-renewable resource inventory level

CPLEX solver Heuristic

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Cumulative resource inventory level

CPLEX solver Heuristic

53

get a suboptimal solution.

Table 4.9 Cost by category for Instance 2
 Bonus CRInventory MaterialP NRInventory OrderCost Penalty ObjectValue

Optimal -28 44 225 64 60 28 421

Heurictic -21 44 225 60 75 21 425

4.4 Experiment result

The instances are tested in IBM ILOG CPLEX 12.8 environment. Original problems are not

able to be solved within 2 hours with embedded CPLEX solver, and known optimal solution is

obtained by using embedded solver for a 2-hour computation and the results are taken as known

optimal. Phase 1 of cumulative resource leveling is obtained by enumeration, while Phase 2

and Phase3 are coded in ILOG CPLEX.

In proposed model, objective function is to minimize total project cost. Since there is no

research considering remanufacturing activity situation in MRCPSP, the instances are acquired

from RanGen1 with 2 renewable resource with 1 non-renewable resource and 1 cumulative

resource added. Therefore, the known optimal solution is obtained from CPLEX embedded

solver.

RanGen1 requires following network-related parameters to generate project network: number

of activities, Order-strength value, number of resources, resource factor value and resource

constrainedness value. The order strength denotes how well the project network is sequenced.

A bigger order strength means more precedence relations between activities. Renewable

54

resource has a default capacity of 10 for each resource type. Resource factor denotes how

intense the resource is used. This value is set to 0.9 or 1, which means there is at most one

activity requires only one renewable resource type, while all other activities requires both two

renewable resource to initiate. Resource constrainedness is the measure for average resource

usage. A big constrainedness value means that an activity tends to use more renewable

resource, which makes it less possible to operate two activities parallelly due to resource

constraint. This value is set to be 0.5 or 0.75. Table 4.4 gives an overall description of all

parameters for generating instances used in this paper.

Table 4.10 Parameters used in RanGen1 for generating instances
Parameter for generating instance

Non-dummy activity number 5

Remanufacturing activity number 2

Order Strength 0.5/0.75

Renewable/Non-renewable/Cumulative resource types 2/1/1

Renewable resource capacity 10/10

Resource Factor 0.9/1

Resource Constrainedness 0.5/0.75

Cumulative Resource produce interval [8, 12]

Cumulative Resource consumption interval [6, 12]

The objective function is to minimize total cost on remanufacturing project. Table 4.4 and 4.5

shows the result of possible mode selection in step one for the 18 instances used in this paper.

Table 4.6 shows virtual precedence relation considering resource consumption.

The result for project bonus is shown in Fig 4.9. Since project duration and cumulative resource

cost are the first to be minimized, heuristic method provides shorter project duration compared

to embedded solver in normal case. For few instances, when cumulative resource inventory

55

cost is high, a trade-off between cumulative resource inventory and project duration may be

made to minimize object value in step 2. Averagely, heuristic method provides a schedule with

47% more bonus than normal method, which is efficient when dealing with time-sensitive

projects.

Fig 4.10 Bonus

Fig 4.10 show inventory cost for cumulative resource. For projects on a single high-value

product, cumulative resource is usually recycled, inspected, and remanufactured at the very

beginning of project when disassemble product external structure, then reused in later

assembly. Since recycled components requires further inspection before reuse, it is not sure

how much storage should be allocated for remanufactured resource in advance. Besides, some

of the components may deteriorate after recycled. Therefore, it is efficient for remanufacturing

-100

-50

0

50

100

150

200

250

Bonus

Bonus Bonus-Heuristic

56

project to minimize cumulative resource inventory level in step 2. On average, heuristic method

shows 0.9% percent gap in cumulative resource cost. However, the average inventory time

before reuse from heuristic method is slightly lower than normal method.

Fig 4.11 Cumulative resource inventory cost

Non-renewable resource cost consists of three parts: purchase cost, inventory cost, and order

cost. Purchase cost is related to activity duration. Inventory denotes the how long materials

will be stored before use. Order cost is a fixed number whenever an order for non-renewable

resource is placed. In Fig 4.11 non-renewable resource purchase cost for each instance is

shown. On average, heuristic method incurs 21% more purchase cost than optimal solution.

0

50

100

150

200

250

Cumulative resource inventory cost

CRInventory CRInventory-Heuristic

57

Fig 4.12 Non-renewable resource purchase cost

As for non-renewable inventory cost, heuristic method shows 21% percent gap compared to

optimal solutions, which is similar to purchase cost. The inventory gap comes from higher

volume of material purchase. The average storage time before process for each unit of non-

renewable resource is similar to optimal method, which means heuristic method is capable of

reducing redundant inventory.

0

100

200

300

400

500

600

Non-renewable resource purchase cost

MaterialP MaterialP-Heuristic

58

Fig 4.13 Non-renewable resource inventory cost

Order cost is independent from volume of purchased material. Purchase large quantity of non-

renewable resource incurs low order cost while gives heavy pressure on inventory

management, while frequent order generates additional process fee without reduce inventory

cost. The result for order cost is shown is Fig 4.13. The result from heuristic method is 10%

higher averagely than optimal method.

0

50

100

150

200

250

300

350

400

450

Non-renewable resource inventory cost

NRInventory NRInventory-Heuristic

59

Fig 4.14 Non-renewable resource order cost

The results in Fig 4.14 show 10% gap between heuristic method and normal method. In practice

situation, project schedule requires frequent adjustment with respect to actual progress, which

requires a fast method to generate a schedule for reference. In Table 4.11 we can see heuristic

method takes 20 seconds in average to reach a suboptimal solution with satisfied accuracy,

consider that remanufacturing activities need to be scheduled.

0

50

100

150

200

250

300

Non-renewable resource order cost

OrderCost OrderCost-Heuristic

60

Fig 4.15 Total cost

Table 4.11 Cost and time consumption for each instance
 B BH CI CH MP MH NI NIH O OH Cost CH TimeH Gap

I1 78 90 140 130 120 150 120 150 30 50 332 390 0:12 17%

I2 -28 -21 44 44 225 225 64 60 60 75 421 425 0:07 1%

I3 42 42 40 40 198 198 110 110 24 24 330 330 0:07 0%

I4 27 33 72 72 90 120 60 80 12 12 207 251 0:11 21%

I5 33 57 70 70 100 145 40 58 36 36 213 252 0:13 18%

I6 12 42 228 132 90 144 105 168 12 15 423 417 0:52 -1%

I7 -15 -15 98 98 52 56 17 18 24 24 206 211 0:05 2%

I8 198 198 140 140 144 144 192 192 15 15 293 293 0:07 0%

I9 8 48 171 171 210 315 168 252 48 48 589 738 0:25 25%

I10 40 34 99 90 66 84 84 98 48 48 257 286 0:07 11%

I11 70 70 132 132 60 60 98 84 75 100 295 306 0:06 4%

I12 102 102 132 132 225 225 150 160 44 44 449 459 0:19 2%

I13 40 50 104 104 418 513 330 405 260 260 1072 1232 0:17 15%

I14 52 117 140 160 132 154 144 168 50 50 414 415 0:53 0%

I15 88 176 126 210 270 342 315 399 60 60 683 835 0:37 22%

I16 80 128 81 81 276 348 161 203 20 20 458 524 0:45 14%

I17 -84 -60 120 112 130 160 117 144 45 45 496 521 0:44 5%

I18 63 90 204 204 36 44 63 77 30 30 270 265 0:10 -2%

0

200

400

600

800

1000

1200

1400

Objective Value

ObjectValue ObjectValue-Heuristic

61

The result for all 18 instances is shown in Table 4.11. For 18 tested instance, CPLEX solver

takes 2 hours to obtain a known-optimal solution, while heuristic method takes 20 seconds

averagely to get a suboptimal solution, which is acceptable in practical situation.

4.5 Summary

In this chapter, a three-phase heuristic method for solving RCPSP with remanufacturing

activity is proposed. In first stage, considering actual cumulative resource consumption and

production, a set of virtual precedence relations based on resource balance is generated. In step

2, a scheduling problem aims to minimize the sum of cumulative resource inventory cost and

bonus is solved. Original precedence and resource-based precedence are used here. In step 3,

a schedule for non-renewable resource purchase and inventory is generated to minimize non-

renewable material related cost based on activity schedule from step 2.

The heuristic method takes acceptable computation time to obtain a suboptimal schedule. For

18 test instances, heuristic method obtains solution with 10% gap from CPLEX solver on

average. The result also shows that proposed heuristic method provides better solution when

time becomes important, with 47% better result on bonus than CPLEX solver. Since non-

renewable resource related costs are highly relevant, proposed heuristic method is not efficient

on products which cannot recover important core components.

62

Chapter 5 Summary and Future work

In this thesis, we consider remanufacturing activity in multi-mode resource constrained project

scheduling problems. The disassembly structure is introduced into material ordering in the

form of resource production and consumption. The integration of remanufacturing and RCPSP

provides an effective provides an effective model for project scheduling. An integer

programming model is developed to demonstrate this problem where remanufacturing activity

can produce resource needed by normal activity. This thesis aims to provide a practical method

for scheduling a project considering cumulative resource usage on an easy-accessible

computing system such as personal computer while maintains relative accurate result to known

optimal solution in large-scale project. The problem is a NP-hard problem which cannot be

solved by exact methods. To do so, a three-phase heuristic method is developed in order to

minimize total project cost under penalty and bonus policy.

Though commercial software provides accessible solution for models, it takes long time to

solve a model, which is not acceptable in practical situation. Besides, off-shelf model requires

excessive knowledge in order to adjust parameters for quick convergence to better solution,

and usually cost much to obtain a commercial license. In large scale projects, off-shelf

optimization methods do not guarantee a global optimal solution. The proposed three-phase

heuristic method can quickly reach a suboptimal solution in practical case.

A set of 18 RanGen1 generated instances is used to validate the efficiency of proposed model.

63

As all instances use same cumulative resource information, remanufactured resource

production and consumption combinations are enumerated in Excel to generate virtual

precedence which reduced complexity in step 2. The second step use original precedence and

virtual precedence to schedule the project in order to minimize sum of cumulative resource,

bonus, and penalty. In last stage, a non-renewable resource order schedule is generated based

on activity schedule from previous step to minimize non-renewable resource related cost. The

second step and third step are implemented in ILOG CPLEX 12.8.

For future work, as the second step still use classic scheduling function, different meta-heuristic

method can be used to accelerate the second phase. Besides, a solution pool can be generated

to store all partial schedule in step 2 within acceptable gap range, which increase the chance to

improve suboptimal schedule in step 3.

64

Reference

[1] Demeulemeester, E.L. and Herroelen, W.S., Project scheduling: a research handbook (Vol. 49).
Springer Science & Business Media, 2006.

[2] Bounds, G., The last word on project management. IIE solutions, 30(11), pp.41-44, 1998.

[3] Ilgin, M.A. and Gupta, S.M., Remanufacturing modeling and analysis. CRC Press, pp. 4, 2012.

[4] Clark, W., The Gantt chart: A working tool of management. Ronald Press Company, 1922.

[6] Brennan, M., PERT and CPM: a selected bibliography. Council of Planning Librarians, 1968.

[7] Kolisch, R., Efficient priority rules for the resource‐constrained project scheduling problem. Journal of
Operations Management, 14(3), pp.179-192, 1996.

[8] Hartmann, S., A competitive genetic algorithm for resource‐constrained project scheduling. Naval
Research Logistics (NRL), 45(7), pp.733-750, 1998.

[9] Hartmann, S. and Kolisch, R., Experimental evaluation of state-of-the-art heuristics for the resource-
constrained project scheduling problem. European Journal of Operational Research, 127(2), pp.394-407,
2000.

[10] Alcaraz, J. and Maroto, C., A robust genetic algorithm for resource allocation in project
scheduling. Annals of operations Research, 102(1), pp.83-109, 2001.

[11] Merkle, D., Middendorf, M. and Schmeck, H., Ant colony optimization for resource-constrained
project scheduling. IEEE transactions on evolutionary computation, 6(4), pp.333-346, 2002.

[12] Hartmann, S., A self‐adapting genetic algorithm for project scheduling under resource
constraints. Naval Research Logistics (NRL), 49(5), pp.433-448, 2002.

[13] Bouleimen, K.L.E.I.N. and Lecocq, H.O.U.S.N.I., A new efficient simulated annealing algorithm for
the resource-constrained project scheduling problem and its multiple mode version. European journal of
operational research, 149(2), pp.268-281, 2003.

[14] Möhring, R.H., Schulz, A.S., Stork, F. and Uetz, M., Solving project scheduling problems by minimum
cut computations. Management science, 49(3), pp.330-350, 2003.

65

[15] Guide Jr, V.D.R., Souza, G.C. and Van Der Laan, E., Performance of static priority rules for shared
facilities in a remanufacturing shop with disassembly and reassembly. European Journal of Operational
Research, 164(2), pp.341-353, 2005.

[16] Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M., A hybrid scatter search/electromagnetism
meta-heuristic for project scheduling. European Journal of Operational Research, 169(2), pp.638-653,
2006.

[17] Zhu, G., Bard, J.F. and Yu, G., A branch-and-cut procedure for the multimode resource-constrained
project-scheduling problem. INFORMS Journal on Computing, 18(3), pp.377-390, 2006.

[18] Chtourou, H. and Haouari, M., A two-stage-priority-rule-based algorithm for robust resource-
constrained project scheduling. Computers & industrial engineering, 55(1), pp.183-194, 2008.

[19] Valls, V., Ballestin, F. and Quintanilla, S., A hybrid genetic algorithm for the resource-constrained
project scheduling problem. European Journal of Operational Research, 185(2), pp.495-508.

[20] Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M., 2006. A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational
Research, 169(2), pp.638-653, 2008.

[21] Jarboui, B., Damak, N., Siarry, P. and Rebai, A., A combinatorial particle swarm optimization for
solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and
Computation, 195(1), pp.299-308, 2008.

[22] Mendes, J.J., Gonçalves, J.F. and Resende, M.G., A random key based genetic algorithm for the
resource constrained project scheduling problem. Computers & operations research, 36(1), pp.92-109,
2009.

[23] Hartmann, S. and Briskorn, D., A survey of variants and extensions of the resource-constrained
project scheduling problem. European Journal of operational research, 207(1), pp.1-14, 2010.

[24] Zheng, X.L. and Wang, L., A multi-agent optimization algorithm for resource constrained project
scheduling problem. Expert Systems with Applications, 42(15-16), pp.6039-6049, 2015.

[25] Arkhipov, D., Battaïa, O. and Lazarev, A., An efficient pseudo-polynomial algorithm for finding a
lower bound on the makespan for the Resource Constrained Project Scheduling Problem. European
Journal of Operational Research, 275(1), pp.35-44, 2019.

[26] Hartmann, S. and Briskorn, D., A survey of variants and extensions of the resource-constrained
project scheduling problem. European Journal of operational research, 207(1), pp.1-14, 2010.

66

[27] Mika, M., Waligora, G. and Węglarz, J., Tabu search for multi-mode resource-constrained project
scheduling with schedule-dependent setup times. European Journal of Operational Research, 187(3),
pp.1238-1250, 2008.

[28] Drezet, L.E. and Billaut, J.C., A project scheduling problem with labour constraints and time-
dependent activities requirements. International Journal of Production Economics, 112(1), pp.217-225,
2008.

[29] Neumann, K. and Schwindt, C., Project scheduling with inventory constraints. Mathematical Methods
of Operations Research, 56(3), pp.513-533, 2003.

[30] Zoraghi, N., Shahsavar, A., Abbasi, B. and Van Peteghem, V., Multi-mode resource-constrained
project scheduling problem with material ordering under bonus–penalty policies. Top, 25(1), pp.49-79,
2017.

[31] Salewski, F., Schirmer, A. and Drexl, A., Project scheduling under resource and mode identity
constraints: Model, complexity, methods, and application. European Journal of Operational
Research, 102(1), pp.88-110, 1997.

[32] Ahn, T. and Erenguc, S.S., The resource constrained project scheduling problem with multiple
crashable modes: a heuristic procedure. European Journal of Operational Research, 107(2), pp.250-259,
1998.

[33] Li, H. and Womer, K., Modeling the supply chain configuration problem with resource
constraints. International Journal of Project Management, 26(6), pp.646-654, 2008.

[34] Tareghian, H.R. and Taheri, S.H., A solution procedure for the discrete time, cost and quality tradeoff
problem using electromagnetic scatter search. Applied mathematics and computation, 190(2), pp.1136-
1145, 2007.

[35] Tiwari, V., Patterson, J.H. and Mabert, V.A., Scheduling projects with heterogeneous resources to
meet time and quality objectives. European Journal of Operational Research, 193(3), pp.780-790, 2009.

[36] Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W. and Vanhoucke, A.M., New
computational results on the discrete time/cost trade-off problem in project networks. Journal of the
operational research society, 49(11), pp.1153-1163, 1998.

[37] Drexl, A., Nissen, R., Patterson, J.H. and Salewski, F., Progen/πx–an instance generator for
resource-constrained project scheduling problems with partially renewable resources and further
extensions. European Journal of Operational Research, 125(1), pp.59-72, 2000.

67

[38] Vanhoucke, M., Work continuity constraints in project scheduling. Journal of Construction
Engineering and Management, 132(1), pp.14-25, 2006.

[39] Bartusch, M., Möhring, R.H. and Radermacher, F.J., Scheduling project networks with resource
constraints and time windows. Annals of operations Research, 16(1), pp.199-240, 1988.
[40] Özdamar, L., Ulusoy, G. and Bayyigit, M., A heuristic treatment of tardiness and net present value
criteria in resource constrained project scheduling. International Journal of Physical Distribution &
Logistics Management, 1998.

[41] Neumann, K., Schwindt, C. and Zimmermann, J., Recent results on resource-constrained project
scheduling with time windows: Models, solution methods, and applications. Inst. für Wirtschaftstheorie
und Operations-Research, 2002.

[42] Klein, R. and Scholl, A., PROGRESS: Optimally solving the generalized resource-constrained project
scheduling problem. Mathematical Methods of Operations Research, 52(3), pp.467-488, 2000.
[43] Gupta, S.M. and Taleb, K.N., Scheduling disassembly. The International Journal of Production
Research, 32(8), pp.1857-1866, 1994.

[44] Lee, D.H. and Xirouchakis, P., A two-stage heuristic for disassembly scheduling with assembly
product structure. Journal of the Operational Research Society, 55(3), pp.287-297, 2004.

[45] Taleb, K.N., Gupta, S.M. and Brennan, L., Disassembly of complex product structures with parts and
materials commonality. Production Planning & Control, 8(3), pp.255-269, 1997.

[46] Lee, D.H., Kim, H.J., Choi, G. and Xirouchakis, P., Disassembly scheduling: integer programming
models. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 218(10), pp.1357-1372, 2004.

[47] Kim, H.J., Lee, D.H., Xirouchakis, P. and Kwon, O.K., A branch and bound algorithm for disassembly
scheduling with assembly product structure. Journal of the Operational Research Society, 60(3), pp.419-
430, 2009.

[48] Kim, H.J., Lee, D.H. and Xirouchakis, P., A Lagrangean heuristic algorithm for disassembly
scheduling with capacity constraints. Journal of the Operational Research Society, 57(10), pp.1231-1240,
2006.

[49] Kim, J.G., Jeon, H.B., Kim, H.J., Lee, D.H. and Xirouchakis, P., Disassembly scheduling with
capacity constraints: minimizing the number of products disassembled. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), pp.1473-1481, 2006.

68

[50] Jeon, H.B., Kim, J.G., Kim, H.J., and Lee, D.H., A two-stage heuristic for disassembly scheduling
with capacity constraints. Management Science and Financial Engineering, 12(1), pp.95-112, 2006.

[51] Kim, H.J., Lee, D.H. and Xirouchakis, P., Two-phase heuristic for disassembly scheduling with
multiple product types and parts commonality. International Journal of Production Research, 44(1),
pp.195-212, 2006.

[52] Herroelen, W.S., Resource-constrained project scheduling—the state of the art. Journal of the
Operational Research Society, 23(3), pp.261-275, 1972.
[53] Demeulemeester, E., Vanhoucke, M. and Herroelen, W., RanGen: A random network generator for
activity-on-the-node networks. Journal of scheduling, 6(1), pp.17-38, 2003.

[54] Cooper, D.F., Heuristics for scheduling resource-constrained projects: An experimental
investigation. Management Science, 22(11), pp.1186-1194, 1976.

[55] Patterson, J.H., Project scheduling: The effects of problem structure on heuristic performance. Naval
Research Logistics Quarterly, 23(1), pp.95-123, 1976.

[56] Pritsker, A.A.B., Waiters, L.J. and Wolfe, P.M., Multiproject scheduling with limited resources: A zero-
one programming approach. Management science, 16(1), pp.93-108, 1969.

69

Appendix A

/***

 * OPL 12.8.0.0 Model

 * Author: tszha

 * Creation Date: Aug 14, 2020 at 5:48:23 PM

 ***/

 using CP;

 int T = ... ; //Time period numbers

 int M = ... ; //Manufacturing activity number

 int R = ... ; //Remanufacturing activity number

 int S = ... ; //Renewable resource number

 int N = ... ; //Non-renewable resource number

 int C = ... ; //Cumulative resource number

 int D = ... ; //Activity mode number

 range TP = 0..T-1; //Time set

 range AM = 0..M-1; //Manufacturing activity set

 range AR = 0..R-1; //Remanufacturing activity set

 range RS = 0..S-1; //Renewable resource set

 range RN = 0..N-1; //Non-renewable resource set

 range RC = 0..C-1; //Cumulative resource set

 range MI = 0..D-1; //Mode set

 int PN = ...; // Penalty for late finish per day

 int BN = ...; // Bonus for early finish per day

 int DDL = ...; // Due date for project

 int MN = ...; // A large number

 int O[RN] = ...; // Order cost for non-renewable resource n

 int P[RN] = ...; // Purchase cost for each unit of NR resource n

 int H[RN] = ...; // Holding cost for NR n per unit period

 int L[RC] = ...; // Holding cost for CR c per unit period

 int RR[RS] = ...; // Max capacity of renewable resource s

 int DL[RN] = ...; // Delivery lead time of NR resource n

70

 int d[AM][MI] = ...; // Duration of normal activity i operate in mode m

 int r[AM][RS][MI] = ...; // Renewable resource s consumption when i in mode m

 int t[AM][RN][MI] = ...; // Non-renewable resource s consumption when i in mode m

 int u[AM][RC][MI] = ...; // Cumulative resource s consumption when i in mode m

 int dr[AR][MI] = ...; // Duration of Remanufacturing activity i operate in mode m

 int rr[AR][RS][MI] = ...; // Renewable resource s consumption when e in mode m

 int vr[AR][RC][MI] = ...; // Cumulative resource s production when e in mode m

 int esm[AM] = ...; // Earliest start time of normal activity i

 int lsm[AM] = ...; // Latest start time of normal activity i

 int esr[AR] = ...; // Earliest start time of remanufacturing activity i

 int lsr[AR] = ...; // Latest start time of remanufacturing activity i

 dvar boolean st[AM][MI][TP]; // 1 if normal activity i starts in mode m at time t

 dvar boolean rt[AR][MI][TP]; // 1 if remanufacturing activity e starts in mode m at

time t

 dvar boolean o[RN][TP]; // 1 if an order is placed for resource n at time t

 dvar int+ il[RN][TP]; // inventory level of non-renewable resource n at time t

 dvar int+ ic[RC][TP]; // invenroty level of cumulative resource c at time t

 dvar int+ no[RN][TP]; // Non-renewable resource n order number at time t

 tuple Precedence {int pred; int succ; }

 //{Precedence}

 {Precedence} PredN = ...; // Precedence set for normal activities

 {Precedence} PredR = ...; // Precedence set for remanufacturing activities

 dexpr int OrderCost = sum(rn in RN, tp in TP) O[rn]* o[rn][tp];

 dexpr int MaterialCost = sum(rn in RN, tp in TP) P[rn]* no[rn][tp];

 dexpr int NRInventoryCost = sum(rn in RN, tp in TP) H[rn]* il[rn][tp];

 dexpr int CRInventoryCost = sum(rc in RC, tp in TP) L[rc]* ic[rc][tp];

 dexpr int Penalty = sum(mi in MI, tp in TP: ((tp>=DDL+1) && (tp<=T))) PN *(tp-

DDL)*st[M-1][mi][tp];

 dexpr int Bonus = sum(mi in MI, tp in TP: ((tp>=esm[M-1]) && (tp<=DDL-1))) BN *(DDL-

tp)*st[M-1][mi][tp];

execute {

71

 cp.param.TimeLimit = 3600;

}

 minimize OrderCost+ MaterialCost+ NRInventoryCost+ CRInventoryCost+ Penalty- Bonus;

 subject to

 {

 Constraint1: forall (<i,j> in PredN) //Normal activity precedence constraint

 sum(mi in MI, tp in TP: (tp >=esm[i] && tp<=lsm[i])) st[i][mi][tp]*

(tp+d[i][mi])<= sum(mi in MI, tp in TP: (tp>= esm[j]&& tp<= lsm[j])) st[j][mi][tp]*

tp;

 Constraint2: forall (<i,j> in PredR) //Remanufacturing activity precedence

constraint

 sum(mi in MI, tp in TP: (tp >=esr[i] && tp<=lsr[i])) rt[i][mi][tp]*

(tp+dr[i][mi])<= sum(mi in MI, tp in TP: (tp>= esr[j]&& tp<= lsr[j])) rt[j][mi][tp]*

tp;

 Constraint3: forall (rs in RS, tp in TP) // Renewable resource capacity

constraint

 sum(i in AM, mi in MI, tm in TP: (tm <=tp && tm >=tp-d[i][mi]+1))

(st[i][mi][tm]* r[i][rs][mi])+ sum(j in AR, mi in MI, tr in TP: (tr >=tp-dr[j][mi]+1

&& tr<=tp)) (rt[j][mi][tr]* rr[j][rs][mi])<= RR[rs];

 Constraint4: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource

inventory level constraint(no initial)

 il[rn][tp] == il[rn][tp-1] + no[rn][tp-DL[rn]] - sum(mi in MI, i in AM)

t[i][rn][mi] * st[i][mi][tp];

 Constraint5: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource

consumption constraint(same day production cannot be used)

 sum(mi in MI, i in AM) t[i][rn][mi] * st[i][mi][tp] <= il[rn][tp-1];

 Constraint6: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource

consumption constriant

 ic[rc][tp] == ic[rc][tp-1] + sum(mi in MI, e in AR, tr in TP: (tr == maxl(tp-

dr[e][mi], 0))) vr[e][rc][mi] * rt[e][mi][tr] - sum(mi in MI, j in AM) u[j][rc][mi] *

st[j][mi][tp];

72

 Constraint7: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource

consumption constraint

 sum(mi in MI, i in AM) u[i][rc][mi] * st[i][mi][tp] <= ic[rc][tp-1];

 Constraint8: forall (i in AM) // Once and only once constraint for manufacturing

activity

 sum(mi in MI, tp in TP) st[i][mi][tp] == 1;

 Constraint9: forall (i in AR) // Once and only once constraint for

remanufacturing activity

 sum(mi in MI, tp in TP) rt[i][mi][tp] == 1;

 Constraint10: forall (rn in RN, tp in TP) // Large number Constriant

 no[rn][tp] <= o[rn][tp]*MN;

 Constraint11: forall (rn in RN) // Initial inventory level constriant

 il[rn][0] == 0;

 Constraint12: forall (rn in RN, tp in TP) // Positive integer inventory

constraint

 il[rn][tp] >= 0;

 Constraint13: forall (rc in RC) // Initial inventory level constriant

 ic[rc][0] == 0;

 Constraint14: forall (rc in RC, tp in TP) // Positive integer inventory

constraint

 ic[rc][tp] >= 0;

 Constraint15: forall (rc in RC, tp in TP) // Material order non-negative

constraint

 no[rc][tp] >= 0;

 Constraint16: sum (mi in MI, tp in TP) rt[0][mi][tp] == 1; //

 Constraint17: sum (mi in MI, tp in TP) rt[R-1][mi][tp]* tp <= sum (mi in MI, tp

in TP)st[M-1][mi][tp]* tp ; // R2 must finish before M6

 Constraint18: sum (mi in MI, tp in TP) rt[0][mi][tp]* tp >= 1; // R1 must start

after time 1

73

 Constraint19: st[0][0][1] == 1;

 Constraint20: sum (tp in TP) st[M-1][0][tp] == 1;

 Constraint21: forall(am in AM)

 sum(mi in MI, tp in TP: (tp >=esm[am] && tp<=lsm[am])) st[am][mi][tp] == 1;

 Constraint22:forall(ar in AR)

 sum(mi in MI, tp in TP: (tp >=esr[ar] && tp<=lsr[ar])) rt[ar][mi][tp] == 1;

 }

74

Appendix B

/***

 * OPL 12.8.0.0 Model

 * Author: tszha

 * Creation Date: Dec 3, 2020 at 6:11:48 PM

 ***/

 using CP;

 int T = ... ; //Time period numbers

 int M = ... ; //Manufacturing activity number

 int R = ... ; //Remanufacturing activity number

 int S = ... ; //Renewable resource number

 int N = ... ; //Non-renewable resource number

 int C = ... ; //Cumulative resource number

 int D = ... ; //Activity mode number

 range TP = 0..T-1; //Time set

 range AM = 0..M-1; //Manufacturing activity set

 range AR = 0..R-1; //Remanufacturing activity set

 range RS = 0..S-1; //Renewable resource set

 range RN = 0..N-1; //Non-renewable resource set

 range RC = 0..C-1; //Cumulative resource set

 range MI = 0..D-1; //Mode set

 int PN = ...; // Penalty for late finish per day

 int BN = ...; // Bonus for early finish per day

 int DDL = ...; // Due date for project

 int MN = ...; // A large number

 int O[RN] = ...; // Order cost for non-renewable resource n

 int P[RN] = ...; // Purchase cost for each unit of NR resource n

 int H[RN] = ...; // Holding cost for NR n per unit period

 int L[RC] = ...; // Holding cost for CR c per unit period

 int RR[RS] = ...; // Max capacity of renewable resource s

 int DL[RN] = ...; // Delivery lead time of NR resource n

75

 int d[AM][MI] = ...; // Duration of normal activity i operate in mode m

 int r[AM][RS][MI] = ...; // Renewable resource s consumption when i in mode m

 int t[AM][RN][MI] = ...; // Non-renewable resource s consumption when i in mode m

 int u[AM][RC][MI] = ...; // Cumulative resource s consumption when i in mode m

 int dr[AR][MI] = ...; // Duration of Remanufacturing activity i operate in mode m

 int rr[AR][RS][MI] = ...; // Renewable resource s consumption when e in mode m

 int vr[AR][RC][MI] = ...; // Cumulative resource s production when e in mode m

 int esm[AM] = ...; // Earliest start time of normal activity i

 int lsm[AM] = ...; // Latest start time of normal activity i

 int esr[AR] = ...; // Earliest start time of remanufacturing activity i

 int lsr[AR] = ...; // Latest start time of remanufacturing activity i

 dvar boolean st[AM][MI][TP]; // 1 if normal activity i starts in mode m at time t

 dvar boolean rt[AR][MI][TP]; // 1 if remanufacturing activity e starts in mode m at

time t

 //dvar boolean o[RN][TP]; // 1 if an order is placed for resource n at time t

 //dvar int+ il[RN][TP]; // inventory level of non-renewable resource n at time t

 dvar int+ ic[RC][TP] ; // invenroty level of cumulative resource c at time t

 dvar int+ no[RN][TP]; // Non-renewable resource n order number at time t

 tuple Precedence {int pred; int succ; }

 //{Precedence}

 {Precedence} PredN = ...; // Precedence set for normal activities

 {Precedence} PredR = ...; // Precedence set for remanufacturing activities

 //dexpr int OrderCost = sum(rn in RN, tp in TP) O[rn]* o[rn][tp]; // Total order

cost

 dexpr int MaterialCost = sum(rn in RN, tp in TP) P[rn]* no[rn][tp]; // Total non-

renewable resource purchase cost

 //dexpr int NRInventoryCost = sum(rn in RN, tp in TP) H[rn]* il[rn][tp]; // total

non-renewable material inventory cost

 dexpr int CRInventoryCost = sum(rc in RC, tp in TP) L[rc]* ic[rc][tp]; // total

cumulative resource inventory cost

 dexpr int Penalty = sum(mi in MI, tp in TP: ((tp>=DDL+1) && (tp<=T))) PN *(tp-

DDL)*st[M-1][mi][tp]; // Penalty

76

 dexpr int Bonus = sum(mi in MI, tp in TP: ((tp>=esm[M-1]) && (tp<=DDL-1))) BN *(DDL-

tp)*st[M-1][mi][tp]; // Bonus

 dexpr int Production[rc in RC] = sum(ar in AR, mi in MI, tp in TP) rt[ar][mi][tp]*

vr[ar][rc][mi];

 dexpr int Consumption[rc in RC] = sum(am in AM, mi in MI, tp in TP) st[am][mi][tp]*

u[am][rc][mi];

execute {

 cp.param.TimeLimit = 1800;

}

 minimize CRInventoryCost+ Penalty- Bonus+ MaterialCost;

 subject to

 {

 Constraint1: forall (<i,j> in PredN) //Normal activity precedence constraint

 sum(mi in MI, tp in TP: (tp >=esm[i] && tp<=lsm[i])) st[i][mi][tp]*

(tp+d[i][mi])<= sum(mi in MI, tp in TP: (tp>= esm[j]&& tp<= lsm[j])) st[j][mi][tp]*

tp;

 Constraint2: forall (<i,j> in PredR) //Remanufacturing activity precedence

constraint

 sum(mi in MI, tp in TP: (tp >=esr[i] && tp<=lsr[i])) rt[i][mi][tp]*

(tp+dr[i][mi])<= sum(mi in MI, tp in TP: (tp>= esr[j]&& tp<= lsr[j])) rt[j][mi][tp]*

tp;

 Constraint3: forall (rs in RS, tp in TP) // Renewable resource capacity

constraint

 sum(i in AM, mi in MI, tm in TP: (tm <=tp && tm >=tp-d[i][mi]+1))

(st[i][mi][tm]* r[i][rs][mi])+ sum(j in AR, mi in MI, tr in TP: (tr >=tp-dr[j][mi]+1

&& tr<=tp)) (rt[j][mi][tr]* rr[j][rs][mi])<= RR[rs];

 /*Constraint4: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource

inventory level constraint(no initial)

 il[rn][tp] == il[rn][tp-1] + no[rn][tp-DL[rn]] - sum(mi in MI, i in AM)

t[i][rn][mi] * st[i][mi][tp];

77

 Constraint5: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource

consumption constraint(same day production cannot be used)

 sum(mi in MI, i in AM) t[i][rn][mi] * st[i][mi][tp] <= il[rn][tp-1];

 */

 Constraint6: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource

consumption constriant

 ic[rc][tp] == ic[rc][tp-1] + sum(mi in MI, e in AR, tr in TP: (tr == maxl(tp-

dr[e][mi], 0))) vr[e][rc][mi] * rt[e][mi][tr] - sum(mi in MI, j in AM) u[j][rc][mi] *

st[j][mi][tp];

 Constraint7: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource

consumption constraint

 sum(mi in MI, i in AM) u[i][rc][mi] * st[i][mi][tp] <= ic[rc][tp-1];

 Constraint8: forall (i in AM) // Once and only once constraint for manufacturing

activity

 sum(mi in MI, tp in TP) st[i][mi][tp] == 1;

 Constraint9: forall (i in AR) // Once and only once constraint for

remanufacturing activity

 sum(mi in MI, tp in TP) rt[i][mi][tp] == 1;

 /*Constraint10: forall (rn in RN, tp in TP) // Large number Constriant for NR

order

 no[rn][tp] <= o[rn][tp]*MN;

 Constraint11: forall (rn in RN) // Initial inventory level constriant

 il[rn][0] == 0;

 Constraint12: forall (rn in RN, tp in TP) // Positive integer inventory

constraint

 il[rn][tp] >= 0;

 */

 Constraint13: forall (rc in RC) // Initial inventory level constriant

 ic[rc][0] == 0;

 Constraint14: forall (rc in RC, tp in TP) // Positive integer inventory

constraint

 ic[rc][tp] >= 0;

78

 /*Constraint15: forall (rc in RC, tp in TP) // Material order non-negative

constraint

 no[rc][tp] >= 0;

 */

 Constraint16: sum (mi in MI, tp in TP) rt[0][mi][tp] == 1; //

 Constraint17: sum (mi in MI, tp in TP) rt[R-1][mi][tp]* tp <= sum (tp in TP)

st[M-1][0][tp]* tp ; // R2 must finish before M6

 Constraint18: sum (mi in MI, tp in TP) rt[0][mi][tp]* tp >= 1; // R1 must start

after time 1

 Constraint19: st[0][0][1] == 1;

 Constraint20: sum (tp in TP) st[M-1][0][tp] == 1;

 Constraint21: sum(mi in MI) st[1][mi][1] == 0;

 Constraint25: sum(mi in MI) st[2][mi][1] == 0;

 // Concept constraint

 Constarint22: forall (rc in RC) // Total production and consumption must be equal

 Production[rc] == Consumption[rc];

 //Constarint22: forall(rc in RC) // Total production and consumption must be

equal

 // sum(mi in MI, e in AR, tp in TP) vr[e][rc][mi] * rt[e][mi][tp] == 12;

 Constraint23: forall(am in AM)

 sum(mi in MI, tp in TP: (tp >=esm[am] && tp<=lsm[am])) st[am][mi][tp] == 1;

 Constraint24: forall(ar in AR)

 sum(mi in MI, tp in TP: (tp >=esr[ar] && tp<=lsr[ar])) rt[ar][mi][tp] == 1;

 }

79

Appendix C

/***

 * OPL 12.8.0.0 Model

 * Author: tszha

 * Creation Date: Dec 13, 2020 at 12:06:44 PM

 ***/

 using CP;

 int T = ... ; //Time period numbers

 int M = ... ; //Manufacturing activity number

 int R = ... ; //Remanufacturing activity number

 int S = ... ; //Renewable resource number

 int N = ... ; //Non-renewable resource number

 int C = ... ; //Cumulative resource number

 int D = ... ; //Activity mode number

 range TP = 0..T-1; //Time set

 range AM = 0..M-1; //Manufacturing activity set

 range AR = 0..R-1; //Remanufacturing activity set

 range RS = 0..S-1; //Renewable resource set

 range RN = 0..N-1; //Non-renewable resource set

 range RC = 0..C-1; //Cumulative resource set

 range MI = 0..D-1; //Mode set

 int PN = ...; // Penalty for late finish per day

 int BN = ...; // Bonus for early finish per day

 int DDL = ...; // Due date for project

 int MN = ...; // A large number

 int O[RN] = ...; // Order cost for non-renewable resource n

 int P[RN] = ...; // Purchase cost for each unit of NR resource n

 int H[RN] = ...; // Holding cost for NR n per unit period

 int L[RC] = ...; // Holding cost for CR c per unit period

 int RR[RS] = ...; // Max capacity of renewable resource s

 int DL[RN] = ...; // Delivery lead time of NR resource n

80

 int d[AM][MI] = ...; // Duration of normal activity i operate in mode m

 int r[AM][RS][MI] = ...; // Renewable resource s consumption when i in mode m

 int t[AM][RN][MI] = ...; // Non-renewable resource s consumption when i in mode m

 int u[AM][RC][MI] = ...; // Cumulative resource s consumption when i in mode m

 int dr[AR][MI] = ...; // Duration of Remanufacturing activity i operate in mode m

 int rr[AR][RS][MI] = ...; // Renewable resource s consumption when e in mode m

 int vr[AR][RC][MI] = ...; // Cumulative resource s production when e in mode m

 int AMD[AM][0..2] = ...;

 int ARD[AR][0..2] = ...;

 int esm[AM] = ...; // Earliest start time of normal activity i

 int lsm[AM] = ...; // Latest start time of normal activity i

 int esr[AR] = ...; // Earliest start time of remanufacturing activity i

 int lsr[AR] = ...; // Latest start time of remanufacturing activity i

 int st[AM][MI][TP] ; //1 if normal activity i starts in mode m at time t

 int rt[AR][MI][TP] ; //1 if remanufacturing activity e starts in mode m at time t

 dvar boolean o[RN][TP]; // 1 if an order is placed for resource n at time t

 //dvar int+ ic[RC][TP]; //invenroty level of cumulative resource c at time t

 dvar int+ il[RN][TP]; // inventory level of non-renewable resource n at time t

 dvar int+ no[RN][TP]; // Non-renewable resource n order number at time t

 tuple Precedence {int pred; int succ; }

 //{Precedence}

 {Precedence} PredN = ...; // Precedence set for normal activities

 {Precedence} PredR = ...; // Precedence set for remanufacturing activities

 dexpr int OrderCost = sum(rn in RN, tp in TP) O[rn]* o[rn][tp]; // Total order cost

 dexpr int MaterialCost = sum(rn in RN, tp in TP) P[rn]* no[rn][tp]; // Total non-

renewable resource purchase cost

 dexpr int NRInventoryCost = sum(rn in RN, tp in TP) H[rn]* il[rn][tp]; // total non-

renewable material inventory cost

 //dexpr int CRInventoryCost = sum(rc in RC, tp in TP) L[rc]* ic[rc][tp]; // total

cumulative resource inventory cost

81

 //dexpr int Penalty = sum(mi in MI, tp in TP: ((tp>=DDL+1) && (tp<=T))) PN *(tp-

DDL)*st[M-1][mi][tp]; // Penalty

 //dexpr int Bonus = sum(mi in MI, tp in TP: ((tp>=esm[M-1]) && (tp<=DDL-1))) BN

*(DDL- tp)*st[M-1][mi][tp]; // Bonus

execute {

 cp.param.TimeLimit = 1800;

}

execute{

 for (var am in AM){

 for (var mi in MI){

 for (var tp in TP){

 st[am][mi][tp] =0;

 }

 }

 st[AMD[am][0]][AMD[am][1]][AMD[am][2]] =1;

 };

 for (var ar in AR){

 for (var mi in MI){

 for (var tp in TP){

 rt[ar][mi][tp] =0;

 }

 }

 rt[ARD[ar][0]][ARD[ar][1]][ARD[ar][2]] =1;

 };

}

 minimize OrderCost+ MaterialCost+ NRInventoryCost;

 subject to

 {

 /*Constraint1: forall (<i,j> in PredN) //Normal activity precedence constraint

 sum(mi in MI, tp in TP: (tp >=esm[i] && tp<=lsm[i])) st[i][mi][tp]*

(tp+d[i][mi])<= sum(mi in MI, tp in TP: (tp>= esm[j]&& tp<= lsm[j])) st[j][mi][tp]*

tp;

 Constraint2: forall (<i,j> in PredR) //Remanufacturing activity precedence

constraint

82

 sum(mi in MI, tp in TP: (tp >=esr[i] && tp<=lsr[i])) rt[i][mi][tp]*

(tp+dr[i][mi])<= sum(mi in MI, tp in TP: (tp>= esr[j]&& tp<= lsr[j])) rt[j][mi][tp]*

tp;

 Constraint3: forall (rs in RS, tp in TP) // Renewable resource capacity

constraint

 sum(i in AM, mi in MI, tm in TP: (tm <=tp && tm >=tp-d[i][mi]+1))

(st[i][mi][tm]* r[i][rs][mi])+ sum(j in AR, mi in MI, tr in TP: (tr >=tp-dr[j][mi]+1

&& tr<=tp)) (rt[j][mi][tr]* rr[j][rs][mi])<= RR[rs];

 */

 Constraint4: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource

inventory level constraint(no initial)

 il[rn][tp] == il[rn][tp-1] + no[rn][tp-DL[rn]] - sum(mi in MI, i in AM)

t[i][rn][mi] * st[i][mi][tp];

 Constraint5: forall (rn in RN, tp in TP: tp>=1) // Non-renewable resource

consumption constraint(same day production cannot be used)

 sum(mi in MI, i in AM) t[i][rn][mi] * st[i][mi][tp] <= il[rn][tp-1];

 /*Constraint6: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource

consumption constriant

 ic[rc][tp] == ic[rc][tp-1] + sum(mi in MI, e in AR, tr in TP: (tr == maxl(tp-

dr[e][mi], 0))) vr[e][rc][mi] * rt[e][mi][tr] - sum(mi in MI, j in AM) u[j][rc][mi] *

st[j][mi][tp];

 Constraint7: forall (rc in RC, tp in TP: tp>=1) // Cumulative resource

consumption constraint

 sum(mi in MI, i in AM) u[i][rc][mi] * st[i][mi][tp] <= ic[rc][tp-1];

 Constraint8: forall (i in AM) // Once and only once constraint for manufacturing

activity

 sum(mi in MI, tp in TP) st[i][mi][tp] == 1;

 Constraint9: forall (i in AR) // Once and only once constraint for

remanufacturing activity

 sum(mi in MI, tp in TP) rt[i][mi][tp] == 1;

 */

 Constraint10: forall (rn in RN, tp in TP) // Large number Constriant

 no[rn][tp] <= o[rn][tp]*MN;

 Constraint11: forall (rn in RN) // Initial inventory level constriant

83

 il[rn][0] == 0;

 Constraint12: forall (rn in RN, tp in TP) // Positive integer inventory

constraint

 il[rn][tp] >= 0;

 /*Constraint13: forall (rc in RC) // Initial inventory level constriant

 ic[rc][0] == 0;

 Constraint14: forall (rc in RC, tp in TP) // Positive integer inventory

constraint

 ic[rc][tp] >= 0;

 */

 Constraint15: forall (rc in RC, tp in TP) // Material order non-negative

constraint

 no[rc][tp] >= 0;

 /*Constraint16: sum (mi in MI, tp in TP) rt[0][mi][tp] == 1; //

 Constraint17: sum (mi in MI, tp in TP) rt[R-1][mi][tp]* tp <= sum (mi in MI, tp

in TP)st[M-1][mi][tp]* tp ; // R2 must finish before M6

 Constraint18: sum (mi in MI, tp in TP) rt[0][mi][tp]* tp >= 1; // R1 must start

after time 1

 Constraint19: st[0][0][1] == 1;

 Constraint20: sum (tp in TP) st[M-1][0][tp] == 1;

 Constraint21: forall (am in AM)

 st[AMD[am][0]][AMD[am][1]][AMD[am][2]] == 1;

 Constraint22: forall (ar in AR)

 rt[ARD[ar][0]][ARD[ar][1]][ARD[ar][2]] == 1;

 */

84

Appendix D

Instance 1

Instance 2

85

Instance 3

Instance 4

86

Instance 5

Instance 6

87

Instance 7

Instance 8

88

Instance 9

Instance 10

89

Instance 11

90

Instance 12

Instance 13

91

Instance 14

Instance 15

92

Instance 16

Instance 17

Instance 18

93

Appendix E

Instance # 1

Deadline 35

Penalty 5

Bonus 6

Order cost 10

NR resource price 10

NR resource inventory cost 10

CR resource inventory cost 10

Renewable resource caps 10, 10

Instance # 2

Deadline 20

Penalty 7

Bonus 3

Order cost 15

NR resource price 15

NR resource inventory cost 4

CR resource inventory cost 4

Renewable resource caps 10, 10

Instance # 3

Deadline 35

Penalty 4

Bonus 3

Order cost 6

NR resource price 9

NR resource inventory cost 5

CR resource inventory cost 5

Renewable resource caps 10, 10

94

Instance # 4

Deadline 35

Penalty 4

Bonus 3

Order cost 3

NR resource price 6

NR resource inventory cost 4

CR resource inventory cost 8

Renewable resource caps 10, 10

Instance # 5

Deadline 44

Penalty 4

Bonus 3

Order cost 9

NR resource price 5

NR resource inventory cost 2

CR resource inventory cost 7

Renewable resource caps 10, 10

Instance # 6

Deadline 41

Penalty 4

Bonus 3

Order cost 3

NR resource price 6

NR resource inventory cost 7

CR resource inventory cost 12

Renewable resource caps 10, 10

Instance # 7

Deadline 16

Penalty 15

Bonus 15

Order cost 8

NR resource price 4

NR resource inventory cost 1

CR resource inventory cost 7

Renewable resource caps 10, 10

95

Instance # 8

Deadline 42

Penalty 12

Bonus 9

Order cost 3

NR resource price 9

NR resource inventory cost 12

CR resource inventory cost 7

Renewable resource caps 10, 10

Instance # 9

Deadline 31

Penalty 7

Bonus 8

Order cost 12

NR resource price 15

NR resource inventory cost 12

CR resource inventory cost 19

Renewable resource caps 10, 10

Instance # 10

Deadline 37

Penalty 4

Bonus 2

Order cost 12

NR resource price 6

NR resource inventory cost 7

CR resource inventory cost 9

Renewable resource caps 10, 10

Instance # 11

Deadline 26

Penalty 11

Bonus 7

Order cost 25

NR resource price 12

NR resource inventory cost 14

CR resource inventory cost 12

Renewable resource caps 10, 10

96

Instance # 12

Deadline 39

Penalty 7

Bonus 6

Order cost 11

NR resource price 15

NR resource inventory cost 10

CR resource inventory cost 12

Renewable resource caps 10, 10

Instance # 13

Deadline 25

Penalty 12

Bonus 10

Order cost 20

NR resource price 19

NR resource inventory cost 15

CR resource inventory cost 13

Renewable resource caps 10, 10

Instance # 14

Deadline 31

Penalty 11

Bonus 13

Order cost 10

NR resource price 11

NR resource inventory cost 12

CR resource inventory cost 10

Renewable resource caps 10, 10

Instance # 15

Deadline 30

Penalty 19

Bonus 22

Order cost 15

NR resource price 18

NR resource inventory cost 21

CR resource inventory cost 14

Renewable resource caps 10, 10

97

Instance # 16

Deadline 40

Penalty 9

Bonus 8

Order cost 5

NR resource price 12

NR resource inventory cost 7

CR resource inventory cost 9

Renewable resource caps 10, 10

Instance # 17

Deadline 22

Penalty 12

Bonus 12

Order cost 9

NR resource price 10

NR resource inventory cost 9

CR resource inventory cost 8

Renewable resource caps 10, 10

Instance # 18

Deadline 30

Penalty 8

Bonus 9

Order cost 6

NR resource price 4

NR resource inventory cost 7

CR resource inventory cost 12

Renewable resource caps 10, 10

