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ABSTRACT 

 

Characterization and Microstructure-based Modeling of Magnetorheological Elastomers 

 

Mostafa Asadi Khanouki, PhD. 

Concordia University, 2021. 

 

Multi-functional magnetorheological elastomers (MREs) with magnetic-controlled properties offer great 

potential for enabling new technologies in a diverse range of industry sectors, such as automotive, aerospace, 

civil, and biomedical applications. The main objective of this research dissertation is to develop analysis 

models for magneto-mechanical properties of smart MREs and to propose design optimization strategies to 

optimally design a novel sandwich beam-type MRE-based adaptive tuned vibration absorber. The 

dissertation comprises three major interrelated parts. In the first part, a quasi-static microstructure-based 

model has been proposed to investigate the magneto-elastic properties of MREs. The elastic response of the 

MREs at zero magnetic field is initially studied by comparing the results of three hyperelastic material 

models. Then, a microscale model is developed for predicting the quasi-static response of MREs under an 

external magnetic field. The model considers magnetic interaction between particles distributed in the carrier 

elastomeric matrix according to regular lattice models for isotropic MREs and according to chain-like 

structure for anisotropic MREs. Several lattice models are proposed, and performance of each lattice is 

compared with their counterparts. Detailed explanation is provided on the characteristics of the proposed 

lattices and on the resulting changes in the microstructure properties of the MREs. The simulation results for 

different lattice models are then compared with the experimental measurements for both isotropic and 

anisotropic MRE samples using an advanced rheometer equipped with a magnetorheological (MR) device. 

In the second part, the dynamic magneto-mechanical properties of MREs are investigated. For this 

purpose, a dynamic physic-based model considering the microstructure of MREs is developed to accurately 

predict the frequency- and field-dependent linear viscoelastic properties of the material. The proposed model 

considers a cubic particle network in which magnetic particles are located at the junctures and connected 

with elastic springs. Using Langevin dynamics, the governing equations of motion of particles are derived to 

evaluate the relaxation spectrum associated with particles’ motion in parallel and normal directions with 

respect to the applied magnetic field. A dipole magnetic saturation model is also implemented to derive the 

storage and loss moduli of the MREs in terms of frequency and magnetic flux density. The material 

parameters in the proposed dynamic microstructure-based model have been identified using experimental 
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tests. For this purpose, oscillatory shear tests were performed using the magneto-rheometer in linear 

viscoelastic region under a wide range of excitation frequency varying from 2 Hz to 100 Hz in presence of 

various levels of applied magnetic fields ranging from 0.0 T to 1.0 T. The viscoelastic properties, namely 

storage and loss moduli of both isotropic and anisotropic MREs, were subsequently measured and compared 

with those obtained using the developed model to quantitatively evaluate its performance. 

The third part of the present dissertation aims to investigate the application of MREs in developing a 

novel sandwich beam-shaped MRE-based adaptive tuned vibration absorber (MRE-ATVA). An MRE-

ATVA comprised of a light-weight sandwich beam treated with an MRE core layer and two electromagnets 

installed at both free ends is proposed. The MRE-ATVA is designed to have a lightweight and compact 

structure and the electromagnets provide the magnetic field required to activate the MRE layer while also act 

as the resonator of the absorber. The finite element (FE) model of the proposed MRE-ATVA and magnetic 

model of the electromagnets with three different potential designs are developed and combined to evaluate 

the frequency range of the absorber under varying magnetic field intensity. The results of the developed 

models are validated in multiple stages with available analytical and simulation data. The developed models 

are then utilized to formulate the multidisciplinary design optimization problem to maximize the operating 

frequency range of the MRE-ATVA while respecting constraints of weight, size, mechanical stress, and 

sandwich beam deflection. The optimization problem is solved combining the gradient based sequential 

quadratic programming (SQP) technique and stochastic based genetic algorithm (GA) to accurately obtain 

the global optimum solution.  The performance of the optimal MRE-ATVAs with three potential designs are 

finally compared. 
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CHAPTER 1  

INTRODUCTION AND SCOPE OF THE DISSERTATION 

 

1.1 Introduction 

Intelligent smart fluids and elastomers known as magnetorheological fluids (MRF) and 

magnetorheological elastomers (MRE), respectively, have received particular attention for the development 

of semi-active adaptive devices due to their fast response, fail-safe feature and low energy consumption [1]. 

MRFs consist of dispersion of micron-sized ferromagnetic particles into a fluid carrier such as silicon oil. 

With the application of an external magnetic field, the suspended ferromagnetic particles become polarized 

and tend to align along the direction of the magnetic field thus forming clusters of particles in form of chains. 

The resulting particle chains restrict movement of fluid perpendicular to the magnetic flux direction and 

thereby yield higher apparent viscosity and yield strength of the fluid. Changes in the rheological behavior 

of MRFs such as apparent viscosity and yield strength occur instantly and reversibly with the changes in the 

applied magnetic field, which can be effectively utilized to design adaptive devices with variable damping.  

MREs are basically the solid analog of MRFs and are composed of micron-sized ferromagnetic particles 

dispersed as the filler into a non-magnetic polymeric medium. Carbonyl iron powder (CIP), due to its high 

saturation limit, and silicon rubber, because of its hyper elastic behavior, are commonly used as magnetizable 

filler and non-magnetic polymeric medium, respectively. Applying an external magnetic field on the material 

will magnetize the embedded particles and produce inter-particle magnetic forces. Magnetic interaction 

between particles results in variation in shape, size, stiffness, and damping of the material. This unique feature 

of rapid and reversible change in properties, makes MREs a feasible solution for a wide range of 

technological applications ranging from soft actuators and sensors to medical devices, and high-bandwidth 

adaptive vibration neutralizer systems [1]–[3]. Although MRFs may provide greater improvement in 

mechanical properties and MR effect, MREs are less contaminating for the ecosystem and do not have the 

sedimentation of particles and sealing issues often encountered in MRFs. Moreover, while damping 

properties of MRFs are mainly affected under the application of an external magnetic field, both the stiffness 

and damping properties of MREs could be controlled by varying applied magnetic field which makes MREs 

ideal candidates for the development of next generation of broadband adaptive tuned vibration absorbers and 

isolators.  
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Vibration and noise control have been one of the most important concerns in design of structures in 

automotive, aerospace and marine vehicles and an inseparable part of the engineering research studies since 

the onset of 20th century. The first tuned vibration absorber (TVA) invented by Frahm in 1911 [4] had a 

simple configuration comprised of mass, spring, and damper elements. Afterwards, several types of TVAs 

have been proposed by different researchers over many years. Solid viscoelastic materials are passive 

damping materials that have been widely used for passive TVAs and vibration control applications due to 

their simplicity, low cost, and ease of installation. The effectiveness of passive vibration absorbers is mainly 

limited to a specific narrow range of frequency due to the fixed stiffness and damping properties of 

conventional viscoelastic materials which are identified at the early design stage. Once the working frequency 

of the primary vibrating system changes with time, passive vibration absorbers may lose their effectiveness 

and might even cause the amplification of the vibrations due to the mistuned conditions [5]. Alternatively, 

smart magneto-active elastomers with controllable stiffness and damping properties, offer unique potential 

to adaptively attenuate the vibration and noise over a broad-band frequency range [6]. Adaptive vibration 

absorbers having smart magneto-active materials can yield superior vibration attenuation performance 

compared with passive vibration absorbers. For instance, it is reported in the literature that up to 47% of the 

structure’s acceleration can be reduced by using MRE as the spring element of an adaptive absorber compared 

to that of a passive absorber using viscoelastic material [7]. Moreover, smart magneto-active elastomer-based 

structures exhibit greater stability region under different loading conditions compared to devices with passive 

viscoelastic core layer [8]. 

The present dissertation mainly aims at investigating the quasi-static and dynamic properties of MREs 

operating in shear mode using a microstructure approach based on magnetic interaction between particles in 

the material’s microstructure. Viscoelastic properties of MREs, namely storage and loss moduli, are 

investigated under various loading conditions and different levels of applied magnetic field experimentally. 

Then, physics-based microstructural models are proposed to predict the magneto-induced quasi-static and 

viscoelastic dynamic properties of MREs. Finally, the application of the MREs in developing a novel 

sandwich beam-shaped MRE-ATVA is presented. In the following, a systematic literature review on the 

pertinent research studies is presented, which is then followed by the motivations, objectives, and 

organization of the dissertation.  

1.2 Fabrication and Characterization of MREs 

Fabrication of MRE consists of three major steps, including 1. Mixing of ingredients, 2. Degassing of 

mixture using vacuum chamber, and 3. Curing the specimens in a mold. In the mixing stage, the polymeric 
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matrix materials which are initially in fluid phase are blended with the required amount of magnetic particles 

for a specified time period. Then, the mixture is placed into a vacuum chamber to remove the air bubbles 

trapped inside the mixture. Finally, the product is transferred into a desired mold to be cured.  

The curing process could be done in absence or presence of the applied magnetic field. Curing the mixture 

in the absence of magnetic field will result in isotropic/non-oriented MRE in which the magnetic particles 

have been uniformly distributed inside the matrix [9]. Applying magnetic field during the curing before the 

crosslinking phase of the carrier matrix causes the magnetic particles to form a chain-like structure inside the 

elastomeric matrix and produce anisotropic/oriented MRE [10], [11]. Figure 1.1 shows the schematic and 

microscopic images of isotropic and anisotropic distribution of solid particles within the matrix of MRE 

samples. It should be noted that the curing could happen at room temperature or at higher temperatures in an 

oven, the latter will accelerate the curing process and the MRE would require less time to solidify. 

The type and spatial distribution of magnetizable particles inside the elastomeric matrix are among the 

most important parameters that affect magneto-mechanical properties of MREs [12]. Magnetic particles of 

various shapes and sizes are used in the fabrication of MREs. Spherical micron-sized CIPs with narrow 

hysteresis loop is one of the most common ferromagnetic material for this purpose. Soft magnetic behavior 

and spherical shape of such particles facilitate the dispersion of particles within the host polymer. Several 

studies have experimentally investigated the influence of particles shape, size, loading percentage, and 

distribution on the properties of MR materials such as viscoelastic and magnetostriction properties and MR 

effects [13]–[17].  

Lu et al. [13] have investigated the rheological and mechanical properties of isotropic and anisotropic 

MRE composites containing micron-sized CIPs and poly (styrene-ethylene-butylene-styrene) (SEBS) tri-

block copolymer utilized as the thermoplastic matrix rubber. Larger shear modulus was observed for both 

isotropic and anisotropic composites compared to the pure SEBS matrix not only in the presence of magnetic 

field but also in the absence of magnetic excitation. The increase of modulus at zero magnetic excitation was 

explained as a result of the filler effect in the matrix (including uniformly dispersed CIPs in isotropic samples 

and aligned chain-like structure of the particles in anisotropic samples). Meharthaj et al. [16] have studied 

the effect of the size of spherically shaped particles on the properties of the MR gels prepared using magnetite 

(Fe3O4) nanoparticles and/or carbonyl iron (CI) micro-particles dispersed in a polymer gel. The results 

indicated an increase in the storage modulus and saturation magnetization of the prepared samples of 

magnetic gel with the decrease in the size of the particles. The experiments revealed an increase in the storage 

modulus up to 28% for the MR gels prepared with 20% by weight of magnetite nanoparticles. 
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Under high strength magnetic field, magnetizable particles become magnetically saturated, beyond 

which, no further change in the properties can be achieved by increasing the magnetic field. The extent of 

variation in the material properties from zero magnetic excitation up to magnetic saturation is typically called 

the MR effect which is another important feature of MREs. MR effect depends on several factors such as 

concentration of iron particles, distribution and orientation of particles, physical properties of matrix material, 

and magnetic properties and percentage of filler particles [12], [18]–[20]. 

 Recently, dot-patterned MREs have been fabricated using 3D printing technology without applying a 

magnetic field during the fabrication process [21]–[23] . 

  

   

(isotropic/non-oriented) (anisotropic/oriented) (isotropic/non-oriented) (anisotropic/oriented) 

(a) (b) 

Figure 1.1 (a) schematic pictures and (b) microscopic images [18] of isotropic and anisotropic distribution of 

solid particles in MRE samples. 

Variation in MRE properties, particularly in the stiffness and damping, under an applied magnetic field 

can be characterized using different experimental testing devices such as servo-hydraulic material testing 

machine [24], dynamic mechanical analyzer (DMA) [13], and rheometers [25]. Testing might be performed 

in different modes of mechanical excitation including uniaxial tension and compression [26], translational 

shear [9], rotational shear [27], or a combination of these modes [28], [29]. While under quasi-static 

mechanical loading and an applied magnetic field, MREs generally behave like hyperelastic materials with  

linear/nonlinear magneto-elastic response, MREs show a strong magneto-viscoelastic response under 

dynamic loading which is observable from the hysteresis loops [1], [27]. 

Many research studies have been conducted on experimental characterization of MREs under various 

excitation modes under low frequency quasi-static [30], [31] or dynamic loading [25], [32]–[34] conditions. 

At low frequency quasi-static conditions, Coquelle et al. [35] obtained the stress-strain curves in a quasi-

static tension test for elastomers filled with iron powders arranged in isotropic and anisotropic distribution. 

The elastic modulus of the samples with chain-like arrangement of particles was 750 kPa while for the 

isotropic samples was found to be 370 kPa. Varga et al. [15] investigated the effect of particle concentration 

and distribution, and magnetic field intensity on the improvement of field-induced elastic modulus. They 
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showed both the magnetic field and volume content of iron particles have a considerable impact on the 

improvement of the elastic modulus. They considered several cases depending on the direction of the applied 

magnetic field, the direction of particle chains, and the direction of the applied force as illustrated in Figure 

1.2. The most significant MR effect was found to occur for anisotropic sample where the direction of the 

field is parallel to the particle alignment and to the direction of the mechanical loading. Bodelot et al. [30] 

have studied the magneto-mechanical properties of fabricated MRE samples using a dedicated experimental 

setup. The custom-designed test setup is able to bring the sample in the field and allows for the application 

of low rate cyclic tensile loadings while monitoring in-situ mechanical and magnetic quantities. The 

experiments revealed that isotropic samples exhibit significant magnetostriction along the direction of the 

applied field while samples with field-structured particles experience insignificant magnetostriction. 

 

Figure 1.2 Different cases regarding the direction of the applied magnetic field, particle chains and the direction 

of the mechanical loading in characterization of MREs [15]. 

Experiments under quasi-static excitation are useful to determine some mechanical properties of MREs 

such as magneto-hyperelasticity and also to develop modeling approaches for estimation of the MR effect. 

However, due to working conditions in most practical applications, dynamic loading is much closer to the 

real situation of excitations [36]. As an early research work in this area, Ginder et al. [37] developed MREs 

made of CIPs embedded in natural rubber to show the ability of increasing the dynamic storage and loss 

moduli under applied magnetic field. By applying shear harmonic deformation on the samples, they showed 

that both stiffness and damping can be increased by increasing the magnetic flux density. Gong et al. [32] 

studied the relationship between microstructure and dynamic mechanical properties of the isotropic MREs 

by altering the percentage of the constituents in the fabrication process. For a sample composed of 70 wt% 

iron particles, 20 wt% silicone oil, and 10 wt% silicone rubber, a considerable increase in the storage modulus 

(51%) was achieved at the resonance frequency of the sample. 

Li et al. [27] studied the viscoelastic properties of MREs by applying harmonic loading under various 

strain amplitudes and frequencies via a parallel plate rheometer device. For strain amplitudes under 10% and 
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the frequency under 10 Hz, the stress-strain curves of the anisotropic samples showed fully elliptical loops, 

which represents a linear viscoelastic behavior. The magneto-mechanical properties of MREs with 

thermoplastic elastomer matrix containing 60 𝜇m iron particles of irregular shape was also studied by Kaleta 

et al. [33] using cyclic shearing load along with the applied magnetic field intensity up to 100 kA/m. They 

considered change in the area of the hysteresis loops and stress amplitude as an indication of the MR effect 

which is shown to be larger for the anisotropic samples. Dargahi et al. [9] have conducted extensive 

experimental characterization on six isotropic MRE samples in shear mode. Using a table top Bose Electro-

Force test system equipped with arrangement of permanent magnets, they experimentally evaluated static 

characteristics as well as dynamic properties of the MRE samples. They applied up to 450 mT magnetic flux 

density and reported around 1700% increase in the storage modulus. 

1.3 Modeling of MREs 

Along with the experimental characterization, development of models that could accurately predict the 

response of MREs as a function of applied magnetic field, driving frequency, strain amplitude and other 

operating and environmental conditions, is of paramount importance in utilization of MREs in practical 

adaptive devices. These models once validated can practically replace costly and time-consuming 

experimental tests and thus provide essential guidance for design optimization of MRE-based adaptive 

devices [38], [39]. 

There are generally three types of modeling techniques for the MREs namely continuum-based, 

phenomenological, and microstructure-based modeling approaches. In continuum mechanics approach, the 

MRE is assumed to be a continuous medium in which the effect of iron particles is smeared into the 

elastomeric carrier.  The macroscopic behavior of this continuous medium is then studied using the coupled 

equations of elasticity and magnetism, based on the physical principles of continuum mechanics, 

hyperelasticity, viscoelasticity and magnetism [40]–[47]. For instance, Borcea and Bruno [45] have used 

minimum energy principle of magneto-elasticity to study the macroscopic behavior of composite elastomers 

with isotropic dispersion of magnetic particles. They obtained the overall deformation and stress-strain 

relations through complex mathematical formulations. Dorfmann and Ogden [43] have derived the 

constitutive relations for magneto-sensitive elastic solids and applied them for a special case of circular 

cylindrical sample under a radial magnetic field and subjected to axial shear deformation. The model showed 

the effect of the magnetic field in stiffening the shear response of the material but it was unable to predict the 

saturation of the shear stress at higher fields. Brigadnov and Dorfmann [42] have also used a simple strain 

energy function to find a closed form solution for the Cauchy stress function followed by the calculation of 
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the shear stress for an isotropic MRE under simple shear deformation. They compared the results of 

mathematical modeling with experimental data and obtained an acceptable agreement. 

The phenomenological or parametric-based models may be described as a specific configuration of 

spring and damper elements which are used to represent damping and stiffness of the MRE materials. 

Different studies have investigated the performance of parametric models in predicting the viscoelastic 

response of MREs [24], [27], [48]–[50]. Li et al. [27] used a four parameter spring-dashpot viscoelastic model 

to find the storage and loss moduli of a MRE. They used the experimental data generated by a parallel plate 

rheometer to identify the stiffness and damping parameters of the model through curve-fitting process. The 

parameters were then obtained for different magnetic flux densities to predict the hysteresis loops and storage 

and loss moduli. Chen and Jerrams [50] presented a parametric model which took into account the nonlinear 

viscoelastic effects in the dynamical properties of MREs as well. They considered three parts in their model, 

i.e. a standard linear model, a stiffness variable spring, and a spring-Coulomb friction slider to account for 

viscoelasticity of the polymer composite, magnetic field-induced properties, and the interfacial slippage 

between the matrix and particles, respectively. Unlike the other parametric models, this model considered 

also the volume fraction of particles in the second part of the model. Norouzi et al. [24] introduced a modified 

Kelvin-Voigt model including five parameters in the formulation of shear storage modulus and viscosity of 

the MRE. Modulus and viscosity were written as functions of strain frequency, strain amplitude, and 

magnetic flux density using the unknown parameters. The unknown parameters were then calculated by a 

nonlinear regression method of minimizing the error between experimental and theoretical results.  

While parametric viscoelastic models could not consider the difference in arrangement of particles for 

isotropic and anisotropic MRE samples, microscale models which are based on the microstructure of MREs 

can address the isotropic or anisotropic distribution of particles in the host matrix. This modeling approach 

considers magnetic interaction between embedded magnetic fillers and their corresponding effect on the 

polymeric matrix which is the main reason behind the change of properties under an applied magnetic field. 

Several attempts have been made since the last decade of 20th century to develop and improve microstructure-

based modeling approach. Jolly et al. [51], [52] presented a quasi-static dipole model to predict field-induced 

elastic modulus of anisotropic MREs. By considering magnetic interaction between two adjacent dipoles 

(magnetized particles inside the material), they obtained a formula for field induced shear modulus as a 

function of the applied magnetic field density, and iron particles concentration. Based on the previous 

progresses in the modeling of MR fluids [53], [54], Davis [55] presented a model based on interaction of 

dipoles to predict the mechanical behavior of MREs with/without the presence of a magnetic field. The Ogden 

strain potential was utilized to express elastic properties of an unfilled elastomer. Then a finite element 
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method based on a previous work [53] was utilized to predict shear modulus of a filled elastomer in the 

absence of a magnetic field. Finally, a relation was presented to predict maximum increase of shear modulus 

(once saturation of MRE is occurred) as a function of saturation magnetization and volume fraction of filler 

particles. The optimum volume fraction of iron particles was reported to be 27% to achieve the maximum 

relative MR effect. The model proposed by Davis [55] has also been used in some other studies to obtain the 

operating frequency range of the MRE-based devices [56], [57]. 

In the studies performed by Jolly et al. [51], [52] and Davis [55], magnetic interactions between only two 

adjacent particles have been considered which is far from the real situation. Later, some researchers have 

tried to develop models capable of considering interactions of all particles in a chain [31] or between multiple 

chains [58]. Shen et al. [31] have proposed a quasi-static model for predicting stress-strain curves of MREs 

made of polyurethane and natural rubber matrix materials. The model assumes a chain-like distribution of 

magnetic particles and takes into account the dipole interactions between all particles in a chain. The total 

stress developed in the MRE is then assumed to be due to two sources. One due to mechanical interaction of 

particles and matrix at zero magnetic field, and the other due to magnetic interaction between dipoles in a 

chain. The developed model could be used only at low magnetic fields since it cannot predict properties near 

saturation region. 

In more recent researches, some regular or periodic structures have been used as idealized spatial 

dispersion of particles in the matrix to analyze magnetostriction effect or mechanical properties of MREs 

[59]–[61]. In a series of publications Ivaneyko et al. [62]–[64] proposed a microstructure model for 

investigation of magnetostriction phenomenon and magneto-elastic properties of both isotropic and 

anisotropic MREs, called magneto-sensitive elastomers (MSEs) in their study, by considering interactions 

between all the particles in the network. They used three lattice models i.e. simple cubic (SC), body-centered 

cubic (BCC), and hexagonal close-packed (HCP) to represent arrangement of particles [62] and also 

expressed magnetic energy as a function which depends on the spatial distribution of particles (lattice type). 

The total energy is finally defined as the summation of elastic energy of host matrix and magnetic energy of 

particle network. The stress and modulus of MRE are subsequently calculated by taking derivation of the 

energy function. Based on their theoretical results [62], the elastic tensile modulus of isotropic MREs based 

on SC and BCC lattice models decreases with the applied magnetic field, which is obviously in contradiction 

with experimental observations. Ivaneyko et al. [65], [66] have also worked on a coarse-grained dipole-spring 

network model which takes into account the influence of interactions between magnetic particles on the 

dynamic-mechanical properties of magneto-sensitive elastomers with isotropic and anisotropic distribution 

of particles. In their model, the particles are assumed as beads located at the joints of the cross-links and 
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arranged in a cubic network. Particles are connected by elastic springs where each particle has a friction 

coefficient. The motion of particle network is formulated to find the frequency-dependent storage and loss 

moduli of MREs in terms of the particle magnetization, particle volume fraction, and the polymer matrix 

elasticity. 

1.4 Application of MREs in Adaptive Tuned Vibration Absorbers 

The applications of MRE devices with adjustable stiffness are vast ranging from construction, aerospace, 

automotive to biomedical industries [1], [67], [68]. A semi-active adaptive tuned vibration absorber which 

uses MREs as tunable viscoelastic elements is named here as MRE-ATVA. While a passive tuned vibration 

absorber (TVA) is a simple and reliable way to attenuate vibration around a specific tuned frequency, an 

MRE-ATVA can adaptively change its natural frequency in response to the change in external excitations 

due to unpredicted environmental conditions and thus can effectively attenuate vibration over a broad 

frequency range.  

Over the years, various MRE-based adaptive vibration absorbers, isolators, and dampers have been 

proposed by researchers. Lerner and Cunefare [69] designed three types of MRE-ATVAs working in shear, 

squeeze, and longitudinal modes as shown in Figure 1.3. For the shear mode, the direction of mechanical 

excitation is perpendicular to the direction of applied magnetic field, whereas they are parallel in the 

compression and squeeze working modes. In this work, the absorber devices were aimed to be used as tuned 

vibration absorbers for ATR 42 and 74 aircraft fuselages. Results suggested that the squeeze mode device 

has the largest frequency range of 57-347 Hz under the applied magnetic field intensity ranging from 0kA/m 

to 20 kA/m. 

Sun et al. [70] designed and prototyped a squeeze working mode MRE-ATVA. Schematic of this 

absorber and its components are illustrated in Figure 1.4 in which red arrows represent the direction of the 

generated magnetic field which is parallel to the direction of mechanical excitation. The modulus of the MRE 

and subsequently the natural frequency of the absorber vary by changing the strength of the applied magnetic 

field. The natural frequency of the designed squeeze mode MRE-ATVA was reported to vary from 37 Hz to 

67 Hz by changing the magnetic field intensity from 0 kA/m to 250 kA/m, respectively. 
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Figure 1.3 MRE-ATVAs operating in (a) shear, 

(b) longitudinal, and (c) squeeze modes [69]. 

Figure 1.4 Schematic design of a MRE-ATVA 

operating in squeeze mode [70].  

 

Sun and coworkers [71] have also designed, fabricated, and tested two MRE-ATVAs working in squeeze 

and shear modes. Results showed that the squeeze working mode absorber has a larger range of tunable 

natural frequency (62 to 127 Hz) than that of the shear mode absorber (32 to 62 Hz). In another work [56], 

they have introduced a multilayered MRE dynamic vibration absorber which can operate at low frequencies 

in the range of 3.2 Hz to 19 Hz. A MRE-based dynamic vibration absorber was also introduced by Xin et al. 

[72] for powertrain mount systems of automobiles. This device consists of a vibration absorption unit, which 

uses MRE as a spring with variable stiffness and a passive vibration isolation unit which includes a rubber 

spring.  

Chen et al. [38] proposed a method for design and optimization of a bearing that contains laminated 

MREs. Their model integrates MRE material parameters into the magneto-mechanical characteristics of the 

bearing components. After analytical modeling and optimization, a laminated MRE bearing with four layers 

of MRE was fabricated and tested with MTS test bench in shear mode. Using MRE samples incorporating 

11% volume fraction of iron particles, the best performance of the laminated MRE bearing i.e. the maximum 

adjustable range of stiffness for the bearing was achieved under input power of 58.5 W. Yang et al. [28] 

presented a compact MRE isolator capable of working in shear and compression modes simultaneously using 

two pieces of MREs in the structure. The shift of the stiffness coefficient of this mixed mode isolator device 

(329.63%) was significantly higher in comparison with a similar single shear mode isolator (17.57%) [73]. 

A recent detailed review on MRE devices have been also provided in Ref. [36]. 
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1.5  Motivation and Objectives 

While phenomenological and parametric-based modeling of field-dependent properties of MREs under 

quasi-static and dynamic loadings have been widely studied, very limited number of studies have been 

conducted on the modeling of MREs’ magneto-mechanical properties using microstructure-based theories 

capable of addressing the distribution of particles in MREs and explaining their microstructure properties. 

These models are of paramount importance as they not only can provide physical insight to investigate the 

effect of magnetic particles and their arrangements on physical properties of MREs, but also, can be 

effectively utilized to design MREs with enhanced properties, rather than conducting expensive ad-hoc 

experimental tests. As discussed in Section 1.3, Ivaneyko et al. [62], [64] provided a basis to describe the 

relation between the microstructure of MREs and their mechanical properties in quasi static loading 

condition. However, the lack of explanation on different characteristics of the proposed lattice models makes 

it difficult to understand the physical interpretation of the relation between particles distribution and changes 

in the modulus of MRE under magnetic induction. They also investigated the elastic shear response of MREs 

with isotropic, chain-like and layer-like arrangement of particles [64], however, the proposed formulation 

describes the shear modulus as a function of samples’ magnetization and could not explicitly relate the 

modulus to the applied magnetic flux density which is necessary for any practical application. 

In the case of dynamic properties, generally, theoretical description of the dynamic behavior of polymers 

is a complicated task as the dynamic properties depend strongly on the structure of the polymer chains [74], 

[75]. This becomes even more complex for the composite polymers containing magnetic particles considering 

the magnetic interaction of particles as well as the viscoelastic interactions between polymeric chains. While 

the coarse-grained network model proposed by Ivaneyko et al. [65], [66] can describe the dynamics of 

magneto sensitive elastomers from a microscale basis, the formulated dynamic moduli in terms of particles 

magnetization cannot be directly measured in practice; thus, hindering the practical realization of the model. 

Moreover, magnetic saturation of MREs occurred by the increase of magnetic field intensity has not been 

addressed in the formulation and the model can only be used for a limited range of the applied magnetic field. 

Moreover, while MREs application in various areas including biomedical [2], [76], automotive [72], 

[77], and specifically for ATVAs [57], [68] have been investigated through the years, there are limited studies 

focused on the multidisciplinary design optimization of the MRE-based devices in order to maximize their 

operating range. In this subject, research studies on the MR vibration absorber devices employing continuous 

sandwich structures are very limited. Particularly, no studies have been reported on the development of design 

optimization strategies for these MRE-based sandwich adaptive devices. Hirunyapruk et al. [78] proposed a 

three-layer beam-like tuned vibration absorber which was treated with MRF in the core layer. Two 
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electromagnets were considered on the beam to provide the required magnetic field on the MRF layer. They 

showed that the natural frequency of the device could vary from 106 to 149 Hz. While this work is very 

useful for demonstrating the feasibility and operation of MRF beam-like absorber devices, the optimal design 

problem of the absorber has not been addressed. To the best of our knowledge, there have been no study 

conducted on the development and multidisciplinary design optimization of adaptive vibration absorbers 

featuring multilayer MRE-based sandwich structures. 

Although considerable research work has been conducted on development of MREs, constitutive models 

for MREs, and MRE-based vibration absorbers as discussed in the previous sections, however, the topic is 

still in its infancy and much work is required to advance this enabling technology. The present research 

advances the state of knowledge on the MREs by proposing microstructure-based models in both quasi-static 

and also dynamic loading conditions which are validated using experimental data obtained by examining the 

in-house prepared MRE samples. Moreover, a novel sandwich beam-shaped adaptive tuned vibration 

absorber is developed and the design optimization problem is formulated and solved to obtain an optimal 

adaptive vibration absorber with wide-bandwidth and adaptable frequency range. 

Considering the research gap, the specific objectives considered for the present dissertation are 

summarized as follows: 

i. Comparing the performance of three hyperelastic theories, i.e. Neo-Hookean, one term Ogden 

model, and a two term I1-based model in presenting the zero-field elastic response of the prepared 

MREs. 

ii. Investigating different types of lattice models representing the distribution of magnetic fillers in 

the polymeric matrix. Studying the quasi-static magneto-mechanical properties of MREs and 

obtaining the elastic shear modulus of MREs in terms of external magnetic flux density and 

particle participation using an energy approach for both of isotropic and anisotropic MREs. 

Validating the performance of the model in predicting the elastic shear modulus by comparing 

the results with those measured experimentally. Evaluating the efficiency of the selected lattices 

quantitatively by comparing their performance in prediction of experimental results. 

iii. Improving the coarse-grained network models by deriving a frequency- and magnetic flux- 

dependent microstructure-based model for predicting the dynamic moduli of MREs in a broad 

range of excitation frequency and magnetic field up to the saturation point. Validating the 

dynamic model with experimental results for several isotropic and anisotropic MRE samples with 

different volume fraction of solid particles. 
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iv. Proposing three different novel configurations for sandwich beam-shaped MRE-ATVA. 

Developing a finite element model of the proposed MRE-ATVA and magnetic model of the three 

types of electromagnets. Developing a multidisciplinary design optimization framework to 

maximize the frequency bandwidth of the MRE-ATVA under constraints of mass, maximum 

stress, and static deflection. 

1.6 Organization of the Manuscript-Based Dissertation 

The present dissertation is prepared in manuscript-based format following the instruction described in 

“Thesis Preparation and Thesis Examination Regulation” booklet of the School of graduate Studies of 

Concordia University. The dissertation includes five chapters which address the objectives outlined in 

Section 1.5.  

Chapter 1 presents an introduction to the research dissertation including the introduction on MR materials 

and their features and applications, literature review, motivations and objectives, and organization of the 

dissertation. Thereafter, Chapters 2, 3, and 4 are presented based on the three articles that are extracted from 

this research dissertation. All these articles have been published in high ranked and prestigious scientific 

journals. These chapters are organized in sequential manner which describe the methodologies to address the 

objectives of the dissertation and discussion on the obtained results. Finally, the main conclusions extracted 

from the research dissertation are summarized in the Chapter 5 together with recommendations for the future 

works. It should be mentioned that some repetitions in the developed formulations and the experimental study 

in some chapters cannot be avoided since they are required to present the integrity of the articles and to 

illustrate the entire developed methodology. In the following, the summary of each chapter is presented. 

Chapter 2 presents the following article published in the “Journal of Composites Part B: Engineering”: 

Asadi Khanouki M., Sedaghati R., and Hemmatian M. "Experimental characterization and microscale 

modeling of isotropic and anisotropic magnetorheological elastomers." Composites Part B: Engineering, 176 

(2019): p. 107311. 

In this article, a systematic study is conducted on the sample preparation, characterization and microscale 

modeling of MREs with isotropic and anisotropic particle distributions in quasi-static condition. Different 

MRE specimens with silicone rubber as the matrix material and varying content of carbonyl iron particles as 

magnetizable fillers are fabricated. The quasi-static properties of the samples are characterized 

experimentally using an advanced rheometer equipped with a MR device. The elastic response of the MREs 

at zero magnetic field is first investigated theoretically and experimentally. A microscale modeling approach 
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is then used for predicting the response of the MREs under an external magnetic flux density. The approach 

is based on the idealized distribution of particles inside the matrix according to the regular lattice models or 

chain-like structure for isotropic and anisotropic particle dispersions, respectively. Several lattice types are 

proposed, and performance of each lattice is compared with their counterparts. Detailed explanation is 

provided on the behavior of the proposed lattices and changes in the properties of the MREs are described 

from the microstructure point of view by considering the magnetic interaction between particles. The 

performance of different lattice models are quantitatively demonstrated by comparing the model results with 

the experimental data for both isotropic and anisotropic MRE samples.      

Chapter 3 presents the following article published in the “Journal of Material Science and Engineering 

B”: 

Asadi Khanouki M., Sedaghati R., and Hemmatian M. "Adaptive Dynamic Moduli of Magnetorheological 

Elastomers: from Experimental Identification to Microstructure-based Modeling." Journal of Material 

Science and Engineering B, 267 (May 2021): p. 115083. 

This research paper aims at the development of a dynamic physic-based model considering the 

microstructure of isotropic and anisotropic MREs to accurately predict their field-dependent viscoelastic 

properties. A cubic network in which magnetic particles are located at the junctures and connected with 

elastic springs has been utilized to derive the dynamic governing equations of motion of the particles to 

evaluate their relaxation spectrum while moving parallel and normal to the field direction. A dipole magnetic 

saturation model is subsequently implemented to derive the field-dependent dynamic storage and loss moduli 

of the MREs. An experimental test has also been designed to identify few constant material parameters in the 

model and also to validate the developed model.  Isotropic and anisotropic MRE samples with 15% and 25% 

volume fraction of particles are fabricated and the isotropic and anisotropic distribution of particles in the 

matrix are verified through microstructure images. MRE samples are subsequently tested under oscillatory 

torsional shear mode using an advanced rotary rheometer in a wide range of excitation frequency varying 

from 2 Hz to 100 Hz and magnetic fields up to 1 T.  Results for storage and loss moduli are finally compared 

with those of experiment in a wide range of excitation frequency and magnetic field up to the saturation. It 

has been shown that there is a good agreement between experiment and theoretical results. The developed 

model can provide essential guidance for the development of high-bandwidth MRE based adaptive devices 

at early stages of design. 

Chapter 4 presents the following article published in the “Journal of Materials”: 
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Asadi Khanouki, M.; Sedaghati, R.; Hemmatian, M. "Multidisciplinary Design Optimization of a Novel 

Sandwich Beam-Based Adaptive Tuned Vibration Absorber Featuring Magnetorheological Elastomer." 

Materials 13 (2020): p. 2261. 

This study concerns with investigating the dynamic performance and design optimization of a novel 

MRE-ATVA. The proposed MRE-ATVA consists of a light-weight sandwich beam treated with an MRE 

core layer and two electromagnets installed at both free ends. Three different design configurations are 

proposed for the electromagnets including U-shape, H-shape, and C-shape designs. The finite element (FE) 

model of the proposed MRE-ATVA and magnetic model of the electromagnets are developed and combined 

to evaluate the frequency range of the absorber under varying magnetic field intensity. The results of the 

developed model are validated in multiple stages with available analytical and simulation data. A 

multidisciplinary design optimization strategy has been formulated to maximize the frequency range of the 

proposed MRE-ATVA while respecting constraints of weight, size, mechanical stress, and sandwich beam 

deflection. The optimal solution is obtained and compared for the three proposed ATVA configurations. The 

optimal ATVA with a U-shaped electromagnet shows more than 40% increase in the natural frequency while 

having a total mass of 596 g. 
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CHAPTER 2  

EXPERIMENTAL CHARACTERIZATION AND MICROSCALE MODELING OF 

ISOTROPIC AND ANISOTROPIC MAGNETORHEOLOGICAL ELASTOMERS 

2.1 Introduction 

MREs are smart elastomeric materials with controllable mechanical and viscoelastic properties through 

the application of external magnetic field. MREs essentially consist of micron-sized ferromagnetic particles 

dispersed into a non-magnetic polymeric medium. Different types of filler particles and host matrix material 

could be used in fabrication of MREs that will obviously results in different final properties [12], [79]. Once 

a magnetic field is applied, the stiffness and damping of the material changes within a few milliseconds as a 

result of magnetic interaction between the filler particles. MREs are utilized as the adaptable viscoelastic 

element in a range of applications such as adaptive vibration absorbers[69], [80], seismic isolators [7], [81], 

automotive suspension [72], [77], sensing devices and actuators [82], [83] to name a few. Many research 

studies have been conducted in the past on fabrication, experimental characterization, and modeling of quasi-

static properties of MREs [13]–[17], [31], [39], [51], [55]. The proposed modeling methods in the literature 

as addressed in Chapter 1 are either applicable only for a limited range of magnetic flux density thus unable 

to predict the magnetic saturation or suffer from the lack of physical understanding between the 

microstructure and magneto-mechanical properties. Therefore, accurate physic-based models are required to 

accurately analyze the variation in the properties of MRE samples with different constituents and under wide 

range of applied magnetic field. 

In the present chapter, quasi-static properties of MREs are analyzed theoretically and experimentally. A 

microscale model is presented which considers a complete set of different types of lattice models to represent 

the distribution of magnetic fillers in the matrix. For the isotropic MREs, seven lattices are considered 

including simple cubic (SC), body centered cubic (BCC), face centered cubic (FCC), edge centered cubic 

(ECC), body & edge centered cubic (BECC), face & edge centered cubic (FECC), and body & face & edge 

centered cubic (BFECC). Such a comprehensive investigation of lattice models has not been covered in any 

research study yet. For the anisotropic MREs, chain-like structure of particles is used as idealized dispersion. 

Shear modulus of MREs is obtained in terms of external magnetic flux density via an energy approach for 

the idealized distribution of particles according to the considered lattices for both isotropic and anisotropic 

cases. With the results taken from the model, different characteristics of the proposed lattices are explained 

with in-depth physical and mathematical discussion based on magnetic interaction of particles in the network. 



17 

 

This physical explanation clarifies the microstructure-property relationship for the smart MRE materials 

which cannot be well understood from the discussions presented in the literature. The results of shear modulus 

from model are also compared with the experimental data and the efficiency of the selected lattices are 

evaluated quantitatively by comparing the resulting error values of each lattice. 

In the following, first the experimental study related to fabrication of different types of isotropic and 

anisotropic MRE samples using two types of silicone rubber matrix and varying contents of ferromagnetic 

particles is presented. Samples are then characterized experimentally in rotational shear mode using advanced 

rotary rheometer equipped with an MR device. The influence of magnetic field intensity, particles content, 

and particles arrangement on the mechanical properties of MREs are thoroughly investigated and discussed. 

Then, the performance of three hyperelastic theories, including the Neo-Hookean, one term Ogden model, 

and a two term I1-based model in presenting the shear stress-strain curves of the prepared elastomeric 

composites at zero magnetic field are evaluated. The selected model is subsequently combined with field-

dependent microscale model to predict magneto-mechanical response of MREs under applied magnetic field. 

A particle saturation model is employed that relates the magnetization of particles to the applied magnetic 

flux density. As a result, shear modulus is calculated as a function of magnetic flux density from low field 

up to high field values where magnetic saturation occurs. Results of this chapter clearly describes the quasi-

static behavior of MREs with respect to the applied magnetic field in a microstructure framework and 

provides a clear pathway to the researchers in selecting and utilizing the proposed lattices in the microscale 

modeling of MREs. The developed knowledge on microstructure modeling paves the way for design 

optimization of MREs and promotes the use of this intelligent materials in practical applications. 

2.2 Experimental Study 

2.2.1 Fabrication of MRE samples 

Table 2.1 presents the composition of six types of the MRE samples that have been fabricated. In order 

to fabricate the MREs, EcoflexTM 00-20 (density = 1.04 g/cm3, viscosity = 3000 cps), and EcoflexTM 00-50 

(density = 1.04 g/cm3, viscosity = 8000 cps) silicone rubber were used as the elastomeric matrix material. 

The low viscosity of this rubber facilitates the distribution of particles in the matrix and ensures easy mixing 

and degassing. BASF SQ® spherical shape CIPs with average diameter of 3.9 to 5 μm and density of 7.87 

g/cm3 were used as the magnetic fillers.  

The fabrication process has three steps. First, the required amounts of the silicone rubber and CIPs were 

mixed together for about 4 min. The mixture was then degassed by placing it inside a vacuum chamber under 
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28 in-Hg for about 5 min. Next, the mixture poured into a cylindrical plexiglass mold and left at room 

temperature for about 24 h to be cured. For the anisotropic sample, the mold is placed under about 1 T 

magnetic field applied by a powerful electromagnet for 2 h to form chains of particles inside the material. 

After 24 h, MRE samples are taken out of the mold and left at room temperature for at least another 24 h to 

make sure that the samples are completely cured before cutting and performing the experiments. Figure 2.1 

shows four isotropic MREs, i.e. Samples 1 to 4 of Table 2.1, in the curing stage inside the mold and after 

curing as they are taken out of the mold. 

Table 2.1 Fabricated MRE samples and their constituents 

MRE sample 

ID 

Particles 

distribution 

Materials  
Volume fraction of 

constituents (%) 

CIP Silicone rubber  CIP Silicone rubber 

Sample 1 Isotropic BASF SQ® EcoflexTM 00-20  5 95 

Sample 2 Isotropic BASF SQ® EcoflexTM 00-20  15 85 

Sample 3 Isotropic BASF SQ® EcoflexTM 00-20  25 75 

Sample 4 Isotropic BASF SQ® EcoflexTM 00-20  40 60 

Sample 5 Isotropic BASF SQ® EcoflexTM 00-50  15 85 

Sample 6 Anisotropic BASF SQ® EcoflexTM 00-50  15 85 

 

 
(a) 
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(b) 

Figure 2.1 Samples 1 to 4 (a) in a cylindrical plexiglass mold in curing stage and (b) after curing. 

The dispersion of particles in the MREs is investigated using an industrial laser measuring confocal 

microscope (OLYMPUS LEXT OLS4000). Images of microstructure are illustrated in Figure 2.2. The white 

points in the images show the embedded CIPs and the black background is the silicone rubber matrix. For 

the isotropic MREs, Samples 1 to 5, homogeneous dispersion of particles in the matrix is observed in the 

images while for the anisotropic MRE, Sample 6, particles are structured in chains. 

 
  

               (a)             (b)             (c) 

   

              (d)              (e)                (f) 

Figure 2.2 Microstructure images of fabricated MRE samples taken by Confocal microscopy (𝜙 is the volume 

fraction of iron particles); (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4, (e) Sample 5, and (f) Sample 6. 
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2.2.2 Experimental characterization 

The fabricated MRE samples were characterized using a rotary rheometer equipped with a magneto-

rheology accessory (Discovery HR-3, TA Instrument) shown in Figure 2.3. The tests have been conducted 

using a 20 mm diameter parallel geometry under different levels of applied magnetic flux densities. For this 

purpose, the test specimens with 1 mm thickness and 20 mm diameter are carefully punched from the 

prepared samples and placed beneath the parallel geometry. The instrument is capable of providing a uniform 

magnetic field perpendicular to the direction of shear motion applied to the MRE sample. The applied 

magnetic field is measured using the Hall probe placed beneath the bottom geometry and a close-loop 

controller adjusts the required current input to the magneto-rheology accessory. Temperature has been kept 

constant at 20 oC using computer-controlled fluid circulator unit connected to the magneto-rheology 

accessory. Oscillatory tests have been performed sweeping the shear strain amplitude in the range of 0.001 

% to 30 % and the applied torque was automatically measured and used for data acquisitioning to obtain the 

shear stress and moduli. All tests have been performed with the constant driving frequency of 0.1 Hz to 

resemble the quasi-static loading conditions.  Moreover, an axial load of 5 N is applied on the samples in all 

tests to avoid the slippage between the sample and the geometries. It is noted that the empirical tests using 

the rheometer instrument in this research have been checked randomly for multiple testing cycles and for 

similar MRE samples fabricated at different times to make sure about the consistency and accuracy of the 

experimental data. 

Figure 2.4 (a) to (d) present the shear stress with respect to the shear strain for Samples 1 to 4 under 

various levels of applied flux densities. As it can be seen in Figure 2.4 (a), the shear stress of Sample 1 

increases as the magnetic flux density enhances. For instance, at 30 % shear strain amplitude, the shear stress 

rises from about 5.2 kPa to 8.4 kPa as the magnetic field increases from zero to 1T which shows 61 % increase 

in the shear stress. Accordingly, it can be concluded that the MREs become stiffer under application of an 

external magnetic field which is due to the resistance of the magnetized particles against the movement of 

polymeric chains of the silicone rubber matrix. Moreover, comparing the results obtained for MREs with 

different volume fractions of CIPs shows that the influence of applied magnetic field on the stiffness of the 

MREs is more pronounced as the volume fraction of particles increases. For example, increasing the magnetic 

field from zero to 1 T at 30 % shear strain amplitude, causes the shear stress to vary from 7.5 kPa to almost 

23 kPa for Sample 2 which is 200 % increase. This increment is about 242 % and 590 % for Samples 3 and 

4, respectively. Therefore, it can be concluded that the MR effect of the MREs in quasi-static state increases 

substantially with the iron particles’ content. 
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Figure 2.3 Left: Rheometer device system used for experimental testing; Right: Closer view of the position of 

MRE specimen on top of the magneto-rheology accessory. 

 

In addition, the elastic behavior of the MREs changes with respect to the applied magnetic field. Figure 

2.4 (a) shows that Sample 1 presents linear elastic behavior irrespective of the magnitude of the applied 

magnetic field. However, increasing the volume fraction of CIPs enhances the nonlinear properties of the 

MREs with respect to the applied magnetic flux density. It is clear in Figure 2.4 (b) that the MRE with 15 % 

volume fraction of solid particles acts almost as a linear elastic material within the whole strain amplitude 

range in the absence of applied magnetic field and its behavior gradually approaches to nonlinear properties 

as the magnetic field intensifies, particularly for magnetic fields above 0.4 T. Further increase of the volume 

participation level of CIPs enhances the nonlinear properties of the MRE samples as such the nonlinear 

response is obvious for the Samples 3 and 4 irrespective of the applied magnetic field level. It should be 

noted that the nonlinear elastic response of the MRE samples at high magnetic fields is due to the 

reinforcement of the polymeric matrix that changes the linear elastic response of the pure silicone rubber to 

nonlinear elastic behavior. 
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Figure 2.4 Shear stress versus strain for Samples 1 to 4 at different levels of magnetic flux density; (a) Sample 1 

(𝜙 = 5%), (b) Sample 2 (𝜙 = 15%), (c) Sample 3 (𝜙 = 25%), and (d) Sample 4 (𝜙 = 40%). 

 

Figure 2.4 also shows the magnetic saturation of the MRE samples with the increase of the applied 

magnetic field. In this subject, Figure 2.4 (a) illustrates that for the MRE sample with 5% volume fraction of 

iron particles, the rate of change of the shear stress decreases as the applied magnetic flux density reaches 

about 0.6 T and the MRE saturates magnetically as the applied magnetic flux density increases to 0.8 T. 

Moreover, Figure 2.4 (b) to (d) show that increasing the volume fraction of CIPs to 15%, 25% and 40%, 

increases the magnetic capacity of the MREs such a way that Sample 2 saturates at higher magnetic flux 

density compared to Sample 1 and Samples 3 and 4 do not show saturation in presence of applied magnetic 

flux densities below 1 T. 
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2.3 Elastic Response of the Filled Elastomer  

Prior to model the magneto-mechanical properties of the MREs, it is required to determine the stress-

strain behavior of the filled elastomer in the absence of magnetic field. There are many hyperelastic theories 

presented in the literature to predict the elastic response of rubbers. Here, three modeling methods including 

a Neo-Hookean law, a one-term Ogden theory [84] and a two-term I1-based model [85] are selected for 

predicting the elastic response of passive MREs under simple shear loading. The elastic strain energy function 

for each of the models may be described as: 

• Neo-Hookean law : 𝐸𝑒𝑙 =
𝜇1

2
(𝐼1 − 3) =

𝜇1

2
(𝜆1
2 + 𝜆2

2 + 𝜆3
2 − 3) (2.1) 

• One-term Ogden theory: 𝐸𝑒𝑙 =
𝜇2

𝛼2
(𝜆1
𝛼2 + 𝜆2

𝛼2 + 𝜆3
𝛼2 − 3) (2.2) 

• Two-term I1-based model: 𝐸𝑒𝑙 =
31−𝛼3

2𝛼3
𝜇3(𝐼1

𝛼3 − 3𝛼3) +
31−𝛼4

2𝛼4
𝜇4(𝐼1

𝛼4 − 3𝛼4) (2.3) 

where 𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2  is the first principal invariant of the right Cauchy-Green deformation tensor and 𝜆𝑖 

(𝑖 = 1,2,3) is the principal extension ratio or stretch, i.e. the ratio of the current length to the original length 

in the 𝑖-th principal direction. 𝜇𝑖 and 𝛼𝑖 are the constants of the models to be determined from experimental 

data. 

For the situation of simple shear loading, the relationship between the extension ratio in the first principal 

direction and the shear strain (𝛾) can be expressed as [84]: 

𝛾 = 𝜆1 −
1

𝜆1
 (2.4) 

The material is assumed to be incompressible (𝜆1𝜆2𝜆3 = 1) with a plane strain state (𝜆3 = 1). Then, the 

principal stretches are obtained in terms of the shear strain as: 

𝜆1 =
𝛾+√𝛾2+4

2
 ,      𝜆2 = 𝜆1

−1 =
√𝛾2+4−𝛾

2
 ,      𝜆3 = 1 (2.5) 

Substituting the principal stretches from Eq. (2.5) into the strain energy functions in Eqs. (2.1) to (2.3) 

yields the following constitutive equations:   

• Neo-Hookean: 𝜏 = 𝜇1
𝜆1

1+𝜆1
2 (𝜆1

2 − 𝜆1
−2) = 𝜇1𝛾 (2.6) 

• One-term Ogden model: 𝜏 = 𝜇2
𝜆1

1+𝜆1
2 (𝜆1

𝛼2 − 𝜆1
−𝛼2) =

                                                     𝜇2
2(𝛾+√𝛾2+4)

8+2𝛾√𝛾2+4+2𝛾2
((

𝛾+√𝛾2+4

2
)
𝛼2

− (
√𝛾2+4−𝛾

2
)
𝛼2

) 

(2.7) 
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• Two-term I1-based model: 𝜏 =
𝛾

𝛾2+3
∑ 31−𝛼𝑟𝜇𝑟(𝛾

2 + 3)𝛼𝑟4
𝑟=3  (2.8) 

where 𝜏 is the shear stress. Constant parameters in these models are found by least square optimization to 

minimize the error between theoretical and experimental results. Table 2.2 summarizes the values of the 

constant parameters found for each model and MRE samples. It should be noted that the values of the constant 

parameters involve the effect of different factors including but not limited to matrix type, volume fraction 

and type of iron particles, and more advanced phenomena such as interfaces between particles and elastomer 

matrix. Using parameters in Table 2.2 and Eqs. (2.6) to (2.8), the theoretical results of the shear stress versus 

shear strain for the four isotropic MRE samples, i.e. Samples 1 to 4, based on different models are obtained 

and compared with those of experimental shear stress data in the absence of the applied magnetic field as 

shown in Figure 2.5. 

 

Table 2.2 Values of parameters of Neo-Hookean, one-term Ogden and two-term I1-based models. 

 MRE Sample 𝜇1 (Pa) 

N
eo

-H
o

o
k

ean
 M

o
d

el 

Sample 1 17716 

Sample 2 25389 

Sample 3 35007 

Sample 4 41276 

  𝜇2 (Pa)          𝛼2 

O
n

e-term
 O

g
d

en
 

M
o

d
el 

Sample 1 71890 0.25 

Sample 2 74210 0.35 

Sample 3 80770 0.45 

Sample 4 48480 0.90 

  𝜇3 (Pa) 𝛼3 𝜇4 (Pa) 𝛼4 

T
w

o
-term

 I
1 -b

ased
 

M
o

d
el 

Sample 1 8200 -12 10300 6 

Sample 2 16900 4.8 10800 -20 

Sample 3 33200 -2 6300 -23 

Sample 4 37800 -1 22100 -75 

 

Examination of the results presented in Figure 2.5 shows that increasing the volume fraction of iron 

particles from 5% to 40% not only reinforces the material and makes it stiffer but also increases the 
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nonlinearity of the stress-strain curve. The stress-strain curve of the Sample 1 shows almost a full linear 

response in the whole strain region while in the case of Sample 4, the linear behavior only lasts up to around 

0.05% strain. While all models exhibit satisfactory performance in predicting linear response of Sample 1, 

only two-term I1-based model was capable of capturing the nonlinear behavior of MRE samples with higher 

volume fraction of CIPs at large strains.  

It is noted that the Neo-Hookean and One-term Ogden models are commonly used as nonlinear hyper 

elastic theories for stretching and extension [84], however, for the case of simple shear loading, these models 

demonstrate linear stress-strain response which is valid only at small strain ranges (𝛾 < 0.1) as shown in 

Figure 2.5.  In the following sections, the two-term I1-based model will be used to account for the elastic 

response of the MRE samples at zero magnetic field. 

  

(a) (b) 

  

(c) (d) 

Figure 2.5 Experimental and theoretical results of the shear stress versus shear strain for the isotropic MRE 

samples at zero magnetic field; (a) Sample 1, (b) Sample 2, (c) Sample 3, and (d) Sample 4. 



26 

 

2.4 Quasi-Static Microscale Modeling of Magneto-Mechanical Properties of MREs 

This section presents a physical microscale modeling to describe the field-dependent magneto-

mechanical behavior of both isotropic and anisotropic MREs operating in quasi-static shear mode. For this 

purpose, different lattice models are proposed as idealized representation of the spatial distribution of 

magnetic particles in the material and the mechanical properties are then evaluated based on particles’ 

distribution. 

2.4.1 Total potential energy 

The total potential energy of a deformed MRE in the presence of a magnetic field is basically comprised 

of two distinct parts. One is the elastic energy (𝐸𝑒𝑙) of the deformed MRE due to the elasticity of polymer 

chains and the other is the magnetic potential energy (𝐸𝑚) of the embedded magnetic particles in the matrix 

under an external magnetic field. Thus, the total potential energy of the deformed MRE (𝐸𝑇) under external 

magnetic field can be written as: 

𝐸𝑇 = 𝐸𝑒𝑙 + 𝐸𝑚 (2.9) 

For the elastic part of the potential energy, the strain energy function of the two-term I1-based model 

given in Eq. (2.3) is employed. As discussed in Section 2.3, the two-term I1-based model is capable of 

predicting the nonlinear behavior of MREs under shear loading in the absence of magnetic field. Therefore, 

this energy function is used to predict the zero-field elastic response of the filled elastomer and so includes 

contribution of different possible phenomena such as reinforcement of elastic matrix by particles and possible 

adhesion at the interface of polymer matrix and hard filler particles. 

For the second part of the total potential energy, the interaction of the particles under external magnetic 

field should be formulated. The ferromagnetic iron particles are magnetized after being subjected to an 

external magnetic field. Accordingly, a magnetic moment is induced in each magnetized particle which can 

be alternatively called as dipole. Due to the induced magnetic moment, there will be magnetic forces between 

the particles which is the microstructural phenomenon behind the field-dependent properties of MREs. The 

interaction energy of two adjacent dipoles with magnetic moments 𝐦𝟏 and 𝐦𝟐 is [86]: 

𝑒12 = −
1

4𝜋𝜇1𝜇0
[
3(𝐦𝟏 ∙ 𝑹12)(𝐦𝟐 ∙ 𝑹12)

|𝑹12|5
−
𝐦𝟏 ∙ 𝐦𝟐

|𝑹12|3
] (2.10) 

where 𝜇0 and  𝜇1 stand for the vacuum permeability and the relative permeability of the medium, respectively. 

Since the elastomer matrix is assumed non-magnetic, its relative permeability is unity, i.e. 𝜇1 = 1. 𝑹12 is the 

spatial vector that connects the two dipoles’ centers. To consider the magnetic interaction of all particles in 

the network, the magnetic energy density of the MRE sample could be expressed as: 
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𝐸𝑚 = −
1

𝑉

1

4𝜋𝜇1𝜇0
∑∑[

3(𝐦𝑖 ∙ 𝑹𝑖𝑗)(𝐦𝑗 ∙ 𝑹𝑖𝑗)

|𝑹𝑖𝑗|
5 −

𝐦𝑖 ∙ 𝐦𝑗

|𝑹𝑖𝑗|
3 ]

𝑗𝑖

 (2.11) 

where 𝑉 is the volume of the sample. The double summation in the Eq. (2.11) operates over all pairs of 

dipoles (𝑖-th and 𝑗-th) in the network. The spatial vector 𝑹𝑖𝑗 between two dipoles depends on the macroscopic 

deformation of the sample. Figure 2.6 shows schematically an infinitesimal element of a MRE sample in 

undeformed and deformed situations by simple shear loading (within x-y plane) under an external magnetic 

field perpendicular to the direction of the shear deformation. Considering Figure 2.6, the components of the 

space vector 𝑹𝑖𝑗 = (𝑅𝑖𝑗𝑥 , 𝑅𝑖𝑗𝑦 , 𝑅𝑖𝑗𝑧) between two dipoles under simple shear deformation could be related 

to the shear strain 𝛾 as follows: 

𝑅𝑖𝑗𝑥
= 𝑅𝑖𝑗

0

𝑥
+ 𝛾 (𝑅𝑖𝑗𝑦

) = 𝑅𝑖𝑗
0

𝑥
+ 𝛾 (𝑅𝑖𝑗

0

𝑦
) 

𝑅𝑖𝑗𝑦 = 𝑅𝑖𝑗
0

𝑦
 

𝑅𝑖𝑗𝑧 = 𝑅𝑖𝑗
0

𝑧
 

(2.12) 

where 𝑹𝑖𝑗
0 = (𝑅𝑖𝑗

0

𝑥
 , 𝑅𝑖𝑗

0

𝑦
 , 𝑅𝑖𝑗

0

𝑧
) is the space vector between two particles in undeformed situation.  

 

Figure 2.6 Infinitesimal element of an MRE sample in undeformed (left) and deformed (right) situations under 

simple shear loading (within x-y plane) and an external magnetic field (along y axis). 

To perform the summation in Eq. (2.11) over all pairs of particles, we need to idealize the arrangement 

of particles in the material by some structured and idealized networks of particles in which the position of 

individual particles could be quantified. Figure 2.7 illustrates this idea graphically. For the isotropic MREs, 

seven lattices are proposed to represent distribution of particles in the material. For the anisotropic MRE, the 
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dispersion of particles is idealized with simple chain-like structure of particles in the medium. The two 

following sections explain these two cases. 

 

 

  

Figure 2.7 Graphical illustration for idealization of particles distribution with structured predetermined particle 

networks. Left: real isotropic dispersion of particles in an MRE sample, Right: schematic idealized network of 

particles with exaggerated particle size. 

2.4.2 Isotropic particle distribution 

For the isotropic MREs, the iron particles are assumed to be arranged based on some lattice models. 

Herein, seven lattices are proposed to represent isotropic distribution of particles in the material. The 

considered lattice types are simple cubic (SC), body centered cubic (BCC), face centered cubic (FCC), edge 

centered cubic (ECC), body and edge centered cubic (BECC), face and edge centered cubic (FECC), and 

body, face and edge centered cubic (BFECC). The first four types are basic lattices and the last three are 

combinations of the basic ones. Figure 2.8 illustrates the unit cell for each of the considered lattice models. 

 

 
  

 

(SC) (BCC) (FCC) (ECC) 
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(BECC) (FECC) (BFECC) 

Figure 2.8 Unit cell of lattice models considered for isotropic distribution of particles. 

A parameter 𝜁 is defined which shows the number of particles participated in a unit cell. For instance, 

eight particles are located at the corners of the SC unit cell, from which 1/8 of each particle presents inside 

the cell. Thus, one whole particle participates inside each unit cell of the SC lattice (𝜁𝑆𝐶=1). The value of  𝜁  

for all the lattice models presented in Figure 2.8 are as follows: 

𝜁𝑆𝐶=1,     𝜁𝐵𝐶𝐶=2,      𝜁𝐹𝐶𝐶=4,     𝜁𝐸𝐶𝐶=4,     𝜁𝐵𝐸𝐶𝐶=5,     𝜁𝐹𝐸𝐶𝐶=7,     𝜁𝐵𝐹𝐸𝐶𝐶=8 (2.13) 

As a simplifying assumption, all iron particles are assumed to have the same spherical shape with average 

radius of 𝑟. Then, the volume fraction of iron particles distributed in the MRE sample is given by [62]: 

𝜙 = 𝜁
𝑣0
𝑎3

 (2.14) 

where 𝑣0 =
4

3
𝜋𝑟3 corresponds to the volume of a particle, and 𝑎 is the edge length of the unit cell of the 

lattice. The proposed unit cells are building blocks for the enormous lattice with millions of particles in the 

material. In the modeling, an infinite lattice of particles is considered. An infinite lattice has both translational 

and rotational symmetries around the axis of the homogeneous applied magnetic field 𝐇 which is the y-axis 

as shown in Figure 2.6. Accordingly, the induced magnetic moments of the dipoles are in the direction of the 

applied magnetic field with equal absolute values |𝐦𝒊| = |𝐦𝒋| = |𝐦|. Conducting summation in Eq. (2.11) 

in the whole medium would be computationally impractical. To simplify, here we consider an infinite lattice 

structure for the MRE samples and due to symmetry, the position of the origin of the lattice would not affect  

the overall summation [59]. Considering this, the network of dipoles (magnetized particles) have been 

established based on different lattice models shown in Figure 2.8 in which the 𝑗-th particle is chosen as the 

origin of the lattice network.  The double summation in Eq. (2.11) is then reduced to single summation over 

index 𝑖 multiplied by the number of particles 𝑁. Finally, Eq. (2.11) could be rewritten as follows: 

𝐸𝑚 = −
𝑐|𝐦|2

4𝜋𝜇0
∑[

3(𝑹𝑖)𝑦
2 − |𝑹𝑖|

2

|𝑹𝑖|5
]

𝑖

 (2.15) 
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where 𝑹𝑖 is the spatial vector defining each particle’s position in the space from the origin of the lattice. 𝑐 =

𝑁/𝑉 is the total number of ferromagnetic particles in the volume V of the MRE sample which can be 

described also as 𝑐 = 𝑁/𝑉 = 𝜁/𝑎3 based on the unit cell of the lattice models. The magnetic dipole moment 

per unit particle volume is defined as the intrinsic particle polarization so it can be written as  |𝐦| = 𝑣0 𝐽𝑝, 

where 𝐽𝑝 is the induced particle polarization in SI units of Tesla [51], [87]. The components of the space 

vector 𝑹𝑖 was related with the shear strain (𝛾) and the initial space vector 𝑹𝑖
0 in Eq. (2.12). The initial space 

vector can be expressed as: 

𝑹𝑖
0 = 𝑎 𝒓𝒊 (2.16) 

where 𝒓𝒊 = (𝑟𝑖𝒙 , 𝑟𝑖𝒚 , 𝑟𝑖𝒛) is a dimensionless vector addressing the coordinates of particles on the sites of 

infinite lattices with unit edge length, except 𝒓𝒊 = 0 which has to be excluded from the calculations. Now, 

considering simple shear in x-y plane as shown in Figure 2.6, we may write Eq. (2.12) as: 

𝑅𝑖𝑥 = 𝑅𝑖𝑥
0 + 𝛾 (𝑅𝑖𝑦) = 𝑎 𝑟𝑖𝑥 + 𝛾 (𝑅𝑖𝑦

0) = 𝑎( 𝑟𝑖𝑥 + 𝛾 𝑟𝑖𝑦) 

𝑅𝑖𝑦 = 𝑅𝑖𝑦
0= 𝑎 𝑟𝑖𝑦 

𝑅𝑖𝑧 = 𝑅𝑖𝑧
0 = 𝑎 𝑟𝑖𝑧 

|𝑹𝑖| = √𝑅𝑖𝑥
2 + 𝑅𝑖𝑦

2 + 𝑅𝑖𝑧
2 = 𝑎√( 𝑟𝑖𝑥 + 𝛾 𝑟𝑖𝑦)

2
+ 𝑟𝑖𝑦2 + 𝑟𝑖𝑧2 

(2.17) 

By substituting Eqs. (2.17), and (2.14) into Eq.  (2.15), and considering that |𝐦| = 𝑣0 𝐽𝑝 =𝐽𝑝 𝜙𝑎
3 𝜁⁄  and 

also 𝑐 = 𝜁/𝑎3,  the potential magnetic interaction energy of the MRE sample with volume particle fraction 

of 𝜙 could be obtained as a function of particle polarization, volume fraction of iron particles, and shear 

strain in the following form: 

𝐸𝑚 = −
𝜙2𝐽𝑝

2

4𝜋𝜇0𝜁
∑

[
 
 
 
 
(2 − 𝛾2)𝑟𝑖𝒚

2 − 𝑟𝑖𝒙
2 − 𝑟𝑖𝑧

2 − 2𝛾𝑟𝑖𝒙𝑟𝑖𝒚

((1 + 𝛾2)𝑟𝑖𝒚
2 + 𝑟𝑖𝒙

2 + 𝑟𝑖𝑧
2 + 2𝛾𝑟𝑖𝒙𝑟𝑖𝒚)

5
2

]
 
 
 
 

𝑖

 (2.18) 

It is noted that the particle polarization, 𝐽𝑝, could not be directly measured. Jolly et al. [51] have presented 

a particle saturation model which establishes a relation between the particle polarization and average flux 

density in MREs which can be measured experimentally using magnetometers. The particle saturation model 

is founded on the basis that particle saturation begins near the contact point of two adjacent particles at very 

low magnetic field and increases toward total particle saturation as the applied field increases. Based on this 

model, particle polarization, 𝐽𝑝, for an MRE with volume fraction of 𝜙 can be expressed as a function of the 

averaged flux density, 𝐵, as: 
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𝐽𝑝 =

3
2
(𝛼 − 𝛼3)𝐵 + (1 − 𝛼3)(𝑠𝐽𝑠)

1 +
3
2𝜙(𝛼 − 𝛼

3)
 (2.19) 

where 𝐽𝑠 is the saturation polarization, and 𝛼 is a parameter constrained within the range of 0 and 1 and 

defined as:  

𝛼 =
1

6𝑘
[(3 −

2

𝜙
) ± √(3 −

2

𝜙
)
2

+ 12𝑘 (
2

𝜙
(1 − 𝑘

𝐵

(𝑠𝐽𝑠 + 𝐵 − 𝜙𝐽𝑝)
) + 3(𝑘 − 1))] (2.20) 

where 𝑘 ≥ 1 is a constant parameter added to the model to account for the complex multipolar interactions 

resulting from complex structure of particles in the material. The value of saturation polarization, 𝐽𝑠,  for pure 

iron is 2.1 T [51]. However, MRE samples with various volume fraction of particles will saturate at different 

level of magnetic induction as observed in Section 2.2.2. Therefore, another constant parameter, 𝑠, is used in 

the model as the coefficient of the saturation polarization to tune the results of lattice models according to 

the saturation of different MRE samples.  

Values of these two fitting parameters (𝑘, 𝑠) will be selected consciously in the following subsections to 

evaluate the performance of different lattice types. However, to compare the results of model with the 

experimental data, optimal values of the constant parameters (𝑘, 𝑠) will be identified by a least square 

optimization technique in Section 2.5. 

It should be noted that Eq. (2.19) has been presented as follows:  

𝐽𝑝 =

3
2𝛼

3𝐵 + (1 − 𝛼3)(𝐽𝑠)

1 +
3
2𝜙𝛼

3
 (2.21) 

in the Ref. [51], which does not match the assumptions and preceding relations presented in the article. 

Therefore, the particle polarization, 𝐽𝑝, has been corrected as Eq. (2.19) in the present study. The detail 

derivation is demonstrated in Appendix A of this dissertation. 

 

2.4.2.1 Calculation of summation in Eq. (2.18) 

The role of summation in Eq. (2.18) is to accumulate the contribution of all particles’ magnetic interaction 

in the network. The components 𝑟𝑖𝒙, 𝑟𝑖𝒚, and 𝑟𝑖𝒛 characterize the coordinates of particles on the sites of each 

lattice model with unit edge length in the x, y, and z directions with respect to the origin of arbitrary 

coordinate system. To explain the calculation of summation in the Eq. (2.18), a simple example is given here. 
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By considering one unit cell at each corner of the origin of the coordinate system, a network of particles 

involving 8 unit cells will be constructed. Figure 2.9 shows the 2D (in-plane) illustration of such particle 

network for the SC and BCC lattices.  

 

  

(a) (b) 

Figure 2.9 2D (in-plane) view of a network of particles made by placing one unit cell at each corner of the origin 

(a) SC, and (b) BCC lattices. 

According to Figure 2.9, the components of vector 𝒓𝒊 = (𝑟𝑖𝒙 , 𝑟𝑖𝒚 , 𝑟𝑖𝒛) vary in the range (-1, 1). There 

are 26 particles, except the one at origin, on the sites of the SC lattice which their coordinates are: 

𝒓𝒊= {(1,1,-1), (0,1,-1), (-1,1,-1), (1,0,-1), (0,0,-1), (-1,0,-1), (1,-1,-1), (0,-1,-1), (-1,-1,-1), 

(1,1,0), (0,1,0), (-1,1,0), (1,0,0), (-1,0,0), (1,-1,0), (0,-1,0), (-1,-1,0), (1,1,1), (0,1,1), (-1,1,1), 

(1,0,1), (0,0,1), (-1,0,1), (1,-1,1), (0,-1,1), (-1,-1,1)} 

(2.22) 

And for the BCC lattice, there are 34 particles, except the one at origin, which their coordinates are: 

𝒓𝒊= {(1,1,-1), (0,1,-1), (-1,1,-1), (1,0,-1), (0,0,-1), (-1,0,-1), (1,-1,-1), (0,-1,-1), (-1,-1,-1), 

(0.5,0.5,-0.5), (-0.5,0.5,-0.5), (0.5,-0.5,-0.5), (-0.5,-0.5,-0.5), (1,1,0), (0,1,0), (-1,1,0), (1,0,0), 

(-1,0,0), (1,-1,0), (0,-1,0), (-1,-1,0), (0.5,0.5,0.5), (-0.5,0.5,0.5), (0.5,-0.5,0.5), (-0.5,-0.5,0.5), 

(1,1,1), (0,1,1), (-1,1,1), (1,0,1), (0,0,1), (-1,0,1), (1,-1,1), (0,-1,1), (-1,-1,1) } 

(2.23) 

For calculation of the summation in the case of particle networks shown in Figure 2.9, all the 

configurations of (𝑟𝑖𝒙 , 𝑟𝑖𝒚 , 𝑟𝑖𝒛) from the above vectors are used in the calculation process. Thus, the 

summation runs over 26 particles for the SC lattice and over 34 particles for the BCC lattice. 

Considering that the distance between particles and the origin is in the denominator with a power of 3 

(look at Eq. (2.15) with simplification), the summation in Eq. (2.18) converges by reaching the unit cells far 

from the origin. Therefore, by using a network of particles involving finite number of cells placed at the 

origin of the coordinate system, the calculation of the summation could be terminated. In the present study, 
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in order to ensure the accuracy of results, the summation is calculated for a collection of at least 64 cells for 

each lattice model. 

2.4.2.2 Comparison of total potential energy of MREs using different lattice models 

By combining the elastic energy based on two-term I1-based model from Eq. (2.3) with the magnetic 

energy given in Eq. (2.18), the total potential energy of a MRE sample can be obtained as: 

 

𝐸𝑇 =
31−𝛼3

2𝛼3
𝜇3(𝐼1

𝛼3 − 3𝛼3) +
31−𝛼4

2𝛼4
𝜇4(𝐼1

𝛼4 − 3𝛼4)

−
𝜙2𝐽𝑝

2

4𝜋𝜇0𝜁
∑

[
 
 
 
 
(2 − 𝛾2)𝑟𝑖𝒚

2 − 𝑟𝑖𝒙
2 − 𝑟𝑖𝑧

2 − 2𝛾𝑟𝑖𝒙𝑟𝑖𝒚

((1 + 𝛾2)𝑟𝑖𝒚
2 + 𝑟𝑖𝒙

2 + 𝑟𝑖𝑧
2 + 2𝛾𝑟𝑖𝒙𝑟𝑖𝒚)

5
2

]
 
 
 
 

𝑖

 

(2.24) 

In which, particle polarization, 𝐽𝑝, is found using Eqs. (2.19) and (2.20). Here, for each lattice type, the 

total energy is calculated for an isotropic MRE with 𝜙 =5% volume fraction of iron particles at different 

levels of magnetic field. Constant parameters for the elastic energy term are selected from Table 2.2. Figure 

2.10 shows the total energy density versus shear strain (𝛾) at several magnetic flux densities for different 

proposed lattice models. 

Figure 2.10 shows that the energy of the MRE changes with the magnetic flux density and, as expected, 

the level of change is different for each lattice type. Examination of results reveals that at a constant magnetic 

field intensity, potential energy shows similar increasing behavior with the strain amplitude for all lattices. 

On the other hand, at a constant strain, the potential energy increases directly with the applied magnetic field 

for all lattice types except for the FCC and BCC lattices where the energy decreases with the increase of the 

flux density. 
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(g) 

Figure 2.10 Total potential energy density for MRE material with 𝜙 = 5% under various flux densities assuming 

particle distribution according to different lattice models; (a) SC, (b) BCC, (c) FCC, (d) ECC, (e) BECC, (f) FECC, 

and (g) BFECC(𝑘 = 1, 𝑠 = 1). 

To compare the absolute energy of all lattice networks at constant magnetic flux density, the total 

potential energy density is calculated at 𝐵= 0.6 T for all the lattices. Figure 2.11 shows the results with respect 

to the shear strain amplitude. As it can be realized, the ECC and FCC lattices has the maximum and minimum 

level of energy, respectively. On the other hand, the SC and BFECC lattices have the same level of energy. 

These results show the difference in the properties of the proposed lattice types which originate from the 

particle arrangement in each lattice. 

 

Figure 2.11 Comparison of total energy density of the proposed lattices for 𝜙 = 5% under applied flux density 

of 𝐵=0.6 T (𝑘 = 1, 𝑠 = 1). 
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2.4.2.3 Comparison of shear modulus of MREs using different lattice models  

By taking the second derivative of the total energy density with respect to the shear strain evaluated at 

𝛾 = 0, shear modulus of the MRE sample could be computed as: 

𝐺 =
𝜕2𝐸𝑇
𝜕𝛾2

|𝛾=0 (2.25)  

Figure 2.12 shows the results of the shear modulus as a function of magnetic flux density varying from 

0 T to 1 T for MRE with 5 % volume fraction of particles arranged based on different lattice models. As it 

can be seen from Figure 2.12, for the SC, ECC, BECC, FECC, and BFECC lattice models, the shear modulus 

increases as the flux density increases and reaches to near saturation at high magnetic flux density. While for 

the BCC and FCC lattices, the shear modulus decreases with the applied magnetic field due to decreasing 

trend of their total strain energy function with respect to the applied magnetic field. The results for the BCC 

lattice are also available in the literature [62] which shows the same trend. Decrease of the shear modulus 

with magnetic field is in contradiction with experimental observations reported in the literature [9], [27], 

[51], [88] as well as with those presented in the present research, thus the BCC and FCC models cannot 

represent the microstructure behavior of the MREs. The reason behind this behavior of the BCC and FCC 

lattices is discussed in the Section 2.4.4.  

 

Figure 2.12 Comparison of shear modulus as a function of applied magnetic field for the proposed lattices with 

𝜙 = 5% (𝑘 = 1, 𝑠 = 0.3). 

Figure 2.12 also shows that the ECC lattice provides the maximum increase in the shear modulus among 

the other lattices. Similar to the results of the energy, SC and BFECC lattices exhibit the same change in the 

shear modulus with enhancement of the applied magnetic field. 
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2.4.3 Anisotropic particle distribution 

In this section, the proposed idealized arrangement of iron particles in the material is modified to 

represent the chain like structure of particles in the anisotropic MREs. Figure 2.13 shows the idealized 

isotropic and anisotropic arrangement of particles schematically in which 𝑎𝑥
0, 𝑎𝑦

0, and 𝑎𝑧
0 describe the 

distances between neighboring particles in the x, y, z directions, respectively, in Cartesian coordinates. As it 

can be seen, the distance of adjacent particles in x, y, z directions are the same for isotropic dispersion, thus 

𝑎𝑥
0 = 𝑎𝑦

0=𝑎𝑧
0  while for the anisotropic distribution, the vertical distance is smaller, i.e. 𝑎𝑦

0 < 𝑎𝑥
0 = 𝑎𝑧

0. A new 

parameter is defined as: 

𝛽 =
𝑎𝑦
0

𝑎𝑥
0 (2.26) 

where 𝛽 = 1, corresponds to the isotropic configuration and 𝛽 < 1 represents anisotropic configurations with 

particles forming a chain-like structure. Considering that for the anisotropic configuration with chain-like 

structure 𝜁 = 1 and noting that 𝜙 = 𝜁
4

3
𝜋𝑟3

𝑎𝑥
0𝑎𝑦

0𝑎𝑧
0 =

4

3
𝜋𝑟3

𝑎𝑥
0𝑎𝑦

0𝑎𝑧
0 is the volume fraction of iron particles (𝑟 is the average 

particle radius), minimum and maximum values of 𝛽 could be calculated. By substituting 𝑎𝑦
0 = 2𝑟 (minimum 

value of 𝑎𝑦
0) and  𝑎𝑥

0 = 𝑎𝑧
0 =

2𝑟

𝛽
 from Eq. (2.26) in the relation for 𝜙, the minimum value of 𝛽𝑚𝑖𝑛 = √6𝜙/𝜋 

is obtained. Similarly, 𝑎𝑥
0 = 𝑎𝑧

0 = 2𝑟 (minimum value of 𝑎𝑥
0 and 𝑎𝑧

0) and 𝑎𝑦
0 = 2𝑟𝛽, yield the maximum 

value of 𝛽𝑚𝑎𝑥 = 𝜋/6𝜙. Needless to say, 𝛽 could vary between its minimum and maximum values. 

Remembering from the Eq. (2.16), here the initial space vector 𝑹𝑖
0  can generally be expressed as: 

𝑹𝑖
0 = (𝑎𝑥

0𝑟𝑖𝒙, 𝑎𝑦
0𝑟𝑖𝒚, 𝑎𝑧

0𝑟𝑖𝒛) (2.27) 

where the vector 𝒓𝒊 = (𝑟𝑖𝒙 , 𝑟𝑖𝒚 , 𝑟𝑖𝒛) has the same definition as defined in Eq. (2.16). After the application of 

magnetic field and mechanical deformation on the material, the new space vector for the particles is described 

by 𝑹𝑖 = (𝑎𝑥𝑟𝑖𝒙, 𝑎𝑦𝑟𝑖𝒚, 𝑎𝑧𝑟𝑖𝒛). Now, considering simple shear situation as shown in Figure 2.6, the space 

vector is related to the shear strain as: 

𝑅𝑖𝑥 = 𝑅𝑖𝑥
0 + 𝛾 (𝑅𝑖𝑦) = 𝑎𝑥

0 𝑟𝑖𝑥 + 𝛾 (𝑅𝑖𝑦
0) = (𝑎𝑥

0 𝑟𝑖𝑥 + 𝛾 𝑎𝑦
0  𝑟𝑖𝑦) = 𝑎𝑥

0(𝑟𝑖𝑥 + 𝛾 𝛽 𝑟𝑖𝑦) 

𝑅𝑖𝑦 = 𝑅𝑖𝑦
0= 𝑎𝑦

0  𝑟𝑖𝑦 =  𝛽 𝑎𝑥
0 𝑟𝑖𝑦 

𝑅𝑖𝑧 = 𝑅𝑖𝑧
0 = 𝑎𝑧

0 𝑟𝑖𝑧= 𝑎𝑥
0 𝑟𝑖𝑧 

|𝑹𝑖| = √𝑅𝑖𝑥
2 + 𝑅𝑖𝑦

2 + 𝑅𝑖𝑧
2 = 𝑎𝑥

0√( 𝑟𝑖𝑥 + 𝛾 𝛽 𝑟𝑖𝑦)
2
+ 𝛽2𝑟𝑖𝑦2 + 𝑟𝑖𝑧2 

(2.28) 
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Accordingly, the magnetic energy density equation for the isotropic MREs given in the Eq. (2.18) can be 

cast into the following form for MREs with anisotropic chain-like particle distribution under simple shear: 

𝐸𝑚 = −
𝜙2𝐽𝑝

2𝛽

4𝜋𝜇0
∑

[
 
 
 
 
(2 − 𝛾2)𝛽2𝑟𝑖𝒚

2 − 𝑟𝑖𝒙
2 − 𝑟𝑖𝑧

2 − 2𝛽𝛾𝑟𝑖𝒙𝑟𝑖𝒚

((1 + 𝛾2)𝛽2𝑟𝑖𝒚
2 + 𝑟𝑖𝒙

2 + 𝑟𝑖𝑧
2 + 2𝛽𝛾𝑟𝑖𝒙𝑟𝑖𝒚)

5
2

]
 
 
 
 

𝑖

 (2.29) 

In this relation, the condition of incompressibility, i.e. 𝑎𝑥𝑎𝑦𝑎𝑧 = 𝑎𝑥
0𝑎𝑦

0𝑎𝑧
0 is also applied. The only 

difference between Eq. (2.29) and Eq. (2.18) is the existence of parameter 𝛽 which enables the anisotropic 

arrangement of particles in the model. Now replacing the magnetic energy part in Eq. (2.24) with that given 

in Eq. (2.29), one can obtain the total potential energy density function for the MREs with anisotropic 

configuration. Figure 2.14 presents the total potential energy versus strain for different values of parameter 

𝛽=1, 0.95, 0.90, 0.85, and 0.8, under constant magnetic flux density of 𝐵 = 0.6 T for MRE with 5% volume 

fraction of iron particles. Figure 2.15 shows the same result but at a constant value of 𝛽= 0.9 being subjected 

to 0.0 T, 0.2 T, 0.4 T, 0.6 T, 0.8 T, and 1.0 T magnetic flux density. 

 

  

(a) (b) 

Figure 2.13 Schematic arrangement of particles in (a) isotropic configuration (𝑎𝑥
0 = 𝑎𝑦

0 = 𝑎𝑧
0) and (b) anisotropic 

(chain-like) configuration (𝑎𝑦
0 < 𝑎𝑥

0 = 𝑎𝑧
0 ). 

It can be seen from Figure 2.14 and Figure 2.15 that the total potential energy density directly increases 

with the shear strain and its magnitude depends on both the value of parameter 𝛽 as well as the strength of 

external magnetic flux density, 𝐵. According to Figure 2.14, at a constant strain level, the total potential 

energy tends to decrease even to negative values as 𝛽 decreases from unity (particle distribution transforms 

more into chains). Similar trend of decreasing energy could be observed when the value of parameter 𝛽 is 
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constant and the magnetic flux density increases in Figure 2.15. However, the rate of change of energy within 

a constant range of strain amplitude, is larger at higher fields which means higher MR effect. 

 

Figure 2.14 Total energy density versus strain for different values of 𝛽 under 0.6 T magnetic flux density (𝑘 = 1, 

𝑠 = 1, 𝜙 = 5%). 

 

Figure 2.15 Total potential energy density versus strain under different levels of applied magnetic flux density 

and 𝛽 =0.9 (𝑘 = 1, 𝑠 = 1, 𝜙 = 5%). 

Using Eq. (2.25) with the modified total energy density function, the shear modulus can be calculated 

for the anisotropic MREs. Figure 2.16 shows the shear modulus versus external magnetic flux density 

changing from 0 T to 1 T for different values of parameter 𝛽. These results are indeed a comparison of range 

of change of shear modulus for the isotropic (𝛽=1) and anisotropic (𝛽 <1) configuration of particles. Based 

on Figure 2.16, at lower values of 𝛽, greater increase in the shear modulus is observed with the magnetic flux 

density. Therefore, it could be concluded that the change of modulus with the applied field, i.e. the MR effect, 

is larger for anisotropic distribution of particles than isotropic dispersion. A similar trend has also been 

observed from the experiments as will be discussed later in the following sections.  
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Figure 2.16 Shear modulus versus applied magnetic flux density for different values of 𝛽 (𝑘 = 1, 𝑠 = 0.3, 𝜙 =
5%). 

2.4.4 Discussion on the properties of lattices 

In this section, a detailed study is conducted on the properties of the proposed idealized arrangement of 

particles for isotropic and anisotropic distributions. First, the magnetic interaction of a pair of particles under 

a homogeneous applied magnetic field is investigated. Based on the energy values, attraction and repulsion 

of two magnetized particles caused by magnetic induction is explained. The interaction of two dipoles is then 

used as the basis to explain the effect of magnetic energy of the lattice on the mechanical properties of MREs. 

Let us consider a pair of particles in the space as shown in Figure 2.17. External magnetic field is applied 

along the y-axis and the angle between the particles’ centerline and the direction of the applied field is 𝜃. It 

is assumed that the two particles are magnetized and have magnetic moments of 𝐦𝟏 and 𝐦𝟐 so they are 

called a magnetic dipole pair. Assuming that the dipole moments are the same in value and direction,𝐦𝟏 =

𝐦𝟐 = 𝐦, Eq. (2.10) can be used to write the magnetic potential energy of the dipole pair as: 

𝑒12 = −
|𝐦|2

4𝜋𝜇1𝜇0
[
3(𝑹12)𝑦

2 − |𝑹12|
2

|𝑹12|5
] (2.30) 

where (𝑹12)𝑦=|𝑹12|cos (𝜃). In addition, Eq. (2.30) may also be expressed as: 

𝑒12 =
|𝐦|2

4𝜋𝜇1𝜇0
𝑓(𝜃, |𝑹12|) (2.31) 

where 𝑓(𝜃, |𝑹12|) = [
1−3cos2(𝜃)

|𝑹12|3
] is an indication of the magnetic energy of dipoles and depends on the 

relative position of the particles in the space. In order to discuss the magnetic interaction of dipoles, function 

𝑓(𝜃, |𝑹12|) is numerically computed for different configurations. 
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Figure 2.17 Two dipoles are located in the 3D space under an external magnetic field. 

For the sake of simplicity, the magnetic dipole pair is assumed to be in a plane and value of function 

𝑓(𝜃, |𝑹12|) is evaluated for different dipole pair configurations. Figure 2.18 shows the dipole pair in a plane 

in three different positions under an external magnetic field. In Figure 2.18 (a), two dipoles are aligned in the 

direction of external field, so the angle between their centerline and field direction is 𝜃 = 0. Figure 2.18 (b) 

shows the dipole pair located normal to the field direction with 𝜃 = 90° and finally Figure 2.18 (c) shows 

two dipoles located in a position between the horizontal and vertical situations in which the angle 𝜃 lies 

between 0 and  90°.  

 

 

 

(a) (b) (c) 

Figure 2.18 A pair of dipoles in three spatial positions; a) dipoles’ centerline is parallel to the direction of field 

(𝜃=0), b) dipole’s centerline is normal to the direction of field (𝜃= 90°), and c) dipole’s centerline is oblique to the 

direction of field (0 < 𝜃 < 90°). 

Figure 2.19 shows the formulation and value of function 𝑓(𝜃, |𝑹12|) for the two situations of 𝜃 = 0 

(Figure 2.18 (a)) and 𝜃 = 90° (Figure 2.18 (b)). For both cases, the value of function 𝑓 which represents the 

magnetic potential energy between two dipoles, is inversely proportional to the cube of distance between two 
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particles. Thus, the magnetic interaction energy quickly dies out as the distance between dipoles increases. 

As it can be realized from Figure 2.19, the magnetic interaction energy is negative when 𝜃 = 0 which 

indicates that the two dipoles tend to attract each other (shown by the arrow on the blue curve) to decrease 

their level of energy. Therefore, there is an attractive force between two dipoles in this case. However, for 

the case with 𝜃 = 90°, the interaction energy is positive, and dipoles tend to move away from each other 

(arrow on the red curve) to decrease the energy to zero value where two dipoles are quite far from each other. 

Hence, a repulsive force exists between two dipoles in this position. 

 

Figure 2.19 Value of function 𝑓(𝜃, |𝑹12|) versus distance between two dipoles for the two situations illustrated 

in Figure 2.18 (a) and (b). 

For the case in which 0 < 𝜃 < 90°, we assume the distance of dipoles is constant and equals to unity and 

the value of 𝑓 is evaluated as a function of the angle 𝜃. Figure 2.20 shows the variation of function 𝑓 with 

respect to angle 𝜃. It is interesting to note that in the considered range of 0 < 𝜃 < 90°, the magnetic energy 

between two dipoles becomes zero at 𝜃 ≅ 54.7° where its sign changes from negative values at 𝜃 < 54.7°, 

to positive values at 𝜃 > 54.7°. Thus, as shown in Figure 2.20 (a), there is an attractive force between two 

dipoles for 0 < 𝜃 < 54.7°; while, for 54.7° < 𝜃 < 90°, there is a repulsive force between dipoles. At 𝜃 ≅

54.7° no magnetic interaction exists between two dipoles, so they neither attract nor repel each other. 

𝑓 =
1

|𝑹12|
3
 

𝑓 =
−2

|𝑹12|
3
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(a) (b) 

Figure 2.20 (a) Change in the sign of function 𝑓 with the angle 𝜃 between dipoles’ centerline and field direction. 

𝑓 < 0 means two dipoles tend to attract each other (attraction zone) and 𝑓 > 0 means two dipoles tend to repel each 

other (repulsion zone). (b) Change in the value of function 𝑓 with respect to angle 𝜃. 

Having the physical understanding about the dipoles’ magnetic interaction, change in the stiffness of a 

material incorporating the magnetic particles as well as the reason behind the properties of the proposed 

lattices could be explained. Assume a network of particles are magnetized under an applied magnetic field. 

Then, less mechanical energy is required than normal situation, without magnetic field being applied, if the 

mechanical deformation put the particle network into a new situation with reduced level of magnetic energy. 

This situation is similar to the cases that we want to make the vertical dipoles in Figure 2.18 (a) closer to 

each other or to move away the horizontal dipoles in Figure 2.18 (b) from one another. On the other hand, 

more mechanical effort is required to change the arrangement of particles into a situation with higher level 

of magnetic energy. Higher required mechanical effort means the material is stiffer and vice versa. 

Figure 2.21 shows the magnetic part of the energy evaluated using Eq. (2.18) versus applied shear strain 

for each of the proposed lattices in Figure 2.8 for  𝜙 = 5% volume fraction of particles at constant magnetic 

flux density of 𝐵=0.1 T and unit values of parameters 𝑘 and 𝑠. It is observed from Figure 2.21 that upon 

application of a shear deformation, particle network of the BCC and FCC lattices transform to new 

configurations with lower magnetic energy. It means that the shear deformation agrees with the natural 

tendency of particles to decrease their magnetic energy under the applied field and so lower mechanical effort 

is required to deform the material. This clearly shows why the shear moduli of these two lattices decrease 

with the magnetic field intensity as shown in Figure 2.12. However, for the other lattices, shear deformation 

𝜃 = 54.7° 
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brings particles into a new arrangement with higher level of magnetic energy which is against the particles’ 

natural tendency. Therefore, higher mechanical effort is required to deform the particle network. The relative 

changes in the magnetic energy of different lattices in the deformed situation is the reason for various level 

of MR effect resulted from each lattice type. For instance, the ECC lattice shows the higher level of magnetic 

energy at a specific strain level and so it has a larger MR effect as shown in Figure 2.12. Similar explanation 

could be used to justify the increase of shear modulus in case of anisotropic distribution of particles in 

comparison with isotropic dispersion. 

 

Figure 2.21 Magnetic interaction energy of particle network for MRE with 𝜙 = 5% arranged according to 

different lattice types (𝐵= 0.1 T, 𝑘 = 1, 𝑠 = 1). 

The above discussion could be also explained physically by comparing the unit cell of lattices when they 

are subjected to a shear deformation. Figure 2.22 shows two unit cells of the BCC lattice in undeformed and 

deformed situations. In the undeformed position, two particles at the center of unit cells locate on the diagonal 

lines that makes angle of 𝜃1 = 𝜃2 = 54.7
° with the direction of field. So, there is no magnetic interaction 

between these particles and the origin. However, when a shear deformation is applied, the particle in the left 

unit cell comes to the attraction zone (𝜃1
′ < 54.7°) and the one in the right side comes to the repulsion zone 

(𝜃2
′ > 54.7°). Therefore, small values of shear deformation help the natural tendency of particles for getting 

closer to each other in the attraction zone or to move them away from one another in the repulsion zone. This 

clearly shows why lower mechanical effort is required to make a shear deformation for a BCC lattice than a 

SC lattice. 
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Figure 2.22 Two unit-cells of BCC lattice in undeformed (left) and deformed (right) situations. 

2.5 Comparison of Model Results with Experiments 

In order to evaluate the performance of the proposed microscale models, the shear modulus obtained 

from the models are compared with those experimentally measured. As it was mentioned in Section 2.2.2, 

experimental tests have been performed by sweeping the shear strain amplitude in the range of 0.001 % to 

30 % while maintaining the driving frequency at 0.1 Hz. Here, the shear storage modulus of the MRE samples 

at the strain amplitude of 0.01% are utilized as the reference data to evaluate the performance of the developed 

model. It should be noted that the MREs operate in linear viscoelastic region at this shear strain amplitude 

(0.01%) and the storage modulus is independent of the strain amplitude in this region. Optimal values of 

fitting parameters of the models are found using the least square optimization method. For the isotropic 

MREs, performance of the model is evaluated by measuring the root mean square error (RSME) for each of 

the lattices. For the anisotropic sample, the range of change of modulus predicted using the proposed model 

is compared with that obtained experimentally and also for similar isotropic MRE sample with the same level 

of particle volume fraction.    

2.5.1 Isotropic MREs 

Among the lattice models proposed in the Section 2.4.2 for isotropic distribution of particles in MRE 

materials, those that exhibited increase of the shear modulus with magnetic flux density, i.e. SC, ECC, BECC, 

FECC, and BFECC, are selected for predicting the shear modulus of fabricated isotropic MRE samples (Table 

2.1) in terms of applied magnetic field. Optimal values of fitting parameters of the model, 𝑘 and 𝑠, are found 

for each sample of MRE using least square optimization method to minimize the error between simulation 

and experiential results and thus to make the best fit between the model results and those measured 

experimentally. Figure 2.23 and Figure 2.24 show the experimental and theoretical results of the shear 
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modulus versus magnetic flux density for the SC and ECC lattice models, respectively. Values of parameters 

𝑘 and 𝑠 for different volume fraction of iron particles are reported in Table 2.3. 

  

(a) (b) 

  

(c) (d) 

Figure 2.23 Comparison between the experimental data and model results using SC lattice for four isotropic 

MRE samples with different volume fraction of particles (a) Sample 1 (𝜙 = 5%), (b) Sample 2 (𝜙 = 15%), (c) 

Sample 3 (𝜙 = 25%), and (d) Sample 4 (𝜙 = 40%). 

Results in Figure 2.23 show that for MRE samples with 5%, 15%, and 25% volume fraction of iron 

particles, the simple cubic lattice can suitably predict the variation of shear modulus with respect to the 

applied magnetic flux density up to high flux density values and saturation point. However, for the Sample 

4 with 𝜙 = 40%, simulation based on SC lattice model does not agree with the experimental data for 

magnetic flux density beyond 0.2 T as shown in Figure 2.23 (d). Examination of results in Figure 2.24 reveals 

that the ECC lattice model is capable of predicting the variation of shear modulus of MRE samples versus 

external magnetic flux density irrespective of their volume fraction of iron particles. The superiority of ECC 

lattice in predicting the field dependent shear modulus of MREs with high content of particles in comparison 
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with the SC lattice can also be better realized from Figure 2.12 where the ECC lattice showed the maximum 

MR effect among the proposed lattices. Indeed, the SC lattice cannot represent the dense configuration of 

particles at high volume fractions such as 𝜙 = 40%. However, the ECC lattice is a better idealized 

representation of particles distribution at high volume fractions and could better predict the shear modulus 

test data. 

  

(a) (b) 

  

(c) (d) 

Figure 2.24 Comparison between experimental data and model results using ECC lattice for four isotropic MRE 

samples with different volume fraction of particles (a) Sample 1 (𝜙 = 5%), (b) Sample 2 (𝜙 = 15%), (c) Sample 3 

(𝜙 = 25%), and (d) Sample 4 (𝜙 = 40%). 

 

The performance of each lattice model and its agreement with the experimental data can be evaluated by 

using root mean square error (RMSE) index calculated as follows: 
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RMSE =
√∑ (

𝐺𝑚 − 𝐺𝑒𝑥𝑝
𝐺𝑒𝑥𝑝

)
2

𝑛
𝑖

𝑛
 

(2.32) 

where 𝐺𝑚 is the value of shear modulus predicted by the model and 𝐺𝑒𝑥𝑝 is that of experimental test. 𝑛 is the 

number of experimental data points available for each MRE sample. Table 2.4 compares the results of shear 

modulus at different magnetic flux density levels predicted by the model using each of the lattice types with 

the experimental data for four isotropic MRE samples. The corresponding RMSE value for each lattice type 

is also given in the last column. In addition, the absolute value of error between the model prediction, 𝐺𝑚, 

and experimental data, 𝐺𝑒𝑥𝑝, at each magnetic flux density level is presented in the bar charts in Figure 2.25 

for the four isotropic samples to have more clear comparison of the performance of different lattices. 

According to the results in Table 2.4 and bar charts of Figure 2.25, the performance of SC lattice at lower 

participation of iron particles (𝜙 = 5% and 15%) is better compared to the ECC lattice. However, at higher 

particle content, particularly for Sample 4 with 𝜙 = 40%, the SC lattice could not predict the change in 

modulus at high magnetic field and ECC lattice shows better agreement with experimental data. This 

observation suggests that different lattice models might be proper to be used for representing the distribution 

of particles for different MRE samples with various amounts of particle content. In another word, not a single 

lattice type could be used as the best representation of particles’ dispersion for all particle participation levels. 

For other lattices, i.e. BECC, FECC, and BFECC, which are combinations of basic lattice types, the error 

of model for the samples with moderate particle content is roughly of the same order. For the Sample 4, the 

BECC lattice shows the lowest error among these three lattices and also compared to the SC lattice; however, 

its performance at higher field levels beyond 0.6 T is not as satisfactory as the performance of the ECC lattice. 

As discussed before in Figure 2.12 and Figure 2.21, the BFECC lattice has similar magnetic energy density 

behavior as the SC lattice, thus they show the same level of RMSE error as expected. 
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Table 2.3 Values of constant parameters used in the model. 
 MRE Sample Type 𝑘 𝑠 

S
C

 lattice 

Sample 1 (𝜙 =5 %) 2.90 1.0 

Sample 2 (𝜙 = 15 %) 30.0 1.60 

Sample 3 (𝜙 = 25 %) 4.30 4.90 

Sample 4 (𝜙 = 40 %) 30.0 20.0 

  𝑘 𝑠 

E
C

C
 lattice 

Sample 1 (𝜙 =5 %) 1.50 0.45 

Sample 2 (𝜙 = 15 %) 2.60 0.80 

Sample 3 (𝜙 = 25 %) 1.0 1.0 

Sample 4 (𝜙 = 40 %) 8.20 17.65 

 

 



50 

 

Table 2.4 Values of the shear modulus at different magnetic flux densities obtained using different lattice models and comparison with the 

experimental data. 

Lattice 

type 

MRE 

Sample 

Shear Modulus 

at 𝐵=0.2 T 

(kPa) 

Shear Modulus 

at 𝐵=0.4 T 

(kPa) 

Shear Modulus 

at 𝐵=0.6 T 

(kPa) 

Shear Modulus 

at 𝐵=0.8 T 

(kPa) 

Shear Modulus 

at 𝐵=1.0 T 

(kPa) 

R
M

S
E

 (%
) M

o
d

el 

T
est 

M
o

d
el 

T
est 

M
o

d
el 

T
est 

M
o

d
el 

T
est 

M
o

d
el 

T
est 

SC lattice 

Sample 1 22.11 22.14 26.84 25.59 30.55 30.37 32.29 31.85 32.29 32.17 2.30 

Sample 2 61.42 62.76 131.91 122.81 214.39 219.71 276.60 279.29 276.60 275.91 3.64 

Sample 3 74.34 70.34 150.10 137.14 271.43 269.86 434.33 465.86 634.80 601.98 6.29 

Sample 4 130.74 158.33 241.90 413.97 426.07 1080.25 682.37 2115.84 1009.9 2991.62 54.18 

ECC 

lattice 

Sample 1 22.38 22.14 26.85 25.59 30.07 30.37 31.75 31.85 32.20 32.17 2.29 

Sample 2 68.58 62.76 144.65 122.81 220.93 219.71 275.24 279.29 299.63 275.91 9.78 

Sample 3 82.80 70.34 172.82 137.14 300.13 269.86 450.22 465.86 612.0 601.98 15.04 

Sample 4 211.96 158.33 565.24 413.97 1150.10 1080.25 1963.40 2115.84 3001.8 2991.62 22.99 

BECC 

lattice 

Sample 1 21.96 22.14 26.17 25.59 29.55 30.37 31.58 31.85 32.40 32.17 1.69 

Sample 2 67.94 62.76 144.20 122.81 220.36 219.71 269.70 279.29 280.05 275.91 8.78 

Sample 3 74.94 70.34 151.12 137.14 270.88 269.86 428.73 465.86 619.55 601.98 6.61 

Sample 4 184.50 158.33 456.06 413.97 905.99 1080.25 1532.10 2115.84 2332.30 2991.62 19.41 

 

 

 

 



51 

 

 

Table 2.4 Continue… 

Lattice 

type 

MRE 

Sample 

Shear Modulus 

at 𝐵=0.2 T 

(kPa) 

Shear Modulus 

at 𝐵=0.4 T 

(kPa) 

Shear Modulus 

at 𝐵=0.6 T 

(kPa) 

Shear Modulus 

at 𝐵=0.8 T 

(kPa) 

Shear Modulus 

at 𝐵=1.0 T 

(kPa) 

R
M

S
E

 (%
) M

o
d

el 

T
est 

M
o

d
el 

T
est 

M
o

d
el 

T
est 

M
o

d
el 

T
est 

M
o

d
el 

T
est 

FECC 

lattice 

Sample 1 22.11 22.14 26.79 25.59 30.51 30.37 32.41 31.85 32.62 32.17 2.33 

Sample 2 64.71 62.76 139.57 122.81 220.70 219.71 272.82 279.29 272.82 275.91 6.37 

Sample 3 74.62 70.34 150.58 137.14 271.11 269.86 431.38 465.86 626.67 601.98 6.40 

Sample 4 142.81 158.33 289.98 413.97 533.82 1080.25 873.15 2115.84 1306.80 2991.62 45.11 

BFECC 

lattice 

Sample 1 22.11 22.14 26.85 25.59 30.56 30.37 32.29 31.85 32.29 32.17 2.30 

Sample 2 61.42 62.76 131.91 122.81 214.39 219.71 276.60 279.29 276.60 275.91 3.64 

Sample 3 74.34 70.34 150.10 137.14 271.43 269.86 434.33 465.86 634.80 601.98 6.29 

Sample 4 130.74 158.33 241.90 413.97 426.07 1080.25 682.37 2115.84 1009.90 2991.62 54.18 
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Figure 2.25 Error between lattice models prediction, 𝐺𝑚, and experiment data, 𝐺𝑒𝑥𝑝, for four 

isotropic MRE Samples 1, 2, 3, and 4. 

2.5.2 Anisotropic MREs 

As discussed before in the section 2.4.3, the magnetic energy density for anisotropic MREs 

with chain-like particle distribution can be obtained using Eq. (2.29). Combining Eq. (2.29) with 

the elastic energy given in Eq. (2.3) and then using Eq. (2.25), we can obtain shear modulus of 

MRE samples with chain-like distribution of particles versus applied magnetic field. Figure 2.26 

shows the results of shear modulus versus magnetic flux density for anisotropic MRE (Sample 6) 

and its comparison with isotropic MRE (Sample 5) with the same level of iron volume fraction 

(𝜙 = 15%). For the isotropic sample, the value of 𝛽=1 corresponding to simple cubic lattice is 

used in Eq. (2.29). For the anisotropic sample, 𝛽=0.54 corresponding to chain-like structure of 

particles is obtained from least square optimization technique. Other fitting parameters are reported 

in Table 2.5. 
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Figure 2.26 Comparison of the model and experimental results of the shear modulus versus magnetic 

flux density for isotropic (Sample 5) and anisotropic (Sample 6) MREs. 

Table 2.6 also presents the initial shear modulus of the isotropic and anisotropic MRE samples 

at zero field and maximum change in the modulus obtained by applying the magnetic flux density 

in the considered range. According to Figure 2.26 and Table 2.6, a considerable improvement is 

observed in the stiffness of the anisotropic MRE in comparison with the similar isotropic one by 

the application of the magnetic field. In other words, putting particles arrangement into chains, not 

only increases the initial modulus of the material at zero field, but also greatly improves the MR 

effect. The anisotropic sample saturates at lower fields compared with its isotropic counterpart. 

The model shows an acceptable performance in predicting the variation of shear modulus for both 

isotropic and anisotropic MREs. 

 

Table 2.5 Optimal values of the parameters used in the model. 

 MRE Sample Type 𝑘 𝑠 

Isotropic 

(SC lattice) 
Sample 5 (𝜙 =15%) 3.30 0.90 

  𝑘 𝑠 𝛽 

Anisotropic 

(Chain-like) 
Sample 6 (𝜙 =15%) 7 0.8 0.54 
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 Table 2.6 Shear modulus at zero field and the experimental and predicted range of change of 

modulus. 

MRE Sample Name 
Shear Modulus at 

Zero Field (kPa) 

Maximum Change in Modulus 

From Experiment (kPa) 

(%Change) 

Maximum Change in 

Modulus Calculated by 

Model (kPa) 

(%Change) 

Isotropic, Sample 5 (𝜙 =15%) 54.43 92.16 (169%) 94.81 (174%) 

Anisotropic, Sample 6 (𝜙 =15%) 84.59 381.52 (451%) 383.23 (453%) 

 

2.6 Conclusions 

In this chapter, the quasi-static magneto-mechanical properties of isotropic and anisotropic 

MREs in terms of particles’ spatial distribution, particles’ volume fraction, and magnetic induction 

intensity have been investigated. Experimental characterization in shear mode was carried out by 

using an advanced rheometer equipped with an MR device. Theoretical modeling was performed 

based on microscale modeling approach incorporating different lattice types as idealized 

distribution of magnetic particles in the material. Depending on the spatial distribution of particles 

according to different lattices, various levels of magneto-induced change in shear modulus was 

observed. Some of the proposed lattices exhibited decrease in the shear modulus with the applied 

magnetic field which is in contradiction with experimental test results.  

Moreover, a thorough investigation has been conducted on the magnetic interaction of 

particles which is the basis for variation in the properties of MREs under applied magnetic field. 

For the anisotropic MREs, idealized chain-like structure of particles is incorporated into the model 

which results in higher MR effect in comparison with isotropic distribution. Results obtained using 

microscale modeling approach based on proposed lattice types are compared with experimental 

data for several MRE samples. For the isotropic MREs, the performance of the lattices was 

evaluated quantitatively by considering the RMSE for each case. For the anisotropic MRE, the 

idealized chain-like structure of particles in the model exhibited good agreement with experimental 

results. 
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CHAPTER 3  

ADAPTIVE DYNAMIC MODULI OF MAGNETORHEOLOGICAL 

ELASTOMERS: FROM EXPERIMENTAL IDENTIFICATION TO 

MICROSTRUCTURE-BASED MODELING 

 

3.1 Introduction 

In this chapter, the developed knowledge on microstructure modelling of MREs in Chapter 2 

is extended to formulate a novel physic-based microstructure modeling approach to investigate the 

dynamic magneto-mechanical properties of MREs. This is important as MREs are generally under 

oscillatory mechanical loading in most practical applications such as in MRE-ATVAs [68], [80] 

and MR isolators [7], [81]. 

The influence of magnetic particles content, magnetic field strength, frequency, and strain 

amplitude on the viscoelastic properties of MREs, such as dynamic moduli and loss factor, have 

been experimentally investigated in different research studies [9], [27]. It has been shown that both 

the storage and loss moduli of an MRE increase steadily with increasing excitation frequency in 

the linear viscoelastic region [9], [27]. Moreover, the dynamic performance of the MRE was 

observed to be improved by the increment of iron particles quantity up to a certain extent [89]. 

Regarding the magnetic field intensity, it is reported that the material response is dominated by the 

polymeric matrix at low magnetic fields (up to 75 mT) while above a certain magnetic flux density 

(200 mT for a sample composed of 40% volume fraction of CIPs) the magneto-reinforced 

microstructure dominates the MR elastomer’s behavior [25]. The viscoelastic response of isotropic 

and anisotropic MREs in squeeze mode were observed to be nonlinear under high static pre-strain 

according to the shape of stress-strain hysteresis loops [26]. This nonlinearity intensifies with 

increasing the strain amplitude. 

Experimental characterization of MREs requires operation of sophisticated commercial testing 

machines sometimes with self-developed fixtures and magnets which could be very time 

consuming and financially expensive. On the other hand, efficient utilization of MREs in practical 

applications while having control on the material properties is not possible without having in-depth 

knowledge on the material response under various operating conditions. Therefore, several 
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attempts have been made on development of models capable of predicting dynamic behavior of 

MREs within a given range of operating conditions. 

Several phenomenological models have been presented in the literature which usually employ 

viscoelastic parametric elements such as Maxwell, Bouc-Wen, and Voigt elements or parametric 

mathematical formulations to represent the viscoelastic characteristics of the material [48], [49], 

[90]–[92]. These models use several parameters which usually have to be evaluated repeatedly for 

new operating conditions, e.g. change in the magnetic field, material, etc. Moreover, the 

parameters do not have certainly a physical meaning and they are not able to interpret material’s 

dynamic behavior. Some recent research studies have tried to overcome the limitations of the 

phenomenological models by combining a fractional viscoelastic model with a microstructural 

dipole model [93]; however, these models still could not well explain the variation in dynamic 

properties of the MREs from the internal structure point of view. Physical microscale-based 

modeling approaches consider the interaction of embedded magnetized fillers (dipoles) at the 

microstructure level and could address the isotropic or anisotropic distribution of particles in the 

host carrier matrix. A coarse grained network model has been proposed by Ivaneyko et al. [65], 

[66] as discussed in CHAPTER 1, however, due to its limitations, the model cannot be used in 

practical applications for a wide range of frequency and magnetic field. 

In the present chapter, a novel magneto-dynamic microstructure-based model is developed 

based on the relaxation behavior of the embedded particles inside the matrix presented by Ivaneyko 

et al. [65], [66]. The model is used to predict the storage and loss moduli of MRE materials with 

various particle participation rate and is validated with experimental storage and loss moduli data 

of MREs in a broad frequency and magnetic field range up to the saturation point. First, cubic and 

chain-like lattice of magnetic particles embedded in an elastomeric medium, as investigated in 

Chapter 2, are utilized to model the isotropic and anisotropic configuration of magnetic particles 

in the network, respectively. Similar to the coarse grained network models proposed by Ivaneyko 

et al. [65], [66], particles are considered to be connected with springs representing the elasticity of 

the host matrix and each particle has a viscous constant providing the damping effects associated 

with particles’ motion and that of the material. The governing equations of motion of the particles 

(Langevin equations) in the network are subsequently derived using Lagrange’s equations to study 

the relaxation times of the particles network under magnetic induction. A dipole magnetic 

saturation formula is then introduced into the model to relate the eigenvalues and relaxation times 
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to the magnetic flux density, 𝐵, which is directly measurable in practice. The information of 

relaxation times is used in the relaxation modulus formulation to find the storage and loss moduli 

of the MRE as a function of frequency, magnetic flux density, volume fraction of particles, and 

the elastic properties of the host matrix. The material model parameters are finally estimated using 

the experimental data. For this purpose, isotropic and anisotropic MRE samples with different 

volume fraction of iron particles have been fabricated and then experimentally characterized under 

wide range of excitation frequencies and external flux densities using an advanced rheometer 

device integrated with electromagnet cell. Finally, the theoretical results based on the proposed 

model are compared with empirical data. 

 

3.2 Magneto-Dynamic Microstructure-based Modeling 

In this section, after defining an ideal distribution of particles in a cubic network, the governing 

equations of motion of the particles will be first developed in Cartesian coordinates and then 

transferred to normal coordinates. Governing equations will be solved to evaluate the relaxation 

time spectrum of particles motion which will be subsequently utilized to calculate the dynamic 

moduli of the MRE materials. 

3.2.1 Defining Ideal Distribution of Particles in Cubic Network  

An ideal distribution of particles arranged as a cubic network is considered in the 

microstructure-based modeling of the MRE materials. Figure 3.1 shows schematically a sample of 

ideally arranged cubic network of particles in equally spaced isotropic structure and in chain-like 

anisotropic configuration. Particles are located at sites of the cubic network and connected with 

springs with elasticity constants of 𝐾𝑥, 𝐾𝑦, 𝐾𝑧 which represent the elasticity of the three 

dimensional network. In addition, a friction constant 𝜁 is assigned to each particle which provides 

the effects of interfacial and intersegmental viscous friction in the composite polymer material. 

Magnetic field is applied on the particle network in vertical direction along y axis. 
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Figure 3.1 Ideal arrangement of magnetic particles in (a) equally spaced isotropic configuration (b) 

chain-like anisotropic configuration. 

As it can be seen in Figure 3.1, the distance of adjacent particles in x, y, z directions are the 

same for isotropic dispersion, thus 𝑎𝑥
0 = 𝑎𝑦

0 = 𝑎𝑧
0 = 𝑎0. For the chain-like anisotropic distribution, 

the vertical distance is smaller, i.e. 𝑎𝑦
0 < 𝑎𝑥

0 = 𝑎𝑧
0 and the horizontal distance is smaller for the 

plane-like dispersion of particles. i.e. 𝑎𝑦
0 > 𝑎𝑥

0 = 𝑎𝑧
0. Similar to Eq. (2.26), the parameter 𝛽 is 

employed to show the anisotropy level of the particle network, defined as: 

𝛽 =
𝑎𝑦
0

𝑎𝑥
0 (3.1) 

where 𝛽 = 1, corresponds to the isotropic configuration and 𝛽 < 1 presents the chain-like 

distribution of particles. 𝛽 > 1 stands for particles forming a plane-like anisotropic structure which 



59 

 

is not the concern of the present research study. Considering one unit cell, the volume fraction of 

particles in the medium as also defined in the Section 2.4.3 can be expressed as: 

𝜙 =
𝜈0

𝑎𝑥
0𝑎𝑦

0𝑎𝑧
0
 (3.2) 

where 𝜈0 =
4

3
𝜋𝑟3 is the volume of one particle. For the isotropic dispersion, volume fraction 

simplifies to 𝜙 =
4

3
𝜋 (

𝑟

𝑎0
)
3

. The elasticity constants of the springs in the general anisotropic 

network are as 𝐾𝑦 ≠ 𝐾𝑥 = 𝐾𝑧 because the distance between adjacent particles in the vertical and 

horizontal directions are different. For the isotropic network, however, the elasticity coefficients 

take equal values as 𝐾𝑦 = 𝐾𝑥 = 𝐾𝑧 = 𝐾0. Therefore, for the base isotropic cubic particle network, 

𝑎0 is the edge of unit cell and 𝐾0 is the isotropic spring coefficient. Using the equivalent spring 

constant formula of 𝐾𝑖 = 𝐸𝑖𝐴𝑖/𝐿𝑖, the spring constants for the case of anisotropic network can be 

related to the edge size of the cells as [66]: 

𝐾𝑦 =
𝐾0
𝑎0

𝑎𝑥
02

𝑎𝑦
0  

𝐾𝑥 = 𝐾𝑧 =
𝐾0
𝑎0
𝑎𝑦
0 

(3.3) 

It should be noted that the corresponding isotropic MRE has the same volume fraction of 

particles as the considered anisotropic MRE, i.e. 𝜙𝑖𝑠𝑜 = 𝜙𝑎𝑛𝑖𝑠𝑜, thus the edge sizes of the unit cells 

are related as 𝑎𝑥
0𝑎𝑦

0𝑎𝑧
0 = (𝑎0)

3. Now, considering  𝑎𝑥
0 = 𝑎𝑧

0 and Eq. (3.1), it can be shown that 

𝑎𝑦
0/𝑎0 = 𝛽2/3 and 𝑎𝑧

0/𝑎0 = 𝑎𝑥
0/𝑎0 = 𝛽−1/3. Thus, the spring constants can be related to the 

anisotropic parameter 𝛽 as: 

𝐾𝑦

𝐾0
= 𝛽−4/3;  

𝐾𝑥 (𝑜𝑟 𝐾𝑧)

𝐾0
= 𝛽2/3;  

𝐾𝑦

𝐾𝑥
= 𝛽−2 (3.4) 

For the base isotropic arrangement of particles, shear modulus of elasticity 𝐺0 of the material 

at zero magnetic field can be related to the parameters of the network. Considering a unit cell of 

the cubic network under shear deformation, 𝐺0 can be expressed in terms of isotropic spring 

coefficient 𝐾0 and edge of isotropic unit cell 𝑎0 as: 

𝐺0 =
𝐾0
𝑎0

 (3.5) 
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3.2.2 Dynamic Equations of Motion 

Brownian dynamics is used in the microstructure-based model to describe the motion of 

particles. We use the terms of energy to formulate the equation of motion of a particle by the 

Lagrange’s equations. The kinetic energy 𝑇(𝒓𝒏) of the n-th particle (network junction) can be 

expressed as: 

𝑇(𝒓𝒏) =
1

2
𝑚𝑝�̇�𝒏

2  (3.6) 

where 𝑚𝑝 and 𝒓𝒏 are the mass and position vector of a particle, respectively. �̇�𝒏 = 𝑑𝒓𝒏/𝑑𝑡 is the 

time derivative of the position vector. The index 𝒏 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) runs over the junctions of the 

network and numerates all the particles. Elastic energy 𝑈elast(𝒓𝒏) and magnetic energy 𝑈magn(𝒓𝒏) 

of the n-th particle with a position vector of 𝒓𝒏 = (𝑟𝑛𝑥 , 𝑟𝑛𝑦 , 𝑟𝑛𝑧)  can be also expressed in the general 

form as below [18], [74]: 

𝑈elast(𝒓𝒏) =
1

2
𝐾𝑥∑𝐶𝒏𝒏′(𝑟𝑛𝑥 − 𝑟𝑛𝑥′ )

2

𝑛𝑥
′

+
1

2
𝐾𝑦∑𝐶𝒏𝒏′ (𝑟𝑛𝑦 − 𝑟𝑛𝑦′ )

2

𝑛𝑦
′

+
1

2
𝐾𝑧∑𝐶𝒏𝒏′(𝑟𝑛𝑧 − 𝑟𝑛𝑧′ )

2

𝑛𝑧
′

 

(3.7) 

𝑈magn(𝒓𝒏) = −
1

4𝜋𝜇0
𝜈2𝐽𝑝

2∑
3(𝑟𝑛𝑦 − 𝑟𝑛𝑦′ )

2

− |𝒓𝒏 − 𝒓𝒏′|
2

|𝒓𝒏 − 𝒓𝒏′|5
𝒏′

  (3.8) 

The connectivity parameter 𝐶𝒏𝒏′ in Eq. (3.7) is equal to unity if 𝑛- and 𝑛′-th particles are 

connected by a spring and is 0 otherwise. 𝐽𝑝  in Eq. (3.8) is the particle polarization which will be 

formulated in terms of the flux density (𝐵) in the following and 𝜇0 stands for the vacuum 

permeability. Eq. (3.8) is similar to Eq. (2.15) in CHAPTER 2. Total potential energy of the 

particle is thus the summation of elastic and magnetic energy as: 

𝑈(𝒓𝒏) = 𝑈elast(𝒓𝒏) + 𝑈magn(𝒓𝒏) (3.9) 

The dissipative term of the energy associated with interfacial and intersegmental friction in 

the motion of a particle can be stated as [74]: 

𝐸𝑑𝑖𝑠𝑠 =
1

2
𝜁�̇�𝒏

2  (3.10) 

where 𝜁 is the friction constant. To derive the equation of motion for a particle in the network, the 

extended Euler-Lagrange’s equation is used which is written here as: 
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𝑑

𝑑𝑡
(
𝜕L

𝜕𝒓�̇�
) −

𝜕L

𝜕𝒓𝒏
+
𝜕𝐸𝑑𝑖𝑠𝑠
𝜕𝒓�̇�

= �̃�𝒏 (3.11) 

where L is the Lagrangian defined as L = 𝑇(𝒓𝒏) −  𝑈(𝒓𝒏), and �̃�𝒏 is the generalized force 

associated with the motion of the n-th particle. By substituting the Lagrangian and dissipative 

energy into Eq. (3.11), the equation of motion for a particle can be derived as follow:  

𝑚𝑝𝒓�̈� + 𝜁𝒓�̇� +
𝜕𝑈(𝒓𝒏)

𝜕𝒓𝒏
= �̃�𝒏 (3.12) 

Eq. (3.12) is known as the Langevin equation and is used in dynamic modeling of molecular 

systems. In polymeric systems, usually an overdamped form of the Langevin equation known as 

Brownian equation of motion is used which corresponds to the approximation where no average 

acceleration takes place [74]. Therefore, the inertia term is not considered and the equation of 

motion for a particle is simplified as: 

𝜁𝒓�̇� +
𝜕𝑈(𝒓𝒏)

𝜕𝒓𝒏
= 𝐹𝒏

(Br)
+ 𝐹𝒏

(Ext)
 (3.13) 

where 𝐹𝒏
(Br)

 is the Brownian force and 𝐹𝒏
(Ext)

 is the external load applied on the particle due to 

dynamic mechanical loading. The derivative of the elastic energy function can be easily obtained 

as:  

𝜕𝑈elast(𝒓𝒏)

𝜕𝒓𝒏
= 𝐾𝑥∑𝐶𝑛𝑛′(𝑟𝑛𝑥 − 𝑟𝑛𝑥′ )

𝑛𝑥
′

+𝐾𝑦∑𝐶𝑛𝑛′ (𝑟𝑛𝑦 − 𝑟𝑛𝑦′ )

𝑛𝑦
′

+ 𝐾𝑧∑𝐶𝑛𝑛′(𝑟𝑛𝑧 − 𝑟𝑛𝑧′ )

𝑛𝑧
′

 

(3.14) 

Due to high nonlinear nature of the magnetic energy function, Taylor series has been used to 

expand the function in the polynomial form up to the second order. To this end, the position vectors 

of the n-th particle and its adjacent n′-th particle can be defined around their average values as: 

𝒓𝒏 = 𝒓𝒏
(0)
+ 𝛿𝒓𝒏 

𝒓𝒏′ = 𝒓
𝒏′
(0)
+ 𝛿𝒓𝒏′ 

(3.15) 

where 𝒓𝒏
(0)

 is the average value and 𝛿𝒓𝒏 is the variation around the average value. Indeed, 𝛿𝒓𝒏 

states the fluctuation of a particle around its average position. The magnetic energy which is a 

function of the term (𝒓𝒏 − 𝒓𝒏′), can now be expanded using a Taylor series as:  

𝑈magn(𝒓𝒏 − 𝒓𝒏′) = 𝑈magn(𝒓𝒏
(0)
− 𝒓

𝒏′
(0)
+ 𝛿𝒓𝒏 − 𝛿𝒓𝒏′) (3.16) 
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≅ 𝑈magn(𝒓𝒏
(0)
− 𝒓

𝒏′
(0)
) + ∇𝑈magn(𝒓𝒏

(0)
− 𝒓

𝒏′
(0)
)
T
(𝛿𝒓𝒏 − 𝛿𝒓𝒏′) 

+
1

2
(𝛿𝒓𝒏 − 𝛿𝒓𝒏′)

𝑇𝐻magn(𝒓𝒏
(0)
− 𝒓

𝒏′
(0)
)(𝛿𝒓𝒏 − 𝛿𝒓𝒏′) 

where ∇𝑈magn(𝒓𝒏
(0)
− 𝒓

𝒏′
(0)
) and 𝐻magn (𝒓𝒏

(0) − 𝒓
𝒏′
(0)
) are the gradient vector and Hessian matrix 

of the magnetic energy function at average positions of the particles. The superscript “ T ” shows 

the transpose for a matrix. Regarding the above Taylor’s expansion, the first-order derivation of 

the magnetic energy function may be obtained as: 

 
𝜕𝑈magn(𝒓𝒏−𝒓𝒏′)

𝜕𝒓𝒏
= ∇𝑈magn(𝒓𝒏

(0)
− 𝒓

𝒏′
(0)
) + 𝐻magn(𝒓𝒏

(0)
− 𝒓

𝒏′
(0)
)(𝛿𝒓𝒏 − 𝛿𝒓𝒏′) (3.17) 

The gradient of the magnetic potential energy at equilibrium state, i.e. at average positions of 

the particles is zero, (∇𝑈magn(𝒓𝒏
(0)
− 𝒓

𝒏′
(0)
) = 0) and the Hessian matrix at equilibrium state in Eq. 

(3.17) is calculated as follow: 

𝐻magn (𝒓𝒏
(0)−𝒓

𝒏′
(0)
) =

[
 
 
 
 
 
 
 
𝜕2𝑈magn

𝜕𝑟𝑛𝑥
2

𝜕2𝑈magn

𝜕𝑟𝑛𝑥𝜕𝑟𝑛𝑦

𝜕2𝑈magn

𝜕𝑟𝑛𝑥𝜕𝑟𝑛𝑧
𝜕2𝑈magn

𝜕𝑟𝑛𝑦𝜕𝑟𝑛𝑥

𝜕2𝑈magn

𝜕𝑟𝑛𝑦
2

𝜕2𝑈magn

𝜕𝑟𝑛𝑦𝜕𝑟𝑛𝑧
𝜕2𝑈magn

𝜕𝑟𝑛𝑧𝜕𝑟𝑛𝑥

𝜕2𝑈magn

𝜕𝑟𝑛𝑧𝜕𝑟𝑛𝑦

𝜕2𝑈magn

𝜕𝑟𝑛𝑧
2

]
 
 
 
 
 
 
 

𝑟𝑛=𝑟𝑛
(0)

𝑟
𝑛′
=𝑟
𝑛′
(0)

= −12𝐾0𝛽
5
3 (

𝐽

𝐽∗
)
2

∑ �̂�(𝒌,𝛽)
𝒌

 
(3.18) 

where the index 𝒌 = 𝒏′ − 𝒏  is introduced and the relation 𝒓
𝒏′
(0)
− 𝒓𝒏

(0) = 𝑎𝑥
0𝑘𝑥𝒆𝒙 + 𝑎𝑦

0𝑘𝑦𝒆𝒚 +

𝑎𝑧
0𝑘𝑧𝒆𝒛 was employed in derivation. 𝐽∗ is a parameter defined by: 

𝐽∗ = √
𝜋𝜇0𝐺0
𝜙2

 (3.19) 

The components of the matrix �̂�(𝒌, 𝛽) in Eq. (3.18) are obtained as: 

𝑎𝑥𝑥(𝒌, 𝛽) = −
4𝛽4𝑘𝑦

4 + 4𝑘𝑥
4 − 𝑘𝑧

4 + 3(𝑘𝑥
2 + 𝛽2𝑘𝑦

2)𝑘𝑧
2 − 27𝛽2𝑘𝑥

2𝑘𝑦
2

16(𝑘𝑥2 + 𝛽2𝑘𝑦2 + 𝑘𝑧2)
9/2 

 

𝑎𝑥𝑦(𝒌, 𝛽) = 𝑎𝑦𝑥(𝒌, 𝛽) =
5𝛽2𝑘𝑥𝑘𝑦(4𝛽

2𝑘𝑦
2 − 3𝑘𝑥

2 − 3𝑘𝑧
2)

16(𝑘𝑥2 + 𝛽2𝑘𝑦2 + 𝑘𝑧2)
9/2 

 

𝑎𝑦𝑦(𝒌, 𝛽) =
8𝛽4𝑘𝑦

4 − 24𝛽2𝑘𝑦
2(𝑘𝑥

2 + 𝑘𝑧
2) + 3(𝑘𝑥

2 + 𝑘𝑧
2)2

16(𝑘𝑥2 + 𝛽2𝑘𝑦2 + 𝑘𝑧2)
9/2 

 

(3.20) 
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𝑎𝑧𝑦(𝒌, 𝛽) = 𝑎𝑦𝑧(𝒌, 𝛽) =
5𝛽2𝑘𝑦𝑘𝑧(4𝛽

2𝑘𝑦
2 − 3𝑘𝑥

2 − 3𝑘𝑧
2)

16(𝑘𝑥2 + 𝛽2𝑘𝑦2 + 𝑘𝑧2)
9/2 

 

𝑎𝑧𝑥(𝒌, 𝛽) = 𝑎𝑥𝑧(𝒌, 𝛽) =
5𝑘𝑥𝑘𝑧(6𝛽

2𝑘𝑦
2 − 𝑘𝑥

2 − 3𝑘𝑧
2)

16(𝑘𝑥2 + 𝛽2𝑘𝑦2 + 𝑘𝑧2)
9/2 

 

𝑎𝑧𝑧(𝒌, 𝛽) = −
4𝛽4𝑘𝑦

4 + 4𝑘𝑧
4 − 𝑘𝑥

4 + 3(𝛽2𝑘𝑦
2 + 𝑘𝑧

2)𝑘𝑥
2 − 27𝛽2𝑘𝑦

2𝑘𝑧
2

16(𝑘𝑥2 + 𝛽2𝑘𝑦2 + 𝑘𝑧2)
9/2 

 

 

Finally, by substituting Eqs. (3.14), (3.17), and (3.18) into Eq. (3.13), the equation of motion 

can be written in terms of 𝛿𝒓𝒏 in the following form: 

𝜁𝛿�̇�𝒏 + 𝐾𝑥∑𝐶𝑛𝑛′(𝛿𝑟𝑛𝑥 − 𝛿𝑟𝑛𝑥′ )

𝑛𝑥
′

+ 𝐾𝑦∑𝐶𝑛𝑛′ (𝛿𝑟𝑛𝑦 − 𝛿𝑟𝑛𝑦′ )

𝑛𝑦
′

+ 𝐾𝑧∑𝐶𝑛𝑛′(𝛿𝑟𝑛𝑧 − 𝛿𝑟𝑛𝑧′ )

𝑛𝑧
′

− 12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌, 𝛽)(𝛿𝒓𝒏 − 𝛿𝒓𝒏+𝒌)

𝒌

= 𝐹𝑛
(Br) + 𝐹𝑛

(Ext)
 

(3.21) 

To solve the equation of motion and find the relaxation times of the particle motions, first the 

Cartesian coordinates 𝛿𝒓𝒏 are transformed into the normal coordinates 𝑸(𝜽) using the following 

Fourier transform [74]: 

𝛿𝒓𝒏 =∑ 𝑒𝑖𝒏𝜽𝑸(𝜽)

𝜽

 (3.22) 

The phase shift vector 𝜽 = (𝜃𝑥, 𝜃𝑦, 𝜃𝑧), with the components vary within the limiting values 

of 0 and 𝜋, i.e. 𝜃𝑥,𝑦,𝑧 ∈ [0 𝜋], determines the phase shift between the displacements of neighboring 

network junctions for motions along the x, y, z-axes under excitation of a given normal mode. The 

limiting values of 𝜽 → (0, 0, 0) describe the in-phase motion of neighboring particles whereas 𝜽 →

(𝜋, 𝜋, 𝜋) determine modes with out-of-phase motion of particles. In Eq. (3.22), 𝒏𝜽 is the scalar 

product of the vectors. 

By substituting Eq. (3.22) into Eq. (3.21), the first term in the left side of the equation (𝜁𝛿�̇�𝒏), 

takes the following form in the normal coordinates: 

𝜁𝛿�̇�𝒏 = 𝜁∑𝑒𝑖𝒏𝜽�̇�(𝜽)

𝜽

 (3.23) 
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where �̇�(𝜽) is the time derivative of the normal coordinate 𝑸(𝜽). Also considering that there are 

six particles in the cubic network surrounding the n-th particle, the terms having spring forces in 

Eq. (3.21) can be simplified as: 

𝐾𝑥∑𝐶𝑛𝑛′(𝛿𝑟𝑛𝑥 − 𝛿𝑟𝑛𝑥′ )

𝑛𝑥
′

+ 𝐾𝑦∑𝐶𝑛𝑛′ (𝛿𝑟𝑛𝑦 − 𝛿𝑟𝑛𝑦′ )

𝑛𝑦
′

+ 𝐾𝑧∑𝐶𝑛𝑛′(𝛿𝑟𝑛𝑧 − 𝛿𝑟𝑛𝑧′ )

𝑛𝑧
′

= 𝐾𝑥 (2𝛿𝑟(𝑛𝑥,𝑛𝑦,𝑛𝑧) − 𝛿𝑟(𝑛𝑥+1,𝑛𝑦 ,𝑛𝑧) − 𝛿𝑟(𝑛𝑥−1,𝑛𝑦 ,𝑛𝑧))

+ 𝐾𝑦 (2𝛿𝑟(𝑛𝑥,𝑛𝑦,𝑛𝑧) − 𝛿𝑟(𝑛𝑥,𝑛𝑦+1,𝑛𝑧) − 𝛿𝑟(𝑛𝑥,𝑛𝑦−1,𝑛𝑧))

+ 𝐾𝑧 (2𝛿𝑟(𝑛𝑥,𝑛𝑦,𝑛𝑧) − 𝛿𝑟(𝑛𝑥,𝑛𝑦,𝑛𝑧+1) − 𝛿𝑟(𝑛𝑥,𝑛𝑦,𝑛𝑧−1)) 

(3.24) 

which after substitution of normal modes from Eq. (3.22), right hand side of Eq. (3.24) yields: 

= 𝐾𝑥 (2∑ 𝑒𝑖𝒏𝜽𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽+𝑖𝜃𝑥𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽−𝑖𝜃𝑥𝑸(𝜽)

𝜽

)

+ 𝐾𝑦 (2∑ 𝑒𝑖𝒏𝜽𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽+𝑖𝜃𝑦𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽−𝑖𝜃𝑦𝑸(𝜽)

𝜽

)

+ 𝐾𝑧 (2∑ 𝑒𝑖𝒏𝜽𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽+𝑖𝜃𝑧𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽−𝑖𝜃𝑧𝑸(𝜽)

𝜽

) 

(3.25) 

Also as for the general anisotropic network, the horizontal distance between particles in the x-

z plane and so the spring constants are equal, 𝐾𝑥 = 𝐾𝑧. We may write Eq. (3.25) as: 

= 𝐾𝑥 (4∑ 𝑒𝑖𝒏𝜽

𝜽

−∑ 𝑒𝑖𝒏𝜽

𝜽

(𝑒𝑖𝜃𝑥 + 𝑒−𝑖𝜃𝑥 + 𝑒𝑖𝜃𝑧 + 𝑒−𝑖𝜃𝑧))𝑸(𝜽)

+ 𝐾𝑦  (2∑ 𝑒𝑖𝒏𝜽

𝜽

−∑ 𝑒𝑖𝒏𝜽

𝜽

(𝑒𝑖𝜃𝑦 + 𝑒−𝑖𝜃𝑦))𝑸(𝜽) 

(3.26) 

Finally, using the Euler’s formula, 𝑒𝑖𝜃𝑥 = cos(𝜃𝑥) + 𝑖𝑠𝑖𝑛(𝜃𝑥), Eq. (3.26) can be written as: 
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= [𝐾𝑥 (4∑ 𝑒𝑖𝒏𝜽

𝜽

−∑ 𝑒𝑖𝒏𝜽

𝜽

(2 cos(𝜃𝑥) + 2 cos(𝜃𝑧)))

+ 𝐾𝑦  (2∑ 𝑒𝑖𝒏𝜽

𝜽

−∑ 𝑒𝑖𝒏𝜽

𝜽

(2 cos(𝜃𝑦)))]𝑸(𝜽) 

= [2𝐾𝑥∑ 𝑒𝑖𝒏𝜽

𝜽

(2 − cos(𝜃𝑥) − cos(𝜃𝑧)) + 2𝐾𝑦∑ 𝑒𝑖𝒏𝜽

𝜽

(1 − cos(𝜃𝑦))]𝑸(𝜽) 

(3.27) 

The term associated with magnetic forces in Eq. (3.21) also transform to the following form 

after substitution of normal modes: 

−12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌, 𝛽)(𝛿𝒓𝒏 − 𝛿𝒓𝒏+𝒌)

𝒌

 

= −12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌, 𝛽) (∑ 𝑒𝑖𝒏𝜽𝑸(𝜽)

𝜽

−∑ 𝑒𝑖(𝒏+𝒌)𝜽𝑸(𝜽)

𝜽

)

𝒌

 

= −12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌)(∑ 𝑒𝑖𝒏𝜽𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽𝑒𝑖𝒌𝜽𝑸(𝜽)

𝜽

)

𝒌

= 

= −12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌)(∑ 𝑒𝑖𝒏𝜽𝑸(𝜽)

𝜽

−∑ 𝑒𝑖𝒏𝜽(cos(𝒌𝜽) + 𝑖𝑠𝑖𝑛(𝒌𝜽))𝑸(𝜽)

𝜽

)

𝒌

 

= −12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌)(∑ 𝑒𝑖𝒏𝜽(1 − cos(𝒌𝜽) − 𝑖𝑠𝑖𝑛(𝒌𝜽))

𝜽

)𝑸(𝜽)

𝒌

 

= −12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑ 𝑒𝑖𝒏𝜽

𝜽

∑�̂�(𝒌, 𝛽)

𝒌

(1 − cos(𝒌𝜽) − 𝑖𝑠𝑖𝑛(𝒌𝜽))𝑸(𝜽) 

 

(3.28) 

By substituting the resulting relations from Eqs. (3.23), (3.27), and (3.28) into the Eq. (3.21), 

the homogeneous equation of motion can be expressed as: 

𝜁∑𝑒𝑖𝒏𝜽�̇�(𝜽)

𝜽

+ [2𝐾𝑥∑ 𝑒𝑖𝒏𝜽

𝜽

(2 − cos(𝜃𝑥) − cos(𝜃𝑧)) + 2𝐾𝑦∑ 𝑒𝑖𝒏𝜽

𝜽

(1 − cos(𝜃𝑦))]𝑸(𝜽)

− 12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑ 𝑒𝑖𝒏𝜽

𝜽

∑�̂�(𝒌, 𝛽)

𝒌

(1 − cos(𝒌𝜽) − 𝑖𝑠𝑖𝑛(𝒌𝜽))𝑸(𝜽) = 0 

 

(3.29) 

Eq. (3.29) can be also written in the following form: 



66 

 

=∑ 𝑒𝑖𝒏𝜽

𝜽

(

 
 
𝜁�̇�(𝜽) + (

2𝐾𝑥(2 − cos(𝜃𝑥) − cos(𝜃𝑧)) + 2𝐾𝑦(1 − cos(𝜃𝑦))

−12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌, 𝛽)

𝒌

(1 − cos(𝒌𝜽) − 𝑖𝑠𝑖𝑛(𝒌𝜽))
)𝑸(𝜽)

)

 
 
= 0 (3.30) 

To be valid, the summand in Eq. (3.30) must be zero: 

𝜁�̇�(𝜽) + (

2𝐾𝑥(2 − cos(𝜃𝑥) − cos(𝜃𝑧)) + 2𝐾𝑦(1 − cos(𝜃𝑦))

−12𝐾0𝛽
5

3 (
𝐽

𝐽∗
)
2

∑�̂�(𝒌, 𝛽)

𝒌

(1 − cos(𝒌𝜽) − 𝑖𝑠𝑖𝑛(𝒌𝜽))
)𝑸(𝜽) = 0 (3.31) 

Using relations in Eq. (3.4) and by taking only the real terms into consideration, Eq. (3.31) can 

be subsequently simplified as: 

�̇�(𝜽) +
12𝐾0

𝜁

(

 
 

1

6
𝛽
2
3(2 − cos(𝜃𝑥) − cos(𝜃𝑧)) +

1

6
𝛽−

4
3(1 − cos(𝜃𝑦))

+𝛽
5
3 (
𝐽

𝐽∗
)

2

∑ �̂�(𝒌,𝛽)
𝒌

(cos(𝒌𝜽) − 1)

)

 
 
𝑄(𝜽) = 0 (3.32) 

which can be written in compact form as: 

 �̇�(𝜽) +
1

𝜏0
�̂�𝑸(𝜽) = 0 (3.33) 

where 𝜏0 =
𝜁

12𝐾0
 is the minimal relaxation time associated with the base isotropic particle network 

in the absence of the applied magnetic field. Matrix �̂� has the following form:  

�̂�(𝜽, 𝛽) = 𝜆0(𝜽, 𝛽)𝐼 + (
𝐽

𝐽∗
)
2

�̂�(𝜽, 𝛽) (3.34) 

where 𝐼 is a third-order unit matrix. The function 𝜆0(𝜽, 𝛽) and the matrix �̂�(𝜽, 𝛽) are expressed 

as: 

𝜆0(𝜽, 𝛽) =
1

6
𝛽
2

3(2 − cos(𝜃𝑥) − cos(𝜃𝑧)) +
1

6
𝛽
−
4

3(1 − cos(𝜃𝑦)) (3.35) 

�̂�(𝜽, 𝛽) = 𝛽
5

3∑�̂�(𝒌, 𝛽)

𝒌

(cos(𝒌𝜽) − 1) (3.36) 

It is seen that the cubic matrix �̂�(𝜽, 𝛽) is related to the symmetrical matrix �̂�(𝒌, 𝛽) whose 

components were obtained in Eq. (3.20). Now Equation (3.33) is solved to obtain the relaxation 

spectrum corresponding to the normal modes. A potential solution for Eq. (3.33) is in the following 

form: 

𝑸 = 𝑽𝑒−
𝑡
�̂� 
 
 (3.37) 
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where �̂� is the relaxation time for a given normal coordinate. To simplify the solution of the Eq. 

(3.33), the dimensionless parameter 𝜆 = 𝜏0 /�̂�  is defined where 𝜆 is the inverse relaxation time. 

By substituting Eq. (3.37) into Eq. (3.33), the eigenvalue equation for 𝜆 is obtained in the following 

form:  

�̂�𝑽 = 𝜆𝑽 (3.38) 

where the vector 𝑽 and the inverse relaxation time 𝜆 are the eigenvector and eigenvalues of the 

matrix �̂�, respectively. To find the relaxation time and spectrum of the particle network, the 

eigenvalue equation in Eq. (3.38) has to be solved to find the values of 𝜆 in the three directions, 

i.e. 𝜆𝑥, 𝜆𝑦, 𝜆𝑧. An approximate solution is suggested in [65] for the eigenvalues of the matrix �̂� 

assuming that the contribution of the non-diagonal elements of the matrix �̂� to the dynamic 

characteristics of the network can be neglected with a good approximation. It means that the 

motion along one direction is independent from the motions along the other directions. The 

approximate solution for 𝜆 can be expressed as: 

{
  
 

  
 𝜆𝑥(𝜽, 𝛽) = 𝜆0(𝜽, 𝛽) + (

𝐽

𝐽∗
)
2

𝐴𝑥𝑥(𝜽, 𝛽)

𝜆𝑦(𝜽, 𝛽) = 𝜆0(𝜽, 𝛽) + (
𝐽

𝐽∗
)
2

𝐴𝑦𝑦(𝜽, 𝛽)

𝜆𝑧(𝜽, 𝛽) = 𝜆0(𝜽, 𝛽) + (
𝐽

𝐽∗
)
2

𝐴𝑧𝑧(𝜽, 𝛽)

 (3.39) 

where 𝐴𝑥𝑥, 𝐴𝑦𝑦, 𝐴𝑧𝑧 are the diagonal elements of the matrix �̂�(𝜽, 𝛽) defined in Eq. (3.36). 

Therefore, Eq. (3.39) gives three independent relations for the eigenvalues in the three directions 

𝜆𝑥, 𝜆𝑦, 𝜆𝑧. It is seen that the eigenvalues 𝜆𝑥, 𝜆𝑦, 𝜆𝑧 are functions of 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧 and depend on the 

parameter (
𝐽

𝐽∗
). In addition, 𝜆𝑥 and 𝜆𝑧 are equal at 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧. These eigenvalues define the 

relaxation times associated with particle motions parallel to the magnetic field �̂�𝑦 = 𝜏0/𝜆𝑦 and 

perpendicular to the field direction, �̂�𝑥 = 𝜏0/𝜆𝑥 and �̂�𝑧 = 𝜏0/𝜆𝑧. It can be inferred from Eq. (3.39) 

that 𝜆0 describes the eigenvalue 𝜆 for the particle network in the absence of magnetic field. It 

should be noted here that dependence of parameters in the above equations on 𝜽 and 𝛽 is for the 

general anisotropic network of particles. For the isotropic configuration, equal distance between 

particles results in 𝛽 = 1 and so the parameters only depend on the phase shift vector 𝜽. 

The particle polarization 𝐽, which cannot be directly measured, is related to the magnetic flux 

density, which is a directly measurable parameter, using a modified particle saturation model 
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originated from the work of Jolly et al. [51] and discussed in the previous chapter in Eq.(2.19). 

Based on this model, particle polarization, 𝐽, for an MRE with volume fraction of 𝜙 can be 

expressed as a function of the averaged magnetic flux density, 𝐵, as: 

𝐽 =

3
2 (𝛼 − 𝛼

3)𝐵 + (1 − 𝛼3)(𝑠𝐽𝑠)

1 +
3
2𝜙(𝛼 − 𝛼

3)
 (3.40) 

where 𝐽𝑠 is the saturation polarization, and 𝛼 is a parameter constrained within the range of 0 and 

1 as defined in Eq.(2.20). The constant parameter 𝑘1 is assumed to be unity here, 𝑘1 = 1. As also 

described in the Chapter 2, the value of saturation polarization, 𝐽𝑠, for pure iron is 2.1 T. However, 

MRE samples with various volume fraction of particles will saturate at different level of magnetic 

induction as observed in the experimental results in Section 2.2. Therefore, another constant 

parameter, 𝑠, is used in the model as the coefficient of the saturation polarization to tune for MRE 

samples with different volume fraction of iron particles.  

Using Eqs. (3.39) and (3.40), the eigenvalues, 𝜆, can now be obtained as a function of 𝜽 for 

different values of magnetic flux density, 𝐵, volume fraction, 𝜙, and anisotropy parameter, 𝛽. 

First, we consider isotropic MREs with 𝛽 =1. Figure 3.2 shows the spectrum of eigenvalues, 𝜆, as 

a function of 𝜃 = 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 for two MRE samples with 15% and 25% volume fraction of 

magnetic particles under 0.0 T and 0.2 T applied magnetic flux densities.   

The dashed line in Figure 3.2, presents the eigenvalue 𝜆0 in the absence of magnetic field. It 

is observed that by applying a magnetic field on the medium, the spectrum of eigenvalues breaks 

into two independent branches of eigenvalues associated with motions along (𝜆𝑦 < 𝜆0) and normal 

(𝜆𝑥 = 𝜆𝑧 > 𝜆0) to the direction of external magnetic field. Both the external magnetic field and 

volume fraction of particles intensify the breaking level of eigenvalues. For instance, for the 

sample with 𝜙 = 15%, 𝜆𝑦 decreases while 𝜆𝑥 = 𝜆𝑧 increases with increasing the magnetic flux 

density as shown in Figure 3.2 (a) and (b). Similar behavior is observed in Figure 3.2 (c) and (d) 

for the volume fraction of 𝜙 = 25%. On the other hand, at constant level of applied magnetic field, 

the sample with higher volume fraction of particles has lower values of 𝜆𝑦 and higher values of 

𝜆𝑥 = 𝜆𝑧, which shows the fact that sensitivity to the applied magnetic field is greater when there 

is higher population of particles in the structure. 
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(a) (b) 

  

(c) (d) 

Figure 3.2 Spectrum of eigenvalues, 𝜆, in terms of 𝜃 for isotropic dispersion of particles at various 

magnetic field induction: (a) 𝜙 = 15%, 𝐺0 = 31.77 kPa, and 𝐵 = 0.2 T, (b) 𝜙 = 15%, 𝐺0 = 31.77 kPa, 
and 𝐵 = 0.4 T, (c) 𝜙 = 25%, 𝐺0 = 48.19 kPa, and 𝐵 = 0.2 T, and (d) 𝜙 = 25%, 𝐺0 = 48.19 kPa, and 

𝐵 = 0.4 T. 

For the chain-like anisotropic dispersion of particles, the eigenvalues , 𝜆, also depend on the 

anisotropy parameter 𝛽 < 1. Figure 3.3 shows the eigenvalues for an anisotropic MRE with 𝜙 =

15% at two different values of anisotropy parameter 𝛽 = 0.8 and 𝛽 = 0.6. To observe the effect 

of 𝛽 on the spectrum, magnetic flux density is kept constant at 𝐵 = 0.2 T. Results show that the 

zero-field eigenvalue, 𝜆0, increases with decreasing 𝛽 suggesting that higher eigenvalue (lower 

relaxation time) can be achieved in the absence of magnetic field by enhancing the anisotropy 

nature of the MRE. In addition, under applied magnetic field, greater decrease in 𝜆𝑦 and greater 

increase in 𝜆𝑥 = 𝜆𝑧 are observed with decreasing 𝛽. This suggests that the eigenvalues (relaxation 

times) become more sensitive to the magnetic field as the particles arrangement moves toward 

chains (decrease in 𝛽 from unity).  

It should be noted that the relaxation time is inversely related to the effective stiffness along a 

direction which can explain the variation of eigenvalues with respect to the applied magnetic field. 
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As discussed in the Chapter 2 and [18], when magnetic field is applied on the particle network 

along the y direction, particles along the y-axis attract each other leading to negative magnetic 

potential energy that reduces the effective stiffness and subsequently increases the  relaxation time 

along the y-axis (decrease of 𝜆𝑦). On the other hand, the positive magnetic potential energy of 

particles in the x and z directions, adds to the stiffness in those direction which leads to the decrease 

of relaxation time (increase of 𝜆𝑥 = 𝜆𝑧). This trend of eigenvalues in terms of applied magnetic 

field is naturally more pronounced at higher volume fraction of particles and also for strongly 

chain-like structure of particles as shown in the Figure 3.2 and Figure 3.3. Another important 

conclusion from results of this part is that the relaxation time of the particle motions at zero 

magnetic field depends on the particle distribution (𝛽) but not on the population of the particles 

(𝜙). 

  

(a) (b) 

Figure 3.3 Spectrum of eigenvalues, 𝜆, in terms of 𝜃 for anisotropic chain-like distribution of 

particles with 𝜙 = 15%, 𝐺0 = 31.77 kPa, and 𝐵 = 0.2 T, for (a) 𝛽 = 0.8 and (b) 𝛽 = 0.6. 

According to Eq. (3.39) and results of Figure 3.2 and Figure 3.3, the decreasing trend of 𝜆𝑦 

with increase of external magnetic field might ultimately yield negative 𝜆𝑦 and subsequently 

negative relaxation time along the y-axis, �̂�𝑦, at sufficiently high magnetic flux density. Negative 

relaxation time means instability and tendency of a normal mode to move toward infinity which 

means that under applied magnetic field, particles diverge from the initial equilibrium position and 

they may rearrange into a new equilibrium state [66]. Regarding that the rearrangement of particles 

is out of the scope of the current model, we introduce a critical magnetic flux density, 𝐵𝑐𝑟, at which 

𝜆𝑦 is a negative value and thus the model is not applicable to magnetic flux densities above this 

critical threshold. The critical flux density depends on both the anisotropy parameter, 𝛽, and 

volume fraction of magnetic particles, 𝜙. Therefore, all eigenvalues are positive at 𝐵 < 𝐵𝑐𝑟, while 
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there are negative eigenvalues in the spectrum at 𝐵 > 𝐵𝑐𝑟 which is not acceptable. The critical flux 

density is calculated numerically as a function of 𝛽 varying in the range of 0.1 to 3 (it is noted that 

in the present research we are mainly concerned with 𝛽 ≤ 1)  and 𝜙 changing from 5% to 40% as 

shown in the Figure 3.4. Results suggest that at constant 𝜙, the critical flux density occurs at lower 

field values for chain-like configuration of particles (𝛽 < 1) as compared with the isotropic 

particle network (𝛽 = 1). For instance, for MREs with 15% particle volume fraction, the critical 

flux density for isotropic network (𝛽 = 1) is 𝐵𝑐𝑟 = 0.64 T, while it is 𝐵𝑐𝑟 = 0.5 T for 𝛽 = 0.8. 

Besides, for a constant value of 𝛽, the critical flux density moves toward lower flux densities at 

higher volume fraction of particles. For instance, for 𝛽 =0.6, the critical flux density is 𝐵𝑐𝑟 = 0.86 

T for 𝜙 = 5%, , while it is 𝐵𝑐𝑟 =  0.29 T for 𝜙 = 20%. It should be noted that the relation between 

𝐺0 and 𝜙 is obtained as 𝐺0 = 15810 𝑒4.462𝜙 using the experimental results presented in Figure 

2.23 of CHAPTER 2 and this relation is used for the simulations presented in Figure 3.4. In 

summary, the flux density values in the proposed model cannot go beyond the critical flux density, 

𝐵𝑐𝑟.  

 

Figure 3.4 Critical flux density, 𝐵𝑐𝑟, in tesla versus anisotropy parameter, 𝛽, and volume fraction of 

magnetic particles, 𝜙 (%), (𝑠 = 1). 
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3.2.3 Storage and Loss Moduli of MRE 

The results of relaxation time spectrum obtained in the previous section can be effectively 

utilized to evaluate the dynamic moduli of the MRE material. Let us consider that the MRE 

material is under oscillatory shear deformation where magnetic field is applied normal to the 

shearing deformation as shown in Figure 3.5. 

 

Figure 3.5 An element of MRE material under oscillating shear deformation where magnetic field is 

normal to the shear direction. 

Using the relations developed for the dynamic properties of three-dimensional network 

polymer systems [94], the time-dependent relaxation modulus of the MRE material in the 

framework of considered normal coordinates can be written as [66]: 

𝐺𝑥𝑦(𝑡) = 𝐺𝑥𝑦
(eq)

+
𝑐𝑘𝐵�̅�

𝜋3
 ∭ [

𝜆𝑥(𝜽, 𝛽)

𝜆𝑦(𝜽, 𝛽)
𝑒−(𝜆𝑥(𝜽,𝛽)+𝜆𝑦(𝜽,𝛽))𝑡/𝜏0] 𝑑𝜃𝑥𝑑𝜃𝑦𝑑𝜃𝑧

Ω

  (3.41) 

where 𝐺𝑥𝑦
(eq)

 is the static shear modulus, 𝑐 is the number of magnetic particles in the unit volume 

of the network which can be written as 𝑐 = 𝜙/ 𝜈. 𝑘𝐵 = 1.380649× 10−23 is the Boltzmann 

constant, �̅� is the average absolute temperature which is 298.15 K for the experiments done in the 

current research. The triple integral is performed over the volume Ω of the cube with the side length 

of 𝜋. 

The frequency-dependent dynamic complex modulus can subsequently be derived by 

transforming the time-dependent relaxation modulus in Eq. (3.41) to frequency domain using 

Fourier transform as: 

𝐺𝑥𝑦
∗ (𝜔) = 𝑖𝜔∫ 𝐺𝑥𝑦(𝑡)𝑒

−𝑖𝜔𝑡𝑑𝑡
∞

0

 (3.42) 
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where 𝜔 = 2𝜋𝑓 is the angular frequency in rad/s. The storage and loss moduli can be obtained 

from the real and imaginary parts of the dynamic complex modulus, respectively. By substituting 

Eq. (3.41) into Eq. (3.42) and performing the time-dependent integral, the storage, 𝐺𝑥𝑦
′ , and loss, 

𝐺𝑥𝑦
′′ , moduli can be expressed in terms of frequency as: 

  

𝐺𝑥𝑦
′ (𝑓) = 𝐺𝑥𝑦

(eq)
+
𝑐𝑃𝑘𝐵�̅�

𝜋3
∭ [

𝜆𝑥(𝜽, 𝛽)

𝜆𝑦(𝜽, 𝛽)
×

(2𝜋𝑓𝜏0)
2

[𝜆𝑥(𝜽, 𝛽) + 𝜆𝑦(𝜽, 𝛽)]
2
+ (2𝜋𝑓𝜏0)2

] 𝑑𝜃𝑥𝑑𝜃𝑦𝑑𝜃𝑧
Ω

  (3.43) 

𝐺𝑥𝑦
′′ (𝑓) = 𝐺𝑓0

′′ +
𝑐𝑃𝑘𝐵�̅�

𝜋3
 ∭ [

𝜆𝑥(𝜽, 𝛽)

𝜆𝑦(𝜽, 𝛽)
×

(2𝜋𝑓𝜏0) (𝜆𝑥(𝜽, 𝛽) + 𝜆𝑦(𝜽, 𝛽))

[𝜆𝑥(𝜽, 𝛽) + 𝜆𝑦(𝜽, 𝛽)]
2
+ (2𝜋𝑓𝜏0)2

] 𝑑𝜃𝑥𝑑𝜃𝑦𝑑𝜃𝑧
Ω

 (3.44) 

where 𝑓 is the frequency of the dynamic load in Hz. 𝐺𝑥𝑦
(eq)

 is the static shear modulus that can be 

obtained from quasi-static model in Chapter 2 or from the experimental data. Since practically the 

loss modulus  at low starting frequency is not zero and has a small value, 𝐺𝑓0
′′ is added to the right 

side of Eq. (3.44) to address the initial loss modulus at starting frequency. Therefore, the value 𝐺𝑓0
′′ 

will be identified from the experimental results. As mentioned before, 𝜏0 is the minimal relaxation 

time of the isotropic particle network in the absence of the applied magnetic field. In Eqs. (3.43) 

and (3.44), 𝑃 is a constant incorporated into the modulus formulations as a tuning parameter. This 

parameter could also compensate the effects of complex multipolar interactions resulting from 

complex structure of particles on the dynamics of the material which are not considered in the 

ideal cubic particle network of the microstructure-based model. 

It is noted that storage and loss moduli in Eqs. (3.43) and (3.44) are not only dependent on the 

frequency, but also are functions of the applied magnetic flux density, anisotropy parameter 𝛽, 

volume fraction of particles, and material properties of the host matrix. Equations (3.43) and (3.44) 

can be practically used to predict the results of storage and loss moduli of the isotropic and 

anisotropic MRE materials with different volume fractions under varying applied magnetic field 

and dynamic shear loading. It is interesting to note that the proposed models for storage and loss 

moduli in Eqs. (3.43) and (3.44) have minimal number of constant parameters (𝜏0, 𝑃, 𝑠 and 𝛽) 

which should be identified using experiment. Such versatile models can be effectively utilized for 

modeling and analysis of MRE-based devices at early stages of design without conducting time-
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consuming and expensive experiments for different conditions associated with material, magnetic 

field and loading excitation. 

3.3 Materials and Experimental Methods 

3.3.1 Preparation of MRE Samples 

A silicon rubber with commercial name of EcoflexTM 00-20 is used as the elastomeric matrix 

material. This silicon rubber has a density of 1.04 g/cm3 and dynamic viscosity of 3000 cPs. 

Spherical shape CIPs with commercial name of BASF SQ® with average diameter of 3.9 to 5 μm 

and density of 7.87 g/cm3 are used as the magnetic fillers. The spherical shape of the particles and 

low viscosity of the selected rubber facilitate the distribution of particles in the matrix and ensures 

easy mixing and degassing. 

As mentioned earlier in CHAPTER 2, sample preparation has three steps. In the first step, required 

amounts of the silicone rubber and CIPs are mixed for about 4 minutes. The mixture in the next 

step is placed inside a vacuum chamber under 28 in-Hg for about 5 minutes to remove the trapped 

air bubbles during mixing. Finally, the mixture is transferred to a cylindrical plexiglass mold and 

left at room temperature for about 24 hours. Curing phase occurs without applying a magnetic field 

on the sample for isotropic dispersion of particles. For the anisotropic sample, a powerful 

electromagnet apparatus, shown in Figure 3.6, is used to apply magnetic flux of about 1 T on the 

mold for 2 hours in order to form chains of particles inside the material. After 24 hours, MRE 

samples are taken out of the mold and left in the cabinet for at least another 24 hours before cutting 

and preparation of cylindrical test specimens with diameter and thickness of 20 mm and 1 mm, 

respectively. Table 3.1 provides information regarding four types of MRE samples fabricated in 

the lab. 
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Table 3.1 Constituents of the MRE samples. 

MRE sample 

ID 

Particles 

distribution 

Materials  
Volume fraction of constituents 

(%) 

CIP Silicone rubber  CIP Silicone rubber 

Sample 1 Isotropic BASF SQ® EcoflexTM00-20  15 85 

Sample 2 Isotropic BASF SQ® EcoflexTM00-20  25 75 

Sample 3 Anisotropic BASF SQ® EcoflexTM00-20  15 85 

Sample 4 Anisotropic BASF SQ® EcoflexTM 00-20  25 75 

 

 

Figure 3.6 Electromagnet device used for applying magnetic field on MRE fabrication mold. 

 

3.3.2 Microstructure Imaging 

Distribution of magnetic particles in the prepared MRE samples is inspected by taking images 

from the microstructure using a laser confocal microscope named commercially as OLYMPUS 

LEXT OLS4000. Microstructure images are illustrated in Figure 3.7 for the samples of Table 3.1. 

The white points in the images show the dispersed CIPs and the black background is the silicone 

rubber matrix. As it can be realized, for isotropic MRE samples (Samples 1 and 2 in Table 3.1), 
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homogeneous dispersion of particles in the matrix is clearly observed while for the anisotropic 

MREs (Samples 3 and 4 in Table 3.1), particles are structured in chainlike form. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.7. Microstructure images of fabricated MRE samples (𝝓 is the volume fraction of 

iron particles). (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4 
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3.3.3 Characterization 

The four prepared MRE samples are characterized in shear mode using a rotary rheometer 

(Discovery HR-3, TA Instrument). The rheometer is equipped with a magneto-rheology accessory 

which makes the instrument capable of providing a uniform magnetic field perpendicular to the 

direction of shear deformation applied on the MRE sample. The MRE is placed on the bottom 

geometry and the applied magnetic field is measured using a Hall probe beneath the bottom 

geometry allowing to measure the magnetic flux density inside the sample. A close-loop controller 

adjusts the required current input to the magneto-rheology accessory to keep the magnetic field 

uniform at all times. A parallel upper geometry with 20 mm diameter applies shear deformation 

on the cylindrical MRE test specimens with the same diameter and a thickness of 1 mm. Figure 

3.8 shows the different parts of the rheometer device along with the direction of the applied 

magnetic field and shear deformation. 

Dynamic tests are performed in the linear viscoelastic region by sweeping the driving 

frequency in the range of 2 Hz to 100 Hz under various levels of applied magnetic flux densities. 

The resulting torque is automatically measured by the rheometer and is used for data acquisitioning 

to obtain the shear stress and dynamic moduli. To be in the linear viscoelastic region, all tests are 

executed at a small constant shear strain amplitude of 0.01 %. Temperature is kept constant at 25 

oC using computer-controlled fluid circulator unit connected to the magneto-rheology accessory. 

To avoid the slippage between the sample and the geometries, MRE samples are subjected to an 

axial preload of 10 N in all tests. Experimental results are subsequently used to identify the material 

constant parameters and evaluate the performance of the developed microstructure-based model. 
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Figure 3.8 Left: Different parts of the rotary rheometer used for dynamic characterization; Right: 

direction of the magnetic field and shear deformation applied on MRE sample. 

 

3.4 Results and Discussion 

In this section, the theoretical results based on the proposed microstructure-based model for 

the storage and loss moduli will be compared with experimental results for both isotropic and 

anisotropic MREs. 

3.4.1 Dynamic Moduli of Isotropic MREs 

Results of storage and loss moduli in terms of frequency and magnetic flux density are 

presented in this section for two MRE materials with isotropic distribution of particles, i.e. Samples 

1 and 2 presented in Table 3.1. Using the experimental data, the value of constant parameters in 

the model are extracted using the least-square optimization method and presented in the Table 3.2.  
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Table 3.2 Values of constant parameters for isotropic MREs. 

 Sample Type 𝜏0 𝑃 𝑠 

S
am

p
le 1

 

Iso
tro

p
ic M

R
E

 

(𝜙
=

1
5

%
) 

Storage Modulus (𝐺′) 
0.017

2𝜋
 5.7 × 109 0.4 

Loss Modulus (𝐺′′) 
0.015

2𝜋
 1.9 × 109 0.4 

  𝜏0 𝑃 𝑠 

S
am

p
le 2

 

Iso
tro

p
ic M

R
E

 

(𝜙
=

2
5

%
) 

Storage Modulus (𝐺′) 
0.015

2𝜋
 5.3 × 109 0.3 

Loss Modulus (𝐺′′) 
0.013

2𝜋
 1.7 × 109 0.3 

 

Figure 3.9 shows the variation of the storage and loss moduli with respect to the driving 

frequency varying from 2 Hz to 100 Hz for an MRE with 15% volume fraction of particles at 

different magnetic flux density values in the range of 0.0 T to 0.9 T. 

As it can be realized from Figure 3.9 (a), the storage modulus, at fixed values of magnetic flux 

density, gradually increases with the frequency and approaches a plateau region suggesting 

saturation at high frequencies. This is a typical trend of both unfilled and composite polymeric 

materials which show stiffening effect by increasing the excitation frequency [9], [27], [95]. This 

is mainly attributed to the fact that the cross-linked chains of the host elastomer do not have time 

to relax at higher excitation frequencies resulting in reduction of the forced relaxation time of the 

material and subsequently increase in the stiffness. On the other hand, at constant frequency, 

storage modulus increases with magnetic flux density. Magnetic interaction between particles 

basically produces a resistive force against chains motion which increases the effective stiffness 

of the material and thus the storage modulus. At high magnetic flux values, i.e. 𝐵 =0.8 T and 

𝐵 =0.9 T, the storage modulus does not change significantly which implies magnetic saturation 

of the MRE at high level of magnetic excitation as expected.  

Results for the loss modulus shown in the Figure 3.9 (b) also illustrates similar trend with 

variation of frequency and magnetic field as storage modulus, except that instead of gradual 

increase with the frequency and reaching to saturation, loss modulus illustrates a maximum value 

at certain critical frequency and then slightly decreases with further increase of frequency. The 
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reason of reduction in 𝐺′′ at high frequencies might be due to the absence of adequate molecular 

motions capable of dissipating energy within the shortened period of deformation in soft polymers. 

Similar to storage modulus, the loss modulus initially increases considerably with magnetic flux 

density until it reaches to saturation at high magnetic flux densities beyond 0.8 T. Thus, it can be 

inferred that the magnetic interaction between embedded magnetic particles not only makes the 

material stiffer, but also improves the energy loss processes in the MRE likely due to the increase 

in interfacial friction between particles and polymer chains. 

 

 

(a) 



81 

 

 

(b) 

Figure 3.9 Results of dynamic moduli obtained from model and experiment for an MRE with 𝜙 =
15% at several magnetic flux densities; (a) Storage modulus, 𝐺′, versus frequency, and (b) Loss modulus, 

𝐺′′, versus frequency. 

Figure 3.10 also shows the results of storage and loss moduli for an isotropic MRE with 25% 

volume fraction of particles with respect to frequency ranging from 2 Hz to 100 Hz under different 

magnetic flux density values in the range of 0.0 T to 1.0 T. Similar trend as of Figure 3.9 is also 

observed here regarding the behavior of dynamic moduli with the frequency and magnetic flux 

density. However, the order of magnitude and also variation of storage and loss moduli are higher 

due to the increased volume fraction of magnetic particles in the material  suggesting  higher MR 

effect. To have an idea of the increased MR effect, for instance, for a driving frequency of 2 Hz, 

the storage modulus of MRE with 15% volume fraction of solid particles changes from 43 kPa to 

207 kPa as the magnetic field enhances from 0 to 0.8 T, suggesting an absolute increase of 164 

kPa (381% relative increase) in the modulus. While, the storage modulus of MRE with 25% 

volume fraction of CIPs varies from 70 kPa to 483 kPa under the same conditions showing            

413 kPa absolute increase (590% relative increase). Similar trend also exists for the loss modulus. 

In addition, results from Figure 3.10 confirm that for the MRE with higher volume fraction, the 

saturation of storage and loss moduli occurs at higher flux density values compared with the MRE 

with lower volume fraction of iron particles. 
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Figure 3.9 and Figure 3.10 clearly show that the developed model can accurately predict both 

storage and loss moduli for the isotropic MRE with different volume fractions of CIPs under wide 

range of frequency and applied magnetic flux density up to the saturation point. To quantify the 

level of the accuracy of the model, the coefficient of determination, 𝑅2  (0 ≤ 𝑅2 ≤ 1) has been 

employed in which  𝑅2  close to 1 means perfect fit. Table 3.3 provides the average values of the 

coefficient of determination over the given range of frequency and magnetic flux density for the 

storage and loss moduli of both types of isotropic MREs. As it can be realized, 𝑅2 is generally 

higher than 0.94 for the isotropic MREs. Performance of the model in predicting the dynamic 

viscoelastic properties of isotropic MRE samples with 15% and 25% volume fraction of iron 

particles shown in Figure 3.9 and Figure 3.10 proves the efficiency and accuracy of the proposed 

model for various particle participations in a wide ranges of frequency and applied magnetic field. 

 

(a) 
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(b) 

Figure 3.10 Results of dynamic moduli obtained from model and experiment for an MRE with 𝜙 =
25% at several magnetic flux density values (a) Storage modulus, 𝐺′, versus frequency, and (b) Loss 

modulus, 𝐺′′, versus frequency. 

 

Table 3.3 Average values of coefficient of determination (𝑅2) for isotropic and anisotropic MREs. 

MRE sample 

ID 
Particles distribution 

𝑅2 for 

𝐺′ Storage modulus 

 𝑅2 for 

𝐺′′ Loss modulus  

Sample 1 Isotropic (𝜙 =15%) 0.95  0.95 

Sample 2 Isotropic (𝜙 =25%) 0.94  0.94 

Sample 3 Anisotropic (𝜙 =15%) 0.96  0.94 

Sample 4 Anisotropic (𝜙 = 25%) 0.96  0.93 

 

3.4.2 Dynamic Moduli of Anisotropic MREs 

In the case of anisotropic MREs, the dynamic moduli in Eqs. (3.43) and (3.44) would also 

depend on the anisotropy parameter 𝛽 whose value was unity for the isotropic MREs. Depending 

on the level of chain-like structure of particles in the material, the value of 𝛽 might be different as 
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it depends on the particle percentage and magnitude of the applied magnetic field in the curing 

phase of the fabrication process. Similar to the previous section, values of constant parameters of 

the model, including 𝛽, are obtained employing the least-square optimization aiming at minimizing 

the error between the model results and experimental data. The identified model parameters are 

based on the anisotropic MREs with 15% and 25% volume fraction of iron particles (Samples 3 

and 4 in Table 3.1) and provided in Table 3.4. 

Table 3.4 Values of constant parameters for anisotropic MREs. 

 Sample Type 𝛽 𝜏0 𝑃 𝑠 

S
am
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(𝜙
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1
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%
) 

Storage Modulus (𝐺′) 0.55 
0.02

2𝜋
 1.41 × 1010 0.2 

Loss Modulus (𝐺′′) 0.55 
0.018

2𝜋
 4.0 × 109 0.2 

 
 𝛽 𝜏0 

𝑃 𝑠 
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(𝜙
=
2

5
%

) 

Storage Modulus (𝐺′) 0.7 
0.02

2𝜋
 1.33 × 1010 0.2 

Loss Modulus (𝐺′′) 0.7 
0.018

2𝜋
 3.8 × 109 0.2 

 

Figure 3.11 and Figure 3.12 show the theoretical and experimental results for the storage and 

loss moduli in terms of frequency and flux density for the anisotropic MREs, i.e. Samples 3 and 4 

in Table 3.1.  Comparison of Figure 3.11 with Figure 3.9, and Figure 3.12 with Figure 3.10, reveals 

that the magnitude of dynamic moduli at a given magnetic flux density for anisotropic MRE is 

higher than that for isotropic MRE with same level of volume fraction of iron particles. Thus, as 

expected, the chain-like distribution of particles yields higher magnetic effect in the material as 

compared to the isotropic dispersion. Moreover, the storage and loss moduli of the anisotropic 

MRE show a greater increase by the application of the magnetic field. It means that the anisotropic 

sample is more sensitive to magnetic induction as also confirmed by observing the results of 

relaxation spectrum in Section 3.2. It is also noted that, for instance, considering the anisotropic 

MRE with 𝜙 =15%, the storage and loss moduli do not change significantly in presence of 0.6 T 

and 0.8 T magnetic flux densities which shows magnetic saturation at lower level of magnetic 
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induction around 0.6 T compared with the similar isotropic sample with magnetic saturation at 

𝐵 = 0.9 T. The developed model again shows an acceptable performance in predicting the 

experiment data over the considered range of frequency and magnetic flux density. It is noted that 

agreement between model and experiments for loss modulus of both anisotropic samples at high 

flux density values decreases likely due to the change in the type of molecular motion in the 

material at high field values which is not considered in the model. Similar to the isotropic MREs, 

the coefficient of determination, 𝑅2  (0 ≤ 𝑅2 ≤ 1) has been calculated for the storage and loss 

moduli of the anisotropic sample and provided in the last row of Table 3.3. Average values of  𝑅2  

for the anisotropic MRE samples are also higher than 0.93 confirming the good accuracy of the 

developed model. 

 

(a) 
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(b) 

Figure 3.11 Results of dynamic moduli in terms of frequency obtained from model and experiments 

for an anisotropic MRE with 𝜙 = 15% at several magnetic flux density values; (a) Storage modulus, 𝐺′, 
and (b) Loss modulus, 𝐺′′. 

 

 



87 

 

 

(a) 

 

(b) 

Figure 3.12 Results of dynamic moduli in terms of frequency obtained from model and 

experiment for an anisotropic MRE with 𝜙 = 25% at several magnetic flux density values (a) 

Storage modulus 𝐺′, and (b) Loss modulus 𝐺′′ 
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3.5 Conclusions 

This chapter aimed at dynamic experimental characterization and microstructural modeling of 

linear viscoelastic response of isotropic and anisotropic MREs which complement the quasi-static 

modeling of MRE presented in the previous chapter. A microstructure-based model was derived 

based on a cubic network of particles that are connected with elastic springs and a friction 

coefficient is assigned to the motion of each particle. To account for the anisotropic MREs, 

idealized chain-like structure of particles is incorporated into the model by introducing a parameter 

defining the anisotropy level. The dynamic equation of motion of the particles was extracted by 

Lagrange’s equation and was solved to obtain relaxation times associated with the motion of 

particles in the network around their equilibrium positions. A dipole saturation model was also 

employed in the formulations to relate the dynamic characteristics directly to the magnetic flux 

density which could be directly measured in practice. 

The behavior of normal modes relaxation spectrum illustrated splitting of the spectrum under 

application of magnetic field into two branches associated with the motions parallel and 

perpendicular to the field direction. The relaxation time corresponding to the motions parallel with 

the direction of the applied magnetic field increased while the one corresponding to the motions 

normal to the field direction decreased. For anisotropic distribution of particles, higher MR effect 

and higher sensitivity to the magnetic induction was observed. A critical magnetic flux density 

value was calculated in terms of volume fraction of particles and anisotropy of the network to 

present the threshold beyond which the model gives negative relaxation times. Relations for 

storage and loss moduli were subsequently derived by using the information of relaxation time 

spectrum.   

To validate the model performance, four MRE samples with isotropic and anisotropic 

dispersion of particles were fabricated using an elastomeric matrix and different concentrations of 

ferromagnetic particles. The dynamic moduli of the MRE samples were characterized in shear 

mode using an advanced rheometer with excitation frequency ranging from 2 Hz to 100 Hz and 

magnetic flux density varying up to 1 T. The tuning parameters of the proposed model were 

identified by minimizing the error between experimental data and theoretical results. The storage 

and loss moduli of the MRE samples showed increasing behavior with magnetic flux density and 

saturation at high magnetic fields. The increase in the dynamic moduli was improved for higher 

volume fraction of particles and for anisotropic chain-like dispersion of particles in the material. 
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The developed model showed a remarkable performance in predicting the experimentally 

measured storage and loss moduli in a wide range of frequency and magnetic field up to the 

saturation point for all considered MRE samples. The obtained results demonstrated the suitability 

of the model for MRE samples with a variety of compositions and distribution of particles. The 

developed microstructure-based model clarified the relationship between relaxation behavior of 

the microstructure and dynamic magneto-induced properties of MREs and can be effectively 

utilized to model and analyze MRE-based adaptive devices at the early stages of design without 

conducting extensive experimental tests.  
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CHAPTER 4  

MULTI-DISCIPLINARY DESIGN OPTIMIZATION OF A NOVEL SANDWICH 

BEAM-BASED ADAPTIVE TUNED VIBRATION ABSORBER FEATURING 

MAGNETORHEOLOGICAL ELASTOMER 

 

4.1 Introduction 

One intriguing application of MREs is in the development of adaptive vibration absorbers 

which can be effectively utilized to attenuate vibration in a broad range of frequencies. To date, 

several designs have been proposed in the literature for vibration absorbers featuring MREs as 

presented in CHAPTER 1 [28], [69]–[72]. However, limited studies reported on the design 

optimization of MR-based devices have been narrowed to MRF-based dampers and absorbers 

[96][97][98]–[100][78]. 

Parlak et al. [96] used finite element-based electromagnetic and CFD tools in ANSYS platform 

to carry out optimization on an MR damper’s geometry aiming to reach the targeted damper force 

and maximize the magnetic flux density applied to the MRF. Nguyen and Choi [97] proposed an 

optimal design for a MR damper of passenger vehicles which was constrained in a specific volume. 

The objective function involved the damping force, dynamic range, and inductive time constant of 

the damper. In recent years, there have also been a number of studies that investigated the design 

optimization of rotary and translational MR-based dampers and absorbers [98]–[100]. While 

conventional MR-based vibration absorbers have been widely investigated before, there is a very 

limited study on MR-based continuous vibration absorbers. Hirunyapruk et al. [78] proposed a 

sandwich beam-shaped MRF-based vibration absorber and mainly investigated its feasibility in 

vibration attenuation of structures and systems.  

Looking into the literature, studies on the MRE-based vibration absorbers are limited to the 

conventional designs which are mostly in the initial stages and have not been optimized to be used 

in practical applications [57], [70], [71]. Moreover, reported studies mainly focused on the 

controllability features of MREs in providing variable stiffness vibration absorbers [56], [101] and 

did not look into MRE-ATVAs as a magneto-mechanical multidisciplinary system. In the present 

chapter, three different novel configurations for an MRE-based sandwich beam type ATVA are 
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proposed, and a multidisciplinary optimization framework is developed to maximize their 

frequency bandwidth under specific design constraints. To this end, comprehensive models of the 

proposed MRE-ATVAs including (a) finite element (FE) model of the sandwich beam, and (b) 

mathematical formulation for magnetic analysis of the electromagnets; are developed. The core 

layer of the sandwich beam is treated with a MRE layer and two electromagnets are installed at 

the tips of the beam to generate the required magnetic field. Deforming the sandwich beam results 

in shear deformation in the MRE layer whose shear modulus varies under the applied magnetic 

field. Thus, the natural frequency of the absorber can be continuously changed and controlled 

through the application of magnetic field. The electromagnets on the beam ends play a two-fold 

role by providing the required magnetic field on the MRE layer, as well as oscillating as the 

absorber mass. To have insights on the flexible design of the proposed absorber device, three 

different design configurations are considered for the electromagnets.  The developed model of the 

absorber is then utilized to formulate the multidisciplinary design optimization problem. It 

considers both the structural geometry and electromagnet parameters as design variables and 

aiming at maximizing the frequency range of the absorber while respecting constraints on the total 

mass, static deflection, and maximum stress in the beam. To accurately identify the optimal design, 

the optimization problem is solved using a combination of genetic algorithm (GA) and powerful 

sequential quadratic programming (SQP) methods. Finally, the performance of the optimally 

designed MRE-ATVAs with respect to the frequency range and final mass of the device are 

compared and discussed. 

In this chapter, first, the configuration of the proposed MRE-ATVAs with three potential 

designs of the electromagnet are introduced. Second, the FE model of the sandwich beam and 

magnetic model of the electromagnets are developed and validated. By integrating the FE model 

of the beam with the magnetic model of the electromagnets, the high-fidelity model of the absorber 

device is obtained which is subsequently utilized for the development of the optimization problem. 

Finally, the multidisciplinary optimization problem is formulated considering both structural and 

magnetic parameters as design variables aiming at maximizing the frequency bandwidth of the 

proposed MRE-ATVAs under constraints of mass, size, beam deflection and maximum stress. The 

optimization results are obtained using the combination of a stochastic based genetic algorithm 

and a gradient-based SQP programming. Then, the relative performances of the optimal ATVAs 

are compared and discussed with respect to the frequency range and final mass of the device. 
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4.2 Configuration of the Proposed MRE-Based ATVA 

The main components of the proposed MRE-ATVA are a three-layer sandwich beam and two 

electromagnets attached at its ends. The sandwich beam consists of an MRE core layer which is 

constrained between two thin steel layers. The MRE-based sandwich beam provides a unique 

opportunity to provide distributed control force through variation in the stiffness and damping of 

the MRE layer. Two electromagnets are installed on both ends of the sandwich beam which not 

only provide the required magnetic field for the activation of the MRE but also acts as the 

absorber’s active mass. Moreover, the locations of the electromagnets across the length of the 

beam may also be different to enhance the authority of the proposed MRE-ATVA for different 

frequency ranges. The schematic design of the proposed MRE-ATVA is illustrated in Figure 4.1. 

The MRE core layer is under shear deformation while the magnetic flux lines, shown by arrows in 

Figure 4.1, are perpendicular to the shear direction. The shear stiffness of the MRE is adjusted by 

varying the magnetic field through changing the current supplied to the coils of the electromagnets. 

Hence, the stiffness and subsequently the natural frequency of the absorber can be tuned to the 

desired frequency. The proposed MRE-ATVA may be attached from its middle point to the host 

system to mitigate vibration within the operating frequency range. 

 
Figure 4.1 Schematic of the proposed MRE-based sandwich beam type ATVA. 

Three different shapes including H-shaped, C-shaped, and U-shaped designs are considered 

for the electromagnets in the present study. In-plane (2D) and in-space (3D) sketches of the 

proposed configurations are illustrated in Figure 4.2. The characteristics and performance of each 

design might be different in terms of the induced magnetic flux density in the gap and mass of the 

electromagnet. 

As shown in Figure 4.2, the H-shaped electromagnet has four coils of two different sizes. The 

C-shaped electromagnet has three coils from which two of them are of the same size. The U-shaped 

electromagnet has four similar coils. The conductive core of the electromagnets has a square cross 



93 

 

section with an edge size of 𝑡. The path of magnetic flux in the core of each electromagnet is shown 

with dashed line.  

The schematics of the assembled structure of the MRE-ATVA with each of the three 

electromagnet configurations, are also shown in Figure 4.3. As it can be realized, the proposed 

MRE-ATVAs are symmetric from the center of the sandwich beam and thus each behaves similar 

to two connected cantilever beams. Therefore, half of the MRE-ATVA which is a cantilever 

sandwich beams with one electromagnet, attached at the free end, will be considered for the 

optimization problem in the modeling and optimization formulation.  

  

 

   

(a) (b) (c) 
 

  

Figure 4.2 Three electromagnet designs considered for the ATVA; (a) H-shaped electromagnet, (b) 

C-shaped electromagnet, and (c) U-shaped electromagnet. 
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(a) (b) 

 

(c) 

Figure 4.3 Schematics of the assembled ATVAs structure with three different electromagnet designs; 

(a) H-shaped electromagnet, (b) C-shaped electromagnet, and (c) U-shaped electromagnet. 

4.3 Mechanical and Magnetic Properties of Materials 

In this section, mechanical and magnetic properties of the MRE and steel materials which are 

respectively used as the core and surface layers of the sandwich beam, are provided. These material 

properties are utilized in the modeling and design optimization of the MRE-ATVA in the next 

sections of this chapter. An isotropic MRE sample with 40% volume fraction of iron particles from 

CHAPTER 2 is considered and its properties are adopted to be used here. This MRE sample has 

shown the maximum MR effect which is important to get a wide frequency range for the ATVA. 

The sample was fabricated using silicone rubber as the elastomeric matrix material and soft type 

ferromagnetic carbonyl iron particles as the magnetic fillers. The selected silicone rubber has low 

viscosity which facilitates the distribution of magnetic fillers in the matrix and ensures easy mixing 

and degassing. Density of the MRE sample is 3500 kg/m3. Figure 4.4 shows the variation of its 

storage modulus (𝐺′) with respect to the applied magnetic flux density (𝐵) taken from the 

experimental characterization tests presented in CHAPTER 2. 

A fourth-order polynomial is fitted to the experimental data to accurately estimate the storage 

modulus as a function of applied magnetic flux density as follows:  

𝐺′ = −1.36 × 107 𝐵4 + 2.47 × 107 𝐵3 − 9.66 × 106 𝐵2 + 1.52 × 106 𝐵 + 9.35 × 104     

0 ≤ 𝐵 ≤ 1 𝑇 
(4.1) 

where 𝐺′ is in kPa and B in Tesla (T). It is assumed that for the flux density values more than 1.0 

T, the MRE sample is magnetically saturated and so the storage modulus remains constant and 
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equal to its value at 1.0 T of magnetic field. The performance of the polynomial function in 

obtaining the storage modulus is presented in Figure 4.4. 

 

 
Figure 4.4 Storage modulus in terms of flux density for isotropic MRE sample with 40% volume 

fraction of CIPs. 

In addition to the mechanical properties, magnetic characteristics are also required for 

modeling and optimization of the proposed MRE-ATVA. Considering that MRE and MRF both 

have similar mechanisms for responding to a magnetic field and due to the lack of appropriate data 

for MRE, the B-H curve shown in Figure 4.5 which is for a MRF with the trade name of MRF-

132DG from Lord Corporation (Cary, NC, United States) [102] is used in the present work. For 

the sake of modeling, a second order polynomial, shown by dashed line in Figure 4.5, is fitted to 

the B-H curve that represents the magnetic intensity, 𝐻 (kA/m), as a function of flux density, 𝐵 

(T), in the following form: 

𝐻MRE = 2.89 × 10
2 𝐵2 + 3.4 × 10 𝐵 (4.2) 
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Figure 4.5 The B-H curve of MRF-132DG from Lord Corporation. 

The conductive core of the electromagnet and elastic face layers of the sandwich beam are 

assumed to be made of 1008 steel material with a density of 7861 kg/m3, elastic modulus of 200 

GPa, and yield strength of 285 MPa. Data of B-H curve of this steel type is taken from [103] as 

demonstrated in Figure 4.6. The relationship between the magnetic field intensity, 𝐻 (kA/m), and 

magnetic flux density, 𝐵 (T), of the 1008 steel is obtained by a curve fitting in [103] with the 

following polynomial as: 

𝐻steel = 𝑅𝑠0𝐵
5 + 𝑅𝑠1𝐵

4 + 𝑅𝑠2𝐵
3 + 𝑅𝑠3𝐵

2 + 𝑅𝑠4𝐵 + 𝑅𝑠5 (4.3) 

where the coefficients are defined as below: 

𝑅𝑠

= {
[0   1.82  − 3.63   1.782   0.387  0] 𝐵 ≤ 1.5 T

[−1419.52   13551.37  − 50744.31   93520.50  − 85032.46   30566.42] 𝐵 > 1.5 T
} 
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Figure 4.6 The B-H curve of 1008 steel. 

It is noted that coils of the electromagnets are made of 17 AWG wire with an approximate 

diameter of 𝐷 =1.15 mm [104] and density of 7100 kg/m3. With this size, the maximum current 

that the wire can withstand is expected to be 5 A. The material properties given above will be used 

in the modeling and optimization of the MRE-ATVA in the following sections. 

4.4 Finite Element Modeling of the Three-Layer Sandwich Beam 

A three-layer sandwich beam with MRE in the core layer is considered as shown in the Figure 

4.7. Since magnetic field is provided only on specific parts of the MRE layer where the 

electromagnets are installed, those portions exposed to the magnetic field will be activated and the 

rest of the beam will be inactive with constant properties. Considering this, the FE model is 

developed for sandwich beam with the ability to change the stiffness of only active parts of the 

MRE core layer. This is similar to the situations where the sandwich beam is partially treated with 

MRE in the core layer. The location of electromagnets and thus the position of active parts of MRE 

could be varied along the beam. 
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Figure 4.7 Schematic of the sandwich beam structure with MRE-core layer. 

Logical simplifying assumptions including (a) no slippage between the core layer and the 

elastic layers, (b) uniform transverse displacement in a given cross section of the beam, (c) 

negligible normal stresses in the core layer, and (d) negligible transverse shear strain in the two 

elastic layers; are considered to obtain the governing equations of motion of the sandwich beam 

through FE analysis [105]–[107]. Using the first order shear deformation theory, the displacement 

field for each layer at an arbitrary section along the beam span can be expressed as: 

𝑢𝑖(𝑥, 𝑧𝑖, 𝑡) = 𝑢𝑖
0(𝑥, 𝑡) − 𝑧𝑖

𝜕𝑤𝑖(𝑥,𝑡)

𝜕𝑥
         𝑖 = 𝑡, 𝑐, 𝑏 (4.4) 

𝑤𝑖(𝑥, 𝑧𝑖, 𝑡) = 𝑤(𝑥, 𝑡)        𝑖 = 𝑡, 𝑐, 𝑏 (4.5) 

where 𝑢𝑖 is the longitudinal displacement along the 𝑥 direction and 𝑢𝑖
0 is the displacement of the 

mid-plane of the layer which is also the origin of the coordinate 𝑧𝑖 for each layer. 𝑤𝑖 is the 

transverse displacement of each layer equal to the uniform transverse displacement of the beam 

𝑤. The subscripts 𝑖 = 𝑡, 𝑐, and 𝑏 refers to the corresponding top, core, and bottom layers, 

respectively. The condition of No-slippage at the interfaces of the three layers yields the following 

relation: 

𝑢𝑐|𝑧𝑐=
ℎ𝑐
2

= 𝑢𝑡|𝑧𝑡=−
ℎ𝑡
2

       ;       𝑢𝑐|𝑧𝑐=−
ℎ𝑐
2

= 𝑢𝑏|𝑧𝑏=
ℎ𝑏
2

 (4.6) 

By substituting Eq. (4.6) into Eqs. (4.4) and (4.5), displacement of the mid-plane of the core 

layer can be obtained based on the displacement of the bottom and top layers as: 

𝑢𝑐
0 =

𝑢𝑡
0 + 𝑢𝑏

0

2
+
1

4

𝜕𝑤

𝜕𝑥
(ℎ𝑡 − ℎ𝑏) 

(4.7) 

Movements of the elastic top and bottom layers results in shear deformation in the core layer. 

The transverse shear strain of the core layer in the x-z plane can thus be calculated by taking 

derivatives of the displacements as: 
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𝛾𝑐
𝑥𝑧 = 

𝜕𝑤

𝜕𝑥
+
𝜕𝑢𝑐
𝜕𝑧𝑐

 (4.8) 

in which, 

𝜕𝑢𝑐
𝜕𝑧𝑐

=
(ℎ𝑡 + ℎ𝑏)

2ℎ𝑐

𝜕𝑤

𝜕𝑥
+
(𝑢𝑡

0 − 𝑢𝑏
0)

ℎ𝑐
 (4.9) 

Thus, the transverse shear strain in Eq. (4.8) can be described as follows using Eq. (4.9): 

𝛾𝑐
𝑥𝑧 =

𝐷

ℎ𝑐

𝜕𝑤

𝜕𝑥
+
(𝑢𝑡

0 − 𝑢𝑏
0)

ℎ𝑐
 (4.10) 

where 𝐷 = ℎ𝑐 +
1

2
(ℎ𝑡 + ℎ𝑏). The shear stress in the core layer can be obtained as: 

𝜏𝑐
𝑥𝑧 = 𝐺𝑐

∗𝛾𝑐
𝑥𝑧 (4.11) 

where 𝐺𝑐
∗ is the complex shear modulus of the core layer which can be described as: 

𝐺𝑐
∗ = 𝐺𝑐

′ + 𝑗𝐺𝑐
′′ = 𝐺𝑐

′(1 + 𝑗�̂�) (4.12) 

where 𝐺𝑐
′ and 𝐺𝑐

′′ are the storage and loss moduli of the viscoelastic core layer, respectively, and 

�̂� is the loss factor of the core layer.  

Total strain energy comprises three different parts including bending and extension of the 

elastic layers and shear deformation of the core layer. The strain energy due to the bending and 

extension of the top and bottom layers can be written as: 

𝑉𝑡,𝑏 =
1

2
∫ (𝐸𝑡𝐴𝑡 (

𝜕𝑢𝑡
𝜕𝑥
)
2

+ 𝐸𝑏𝐴𝑏 (
𝜕𝑢𝑏
𝜕𝑥

)
2

)𝑑𝑥
𝐿

0

+
1

2
∫ (𝐸𝑡𝐼𝑡 + 𝐸𝑏𝐼𝑏) (

𝜕2𝑤

𝜕𝑥2
)

2

𝑑𝑥
𝐿

0

 (4.13) 

where 𝐸𝑖 is the elastic modulus of the 𝑖-th layer (𝑖 = 𝑡, 𝑏), 𝐴𝑖 is the cross sectional area, and 𝐼𝑖 is 

the second moment of inertia around the centroid of the layer’s cross section. The strain energy of 

the viscoelastic core layer is mainly due to the shear deformations, which can be expressed as: 

𝑉𝑐 =
1

2
∫ 𝜏𝑐

𝑥𝑧𝛾𝑐
𝑥𝑧𝐴𝑐 𝑑𝑥

𝐿

0

 

     =
1

2
∫ (𝐺𝑐

∗𝐴𝑐𝛾𝑐
𝑥𝑧2)𝑑𝑥

𝐿

0

=
1

2
∫ 𝐺𝑐

∗𝐴𝑐 [
𝐷

ℎ𝑐

𝜕𝑤

𝜕𝑥
+
(𝑢𝑡

0 − 𝑢𝑏
0)

ℎ𝑐
]

2

𝑑𝑥
𝐿

0

 

(4.14) 

Now, the total strain energy of the sandwich beam can be calculated as: 

𝑉 = 𝑉𝑡,𝑏 + 𝑉𝑐 (4.15) 

Similarly, the kinetic energy is mainly due to the axial and transverse displacements of the 

elastic and core layers. The kinetic energy associated with the axial displacement of the elastic top 
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and bottom layers, 𝑇𝑎𝑥, and also due to the transverse displacement of two elastic layers and 

viscoelastic core layer, 𝑇𝑡𝑟𝑎𝑛, can be written as: 

𝑇𝑎𝑥 =
1

2
∫ (𝜌𝑡𝐴𝑡 (

𝜕𝑢𝑡
𝜕𝑡
)
2

+ 𝜌𝑏𝐴𝑏 (
𝜕𝑢𝑏
𝜕𝑡
)
2

)𝑑𝑥
𝐿

0

 (4.16) 

and, 

𝑇𝑡𝑟𝑎𝑛 =
1

2
∫ (𝜌𝑡𝐴𝑡 + 𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏) (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

 (4.17) 

Now, the total kinetic energy can be described as: 

𝑇 = 𝑇𝑎𝑥 + 𝑇𝑡𝑟𝑎𝑛 (4.18) 

To construct the FE model of the structure, a one-dimensional two-node sandwich beam 

element with three layers has been considered. Each node at the terminals of the element, has four 

degrees of freedom including the longitudinal displacements of the top and bottom layers (𝑢𝑡, 𝑢𝑏), 

transverse displacement (𝑤), and slope (
𝜕𝑤

𝜕𝑥
= 𝑤𝑥) of the beam. Accordingly, the element nodal 

displacement vector can be written as: 

𝑞𝑒(𝑡) = {𝑞1 𝑞2}𝑇 = {𝑢𝑡
1, 𝑢𝑏

1 , 𝑤1, 𝑤𝑥
1, 𝑢𝑡

2, 𝑢𝑏
2, 𝑤2, 𝑤𝑥

2}𝑇 (4.19) 

where 𝑞1 = {𝑢𝑡
1, 𝑢𝑏

1 , 𝑤1, 𝑤𝑥
1}𝑇, and 𝑞2 = {𝑢𝑡

2, 𝑢𝑏
2, 𝑤2, 𝑤𝑥

2}𝑇 are the nodal displacement vector at 

node 1 and 2 of the sandwich beam element, respectively. The longitudinal and transverse 

displacements of the mid-plane at each point can be expressed in terms of the elemental 

displacement vector 𝑞𝑒(𝑡) and shape functions as below: 

𝑢𝑡
0(𝑥, 𝑡) = 𝑁𝑢𝑡(𝑥)𝑞

𝑒(𝑡) 

𝑢𝑏
0(𝑥, 𝑡) = 𝑁𝑢𝑏(𝑥)𝑞

𝑒(𝑡) 

𝑤(𝑥, 𝑡) = 𝑁𝑤(𝑥)𝑞
𝑒(𝑡) 

(4.20) 

Here, we have utilized linear shape function for the longitudinal displacements and cubic shape 

function for the transverse displacement as: 

𝑁𝑢𝑡(𝑥) = [(1 −
𝑥

𝐿𝑒
),0,0,0, (

𝑥

𝐿𝑒
),0,0,0] 

𝑁𝑢𝑏(𝑥) = [0, (1 −
𝑥

𝐿𝑒
),0,0,0, (

𝑥

𝐿𝑒
),0,0] 

𝑁𝑤(𝑥) = [0,0, (1 −
3𝑥2

𝐿𝑒2
+
2𝑥3

𝐿𝑒
3 ), (𝑥 −

2𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒2
),0,0, (

3𝑥2

𝐿𝑒2
−
2𝑥3

𝐿𝑒
3 ), (−

𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒2
)] 

(4.21) 
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where 𝐿𝑒 is length of the element. Substituting Eqs. (4.20) and (4.21) into Eqs. (4.4) and (4.5), and 

then by substituting the resulting displacement field into energy relations, the potential energy 

described in Eq. (4.15) can be found in the matrix form with respect to the element nodal 

displacement vector as: 

𝑉 =
1

2
{𝑞𝑒}𝑇([𝐾1] + [𝐾2] + [𝐾3] + [𝐾4]){𝑞

𝑒} (4.22) 

where [𝐾𝑖], 𝑖 = 1,2,3,4 are obtained as: 

[𝐾1] = ∫ (𝐸𝑡𝐴𝑡 [
𝑑𝑁𝑢𝑡
𝑑𝑥

]
𝑇

[
𝑑𝑁𝑢𝑡
𝑑𝑥

] + 𝐸𝑏𝐴𝑏 [
𝑑𝑁𝑢𝑏
𝑑𝑥

]
𝑇

[
𝑑𝑁𝑢𝑏
𝑑𝑥

])𝑑𝑥
𝐿𝑒

0

 

[𝐾2] = ∫ (
ℎ𝑡
2

12
+
ℎ𝑏
2

12
) [
𝑑2𝑁𝑤
𝑑𝑥2

]

𝑇

[
𝑑2𝑁𝑤
𝑑𝑥2

] 𝑑𝑥
𝐿𝑒

0

 

[𝐾3] = ∫ (𝐸𝑡𝐼𝑡 + 𝐸𝑏𝐼𝑏) [
𝑑2𝑁𝑤
𝑑𝑥2

]

𝑇

[
𝑑2𝑁𝑤
𝑑𝑥2

] 𝑑𝑥
𝐿𝑒

0

 

[𝐾4] = ∫ 𝐺𝑐
∗𝐴𝑐 [

𝐷

ℎ𝑐
[
𝑑𝑁𝑤
𝑑𝑥

] + (
[𝑁𝑢𝑡] − [𝑁𝑢𝑏]

ℎ𝑐
)]

𝑇

[
𝐷

ℎ𝑐
[
𝑑𝑁𝑤
𝑑𝑥

] + (
[𝑁𝑢𝑡] − [𝑁𝑢𝑏]

ℎ𝑐
)]𝑑𝑥

𝐿𝑒

0

 

(4.23) 

Similarly, the kinetic energy of the element given in Eq. (4.18) yields the following relation: 

𝑇 =
1

2
{�̇�𝑒}𝑇([𝑀1] + [𝑀2] + [𝑀3] + [𝑀4]){�̇�

𝑒} (4.24) 

where [𝑀𝑖], 𝑖 = 1,2,3,4 are defined as: 

[𝑀1] = ∫ (𝜌𝑡𝐴𝑡[𝑁𝑢𝑡]
𝑇[𝑁𝑢𝑡] + 𝜌𝑏𝐴𝑏[𝑁𝑢𝑏]

𝑇[𝑁𝑢𝑏])𝑑𝑥
𝐿𝑒

0

 

[𝑀2] = ∫ (𝜌𝑡𝐴𝑡 + 𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏)[𝑁𝑤]
𝑇[𝑁𝑤]𝑑𝑥

𝐿𝑒

0

 

[𝑀3] = ∫
1

12
(𝜌𝑡𝐴𝑡ℎ𝑡

2 [
𝑑𝑁𝑤
𝑑𝑥

]
𝑇

[
𝑑𝑁𝑤
𝑑𝑥

] + 𝜌𝑏𝐴𝑏ℎ𝑏
2 [
𝑑𝑁𝑤
𝑑𝑥

]
𝑇

[
𝑑𝑁𝑤
𝑑𝑥

])𝑑𝑥
𝐿𝑒

0

 

[𝑀4] = ∫
𝜌𝑐𝐴𝑐ℎ𝑐

2

12
[
𝐷

ℎ𝑐
[
𝑑𝑁𝑤
𝑑𝑥

] + (
[𝑁𝑢𝑡] − [𝑁𝑢𝑏]

ℎ𝑐
)]

𝑇

[
𝐷

ℎ𝑐
[
𝑑𝑁𝑤
𝑑𝑥

] + (
[𝑁𝑢𝑡] − [𝑁𝑢𝑏]

ℎ𝑐
)]𝑑𝑥

𝐿𝑒

0

 

(4.25) 

Finally, the governing equations of motion can be obtained using Lagrange’s energy method 

as follows: 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞�̇�
) −

𝜕𝑇

𝜕𝑞𝑖
+
𝜕𝑉

𝜕𝑞𝑖
= 𝐹𝑖 𝑖 = 1,… , 𝑛 (4.26) 

where 𝑞𝑖 is the 𝑖-th degree of freedom of an element, 𝐹𝑖 is the generalized force corresponding to 

the 𝑖-th degree of freedom and 𝑛 is the total number of degrees of freedom of the element. By 
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using energy terms in matrix forms in Eqs. (4.22) and (4.24) into Lagrange’s equations, the 

governing equations of motion for the sandwich beam element can be written in FE form as: 

[𝑀𝑒]{𝑞�̈�} + [𝐾
𝑒]{𝑞𝑒} = {𝐹𝑒} (4.27) 

where [𝑀𝑒] = [𝑀1] + [𝑀2] + [𝑀3] + [𝑀4] is the element mass matrix and [𝐾𝑒] = [𝐾1] + [𝐾2] +

[𝐾3] + [𝐾4] is the element stiffness matrix. {𝑞𝑒} and {𝑞�̈�} are the vectors of nodal displacements 

and nodal accelerations, respectively, and {𝐹𝑒} is the elemental force vector. By assembling the 

mass and stiffness matrices for all the elements, the governing equations of motion of the sandwich 

structure are obtained as: 

[𝑀]{�̈�} + [𝐾]{𝑄} = {𝐹} (4.28) 

where [𝑀] is the system mass matrix, [𝐾] is the system stiffness matrix, {𝑄} and {�̈�} are the system 

vectors of nodal displacements and accelerations, respectively, and {𝐹} is the system load vector. 

It should be noted that the elemental mass and stiffness matrices should be assembled respecting 

the partial or full treatment of the core layer with MRE. 

To find the natural frequency and loss factor of the sandwich beam, the problem of free 

vibration is studied considering {𝐹} = 0⃗  in Eq. (4.28). Then, the resulting eigenvalue problem is 

solved to calculate the eigenvalues of the system. The square root of the real part of the eigenvalues 

provides the natural frequencies of the system while the ratio of the imaginary part to the real part 

of the eigenvalues yields the loss factor. It is noted that the developed FE model of the sandwich 

beam is programmed in a MATLAB® environment. 

4.4.1 Validation of the developed FE model 

The developed FE model of the sandwich beam has been validated through comparison of the 

results with those reported by Mead and Markus [108] using analytical approach for a clamped-

clamped sandwich beam with two elastic face layers and a viscoelastic core layer. Figure 4.8 shows 

the results for the resonant frequency of the sandwich beam with respect to dimensionless shear 

parameter which is defined in the Eqs. (3a) and (3b) in page 101 of [108]. Results are shown for 

three different values of geometric parameter Y as defined in Eq. (4a) in  [108] and the loss factor 

of the core layer is set at 𝛽=1. As it can be realized, excellent agreement exists between FE and 

analytical results. 
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Figure 4.8 Comparison of the results of developed FE model with the analytical results of Mead and 

Markus [108]. 

 

4.5 Magnetostatic Modeling and Analysis of the Electromagnets 

The shear modulus of the active portions of the MRE core layer depends on the applied 

magnetic field by the electromagnets. Here, the analytical magnetic circuit model for different 

proposed configuration of electromagnets is presented and then validated using magnetostatic FE 

analysis. The analytical models can then be effectively utilized to evaluate the applied magnetic 

flux density at the center of the gap where the sandwich beam is located for the given applied 

current and magnetic circuit parameters.  

Two fundamental laws governing the performance of the electromagnets are the Ampere’s and 

Gauss’s laws that involve magnetic field and magnetic flux, respectively. The Ampere’s circuit 

law states that the line integral of the magnetic field intensity over any closed path is equal to the 

net current enclosed by that path which can be mathematically expressed as [109]: 

∮�⃗⃗� . 𝑑𝑙⃗⃗  ⃗ = 𝐼𝑒𝑛𝑐
C

 (4.29) 
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where �⃗⃗�  is the vector of magnetic field intensity, 𝑑𝑙⃗⃗  ⃗ is an incremental segment of the closed path 

C, and 𝐼𝑒𝑛𝑐 is the total current flowing through the surface that is enclosed by the closed path. In 

Eq. (4.29), the sign of 𝐼𝑒𝑛𝑐 is determined by the right-hand rule. On the other hand, the Gauss’s 

law states that over any closed volume, the surface integral of flux density is zero which can be 

expressed as: 

∮�⃗� . 𝑑𝐴⃗⃗⃗⃗  ⃗ = 0
S

 (4.30) 

where 𝐵 is the magnetic flux density, 𝑑𝐴 is an infinitesimal element of the closed surface S that 

encloses the volume. Generally, it is a complex problem to solve Eqs. (4.29) and (4.30) because of 

having different sections in the electromagnet as well as the variation of magnetic parameters. 

However, in the present electromagnet devices, we only need the magnetic field at the center of 

the gap where the MRE core layer is located. 

As a simplifying assumption, we consider that the magnetic field is constant for specific parts 

along the center line of the conductive core of each electromagnet (dashed lines in Figure 4.2). As 

a result, we may write Eq. (4.29) in a discretized form by replacing the integration with a 

summation which is basically the analog of Kirchhoff’s voltages law for magnetic circuits and can 

be expressed as: 

∑𝐻𝑖𝑙𝑖 =∑𝑁𝑖𝐼𝑖 (4.31) 

where 𝐻𝑖 is the magnetic field in the 𝑖-th portion along the core’s center line with constant magnetic 

flux. The parameters 𝑙𝑖, 𝑁𝑖, 𝐼𝑖 stand for the length of the portion, number of turns of wire included, 

and input current to the coil, respectively. Eq. (4.31) states that the sum of magnetomotive force 

drops (𝐻𝑖𝑙𝑖) around a closed loop is equal to the sum of the magnetomotive force sources (𝑁𝑖𝐼𝑖) in 

that loop.  

On the other hand, the Eq. (4.30) states that the sum of the fluxes (�̂�) flowing into any closed 

volume in the space must be zero. Considering a node (very small volume) in the path of the 

magnetic flux flow, the sum of the fluxes into or out of the node must be zero, which is the analog 

of Kirchhoff’s current law for magnetic circuits. This can be mathematically described as: 

∑�̂�𝑖 = 0 (4.32) 

Eqs. (4.31) and (4.32) are used in the analysis of the electromagnets. Here, the development of 

the analytical circuit model is presented for the H-shaped electromagnet as shown in Figure 4.9. 
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The path of the magnetic flux which flows through the core sections is shown in the figure with 

dashed line. There are two closed loops for the H-shaped electromagnet as shown in Figure 4.9. 

For the closed loop number 1, starting from point n and moving in counterclockwise direction 

along the path nopqrmn, Eq. (4.31) can be expanded over different segments along the path as: 

𝑁𝑐1𝐼 + 𝑁𝑐2𝐼 + 𝑁𝑐3𝐼 = 𝐻𝑐𝑜𝑟𝑒𝑜𝑝𝑙𝑜𝑝 + 𝐻𝑐𝑜𝑟𝑒𝑝𝑞𝑟𝑚𝑙𝑝𝑞𝑟𝑚 + 𝐻𝑐𝑜𝑟𝑒𝑚𝑛𝑙𝑚𝑛 + 𝐻𝑔𝑎𝑝𝑙𝑔𝑎𝑝 (4.33) 

where 𝐼 is the input current to the coils, and 𝑁𝑐𝑖 (𝑖 = 1,2,3,4) is the number of turns of wire in the  

coil 𝐶𝑖. Magnetic field (𝐻) and length (𝑙) for each segment are shown with corresponding 

subscripts. The magnetic flux density is assumed to be constant at any cross section along the 

core’s centerline, i.e. 𝜙 = 𝐵𝐴. Moreover, at juncture points m or p, considering Eq. (4.32), we may 

write: 

�̂�1 = �̂�2 + �̂�3 (4.34) 

in which 
�̂�1

2
= �̂�2 = �̂�3 due to the symmetry of the electromagnet. The same relation exists for the 

magnetic flux density considering that the cross section is the same all around the closed path. 

 

Figure 4.9 The H-shaped electromagnet with the path of magnetic flux penetration discretized by 

letters for magnetic analysis. 

 

According to the geometrical parameters in Figure 4.2(a) and Figure 4.9, the number of turns 

of wire in the coils of the electromagnet can be determined as below: 

𝑁𝑐1 = 𝑁𝑐4 =
𝑑(2𝑐 + 𝑔)

2𝐷2
 (4.35) 
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𝑁𝑐2 = 𝑁𝑐3 =
𝑐𝑑

2𝐷2
 

where 𝑐, 𝑑, and 𝑔 are geometric parameters shown in Figure 4.9 and 𝐷 is the wire diameter. In 

addition, the total mass of the electromagnet can be formulated as: 

𝑀𝑒𝑙 =
𝜋

4
𝐷2𝐿𝑤𝜌𝑤 + 𝑉𝑠𝑐𝜌𝑠𝑐 (4.36) 

where 𝜌𝑤 and 𝜌𝑠𝑐 are densities of the wire and steel core of the electromagnet. 𝐿𝑤 is the length of 

wire and can be found using the following relation: 

𝐿𝑤 =
2𝑑(2𝑐+𝑔)

𝐷2
(𝑡 + 𝑡 + 𝑑) + 

2𝑐𝑑

𝐷2
(𝑡 + 𝑡 + 𝑑) (4.37) 

and 𝑉𝑠𝑐 is the volume of the steel core which can be expressed as: 

𝑉𝑠𝑐 = 𝑡((2𝑑 + 3𝑡)(2𝑡 + 2𝑐 + 𝑔) − 2𝑑(2𝑐 + 𝑔) − 𝑔𝑡) (4.38) 

Using Eqs. (4.33) to (4.38), the H-shaped electromagnet can be analyzed to find the magnetic 

flux density at the center of the gap while the input current to the coil is known.  

Here, the results for the developed analytical magnetic circuit model is compared with the 

obtained results using magnetostatic FE analysis. For this purpose, the H-shaped electromagnet 

with dimensions of 𝑐 = 𝑑 = 𝑡 = 2 cm and a gap of 𝑔 =0.5 cm is considered. Figure 4.10 shows 

the FE magnetic analysis performed by the FEMM software [110] which is a popular open source 

FE-based software for magnetic analysis. Here, the input current to the coil is set at 5 A. 

 

Figure 4.10 Magnetic analysis of the H-shaped electromagnet using FEMM software. 
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The magnetic flux density at the center of the gap has been evaluated using both analytical and 

FE models for different applied currents and results are provided in Table 4.1. As it is observed, 

although the presented analytical formulation does not consider the phenomena of fringing and 

leakage of the magnetic flux, very good agreement exists between analytical and FE results.  

It should be noted that similar analysis can be conducted for the C-shaped and U-shaped 

electromagnets. The formulation for the C-shaped and U-shaped electromagnets are provided in 

Appendix B. Similar to the H-shaped electromagnet, negligible error has been observed between 

analytical and FE magnetic circuit results for the C- and U-shaped electromagnets as provided in 

Appendix B. 

Table 4.1 Comparison of flux density values at the center of the air-gap of the H-shaped 

electromagnet obtained by analytical magnetic circuit model (Eqs. (4.33) to (4.38)) and FE model. 

Input Current (A) 

Flux Density (mT) 
Error % Analytical magnetic circuit model, 

Eqs. (4.33) to (4.38) 
FE analysis 

2.5 399 402 0.77 

3 479 482 0.73 

3.5 559 563 0.71 

4 640 643 0.53 

4.5 720 724 0.55 

5 801 804 0.37 

 

By combining the developed FE model for the MRE-based sandwich beam (Section 4.4) with 

the analytical magnetic circuit model of the electromagnet (Eqs. (4.33) to (4.38)), a full model of 

the MRE-ATVA is obtained. This high-fidelity model will be then utilized to formulate the 

objective function (natural frequency of the MRE-ATVA) and constraints (total weight of the 

MRE-ATVA as well as the static deflection and stresses experienced in the sandwich beam due to 

the weight of the electromagnet) of the multidisciplinary design optimization problem. 

4.6 Multidisciplinary Design Optimization of the Proposed MRE-Based ATVAs 

Here, a multidisciplinary design optimization problem involving the electromagnet and 

sandwich beam structure design parameters has been formulated to maximize the frequency 

bandwidth of the proposed MRE-ATVA under mass, deflection and stress constraints. Due to the 

symmetry in the proposed configurations for the MRE-ATVA as shown in Figure 4.3, half of the 

absorber structure which is a cantilever MRE-sandwich beam with one electromagnet installed at 
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the free end has been considered. The active part of the MRE layer (see Figure 4.7) will be at the 

free end of the sandwich beam where the electromagnet is installed. The design optimization will 

be conducted on different design configurations of the electromagnets (H-, C-, and U-shaped) to 

identify the optimal configuration. 

There are several important practical factors in the design optimization of the proposed MRE-

ATVA such as weight, operating frequency range, static tip deflection of the cantilever beam, and 

maximum stress in the elastic layers of the beam. In the proposed optimization problem, the 

objective is to maximize the frequency bandwidth of the proposed MRE-ATVA under mass, 

deflection, and stress constraints. In order to realize a light weight MRE-ATVA, the total mass of 

the device is considered to be less than 700 g. Moreover, to avoid large deflections that may cause 

geometric nonlinearities, the static tip deflection of the beam is expected to be not more than 10% 

of the beam length. On the other hand, the maximum stress in the elastic face layers which occurs 

at the root of the cantilever sandwich beam should not surpass the yield strength of the material. 

Finally, since the proposed ATVA is considered for vibration control applications in the low 

frequency ranges, the absorber’s frequency in the off-state condition, i.e. the natural frequency 

under zero current applied to the coils (electromagnets are off), is restricted to be less than 10 Hz. 

Figure 4.2 and Figure 4.7 show all the important geometric dimensions in the configuration of 

the electromagnets and sandwich beam, respectively. The parameters of the core of the 

electromagnets, 𝑐 and 𝑑, and the thickness of the beam layers ℎ𝑡, ℎ𝑐, ℎ𝑏 are identified as the 

important design variables in the optimization problem. By having a symmetric sandwich beam 

with equal thickness in the top and bottom elastic layers, i.e. ℎ𝑡 = ℎ𝑏, there will be four design 

variables (𝑐 , 𝑑, ℎ𝑡 , ℎ𝑐) in the optimal design problem. It should be noted that the gap of the 

electromagnet, 𝑔, is occupied by the sandwich beam and thus it would be a dependent parameter 

(𝑔 = 2ℎ𝑡 + ℎ𝑐). The other independent parameters and dimensions are assumed to be fixed. The 

design optimization problem of the proposed MRE-ATVA can be formally formulated as: 

Find the design variables: [𝑐, 𝑑, ℎ𝑡 , ℎ𝑐] 

To minimize: [
(𝑓)𝐵1 = 0

(𝑓)𝐵2
] 

(4.39) 

Subject to the following behavior constraints: 

𝑀𝑡𝑜𝑡𝑎𝑙 ≤  700 g (4.40) 

(𝑓)𝐵1 = 0   ≤  10 Hz (4.41) 
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maximum stress in the elastic layers ≤ 285 MPa (4.42) 

static tip deflection ≤ 0.1 𝐿 (4.43) 

and side constraints: 

[𝑐min, 𝑑min, ℎ𝑡min, ℎ𝑐min] ≤  [𝑐, 𝑑, ℎ𝑡 , ℎ𝑐] ≤  [𝑐max, 𝑑max, ℎ𝑡max, ℎ𝑐max] (4.44) 

where 𝑀𝑡𝑜𝑡𝑎𝑙 is the total mass of the ATVA which is sum of the sandwich beam mass and the 

electromagnet mass.  (𝑓)𝐵𝑖, 𝑖 = 1,2 is the natural frequency of the ATVA when flux density of 𝐵𝑖 

is applied on the MRE layer by the electromagnet. 𝐵1 = 0 is when the electromagnet is off and 𝐵2 

is the flux density that is generated by the electromagnet when maximum allowable current is 

supplied to the coils. Minimizing the ratio of [
(𝑓)𝐵1=0

(𝑓)𝐵2
] as the objective function, infers the lowest 

value for (𝑓)𝐵1=0 and highest value for (𝑓)𝐵2 which is indeed maximization of the frequency range 

of the ATVA. The design variables are bounded by reasonable lower and upper limits. In the 

present study, the values for the lower limits are: 𝑐min = 𝑑min = 5 mm, ℎ𝑡min = ℎ𝑐min =

0.5 mm, and for the upper limits: 𝑐max = 𝑑max = 30 mm; ℎ𝑡max = ℎ𝑐max = 3 mm. 

The combination of GA and SQP techniques is utilized in the present study to accurately catch 

the true optimum solution. The GA is a random-based evolutionary algorithm which can 

approximately identify the global optimum solution. On the other hand, SQP is a powerful 

derivative-based algorithm developed for constrained nonlinear optimization problems. 

Depending on the starting initial point, SQP can accurately identify the nearest local optimum 

solution, without any mechanism to search for global solution. In this study, the merits of both 

algorithms have been exploited in which the GA is first run to identify the near global optimum 

solution and then the optimum solution from GA is fed into the SQP algorithm as the initial point 

to capture accurately the global optimum solution. 

The complete model of the ATVA which consists of the FE model of the sandwich beam and 

magnetic analysis of the electromagnet is used to develop two MATLAB® functions; one to 

calculate the objective function defined in Eq. (4.39) and the other includes constraints defined in 

Eqs. (4.40) to (4.44). The optimization problem for each configuration of the electromagnet is first 

solved by the genetic algorithm using the GA optimization platform in MATLAB®. Then the 

optimal result of GA is used as the initial point to run the “Fmincon” command with SQP algorithm 

using MATLAB®. 
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4.7 Optimization Results and Discussion 

In this section, optimum results for different configurations of the MRE-ATVA are presented 

and compared. In all cases, the length and width of the three-layer sandwich beam is fixed to be 𝐿 

= 15 cm and 𝑤 = 2 cm, respectively. Edge size of the square cross section of the conductor core is 

set at 𝑡 = 2 cm for all the electromagnet designs. Maximum applied current is considered to be 5 

A. The material properties for different parts of the ATVA and their mechanical and magnetic 

properties were introduced in Section 4.3. 

To demonstrate the non-convexity nature of the problem and existence of multiple local 

optimum solutions, SQP optimizer has been first executed for MRE-ATVA with H-shaped 

electromagnet using different initial points. Figure 4.11 shows iteration history (objective function 

versus number of iterations). The three initial points have been selected from the beginning, 

middle, and end of the design variables’ ranges. As it can be realized, starting from different initial 

points, SQP method identifies different local optimum solutions.    

 

Figure 4.11 Performance of the SQP method when starting from different initial points. 

On the other hand, executing GA which uses random population of points, has resulted to 

optimum solutions which are near to the global optimum solution. However, once different 

optimum solutions from GA is used as initial points for SQP algorithm, a unique global optimum 

solution is obtained. 

Table 4.2 shows the optimization results for different configurations of the proposed MRE-

ATVA obtained using combined GA and SQP methods. The optimal value of the design variables 

is reported on the top part of the table which are used to calculate the corresponding performance 
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of the optimal MRE-ATVAs provided at the bottom of the table. Results suggest that the optimal 

MRE-ATVA with U-shaped electromagnet presents 42.1% frequency increase while the C-shaped 

and H-shaped types show 28% and 24% increase in the frequency, respectively. Therefore, the 

ATVA having U-shaped electromagnet shows the maximum frequency range in comparison with 

the other configurations where the natural frequency of the absorber could vary from 5.73 Hz to 

8.14 Hz. Besides, the optimal C-shaped design shows the minimum mass of 423 g while the U-

shaped and H-shaped designs give a mass of 596 g and 643 g, respectively. 

The reason behind higher frequency bandwidth of the optimal U-shaped configuration over 

the C- and H-shaped designs might be due to wider interaction surface of the U-shaped 

electromagnet with the MRE core layer. This type of electromagnet, due to its U-shaped structure, 

has two contact surfaces on its poles with the sandwich beam where the magnetic field flows 

through the MRE core layer. Therefore, the MRE layer being activated in a wider span of the 

sandwich beam which will cause higher MR effect in the system and finally greater change in the 

natural frequency. Moreover, it should be noted that the constraint of maximum stress in the steel 

face layers at the root of the beam is an active constraint for the optimal design of all the three 

ATVA configurations presented in Table 4.2. It is seen from the results of Table 4.2 that the 

optimal ATVA with U-shaped electromagnet, thanks to its location on the beam with a center of 

mass closer to the beam root, allows for thicker MRE layer (higher hc) before reaching the limit 

of maximum stress. A thicker MRE core layer brings higher MR effect in the system which results 

in greater change in the natural frequency. 
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Table 4.2 Optimization results of the MRE-ATVA with the three different electromagnets. 

 

ATVA with U-shaped 

electromagnet 

 

ATVA with H-shaped 

electromagnet 

 

ATVA with C-shaped 

electromagnet 

 

O
p

tim
al v

alu
es (m

m
) 

 

𝒉𝒕= 𝒉𝒃 0.85 0.95 0.79 

𝒉𝐜 1.10 0.50 0.50 

𝒄 5.00 5.00 5.00 

𝒅 18.00 5.00 5.00 

  

A
T

V
A

 p
erfo

rm
an

ce 

 

Total Mass (g) 596.0 643.0 423.0 

Frequency Range 

[𝒇𝟏- 𝒇𝟐] (Hz) 

[5.73 – 8.14] [5.38 – 6.68] [5.23 – 6.69] 

Frequency Shift 

𝜟𝒇 (Hz) 

2.41 1.30 1.46 

Frequency Shift 
𝜟𝒇

𝒇𝟏
 (%) 42.1 24.0 28.0 

 

Figure 4.12 illustrates the optimal frequency shift for the MRE-ATVAs with different values 

of the input current to the coils of the electromagnets. As it can be realized, on the one hand, the 

optimal ATVA with U-shaped electromagnet has the highest frequency shift for all current inputs 

compared with those of C- and H-shaped designs. On the other hand, comparison of the C- and H-

shaped configurations shows that they have a similar performance at the low current values, 

whereas the C-shaped design precedes the H-shaped configuration for the current values more than 

2.5 A. For all three configurations, the slope of the graphs is greater at small current values and 
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gradually decreases with an increase of the input current which can be attributed to the magnetic 

saturation of the MRE at high values of magnetic excitation, as discussed in Section 4.3. 

 
Figure 4.12 Frequency shift versus input current for the three optimal MRE-ATVAs. 

4.8 Conclusions 

In this chapter, a comprehensive design optimization process for a novel MRE-ATVA is 

investigated. The proposed MRE-ATVA consists of a three-layer sandwich beam with MRE in the 

core layer and two electromagnets placed on both ends of the beam to provide the required 

magnetic field and to serve as the active mass of the absorbers. Three potential designs for the 

electromagnets are investigated in the optimization problem including electromagnets with U-, H-

, and C-shaped designs. A FE model of the sandwich beam is presented and validated with the 

analytical solution from the literature. Magnetic analysis of the electromagnets is performed using 

a developed formulation based on the Ampere’s circuital law and Gauss’s law. The results of the 

magnetic analysis of the electromagnets are validated with the simulation results using a FE 

magnetic analysis. By combining the FE model of the sandwich beam and the magnetic model of 

the electromagnets, a high-fidelity model of the proposed MRE-ATVAs is constructed, which is 

subsequently employed to calculate the natural frequency of the absorber and constraint functions. 

Finally, a multidisciplinary design optimization problem is formulated to identify the optimal 

values of the considered geometric structural and magnetic design parameters to maximize the 

frequency range of the proposed MRE-ATVAs. A combined GA and SQP algorithm was used to 

find accurate global optimal solutions of the proposed MRE-ATVAs with three different 

electromagnet configurations. The results suggest that the optimal MRE-ATVA with U-shaped 

electromagnet can provide the highest frequency shift (42%) in the range of 5.73 to 8.14 Hz. The 
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C- and H-shaped configurations present 28% and 24% increase in the natural frequency, 

respectively. The optimal ATVAs are all lightweight as their masses are below 700 g. In addition, 

the performance of the optimized MRE-ATVA at different input currents is investigated. The 

results show that the optimal MRE-ATVA with U-shaped electromagnet provides the highest 

frequency shift irrespective of the applied current. Such optimized lightweight MRE-ATVAs with 

significant frequency shift in the low frequency range pave the way for realization of the compact 

practical adaptive vibration absorbers that are very effective and reliable for vibration and noise 

control applications. 
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CHAPTER 5  

CONTRIBUTIONS, CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORKS 

 

5.1 Major Contributions and Achievements 

The present research dissertation provided a comprehensive investigation on the fabrication, 

characterization, and microstructure-based modeling of MREs for both of quasi-static and dynamic 

loading conditions. In addition, the application of MREs in adaptive vibration absorption was 

studied by presenting the design optimization of a novel sandwich beam-based ATVA treated with 

MRE. The major contributions of this research dissertation over the current state of MRE 

knowledge are summarized below: 

1. A microstructure-based model was developed for predicting the quasi-static magneto-

elastic properties of the MREs. The model considers the magnetic interaction between 

filler particles in the material by assuming ideal distribution of magnetizable particles 

according to lattice configurations. For the first time, a complete set of different types 

of lattice models were considered to represent the distribution of magnetic fillers in the 

matrix. For the isotropic MREs, seven lattices, including SC, BCC, FCC, ECC, BECC, 

FECC, and BFECC lattices, were considered. For the anisotropic MREs, chain-like 

structure of particles was used as idealized dispersion of fillers. Both elastic and 

magnetic parts of the model were formulated using an energy approach and the shear 

modulus was obtained for the various lattices in terms of magnetic flux density, volume 

fraction of particles, and material properties. The performance of the proposed lattices 

were explained in detailed physical and mathematical discussion. The variation in 

MREs properties under the applied magnetic field was well clarified based on magnetic 

interaction between particles in the network. The results of shear modulus from the 

proposed microstructure model were validated with the experimental data measured 

using in-house fabricated MRE samples. In addition, the efficiency of the lattices were 

evaluated quantitatively by comparing their performance in predicting the experimental 

results. 
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2. A microstructure modeling approach was also developed to investigate the dynamic 

magneto-viscoelastic properties of the MREs. The Langevin dynamic of particles’ 

motion were formulated using a Lagrange’s approach and solved to obtain the field-

dependent relaxation times of the particles distributed in a cubic and chain-like network 

for both isotropic and anisotropic MREs, respectively. Particles in the network were 

connected with springs representing the elasticity of the host matrix and each particle 

has a viscous constant providing the damping effects associated with particles’ motion 

and that of the material. After deriving the equations of motion of particles and finding 

the relaxation times, a dipole magnetic saturation model was introduced into the model 

to relate the eigenvalues and relaxation times to the magnetic flux density which is 

directly measurable in practice. The frequency- and magnetic field-dependent storage 

and loss moduli of the MRE material were extracted from the relaxation modulus. To 

validate the dynamic model, first, isotropic and anisotropic MRE samples with different 

volume fraction of iron particles have been fabricated and then experimentally 

characterized under wide range of excitation frequencies and external magnetic flux 

densities using an advanced rheometer device integrated with an electromagnet unit. 

The material model parameters were estimated using the experimental data and finally, 

the theoretical results based on the proposed model were compared with empirical data 

which unveiled the accuracy of the model. The proposed dynamic microstructure-based 

model advances the existing coarse-grained network models in the literature. 

3. A novel MRE-cored sandwich beam type ATVA is designed and optimized for 

maximum frequency bandwidth. The proposed MRE-ATVA includes flexible and light 

weight MRE-based sandwich beam with electromagnets installed on beam ends. The 

role of electromagnets is twofold: providing the require magnetic field to activate the 

MRE core layer and also serving as the active mass of the absorber. Three different 

configurations were proposed for the electromagnets. FE model of the sandwich beam, 

and the mathematical formulation for magnetic analysis of the electromagnets were 

established and combined to achieve a comprehensive model for the MRE-ATVA able 

to capture variation in the natural frequency of the beam under change in the magnetic 

field and other parameters of the absorber. Thereafter, a multidisciplinary optimal 

design problem which considers both the structural geometry and electromagnet 
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parameters as design variables, was formulated aiming at maximizing the frequency 

range of the absorber, while respecting constraints on the total mass, static deflection, 

and maximum stress in the beam. To accurately identify the optimal design, the 

optimization problem is solved using a combination of GA and SQP methods. Finally, 

the performance of the identified optimal designs for the proposed MRE-ATVAs were 

compared and discussed. 

 

5.2 Major Conclusions 

The major conclusions extracted from the results of this research dissertation are summarized 

below: 

• MRE samples fabricated in the lab using spherical shape carbonyl iron powders and low 

viscous silicone rubber were stable and appropriate for shear mode characterization with 

rheometer. The microstructure images exhibited well dispersion of particles in the 

medium. 

• Fabrication of samples with high volume fraction of particles, particularly beyond 40%, 

becomes challenging due to the enhanced agglomeration of filler particles. 

• Under quasi-static shear strain and applied magnetic field, the stiffness of MREs have 

increased which was significantly pronounced for samples with higher volume fraction of 

particles. For instance, an MRE sample with 𝜙 =5% provided around 70% increase in the 

elastic modulus while a sample with 𝜙 =40% improved the shear modulus by around 3000 

% under applied magnetic flux density varying from 0 to 1 T. 

• Anisotropic MRE samples have shown superior increase in the shear modulus compared 

to the isotropic MREs with similar particle participation due to the chain-like distribution 

of particles in the structure. However, the anisotropic samples become magnetically 

saturated at lower magnetic inductions. 

• Increasing the level of applied magnetic flux density and volume fraction of iron particles 

also enhances the nonlinearity of the elastic response of the MREs. 

• Magnetic saturation of MRE samples with higher particle population occurs at higher 

magnetic flux densities in comparison with samples having lower particle content. 
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• Regarding the elastic response of the MRE samples in the absence of magnetic induction, 

the two-term I1-based model showed superior performance in predicting the nonlinear 

stress-strain response of MREs compared to the Neo-Hookean and one-term Ogden 

models.  

• Not all the idealized distribution of particles considered in the microstructure-based model 

showed acceptable performance in predicting the variation of elastic shear modulus of the 

isotropic MRE materials in terms of magnetic flux density. 

• Seven lattices were investigated to represent the isotropic distribution of particles in the 

material including: SC, BCC, FCC, ECC, BECC, FECC, and BFECC. For the anisotropic 

MREs, ideal chain-like structure of particles was used in the model. 

• Among the lattices, the BCC and FCC have shown decrease in the elastic shear modulus 

by the magnetic field which is in contradiction with experimental results. 

• Variation in the properties of MREs under magnetic field is explained from a 

microstructure point of view by studying the magnetic interaction between particles in the 

network. Differences in the performance of the lattices were also explained on the basis of 

the magnetic interaction between particles. 

• Among the considered lattice types, only the ECC lattice which also showed the maximum 

MR effect was able to predict the variation of shear modulus of MRE samples versus 

external magnetic flux density for all samples with various volume fraction of particles. 

Indeed, other lattices such as the SC lattice cannot represent truly the distribution of 

particles at high volume fractions such as 𝜙 = 40%. However, the ECC lattice is a better 

idealized representation of particles distribution at high volume fractions and could better 

predict the shear modulus test data. 

• By calculating the RMSE index for all the lattices, the relative performance of the lattices 

in predicting the experimental data of the fabricated MRE samples was quantitatively 

evaluated and compared. 

• Regarding dynamic magneto-mechanical properties of MREs, experimental 

characterization and microstructural modeling of linear viscoelastic response of isotropic 

and anisotropic MREs were performed. 

• In dynamic situation, a microstructure-based model was derived based on cubic network 

of particles for isotropic MREs and chain-like structure of particles for anisotropic MREs. 
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For this purpose, particles were connected with elastic springs and a friction coefficient 

was assigned to the motion of each particle. 

• Lagrange’s approach was used to derive the dynamic equation of motion associated with 

the motion of particles in the network around their equilibrium positions. After 

linearization and transforming from Cartesian coordinates to normal coordinates, 

equations of motion were solved to obtain eigenvalues (inverse relaxation times) in terms 

of magnetic flux density. 

• The behavior of normal modes relaxation spectrum illustrated splitting of the spectrum 

under application of magnetic field into two branches. The eigenvalues associating with 

the particle motions along the direction of external magnetic field decreased (increase of 

relaxation time) and those associating with the motions normal to the field direction 

increased (decrease of relaxation time). Both the external magnetic field and volume 

fraction of particles intensified the breaking level of relaxation spectrum. 

• Variation in eigenvalues with respect to the applied magnetic field was explained 

considering that the relaxation time is inversely related to the effective stiffness along a 

direction. 

• Anisotropic MREs exhibited higher zero-field eigenvalue (lower relaxation time) and also 

greater splitting of relaxation spectrum under magnetic field compared to the isotropic 

MREs. This suggests that as the particles arrangement moves toward chains, the 

eigenvalues (relaxation times) become more sensitive to the magnetic field. 

• At high external magnetic field, the model may result in negative eigenvalues and 

subsequently negative relaxation time which shows the instability of the particle network. 

A parameter was introduced named critical magnetic flux density, at which the eigenvalues 

become negative. The critical magnetic flux density was calculated to show the critical 

threshold of the model.  

• Considering a situation where an MRE material is under oscillatory shear deformation and 

magnetic field is applied normal to the shearing deformation, relations for storage and loss 

moduli were derived from the relaxation modulus by using the information of relaxation 

time spectrum. 
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• The few tuning parameters of the proposed model were identified by minimizing the error 

between theoretical results and experiment data taken from real isotropic and anisotropic 

MRE samples fabricated in the lab. 

• The storage and loss moduli of the MRE samples showed increasing behavior with 

magnetic flux density and saturation at high magnetic fields. The increase in the dynamic 

moduli was improved for higher volume fraction of particles and for anisotropic chain-like 

dispersion of particles in the material. 

• The developed microstructure-based model showed a remarkable performance in 

predicting the experiment data of storage and loss moduli in a wide range of excitation 

frequency ranging from 2 Hz to 100 Hz and magnetic flux density varying up to 1 T. Also, 

the model was successful in predicting the magnetic saturation of the MRE materials. 

• A sandwich beam with MRE core layer having two electromagnets installed on both ends 

was designed as an MRE-ATVA. The electromagnets provided the required magnetic field 

and also served as the active mass of the absorbers. Three potential designs including 

electromagnets with U-, H-, and C-shaped designs were considered. 

• FE model of the sandwich beam and magnetic analysis of the electromagnets were 

developed and validated by simulation data and available results in the literature. A 

comprehensive model of the MRE-ATVA was developed by combining the 

aforementioned models of the beam and electromagnets. 

• A multidisciplinary design optimization problem using combined GA and SQP algorithm 

was finally formulated to identify the optimal values of the considered geometric structural 

and magnetic design parameters to maximize the frequency range of the proposed MRE-

ATVA. Constraints of mass, deflection, size and stress were applied in the optimization 

problem. 

• The optimal MRE-ATVA with U-shaped electromagnet provided the highest frequency 

shift of 42% in the range of 5.73 Hz to 8.14 Hz. The C- and H-shaped configurations 

presented 28% and 24% increase in the natural frequency varying in the range of 5.23 Hz 

to 6.69 Hz and 5.38 Hz to 6.68, respectively. 

• Regarding the optimal frequency shift of the MRE-ATVAs in terms of input current to the 

coils of the electromagnets, the optimal ATVA having U-shaped electromagnet showed 

the highest frequency shift for all current inputs. On the other hand, the C- and H-shaped 
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configurations showed similar frequency shift at the low current values, whereas for the 

current values more than 2.5 A, the C-shaped design surpassed the H-shaped configuration. 

Magnetic saturation of the MRE at high values of magnetic excitation was observed from 

the variation of absorber’s frequency shift at high input currents. 

5.3 Recommendations for the future works 

In this dissertation, magneto-mechanical properties of smart MRE materials were 

systematically investigated through performing experiments as well as theoretical modeling in 

both static and dynamic situations. The application of MRE in adaptive vibration absorption was 

also illustrated by proposing design optimization of a sandwich beam type adaptive tuned vibration 

absorber treated with MRE material. The developed experiments, models, analysis and design 

optimization formulations provide a unique platform to fundamentally analyze these emerging 

materials and to design the next generation of lightweight, semi-active vibration absorbers for 

optimal vibration suppression. Although the developed analytical, computational and experimental 

techniques have significantly advanced the state of the art in the field of smart MREs, nevertheless, 

the following interesting aspects which are natural extension of the current work have been 

identified: 

i. The developed quasi-static and dynamic microstructure-based models can be extended to 

analyze the MRE properties in tension-compression modes. 

ii. The different lattice types such as ECC lattice that were used in the quasi-static model of 

MRE can be also employed in the dynamic model. In this case, particles’ equations of 

motion have to be updated to address the new configuration of particles in the network. 

iii. Regarding the inconsistencies occurred in predicting the loss modulus of anisotropic MREs 

at high magnetic field and low frequencies (as observed in Figure 3.11 and Figure 3.12) 

more research can be done to find the damping mechanisms of the MREs and how to 

incorporate those mechanisms into the developed microstructure-based model. 

iv. In the modeling approaches of the current research, spherical filler particle with identical 

diameter were used which is reasonable to represent average diameter of the fabricated 

filler particles. However, in real MRE samples usually particles exist in a specific narrow 

range of diameters. On the other hand, during fabrication of MREs, some aggregates of 

particles may form in the matrix as can be observed from microstructural images (Figure 
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3.7). Future research can be done to investigate the effect of randomness in particle size 

and filler aggregations on the magnetic and mechanical properties of MREs as initiated by 

a few researchers in the past [61], [111]–[113]. 

v. Semi-active control strategies based on different control techniques such as observer-based 

linear quadratic regulator (LQR), optimal control or fuzzy logic-based control can be 

developed to enhance vibration damping of the optimized MRE-ATVA in a closed-loop 

system under different loading conditions.  

vi. The optimal MRE-ATVA can be prototyped to be implemented in a hardware-in-the-loop 

system to evaluate its performance in mitigating the vibrations of a main system. 
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Appendix A 

In this section, average particle polarization is computed in terms of average flux density. As 

it has been presented in [51], all polarization of the MRE can be considered due to the polarization 

of the particles. Therefore, B-H relation in a material can be written as: 

𝜇0𝐻 = 𝐵 − 𝜙𝐽𝑝 (A.1) 

where 𝜇0 = 4𝜋 ×10-7 is the vacuum permeability. 𝐽𝑝 is the average polarization density of the 

particles and may be calculated by performing integration over half volume of a particle and 

regarding both saturated and unsaturated regions inside a particle: 

𝐽𝑝 =
1

𝑣0/2
(∫ 𝐽𝑥𝑑𝑉𝑥 +∫𝐽𝑠𝑑𝑉𝑠) =

1

2
3𝜋𝑟

3
(∫ 𝐽𝑥𝜋(𝑟

2 − 𝑥2)𝑑𝑥
𝑟𝑠

0

+∫ 𝐽𝑠𝜋(𝑟
2 − 𝑥2)𝑑𝑥

𝑟

𝑟𝑠

) (A.2) 

where, 
𝑣0

2
=

2

3
𝜋𝑟3 stands for the half of a particle volume, and 𝐽𝑠 is the saturation polarization of 

the particles. 𝐽𝑥 is the polarization density at a distance 𝑥 within the unsaturated region of the 

particle. Neglecting the reluctance of the unsaturated portion of the particle compared to that of 

the saturated region (𝐵𝑠 ≈ 𝐽𝑠 + 𝜇0𝐻) and substituting 𝐽𝑥 = 
(𝑟2−𝑟𝑠

2)

(𝑟2−𝑥2)
𝐵𝑠, Eq. (A.1) can be written as 

follows:  

𝜇0𝐻 = 𝐵 −
3𝜙

2𝑟3
((𝐽𝑠 + 𝜇0𝐻)∫ (𝑟2 − 𝑟𝑠

2)𝑑𝑥
𝑟𝑠

0

+ 𝐽𝑠∫ (𝑟2 − 𝑥2
𝑟

𝑟𝑠

)𝑑𝑥) (A.3) 

 

Performing integrations in Eq. (A.3) and using 𝛼 = 𝑟𝑠/𝑟 in the formulation yields: 

𝜇0𝐻 =
𝐵 − 𝜙(1 − 𝛼3)𝐽𝑠

1 +
3𝜙
2
(𝛼 − 𝛼3)

 (A.4) 

By substituting Eq. (A.1) into Eq. (A.4), the average particle polarization density can be simply 

obtained as: 

𝐽𝑝 =

3
2
(𝛼 − 𝛼3)𝐵 + (1 − 𝛼3)𝐽𝑠

1 +
3
2𝜙

(𝛼 − 𝛼3)
 (A.5) 

In this equation, particle polarization, 𝐽𝑝, is obtained based on the averaged flux density, 𝐵. In 

[51], Eq. (A.4) and (A.5) were presented as follows:  



134 

 

𝜇0𝐻 =
𝐵 − 𝜙(1 − 𝛼3)𝐽𝑠

1 +
3𝜙
2 𝛼3

 (A.6) 

𝐽𝑝 =

3
2𝛼

3𝐵 + (1 − 𝛼3)𝐽𝑠

1 +
3
2𝜙𝛼

3
 (A.7) 

which are different from the derivation presented above. It seems that a minor mistake is occurred 

in [51] for integrations of Eq. (A.3) and derivation of the particle polarization, 𝐽𝑝. Considering that 

the MRE samples with various volume fraction of particles will saturate at different levels of 

magnetic induction as discussed in the Section 2.2.2, in the present study the coefficient of the 

saturation polarization is used to correct the saturation polarization of the MREs with respect to 

the volume fraction of CIPs. Therefore, Eq. (A.5) is modified as Eq. (2.19). 
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Appendix B 

In this appendix, required formulation for magnetic analysis of the C- and U-shaped 

electromagnets is provided, similar to the equations developed for the H-shaped electromagnet in 

Section 4.5. Parameters have the same meaning as in the case of H-shaped electromagnet unless 

otherwise mentioned. 

For the C-shaped electromagnet, according to Figure 4.2 (b), since there is only one closed 

loop in the path of magnetic flux without any node, the amount of flux is constant around the loop. 

In addition, Equation (4.31) could be written for the C-shaped electromagnet in the following 

format: 

𝑁𝑐1𝐼 +  𝑁𝑐2𝐼 +  𝑁𝑐3𝐼 =  𝐻𝑐𝑜𝑟𝑒𝑙𝑐𝑜𝑟𝑒  + 𝐻𝑔𝑎𝑝𝑙𝑔𝑎𝑝 (B.1) 

The number of turns of wire in the coils of the electromagnet can be estimated as: 

𝑁𝑐1  =  𝑁𝑐2  =  
𝑐𝑑

2𝐷2
 

𝑁𝑐3  =  
𝑑(2𝑐 + 𝑔)

2𝐷2
 

(B.2) 

In addition, the total mass of the electromagnet can be formulated as: 

𝑀𝑒𝑙  =  
𝜋

4
𝐷2𝐿𝑤𝜌𝑤  +  𝑉𝑠𝑐𝜌𝑠𝑐 (B.3) 

where 𝐿𝑤 and 𝑉𝑠𝑐 could be found with the following relations: 

𝐿𝑤  =  
2𝑐𝑑

𝐷2
(𝑡 +  𝑡 +  𝑑)  + 

𝑑(2𝑐 +  𝑔)

𝐷2
(𝑡 +  𝑡 +  𝑑) (B.4) 

𝑉𝑠𝑐  =  𝑡((2𝑡 +  𝑑)(2𝑡 +  2𝑐 +  𝑔)  −  𝑑(2𝑐 +  𝑔)  −  𝑔𝑡) (B.5) 

Similar to what was presented for the H-shaped electromagnet in Figure 4.10, here, the FE 

magnetic analysis for the C-shaped electromagnet, performed by the FEMM software, is 

demonstrated in Figure B.1. The input current to the coil is set at 5 A. The considered C-shaped 

electromagnet has dimensions of 𝑐 =  𝑑 =  𝑡 = 2 cm and a gap of 𝑔 = 0.5 cm. 
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Figure B.1. Magnetic flux distribution for the C-shaped electromagnet using FEMM software. 

Results of magnetic flux density at the center of the gap has also been calculated using both 

analytical model (Equations (B.1) to (B.5)) and FE analysis (with FEMM software) for different 

applied currents. Table B.1 shows the comparison of the results for the C-shaped electromagnet. 

 

Table B.1. Comparison of flux density values at the center of the air gap of the C-shaped 

electromagnet obtained by analytical magnetic circuit model (Equations (B.1) to (B.5)) and FE model. 

Input Current (A) 

Flux Density (mT) 

Analytical Magnetic Circuit Model 

Equations (B.1) to (B.5) 

Flux Density (mT) 

FE Analysis 
Error% 

2.5 394 400 1.50 

3 474 480 1.25 

3.5 554 560 1.07 

4 635 645 1.55 

4.5 716 726 1.38 

5 798 806 0.99 

 

For the U-shaped design, considering the U-shaped electromagnet as in Figure 4.2 (c), the 

analytical magnetic model can be presented with the following equations: 

𝑁𝑐1𝐼 +  𝑁𝑐2𝐼 +  𝑁𝑐3𝐼 +  𝑁𝑐4𝐼 =  𝐻𝑐𝑜𝑟𝑒𝑙𝑐𝑜𝑟𝑒  + 𝐻𝑔𝑎𝑝𝑙𝑔𝑎𝑝 (B.6) 

The number of turns of wire in the coils of the electromagnet can be found as: 
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𝑁𝑐1  =  𝑁𝑐2  =  𝑁𝑐3  =  𝑁𝑐4  =  
𝑐𝑑

2𝐷2
 (B.7) 

Moreover, the total mass of the electromagnet can be formulated as: 

𝑀𝑒𝑙  =  
𝜋

4
𝐷2𝐿𝑤𝜌𝑤  +  𝑉𝑠𝑐𝜌𝑠𝑐 (B.8) 

where length of wire 𝐿𝑤 and volume of the steel core 𝑉𝑠𝑐 could be found with the following 

relations: 

𝐿𝑤  =  
4𝑐𝑑

𝐷2
(𝑡 +  𝑡 +  𝑑) (B.9) 

𝑉𝑠𝑐  =  2𝑡((2𝑡 +  𝑑)(𝑐 +  𝑡)  −  𝑐𝑑) (B.10) 

Figure B.2 shows the FE magnetic analysis for the U-shaped electromagnet, performed by the 

FEMM software when the input current to the coil is set at 5 A. 

 

Figure B.2. Magnetic flux distribution for the U-shaped electromagnet using FEMM software. 

In addition, the results of magnetic flux density at the center of the gap calculated by utilizing 

both analytical model (using Equations (B.6) to (B.10)) and FE analysis (with FEMM software) 

for different input currents are shown in Table B.2 for the U-shaped electromagnet. 
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Table B.2. Comparison of the flux density values at the center of the air gap of the U-shaped 

electromagnet obtained by analytical magnetic circuit model (Equations (B.6) to (B.10)) and FE model. 

Input Current (A) 

Flux Density (mT) 

Analytical Magnetic Circuit Model 

Equations (B.6) to (B.10) 

Flux Density (mT) 

FE Analysis 
Error% 

2.5 189 190 0.53 

3 226 228 0.88 

3.5 264 266 0.75 

4 302 304 0.66 

4.5 339 341 0.59 

5 377 379 0.53 
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