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ABSTRACT

Computer Vision Based Automated Monitoring and Analysis of Excavation

Productivity on Construction Sites
Chen Chen, Ph.D.

Concordia University, 2021

Construction equipment is the main component of construction production, and the
equipment costs are usually one of the constructor’s biggest expenditures. The productivity
of construction equipment plays an important role in completing construction projects
within schedule and under budget. Therefore, effectively monitoring equipment
productivity is critical to improve construction productivity and control the cost. In order
to monitor the productivity of the equipment, numerous research works are focusing on
monitoring the operation process of the equipment. Through the continuous monitoring of
equipment operations, detailed information about the productivity and performance
indicators, such as activities, 1dling time, and work cycles can be estimated. In recent years,
different information technologies, such as machine learning and Real-time Location
Systems (RTLS), have been used for equipment productivity monitoring. Based on the type
of the data collected, technologies can be categorized into computer vision (CV)-based
methods and sensor-based methods. The CV-based methods collect equipment operation
data from site surveillance cameras as videos or images. Sensor-based methods install
sensors and/or tags (such as Radio Frequency Identification (RFID), Global Positioning
System (GPS), Ultra-wideband (UWB), Inertial Measurement Unit (IMU), etc.) on the
equipment and the construction site to collect the position and pose information of the
equipment. Accordingly, the work states and activities of the equipment are identified by
analyzing the data collected from cameras or sensors. The location and trajectory data
collected from the sensors can be used to directly estimate the activity of the equipment.
Finally, based on the activity information, the productivity of the equipment can be
estimated in the form of equipment operation time or soil quantity. However, the previous
studies did not consider the activity recognition and productivity analysis of multiple

excavators. Moreover, the reasons that cause equipment low productivity, such as idling
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reasons, have not been considered in previous CV methods. Furthermore, the sensor-based
methods can be expensive and impractical to use for the large fleet of construction
equipment. Compared with the sensor-based methods, CV-based methods are growing and

becoming more efficient.

This research aims to monitor the productivity of the excavator using a CV-based method
and has the following objectives: (1) Comparing the CV-based and sensor-based methods
of earthmoving equipment productivity monitoring to identify the advantages and
limitations of each approach, and proposing a roadmap for the future work directions of
automated equipment productivity monitoring; (2) Developing an end-to-end CV-based
method for automatically recognizing activities of multiple excavators; (3) Developing a
framework to analyze the productivity of the excavator based on the activity recognition
results; and (4) Improving the earthmoving productivity by identifying the idling reasons

of excavators and trucks.

A systematic literature review is conducted to cover the recent studies in the area of activity
recognition and to compare the CV-based methods with the sensor-based methods for
earthmoving equipment productivity monitoring. Then, a roadmap is proposed to suggest
future research directions for automatic equipment productivity monitoring. Accordingly,
a framework that integrates three Convolutional Neural Networks (CNNs) 1s proposed for
automatic detection, tracking, activity recognition and productivity analysis of excavators.
The proposed framework has been tested with the videos recorded from real construction
sites. The overall activity recognition has achieved 87.6% accuracy. The productivity
calculation has achieved 83% accuracy, which indicates the feasibility of the proposed
framework for automating the monitoring of excavator’s productivity. Furthermore,
knowing that idling is one of the main reasons for low productivity, a CV-based method
was proposed to identify the idling reasons in earthmoving operations by analyzing the
workgroup and interactive work states of the excavators and trucks. In this method, the
activities of the excavators and trucks were 1dentified using CNNs. Then, the onsite camera
was calibrated to estimate the proximity and identify workgroups of excavators and trucks.
By calculating the relationships between each excavator and the surrounding truck(s), the
potential reason for 1dling can be identified. The proposed method has been validated with

videos from several construction sites showing promising results.
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The contributions of the research are: (1) Proposing a roadmap to show the future research
directions of automatic equipment productivity monitoring; (2) Proposing a CV-based
method to recognize the activities of multiple excavators with the state-of-the-art three
dimensional (3D) CNN: (3) Proposing a framework that integrates the detection, tracking,
and activity recognition techniques to monitor the operation process and analyze the
productivity of the excavator; and (4) Developing a method to automatically identify the
1dling reasons of excavators and trucks based on their interactive work states, which
contributes to a better understanding of earthmoving productivity under the dynamic and

complex construction site conditions.
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CHAPTER 1: INTRODUCTION

1.1 General Background

Construction is one of the major industries in Canada, which has more than 1.2 million employees
and contributes about 6% of Canada’s Gross Domestic Product (GDP) (Statistic Canada 2011).
However, it 1s considered as a low productivity industry compared with other industries. As shown
in Figure 1-1, Quebec's overall industrial productivity (solid line) has been growing from 1982 to
2017 with a growth of more than 55.9% between 1989 and 2017 (Quebec Wood Export Bureau
2019). However, the productivity of the construction industry (dotted line) 1s decreasing. Moreover,
few companies are investing in innovation, which could promote productivity in the construction
industry. For example, in 2011, the companies in Quebec that have invested in innovation are 4%
and 50% in construction and manufacturing, respectively (Statistic Canada 2011). Therefore, it is

necessary and pressing to increase productivity in the construction industry.

160
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Figure 1-1 Construction productivity in Quebec from 1982-2017 (Quebec Wood Export
Bureau 2019)

The construction equipment is one of the most important components in a construction project,
which contributes much to the construction productivity (Kim et al. 2018a). Moreover, the
equipment cost is usually one of the constructor’s biggest expenditures (Peurifoy et al. 2009).

Therefore, effectively managing the equipment operations is critical to improve construction



productivity and control the construction cost. However, existing practices for measuring and
analyzing the equipment operations are considered as time-consuming, expensive, and error-prone
work (Golparvar-Fard et al. 2013) as site superintendents are required to manually observe and
record the entire operation process for each construction equipment on the construction site (Kim
et al. 2018a). Not only the observation task, but also the data analysis and calculation are labor-
intensive. Therefore, numerous researchers created automatic methods to accurately and
efficiently monitor equipment operations and analyze productivity. This is especially true for the
excavators, since earthmoving operations are highly dependent on equipment such as excavators

and trucks.

1.2 Problem Statements and Research Gaps

Existing methods for automatically recognizing the activities of the construction equipment could
be classified into sensor-based methods and computer vision (CV)-based methods. The sensor-
based methods recognize equipment activities by analyzing its location, acceleration, velocity and
orientation information from sensors, such as the Global Positioning System (GPS) (Oloufa et al.
2002; Pradhananga et al. 2013) and Inertial Measurement Unit (IMU) (Akhavian and Behzadan et
al. 2015). However, they require attaching sensors to monitor the equipment, which may not be
feasible for the rented or old equipment. Additionally, the sensor-based methods have difficulty in
categorizing the activities in detail. For example, the GPS-based methods identify equipment
activities based on its position changes; and therefore, they cannot precisely identify the activity
when the equipment is located at the same position while performing different activities (Kim et

al. 2017).

Compared with the sensor-based methods, the CV-based methods do not have the aforementioned
drawbacks. Furthermore, they can visualize the equipment’s state directly from 1mages and videos,
so that it becomes easy to identify false recognitions and analyze the reasons behind low
productivity. For example, the increase in the excavator’s swinging time may be due to avoiding
passing workers or the unsuitable truck positions. Moreover, the productivity analysis could be
made based on the automatic monitoring and analyzing the surrounding information provided by

videos.

So far, the CV-based methods recognize the activities by analyzing the motion trajectories or the

equipment location information in video frames (Yang et al. 2016b). They cannot classify the



activities into detailed categories (e.g. digging, hauling, dumping, etc.) in long video sequences.
In addition, most of the existing methods are not able to recognize and analyze the activities when
multiple pieces of equipment are captured simultaneously. Moreover, existing methods just focus
on activity recognition. Their practical values are not well discussed, such as the productivity
analysis and low productivity reasons identification. As a result, it is not clear how these methods

can be used for productivity monitoring in construction projects.
1.3 Research Objectives

The lack of a CV-based method with the ability to monitor the operation process of excavator to
improve the productivity of earthmoving work, brings the attention of this research. This research
aims to achieve the following objectives: (1) Comparing the CV-based and sensor-based methods
of earthmoving equipment productivity monitoring to identify the advantages and limitations of
each approach, and proposing a roadmap for the future work directions of automated equipment
productivity monitoring; (2) Developing an end-to-end CV-based method for automatically
recognizing activities of multiple excavators; (3) Developing a framework to analyze the
productivity of the excavator based on the activity recognition results; and (4) Improving the

earthmoving productivity by identifying the idling reasons of excavators and trucks.
1.4 Thesis Organization

The structure of this thesis is presented as follows:

Chapter 2 Literature Review: This chapter reviews the current state of statistics, concepts,
technologies and methods related with automatic construction equipment monitoring and
productivity analysis. Furthermore, a roadmap is proposed to introduce the advanced research
methods of construction equipment productivity monitoring and indicate future directions for

research and the industry to take up based on current technologies.

Chapter 3 Overview of The Proposed Research Framework: This chapter describes the overall
proposed framework of this research work. There are three main methods adopted in this work,

and each of them was explained briefly in this chapter.

Chapter 4 Vision-based Activity Recognition and Productivity analysis: This chapter goes through
the details of the proposed method for CV-based excavators’ activity recognition and productivity

analysis and demonstrates the feasibility of the method with real site surveillance videos.



Chapter 5 Automatic Identification of Idling Reasons in Earthwotk Operations Based on
Excavator-truck Relationships: The method for idling reasons identification and interative
opertions analysis between excavators and trucks are introduced and validated with three case

studies.

Chapter 6 Summary, Contributions, and Future Work: In this chapter, the summary of the work
done in this research is provided followed by the contributions. The further possibilities for

extending and improving the current work are explained in the future work section.



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, the status of current practices in automatic construction equipment operation
monitoring and productivity analysis are reviewed. The application of CV-based and sensor-based
equipment detection, tracking, activity recognition, and equipment productivity calculation
methods are also reviewed. All these technologies are the ones that this research plans to build on
and augment. At last, the limitations and the research gaps in the existing works are highlighted,

and a roadmap for future research is proposed.

2.2 Productivity Monitoring in Construction

The construction industry, with the annual expenditures reaching over $1,231 billion in the United
States (Statistic 2018) and $625 billion in Canada (Statistics Canada 2018), plays a significant role
in the economy of North America. Therefore, productivity improvement in the construction
industry has a significant impact on improving the GDP in North America (Arditi and Mochtar
2000). Since construction equipment is the main component of the construction production (Kim
et al. 2018a), an accurate analysis of the productivity of the equipment is critical for construction
productivity control, project control, and construction planning (Ok and Sinha 2006). Recognizing
the activity of the equipment is important to manage its productivity. Knowing the activity of the
equipment could help measure its actual work hours, and compare the input and output of the
equipment over time (Goodrum et al. 2002). These methods of construction equipment activity

recognition and operation monitoring are explained in Section 2.4 and Section 2.5.

2.3 Earthmoving Equipment Monitoring

Earthwork operations are one of the most important works in construction projects, which are
highly mechanized since they involve moving large quantities of soil within a limited period of
time for subsequent works (Tam et al. 2002). In earthwork operations, a group of construction
equipment usually works together to accomplish tasks, such as excavating, hauling, and

compacting soil (Peurifoy et al. 2009; Montaser and Moselhi 2014). Excavators and trucks are the



most widely used resources for earthwork. During earthwork operations, an excavator and a fleet
of trucks usually work as a team to dig and transport the soil to the dumping site (Hola and
Schabowicz 2010). In this process, the excavator works under the cycle of digging and swinging
for loading a truck, and swinging back for digging (Hola and Schabowicz 2010; Kim and Chi 2019;
Chen et al. 2020a). Meanwhile, trucks are loaded before hauling the soil under three main states,
which are moving, stopping to be loaded, and idling. Therefore, the productivity of earthwork
operations is generally calculated based on the number of work cycles of the excavator and trucks
(Kim and Chi 2020; Montaser et al. 2012; Zhang 2008). Idling is another important work state of
the excavator, which has a great influence on productivity. Idling may be caused by different
reasons. For example, an excavator may be 1dling because the next truck to be loaded did not arrive
(Kim and Chi 2019). To avoid this idling, a certain number of trucks should be arranged to work
with the excavator and to keep the excavator working at capacity (Peurifoy et al. 2009). In other
conditions, the idling may be caused by machine malfunction, congested site or safety problems.
Therefore, to decrease the i1dling time and reduce cost, it is essential to identify the reasons that

cause 1dling and provide solutions that fit the situation.

In recent years, different information technologies, such as machine learning (Azar et al. 2013;
Kim and Chi 2017) and Real-time Location Systems (RTLS) (Montaser et al. 2012; Louis and
Dunston 2018) have been used for equipment productivity monitoring. Based on the types of the
data collected, they can be categorized into CV-based methods and sensor-based methods. The
conceptual workflow of these methods i1s shown in Figure 2-1. The CV-based methods collect
equipment operation data from site surveillance cameras as videos or images. Sensor-based
methods install sensors and/or tags (e.g., Radio Frequency Identification (RFID), Global GPS,
Ultra-wideband (UWB), IMU, etc.) on the equipment and the construction site to collect the
position and pose information of the equipment. Accordingly, the work states and activities of the
equipment are identified by analyzing the data collected from cameras or sensors. For example,
the location and trajectory data collected from the sensors can be used to estimate the activity of
the equipment directly. The visual data are usually processed with CV-based methods (e.g.
machine learning and deep learning) to identify the equipment activity. Finally, based on the
activity information, the productivity of the equipment can be estimated in the forms of equipment

operation time or soil quantity.
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Figure 2-1 Conceptual workflow of equipment productivity monitoring
2.4. CV-based Equipment Productivity Monitoring

The application of CV technology for equipment monitoring has been popular in recent years for
several reasons, such as the development of promising object detection and tracking algorithms in
computer science, and the widespread of low-cost cameras installed in construction sites to collect
videos and images. A general CV-based equipment monitoring framework consists of several steps.
First, the equipment detection is used to recognize the particular type of equipment in the image
or video frames. Then, different pieces of equipment are continuously tracked in all video frames.
The detection and tracking methods provide the spatial position and movement information of the
equipment. Accordingly, activity recognition and pose estimation are conducted to evaluate the
work states of the equipment, which are necessary for productivity analysis. Figure 2-2 shows the
distribution of research topics of CV-based equipment monitoring articles. 20 (43%) papers
focused on equipment detection and tracking; 11 (23%) papers focused on equipment activities
recognition; 11 (23%) papers focused on equipment productivity monitoring; and 5 (11%) papers
focused on equipment pose estimation. The number of productivity monitoring papers started
increasing in 2019 (as shown in Figure 2-3), since the technologies of productivity monitoring are

based on detection, tracking and activity recognition.
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2.4.1 CV-based equipment detection methods

The application of CV in equipment monitoring starts with equipment detection. The summary of
existing CV-based detection methods is shown in Table 2-1. Most of the earlier works used feature-
based methods to detect equipment, such as excavators and trucks, in images and videos. Those
works first extract features to represent the appearance characteristics of the equipment. Then,

classifiers are trained to identify the equipment by classifying the vectors created from the features.



The Histogram of Oriented Gradients (HOG) is the most widely used feature descriptor. Azar and
McCabe (Azar et al. 2013; Azar and McCabe 2012b) used HOG feature and Support Vector
Machine (SVM) classifier to detect dump trucks in videos. The method could detect eight different
orientations of the dump truck with an accuracy of 86.8%. Memarzadeh et al. (2013) combined
HOG with color features and Hue-Saturation values, and used SVM classifier to recognize workers,
excavators and trucks in video frames with an accuracy of 98.83%, 82.10%, and 84.88%
respectively. Tajeen and Zhu (2014) used HOG features and latent SVM classifier, which
recognized five classes of equipment (backhoe, dozer, excavator, loader, and roller) from images,
with the accuracy of 70% (backhoe), 82% (dozer), 64% (excavator), 66% (loader) and 78% (roller).
Rezazadeh and McCabe (2012a) indicated that compared with other objects, the accuracy of the
excavator detector is relatively low because excavators have countless deformable forms. In order
to train a HOG-based detector with limited images, they created the part-based model, which
recognized excavators by detecting the boom. The method achieved lower misclassifications than
general HOG-based methods. Kim et al. (2017) also used HOG and SVM classifier to recognize

the trucks and workers in the construction images with the accuracy of 95.7%.

Some methods recognized moving equipment by subtracting it from the background. Zou and Kim
(2007) used color space values to isolate the excavator in images with snow and soil backgrounds.
Chi and Caldas (2011) segmented the regions of moving objects from the image with Gaussian
Mixture Model (GMM) algorithm (Reddy et al. 2009), then, they used two classifiers, Bayes
classifier (Fukunaga 2013) and 4-layers neural network, to classify the segmented parts into
workers, backhoes and loaders. The error of Bayes and neural network are 3.35% and 3.9%,
respectively. Kim et al. (2016) and Biigler et al. (2014; 2017) also used GMM and Bayes networks
to identify excavators and trucks in video frames. However, the background subtraction method is
limited to detecting moving and idling objects, which may not be sufficient in the application for

identifying other activities of the equipment.

Despite these efforts, previous methods were not able to differentiate specific equipment within
the fleet. To fulfill this gap, Azar (2016) proposed a marker-based recognition method to recognize
individual excavators and trucks in videos. The method first created and attached markers on the

equipment; then, the equipment can be detected by recognizing the markers.



The development of deep learning methods using Convolutional Neural Network (CNN) also
affected equipment detection. A major difference between feature-based methods and CNN is their
way of learning features of the objects. CNN can automatically learn representative features from
images in the dataset; whereas feature-based methods just extract human-designed features, which
1s not easy for the complex construction environment (Kim et al. 2018¢). Numerous CNNs have
been used for various equipment detection tasks with better performances than feature-based
methods (Roberts and Golparvar-Fard 2019; Chen et al. 2020a). Fang et al. (Fang et al. 2018b)
used Faster Region-based Convolutional Neural Network (Faster R-CNN) to detect excavators
with the accuracy of 95%. Kim et al. (2018c¢) trained Resnet-50 with 2920 images to recognize
four classes of equipment (loader, excavator, dump truck and concrete mixer truck) with the
average precision of 96.33%. Kim et al. (2020) trained Faster R-CNN (Fang et al. 2018b), Single
Shot Detector (SSD) (Liu et al. 2016) and You Only Look Once (YOLO) (Redmon et al. 2016)
detectors with the same dataset to detect excavators, trucks, forklifts and loaders and got the

accuracy of 93%, 92.1% and 89.7%, respectively for the three methods.

Without training a classifier to recognize any specific type of equipment, Kim and Chi (2017) and
Kim et al. (2018d) applied a tracking-based method called Tracking-Learning-Detection (TLD)
(Kalal et al. 2012) to identify the target equipment in video frames. The method first selects the
target equipment that needs to be identified with a bounding box. Then, a tracker and a detector
will learn online to search the target in the next video frame based on the trajectory, as well as the

spatial, gray-value variance, and pixel variance information.
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Table 2-1 Summary of equipment detection methods used in the reviewed papers

Detection methods

Type

References

Feature-based methods

HOG + SVM

Azar and McCabe (2012a)
Azar et al. (2013)

Azar and McCabe (2012b)
Tajeen and Zhu (2014)
Kim et al. (2017)

HOG, color, Hue-Saturation + SVM

Memarzadeh et al. (2013)

Color Zou and Kim (2007)
GMM-based methods GMM, Bayes network, Two-layers CNN Chi and Caldas (2011)
GMM Bugler et al. (2014; 2017)
GMM+Bayes network Kim et al. (2016)
Marker-based methods Barcode marker+tHOG+SVM Azar (2016)
TLD methods Trajectory, spatial and gray-value variance, pixel | Kim and Chi (2017)
vanance Kim et al. (2018d)
CNNs-based methods Resnet-50 Kim et al. (2018c)
Faster R-CNN Chen et al. (2020a)
Fang et al. (2018b)
CNNALSTM Kim and Chi (2019)

ResNeXt-101

Roberts and Golparvar-Fard (2019)

Faster R-CNN + SSD + YOLO

Kim et al. (2020)

2.4.2 CV-based equipment tracking methods

The tracking methods aim to associate and get the trajectory of each piece of equipment across all
video frames. Various methods were used to track equipment such as mean-shift tracking (Gong
and Caldas 2011), Kanade and Lucas Tracker (KLT) (Azar et al. 2013), counter-based and point-
based algorithms (Park et al. 2011), kernel covariance (Teizer 2015), and Kalman filter (Kim et al.
2016; Kim et al. 2017). Park et al. (2011) compared and evaluated three widely used tacking
methods, contour-based method, kernel-based method and point-based method to track workers,
equipment and materials in construction sites. They indicated that the kernel-based method is the
most appropriate method for tracking construction-related resources considering the occlusion,
illumination, and scale variation conditions. Xiao and Zhu (2018) evaluated the accuracy and
robustness of 15 visual tracking methods on 20 different construction scenarios. They found the
self-occlusion of the excavators made them difficult to be tracked, and only Dual Correlation Filter
(DCF) (Henriques et al. 2015) and Circulant Structure of Tracking-by-detection with Kernels
(CSK) (Henriques et al. 2012) methods could complete the tracking under heavy occlusions.
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Zhu et al. (2016) proposed a particle-based tracker, which could track workers and equipment
continuously (i.e., roller, truck, and dozer) even when they have a long period of collusions. Their
method represented target objects by a set of particles and required no offline training. Yuan et al.
(2017) improved the point tracking method (Lucas and Kanade 1981) by providing a failure
checking mechanism to track excavators. They first generated the optical flow images of the
excavator. Then, they tracked the key points based on the premise that the target between two
consecutive frames continues with constant image brightness. Kim and Chi (2017) integrated
hybrid methods such as median-flow algorithm (Kalal et al. 2010) and a pyramidal Lucas-Kanade
algorithm (Bouguet 2000) to estimate and represent object motions among consecutive frames and
track excavators in long videos. Hybrid tracking methods were also applied to avoid long time
occlusion and interclass variations. Chen et al. (2020a) used a deep Simple Online and Real-Time
(SORT) tracker (Wojke et al. 2017), which combined CNN and Kalman filter to track excavators

and trucks.
2.4.3 CV-based equipment activity recognition methods

Based on equipment detection and tracking methods, numerous research works have been focused
on developing more practical methods for monitoring the operation and productivity of the
equipment. One important topic for equipment monitoring is activity recognition, since the activity
information has a direct relationship with the productivity analysis. So far, there are mainly three
approaches of CV-based activity recognition, which are feature-based methods, rule-based
analysis, and spatial-temporal CNN methods (Figure 2-4). In the following subsections, these three

approaches are discussed in detail.
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Figure 2-4 CV-based equipment activity recognition workflow
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(1) Activity recognition with features

The feature-based methods are similar to feature-based equipment detection methods. After
collecting the spatial features in each video frame, the features in consecutive video frames are
encoded to a vector or matrix for the activity classification. These feature-based methods are used
in early works for human activity recognition in CV as shown in Section 2.6.1. Gong et al. (2011)
used a three dimensional (3D)-Harris corner detector to detect the interest points, and used HOG
and Histogram of Optical Flow (HOF) descriptors to describe interest points in every two
consecutive frames. Then, they trained the Bayesian neural network (Li et al. 2003) to classify
three kinds of backhoe activities (i.e., relocating, excavating and swinging). The results showed
that the HOG feature has a better performance than HOF with an overall accuracy of 86.33%.
Similarly, Golparvar-Fard et al. (2013) used 3D HOG as spatiotemporal features (Figure 2-5) and
SVM as a classifier to recognize four activities of excavators (i.e., digging, hauling, dumping and
swinging) and three activities of trucks (i.e., filling, dumping and moving). Roberts and Golparvar-
Fard (2019) used neural networks to get the bounding boxes of the excavators and trucks in video
frames. Then, they extracted the HOG, HOF and Motion Boundary Histograms (MBH) features
of excavators and trucks in the bounding boxes every 20 frames. At last, an SVM classifier was
trained to classify the activities of the equipment into eight categories as shown in Table 2-2. One
major limitation of the feature-based methods is that they can only recognize single activity of
each piece of equipment in short video clip, since the motion trajectories of the features drift a lot
with the progress of the time (Chen et al. 2020a). The gap in recognizing consecutive activities in
long video sequences has limited the application value of these methods in safety and productivity

monitoring.
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2013)

(2) Activity recognition with rule-based methods

The rule-based methods are widely used for productivity analysis. These methods recognized
activities based on the detection and tracking results. They first extract pixel coordinates of
equipment in video frames from the detection and tracking results. Then, activities are identified
by analyzing the changing coordinates in video frames or the relative distances between different
pieces of equipment. Zou and Kim (2007) used color features detector and centroid tracker to get
the coordinates of the excavators in video frames. Accordingly, the idling and stopping activities
of the excavator were differentiated by comparing the changing of centroid coordinates in
consecutive video frames. In the video of the resolution of 640 x 480 pixels, if the distance of
centroid coordinates in consecutive frames changed less than 1.6 pixels, the excavator was
identified as idling. Azar et al. (2013) used HOG-based detectors to get the coordinates of
excavators and trucks. Then, an SVM classifier was trained to identify loading activities using the
vectors computed from the distance between the base point of the excavator and four corners of
the dump truck (Figure 2-6(a)). The cycle time was managed as the duration between two loading
activities. Biigler et al. (2014; 2017) divided the construction site into several interest regions; then,
they used feature-based method proposed by Golparvar-Fard et al. (2013) to identify the static and
moving activities of excavators and trucks (Figure 2-6(b)). If both the excavator and truck were
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detected in the earthmoving region, and their distance is less than the threshold, the activity is
identified as filling. The method has been tested with 2 days’ videos. The average accuracy of
filling activity was 81.8%. With the given information of the excavator’s bucket volume and
hourly bucket numbers, they calculated the production as the volume of soil that is excavated,
which is 17.44% different from the ground truth. Azar (2017) recognized five kinds of equipment
(bulldozer, excavator, truck, grader, and roller) with HOG-based classifier, and used the Bayesian
network to estimate the probability of activities based on the other contents detected in the same
frame. Considering that the excavator and truck are within a certain distance at the working state
of loading, Kim et al. (2018b) identified loading activity by comparing the distance changes
between the two pieces of equipment with the thresholds. Kim et al. (2018d) also recognized
activities with the changing of centroid coordinates in consecutive video frames. In order to obtain
more accurate results, they adopted an interaction analysis between excavators and trucks. For
instance, if the excavator 1s working while the nearest truck is stopping, the activity of that truck
should be identified as working. This interactive analysis helps to distinguish between working
trucks interacting with the excavator, and idling trucks waiting to be loaded. The method achieved

an average accuracy of 91.27%, which is 15.59% higher than non-interactive analysis.

(a) Distances between the corners of trucks and the base point in both left and right
configurations (Azar et al. 2013)
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Figure 2-6 Examples of the detection-tracking-based methods

The methods based on the detection and tracking results can recognize consecutive activities in
long video sequences and calculate the duration of each activity in order to estimate the
productivity of the equipment. However, they still have the following limitations. Instead of using
the 3D real distance, these methods applied 2D pixel distance for proximity estimation.
Considering that most cameras are installed with an inclined angle in the construction site, the 2D
pixel distance cannot reflect the real spatial relationships between different pieces of equipment in
the real construction scenario. In addition, these methods need to pre-define thresholds and adjust
them with the change of camera positions, which is inconvenient to use. The limitations of the

rule-based methods can be overcome in the spatial-temporal CNN methods.

(3) Activity recognition with spatial-temporal CNNs

In most recent works, the activity of the equipment was directly recognized with spatial-temporal
neural networks. For example, Kim and Chi (2019) combined a CNN and a LSTM network to
recognize the excavator’s activities of digging, hauling, dumping and swinging. In their work, they
assumed that during the operation, the excavators usually work in the sequence of digging, hauling,
dumping and swinging. Therefore, they created a hybrid neural network, which has 10-layers CNN
and 2-layers LSTM to learn the visual and sequential features, respectively. Because of the gradient
descent problem of LSTM, this method has limited recognition accuracy in long videos. Chen et
al. (2020a) used 101-layers 3D Residual Neural Network (ResNet) to learn the spatial-temporal

features of the activity in every consecutive 16 video frames, and recognized the digging, swinging
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and loading activities of the excavator. The method achieved 87.6% accuracy on a 1 h video test.

One limitation of this method is that a large video dataset is needed to train the 3D ResNet.
2.4.4 CV-based equipment pose estimation methods

Pose estimation is also used to identify the work states of excavators. Lundeen et al. (2016) and
Feng et al. (2015) attached several markers on excavators to estimate the poses. Yuan et al. (2017)
used 2D tracking and stereo cameras to get the 3D coordinates of the key nodes of the excavator.
Soltani et al. (2017) estimated the skeleton of the excavator by detecting its parts. Soltani et al.
(2018) applied stereo cameras to estimate the 3D pose of the excavator from 2D detections. Since
the 3D pose estimation retrieved the 3D position of the equipment in global coordinates, it was

applied for safety management based on proximity analysis.
2.4.5 Equipment idling state recognition with thermal images

Some works identified equipment 1dling states to estimate the resulting air pollution using thermal
images, which are collected with infrared cameras. Infrared cameras absorb the heat energy from
the surface of the equipment and give an illustration in the forms of thermal images. Therefore, it
1s used to recognize idling states of vehicles and equipment based on the temperature of engines
(Bastan et al. 2018). Lustbader et al. (2012) applied thermal images to identify the idling state of
the truck and compared the diesel fuel use in idling and working states. Jain et al. (2018) used
thermal 1mages to differentiate between the truck engine on and engine off idling conditions, and
monitor gas emissions. Thermal images are useful in high occlusion and poor lighting conditions
to identify the equipment (Pazhoohesh and Zhang 2015). However, most of existing works applied

the thermal images to monitor the emissions and not for equipment productivity monitoring.
2.4.6 CV-based productivity analysis methods

The summary of CV-based methods for productivity analysis is shown in Table 2-2. Most of the
existing works calculated productivity by recognizing the activities of the equipment. Some works
calculated productivity by estimating the proportion of working or idling times in the whole
operation time. For example, Zou and Kim (2007) calculated that during the 10,800 s investigation
time, the excavator was idling 3,800 s with a working rate of 64.8%. As another example, during
2 h and 27 min captured excavation video, Azar et al. (2013) calculated that there 1s 1h 35 min of

excavator’s loading activities. Some works identified the number of work cycles of the excavators
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or trucks. With the given information of the bucket volume, they could calculate the volume of
soil that has been excavated. Biigler et al. (2014; 2017) recognized loading time as described in
Section 2.4.3; then, using the excavator’s bucket volume and hourly bucket numbers, they further
calculated the productivity in the volume of soil that has been excavated, which 1s 17.44% less
than the ground truth. Kim et al. (2018b) recognized activities of excavators and trucks, then, based
on the activity’s information, a method for simulating equipment processes was created to estimate
the cycle numbers of trucks and calculate the earthmoving productivity. Chen et al. (2020a)
identified the number of work cycles of the excavator from the sequential relationship of the
recognized activities. With the known bucket volume, the productivity of the 60.2 min excavation

was calculated as 131.16 LCY/h, which is 17% lower than the ground truth.

Instead of productivity analysis with activity recognition, some research works calculated
productivity with other information. Kim et al. (2019) trained a Region-based Fully Convolutional
Network (R-FCN) (Dai et al. 2016) to recognize the license plate numbers of dump trucks when
they pass through the gate of the construction site. Accordingly, by measuring the time interval of
each dump truck coming and leaving the site, the number of trucks’ cycles and the total volume of
earthmoving was calculated. Kim and Chi (2020) proposed a multi-camera-based productivity
monitoring method. They installed two cameras at entry and loading zones, separately. Then, by
matching the dump trucks in two cameras with the queueing discipline analysis, the cycle time and

number of cycles of the dump truck could be estimated.
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Table 2-2 Comparison of CV-based papers of activity recognition and productivity analysis

References Activities Dataset Result Test video Calculate Calculate
Excavator Truck activity productivity
Method duration
Activity Feature- Gong et al. Relocating, 150 videos, 7 fps, 10s | Accuracy: 86.33% 6-10 fps
recognition | based (2011) excavating, per video 720=480 pixel
methods swinging
Golparvar-Fard | Digging, hauling, Filling, dumpimg, 895 videos, 250%250 Accuracy:
(2013) dumping, swinging moving pixels, 4~16 s 86.33% (excavator)
98.33% (truck)
Roberts and Idling, swinging, Moving, filling, 480 x 272 pixels, 25 Accuracy:
Golparvar-Fard | loading, moving, hauling fps, 514 videos 86.8% (excavator)
(2019) dumping 88.5% (truck)
Rule-based | Zou and Kim Idling, stopping Accuracy: 96% 10800 s N
methods (2007)
Azaretal Loading Loading 7 videos with 51 nun, | Accuracy: 95% 2h, 27 min N
(2013) 640x480
Bigler et al_ Filling Accuracy: 82.66% 20h N N
(2014; 2017)
Azar (2017) Bulldozer: excavation, spreading, 49 videos Precision: 65%-78%
excavator: excavation, trenching, loading,
truck: backfilling, loading, hauling,
compaction,
grader: spreading, ditch cutting,
roller: compaction
Kim et al. Dumping, idling Loading, hauling Accuracy: 8h N +
(2018b) 98 4% 720%480 pixel
Kim et al. Idling, traveling, Idling, working 150 min videos with Accuracy: 100 min N
(2018d) working 720 % 1280 or 89.36% (excavator),
1080x1920 pixels) 93.80% (truck)
Spatial- Kim and Chi Digging, hauling, 121 muin video with Precision: 90.09% 32,365 images N
temporal (2019) dumping, swinging 720 % 1280 pixels and
CNNs 10 fps
methods Chen et al. Digging, swinging, 381 videos clips with Accuracy: 92% 1h \ +
(2020a) loading 1280 = 720 pixels and
25fps
License Kim et al. Truck work cycles Accuracy: 96.76% 2,867,484 s N +
plate (2019)
recognition
Cameras Kim and Cha Truck work cycles Accuracy: 97.6% 88 min A 4
matching (2020) 720 x 1280
pixels
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2.5. Sensor-based Equipment Productivity Monitoring

Sensor-based methods attach different sensors on the equipment to localize and track its equipment
movement. These methods use telematics and logging devices to transmit and record the data. By
processing the position and pose data retrieved from the sensors with classification or simulation
methods, the productivity of the equipment can be estimated. In this section, sensor-based papers
are reviewed in four categories based on the type of sensors used in each paper: (1) RTLS sensors,
which can detect the locations and trajectories of the equipment; (2) vibration sensors, which can
get the movement and pose information of the equipment; (3) audio sensors, which collect sounds
during equipment operations; and (4) hybrid sensors, which use more than one kind of sensors for
equipment productivity monitoring. The distribution of each kind of sensors used in the reviewed
papers 1s shown in Figure 2-7. RTLS sensors are most frequently used in 14 papers (41%).
Vibration sensors are used in 11 papers (32%), and they can extract more detailed work state of
the equipment. Audio sensors appeared in three papers (9%) related to equipment activity
recognition since 2017. Six papers (18%) applied multiple sensors for equipment monitoring.
There are also ambient weather sensors, which are used to monitor the influence of weather
conditions on the productivity, such as temperature, humidity, and wind (Ibrahim and Moselhi
2014; Song et al. 2017; Salem et al. 2018).

RTLS
41%

Vibration
32%

Figure 2-7 Distribution of sensors used for equipment monitoring in reviewed papers
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2.5.1 RTLS sensors

GPS, RFID and UWB are widely used RTLS sensors, which can provide location and trajectory
data of the equipment. GPS is a satellite-based navigation sensor system that can obtain the
longitude, latitude, and altitude data of the equipment (Alshibani and Moselhi 2016). In the
implementation of GPS, some methods estimated activities by observing the trajectories of the
equipment on the map. Montaser et al. (2012), Montaser and Moselhi (2014), and Alshibani and
Moselhi (2016) used GPS sensors to collect trajectories of the trucks, and estimated the durations
of the activities (e.g. load, travel, return, etc.) by analyzing trucks’ trajectories on the map. Ahn et
al. (2020) also used GPS to collect path trajectories of trucks on the map to estimate the
transportation cost. Some GPS-based methods separated construction site into different kinds of
work zones, such as excavation and loading zones. By observing the location of the equipment in
specific work zones, the activities or cycle time can be estimated, as shown in Figure 2-8. For
example, Han et al. (Han et al. 2008) attached GPS sensors on the trucks to estimate the loading
and traveling time based on the locations of the trucks on the construction sites. Song and Eldin
(2012) separated the site into work zone and non-work zone to estimate the work time of the trucks.
Pradhananga and Teizer (2013) installed GPS on excavators and skid steer loaders, and separated
the site into gravel and excavation zones. By observing the locations of the excavators and loaders,
the durations of excavation and loading were estimated. Song et al. (2017) and Louis and Dunston
(2018) divided the construction site into excavation and dump zones to estimate the trucks

activities such as enter, exist, load, etc.

(a) GPS sensor mounted on the equipment
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(b) Trajectories of the equipment
Figure 2-8 GPS sensor-based method (Pradhananga and Teizer 2013; Oloufa et al. 2002)

UWB is a radio frequency positioning system that uses a triangulation method to estimate the
location of the equipment based on the propagation durations of the signals from the tag to the
receivers (L1 et al. 2017). Teizer et al. (2008) attached UWB tags on the hook of a crane to
recognize the lifting activity of the crane. Cheng et al. (2011) tested the feasibility of commercially
available UWB systems in tracking equipment, materials, and workers in a large construction site.
Vahdatikhaki and Hammad (2014) divided the construction site into dumping, hauling, loading,
and excavation zones to estimate the activities of a truck and an excavator based on the locations
calculated form UWB sensors. Instead of tracking the positions of the equipment, Vahdatikhaki et
al. (2015) attached 6 tags on different components of the excavator to identify its 3D pose with
UWRB sensors.

RFID uses electromagnetic transmission to identify and track tags attached on the objects (N1 et
al. 2003). The RFID system consists of readers and tags. The tags are attached to the equipment to
transfer the digital data to the readers with radio waves (Lu et al. 2011). The RFID can be used for
applications of distance estimation, scene analysis, and proximity (Bouet and Santos 2008). Using
the triangulation algorithm with the propagation time of the signal, the distance of the tag to the
readers can be estimated. In the scene analysis, first, a finger-print map is collected. Then, the
location of the tag is estimated by matching the fingerprint with the online measurement. The
proximity estimation relies on dense deployment of antennas. In the equipment monitoring, the

readers can have a pre-determined power level to define a certain range in which it can detect
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RFID tags. Therefore, by placing tags in different work zones, the equipment locations can be
estimated. Montaster and Moselhi (2012) installed RFID readers at the entrance gates of loading
and dumping regions; by recording the entrance and existing times, the loading and dumping

durations were calculated (Figure 2-9).
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Time
> | RFID Reader 1
Data
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Figure 2-9 Overview of the RFID method (Montasser and Moselhi 2012)

One limitation of these positioning sensors is the acquired data are limited to location and time
information, which makes it hard to distinguish between productive and idling states of the
equipment. In addition, these records do not provide enough information to estimate the quantities

of the excavated soil or confirm that the trucks are fully loaded.
2.5.2 Vibration and orientation sensors

In contrast with the RTLS, the accelerometers detect the vibration signals of the equipment and
the gyroscopes detect the orientations of the equipment. By processing the vibration and
orientation data, the pose and the state of the equipment can be estimated. The IMU sensor consists
of an accelerometer, a gyroscope, and a magnetometer, which can get the acceleration and
orientation data of the equipment. The movement data collected by IMUs are usually classified
with machine learning algorithms to identify the activity and the work cycle of the equipment. Ahn
et al. (2012) mounted two accelerometers inside the cabin of the excavator; then, by observing the
overall shape of the vibration signals (e.g. increasing and decreasing trends), three activities of
working, idling, and engine-off were identified. Akhavian and Behzadan (2012) attached IMU
sensors on the bed of a truck and the boom of a loader to estimate the activities based on the

orientation and acceleration data (Figure 2-10). For example, an increasing boom angle to the
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horizontal line and a constant bed angle close to zero indicated that the loader is raising its boom
while the truck is waiting to be loaded. Akhavian and Behzadan (2015) used two smartphones to
collect the accelerometer and gyroscope data of a loader. The raw data were represented by 12
features such as the mean, variance, peak, root mean values, etc. At last, SVM and CNN were used
to classify the features and recognize the engine off, idling, moving, scooping and dumping
activities of the loader. Similarly, Ahn et al. (2015) investigated the feasibility of measuring
operation efficiency using accelerometer data for classifying engine-off, idling and working of the
excavator operations. Mathur et al. (2015) attached a smart phone inside the cabin of the excavator
to capture the engine vibration signatures in form of 3D acceleration. Then, a classifier was trained
to measure the cycle time of the excavator. Kim et al. (Kim et al. 2018a) attached a smart phone
with an inbuilt IMU sensor to the front window of the excavator, and used the Dynamitic Time
Warping (DTW) algorithm to recognize its work cycle. Bae et al. (2019) used DTW to classify
joystick signals of the excavator and identify activities. Hernandez et al. (2019) attached two IMU
sensors on the body of a roller and recognized six work states with LSTM. Rashid and Louis
(Rashid and Louis 2019) used IMU sensor and LSTM to recognize the activities of a loader. Rashid
and Louis (2020) attached three IMU sensors to the bucket, stick and boom of an excavator to
identify the movements, and used sliding window and artificial neural network to recognize
activities. The results showed that the bucket is the best place to collect motion data in order to
identify the activities of the excavator. Slaton et al. (2020) classified accelerometer data with CNN

to distinguish six activities of the excavator.

Angle

B
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Figure 2-10 IMU sensor-based method (Akhavian and Behzadan 2012)
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2.5.3 Audio sensors

In recent years, there have been developments in audio-based methods, which use the sounds
generated from heavy equipment to recognize their activities, as shown in Figure 2-11. Similar to
vibration signals, audio signals also contain different acoustic patterns of the equipment operation
process. To identify the activity of the equipment from the signals, researchers generally applied
four main processes: (1) collecting equipment sounds data from a microphone; (2) signal filtering
or augmentation; (3) extracting features; and (4) training classification models (Santosh et al.
2010). Cheng et al. (2017; 2019) used audio singles to differentiate major and minor activities of
excavators, loaders and dozers with Short-time Fourier Transform (SIFT) features and SVM
classifier. Sabillon et al. (2020) used SIFT and Continuous Wavelet Transform (CWT) features
combined with SVM classifier to recognize activities of the excavator and dozer. Then, a Markov
chain filter was applied to analyze the cycle time and productivity of the equipment. The audio-
based methods have limitations in crowded and noisy jobsites as it is difficult to recognize the

equipment activities in detail.

(a) Microphone placing at the jobsite for collecting audio files

Identify Different Activities: JD 270C Backhoe
Window size =[20,80]; Threshold = 0.54

* Predicted Act1
+ Predicted Act 2

Normalized Frequency

Time (s)

(b) Predicted activity label for the equipment

Figure 2-11 Application of audio-based activity recognition (Cheng et al. 2017)
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2.5.4 Hybrid sensors

Hybrid sensors are used to get more accurate equipment operation information. Kim et al. (Kim et
al. 2013) installed displacement and pressure sensors on each of the cylinders at the boom, arm
and bucket to measure the movement, pose, and real bucket load of the excavator. Then, the
simulation methods are used to optimize the bucket-tip path within the data retrieved from the
sensors. Ibrahim and Moselhi (2014) used GPS to track the location of the equipment, strain gauges
to measure the load weight of the truck, accelerometer to monitor loading and dumping activities
of the loader and trucks, and barometric pressure to measure the weather condition. Based on the
data collected with the sensors, they created an automated data processing algorithm to estimate
the earthmoving productivity in near-real time. Sherafat et al. (2019) used IMU and microphones
to collect vibration and audio data during excavators’ operations. Then, they manually
synchronized two kinds of data based on their similarity of signal spikes. In the test, SVM was
applied to classify the fused data to recognize the activities of an excavator (stop, shove, move,

turn), which achieved 20% higher accuracy than using only IMU or audio data.

Hybrid sensors were also used to monitor different productivity-related factors. Akhavian and
Behzadan (2013) used UWB and attitude and heading reference system (AHRS) to capture the
positions and boom angles of the truck, and Zigbee-enabled weight sensors to measure the weight
of material transported by trucks. Vasenev et al. (2014) used GPS to track the locations of trucks,
pavers, and rollers, and temperature sensors on the pavers to monitor the temperature of asphalt
mat. Salem et al. (2018) collected data with GPS, IMU, soil water content sensors, and load cells
to estimate the influence factors on the earthmoving productivity based on the soil condition,
hauling and road condition, equipment operational condition and weather condition. The sensor-
based equipment monitoring papers are categorized based on the type of sensors as shown in Table

2-3.
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Table 2-3 Overview of sensor-based methods

Method [References Sensors [Monitoring Test [Result Objectives
|Activity Productivity  [Cycle
duration time/number
RTLS [Han et al. (2008) GPS [Truck: dump, load, haul, return 15 h, real project 96 % accuracy for i v W
roductivity calculation
[Teizer et al. (2008) [UWB Mobile crane: location 2 days, real project The standard deviation for the
position measurement was
0.09 m and 0.15 m in the X
and Y direction, respectively
Cheng et al (2011) [UWB [Equipment trajectory: mobile crane, 43 min 22 s, real project  [75% data within 2 m error, |/
tractor, material hauling trailer 99.9% data within 4 m error
Montaser et al. GPS [Truck: load, dump, travel |8 h per day, 11 days, real \i v W
(2012) roject
IMontaser and RFID [Truck: load, travel, dump, refurn 51 nun 37 s, real project i W
IMoselhi (2012)
Song and Eldin GPS [Truck: load, haul, in work zone, wait, [Real project Decrease cycle-time N
(2012) lout work zone, return rediction error by 6%
[Pradhananga and GPS Steer loader: haul, return, unload, 12 h, real project 1.15m—-036 mprecision [\ W
[Teizer (2013) cycle, speed
Montaser and GPS [Truck: load, travel, dump, refurn 12 days, real project h v N
IMoselhi (2014)
[Vahdatikhakiand [UWB [Excavator: relocation, swing to load, ¥4 min 45 s, indoor library  [87% accuracy for activity u N
[Hammad (2014) lloading, swing to truck, dumping test iduration estimation
[Truck: maneuvering for dumping,
[dumping, returning, maneuvering for
lloading, hauling
[Vahdatikhaki etal. [UWB [Excavator pose estimation 91 s, indoor lab test 95% accuracy, 45-48 cm
(2015)
|Alshibam GPS [Truck: load, haul, dump, return 131.47 mun, real project i v W
and Moselhi (2016)
Song et al. (2017)  |GPS [Truck: enter, exit, load, haul, 1dle time{12 days, real project H N
[Louis and Dunston |GPS [Truck: haul, dump, return, wait, cycle {800 min, real project i v N
(2018) time
|Ahn et al. (2020) GPS [Truck: pick-up loaded trailer, Real project [86% - 88% accuracy for H
entering, inside, leaving activity duration estimation
[Vibration and |Ahn et al. (2012) Accelerators [Excavator: work, idle, engine-off 30 min, real project 79% accuracy for activity h
lorientation duration estimation
|Akhavian and 3D orentation, [Loader and truck: load, dump, haul, [3 nun, indoor library test i N
[Behzadan (2012) accelerometer return, 1dle
|Akhavian and Smart phone [Loader: engine off, idle, moving, 400 s, real project 90% accuracy for activity h
[Behzadan (2015) MU) scooping, dumping recognition
IAhn et al. (2015) [Smartphone [Excavator: engine off, 1dle, work 100 s, real project 05% accuracy for activity v
mMU) recognition
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Table 2-3 Overview of sensor-based methods (continued)

05% accuracy for productivity
calculation

Method [References Sensors [Monitoring Test [Result Objectives
|Activity Productivity  [Cycle
duration time/number
[Vibration and [Mathur (2015) Smartphone [Excavator: 1dle, wheel-base motion, [62.53 mun, real project 74% accuracy for activity \i W
lorientation MU) lcabin rotation, bucket/arm movement recognition
[Kim et al. (2018a)  [Smartphone [Excavator: rotating clockwise, 116 excavator’s work cycle,[91.83% accuracy for work [\ W
mMU) rotating anti-clockwise, not rotating, freal project icycle recognition
work cycle
[Bae et al. (Bae etal. [Joystick signals [Excavator: digging, leveling, 70 min, real project 100 % accuracy for activity [/
2019) trenching recognition
[Hernandez et al. MU [Roller: forward high/low, backward [20 mun, real project 77.1% accuracy for activity
(2019) high/low, forward off, backward off recognition
[Rashid and Lowms MU [Excavator: engine off, 1dle, scoop,  [555 activities, real project [96.2% accuracy for activity
(2019) idump, swing loaded, swing empty, recognition
imove forward, move backward, and
level ground
[Loader: engine off, idle, scoop, raise,
idump, lower, move forward loaded,
imove backward loaded, move forward|
empty, move backward empty
[Rashid and Lowms MU [Excavator: engine off, 1dle, scooping, 4000 s, real project 92.1% accuracy for activity
(2020) [dumping, swing loaded, swing empty, recognition
moving forward, moving backward,
leround levelling
Slaton et al. (2020) [MU [Excavator: 1dle, travel, scoop, drop, [30 min, real project 77.6% accuracy for activity [/
rotate (right, lift), various recognition
lAudio Cheng et al. (2017) [Microphone Major activity, minor activity 90 s each machine, real [85% - 90% accuracy for h
(excavator, backhoe, loader, dozer, |project activity recognition
hydraulic hammer, dumper,
lcompactor)
Cheng et al. (2019) [Microphone Major activity, minor activity 250 s, each machine [87% accuracy for productivity [/
(excavator, loader, backhoe, dozer, icalculation
Imixer)
Sabillon et al. (2020) Microphone [Excavator, loader, dozer, concrete 30 min, real project IAverage 84% accuracy for [/ v W
imixer: major activity, minor activity activity recognition,
Productivity predict 9.5-
12.81% error
[Hybnd |Akhavian and [UWB, ZigBee, |[Truck: load, haul, dump, return 60 s, indoor library test 95% confidence for activity [V v o
[Behzadan (2013) JAHRS recognition,

28




Table 2-3 Overview of sensor-based methods (continue)

(5) Excavator: scraping and
Imoving/rotating arm

(6) Excavator: extending arm, rotating
jcabimn

(7) Dozer: stop, moving forward,
Imoving backward

(8) Concrete truck: pouring concrete,
moving

(9) Loader: stop, moving
forward/pushing soil, moving
backward

(10) Vibrator: stop, vibrating

Method [References Sensors Monitoring Test [Result Objectives
|Activity Productivity  [Cycle
duration time/number

[Hybnd  [Kim et al. (2013) Displacement,  [Excavator torque trajectory 140 s, real project

ressure
Tbrahim and Moselhi GPS, [Loader: hauling volume 10.83 h, real project 98% accuracy for productivity [/ v W
2014) accelerometer,  (Truck: load, haul, dump, return icalculation
strain gauge,
barometric
ressure
'Vasenev et al_ (2014) GPS, IMU, [Roller location (track equipment in |16 b, real project Mass of paved mixture: 1650 [ v
temperature the field) tons per day
Salem et al_ (2018) [Pressure, nfluence factors of the earthmoving [Data analysis
moisture, productivity
hunidity,
[luminosity, IMU,
GPS, weather
station
[Sherafat et al. (2019) [Mobile, [Test 1 [B7 s, real project [Test 1
microphone [Excavator: stop 02% accuracy for activity
arm/shovel movement recognition
Imoving forward/backward
turning right/left Test 2
Test 2 A ctivity recognition accuracy:
(1) Excavator: stop, drlling, 1) 87.51%,
rotating/moving arm, moving 2) 92%,
forward/backward 3) 93.85%,
(2) Loader: stop, arm/shovel 4) 87.2%,
movement, moving 5) 86.45%,
forward/backward, turning right/left 6) 86.32%,
(3) Lift: maneuvering 7) 95.6%,
forward/backward, raising/lowering 8) 93.61%,
(4) Lift: stop, moving 9) 87.14%,
forward/backward, moving arm 10)91.66%
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2.5.5 Sensor-based productivity analysis methods

The simulation and operation analysis are two widely used methods for productivity monitoring of
sensor-based methods. The productivity is generally estimated in forms of activity durations,
equipment cycle time, and soil volumes. The overview of productivity analysis of sensor-based
methods 1s shown in Table 2-4. Simulation methods are widely used in sensor-based methods to
capture the complex interactive activities between earthwork equipment and increase the accuracy
of productivity analysis (AbouRizk 2010). These methods use the location or vibration data
retrieved from sensors as input. Then, the productivity and cycle times are predicted by simulating
the logic of the earthmoving equipment work cycle. Akhavian and Behzadan (2012) estimated the
activities of a truck and a loader with IMU sensors, and simulated the work cycle of the two pieces
of equipment with a discrete event simulation (DES) model based on the activity information.
Some works (Louis and Dunston 2018; Song and Eldin 2012; Akhavian and Behzadan 2013;
Montaser and Moselhi 2014; Alshibani and Moselhi 2016) used RTLS sensors to get the location,
speed and direction of the trucks and further identified the hauling and returning times. With the
predefined trucks’ operation logic, they simulated and predicted the cycle time of the truck with
the real-time data from sensors. Kim et al. (2013) used pressure and displacement sensors to track
the moving trajectory of the excavator’s boom and bucket. Then, they created a motion planning
system to simulate and optimize the bucket-tip path of the excavator. Ibrahim and Moselhi (2014)
developed a hardware to collect the location, vibration, soil type and weather data from GPS,
accelerometer, strain gauge, and barometric pressure, respectively. Then they created activity
recognition and volume calculation algorithms to calculate the earthmoving productivity based on
the data collected from the sensors. Vahdatikhaki and Hammad (2014) proposed a rule-based
simulation method, which can capture, process, analyze, filter and visualize the equipment
operation processes with various RTLS data. Vasenev et al. (2014) proposed a framework to use
data retrieved from GPS, IMU and temperature sensors monitoring for simulating the productivity
of asphalt paving operations. The framework analyzed the number and work time of trucks,
compactors working with each paver, and amount of asphalt mixture paved by the paver. Then, the
position received from the sensors; and the productivity information are transferred into a server
database to support future decision making. These simulation-based methods conducted real-time
data-driven productivity analysis, which can concurrently monitor several pieces of equipment.

Alshibani and Moselhi (2016) combined GPS with Geographic Information System (GIS) data to
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get the trajectories of the trucks in earthmoving work. Song et al. (2017) collected data with
different sensors to analyze the influence factors (e.g. humidity, wind speed, temperature, idle time

average speed, etc.) on the earthmoving productivity using the linear regression method.

Other sensor-based methods analyzed productivity with the operation information of the
equipment. For example, some research works (Akhavian and Behzadan 2015; Mathur et al. 2015)
calculated the duration of all recognized activities and analyzed the productivity of the equipment
with the portion of idling states in the total work time. Pradhananga and Teizer (2013) estimated
the speed of the loader from its trajectory and stationary times in different working zones. Kim et
al. (Kim et al. 2018a) estimated excavators’ activities by classifying vibration data retrieved from
IMU sensors, and determined work cycle of the excavator from the order of the activities. Bae et
al. (Bae et al. 2019) recognized activities of the excavators and calculated the duration of digging
and leveling in 20 min's work. Sabillon et al. (2020) analyzed cycle times and the number of cycles
per hour from the activities. With the observed average fill factor, they calculated the productivity

of the backhoe as the soil volume excavated per hour.

These sensor-based methods may have limited use in real construction projects because the sensor
system could be difficult to install on the rented and old equipment. In addition, the installation and
disassembly of sensor systems also requires labor and cost. This is especially true for the RFID
sensor systems, which need comprehensive infrastructure to be installed on both equipment and
jobsite. Moreover, construction sites have complex environments with noise, which may disturb or
obstruct the wireless signal transmission and decrease the accuracy of the activity recognition

results.
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Table 2-4 Overview of productivity analysis of sensor-based methods

References Type of study Productivity monitoring

Simulation | Operation analysis | Activity duration | Cycle time/numbers | Soil volume

Akhavian and Behzadan (2012) + \ +

Song and Eldin (2012) + + V

Akhavian and Behzadan (2013) o V V N
Pradhananga and Teizer (2013) v N \

Kim et al. (2013) 3

Tbrahim and Moselhi (2014) o V V N
Montaser and Moselhi (2014) v N N N

Vahdatikhaki and Hammad (2014) | +

Vasenev et al. (2014) v v N
Ahn et al. (2015) + +

Akhavian and Behzadan (2015) 4 +

Mathur et al_(2015) + \ +

Alshibani and Moselhi (2016) B v v N
Song et al (2017) + + V

Louis and Dunston (2018) B \ v N
Kim et al. (Kim et al. 2018a) 3 N \

Bae et al. (Bae et al. 2019) 3 \

Sabillon et al. (2020) 3 «4‘ v N

2.6 Activity Recognition in Computer Vision

So far, numerous research works have been done in video activity recognition in the computer
vision field. The existing methods can be generally divided into two categories. The first category
uses hand-crafted local features to extract and represent the object’s movement information in the
videos (Wang et al. 2015a). This kind of feature 1s calculated by capturing motion and appearance
features from the video. Effective features are considered to be discriminative for the target
activates in the video and robust to rotation, occlusion, and background noise (Zhang et al. 2017).
The second category relies on deep learning which trains deep neural networks to classify the

activities in the videos.
2.6.1 Feature-based methods

Most of the earlier works have used hand-crafted features in activity recognition. These works first
extract the features which represent the appearance and/or motion character of the activity from

the video frames, and then, encode the features into a fixed-length vector. At last a classifier is
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trained to identify the activities. General hand-crafted features consist of two types: regular spatial-

based features and motion-based features.

(a) Spatial features

The spatial features are the ones that represent the spatial appearance, orientation and gradient of
the activity in the video. A rich set of spatial-based features have made frequent appearance in the
activity recognition field. For instance, the HOG (Dalal and Triggs 2004), 3D-HOG (Klaser et al.
2010) and SIFT feature, which are also widely used in equipment activity recognition as introduced
in Section 2.4.3. HOG features capture the appearance information of the activity by calculating
the gradient direction histogram of the local area of the image. Wang et al. (2013) (Figure 2-12(a))
used the HOG descriptor to encode the human figure in each frame of the video, and accurately
recognize human activities in video sequences. 3D HOG is an extension of HOG feature to
represent the activity in video sequences. It views the video as spatiotemporal volumes (Figure 2-
12(b)) and calculates the spatiotemporal gradients to extract the shape and motion information of
the activity in the video. Weinland et al. (2010) used the 3D HOG descriptor to recognize human
activities. The 3D HOG features represent the information of the activities from the sequences of
images that have been concatenated into data volume, which could achieve robustness to occlusion
and viewpoint changes. SIFT (Loew 2004) descriptor (Figure 2-12(c)) uses polar coordinates to
obtain the gradient magnitudes and orientations of the key points in the image. The 3D SIFT
descriptor 1s an extension of the SIFT, which uses additional angle information to represent the
direction of the gradient. Scovanner et al. (2007) used 3D SIFT to describe the spatiotemporal
region of the frames in the video to classify the 10 types of human activities, which achieved

improved performance over the previous methods.
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(a) Example of ‘“‘wave’’ and ‘‘walk’’ human figures and the corresponding

HOG descriptors at different spatial levels (Dalal and Triggs 2004)
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(c) Example of the SIFT feature descriptor (Lowe 2004)
Figure 2-12 Examples of the spatial-feature-base methods
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(b) Motion features

Motion features are extracted from the optical flow, which can represent the motion of the objects
in the video. The motion features mainly contain HOF, MBH, Dense Trajectory (DT) and improved

Dense Trajectory.

Optical flow is a method to calculate the motion information of the object between adjacent frames.
It uses the change of pixels in the time domain and the correlation between adjacent frames in the
image sequence to find the corresponding relationship between the previous frame and the current
frame. By separating the optical flow into vertical and horizontal components and blurring them

with Gaussian, an artificial set of motion channels are created (Kang and Wildes 2016).

HOF captures the local motion of the pattern by quantifying the direction of the optical flow vectors
(Kang and Wildes 2016). Laptev and Pérez (2007) recognized the human activities in movies with
HOF feature combined with the SIFT feature to improve the performance. The MBH (Dalal et al.
2006) is calculated from local orientation and gradient of the optical flow. It can suppress the

camera motion while preserving local relative motion of pixels (Kang and Wildes 2016).

Another form of the descriptor 1s the DT descriptor, which is a kind of descriptor that tracks the
path of sampled feature points in the video frames over time. The DT descriptor is shown in Figure
2-13. DT first requires dense sampling the feature points of each frame in the video clips, and then,
the sampled points are tracked using optical flow to get the trajectory of the motion (Kang and
Wildes 2016). At last, the activity is recognized with the classification of the trajectories. In the
DT-based methods, feature points sampled from the frames using HOG, HOF and MBH features
have shown to be successful on a number of challenging datasets (Wang et al. 2015a). Yang et al.
(2016a) used HOG, HOF and MBH features with DT to recognize the worker’s activity on the
construction site, and the results showed that the MBH feature got the best recognition performance.
Numerous approaches have been done to improve the performance of DT-based method. Eleonora
and David (2012) used saliency-mapping algorithms with DT features to represent the salient
region in more detail. The improved method conducted a more compact video representation, and
improved action recognition accuracy. Jiang et al. (2012) integrated trajectory descriptors with the
pairwise trajectory locations to build a simple method to separate foreground from background,
and eventually, got a robust activity recognition performance. The improved dense trajectory

(Wang and Schmid 2013) 1s another improvement of the DT feature. It removed the trajectories
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consistent with the camera motion, and significantly improved the recognition performance.
Current studies show that improved dense trajectory descriptors and Fisher Vector (Willems et al.
2008) representations yield superior performance on various datasets (Zhang et al. 2016). Similarly,
Wang et al. (2016) improved the DT by removing the background trajectories and using warping

optical flow, which achieved better recognition results.
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Figure 2-13 Illustration of dense trajectory description (Wang et al. 2013)
2.6.2 CNN-based methods

In recent years, with the development and application of deep learning methods in image
classification tasks, there have been a lot of attempts to implement deep learning methods for video
activity recognition. The deep learning methods could achieve high accuracy in activity recognition.
Furthermore, they are much simpler to use than the traditional feature-based methods since the

representation of the spatial and temporal features can be automatically learned by the CNN. In

deep learning, a deep neural network with multiple layers is built up for automated feature
extraction. Specifically, each layer in the neural network performs a non-linear transformation on
the outputs of the previous layer, so that through the deep learning models the data are represented
by a hierarchy of features from low-level to high-level. The well-known deep learning models
include CNN, RNN, LSTM, etc. There are three mainstream methods in deep convolutional neural
network applications in video activity recognition: two-stream methods (Simonyan and Zisserman

2014), deep 3D CNN (Tran et al. 2015) methods and the combination of multiple features methods.

(a) Two-stream methods

Simonyan and Zisserman (2014) first proposed the two-stream method. In their two-stream method,
two CNNs were used to extract the special and temporal information from the frames and optical

flows of a video separately. Figure 2-14 presents the architecture of the two-stream neural network.
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The spatial stream CNN took single RGB frames as mput to extract the appearance representation
of the activity in videos; and the temporal stream CNN, with the same structure as the spatial one,
took several optical flows as input to describe the temporal features between consecutive video
frames. At last, the two CNNs were fused by averaging the softmax scores to provide the final
activity recognition results. The result showed the method of Simonyan and Zisserman (2014)

achieved the accuracy of 88% on testing human activities.

Spatial stream ConvNet
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Figure 2-14 Illustration of the two-stream architecture (Simonyan and Zisserman 2014)

Based on the original regular two-stream CNN method, numerous variations and improvements
have been produced. Some of the methods focused on adjusting the structure of the network to
improve activity recognition accuracy. For instance, Wang et al. (Wang et al. 2015b) applied the
data augmentation, multi-GPU, pre-training and smaller learning rates techniques to train a very
deep two-stream CNN, which improved the performance of the original two-stream method to 91.4%
accuracy. Donahue et al. (2017) employed the RNN that used LSTM cells instead of the widely
used CNN i1n the two-stream method to operate the special and temporal flow. The recurrent
network with LSTM cells has an advantage in learning the long-range temporal information from

the video sequences.

Some methods focused on adjusting the input source of the network to improve the activity
recognition performance. Wang et al. (2016) presented the novel Temporal Segment Network
(TSN) (Figure 2-15(a)), which could improve the efficiency of the original two-stream network.
Instead of operating all the frames in the video, TSN worked on a sequence of short snippets
sparsely sampled from the input video clip, such that it could efficiently capture the temporal
feature of the video with the lower computational resource. Since the most computation-intensive

part in the two-stream approach comes from optical flow calculation, Zhang et al. (2016) replaced
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the optical flow with the motion vector in the original two-stream method. The test result showed
that this real-time CNN method is 27 times faster than the original two-stream method. Zhu et al.
(2017) presented a hidden two-stream method (Figure 2-15(b)) It used a fully convolutional neural
network implicitly captured the motion information between consecutive frames instead of
explicitly computing the optical flow. The experimental result showed that the hidden two-stream
method was 10 times faster than the traditional method. Although the two-stream methods could
achieve high accuracy in activity recognition, they are not efficient to use because they take long

time and huge computation resources to extract the optical flows in the videos.
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(b) Hidden two-stream network (Zhu et al. 2017)

Figure 2-15 Examples of improved two-stream network

(b) Deep 3D CNN methods

3D CNN (Tran et al. 2015) is a deep neural network, which can learn the spatial-temporal features
of the video from merely RGB images. In this method, a 3D convolutional neural network is trained
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for activity recognition. Tran et al. (2015) first proposed the deep 3D CNN architecture, which
used the 3D convolutional and pooling kennels to capture the appearance and motion information
of the activity from the video sequences, as shown in Figure 2-16. Then, the model was trained on
a large-scale video dataset to recognize the activities. In terms of performance, this original 3D
CNN-based method is inferior to the original two-stream method (Wang et al. 2016), but it is much
more efficient than the two-stream method. Specifically, the 3D CNN method could process 672

frames per second, which is about 30 times faster than the two-stream method.

output

(a) 2D convolution (b) 3D convolution
Figure 2-16 2D and 3D convolutional operations

Accordingly, numerous works have been done to improve the 3D CNN method. Hara et al. (2018)
created a 101 layers’” 3D convolutional network based on the residual network architecture (Wu et
al. 2017), which verified that the deep 3D network could achieve state-of-the-art performance in
video activity recognition. Varol et al. (2018) created a 3D neural network with the long-term
temporal convolutions, which could capture the long-temporal features of the activity. Diba et al.
(2017) proposed a novel deep 3D network with variable 3D convolution kernel depths. This
architecture was designed to concatenate temporal features-maps extracted at different temporal
depth ranges, rather than fixed 3D homogeneous kernel depths, and it achieved good performance

in both long and short video datasets.

(c) Other deep learning methods

There are also well-performed deep learning methods for activity recognition that couldn’t be
categorized into the previous two kinds of methods. Feichtenhofer et al. (2016) (Figure 2-17)
combined the two-stream method with the 3D CNN method, which could keep both the special and
temporal features extracted from these two methods. Zolfaghari et al. (2017) (Figure 2-18) created
a three-stream 3D CNN architecture, which has three types of input images, such as Red, Green,
and Blue (RGB) image, optical flow and sematic segmented pose images. Each type of the mput
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image was operated with a 3D CNN, and fused with a Markov chain model at last. The method
improved the activity recognition performance over the baseline methods, and illustrated the

contribution of the pose feature.
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Figure 2-17 Two-stream and 3D fusion method (Feichtenhofer et al. 2016)

Figure 2-18 Three-stream 3D-CNN architecture (Zolfaghari et al. 2017)

Girdhar and Ramanan (2017) introduced the attention model to the activity recognition task, which
replaced the pooling layer in a standard CNN with a weighted polling layer. The attention model
could learn the specific region of the input image that is most relevant to the task, and it has
produced competitive results on widely benchmarked datasets. Zang et al. (2018) (Figure 2-19)
proposed an attention-based CNN, which embeds the attention model into a multi-stream CNN to
recognize human activity. This novel network takes RGB, optical flow and wrapped flow images
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as input, and an attention layer in the network is used to effectively reducing the negative effect of
redundant information/noises to get a better recognition performance. The proposed method has
achieved the accuracy of 94.6% and 70.5% for human activity recognition on two challenging
video datasets of UCF-101 (Soomro et al. 2012) and HMDB-51 (Kuehne et al. 2013).
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Figure 2-19 Network architecture of attention-based method (Zang et al. 2018)

Although deep learning methods can automatically learn the representation features of the activity
in the video, they ignore the intrinsic difference between the spatial and temporal domains (Wang
et al. 2015a). Therefore, Wang et al. (2015a) presented a novel trajectory-pooled deep-
convolutional descriptor method, which incorporated the hand-crafted feature with the deep-
learned feature by using the strategy of trajectory-constrained sampling and pooling. Shi et al.
(2017) implemented the DT features with the CNN to descript the long-term video actions, which
achieved good performance. The current research shows that the combination of DT or improved
DT with the deep learning-based method could always get improved performance in video activity

recognition.

2.7. Productivity-related Factors Monitoring

The previous literature review (Section 2.4.4 and Section 2.5.5) indicated that various factors affect
the equipment’s productivity. CV-based and sensor-based methods have their advantages in

monitoring different productivity influence factors which are compared in this section.
2.7.1 Impact factors of equipment productivity

The construction equipment usually operates in different and complex construction environments.

The operation conditions have a strong influence on the productivity of earthmoving equipment.
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In order to measure and predict productivity more accurately, numerous research works have been
conducted on exploring the key factors that have effects on equipment productivity. Smith (Smith
1999) created a linear regression model to estimate the productivity of earthmoving equipment and
indicated that the bucket volume, truck travel time, number of trucks and haul length are the main
factors that influence earthmoving productivity. Edwards and Griffiths (2000) used a two-layer
CNN to predict the excavator’s output based on the cycle time. They found that the machine weight,
digging depth and machine swing angle (i.e. the angle between digging and loading points) are the
three main productivity influence factors. Similarly, swing angle, machine weight and dig depth
were also 1dentified as the main factors of excavator’s productivity by Edwards and Holt (2000)
and Yang et al. (2003). Tam et al. (2002) predicted the productivity of excavators with a
feedforward neural network based on the factors of relative positions between excavators and
materials, site obstructions, operator’s skill and type of soil. Hola and Schabowicz (2010) combined
the feed-forward propagation network with a conjugate gradient algorithm, and predicted
excavation productivity based on the number of excavators and trucks, excavator bucket volume,
truck loading capacity and type of load material. There are also research works that analyzed the
influence of productivity based on one specific factor. Moselhi et al. (2011) created a decision
support system called WEATHER to estimate the impact of weather conditions on equipment
productivity. Yoon et al. (2014) observed and compared the loading time of the excavators with
respect to the relative position with trucks, and indicated that the horizontal and vertical distances,
and swing angles between the excavator and truck have influence on the loading time. Holt and
Edwards (2015) indicated that the excavator operator’s ability is an important excavator’s
productivity factor, which could impact other factors. They analyzed the relationship between the
operator’s skill levels with excavator’s productivity using Caterpillar hydraulic excavator
productivity model. Then, they increased the productivity estimation accuracy of the model by
adding the operator ability factor. Manyele (2017) used a computer dispatch system to explore the
main factors that influence excavators’ and trucks’ productivity in mine projects. The test results
have shown that the matching between the excavator and truck (i.e. loading position, truck-shovel
combinations) 1s the major factor affecting the loading efficiency, and hence productivity. Salem
et al. (2018) used experts’ investigation and fuzzy model methods to identify and evaluate the
factors affecting the productivity of earthmoving works. The water content of soil, operators’ skills,

snowy road condition, foggy weather, and waiting durations were identified as the most important
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factors of productivity. Seresht and Faye (2019) explored the most influential factors using
interview surveys with construction experts. They identified the positive and negative factors
related to labor and equipment productivities, among which personal protective equipment, past
experience of crew with project configurations, and equipment operator experience are the top
three positive effect factors; oil price and its fluctuations, weather conditions and global economic
outlook are the top three negative factors. Based on the review, the factors that most influence

equipment productivity are listed in Table 2-5.

Table 2-5 Influence factors of equipment productivity

Main factors Influence factors
Excavator Operator ability
Operator fatigue

Bucket volume

Relative positions between excavator and material
Dig depth
Mechanical problems

Truck Bed volume

Travel time (e.g. traffic conditions)
Haul length, slops, road quality

Drniver fatigue

Mechanical problems

Fleet Number of trucks working with an excavator

Relative location of truck with | Swing angle
respect to excavator . .
Relative height

Site conditions Type of soil

Site congestion

Weather Weather

2.7.2 Productivity impact factors analysis with CV-based and sensor-based methods

Some of the reviewed papers have focused on analyzing the influence of different factors on
equipment productivity using the data collected by sensors and cameras from real construction
projects. Both the sensor and CV-based methods have their advantages and disadvantages in
monitoring different kinds of influential factors. The comparison of the factors that can be

monitored with the sensor-based and CV-based methods are shown in Table 2-6.



Table 2-6 Impact factors analysis between CV and sensor-based methods

Methods

Excavator

Truck

Site condition

‘Weather

References

Operator
fatigue

Bucket | Idling
volume time

Cycle
time

Cycle time (load,
haul, idle, dump)

Bed
volume

Travel time (e.g.
traffic condition)

Driver
skill

Number
of trucks

Material
type

Site
congestion

temperature,
wind, humidity

Sensor-
based
methods

[Han et al. (2008)

A

IMontaser et al_ (2012)

A

A

Song and Eldin (2012)

[Kim et al. (2013)

|Ahn et al. (2015)

brahim and Moselhi
2014)

y

IMontaser and Moselhi
2014)

[Vasenev et al. (2014)

IAlshibani and Moselhi
2016)

Song et al. (2017)

Salem et al. (2018)

[Louis and Dunston (2018)

Sabillon et al. (2020)

Vision-
based
methods

IZou and Kim (2007)

[Azar et al. (2013)

Bugler et al. (2014; 2017)

Kim et al. (2018b)

[Kim et al. (Kim et al.
D018¢)

Li et al. (2019; 2020)

[Kim et al. (2019)

[Kim et al. (2020)

IChen et al. (2020a)

Chen et al. (2020b)

V The factor is automatically monitored

A The factor 15 manually monitored
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In the sensor-based methods, GPS and IMU sensors were widely used to estimate the travel
condition (Montaser and Moselhi 2014), idling time (Salem et al. 2018; Ahn et al. 2015), number
of trucks (Alshibani and Moselhi 2016), the cycle time of the equipment, and the speed
(MontaserAli et al. 2012; Sabillon et al. 2020) of the equipment. Typically, the speed of trucks was
also used for monitoring the skill of truck drivers (Ibrahim and Moselhi 2014; Song et al. 2017).

Pressure measurement sensors can be used to measure the soil volume in the bed of trucks (Ibrahim
and Moselhi 2014; Vasenev et al. 2014) and in the bucket of excavators (Kim et al. 2013). In
addition, weather conditions such as the temperature, wind speed, and humidity were also
monitored by sensors to estimate their influence on equipment productivity (Ibrahim and Moselhi
2014; Song et al. 2017). Some sensor-based methods also take the material type (MontaserAli et
al. 2012; Han et al. 2008) and site congestion (Song et al. 2017) into consideration. The related

information was observed by the researchers but not collected by sensors.

The CV-based methods monitor the number of excavators and trucks with detection and tracking
methods (Kim et al. 2018c; Kim and Chi 2020). The cycle time, travel time, and 1dling time of the
equipment can be monitored with activity recognition methods (Azar et al. 2013; Zou and Kim
2007; Kim et al. 2018c; Chen et al. 2020a). Specifically, the travel time and cycle time of the truck
was also monitored with plate number recognition (Kim et al. 2019). In addition, Chen et al. (Chen
et al. 2020b) estimated idling reasons of excavators by analyzing the work states between
excavators and trucks. Li et al. (2019; 2020) monitored the mental fatigue of the operator by

tracking the eye-movement with eye tracking cameras.

Figure 2-20 shows the factors that were monitored in the reviewed papers. Truck cycle time (22%),
number of trucks (13%), excavator cycle time (12%), excavator idling time (11%), and truck travel
time (8%) are the most frequently studied factors. Other factors, such as the relative position of the
excavator with respect to the truck and soil, swing angle, relative height between excavator and
truck, and site congestion are difficult for both the sensors and cameras to capture and have not

been studied with any automatic method.
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Figure 2-20 Factors monitoring in reviewed papers

2.8 Roadmap

Hannus et al. (2003) proposed “Construction Information and Communication Technology (ICT)
Roadmap”, which shows the developments of new and emerging technologies towards information
and communication technology of construction. Following Hannus’s concept, a roadmap about the
automatic equipment productivity monitoring is proposed in this section. The proposed roadmap
focuses on novel research topics of construction equipment productivity management and indicates
future works for research and the industry to take up based on current technologies. As shown in
Figure 2-21, there are mainly three steps toward equipment productivity management at different
time spans: (1) Take-up: leveraging existing technologies; (2) Research and Development (R&D):
developing new technologies that are clearly defined and under explorations; and (3) Emerging:
future works that need potential solutions. The following paragraphs will explain the proposed
roadmap starting from the take-up technologies to the emerging ones.

The take-up technologies have been thoroughly reviewed in this research including: field data
capturing (i.e. CV-based and sensor-based), equipment operation monitoring and equipment

activity recognition (Sections 2.4 and 2.5), and productivity influence factor analysis (Section 2.7 ).
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However, these take-up technologies still have limitations, and further R&D i1s needed to overcome

these limitations as explained in the following.

Equipment detection and tracking. As reviewed in Sections 2.4.1 and 2.4.2, CNN-based
methods have been widely used for equipment detection and tracking. However, the
performance of these methods is highly influenced by the volume of training dataset, light
condition and objects occlusions. Therefore, to overcome these limitations, existing detection
and tracking methods still need to be improved. For example, Kim et al. (2020) proposed
database-free method, which aims to minimize the volume of training data and cost of human
labeling, and maximize the detection performance. In their work, a deep active learning
approach was applied to automatically evaluate and label the unlabeled data based on a small

amount (10%) of manually labelled data.

Equipment ID identification with CV-based methods. Existing CV-based methods can only
detect equipment type, without a specific ID for each equipment, and then use tracking methods
to identify specific equipment. However, tracking methods have ID switch and jump issues
when objects are occluded. Some works (Azar 2016; Feng et al. 2015; Kim et al. 2019) used
marker or license number to identify equipment ID, which are limited in far field conditions.

CV-based ID identification is still in the development stage.

End-to-end activity recognition. In order to recognize activities of multiple pieces of
equipment, existing methods have to use detection and tracking methods to identify and localize
the equipment. In CV, single-stage methods have been proposed to localize and recognize
human activities simultaneously. Kopiikli et al. (2020) created You Only Watch Once
(YOWO) network, which integrated 2D and 3D CNNs, channel fusion and attention module,
and bounding box regression module to localize and recognize 24 classes of human activities
(UCF101-24 dataset) with the accuracy of 80.4%. Liu et al. (2020) improved YOWO by adding
the knowledge distillation method, which can learn long range motion features provided by the
optical flow. The method has been tested on UCF101-24 dataset and achieved the current best

accuracy of 83.5%.

Productivity analysis. Most of the existing papers monitor productivity by calculating the
earthmoving productivity or estimating the idling time of the equipment. However, in order to

improve the productivity of the equipment, the reasons of low productivity should be analyzed
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in detail based on the equipment operation processes. For example, in order to reduce the idling
time, this research (Chapter 5) analyzed the reasons that caused excavators idling by observing

the interactive work states between excavators and trucks.
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Figure 2-21 Roadmap for automatic equipment productivity monitoring

Furthermore, the integration of the R&D technologies can be further developed to fill the needs

of more advanced emerging technologies:

Data fusion technology. Data fusion is a multidisciplinary research area that can combine
advantages from multiple resources, enhance the reliability of the measurements and improve
the results (Shahandashti et al. 2011). Most of the existing works use either CV-based or sensor-
based methods, which have limitations in the application. Some researchers have attempted to
investigate the opportunities of fusing both methods. For example, Sonltani et al. (2018)
indicated that the CV-based method for equipment monitoring cannot get the accurate 3D pose
information, which is essential for safety control. They calibrated the camera to the 3D real
coordinates of the excavator and fused the GPS data with camera data by aligning their
coordinates. As mentioned in the R&D section, the equipment detection and tracking
technologies still have limitations and are under development. Data fusion technology may help
overcome such limitations of objects occlusion and imitated training dataset. To fill the gap of

ID switch and fragmentation errors when objects are occluded in CV-based tracking methods,

48



Cai and Cai (2020) fused the tracking results of CV-based and sensor-based methods by
matching the 3D locations. They first calibrated the stereo cameras and converted the 2D
coordinates of the workers detected in the video frame into 3D coordinates. Accordingly, the
vision-based locations were matched with the sensor-based locations in 3D coordinates system.
Chen et al. (2019) fused the CV-based workers' posture data and UWB-based position data
with a risk matrix. Then, they evaluated the risk of the work based on the positions of the
workers. All aspects of data fusion should be studied in the future to benefit the complementary

data sources (1.e. CV and sensor).

Equipment workgroup identification. Many researchers have indicated the importance of
interactive operation analysis between several pieces of equipment in earthmoving work (Azar
et al. 2013; Biigler et al. 2017). The interactive work analysis can provide comprehensive
explanation about the equipment productivity in complex interaction scenarios (Kim et al.
2018d). Existing works identified loading activity and work cycle of the equipment based on
analyzing the interactive work between excavators and trucks (Biigler et al. 2017). However,
they focused on the specific number of equipment that can be viewed in video frames, which
1s not sufficient to be used in real construction scenarios for analyzing the complete fleet of
equipment. With the development of the equipment ID identification, the workgroup
identification can be performed on specific equipment, which will add more practical value to

equipment productivity monitoring.

Digital twin. The digital twin is new concept of smart manufacturing emerging with the rise of
Industry 4.0, which focuses on reflecting the lifecycle of physical products into virtual data by
using information technologies such as sensors, simulation, and databases (Haag and Anderl
2018). As discussed in Section 2.7, the productivity of equipment is influenced by various
factors. The digital twin can be used to simulate the actual behavior of the equipment in a virtual
environment based on the real-time activity recognition results. Based on the simulation of the
entire operation processes, the factors that may cause low productivity can be found and
avoided in the real project. BIM is a virtual platform which contains digital information of
buildings for enhancing planning, construction, and maintenance over the life cycle. Khajavi et
al. (2019) installed sensors on building facade to collect temperature, humidity and light data
and reflected them in the BIM model with the digital twin technology. They indicated that, in

49



the future, the digital twin may be used to monitor more construction-related issues, such as

equipment productivity, using BIM.

Context analysis. From the previous review in Sections 2.4 and 2.5, both CV-based and sensor-
based methods could extract limited information of the equipment (e.g. location, trajectory,
weather, human factors, and activity) directly from the videos or sensor data. The summary of
factors that can be automatically monitored is shown in Table 2-7. In order to have a
comprehensive understanding of the equipment operation conditions, context analysis is
necessary. For example, to improve equipment productivity, the reasons for low productivity
have to be identified beyond the reasons related to the interaction between the equipment, which
requires analyzing complex context conditions, such as the work states, operator’s
performance, site condition, weather condition, etc. From the review Section 2.7, some factors
have been identified to have important impacts on equipment productivity, but have not been
analyzed using automated methods (e.g. the relative position between the excavator and digging
point, swing angle, relative height between excavator and truck, and site congestion). With the
development of the data fusion methods and context analysis, these factors can be monitored

and analyzed automatically in future works.
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Table 2-7 Factors which can be monitored with CV-based and sensor-based methods

Main factors Influence factors CV-based methads Sensor-based methods
Excavator Operator ability o o
Operator fatigue o o
Bucket volume o
Relative positions between excavator and -\.' N
material
Dig depth o
Mechanical problems o
Truck Bed volume o
Travel time (e.g. traffic conditions) 3 3
Haul length, slops, road quality o
Drniver fatigue o N
Mechanical problems o
Fleet Number of trucks working with an excavator -\.' N
Relative location of truck | Swing angle o
with respect to excavator
Relative height o
Site conditions Type of soil o
Site congestion o N
Weather Weather o

2.9 Summary

The literature was reviewed in fields pertinent to CV-based methods for equipment operation
monitoring, sensor-based methods for equipment operation monitoring, influence factors of

earthmoving work, and activity recognition methods in CV.

The main findings of this review are: (1) The recent works of automatic equipment monitoring are
grouped in two categories of CV-based methods and sensor-based methods considering the data
collection methods. The advantages and limitations of each method have been discussed in detail;
and (2) The existing methods of equipment productivity monitoring are summarized and
extensively discussed from three aspects: (a) estimating the time of a specific activity (e.g. idling,

loading, digging etc.), (b) calculating the productivity of earthmoving in soil volume, and (c)
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analyzing the factor that effect to the productivity. In order to get the productivity information, the

CV-based methods focused on recognizing the activity and number of cycles of the equipment.

Most of the sensor-based methods calculated the locations and poses of the equipment to estimate

their work states. The audio methods analyzed the work state based on the sound of the engine.

After the literature review, the limitations and gaps in current research works are identified

accordingly:

The existing CV-based methods are not efficient to use in the real construction scenario. The
feature-based methods are computationally intensive and cannot be used to recognize
consecutive activities in long videos. Also, the detection-tracking-based methods need to pre-
define the threshold and adjust it with the change of the camera, which is not efficient to be

used.

The precision of the detection-tracking-based methods 1s not enough for further data analysis.
These methods are unable to identify the detailed activity of the equipment, which is essential

for productivity calculation and analysis.

Most of the existing studies are focusing on monitoring or recognizing the activity of one single
piece of equipment. These methods are not sufficient to be applied in real construction projects,
which have numerous equipment working simultaneously.

Previous studies usually focused on equipment activity recognition, however, limited research

work has been conducted to analyze the productivity of the equipment.

There 1s no related research work focusing on exploring the reasons that cause equipment's low
productivity with the CV-based method, which is important for analyzing the operation

performance and improving the productivity of the equipment.

Futhermore, a roadmap is proposed to show the advances in each automatic equipment productivity

monitoring method, and future research directions of this domain are proposed. The roadmap

shows the research paths towards more comprehensive equipment productivity management by

integrating different research areas and leveraging new advancements in computer science.
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CHAPTER 3: OVERVIEW OF THE PROPOSED RESEARCH
FRAMEWORK

3.1 Introduction

In Chapter 2, automatic methods for construction equipment monitoring and productivity analysis
were reviewed, and a roadmap 1s proposed to explore the future research directions for automatic
equipment productivity monitoring. This chapter provides an overview of the proposed research
framework. For excavators’ operation monitoring, a state-of-the-art 3D CNN and sliding window
method are used to recognize the activities of the excavators. Then, the activity information is used
to analyze productivity. Moreover, in order to improve the earthmoving productivity, the

workgroup of excavators and trucks are identified to analyze the idling reasons of the excavator.

3.2 Overview of The Research Framework

Figure 3-1 shows an overview of the proposed framework, which has three components. First, a
comparison between sensor-based and CV-based methods for equipment productivity monitoring
1s conducted, and a roadmap is created to explore the future work directions of automated
equipment productivity monitoring. Then, the activity of multiples excavators in the site
surveillance videos 1s automatically recognized. Finally, the time of each activity of the excavator
1s analyzed to calculate its working cycle and productivity. To improve the productivity of the
excavator by reducing its idling time, the 1dling reasons of the excavator are further identified based

on the interactive operations between excavators and trucks.
3.2.1 Roadmap of automatic equipment productivity monitoring

The objective of this component is to propose a roadmap to illustrate the technology path forward
for automatic equipment productivity monitoring and provide future directions that will support
the development of full automation in monitoring construction equipment. The main tasks of this

component include:
(1) Comparing the automatic equipment productivity monitoring methods.

(2) Proposing a roadmap of equipment productivity monitoring.
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The details of this component are given in Chapter 2.
3.2.2 Excavators activity recognition and productivity analysis

The objective of this component is to propose a method, which can recognize the activities and
analyze the productivity of excavators in the long video sequences. The proposed method first
integrates the detection and tracking technologies to localize all excavators in the video frames.
Second, by analyzing the changes of centroid coordinates and areas of bounding boxes of the
excavators in consecutive frames, idling states are identified. Then, a neural network is trained to
recognize the activities of each excavator into detailed categories (i.e. digging, loading, and
swinging). Finally, the productivity related indicators, such as the time of each activity, the cycle
numbers of the excavator, the duration of each working cycle, and the productivity of the excavator,

are calculated based on the activity recognition results. The main tasks of this component include:
(1) Detecting and tracking the excavators and trucks in video frames;
(2) Recognizing the idling state of the excavator with the sliding window method;

(3) Applying the 3D CNN method to recognize three types of activities of the excavator in the
video (i.e. digging, loading and swinging);
(4) Calculating the duration of each activity, the number of work cycles, and the productivity

of the excavator;

(5) Testing the proposed method in the videos recorded from real construction sites, and

evaluating its performance.
The details of this component are given in Chapter 4.
3.2.3 Idling reasons identification in earthwork operations

This component aims to create a method that can identify the idling reasons of earthmoving
equipment such as excavators and trucks. First, the types of equipment and their positions in video
frames are retrieved from the detection and tracking results. Then, the activities of the excavators
are derived from the activity recognition results. In addition, the camera 1s calibrated to calculate
the 3D global positions of the excavators and the trucks. By analyzing the relative positions of the

excavators and the trucks in consecutive frames, the workgroups are identified. At last, the i1dling
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reasons can be identified by analyzing the activities of the excavators and trucks in the same

workgroup. The main tasks in this component include the following:

(1) Identification of excavators and trucks locations and activities based on the detection and

tracking results.
(2) Calibrating the camera and calculating the real distances between excavators and trucks.

(3) Comparing the distances between each excavator and the trucks and identifying their work
groups.
(4) Identifying the reasons of idling by analyzing the interactive operation states between the

excavators and trucks based on their activities and positions.

(5) Testing the proposed method in the videos recorded from real construction sites, and

evaluating its performance.

The details of this component are given in Chapter 5.

3.3 Summary

This chapter presents an overview of the proposed research methodology. The proposed
methodology includes three main components. Specifically, the first component is to propose a
roadmap based on the literature review to show the technology path and future research directions
of full automation in monitoring construction equipment. The second component is to monitor the
operation process and analyze the productivity of the excavators in the video frames. The third
component is to identify the idling reasons of excavators and trucks and improve the earthmoving

productivity.
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Figure 3-1 Overview of the proposed framework
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CHAPTER 4: VISION-BASED ACTIVITY RECOGNITION AND
PRODUCTIVITY ANALYSIS

4.1 Introduction

As explained in Section 2.4.3, existing CV-based methods still have limitations for automatically
recognizing the activities of construction equipment. For instance, they cannot classify the
activities into detailed categories (e.g. digging, hauling, dumping, etc.) in long video sequences. In
addition, most of existing methods are not able to recognize and analyze the activities when
multiple pieces of equipment are captured simultaneously. Moreover, existing methods just focus
on activity recognition. Their practical values are not well discussed. As a result, it is not clear how

these methods can be used for productivity control in construction projects.

The main objective of this chapter is to propose a framework to automatically recognize activities
and analyze the productivity of multiple excavators. Excavators are selected because they are the
most common earthmoving equipment, and they have various types of activities during their
working process. In this framework, an excavator detector and a tracker are first integrated to
1dentify and locate the excavators in video frames. Based on the changes of the centroid coordinates
and areas of the bounding boxes of the excavators in consecutive frames, 1dling states are identified
and the corresponding frames are cut from the video. Then, 3D CNN is used to precisely recognize
the excavators’ activities and classify them into detailed types (e.g. digging, loading and swinging).
Finally, an algorithm i1s developed to analyze the activity recognition results and calculate the
productivity of the excavators. The feasibility of the proposed framework has been tested and

validated on the construction surveillance videos collected from real construction sites.

4.2 Framework of Excavator Activity Recognition and Productivity Analysis

The framework for multiple excavators’ activity recognition and productivity analysis is shown in
Figure 4-1. The framework contains five main modules: excavator detection, excavator tracking,
1dling state 1dentification, activity recognition, and productivity analysis. First, a detector is used
to identify all the excavators in video frames. The detection results provide two kinds of data, i.e.

equipment type and region. Second, each individual excavator and its trajectory are identified
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through the detection-based tracking. The tracking results return the identification (ID) number and
bounding boxes for each excavator. By analyzing the changes of centroid coordinates and areas of
bounding boxes of the excavators in consecutive frames, idling states are identified. Then, the
activities of the tracked excavators are recognized with a spatio-temporal feature-based 3D CNN
model. Based on the activity recognition and idling state identification results, each video frame is
labeled accordingly. Finally, the productivity of each excavator is calculated by compiling the
activity recognition results. The details about each module in the framework are provided in the

following sub-sections.

4.2.1 Excavator detection

The purpose of this module is to extract the excavators in video sequences. An accurate detection
method is used here to detect multiple excavators in long construction site surveillance videos.
Construction sites have complex working environments, which include various movements of
workers and equipment. In order to isolate each excavator, the excavator detector is used to

precisely get the regions of the excavators in video frames for the activity recognition use.

The Faster R-CNN (Girshick 2015) model was applied to detect the excavators in video frames.
Faster R-CNN i1s selected as it has a high accuracy and low processing time. Additionally,
experimental results of numerous research works have verified the high performance of Faster R-
CNN in various construction objects detection (Luo et al. 2018a; Luo et al. 2018c; Fang et al.
2018a). The Faster R-CNN method includes three main steps. First, a CNN is applied to extract
features of the whole image and produce a feature map. Then, a region proposal network uses the
feature map to select 300 regions that are distinguished from background regions, and may include
target equipment. Finally, the proposed regions are converted to 7*7*512 dimension feature vectors
and passed to the fully connected layer to classify whether the region is an excavator or not. When
the video is taken as the input of the Faster R-CNN model, it will return the type of the equipment
and rectangular bounding boxes, which indicate the regions of the objects in video frames. The
coordinates of bounding boxes from the detection results will be used as the input of the next

tracking module.
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Figure 4-1Workflow of the proposed framework

4.2.2 Excavator tracking

In this module, the most state-of-the-art multi-object deep SORT tracker 1s applied to associate the
same excavators detected in the previous step across all the frames in the video (Wojke et al. 2017).
The deep SORT tracker is selected since it achieved good performance on MOT 16 dataset, and it
could track the objects through long periods of occlusions in the video. The deep SORT tracker
uses both appearance and trajectory information provided by the detection results to track the

excavators in video frames. In the trajectory aspect, the tracker uses a constant velocity model
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(Bewley et al. 2016) to predict the bounding box of the target excavator in the current frame based
on the previous ones. In the appearance aspect, a ten-layer CNN model is used to extract the
appearance features of the region inside the bounding box, and represent it with 128-dimensional
vectors. Finally, the detected excavator in the current frame is related to the predicted bounding
boxes with the Hungarian algorithm (Kuhn 1955). As a result, the same excavator is detected and
matched in different frames. The region for the detected and matched excavator 1s further extracted
and resized to 112 x 112 pixel and input to the activity recognition module. The tracking results
could be considered as several activity tubes, as shown in Figure 4-2. Each tube represents the

exact regions of a certain excavator across the video frames, which is the basis of the next step.

Figure 4-2 Tracking results schematic plot

4.2.3 Idling state identification

The purpose of this module is to identify the 1dling state of the excavators. The workflow of idling
state 1dentification is shown in Figure 4-3. First, the pixel coordinates of all detection/tracking
bounding boxes in X frames of the video are extracted. The centroids (x;, y;) and areas (a;) of the
bounding boxes are calculated. Also, the average area a for all the bounding boxes 1s estimated.
For each video frame, the centroid distance changes (4d;) and area changes (Aa;) between the

current frame and the n#h frame after the current one are calculated using Equations 4-1 and 4-2;

Centroid coordinates change (Ad;) = 3\ (Visn — ¥i)? + (Xiyn — X;)>  Equation 4-1

Area change (4a;) = |a;4, — a;| Equation 4-2
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where (x; y;) and a; are the centroid coordinates and area of the bounding box in frame i.
Moreover, a sliding window with L consecutive frames and the step of one frame is applied to
calculate the standard deviation of distance changes STD(Ad;) and the standard deviation of area
changes STD(Aa;). Figure 4-4(a) and Figure 4-4(b) show an example of changes of distance (4d)
and the concept of sliding window for calculating STD(4d), respectively. If STD(Ad;) 1s less than
d’, and STD(4a;) 1s less than aa, the excavator’s state in that particular frame will be identified as
1dling. The threshold &’ represents a negligible change of the distance between the centroids, and
a 1s a percentage of the average bounding box area so that aa represents a negligible change of the
area. Both d’ and «a are determined based on the resolution of the video and the distance of the

excavator from the camera.
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Figure 4-4 Examples of changes of distance (4d) between centroids of bounding
boxes and the concept of sliding window for calculating STD (4d)

4.2.4 Activity recognition

In the activity recognition task, the latest 3D ResNet (Hara et al. 2018) is used to recognize the
excavator’s activities (e.g. digging, loading, and swinging) in video sequences. The 3D ResNet is
selected since it achieved the best performance of activity recognition task on UCF-101dataset
(Soomro et al. 2012) with 86.5% accuracy, and it could directly get the activity recognition results
from RGB input video frames. The model has the same residual block architecture as the ResNet
(He et al. 2017) but performs the convolution and polling with 3D kernels. It preserves both the
spatial and the temporal information of the activities in the video. All the inputs, kernels, and
outputs in the network are 3D tensors with the dimensions of temporal x height x width (L x H x
W) (Tran et al. 2017). Specifically, the network takes 16 x 112 x 112 video frames as input. The
sizes of the convolutional kernels are 3 x 3 x 3, and the temporal strides are 1 for the first
convolutional layer and 2 for the other layers. First, the tracking results are taken as the input of
the neural network. Accordingly, convolutional kernels are applied on every 16 frames to extract
the spatiotemporal information of the activity. The selection of 16 frames is mainly due to the GPU
memory limit, although the selection of a longer duration may improve the recognition accuracy
of the model (Varol et al. 2016; Hara et al. 2017). At last, each frame is labeled to indicate the
excavator activity after correcting the recognition errors with majority voting, as shown in Figure
4-5. This 1s because excavators usually work continuously and cannot change their activity states
in a short period of time. It was observed that each activity lasts at least 2 seconds during the

operation.
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Figure 4-5 Correction of abnormal activity recognition

The training of the activity recognition model started from fine-tuning the 3D ResNet work
developed by Kay et al. (2017). The fine-tuning 1s to efficiently initialize the parameters of the
model and avoid overfitting. In the training process, the data augmentation technique is used to
extend the size of the dataset by flipping the video frames, shifting the image channels, and shearing
the frame size. In addition, all video clips are fixed at 25 FPS for training, the batch size of the

model was set to 16, and the learning rate was set to 0.001.
4.2.5 Productivity calculation

In this module, a method 1s created to automatically calculate the productivity of the excavator
based on the activity recognition results. In the earthmoving work, excavators usually work with
other equipment, such as trucks and scrapers. For example, an excavator digs the soil and loads it
onto the bed of a truck. When fully loaded, the truck moves the soil to the dumping area and returns
to be loaded again. If the excavator is considered as an independent equipment, its working process
could be broken down into several activities such as soil digging, swinging and loading the truck.
Therefore, a single earthmoving cycle of an excavator could be broken down into four types of
activities: digging, swinging after digging, loading into the dump truck, and swinging for digging.
During the work time, these four types of activities are repeated sequentially, which 1s defined as

a production cycle, as shown in Figure 4-6.
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(b) Swinging after digging

Figure 4-6 Excavator working cycle

In earthmoving, the excavator’s productivity can be calculated with the cycle time and the bucket
payload, as shown in Equation 4-3. Since the bucket payload is given by the manufacturer, the
target of the productivity calculation becomes to determine the cycle time of the excavator. To
simplify the procedure, the two types of swinging (swinging after digging and swinging for digging)
are not distinguished in this research. This way, one excavator working cycle is broken down into

digging, swinging, and loading.

Productivity (LCY/hT) — Cycles x Average bucket payload (LCY)

— Coole Equation 4-3
The time for each cycle is measured following the workflow in Figure 4-7. After the activity
recognition, each video frame is labeled to indicate the activity of the excavator in the frame. The
labels are shown as L; in Figure 4-7. Then, the labels of two consecutive frames are compared. If
they are the same, it means that the activity continues. Therefore, the time for this activity is
increased by 1/FPS (frame per second). If the labels are different, it means that a new activity has
started. The time of the newly recognized activity will increase by 1/FPS. The total time of one
cycle 1s the difference between the start times of two adjacent digging activities.
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Figure 4-7 Workflow of cycle time calculation

4.3 Implementation and Results

In this section, the implementation of the proposed framework is introduced. The activity
recognition model is trained in the Python 3.6 environment, 64-bit Ubuntu 16.04 system with the
hardware configuration of an NVIDIA GeForce GTX 1080GPU and 32 gigabytes. The proposed
framework 1s tested in the Python 3.6 environment, 64-bit Windows 10 system with the hardware
configuration of an NVIDIA GeForce GTX 1070GPU and 32 gigabytes. It could process 15 frames
per second with this configuration.

4.3.1 Training and testing

First, a dataset of videos containing excavators is manually collected. Each video contains one of
the three types of activities: digging, loading and swinging. In order to avoid bias, 351 video clips
were collected from 21 different construction sites, considering site conditions, equipment
viewpoints, and scales and colors of excavators. The detailed information of the dataset is shown
in Table 4-1. First, each video sample in the dataset is annotated with the activities of this video.

Figure 4-8 illustrates the example images extracted from the videos in the dataset.
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Table 4-1 Statistic information of the dataset

o Number of _ Average of Number of
Activity type _ Total time (s) _
videos video length (s) excavators
Digging 122 651 53 19
Swinging 119 440 3.7 21
Loading 110 490 4.5 19
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Then, 30 video clips with the resolution of 1280 x 720 pixels and the duration of 264 seconds were
used to test the performance of the activity recognition model. Each video clip in the test dataset
contains at least one type of excavator’s activity. Two indicators, precision and recall, were applied
to measure the performance of the activity recognition model as shown in Equations 4-4 and 4-5.

These two indicators are widely used to validate the performance of object classification and
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Figure 4-8 Example images extracted from the dataset
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Equation 4-5




where TP 1s the number of true positives, FP is the number of false positives, and FN is the number
of false negatives. More details about the concepts of precision and recall could be found in the
work of Kim et al. (2018d). The comparison of activity recognition results with the ground truth is
shown in Figure 4-9, and the performance of the pre-trained model is presented in Table 4-2. The
recognition precisions for the three activities are: 95% for digging, 86% for swinging, and 84% for
loading. The recall rates are 86%, 93%, and 80%, respectively. The average accuracy of the
recognition 1s 87.6%. The high activity recognition accuracy on test videos, which have various
viewpoints, background noises from other movements, and partial occlusions, validated the

robustness of the proposed method.

In addition, it is worth noting that the model was also applied on a 60.2 min video to recognize
excavator’s activities in the implementation stage and achieved the accuracy of 92.5%. The results
indicate that the proposed method can effectively recognize the consecutive activities of the

excavator in the long video sequences.
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Figure 4-9 Comparison of test results and ground truth values
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Table 4-2 Activity recognition results

Activity Number of activities in the Performance metrics
videos
Total Incorrect |Precision (%)| Recall (%) |Accuracy (%)
recognition

Digging 21 3 95 86 85.7

Swinging 40 3 86 93 92.5

Loading 20 4 84 80 80
Average/Total 81 10 88 88 87.6

4.3.2 Implementation and results

In this section, two case studies were conducted to validate the feasibility of the proposed method

for multiple excavators’ activity recognition.

(1) Case 1: Two excavators without overlapping

In Case 1, the proposed method was used to recognize two excavators’ activities in a 1 min video
(Figure 4-10). In this video, Excavator 1 has 8 activities within 2 cycles, and Excavator 2 has 10
activities within 2.5 cycles. Figure 4-11 shows examples of the activity recognition. The test results

are shown in Table 4-3.

Figure 4-10 Activity recognition under contrast lighting conditions in Case 1
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Start of digging From digging to swinging Start of loading From loading to swinging

Figure 4-11 Examples of activity recognition in Case 1

Table 4-3 Test results and ground truth values of Case 1

Excavator 1 | Cycle 1 | Ground D S LS
truth
Estimation D SD|L |S
Cycle 2 | Ground D S L|S
truth
Estimation D/L | S D
Excavator 2 | Cycle 1 | Ground D S L
truth
Estimation D S L
Cycle 2 | Ground D S L
truth
Estimation D S L[S
Cycle 3 | Ground D S
(partial) truth
Estimation D/L | S

D: Digging; L: Loading; S: Swinging
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The results show that there are four wrongly recognized activities: three for Excavator 1 and one
for Excavator 2. In fact, the errors are mainly due to the bad light conditions as can be seen in

Figure 4-10. The light condition changes drastically in the second half of the video.

(2) Case 2: Two excavators with overlapping

In Case 2, the proposed method was used to recognize two excavators’ activities in a 40 s video
(Figure 4-12). Excavator 1 has five activities within 1.25 cycle, and the Excavator 2 has six
activities within 1.5 cycle. Figure 4-13 shows examples of the activity recognition. The test results

are shown in Table 4-4.

Figure 4-12 Activity recognition with overlapping bounding boxes in Case 2

Start of digging From digging to swinging Start of loading From loading to swinging

REREEFE T

Digging

Figure 4-13 Examples of activity recognition in Case 2
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The results indicate that one activity is wrongly recognized for Excavator 1 because of the
overlapping of the bounding boxes as shown in Figure 4-12. The deep SORT tracker identified a
large bounding box for Excavator 1 fully overlapping with Excavator 2 in 500 frames, which

affected the activity recognition results.

Table 4-4 Test results and ground truth values of Case 2

Excavator1 | Cyclel | Groundtruth |D |S |L |S

Estimation D L |L
Cycle 2 | Ground truth | D
(partial) Estimation D
Excavator2 | Cyclel | Groundtruth |D |S |L
Estimation D |S|L |S
Cycle 2 | Ground truth |D S
(partial) | Estimation D |S

D: Digging; L: Loading; S: Swinging
4.4 Productivity Estimation

Additionally, the proposed framework was also tested to estimate the productivity of excavators
using a long video sequence, which contains 60.2 min of excavator’s operation. Based on the
method of idling state identification explained in Section 4.2.3, the width of the sliding window L
1s selected as 100 frames (equivalent to 4 s with 25 FPS video). The threshold d’ 1s selected as 1
pixel, and & is selected as 1.5% considering possible small changes in the bounding box even
when the excavator is in 1dling state. The test outputs are shown in Figure 4-14. The activity
information is added on bottom of the image including: (1) the activity identified in the current
frame; and (2) the total time of each activity compiled till the current frame. In addition, the last
frame provides the productivity information, which include: (1) the total time of the video; (2) the
number of working cycles; and (3) the productivity of the excavator with the unit of LCY/h.
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Figure 4-14 Examples of productivity calculation results

In the video, the Deere 290G excavator (bucket payload of 1.4 LCY) completed 94 work cycles in
60.2 min with the idling time of 9.7 min and the actual productivity of 131.16 LCY/h. The estimated
total idling state duration 1s 9.1 min, and the estimated productivity i1s 153.48 LCY/h with 110
cycles. The accuracy of productivity calculation is 83%. The test results showed the feasibility of
using the developed framework to analyze real videos of construction projects and to monitor the

operation of excavators.

4.5 Summary and Conclusions

This chapter presented a novel fully automatic vision-based framework for multiple excavators’
operation monitoring and productivity calculation. The framework integrates the detection,
tracking, activity recognition and productivity calculation modules. The detection module
identifies all the excavators in video frames. The tracking module correlates the same excavators
and extracts their regions across the frames in the video sequences. After detecting the idling state,
the activities of each excavator are recognized based on the tracking results. Finally, the

productivity is automatically calculated based on the activity information of the excavators. The
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effectiveness of the proposed framework has been tested on construction surveillance videos, and

the results have shown the feasibility of the proposed framework.

The contributions of this work mainly consist of three perspectives. First, the advanced technology
in computer vision is integrated to recognize continuous activities of excavators in long site
surveillance videos. Specifically, compared with the recent work of Kim et al. (2018b; 2018d)
which could just identify working and idling states of the excavator based on its relative location
with respect to the truck, the proposed method can recognize detailed activities such as digging,
loading and swinging from activities spatial and temporal features. In addition, the proposed
method 1s also superior to another related work of Kim and Chi (2019) in long videos analysis,
since they did not consider the temporal features of the activities. In Kim and Chi’s method,
activities are recognized based on their sequence relations. The method in this chapter can
recognize activities based on both spatial and temporal features that are directly learned from
videos regardless of their sequential relations. In the model training stage, the proposed method
relied on several training strategies, such as fine-tuning, data augmentation and batch size
optimization, to train the detection, tracking and activity recognition models with a limited dataset.
The results of the activity recognition on different excavator sizes and types, various viewpoints
and lighting conditions, and background movements have proved its robustness in construction

environments and provided a solid basis to automate the calculation of the equipment productivity.

Second, the detection, tracking and recognition techniques are integrated to measure multiple
excavators’ operations. In a recent construction activity recognition research, Luo et al. (2018b)
manually specified bounding boxes to start the tracking process, which is not efficient. In this
chapter, a fully automated framework is conducted for excavators’ activity recognition without the

manual input.

Third, a sliding window method 1s applied to identify the idling state of excavators by comparing
the changes of centroid distance and areas of bounding boxes of excavators in consecutive video

frames.

Forth, an automatic method is developed to directly analyze the productivity based on the activity
recognition results. The experimental results on the video with the duration of nearly one hour
supported the feasibility and applicability of the proposed method in practice. Moreover, the

detailed operation information provided by this method, such as the time of each activity and the
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number of work cycles can be further used to help construction managers identify the causes of

excavator’s low productivity from the video.
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CHAPTER 5: AUTOMATIC IDENTIFICATION OF IDLING REASONS
BASED ON EXCAVATOR-TRUCK RELATIONSHIPS

5.1 Introduction

As cameras are recently installed to monitor construction sites, an increasing number of research
studies have been focused on monitoring equipment work productivity by automatically analyzing
surveillance videos with CV-based methods. The recent research work has been focused on
monitoring equipment operations by recognizing the activities or estimating equipment’s
productivity by identifying the durations of activities, such as working, moving and idling.
However, there is no CV-based method to investigate the reasons that cause low productivity
automatically. There are different reasons that cause excavators idling. One important reason is
that the jobsite 1s not properly planned to allow enough maneuvering space for trucks; thus, the
excavator has to wait for the trucks, which should spend long time maneuvering near the excavator.
Therefore, by analyzing the interactive work states of excavators and trucks, the idling reasons can
be identified. Accordingly, based on the specific reason, measurements can be taken to reduce the

1dling time, and consequently to improve the productivity of the excavator.

This chapter aims to develop a CV-based method for identifying idling reasons based on the
interaction analysis between excavators and trucks from construction surveillance videos. First, the
activities of the excavators and trucks are identified using CNN. Then, work groups of excavators
and trucks are clustered. Finally, the relationships between each excavator and the surrounding

truck(s) are analyzed to identify potential reasons that cause the idling.

5.2 Methodology of Idling Reasons Identification

The methodology for idling reasons identification is shown in Figure 5-1, which contains three
main steps. First, the excavators and trucks are detected and tracked to get their locations and
activities in video frames. Second, the excavators and trucks are clustered to analyze their
interactive work states. Third, the potential reasons of idling are identified and justified.
Specifically, the 1dling reasons of the excavators and trucks are classified into five different cases

based on the number, activities and locations of trucks, as well as the interactive work states of the
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excavators and trucks, which are calculated in the previous steps. The details of these three steps
are introduced in the following sub-sections. The methodology of this chapter is based on the
assumption that the equipment does not have mechanical problems and all the operators have no
health issues that may cause idling. These potential reasons of idling are beyond the scope of this
chapter.
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Figure 5-1 Workflow of the working group identification
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5.2.1 Identification of excavators and trucks locations and activities

In the first step, detection and tracking methods are used to extract equipment’s types and
coordinates of bounding boxes in K video frames. You Only Look Once-v3 (YOLO-v3) (Redmon
and Farhadi 2018) detector and multi-object deep SORT tracker (Nicolai et al. 2016) are applied
in this study for equipment detection and tracking, respectively. The YOLO-v3 and deep SORT
are selected for their performance of high accuracy and speed in both computer vision and

applications in the construction domain (Chen et al. 2020a; Luo et al. 2020).

Following the detection and tracking, the working and 1dling states of excavators and trucks are
recognized using the method proposed in Section 4.2.3. Excavators work at a fix position, but they
have obvious shape changes. On the contrary, trucks move between loading and dumping locations,
but have less changes in their shape when they are not moving. Thus, the activities of trucks are
identified based on Ad only without considering the changes of the bounding box area. The
thresholds are selected according to the different characteristics of excavators and trucks working

process. Finally, the activities of equipment are recognized as working or idling.
5.2.2 Excavator and truck clustering

The second step is to cluster excavators and trucks into different groups. In the real earthwork
operations, excavators usually work with nearby trucks. Therefore, excavators and trucks are
clustered based on their distances in video frames. First, the number of excavators P and trucks O
are obtained from detection results. Second, the distances between excavators and trucks in frame
k (dj) are calculated. In order to calculate the distance, the camera is calibrated to get the intrinsic
and extrinsic parameters to transfer the pixel coordinates of equipment to the global coordinates
using Equation 5-1 (Heikkila and Silven, 1997). Where M is the intrinsic parameter of the camera;
R 1s the rotation matrix and 7 is the translation vector of the camera, which are extrinsic parameters;
u and v are the pixel coordinates, s 1s scale factor, which is calculated from M, R and pixel
coordinates as in Equation 5-2. After getting the global centroid coordinates, d, is calculated using
Equation 5-3 (Heikkila and Silven, 1997).

X

Y

u
=R (M7 s |vl —t) Equation 5-1
Z 1
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where (x£, y£, z£), (xk, ¥, zL) are the global centroid coordinates of an excavator and a truck in
frame £, respectively. Accordingly, each truck is grouped with the nearest excavator. A threshold
y1s set for clustering. If the distance between the truck and the excavator is larger than y, the truck

will not be included in the group. yis selected based on the size of the excavator and truck.

5.2.3 Idling reasons identification

The third step is to identify the potential reasons of why the excavators and trucks are idling. These
reasons are summarized into four cases for excavator idling and one case for truck i1dling, as shown
in Table 5-1 and Figure 5-2. All these cases are summarized based on the literature (Zou and Kim
2007; Peurifoy et al. 2009; Ibrahim and Moselhi 2014; Song et al. 2017; Manyele 2017; Kim et al.
2018a), and observing site surveillance videos. In Case 1, there is no truck working with the
excavator, and the excavator is waiting. In Case 2, the excavator is waiting for the truck, which is
maneuvering or moving to the right loading position. In Case 3, both of the excavator and truck are
1dling. In this case, the reason of idling cannot be easily observed from videos. For instance, the
operator of the excavator may be communicating with other workers or workers may be passing
nearby. For Case 2 and Case 3, there are subcases depending on the number of trucks. In Case 4,
there are too many trucks (more than two) near the excavator, which may cause site congestion. In
Case 5, excavator is loading a truck, meanwhile, one or more trucks are idling nearby to reduce the
waiting time of the excavator to load to the next truck. It should be noticed that an excavator
working alone without a truck is considered in a partially productive working state. For each idling
excavator, the number of trucks ¢ in the same group 1s calculated. If there is no truck in the group,
the reason of the idling is classified as Case 1, which indicates that the excavator is waiting for a
truck. When there 1s only one truck in the group, the idling reason is determined by the activity of
the truck. If the truck is moving, the reason is classified as Case 2, which indicates that the
excavator 1s waiting for the truck maneuvering to the loading position. Otherwise, there could be
different reasons that cause excavator’s idling as explained above. Therefore, in this condition, the

reason of excavator’s 1dling is classified as Case 3 (unknown reason). When there are two trucks
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1identified in the group, the activities of trucks have three conditions: both trucks are moving, one
1s moving and the other is idling, or both trucks are idling. These different conditions of trucks’
activities could lead to two reasons of excavator’s idling. If at least one of the two trucks is moving,
the reason is classified as Case 2 (i.e. truck maneuvering). If both trucks are idling, the reason of
excavator’s 1dling is unknown, which 1s Case 3. When there are more than three trucks in the group,
the idling of the excavator is classified as Case 4, which indicates too many trucks causing site
congestion around the excavator. If the excavator is working and two or more trucks are identified
1dling, this indicates that one truck is waiting aside to reduce the idling time of excavator, this case
is classified as Case 5.

Table 5-1 Potential reasons and managerial suggestions of the excavator idling

Case Potential reason Managerial actions suggestions
Excavator | Case 1 | Excavator is waiting and More truck to keep the excavator
idling there is no truck working at capacity
Balanced number of trucks
B Truck cycle time (min)
~ Loading time per truck (min)
Case 2 | One or more trucks are Schedule planning
maneuvering
Case 3 | Unknown reasons (e.g. Observing the video for specific
operator, mechanical suggestion
problem, safety issue)
Case 4 | Congested site with many a. Equipment path planning and
trucks optimization
b. Site organization optimization
Truck idling | Case 5 | One or more trucks waiting | Use less trucks
to be loaded
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Figure 5-2 Conceptual figures for different cases (The arrows indicate the equipment is
moving)

After recognizing the reasons that caused idling, construction managers can take different strategies
to reduce the idling time, as shown in Table 5-1. For Case 1, the idling time can be reduced by
controlling the number of trucks that work with an excavator. In this case, more trucks should be
arranged to cooperate with the excavator to reduce its 1dling time, since the utilization cost of the
excavator 1s higher than the truck. Therefore, to keep the excavator working at capacity, more
trucks are required based on Equation 5-4 (Peurifoy et al. 2009). For Case 2, the optimization of
the schedule, site layout and path of the equipment are needed to reduce the maneuvering time of
the truck. For Case 3, different managerial actions should be taken based on a specific reason. For
example, if there is a mechanical problem, the inspection of the equipment should be arranged
more frequently. If workers are passing nearby, the safety education of the workers should be
improved. For Case 4, the site organization and path planning should be optimized to reduce site
congestion. For Case 5, to reduce the idling time of the truck, fewer trucks should be arranged to

work with an excavator based on Equation 5-4 (Peurifoy et al. 2009).

Truck cycle time (min)

Balanced number of trucks = Equation 5-4

Loading tim per truck (min)
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5.3 Implementation and Case Studies

In this section, the implementation of the proposed method is introduced, and three case studies are
provided to demonstrate the performance of the proposed method. A computer with two NVIDIA
GeForce GTX 1070 GPUs @ 3.4 GHz, 64 GB DDR, and Windows 10 system was used for the

implementation.
5.3.1 Training and testing

First, to get the locations of the excavators and trucks in video frames, the YOLO-v3 detection
model was trained to detect excavators and trucks in the video frames. A dataset containing 1,191
images of excavators and trucks (1,071 excavators, 871 trucks) was created to train the detector. In
the training process, the learning rate is set to 0.1, and an Adam optimizer was used to adjust the
learning rate during each epoch. The batch size was set to 6. It took about 10 hours to reach to the
validation loss not decreasing after 350 epochs. Then, the detection model was tested on the test
dataset with 300 images (362 excavators, 421 trucks). The test results are shown in Table 5-2.
Three indicators, precision, recall and accuracy were calculated to measure the performance of the
activity recognition model. The detection precisions for the excavators and trucks are 98% and
99%, respectively. The recall rates are 93% and 72%, respectively. The average accuracy of the
detection is 82%, which shows that the model has a good ability to 1dentify excavators and trucks

in video frames.

Table 5-2 Detection results

Confusion Predict class Model performance
matrix Excavator| Truck None |Precision (%)|Recall (%)|Accuracy (%),
Excavator 337 2 23 98 93 93
Truck 6 303 112 99 72 72
Average B 82
5.3.2 Case Studies

In this section, three case studies were conducted to validate the feasibility of the proposed method
for 1dling reasons identification. Case Studies 1 and 2 have one excavator working with several
trucks. Case Study 3 has two excavators working with four trucks and was used to test the proposed

clustering method. The test videos used in these case studies contain different idling reasons.
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(1) Case Study 1

In Case Study 1, a video of about 62 min of earthmoving work was used for testing. The video has
the resolution of 1920 x 1080 pixels and the frame rate of 30 fps (110,914 image frames). In this
video, one excavator has 2,645 s idling time and 1,052 s working time. The idling and working
states of the excavator and trucks were 1dentified based on the proposed method. Sensitive analysis
has been done to select the thresholds’ values based on the closest matching results of the idling

time compared to ground truth value. The results are shown in Table 5-3 and Table 5-4.

Table 5-3 Sensitive analysis to choose the threshold L and a (Case Study 1)

L Estimated 1dling Ground truth

(pjgel) time from STD(Ad;) (s)

(s)
2,328 2,645
2,489
2,762
2,413
2,705
2,886
2,278
2,488
2,720

80

100

120

O ] | O 3| W] O 3|




Table 5-4 Sensitive analysis to choose the threshold L and £ (Case Study 1)

L B (%) Estimated 1dling Ground truth
time from STD(Aa;) (s)
()

80 1 1,387 2,645
2 2,783
3 2918

100 1 1,277
2 2,612
3 2,881

120 1 1,264
2 2,208
3 2,836

From the table, the width of the sliding window was selected as L = 100 frames for excavators
1dling states identification. The thresholds 4’ and « of the excavator were selected as 7 pixels and
2% of average bounding box areas. The activity recognition of the truck is the same as the excavator
as explained in the previous section. The threshold of trucks was selected as L = 100 frames, and
d’ =10 pixels. The comparison of ground truths and estimated results are shown in Figure 5-3. The
estimated idling and working times are 2,612 s and 1,085 s, respectively. The error rates are 1.2%

and 3.1%, respectively.
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Figure 5-3 Estimated excavator idling and working time with ground truth (Case Study 1)
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The idling time of the excavator was further analyzed to identify the reasons that caused
excavator’s idling. In this video, there are three reasons of excavator’s 1dling: Case 1 (i.e. excavator
1s waiting for a truck), Case 2 (i.e. excavator 1s waiting for truck maneuvering), and Case 3 (i.e.
unknown reason). The accuracy of the estimated results of these three cases are 99%, 82%, and

98%, respectively, as shown in Figure 5-4. Examples of the results are shown in Figure 5-5.
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Figure 5-4 Results of idling reasons analysis with ground truth (Case Study 1)
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(d) Excavator is working

Figure 5-5 Examples of the results of Case Study 1

The results show that the identification of Case 2 has the maximum error rate of 18%. The errors
are mainly due to the failure of detection of partial appearances of trucks as can be seen in Figure
5-6. This condition appeared from time T=2,535sto T=2540sand T=3,153 s to T=3,156s,

which decreased the estimated moving time of trucks. If the errors of the detection results are
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excluded, the accuracy of Cases 1-3 are 100%, 97%, and 99%, respectively. The confusion matrix
1s shown in Figure 5-7.

Figure 5-6 Example of lost detection for the partial truck (Case Study 1)
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Figure 5-7 Confusion matrix for idling reasons identification (Case Study 1)

The results of Case Study 1 show that during 62 min earthmoving work, the excavator’s idling time
1s 60% of total operation time. The proportion of each case is shown in Figure 5-8. Among these
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three cases, Case 1 consumes 74% of the total idling time, which indicates that a limited number
of trucks were arranged to work with the excavator. By observing the video, it could be noticed
that the average cycle time of trucks is about 20 min, and the loading time per truck is about 4 min.
As explained in the proposed method, the balanced number of trucks should be 5 according to
Equation 5-4.

Case 3 (25%)

Case 2 (1%)

Case 1(74%)

mCasel Case 2 mCase3

Figure 5-8 Percentage of the reasons for idling (Case Study 1)

Case 3 consumes 25 % of the total idling time. From the video time 7= 51 s to 7=1520 s, it can be
observed that the operator of the excavator left the equipment, as shown in Figure 5-9(a). From T
=3,159 s to T'= 3,358 s, it can be observed that two persons were talking near the excavator, and
the excavator started to work after they left, as shown in Figure 5-9(b). In order to reduce the idling
time caused by Case 3, the workers should not be allowed to do non-productive works near the

equipment.
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(b) People talking near the excavator

Figure 5-9 Examples of Case 3 (Case Study 1)
(2) Case Study 2
In Case Study 2, a video of 10 min of earthwork was used for testing. The video has the resolution
of 1280 x 720 pixels and the frame rate of 25 fps (15,000 image frames). In this video, Excavator

1 has 139 s idling time and 461 s working time, and Excavator 2 has 600 s working time. The
method of equipment activity identification is the same as Case study 1. The thresholds of
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excavator are selected d’ = 1.5 pixel and a = 2%, and the threshold of truck was selected as d’ =2
pixels based on the sensitivity analysis. As explained in the proposed method, the thresholds are
based on the resolution of the video and the distance of the equipment from the camera. The width
of the sliding window L was selected as 100 frames. The comparison of ground truths and estimated
results are shown in Figure 5-10. The estimated idling and working times are 143 s and 1057 s,

respectively. The error rates are 3% and 1%, respectively.

5
1200 1061 1057
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200 139 143
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B Ground truth B Estimated results

Figure 5-10 Estimated excavator idling and working time with ground truth (Case Study 2)

The idling time of the excavator was further analyzed to identify the reasons that caused
excavator’s idling. In this video, there are three reasons for excavator’s idling: Case 2 (i.e.
excavator i1s waiting for truck maneuvering), Case 3 (i.e. unknown reason) and Case 4 (i.e.
congested site with many trucks). There is also Case 5 for truck’s idling. All the idling cases
appeared during Excavator 1’s operation. Excavator 2 was working alone. The accuracy of the
estimated results of the four cases are 98%, 75%, 67% and 95%, respectively, as shown in Figure

5-11. Examples of the results are shown in Figure 5-12.
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Figure 5-11 Results of idling reasons analysis with ground truth (Case Study 2)

Figure 5-12 Examples of the results of Case Study 2
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The results show that the identification of Case 4 has the maximum error rate of 33%. The high
error rate 1s mainly due to the failure of detecting trucks under occlusion as shown in Figure 5-13
(truck occluded behind excavator). This situation appeared from time 7= 281 s to 7= 282 s which
decreased the estimated number of trucks. Excluding the detection failures, the accuracy rates of

Cases 2-5 are 96%, 86%, 100% and 99%, respectively, as shown in the confusion matrix in Figure
5-14.
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Figure 5-13 Example of trucks’ occlusion (Case Study 2)
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Figure 5-14 Confusion matrix for idling reasons identification (Case Study 2)
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The results of Case Study 2 show that during 10 min earthmoving work, the excavator’s idling time
1s 31% of total operation time. The proportion of each case is listed in Figure 5-15. Among the
three cases, Case 2 accounts for 80% of total idling time, which indicates the idling is mainly
caused by trucks maneuvering to the loading position. Moreover, there is 420 s idling time of Case
5, which indicates that many trucks were waiting to be loaded. In order to reduce the idling time,
less trucks should be arranged to work with one excavator. In addition, to reduce the idling time

caused by the congested site, more detailed site planning should be made for trucks’ paths.

Cased (3%)

Case3 (17%)

Case2 (80%)

B Casel Case3 W Cased

Figure 5-15 Percentage of the reasons for excavator idling (Case Study 2)
(3) Case Study 3

In Case Study 3, a video of about 11 min of earthmoving work was used for testing. The video
has the resolution of 1920 x 1080 pixels and the frame rate of 20 fps (14140 image frames). In

this video, there are two excavators working with four trucks.

In the activity recognition, the width of the sliding window was selected as L = 100 frames and the
thresholds ¢’ and aof the excavator were selected as 0.7 pixels and 5% of average bounding box
areas, respectively. The threshold of trucks was selected as L = 100 frames, and ¢’ =1 pixel. The
method of equipment activity recognition is the same as Case study 1. The comparison of the
ground truths and estimated results are shown in Figure 5-16. The average error rates of idling and

working states estimation are 1% and 2%, respectively.
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Figure 5-16 Estimated excavator idling and working time with ground truth (Case Study 3)

In order to cluster the trucks with the excavators, the camera has to be calibrated to calculate the
real distance between excavators and trucks. Two checkerboards were printed with square sizes of
20 x 20 cm and 10 x 10 cm for calibration, as shown in Figure 5-17. In the tests, each checkerboard
was placed at different orientations and locations, and recorded by the camera. Finally, 16 images
were selected, based on the visibility of the board, to calculate the mtrinsic and extrinsic parameters
of the camera. The parameters were automatically calculated using Camera Calibration Toolbox
for MATLAB developed by Bouguet (2004). The checkerboard with the squares size of 20 x 20

0.0012 0 —0.8266
cm achieved higher accuracy. The results of M, and R are 0 0.0014 0.2704 |,

0 0 1
0.9958 0.0875 0.2739
—0.0087 —0.2071 0.9782 |, respectively.
0.0913 —0.9744-0.2056
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(b) Checkerboard with 10 x 10 cm squares

Figure 5-17 Examples of two checkerboards for calibration

In the work group clustering step, considering the average size of the excavators (14.8 m x 4.5 m)
and trucks (7 m x 3m), as well as the relative position of the truck with the excavator in this video,
the threshold y was selected as 20 m. The clustering of the excavators and trucks achieved the
accuracy of 100%. Examples of the clustering results are shown in Figure 5-18. In the test video,
Excavator 1 was clustered with four trucks, individually. Excavator 2 was not clustered with any

truck.
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Figure 5-18 Examples of the clustering result

The 1dling time of the excavators was further analyzed to identify the reasons that caused
excavator’s idling. In this video, Excavator 1 had two reasons of excavator’s 1dling: Case 2 (i.e.
excavator 1s waiting for truck maneuvering), and Case 3 (i.e. unknown reason). Excavator 2 had
one reason of idling: Case 1 (i.e. excavator is waiting for a truck), and it worked alone for 378 sec.
The results of idling reasons analysis are shown in Figure 5-19. The accuracy of the estimated

results of these three cases are 96%, 91% and 98%, respectively.
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Figure 5-19 Results of idling reasons analysis with ground truth (Case Study 3)

Examples of the test results are shown in Figure 5-20. From the test results, it can be noticed that
Case 2 and Case 3 each consists of 50% of the total idling time of Excavator 1. The idling time
consists 15% of total operation time. Case 2 was caused by the site condition, because the truck
path was too narrow for positioning. Case 3 occurred in the last 43 seconds, which may due to
operator rest. Excavator 2 had only Case 1, which requires more trucks to be arranged to work with

the excavator.
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Figure 5-20 Example of the results of Case Study 3
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5.4 Summary and Conclusions

This chapter presented a CV-based method to identify the potential reasons that cause excavator’s
1dling. The proposed method consists of three main steps: equipment working and idling states
identification, excavators and trucks group clustering, and idling reasons analysis. The
effectiveness of the proposed method has been tested on three construction surveillance videos.
The implementation results illustrated that the proposed method has a good ability to analyze the
reasons of equipment’s idling from site videos. The summary of the results of the proposed method
on test videos 1s shown in Table 5-5. The method is able to identify four kinds of reasons that cause
excavator’s idling, and one reason of truck’s idling with the average accuracy of 90%. The method

can also quantify the 1dling time associated with each cause.

The main contribution of this chapter is developing a novel CV-based method to automatically
identify the 1dling reasons of excavators and trucks based on their interactive work states. To the
best knowledge of the authors, this is the first attempt to automatically classify the reasons of
equipment’s idling into detailed categories using CV. The proposed method provides an efficient
solution to explore the reasons of low productivity from site surveillance videos, which could
contribute to better understanding of earthmoving productivity under the dynamic and complex
construction site conditions. Furthermore, the in-depth understanding of the low productivity
reasons can further support the cost control and resource allocation in future construction project

management.

Table 5-5 Summary of the test results

_ Accuracy of detection of 1dling reason
Case studies

Case 1 (%) | Case 2 (%) | Case 3 (%) | Case 4 (%) | Case S (%)
Case Study 1 99 82 98 B _
Case Study 2 B 98 75 67 95
Case Study 3 98 96 91 B _
Average 90%
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CHAPTER 6: SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

6.1 Introduction

This chapter first summarizes all the works that have been done in this research. Then, the
contributions and conclusions are introduced in detail. Accordingly, the limitations and future work

of this research is introduced.
6.2 Summary of Research

This research covered the review of the related literature, the existing research gaps, the overview
of the proposed framework, and a detailed explanation of the proposed methods followed by the

implementation to validate the feasibility of the proposed framework.

In Chapter 2, a roadmap is proposed to show the technology path forward for automatic equipment
productivity monitoring and provide future directions that will support the development of full

automation in monitoring construction equipment.

In Chapter 4, a novel fully automatic CV-based framework was proposed for multiple excavators’
operation monitoring and productivity calculation. The framework integrates the detection,
tracking, activity recognition and productivity calculation modules. The detection module
identifies all the excavators in video frames. The tracking module correlates the same excavators
and extracts their regions across the frames in the video sequences. After detecting the idling state,
the activities of each excavator are recognized based on the tracking results. Finally, the
productivity is automatically calculated based on the activity information of the excavators. The
effectiveness of the proposed framework has been tested on construction surveillance videos, and

the results have shown the feasibility of the proposed framework.

In Chapter 5, a CV-based method was proposed to identify the potential reasons that cause
excavator’s idling. The proposed method consists of three main steps: equipment working and
1dling states identification, excavators and trucks group clustering, and idling reasons analysis. The
effectiveness of the proposed method has been tested on three construction surveillance videos.
The implementation results illustrated that the proposed method has a good ability to analyze the

reasons of equipment’s idling from site videos. The summary of the results of the proposed method
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on test videos 1s shown in Table 5-5. The method is able to identify four kinds of reasons that cause

excavator’s idling, and one reason of truck’s idling with the average accuracy of 90%. The method

can also quantify the 1dling time associated with each cause.

6.3 Research Contributions and Conclusions

This research work made the following contributions to the body of knowledge:

(1) A roadmap is proposed to show the advances in each automatic equipment productivity

monitoring method, and future research directions of this domain are proposed. The roadmap

shows the research paths towards more comprehensive equipment productivity management

by integrating different research areas and leveraging new advancements in computer science.

(2) The advanced technology in computer vision is integrated to recognize continuous activities of

excavators in long site surveillance videos. With regard to this contribution the following

conclusions can be drawn:

Compared with the recent work of Kim et al. (2018b) which could just identify working
and 1dling states of the excavator based on its relative location with respect to the truck, the
proposed method can recognize detailed activities such as digging, loading and swinging

from activities spatial and temporal features.

The proposed method 1s also superior to another related work of Kim and Chi (2019) in
long videos analysis, since they did not consider the temporal features of the activities. In
Kim and Chi (2019) method, activities are recognized based on their sequence relations.
The method in this research can recognize activities based on both spatial and temporal

features that are directly learned from videos regardless of their sequential relations.

In the model training stage, the proposed method relied on several training strategies, such
as fine-tuning, data augmentation and batch size optimization, to train the detection,
tracking and activity recognition models with a limited dataset. The results of the activity
recognition on different excavator sizes and types, various viewpoints and lighting
conditions, and background movements have proved its robustness in construction
environments and provided a solid basis to automate the calculation of the equipment

productivity.
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(3) The detection, tracking and recognition techniques are integrated to measure multiple
excavators’ operations. In a recent construction activity recognition research, Luo et al. (2018)
manually specified bounding boxes to start the tracking process, which is not efficient. In this
research, a fully automated framework 1s conducted for excavators’ activity recognition without

the manual input.

(4) A sliding window method is applied to identify the 1dling state of excavators by comparing the
changes of centroid distance and areas of bounding boxes of excavators in consecutive video

frames.

(5) An automatic method is developed to directly analyze the productivity based on the activity
recognition results. The experimental results on the video with the duration of nearly one hour
supported the feasibility and applicability of the proposed method in practice. Moreover, the
detailed operation information provided by this method, such as the time of each activity and
the number of work cycles, can be further used to help construction managers identify the

causes of excavator’s low productivity from the video.

(6) A novel CV-based method was developed to automatically identify the idling reasons of
excavators and trucks based on their interactive work states. To the best knowledge of the
authors, this is the first attempt to automatically classify the reasons of equipment’s idling into
detailed categories using CV. The proposed method provides an efficient solution to explore
the reasons of low productivity from site surveillance videos, which could contribute to better
understanding of earthmoving productivity under the dynamic and complex construction site
conditions. Furthermore, the in-depth understanding of the low productivity reasons can further

support the cost control and resource allocation in future construction project management.

6.4 Limitations and Future Work

Despite the contributions of this work, there are still some limitations to be addressed in future

work as follows:

(1) The activity recognition performance is affected by the detection and tracking results. When
the bounding boxes of two excavators are fully overlapping in the detection and tracking
results, the activity of one excavator maybe affected by the other excavator as shown in Figure

4-12.
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e To improve the robustness of the method, videos taken from more than one camera should

be aligned and applied to recognize the activities.

(2) The light condition of the video also affects the activity recognition result. When the light is
too bright or too dark, it is difficult to recognize the moving features in video frames, as shown

in Figure 4-10.

e To avoid the influence of the bad light condition, the video should be preprocessed by
adding a filter.

(3) It 1s noted that the diversity of the activity dataset 1s limited, which has negative influences on
both recognition and productivity results. For instance, some of the videos in the dataset are
taken from low heights. However, most of the construction surveillance videos are overlooking

from high points.

e In order to train a better performance model for activity recognition, various data collected

from the construction site surveillance video should be added to the dataset.

e To improve the efficiency and optimize excavator’s productivity, the activities of the truck
that works with the excavator should also be recognized. By analyzing the relationship of
excavator’s cycle time with the truck’s position, excavator’s productivity can be optimized
(e.g. by improving the maneuvering). Moreover, by analyzing the cycle time of the truck,
the number of trucks required to keep the excavator working at full capacity can be
calculated. This could be done based on identifying the work groups of excavators and

trucks.

e For the purpose of productivity calculation, having long videos (i.e. about an hour) is
important to capture the variation in cycle times. However, the process of validation long

videos is time and labor intensive. Therefore, more long videos will be tested in the future.

(4) From the case studies’ results, it could be noticed that the error of idling reasons identification
mainly came from previous steps. For example, the failure in detecting partially occluded
appearance trucks has decreased the estimated 1dling time in Case Study 2 (Section 5.2). If the
equipment is not detected, it would be difficult to apply the subsequent idling identification
method.
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e To improve the robustness of the proposed method, more advanced CV-based methods

should be tested in the future (e.g. using multiple cameras).

e To avoid the error caused by overlapped equipment, more than one camera should be

applied.

e To improve the accuracy, the future work can calibrate and align two cameras to detect

excavators and trucks and calculate the 3D geolocation.

(5) The proposed method can just monitor the operation processes between excavators and trucks,

which is not enough for earthwork productivity analysis.

e The method will be expanded to analyze the work states and interactive work between other

types of equipment, such as dozers and loaders.

(6) The activity recognition of the excavator did not include all work states of excavators, which

1s not efficient for monitoring the operation process of the excavator.

e The activity recognition of the excavator can be extended to recognize more detailed
activities, such as the equipment relocation and inspection, which will contribute to a better

understanding of equipment productivity.

(7) In the identification of the idling reasons, there are some unknown reasons in Case 3 that cannot

be determined, such as safety related reasons.

¢ By combining with the worker detection, the proposed method can estimate safety distance
between workers with equipment and explore more detailed information about the idling

reasons.
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APPENDICES

Appendix A. Python Code of Excavator’s Activity Recognition

import torch

from torch.autograd import Variable
import time

import os

import sys

import json

from utils import AverageMeter

def calculate_video results(output_buffer, video_id, test results, class_names):
video_outputs = torch.stack(output_buffer)
average scores = torch.mean(video_outputs, dim=0)
sorted_scores, locs = torch.topk(average scores, k=10)
video_results =[]
for i in range(sorted scores.size(0)):
video_results.append({'label': class_names[locs[i]], 'score": sorted scores[i]})
test_results['results'][video_id] = video_results
def test(data_loader, model, opt, class_names):
print(‘test’)
model.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
end time = time.time()
output_buffer =]
previous_video id="
test_results = {'results": {}}
for i, (inputs, targets) in enumerate(data_loader):
data_time.update(time.time() - end_time)
inputs = Variable(inputs, volatile=True)
outputs = model(inputs)
for j in range(outputs.size(0)):
if not (i= 0 and j = 0) and targets[j] != previous_video_id:
calculate_video_results(output_buffer, previous video id, test results, class _names)
output_buffer =[]
output_buffer.append(outputs[j].data.cpu())
previous_video_id = targets[j]
if (1 % 100) =0:
with open(os.path.join(opt.result_path, '{}.json'.format(opt.test_subset)). 'w') as f:
json.dump(test results, f)
batch_time.update(time.time() - end_time)
end time = time.time()
print('[{}/{} ]\t
'Time {batch time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'".format(
i+ 1, len(data_loader), batch_time=batch time, data_time=data_time))
with open(os.path.join(opt.result_path,
'{}.json".format(opt.test_subset)),
'w') as £
json.dump(test_results, f)
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Appendix B. Python Code of Excavator’s Productivity Analysis

import os
import sys
import json
import subprocess
import numpy as np
from PIL import Image, ImageDraw, ImageFont
# retrive the information of the video
def get fps(video file path, frames directory path):
p = subprocess.Popen('ffprobe {}'.format(video file path),
shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
_, res = p.communicate()
res = res.decode(‘utf-8")
duration_index = res.find("Duration:")
duration_str = res[(duration_index + 10):(duration_index + 21)]
hour = float(duration_str[0:2])
minute = float(duration_str[3:5])
sec = float(duration_str[6:10])
total_sec = hour * 3600 + minute * 60 + sec
n_frames = len(os.listdir(frames_directory_path))
fps =round(n_frames / total_sec, 2)

return fps
#load the activity recognition results
if name ="' main "

result json path = sys.argv[1]
video_root_path = sys.argv|2]
dst_directory_path = sys.argv[3]
if not os.path.exists(dst_directory_path):
subprocess.call('mkdir -p {}'.format(dst directory path), shell=True)
class name path = sys.argv[4]
temporal unit = int(sys.argv[5])
with open(result_json path, 't') as f:
results = json.load(f)
with open(class_name path, '1') as f:
class_names =[]
for row in f:
class_names.append(row{:-1])
for index in range(len(results)):
video_ path = os.path.join(video root_path. results[index]['video'])
clips = results[index]['clips']
unit_classes =[]
if temporal unit = 0:
unit = len(clips)
else:
unit = temporal unit
for i in range(0, len(clips). unit):
n_elements = min(unit, len(clips) - i)
scores = np.array(clips[i]['scores'])
for j in range(i, min(i + unit, len(clips))):
scores = np.array(clips[i]['scores'])
unit_classes.append(class names[np.argmax(scores)])
new_segments =[]
major_list =[]
for i in range(0, len(unit_classes), 4):
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elements = min(4, len(unit_classes) - 1)
major =0
count =0
for j in range(i, min(i + 4, len(unit_classes))):
if count = 0:
major = unit_classes[j]
count = count + 1
elif major = unit_classes[j]:
count = count + 1
else:
count = count - 1
major_list.append(major)
new_segments.append([clips[i]['segment'][0], clips[i+elements-1]['segment'][1]])
print(new_segments)
print(major_list)
new_acti_class =[]
for i in range(len(major_list)):
for j in range(new_segments[i][0], new_segments[i][1]+1):
new_acti_class.append(major_list[i][2:])
subprocess.call('ffmpeg -i {} tmp/image %05d.jpg'.format(video path), shell=True)
fps = get_fps(video path, 'tmp')
per_duration = round(1/fps.2)
#calculate cycle times
dict_all = {"Digging": [0, 0]. "Loading": [0, 0]. "Swing": [0, 0]}
dict_all.setdefault('{}'.format(new acti_class[0], []))[0]=1
for i in range(len(new _acti_class) - 1):
if new acti_class[i] = new _acti_class[i+ 1]:
dict_all.setdefault("{}".format(new acti_class[i]. []))[1]=\
dict_all.setdefault('{}".format(new acti class[i]. []))[1] +1
else:
dict_all.setdefault("{}".format(new acti_class[i]. []))[1]=\
dict_all.setdefault('{}".format(new acti class[i]. []))[1] +1
dict_all.setdefault("{}".format(new acti_class[i+ 1]). [])[0] =\
dict_all.setdefault("{}".format(new acti class[i+ 1]). [])[0] + 1
filename = '/writetotxt.txt'
dig_count=[]
with open(filename, 'w") as f:
for i in range(len(new_acti_class) - 1):
ifnew acti_class[i] !=new_acti_class[i+ 1]:
a=new _acti_class[i] + str(i+ 1)
dig_count.append(a)
fowrite("{} {} \n".format(i + 1, new_acti_class[i]))
fowrite("{} {} \n".format(len(new_acti class) - 1, new_acti_class[len(new_acti_class) - 1]))
dig_count.append(new_acti_class[len(new_acti_class)-1] + str(len(new_acti_class)))
file_name="./writecycle'
c=0
cycle time =[0]
with open (file_name, 'w') as f:
for i in range(1, len(dig_count)):
if dig_count[i][:7] ='Digging'":
c=c+1
cycle time.append(dig_count[i-1][5:])
_dur = int(cycle_time[c])-int(cycle time[c-1])
fwrite("cycle number: {} cycle time: {} \n".format(c, str(_dur*0.04)))
cyc=c
print(cycle time)
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#calculate activity time
num loa=0
num swi=0
num _dig=0
dig_list=[]
swi_list =]
loa_list=1]
total duration =[]
for i in range(len(new _acti_class)):
total duration.append(round((i + 1) * per_duration, 2))
time dig=round(num_dig * per_duration, 2)
time swi=round(num_swi * per_duration, 2)
time loa =round(num_loa * per_duration, 2)
if new acti_class[i] = 'Digging":
mum_dig =1+ num_dig
else:
if new acti_class[i] = 'Swing":
num_swi = l+num_swi
else:
num loa=1+num loa
dig_list.append(time dig)
swi_list.append(time swi)
loa_list.append(time loa)
#calculate productivity and print on the frames
productivity = round((cyc * 60 * 1.74) / 1.1, 2)
for i in range(len(new _acti_class)):
image = Image.open('tmp/image {:05}.jpg'.format(i + 1)).convert('RGBA')
lab_img = Image.new('RGBA', image.size)
font = ImageFont.truetype(os.path.join(os.path.dirname(__file ), 'SourceSansPro-Regular.ttf"), 25)
d =ImageDraw.Draw(lab_img)
textsize = d.textsize(new_acti_class[i]. font=font)
d.text((10, 10), new_acti_class[i], font=font, fill=(0, 2535, 255))
d.text((10, 40), Digging:' + str(dig_list[i]) +'s', font=font, fill=(255. 0, 255))
d.line([(150, 60), (150 + dig_list[i], 60)], fill=(255, 0, 255), width=10)
d.text((10, 70), 'Swing:' + str(swi_list[i]) +'s', font=font, fill=(255, 0, 255))
d.line([(150, 90), (150 + swi_list[i], 90)], fill=(255, 0, 255), width=10)
d.text((10, 100), 'Loading:' + str(loa_list[i]) +'s', font=font, fill=(255, 0, 255))
d.line([(150, 120), (150 + loa_list[i], 120)], fill=(255, 0, 255), width=10)
if i=len(new_acti_class) - 1:
d.text((250, 40), 'Total time:" + str(total duration[-1]) +'s", font=font, fill=(0, 255, 255))
d.text((250.70), 'Cycle:' + str(cyc). font=font, fill=(0,255,255))
d.text((250.100), 'Productivity:' + str(productivity)+ LCY/h', font=font, fill=(0,255.255))
image.paste(lab_img, (10, 10), lab_img)
image = image.convert("RGB")
image.save(‘tmp/image {:05} pred.jpg'.format(i + 1))
dst_file path = os.path.join(dst directory path, video path.split('/")[-1])
subprocess.call('ffmpeg -y -r {} -1 tmp/image %05d_pred.jpg -b:v 1000k {}'.format(fps. dst_file path),
shell=True)
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Appendix C. Python Code of Excavator and Truck Detection and Tracking

from future import division, print_function, absolute import
import argparse

import os

from timeit import time

import warnings

import sys

import cv2

import numpy as np

from PIL import Image

from yolo import YOLO

from deep_sort import preprocessing

from deep_sort import nn_matching

from deep_sort.detection import Detection

from deep_sort.tracker import Tracker

from tools import generate _detections as gdet
from deep_sort.detection import Detection as ddet
warnings. filterwarnings(‘ignore")

def main(yolo.read_type):
# Definition of the parameters
max_cosine distance = 0.3
nn_budget = None
nms_max_overlap = 1.0
# deep_sort
model filename = 'model data/mars-small128.pb’
encoder = gdet.create_box_encoder(model filename.batch size=1)
metric = nn_matching NearestNeighborDistanceMetric("cosine", max_cosine distance, nn_budget)
tracker = Tracker(metric)
#geneate a video object
video_dir="E:\\Chen\\deep_ sort_yolov3-master\\short_out.mp4"
output_path = "E:\\Chen\\deep_sort_yolov3-master'\\GH010016_out.mp4"
video=video_ open(read type.video dir)
video_capture = video.generate video()
video FourCC = int(video capture.get(cv2.CAP_PROP_FOURCC))
video fps = int(video_capture.get(cv2.CAP_PROP_FPS))
video_size = (int(video_capture.get(cv2.CAP_PROP_FRAME WIDTH)),
int(video capture.get(cv2.CAP_PROP_FRAME HEIGHT)))

out = cv2. VideoWriter(output_path, video FourCC, video_fps, video_size)
fps=0
while True:

ret, frame = video_capture.read() # frame shape 640%480*3

# out = ¢v2.VideoWriter(‘output.mp4', -1, 20.0, (640.480))
if ret != True:
break;

t1 = time.time()

image = Image.fromarray(frame)

time3=time.time()

boxs = yolo.detect_image(image)

time4=time.time()

print('detect cost is'.time4-time3)

# print("box_num".len(boxs))

time3=time.time()

features = encoder(frame.boxs)



# score to 1.0 here.
detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)
# Run non-maxima suppression.
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
time4=time.time()
print('features extract is'.time4-time3)
# Call the tracker
tracker.predict()
tracker.update(detections)
for track in tracker.tracks:
if track.is_confirmed() and track.time since update >1 :
continue
bbox = track.to_tlbr()
cv2.rectangle(frame, (int(bbox[0]). int(bbox[1])). (int(bbox[2]). int(bbox[3])).(255,255.255), 2)
cv2.putText(frame, yolo.class names[1]+str(track.track _id).(int(bbox[0]). int(bbox[1])).0, 5e-3 * 200,
(255,255,255),2)
for det in detections:
bbox = det.to_tlbr()
cv2.rectangle(frame, (int(bbox[0]). int(bbox[1])). (int(bbox[2]). int(bbox[3])).(255.0.0). 2)
cv2.imshow(", frame)
out.write(frame)
fps = (fps + (1./(time.time()-t1)) ) / 2
print("fps= %f"%(fps))
if cv2.waitKey(1) & 0xFF = ord('q'):
break

video_capture.release()
cv2.destroyAllWindows()

class video_open:
def init (selfread type,video dir):

#self readtype=read type

ifread type=—'video"
self.readtype=0

else:
selfreadtype=video_dir

def generate_video(self):

video_capture=cv2.VideoCapture(self.readtype)
return video capture

def parse_args():
parser = argparse. ArgumentParser(description="Deep SORT")
parser.add_argument(

"--read_type". help="camera or video",
default="camera', required=False)

return parser.parse_args()

if name ="' main

args = parse_args()
main(YOLO().args.read_type)
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Appendix D. Python Code of Idling State Identification

import codecs
import numpy as np
import xIwt

book = xlwt. Workbook(encoding="uc{-8")

sheet3 = book.add_sheet(u'Sheet3', cell overwrite ok=True)
set_style = xlwt.easyxf('font: name Arial, bold True, height 200;")
sheet3.col(0).width = 256*20

sheet3.col(1).width = 256*20

f=codecs.open('../MOTformat1.txt', mode='r", encoding = 'utf-8') # read coordinates of the equipment
line = f.readline()
line.rstrip('(")
x={]
y=1
while line:
a = line.split(".")
bl =a[2].replace('(.")
b2 = a[5].replace(’).")
xmin = int(b1)+int(a[4])/2
ymin = int(a[3])+int(b2)/2
x.append(xmin)
y.append(ymin)
line = f.readline()
f.close()
dl=[]
for i in range(0.len(x)-1):
d = np.sqrt(pow(abs(y[i+1]-y[i]).2)+pow(abs(x[i+1]-x[i]).2)) #calculate the distance changes in consecutives
frames
dl.append(d)
=i+l
std=]
for i in range(1.len(dl)-100):
dd = abs(round((dl[i+99]-dl[i-1]).3))
std.append(dd)
xstd=]
xarr = np.array(std)
for i in range(len(xarr-100)):
astd = np.std(xarr[i:i+99], ddof=0) # calculate the standard deviation of distance changes
xstd.append(astd)
i=i+1
dd1=0
for item in dI:
sheet3.write(dd1, 3, dl[dd1]. set_style)
ddi+=1
cl=0
for item in xstd:
sheet3.write(cl, 1, xstd[c1], set_style)
cl+=1
book.save('distancel 1.xls")
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Appendix E. Python Code of Transfer 2D Coordinates to 3D Coordinates

import math
import numpy as np

class Perspective transformation:
def init (self):
self.rotation_inverse = np.array([[0.9958, 0.087525, 0.027392937], [-0.008716768, -0.20712564, 0.978235441],
[0.091272854, -0.974368931, -0.205555728]], dtype=np.float32)

self.cam_inverse = np.array([[0.001190775, 0, -0.826559976], [0, 0.001045513, 0.270372976], [0, 0, 1]],
dtype=np.float32)

self.scale = 2989.978231
self transition vector = np.array([[-778.2842947], [2923.387541]. [2634.614225]]. dtype=np.float32)

def transfer 2d to 3d(self, u, v):
pixel coordinates = np.array([[u*2]. [v*2], [1]]. dtype=np.float32)

cam times pixel = np.matmul(self.cam_inverse, pixel coordinates)

cam times pixel t=np.subtract(cam times pixel, self.transition_vector)
scale_in = self scale * cam_times_pixel t

self point = np.matmul(self.rotation_inverse, scale_in)

x_coordinate = (self.point][0], self.point[ 1])[0][0]

y_coordinate = (self.point[0]. self.point[1])[1][0]

return X_coordinate, y_coordinate

def get real distance(self, excavator loc, truck loc):
real distance = math.sqrt(((excavator_loc[0] - truck loc[0]) ** 2) + ((excavator_loc[1] - truck loc[1]) ** 2))
print(real distance)
return float("%.2f" % real distance) / 100
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Appendix F. Python Code of Workgroup Identification

import json

import xIwt

import numpy as np
import cv2

#This script is to group trucks with excavator

book = xlwt. Workbook(encoding="uc{-8")

sheet] =book.add_sheet(u'Sheetl'. cell overwrite ok=True)
sheet3 = book.add_sheet(u'Sheet3', cell overwrite ok=True)
set_style = xlwt.easyxf('font: name Arial, bold True, height 200;")
sheetl.col(0).width = 256*20

sheetl.col(1).width = 256*20

sheet3.col(0).width = 256*20

sheet3.col(1).width = 256*20

exc n=[]
tru_n =[]
with open ('e3.txt', ', encoding="utf-8') as f:
fi=1
for line in f:
value = line[:-1]
x = value.replace("", ")
dl=json.loads(x)
exc = d1['excavator']
tru = d1['truck']

centroid =[]
for item in tru:
xt = int((item[0]+item[2])/2) #centroid of truck (yt.yx)
yt = int((item[ 1 ]+item[3])/2)
ex = int(exc[0][0])#centroid of exc (ex.ey)
ey = int(exc[0][1])
ts =0.5*(exc[0][2]+item[2]) # define threshold
d =np.sqrt(pow((ex-yt). 2)+pow((ey-xt), 2)) # distance between excavator and truck
ifd <ts:
centroid.append((yt.xt))
if len(centroid) !=0:
point = np.array(centroid)
img = cv2.imread("/Users/chen/PycharmProjects/DeepSort/deep_sort/demo/img2/img1
/{}.jpg".format(str(fn).zfill(5)))
for item in centroid:
line = cv2.line(img, item, (ex. ey). (0, 2535, 255). 2)
cv2.imwrite("/Users/chen/PycharmProjects/DeepSort/deep_sort/demo/img3/{} .jpg".for
mat(str(fn).zfill(5)). line) # draw lines between grouped equipment
fn=fn+1
if fn = 141000:
break

print(fn)
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Appendix G. Python Code of Idling Reasons Identification

import xIwt

book = xlwt. Workbook(encoding="uc{-8")

sheet] =book.add_sheet(u'Sheetl'. cell overwrite ok=True)
sheet3 = book.add_sheet(u'Sheet3', cell overwrite ok=True)
set_style = xlwt.easyxf('font: name Arial, bold True, height 200;")
sheetl.col(0).width = 256*20

sheetl.col(1).width = 256*20

sheet3.col(0).width = 256*20

sheet3.col(1).width = 256*20

file=open('C3det1.txt") # open the file of equipment’s activities
dataMat=[]
labelMat=[]
fn=1
for line in file.readlines():
curLine=line.strip().split("\t")
curLine = [x for x in curLine if x 1="]
# the following script is to identify the idling reasons of excavators
if curLine[0] = "Moving': # curLine[0] is the activity of the excavator
fi=fn+1
continue
if len(curLine) >= 4:
¢ ="Case4'
elif len(curLine) = 3:
if curLine[1][=curLine[2]=—"Tdling":

¢ ="Case3'
else:
¢ ="Case2'

elif len(curLine) = 2:
if curLine[1] = 'Tdling":

¢ ='Case3'
else:
¢ ="'Case2'
elif len(curLine) = 1:
c="Case 1"

f = open('ttest.txt'.'a")
fowrite("n{},{}".format(fn.c))
fi=fin+1
if fn = 3566:

break

# the following script is to identify the idling reasons of trucks
if curLine[0] = 'Tdling":
fn=fn+1
continue
if len(curLine) <= 2:
¢ ="Working'
elif len(curLine) =3:
if curLine[1][=curLine[2]=—"Tdling":

¢ ="Case 5"
else:
¢ ="Working"
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