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Abstract

On the Improving of Approximate Computing Quality

Assurance

Alain F.M. Aoun

Concordia University 2021

Approximate computing (AC) has been predominantly recommended for implemen-

tation in error-tolerant applications as it offers a reduced resource usage, e.g., area

and power, for a trade-off in output quality. However, AC implementation has not

been adopted in commercial designs yet as it is still falling short in providing a good

enough quality. Thus, continued research in the field in the field of improving quality

of AC designs is indispensable. In this direction, a recent study exploited the use of

machine learning (ML) to improve output quality. Nonetheless, the idea of quality

assurance in AC designs could be improved in many aspects.

In the work we present in this thesis, we propose a few practical methods to

improve an ML-based quality assurance methodology, which consist of an ML-model

that select the most suitable design from a library of AC circuits. For instance, we

extend the library of AC designs used for the ML-based approach with larger data

path circuits. Larger designs, however, result in an exponential growth of complexity.

Thus we propose the use of data pre-processing in order to reduce this hurdle by

prioritizing designs based on their physical properties.

Another direction of improving AC circuits designs in general, and the ML-based

model in particular is design space exploration (DSE). We therefore propose a novel

DSE that drastically reduces the design space based on the aimed targets for area,

latency and power of the AC circuit. Moreover, even with a narrowed design space,

the number of AC designs to be assessed for their quality could be enormous. Thus,

as part of this thesis, we propose a DSE that uses an intricate mathematical modeling

for designs to assess their quality.

In another effort in improving quality assurance for AC design, we introduce a

highly reliable model that uses a minimal overhead. This work is achieved by us-

ing redundant AC modules to form an approximate quadruple modular redundancy



(AQMR) design. The proposed AQMR is superior to the exact triple modular redun-

dancy (TMR) by offering a better reliability on top of the resource savings resulting

from the implementation of AC.
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Chapter 1

Introduction

In this chapter, we first present the context and motivation behind this thesis

followed by a review for the state-of-the-art and the problem statement. We conclude

the chapter by outlining the main contributions and the organization of the thesis.

1.1 Context

The discovery of transistors in the 20th century and their implementation in com-

puters changed the life on earth forever. Computers nowadays are integrated in day

to day activities, e.g., communication and transportation. This deep integration has

been achievable by reducing feature size, which enabled the fit of more transistors on

a given die. However, this advancement has seen a slower pace in the last few years

and computer architecture design has shifted from solely fitting more transistors to

architecture modifications, such as the superscalar architecture and multicore proces-

sors, etc. These variations in the computer architecture allowed computers to cope

with most of the current demands. Nonetheless, improving some of these advanced

implementations have or will soon reach its saturation and computers might struggle

in the near future to deliver the computation required with the booming of Internet

of Things (IoT) and cloud based services. Furthermore, recent chip famine caused

by COVID-19 pandemic and its impact on many industries, e.g., automotive [1] and

phones [50], demonstrate the vulnerability of chip manufacturing and indicate that a

drastic resource optimization, e.g., transistors used to perform a given process, must

take place. The work in this thesis offers a solution to this dilemma by offering a
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reduced resource usage, i.e., area and power, while preserving an acceptable quality

of service (QoS), i.e., output quality and reliability.

1.2 Motivation

Approximate Computing (AC), which is well known as best-effort computing, is

a nascent computing paradigm that is suitable for error-tolerant applications, e.g.,

search engines [38], multimedia [38] and big-data analysis [42], which do not require

an accurate result. These applications exhibit intrinsic error-resilience due to the

following factors [53]: (i) iterating and noisy input data; (ii) absence of golden or

sole output; (iii) imprecise sense of humans; and (iv) implementing algorithms with

self-healing and error attenuation patterns. Based on these concepts, AC could be

the essence in delivering the computation power required in the future as it offers a

significantly reduced usage of resources.

Diverse approximation techniques in the levels of software and hardware have

been investigated by industry and academia, such as IBM [42], Intel [37] and Mi-

crosoft [10]. AC in hardware results in a reduced area, delay and power requirements

by compromising the accuracy of computation. Such reductions can be achieved by

reducing transistor count, e.g., altering logic gates [17], voltage over scaling [41] or

bit-wise truncation [20]. The development of circuits aiming to deliver approximate

adders, multipliers, dividers have been researched, yet this development has not ma-

tured since the perfect trade off, i.e., Golden Goal, in the four dimensions of AC

design, i.e., area, delay, power and quality, is not achieved so far. Moreover, for cir-

cuits designed with AC in mind, the error persists during the operational-life. Such

error in the circuit is classified as hard-error [46]. Nonetheless, many of the proposed

approximate designs offer promising results in quality assurance and if improved, an

implementation in end-user devices could take place. Thus, future development of

AC circuits should be driven by:

1- Implications of Approximation: Some modifications that result in the design of

an AC circuit could be a little advantageous in some dimensions of AC design, while

being very diminishing in the remaining aspects, e.g., improved latency with deterio-

rated output quality. Hence, the design of approximate circuits is a delicate process

that must be carefully practiced.
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2- Assessing Quality : Output quality assessment and verification of approximate cir-

cuits are open challenges with the quality mainly relying on excessive simulation.

With larger circuits, an exponential growth in time complexity, e.g., possible inputs

combinations of a 16-bit multiplier are 64K times larger compared to the combinations

of an 8-bit multiplier. Reduction in simulation time relies on randomly generating a

limited set of test cases, which could result in misrepresentation of the actual quality.

3- Design Space Exploration (DSE): Most of the proposed designs have been studied

in limited configurations. Furthermore, many variations can take place in these de-

signs, which can generate a large set of undiscovered possibilities. With such large

set of possibilities, the chances of finding a configuration that is near the golden goal

in the four dimensions of an approximation computing design can be considered rea-

sonable.

4- Approximate Failure: An approximate circuit should be designed with the notion

of fail-small, fail-rare or fail-moderate where the approximated output should not

result in a high loss of quality. Thus, the output-reliability must be studied carefully.

Multiple approximate circuit designs have been proposed in the literature, yet

their usage for quality assurance has not matured so far. In the scope of this the-

sis, we propose to improve an existing quality assurance method, along with a new

implementation of AC for quality assurance. In addition, we propose a design space

exploration for approximate circuits.

1.3 Sate-of-the-Art

In this section, we review most relevant literature in the area of quality assurance

and design space exploration, which are closely related to the objective of this thesis.

The literature will discuss the need for AC designs and some of the different tech-

niques discovered so far. Moreover, this section will review state-of-the-art methods

for improving quality assurance of AC designs in particular machine learning based

quality assurance and design space exploration. Nonetheless, when dealing with AC

designs, the main issue is quality assessment. In this area, we will review recent

approaches for mathematical modeling of circuits, which can help assessing quality.

3



1.3.1 Approximate Circuits

Due to the massive explosion in new data, i.e., big-data, for the sake of improv-

ing daily services, e.g., smart-cars, search engines etc., powerful computing machines

are falling short in delivering all computations needed. Thus, creating the idea of

rethinking computer architecture, in order to deliver low power consumption, small

footprint, yet powerful computing machines [28] [30] [42] . Moreover, many applica-

tions are considered error-tolerant where there is no golden or single correct output,

e.g., search engines. Therefore, AC is good trade-off, that can satisfy these require-

ments. Furthermore, AC can be achieved at the hardware or software level.

Research in approximate sub-blocks, e.g., full adders (FAs), is considered a hot

topic in AC circuit design, as their implementation can go beyond the application

of adders. For instance, the work in [43] used approximated FAs proposed in [17] to

design an array multiplier. Another implementation of approximated FAs is building

multiply and accumulate (MAC) circuits as proposed in [29]. Furthermore, research

in this area is important, as multiple sub-blocks can be combined together to form a

larger functional unit. This would generate a large design space to be explored, since

variation at the sub-block level will create different design structure.

For this reason, various approximate hardware designs, specially functional units

for arithmetic modules including adders [4] [17] [58], dividers [12] [20] [23] [36] and

multipliers [19] [39] [43] [59] [61] [60], have been explored for their practical role

in multiple applications. These applications are sporadically tested in computation

intensive yet error-tolerant applications, which are susceptible to an approximation.

The approximation of functional units can be done at different levels of abstrac-

tion, i.e., transistor, gate, register transfer and application. Transistor-level approx-

imation offers the uppermost versatility, since it is the bottom-line of circuit design.

Variations at this level will twist most aspects of the design parameters. The work

proposed in [17] is a good example of transistor-level approximation in order to build

approximate FA. A similar approximation is accomplished on the gate level by Z.

Yang et.al in [58]. Nonetheless, a lower level of abstraction does not guarantee an

outstanding improvement in the four dimensions of AC design simultaneously [28].

The work in [28] shows that a good starting point should be a behavioral study for

smaller sub-blocks. Such step can be considered as a vital assessment when designing

AC circuits, since smaller sub-blocks, e.g., FA, can be used to build larger circuits.
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1.3.2 ML-based Quality Assurance for AC Design

The error in AC designs depends on the applied inputs [25]. This could be taken

care of if the error is known at early design stages. The solution could take one of

the following recently exploited forms: 1) adapting the architecture of approximate

components in form of error-compensation input aware [31]; 2) partial reconfiguration

as a switch among multiple AC circuits as proposed by [30] or [32]. These solutions

rely on machine learning (ML) for quality assurance. ML is a computer algorithm that

builds a model by learning properties of a provided training data. The trained data

generates an ML-model which is then used to predict the outcome of a given input.

ML is a hot topic where algorithms are constantly improved to support a wider range

of models, e.g., decision tree (DT), artificial neural network (ANN) and k-nearest

neighbors (k-NN) [21]. ML-algorithms are used in different types of applications,

e.g., speech recognition and media description [8]. Using ML has been widely used

for quality assurance for big-data where the aim is retrieving relevant information to

assure quality [47]. Similarly, the work in [30] [32] exploited the use of ML-algorithms

for quality assurance in AC designs.

The foundation of the work done in [30] [32] is to have a knob-like setting that

selects the most suitable design based on a provided target output quality (TOQ).

As shown in Figure 1.1 the proposed model is constructed by first designing various

approximate arithmetic modules, which will form a library of approximate designs.

Output quality of all models in the library is then assessed using excessive simulation.

Afterwards, error metrics, e.g., error distance (ED) and peak signal to noise ratio

(PSNR), are quantized for every n-consecutive input entries. The quantized data is

then used as a training data for the ML-algorithm, which will generate a ML-predictor.

The ML-predictor will be provided with the TOQ and input data in run-time, which

will select the most suitable design from a library of designs.

The proposed ML-based quality assurance approaches for AC design could be

improved in many directions, and one of them is a design space exploration (DSE),

which can improve the library of approximate designs.

5



Figure 1.1: ML-Based Quality Assurance for AC Design

1.3.3 Design Space Exploration for AC

Given that the structure of approximate circuits can have multiple configurations,

design space exploration (DSE) can become useful as it offers an automated gener-

ation of possible configurations. For this purpose, some tool have been developed

such as Approximate Units Generator (AUGER) [22] and Automatic Design Space

Exploration and Circuit Building (autoAx) [40], which generates approximate adders,

multipliers, and dividers using a sub-components library [22]. Figure 1.2 depicts how

the AUGER tool allows the designer to provide design specifications, such as bit-

width of the arithmetic unit, least significant bits (LSB) to be approximated, the

sub-blocks type and the number of random samples to be used to measure proba-

bilities of error distances (EDs). The tool generates hardware description language

(HDL) model based on the provided requirements. The generated model is forwarded

to synthesis tool for area, delay and power assessment. In addition, a post-synthesis

is performed in order to have a more accurate power valuation. Finally, Figure 1.2

shows that the designer will manually assess the output quality and check the area,

delay and power usage of the generated structures and choose the design satisfying the

requirements. Nonetheless, a DSE is needed for AC designs, and the implementation

of AUGER uses the simulation of random inputs for quality assessment. However, a

small number of random inputs may not reflect the actual quality of an AC design,

while a large set of samples could be time consuming for large designs.

6



Figure 1.2: DSE for ACusing AUGER Tool [22]

1.3.4 Error Models of Approximate Design

Probabilistic error analysis (PEA) for approximate circuit designs is commonly

used to measure its quality. The foundation of this approach is the assumption of

equiprobability of inputs being logic 0 or 1. This equiprobability is then carried to

study the probability of output bits. An excellent example of quality measurement us-

ing a probabilistic form is proposed in [35], where the authors describe a technique to

build larger approximate arithmetic units recursively from an energy-efficient smaller

component. The probability of error for sub-components is evaluated first. Using a

recursive procedure, this probabilistic behavior is later generalized to a larger arith-

metic unit. However, applying the proposed PEA in [35] to large designs, e.g., 32-bit

multiplier, can be delicate. Moreover, another disadvantage of PEA is the fact that

the output assessment relies on bit-error which can have irrelevant indication in some

cases. For example, if an exact computation resulted in (16)10 while its approxi-

mated version resulted in (15)10, the bit-error would indicate a 0% accuracy while

the arithmetic error distance (ED) is 1. Furthermore, the bit-error could indicate a

high accuracy while ED is large, e.g. (15)10 and (7)10. These extreme cases show that

looking at the bit-error may point in the wrong directions and/or may not indicate
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an absolute behavior of the quality. Nonetheless, the usage of mathematical notions

to asses output quality of AC designs is a deviation in the right direction.

1.3.5 Boolean Calculus Modeling

Calculus modeling for circuits is an alternative approach to model logic circuits,

which can be applied on AC designs in order to asses their quality. This approach

has been researched in the 20th century [26]. This exploration focused on canonical

Boolean vector representation. This work earned the name of “Digital Calculus”

since it merges Boolean calculus and binary vector Boolean calculus. Moreover, the

authors developed the differential and primitives of the proposed equations. This

work was poorly adopted since it lacks wide support by commercial tools for this

type of equations and thus can be burdensome to deal with. Nonetheless, a calculus

modeling for circuits can eliminate the need for excessive simulation, since quality

assessment can be examined using mathematical equations. Hence, an alternative

approach which relies on mathematical approaches that are supported by commercial

tools is crucial.

1.3.6 Modular Redundancy to Improve Reliability

Modern micro-architectural trends and scaling feature size, reduce the susceptibility

of logic circuits to external noise such as radiation or internal noise such as variations

in applied voltages [48]. Such events can result in lifetime damages (hard errors)

[46], or temporary faults (soft errors) [54]. In both cases, the system can be deemed

as malfunctioning. Therefore, error mitigation techniques, such as fault tolerance at

both software and hardware levels are proposed in order to improve quality of service

(QoS). However, the use of these techniques can significantly affect embedded systems

and microprocessors as more resources are required, e.g., area and power.

Error-mitigation can be done in hardware in the fashion of components redun-

dancy, such as double modular redundancy (DMR) and triple modular redundancy

(TMR) [5]. However, error-correction modules will add a significant overhead in terms

of resources, i.e., area, performance and power. To overtake this issue, selective or

partial redundancy is proposed in [54]. This technique will protect sensitive compo-

nents and thus reducing the overhead. Towards achieving a similar goal, the usage
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of AC has been researched in [44]. AC designs are attractive since they are fast and

offer a low resources usage.

TMR is one of the most used technique, which consists of triplicating the module

and adding a voter which will mask error, if one of the three units is faulty. The

downside of TMR, is the 200% increase in area and a similar rate in power. To reduce

overhead, approximate TMR (ATMR) [45] is presented for use at the hardware level.

This work targets loop-based applications where approximation is achieved by using

duplicate circuits that will be used for fewer iterations. Another work of ATMR

is presented in [16] with the usage of an exact unit along with two approximate

units. The realization of the approximate units is achieved by first finding a subset

architecture for the exact unit to build the first approximate unit, followed by a

subset of the approximate unit to generate the second approximate circuit. A good

example that illustrates the realization of this work is an exact unit that computes

Exact = (A × B) + C, while the approximate units compute App1 = (A × B) and

App2 = A. This approach would allow to mitigate errors in a given sub-space. A

similar approach to [45] has been explored in [49], which uses binary decision diagrams

(BDDs) [11] to represent all the functions under consideration when forming the

approximate circuits. Another approach of integrating AC to improve reliability is

proposed in [7], with the goal here to build three different approximated versions

of the exact unit to be used in parallel. Similar approach is used in [6] with the

assumption that the usage of three different approximate units would generate an

exact computation using a majority voter in the absence of errors, with the possibility

of erroneous computation in the presence of a fault. To achieve a better quality, the

usage of four different approximate units is proposed in [14] with the aim to improve

the probability of achieving a better quality in the absence of faults. Even though

the integration of AC has advantages in terms of reducing area and power, it has

seen a limited adoption as it lacks quality assurance since all previously proposed

models are either application specific, e.g., loop based applications, or designed with

the assumption of achieving exact computation in the absence of faults.
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1.4 Problem Statements

Developed AC circuits proved to be powerful in reducing area, delay and power.

However, the best trade-off to achieve the golden goal in the four dimensions of AC

design is not achieved. The list below represents a series of researched work that can

be considered as assets of accomplishing this goal, yet with their respective draw-

back(s) such achievement is paralyzed:

1- ML-Based Quality Assurance [27]: This work, offers a noticeable improvement in

quality. However, its scalability is questionable, e.g., 16-bit multipliers library instead

of 8-bit, since the simulation time for an n-bit multiplier is almost 2n times larger

compared to m-bit multiplier (where n = 2×m). Another challenge is handling the

large set of data to be classified.

2- Design Space Exploration (DSE): One way of improving AC designs is by perform-

ing a DSE. Nonetheless, previous methods of DSE for AC designs do not consider all

possibilities in the design space. Nonetheless, a proper DSE must consider all possible

configurations.

3- Quality Assessment: Output quality assessment is a vital process to any research

in the field of AC. However, using excessive simulation can take an infinite amount

of time. Alternatively, a mathematical approach is proposed in [35] which grants a

small overhead. Nonetheless, this method suffers from inaccuracy in some cases and

can become complex. Thus, research for a different quality assessment method that

has a minimal overhead while offering a solid determination of quality is needed.

1.5 Proposed Methodology

As discussed in the previous sections, AC designs have been proposed and tested

in limited numbers of configurations. Furthermore, the usage of AC proved saving

benefits in area, delay and power, in exchange for reduced output quality. Moreover,

the main method used today to assess quality of AC designs is excessive simulation.

Such method consumes a good amount of time and may not be feasible for large

designs. In this thesis, we aim to improve the quality of service (QoS) with the use

of AC circuits.

Towards achieving this goal, we study a state-of-the-art model [32], which is an

ML-based design select towards the delivery of quality assurance. The study focuses

10



on finding the limits of the proposed model in terms of extending to larger designs.

In addition, a careful examination for further quality improvement is performed.

Based on these studies, we propose a methodology that overcomes the challenges

by using data pre-processing to reduce the training data. Furthermore, if a design

space exploration (DSE) is conducted, the library of approximate designs might be

improved and maybe reduced. Therefore, these changes would benefit the quality of

the proposed design.

Nonetheless, the state-of-the-art DSE generates designs in a limited number of

configurations and relies on excessive simulation to assert quality. To overcome these

disadvantages, we propose a novel DSE that aims to study all possible scenarios, yet

robustly eliminating configurations and thus narrowing the design space. The elimi-

nation is done based on the designer’s targets for area, delay and power. Moreover,

the proposed DSE offers a new mathematical modeling that can be deployed on com-

mercial tools, e.g., Matlab [34]. The modeling will then be used to assess the output

quality of the candidate designs from the reduced design space.

Finally, we propose a highly reliable approximate design to improve quality as-

surance using AC. This design uses the concept of modular redundancy in order to

improve the reliability of logic circuits. The design is an approximate quadruple mod-

ular redundancy (AQMR) and consists of three approximate modules and one exact

module. Figure 1.3 illustrate a general overview of the proposed methodology for

improving AC quality assurance. The methodology consists of black boxes describ-

ing manual operations that the designer must perform by hand, blue boxes represent

implemented computer based processes, while the green boxes are physical outputs

of the individual processes. As the figure shows, the overall methodology consists of

four main classes, with the manual, i.e., traditional, generation of AC designs being

the base for all the remaining work. The other three components are: 1) ML-based

output quality assurance which aims at improving the output quality 2) DSE which

will result in an improved library of AC designs; and 3) quadruple modular redun-

dancy (AQMR) which improves reliability yet offers a minimal overhead by using AC.

These three components complement each other in the direction of improving quality

assurance, i.e., QoS, with the use of AC. For instance, the the ML-based design se-

lector could be enhanced further if an improved library of AC designs is generated by

a DSE. The improvement can take place in some or all of the four dimensions of AC
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Figure 1.3: General Overview of the Proposed Thesis Methodology

design, based on the designer’ inputs to the DSE. Similarly, the AQMR could benefit

in a similar manner by using data resulting from any of the processes for improving

output quality to select the most suitable design. For instance, in Figure 1.3, AQMR

is applied after data reduction and quantization.

The output quality improvement is based ML-based design selector proposed in

the literature [27]. To achieve this improvement, the library of designs is first synthe-

sized and simulated for a complete quality analysis. Thereafter, the data generated

by the simulation is quantized and reduced. The reduction is based on the synthesis

of the designs, which will prioritize designs in the library. Thereafter, reduced and

quantized data is used as a training data for the ML-algorithm, which will generate a

ML-based design selector. The generated selector will be used in runtime to predict

the most suitable design delivering the aimed output quality.

The DSE is a crucial in improving the library of AC configurations. The pro-

posed DSE consists of first identifying the variations in the proposed designs. These

variations will generate a large number of undiscovered configurations. Thereafter,

the library is reduced based on the targets of area, delay and power provided by

the designer. This will generate a smaller library of undiscovered AC configurations.

Finally, the quality of configurations in the reduced library are assessed, with designs
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satisfying target quality carried to form an improved library of AC configurations.

Finally, the improvement in AC design reliability will be achieved with the use

of modular redundancy. As Figure 1.3 depicts, the process that consists of selecting

one configuration of an AC design that is known to have a good metrics in the four

dimensions of AC. The design is then used to built the proposed AQMR.

1.6 Thesis Contributions

In this thesis, the work presented focuses on improving quality assurance when

using AC circuits. The contributions of the thesis can be summarized as follows:

• Extending ML-based quality assurance model proposed in [32] from 8-bit to

16-bit. Moreover, the work improves the output quality by giving a priority

to specific designs. To provide a relevant priority, the designs are synthesized

using Xilinx Vivado [57] with the design resulting in the least power-area-delay-

product (PAPD) given the highest priority [Bio-Cf2].

• A novel DSE that drastically reduces design space based on the designer’s re-

quirements, i.e., resource usage and output quality. The design space reduction

is accomplished in two steps, i.e., area & power optimization and delay opti-

mization. In addition, the presented DSE uses a calculus- based mathematical

modeling for logic circuits which will revoke the use of excessive simulation and

replace it with a pure mathematical examination of output quality. The use of

this modeling remarkably reduces the time needed for quality assessment.

• Improving the quality of circuits by delivering higher reliability with the use

of approximate circuits. This improvement is achieved by using modular re-

dundancy. Moreover, unlike previous implementations of approximate modular

redundancy, the proposed model adapt to the characteristics of AC circuits

and uses a two steps voter. One of the voters is a new magnitude-based voter

[Bio-Cf1].

13



1.7 Thesis Organization

The rest of this thesis is organized as follows: in Chapter 2, the challenges of extend-

ing a previously proposed ML-based quality assurance is presented. Subsequently, we

proposes a solution that reduces the training data with the aim of reducing complex-

ity of constructing the ML-predictor which also reduces the complexity of the design

in runtime. Moreover, this reduction results in an improved output quality. Finally,

the currently known limits of this methodology are discussed.

In Chapter 3, we propose design space exploration by first describing the method-

ology used to reduce design space. Consequently, a detailed explanation of the mathe-

matical modeling is proposed, which includes the reasoning that led to the creation of

the equivalences. Lastly, a practical experiment is conducted to validate the proposed

methodology.

In Chapter 4, a new approach to implement AC circuits in modular redundancy is

proposed. Thereafter, a detailed assessment for resource usage, accuracy and reliabil-

ity are presented. Lastly, Chapter 5 summarizes the thesis and the outlines potential

future research directions.
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Chapter 2

Extended Implementation of

ML-Based Quality Assurance

This chapter represents a detailed description of the challenges in extending the

work in [32], which uses 8-bit multipliers. While 8-bit designs can be used as a proof

of concept; however, extensions to larger designs, e.g., 16-bit functional units, are

required. This chapter also represents a possible solution for these hurdles and the

outcome of the proposed solution.

2.1 Introduction

The proposed model in [32] uses 8-bit array multipliers with variations to its struc-

ture to form multiple approximated configurations. Figure 2.1 shows the structure of

an 8-bit array multiplier which consists of full adders (FAs) and half adders (HAs).

Figure 2.1: Structure of an 8-bit Array Multiplier
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Figure 2.2: Schematic of Conventional Mirror Full Adders [17]

The work in [32] opted for the use of four degrees of approximation: D1, D2, D3 and

D4. The chosen degrees are the number of columns in which the exact FAs are re-

placed with approximated ones. The selected four degrees are: 1) half of the columns,

2) half minus one column, 3) half plus one column, and 4) all columns approximated.

Moreover, the authors of [32] used five well known approximate FAs proposed in [17]

denoted as AMA1, AMA2, AMA3, AMA4, and AMA5, to form five types of approxi-

mate array multiplier. These five approximate FAs resulted from modifications in the

exact mirror FA which is shown in Figure 2.2. The work in [17] is based on removing

one set of transistors at a time to form a new approximate mirror adder (AMA). This

iterative reduction of transistor count leads to a minimum count of two transistors

in AMA5, i.e., two buffers. Thus, the library is composed of 20 designs, i.e., four

degrees and five types, as shown in Table 1. Furthermore, the structure of Design 3

can be seen in Figure 2.3.

Table 1: Library of 20 Static Approximate Designs based on Degree and Type [27]

Approximate Degree
Designs D1 D2 D3 D4

Type

AMA1 Design 1 Design 2 Design 3 Design 4
AMA2 Design 5 Design 6 Design 7 Design 8
AMA3 Design 9 Design 10 Design 11 Design 12
AMA4 Design 13 Design 14 Design 15 Design 16
AMA5 Design 17 Design 18 Design 19 Design 20
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Figure 2.3: Structure of Design 3

As proposed in [32], the modified array multipliers are used to generate a library of

AC designs. Moreover, with the help of machine learning (ML), an ML-based design

selector is developed in order to choose the most suitable design in runtime, which will

deliver the aimed output quality. In the context of extending the models proposed in

[32], we chose the implementation of 16-bit array multipliers, with the same type of

FAs, and a similar approach in the degrees of approximation, which is based on four

levels of column-driven approximation. Lastly, the extended implementation uses the

same error metric, namely PSNR, as used in [32].

2.2 Challenges Extending the ML-based Quality

Assurance for AC

Extending the ML-based quality assurance model proposed in [32] to larger designs

comes with its challenges. Thus, in this section, we will discuss in details the main

challenges, which are:

1- Simulation Time: Simulation time and possible outcomes for larger circuit have a

ratio of more than 1:1. This is due to the fact that larger circuits have more compo-

nents that require more simulation time. For instance, if the 8-bit and 16-bit array

multipliers are to be compared, the 16-bit model is four times bigger in terms of FAs

usage. This overhead alone would imply that the 16-bit simulation would require

roughly four times the time to compute a single combination of inputs. On top of

that, the 16-bit multiplier has more possible inputs (64K times more). Considering

these two facts, it is obvious that the simulation time will be much higher for larger

citcuits.

2- Classifying Diverse and Large Training Data: Machine learning is a computer algo-

rithm that learns to act based on a set of training data. In the proposed model by [32],
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the provided training data is composed of quantized inputs and their corresponding

errors. However, when expanding to larger models, i.e., larger input-width, classifica-

tion can become more challenging. For instance, for 20 approximate 16-bit multipliers,

if simulation data is quantized for every 16 consecutive inputs, i.e., clusters of size

16 × 16, the number of entries for the training data is: 20×(216×216)
16×16

= 335, 544, 320.

Moreover, with each entry containing a set of three data, i.e., two-inputs and corre-

sponding error, the size of the training data to be classified by the ML-algorithm is

almost 1 billion. Errors can be similar in magnitude, and thus the job can be easy for

the classifier. However, the fact that errors can vary in magnitude, cannot be omitted.

Thus, with the growth and possible variance of the training data, the classifier can

easily fail to classify the training data, and hence aborting the process of building a

ML-based design selector.

2.3 Proposed Solution

For ML-algorithms, classifying large and diverse training data is a delicate pro-

cess, since the computation power can be beneficial, yet not a sufficient factor to

build an ML-based predictor. Furthermore, with the exponential growth of data en-

tries mentioned earlier, larger circuits will provoke much more data. To surmount this

challenge, the usage of data pre-processing can be a viable solution, which is often ne-

glected, yet it represents a significant step in the data mining process [15]. The authors

of [32] applied a class of pre-processing (quantizing); however, this pre-processing is

not sufficient to handle the simulation of large circuits. Moreover, modifying the pro-

posed pre-processing by enlarging the array of data to be quantized could potentially

result in a loss of accuracy in the training data and hence might compromise the

proposed quality assurance model. Nonetheless, applying other techniques can aid

in reducing data, yet without the loss of indispensable data. For this reason, the

reduction of entries based on given priority is proposed. A valuable priority for the

AC circuits can be the Power-Area-Delay Product (PADP), with the design offering

the lowest PADP, would have the highest priority. Subsequently, with accordance

to this priority, training data entries are eliminated on the basis of the existence of

designs with the same or better accuracy and a higher priority, i.e., lower PADP.

Additionally, input instances with high accuracy, e.g., PSNR > 70dB, are excluded
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if there exists another instance with high accuracy. Finally, input entries with very

low quality, e.g., PSNR 6 15dB, which are considered worthless in real applications

are also eliminated. This data pre-processing, would keep training data of circuits

with lower PADP, yet offering a better, similar, or high enough quality compared to

circuits with higher PADP. This data-processing resulted in a light-weight training

data, as it will be demonstrated in the next section.

Figure 2.4 depicts the flow of the proposed methodology when extending the work

proposed in [32] to larger models. The methodology consists of first designing a

library of AC designs. These designs are synthesized on the RTL level and prioritized

based on their PADP. Moreover, the models are simulated in parallel computing

using high performance computation (HPC) to generate training data, with this data

being quantized based on consecutive entries to produce quantized training data.

Afterwards, based on the synthesis-based priority, the quantized training data is

reduced, and then sent to the ML-algorithm in order to be classified. The ML-

algorithm will generate a design selector which will predict the appropriate design

based on a given TOQ and the runtime inputs. Finally, it must be noted that the

proposed reduction of training data set may result in a different behavior of the ML-

based design selector. Nonetheless, this modification is accepted since the aim here

is to develop an ML-based design selector that will select the most suitable design

satisfying the TOQ and not the classification of generated data from a data analysis

point of view.

Figure 2.4: Improved ML-Based Quality Assurance
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2.4 Experimental Results

In this section, we conduct experiments in order to demonstrate the performance

gains from applying the methodology proposed in the previous section. The attained

benefits in each stage, are explained in the following subsections.

2.4.1 Simulating Extended Model

The excessive simulation to evaluate the accuracy of 20 designs of 16-bit array

multipliers was conducted on high-performance computing (HPC) server [52]. This

HPC offers 32 physical cores, 512GB of RAM per node and a total of 24 nodes.

The runtime gained access to the full power of this machine, by utilizing all 32-cores

available per node. Furthermore, with the HPC server offering multiple computational

nodes, different models were simulated simultaneously each on a given node, which

drastically reduced the overall runtime. Moreover, the simulation of each model

took between 8 to 10 hours, reduced from 24 days if they were simulated using a

PC. Furthermore, the overall runtime was less than 2 days compared to 1 year and

4 months if it had to be conducted on a PC. This speed-up was achievable due

to the availability of multiple nodes, thus running multiple simulations in parallel.

Moreover, it must be noted that the extension to 32-bit can be deemed impractical

since its projection simulation time would be in the range of 3.4× 1010 to 4.3× 1010

hours when using a similar HPC.

2.4.2 Quantazing & Reducing Training Data

Next, as shown in Figure 2.4, the training data resulting from the excessive simu-

lation is first quantized, which reduced the data from 8.5× 1010 down to 3.35× 108.

Afterwards, the 20 designs are synthesized using Xilinx Vivado [57]. We conducted

the synthesis with an XC7VX330T FPGA from the Xilinx Virtex-7 family [56]. Table

2 shows the synthesis results, i.e. area, power, delay. The power considered in this

study is the FPGA dynamic power and measured in mW, while the area is mea-

sured by two factors represented in the number of slices and lookup tables (LUTs)

used by each of the designs. Finally, the delay is measured in ns and represents the

time required by the slowest output bit. The PADP is computed by multiplying the

sum of the two columns of area, i.e., Slice and LUT, by the dynamic power and delay.
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Moreover, as proposed in the previous section, each design was given a priority, where

the design with the lowest PADP has the highest priority while the design with the

highest PADP has the lowest priority. As shown in Table 2 the design resulting in the

lowest PADP (Type = AMA4, Degree = D4), is provided the highest priority which

is 1. Furthermore, the benefit of AC circuits can be noticeable, since the circuits with

priority 1, has 0.18% the PADP of the exact multiplier. Moreover, the design with

least priority (Type = AMA2, Degree = D1), i.e., approximate circuits with highest

PADP, resulted in a PADP that is 55.63% the value of the exact multiplier design.

Table 2: Design Characteristics of the Approximate Library, i.e., Power, Area, Delay
and Power-Area-Delay Product (PADP)

Design Degree
Dynamic

Power(mW)
Area
(Slice)

Area
(LUT)

Delay
(ns)

PADP Priority

AMA1 D1 290 166 552 18.297 3809.80 19
AMA1 D2 259 165 536 18.472 3353.76 17
AMA1 D3 230 151 487 13.620 1998.6 11
AMA1 D4 52 53 115 7.547 65.93 3
AMA2 D1 318 165 504 18.479 3931.26 20
AMA2 D2 300 153 483 18.690 3560.45 18
AMA2 D3 289 148 473 18.329 3289.49 15
AMA2 D4 98 80 207 8.221 231.22 5
AMA3 D1 309 156 451 17.796 3337.87 16
AMA3 D2 292 147 467 18.876 3204.95 14
AMA3 D3 271 133 415 17.134 2544.54 13
AMA3 D4 93 38 63 7.330 68.85 4
AMA4 D1 268 143 439 15.109 2356.64 12
AMA4 D2 249 128 423 14.434 1980.33 10
AMA4 D3 222 128 413 14.366 1725.39 8
AMA4 D4 32 27 34 6.787 13.25 1
AMA5 D1 287 128 413 14.366 1725.39 8
AMA5 D2 270 99 312 13.989 1552.36 7
AMA5 D3 241 93 255 13.343 1119.05 6
AMA5 D4 74 23 24 6.046 21.03 2

Exact - 473 183 603 19.008 7066.76 -

Consequently, for every distinctive applied input, training data is reduced based

on the set priority. The implementation of the proposed data reduction proposed in

the methodology shown in Figure 2.4 is summarized in the list below along with the

data excluded with each of the three reductions:
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1- Reducing entries based on output quality and priority : 73.11% of data instances

are excluded.

2- Entries with high accuracy, e.g., PSNR > 70, yet a design with higher priority,

i.e., lower PADP, offering similar or higher accuracy: additional 9.96% of the data is

eliminated.

3- Entries with very low accuracy, e.g., PSNR 6 15: additional 7.29% of the data is

reduced.

In total, 90.36% of the data is eliminated resulting in approximately 3.24×107 in-

stances, down from 3.35×108. Table 3 shows the remaining number of training entries

for each of the 20 designs after pre-processing, i.e., quantizing then reducing, data.

From Table 3, it can be noticed that the design with (Type = AMA5, Degree=D4),

i.e., Design 19 in Table 8 has the most number of entries after data pre-processing.

This design is given a priority of 6 as shown in Table 2 and thus has one of the lowest

PADP. Moreover, it can be noticed that designs with low priority, e.g., priorities 15

to 20, have minimal to zero entries after data pre-processing as shown in Table 3.

Finally, it must be noted that this data pre-processing eliminated 7 designs, i.e., zero

training entries, from the library of AC designs, since other designs offer similar or

better quality with better PADP.

Table 3: The Number of Training Entries of each Approximate Design After Pre-

processing

AMA1 AMA2 AMA3 AMA4 AMA5

Degree1 264 12,677 7 441,404 1,859,393

Degree2 0 0 0 29,437 315,541

Degree3 0 0 0 75,752 16,761,883

Degree4 0 1,315,321 1,493,624 4,987,277 2,230,190

2.4.3 Building the ML-Based Design Selector

Based on the proposed methodology of Figure 2.4, the quantized and reduced train-

ing data was sent to the ML-algorithm, in order to build an ML-predictor, that would

select the design that is projected to meet the TOQ. The research conducted in [30]

found out that the usage of decision tree (DT) as ML-algorithm proved superiority
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compared to linear regression (LR), random forest (RF) and neural network (NN) for

the ML-based quality assurance model. Furthermore, over-fitting of training data is

needed since all possible combinations have been generated when simulating the de-

signs. Thus, an ML-algorithm that delivers an over-fitting of training data is needed.

Therefore DT has been chosen and the best algorithm for the ML-based design se-

lector. The DT-modeling was constructed using Classification Learner Toolbox in

Matlab [33]. The generated DT-predictor that will select the appropriate design is

depicted in Figure 2.5, with an accuracy of 83.9%. Moreover, the data was simplified

in order to create a lightweight ML-predictor, and indeed this goal was achieved,

since predictions can be achieved with a minimum of 5 nodes, and a maximum of 9

nodes. Moreover, it is remarkable that when data pre-processing is applied, many

designs were excluded, either for having 0 entries, or a small contribution as shown in

Table 3. However, with such enormous unbalanced contribution for different designs,

it must be noted that the ML-algorithm tend to disregard training data entries with

small contribution, unless a true-fit predictor is set. Nonetheless, a true-fit predictor

would result in unnecessary overhead by the predictor, since the ML-model will have

further nodes and quality improvement that could be intangible.

Figure 2.5: The Structure of the Constructed DT-Model
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2.4.4 Quality Check

In order to assess the design quality, we now test the generated model that uses

the DT-predictor shown in Figure 2.5. For the experimental results, we have chosen

multimedia blending applications based on multiplication as they are known to be

error-tolerant. The two multimedia services chosen are audio and image, with 2×109

and 12× 106 unique inputs, for each of the two applications, respectively. The exper-

imental work is executed with a variation in the TOQ, i.e., PSNR, and a variation in

the numbers of samples used, which are provided to the DT-predictor. The number

of samples vary from 1 sample, to the maximum number of 2n samples. For each run,

the predictor is used once, since the samples are averaged, and thereby, the prediction

is based on this value. To proceed with the multimedia processing, one should under-

stand the physical nature of each of the applications, and its digital representation.

Thus below, the physical behavior is explained, along with their corresponding digital

construction:

1- Characteristics of Audio Files : Sounds can be stored as digital audio in a series

of bitstreams, with each bit representing the physical wave length, i.e., amplitude.

With the use of 16-bits per sample, the amplitude is represented in a more accurate

representation, as a wider range is covered ±28. The database of WAV sound files

available in [9], is a good resource for researchers, conducting experiments in the field

of audio-processing.

2- Characteristics of Image Files : Similar to audio, images are constructed of the

mix in three channels, i.e., Red, Green and Blue (RGB). The 16-bit representation

for images, means that each pixel can take one of 248 unique combination of colors,

since each of the three channels has a set of 216 unique colors, i.e., 216 different red

colors. A library of raw images found in [2] is used in order to have access to 16-bit

images.

The simulation is conducted with a target PSNR ranging from 15dB up to 70dB.

Furthermore, since the ML-selector requires runtime inputs to predict the appropriate

design, switching designs for every computation would defeat the purpose of using

AC. Thus, in order to reduce the overhead of switching among designs, the images

and audio files are sampled with the runtime input being the average of the samples.

The samples are taken in the form of 2n with n varying from 0 up to 12 and 17 for

image and audio processing, respectively. The patterns used to collect 2n samples
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from audio files and images are shown in Figures 2.6 and 2.7, respectively. As these

figures depict, the space is divided after every iteration with the samples taken from

the middle of each of the sub-spaces resulting from the division.

Figure 2.6: Pattern used to Sample Audio Files

Figure 2.7: Pattern used to Sample Images

Multiple runs of audio and image processing are conducted, and the output quality

is monitored. Afterwards, the average quality based on the number of samples taken

is computed. Figure 2.8 shows the quality obtained for audio processing when the

various 2n samples are collected with n varying from 0 to 17. Figure 2.9 shows similar

data for image sampling when collecting 20 to 212 samples, i.e., n varying from 0 to

12. Moreover, both figures provide the target output quality (TOQ) provided to the
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ML-predictor. As shown in Figure 2.8, the audio blending resulted in a measured

quality that is better or equal to the chosen TOQ. On the other side, we can notice

from Figure 2.9 that the actual quality was better than the chosen TOQ for most

of the cases. Furthermore, the simulation shows that additional numbers of samples

does not always imply an improvement in quality. Thus, the number of samples to

be taken must be carefully selected in order to minimize the overhead of sampling.

Finally, it must be noted that the reduction of training data we proposed in this

chapter improved the output quality. This can be noticed in Figures 2.8 and 2.9 since

the actual quality is higher than the TOQ, while the work in [32] resulted in an actual

quality near the TOQ.

Figure 2.8: TOQ versus Obtained Output Quality for Adaptive Audio Blending
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Figure 2.9: TOQ versus Obtained Output Quality for Adaptive Image Blending

2.5 Summary

In this chapter, we studied the extension of previously proposed ML-based quality

assurance [32]. Such extension is hard when dealing with larger designs, e.g., 16-bit

multiplier instead of 8-bit. Nonetheless, the proposed methodology in Figure 2.4 uses

an HPC server [52] to reduce simulation time and introduce, a new reduction to the

training data. Using this proposed methodology, the ML-based model was successfully

extended to support 16-bit multipliers. Moreover, the extension to 16-bit model was

achievable, however with today’s computation power, simulating a 32-bit models or

larger is unpractical as it would require an indefinite amount of time. Moreover, it is

remarkable that the data pre-processing proposed in this chapter resulted in extensive

reduction of training data. This reduction resulted in a simple DT-predictor which

has a small overhead along with an improved output quality.

Nonetheless, the output quality of the ML-based quality assurance could be en-

hanced, if the library of AC designs used is improved. A viable approach to improve

the library is an implementation of a DSE. Such study could also result in a design
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that has an improved metrics in the four dimensions of AC design. If such design

is found, it could be a good solution for circuits where ML-based quality assurance

results in undesirable overhead, e.g., IoT. Moreover, extension to larger designs, e.g.,

32-bit multiplier, could be feasible if the time to assess the quality is reduced. To-

wards this goal, in the next chapter we propose a methodology of a DSE for AC

designs that allows such achievements.
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Chapter 3

Design Space Exploration for

Approximate Circuits

In this chapter, a methodology for design space exploration (DSE) for AC circuits

is proposed. The methodology is based on a new mathematical modeling for circuits,

which allows for a faster assessment of logical circuits.

3.1 Introduction

Research of AC circuits has been concentrated on modifications at the architecture

level. Furthermore, the reported AC architectures such as the work in [32] [43] have

been explored in a small number of structural configurations. Some of the reasons

why the proposed designs are studied in a limited number of configurations are: 1)

common fallacies of circuit approximation; and 2) time required to asses large set of

configurations. In order to illustrate some of the common fallacies and interpret the

proposed DSE for AC, array multipliers are used in this chapter.

One common fallacy is an effort to approximate least significant bits (LSBs) only.

For instance, in order to approximate the array multiplier shown in Figure 3.1, tech-

niques have been based on swapping exact sub-blocks in the right columns with

approximated ones, e.g., replacing exact full adders (FAs) in column 1 to column 15

with approximated FAs. A good example of this approach’s adoption is AUGER tool

[22] and the work in [32]. The objective of this approach is the desire to approximate

LSBs only, which will result in a negligible impact on the output quality. Nonetheless,
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Figure 3.1: Architecture of a 16-bit Array Multiplier

no study has previously shown a direct relation between output quality and the posi-

tion of an approximate sub-component in an AC circuit. Hence, the current approach

used to generate approximate configurations is not accurate as the generated error

can always propagate and has an effect on the most significant bit (MSB) as well.

Moreover, taking into consideration all possible variations in the previously pro-

posed AC designs will generate multi-trillion configurations. Nonetheless, since a

limited number of configurations has been studied, a DSE is indispensable as it can

spot a design with better metrics, i.e., area, delay, power and quality. However, a

DSE requires quality assessment, which can be time consuming if conducted using

excessive simulation when assessing large models, e.g., 16-bit multiplier.

In this chapter, we propose a new DSE methodology, which will allows a vast ex-

ploration of AC circuits that satisfy designers’ requirements, i.e., area, delay, power

and quality. This procedure will reduce the multi-trillion possibilities to a few hun-

dreds of candidate circuits. The proposed methodology is shown in Figure 3.2. As

the figure depicts, the designer must choose the AC architecture, e.g., array mul-

tiplier, and set the aimed area, delay and power usage. In addition, the designer

must identify interchangeable sub-blocks, e.g., FAs, and provide a list of candidates

of approximate sub-blocks along with their synthesis. Based on the designer inputs,
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we will reduce the design space in two phases. The first phase is position indepen-

dent, i.e., optimizing area and power, regardless of the position of the FA or HA

in the array. However, the second is position dependent, i.e., optimizing delay, by

using a genetic algorithm (GA). Such approach is needed since even after the first

reduction, varying positions of sub-blocks, e.g., FA, could change the latency of the

functional unit. Once the design space is reduced, a quality assessment for candi-

dates is required. Thereafter, we use mathematical modeling to establish a quality

assessment. This modeling requires generation of the Boolean output functions of

each configuration. The Boolean functions are then converted to a single decimal

function. This conversion is applied to each of the candidates and will result in a list

of decimal functions. The generated functions are then assessed using mathematical

analysis, e.g., ED and derivatives. Afterwards, the assessment is evaluated in order

to check compliance with the target quality requirement identified by the designer.

If the design satisfies the requirements, the model can be carried for implementation;

otherwise, a further DSE can be conducted.

Figure 3.2: Proposed Design Space Exploration for AC Design

In the remaining of this chapter, we will detail the proposed DSE. Afterwards,

five well-known mirror-based approximate FAs [17] are used for the DSE of a 16-

bit array multiplier. Furthermore, unlike previous works [32] [43], different types
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of approximated FAs are used in a given multiplier. Moreover, the accuracy of the

generated multipliers are assessed based on image and audio blending applications.

Finally, a brief study on different AC architectures is exhibited.

3.2 Design Space Reduction

Finding optimal AC circuits for large arithmetic units, e.g., 16-bit multiplier, is

challenging since these circuits can become complex, and many variations can occur.

For instance, an n-bit array multiplier contains [(n− 1)2 − 1] FAs and n half adders

(HAs). For the rest of this chapter, the HA is assumed to remain indifferent. For

a case of a 16-bit array multiplier, with five types of approximate FA to be used,

5224 = 3.7 × 10156 possible configurations could be generated. Studying all potential

configurations is unrealistic with today’s computers and could take forever. For this

reason, we use a two-phases reduction which can be classified in as follow:

1- Optimizing area and power (position independent)

2- Optimizing delay using genetic algorithm (position dependant variable)

Since the proposed optimizations are based on the configuration characteristics,

i.e., area, delay and power, a synthesis is required. However, performing synthesis

using third-party tools, e.g., Synopsys Design Vision [51] and Xilinx Vivado [57],

may result in communication overhead among the tools and the DSE. In addition,

synthesis using such tools can actually be slow especially when certain factors, such

as routing optimization, are considered. For this reason, a fast synthesis that neglects

advanced factors, e.g., optimized routing, is proposed. Towards this goal, synthesizing

sub-blocks, i.e., FA, must be conducted first. The results of the synthesis, i.e., area,

delay and power, are then used as a sum of product to estimate area and power, while

the delay is assessed as a lumped value of sum or carry signals. For instance, for the

array multipliers in Figure 3.1, the propagation delay of the circuit is computed by

first evaluating the time to generate the sum and carry for each series of FAs in the

first row. Thereafter, in each of the subsequent rows, the latency of each FA is added

to the arrival time of the slower input signal, i.e., sum signal from the top-side and

carry signal from the right-side.

The rest of this section will show the steps of our proposed methodology, by

first synthesizing sub-block, then finding candidate circuit configurations that meet
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targets, i.e., area and power. Afterwards, configurations meeting target delay are

retrieved with the help of a proposed genetic algorithm. Finally, the generated designs

are modeled using arithmetic formulation. The models are used for quality assessment

and final synthesis. For the sake of simplification, for the rest of this chapter, the

symbols n, q and T will be used as a reference to input bit-width, quantity of a given

FAs and target metric, respectively.

3.2.1 Position-Independent Constraint

The area and power of a given array multiplier are position-independent of the

sub-components but only relate to n and q. This constraint can be illustrated in the

the array multiplier shown in Figure 3.1 when a given approximate FA is placed in a

different position, i.e., change of row and/or column, where the total area and power

are assumed to remain constant. Since the position does not count, search space is a

combination of unordered sampling with replacement [55]. Following this approach,

one or more circuit configuration(s) would fall under a single category, since they

share the same metric, i.e., total area or total power. Thus, design space reduction

is performed at an abstract level by eliminating categories not meeting the target

metric. Subsequently, two sets of candidates, namely SA and SP , are formed where

each set satisfies its corresponding target, i.e., area and power. Finally, a set named

S is constructed by finding the intersection of both SA and SP . This step is essential

since we have to satisfy the area and power requirements simultaneously.

3.2.2 Position-Dependent Constraint

Unlike area and power, delay constraint depends on the position of sub-blocks, e.g.,

FA, since the changes in circuit configuration could result in different propagation

delay. For a given candidate chosen from the set S satisfying both area and power

constraint, the total number of unique configurations that can be formed by relocating

sub-blocks follow the form of permutations with repetition. This permutation will

result in one possible configuration if all sub-blocks are of the same type. On the other

hand, this permutation would generate the maximum number of unique configurations

if the load is evenly distributed through different types of sub-blocks, i.e, q0 = q1... =

qn. For the case of 16-bit a array multiplier with five types of approximate FAs,
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the maximum would be: max = 224!
45!×45!×45!×45!×44!

≈ 1.03 × 10152. Given the fact

that a candidate set can have a large number of possibilities, studying all potential

circuit configurations can be time consuming. To overcome this challenge, the first

step is to understand the behavior of the delay. Towards this goal, the delay is

monitored for a chosen set when the positions of sub-blocks are shuffled multiple

times. Figure 3.3 shows the frequency of occurrence of a given delay for randomly

generated configurations, i.e., random shuffling positions of sub-blocks. From Figure

3.3 it is noticeable that the delay has a normal distribution characteristic. For the sake

of simplification, the delay is always assumed to follow a normal distribution trend

when generating random design structures. Thus, at least half of the possibilities

could be disregarded, since the chances of finding a circuit that has good quality, yet

a delay less than the average are great (half of the set-space). With this assumption,

the next step is to find an appropriate method that finds the circuit configurations

meeting the target delay. For this, we propose an innovative method based on a

genetic algorithm (GA). Moreover, this method will allow the designer to control the

time spent searching for the appropriate circuit. The proposed GA consists of the

following main steps:

1- Randomly placing sub-blocks.

2- Search for the longest (L) and shortest (S) paths and find the propagation delays

DL and DS for (L) and (S), respectively.

3- Find uncommon FAs in (L) and (S) paths.

4- Swap an uncommon FA that is known to have high latency from (L) with low

latency FA from (S) paths.

5- If the new DL becomes larger, revert the modification and repeat step 4 with

another combination of FA.

6- Loop to step 2 for α-iterations.

7- If DL < TD (target delay), then save the circuit configuration, and loop to step 1

for β-times.

8- Sort and save all circuit configurations or few best in case of a large set.

Using this genetic algorithm will intensely reduce the time finding circuits meeting

the target delay. In addition, designers can control the search time by changing α

and β which are the loop bounds for the genetic algorithm.
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Figure 3.3: Frequency of Delay for 1 Million Randomly Generated Configurations

3.3 Mathematical Modeling

The quality assessment of AC circuits has been mainly based on excessive simu-

lation [22] [28] [30]. However, as proven in the previous chapter, this can consume

a large amount of time, which would make the usage of such method impractical.

Furthermore, research conducted in [35] offered an alternative to assess quality based

on bit-error. Nonetheless, the proposed method can fall short in offering a relevant

assessment. Moreover, its application can fail if smaller blocks are not modeled at

first hand, and then generalized.

In this section, a mathematical modeling that can be applied to any logic circuits

(AC circuits included) is proposed. This model will generate a function in the form of

Z = g(X, Y ), where X and Y are the applied inputs, and Z is the expected output.

The function g(X, Y ) can be used to assess quality. For instance, since a similar

function f(X, Y ) for exact computation is already in place, e.g., f(X, Y ) = X × Y

for exact multiplication, then ED = |f(X, Y ) − g(X, Y )|. To achieve this goal, the

following mathematical models are needed:

1- An order 1, O(1), Decimal to Binary converter.

2- Equivalence of logic gates in arithmetic calculus.

3- An O(1) Binary to Decimal converter.

If the above mathematical models are in place, then any logic circuit can have a

mathematical representation that offers an arithmetic-based relation between inputs

and output. The binary to decimal conversion currently in place is enough, i.e.,
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(D)10 =
∑n

i=0 Zi × 2i with (D)10 being the decimal number while Zi is a binary

number. Thus, a work that achieves 1 and 2 from the list above is needed. The

following subsections will focus on the decimal to binary conversion and logic gates

equivalence.

3.3.1 Decimal to Binary

Conversion from base 10 to base 2 can either be done by dividing the number in

base 10 by two and checking for the remainder with the first output being the LSB,

or subtracting the biggest possible power of 2 with the first output being the MSB.

In this work, the first approach is used. When dividing by 2, the remainder will be

either 0 or 1, which would identify the n-th bit computed. Moreover, a remainder

0 is equivalent to the number being even; otherwise, it would be an odd number.

On the other side, this provides an interesting property when the number is divided

by two. This property can be noticeable in the fraction part of a number x, i.e.,

frac(x) = x − bxc. It can be noticed that when dividing a number (integer or

floating-point) by two, the result of frac(x) will belong to one of two intervals. If

the number is even, then frac(x) ∈ [0; 0.5[ while the division of odd numbers would

result in frac(x) ∈ [0.5; 1[. Thus, this interesting property can be used to form a 1:1

relation between the binary conversion and frac(x).

Since frac(x) will always belong to one of the two fixed domains, then a periodic

function can form a relation for decimal and binary representation. The trigonometric

function sin is a periodic function, where its period can be manipulated. Furthermore,

any function or number, if divided by its absolute value (given that the absolute value

is none-zero), the result will be either -1 or 1. Using these notions, the function h(x)

below is proposed.

h(x) = − sin(2πx)

|sin(2πx)|
(1)

The graphical representation of h(x) is shown in Figure 3.4. It can be noted that

the proposed h(x) function will provide a constant value, i.e., 1 and -1, for all x.

Moreover, the constants have the a similar pattern compared to frac(x) for all values

in the domain of x.
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Figure 3.4: Graphical Representation of the proposed h(x)

Since the binary numbers are 0,1 instead of -1,1; and x is a result of division by

2n, the function h(x) proposed in Equation 1 shall be transformed. In this case, x

shall be replaced with a division of the number X by 2n. Furthermore, the equation is

undefined if frac(x) = 0.5 or frac(x) = 1. For this reason, a small positive number,

i.e., ε shall be added to the argument of sin. The equation that adapts to all these

conditions is shown in Equation 2. Thus, the n-th bit representation of a decimal

number X can be computed by replacing the corresponding values in Equation 2.

k(X) = 0.5

(
1−

sin
(
πX
2n

+ ε
)∣∣sin (πX

2n
+ ε
)∣∣
)

(2)

In Table 4 the conversion of (19)10 to its binary representation is shown. The

binary output, can be computed by replacing (X/2n) with its value in Equation (2).

It can be noted that at a certain point, the division by 2n will result in a zero when

the proposed conversion is used. The conversion using Equation (2) from decimal

to binary has been tested for all X ≤ 216, and showed compliance with traditional

methods of conversion.

Table 4: Decimal to Binary Conversion for X = 19

n 1 2 3 4 5 6 7 8

X/2n 9.5 4.75 2.375 1.1875 0.59375 0.29688 0.14844 0.07422

frac(X) ∈ [0; 0.5[ No No Yes Yes No Yes Yes Yes

frac(X) ∈ [0.5; 1[ Yes Yes No No Yes No No No

Binary Output 1 1 0 0 1 0 0 0
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3.3.2 Logic Operators Equivalence

After the decimal to binary conversion, the next step is to figure out the Boolean

operators equivalence in arithmetic calculus. For instance, the Boolean operation

Z0 = X0 ∨ Y0, Z0 can be written in terms of the decimals X and Y by converting

X0 and Y0 using the Decimal-Boolean equivalence proposed in the previous section.

Nonetheless, Z0 cannot be considered an arithmetic equation, since the OR operator

is logic. Towards this goal, we propose the equivalences in Table 5. Using these

equivalences, Z0 can now be converted to pure arithmetic equation, i.e., Z0 = X0 +

Y0 − (2×X0 × Y0).

Table 5: Logic-Arithmetic Equivalence

Gate Boolean Operator Arithmetic Equivalence
Inverter !A (1− A)
AND A ∧B A× B
OR A ∨B A+B − (A× B)
XOR A⊕ B A+B − (2× A× B)

However, the proposed equivalences for OR and XOR will double the size of the

equation if used recursively. Hence, the proposed methodology suggests the use of

sum of product (SOP) equations, where OR operators are converted to inverted AND.

For example, A ∨ B ∨ C can be converted using the following Boolean equivalences

A ∨ B ∨ C = A ∨ B ∨ C = A ∧B ∧ C. The equivalence of A ∧ B ∧ C in arithmetic

calculus can now be written as {1− [(1− A)× (1− B)× (1− C)]}. The advantage

of this approach is obvious compared to the recursive usage of the proposed OR

equivalence in Table 5, which doubles the size of the equation after every iteration.

3.4 Experimental Results

In this section, the proposed DSE is applied on a 16-bit array multiplier and the

obtained results are discussed. Moreover, this section studies the extension of the

proposed DSE to other designs, such as (i) 32-bit and 64-bit array multiplier; (ii)

multiply and accumulate (MAC) units [29]; and (iii) approximate divider [20].
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3.4.1 Applying the Proposed DSE on a 16-bit Array Multi-

plier

The proposed methodology of DSE shown in Figure 3.2 is applied on 16-bit un-

signed array multiplier since it does offer a wide range of variations. Five well known

approximate FAs proposed in [17] denoted as AMA1, AMA2, AMA3, AMA4, and

AMA5 have been chosen for this implementation. The used approximate FAs and

the HA were synthesized in CMOSP18/TSMC [13] using Synopsys Design Vision [51].

The result of the synthesis is represented in Table 6. Moreover, the synthesis showed

that unlike exact FAs, the generation of the carry could be faster than the generation

of the sum in the approximate FAs, e.g., the carry of AMA3 takes 0.26 ns while the

generation of the sum takes 0.2 ns.

Table 6: Synthesis of used FAs

Design
Power (µW ) Area (µm2) Delay (ns)

Internal Switching Leakage Total - Sum Carry
AMA1 13.4 6.93 2.99E-03 20.4 77.24 0.58 0.25
AMA2 83.9 4.42 1.52E-03 12.8 48.78 0.25 0.36
AMA3 3.6 2.69 1.33E-03 6.29 24.39 0.20 0.26
AMA4 4.31 3.76 1.5E-03 7.97 32.52 0.21 0.1
AMA5 1.8 1.31 3.34E-04 3.1 16.26 0.05 0.05
HA 9.57 1.91 2.1E-06 11.5 48.78 0.42 0.13

Using these results, a weighted target for power and area is chosen with the weight

distributed among the five FAs. Moreover, a small margin of ±ε is added to the targets

to assure a formation for the joint set S. With the chosen area and power targets,

112 unique combinations are generated. Then, the proposed genetic algorithm for

delay optimization is implemented to find the circuit configurations that satisfy the

timing constraints. Each candidate of the sample space S is shuffled 50,000 times, i.e.,

β = 50, 000 in the proposed GA. For the improvement process, i.e., looping to step 1

in the proposed GA, the loop is applied 100-times. However, the chosen target delay

turned relatively high, since many candidate configurations are found. Hence for the

sake of simplification, only the fastest 2 circuits are carried for quality assessment.

This led to the generation of 224 candidate configurations. Using Mathematica [3],

simplified Boolean equations for each of the 32 output bits are found and converted to

decimal equations using the proposed technique. Once output bits are converted to
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decimal format, a function g(X, Y ) is generated. Finally, the quality of AC circuits is

assessed. On the other side, if these models are to be assessed on the same computer

used previously for benchmarking, they would have taken approx. 4,480 days (or

almost 12 years) using excessive simulation. were

After carefully assessing the quality for all candidate circuits, no model could meet

the target accuracy -Golden Goal-, yet many multipliers are identified to operate well

in a given region from the domain space. Such multipliers can be considered as a

good opportunity for applications where the occurrence of inputs in that region is

high. Moreover, the fact of not finding a multiplier that has an absolute quality is

expected since the test set included 224 models only. The tested set can be considered

a microscopic set when compared to all possible circuit configurations.

Furthermore, out of the 224 configurations, 10 designs are selected for imple-

mentation on real-world applications. For this purpose, multimedia applications,

i.e., audio and image blending, are considered. Six combinations of pictures and six

blends of audio were retrieved from [2] and [9], respectively, and then put under test.

The results of the simulation for the 10 selected designs are summarized in Table 7.

The average PSNR ranges between 51.63dB and 73.55dB. The chosen results showed

concurrence with the quality assessment performed previously. Moreover, with an

average PSNR = 73.55dB of Design 3 in Table 7, a broader study for configurations

including different types of sub-blocks is needed, since a good quality can be achieved.
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Table 7: Simulation-Based Quality Assessment of Chosen Designs

Type
PSNR (dB)

Run # Design 1 Design 2 Design 3 Design 4 Design 5

Image

1 58.86 58.34 69.01 50.11 66.43

2 64.62 63.80 71.05 49.68 69.61

3 61.77 61.41 65.58 50.07 64.88

4 58.88 58.06 68.38 49.20 67.08

5 58.50 58.72 63.26 49.41 62.85

6 64.16 64.28 67.03 49.91 65.61

Audio

1 59.78 58.65 81.74 50.63 78.73

2 59.54 59.27 74.41 54.84 72.66

3 54.96 54.98 81.37 57.47 72.46

4 55.95 57.39 86.41 56.07 82.57

5 55.42 54.31 74.26 51.03 72.06

6 57.80 57.23 80.08 51.17 73.58

Average - 59.19 58.87 73.55 51.63 70.71

Type
PSNR (dB)

Run # Design 6 Design 7 Design 8 Design 9 Design 10

Image

1 60.20 65.74 61.14 53.07 50.59

2 66.43 69.14 66.47 56.71 51.64

3 62.71 64.75 62.96 57.04 51.70

4 61.42 67.21 61.73 52.58 50.06

5 60.35 64.67 62.05 52.76 50.05

6 64.39 66.36 66.17 57.36 50.71

Audio

1 61.18 77.84 69.23 50.65 50.56

2 61.40 70.56 66.01 54.90 54.66

3 55.59 67.88 63.35 57.48 57.13

4 57.26 78.45 68.44 56.09 56.00

5 57.64 71.70 60.81 51.13 50.83

6 58.87 72.38 64.32 51.27 50.75

Average - 60.62 69.72 64.39 54.25 52.06
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Figure 3.5: Configuration of Array Multiplier Consisting of Multiple types of Approx.
FAs

Figure 3.5 depicts the configuration of the design that scored the highest average

PSNR, i.e., Design 3 in Table 7. Moreover, the circuit scoring the highest PSNR

is synthesized using Synopsys Design Vision. The synthesis documented savings of

76.63% and 56.72% are achieved in power and area, respectively, in comparison to

the exact array multiplier.

Finally, a noticeable error is observed when comparing power estimated using the

proposed fast synthesis and the result from third-party tools, e.g., Synopsys Design

Vision [51]. This could be explained by the fact that power loss due to wiring is

not included in the proposed estimation of power, yet in big circuits this loss can be

significant. The marginal error resulting from the use of the proposed power synthesis

is 58.72% and 41.47% for the exact and the approximate circuits, respectively. Thus,

the accuracy of the proposed synthesis can be improved by error-compensation, e.g.,

adding 50%, and hence reducing the gap in error. On the other side, the marginal

error for estimated area turned out to be less than 0.2%.

3.4.2 Extending the Proposed DSE to other AC Designs

In the previous subsection, we studied the implementation of the proposed DSE

on a 16-bit unsigned array multiplier. However, this type of approximation is one

of many proposed architectures. For this purpose, we study the extension of the
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proposed DSE to other architectures, namely a multiply and accumulate (MAC) unit

proposed in [29] and an approximate divider proposed in [20]. Moreover, an extension

to larger data-width, e.g., 32-bit and 64-bit array multiplier, is another characteristic

of the DSE that we examined.

Approximate MAC Unit

Since the array multiplier can be considered as a straight forward architecture that

is formed by connecting the sum and carry of FAs to inputs of other FAs, we would

like now to study more complex architectures. For this purpose the we consider the

usage of the MAC architecture which consists of small multipliers interconnected to

adders as shown in Figure 3.6 [24]. Nonetheless, if the MAC is formed out of smaller

array multipliers and carry-ripple adders, its structure would mainly consist of FAs.

Thus, the previously proposed optimizations, i.e., position dependent and position

independent, are still applicable. Hence, the only process that has to be tested is

quality assessment using the proposed mathematical modeling. In this direction, the

quality assessment of a given configuration of 16-bit approximate MAC is conducted

as a proof of concept.

Figure 3.6: Structure of a Basic 16-bit Multiply and Accumulate Unit [24]

Approximate Divider

Afterwards, we study the approximate divider proposed in [20]. Unlike the array

multiplier and MAC, the architecture of the approximate divider proposed in [20]

does not offer a wide symmetry as sub-blocks are not heavily redundant. As shown in
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the diagram of the approximate divider shown in Figure 3.7 [20], the chosen divider

offers an additional level of complexity as it consists of two leading one detectors,

multiplexers and a barrel shifter which are interconnected to exact functional units,

i.e., subtracter and divider. Moreover, the divider, as proposed, offers a small room to

form variant configurations since the only variation is the number of bits selected, i.e.,

k and k/2 selected bits. Thus, the variations can be classified as position independent

since sub-blocks can be positioned in a single form when the bit-width changes and

the proposed DSE can be applied. The only remaining question is whether the math-

ematical modeling can be applied. Towards addressing this concern, the model is

tested in the configuration of dividing 16-bit by 8-bit with k = 8. The output quality

of the chosen configuration is successfully assessed using the proposed mathematical

modeling.

Figure 3.7: Approximate Divider [20]

Large Approximate Multipliers

Finally, we study the extensibility of the proposed DSE to larger designs, e.g., 32-bit

array multiplier. The runtime to generate Boolean equations for a given approximate

32-bit array multiplier configuration is depicted in Figure 3.8, with a total of 1453

seconds (∼ 24 minutes). Furthermore, assessing the output quality, i.e., g(X, Y ),

took 11 hours the same configuration. All the proposed mathematical modeling took

almost 11.5 hours. These measurements are conducted on Mathematica [3] running
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on a computer with Intel(R) Core(TM) i5-4278U CPU 2.60GHz and 8GB of RAM.

The operating system of the machine is macOS 10.15. However, if the same quality

assessment had to be conducted using excessive simulation on an HPC, the projected

runtime would be in the range of 3.4 to 4.3× 1010 hours (thousands of decades).

Figure 3.8: Runtime to Generate Output Equations for a 32-bit Array Multiplier

During a similar experiment with a 64-bit array multiplier and due to the expo-

nential growth of the total runtime, the process was killed after generating equations

for the first 22 rows (less than half). The runtime for these rows along with the total

runtime are illustrated in Figure 3.9. The cumulative runtime was 25560 seconds (∼
7 hours).

Figure 3.9: Runtime to Generate Some of the Output Equations for a 64-bit Array

Multiplier
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3.5 Summary

Design space exploration refers to the process of examining design alternatives

that best meet the design requirements. Since multiple AC architectures have been

proposed which have been studied for a small number of configurations, a DSE is

indisputable. Nonetheless, previously proposed methods of DSE for AC designs can

generate AC circuits in a very small subset from the design space. Furthermore,

previously proposed DSEs relies on excessive simulation which can be either: 1)

insignificant if studied in limited number of random samples; or 2) time consuming if

all possible combinations are studied.

The proposed DSE drastically reduces time by cutting corners in the synthesis,

and offering a new and faster technique to asses quality. The main contributions of

the proposed methodology shown in Figure 3.2 include:

1- A two-phases design space reduction, which incorporates a genetic algorithm in

order to generate a high-quality solution based on user-given design constraints, i.e.,

area, power, and delay.

2- A decimal modeling for logic circuits. This method will eliminate the need for

excessive simulation, which can consume an indefinite amount of time.

Moreover, the proposed DSE methodology proved to be efficient for studying

various types of AC designs and different input-widths. Nonetheless, applying the

proposed DSE on large circuit designs, e.g., 64-bit multiplier, cannot be performed

on a regular PC, and an HPC would be an appropriate machine for such task. Finally,

if a wider DSE is conducted, a golden goal, or near golden goal AC circuit could be

found. This golden goal would achieve improved quality assurance. However, since

AC circuits offer a great cut in area, delay and power, they could be handful in

improving QoS in circuits. Towards this goal, in the next chapter, a new approach is

proposed that will improve the reliability of circuits by using AC modules, and thus

improving QoS.
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Chapter 4

Approximate Quadruple Module

Redundancy

Quality assurance can be considered as the golden goal for any circuit implementa-

tion. The pillars of quality assurance are output quality and reliability of the circuit.

In the previous chapters, multiple techniques that aim to drastically reduce resource

usage yet offering high output quality were presented. To complement this work, this

chapter will focus on improving the reliability of circuits with the usage of AC.

4.1 Introduction

Redundancy has been a common method to improve reliability. In this chapter, we

present a design consisting of redundant AC circuits for improved design reliability,

yet offering high quality. The design we propose aims to offer redundant modules in

case the exact unit fails. However, since the usage of exact modules for redundancy

would result in high overhead, the design we propose uses approximate modules for

the sake of reducing the overhead. This approach will improve reliability for a trade

in quality if the exact unit fails. Figure 4.1 depicts the methodology used in building

the proposed approximate modular redundancy and its relationship to the general

methodology of this thesis and the subjects discussed in previous chapters. The

process consists of choosing one AC circuit configuration from a library of AC designs,

which provides the best quantitative features in terms of quality and resource usage.

This selection is based on a quantitative superiority in the area of quality and resource
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usage. Moreover, such library can be generated by using the traditional method of

building a library of AC designs or with the use of design space exploration (DSE)

proposed in the previous chapter. Previous usage of AC for improved design reliability

is based on domain specific applications e.g., loop perforation [45] or highly optimistic

speculations, e.g., different approximate units will generate exact results [6] [14]. Such

assumption may result in a deterioration of the output quality in the presence or

absence of faults. Thus, with the aim of this thesis to improve quality assurance

of AC designs, we propose a technique that offers a two-step approximation-aware

voter based on the output magnitude, which will be explained in details in the next

sections.

Figure 4.1: Integrating Modular Redundancy for Improved AC Quality of Service

Previously presented approaches of ATMR use different versions of AC circuits,

with the assumption that (at most) one of the approximated modules will provide

a faulty bit in the output vector coming from each of the redundant modules [6].

Based on this assumption, a majority voter is then used, which will select the two

bits matching. However, this assumption can be considered as unrealistic, since using

approximate modules can lead to multiple bits being misrepresented (flipped bits)

at the same time, and thus the majority voter can be mislead. Alternatively, to

make a benefit of approximate circuit, the concept of error-threshold in ATMR to

perform logic masking of soft-errors is proposed in [7]. Moreover, a low-area overhead

quadruple approximate modular redundancy is proposed by [14]. The proposed so-

lution consists of four non-identical approximate modules, with different bits under
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the condition of at least one bit of the output vector to remain unmasked.

All proposed approaches have a common base that relies on the usage of different

approximate circuits in parallel in order to offer functional units redundancy. More-

over, the design where one bit can fail to deliver the correct value, while the remaining

modules are error-free. Such assumption is too optimistic since in an AC circuit, ev-

ery bit has the chance to provide a faulty value. To overcome such an infeasible

assumption, we propose a highly-reliable innovative scheme by using three identical

approximate modules in addition to the exact one.

4.2 Proposed System Architecture

When using a new technology, e.g., approximate module, a detachment from previ-

ous notions must take place. The proposed approximate QMR (AQMR) is detached

from previous concepts by delivering:

1- Approximation-aware design that will tolerate a small difference in result of AC

and exact computation.

2- Error-tolerant result in the case that the exact computation error-induced, yet the

error is smaller than the tolerable error, i.e., ED.

Approximate modular redundancy is a new perception and little work has been

accomplished in this area. The proposed AQMR is innovative in this area, by adapt-

ing to the characteristics of AC with the use of a two-steps voter. Concurrently,

the proposed architecture delivers highly reliable designs with small overhead. Fur-

thermore, the introduced model is designed with a commonly used hypothesis that a

voting circuitry does not fail, and thus these modules are not redundant.

As shown in Figure 4.2, the architecture we propose is composed of two main

blocks, namely functional modules and a two-step voter. The functional modules

consist of an approximate module redundant three times (same module) and one

exact module. Even though the approximate units can be heterogeneous (different

structures of modules), we opted for the usage of the same module, since the selected

approximate design is superior compared to other explored designs in the library.

Moreover, the functional modules will take the run-time inputs and will generate four

outputs. The first output is an exact computation, i.e., ResultE, while the three

remaining outputs are approximated values, i.e., ResultA1, ResultA2 and ResultA3.
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The two-step voter block shown in Figure 4.2 consists of first step voter, i.e., Voter 1,

being the commonly used majority voter, and a second step voter, i.e., Voter 2, as a

new magnitude-based voter, which will forward the appropriate output based on the

difference between the inputs, i.e., error distance (ED).

Figure 4.2: Architecture of Approximate Quadruple Modular Redundancy

The architecture we propose takes advantage of the two-steps voter by feeding

the Voter 1, with three approximate values. This system will mask the faulty bit, if

any of the three approximate circuits is faulty. The Voter 1 will provide an error-free

approximate result, i.e., ResultA. The generated value is then used to feed Voter 2

along with an exact result, i.e., ResultE, coming from the exact functional module.

Since the Voter 2 is magnitude-based, a marginal difference between ResultA and

ResultE will be tolerated. If the difference exceeds the expected value, the ResultA

will be used as a final result. Furthermore, since Voter 2 is magnitude based, the

error thresholds must be clustered, and thus the tolerable error will be input based.

For instance, if the 8-bit multiplier is used, then all the possible combinations are

28 × 28 = 65536. Hence, the number of adjacent entries used to form a cluster (C)

is equal to 65536
C

. If the design has 64 clusters, then each cluster has 1,024 adjacent

entries. When inputs are applied, the tolerable error will be based on error-threshold

for their correspondent cluster.
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4.3 Experimental Results

In this section, we conduct a validation and evaluation of the proposed methodology

for AQMR shown in Figure 4.1. In the conducted study, 8-bit array multipliers are

used. The redundant approximate multiplier is formed by replacing the FAs in the

nine right columns with the approximate mirror adder 5 (AMA5) [17]. In the following

subsections, area and power are first assessed, followed by accuracy, and finally the

reliability of the system is studied.

4.3.1 Area and Power Assessment

The resources utilization of the proposed AQMR is compared with the traditional

TMR, i.e., exact TMR, which consists of three parallel exact functional units that feed

a majority voter. For the analysis, the models are synthesized using Xilinx Vivado

[57], with the target device being XC7VX485T FPGA, from the Xilinx Virtex-7 FPGA

family [56]. The power consumption for the exact TMR and the proposed AQMR

turned out to be 14.347W and 7.24W, respectively. Furthermore, a similar drop in

area usage with the exact TMR using 79 lookup tables (LUT), while the AQMR uses

39 LUT. Thus, the total savings are 62% and 49.5% in area and power, respectively.

4.3.2 Accuracy Assessment

The accuracy of the system is conducted on the basis of single-event upset (SEU),

and thus, one of the functional units can provide a faulty answer. The SEU can be

stimulated by a flip of one bit from the input or output of the four functional units.

Furthermore, since the design we propose uses three identical approximate modules,

a faulty result from one of the approximate functional units will be hidden, as the

outputs of these units are fed to a majority voter, i.e., Voter 1, as shown in Figure

4.2. Furthermore, if two approximate units fail at the same time, and in the same

manner, i.e., the same output bit is flipped, this will result in the error bypassing the

Voter 1. However, this error might be accepted by the the second voter, i.e., Voter

2, as this flip can result in a closer value to the exact value. Hence, the Voter 2 will

select the exact value, since the difference is still in the tolerable threshold and exact

value, i.e., ResultE will be forwarded to the final output, i.e., Final Result. Finally,

a fault detection in Voter 2, means that the ResultA is forwarded to the output.
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The exact functional unit can also be affected by a SEU which will modify ResultE.

However, similar to the failure of two approximate units simultaneously, if the error

is still in the acceptable range, then a small error, i.e., small ED, will be present in

the final output. Nonetheless, if the erroneous exact value is selected, then the error

will be small, and thus the accuracy can still be considered high.

The proposed QAMR was set under test using simulation, and on average, the

design was able to detect 99.88% of the cases where the exact unit was faulty, and

thus the final output was based on the approximately computed value. This high

percentage was achieved when a large the number of clusters is used, where a cluster

has minimal number of entries. A detailed fault detection for different number of (C)

is shown in Table 8.

Table 8: The Percentage (%) of Fault Detection if the Exact Module is Faulty

Number of Clusters
2 4 8 16 32 64 128 256

Run#1 56.28 56.82 57.43 58.43 58.51 59.87 61.10 63.64
Run#2 54.60 55.26 55.97 57.17 57.76 58.58 60.57 62.55
Run#3 52.20 52.44 53.39 54.63 55.08 55.92 57.83 60.35

Average 54.36 54.84 55.60 56.74 57.12 58.12 59.83 62.18

Number of Clusters
512 1024 2048 4096 8192 16384 32768 65536

Run#1 65.82 68.91 72.20 77.11 80.55 87.82 93.78 99.81
Run#2 65.31 68.13 72.50 76.97 80.18 88.75 94.62 99.90
Run#3 63.03 65.77 69.59 75.66 78.32 87.50 95.21 99.93

Average 64.72 67.60 71.43 76.58 79.69 88.03% 94.54 99.88

However, an undetected fault, i.e., selecting ResultA as Final Result, does not

imply a failure of the system, nor a complete deterioration in the quality. Figure

4.3 represents the average PSNR obtained for an image processing application based

on a different number of clusters. From Figure 4.3 and Table 8, it can be noticed

that more clusters would imply more detection of faults in the exact module, and

thus a higher PSNR (higher is better). Nonetheless, the minimum achieved PSNR is

82.07dB and maximum of 86.61dB while the average PSNR of all configurations is

84.16dB. Thus, all configurations can be deemed usable since an acceptable PSNR is

achieved.
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Figure 4.3: Average PSNR in dB for Different Numbers of Clusters

Another case study is conducted, with the condition that ResultA is faulty, while

the ResultE is flawless. In this case, theoretically, ResultE must be carried to the

final output. However, this would depend on the forwarded output, i.e., ResultE

or ResultA, which is related to the number of used clusters. Table 9 shows the

percentage of fault detection, i.e., selecting ResultA as Final Result, for the case of

faulty ResultA when the number of clusters varies. From Table 9 it can be noticed

that with a higher number of clusters, Voter 2 tends to select an approximate value,

i.e., ResultA even if this result is faulty. Thus, from the results in Tables 8 and 9,

it is recommended to keep the number of clusters to less than 512, as a balance can

be achieved in fault detection. Furthermore, a lower number of clusters would result

in less complexity in Voter 2. Hence, the advantages of using a smaller number of

clusters, i.e., (C) 6 512, can be noticed at different levels.

Table 9: The Percentage (%) of Fault Detection if the Approximate Module is Faulty

Number of Clusters
2 4 8 16 32 64 128 256 512

Run#1 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.43
Run#2 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.15 0.83
Run#3 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.13 0.58

Average 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.14 0.61

Number of Clusters
1024 2048 4096 8192 16384 32768 65536

Run#1 6.19 14.38 31.47 49.67 69.20 80.19 96.04
Run#2 5.82 18.98 35.23 48.58 74.63 85.18 96.36
Run#3 6.14 17.25 39.99 49.56 74.29 88.21 96.31

Average 6.05 16.87 35.56 49.27 72.71 84.53 96.23
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4.3.3 Reliability Assessment

In the study of accuracy, the failure of two approximate functional units does not

imply that the quality will be deteriorated. However, for the reliability analysis, the

study must be based on actual functionality, i.e., performing as per the standard of

design, and not based on delivery of a lesser quality nor a probable failure. Thus, the

analysis conducted in this subsection will consider that a failure of two approximate

functional units will result in a failure of the system. The failure of two approximate

modules will result in a “faulty” result coming from Voter 1. Hence, the failure of

Voter 1 in providing a “fault-free” result follows the rule of binomial distribution.

The probability of faulty (Pf) ResultA is provided by Equation (3), with n being

the number of approximate results, in this case three, and p the failure probability

of the approximate functional units. Moreover, the Voter 2 will fail to provide a

correct value, if the exact unit fails, and Voter 1 fails to provide a correct value, i.e.,

failure of two or more approximate units. In this case, the probability of faulty (Pf)

Final Result, i.e., failure of the system, follows the theory of two independent events.

The failure of the system is provided by Equation (4), where P (A) and P (E) are the

probabilities of faulty ResultA and ResultE.

Pf =

(
1

n

)
(1− p)(p)n−1 +

(
0

n

)
(p)n (3)

Pf = P (A ∩ E) = P (A)× P (E) (4)

For the sake of simplification, all functional units, i.e., exact and approximate

modules, are considered to have the same failure rate. Figure 4.4 illustrates the

system’s relative failure in terms of the module’s failure for the traditional TMR, i.e.,

exact TMR, and approximate module redundancy, i.e., AMRn is a design composed

of n approximate modules and one exact module.
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Figure 4.4: Relative Probability of System Failure vs Component Failure for Different

Module Redundancy Circuits

The proposed AQMR has an average of 15% less chances of failure compared to

the traditional exact TMR. Furthermore, it can be noticed that increasing the number

of approximate modules, will decrease the overall system’s failure rate. Nonetheless,

adding more approximate modules will increase the area and power usage in addition

to a more complex design for Voter 1. Hence, the number of redundant approximate

modules will be limited by the budget of area and power available in a given design.

Moreover, the 8-bit approximate and exact multipliers used are synthesized and found

to have Pa = 3
11

× Pe and Aa = 3
8
× Ae, where Pa, Pe, Aa and Ae are the power for

approximate, power for exact, area for approximate and area for exact multipliers,

respectively. Thus, with savings in area and power, along with an improved system’s

reliability, benefits of AC as modular redundancy are clear.
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4.4 Summary

In this chapter, we proposed a highly reliable approximate modular redundancy

for AC designs. The work complements the efforts of the thesis in improving quality

assurance, i.e., QoS, with the use of AC. Nonetheless, previous implementations of AC

in modular redundancy have been based on very optimistic assumptions. However,

the work we presented in this chapter phases out this ideal assumption with the

proposition of a new approach to implement AC for modular redundancy. This new

approach integrates AC for the sake of reliability improvement while the natural

behavior of AC designs is contemplated. Furthermore, the presented architecture

offers great savings in terms of area and power usages, compared to traditionally

used TMR, while maintaining an acceptable accuracy. The AQMR we proposed in

this chapter is an additional step in the direction of improving quality assurance of

logic designs with the use of AC designs. This model is complemented by the use of

the DSE proposed in Chapter 3. When the two models are implemented together,

i.e., design resulting from a DSE implemented in an AQMR, the result is an improved

QoS, i.e., improved reliability and output quality, with an optimization of resource

usage.

56



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Approximate computing (AC) is an emerging computing paradigm that has gained

traction in the past few years. AC reduces output quality for the benefit of sav-

ings in resources usage, e.g., power. This computation technique can be applied to

error-tolerant applications such as image processing, where a small loss in quality

is imperceptible due to the imperfect human sense. Another example application

field is search engines where there is no unique or golden result. With the benefits

offered, and an existing domain application, AC is a promising area of research for

a future integration within computer architectures and algorithms of brain-inspired

computing. However, for this computing paradigm to be deemed ready for adoption,

some essential questions have be answered such as [18]: 1) how to measure output

quality and assure the maintenance of output quality, 2) what are the reasonable

“cutting-corners” to be applied while maintaining quality.

Towards answering these questions, in this thesis, the expendability of a previously

presented model [32] that aims for improved quality assurance is studied. The model

consists of a design selector, that predicts the best-fit design, with the help of machine

learning (ML), which is expected to deliver the aimed quality. In Chapter 2, the model

was successfully extended from 8-bit to 16-bit functional units by using one of the most

powerful computation machine available today. Moreover, an additional data pre-

processing is proposed that allowed for the ML classifier to analyse training data and

generate ML-based predictor. This led to an improved output quality compared to the
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previously presented model. However, with today’s computation power, this model

cannot be extended to even larger designs, e.g., 64-bit floating-point computation,

that can be considered as industry-standard nowadays.

Furthermore, the quality of AC designs, in general, can be improved by performing

a design space exploration (DSE). However, if all the possible variations for AC designs

are considered, the design space consists of multi-trillion possibilities. Moreover,

studying all possibilities from this space is almost impossible since assessing all designs

will require an infinite amount of computational power. Nonetheless, in order to

achieve a DSE for AC, in Chapter 3, an efficient DSE is proposed, which eliminates

worthless designs, based on area, delay and power. To complement this work, a

mathematical modeling for logic circuits is presented, which will allow to study output

quality of AC designs from a mathematical point of view, instead of using excessive

simulation.

Last but not least, to supplement the proposed DSE, which aims in finding a

design offering a good output quality, a highly reliable functional design is presented

in Chapter 4. This design will take advantage of the characteristics of AC circuits,

with their use in high quality modular redundancy, while keeping a minimal overhead.

In summary, the work presented in this thesis, aims in the direction of improving

quality of service (QoS), while reducing area, delay and power consumption. As

AC designs already offer reductions in these fields, it would be trivial to study their

implementation in quality assurance designs.

5.2 Future Work

The study of AC has not matured yet and a lot of work is still needed. The work

presented in this thesis, lays a foundation for future work in this field. Thus the

following list covers some future tasks that can improve AC designs:

• The proposed DSE offers a wide range of support for logic circuits, however,

the proposed work can be improved by offering a better modeling for complex

gates, e.g., arithmetic modeling for XOR-gate.

• The DSE proposed in this thesis randomly generates approximate structures.

However, a better approach is to be aware of the implications on the output

quality that would result from such modifications. A good implementation
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for approximate implication-aware model, can be an ML-based model that can

predict such consequences.

• The ML-based quality assurance proposed Design in [32] has been extended

from 8-bit to 16-bit multipliers with an improved output quality. However,

extensions to other models, e.g., 64-bit multipliers and floating-point units,

must be studied. Moreover, additional improvements to the quality must be

considered as well.

• Quality measurement of AC designs is still debatable because of the lack of a

unified error metrics. For instance some of the AC designs have been assessed

based on bit-error rate (BER), while others on error magnitude with error dis-

tance (ED), peak signal-to-noise ratio (PSNR), etc. The variety in error metrics

is resulting in a subjective quality assessment for various AC designs. Thus a

unified error metric, i.e., standard error metric, would allow to classify the qual-

ity of AC designs in an objective manner. A good approach can be a weighted

error metric that takes various quality metrics into consideration.
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