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Abstract

End-to-end Representation Learning for 3D Reconstruction

Soroush Saryazdi

Physically based rendering requires the digital representation of a scene to include
both 3D geometry and material appearance properties of objects in the scene.
Reconstructing such 3D representations from images of real-world environments
has been a long-standing goal in the fields of computer vision, computer graphics,
robotics, augmented and virtual reality, etc. Recently, representation learning
based approaches have transformed the landscape of several domains such as image
recognition and semantic segmentation. However, despite many encouraging advances
in other domains, how these learning-based approaches can be leveraged in the realm
of 3D reconstruction is still an open question. In this thesis, we propose approaches
for using neural networks in conjunction with the 3D reconstruction pipeline such that
they can be trained end-to-end based on a single end objective (e.g., to reconstruct
an accurate 3D representation). Our main contributions include the following:

• A fully differentiable dense visual SLAM framework for reconstructing the 3D
geometry of a scene from a sequence of RGB-D images, called gradslam. This
work, carried out in collaboration with the Robotics and Embodied AI Lab
(REAL) at MILA, resulted in the release of the first open-source library for
differentiable SLAM.

• We propose the disentangled rendering loss for training neural networks to
estimate material appearance parameters from image(s) of a near-flat surface.
The disentangled rendering loss allows the network to weigh the importance of
each material appearance parameter based on its effect on the final appearance
of the material, while also having desirable mathematical properties for
gradient-based training.

• We describe work towards an end-to-end trainable model that can simulta-
neously reconstruct the 3D geometry and predict the material appearance
properties of a scene. A publicly available dataset for training such a model is
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not currently available. Thus, we have created a dataset of material appearance
properties for complex scenes which we intend to release publicly.

Our approach enjoys many of the benefits of classical 3D reconstruction approaches
such as interpretability (due to the modular nature) and the ability to use well-
understood components from the reconstruction pipeline. Further, this approach also
enjoys representation learning benefits such as the capability of solving challenging
tasks which have been difficult to solve by designing explicit algorithms (e.g., material
appearance property estimation for complex scenes), and their strong performance
on end-to-end training tasks.
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Chapter 1

Introduction

1.1 Overview
“Some facts might be made available if the programs could be taught to read and
understand books, but comprehending even simple words would require detailed
knowledge of the physical world. Such knowledge is assumed to preexist in the
minds of book readers—no book attempts a comprehensive definition of a rock, a
tree, the sky, or a human being. Possibly some of this world knowledge, as it has
come to be called, could be obtained by the machine itself if it could directly
observe its surroundings through camera eyes, microphone ears, and feeling robot
hands.”

—Hans Moravec, Mind Children (1988)

Understanding the 3D appearance of a scene based on one or more captured
images is something humans are inherently capable of. As an example, in Fig. 1, we
can look at the image on the left and immediately tell that the table surface is very
reflective, we can point out the location of light sources, we can imagine the shape
of the chairs, and we can even get an approximate estimate of the room dimensions.
Moreover, we can easily connect the contents of the image on the left with the 3D
scene on the right. For instance, we can tell how the 3D reconstruction on the right
would differ if there was a vase on the table in the left image. We can also estimate
the camera location with respect to the 3D scene when taking that image. While this
ability feels very natural to a human, recovering this 3D representation from images
is a very difficult task for a computer.

Challenges. Many of the physical laws that dictate how the 3D world
appears from a viewpoint have been thoroughly investigated, well-understood and
are commonly used in graphics (projective geometry, light flow computations, etc.).
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Figure 1: Comparing human and computer perception. Left: image of a synthetic
indoor scene from the Hypersim dataset [1]. Right: partial 3D reconstruction of the
scene.

However, going back from the captured image(s) to the 3D representation continues
to be a very challenging task. To begin with, there has been a lack of consensus on the
3D representation (pointclouds, meshes, surfels, etc.) for recovering the 3D geometry
(shape). This fundamental choice of the 3D representation dramatically impacts the
processing blocks and the types of challenges that we face. Moreover, recovering the
physical material appearance properties from images of a single object is an inherently
ill-posed problem, as a material can appear quite different under various lighting and
viewing conditions. Additionally, recovering the material appearance properties of an
entire scene has extra challenges caused by inter-reflections of the different objects in
the scene, shadows, etc.

Current state. Reconstructing the 3D geometry of a scene based on a captured
sequence of RGB or RGB-D images has been an exciting and active area of research
[2,13–18]. Dense visual Simultaneous Localization and Mapping (SLAM) approaches
focus extensively on building and updating the 3D map of an environment while
simultaneously recovering the camera location in that map [2, 16–18]. Recently,
gradient-based learning approaches have transformed the outlook of several domains
(e.g., image recognition [19], language modeling [20], speech recognition [21]).
These learning-based approaches have also shown exciting results in both realms
of recovering the material appearance parameters [22–26] and improving SLAM
pipelines [13–15,27–29].

Remaining challenges. However, how to blend representation learning
approaches with SLAM systems is still an open question. This is primarily because
modern dense SLAM systems are quite sophisticated, with several non-differentiable
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Figure 2: Dense visual SLAM examples. Left: ElasticFusion results [2]. Figure
courtesy of [2]. Right: Volumetric TSDF fusion results. Figure courtesy of [3].

subsystems (optimizers, raycasting, surface mapping), that make such a construct
challenging. This has limited learning-based works in this domain to adopt the
following approach - first train the model for a specific task, and then plug the
trained model into the SLAM pipeline [14, 30]. Additionally, SLAM approaches
very commonly make an implicit or explicit Lambertian assumption on the materials
captured in the scene, and there has been very little attempt on recovering finer
material appearance properties such as shininess (specular reflections) or refractive
behavior. To the best of our knowledge, a model which simultaneously recovers
and updates a 3D map along with the complete material appearance properties has
yet to be developed. In the context of learning-based material appearance recovery,
several approaches leverage physical reflection models in the objective function for
optimizing their data-driven models. However, the computational impacts of using
reflection models in the optimization objectives has yet to be investigated.

Outline of Contributions. In this thesis, we propose end-to-end trainable 3D
reconstruction models to enable simultaneous recovery of geometry and materials,
as opposed to training separate components individually and piecing them together.
This allows all components of our model to be trained simultaneously for a single end
objective. The key insight in developing these models is to have the learning-based
models leverage well-observed knowledge from classical computer vision, graphics, and
robotics approaches in their training phase (e.g., via a loss function or a differentiable
pipeline). Having this combination of learning-based and classical approaches can
make our models easier to interpret (due to the modularity) as opposed to replacing
the entire classical pipeline with a learned model. In summary, our goal is to blend
end-to-end representation learning with classical 3D reconstruction knowledge.

Long-term motivations. The long-term goal of these techniques is to build
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towards models which can accurately reconstruct a detailed 3D map from casually
captured input images. Imagine turning on your camera, casually walking around
with it, and getting an accurate 3D representation of the environment appearance,
such as the shape of objects, the appearance of the materials, and the lighting
conditions. This will open a huge realm of possibilities. First, these detailed 3D
maps can directly be used in many tasks such as robotic navigation, augmented
reality, virtual reality, games and many other visualization and graphics design tasks.
As a concrete example, this can enable a robot to robustly navigate and operate in an
environment containing non-Lambertian materials such as metals, etc. Second, this
would enable massive amounts of detailed real-world 3D datasets to be created. The
value of these datasets is not only that they accurately capture the appearance of the
real world, but also that they contain valuable content from the real world long tail
cases which could not have been created in a synthetic dataset.

Short-term motivations. These long-term aspirations can be motivated
by shorter term valuable practical applications. First, a fully differentiable 3D
reconstruction system would enable task-driven representation learning since the error
signals indicating task performance could be back-propagated all the way through
the reconstruction system, to the raw sensor observations. Second, accurate material
appearance parameters can be used in several down-stream tasks such as scene re-
lighting, material type classification [31], and virtual object insertion in augmented
reality environments. Third, simultaneous recovery of the 3D geometry and material
appearance properties would enable estimating the material appearance parameters
of a complex environment without needing to capture each material in isolation.
Moreover, this could open new realms of possibilities for self-supervised learning on
images once combined with differentiable renderers.

Challenges of this approach. However, this approach also comes with some
challenges. One common challenge is the choice of the 3D representation for the 3D
geometry of the scene (pointcloud, voxel grid, mesh, surfel, etc.). This fundamental
choice dramatically impacts the choice of processing blocks in the 3D reconstruction
pipeline, as well as all other downstream tasks that depend on the outputs of the
3D reconstruction system. We started by considering the three most common types
of representation for dense SLAM systems: voxel grids, pointclouds, and surfels.
However, in our more recent work we mostly focus on the pointcloud representation
due to the lower memory cost (memory can easily become a bottleneck on current
GPUs). Another challenge that arises is in gathering a large dataset of labeled data for
recovering material appearance properties. Acquiring large scale and accurate ground
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truth material appearance parameters for real world data is close to impossible (either
annotators would have to roughly estimate the parameters, or one would need to use
expensive dedicated hardware for capturing one object at a time). For example,
the OpenSurfaces dataset [32] crowdsources internet images for material, texture and
semantic annotations. However, their material annotations are approximate estimates
and assume uniform appearance across a surface, and their texture annotations are
combined with lighting effects. Thus, a much more feasible alternative is to generate
synthetic data. However, the distribution of the generated synthetic data should be
as close to the real world data as possible to get better generalization (to real world
data) out of our models. To lessen this gap between synthetic data and the real
world, we can use accurate physically based rendering engines with artist designed
3D models. However, acquiring this data can be financially expensive and rendering
it can be very computationally expensive. Lastly, while there is considerable work
in recovering exact lighting conditions in a scene, it should be mentioned that in our
work we have not addressed this explicitly. However, our network needs to implicitly
reason about lighting conditions to predict material and shape accurately.

1.2 Related Work

Below, we will briefly review related work primarily to set the stage for the main
contributions of this work as presented in the next section. More comprehensive
reviews of related work for each of the problems are separately provided in the
individual chapters, which discuss the corresponding problems and solutions.

Geometry recovery. As previously mentioned, dense visual SLAM approaches
focus on building and updating the 3D map of an environment from a sequence
of camera captures while simultaneously recovering the camera’s location in that
map [2,16–18]. There is a large body of work in deep learning-based SLAM systems.
For example, systems such as CodeSLAM [33], SceneCode [34], and DeepFactors [35]
represent scenes using compact codes that can be decoded into 2.5D depth maps.
DeepTAM [13] trains a tracking network and a mapping network, which learns
to reconstruct a voxel representation from a pair of images. CNN-SLAM [14] an
extension of LSD-SLAM [15], a popular monocular SLAM system, to use single-
image depth predictions from a convolutional neural network. Another recent trend
has been to formulate the SLAM problem over higher level features such as objects,
which may be detected with learned detectors [27–29]. However, a large fraction of
the aforementioned approaches replace SLAM subsystems with learning based models.
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In contrast, there is another significant line of work that leverages differentiability to
complement and accelerate learning mechanisms.

The Lucas-Kanade iterative matching algorithm [36] is one example of a strong
demonstration of the benefits of differentiable SLAM subsystems. Kerl et al. [37]
applied this technique to real-time dense visual odometry. Their system is
differentiable, and has been extensively used for self-supervised depth and motion
estimation [38–40]. Coupled with the success of Spatial Transformer Netowrks
(STNs) [41], several libraries such as gvnn [42] and kornia [43] have implemented
these techniques as differentiable layers, for use in neural networks.

However, extending differentiability beyond the two-view case (frame-frame
alignment) is not straightforward. Global consistency necessitates fusing
measurements from live frames into a global model (model-frame alignment), an
operation which is not trivially differentiable. In summary, while all these approaches
try to leverage differentiability in submodules of SLAM systems (eg. odometry,
optimization, etc.), there is no single framework that models an entire SLAM pipeline
as a differentiable graph.

Material appearance parameters recovery. The problem of recovering the
material appearance properties can be simplified into recovering the BRDF (bi-
directional reflectance distribution function) or SVBRDF (spatially-varying BRDF)
parameters of every material present in the scene. Classical BRDF measurement
approaches rely on capturing a large number of images under different calibrated
viewing and lighting conditions using dedicated acquisition setups [44]. For this
thesis, we focus on methods of SVBRDF recovery which use casual image captures
of materials in the wild.

Recently, deep learning models have shown a lot of promise in reflectance modeling
from images in the wild [22–25]. Li et al. [25] used a convolutional neural network
which takes an image of a near-planar surface and estimates its per-pixel BRDF
parameter values. They train this network by using the traditional L2 loss over the
predicted BRDF parameters. Deschaintre et al. [22] showed that the predictions of a
network trained with this loss function do not yield accurate re-renderings compared
to the ground truth images. Instead, in their work on recovering SVBRDF from
a single flash-lit image of a near-planar surface, both Deschaintre et al. [22] and
Li et al. [24] found the rendering loss to be a better alternative for training their
networks. The rendering loss is computed by using the L1 loss between the renderings
of the predicted and the ground truth BRDF maps under the same lighting and
viewing conditions. Intuitively, this will incorporate some of the information about
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how much each BRDF parameter is useful in the final rendering output and how the
different estimated BRDF parameters interact with another through the differentiable
rendering process into the neural network. However, in their approach, the recovered
specular and diffuse albedo maps have errors when compared to ground truth maps,
despite the fact that the final rendered image(s) looks similar to the input image(s).

Currently, the best results are obtained using multi-image deep networks [23,45].
These are networks that use multiple images of the same material under different
light and view conditions as their input. In the multiple image setup, the different
views can now provide the network with more cues on what the BRDF should be, and
ideally, we would like the network to rely less on the learned priors about the material
properties and more on the visual cues in the different images as the number of views
increases. The more recent work by Deschaintre et al. [23] can handle an arbitrary
number of input images. Similar to previous work by Gao et al. [45], Deschaintre et
al. [23] found that using a combination of L1 loss on the predicted maps and rendering
loss during training helped stabilize the training procedure. However, the individual
recovered SVBRDF maps still have inaccuracies, and there are often instances where
the network predicts incorrect maps that render to a a very similar looking image,
for example, by incorrectly assigning the color from the diffuse albedo map to the
specular albedo map.

Simultaneous geometry and BRDF recovery. Recent works have been
looking into using RGB-D sensors to simultaneously recover geometry and SVBRDF
[46–50]. These approaches commonly either require extra equipment at capture
time [46, 48] or simplify the domain of recovered SVBRDFs by clustering materials
and associating a per-segment BRDF [47, 50]. However, doing per-segment BRDF
associations reduces result quality when the scene contains a large number of different
BRDFs. Moreover, with the exception of the work of Zhan et al. [50], all above
approaches focus on recovering SVBRDF for a single object, and not an entire scene.
However, Zhan et al. [50] rely on manual adjustments and restrict BRDF parameter
recovery to only the floor, ceiling, and walls. Another limitation of the aforementioned
approaches is that they require an iterative refinement optimization process, which
can be time consuming to apply for each RGB-D sequence.

An interesting recently emerging line of work is approaches that take inspiration
from Neural Radiance Fields (NeRF) [51–54]. NeRF based approaches for recovering
the SVBRDF rely on fitting a separate neural network for every captured scene to
recover the per-pixel BRDF parameters [52–54]. However, this optimization process
can be long and needs to be done separately for every new captured scene. This has
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Figure 3: Overview of our contributions. Top left: differentiable geometry recovery
using gradslam library. Bottom left: material appearance parameters recovery.
Right: end-to-end learning for simultaneous material appearance parameters and
geometry recovery.

led us to believe that there are currently no generalized approaches for simultaneously
recovering the geometry and SVBRDF of a scene based on captured RGB or RGB-D
images.

1.3 Contributions

In this work, we propose models for blending representation learning approaches
with classical 3D reconstruction knowledge. We begin by developing an open-source
library containing fully differentiable methods of reconstructing the 3D geometry.
Then, we look at how we can better leverage our knowledge of appearance modeling in
training neural networks for material appearance parameter estimation. Once we have
a solution to both aforementioned problems, we propose a model for simultaneously
recovering the 3D geometry and the material appearance properties. The overview
of our contributions is depicted in Fig. 3. Our contribution in each of these sections
can be broken up as follows:

1. Differentiable dense SLAM library: We develop and release gradslam,
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the first open-source differentiable SLAM library that supports multiple
differentiable dense SLAM systems out-of-the-box. The work on ∇SLAM was
conducted in collaboration with the Robotics and Embodied AI Lab (REAL) at
Mila led by Dr. Liam Paull. Our work on ∇SLAM has led to papers at CVPR
2020 Deep Declarative Networks workshop and RSS 2020 SARL workshop [9].

2. Disentangled rendering loss: Earlier works in recovering material
appearance parameters from one or more images of a near-flat surface have
found the rendering loss to work well if one’s goal is to recover accurate re-
renderings from the estimated parameter maps [22–24]. We identify that neural
networks trained with the rendering loss have trouble with accurate recovery of
individual parameter maps. We begin by defining the problem and analyzing
why these inaccuracies arise. We then propose a new loss function which
addresses this problem, named the disentangled rendering loss. We show that
using our disentangled rendering loss to train the current state of the art network
leads to a noticeable increase in the accuracy of recovered material appearance
property maps. The analysis of the rendering loss led to a paper at Eurographics
MAM 2020 workshop [55], and proposing the disentangled rendering loss led to
a paper at GRAPP 2021 conference [56], where it won the best student paper
award.

3. Simultaneous geometry and BRDF recovery: We describe a model
for simultaneously recovering the 3D geometry and the material appearance
parameters from casually captured RGB-D images of a scene, yielding a
generalized approach for simultaneous BRDF and geometry recovery of complex
casually captured scenes. Moreover, we propose a novel approach for leveraging
2D multiview information when making predictions for each point’s BRDF by
leveraging ∇SLAM, and we extend our idea of the disentangled rendering loss
from near-flat surfaces into being used for pointclouds. Finally, we generate
a new large-scale dataset based on the Hypersim [1] rendered images which
contains appearance parameters. We intend to make this dataset public in
the near future. While the experiments in this section are still work in
progress, this section ties the whole thesis together into our broader vision
for 3D reconstruction with accurate material appearance capture. The works
in this section are in collaboration with Farzad Salajegheh, Krishna Murthy
Jatavallabhula, Mike Roberts, Derek Nowrouzezahrai and Liam Paull.
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1.4 Thesis Outline

The rest of this thesis is as follows:
In Chapter 2 we provide the relevant background in deep learning, physically

based rendering, material appearance modeling, and dense visual SLAM.
In Chapter 3 we describe the components of a fully differentiable dense SLAM

pipeline, and describe our differentiable dense SLAM library called gradslam. The
content of this chapter is primarily based on the work of Jatavallabhula, Saryazdi,
Iyer and Paull [9] where Jatavallabhula and Saryazdi are equal co-authors.

In Chapter 4 we analyze the rendering loss used in material appearance
parameter estimation research. We then propose the disentangled rendering loss to
address some of the rendering loss limitations. The content of this chapter is primarily
based on the work of Saryazdi, Murphy and Mudur [55,56].

In Chapter 5 we describe a method for simultaneously recovering geometry and
material appearance parameters of complex scenes. We also introduce our dataset
which is an extension of the Hypersim [1] dataset with additional per-pixel material
appearance parameters.

In Chapter 6, we conclude this thesis by summarizing our findings and discussing
the path forward.
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Chapter 2

Background

2.1 Deep Learning

We assume an understanding of deep learning fundamentals from the reader. We
refer the reader to the excellent Stanford CS231n online course material1 and the
Deep Learning book [57] for a comprehensive background in deep learning. In this
chapter, we just briefly touch upon the background materials which are specifically
relevant to this thesis.

2.1.1 Architectures

U-Net. The U-Net architecture has become one of the most common architectures
for image-to-image modeling. U-Net is a fully convolutional encoder-decoder type
architecture. The architecture of U-Net is shown in Fig. 4 for an input image of size
572× 572.

In particular, the first half of U-Net is the encoder (contracting path) which
encodes the context of the image by reducing the spatial dimensions. This is done
by repeatedly applying a downsampling step, which uses two 3 × 3 (unpadded)
convolutions with ReLU non-linearity followed by a 2 × 2 max pooling layer with
a stride of 2. The number of feature channels is doubled at each downsampling
step. The second half of the network is a decoder (expansive path) which consists
of repeated upsampling steps to increase the spatial dimensions. Each upsampling
step consists of a 2 × 2 transposed convolutional layer (deconvolution) which halves
the number of channels, followed by cropping and concatenating the corresponding
feature map from the encoding step, and finally two 3 × 3 convolutional layers with

1http://cs231n.stanford.edu
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Figure 4: U-Net architecture. Blue boxes correspond to feature maps, and white
boxes correspond to copied feature maps. The number at the top of each box denotes
the number of channels. The spatial dimensions are denoted at the bottom left of
each box. Figure courtesy of [4].

ReLU activation functions. At the final layer, 1 × 1 kernels are used to convert the
64 feature channels into the desired number of output classes. In total, this network
has 23 convolution layers.

Point-Voxel CNN. Point-Voxel CNN [5] is a fast and efficient point-based neural
network architecture. Due to the irregular format of a pointcloud, conventionally
researchers transformed the pointcloud into a voxel grid and used 3D convolutional
operations for processing this data. However, the rasterization of points into voxel
grids causes information to be lost (i.e., when multiple points fall in the same
voxel). The solution to this is to increase the voxel grid resolution. However,
both computation and memory cost increase cubically as the resolution increases.
Point-Voxel CNN [5] addresses this issue by keeping the 3D representation of data
as a pointcloud to keep a small memory footprint, while performing the convolution
operation over low-resolution voxels to leverage locality.

The main building block for the Point-Voxel CNN [5] is the Point-Voxel
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Figure 5: Point-Voxel convolution. Figure courtesy of [5].

convolution (PVConv). In particular, Point-Voxel convolution has a voxel-based
branch and a point-based branch, as shown in Fig. 5. Given a pointcloud of {(vk, fk)}
where vk is the vertex position of the kth input point and fk is the associated
features with vk, the voxel-based branch starts by normalizing the point vertices
vk into a sphere of unit diameter and centered at (0.5, 0.5, 0.5). Then, the normalized
pointcloud is transformed into a low-resolution voxel-grid where the associated
features of all points that fall in the same voxel are averaged. After voxelizing
the pointcloud, a stack of 3D convolutional layers is applied to the pointcloud.
Each convolution layer also uses batch normalization [58] and a non-linear activation
function [59]. The final stage of the voxel-based branch is to devoxelize the voxel-grid
using trilinear interpolation back into the pointcloud domain. Trilinear interpolation
ensures that points which were inside the same voxel can have distinct features.

The point-based branch directly applies a Multi-Layer Perceptron (MLP) on top of
each point feature fk. This simple mechanism allows for high-resolution discriminative
features for each point. Finally, the features from the voxel-based and point-based
branch are aggregated together in the pointcloud domain by using addition.

2.1.2 Loss Functions

Chamfer Distance. One of the important aspects when working with 3D deep
learning is the choice of the loss function. The Chamfer Distance (CD) is an error
metric between two sets of points (pointclouds) S1 and S2. For every point in either
sets, CD finds the nearest point from the other set, computes the euclidean distance
between the two, and sums up all these distances for all points (see Fig. 6):
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Figure 6: Chamfer distance illustration. Blue points belong to the set S1, and red
points belong to the set S2. Black vectors start at each point from either set and end
at its nearest neighbor from the other set.

CD(S1, S2) =
∑
x∈S1

min
y∈S2
||x− y||22 +

∑
y∈S2

min
x∈S1
||x− y||22.

Formally, CD is not a distance function as it does not satisfy the triangle inequality
axiom. However, here the term "distance" is used to imply a non-negative metric
function. CD has several nice properties. First, it is differentiable with respect to the
point positions. Second, CD is efficient to compute and simple to parallelize as the
nearest neighbor for each point can be found independently. Moreover, the nearest
neighbor search can be further accelerated by using efficient spatial data structures
(e.g., KD tree). Third, CD is robust to having a small number of outlier points in
the pointcloud.

2.2 Physically Based Rendering

Physically based rendering (PBR) is the process of generating a 2D image from a 3D
representation, aiming to create images that look like real world photos (photorealism)
by modeling light behavior (see Fig. 7). As a simplistic high level overview, light gets
emitted by light sources, bounces around the environment, and whatever light rays
that get reflected into the camera determine the pixel values of the generated image.
Trying to recreate the appearance of the real world is difficult, and light computations
can take a very long time. In this section, we discuss a high-level overview to some
of the components of the PBR pipeline which are most relevant to this thesis.
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Figure 7: Camera, light conditions, object geometries and object materials are used
by the PBR to generate a photorealistic image. Rendered image courtesy of Hypersim
dataset [1].

2.2.1 Lights

The only reason objects are visible is due to light. In the real world, light is emitted
by light sources, and all light sources have a physical body. In graphics, however, light
sources can either have a physical body (such as area lights) or not (such as point
lights and directional lights). Various light source types can illuminate the graphics
scene in different ways (shown in Fig. 8):

• Point: Point lights emit light from a single point in all directions. The intensity
of the light decreases with distance. The point light can be thought of as a very
rough approximate for a bare light bulb hanging from a cord in the real world.

• Directional: Directional lights are produced by light sources which are at an
infinite distance from the scene, thus all their light rays reaching the scene will
be parallel to one another. Unlike point lights, the intensity of directional lights
does not change with distance. An example directional light source in the real
world is sunlight.

• Area: Area lights are more realistic and are important in physically based
rendering as real world light sources have physical bodies. Area lights allow
for creation of soft shadows, and can have different shapes such as rectangle,
sphere, disk, or tube. However, using area lights has a higher computation cost.
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Figure 8: Light source types. Left: Point light. Middle: Directional light. Right:
Area light. All 3 images courtesy of [6].

Figure 9: Pinhole camera model. Both images courtesy of [7]. Left: Image formation
process. Right: Using extrinsics and intrinsics for transforming coordinate systems.

2.2.2 Camera

For the purpose of this thesis, we discuss one of the simplest and most commonly
used camera models in computer graphics and computer vision: the pinhole camera.
A pinhole camera has a tiny aperture and no lens. It is essentially an enclosed box
with a tiny hole on one side (see Fig. 9). A pinhole camera can be modeled by its
intrinsics matrix and its extrinsics matrix:

Camera intrinsics. This intrinsics matrix denotes the coordinate system
transformation from the 3D camera coordinates into 2D image coordinates. For a
pinhole camera, the intrinsics matrix K can be formulated as:

K =


fx s cx

0 fy cy

0 0 1


where fx and fy are the focal length, cx and cy are the principal point offset, and

s is the axis skew. The camera intrinsics are independent of the camera position and
orientation in space.

Camera extrinsics. The extrinsics matrix describes how the world is
transformed relative to the camera. The extrinsics matrix is made up of a 3 × 1
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Figure 10: Artist designed scene. (a) Final rendered image from the Hypersim [1]
dataset. (b) Diffuse albedo map. (c) Specular albedo map. (d) Specular roughness
map.

translation vector t and a 3 × 3 rotation matrix R. We can concatenate these two
into a single 4× 4 homogeneous matrix: R t

~01×3 1


The inverse of the extrinsics matrix, called the camera pose, gives us the position

and the orientation of the camera in world coordinates.
Lastly, the camera projection matrix P for an ideal pinhole camera is composed

of the camera intrinsics matrix and the camera extrinsics matrix:

P = K× [R|t]

2.2.3 Materials and BRDFs

Assuming we have the light sources, the camera model, and the shapes of the object
in the scene, we now need to determine how light will interact with the surface of
the objects. In a simple case, if we have a Lambertian (ideal matte) material, the
reflected light will be the same regardless of the viewing angle. However, in the more
general case, the BRDF (Bi-directional Reflectance Distribution Function) can model
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Figure 11: Illustration of different reflection types. All 4 images courtesy of [8].

how light is reflected (radiance) in any direction when incident light (irradiance) hits
the surface of an object:

fr(ωi, ωo, λ)

where fr is the BRDF, ωi and ωo are the incoming and outgoing light directions
respectively in a coordinate system where their z-axis is along the object’s surface
normal direction n, and λ is a particular wavelength of light. The Spatially Varying
BRDF (SVBRDF) fr(x, ωi, ωo, λ) takes an additional 2D variable x as input which
denotes the spatial position over an object’s surface and allows for spatial variability
of the BRDF.

Over the years, a lot of works have focused on modeling the BRDF fr as a
generalized mathematical formula with a set of physically meaningful parameters
that depend purely on an object’s material [60–62]. In this thesis, we use the Cook-
Torrance model [62] which is a microfacets surface model, where each surface is
assumed to be composed of many tiny facets with different normal directions about
the general surface normal. We use the GGX microfacet distribution [63] for the
normal direction of these microfacets.

The GGX model has the following parameters: diffuse albedo which controls the
intensity and the color of the light that gets scattered in many directions, specular
albedo which controls the intensity and the color of the mirror-like reflection of the
light, and specular roughness which controls how smooth the surface appears (see
Fig. 11). If we assume the RGB color model, we would need 3 parameters for each of
the diffuse and specular albedos, and 1 parameter for the specular roughness. These
SVBRDF parameter maps are typically stored as images, and a UV map is used to
project these 2D images onto the 3D model’s surface. These SVBRDF maps are
typically either artist designed or captured with expensive and dedicated hardware.
An example of the rendering of some of these artist designed BRDFs is shown in
Fig. 10. For a more comprehensive discussion on different material appearance
representations we refer the reader to the excellent survey by Guarnera et al. [64].
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Figure 12: Rendering equation illustration.

2.2.4 Rendering Equation

The explanation above for materials and BRDFs was assuming a single incident light
ray. In reality, we have many light rays coming onto a surface point simultaneously,
and the surface point might be emitting light as well. Therefore, to compute the
outgoing light in any direction, we need to sum up the contribution of each of these
components (see Fig. 12). This will give us the following integral over the hemisphere
of the surface point:

Lo(x, ωo, λ) = Le(x, ωo, λ) +
∫

Ω
fr(x, ωi, ωo, λ)Li(x, ωi, λ)(ωi · n) dωi

where Lo is the total outgoing light of wavelength λ along the direction ωo at a surface
point at location x, Le is the emitted light of wavelength λ by the surface point at x,
Ω is the unit hemisphere about the surface normal n covering all possible incoming
light directions, and Li is the incoming light onto surface point x of wavelength λ and
from direction ωi. The above equation is called the rendering equation. Solving the
rendering equation is the most challenging and compute intensive part of PBR. For
any non-trivial scene, this integral is intractable and thus current approaches rely on
numerical integration methods for estimating this integral.

2.3 Dense Visual SLAM

The major goal for dense visual SLAM pipelines is to accumulate temporal sensor data
into a single consistent 3D model (the global map), while simultaneously recovering
the location of the agent within that map (see Fig. 13). In this chapter we give a very
broad overview of dense visual SLAM methods that operate on a sequence of RGB-D
inputs. The SLAM components that are more relevant to our work are explained in
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Figure 13: An example surfel-based map reconstruction using dense visual SLAM.
Figure courtesy of [2].

more detail in Chapter 3.
The first step for dense visual SLAM is acquiring the sensor data. Most approaches

require depth measurements as input. Depth measurements can come from various
sources, such as Time-of-Flight (ToF) sensors or stereoscopic approaches. Second, a
data preprocessing step will remove depth outliers and filter the raw depth maps for
better final reconstructions. Next, we need to find the position and orientation of
each RGB-D frame with respect to the built global map (localization), and finally we
need to map all this data into our global map, which possibly involves a fusion step
to reduce the final map size.

2.3.1 Localization

In order to transform the data from multiple RGB-D images into a single coordinate
system, we need to find the position and orientation of the sensor at the time of
capturing each RGB-D image (localization). One way of doing this localization step
is to register the depth map of the current frame (live frame) with the global map
using the Iterative Closest Point (ICP) algorithm. To do this, we start by converting
the live frame’s depth measurement into R3 point coordinates in the 3D camera
coordinate system (vertex map):

Vt(u) = Dt(u)K−1[uT , 1]T ∈ R3
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Figure 14: Iterative closest point algorithm. Minimizing the error function moves the
source curve (pink) towards the target curve (blue).

where Vt and Dt are the vertex map and depth map for the live frame at time step t
respectively, u = [x, y]T ∈ R2 is the 2D pixel position, and K is the camera calibration
intrinsics matrix. We then need to align these 3D points with our current global map.
One way of doing this is to align the live frame vertices with a subset of the global
map points using ICP.

Iterative Closest Point. ICP has become a widely used approach for aligning
3D models based on their geometry. This algorithm works by iteratively optimizing
the rigid transformation that aligns a source pointcloud with the target pointcloud
in order to minimize an error metric (see Fig. 14). One example of an error metric
could be using the Chamfer Distance (described in Sec. 2.1.2) between the source
pointcloud and the target pointcloud. The error can then be minimized using a least
squares optimizer.

In the context of localization, one simple approach is to use ICP for pairwise
registration between the vertex map of the live frame and the previous frame to
recover the relative rigid transformation between them. An important consideration
is that ICP requires the initial rigid transformation for the optimization process to
provide enough overlap between the two pointclouds.

2.3.2 Mapping

Once we have localized the live frame, we can proceed to build and update the
global map by merging in the points from the live frame. The key insight here is
that we want to add (merge) information from the live frame to the global map to
fill in the global map gaps, and we want to fuse the information across different
frames that correspond to the same point in space together. The exact method of
this mapping step is dependent on the 3D representation of our global map (signed-
distances, pointclouds, surfels, etc.).
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Chapter 3

gradslam: Differentiable Dense
SLAM Library

Figure 15: An overview of the differentiable dense SLAM components that ∇SLAM
(gradSLAM) [9] proposes. Figure courtesy of ∇SLAM [9].

3.1 Introduction

Simultaneous Localization and Mapping (SLAM) is the problem of building and
updating the map of an unknown space using input sensory data, while simultaneously
recovering the location and orientation of the sensor in the map. Several SLAM
systems have demonstrated an ability to reconstruct a 3D dense map of the
environment from sequences of RGB-D data [16–18]. Due to a lack of consensus
on the right 3D representation, each of the aforementioned approaches use a different
type of map representation (e.g., pointclouds, surfels, voxels).

Over the last decade, deep neural networks have changed the landscape of several
domains (e.g., object detection [19], natural language processing [65], audio modeling
[66]). This has opened the following two questions: 1) How can SLAM be leveraged
to improve the modeling tasks of deep neural networks?, and 2) How can deep neural
networks be leveraged in improving SLAM systems? One of the main challenges in
addressing both aforementioned questions is that current dense SLAM systems are
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not differentiable. ∇SLAM (gradSLAM) [9] addresses this by proposing differentiable
counterparts to several commonly used components in modern dense SLAM systems:
mapping, raycasting, global measurement fusion, and trust region optimizer for
nonlinear least squares problems. This enables multiple SLAM systems (KinectFusion
[16], PointFusion [18], ICP-SLAM [9]) to be realized as fully differentiable systems by
replacing their non-differentiable components with the differentiable counterparts of
∇SLAM [9].

The differentiability of ∇SLAM [9] enables gradients from the SLAM output
(map and trajectory) to be backpropagated through the SLAM components, and
into the input sensory data (RGB-D images). Intuitively, the first-order derivative
of a reconstructed dense mapM with respect to the sensory data s informs us how
sensitive the reconstructed map is to each sensor measurement.

To foster further research on differentiable SLAM systems and their applications
to spatially-grounded learning, we release gradslam as the first open-source library
for differentiable SLAM. gradslam is a PyTorch [67] based library in Python
which supports multiple dense SLAM systems out-of-the-box, in addition to a
high-level interface that enables mixing and matching between different types of
odometry and mapping algorithms. Our project page and code can be accessed at
https://gradslam.github.io. To set the stage for what the gradslam library contains,
we provide the required backgrounds on the components of ∇SLAM [9]. Our main
contribution in this section is in developing the gradslam library and parts of the
experiments on ∇SLAM.

3.2 Related Work

Machine learning advances have been applied to SLAM in several works through the
reformulation of a subset of components of the full SLAM system in a differentiable
manner. The contents of the following brief review of learning-based SLAM,
differential visual odometry and differentiable optimization are largely borrowed from
our paper [9].

Learning-based SLAM approaches. CodeSLAM [33] and SceneCode [34]
are two examples of learning-based SLAM which attempt to represent scenes using
compact codes that represent 2.5D depth map. DeepTAM [13] trains a tracking
network and a mapping network, which learn to reconstruct a voxel representation
from a pair of images. CNN-SLAM [14] extends LSD-SLAM [15], a popular monocular
SLAM system, to use single-image depth predictions from a convolutional neural
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network. Another recent trend has been to try to formulate the SLAM problem over
higher level features such as objects, which may be detected with learned detectors
[27] [28] [29]. DeBrandandere et al. [68] perform lane detection by backpropagating
least squares residuals into a frontend module. Recent work has also formulated the
passive [69] and active localization problems [70, 71] in an end-to-end differentiable
manner. While all these approaches try to leverage differentiability in submodules
of SLAM systems (eg. odometry, optimization, etc.), none of these provide a single
framework that models an entire SLAM pipeline as a differentiable graph.

Differentiable visual odometry. The beginnings of differentiable visual
odometry can be traced back to the seminal Lucas-Kanade iterative matching
algorithm [36]. Kerl et al. [37]1 apply the Lucas-Kanade algorithm to perform real-
time dense visual odometry. Their system is differentiable, and has been extensively
used for self-supervised depth and motion estimation [38–40]. Coupled with the
success of Spatial Transformer Netowrks (STNs) [41], several libraries (gvnn [42],
kornia [43]) have since implemented these techniques as differentiable layers, for use
in neural networks.

However, extending differentiability beyond the two-view case (pairwise
registration) is not straightforward. Global consistency necessitates fusing
measurements from live frames into a global model (model-frame alignment), which
is not trivially differentiable.

Differentiable optimization. Optimization is a core requirement of any SLAM
solution. Some approaches have recently proposed to learn the optimization of
nonlinear least squares objective functions. This is motivated by the fact that similar
cost functions have similar loss landscapes, and learning methods can help converge
faster, or potentially to better minima.

In BA-Net [73], the authors learn to predict the damping coefficient of the
Levenberg-Marquardt optimizer, while in LS-Net [74], the authors entirely replace
the Levenberg-Marquard optimizer by an LSTM network [75] that predicts update
steps. In GN-Net [76], a differentiable version of the Gauss-Newton loss is
used to show better robustness to weather conditions. RegNet [77] employs a
learning-based optimization approach based on photometric error for image-to-
image pose registration. However, all the aforementioned approaches require the
training of additional neural nets and this requirement imposes severe limitations on
generalizability.

Concurrently, Grefenstette et al. [78] propose to unroll optimizers as
1The formulation first appeared in Steinbrüker et al. [72].

24



computational graphs, which allows for computation of arbitrarily higher order
gradients. Our proposed differentiable Levenberg-Marquardt optimizer is similar in
spirit, with the addition of gating functions to result in better gradient flows.

In summary, the goal of modeling the entire SLAM pipeline as a differentiable
model is the motivation that underlies ∇SLAM [9].

3.3 Method

In this section we present the necessary background from ∇SLAM [9] to set the stage
for the differentiable sub-components contained in our gradslam library.

Overview. As previously mentioned, several of the components in modern dense
SLAM systems [16, 18] are not differentiable (i.e., the gradients will be unspecified).
Examples of these non-differentiable components include non-linear least squares
solvers, raycasting, and discretizations. Furthermore, some operations in current
SLAM systems are differentiable, however, their gradients are zero almost everywhere
(e.g., indexing, sampling) causing sparse gradients.
∇SLAM [9] makes every computation in subsystems of SLAM realised as a

composition of differentiable functions. Broadly, the modules commonly used in
a dense SLAM system can be termed as odometry estimation (frame-to-frame
alignment), map building (model-to-frame alignment), and global optimization. An
overview of the differentiable components of ∇SLAM [9] is shown in 3.

We describe the issues that cause the non-differentiability in each of the
aforementioned modules, and the differentiable counterparts proposed by ∇SLAM
[9]. Then, we describe how ∇SLAM [9] pieces the aforementioned differentiable
components together to realise differentiable variants of several classic dense mapping
systems.

3.3.1 ∇LM: A Differentiable Nonlinear Least Squares Solver

Most modern SLAM systems rely on optimizing a non-linear least squares objective at
one or more stages of their pipeline. Example tasks that require solving a non-linear
least squares objective include frame-to-frame alignment (e.g., depth measurement
registration using ICP), and pose-graph optimization. Non-linear least squares solvers
such as Gauss-Newton (GN) or Levenberg-Marquardt (LM) solvers can be used for
optimizing such objective functions. LM solvers are the most common choice in
modern SLAM systems as they are more robust than GN solvers.
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Figure 16: Example toy curve fitting problem. ∇LM which is a smooth
reparameterization of the non-differentiable LM solver performs similarly to LM, while
being fully differentiable. Figure courtesy of ∇SLAM [9].

However, the LM solver is not differentiable. This is because the LM solver makes
a discrete switching decision between damping or undamping at each optimization
step [79]. Moreover, the iterate is reverted to its previous value during undamping.
∇SLAM [9] proposes a soft approximation of the damping mechanism to realise
differentiabile LM solvers. The key insight is that given the norm of the error at
the current iterate r0 and at the lookahead iterate r1, r1 − r0 determines whether to
damp or undamp. Moreover, when we undamp, the iterate is reverted to its previous
value. Thus, ∇SLAM [9] proposes the following smooth gating functions Qx and Qλ

for updating the damping coefficient and the iterate:

λ1 = Qλ(r0, r1) = λmin + λmax − λmin
1 +De−σ(r1−r0)

Qx(r0, r1) = x0 + δx0

1 + e−(r1−r0)

(1)

where λmin and λmax are the minimum and maximum possible values for the damping
coefficient respectively, D and σ are parameters that adjust the falloff [80], and x0

is the current iterate. This smooth approximation of the LM solver allows it to
perform near-identical to the original non-differentiable LM solver while being fully
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differentiable (see Fig. 16).

3.3.2 Differentiable Mapping

As the global mapM is being constructed (in the reference coordinate system of the
first frame I0), the surface measurement of the live frame Ik at time k needs to be
aligned with the global map M. Generally, the surface alignment process consists
of several differentiable but non-smooth operations (i.e., thresholding, indexing,
clipping, active/inactive decision, etc.). The sparse nature of the gradients of the
aforementioned operations causes the computation graph to have undefined gradients
almost everywhere. ∇SLAM [9] alleviates this issue by approximating these functions
with locally smooth alternatives. The following corrective measures are proposed by
∇SLAM [9]:

1. The surface measurement of every valid pixel p in the live frame Ik is computed
via a bilinear interpolation kernel K, causing the output to be a function of
that pixel p and its neighbours.

2. For associating the live frame Ik surface measurements with the global map
M elements, a soft association to a subset of global mapM elements is used.
Specifically, for each point P in the live frame surface measurement, the subset
of closes candidate points is found in a region exp

(
− r(P )2

2σ2

)
, where σ controls

the falloff, and r(P ) is the distance from the viewing ray.2

3. By default, every surface measurement in the live frame Ik is assumed to
represent a new global map element, which is then passed to the differentiable
map fusion component (cf. Sec 3.3.3).

3.3.3 Differentiable Map Fusion

Using only the aforementioned mapping strategy for building a dense global map
causes the number of elements in the map to grow in proportion to the exploration
time. This is an undesirable property as ideally the map should only grow in
proportion to the explored volume of occupied space. Classical dense mapping
approaches solve this by fusing redundant observations of the same map element
[16, 18]. This reduces the size of the recovered map, and also improves the
reconstruction quality. Most fusion approaches are differentiable [16, 18], however,

2This is a well-known falloff function commonly used with Kinect-style depth sensors [18,81,82].
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Figure 17: Finite differences over ray potentials. Figure courtesy of ∇SLAM [9].

they are not smooth as they use thresholds that cause an abrupt change in gradient
flow at the truncation point. ∇SLAM [9] proposes to use a logistic falloff function,
similar to Eq. (1), to ease gradient flow through these truncation points.

3.3.4 Differentiable Ray Backprojection

Several dense SLAM approaches raycast the global map M into the live frame
coordinates for global pose estimation [16, 17]. This is done by backprojecting the
viewing ray through each live frame pixel into the global map, and finding the intersect
with the first map element by marching along the ray. Similar to DRC [83] and WS-
GAN [84], ∇SLAM [9] uses a pooling operation over all voxels pierced by the ray
to compute the ray potential. However, ∇SLAM [9] weighs this pooling mechanism
by a Gaussian falloff about the depth measurement of the pierced live frame pixel.
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Specifically, given a ray Rc which pierces the pixel pc and a set of global map voxels
Vc = {vc}, then the aggregated value of the ray is the normalized sum of every value
ψ(vc) multiplied by the Gaussian fall-off value at vc:

Φ(ψ(vc) ∀vc ∈ Vc) (2)

where Φ denotes the aggregation function. Moreover, ∇SLAM [9] uses the finite
difference based ray differentials proposed by Igehy et al. [85] to compute the
derivative of the ray potential with respect to the pixel neighbourhood. In particular,
the partial derivative ∂vc

∂c
can be approximated as:

∂vc
∂pc

=
(vr − vl)/2

(vu − vd)/2

 (3)

where vr, vl, vu, and vd are the aggregated values corresponding to the pr, pl, pu
and pd pixels shown in Fig. 17 respectively.

3.4 Case Studies

To demonstrate the applicability of the ∇SLAM [9] framework, we leverage the
differentiable computation graphs specified in Sec 3.3 and compose them to realise
two practical SLAM solutions. In particular, we implement differentiable versions of
the PointFusion [18] algorithm that constructs surfel maps, and a pointcloud-only
SLAM framework called ICP-SLAM.

3.4.1 PointFusion

We implement PointFusion [18], which incrementally fuses surface measurements to
obtain a global surfel map. Surfel maps compare favourably to volumetric maps
due to their reduced memory usage. We closely follow our differentiable mapping
formulation (cf.Sec 3.3.2) and use surfels as map elements. We adopt the fusion rules
from [18] to perform map fusion.

3.4.2 ICP-SLAM

As a baseline example, we implement a simple pointcloud based SLAM technique
which uses ICP to incrementally register pointclouds to a global pointcloud set. In
particular, we implement two systems. The first one aligns every pair of consecutive
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incoming frames to obtain an odometry estimate (also referred to as pairwise
registration or ICP-Odometry). The second variant performs what we call frame-to-
model alignment (ICP-SLAM). That is, each incoming frame is aligned (using ICP)
with a pointcloud containing the entire set of points observed thus far.

3.5 Open-source Library

Figure 18: gradslam library teaser. An example reconstruction result using gradslam
library.

To ensure reproducibility and to foster further research that leverages
differentiability in SLAM systems, we make available gradslam3, an open-source
library for differentiable SLAM.

Overview. gradslam is an open-source Python library aimed at providing
implementations of SLAM subsystems for deep learning practitioners. This is
the first freely available dense SLAM implementations natively written in a deep
learning framework such as TensorFlow [86] or PyTorch [67]. While a few existing
packages provide some overlapping functionality (e.g. Kaolin [87], Kornia [43] and
PyTorch3d [88] in PyTorch [67] and TensorFlow Graphics [89] in TensorFlow [86]),
the scope for those libraries is broader. Importantly, full-fledged SLAM does not seem
to be a near-term feature for these libraries.

Implemented in PyTorch [67], gradslam provides a high-level interface for
designing SLAM systems by mixing and matching between mapping and odometry

3https://github.com/gradslam/gradslam
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algorithms. gradslam also makes it easy to implement new SLAM systems by
providing structures and boiler-plate code. Below is an example snippet of using
gradslam to run PointFusion [18] on a sub-sequence from the ScanNet [11] dataset.
import gradslam as gs
from gradslam . datasets import Scannet
from torch .utils.data import DataLoader

# load rgbd sequence
dataset = Scannet (" Scannet / scans", " Scannet / associations ")
loader = DataLoader ( dataset =dataset , batch_size =2)
colors , depths , intrinsics , poses , *_ = next(iter( loader ))

# perform pointbased fusion
rgbdimages = gs. RGBDImages (colors , depths , intrinsics , poses )
slam = gs.slam. PointFusion (odom="icp")
recovered_map , recovered_poses = slam( rgbdimages )

Library structure. The gradslam library is composed of the following submodules:

gradslam.structures - A collection of high-level structures for storing and
manipulating batched raw sensor data (e.g. RGB-D images) and reconstruction
data (e.g. pointclouds). Each structure is a class which contains a set of
PyTorch Tensors for efficient computations such as rigid-body transformations.
Currently supported structure types are pointclouds and RGB-D images. For
storing batches of variably sized pointclouds in a tensor, we adopt PyTorch3d’s
[88] padded representation by zero padding pointclouds as necessary to have
them all contain the same number of points. We intend to expand the supported
structures to TSDF volumes.

gradslam.datasets - A collection of PyTorch [67] Dataset subclasses for reading
sensor data (images, calibration parameters, etc) from popular SLAM datasets.
Each dataset handles the parsing, file handling and preprocessing of data.
Currently supports ScanNet [11], TUM [10], and ICL-NUIM [90]. We intend to
expand dataset support to include Rosbags and raw folder dataset format.

gradslam.geometry - A collection of functions for basic geometric operations,
such as rigid-body transformations, projection and unprojection of points,
homogenization and unhomogenization.

gradslam.odometry - A collection of classes for different types of odometry
algorithms. An odometry provider is used within a SLAM module to
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provide up-to-date odometry information. This module contains an abstract
OdometryProvider class that users can inherit from to implement their own
odometry algorithm. Currently implemented odometry providers are “ground-
truth” odometry which provides the relative transformation between two frame
poses, and ICP provider which uses point-to-plane ICP on the vertex-normal
maps of consecutive frames to estimate the relative transformation.

gradslam.slam - A collection of subclasses of PyTorch nn.Module for different
SLAM algorithms. Each module has two routines: initialize and forward. At
initialization, each module takes an OdometryProvider object as well as the
SLAM system parameters. At each forward call, the module takes sensor
data (e.g., RGB(-D) images, and optional IMU poses) as inputs, and outputs
maps and (optionally) camera poses. Currently supports PointFusion [18] and
ICP-SLAM. We intend to expand support for KinectFusion [16].

3.6 Experiments

3.6.1 Qualitative Results

∇SLAM [9] works out of the box on multiple RGB-D datasets. Specifically, we present
qualitative results of running the aforementioned differentiable dense SLAM systems
on RGB-D sequences from the TUM RGB-D dataset [10], ScanNet [11], as well as on
an in-house sequence captured from an Intel RealSense D435 camera.

Fig. 19- 21 show qualitative results obtained by running ∇SLAM on a variety
of sequences from the TUM RGB-D benchmark (Fig. 19), ScanNet (Fig. 20), and
an in-house sequence (Fig. 21). These differentiable SLAM systems all execute
fully on the GPU, and are capable of computing gradients with respect to any
intermediate variable (e.g., camera poses, pixel intensities/depths, optimization
parameters, camera intrinsics, etc.)4.

3.6.2 Pixel Contributions to Global Map

The differentiability of ∇SLAM allows us to back-trace every global map element to
the frame pixels that generated it. Let Fi be an input RGB-D frame at time frame
i, andM be the original global map that is constructed from all frames. We create
the perturbed map M̃ by perturbing a representation unit ofM. We then compute

4Qualitative results were obtained by Krishna Murthy Jatavallabhula and Ganesh Iyer.
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Figure 19: Reconstructed pointcloud by running ∇ICP-SLAM on a sequence from
the TUM RGB-D dataset [10]. Figure courtesy of ∇SLAM [9].

the error betweenM and M̃ by use of some metric Φ: e = Φ(M,M̃) (in this case,
we used the Chamfer Distance). By computing ∂e

∂Fi
we can measure the contribution

of every pixel from any frame i to the perturbed element of the global map. An
example of this for ∇PointFusion is shown in fig. 23, where an interactive tool is used
for selecting global map points and visualizing the contribution of input pixels.

3.6.3 RGB-D Denoising

In the above setup (Fig. 23), only one pixel (the highlighted pixel) is perturbed
at a particular instant. To extend the analysis to multiple perturbed pixels, we
jitter the depth map and the RGB image by adding uniform noise to each pixel (in
the range [0, 0.2] for depth channels and [0, 255] for RGB channels). This noise is
added to the final frame of each sequence (we use a sequence length of 4 frames
in all our experiments). This sequence of frames is reconstructed by ∇PointFusion
and compared with the true map (here, we use a PointFusion [18] reconstruction on
the clean images as the true map). Chamfer distance is used to compare the noisy
and the true pointclouds for similarity. This error is then backpropagated through
∇SLAM, all the way to input RGB pixel intensity measurements and per-pixel depth
measurements. We use the Adam [91] optimizer to update these pixel intensities and
depths for 400 iterations, with a learning rate of 0.05 (and the PyTorch defaults for
β1 and β2). Fig. 22 presents qualitative results for the RGB-D denoising experiments.
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Figure 20: Qualitative results of running several differentiable SLAM systems
(∇KinectFusion, ∇PointFusion, and ∇ICP-SLAM [9]) on the ScanNet [11] dataset
sequences. Due to GPU memory constraints, only parts of the scene were
reconstructed. Reconstruction results of BundleFusion [12] are also shown for
reference. Figure courtesy of ∇SLAM [9].

The top half of Fig. 22 presents qualitative results with another initialization scheme,
where the depth values at each pixel are replaced by the average depth of the entire
image. As one would expect, this initial guess is farther away from the true solution,
and given a fixed computation budget (400 iterations), additive noise initialization
yields better convergence results.

3.6.4 RGB-D Image Completion

We also present results on an RGB-D image completion task. The overall setup
is similar to that of the RGB-D denoising task, with the difference that in image
completion, the entire image is replaced by uncorrelated uniform noise samples, as

34



Figure 21: Reconstructed map by running ∇PointFusion [9] (right) on an in-house
sequence captured using an Intel RealSense depth camera D435 (left). Note that the
reconstruction was obtain without performing any noise removal. Figure courtesy of
∇SLAM [9].

opposed to an additive noise used for the denoising experiment. Fig. 25 presents
qualitative results for the RGB-D completion task.

3.6.5 Occluder Gradients

In Fig. 24, occluders (top row) and pixel noise (bottom row) are introduced in one
of the depth maps of a sequence and the scene is reconstructed using ∇PointFusion.
The Chamfer Distance between the noisy and ground truth reconstructed maps is
then calculated and backpropogated to each pixel. Minimizing the Chamfer Distance
using Adam [91] optimizer recovers the depth information at the noisy and occluded
regions5.

3.7 Conclusion

We introduce gradslam, the first differentiable dense SLAM library that enables
gradient-based learning for a large set of localization and mapping based tasks, by
providing explicit gradients with respect to the input image and depth maps. We
demonstrate a diverse set of case studies, and showcase how the gradients propogate
throughout the tracking, mapping, and fusion stages. Future efforts will include
adding differentiable counterparts to other common SLAM components into the
gradslam library, and demonstrating usecases of the gradslam library for being
plugged into downstream learning tasks.

5"Occluder Gradients" experiments done together with Krishna Murthy Jatavallabhula.
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Figure 22: RGB-D denoising experiment. (Top/Bottom) The last RGB-D frame from
a sequence is perturbed by adding white uniform noise to every RGB and depth pixel
(left). The sequence is reconstructed using ∇PointFusion on this noisy frame, and
compared to a clean reconstruction from the un-perturbed RGB-D image. The noisy
and the clean maps are compared using Chamfer distance, and the gradients are
backpropagated to the image. These gradients are used to update the input RGB-D
image, and the optimized result is shown in the middle column. The ground-truth
RGB-D image is shown on the right column for reference.
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Figure 23: Interactive pixel contribution visualization. ∇SLAM allows us to
“backprop all the way from 3D maps to 2D pixels" [9] and we use this to visualize the
contribution of each pixel from an input frame to the eventual 3D map reconstructed
(here, from 4 RGB-D images). The yellow sphere on the laptop’s touchpad (top
image) is selected from a pointcloud map generated by ∇PointFusion. In the bottom
row, we show the gradient with respect to each frame when the selected point is
perturbed slightly.
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Figure 24: End-to-end gradient propagation. (Top): A chunk of a depth map
is chopped. The resultant sequence is reconstructed using ∇PointFusion and the
pointcloud is compared to a clean one reconstructed using the unmodified depth map.
The Chamfer distance between these two pointclouds is used to define a reconstruction
error between the two clouds, which is backpropagated through to the input depth
map and updated by gradient descent. (Bottom): ∇SLAM [9] can fill-in holes in
the depthmap by leveraging multi-view gradient information. Figure courtesy of
∇SLAM [9].

Figure 25: RGB-D completion using end-to-end gradient propagation. Three RGB-D
images and a noise image are passed through ∇PointFusion, and compared to a clean
reconstruction obtained from four RGB-D images. The reconstruction loss is used to
optimize the noise image by gradient descent. Most of the original RGB and depth
information is recovered through this optimization task. Note that finer features are
hard to recover from a random initialization, as the overall SLAM function is only
locally differentiable. Figure courtesy of ∇SLAM [9].
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Chapter 4

Disentangled Rendering Loss

4.1 Introduction

In order to digitally replicate the appearance of real-world materials using computer
graphics, accurate SVBRDF parameters are used in a multi-variable rendering
function. Recent deep learning techniques for SVBRDF estimation of near-planar
surfaces train their network by taking advantage of the rendering function and using
the rendering loss. The rendering loss is defined as the error between rendered
images of ground truth and predicted material property maps summed over several
sampled light and view directions. While training with this rendering loss improves
the quality of the rendered outputs of the predictions, it has the following drawbacks:
1) Since the rendering function is many-to-one, incorrect material property maps can
generate similar renderings under limited light and view conditions (i.e., the same
color could result from different combinations of SVBRDF parameter values). Thus,
models trained with this loss often tend to predict incorrect individual maps. 2)
When the rendering loss for a pixel is non-zero, gradients are backpropagated to all
BRDF parameters of that pixel, effecting changes even to correct predictions. 3) The
rendering loss needs a heuristic in the number of light and view conditions to sample,
which if not chosen correctly can affect accuracy and training time.

We first analyze the aforementioned problems and why they arise. We then
propose a new loss function named as disentangled rendering loss which addresses the
above issues by making the following modifications: For 1) and 2) the disentangled
rendering loss takes as input only one predicted parameter in the rendering function at
a time, while using ground truth inputs for the other parameters, and for 3) it removes
the dependence on the light and view sampling heuristic by integrating the L1 loss of
the rendering function over a subset of light and view directions over the hemisphere,
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making network training independent of light conditions and view directions.
We believe that this is the first work to present ways for overcoming the problem

of entangled SVBRDF parameters. Our disentangled rendering loss yields map
predictions that are individually more accurate while also yielding similar high-quality
re-renderings. We show this by comparing recovered material properties qualitatively
and quantitatively with those recovered using the standard rendering loss.

4.2 Related Work

Of late, deep learning models have shown a lot of promise in reflectance modeling
from images in the wild [22–25]. For a detailed review of these approaches, we
suggest the excellent recent survey [92]. Li et al. [25] propose a CNN architecture
for predicting the reflectance properties of a single captured image under unknown
natural illumination. They train a separate network for each material type (plastic,
wood, and metal) and each output map (diffuse albedo, normal, specular albedo, and
roughness) with the traditional L2 loss over the predicted maps. However, directly
minimizing the error on the maps was later shown to not lead to predicting very
accurate SVBRDFs nor ground truth render reproductions by Deschaintre et al. [22].

Deschaintre et al. [22] instead found that training their SVBRDF recovery network
with rendering loss as a better solution for predicting maps which give sharper and
more accurate renders. While renders are accurate, their approach fails to recover
accurate specular and diffuse maps compared to ground truth due to entanglement
of material properties.

Currently, the most accurate SVBRDF map recovery techniques use multi-image
deep networks [23,45]. These networks use multiple images of the same material under
different light and view conditions as their input to provide more cues on what the
SVBRDF should be. Gao et al. [45] propose a deep inverse rendering approach which
can handle an arbitrary number of inputs by getting an initial SVBRDF estimate
and then train an auto-encoder to optimize the SVBRDF in latent space to minimize
the rendering loss. Their method then uses a final refinement stage to optimize
the SVBRDF map directly. However, their approach requires the light and camera
position for every input image to be known and performs an optimization process for
each of these.

The recent work by Deschaintre et al. [23] uses an encoder-decoder architecture
to output a 64 channel feature map for each input image given to the network.
Aggregating these feature maps using max pooling and following it with a CNN
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decoder then outputs the SVBRDF prediction. Similar to previous work by Gao et
al. [45], they find that using a combination of L1 loss on the predicted maps and
rendering loss during training helps stabilize the training procedure. However, the
individual recovered SVBRDF maps still have inaccuracies and entanglement in the
diffuse albedo and specular albedo maps. In our experiments, we decided to use their
expertly designed network architecture, but train the network using our new loss
definition, so that any effect in network training time and accuracy of predicted maps
can be directly attributed to the new loss function.

Various fields of research have shown that disentangling parameters in complex
tasks helps to train the network to better understand the problem, which then leads
to the network learning more accurate solutions for unseen data. Some examples of
disentangled tasks include learning from videos [93,94], sentence generation [95], face
image editing [96], deblurring of images [97], and facial expression recognition [98].

4.3 The Entanglement Problem

It should be noted that a single or a few images by themselves may not contain
enough cues for one to be able to infer material properties precisely. Thus, recovering
material properties from a single image, or even a few images, is an ill-posed problem.
Arbitrarily increasing the number of input images with different view and light
directions leads to larger data collection requirements but not necessarily better-
quality results. Hence, one of the major goals in new research would be to recover
more accurate property maps by training with a few casually captured images. As
per our analysis of current deep learning solutions, there are a few causes for these
inaccuracies arising from the way the loss function is defined.

• Emphasis in training is on rendered image similarity rather than material
properties.

• No effort at disentangled learning of properties.

• Dependence on a few views for render comparison.

As mentioned earlier, rendering loss was shown to be more effective and hence gets
used in all recent work [22–24, 45, 99]. Using this loss as opposed to the traditional
L1 or L2 loss on predicted maps lets the physical meanings of each map and the
interplay between them to be relegated to the update steps. Formally, the rendering
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Figure 26: Using render loss leads to the recovery of maps which create similar renders
to the ground truth, despite incorrect property maps.

loss is given by:
LR(~l, ~v) = |RN,D,R,S(~l, ~v)−RN̂,D̂,R̂,Ŝ(~l, ~v)| (4)

Where LR(~l, ~v) is the rendering loss under some light direction ~l and view direction
~v, RN,D,R,S(~l, ~v) is the rendering function parameterized by the 4 material maps N ,
D, R and S which are the predicted normal, diffuse albedo, specular roughness and
specular albedo maps respectively, and N̂ , D̂, R̂ and Ŝ are the ground truths for those
maps respecively. Since the rendering loss is light and view dependent, in practice the
average of the rendering loss over multiple randomly sampled light and view directions
is used for training. We note that this is the Monte Carlo method for approximating
E~l,~v[LR(~l, ~v)]. This definition of the rendering loss has several major drawbacks.

Firstly, the rendering loss under limited light and view directions has multiple
global minima. This is because two very different combinations of SVBRDF maps
can generate the same rendering under limited light and view directions. As a direct
implication of this, models trained with rendering loss tend to compensate for the
incorrectness in one of the predicted maps by modifying another map in a way that
would give a similar render. An example of this is shown in Fig. 26, where a model
trained with rendering loss predicts a pinkish color as part of the specular map to
compensate for the incorrect diffuse albedo and roughness map predictions.

Secondly, the many-to-one nature of the rendering function implies that the
gradient is either zero or non-zero with respect to all 4 property maps. E.g., if
the network correctly predicts three of the four parameter maps and has a mistake
in one of them which causes the render to look different, the rendering loss will have
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Figure 27: Contour plot of the rendering loss landscape with respect to the specular
albedo and roughness. Multiple local minima exist when using one light and view
sample (left). As we increase light and view samples, the problem of multiple local
minima is reduced (right).

non-zero gradients with respect to all 4 maps, thus causing the network to "forget"
about maps it has already learned to correctly predict.

Thirdly, the number of light and view directions is a heuristic that needs to
be selected empirically. Sampling more light and view directions would make the
approximation of El,v[LR(l, v)] more accurate, albeit at the cost of more computation.
Using a single render to compute loss with presents many loss minima possible (see
Fig. 27). Therefore, most recent works heuristically use 9 renders to compute the
loss with as they find it has a good computation to test render accuracy trade-off.

4.4 Method

We address the first two problems by simply parameterizing the rendering function
with only one of the predicted maps at the time, while using ground truth maps for
the rest of the maps. This change in rendering loss can be expressed as:

LDR =|RN,D̂,R̂,Ŝ(l, v)−RN̂,D̂,R̂,Ŝ(l, v)|

+ |RN̂,D,R̂,Ŝ −RN̂,D̂,R̂,Ŝ|

+ |RN̂,D̂,R,Ŝ(l, v)−RN̂,D̂,R̂,Ŝ(l, v)|

+ |RN̂,D̂,R̂,S(l, v)−RN̂,D̂,R̂,Ŝ(l, v)|.

(5)

Note that the error on the diffuse map is not a function of light and view directions.
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With this change, the error of each map can correctly be backtraced to that map while
also considering the contribution of each map in the final rendering. We call this loss
the disentangled rendering loss.

In order to avoid sampling multiple light and view conditions, we derive an
analytical approximation for El,v[LDR(l, v)]. The complete derivation can be found
in Sec. 4.6.3. The following simplifications were made to be able to derive a closed
form solution for the integral:

1. The log of the specular term was used (as opposed to the specular term itself).

2. Light and view were assumed to have the same direction (l = v) with a uniform
spread over the hemisphere.

3. log(1 + x) was simplified to x in order to get a simple solution to the integral.

4. Since computing the expectation on the error of the normal map is not straight
forward, we use an L1 loss on the normal map instead.

5. To make the implementation of the solution simpler, we use the upper bound
of the error on the specular roughness map.

Using these simplifications, we obtain the following solution:

LIR =|N − N̂ |+ |D − D̂|
π

+ 2| 1
R̂2
− 1
R2 |

+ 2
3 |R̂

4 −R4|+ |log(S)− log(Ŝ)|
(6)

We denote this by LIR, the integrated rendering loss. In addition to view
independence, defining the loss this way gives us the following advantages:

• The major problem of not being able to correctly identify which map the error
comes from is immediately fixed.

• The problem of the network predicting maps that have the same rendering but
look different individually is also fixed.

• At the same time, the gradients for each map (except the normal map) continue
to be computed through the rendering equation to express the role each map
plays in the final rendered output, thus still providing us with nice sharp looking
renders for the prediction map.
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4.5 Experiments

4.5.1 Quality of Individual Predicted Maps

The primary goal of our experiments is to show that changing the loss function to
our disentangled rendering loss enables us to recover more accurate material property
maps. Hence, we adopt the same network architecture and training methodology
as presented in the state-of-the-art multi-image SVBRDF recovery work [23]. After
training the network for 300K iterations with each of the different rendering losses, we
find that using our proposed rendering losses gives test set predictions with a higher
SSIM due to better disentanglement of properties.

We test each trained network’s ability to recover SVBRDF maps by inputting 10
renders using test set maps and then evaluating their predictions. Comparing the
average SSIM error on the 200 sets of held-out property maps, presented in Table
1, shows that LIR can recover better specular maps since the number of renders
heuristic is not needed. In fact, LDR also produces more accurate property map
results on average than the original render loss even though it uses less FLOPs than
the traditional rendering loss with 9 sampled light and view directions.

4.5.2 Overfitting Loss to One Sample

To better visualize and understand the implications of training with each of the losses,
we trained the model to overfit to images rendered from a single SVBRDF map set
while using the different loss functions. We then look at the predicted maps and their
renderings for the same image that the model was overfitted to. This is shown in
Fig. 28.

As can be seen, training the model on the rendering loss alone will cause the model
to predict very inaccurate maps, although the renderings of these maps looks similar
to the ground truth renderings. It can also be seen that much of the entanglement is
between the predictions for the diffuse and specular albedo maps since these have the

Property Maps
Normal Diffuse Roughness Specular Avg.

LR 0.948 0.861 0.780 0.873 0.866
LDR 0.95 0.839 0.836 0.887 0.878
LIR 0.917 0.811 0.836 0.908 0.868

Table 1: Average SSIM on test set map predictions. Higher is better.
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Figure 28: We overfit the model using the 3 different losses on renderings generated
from the single property maps shown in the ground truth row. Both the disentangled
and integrated rendering loss predict maps extremely close to ground truth, while
traditional rendering loss predicts incorrect maps due to entanglement.

most error. The predictions from both LIR and LDR show far more accurate recovery
of SVBRDF maps. This can be credited to the fact that when optimizing these new
losses, the search would consistently move in a direction that would improve both the
individual maps and their renderings.

4.5.3 Map Recovery

To reiterate, SVBRDF property maps recovered with the earlier defined rendering loss
are very different from ground truth because the focus is on creating similar renders
to the input images, without any regard to the accuracy of individual maps. Fig. 29
shows some examples wherein using rendering loss recovers inaccurate maps, whereas
training with disentangled render loss or integrated loss recovers more accurate maps.
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Figure 29: Example of material property map recovery of models trained with
different losses.

4.6 Additional Notes

4.6.1 Network Architecture

The primary goal of our experiments is to show that changing the loss function to
our disentangled rendering loss enables us to recover more accurate material property
maps. Hence, we wish to emphasize that we have not deviated from state of the art
work in terms of architecture, training/test data, and training cycles.

To evaluate our disentangled rendering loss, we adopt the state-of-the-art multi-
image SVBRDF recovery network proposed by [23]. We use the popular U-
Net encoder-decoder architecture [100] in parallel to a fully-connected track which
transmits global information in the network, shown in Figure 30. This network then
outputs 64 channels of feature maps for each input image view with the same spatial
dimensions as the input. We then aggregate these feature maps by using max pooling
so that we will have 64 channels of features of the same spatial dimensions as the
input. As is the case in [23], we use the max-pooling operator which enables our
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Figure 30: Network architecture.

model to handle any arbitrary number of views as inputs. Finally, the features are
fed into 3 layers of convolutions with non-linearities to output the 4 material property
maps.

4.6.2 Implementation Details

Training. We train our model for 300K iterations using the Adam optimizer [101]
with a learning rate of 2× 10−5. We use a batch size of 2 and the number of views
for each input sample during training is randomly chosen between 1 and 5. Training
took 3 days on an Nvidia GTX 1080 Ti.

Dataset. We use the publicly available dataset1 proposed by Deschaintre et
al. [23]. This dataset contains 1,850 property maps of common material types such as
wood, metal, leather, plastic, etc. During training, input property maps are rendered
in Tensorflow [102] with a randomly chosen light and view direction, and then fed to
the network.

Data augmentation. We use data augmentation to make our trained network
more generalized. We use the same randomized linear interpolation of material
property maps as done by Deschaintre et al. [23], which was shown to greatly improve
accuracy.

1https://repo-sam.inria.fr/fungraph/multi_image_materials/supplemental_multi_
images/materialsData_multi_image.zip
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4.6.3 Integrated Loss

Rendering Equation. The rendering equation is composed of a specular term (fr)
and a diffuse term (fd):

RN,D,R,S(~l, ~v) = fr( ~N, S,R,~l, ~v) + fd(D) (7)

Where RN,D,R,S(~l, ~v) is the rendering function under some light direction ~l and view
direction ~v parameterized by the 4 material maps N , D, R and S which are the
normal, diffuse albedo, specular roughness and specular albedo maps respectively.
The Cook-Torrance microfacet specular BRDF is expressed as:

fr( ~N, S,R,~l, ~v,~h) = F (S,~v,~h)G( ~N,R,~v,~l)D( ~N,R,~h)
4( ~N ·~l)( ~N · ~v)

(8)

Where ~h is the half vector, F (S,~v,~h) is the Fresnel function, G( ~N,R,~v,~l) is the
geometric shadowing term, and D( ~N,R,~h) is the Normal Distribution Function
(NDF). For the Fresnel function F , we use an approximation by Schlick [103]:

F (S,~v,~h) = S + (1− S)2−5.5(~v·~h)2−6.98(~v·~h) (9)

For the geometric shadowing term G, we use Smith’s method [104] which breaks G
into light and view components, and uses the same Gl function for both:

G(~l, ~v) = Gl(~l)Gl(~v) (10)

We use the Schlick-Beckmann approximation for Gl [63, 103]:

G( ~N,R,~l, ~v) =
~N ·~l

( ~N ·~l)(1− 0.5R2) + 0.5R2

×
~N · ~v

( ~N · ~v)(1− 0.5R2) + 0.5R2

(11)

For the NDF term D, we use Trowbridge-Reitz GGX [63]:

D( ~N,R,~h) = R4

π
[
( ~N · ~h)2(R4 − 1) + 1

]2 (12)
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For the diffuse term, we assume a uniform diffuse response over the microfacets
hemisphere and use a simple Lambertian model:

fd(D) = D

π
(13)

Putting the above formulations together, our final rendering equation is:

RN,D,R,S(~l, ~v) = fd(D) + fr( ~N, S,R,~l, ~v,~h)

= D

π

+ 0.25
(S + (1− S)2−5.5(~v·~h)2−6.98(~v·~h)

)

× 1
( ~N ·~l)(1− 0.5R2) + 0.5R2

× 1
( ~N · ~v)(1− 0.5R2) + 0.5R2

× R4

π
[
( ~N · ~h)2(R4 − 1) + 1

]2


(14)

Solving the Integral. We start by making the simplifying assumption that our
light and view direction are the same for our renderings (~l = ~v = ~h). By creating a
new variable t = ~N · ~v, the simplified rendering equation will be:

RN,D,R,S(t) ≈ D

π
+ 0.25S

π

 1(
t(1− 0.5R2) + 0.5R2

)2

× R4(
t2(R4 − 1) + 1

)2

 (15)

The optimization goal is to minimize the L1 error between ground truth renderings
(RN,D,R,S(t)) and prediction renderings (RN̂,D̂,R̂,Ŝ(t̂)) over a variety of light and view
directions. If we sample infinite light and view directions, we are effectively looking
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to compute Et,t̂[LDR(t, t̂)]:

LIR =Et,t̂[LDR(t, t̂)]

=
∫∫
|RN,D̂,R̂,Ŝ(t)−RN̂,D̂,R̂,Ŝ(t̂)|f(t, t̂)dtdt̂

+ |RN̂,D,R̂,Ŝ −RN̂,D̂,R̂,Ŝ|

+
∫
|RN̂,D̂,R,Ŝ(t̂)−RN̂,D̂,R̂,Ŝ(t̂)|f(t̂)dt̂

+
∫
|RN̂,D̂,R̂,S(t̂)−RN̂,D̂,R̂,Ŝ(t̂)|f(t̂)dt̂.

(16)

We assume the distribution of the view direction such that we have the marginal
probability density functions t̂ ∼ U(0, 1). This assumes that our views are being
sampled from directions which have a positive dot product with the ground truth
normal. Since computing the expectation on the error of the normal map is not
straight forward, we use an L1 loss on the normal map instead:

LIR = |N − N̂ |

+ |D − D̂|
π

+
∫ 1

0
|RN̂,D̂,R,Ŝ(t̂)−RN̂,D̂,R̂,Ŝ(t̂)|dt̂

+
∫ 1

0
|RN̂,D̂,R̂,S(t̂)−RN̂,D̂,R̂,Ŝ(t̂)|dt̂

(17)

To simplify the integration of the roughness and specular error terms in Eq. (17),
we take the error on the log of each of these terms instead. This will not change the
optimal solution that will minimize this loss:

∫ 1

0

∣∣∣∣∣∣log( Â(
Bt+ 1

)2(
Ct2 + 1

)2 )

− log( Â(
B̂t+ 1

)2(
Ĉt2 + 1

)2 )

∣∣∣∣∣∣dt

+
∫ 1

0

∣∣∣∣∣∣log( A(
B̂t+ 1

)2(
Ĉt2 + 1

)2 )

− log( Â(
B̂t+ 1

)2(
Ĉt2 + 1

)2 )

∣∣∣∣∣∣dt

(18)
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where: 

A = 0.25SR4

π(0.5R2)2 = S

π
, Â = Ŝ

π

B = 1− 0.5R2

0.5R2 = 2
R2 − 1, B̂ = 2

R̂2
− 1

C = R4 − 1, Ĉ = R̂4 − 1

(19)

We simplify log(1 + x) to x in order to get a much simpler solution to the integral.
Moreover, since limx→∞

∂log(x+1)
∂x

= 0, for large values of x we will have a gradient
vanishing problem, which would not be the case when simplifying log(1 + x) to x.
Thus, Eq. (18) will be reduced to:

2
∫ 1

0

∣∣∣∣( 1
R̂2
− 1
R2 )t+ (R̂4 −R4)t2

∣∣∣∣dt
+ |log(S)− log(Ŝ)|

(20)

To make the implementation of the solution simpler, we use the upper bound of the
error on Eq. (20):

2| 1
R̂2
− 1
R2 |+

2
3 |R̂

4 −R4|+ |log(S)− log(Ŝ)| (21)

Thus the upper bound on the integrated rendering loss LIR would be:

LIR =|N − N̂ |+ |D − D̂|
π

+ 2| 1
R̂2
− 1
R2 |

+ 2
3 |R̂

4 −R4|+ |log(S)− log(Ŝ)|
(22)

4.7 Conclusions

In this work we have addressed the problem of recovering more accurate, disentangled
material property maps from images. We define two versions of a new loss function
or training SVBRDF estimation neural networks: The disentangled rendering loss
and the integrated rendering loss. By separating out the rendering of maps and
analytically integrating the specular albedo term of the rendering equation, we are
able to recover more accurate SVBRDF maps than before. Our solutions are unique
and require less computational resources while still producing better results than
previous work without any network modifications.

Through intentional overfitting of the same model with each of the different losses,
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we show property entanglement and inaccuracy in SVBRDF predictions when using
traditional rendering loss, emphasizing the need for a change of loss formulations
in SVBRDF recovery. However, more can be done to improve predictions further,
such as exploring other network architectures, implementing the use of appropriate
priors, and to increase generalization capability of the model through further data
augmentation.

Broader impact. While the work presented is specific to material properties,
such entanglement of component parameters would be present in other areas of
deep learning research focused on recovering many parameters at once. Transferring
our strategy of defining a disentangled loss function by selectively learning these
parameters could potentially be transferred to these problems. Thus, the broader
impact of this work can be stated as follows:

1. Potential for this methodology of defining a disentangled loss function to be
applied to analogous problems.

2. Potential for this methodology of computing the expectation of a stochastic loss
function with respect to some external parameters, as opposed to Monte Carlo
sampling those parameters to be applied to analogous problems.

3. More accurate material property recovery will result in more correct results for
downstream applications like material matching, SVBRDF editing, and AR/VR
environments.
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Chapter 5

Scan2Material

5.1 Introduction

The gold standard for 3D reconstruction is to be able to take a hand-held camera,
casually capture the scene by walking around in an environment and recover the
complete 3D geometry and material appearance properties of the environment.
Recovering the 3D geometry and appearance parameters will allow for re-rendering
of the scene with arbitrary light and view conditions. This has proven a difficult
goal to aim for over the years. We aim to address this by describing a method for
simultaneously recovering the geometry and the material appearance parameters of
a scene from a casually captured sequence of RGB-D images.

The material appearance properties can be modeled through the Bidirectional
Reflectance Distribution Function (BRDF). The BRDF takes as input the viewing
direction and an incident light, and outputs the amount of light that gets emitted by
the surface in the viewing direction. While the BRDF is a function of light and view
directions, different materials are parameterized by values that depend purely on an
object’s material, independent of the lighting and view conditions. In this work we
focus on recovering the Spatially Varying BRDF (SVBRDF) since real-world scenes
consist of multiple different materials, sometimes even within a single object.

The big challenge of SVBRDF recovery from a casual capture is that there will
be too many highly entangled unknowns to recover (i.e., geometry, diffuse albedo,
specular albedo, etc.). One approach that has been successful for dealing with this
inherent lack of information is to use learning-based methods for implicit reasoning
about the unknowns in the capture [22, 23, 105]. However, this has mostly been
attempted under highly restrictive assumptions on the geometry [22, 23, 105–109],
lighting conditions [47, 106, 108, 110], viewing conditions [46, 48], and the BRDFs
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[47,50,111–113]. Other works which do not have these strong restrictive assumptions
typically rely on a non-generalized iterative optimization process for every capture
[52–54]. Moreover, most of the previous works focus on recovering the SVBRDF of
a single object since a lot of their assumptions do not hold for a complex indoor
environment. Further in indoor environments, there are extra factors such as inter
reflections which make the problem even more difficult.

From what we have seen in the literature, the proposed model in our work is
the first to attempt to recover scene geometry and material appearance properties
from casual RGB-D captures without an iterative optimization process. We do this
by leveraging the power of deep neural networks and a differentiable geometry-based
method of combining information from multiple views.

Our approach takes as input a sequence of casually captured RGB-D images,
and extracts embedding maps from each frame individually by using a convolutional
neural network (CNN). However, to observe the different reflective properties of each
material in the scene, it is important to aggregate information across multiple frames.
E.g., from a single viewpoint, one would not be able to observe whether the object
is shiny or has a bright diffuse albedo color without prior knowledge of the material
type. Our key insight is to aggregate the information across a sequence of frames
geometrically by finding which points across different frames correspond to the same
point in 3D space. We then use Point-Voxel CNN [5] to convert these embedding
vectors of the pointcloud into material properties for every point in the pointcloud.
Thus, we train the 2D embedding generator and the 3D material property predictor
jointly in an end-to-end fashion once and have it generalize to a variety of different
real world scenes.

Importantly, our 2D CNN and the 3D Point-Voxel CNN [5] consider local and
global information when predicting the BRDF for every point. This is important
for the model to be able to implicitly reason about the (direct and indirect) lighting
information of the scene. Briefly, our contributions are as follows:

1. The first described generalized approach for simultaneous SVBRDF and
geometry recovery of casually captured scenes.

2. A novel approach for leveraging 2D multiview information when making
predictions for each point’s BRDF.

3. A novel loss function (reflection loss) for non-flat surfaces incorporating the
effect of each material property on the final rendering and their dependence on
one another.
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5.2 Related Work

While there is a large body of work which focuses on recovering uniform BRDFs for
a single material [111–113], we focus our discussion on methods of SVBRDF recovery
as they are more closely related to our work.

Non-learning based methods. Traditional works on recovering SVBRDFs
focus on capturing appearance under controlled light and view conditions [114–118].
While these works yield the most accurate SVBRDFs, they require dedicated
hardware and strict acquisition setups which is often only suited for laboratory
conditions.

Many works have focused on recovering SVBRDFs without the use of dedicated
hardware. One approach is to assume known geometry of the captured object to
simplify the SVBRDF recovery problem, such as assuming the capture to be of a
near-flat surface [106,108] or having a pre-scanned object with a 3D scanner [107,109].
However, the obvious limitation of these approaches is that they will not work when
the geometry of the object is unknown.

More closely related to our approach are ones that aim to recover the geometry
and SVBRDF parameters simultaneously. One approach is to use Multi-View Stereo
(MVS) for reconstruction of the object’s geometry [110, 119]. However, MVS-based
reconstructions are ineffective for challenging scenes with textureless regions. Xia
et al. [120] recover the geometry by searching for the closed surface based on the
recovered normal directions. However, they require the input to be the video capture
of a single rotating object.

Recent works have been looking into using RGB-D sensors to simultaneously
recover geometry and SVBRDF [46–50]. Wu et al. [46] and Ha et al. [48] use RGB-D
inputs from a Kinect sensor to simultaneously recover the SVBRDF and geometry.
However, they either use a mirror ball [46] or a 360-degree camera [48] at capture
time for measuring environment illumination, whereas our proposed approach relies
solely on the RGB-D input sequence under unknown illumination conditions. Zhang et
al. [50] use RGB-D inputs from a Kinect sensor to recover the SVBRDF and geometry
with some manual adjustments. Wu et al. [47] use RGB-D inputs from a Kinect sensor
to recover the SVBRDF and geometry in a joint optimization framework, which
alternates between solving for materials, environment illumination, camera poses and
normals. They further make an assumption of distant environment lighting, which
is typically not valid in indoor captures. However, both aforementioned methods
simplify the domain of recovered SVBRDFs by relying on clustering materials and
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per-segment BRDF association. This reduces the quality of results obtained when
the scene/object contains a large number of different BRDFs. In contrast, we aim to
recover continuous SVBRDF parameters separately for every vertex in the scene.

Most related to our approach here is the work by Schmitt et al. [49], who jointly
recover the SVBRDF and geometry from a sequence of RGB-D images. However,
their approach assumes a single object present in the scene with AprilTags [121] next
to it and captured with exactly one point light source. In contrast, our approach was
built for recovering the SVBRDF and 3D geometry of an entire multi-object scene,
which was casually captured under unknown lighting conditions.

One thing to note is that with the exception of the work of Zhang et al. [50],
all above approaches focus on recovering SVBRDF for a single object, not an entire
scene. Moreover, even Zhang et al. [50] rely on manual adjustments and restrict
BRDF properties to only the floor, ceiling, and walls. The standard approach for
these methods is to refine the recovered SVBRDF and possibly the geometry and/or
illumination [120] parameters for every captured object via iterative optimization.
Doing this iterative inverse-rendering optimization process for each RGB-D sequence
can be time consuming. In contrast, our approach trains a single neural network
that generalizes to a variety of different RGB-D captured scenes. Moreover, these
approaches make strong assumptions on geometry [106–109], lighting [47, 106, 108,
110], the capture setup [46, 48], or recovered materials [47, 50]. Since our method is
learning based, we do not need to explicitly recover lighting conditions for recovering
the SVBRDF. We can allow the network to implicitly reason about the illumination
of the scene for recovering the SVBRDF.

Learning based methods. Recently there has been an increasing amount of
interest in SVBRDF estimation from casual captures using learning-based methods.
Due to the difficulty in recovering accurate SVBRDFs in a single forward step
prediction, a large body of work combines learning based methods with the standard
iterative refinement methods [26,45,122–125]. These approaches make a prediction for
the SVBRDF first and then iteratively refine the latent representation based on the re-
rendering error. These works are based on either having a single input image [122,125],
or having multi-view images [26, 45, 124]. However, doing this iterative optimization
process at inference time can be slow.

An interesting recently emerging line of work consists of approaches that take
inspiration from Neural Radiance Fields (NeRF) [51–54]. NeRF based approaches for
recovering the SVBRDF rely on fitting a separate neural network for every captured
scene to recover the per-pixel BRDF parameters [52–54]. In contrast, our goal is to

57



train a neural network once, and have it generalize to a variety of different scenes.
Most related to our work are learning-based methods that aim to generalize to a

variety of scenes. One class of works in this domain attempt to recover the SVBRDF
from a single image [22, 126, 127]. While recovering SVBRDF from a single-view
image is an inherently ill-posed problem as many different SVBRDFs can yield the
same observation from a single view [55], these works hope that the model learns to
predict the most likely SVBRDF based on learned priors. Thus, the network must
make a best guess for the SVBRDF based on ambiguous limited information. Multi-
image approaches for SVBRDF recovery aim to alleviate this [23, 56, 105]. However,
all of the aforementioned generalized single image and multi-image methods assume
a flat geometry for the captured object. As mentioned earlier, we believe that there
are currently no generalized approaches for recovering the SVBRDF of a capture
with non-flat geometry. Moreover, our work recovers the SVBRDF of a capture of
a complex scene with multiple objects. We do this with much lesser assumptions on
the scene (e.g., no assumptions on lighting and geometry).

5.3 Method

Overview. Learning representations from 2D images using convolutional neural
networks is very efficient and effective. However, predicting the SVBRDF from a
single 2D image of a complex indoor scene would require the network to rely heavily
on learned priors and guessing the material appearance parameters. Therefore,
aggregating the visual cues across different views can help in estimating more accurate
SVBRDF parameters. We propose to extract an embedding map (i.e., per-pixel
embedding vectors) for every frame and aggregate the information across a sequence
of frames geometrically, by reconstructing a pointcloud and finding the points across
different frames which correspond to the same point in 3D space (i.e., by using
∇PointFusion [9]). This allows us to aggregate information about a single point in
space when viewed from different angles. We then use a deep network that operates on
the entire pointcloud (Point-Voxel CNN [5]) to generate per-point BRDF parameters,
allowing the model to implicitly reason about the structure and the global illumination
of the entire scene.

Embedding vectors. The first step in our approach is to compute the vertex
map in camera space for each RGB-D frame:

Vt(u) = Dt(u)K−1[uT , 1]T ∈ R3
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Figure 31: The viewing zenith angle (θ) is the angle between the viewing direction
ωo and the surface normal direction n.

where Vt and Dt are the vertex map and depth map of the frame at time step t

respectively, u = [x, y]T ∈ R2 is the 2D pixel position, and K is the camera calibration
intrinsics matrix. We are then going to estimate the surface normals Nt oriented
towards the camera in the camera space for each frame by using the central-differences
of the vertex map. Then, using the normals Nt and camera intrinsics matrix K, we
compute the cosine of the viewing zenith angle θt(u) for every pixel of frame t:

cos(θt(u)) = Nt(u) · −K−1[uT , 1]T
||K−1[uT , 1]T ||2

The cosine of the viewing zenith angle captures information about the viewing angle of
the surface point corresponding to every pixel (see Fig. 31), which is important when
estimating BRDF parameters as the BRDF is a function of the viewing direction.
Since we are assuming an isotropic Cook-Torrance BRDF model (i.e., the reflected
light is invariant to rotation of the surface about the surface normal), the viewing
azimuth angle can be ignored. Thus, we concatenate the per-pixel cosine of the
viewing zenith angle cos(θt(u)) with the RGB-D input into a single tensor, and then
feed each tensor independently to a U-Net architecture [128] to generate embedding
maps Zt for each frame t.

3D reconstruction. Next, we use ∇PointFusion [9] to merge each frame and the
associated embedding map into the global map (pointcloud) in a fully differentiable
manner. Note that in the merging step, pixels in different frames which correspond to
the same point in the original 3D scene can be fused into a single point (see Fig. 32).
We adopt the same mechanism as ∇PointFusion [9] for finding correspondences
between the live frame and the global map points. If a corresponding global map
point is found for a point in the live frame, we use the element-wise max operator for
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Figure 32: Embedding vector fusion. Embedding vectors of corresponding points get
fused together using an element-wise max operation.

fusing the embedding vectors as follows:

z̄i ←− max
(
z̄i, Zt(u)i

)
where Zt(u) ∈ Rm denotes the embedding vector of pixel u in frame t, z̄ ∈ Rm is
the embedding vector of the corresponding global map point, and i is the index of
the embedding vector element. Since the ordering of images is not meaningful in
recovering the SVBRDF parameters, the max operator ensures an order-invariant
way of fusing embedding vectors from different views.

BRDF predictions. Finally, we feed the pointcloud vertices along with the
associated normals and embedding vectors to the Point-Voxel CNN [5] to predict the
BRDF parameters of each point. We jointly train this Point-Voxel CNN [5] and the
embedding generator U-Net [128] by having a supervised loss on the predicted BRDF
parameters. A high-level overview of our approach is shown in Fig. 33.

Reflection Loss. In our dataset, the input images have ground truth per-pixel
BRDF parameters to be used for supervision. Thus, we associate the ground truth
BRDF parameters with each point in the pointcloud as we are reconstructing the
pointcloud by ∇PointFusion [9]. If a point in the live frame is fused with a point in
the global map, we apply the vertex fusion mechanism of ∇PointFusion [9] for fusing
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Figure 33: Scan2Material inference pipeline overview.

their associated BRDF parameters. This saves us storage, as we would not need to
store the ground truth pointcloud for every scene. And we also save on computation,
as we would not need an extra step for finding point associations between ground
truth and predicted pointclouds.

Having the association with the correct BRDF parameters for every point, we
define a reflection loss as our loss function. For each point in the pointcloud, the
reflection loss samples light and view directions and computes the L1 distance between
the rgb reflection using the ground truth and predicted SVBRDF:

reflection loss :=
∑

1≤n≤m
|f̂r(vn, ωi, ωo)− fr(vn, ωi, ωo)|

where f̂r is the predicted SVBRDF, fr is the ground truth SVBRDF, m is the
total number of points in the pointcloud, vn is the n’th vertex of the reconstructed
pointcloud, ωi is the incoming light direction, and ωo is the outgoing view direction.
The light and view directions are heuristics, and they can be sampled uniformly over
the hemisphere. To reduce the variance in the reflection loss (due to the stochasticity
involved in sampling light and view directions), one can take the average of this
loss over multiple light and view directions. Moreover, we can extend this idea to
a disentangled reflection loss or an integrated reflection loss by adopting the same
disentangled loss equations as Saryazdi et al. [56] for every point in the pointcloud.
Finally, the gradient of this error can be backpropagated to the Point-Voxel CNN [5]
parameters, and also through Point-Voxel CNN [5] and ∇PointFusion [9] to U-
Net [128] parameters.

The reflection loss has several important benefits. First, the reflection loss is very
efficient, as it operates on each point independently and thus is trivial to parallelize.
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Second, the reflection loss takes into account how much each BRDF parameter
contributes to the appearance of that point. E.g., assuming two different sets of
BRDF parameters yield the same L1 loss, using the reflection loss would yield a lower
loss for the BRDF that gives a more similar looking appearance to that of the ground
truth under different light and view directions. The limitation of the reflection loss
is that it requires knowledge of the ground truth SVBRDF parameters, thus it is
only applicable to supervised training scenarios where the ground truth SVBRDFs
are known.

5.4 Dataset

We could not find any publicly available dataset which contains image sequences of
complex scenes with corresponding per-pixel BRDF parameters1. Generating such a
dataset from real-world images is currently close to impossible. However, generating
it from synthetic 3D models is feasible. It is important for these 3D models and their
renderings to look as realistic as possible to reduce the domain gap with real-world
images. Luckily, the Hypersim [1] dataset has already generated and released 77,400
photorealistic rendered images of 461 indoor scenes by using artist designed 3D models
in their massive ∼ 1.9 Tb dataset. Some of the biggest benefits of Hypersim [1] are
the high resolution (1024× 768) and high-quality realistic renderings, the availability
of many different types of annotations, and very important, the entire code for
generating this dataset is open sourced. However, Hypersim [1] does not contain
per-pixel BRDF information.

For achieving our goal, we extend the existing Hypersim [1] dataset with additional
SVBRDF parameters. For each scene, Hypersim [1] has one or more camera
trajectories, each of which capture 100 photorealistic images, in addition to other
per-pixel labels such as semantic segmentation information, depth, normals direction,
etc. The good news is that the 3D models2 that Hypersim [1] was created from do
have very realistic SVBRDF values in them, and so we extract the per-pixel SVBRDF
values for the images that Hypersim [1] has generated using the original 3D models.

We use V-Ray [132] for rendering the per-pixel BRDF parameters. While V-
Ray [132] allows for rendering of per-pixel BRDF parameters such as diffuse albedo,
reflection albedo and reflection glossiness, there is some useful information that can

1The OpenRooms [129] dataset would meet our requirements, but unfortunately it is not publicly
available at the time of writing this.

2The Evermotion Archinteriors Collection [130] is available for purchase on TurboSquid [131].
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Figure 34: Overview of our dataset. For each rendered image in Hypersim [1] (a),
our dataset adds the following ground truth values: Diffuse albedo (b); reflection
albedo (c); refraction albedo (d); reflection glossiness (e); reflection ior (f); refraction
glossiness (g); and a binary mask indicating whether each pixel is a light source or
not (h).

not be directly rendered by V-Ray [132], such as knowing the pixels which contain a
light source. Thus, we first create a correspondence image that associates each pixel
in the rendered image with its associated material in the 3D model, and then we can
parse extra information from the 3D assets by a simple lookup. The final labels that
our dataset adds to Hypersim [1] are shown in Fig. 34. We plan to release this
dataset publicly to facilitate research in this domain.

5.5 Experiments

At the time of writing this thesis, we were unable to carry out exhaustive training
of our model, as the task of extending the Hypersim data with BRDF values is
continuing. However, for testing out our network’s capabilities, we did some initial
experiments as described below.

Overfitting experiment. To demonstrate that our network has the
representation capacity for learning the SVBRDF parameters, we overfit the proposed
model on a single sequence of synthetic RGB-D data and visualize the results in
Fig. 35. The training was done using purely 3D supervision as our loss function
operates on the predicted SVBRDF parameters in the reconstructed pointcloud. In
particular, we feed in a sequence of 4 RGB-D images to our model, and optimize our
model using Adam [101] optimizer for 100 iterations.
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Figure 35: Overfitting experiment results. Scan2Material trained for 100 iterations
on a single sequence.

5.6 Conclusions and Future Work

Conclusions. In this chapter, we have described work towards an end-to-end
trainable model that can simultaneously reconstruct the 3D geometry and predict
the SVBRDF of a complex scene. We showed that this model can be trained end-to-
end using only direct 3D supervision. We also proposed a reflection loss that considers
the effect of each BRDF parameter in the final appearance of that point. Lastly, since
there is currently no public dataset available for supervised training of this model, we
have embarked on the creation of a dataset of SVBRDF parameters for the complex
indoor scenes of Hypersim [1].

Future work. In the short term, we want to train this model on the entire
Hypersim [1] dataset with the SVBRDF parameters and evaluate the generalization
capabilities of such a model. Once this is demonstrated, there are a lot of interesting
ways that this line of work can be extended. One interesting line is to also recover
the lighting information, which could potentially also enable unsupervised training of
such a model by using differentiable renderers [122]. Another interesting extension
would be to aim for recovering finer material information, such as diffuse roughness
from the Oren-Nayar reflectance model [133].
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Chapter 6

Conclusions

Representation learning approaches have made huge progress in solving problems
that not too long ago defied our grasp, such as semantic segmentation and
language translation. This has unleashed a lot of excitement in using representation
learning based approaches in solving difficult tasks in other domains such as video
understanding and multi-modal learning between text and images.

However, in the domain of 3D reconstruction, there has been an open question
about how we want to blend these representation learning approaches with the current
3D reconstruction pipeline. In particular, there is a question about whether we want
to place pre-trained models in some components of the 3D reconstruction pipeline; or
replace the entire 3D reconstruction pipeline with a neural network; or find a sweet
spot between the other two approaches.

In this thesis, we proposed approaches for using neural networks in conjunction
with the 3D reconstruction pipeline such that they can be trained end-to-end based
on a single end objective (e.g., to reconstruct an accurate 3D representation). We
argue that doing so will 1) give us more interpretable models due to the modular
nature of the 3D reconstruction pipeline, 2) allow us to use components from the 3D
reconstruction pipeline that work well (e.g. the odometry and mapping mechanism)
in conjunction with representation learning approaches for tackling tasks which
have been difficult to solve by designing explicit algorithms (e.g., estimating BRDF
parameters), 3) allow for end-to-end training for a single end optimization objective
(such as having accurate reflective behaviors in the final 3D reconstruction), and 4)
allow for using additional auxiliary objectives for each component to speed up training
and avoid possible local minima. Moreover, we also discussed what the end objective
function should be in order for the material appearance parameters predicted by the
network to be individually accurate, and at the same time also faithfully recreate the
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appearance of the material as a whole. Overall, there are a number of "firsts" in our
work.

Concretely, in Chapter 3 we developed the first open-source library for
differentiable dense SLAM, called gradslam. This was done by using the differentiable
alternatives to the non-differentiable components in common SLAM pipelines, in
addition to leveraging the automatic differentiation capability of PyTorch [67]. Due
to having fully differentiable components, gradslam enables both using SLAM as a
layer inside of deep neural networks for learning downstream tasks, and also using
deep neural networks in subcomponents of the SLAM system to recover more accurate
maps and state estimates.

In Chapter 4 we identified some of the problems of the rendering loss function
which is used for training neural networks to estimate material appearance parameters
from image(s) of a near-flat surface. We were the first to propose the disentangled
rendering loss which alleviates many of the disadvantages of using the rendering loss
for training a neural network (e.g., having multiple global minima under limited light
and view samples), while maintaining the benefits (e.g., weighing the importance of
each material appearance parameter based on its effect on the final appearance). The
important take away of this chapter is that while some of the mathematical models for
real-world phenomena are already differentiable, it is important to consider the affect
of using these models in training our neural networks (e.g., on the loss landscape).

Finally, in Chapter 5 we described the first work towards an end-to-end trainable
model for simultaneously reconstructing the 3D geometry and estimating the material
appearance parameters of objects in a scene. One of the current limitations for
training such a model is that there are currently no publicly available datasets with
ground truth material appearance parameters. Thus, we extended an existing large-
scale photorealistic synthetic dataset (Hypersim [1]) by generating corresponding
material appearance parameters for each image. This was done by extracting the
material appearance parameters from the original 3D assets. We intend to release
this dataset publicly.

One of the main challenges with our end-to-end learning approach is the GPU
memory limitation issue. This is in part due to the temporal dependence of the
reconstruction process which restricts the input image sequence length. As an
example, unrolling each computation in dense SLAM during training time as a graph
requires an enormous amount of memory. Additionally, the spatial resolution of
the reconstructed maps also plays a role in the GPU memory consumption. In
particular, running a differentiable KinectFusion [16] algorithm using a coarse voxel
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resolution 128× 128× 128 ends up requiring 6 GB of GPU memory on average. One
way to alleviate this problem is to use point-based reconstruction methods, such as
∇PointFusion. Another main challenge of our approach for material appearance
parameter recovery is the requirement of having a large-scale labeled dataset.
Capturing real-world datasets of complex scenes with accurate ground truth material
appearance parameters is close to impossible, and generating photorealistic renderings
from synthetic artist designed 3D models can be (financially and computationally)
expensive.

There are still many interesting challenges on the horizon to be solved. One
interesting idea is to use unsupervised training for simultaneously recovering the
BRDF and geometry. One way to do this is through differentiable physically based
renderers [134], by re-rendering the 3D reconstruction and comparing it to the ground
truth input image. This is not only exciting due to its capability to get more accurate
3D reconstruction models, but more importantly because this can potentially enable
learning rich representations for images from unlabeled data (analogous to what
has happened with BERT [135] and GPT3 [65] in the natural language domain).
Another interesting challenge that still remains is reconstructing complete 3D scenes
that contain refractive materials, such as glass or water. In these cases, even the
most expensive active depth sensors will fail to predict correct depth measurements.
Therefore, using vision-based approaches for depth recovery such as monocular depth
estimation might prove to be valuable in such scenarios.

The aforementioned are some of the very exciting directions for future research
based on our work.
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