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Abstract

Optimal implementation of urban wind energy contributes towards the development of sustainable cities. This paper focuses on generating an adequate database to use with artificial intelligence (AI) tools to improve the generation of urban wind energy. The paper presents wind tunnel results for square, rectangular, U-shaped, T-shaped, L-shaped buildings and some measurement points in various city configurations. Moreover, the effect of building shapes on turbine street level locations was elaborated using validated CFD literature results on pedestrian level wind conditions. Using these results and literature review from the past decade, a decisional flow chart approach was developed, allowing a preliminary assessment of the modification of upstream wind velocities due to urban parametric conditions. Expert and artificial neural network (ANN) systems were built and tested on city configurations with their results compared with those from wind tunnel measurements. The ANN system shows better predictive values than the expert system, with up to 99% success rate. AI programs with the decisional flow chart approach may be used for the identification and assessment of potential turbine locations to maximize the production of urban wind energy.
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Introduction
Research on urban wind behavior and wind engineering modeling progresses rapidly. Urban wind energy shows many advantages, including that there is no need for transportation, it promotes sustainability, self-sufficient buildings and other economic benefits (Saeed, 2020). However, urban wind energy also faces a critical challenge, as the presence of high turbulence and low wind velocities in cities reduces the turbine efficiency and power production significantly (Newman, 2020). As stated by Tasneem et al, 2020, further study in this area is essential due to the “current energy crisis”. Thus, this paper attempts to apply wind engineering modeling techniques for optimizing urban wind energy. The knowledge of mechanisms influencing wind energy is essential for proper assessment of the energy retrieved and the modeling techniques. Wind energy may be calculated through fluid dynamics principles, resulting in Eq. (1):

  										         Eq. (1)

where [image: ]E is the energy,  [image: ](kg/m3) is the air density, [image: ]A (m2) is the surface area of the turbine, [image: ]V  (m/s) is the wind velocity on the turbine, [image: ]T is the period of time (s).
Power generated through wind energy depends, among other parameters, on the wind speed reaching the turbine. To increase wind capture, elements modifying wind speeds must be studied through literature, experimentation, and modeling.
Current literature shows the effects of geographical (terrain and topography) and meteorological (seasonal, diurnal, yearly through climate change) changes in wind speeds. Topography effects, specifically hills and escarpments of height to length ratio higher or equal to 1:10, on wind velocity is presented in the NBCC, 2015, which proposes an empirical relation between the increase in wind velocities due to hills and escarpments and some variables such as the length and height of the hill or escarpment, see Fig. 1. According to the developed equation, [image: ]wind velocities may be considerably increased due to hills and escarpments, up to a factor of 3.23 (NBCC, 2015). 
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where
= applicable value from the table below
x=horizontal distance from the peak of the hill or escarpment
Lh=horizontal distance upwind from the peak to the point where the ground surface lies at half the height of the hill or escarpment, or 2Hh (where Hh=height of hill or escarpment) whichever is greater
z=height above ground and
k and a=applicable constants from the table below based on shape of hill or escarpment







	Hill or escarpment
	(1)
	a
	k, where 
	k, where 

	2-dimensional hill
	2.2
	3
	1.5
	1.5

	2-dimensional escarpment
	1.3
	2.5
	1.5
	4

	3-dimensional axi-symmetrical hill
	1.6
	4
	1.5
	1.5


(1) For Hh/Lh>0.5, assume Hh/Lh = 0.5and substitute 2 Hh for Lh in the equation for 

Fig. 1: Wind velocity on hills and escarpments and speed-up factor requirements (NBCC 2015)
Other than topography, meteorological and geographical factors show an impact on wind velocities. Compiling results from McInnes et al (2011), Helpellmann et al (2016), and Winstral et al (2017), on wind power production in a daily (Engelberger and Dornbruck, 2016), seasonally, or yearly scale may be further confirmed by the wind spectrum developed for engineering purposes. Wind spectrum shows variations and peaks in wind speed frequencies through the aforementioned cycles. The variation of wind speeds depends on geographical locations (McInnes, 2011, Pryor and Barthelmie, 2009, and Klink, 1999). Other studies focus on the effect of some turbine placement strategies on the approaching wind speeds and the power generated (Stathopoulos et al, 2018, Stankovic et al, 2005). Some advances suggest that modifying the structure of the turbine itself by adding diffusors (Dilimulati et al, 2018, and Zhou et al, 2017), or using newly designed turbines may enhance their efficiency (Evans, Pete, 2018, and Krishan and Paraschivoiu, 2016). Although Stankovic et al (2005) and Stathopoulos et al (2018) show some impact of the architecture on the power retrieved from a turbine, these papers do not focus on specific architectural features, i.e. building shapes, rooftop configurations, presence of arcades or similar features. However, other studies investigated the effect of architecture on wind speeds. Examples are Tominaga et al (2015) and Ozmen et al (2016) who show the effects of roof slopes on the generation of urban wind energy. Further studies on architectural features and grouping elements from previous research and architectural features may be used to generate a systematic database of possibilities for urban wind energy. The building of such databases requires thoughtful reasoning and planning. The main difficulty in the application of AI to energy sector is the large number of variables to be studied (Shamshirband, 2019). This explains why some studies rather focussed on the mathematical aspects and the data processing of energy applications - see Hui et al (2019) and Fischetti and Fraccarone, (2019). 
However, some studies still pushed further the usage of their database by incorporating machine learning (Ti et al, 2020) and neural network processes. As Kareem (2020) states, there are many emerging techniques and advances in wind engineering using artificial intelligence (AI) and other computational applications. This opens new possibilities and a new research area in AI applications with significant results for meteorological (wind speeds and direction) and wind engineering applications. 
Examples of meteorological application studies that applied successfully AI, are Blanchard (2019) predicting the variation in wind velocities through a time-series AI network. Some other neural networks or deep machine learning programs used atmospheric data with applications to practical wind energy or wind engineering sectors. Similarly, other studies predicted the dominant wind speed and direction from past meteorological data implemented into neural networks with an accuracy ranging from 90 to 99% (Harbola et al, 2019, Stetco et al, 2019). An increase in these predictive values may be obtained through the use of back propagation ANN (Yiangshan et al, 2018). In the energy sector, again using meteorological data, Moreno et al, 2019, implemented a time-series AI and was able to increase the accuracy of the predicted energy output of a wind farm by 18.3%, compared to the previous methods. This increase in accuracy with the ANN compared to the existing methods has also been reported by Begam et al, 2019. Similarly, accurate results in predicting the daily wind turbine output was recorded by Demolli et al, 2019. This is in accordance with (Maldonado et al, 2019) recording around 180 literature reviews of the previous 5 years on using AI to forecasting wind speeds and energy. Clearly, artificial neural networks represent an advantage and reliable method to assess these variables 
Chen et al, 2018, on the other hand, simply optimized offshore wind farms through the aid of a deep machine learning and time-series network, by comparing different wind velocities for the given locations. A similar study was also conducted by Nielson et al, 2020, where the power generated by a wind farm was achieved with the aid of an AI time series. Artificial intelligence applications were successfully achieved recently, for applications in different wind engineering fields, as offshore wind turbine energy forecast (Lin et al, 2020, Zhao et al, 2019). Sun et al 2020 used AI to model the wake effect and yaw angles of wind turbines in offshore wind farms. Other sectors in wind engineering used AI for wind pressures. For instance, Bre et al, 2018 predicted wind pressure coefficients on building surfaces using neural networks with errors as low as 4%. Another study performed by Hu and Kwok, 2020, successfully predicted wind pressures around circular cylinders using gradient boosting regression trees, a machine learning technique. Tian et al, 2020, established a performant deep machine learning process which resulted in 99.93% to 99.64% success in predicting mean and peak loads. Still regarding the application of deep machine learning processes, Hu at al, 2020, validated the prediction of interface effects of tall buildings and wind pressures. Notably, this study used 30% of its dataset to establish the deep machine learning, allowing to reduce the cost of wind studies. Deep machine learning may even be applied on crosswind vibrations (Lin et al, 2021). With its high accuracy, this study offers a methodology for the development of further models for different applications in the wind engineering field. Other studies focussed on the usage of AI to predict the electrical demand of wind turbine and turbine blades (Naverrate et al, 2019 and Labati et al, 2018). Navarrette, et al, 2018 used expert systems to control the pitch of wind turbines. Ngarama et al, 2020 used a similar methodology, by taking the built database for modeling the indoor thermal comfort index and potential energy savings with artificial intelligence (AI), yielding some interesting results.
Looking at these successful recent studies using artificial intelligence, there might be a possibility to be able to predict the effect of wind behavior and optimize the turbine placement in urban environments to retrieve a higher power output through AI modeling. Moreover, these studies highlight some challenges as the importance of the data learning process for appropriate artificial intelligence (AI) applications and building a sufficient large and diverse database. In order to warrant the reliability of the database, studies to be included should address the main parameters affecting wind speeds in urban environments and their status, namely: urban and suburban terrains, hills, escarpments, valleys, city channeling, climate change, diurnal, seasonal cycles, rooftop slopes, building shapes, and turbine placement strategies. By studying closely each parameter and testing, a clear overview of their respective effect on wind speeds may be observed. Achieving an accurate database from experimental results is needed in order to compare modeling techniques and the artificial intelligence success rates. Other studies, such as Du et al (2017) suggest that computational fluid dynamics (CFD) may be used accurately for modeling pedestrian wind conditions. Comparing and assessing each modeling technique allows to improve building design and turbine placement strategies to generate maximum wind energy in urban environment. 
Modeling techniques
Successful AI techniques require an adequate and accurate database. In this study, the database consists of 157 cases obtained with the various combinations of terrain, topography, wind directions, building shapes and turbine locations from both literature review and wind tunnel testing. Some separate parameters were examined through wind tunnel testing, including terrain roughness, channeling, and building shapes. Figure 2 shows the atmospheric boundary layer wind tunnel of Concordia University where the experiments were carried out and the basic models used in the present study. Experimental data was measured by using the Cobra probe, an instrument of the Building Aerodynamics Laboratory of Concordia University calibrated frequently.
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Fig. 2. Building shape models (square, rectangular, T-shape, U-shape, L-shape) in the atmospheric boundary layer wind tunnel of Concordia University 

Wind Tunnel Testing
In this study, the database was started with the wind velocity modification from the upstream velocity due to terrain roughness. The ratio of the wind velocity V to the upstream velocity Vo at same height, defined as normalized upstream wind velocity, V/Vo, for urban and suburban terrain is derived from the Davenport classification (1960), but the specific terrain roughness will be found through the measured wind profile. All wind tunnel experiments were conducted under a suburban area terrain roughness, see Fig. 3, with an experimental mean speed exponent of approximately 0.20. The suburban to urban terrain roughness reduces the approaching wind speed by a factor between 0.84 to 0.91, as expected through the derivation of the wind speed profile. Experimental terrain category may be found by using the mean speed exponent from Eq. 2:

[image: ] 	                      		  					                     Eq. (2)

The roughness length, gradient height zg, and mean exponent speed coefficient [image: ][image: ] are given per terrain category, as shown in Table 1 (Davenport, 1960).

Table 1
Davenport terrain classification (Davenport, 1960)

	Terrain Category
	Terrain description
	Gradient height
(m)
	Roughness length
(m)
	Mean speed exponent
	Gust speed exponent


	1
	Open sea, ice, tundra, desert
	250
	0.001
	0.11
	0.07

	2
	Open country with low scrub or scattered trees
	300
	0.03
	0.15
	0.09

	3
	Suburban areas, small towns, well wooden areas
	400
	0.3
	0.25
	0.14

	4
	Numerous tall buildings, city centres, well developed industrial areas
	500
	3
	0.36
	0.2
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Fig. 3. Velocity and turbulence intensity profiles used in the present study

In addition to terrain roughness, channelling has been included in the database. Studying the effect of wind through a channel may allow to predict wind speed increase in some city configurations or in cases of building integrated turbines. To increase the reliability of the database, wind tunnel testing is used for different wind directions and turbine locations on several building shapes (square, rectangular, T-shaped, U-shaped, L-shaped) as shown in Fig. 2. For comparison purposes, the building height of these building shapes was set at 20 m, which corresponds to 20 cm, for a geometric scale of 1:100. This scale was chosen as it “ensures the similarity of the experimental conditions (e.g. turbulence integral scales, wind power spectra, Jensen numbers etc.) with those in the field” (Alrawashdeh and Stathopoulos, 2020). Moreover, it allows appropriate model height to physically test in the atmospheric boundary layer wind tunnel at Concordia University. The rest of the building model dimensions were chosen on a basis of a width of 6 cm, which was then doubled in one direction of the rectangular shape, T-shape, U-shape, and L-shape. These length-to-width ratios were chosen, but implemented in the ANN in terms of dimensions, allowing thus to fill in the database with additional ratios if further studies are conducted in the future, or for testing the system. Additionally, the ratios used in the study represent architectural façade width-to-height ratios slightly above 1:3, which is what more than 15% of city buildings show (USGBC, 2020). The floor plan corresponds in footage of a regular residential building with a few storeys, i.e. typical of a small city building. Building models were rotated from 0o to 90o by increments of 15o along their axis of symmetry for square, rectangular, and T-shaped buildings to simulate different wind directions. The U-shaped and L-shaped buildings were rotated further to 135o, also by increments of 15o, to ensure a full capture along their axis of symmetry. The turbine sizes considered in this paper were small due to the limited space in urban environments. Apart from building shapes, city configurations were tested, as shown in Fig. 4. The first city configuration (Fig. 4a) groups buildings with similar heights. The designed experiment aims to determine the shape of the newly implemented building resulting in the best power output. The subsequent city configuration is increasingly complex. It is attempted to determine the best location of turbine placement on a real-case study (Fig. 4b). Results from Figs. 4a and 4b city configurations were not included in the database but were rather used as testing inputs for the validation of AI techniques. All wind tunnel experiments include the parametric conditions for terrain roughness, channeling, and building shapes. The output result from the wind tunnel is the ratio of the measured velocity V at the measurement point to the upstream velocity Vo at the same height z. This will be referred as the normalized wind speed, V/Vo. Moreover, the turbulence intensity has also been measured, but it has not been used through this phase of AI modeling due to software constraints. The testing set included conditions from wind tunnel tests of city configuration from Fig. 4a and Fig. 4b. These sets and parametric conditions will be further detailed in the modeling techniques methodology.
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Fig. 4. City configuration with building newly implemented (a), and buildings in Boul. René-Lévesque, Montréal (b) in the atmospheric boundary layer wind tunnel of Concordia University (scale 1:100)




Artificial intelligence (AI)
As the database obtained through literature review and wind tunnel testing consists of 157 cases, both an expert system and an artificial neural network (ANN) were programmed and tested with the testing set. Results obtained from the software were compared to the values obtained through wind tunnel experimentation. 


[image: ][image: ][image: ][image: ] Fig. 5. Expert system (a) and artificial neural network (b) architectures (modified after Bre et al, 2018)
DATABASE
Input variable xk
Terrain = {urban, suburban}
Valley = {yes, no}
Wind direction = {angle}
Shape = {square, rectangular, …}
Height = {dimension}
Point = {middle, wake, entrance, side, rooftop}
fitting rule
Ouput yn
(n)

DATABASE
Input variable xk


Terrain = {}
Channeling = {1, 0}
Wind direction = {}
Shape = {L}
Obstruction = {1,0}
Point = {x1, x2, z}

Ouput fn


The expert system was configured using Microsoft Expert 2.0 application. Expert systems allow to retrieve correlations between several input characteristics. Fig. 5 shows the linear architecture of expert systems. Each experimental case consists of a rule, defined by input conditions and a fitting output, leading to a set of equations of n rules, as defined below (Bohlouli et al, 2017):	               

   								                     Eq. (3)

where ak is the coefficient of the variable in the given equation, x is the input variable, and y is the output variable for n rules. 
The set of n rules will be treated all at once and each output yn varies with respect to all input variables akxk for rule n. Recall that channeling is studied in this paper through Tunnel Louis-Hippolyte Lafontaine: if valleys correspond to the requirements of channeling, then its effect on wind velocities will be considered. As shown in Fig. 5, the input parameters x are terrain roughness {urban, suburban}, valley {yes, no}, wind direction {angle [image: ][image: ]}, shape {building shape: square, rectangular...}, height {building height: dimension}, point {location of the measurement: middle, wake, entrance, side, rooftop}. In this study, the output yn is the normalized upstream wind velocity at a given height, V/Vo. All rules are stored into the knowledge base system. The interface is used with the testing set, which is different and not included in the input database and given conditions and retrieves, from the closest rule, the normalized wind speed. 
Mathematically, an expert system follows the structure of a linear set of n equations, specifically rules in this case. Expert systems are thus reliable for modeling and predicting systems that may be described as linear systems of equations. In this paper, the expert system models urban wind as a function of wind direction, measurement position, building shapes and channeling effect, where its linearity is uncertain. Urban wind flow conditions cannot associate defined input variables with a weight ak to yield in a normalized wind speed V/Vo, unless the input variables and wind speeds are numerically very close. Thus, the quality of the database has a large influence on each rule in the expert system. To evaluate the reliability and accuracy of the expert system, experimental results will be compared to results obtained from the expert system using input conditions from the testing set. Artificial neural networks (ANN) architecture differs from the architecture of the expert system, as shown in Fig. 5, and solves from the output as per Eq. 4, only for two layers:

[image: ][image: ]            						         Eq. (4)

where wi is the weight given to the input variable by the software for the hidden layer k, xi is the input variable, b is the bias, and fn is the output function.
In the present study, the feedforward artificial neural network is used, as the other types of neural network (time-series, autoregression) are less suited for modeling wind velocities with the current data. Other meteorological studies used the feedforward artificial neural network for determining pressure coefficients or meteorological data and yielded in accurate predictive values (Blanchard et al, 2019, Bre et al, 2018). 
The programmed artificial neural network solves the equations by attributing different weights to different input variables. By examining Eq. 4, it may be observed that the function of the output fn comes from the multiplication of many input variables x. Potentially, the output fn may be described as an exponential function of variables x, namely, a set of non-linear equations. The input 157 cases are resorted and rearranged in 20 hidden layers, which allow the software to arrange the data and interpolate among them accordingly. Therefore, links among each information item are drawn, allowing to make correlations among all cases. As ANN may solve a set of non-linear equations, ANN showed encouraging results for predicting some wind speeds using previously recorded data (Blanchard, 2018). The software may be trained with the literature data and about 70% of the experimental results from the input data matrix obtained through wind tunnel testing, allowing to improve the correlations between cases. Thus, ANN performance improves as the software is trained. In the present study, ANN is developed through the MATLAB NNtool, which allows to compute neural networks. The input parameters had to be modified from the expert system, as ANN only include numerical values. Parameters of the input set were modified from their forms included in the expert system, as shown in Fig. 5: terrain {[image: ][image: ] from Eq. 2}, channeling {1,0}, wind direction {angle [image: ][image: ]}, shape {characteristic length}, obstruction {1,0}, measurement points {x1, x2, z}. Characteristic length is given by the volume of the building divided by the surface area. The obstruction is a parameter added when a building is placed in front of the other building studied. The testing and output (V/Vo) sets remained the same as for the expert system for comparison purposes. As previously discussed, input variables studied resulting in a normalized velocity V/Vo may not possibly be defined with a linear set of equations. Therefore, testing a model which allows to solve sets of non-linear equations may yield in better accuracy. A similar conclusion was obtained by Barhmi et al, 2019. Predicted hourly wind speed results were very accurate for the ANN, which is attributed to a better modeling for non-linear phenomena. To assess the accuracy and reliability of the ANN and compare it to the expert system, the same testing input set has been used.
Experimental results and discussion
The database consists of experimental normalized wind velocities V/Vo for several parameters affecting wind velocities in the urban environment. Channeling, building geometry and city configurations may further modify the approaching wind velocity Vo compared to the measured velocity V. Appropriate usage of the other parameters modifying wind velocities may help overcoming the reduction of wind speeds in urban environments. This section discusses wind tunnel testing results under the experimental terrain roughness for channeling effect, building shapes and its effects.
Channeling effect
Channeling effect is defined as the observed acceleration of the flow in a channel. Gandemer et al, 1987 proposed requirements for the channeling effect to occur, see Fig. 6. For channeling effect to be observed, the building height must be at least 6 m, the opening length in the channel shall be less or equal to 5% of the length of the channel, the width of the channel less than 2 times the building height. 
[image: ]
Fig. 6: Channelling requirements (modified after Gandemer and Guyot, 1976) 


In this study, channeling effect has been examined in wind tunnel testing of the experimental setup of the above ground section of the Montreal tunnel Louis Hippolyte Lafontaine, shown in Fig. 7. Only a section of the tunnel is modeled and the approaching wind flow into the channel, for a distance of 127 cm (geometric scale of 1:100) is shown. Since only the above ground section is considered, the distant end of the channel is closed. Thus, an open-closed end channel flow condition is observed but similar results in normalized wind velocities have been observed for open-open end channels, as will be further discussed. 
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Fig. 7: Louis Hippolyte Lafontaine Tunnel model in the wind tunnel

Measurements were taken at the entrance (point a, Figs. 7 and 8), mid-point (point b Figs. 7 and 8) and wake (point c Figs. 7 and 8) of the channel. Number and emplacement of the measurements are taken to ensure further validation and comparison through with literature. Channeling of flow with an open-end or a closed-end tend to be maximized at the mid-point of the channel. Wind direction of 15 degrees yields in significant higher wind velocities. By checking the normalized wind speed with the initial velocities in Fig. 8, it is concluded that channeling increases the approaching wind velocities by a maximum factor of approximately 1.1. 
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Fig. 8. Normalized wind speeds per wind direction at the entrance, middle, and wake of the channel taken at a height of 2.5 cm above the channel floor

However, the maximum normalized wind speed recorded by Stathopoulos et al (1986) was V/Vo=1.4 with a square building. Recent literature reviews showed that amplification factors due to channeling effects are difficult to adequately quantify. Blocken et al, 2008, shows values of V/Vo up to approximatively 1.6 while studying the airflow passages between perpendicular buildings. Moreover, as for Blocken el al, 2008, the maximum wind velocities are observed at the wake position of the channel. Although these studies considered different channel geometrical measurements, both experimental results seem to agree on the significant increase in wind velocities due to channeling effect. Higher normalized wind velocities were found near the building edges at the ground level. Similar conclusions were reported by Huang et al, 2020, while studying the effect of high-rise buildings on pedestrian wind and urban street canyons. The recorded velocities tend to increase in a channel, but this increase depends on the wind direction, the upstream terrain, flow conditions and the geometrical measurements (Huang et al, 2015). In light of several literature results on channeling effects, the normalized wind velocity obtained in this paper is more conservative than other values obtained in the literature due to the channel geometry. 
Building shapes
Differences in building cross-sectional shapes at constant height and wind direction influence power generated by a turbine. Figure 9 presents wind tunnel velocity ratios for turbine locations at the building side (point d) and on the rooftop (point e) for square and rectangular building shapes and several wind directions [image: ]. Rooftop measurement is taken at the center point of the roof; the building side at 2.5 cm away from the corner of the building to account for the turbine size and noise effect. According to Stankovic et al (2009), small to average size turbine at street level varies from 1.5m to 2m in diameter, to that must be added clearance, thus in the defined geometric scale 1:100, the distance between the building and the turbine is set at 2.5 cm. Square and rectangular building shapes have higher normalized wind speeds V/Vo for turbines located near the building side, followed by rooftop turbines. Square buildings tend to show higher normalized wind speeds for the same turbine location compared to rectangular buildings. 
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Fig. 9. Normalized wind speeds per wind direction for square (a) and rectangular (b) building shapes, shown in plan views and facades


Similar to Fig. 9, Fig. 10 depicts normalized wind velocities V/Vo as a function of wind direction [image: ][image: ][image: ] for U-shaped, T-shaped, and L-shaped buildings having a turbine on the rooftop and at the building side. Results in Fig. 10 show similar patterns as those retrieved from Fig. 9, as the building side location (point d in Fig. 10) yield in higher normalized wind speeds. 
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Fig. 10. Normalized wind speeds for U-shape (a), T-shape (b), and L-shaped (c) building, shown in plan views and facades
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Interestingly, CFD literature and wind tunnel results for rectangular, U-shaped and L-shaped buildings show similarities for the wind direction yielding in maximum wind speeds at the pedestrian level. Du et al (2017) used steady Reynolds Averaged Navier-Stokes (RANS) simulations and reported highest wind speeds for rectangular building shape for a wind direction of 45 degrees, for U-shape building at 45 degrees, and for L-shape building at either 0 or 45 degrees. Wind tunnel results, shown in Fig. 9 for the rectangular shape and Fig. 10 for U-shaped and L-shaped buildings, demonstrate the highest wind speeds for a turbine located on a building side. The CFD simulations, similar to the wind tunnel testing, did not consider any stability effects. The results show that CFD may be used for assessing a turbine power capture at street level in an urban environment. However, full-scale and CFD comparisons should be made to ensure the reliability of CFD in assessing urban wind power. 
To better assess and compare the normalized wind velocities obtained for the different building shapes and the turbine locations retrieved from Figs. 9 and 10, Table 2 has been developed. Table 2a shows normalized wind velocities V/Vo at building side, measurement point d for all building shapes at various wind directions. Table 2b shows similar results for rooftops, measurement point e. Please note that turbulence intensities are not discussed, as they have not been implemented into the AI systems.
Results show that the square building shape yields higher normalized wind speeds for turbines located on building sides for wind directions between 0o and 30o. Furthermore, most of the other building shapes yield in normalized velocities higher than 1.2. It has to be noted that the L-shape building shapes also show high values of normalized wind velocities for 60o wind direction (V/Vo=1.48). The same can be stated for the rectangular building shape, where high values of normalized wind velocities are obtained for wind direction  at 0o (V/Vo=1.36), and 15o (V/Vo=1.31), and for the U-shape, for wind directions at 0o (V/Vo=1.32), and 15o (V/Vo=1.35).
For turbines located on the roof, Table 2b shows that the square building shape has the highest normalized wind velocity (V/Vo=1.20) for wind direction 0o. The square building shape yields normalized velocities V/Vo ranging from 1.06 to 1.20. The T-shaped, U-shaped, and L-shaped buildings show lower (V/Vo below 1.12) normalized wind velocities for all wind directions. 
For the roof, a comparison may be carried out considering the experimental results in this paper and those from Roy et al, 2012 obtained by CFD analysis through ANSYS Fluent 13.0.0 solving of RANS 3D models on a flat square roof. For both CFD simulations and the wind tunnel testing, atmospheric stability effects were neglected. Indeed, the CFD results obtained for wind directions of 0o, 15o, 30o, and 45o show the highest velocity for 15o, and then for 0o, 30o and 45o. These results match the order of the highest to lowest normalized wind velocities from Table 2b for square buildings. Regarding the other building shapes, very few studies examine the effect of buildings shapes on roof-mounted wind turbines through CFD analysis. 
[image: ]Table 2: Normalized wind velocities V/Vo for the square, rectangular. T-shape, U-shape, and L-shape for the wind directions  0o to 90o (increments of 15o)
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(a) Point measurement d (turbine on building side)
	 Wind direction 
	V/Vo
	
	
	
	

	
	Square
	Rectangular
	T-shape
	U-shape
	L-shape

	0
	1.52
	1.36
	1.15
	1.32
	1.17

	15
	1.58
	1.31
	1.08
	1.35
	1.24

	30
	1.31
	
	1.15
	1.26
	1.31

	45
	1.34
	1.28
	1.28
	1.30
	1.38

	60
	1.19
	1.18
	1.28
	1.27
	1.48

	75
	1.12
	1.17
	1.28
	1.14
	1.35

	90
	0.85
	1.21
	1.29
	1.17
	1.44
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(b) Point measurement e (rooftop turbine)
	 Wind direction 
	V/Vo
	
	
	
	

	
	Square
	Rectangular
	T-shape
	U-shape
	L-shape

	0
	1.20
	1.06
	1.10
	1.09
	1.02

	15
	1.16
	1.10
	1.10
	1.08
	1.03

	30
	1.15
	1.10
	1.10
	1.09
	1.05

	45
	1.13
	1.10
	1.10
	1.10
	1.11

	60
	1.14
	1.00
	1.00
	1.06
	1.08

	75
	1.06
	1.11
	1.10
	1.05
	1.09

	90
	1.12
	1.12
	1.12
	1.01
	1.09


To further verify and testify the reliability of the abovementioned data set and its analysis, especially for rooftop measurements, another experiment has been carried out. To check the sensitivity of the obtained velocity recordings, for different measurement points, a sample series of 25 concentrated data points on the rooftop (see Fig. 11) of a rectangular building shape for 0o wind direction was conducted. It was found that velocity measurements are quite sensitive to the measurement locations. For the measured experimental wind velocity, point measurements with a distance of 0.5 cm along a direction are subjected to differences in velocity measurements of 1 m/s. Fig. 12 shows a mapping of obtained normalized wind velocities for all data points tested. The obtained mapping geometry of the normalized wind velocity mapping tends to show a symmetrical behavior. Results show that wind velocities differing by 0.35 m/s, in some cases lead to reduction of wind speeds (V/Vo = 0.89), whereas in other cases yield in an increase of wind speeds (V/Vo = 1.24), depending on the location of the probe. Comparing with the normalized wind velocity for the rooftop wind turbine obtained from Fig. 9b, it shows that a peak is obtained from the first row of the roof taps to the mid-width of the roof. Thus, selection of an appropriate rooftop turbine location may increase power significantly. 




[image: ][image: ]Fig. 11. Testing points on the roof at a 4 cm height above the roof for rectangular building shape at 0o wind direction (geometric scale of 1:100)
[image: ]











Fig. 12. Contours of normalized wind velocities V/Vo at 4cm height above the roof for rectangular building shape at 0o wind direction (geometric scale of 1:100)

Given the significant variation of wind velocities depending on the location of the rooftop turbine, it is of interest to attempt to identify a certain relationship between the building shape and the power generated from a wind turbine, for different wind directions. Highest normalized wind speeds for these building shapes are obtained when the edges and corners of the buildings are parallel to the wind direction when tested for building sides. These increased normalized wind speeds are due to the flow acceleration caused by flow separation, occurring especially at the street level, for the building sides. As expected, there is no linear correlation of the normalized wind velocity with either wind direction or building shape. This suggests that the relationship between the tested parameters (building shape, wind direction, turbine location) to the normalized velocities is highly non-linear, therefore suitable to be handled by AI approaches. 

AI and CFD results and discussion
From the previous section, with the different combinations of terrain roughness, wind direction, building shape, presence of channeling, and turbine location, city configurations, 157 different cases and their corresponding normalized wind velocities were retrieved. The 157 cases from wind tunnel testing presented in section 3 were used as input in a database, for AI software computing. Prior to programming development, a decisional flow chart has been developed, in order to obtain a better understanding of the mechanics and results expected from the AI tools. In the case of ANN, the system was trained up to the point that the root-mean-square value of the error stopped decreasing, leading to an accuracy of about 0.98, retrieved from the MATLAB coding. This indicates the accuracy of the ANN from the data of the database. The AI tools (expert system and ANN), as well as the present approach were elaborated and further tested for normalized velocities of various points in city configurations. Normalized velocities V/Vo for the testing set, consisting of various turbine locations in city configurations from Fig. 4a and Fig. 4b, were considered through AI modeling and compared to the experimental values obtained in section 3.3. Tested turbine locations were either at the street level or in the form of rooftop-mounted wind turbines, as these data yield higher experimental wind velocities.

Testing set - City configurations
Although interesting observations have been made for individual building shapes, more complex and realistic situations (city configurations) were examined. First, a city block with buildings of similar height (Fig. 4a), then followed by the René-Lévesque Boulevard complex in downtown Montreal (Fig. 4b). City configuration results from Fig. 4a and Fig. 4b were used for testing and checking the accuracy of AI models. Results for city configurations with similar building shapes, show that rooftop locations were preferred to be as high as possible with less obstructions by surrounding buildings. Figure 13 shows the experimental results obtained for the city configurations to be used as a testing set, which are not part of the previously discussed database, to assess the reliability of the AI systems. In other words, the testing set was completely separate from the training set used for the AI systems. In particular, Fig. 13a shows the results for each building shape and location tested with the new building implemented. For comparison purposes, city configuration and René-Lévesque street are both tested for Montreal’s critical wind direction. As shown in the compass of Fig. 13, Montreal’s critical wind direction is south-west (SW). Recalling the wind tunnel testing section, wind directions  are taken in reference to the building’s axis of symmetry. Thus, taking the angle between the buildings’ axis of symmetry in René-Lévesque and the location of Montréal’s critical wind direction, the wind direction =15o. For the city cluster presented in Fig. 13a, highest normalized velocities are achieved by the same building shapes as in isolated building shapes tested - see section 3.2. Building sides yield in higher normalized wind velocities than roof mounted wind turbines. Square building shapes showed the highest normalized wind velocities compared to the rectangular and L-shaped buildings for the same turbine location. Fig. 13b shows the experimental results for the René-Lévesque street complex in Montreal. Points af and aj were positioned to observe the effect of channeling on normalized wind velocities in a complex city configuration. As in first series of experiments from section 3.1, the normalized wind velocities obtained at the mid-point (aj) of the channel was significantly higher than at the entrance (af). Thus, city configuration results expose some similarities with observations from section 3.1 and 3.2. These similarities of results from separately taken parameters modifying wind speeds for more complex city configurations suggest the possibility of accurate modeling through AI by using the elaborated experimental database.
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Fig. 13: City cluster (a) and René-Lévesque street (b) results in terms of velocity ratios for the testing set

Decisional Flow Chart
All parameters affecting wind speeds as previously discussed, were included in a decisional flow chart, which served as an aid to understand and quickly assess the effect of the input parameters on the normalized wind velocities; as well, this was useful for synthesizing the information to guide the programming of the AI systems. In an attempt to summarize the main guidelines for optimizing wind turbine power production, the flow chart provides an estimated difference in wind speed compared to the upstream velocity. 
Through literature review and wind tunnel testing, best conditions for maximizing urban wind energy include the following elements. Channeling shall be used within the city configuration or in building design to increase wind speeds. Wind directions between 15 and 45 degrees result in higher normalized wind velocities compared to the other wind directions, thus leading to a higher turbine power generation. The appropriate usage of topography, placing the turbine on top of a hill or escarpment or at the midpoint of a valley, yields in favorable conditions and speed-up wind speeds. Regarding the location of the turbine, preferring square, rectangular and L-shaped buildings to T-shaped or U-shaped buildings enhances turbine power capture. 
Using these conditions, the developed decisional flow chart is shown in Fig 14. The flow chart starts with the airport upstream velocity, Vo, at height z. First, wind speed is modified due to terrain roughness, qualified as per Davenport classification (0.84 < V/Vo < 0.91 for urban and suburban terrain – see Table 1). Second, wind speed may be modified (with the conservative V/Vo [image: ][image: ] 1.1) in urban environment if the location of the turbine might be in a channel. Criteria for channeling include openings less than 5% of the length of the channel; height of the surrounding buildings higher than 6m; and channel width smaller than twice the length of the channel, see Fig. 6. Third, if the building is placed on a hill or escarpment (slope larger than 1:10), wind speeds are augmented, as per Fig. 1. If the building is placed on a valley, the benefit of channeling effect will be taken into account. If the wind blows in one main critical wind direction (significantly high probability of wind coming from one wind direction compared to the other wind directions), horizontal axis wind turbines (HAWT) may be chosen. If not, vertical axis wind turbines (VAWT) are preferred. Choosing a square, rectangular or L-shaped building is preferred for any turbine placement, see Table 2 for the value of the normalized wind velocity depending on the turbine position and wind direction. To assess the accuracy of the results obtained by considering the proposed decisional flow chart, the example of the square building shape, in city configuration of Fig. 4a is chosen. As the building is on an urban terrain, V/Vo = 0.84, no channelling is present, V/Vo = 1.0, placed in Montreal with wind not blowing in one main wind direction, a VAWT will be placed near a square building shape, near the ground V/Vo = 1.58 (see Table 2a, square building shape at Montreal critical wind direction 15o). To get the total normalized wind velocity, each normalized wind velocity from the parameters of the flow chart (urban terrain: 0.84, no channeling: 1.1, square building shape at street level: 1.58) is multiplied, leading to 1.46, whereas experimental results show a value of 1.58. For the square building rooftop, V/Vo equals 1.07 (urban terrain: 0.84, channeling: 1.1, square building shape at rooftop: 1.16), whereas the experimental results yield in 1.21. 
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Notes
(1) Vo is the airport wind velocity at height z (approaching wind velocity)
(2) Refer to Table 1 (Davenport, 1960)
(3) V is the measured wind velocity at height z 
(4) Refer to Fig. 6 for variables
(5) Refer to Fig. 1 for variables
(6) Refer to Table 2 for V/Vo
Fig. 14: Decisional flow chart approach
0.85
1.58
1.1
3.23
(6)
(1) (3)
(1) (3)
(1) (3)
(4)                      
(4)                      
(4)                      Valley (Channeling)
(5)              Hills and escarpments
(1) (3)
(4)
(4)
(1) (3)
(4)            Channeling in urban configurations
(1) (3)         Urban and suburban terrain
(1) (3)
(1) 
Variables
Vo: upstream velocity (airport velocity at given height)
: mean speed exponent (Table 1)
V: measured velocity
L: length of the channel
h: height of the channel sides
l: length in the x-direction of the hill or escarpment
H: height of the hill or escarpment above ground





AI approach evaluation
Expert systems and ANN were tested for normalized velocities V/Vo obtained in city configurations shown in Fig. 4a and Fig. 4b for turbine locations either at the street level or at the building rooftop. The experimental normalized velocities for each tested point and the normalized velocity obtained through the Expert system and the ANN are compared. The obtained normalized wind velocities are obtained through the computation of the input parameters. These include the terrain roughness, the presence of channelling, wind direction, the building shape and the turbine location, as presented in section 2. In the Expert system, the input parameters were treated qualitatively whereas in the ANN, the input parameters had to be included in a numerical form: recall Fig. 4a and Fig. 4b for the detailed input parameter form.
Experimental normalized wind velocities and corresponding values obtained through the decisional flow chart, expert system and ANN computation are presented in Table 3. The last three columns of Table 3 indicate the success rate of each of the methodologies, compared with the experimental results. The present discussion focusses on the comparison of the expert system and ANN results and accuracy, followed by the flow chart approach results and success rates evaluation. For city configuration a from Table 3, the normalized velocities V/Vo range from 1.33 to 1.07 for the expert system whereas the ANN retrieved V/Vo between 1.55 to 1.12. Experimental values V/Vo varied between 1.58 to 1.12. For real case study, René-Lévesque street in Montreal, the expert system had normalized wind velocities between 0.76 to 1.29, whereas the ANN obtained values ranging between 0.40 to 1.81. Table 3 shows the results obtained from the expert system, ANN, and the values obtained from wind tunnel testing for the different measured points and compares their success rates.
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Table 3
Assessment and comparison of turbine locations in a new building implementation in a city configuration (testing set): experimental results, flow chart, expert system and ANN

	
	Point
	V/Vo
	Success Rate

	
	
	Flow Chart
	EXPERT
	ANN
	Experimental
	Flow Chart
	EXPERT
	ANN

	
	15 degrees – city (a)

	Square
	d-
	1.46
	1.33
	1.55
	1.58
	92.4%
	84.2%
	98.1%

	Square
	e-
	1.07
	1.16
	1.19
	1.21
	88.4%
	95.8%
	98.1%

	Rectangle
	d-
	1.21
	1.31
	1.33
	1.25
	96.8%
	95.4%
	93.8%

	Rectangle
	e-
	1.01
	1.10
	1.12
	1.12
	90.2%
	98.2%
	99.7%

	L-shape
	d-
	1.15
	1.09
	1.19
	1.17
	98.2%
	93.1%
	98.2%

	L-shape
	e-
	0.95
	1.07
	1.14
	1.13
	84.1%
	94.7%
	99.4%

	
	
	
	
	
	
	
	
	

	
	15 degrees - René-Lévesque – city (b)

	
	ae
	1.30
	1.29
	1.52
	1.40
	92.8%
	92.1%
	92.1%

	
	af
	0.92
	0.82
	0.55
	0.59
	54.1%
	71.9%
	93.2%

	
	ag
	1.26
	1.29
	1.81
	1.51
	83.4%
	85.4%
	83.4%

	
	ah
	1.10
	0.76
	0.40
	0.52
	47.2%
	68.4%
	76.9%

	
	ai
	1.33
	1.20
	1.45
	1.40
	95.0%
	92.1%
	96.6%

	
	aj
	0.92
	0.82
	0.81
	0.83
	90.2%
	98.8%
	97.6%




The expert system shows a predictive value for the testing set above 84%. ANN predicted values with a success rate between 93.8% and 99.7% for the testing set for the city configuration presented in Fig. 4a. Success rates are lower for city configuration presented in Fig. 4b. The expert system succeeded in above 68% accuracy whereas the ANN was above 76.9%. Results of wind tunnel, Expert system, and ANN are summarized in Table 3 for each testing point. Comparison between wind tunnel testing and ANN are, in most cases, more successful than with the expert system.
From the testing input and comparing the wind tunnel results on wind velocities, it is noted that the accuracy of the ANN seems to be slightly higher than that of the expert system. As the expert system is performant for qualitative rather than quantitative applications, accuracy on the initial velocity speed-up factor is definitely higher with ANN. Expert system may be reliable in checking the validity of the ANN for conditions for which the ANN has not been trained, or in the case of design applications where building and environmental parameters must be assessed in a qualitative manner. ANN and expert systems may be of great use for urban wind energy in deciding the location of the turbine implementation or in designing new buildings integrating wind energy. Table 3 shows that modeling techniques loose accuracy with increasingly complex models. This is probably due to the increasingly complex flow structure in urban environments, making it the major obstacle in modeling techniques for urban environmental studies. It should be noted that even in results for Fig. 4b, as a preliminary analysis, the ANN seems to have more accurate results than for the Expert System.
Using the flow chart, V/Vo for city configuration a range from 0.95 to 1.33, with a success rate from 84% to 98%, as reported in Table 3. For a more complex city configuration b (Boul. René-Lévesque), the present study results for normalized wind speeds range from 0.92 to 1.33 with a success rate between 47% and 95%. By looking at the accuracy obtained in this paper, the most important parameters were included; as Zhao et al, 2019 reported, any missing parameter would lead to a smaller accuracy. 
In light of these success rates, the proposed approach shows less accuracy for increasingly complex city configurations. However, comparing the results from Table 3 for the different models tested the decisional flow chart is the easiest and most expeditious tool to be used, as it does not require any programming. Therefore, the proposed approach may be used as a guideline for a preliminary assessment of wind power production and velocity modifications due to topographic and architectural parameters. 
Concluding remarks
Urban wind energy may be greatly advanced with artificial intelligence tools, such as expert systems and ANN developed adequately to check a set of data and guide the designers towards best designed buildings and building arrangements to increase power production from environmentally trendy sources. Recalling Eq. (1) that the energy is directly related to the wind velocity cubed, a higher normalized wind velocity would produce a very significant increase in the wind energy. Locations showing the highest normalized wind velocities are the best suited for turbine placements. A database of numerous cases of different normalized wind velocities due to channeling for many wind directions, different building shapes, and various turbine locations has been developed through wind tunnel testing and literature results. As the database focus on the aerodynamics aspects, and data are given in normalized form, results may be adapted to multiple wind climates. Thus, the database can be used for any city for which the wind environment is available in terms of probability of occurrences of wind speeds and directions. A total of 157 cases were recorded, along with an additional testing set. A decisional flow chart and AI tools (expert system, ANN) were built with the database and tested for some city configurations. Results were further validated using results from literature, wind tunnel experiments and limited CFD.
Expert systems and ANN are useful tools in assessing the impact of the power generated from a turbine in an urban environment. Especially the ANN can predict well the modification of approaching wind speeds. The expert system may advise the designers’ choice for a sustainable building. In both systems, output results loose accuracy for more complex city configurations. Therefore, with increasing complexity, ANN and expert systems may only be used as a first approximation for assessing the wind speed modifications. 
In conclusion, a novel approach was developed based on the knowledge drawn from literature results and wind tunnel testing. This is a successful attempt to decision making for a better exploitation of increased wind speeds and power production if urban wind energy is to be implemented. This approach was used with the testing set and produced appropriate results for a preliminary assessment of the change in upstream velocity in urban environment. 
Limitations of the present database and AI modeling are directly related to the size of the database and the complexity of the flow to be modeled. The quality of the database could be enhanced by incorporating additional roof and architectural parameters in order to extend it and also use it for more complex city configurations. Therefore, the conclusions obtained by studying this database are limited by the number and complexity of the parameters studied. Further studies on AI modeling in wind engineering are definitely needed.
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