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ABSTRACT 

Advisory Safety System for Autonomous Vehicles under Sun-glare  

Hamed Esmaeeli, PhD 

Concordia University, 2021 

Autonomous Vehicles (AVs) are expected to provide a large number of benefits such as improving 

comfort, vehicle safety and traffic flow. AVs use various sensors and control systems to empower 

driver’s decision-making under uncertainties as well as, assist the driving task under adverse 

conditions such as vision impairment. Excessive sunlight has been recognized as the primary 

source of the reduction in vision performance during daytime. Sun glare oftentimes leads to an 

impaired visibility for drivers and has been studied from different aspects on roadways. However, 

there is a lack of knowledge regarding the potential detrimental effects of natural light brightness 

differential, particularly sun glare on driving behavior and its possible risks.   

This dissertation addresses this issue by developing an integrated vehicle safety methodology as 

an advisory system for safe driving under sun glare.  The main contribution of this research is to 

establish a real-time detection of the vision impairment area on roadways. This study also proposes 

a Collision Avoidance System Under Sun-glare (CASUS) in which upcoming possible vision 

impairment is detected, a warning message is sent, and the speed of vehicle is adjusted accordingly.  

In this context, real-world data is used to calibrate a psychophysical car-following model within 

VISSIM, a traffic microscopic simulation tool. Traffic safety impacts are explored through the 

number of conflicts extracted from the microsimulation tool and assessed by the time-to-collision 

indicator. Conventional/human-driven vehicles and different type of AVs are modeled for a 

straight segment of the TransCanada highway under various AVs penetration rates.  

The findings revealed a significant reduction in potential collisions due to adjustment of travel 

speed of AVs under the sun glare. The results also indicated that applying CASUS to the AVs with 

a failing sensory system improves traffic safety by providing optimal-safe speeds. Furthermore, 

the CASUS algorithm has the potential to be integrated into driving simulators or real vehicles to 

further evaluate and examine its benefits under different vision impairment scenarios. 
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 INTRODUCTION 

The safe and efficient operation of vehicles on roadways highly depends on the optimal vision and 

reaction of drivers. The quality of drivers’ vision may be reduced by the existence of some 

hindering factors (e.g., adverse weather) or impairment of vision (e.g., sun glare). The shining of 

the direct sunlight into the drivers' eyes has a hindering impact on reducing drivers' vision 

performance and creating a low safety situation. Under bright sunlight along the road alignment 

drivers’ vision may be impaired, and the visibility of low-contrast objects may be diminished to 

the extent that some objects might even be rendered invisible. The drivers’ perception in traffic 

flow might be negatively affected by sunlight which leads to a potential increase in traffic collision. 

Therefore, the need to ameliorate traffic safety and improve traffic operations' efficiency is 

addressed in this study by developing a generic modeling approach to identify hazardous driving 

locations on any given network.  

1.1 Research Motivation 

Traditional strategies, such as expanding tree coverage as well as changing driving direction, have 

been applied to reduce the negative impact of bright sunlight and to provide adequate stopping 

sight distance (Waldron, 2013). However, physical countermeasures are challenging to implement 

because receiving sunlight on any point on the earth depends on the daytime and the season. 

Instead, innovative technologies in communication and control system could be exploited to 

minimize the visual disturbance caused by sun glare (Li, & Yu, 2016).  

Intelligent Transportation Systems (ITS) provide a transportation modeling and deployment 

framework employing advances in information and communication technology to ameliorate 

transportation operations' safety and efficiency. The Advanced Driver-Assistance System (ADAS) 

is one example of such automated user assistant services that have been tested in various forms of 

automated vehicles over the past several decades. The benefits of ITS systems such as ADAS 

deployed in AVs are considered as a specific solution, promising to change the surface 

transportation sector fundamentally. Developing AVs capabilities may alleviate potential safety 

issues related to vehicles interactions among themselves and with other road users, especially on 

urban roadways during exposure to direct sun glare. Therefore, this thesis focuses on developing 
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a predictive control framework for the current transportation networks applicable to both highways 

and arterial roads.  

1.2 Research Objectives 

The main objective of this thesis is to develop a methodology to dynamically identify the locations 

of potential vision impairment and to integrate into a framework of cooperative warning and 

control system for AVs. Thus, in order to consider a common vehicle interaction, a two-lane 

segment of roadway section is selected when vehicles approach to the location with sun exposure. 

A control goal is defined to facilitate the stopping maneuvers, to avoid traffic flow disruption, and 

to comply with safety constraints. In this regard, lack of adequate perception-reaction time and 

criteria to determine safe-stop distance are investigated for the cases of safe-stop maneuver. Every 

driver chooses their individual speed according to their perception of the visibility and their 

comfort level. In this study, a traffic simulation environment is used to evaluate different 

perception of visibility on a federal-provincial highway under sun exposure.  

This study also analyzes drivers' speed behavior during sun exposure to guide the calibration of 

microscopic simulation. The study also investigates how different autonomy levels of AVs 

improve traffic operations and safety performance on impaired visibility areas. The result of the 

study includes evaluation of traffic operation and safety assessment for different types of AVs 

under sun exposure. This research aims to aggregate the proposed methodologies in a single 

package CASUS (Collision Avoidance System Under Sun-glare) for the AVs with failure sensory 

system to improve traffic safety by providing optimal-safe speed. 

1.3 Scope and Limitations 

This dissertation mainly focuses on the multi-level framework, where a network wide algorithm 

is developed to identify the location and time of sun glare occurrence. Because the nature of vision 

impairment could comprise different combinations of AVs and downstream obstacles, different 

safe-stop scenarios can occur. When a driver approaches the vision impairment location, the model 

will be adjusted based on the changes in driving behaviors. This change may result from the 

inaccurate estimation of object behaviors and motions, unexpected disturbances due to types of 
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vision impairment, and delays caused by human-driven vehicles’ reaction time. The following 

assumptions and limitations pertain to the study: 

• Sun glare detection is limited to a sun cone of ±15º for the azimuth. 

• The findings are limited to freeways based on the available data for model calibration.  

• The irradiance of the Sun light on the detector is considered for the receiving light on 

drivers ‘eyes. 

• Driving behaviors are emphasized on the longitudinal direction of vehicle movement (i.e., 

acceleration and deceleration) when restricted by a downstream leading vehicle. 

• The proof-of-concept analysis for implementation in microsimulation is conducted using 

the Wiedemann car-following model in PTV VISSIM microsimulation software. 

• Traction and grip of tires and pavement condition is considered constant for the dry 

pavement on the moderate temperature of fine grade pavement. 

The development of sun glare detection algorithm and evaluation of driving behavior in CASUS 

are illustrated in Figure 1.  

 

Figure 1 . Core framework of driving parameters  

Sun glare detection Shadow detection Edge detection

Driving behavior evaluation Scenario design Microsimulation layout

Simulation Calibration Time to Collision 
development Conflict analysis

Sensitivity analysis Recommended plan for 
CASUS Validation of CASUS
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In the first step, a glare detection scheme is employed to locate vision impairment on any given 

road network and to optimize the control inputs for AVs. In the second step, actual data of traffic 

flow is analyzed to determine changes in driving behavior and find a significant correlation 

between driving behavior and visibility change. Careful considerations on the selection of the 

study area size, data collection requirements, and impact of vision impairment should be made 

during the base model development. In the third step, driving behavior parameters of car-following 

model and conflict zones will be calibrated for the base model. In the fourth step, all outputs of the 

simulated model need to be analyzed for the sensitivity of changes in traffic flow parameters, 

vehicle compositions, and transition to different level of AVs, and effective speed on safety 

enhancement. Finally, the development of CASUS will be expected to identify the best action in 

response to vision impairment of drivers for the case study.  

1.4 Research Contributions 

There is a lack of research to explain the use of AVs as an intelligent solution for improvement of 

road safety during vision impairment. The main contribution of this PhD study is to provide 

knowledge of different vision impairment spots (i.e., sun glare and contrasting shadow) for urban 

roadways and freeways. It is achieved by considering factors, such as the angle of the sun, the time 

of day, the geography, the geometric design of the road and the physical environment in the 

evaluation of sun glare risk.  

A combination of different control systems under CASUS is simulated with the psychophysical 

car-following model to provide an integrated microsimulation environment with real-time AVs 

control. This model contributes to the simulation of other types of uncertain incidents on the 

roadway and emulating the corresponding decision-making process on certain types of vehicles in 

the network.  

This study also contributes to a better explanation of developing an advisory system for AVs to 

mitigate potential conflicts in vision impairment. Developing a new assessment method for conflict 

analysis and proposing new thresholds for analyzing vehicle trajectories is a novel methodology 

to evaluate potential conflicts by using AVs in mixed traffic flow. 
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1.5 Research Layout 

This dissertation is structured as follows:  

Chapter 2 presents the relevant literature review, including detection of vision impairment, use of 

microscopic modeling, and application of ADAS for the improvement of road safety to learn about 

the impact of vision impairment on driving behavior.  

Chapter 3 describes the novel methodology developed in this study to model critical points of 

vision impairment including sun exposure and contrasting shadows on any type of roadways. 

Chapter 4 explores the development of a psychophysical car-following model when approaching 

sun glare exposed roads for the various levels of vehicle automation. The developed models are 

integrated into the proposed road safety model. 

Chapter 5 contains the development of an advisory system for AVs to provide optimal traffic safety 

and operation in the sun-glare detection framework. 

Chapter 6 evaluates the proposed methodologies on Montreal Island to validate the methodology. 

Chapter 7 provides conclusions and future research directions.  
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 LITERATURE REVIEW 

This chapter presents a comprehensive literature review intended to provide context for this 

dissertation. The concepts of this dissertation research are founded on decades of multi-

disciplinary research that have molded microsimulation modeling concepts and practices.  

The literature review includes seven topics: 

1. The first section reviews driving behavior while visually impaired and provides 

background information for the role of driver vision on driver performance under different 

visibility reduction situations. Then, astronomical models—notably, relevant glare 

detection models—are briefly reviewed to determine the best-fit options for the framework. 

Moreover, driving behavior under vision impairment is explained. 

2. The system modeling and simulation section provides an overview of traffic stream 

characteristics and microsimulations for modeling driving behaviors. Within this section, 

various car-following models are introduced in the state of research and are compared in 

terms of accuracy and success for modeling vision impairment. Various factors that 

influence the accurate and realistic portrayal of driving behavior are also introduced into 

the microsimulation. 

3. The autonomous vehicles section begins with clear definitions for different automated 

vehicle levels and provides the latest models for autonomous vehicles within a 

microsimulation environment.  

4. The traffic safety performance section covers analytical methods for safety analysis and 

the classification of conflict types in different road environments. 

5. The advanced driver-assistance systems section includes the development of driver 

assistant systems in autonomous vehicles with a focus on the functionality of sensors and 

driver maneuvers in urban roadways. Also, a model-based vehicle control scheme is briefly 

introduced. 

6. The advanced collision warning system section introduces the essence of driver-vehicle 

interaction and the timing of warning messages. 
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7. The intelligent braking assistance section provides a background analogy for visual 

stopping distance and human perception. An overview of intelligent braking assistance 

systems in the state of research is considered for vision impairment system benefits. 

2.1 Driving behavior in vision impairment 

Low visibility and challenging weather conditions cause numerous traffic accidents each year 

(Pisano et al., 2008). A Canadian study (Andrey et al., 2001) on weather hazards indicated that 

16% of fatal collisions and 18.5% of personal injury collisions occurred under adverse weather 

conditions (i.e., rain, snow, hail, and fog). The study also indicated that over 25% of property-

damage-only collisions occurred during low visibility weather. The remaining crashes occurred in 

the presence of no precipitation, but a few studies have concentrated on crashes under clear skies. 

Vision is the most influential input channel for maneuvering a vehicle (Tonnis et al., 2006). 

Shining intensive lights into drivers’ eyes was the central issue of prior studies as a probable cause 

of accidents. A study found that sun glare (i.e., a continuous source of extreme brightness 

corresponding to sunlight) was the critical cause of vision impairment for drivers’ during the day  

(Ho, Ghanbari, & Diver, 2011).  

 Vision Impairment 

Vision works through the transformation of light into energy by eye receptors (Browman & 

Goldstein, 1989). Visible light is limited to the electromagnetic wavelengths of 380 to 720 nm. 

Most perceived light between these wavelengths is reflected into the eyes from objects in the 

environment. The visual system resolves fine detail visual acuity by measuring high-contrast 

stimuli. People have different contrast sensitivities and are able to detect objects clearly within 

their visual acuity. Contrast sensitivity tests show that when the contrast between an object and its 

background is high, the object is seen to be smaller and vice versa (Elliott, Whitaker, & MacVeigh, 

1990). 

The movement of either an object or the observer decreases visual acuity (e.g., looking at a sign 

on the side of the road) and is called dynamic acuity. Dynamic acuity deteriorates with increased 

relative motion (Burg, 1966). A study (Chrysler, Danielson, & Kirby, 1996) showed that older 

persons can detect a 42-inch-tall object in a closer distance (230 ft) than younger persons (360 ft).  

They also simulated low contrast situations (adverse weather conditions) and found that the 
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detection distance of the static object was reduced by 51% when compared to clear weather; 

however, the impact of high contrast levels (extreme sources of light) was not considered. 

The occurrence of sun glare is directly related to the position of the sun towards an observer’s 

sightline. The trajectory of the sun around the earth changes based on the value of the declination 

angle. Several astronomical algorithms have been developed to increase the efficiency of 

recognizing the sun’s actual position. Many studies have aimed to decrease computational effort. 

One of the early modern approaches was proposed by Spencer (1971), followed by Michalsky 

(1988), who made important updates and improved probable errors. NOAA (National Oceanic & 

Atmospheric Administration) sun position is the most recent algorithm proposed by the Earth 

System Research Laboratory at the National Oceanic & Atmospheric Administration to enhance 

sun position accuracy. 

The threat of sun glare on the visibility of drivers has been investigated in a case study and a novel 

method to estimate the location of sun glare on the roadway segment was proposed (Churchill, 

Tripodis, & Lovell, 2012). The authors found dazzling as the most severe and harmful impact of 

sunlight, which occurs when an intense sun ray shines directly into the center of a driver’s eyes 

while the eyes try to recognize an object in the same alignment as the sunray. Dazzling sunlight 

has a destructive impact on central vision and causes a permanent blind spot in the driver's eyes 

(Reidenbach, 2009). Dazzling causes discrepancies in received visual data and may hinder the 

recognition of traffic states such as the lateral movement of surrounding vehicles or road users 

(e.g., lane changing and turning) and longitudinal change of leading vehicles (e.g., braking lights 

and red-light violations). Drivers need to be concerned with all surrounding objects for safe 

driving. Consequences of vision deficiencies, particularly dazzle effects, are extreme and 

inescapable upon transition locations where a driver moves between a road segment under shadow 

to a segment that is under sun glare. 

The reverse of the dazzle effect has been identified as blindness (e.g., the black hole effect at a 

tunnel entrance). In comparison to dazzle conditions, driving a vehicle in a longitudinal alignment 

of the road when blind does not harm a driver’ eyes but causes an obvious threat for other road 

users. Glare-related crashes occur around the world. In Japan alone, 10,352 sun glare-related 

incidents were reported between 2007 and 2011 (Hagita & Mori, 2014). In Great Britain, sun glare 
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has been involved in 36 deaths as well as nearly 3000 annual traffic incidents as they temporarily 

blind drivers with sunlight through the windscreen  (DTGMH, 2012).  

 Driving Behavior 

Vision impairment has both physical and psychological impacts on driving behaviors. Driving 

under temporary blindness has a physical impact on driving behavior. This physical effect 

increases the chance of a collision by reducing a driver’s perception-reaction time. On the other 

hand, the uncertainty of driving under sun glare condition causes a psychological impact, resulting 

in a delay in traffic operations (e.g., indeterminate shockwave and abrupt deceleration).  

A study investigated the impact of adverse weather (rain and snow) on traffic speed in a freeway 

case study in Canada (Ibrahim & Hall, 1994). Their research showed a reduction in speed between 

2 km/h and 38 km/h for light rainfall and heavy snowfall, respectively. Another study (Hawkins, 

1988) in the UK also showed a similar reduction in speed in adverse weather conditions due to 

impaired visibility. The Highway Capacity Manual (FHWA, 2000) also suggests that free-flow 

speeds decreased by 2 to 14% and 20 to 35% due to light rain and heavy snow conditions, 

respectively. The manual and corresponding studies failed to consider the psychological impact of 

road environment (i.e., clear skies) on driving behaviors and only focused on the physical impact 

of adverse weather conditions. 

While some studies (Fry, 1955; Hammond et al., 2001; Mace et al., 2001; Stringham, Garcia et al., 

2011; Theeuwes et al., 2002) supported the finding that glare causes discomfort and has a negative 

impact on visual performance, few works have investigated the effect of glare on driving behavior 

and road safety. Shepard (1996) investigated the effect of low visibility conditions on driving, such 

as adverse weather. Also, vision impairment for drivers and subsequent changes in driver behavior 

is a potential factor in congestion. Goodwin (2002) investigated the impact of sun glare on 

effectiveness and found that lower visibility increases travel time and delay substantially by +12%. 

2.2 General considerations about modelling and simulation of systems 

The scope and complexity of a particular system depends on the objective of a project (Law, 2015). 

Systems need to identify the optimal collection of necessary variables under different conditions 

at a particular time. Experimenting the actual implementation of a system is the best mechanism 
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for forecasting changes; however, experiments are often costly and disruptive. Thus, a system is 

designed using a model with a scaled representation used for the actual system (Law, 2015).  

A model can be in physical form to represent larger systems at a scale that are tangible, or in 

mathematical form to describe logical and quantitative relationships as well as identify system 

reactions under different conditions. The mathematical model includes two evaluating procedures: 

analytic solution and simulation (Figure 2). Analytic solutions provide an exact global solution by 

obtaining a simplistic closed-form model and simulations evaluate highly complex models. 

Simulations are defined as numerical evaluation of a model that estimates the desired true 

characteristics of a model. The microsimulation environment is a known way to evaluate vehicle 

interactions as a collection of entities and in this study was used to understand the safety 

implications of vision impairment. 

 

Figure 2. Study a system 
(Law, 2015) 

Simulations provide a model for evaluating a system's performance and predicting system 

responses under different stochastic demands and constraints. The simulation modeling process 

helps decision-makers alleviate uncertainty, optimize system operations, and optimize resource 

allocation with every innovation and design (Maria, 1997). Advanced computing systems provide 

a systematic process for repetitively performing a simulation to replicate different system states 

and alternatives. However, simulation values are directly related to a modeler’s domain knowledge 

and ability to correctly apply constraints that represent realistic conditions. Significant changes in 

any traffic flow characteristic can result in a huge change in model outcomes. 

Traffic simulation modeling facilitates the prediction of traffic stream characteristics under 

different constraints. Due to the high complexity of traffic streams and their dependency on several 

continuously evolving factors—including but not limited to roadway geometry, traffic control 

strategies, travel demand, environmental conditions, and driving behaviors—simulation modeling 
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presents unique opportunities to accommodate the stochastic nature of these factors and forecast 

the influence of different combinations and severe factor fluctuations on traffic streams 

(Lieberman & Rathi, 2001). 

 Traffic Stream Characteristics 

Traffic flow is described by three fundamental variables: flow, speed, and density (Hall, 2001). 

Greenshields derived a linear relationship between speed and density when evaluating traffic flow 

(Greenshields, Bibbins, Channing, & Miller, 1935). In 1967, Drake et al. produced evidence that 

the relationship between these traffic stream characteristics were very complex (Drake, 1967). 

Their study indicated that while some models could better produce the speed–flow–density 

relationship seen in empirical data; none exhibited a perfect fit. This finding raised two questions, 

the first related to the quantity and derivation of the empirical data used to describe these 

fundamental relationships, and the second related to the car-following models used to create 

synthetic data points (Hall, 2001). The crux of these raised questions is the ability or inability of 

the input data to adequately describe realistic traffic conditions.  

Driving behavior in car-following models is a crucial element of traffic flow theory. They define 

the longitudinal motion of vehicles in a shared lane to accelerate and decelerate to a desired speed 

(Krauß, Wagner, & Gawron, 1997). Car-following models have evolved from basic to 

sophisticated over the past half-century due to their utilization as a key microsimulation software 

process (Brackstone & McDonald, 1999; Olstam & Tapani, 2004; Saifuzzaman & Zheng, 2014; 

Toledo, 2007). Car-following models were introduced in the early 1950s (Pipes, 1953; Reuschel, 

1950) and they have been calibrated and improved over times. The basic car-following model 

considers fundamental rules and learns to drive using a series of Laplace transformations that 

predict vehicle velocity within a time gap (Pipes, 1953).  

In 1958, the General Motors (GM) model was developed as a simple linear model that used vehicle 

acceleration as a function of relative velocity between following and leading vehicles (Chandler, 

Herman, & Montroll, 1958). The model worked under the assumption that a following vehicle 

reacts to changes in the steady state of the leading vehicle with the smallest possible change. 

Another study developed the GM model into a non-linear relationship between relative speed and 

following distance to predict vehicle acceleration (Gazis, Herman, & Rothery, 1961). The GM 

model was developed in other studies, including the incorporation of behaviors that modeled more 
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than one downstream vehicle (Helly 1959), relative speed, distance (Edie, Gazis, Helly, Herman, 

& Rothery, 1965; Hanken & Rockwell, 1967; Rockwell, Ernst, & Hanken, 1968), and deviation 

from desired time headways for different drivers and conditions (Van Winsum, 1999). A major 

limitation of the GM models is the sole use of headway for determining the sensitivity of stressful 

drivers (Papadimitriou & Choudhury, 2017). 

Some car-following models have been widely used and integrated into microsimulation tools, such 

as the Gipps model (Gipps, 1981) in AIMSUN, Fritzsche (Fritzsche & Ag, 1994) in PARAMICS, 

and Wiedemann (Rainer Wiedemann, 1974) in VISSIM. The Gipps model is a first safe-distance 

model that considers free-flow speed and car-following driving  (Gipps, 1981; Toledo, 2007).  In 

the Gipps model the driver chooses the lower speed between the two driving modes. Driving under 

unconstrained traffic situations allows one to travel at the desired speed, while in congested 

conditions speed is estimated and limited for safety. The dilemma of the Gipps model is that it 

does not consider the psychological impact of driving and only considers a rigid driving mode. 

Another car-following model, Fritzsche, was developed to consider the psycho-physical impact of 

drivers through follower vehicle reactions based on the difference in speed and spacing under five 

regimes and six thresholds. However, the Fritzsche model assumed maximum acceleration to be a 

given constant, which is not realistic (Fritzsche & Ag, 1994).  

Wiedemann proposed another psychophysical model for the microsimulation tool VISSIM. The 

model developed a full decision-action-point car-following model, which is essentially a 

psychophysical model that includes certain thresholds for relative speed and distance behind a 

lagging vehicle for taking action (Rainer Wiedemann, 1974). When a vehicle approaches a slower 

leading vehicle, the driver recognizes some action points for conscious reaction. Wiedemann 

included four regimes for discrete driving: free flow, approaching a slower leader vehicle, 

following in near steady-state equilibrium, and critical braking action. Regimes worked based on 

the use of different acceleration functions based on velocity and average speed for following 

vehicle and five boundaries’ regimes [1-5] according to having zeroes of the following function: 

𝐴𝐴𝐴𝐴 = 𝐿𝐿𝑛𝑛−1 + 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑅𝑅𝑅𝑅𝑅𝑅1 × 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 [1] 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 [2] 

𝑆𝑆𝑅𝑅𝐴𝐴 = 𝐴𝐴𝐴𝐴 + 𝐸𝐸𝐴𝐴 × 𝐴𝐴𝐴𝐴 [3] 
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𝑆𝑆𝑅𝑅𝑆𝑆 = �
∆𝑥𝑥 − 𝐿𝐿𝑛𝑛−1 − 𝐴𝐴𝐴𝐴

𝐶𝐶𝐴𝐴
�
2

 [4] 

𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆 = 𝐶𝐶𝐿𝐿𝑅𝑅𝑆𝑆 × (−𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) [5] 

𝐴𝐴𝐴𝐴 = (𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑅𝑅𝑅𝑅𝑅𝑅1)√𝑢𝑢 [6] 

𝐸𝐸𝐴𝐴 = 𝐸𝐸𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐸𝐸𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅2) [7] 

where, 

𝐴𝐴𝐴𝐴 is the desired distance between vehicles in standstill situations,  

𝐿𝐿𝑛𝑛−1 is the physical length of the lead vehicle,  

𝐴𝐴𝐴𝐴𝐴𝐴 represents the desired minimum following distance at low-speed differences between 

vehicles,  

𝑆𝑆𝑅𝑅𝐴𝐴 is the perception threshold for modeling the maximum following distance between 

1.5 to 2.5 times 𝐴𝐴𝐴𝐴𝐴𝐴;   

𝑆𝑆𝑅𝑅𝑆𝑆 is the approaching point where a driver has awareness, they are approaching a slower 

leader; 

𝐶𝐶𝐿𝐿𝑅𝑅𝑆𝑆 is the reduction of speed differences at short and decreasing distances; and  

𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆 is the increase in speed difference when a driver realize they are traveling at a slower 

speed than the leader 

𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐴𝐴𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐴𝐴𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐸𝐸𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐸𝐸𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 ,  𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑅𝑅1 ,           

 𝑅𝑅𝑅𝑅𝑅𝑅2,𝑅𝑅𝑅𝑅𝑅𝑅3,𝑅𝑅𝑅𝑅𝑅𝑅4,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 are additional dependent parameters for the model. 𝐶𝐶𝐴𝐴 is 

assumed to be 40. 

 The following regime constituted the thresholds for ABX, SDX, OPDV, and SDV based on the 

assigned acceleration 𝑎𝑎𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 [8], where 𝐴𝐴𝑅𝑅𝐵𝐵𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is a calibration parameter. 𝑎𝑎𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚is a positive 

value when passing either OPDV or SDX and is negative when passing either SDV or SDX. The 

maximum acceleration 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚  occurs during free flow speed and after reaching the desired speed 

𝑎𝑎𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 is used. Equation [9] represents the computation of maximum acceleration based on the 

difference in current speed 𝑢𝑢 and the maximum desired speed 𝑢𝑢𝑚𝑚𝑎𝑎𝑚𝑚, including model constants 
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(i.e., BMAX and FAKTORV). Wiedemann specified a linear model for maximum acceleration 

[10] and deceleration [11] based on current speed. 

𝑎𝑎𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑅𝑅𝐵𝐵𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (𝑅𝑅𝑅𝑅𝑅𝑅4 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) [8] 

𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 = 𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (𝑢𝑢𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑢𝑢 × 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝑂𝑂𝑅𝑅𝑆𝑆) [9] 

𝐵𝐵𝑎𝑎𝑥𝑥𝑀𝑀𝑀𝑀𝑢𝑢𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑎𝑎𝑎𝑎 = 3.5 −
3.5
40

𝑢𝑢 [10] 

𝐵𝐵𝑎𝑎𝑥𝑥𝑀𝑀𝑀𝑀𝑢𝑢𝑀𝑀 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑎𝑎𝑎𝑎 =  −20 +
1.5
60

𝑢𝑢 [11] 

Wiedemann developed his model in 1999 to reduce the level of uncertainty attributed to random 

variables and proposed the W99 model for freeways (H. Wiedemann & Stüve, 1996). A decade 

later, the W99 car-following model was developed to include logic for autonomous vehicles. 

Figure 3 shows a couple of driver interactions in the W99 where a vehicle approaches another 

vehicle and how to a driver should react when following the lead vehicle. The subject driver begins 

to decelerate until an individual threshold, which is a function of acceptable speed difference and 

spacing, is reached. The driver then maintains a speed at or below the current speed of the leader 

until reaching other driving behavior thresholds for different maneuvers (Wiedemann, 1974).  

 

Figure 3. Wiedemann 99 car-following model  
(VISSIM 11.0 Manual) 
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Wiedemann 99 model calculates the CC parameters for the adjustment of regions outline in Figure 

3.  

𝐴𝐴𝐴𝐴 = 𝐿𝐿 + 𝐶𝐶𝐶𝐶0 [12] 

𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 + 𝑣𝑣 × 𝐶𝐶𝐶𝐶1 [13] 

where,  

𝐴𝐴𝐴𝐴 is the collision threshold [𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 

𝐴𝐴𝐴𝐴 is the deceleration threshold [𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 

𝐿𝐿 is the length of the lead vehicle [𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 

𝑣𝑣 is the velocity of the vehicle which has smaller speed in each pair of vehicle interaction 

[𝑀𝑀/𝑠𝑠] 

𝐶𝐶𝐶𝐶0 is the average standstill distance between vehicles [𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 

𝐶𝐶𝐶𝐶1 is the headway time for measuring the average following distance [𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠] 

AX and BX are the most influential parameters of W99 in following procedure. These parameters 

included the minimum standstill distance and headway which have the importance influence on 

occurrence of collisions. Other thresholds of the Wiedemann 99 model were defined in the 

following. 

𝐶𝐶𝐿𝐿𝑅𝑅𝑆𝑆 =
𝐶𝐶𝐶𝐶6

17000
× (∆𝑥𝑥 − 𝐿𝐿)2 − 𝐶𝐶𝐶𝐶4 [14] 

𝑆𝑆𝑅𝑅𝑆𝑆 = −
∆𝑥𝑥 − 𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐶𝐶2

𝐶𝐶𝐶𝐶3
− 𝐶𝐶𝐶𝐶4 [15] 

𝑆𝑆𝑅𝑅𝐴𝐴 = 𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶2 [16] 

𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆 = −
𝐶𝐶𝐶𝐶6

17000
× (∆𝑥𝑥 − 𝐿𝐿)2 − 𝛿𝛿 × 𝐶𝐶𝐶𝐶5 [17] 

where, 

∆x is the spacing between the subject vehicle and its leader [𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 

δ is a dummy variable that is 1 when the speed is greater than CC5 and 0 otherwise, 

𝐶𝐶𝐶𝐶2 is the allowed safe following distance to surpass before the following vehicle 

accelerates within maximum link speeds [𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 
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𝐶𝐶𝐶𝐶3 is the time taken to reach the safe following distance when leader is slower [seconds] 

𝐶𝐶𝐶𝐶4 is the sensitivity of the vehicle to the negative change of leader’s speed [𝑀𝑀/𝑠𝑠] 

𝐶𝐶𝐶𝐶5 is the sensitivity of the vehicle to the positive change of leader’s speed [𝑀𝑀/𝑠𝑠] 

𝐶𝐶𝐶𝐶6 is the influence of distance on speed oscillations [𝑀𝑀. 𝑠𝑠] 

One of the challenges with a psychophysical model rests on the distributions of thresholds. 

Continuous field measurements of different traffic conditions are required to calibrate the model 

in a realistic manner. Thresholds for the Wiedemann car-following model were designed based on 

limited available data (i.e., the driving behavior of people in Karlsruhe), and must be calibrated 

for field measurements. 

The intention for identifying the best car-following model in different studies was to simulate the 

real stream of traffic and predict traffic operations. In each of the above studies, the car-following 

models was incorporated into a microsimulation software package and used to predict network-

wide traffic flow. Among these car-following models, only the Wiedemann (R Wiedemann, 1994) 

model stimulated a full action psychophysical model for driving behavior (free flow, approaching, 

following, and emergency braking to represent the effect of vision impairment in the simulation 

environment).  

 Traffic Simulation Modelling 

In traffic simulation modeling, the system state represents a “scenario” that includes transportation 

network configuration and traffic demand. Traffic simulation models are typically used to evaluate 

system performance in terms of known traffic stream characteristics, such as alternative 

treatments, new designs, safety assessments, etc. (Lieberman & Rathi, 2001). Three common 

models’ categories are: macroscopic, mesoscopic, and microscopic. Macroscopic modeling is used 

in transportation planning for network-wide modeling and involves only a traffic stream's 

fundamental parameters. Contrarily, microscopic modeling is used in traffic operations to predict 

detailed vehicle interactions with infrastructure and coexisting traffic. Mesoscopic modeling is the 

middle ground between the macro and micro models and it considers high level vehicle 

interactions through derived traffic stream relationships (Lieberman & Rathi, 2001).  
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Among the three models, microscopic is evaluated through simulations and reflected realistic 

traffic flow conditions, resulting in different outputs from randomly fluctuating inputs. The 

following subsection briefly introduces the background for microsimulation modeling due to the 

emphasis of this dissertation research, specifically its concern with driving behaviors. 

Different theories for driving behaviors have been applied using microsimulation tools to predict 

the behavior of individual drivers. Driving models were traditionally developed based on traffic 

flow theories and more recently they have been based on the psychological nature of drivers  

(Brackstone & McDonald, 1999; Toledo, 2007). Each vehicle in a system has a unique speed, 

acceleration, and lateral movement based on the used car-following model (Maerivoet & Moor, 

2008). Therefore, car-following models play a significant role in predicting roadway capacity and 

traffic flow patterns (Ossen & Hoogendoorn, 2011; Rothery & Roy, 2001). The successful 

calibration of car-following models is a fundamental step in achieving realistic microsimulation 

models. 

In recent years, microscopic traffic simulation tools have become progressively more common 

when investigating traffic operations on roadways. Traffic simulation models have been used in 

research on traffic planning and for the development of intelligent traffic systems with different 

geometries, traffic demands, vehicle routes, and driver behaviors. Simulation environments 

provide safer, less expensive, and faster model development in terms of transportation operation 

and traffic management. The psychophysical car-following model of Wiedemann incorporated the 

first use of inter-deriver heterogeneity for driving behavior to replicate realistic traffic conditions, 

which was then applied using VISSIM microsimulation software. 

VISSIM is a microscopic traffic-simulation software widely used to study homogeneous traffic 

conditions (Siddharth & Ramadurai, 2013). The psychophysical model comprises both physical 

activities (i.e., perception-reaction threshold and unconscious car following) and psychological 

behavior (e.g., accelerating and decelerating). The Wiedemann model considers longitudinal 

vehicle movement and has a rule-based algorithm for lateral movements (Vashitz et. al., 2008). 

Microsimulations are generally stochastic and model a corridor or at a project-specific scale to 

represent unpredictable traffic flow and driving behavior. Microsimulation software provides an 

opportunity for users to interpret driving behaviors to evaluate heterogeneous driving behavior and 

alternative traffic control designs (Kim & Mahmassani, 2011). 
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 Accuracy of Driving Behavior  

The model calibration and validation stage is essential to a simulation modeling accurate field 

conditions (Ahmed et al., 2018). Calibration adjusts model parameters to accurately mirror 

prevailing road network conditions. The main adjustable model parameters were car-following 

behavior, gap acceptance, vehicle speed distributions, lane changes, alternative routes, and vehicle 

acceleration distributions. Validation is defined as the comparison of simulated model results with 

actual data to test simulation model accuracy.  The model validation stage detects appropriate 

parameter settings that produce outputs close to the measured field results. The validated 

parameters are maintained in the base scenario to represent a roadway sections constant driving 

behavior and operational characteristics. 

The calibration of microsimulation traffic models is a prerequisite for effective results when 

developing the study area. Three strategies have been introduced for model calibration: adjustment 

of specified parameters, specified route choices, and traffic operations. Car-following model 

calibrations need to use disaggregate trajectory data to identify driving behavior and traffic flow. 

However, further more detailed data and the optimization of input parameters necessitates the 

interpretation of calibration results (Ossen & Hoogendoorn, 2008). The complexity of calibrating 

car-following modes using trajectory-level data has led to decision points that dictate the 

formulation of optimization problems based on the choice of model parameters, performance 

measurements, goodness of fit functions, and optimization algorithms (Punzo, Ciuffo, & 

Montanino, 2012).  

A study applied an optimization algorithm to test the impact of three effectiveness measures, 

headway, relative velocity, and spacing, on some car-following models (Punzo & Simonelli, 

2005). The authors noted that spacing is the most reliable parameter for measuring performance. 

Another study formulated an optimization algorithm to evaluate the maximum parameter 

likelihood function for the simulation calibration of multiple trajectories (Hoogendoorn & 

Hoogendoorn, 2010; Ossen & Hoogendoorn, 2005). The authors used three different objective 

functions to penalize relative, absolute, and mixed errors. They noted that the mixed-function 

errors showed the most optimal calibration results. The use of this optimization method concerning 

spacing reduced errors in average velocity.  
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Another study recommended using Mean Absolute Error (MAE) to adjust parameters between 

real-world and simulated model conditions (Dowling, Skabardonis, & Alexiadis, 2004). Creating 

an objective function based on MAE provides an iteration process for finding the best answer for 

a simulation models sensitive parameter. Several systematic processes have been proposed for 

minimizing MAE using various optimization methods (Zhizhou, Jian, & Xiaoguang, 2005). 

Common optimization techniques for calibrating traffic simulations are multi-threading 

(Aghabayk, Sarvi, Young, & Kautzsch, 2013), genetic algorithms (Zhizhou et al., 2005), Mont 

Carlo (Henclewood, Suh, Rodgers, Fujimoto, & Hunter, 2017), simulated annealing (Lidbe, 

Hainen, & Jones, 2017), and Particle swarm optimization (M. Karimi, Miriestahbanati, Esmaeeli, 

& Alecsandru, 2019). 

Hourdakis (2003) presented three-stage statistical procedures for the calibration and validation of 

simulation models: 1) Volume-based calibration; 2) Speed-based calibration; and 3) Objective-

based calibration  (Hourdakis et al., 2003). Their study was conducted using the PARAMICS 

simulation software platform and did not address specific modifications of model parameters. 

Afterward, many studies have used these methods to calibrate microsimulation models, but few of 

them focused on VISSIM calibration or specific parameters.  

In a recent study, Karimi et al. (2019) investigated the function of various optimization algorithms 

on the VISSIM model and proposed an optimization method to calibrate and validate VISSIM 

parameters, particularly for freeway models. They investigated the amendment of driving 

parameters using genetic algorithm, whale optimization algorithm, particle swarm optimization, 

and multi-objective particle swarm optimization in a single step. Their results showed that the PSO 

algorithm had the best fit when calibrating a single objective (i.e., a one-lane roadway) in the 

simulation model (Mohammad Karimi et al., 2019). 

A calibrated car-following model accuracy is its ability to reproduce real-world conditions using 

sensitivity analysis or synthetic data. The cross-validation strategy has been used in many studies, 

which is the use of different datasets than those used to validate the car-following model (Kesting, 

Treiber, & Helbing, 2009). The behavior predicted by the validation strategy replicates expected 

global outputs in microsimulation modeling applications. The cross-validation procedure has also 

been used to interpret a calibrated models with a heterogeneous behavior under different driving 
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conditions. Calibration interpretation uses the same driver for different conditions and has been 

used in multiple studies. 

2.3 Autonomous Vehicles 

The design and implementation Intelligent Transportation Systems has become a major focus for 

government transportation agencies, for example the USDOT (Barbaresso et al., 2014). Innovative 

transportation technologies such advanced warning messages (e.g., messages from a drivers' smart 

advisory system), vehicle advisory systems (e.g., intelligent braking systems), and Variable 

Message Signs (VMS) are needed to eliminate visual disturbances caused by glare. Many studies 

have previously investigated traffic warning system design, the use advance-warning signals for 

approaching intersections, or impending signal changes (Schultz & Talbot, 2009). Therefore, 

reacting to the dynamic conditions of sun glare needs the use of in-vehicle technologies.  

 Automation Level 

Several automotive industries have invested funds in developing automated vehicle technologies 

to improve comfort, traffic flow, and road user safety (Friedrich, 2016). Autonomous Vehicles 

(AVs) are highly reliable when controlling electrical systems that improve performance and safety 

by enabling agile actions, such as antilock braking and electronic stability control (Grimm, 2008; 

Macario et al., 2009; Mössinger, 2010). Several studies have investigated how AVs affect driving 

behavior at a microscopic-scale, such as acceleration/deceleration rates, reaction time, and 

capacity (Hamdar, Qin, & Talebpour, 2016; Zhao & Sun, 2013; De Charette et al., 2013; Treiber, 

Kesting, & Helbing, 2007; Van Arem, Van Driel, & Visser, 2006;). The use of automated 

technologies in AVs comprises a variety of sensors and system control mechanisms. Sensors 

provide a vehicle's inputs and information on surrounding conditions, which the control system 

uses to perform controlled movements and to determine next position on its trajectory. 

An increase in vehicle automation level reduces human driver responsibility and turns the role of 

the driver into a supervisor. The National Highway Traffic Safety Administration (NHTSA) 

provided a common terminology for AVs and categorized the autonomy levels of vehicles into 5 

levels (Committee, 2014; Mössinger et al., 2013; Ranney, Garrott, & Goodman, 2001). Figure 4 

illustrates the NHTSA classification for vehicle automation levels.  Level zero represents 

conventional vehicles in which the driver is responsible for full vehicle control. Level one utilizes 
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one or two rudimentary automated functions (e.g., electronic stability control and pre-charged 

braking systems). Level two comprises at least two primary control functions that help the driver 

control the vehicle (e.g., adaptive cruise control and lane-centering systems). Level three supports 

full control with limited self-driving automation under specific traffic and environmental 

conditions, such as Google’s self-driving car (Poczter & Jankovic, 2014). Level four vehicles can 

undertake full control of safety-critical driving functions while monitoring roadway conditions for 

an entire trip. 

 
Figure 4. Levels of vehicle autonomy by NHTSA 

(R. N. Charette, 2009) 
 On-vehicle Sensors 

The Pyramid blocks for automated driving introduced a procedure for all autonomous vehicles, 

including control systems, sensing, and decision-making levels (Figure 5). The sensing system is 

the keynote of any autonomous vehicle, consisting of cameras, radars, and lidars. Sensors gather 

data at various resolutions and have a wide range of hardware and analysis costs. Sensors are 

mostly used to detect vehicle interactions with either obstacles or other road users. In order to 

develop the longitudinal acceleration model for autonomous vehicles, Talebpour & Mahmassani 

(2016) utilized sensors to obtain a safe distance for a linear car-following model.  

ITS technologies employ different sensors to develop applications or controllers and improve 

vehicle performance, road safety, and comfort. On-vehicle sensors have been sorted into six 

categories based on the application of the sensor (Abdelhamid, Hassanein, & Takahara, 2014). 
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Figure 5. Building blocks of automated driving  

(Watzenig & Horn, 2017) 
The first category of sensors accounts for basic safety systems and focuses on detecting accidents 

and events (e.g., speed sensors, cameras, RADAR, and ultrasonic). The second category has a 

diagnostic role and provides real-time information about vehicle performance (e.g., gyroscope, 

temperature, and consumption). The third category monitors traffic conditions to improve traffic 

management systems. These sensors are combined with safety sensors, and they analyze data 

differently. The fourth category combines common sensors and diagnostic sensors but are designed 

to support driver comfort and convenience. The fifth category monitors environmental conditions 

to warn drivers of adverse weather (e.g., temperature, pressure, and distance sensors). The sixth 

category monitors driver health and behavior (e.g., camera, thermistors, and electrocardiogram). 

Figure 6 illustrates the approximate location of some safety and diagnostic sensors in a vehicle 



23 
 

 
Figure 6. Different Type of on-vehicle sensors 

(Guerrero-Ibáñez, Zeadally, & Contreras-Castillo, 2018) 
Among the variety of in-vehicle sensors, gyroscopes and accelerometers are used to determine a 

vehicle's position, orientation, and velocity. The combination of gyroscopes and accelerometers 

with Global Positioning Systems (GPS) improves the detection of vehicle parameters. The utmost 

importance of these sensors is the improvement of road safety. Ultrasonics and electromagnetics 

are common safety sensors that detect objects at a short-range. They are useful for parking 

assistance or similar short-range detection. Moreover, these sensors are affected by weather 

condition, which reduces their accuracy (Ziraknejad, Lawrence, & Romilly, 2014).  

RADAR and laser sensors are used for safety applications and were developed to scan long 

distances around a vehicle to detect objects (C.C. Wang, Thorpe, & Suppe, 2003). This collected 

data may warn the driver or activate emergency braking to avoid collisions. However, RADAR 

has a limited visual field and may not detect small road users if they are not in the center of a lane. 

Cameras are integrated with other sensors to detect perfect images around a vehicle. However, 

cameras are affected by adverse weather and lose their accuracy. LIDAR is a key component in 

AV evolution as they observe surrounding vehicles with high accuracy, detect object edges, and 

provide 360-degrees visibility in all weather conditions (Sun, Bebis, & Miller, 2006). However, 

their size, cost, integration with other components, higher aperture angle positions, inability 



24 
 

detecting colors and contrast, and unreliability under bad weather conditions (snow, fog, rain, and 

airborne dust particles) are huge drawbacks to their adoption.  

Global Positioning Systems (GPS) are the main sensor for positioning an AVs as they provide the 

location of vehicles on a precise map of a roadway (Goel, Dedeoglu, Roumeliotis, & Sukhatme, 

2000). This system may suffer from interfere and signal failures due to atmospheric disturbances 

in adverse weather (H. Lee & Mousa, 1996). Figure 7 shows an example of each sensor’s 

responsibilities in terms of AV functions. GPS is a prerequisite sensor for AVs as it has perfect 

resolution under clear skies. 

 

Figure 7. Functional responsibility of on-vehicle mobility sensors 
Table 1 shows a summary of previous studies on the failure of in-vehicle sensors in safety 

applications. LIDAR had the highest probability of failure (10%), and GPS had the lowest 

probability of failure (approximately 1%). 

Current AVs prefer to adjust speed and use reliable sensors, such as RADAR, instead of relying 

on a combination of expensive sensors, such as LIDAR and Cameras. For example, Volvo’s safety 

kit reduces vehicle speeds to 50 km/h in urban areas when it detects ambiguous phenomenon in 

front of the vehicle, such as a crossing pedestrian or cyclist or adverse weather (Jakobsson, 2004). 

However, Tesla’s team do not use LIDAR in their cars and rely only on cameras and RADAR 

sensors (Yan, Xu, & Liu, 2016) 
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Table 1. Summary of literature for the failure of safety sensors 
Sensor Experiment Probability 

of failure 
Description 

LIDAR Simulation 10% Laser malfunction, optical receiver, short circuit, 
over voltage (Duran et al., 2013) 

RADAR Mathematical 2% Detection due to noises (Swerling, 1997) 
Camera Simulation 4.95% Foreign particles, shockwave, overvoltage, vibration 

(Duran et al., 2013) 
GPS Experiment 0.92% Real-life tests performed in 4 different signal 

environment for more than 14 hours (Kuusniemi, 
Lachapelle, & Takala, 2004) 

 Advanced Driver-Assistance Systems 

Advancements in information technology have opened many new potential applications in the 

transportation sector. ITS utilizes advanced information technology to assist drivers and enhance 

safe driving conditions for motorists. Driver assistance functions as a complementary support 

system designed to take over the lateral or longitudinal movement of a vehicle under certain 

conditions, such as parking assistance (Zhao, 2015). Integrated vehicle control systems will 

provide the highest level of safety by utilizing affordable in-vehicle sensors with different ranges 

and detection methods.  

Advanced Driver-Assistance Systems (ADAS) were introduced as an advanced in-vehicle 

assistance system powered by an advanced communication system  (Wu, & Boriboonsomsin, 

2010). ADAS is specialized electronic equipment embedded on Autonomous Vehicles (AVs). 

ADAS deployment has gathered a nearly 21 billion US dollar turnover in 2015 and is expected to 

expand its market size to over 104 billion by 2022 (R. De Charette, 2012).  

All detection and control procedures for ADAS driver-assistance systems work based on the 

quality of their installed sensors. ADAS uses various in-vehicle sensors (e.g., radar, ultrasonic, 

photonic mixer, camera, and night-vision devices) that improve vehicle control capabilities and 

enhance road-driving safety. On-vehicle sensors, such as ultrasonic, infrared, video cameras, and 

microwave radars, have the highest level of reliability; however, they have some inefficiencies in 

terms of sun exposure. Depending on the circumstances of the front vehicle, infrared cameras (for 

night vision) detect speed and approaching distance to announce warning messages to the driver. 

If it is impossible to prevent a collision, some inter-vehicle safety equipment is prepared and 

adjusted for better safety.  
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Ultrasonic sensors use energy waves to detect objects as well as weather and visibility conditions 

but must be mounted in a down-looking configuration, be perpendicular to an object, and are 

susceptible to high-wind speeds. Infrared works for different angles as well as day and night but 

can be sensitive to inclement weather conditions and ambient light. Video cameras show in-depth 

object detection with tracking possibilities but have poor performance under shadows, adverse 

weather, and intensive lights. Microwave radars operate by measuring the reflection of energy, but 

the reception of sidelobe radiation results in false detections. A new wideband spread-spectrum 

radar has recently been developed to remove the disadvantages of microwave radars as well as 

extend the detection range to 20 ft. However, the object detection capability of these sensors is 

limited due to them only detecting on a perpendicular sightline and they are hindered by roadside 

objects (e.g., parked vehicles).  

Regarding the significant portion of human errors causing accidents (almost 90%), ADAS has 

enormous potential in avoiding traffic mishaps in the future (Ranney et al, 2001). Surveys (M. 

Zhao, 2015) showed the key role of ADAS in averting 40% of car crashes, based upon the type of 

ADAS installed, accident situation, and traffic environment. Alongside a rise in traffic safety and 

driving comfort, it is expected that ADAS will decrease traffic jams (Ranney et al., 2001) and 

reduce green-house gas emissions (M. Zhao, 2015). 

 Performance Measures 

Prior studies on the development of ITS technologies have had common decision variables, 

including the number of VSLs deployed, the location of VSLs, and posted speed limits. Many 

studies were conducted to optimize the number and location of VSL under various road geometries 

and engineering judgments (Borrough, 1997; Habtemichael & de Picado Santos, 2013; Islam, 

Hadiuzzaman, Fang, Qiu, & El-Basyouny, 2013). For example, a study identified the optimal 

location of VSL signs when approaching a bottleneck on a highway (Xu Wang, Seraj, Bie, Qiu, & 

Niu, 2016). The authors evaluated ideal locations for VSL based on the acceptable average 

deceleration rate of drivers under free-flow speeds. Their study results showed the acceptable 

distance for a change in speed limit to be 700 m on upstream an incident point on a highway. 

Additionally, a study evaluated the acceptable reduction of speed limits based on the standard 

deceleration rate suggested by the Transportation and Traffic Engineering Handbook (Homburger, 

Keefer, & Mcgrath, 1982), and realized that the effective speed reduction is at least 8 km/h. The 
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identification of proper locations for the installation of VSLs and acceptable speed changes by 

drivers provided the basis for the construction of a model layout and the evaluation of traffic 

operations for various speeds and traffic flow compositions.  

OF all the various vehicle autonomy levels, some studies have focused on the simulation of 

platform and control strategies for traffic networks containing only fully connected vehicles (Kato 

et al., 2002; Rajamani et al., 2000). Several studies have considered AV interactions with 

conventional vehicles that result in a diminishing of traffic operation disturbances using 

autonomous vehicles (Gkikas, 2016; Merat & Lee, 2012; Saffarian, de Winter, & Happee, 2012; 

Walch et al., 2017). The mixed traffic of conventional and semiautomated vehicles was also 

partially studied to address traffic flow characteristics and environments (Bose & Ioannou, 2003). 

Presents for automated technologies have also caused difficulties in assessing transportation 

facility safety due to a lack of models that can predict crash potentials. Several studies have used 

traffic simulation analysis and interfaces to propose methods for improving traffic safety such as 

variable message signs and warning signals.  

Several studies have investigated how AVs affect driving behavior at the micro-scale, such as 

acceleration/deceleration rate, reaction time, and capacity (Kato et al., 2002; Martin, Kalyani, & 

Stavanovic, 2003; Poczter & Jankovic, 2014; Rajamani et al., 2000; Ranney et al., 2001). Some 

studies have considered AV interaction with conventional vehicles that result in diminished traffic 

operation disturbances (Gkikas, 2016; Merat & Lee, 2012; Saffarian et al., 2012; Walch et al., 

2017). The alteration of default driving model parameters in a microsimulation cannot imply full 

automation. Microsimulation safety evaluations may show inaccurate increases in simulated traffic 

conflicts due to smaller headway and safety distances for some sorts of AVs (Jeong, Oh, & Lee, 

2017). 

Conflict represents a situation where two vehicles may collide at different angles (Gettman & 

Head, 2003). The number of conflicts per hour can be used as a surrogate for the number conflicts 

per year (Kockelman et al., 2016). The Surrogate Safety Assessment Model (SSAM) is a common 

microsimulation interface that measures the number of conflicts and their severity based on 

trajectory files (Genders & Razavi, 2016a; Kockelman et al., 2016; Muley, Ghanim, & Kharbeche, 

2018). An increase in congestion causes a higher number and severity of conflicts, which may 

increase the likelihood of crashes (Chen et al., 2018).  
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The SSAM model uses five parameters to estimate the severity of simulated conflicts: Time-To-

Collision (TTC), Post Encroachment Time (PET), Deceleration Rate (DR), Maximum Speed 

(MaxS), and Speed Difference (DeltaS). Of these five parameters, TTC and PET have an upper 

limitation of 1.5 and 4, respectively, when considering conflicts with crash potential. It has been 

well recognized that a higher 𝐹𝐹𝐹𝐹𝐶𝐶 value as well as lower speed and headway variance result in 

safer driving (Garber, Miller, Sun, & Yuan, 2006; Minderhoud & Bovy, 2001; Svensson & Hydén, 

2006). Other parameters have been used to analysis conflict severity. The model distributes 

conflicts based on their approach angle (Figure 8) into three different types: rear-end, lane-

changing, and crossing (Ghanim & Shaaban, 2019).  

 
Figure 8. Conflict types in SSAM  
(Souleyrette & Hochstein, 2012) 

SSAM provides acceptable results for different conflict types at intersections, but surrogate 

assessments of homogenous traffic flow have shown the misdetection of rear-end conflicts 

(Gettman & Head, 2003). Some studies have analyzed the risk level of conflicts based on posteriori 

descriptions of collected data to study the evolution of safety indicators related to traffic (Kuang, 

Qu, & Wang, 2015; Minderhoud & Bovy, 2001; J. Wang, Kong, Fu, & Stipancic, 2017). They 

used headway distribution, TTC, or the aggregated crash index to assess the severity of conflicts 

in a simulation model. The TTC indicator method (Minderhoud & Bovy, 2001) considers 

differences in the speed and acceleration of each pair of vehicles. It is the most realistic situation 
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for evaluating rear-end conflicts when traffic flow has a few changing lanes (e.g., homogenous 

traffic flow on highways or midblock in urban roadways). 

Some studies examined potential AV applications to improve safety and mobility (Kurker et al., 

2014; Olia, Abdelgawad, Abdulhai, & Razavi, 2016). The highest level of AVs has the ability to 

communicate with surrounding vehicles and infrastructures to provide reduce the likelihood of 

collisions (Genders & Razavi, 2016b). The authors also evaluated the limitations of vehicle TTC 

at different speeds and improved this limit by considering the relative speeds of vehicles. The 

results provided proof for reducing TTC thresholds for the use of connected vehicles. 

Surrounding infrastructure and nonautonomous vehicles (i.e., human drivers) have a tremendous 

impact on AV performance due to AV low market penetration into general traffic. Recent studies 

by AV industry leaders have indicated that a majority of AV-involved crashes were due to 

interactions with conventional vehicles (Ahn et al., 2016; Delphi & Sepehri, 2016; Dixit, Chand, 

& Nair, 2016; Hörl, Ciari, & Axhausen, 2016; Takamatsu, 2016). 

Other studies paid particular attention to understanding AV technological maturity and penetration 

rates through roadway capacity (Litman, 2017; Xiao et al., 2017). Talebpour & Mahmassani, 

(2016) simulated the impact of different autonomous vehicles' compositions on mixed traffic flows 

and found that AVs improved effectiveness. In another experimental simulation study, Shladover 

(2012) found increases in capacity were marginal up to a 50% AV penetration rate. However, 

model development has not been reliable due to the use of many car-following and lane-changing 

parameters. A sensitive AV parameter in car-following models is look-ahead distance, which is 

the detection range of utilized sensors.  

As the benchmark for dynamic control technologies, the effect of autonomous vehicles on road 

safety and traffic operations has not yet been studied in their role as a countermeasure for visually 

impaired locations on roadways. 

2.4 Advanced Collision Avoidance System 

Vehicles equipped with ADAS receive warnings in critical situation. Also, automatic control 

allows the driver/vehicle to react to dangerous events in a faster and more effective way, such as 

automated braking or acceleration/deceleration systems. According to a report by Texas 
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Instruments and Bosch (Troppmann & Hoeger, 2005), there are two major categories of ADAS 

(Passive and Active). Passive includes all types of warnings (e.g., alert mechanisms or detection) 

whereas braking or collision avoidance are an active safety system.  

Driver delays in recognizing dangerous situations causes at least 9% of all annual crashes in the 

US  (NHTSA, 2008). With the rapid development of automated technologies, various ADAS 

applications have been designed to overcome human driver limitations and improve driver and 

passenger safety. Rear-end collisions account for almost 30% of all collisions in Canada and the 

US (Ranney et al., 2001; L. Wang, Abdel-Aty, & Lee, 2017). In order to reduce forward collisions, 

many studies have focused on the development of collision warning systems (C. Lee, Hellinga, & 

Saccomanno, 2003). Collision warning systems have been recognized as an intelligent system 

tailored to driver preferences (J. D. Lee, Hoffman, & Hayes, 2004).  

 Advanced Collision Warning System 

The successful detection of hazards and the displaying of warnings occurs when a driver braking 

response exceeds a perceptual threshold. It depends on the kinematic information of the vehicles 

involved, driver reaction time, and the maximum deceleration of the subject vehicle used to trigger 

a warning. Many studies have investigated the success of perceptual based systems in TTC and 

the use of headways for safe and unsafe driving situations (Graham, 1999; Hogema & Janssen, 

1996; Hurwitz & Wheatley, 2001; Nilsson, 1993; Van der Horst, 1991). They found that a TTC 

limit of 3 seconds reduced the number of false alarms, considering the division of headway space 

and a following vehicle velocity provides a perfect range for warning initiation. However, the 

perceptual system used some assumptions, such as restricted reaction time, zero deviation from 

relative velocities, and the same braking profile for all involved vehicles. These assumptions may 

limit the headway criterion from capturing all collisions because 75% of lead and following 

vehicles in rear-end collisions do not follow the same car-following state (Horowitz & Dingus, 

1992).  

Kinematic-based systems use better assumptions, including driver-reaction time and maximum 

deceleration rate to create active alerts in a potential collision situation. The initiation range is 

based on the required minimum stopping distance plus a two-meter safety margin as follows [12]: 

𝑅𝑅𝑤𝑤 =
𝑆𝑆𝑓𝑓2

2𝑎𝑎𝑓𝑓
+ 𝐹𝐹𝑓𝑓𝑆𝑆𝑓𝑓 + 2 [12] 
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where, 

𝑅𝑅𝑤𝑤is the initial range of the warning [meter],  

𝑆𝑆𝑓𝑓 is the velocity of the following vehicle [𝑀𝑀/𝑠𝑠],  

𝑎𝑎𝑓𝑓 is deceleration rate of the following vehicle [𝑀𝑀/𝑠𝑠2],  

𝐹𝐹𝑓𝑓 is the reaction time of the following vehicle [seconds]. 

The first version of this algorithm was developed with some suggestions for maximum 

deceleration rate and driver reaction time under the same initial velocity to allow the following 

vehicle to miss the lead vehicle by 2 meters (Burgett, Carter, Miller, Najm, & Smith, 1998). Other 

researchers did not assume the same initial velocity for the involved vehicles and modeled the 

deceleration rate using the last minute of braking data  (Brunson, Kyle, Phamdo, & Preziotti, 2002). 

Nevertheless, some studies developed a stationary lead vehicle system and suggested a 5.5 

𝑀𝑀/𝑠𝑠2 average deceleration rate for the following vehicle (Krishnan, Gibb, Steinfeld, & Shladover, 

2001). However, driver comfort was not considered. Other studies considered a comfortable 

deceleration rate based on a vehicle's current speed and a 1.1s mean reaction time to prevent 

collisions  (Olson & Sivak, 1986). The result of this development enhanced the detection of 

threatening scenarios.  

Additionally, providing a cautionary warning to increase distance when facing common roadway 

incidents increases driver braking reaction time capability and provides a comfortable deceleration 

rate (Burgett et al., 1998). Uncertain lead vehicle behavior and changes in roadway coordination 

at incident points, such as the initial location of vision impairment, are obvious failure points that 

require a warning message that does not use front vehicle sensors (i.e., Camera, LIDAR, and 

RADAR). 

Intelligent driver-assistance was developed using a GPS and vision-based system to provide real-

time information to the driver (B. Zheng & Lachapelle, 2004). The system sends a passive alarm 

to the driver when a hazardous situation is detected downstream based on the vehicle’s position, 

orientation, and velocity as well as road conditions and the surrounding environment (N.-N. Zheng 

et al., 2004). The focus of the study was on lane recognition and pavement condition. The authors 

used a high-precision offline GIS database to determine the roadmap base and used a real-time 
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GPS and sensory systems to warn the driver of downstream incidents based on their position on a 

digital map.  

 Intelligent Braking Assistance 

Automated technology has been developed in AVs to overcome limitations in human driver tasks. 

In addition to the use of ACWS to warn drivers, some studies developed a control logic model 

called Intelligent Braking Assistance (IBA). The system works based on the functionality of the 

installed RADAR sensor in the front of the vehicle. Collecting robust data through this sensory 

system leads to the estimation of TTC for the use of a perceptual threshold system. When detecting 

a threatening situation, the control system takes control of brakes and steers away from a potential 

collision (Brunson et al., 2002). 

The notable reduction in rear-end collisions due to collision avoidance systems has caused 

industries to develop their own safety models. Honda and Mazda consider driver preference and 

road environment in their safety systems (Krishnan et al., 2001; Seiler, Song, & Hedrick, 1998; 

Wilson, 2001). Overall, their safety systems used the kinematic-based model and were developed 

using sensory systems (Happian-Smith, 2001; Xuesong Wang, Chen, Zhu, & Tremont, 2016). 

Another study developed basic collision avoidance system elements by conducting a series of 

studies on driver reactions to minimize the number of nuisance alerts and showed an increase in 

collision avoidance (R J Kiefer et al., 1999). The author extended their work to address timing 

requirements by using two last-second brakes to estimate potential braking severity (R J Kiefer et 

al., 2003). The authors calculated the warning range based on the prevailing driver reaction time 

of both vehicles (Raymond J Kiefer, LeBlanc, & Flannagan, 2005). Experimental results indicated 

that the developed model, under delayed timing conditions, was able to execute successful braking 

in over 85% of trials.  

Braking assistance is predominantly a longitudinal control system that is rarely activated and acts 

as an additive support to a certain driver reaction. This control system is an important function of 

active safety systems. However, braking affects a vehicle's speed and has ab indirect effect on 

other safety systems (Summala, Nieminen, & Punto, 1996). Braking may result in deceleration 

(i.e., adjust headway with a leader vehicle) or a complete stop. Industries have developed 

automated braking as a fully automated headway control system that relies on stopping sight 
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distance and automation braking activation (Hoedemaeker & Brookhuis, 1998; Pauwelussen & 

Minderhoud, 2008; Rudin-Brown & Parker, 2004; Young & Stanton, 2007). 

Road safety improvements through detection, warnings, driver perceptions, and braking requires 

that drivers have sufficient distance in a situation. This distance is called the Stopping Sight 

Distance (SSD) and is mathematically represented using key driver and vehicle characteristics. 

The key parameters of SSD are vehicle speed, perception-reaction time, braking distance, driver 

and object eye height, and pavement friction.  Among these parameters, friction is uncertain due 

to its relationship with speed, tire condition, and pavement condition (Kouchaki, Roshani, Prozzi, 

Garcia, & Hernandez, 2018). In order to represent the driving environment, AASHTO (2001) 

developed a driver-performance model for stopping sight distance as follows [18]. 

𝑆𝑆𝑆𝑆𝑅𝑅 = 0.278𝑆𝑆𝑎𝑎𝑟𝑟 +
𝑆𝑆2

254(𝑎𝑎𝑔𝑔 ± 𝐺𝐺)
 [18] 

where, 

 𝑎𝑎𝑟𝑟 is the perception-reaction time [𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠],  

𝑆𝑆 is the initial velocity of the vehicle in [𝑘𝑘𝑀𝑀/ℎ],  

𝑎𝑎 is deceleration rate in 𝑀𝑀/𝑠𝑠2, g is the gravitational acceleration, and  

𝐺𝐺 is the percentage gradient of the road. 

Vehicles equipped with IBA can calculate critical distance and provide quick stops under ordinary 

circumstances based on SSD and kinematic constraint criteria. Critical distance includes SSD and 

the vehicle final spacing (assumed as two meters). Additionally, the road gradient can be measured 

using GPS data to determine a vehicle's exact geographic position at each time step (Fraczek, 

2003). Development of AWCS and IBA algorithms based on SSD avoids the difficult problem of 

estimating the deceleration rate of the lead vehicle and focuses on the qualities of the following 

vehicle. 

Deceleration rate is recognized as the main kinematic constraint for avoiding a collision. A study 

reviewed previous developed emergency braking systems and proposed an interval between 0.4g 

to 0.85g for verifying a realistic deceleration (Goudie, Bowler, Brown, Heinrichs, & Siegmund, 

2000). Another study used a driving simulator to determine the impact of early and late 
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deceleration rates on collisions (Hoffman, Lee, & Hayes, 2003). The results showed fewer 

collisions when receiving an earlier warning due to it providing a smaller criterion for deceleration 

rate (0.4g). However, earlier warnings resulted in more nuisance alerts. The NHTSA developed an 

algorithm with a fixed deceleration rate of 0.55g and a 1.5 second reaction time based on the Mont 

Carlo simulation (Najm, Stearns, Howarth, Koopmann, & Hitz, 2006). Comparing the false alarm 

and positive rates across various parameters showed that the fixed deceleration rate criterion could 

be adopted across all kinematic conditions. 

2.5 Concluding Remarks 

The occurrence of sun glare was investigated from different aspects of roadways. However, 

identifying the location of blindness under the sun glare and the transition between sun glare and 

contrasting shadows have not been considered yet. Besides, the simulation environment was not 

considered for emulating detection of uncertain incidents on roadways, such as sun glare 

occurrence.  

The Wiedemann car following was recognized the best for modelling driving behaviour in vision 

impairment. The application of potential driver assistance and vehicle control systems in response 

to driver vision impairment has not been emulated in a microscopic simulator. Moreover, the 

SSAM showed an untrustful method for assessing conflicts in homogenous traffic flow. A new 

method of conflict analysis should be defined based on changes in the velocity and acceleration of 

the vehicles and sensitive parameters in the car-following model.  
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 EXISTING VISIBILITY AND CREATION OF DATABASE 

This section presents a step-by-step method for systematically identifying vision impairment 

locations on roadways caused by sun glare under different built environment (Figure 9). The 

proposed methodology can be applied to any study area with suitable geographical information 

data. The development of a suitable glare-detection algorithm at a network level relies on a 

complex analytical procedure built on a geographical information system. The algorithm’s input 

data consists of a complete 3-D road network geometric alignment, including elevations, as well 

as hillshade data and solar radiation information for the study area. Figure 10 represents the core 

of the proposed methodology in four stages. First, robust sun position algorithms are used on each 

analysis period for a given road segment. Second, geometry model analyzes the visibility reduction 

of drivers based on the visible sun trajectory and situation of the vehicle on the road segment. 

Third, the projection of buildings’ elevation on the road segment identifies shadows as a different 

cause of vision impairment. Finally, the impact of cloud coverage considers providing the most 

accurate results for vision impairment analysis. 

 
Figure 9. Components of visibility and sun glare detection algorithm 
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Figure 10. The methodology of vision impairment detection 
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3.1 Sun Positioning Algorithm 

The occurrence of sun glare is directly related to the Sun's position concerning the observer’s 

sightline. The apparent path of the Sun changes over the course of a year. Several astronomical 

algorithms have been developed to increase the efficiency of calculating the actual sun position 

(Michalsky, 1988; Spencer, 1971). They explore the temporal and spatial dimensions of the Sun 

at a specific point on the earth's surface. The algorithm used in this study to detect the Sun's 

position for a given location on the earth's surface has been developed by the National Oceanic 

and Atmospheric Administration (NOAA) Global Monitoring Division (Cornwall, C., Horiuchi, 

A., Lehman, n.d.). This algorithm requires the GIS coordinates and the timestamp of the location 

to be analyzed. The algorithm can process the coordinates input in the form compatible with the 

WGS84 geographic system (i.e., a coordinate pair of latitude - positive north and longitude - 

positive east). This solar calculator extrapolates the Gregorian calendar back through time to 

consider changes in the daylight system [19-25]. The modified NOAA algorithm uses the 

Universal Time (UTC) reference, and it works with a converted daylight system.  

First, the fractional year 𝛾𝛾, is calculated in radians to estimate the equivalent time, 𝑎𝑎𝑒𝑒, and 

declination angles, 𝑎𝑎𝑎𝑎. 

𝛾𝛾 =
2𝜋𝜋

365
�𝑑𝑑𝑎𝑎𝑑𝑑 𝑎𝑎𝑜𝑜 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 − 1 +

ℎ𝑎𝑎𝑢𝑢𝑎𝑎 − 12
24

� [19] 

𝑎𝑎𝑒𝑒 = 229.18(0.000075 + 0.001868 𝑎𝑎𝑎𝑎𝑠𝑠 𝛾𝛾 − 0.032077 𝑠𝑠𝑀𝑀𝑎𝑎 𝛾𝛾 − 0.014615 𝑎𝑎𝑎𝑎𝑠𝑠 2𝛾𝛾
− 0.040849 𝑠𝑠𝑀𝑀𝑎𝑎 2𝛾𝛾) [20] 

𝑎𝑎𝑎𝑎 = 0.006918 − 0.399912 𝑎𝑎𝑎𝑎𝑠𝑠 𝛾𝛾 + 0.070257 𝑠𝑠𝑀𝑀𝑎𝑎 𝛾𝛾 − 0.006758 𝑎𝑎𝑎𝑎𝑠𝑠 2𝛾𝛾
+ 0.000907 𝑠𝑠𝑀𝑀𝑎𝑎 2𝛾𝛾 − 0.002697 𝑎𝑎𝑎𝑎𝑠𝑠 3𝛾𝛾 + 0.00148 𝑠𝑠𝑀𝑀𝑎𝑎 3𝛾𝛾 [21] 

Next, the algorithm can measure a true solar time, 𝑎𝑎𝑠𝑠𝑎𝑎, in minutes, 

𝑎𝑎𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝑢𝑢𝑎𝑎 × 60 + 𝑀𝑀𝑀𝑀𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎 + 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠
60� + 𝑎𝑎𝑒𝑒 + 4 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑀𝑀𝑎𝑎𝑢𝑢𝑑𝑑𝑎𝑎 − 60 × 𝑎𝑎𝑀𝑀𝑀𝑀𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 [22] 

Where, 𝑎𝑎𝑒𝑒 is in minutes, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑠𝑠 𝑎𝑎ℎ𝑎𝑎 longitude in degrees (positive to the east of the prime 

Meridian), and 𝑎𝑎𝑀𝑀𝑀𝑀𝑎𝑎 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 is in hours from UTC. 

The availability of true solar time provides corresponding solar hour angle, 𝑎𝑎𝑠𝑠ℎ, based on each 

latitude, 𝑎𝑎𝑎𝑎𝑎𝑎, and time to calculate the sun elevation 𝜃𝜃𝑠𝑠 and sun azimuth 𝜑𝜑𝑠𝑠 in degrees. 

𝑎𝑎𝑠𝑠ℎ = (𝑎𝑎𝑠𝑠𝑎𝑎/4) − 180 [23] 
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𝑠𝑠𝑀𝑀𝑎𝑎(𝜃𝜃𝑠𝑠) = 𝑠𝑠𝑀𝑀𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑠𝑠𝑀𝑀𝑎𝑎(𝑎𝑎𝑎𝑎) + 𝑎𝑎𝑎𝑎𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑎𝑎𝑎𝑎𝑠𝑠(𝑎𝑎𝑎𝑎) × 𝑎𝑎𝑎𝑎𝑠𝑠(𝑎𝑎𝑠𝑠ℎ) [24] 

𝑎𝑎𝑎𝑎𝑠𝑠(𝜋𝜋 − 𝜑𝜑𝑠𝑠) = −
𝑠𝑠𝑀𝑀𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑠𝑠𝑀𝑀𝑎𝑎(𝜃𝜃𝑠𝑠) − 𝑠𝑠𝑀𝑀𝑎𝑎(𝑎𝑎𝑎𝑎)

𝑎𝑎𝑎𝑎𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑎𝑎𝑎𝑎𝑠𝑠(𝜃𝜃𝑠𝑠)  [25] 

Additionally, the solar path is bent due to the refraction effect from the earth’s atmosphere. The 

refraction effect displays unrealistic sun elevation when it is close to the Earth's horizontal surface 

(i.e., sunrise and sunset). The refraction analysis outlined in this study needs to be considered to 

identify the Sun's apparent position [26], particularly the sunrise's critical time when drivers might 

be affected by potentially devastating eye damage from the sunshine parallel to the sightline.  

Saemundsson proposed a refraction correction model when the actual angle elevation is known 

(Saemundsson, 1986). Besides, the change in pressure and temperature has been accounted for by 

Meeus (Meeus, 1988) with an algorithm that provided an updated formula in the NOAA algorithm 

[23].  

𝜃𝜃𝑠𝑠,𝑟𝑟 =  𝜃𝜃𝑠𝑠 + (𝑂𝑂 1010⁄ ) × [283 (273 + 𝐹𝐹)⁄ ] × �1.02 𝑎𝑎𝑎𝑎𝑎𝑎�𝜃𝜃𝑠𝑠 + (10.3 𝜃𝜃𝑠𝑠 + 5.11⁄ )�⁄ � [26] 

where, 

𝜃𝜃𝑠𝑠 is the actual elevation of the Sun,  

𝜃𝜃𝑠𝑠,𝑟𝑟 is the corrected (i.e., apparent) elevation of the Sun,  

𝑂𝑂 is the atmospheric pressure and  

𝐹𝐹 is temperature. 

In addition to analyzing the position of the Sun at a specific time, the location of the observer point 

is required to identify the effects of the position of the Sun. The proposed model assumes a 

homogeneous vertical/horizontal alignment of each road segment of a study area. Thus, the road 

segments are divided into the longitudinal five-meter long subsegments, the average length of 

typical passenger vehicles. The vehicles' movement on the road is similar to changing their 

positions between five-meter-long cells or subsegments. The driver position in a passenger car is 

assumed to be located nearly in the middle of each subsegment, regardless of the vehicle type. 

Also, AASHTO safety design guidelines assume an average car driver’s eye equal to 1.08 m for 

passenger cars (T. AASHTO, 2011). The Sun's position is calculated through the modified 

algorithm of sun position for any points on the road within the analyzed period. The results of sun 

position are represented as azimuth and elevation angles (Figure 11) and are the preliminary input 

into the sun glare detection algorithm (Figure 9). 
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Figure 11. Sun position coordinate system 

3.2 Sun Glare Detection Algorithm 

In order to detect the sun glare phenomenon, it is vital to evaluate the alignment of driver sightline 

accurately. The sun glare occurrence is identified in the horizontal and vertical plane of the driver’s 

vision towards the sun position. The glare angle is obtained from the angular distance function between 

the line of sight and the sun position. Several studies were conducted to quantify the angular distance 

at which glare causes distraction on vehicle control. One of these studies provided a review of the 

disability due to the sun-glare phenomenon (Vos, 2003). Another study focused on the lack of an 

appropriate angular displacement of signs in drivers ‘vision. It concluded that the positioning of the 

Sun at the elevation of 20 degrees has the maximum aperture for visibility (Zwahlen, 1989).  

Another study proposed a methodology to predict driver vision sensitivity under the sun glare (Jurado-

Piña & Mayora, 2009). The author analyzed the visibility of different drivers' age based on the external 

and road surface illuminances and determined that the vertical angle of 25 degrees or less has the most 

vision impairment on the older driving population. According to another study, drivers' vision 

impairment is limited horizontally within the 30 degrees of drivers’ vision apex, which are represented 

as acute vision angle (Gong, Walker, Hall, & Hurst, 1990). Regardless of the threshold values used, 

the assessment of the position of the sun relative to the observer’s location on roadways requires 

an accurate position identification in a three-dimensional coordinate system. 

The sun azimuth is an angular measurement in a spherical coordinate system (Figure 11). The most 

common conventional method of measuring azimuth for analyzing solar position is clockwise from 

due north, according to National Renewable Energy Laboratory (2013). The azimuth of sun 

position can be converted to a Cartesian system using [27-29]. First, the azimuth angle is converted 

into the polar coordinate system, where 𝜑𝜑𝑠𝑠 represents an angle from the east, and 𝑎𝑎 is the distance 
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between observer point and sun, and to have a unit vector (𝑎𝑎 = 1), 𝑢𝑢 represents the direction vector 

[29] in the cartesian system (i.e., 𝑥𝑥, 𝑑𝑑, 𝑡𝑡). 

𝑥𝑥 = 𝑎𝑎 ∗ 𝑎𝑎𝑎𝑎𝑠𝑠(𝜑𝜑𝑠𝑠) [27] 

𝑑𝑑 = 𝑎𝑎 ∗ 𝑠𝑠𝑀𝑀𝑎𝑎(𝜑𝜑𝑠𝑠) [28] 

𝑢𝑢 =  [𝑎𝑎𝑎𝑎𝑠𝑠(𝜑𝜑𝑠𝑠), 𝑠𝑠𝑀𝑀𝑎𝑎(𝜑𝜑𝑠𝑠)] [29] 

The sun position and sun glare detection algorithms are coded using Python to eliminate the use 

of Geographical Information System (GIS) software and analyze algorithms' combination. The 

evaluation of sun glare occurrence needs to be considered for every subsegment of the road 

network. The compiled GIS data into the Python script is used to analyze the position of the Sun 

from any observer points. In our experiment, road segments are divided into 5-meter discrete 

subsegments (average vehicle length) and are examined based on corresponding road IDs. It is the 

most straightforward method by which the tangent vector can be estimated to calculate each 

subsegment slope as defined in [30]. 

𝛿𝛿 = 𝑎𝑎𝑎𝑎𝑎𝑎−1 �𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑠𝑠 �(𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑠𝑠)2 + (𝑑𝑑𝑒𝑒 − 𝑑𝑑𝑠𝑠)2⁄ � [30] 
where, 

𝛿𝛿 - represents the slope of a segment, it is calculated based on the tangential difference 

between 𝑥𝑥𝑠𝑠,𝑑𝑑𝑠𝑠, 𝑡𝑡𝑠𝑠 coordinates of start point of a segment and 𝑥𝑥𝑒𝑒 ,𝑑𝑑𝑒𝑒 , 𝑡𝑡𝑒𝑒 at the end of 

segment.  

Amount of 𝜑𝜑𝑎𝑎𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑 has to be defined as a positive angle from the east on the horizon tangent 

surface; therefore, since 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 in [31] returns values between −𝜋𝜋 𝑎𝑎𝑎𝑎 𝜋𝜋, the angle is modified by 

adding 2𝜋𝜋 when negative values are returned.  

𝜑𝜑𝑎𝑎𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑑𝑑𝑠𝑠,𝑑𝑑𝑒𝑒) [31] 

In this study, the range of drivers’ sightline that might be affected by sun glare is represented by a 

cone with the apex on driver’s eyes. In principle, the direction of driving is defined according to 

the direction of driver’s vision (i.e., the windshield and front side windows). Consequently, the 

formulation in [32] represents a limitation in detecting the sightline under the vision impairment 

condition. 

𝑎𝑎𝑎𝑎𝑠𝑠|𝛿𝛿 − 𝜃𝜃| < 25  , 𝐴𝐴𝑅𝑅𝑅𝑅 , 𝑎𝑎𝑎𝑎𝑠𝑠�𝜑𝜑𝑎𝑎𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑 − 𝜑𝜑𝑠𝑠𝑚𝑚𝑛𝑛� < 30 [32] 

where, 
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𝜃𝜃 – represents the elevation of the Sun,  

𝜑𝜑𝑠𝑠𝑚𝑚𝑛𝑛  – is the conversion of sun azimuth to measure from the east direction (Figure 11).  

The slope of a road segment, 𝛿𝛿, is identified from the elevation values at the ends of the road 

segment (Figure 12a), while the driving direction, 𝜑𝜑𝑎𝑎𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑, is evaluated based on the 𝑥𝑥,𝑑𝑑 

coordinates at the two ends of the road segment. The extended area of the acute vision is an 

acceptable 30 degrees limit (Figure 12b) between the horizontal alignment 𝜑𝜑𝑠𝑠𝑚𝑚𝑛𝑛 of the sun and 

driving direction 𝜑𝜑𝑎𝑎𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑. 

  

 
a) Vertical angle from sightline   b) Horizontal angle from sightline  

Figure 12. Glare angular limits  

3.3 Occlusion Test 

Driving under the sun glare occurs on many road networks with a straight alignment. However, 

the existence of shadow on the roadway has not perception threat for drivers, transition between 

shadow and sun glare may be an obvious threat for driver’s health and road user’s safety. 

According to the output of sun glare and shadow detection algorithms, transition points can be 

categorized in three kind of vision impairment comprise: entrance to the sun glare from normal 

condition, entrance to the sun glare from shadow, and entrance to the shadow from sun glare 

(Figure 13). Finding the precise location of transition points assists the simulation model to imitate 

actual driving behavior on roadways.  
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Figure 13. Sketch of a single lane contains sun glare and shadow  
(yellow: the segment under sun glare, grey: the segment under contrasting shadow) 

Various surface structures (e.g., buildings, overpasses, etc.) may temporarily block solar radiation 

and create contrasting shadows on specific roadway segments. The coverage of this type of 

shadows has a variety of length and shape on the road surface based on the building dimensions, 

road geometry, time of day, and the season. Therefore, a road user is exposed to sun glare at 

different locations along the road depending on the date and time of day, the coordinates of user’s 

location, the azimuth and elevation angles of the Sun. The height of the shadow generating 

structure and terrain data analysis are required to consider impact of shadows on roadway. 

However, highly detailed resolution of this kind of analysis is a computationally intensive task. To 

demonstrate the feasibility of the proposed methodology with a computationally efficient 

approach, a fishnet of highest elevation points is generated with 5 by 5 meters 2D dimension to 

represent the maximum elevation of terrain and buildings roofs within each grid cell. Each cell is 

represented by its center point and corresponding coordinates of 𝑥𝑥,𝑑𝑑, and the maximum elevation 

of cell. Figure 14a provides an example of how the defined grid can be utilized to evaluate the 

position of the observer with respect to the Sun.  

Identifying a restricted influential area of grid cells provides an efficient algorithm for the 

occlusion test.  Figure 14a illustrates that the rectangular investigation area (i.e., occlusion area) is 

extended from the location of drivers on the roadway, 𝑂𝑂, to the farthest length of locating 

maximum elevation point, 𝐸𝐸, to obstacle the sun ray. The coordinates of observer vector (𝑂𝑂𝐸𝐸�����⃗ ) are 

calculated as the center line of the rectangular area.  Coordinates of occlusion area corners use to 

diagnose and recover the center of cells under the influence area by fitness functions [33-36]. The 

horizontal angle of the Sun, 𝜑𝜑𝑠𝑠𝑚𝑚𝑛𝑛, is modified to represents an angle from east-west axes.  

𝑥𝑥𝑑𝑑 =  𝑥𝑥𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟 ± 𝑎𝑎𝑎𝑎𝑠𝑠 �5 ∗  𝑠𝑠𝑀𝑀𝑎𝑎 𝜑𝜑 𝑠𝑠𝑚𝑚𝑛𝑛−𝑚𝑚𝑜𝑜𝑎𝑎𝑑𝑑𝑓𝑓𝑑𝑑𝑒𝑒𝑎𝑎�  [33] 
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𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟 ± 𝑎𝑎𝑎𝑎𝑠𝑠 �5 ∗ 𝑎𝑎𝑎𝑎𝑠𝑠 𝜑𝜑 𝑠𝑠𝑚𝑚𝑛𝑛−𝑚𝑚𝑜𝑜𝑎𝑎𝑑𝑑𝑓𝑓𝑑𝑑𝑒𝑒𝑎𝑎�  [34] 

𝑥𝑥𝑑𝑑 =  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒𝑎𝑎 ± 𝑎𝑎𝑎𝑎𝑠𝑠 �5 ∗  𝑠𝑠𝑀𝑀𝑎𝑎 𝜑𝜑 𝑠𝑠𝑚𝑚𝑛𝑛−𝑚𝑚𝑜𝑜𝑎𝑎𝑑𝑑𝑓𝑓𝑑𝑑𝑒𝑒𝑎𝑎�   [35] 

𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒𝑎𝑎 ± 𝑎𝑎𝑎𝑎𝑠𝑠 �5 ∗  𝑎𝑎𝑎𝑎𝑠𝑠 𝜑𝜑 𝑠𝑠𝑚𝑚𝑛𝑛−𝑚𝑚𝑜𝑜𝑎𝑎𝑑𝑑𝑓𝑓𝑑𝑑𝑒𝑒𝑎𝑎�   [36] 

For the purpose of the occlusion test, a ray detection algorithm figures out which center points 

inside the tangent rectangle locates inside the occlusion area by providing a direct link between 

each center point and the observer point to evaluate the number of intersections with sides of the 

inner rectangle. If a center point has no intersection with the sides of the rectangle, it will be 

considered as a point inside the occlusion area. 

The center points identified inside the occlusion area are examined for the occlusion test (i.e., 

shaded cells in Figure 14a). The distance between the observer points and each center point is 

calculated to identify the corresponding sun elevation and investigate the situation of receiving 

sunray at this angle on the observer point (Figure 14b & 14c).  

 
Figure 14. a) Plan view of the area for occlusion test; b) Glare condition; c) Occluded point 

3.4 Weather Data Analysis 

In addition to the occlusion of sunlight caused by buildings and terrain shape, clouds are another 

cause of the shadow. Cloud coverage has a bright shadow; thus, cloud coverage alone is not likely 

to create vision deficiency and it does not affect road safety. However, clouds may avoid the 

occurrence of sun glare within a specific time. The occurrence of sun glare is sensitive to 

atmospheric conditions and specific locations.  
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Cloud coverage is evaluated through the difference between the detector's received irradiance and 

the actual sun radiation. The Sun's radiation has a direct relation with the sun elevation. The 

atmosphere scatters and absorbs the radiation from the Sun. During sun glare, the Sun has lower 

elevations; hence, sunray passes the longer path through the atmosphere. Prior studies have 

investigated various mathematical models on the weather data to identify the clear sky and find a 

relation between collected solar radiation and sunlight intensity (Littlefair, 1985, 1988; T Muneer, 

1995; Tariq Muneer, 2007; Perez, Ineichen, Seals, Michalsky, & Stewart, 1990; Ullah, 1996). 

Among different mathematical models, a study (Perez et al., 1990) is recognized as the most 

accurate and is selected to predict the hourly solar irradiance, 𝑆𝑆𝑀𝑀, values [37].  

𝑆𝑆𝑀𝑀 = �(𝐼𝐼ℎ𝑑𝑑 + 𝐼𝐼𝑑𝑑) 𝐼𝐼ℎ𝑑𝑑⁄ + 1.041𝑡𝑡3�
[1 + 1.041𝑡𝑡3]�  [37] 

where, 

 𝐼𝐼ℎ𝑑𝑑 is the horizontal diffuse irradiance, 

 𝐼𝐼𝑑𝑑 is the normal direct irradiance,  

 𝑡𝑡 is the radians’ solar zenith angle. 

While 𝐼𝐼ℎ𝑑𝑑 and 𝐼𝐼𝑑𝑑 are included in the collected weather data, 𝑡𝑡 is the complementary angle of sun 

elevation and evaluated for any position of the Sun in the middle of each 5 minutes. On the other 

hand, clouds decrease the irradiance in lower sun elevations (i.e., after the sunrise or before the 

sunset), but this reduction has no fixed amount; instead, they reduce the sunlight by a certain 

percentage for that cloud type. The variation of incident irradiance value from [37] in various 

angles identifies the cloud coverage situation during the analysis period. 

Historical atmospheric data from weather stations does not provide reliable or accurate cloud 

coverage information for specific locations on the roadway. Also, the heterogeneous displacement 

of clouds adds to the complexity of evaluating the percentage of glare occurring on partially cloudy 

days. Therefore, except the overcast weather (i.e., cloudy, snowy, foggy, rainy atmospheric 

conditions) all other conditions will be categorized as clear sky, and this is the data used for testing 

the sun glare detection algorithm. 
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3.5 Closing Remarks 

In order to reveal critical points concerning sun glare occurrence on a road network, this section 

combined geographical road network data, an astronomical algorithm, specific trigonometric 

formulation, and data analysis in Python (9.1.1). The methodology has two steps, the sun glare 

detection algorithm and sun glare occurrence identification on the given network. The workflow 

of sun glare detection comprises of processing of data sources, the sun positioning algorithm 

(9.1.2) and identifying the critical angular location of the Sun for driving sightline (9.1.4). The 

methodology processes the GIS road data for a specific sub-segment of road and calculates the 

annual sun position by considering the refraction factor for the analysis period. The angular 

position of the Sun is evaluated within the critical sightline of the driver on the horizontal and 

vertical plane.  

The algorithm developed in this section could be employed on many different procedures to reduce 

the sun glare effect on driving behaviors for existing or future roads. Driving in the current 

roadways, which are highly exposed to sun glare, needs additional traffic management facilities, 

such as variable message signs or providing a driving-assistance application to decrease the risk 

of vision deficiency. Therefore, in the next section, identifying the safe speed for a passage of 

roadway under sun glare occurrence is merely achievable. 
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 A MICROSIMULATION MODEL FOR REDUCED VISIBILITY 

TRAFFIC CONDITIONS 

This chapter presents step by step the methodology used for analyzing drivers’ speed behavior 

during sun exposure. A driver approaching a location that exhibits vision impairment conditions 

may inaccurately estimate the vehicle’s proximity to surrounding objects, which may negatively 

impact traffic safety. AVs can be deployed as a potential countermeasure for these conditions. The 

visual impairment situation could comprise different combinations of AVs and conventional 

vehicles, and different safe-stop scenarios can occur. In this regard, a simulation model is 

generated for a base scenario and is developed to consider the impact of automated technologies 

on traffic operations and road safety.  

The sun glare detection algorithm's development was the preliminary step to identify the duration 

of changes in drivers' visibility conditions. This section uses the developed dynamic integrated 

framework to detect sun glare occurrence on any roadways in the previous section. Supplementary 

information of cloud coverage is evaluated for a more accurate diagnosis of sun glare during the 

analysis period.  

A calibration method for the development of car-following in the microsimulation environment is 

proposed to generate the base scenarios. Further development of scenarios needs to assess the 

model's sensitivity for changes in traffic flow parameters, vehicle compositions, location of the 

change in the speed limit, and penetration of AVs. The best fit of AVs' driving mode will be 

explained in detail, and a new method for the safety analysis of vehicle trajectories is presented. 

4.1 Simulation Setup 

Change in drivers' visibility affects the cognitive system and results in a psychophysical impact on 

driver’s behavior. The emulation of driver behavior are the main concepts in car-following models. 

VISSIM microsimulation uses the Wiedemann psychophysical car-following model and simulate 

traffic maneuvers in the model to reflect the effect of visibility reduction on traffic operations.  
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The use of microsimulation to emulate traffic volume observed in the overcast sky (i.e., clear 

visibility) defines the base-case scenario or Scenario 1. Then, the vision-sensitive parameters are 

adjusted for driving under the sun glare through the impaired-vision base scenario or Scenario 2.   

Scenario 1: Basic clear vision scenario - no sun glare exists (i.e., desired speed distribution 

under overcast sky)  

Scenario 2: Basic vision impaired scenario - account for abrupt changes of traffic flow 

under the occurrence of sun glare  

In the next step, the emulation of driving behavior in the car-following model is calibrated for both 

basic scenarios with congruent traffic measurements by the use of the best fit optimization method. 

4.2 Calibration 

Calibration is the third step of this study and a requirement for developing the simulation model 

to change the default parameter values in the model and minimize the error between the actual and 

simulated measures. For the calibration of the baseline scenarios, the traffic flow demand, the 

desired speed normal distributions, and the headway distribution are considered to take the 

longitudinal movement into account. The deviation of simulation outputs from observed data is 

through the objective function of the calibration process. Equation [38] represents the objective 

function of the longitudinal movement of vehicles in the network to reflect the real-world’s driving 

behavior.   

𝑶𝑶𝑶𝑶𝑶𝑶 = 𝐵𝐵𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑎𝑎 �
𝟏𝟏
𝒏𝒏
�

𝟏𝟏
𝒎𝒎

𝒏𝒏

𝒊𝒊=𝟏𝟏

�
�𝒉𝒉𝒊𝒊𝑶𝑶𝒐𝒐𝑶𝑶𝒐𝒐 − 𝒉𝒉𝒊𝒊𝑶𝑶𝒐𝒐𝒊𝒊𝒎𝒎�

𝒉𝒉𝒊𝒊𝑶𝑶𝒐𝒐𝑶𝑶𝒐𝒐

𝒎𝒎

𝑶𝑶=𝟏𝟏

� [38] 

where,  

𝑀𝑀 represents the different random seeds,  

𝑗𝑗 is the different headway distribution histogram bins, 

ℎ𝑑𝑑𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠 and ℎ𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑𝑚𝑚 identify the observed and simulated bins of random seed in 𝑀𝑀 and 𝑗𝑗, 

respectively. 
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A sensitivity analysis is performed to test the possible combination of the model parameters on the 

certain boundaries. The Wiedemann car-following model in VISSIM needs to be adjusted for the 

perception-sensitive parameter: Average Standstill Distance (𝐶𝐶𝐶𝐶0), Gap time distribution (𝐶𝐶𝐶𝐶1), 

and additional desired safety distance (𝐶𝐶𝐶𝐶2). According to the Wiedemann car-following model, 

lower and upper bounds of each parameters are defined as 𝐶𝐶𝐶𝐶0𝑚𝑚 = 1.22𝑀𝑀,𝐶𝐶𝐶𝐶0𝑚𝑚 =

1.67𝑀𝑀,𝐶𝐶𝐶𝐶1𝑚𝑚 = 0.7𝑠𝑠𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶1𝑚𝑚 = 3𝑠𝑠𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶2𝑚𝑚 = 2𝑀𝑀,𝐶𝐶𝐶𝐶2𝑚𝑚 = 7𝑀𝑀, 𝐵𝐵𝐹𝐹𝑅𝑅𝑚𝑚 = −3.6 𝑀𝑀/𝑠𝑠2,

and 𝐵𝐵𝐹𝐹𝑅𝑅𝑚𝑚 = −2.43𝑀𝑀/𝑠𝑠2. 

The calibration time will be reduced dramatically by applying stochastic optimization algorithms. 

When longitudinal movement is the dominant movement in urban roadways, a single objective 

function can be considered. The PSO optimization method has been successfully used in prior 

studies to calibrate the parameters of the simulation model that are sensitive to longitudinal 

movements. 

The PSO evaluates each set of parameters values to estimate the objective function value obtained 

from the simulation runs. The calibration algorithm runs VISSIM using different values of traffic 

behavior parameters and estimated the objective function. The optimization algorithm then 

evaluates the error of the objective function and proposes another set of parameters value closer to 

the global optimum to reduce the objective's value. In each iteration, the optimization algorithm 

tests the new set of parameters multiple times and chooses a new set for the next iteration. The 

final set of parameter values that yield the minimum of the objective function are used in the 

microscopic simulator to model the conventional vehicles. 

4.3 Traffic Flow Composition 

AVs' performance in a traffic stream is expected to have a different impact on traffic operations 

and safety to a certain degree. Prior studies on the development of ITS technologies for 

conventional vehicles evaluated the ideal location of 700 meters and effective speed reduction of 

at least 8 km/h for changing speed on the upstream of an incident point. However, the composition 

of AVs in traffic flow may change these limits due to using dynamic communication between 

AVs.  

The most feasible mean to examine the potential impact of AVs on traffic flows is through 

simulation modeling. This study specified driving behaviour of automated vehicles by three safe 
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operating driving modes: normal, cautious, and all-knowing. Different driving modes of AVs are 

implemented in VISSIM via the Wiedemann 99 car-following with adjusted sensitive driving 

behaviors parameters.   

A vehicle controlled by the normal AV driving mode behaves similar to a conventional vehicle 

that also has additional abilities (e.g., measuring distances, maintaining smaller headways, 

estimating speeds of the surrounding vehicles, etc.). On the other hand, a vehicle using the cautious 

AV driving mode follows the vehicles similar normal AVs but with larger headway for adapting a 

safe driving behavior. VISSIM support the activation of absolute braking system for cautious AV 

mode to maintain safer driving. Finally, the vehicle controlled through the all-knowing AV driving 

mode has enhanced perceptive and predictive capabilities and follows the leading vehicle with 

smaller headways than other AVs. 

Table 2 shows the driving behavior parameters of AVs for the Wiedemann 99 car-following model. 

The average standstill (𝐶𝐶𝐶𝐶0) is the desired distance between the two vehicles; 𝐶𝐶𝐶𝐶1 represents the 

headway time between two vehicles, and 𝐶𝐶𝐶𝐶2 represents the safety distance to restrict distance 

variation between the approaching vehicle and the leader one. Increased acceleration is 

complementary parameter of driving behavior in VISSIM to set higher acceleration in the 

following process in terms of significant increase in the speed of leading vehicle. The default value 

of increased acceleration is 100% for human drivers and is increased based on the development in 

AV driving mode. 

Table 2. Driving behavior of AVs logic in VISSIM for longitudinal movement  

Driving 
Logic 

Interacting 
objects CC0 CC1 CC2 Absolute 

braking 

Maximum 
Deceleration 

Trail 

Increasing 
Acceleration 

Cautious 2 1.5 1.5 0 Activated -2.5 100% 
Normal 2 1.5 0.9 0 NA -3 105% 

All-knowing 10 1 0.6 0 NA -4 110% 

The traffic models are applied to consistent scenarios concerning the transition of different AV 

types. Different scenarios are created to evaluate changes in speed limit for conventional and AVs 

to determine the safest driving metrics when drivers approach a vision impairment location. 

Therefore, conflict analysis of each scenarios leads to having the most reliable plan for the speed 

selection. 
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The pace of change in population and types of AVs are highly uncertain. Therefore, the 

combinations of penetration rates for different types of AVs lead to comparable traffic operations 

metrics. Contrary to the normal and all-knowing AVs, which use small gaps and trustworthiness 

of the sensory system, cautious AVs driving mode provides large gaps. The restriction of the gap 

and using an absolute braking system make an obstacle in front of cautious AVs exceed their 

automated technology. Thus, two types of AVs (i.e., normal and all-knowing) are investigated in 

this study, with a high potential of penetration into the mixed traffic. Table 3 shows the list of 

indicated variables accounts for scenario development of mixed traffic flow. 

Table 3. Indicated variables in scenario development of mixed traffic 

Vehicle types AVs penetration 

[%] 

Traffic flow per lane 

[veh/h/lane] 

Desired speed 

[km/h] 

Conventional (CV) 
Normal (AVN) 

All-knowing (AVA) 

0 
10 
30 
70 
90 

500 (Light) 
1000 (Moderate) 

1700 (Full) 

100 
90 
80 
70 

4.4 Rear-End Crash Assessment 

Rear-end crashes have been identified as a frequent type of traffic collision in road safety science. 

The investigation of the significant contributing factors to this type of crash validates the road 

safety development model’s quality. It is essential to understand the effects of driving behavior, 

interactions of vehicles, and road characteristics on rear-end crashes. In this scheme, the potential 

area for a rear-end crash is estimated by developing of a technique based on stopping distance. 

The figure shows the time analysis of a conflict in time step 𝑀𝑀 and the prospected time until a 

collision occurs at 𝑀𝑀 + 𝐹𝐹𝐹𝐹𝐶𝐶. The follower vehicle (green) provides a gap 𝑠𝑠𝑑𝑑 from the rear bumper 

of the lead vehicle (yellow) at time step 𝑀𝑀. According to different vehicle interaction regimes, 𝑠𝑠𝑑𝑑 

may be reduced until time 𝑎𝑎 when the follower keeps the minimum following distance (∆𝑥𝑥𝑠𝑠𝑎𝑎𝑓𝑓𝑒𝑒) to 

the lead vehicle. The car-following model reacts at this point to decelerate the follower and avoid 

any occurrence of collision in the network. Therefore, each pair of vehicles' trajectories should be 

analyzed based on the required time, 𝐹𝐹𝐹𝐹𝐶𝐶, or occurring a collision when vehicles maintain their 

instantaneous velocity and acceleration in the following time step. 
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Figure 15. Time analysis of a conflict process 

The microscopic simulator creates trajectory files by running the model containing information 

about each vehicle's movement in each time step. 𝐹𝐹𝐹𝐹𝐶𝐶 is calculated based on the required time for 

occurring a collision when each pair of vehicles maintains its instantaneous velocity and 

acceleration in every time step.  

Using the temporal and spatial information, the 𝐹𝐹𝐹𝐹𝐶𝐶 indicator will be evaluated based on the 

interaction between vehicles includes positions, speeds, and accelerations for every time step, see 

equations [39-41]. 

𝐹𝐹𝐹𝐹𝐶𝐶 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧−

∆𝑥𝑥
∆𝑣𝑣

,                                     𝑀𝑀𝑜𝑜 ∆𝑣𝑣 < 0,∆𝑎𝑎 = 0
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[39] 

∆𝑣𝑣 = 𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑓𝑓 

∆𝑎𝑎 = 𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑓𝑓 

[40] 
 

∆𝑥𝑥 = ��𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑓𝑓�
2

+ �𝑑𝑑𝑚𝑚 − 𝑑𝑑𝑓𝑓�
2
 

[41] 

  
where,  
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𝑥𝑥𝑓𝑓 ,𝑑𝑑𝑓𝑓 , 𝑣𝑣𝑓𝑓 ,𝑎𝑎𝑓𝑓 are the kinematic components of vehicles including front coordinates, speed, 

and acceleration for both follower and leader. The components of followers represent with 

𝑜𝑜 and lead vehicle by 𝑎𝑎 indices.  

Equation [41] determines the net distance between the front bumper of the following vehicle and 

the rear bumper of the leading vehicle and ∆𝑣𝑣 and ∆𝑎𝑎 for the difference in speeds and accelerations 

of vehicles. In order to extract rear-end conflicts, the TTC threshold, 𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚, is applied to get critical 

scenarios of interactions between vehicles. 𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚 in highways uses a larger choice of vehicles’ 

interactions, includes the regular capacity headway, h�, and the calibrated headway parameter of 

the car-following model, 𝐶𝐶𝐶𝐶1. The 𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚 is chosen to estimate conflicts in typical scenarios with 

different visibility as well as scenarios that simulate AVs penetrations [42, 43].  

ℎ� =
1

𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚
 [42] 

𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚 = ℎ� + 𝐶𝐶𝐶𝐶1 [43] 

where, qmax is the maximum flow of the highway. 

The total number of conflicts is not the only sensitive variable that results in a collision. The 

uncertainty in rear-end clearance needs a deeper analysis of TTCs based on the vehicle type to 

consider the severity of collisions with a new conflict measure. The change in the velocity of 

vehicles involved in a conflict demonstrates a suitable severity measure to evaluate the severity of 

conflicts.  This study defines three-critical points to analyze TTCs by clustering an equal number 

of conflicts in three different indexes (i.e., severe, moderate, light). The severe index level includes 

a cluster of one-third of conflicts in the base model with the smallest 𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚  and represents the 

number of the most critical conflicts.  The results of the safety analysis are used for controlling the 

operational speed when sun glare may occur by defining an advisory strategy.  

4.5 Closing Remarks 

This section employed the vision impairment location detection algorithm to analyze driving 

behavior in sun glare and determine the best solution to improve traffic operations and safety in 

mixed traffic flow. The workflow of vision impairment detection comprised of processing of 
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vehicles location, the sun positioning algorithm, and identifying the critical angular location of the 

Sun for driving sightline on the horizontal and vertical plane.  

The VISSIM microsimulation and Wiedemann 99 car-following model were proposed and 

investigated for the parameters of driving behaviors on traffic operations and road safety. A 𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚  

was introduced for identifying critical conflicts and synchronization with different driving modes 

of AVs. The conflict severity index was presented for clustering critical conflicts based on their 

severity. 
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 COLLISION AVOIDANCE SYSTEM UNDER SUN-GLARE 

 

Prior research in ADAS (Advanced Driver-Assistance System) has led to various sensing, vehicle 

control, and communication technologies. The replacement of safety-related driver functions with 

technology makes a substantially safer system before. The safety application, including both 

drivers’ warning system (passive) and active control system (proactive), proposes a dynamic 

integrated ADAS advisory. Passive mode generates user advisories or messages to prepare the 

driver for pre-emptive action. Proactive mode produces urgent warnings or actions to alert the 

driver about immediate action and avoid a crash. The integrated safety application provides a 

suitable mix of passive and proactive modes of ADAS under vision impairment. 

Collision Avoidance System Under Sun-glare (CASUS) is an advisory application of ADAS to fill 

the gap of vision impairment and provide an effective activation of Advanced Collision Warning 

System (ACWS) and smooth braking by Intelligent Braking Assistance (IBA). CASUS uses the 

in-vehicle sensor-based system to detect long-range objects and GPS chips to support the subject 

vehicle's tracking. All the received data are analyzed in terms of vehicle speed, position, and 

applied brake. With the help of the processed data, potential collisions are predicted. The collision 

predictions are conveyed to the vehicle driver via a driver-vehicle interface mechanism. Figure 16 

illustrates the components of CASUS comprises ACWS (i.e., driver vehicle interface) and IBA 

(i.e., safety application). Vision impairment locations provide a proactive plan of critical points to 

smooth deceleration in an urgent situation. CASUS behaves as a decisive application between 

using ACWS and IBA modes. 
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Figure 16. Component of Collision Avoidance System Under Sun-glare  
The requirement of an advisory application to enhance road safety under sun exposure leads to the 

development of a four-level hierarchical framework. The higher level has access to the subject 

vehicle's information (time, location, speed, level of vehicle’s automation) on the roadway using 

data provided by the global navigation system. Then the framework calculates the occurrence of 

vision impairment on the downstream road segment and provides this information to the driver. 

On the second level, the system will assist the driver in being aware of ahead visibility condition 

to avoid abrupt deceleration at the edge of vision impairment. The third level of the framework 

calculates the length of the sun glare occurrence to control the sensitivity of collision avoidance 

sensors and proposes a safe speed to the driver based on the expected change in visibility condition. 

The lower level of the framework, which contains the subsets of interacting AVs and the existence 

of downstream obstacles, controls automated braking system to provide a comfortable deceleration 

and avoid a collision. 
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5.1 Advanced Collision Warning System 

The ACWS mode relies on the vision impairment detection algorithm described in Chapter 3 and 

the simulation model's outcome shown in Chapter 4 to alert about vision impairment and safe 

speed based on the location of the subject vehicle and the time of day. This mode provides a safety 

measure for further front distance in free-flow speed. The effective range for receiving a warning 

message is identified from the optimal-safe speed results of the simulation model's sensitivity 

analysis for various traffic flow conditions as shown in Chapter 4. 

The preliminary stage of the model determines the occurrence of vision impairment on the 

following road for the length of 2 km ahead of the vehicle. Then, the passive mode of CASUS will 

be activated to calculate 𝑅𝑅, the real-time vehicle's distance to the beginning of sun glare, in the 

cartesian system through the equation [44]. 

𝑅𝑅 = �(𝑍𝑍𝑠𝑠 − 𝑍𝑍𝑑𝑑)2 + (𝑌𝑌𝑠𝑠 − 𝑌𝑌𝑑𝑑)2 + (𝐴𝐴𝑠𝑠 − 𝐴𝐴𝑑𝑑)2 [44] 
where, 

𝐴𝐴𝑠𝑠,𝑌𝑌𝑠𝑠,𝑍𝑍𝑠𝑠 are coordinates of the vision impairment location  

𝐴𝐴𝑑𝑑,𝑌𝑌𝑑𝑑,𝑍𝑍𝑑𝑑 are coordinates of the vehicle location  

By locating the vehicle within the premeasured range of receiving warning message 𝑅𝑅𝑤𝑤 , the 

vehicle receives a warning including the distance to the vision impairment location and a proposed 

safe-driving speed is estimated. The warning will remain active until the vehicle reaches to the end 

of the sun glare segment and traveling of 𝑅𝑅𝑒𝑒. Figure 17 illustrates the location of the vehicle on 

the road approaching to the commencement of the vision impairment and distance for receiving a 

warning message. 𝑅𝑅𝑤𝑤 is equal to decision sight distance [45] for avoidance maneuver class D or E 

for speed change in sub-urban and urban roads in AASHTO (A. AASHTO, 2001). Decision Sight 

Distance (DSD) provides an additional margin for error in the sight distance and afford sufficient 

length to have a safe drive. Table 4 represents some measured DSD for the urban and suburban 

road classes in different speeds. The value of DSD is substantially greater than stopping sight 

distance due to considering a much larger maneuver time for changing in speed.  

𝑅𝑅𝑤𝑤 = 𝑅𝑅𝑆𝑆𝑅𝑅 = 0.278 𝑆𝑆𝑑𝑑𝑎𝑎 [45] 

where, 
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𝑆𝑆𝑑𝑑 is the current speed of vehicle in every time step [km/h] 

𝑎𝑎 is the total pre-maneuver and maneuver time suggested by AASHTO for different classes. 
t is defined 12 and 14 seconds for suburban and urban roadways, respectively. 

Table 4. Decision Sight Distance for different design speed (AASHTO) 

Design Speed [km/h] 50 60 70 80 90 100 110 120 130 

Urban DSD [meter] 195 235 275 315 360 400 430 470 510 

Suburban DSD [meter] 170 205 235 270 315 355 380 415 450 

5.2 Intelligent Braking Assistance 

The noncompliance of drivers with the proposed safe speed by ACWS needs a complementary 

safety system to control the speed of vehicle with a gentle deceleration in a particular safe distance 

from the vision impairment location. CASUS observes the vehicle’s speed and distance to the 

vision impairment location to active IBA as a proactive mode for the vehicle's safe passage through 

the vision impairment segment. IBA assists the driver in avoiding collision by providing 

hierarchical deceleration and emergency braking in facing a downstream obstacle.  

CASUS supervise the vehicle in approaching to the vision impairment segment by adjusting the 

speed of AVs with a comfortable deceleration rate. The IBA will apply automatic braking from 

the minimum threshold of comfortable braking distance with a comfortable deceleration rate [46] 

in a hierarchical process (Figure 18). In order to consider the compliance of following vehicles for 

the speed reduction process, a hierarchical speed reduction of 10 km/h is applied between current 

and optimal-safe speed. 

Sun glare 

Figure 17. Activation Layout of Advanced Collision Warning System 
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𝑅𝑅𝐼𝐼 =  
𝑆𝑆𝑠𝑠2 − 𝑆𝑆𝑑𝑑2

 254 � 𝑎𝑎
9.81 ± 𝐺𝐺�

 [46] 

where, 

𝑅𝑅𝐼𝐼 is the activation distance of IBA on the upstream of the vision impairment location 
[𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 

𝑆𝑆𝑠𝑠 is the optimal-safe speed of driving under vision impairment [𝑘𝑘𝑀𝑀/ℎ] 

𝑆𝑆𝑑𝑑 represents the current speed of the vehicle [𝑘𝑘𝑀𝑀/ℎ] 

𝑎𝑎 is the comfortable deceleration rate, 2.5 [𝑀𝑀/𝑠𝑠2] 

G consider as the gradient of the road 

 

Figure 18. Layout of Intelligent Braking Assistance 

5.3 Closing Remarks 

This section proposed the CASUS algorithm by applying ACWS and IBA to provide a safe drive 

under vision impairment. The passive mode of CASUS, ACWS, used DSD criteria in AASHTO 

for applying the minimum distance for sending a warning to vehicles. The warning includes the 

information of impaired visibility situation in downstream and the optimal-safe speed for the 

vehicle's safe passage. In terms of noncompliance of drivers to the proposed speed adjustment, the 

proactive system, IBA, is activated to observe the vehicle's simultaneous speed and applying 

deceleration to keep the speed less than the proposed optimal-safe speed threshold. 

The same layout of the model and car-following parameters have been used for validating the 

CASUS algorithm in microsimulation. The criteria of receiving warning messages at the 

premeasured distance from the location of vision impairment are implemented in VISSIM by 

running a script (see Appendix 9.2.1) to update the vehicle's status in the network at every time 

 Sun glare 
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step. Also, enabling the script for all vehicles in the network provided vehicles' controllability for 

applying the optimal-safe speed threshold. The developed model of CASUS in VISSIM provides 

a trajectory of vehicles to evaluate the impact of CASUS on road safety.  
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 NUMERICAL ANALYSIS AND SIMULATION 

This chapter focusses on deploying the proposed methodology under prevailing traffic conditions. 

The preliminary step used the sun glare detection algorithm at a macroscopic scale to determine 

the hotspot locations for vision impairment due to sun glare on roadways. In the second step, traffic 

flow data under different visibility conditions were analyzed to identify a correlation between 

driving behavior and impaired visibility. Selection of an appropriate study area, data analysis, and 

impact of vision impairment should be made for the base model development. In the third step, the 

car-following model's driving behavior parameters in the microsimulation environment are 

calibrated for the base model. In the fourth step, the output of the simulated model was analyzed 

to determine the sensitivity of the model with respect to changes in traffic flow parameters, vehicle 

compositions, advisory speed limit placement, and penetration rate of AVs. Finally, the optimal 

solution for improving traffic safety and performance is to identify the best action in response to 

drivers' vision impairment. 

6.1 Vision impairment detection 

The risk of dazzling or blindness at critical locations negatively affects road safety of vulnerable 

road users, particularly on the most hazardous locations close to junctions and mid-blocks with 

pedestrian crossings. Conducting an empirical study examines the theory based on the real-world 

data and validates the modeling approach. Montreal is the second largest city in Canada and was 

used to evaluate drivers’ vision impairment due to the variety of high-rise buildings in the 

downtown area (Figure 19). 
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Figure 19. Study area: a) Center of Montreal include solar path; b) Section of Downtown 
 Data Collection 

The data needed for this research was grouped into GIS data and traffic flow data. GIS data analysis 

(Chapter 3) and traffic flow data (Chapter 4) was used to determine individuals' driving behaviors 

under the sun glare occurrence. Table 5 shows the list of collected data and corresponding 

descriptions and resources. 

Table 5. Structure of collected data 

Data Type Description Source 
Roadways GIS Double-side curbs of roadway 

for Montreal 
Ville de Montreal 

Digital Elevation 
Model 

GIS Raster Image of topography 
for Montreal 

Canadian Open 
Government 

Hillshade file GIS Raster Image by Air Lidar for 
Montreal 

Concordia 

Weather - hourly Database Hourly cloud coverage of 
weather at nearest airport 

YUL airport 

Traffic flow Database Volume, Speed, and Headway 
for the A20 highway by radar 

MTQ 

Vision 
Impairment 

Video Captured by installed camera 
in vehicle 

Author 

Vision 
Impairment 

Photo Captured by Fisheye lens Author 

Weather – in 
minutes 

Database Irradiance, pressure, humidity, 
temperature at radar station 

La Fontaine 
Tunnel 
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 GIS Data Analysis 

The proposed methodology for sun glare detection requires the GIS of roadways in triple 

coordinates, grid cells of building elevation, historical weather data, and analysis period to reveal 

locations under vision impairments. The roadway GIS for downtown Montreal (Montreal, 2014) 

was discretized into smaller road segments (i.e., average 100 meters), but it missed the elevation 

information, and this was a primary parameter used in the methodology. To account for this 

limitation of the GIS data, the elevations from the digital elevation model (DEM) file were used 

in this case study (Montreal, 2015). The utilized DEM file was generated from an aerial image 

(Montreal, 2019a) and represents terrain elevation in the different light spectrum. In order to 

generate an elevation attribute into GIS roadway for Montreal the DEM file was converted into a 

contour layer, and then the elevation of the nearest contour line was interpolated on both ends of 

the road segments.  

The dataset of the building's elevation was not available for Montreal and was generated from a 

combination of DEM and the hillshade files (Montreal, 2019b). The hillshade file is a shaded air 

lidar image of the surface terrain with the sun's relative position taken into account to enhance the 

appearance of surface objects. The resulting grid cells of the building's elevations was converted 

from the polyline layer of both DEM and hillshade images by joining the elevations' attribute from 

DEM to every segment of the building edges. The maximum elevation of the building's edges 

within each cell of 5 by 5 meters was clustered and represented through the center of each cell. 

This data processing accelerated the algorithm by homogenization of the building's elevations. 

The prepared sources of data were utilized as inputs into the algorithm in the requested form. In 

the input stage, the developed Python programming scripts used tabular data format of the 

roadways network, the building’s elevations grid cells, the historical weather data, and integrated 

the analysis peak period to prepare them for the evaluation algorithms.  

In the evaluation stage, the coordinates of the driver were considered at the center of each 

subsegment to evaluate the critical angular position of the Sun according to the NOAA algorithm 

(Laboratories & Laboratory, n.d.) and the corresponding refraction factor. Also, the occlusion role 

of the building’s elevation was evaluated through the grid cell data. The solar vector was 

constructed from each subsegment to the Sun position, every 5 minutes, for the entire analysis 

period, and the optimization method chose the most influential elevation cells along this vector. In 
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this regard, corners of the occlusion area were identified with a buffer of 5-meter from the solar 

vector, and the ray crossing method chose the best fit of cells within the occlusion area. The 

occlusion test evaluated the condition of influential building’s elevation cells on driver’s visibility 

by connecting the center of the cell and driver’s location and comparing the elevation angle of the 

Sun with an elevation angle of each cell within the occlusion area.  

 Vision Impairment 

The assessment of vision impairment results obtained for downtown Montreal illustrates the 

duration of sun glare and contrasting shadows in downtown Montreal for each month of the year, 

during the morning peak period (Figure 20). It can be seen that there is a relative mirroring of the 

January to May months versus the July to November ones, and this can be explained by fact that 

June and December are solstice months and the period of rotation of the Earth around the Sun.  

Moreover, the grid-like pattern of roadways in Montreal caused neither sun glare nor contrasting 

shadow within the analysis period between May and July. On the contrary, Montreal drivers 

experienced the highest amount of sun glare and shadows (i.e., 6000 minutes and 13500 minutes, 

respectively) during each February and October. Thus, the apparent position of Sun on these 

months caused more minutes of vision impairment and need particular safety countermeasures on 

the analyzed network. 

 

Figure 20. The expected period of vision impairment in minutes for the morning peak (6:30 to 
8:30) in downtown Montreal for the entire year   

Contrast shadows (blue bars), Sun glare (orange bars) 
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The best confidence level of detecting critical points was considered by eliminating the cloud 

coverage period from outcomes. The weather data including cloud coverage and precipitations 

collected from the nearest weather station at YUL airport for the period of 2005 to 2015 to 

determine the clear sky and overcast weather conditions. The impact of cloud coverage on annual 

glare occurrence was investigated on two arbitrarily selected sections of roads with same driving 

direction but with different gradient (i.e., gradient 4.5% - Simpson St. and level road approx. 1% 

- Mackay St, respectively). Figure 21 shows the accumulated time of sun glare occurrence in the 

division of occluded condition (blue bars) and the visible sun glare (yellow bars) for the selected 

roads. The event of visible sun glare was high in the approach of the vast junction with René 

Lévesque Blvd on the right bottom corner of the Mackey Street (Figure 21, b and d) while the most 

length of the street was under the event of invisible sun glare (i.e., shadow of high-rise building). 

On the other hand, drivers on the Simpson Street (Figure 21, a and c) might experience intermittent 

sun glare and contrasting shadow along the road. This is the main purpose of deterioration in road 

safety due to the blindness, as an impact of the transition from the visible sun glare to the 

contrasting shadow. Although the distinction of the clear sky based on the weather data reduced 

total minutes of vision impairment to half, the pattern of sun glare occurrence was consistent. 
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a) Annual glare conditions assuming 
365 days/year of clear sky 
conditions (gradient road) 

 
b) Annual glare conditions assuming 365 days/year 

of clear sky conditions (level road) 

 

c) Annual glare conditions 
considering the clear sky days of 
the 2006-2016 period (gradient 
road) 

 
d) Annual glare conditions considering the clear sky 

days of the 2006-2016 period (level road) 

Figure 21. Total time of sun glare (yellow) and shadow (blue) occurrence for Simpson St (a) and 
(c) and Mackay St – (b) and (d).  

(Reference: Map data ©2019 Google) 
The algorithm was applied to wider area in downtown Montreal to reveal critical points of vision 

impairment in dazzling due to the sun glare or blindness due to the contrasting shadows. The 

algorithm evaluated the visibility situation of driver on morning peak hours (i.e., 6:30 am to 8:30 am) 

for the 20th of each month. Figure 22 illustrates a relative comparison of critical point occurrence 
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(i.e., sun glare to contrasting shadow and vice versa) in three seasonal day samples for the selected 

range in Downtown Montreal. The cloud coverage was evaluated for any identified results of critical 

points from the 10 years record of weather data and only critical points under the clear sky are shown 

on the Google map open-source data visualization tool and different months are shown in different 

colors (blue: February, orange: April, yellow: December). Although Figure 20 showed that drivers 

encountered comparatively less than a moderate amount of sun glare and shadow in April (i.e., 

approximately 1200 and 2800 minutes, respectively), the number of critical points in April was 

significantly higher in comparison to February and December.  

 

Figure 22. Annual critical points on road network of downtown Montreal 
(Reference: Map data ©2019 Google) 

This study included an empirical verification of the application outcomes by studying glare-

conditions along an arbitrarily selected arterial road of Montreal. This arterial in the proximity of 

downtown Montreal (i.e., street of Chemins de la Côte-Sainte-Catherine) was selected for an 

analysis of the sun exposure footprint. The occurrence of the sun glare and critical points for the 

morning periods during the peak hour was evaluated to identify the period and location that the 

Sun is considered to be at its worst angular position along the road. The application revealed the 

occurrence of sun glare between junctions with Mc Eachran Ave. and Boulevard Saint Joseph 

during 6:30 to 7:15 morning time interval on July 18, 2020. Additionally, another occurrence of 

critical points is near Ave. McCulloch and Ave. Laurier. Fig.  8a shows the outcome of the 

application on the Google map open-source data visualization tool.  



67 
 

The field investigation was carried out using a Sigma camera to verify the accuracy of the 

algorithm on detecting vision impairment locations. The camera was adjusted on the mode of 

taking the best photo shot in different exposure. Figure 23 shows the captured photos for each 

identified critical point including: 22b) driving under direct sun exposure, 22c & 22d) transition 

points between sun glare and contrasting shadow (blindness), and 22e) location of transition from 

shadow to sun glare (dazzling). 

 

Figure 23. Sun exposure investigation on Chemins de la cote saint Catherine on 18th July 
(Reference: Map data ©2020 Google) 

An accurate glare evaluation of photos in real scenes of contrasting shadows via luminance level 

requires the use of a wide view of fisheye lens (Inanici, 2006; Jacobs, 2007; Wienold & 

Christoffersen, 2006). In this study, a Sigma 4,5mm F2,8 EX DC HSM Circular Fisheye lens was 

used for the investigation of luminance of objects in sun exposure when driver approach to 

contrasting shadows. The luminance and visual comfort of photos have been analyzed by the 

Pintools online method. Identification of the blindness impact of sun glare needs to assess the 

exposure level (i.e., luminance) in the shadow and in the brightness area. A captured photo from a 

critical point (i.e., blindness situation) using the fisheye lens is illustrated in Fig. 9a, while the 
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corresponding minimum and maximum exposure of the photo are shown in Figure 24b & 23c, 

respectively. Both bounds of the exposure level revealed the high saturation of sunlight in photos 

and impairment of the vision in detecting the front of overtaking bus on the left side of the photo. 

The comparison of the clearance between the center of the vision and surrounding environment 

vividly proved that overexposure of the sunlight disables eyes on detecting objects under the 

contrasting shadow in front of the driver. 

 

Figure 24. Captured sun exposure by fisheye lens 

6.2 A Microsimulation Model for Reduced Visibility Traffic Conditions 

The following section presents analysis of numerical results associated with the data from the 

selected radar detector, weather station, and GIS maps after presenting the methodologies. The 

case study is a 2.2-km long freeway segment along the TransCanada highway (A20) upstream of 

the interchange with Rte-132 West. Figure 25 shows the layout of the case study includes the data 

collection points for traffic flow and weather station. The geometry of the selected highway 

segment has zero slopes and an azimuth of 164 degrees. Drivers use a two-lane highway 

approaching the Island of Montreal. 
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Figure 25. Location of study area – Highway A20 Northbound 
 Data analysis 

This study also tested the sun glare detection algorithm on highways by analysis of data sources, 

including historical weather data by the La Fontaine tunnel organization, prepared GIS maps by 

the Canadian Open Government, and traffic flow received by the Ministry of Transportation 

Quebec (MTQ). The methodology used the combination of all data within the scope of vision 

impairment to determine changes in driving behavior during the sun glare period in the clear sky 

condition. 

The study's preliminary step investigated the occurrence of sun glare for drivers on the selected 

highway segment for the entire year. A clear sky cannot exclusively be identified as a perception 

dilemma for drivers; thus, the sun position and driving direction were investigated to reveal the 

occurrence of sun glare during each day. Figure 26 illustrates the trend of daily cumulative minutes 

of sun glare occurrence for the entire year along the study area. The result also shows the intensive 

situation of having sun glare, approximately 150 minutes per day, during spring and summer 

seasons. The occurrence of sun glare was also verified by field drive-through data collection from 

the front view's visibility situation. For traffic safety design, to capture near-worst case scenarios,  

AASHTO recommends that an average car driver’s eye is equal to 1.08m (T. AASHTO, 2011). 

However, for the purpose of this study and considering the typical passenger cars in Montreal a 

different value was selected. Thus, a camera was installed at 1.30m above the road surface (i.e., 

approximately near to the middle of the windshield) to validate the vision impairment conditions 
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at random locations as detected by the sun glare algorithm.  Figure 27a represents a capture from 

the video recording of in-vehicle installed cameras on 8th of May, and Figure 27b the 

corresponding results of sun elevation from the sun glare detection algorithm. The result of the 

algorithm showed the low elevation of sun at 7:20 pm (i.e., approximately 7° from the horizon) 

which is visible in the captured photo. 

 

Figure 26. Daily cumulative occurrence of sun glare during the entire year  
(the Northbound of highway A20) 

 

Figure 27. Validation of Sun glare detection algorithm on the highway A20  
Highway A20 Northbound on 8th of May at 7:10 pm (sun elevation 9°, azimuth 285°) 

Elevations of the Sun from the sun glare detection algorithm for 8th of May 
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 Weather Conditions 

The impact of cloud coverage was assessed for 80 consecutive days, between 11th of March and 

30th of May. Weekends and holidays were discarded to ensure consistency of the traffic flow 

patterns in the simulation analysis. Figure 28 shows the change of Sun irradiance 𝑆𝑆𝑑𝑑, as defined by 

equation [37], for 15-minute analysis period, based on the weather data collected from the locally 

installed weather station. It can be seen that the irradiance and the elevation of the sun are highly 

correlated with the exception for the sun elevations smaller than 5 and larger than 10 degrees. The 

deviation of two lines at both ends represents the impact of atmosphere scatters on sun irradiance 

in a lower and higher sun elevation. For example, the impact of cloud coverage on sun irradiance 

is illustrated in Figure 29 where the incident irradiance was fluctuated between 10:00 to 14:00 due 

to the cloud coverage. 

 

Figure 28. The atmosphere impact on variation of sun irradiance respect to the sun elevation 
for 15-minute interval of analysis period at the weather station (Blue: Sun irradiance, Orange: 

Sun elevation) 
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Figure 29. Impact of clouds on receiving sun irradiance on the detector at 17th May 
The study's daily analysis period is limited to an hour in the proximity of the evening peak hour 

(i.e., 6:30 pm to 7:30 pm) to cover moderate traffic flow conditions on highway A20 approaching 

the Island of Montreal. These conditions are typically associated with relatively high speeds and 

moderate headways, leading to more critical traffic safety issues when critical conflicts occur. 

Figure 30 illustrates the interval of sun glare occurrence which occurred approximately between 6 

pm to 7 pm in evening without considering the impact of weather conditions. Considering the 

weather impact on vision impairment led to disaggregate the clear sky from the cloudy condition 

during the daily analysis period. The historical weather data showed 16 days under the cloudy sky 

(i.e., the overcast sky without precipitation), 16 days under the actual sun glare, and 14 days 

unstable weather conditions (i.e., include precipitation or being partial cloudy). Table 6 

demonstrates the disaggregated sky condition during the analysis period according to the analyzed 

irradiance at detectors. 
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Figure 30. Prediction of sun glare detection algorithm for the occurrence of sun glare 
 at the A20 North band in the evening (without considering the weather condition).  

Beginning of the sun glare (Blue), End of the sun glare (Yellow) 

Table 6. Sky condition during analysis period 

Date Weather Date Weather Date Weather Date Weather Date Weather 
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07/05 
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 Traffic Flow 

The potential impact of sun glare on driving behavior was analyzed using real-world traffic 

conditions. Traffic flow data was collected via a radar detector during the sun-glare analysis period. 

It includes the 15-minute average speed values of all vehicles passing the RADAR detector 

location (Figure 25).  Vehicles speed records are aggregated within incremental speed intervals of 

10 km/h.  

The hypothesis test was obtained for the hypothesis's plausibility between two sample speed data, 

under the overcast sky and under the sun glare (Table 7). The null hypothesis was stated that the 

mean speed of each 15 minutes under sun glare is equal to the mean speed of the corresponding 

time interval on cloudy days. The alternative hypothesis was defined that vehicles' mean speed 

within each 15-minute interval under the sun glare is higher than the corresponding mean speed in 

overcast weather. The volume of vehicles had been normalized for each 15-minute interval to have 

a homological sample size, and the test was evaluated in the analysis period. The rejection of 

Levene’s test indicated that 15-minute vehicle speeds had no equal variance and t-test should rely 

on the second row of each result. A significant 2-tailed of less than 0.05 in Table 7 was indicated 

as the rejection of the null hypothesis and passing of alternative hypothesis. 

Table 7. Results of hypothesis test on the impact of sun glare for the average speed of vehicles 
  Levene's Test t-test for Equality of Means 

Analysis 
Period 

 F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

18:00 
18:15 

Equal variances 
assumed 

3.675 0.065 -2.3 30 0.044 -4.687 2.038 

Equal variances 
not assumed 

  -2.3 18.6 0.049 -4.687 2.038 

18:15 
18:30 

Equal variances 
assumed 

3.52 0.062 -2.1 30 0.028 -4 1.904 

Equal variances 
not assumed 

  -2.1 18.3 0.033 -4 1.904 

18:30 
18:45 

Equal variances 
assumed 

3.833 0.069 -2.423 30 0.022 -6.12 2.526 

Equal variances 
not assumed 

  -2.423 18.9 0.026 -6.12 2.526 

18:45 
19:00 

Equal variances 
assumed 

4.38 0.083 -2.28 30 0.03 -6.317 2.771 

Equal variances 
not assumed 

  -2.28 19.2 0.034 -6.317 2.771 
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Headway and aggregated speed normalization indicated that the average speed in sun glare event 

under moderate traffic flow condition was at least 5 km/h higher than in the non-glare event with 

the same traffic flow (Figure 31). Additionally, the average and variability of 85th percentile 

headways were lower under the sun glare than the normal visibility condition (i.e., overcast sky). 

The observed difference in headways and speeds could be explained by the fact that deteriorated 

visibility conditions reduce the acuity of drivers’ perception, and consequently, they tend to drive 

aggressively by increasing their speed to reduce the duration of vision impairment exposure as 

much as possible. 

 

Figure 31. Changes in desired speeds due to sun glare (orange) and overcast sky (blue) 

 Calibration 

All sensitive parameters of driving behavior in the Wiedemann 99 car-following model were 

calibrated using Particle Swarm Optimization (PSO) algorithm. The calibration method used a 

combination of PSO algorithm and VISSIM COM scripting to minimize the objective function in 

100 iterations, 1100 simulation runs, and validated in 15 different random seeds. The objective 

was adjusted based on the deviation of headway in simulation and observed data. In each iteration, 

the algorithm ran the simulation model multiple times and chose a new set of values for the 

parameters in the next iteration. The simulation runs continued until achieving the objective 

function closer to the real-world value. Table 8 illustrates the calibrated values of Wiedemann 99 

car-following parameters in VISSIM for conventional drivers in two different visibility conditions. 

While the driving model followed the same values for the average standstill distance (𝐶𝐶𝐶𝐶0) and 
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additional safety distance (𝐶𝐶𝐶𝐶2), headway distribution parameter (𝐶𝐶𝐶𝐶1) fell from 1.3 seconds in 

overcast weather to 1.1 seconds during sun glare occurrence. Also, driving under the sun glare 

applied smaller Maximum Trailing Deceleration (𝐵𝐵𝐹𝐹𝑅𝑅) value due to the aggressive driving 

behavior.   

Table 8. VISSIM optimum parameters by Particle Swarm Optimization (PSO) 
 CC0 [meter] CC1 [second] CC2 [meter] MTD [m/𝑠𝑠2] 
Overcast sky 1.52 1.3 4.7 -2.71 
Sun glare 1.49 1.1 3.7 -2.88 

 

The VISSIM car-following parameters were calibrated for both driving conditions under the 

overcast weather and sun glare to obtain the base models and investigate conventional vehicles' 

interaction at different desired speeds. Moreover, the development of scenarios required further 

analysis of mixed traffic includes various combination of conventional and autonomous vehicles. 

 Traffic Operations 

Both calibrated models for different visibility conditions were examined for different traffic flow 

and speed choices (i.e., 100 to 70 with 10 km/h hierarchical reduction) to evaluate the impact of 

transition to the use of different type of AVs (i.e., normal and all-knowing) on traffic operation. In 

this regard, the link behavior function of the segment under the sun glare and connected links were 

defined based on the calibrated parameters of driving behavior under the sun glare and overcast 

sky, respectively (Table 8). The model layout of sun glare scenarios was created for a 2200-meter 

segment of the highway, including 1000 meters without sun glare and a continuous length of 1200 

meters under the sun glare.  

The traffic operations were evaluated based on the average delays of vehicles along the segment 

of the case study. The free flow travel time of the study segment was 50, 55, 62, 71 seconds, for 

100, 90, 80, and 70 km/h, respectively. Figure (32 - 34) show the average delays in different desired 

speeds and traffic flow when AVNs penetrate the mixed traffic. While penetration of AVN 

illustrated a slight improvement in traffic operations, a reduction in desired speed caused a 

significant reduction in a traffic delay, particularly in near congestion flow on the case study. 
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(a) Overcast sky     (b) Sun glare 

Figure 32. Traffic delays of AVNs in light traffic flow and various operational speed  
(𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  2: 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 ≥ 5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑎𝑎𝑎𝑎𝑑𝑑) 

 
(a) Overcast sky     (b) Sun glare 

Figure 33. Traffic delays of AVNs in moderate traffic flow and various operational speed 
(𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  2: 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 ≥ 5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑎𝑎𝑎𝑎𝑑𝑑) 

 
(a) Overcast sky     (b) Sun glare 

Figure 34. Traffic delays of AVNs in near congestion traffic flow and various operational speed 
(𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  2: 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 ≥ 5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑎𝑎𝑎𝑎𝑑𝑑) 

Figure (35 - 38) show average delays when AVAs penetrated the mixed traffic flow. Penetration 

of AVAs into the network showed the same improvement as AVNs. Therefore, compared to the 

base scenario (i.e., the conventional vehicle with 100 km/h speed), transition to the different AV 

levels and reduce their speeds greatly benefit the traffic operations. 
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(a) Overcast sky     (b) Sun glare 

Figure 35. Traffic delays of AVAs in light traffic flow and various operational speed 
(𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  2: 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 ≥ 5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑎𝑎𝑎𝑎𝑑𝑑) 

 
(a) Overcast sky     (b) Sun glare 

Figure 36. Traffic delays of AVAs in moderate traffic flow and various operational speed 
(𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  2: 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 ≥ 5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑎𝑎𝑎𝑎𝑑𝑑) 

 
(a) Overcast sky     (b) Sun glare 

Figure 37. Traffic delays of AVAs in near congestion traffic flow and various operational speed 
(𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  2: 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 <  5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠 ≥ 5 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠: 𝑎𝑎𝑎𝑎𝑑𝑑) 

 Assessment for Rear-End Collisions  

According to the time-to-collision indicator, trajectory files of “Vehicle in Network” were used to 

analyze vehicles’ interaction. Particular 𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚was selected based on the sum of regular headway 

for maximum capacity (i.e., 1.5 seconds at 2400 veh/h) and utilized headway for each vehicle type 

(𝐶𝐶𝐶𝐶1) in the car-following model. Table 9 shows the difference in following distance (𝐶𝐶𝐶𝐶0), 

headways (𝐶𝐶𝐶𝐶1), and corresponding time-to-collision threshold (𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚). 



79 
 

Table 9. Changes in maximum of critical TTC based on vehicle type 
Following vehicle 

type 
CC0 

[meters] 
CC1 
[seconds] 

Capacity headway 
[seconds] 

𝑻𝑻𝑻𝑻𝑻𝑻𝒕𝒕  
[seconds] 

Conventional 1.5 1.3 1.5 2.8 
AV Normal 1.5 0.9 1.5 2.4 
AV All-knowing 1.0 0.6 1.5 2.1 

The conflict analysis results indicated that a 10 km/h decreased AVN vehicles' operational speed 

eliminates approximately 20% of critical conflict. However, further decrease in the desired speed 

resulted in significant improvement in the network, more than 40%. Figure (38 – 41) illustrate the 

percentage reduction in the number of conflicts for different traffic flows and adjusted speeds. The 

result shows a consistent safety improvement pattern for all AVN ratios on reduced speed 

scenarios more than 20 km/h. 

 

(a) Overcast sky     (b) Sun glare 
Figure 38. Relative change in the number of conflicts in light traffic flow with different speed 

reduction and AVN penetration ratio 
(brown: −10𝑘𝑘𝑀𝑀/ℎ, green: −20𝑘𝑘𝑀𝑀/ℎ, blue: −30𝑘𝑘𝑀𝑀/ℎ) 
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(a) Overcast sky     (b) Sun glare 
Figure 39. Relative change in the number of conflicts in moderate traffic flow with different 

speed reduction and AVN penetration ratio 
(brown: −10𝑘𝑘𝑀𝑀/ℎ, green: −20𝑘𝑘𝑀𝑀/ℎ, blue: −30𝑘𝑘𝑀𝑀/ℎ) 

 

(a) Overcast sky     (b) Sun glare 
Figure 40. Relative change in the number of conflicts in near congestion traffic flow with 

different speed reduction and AVN penetration ratio 
(brown: −10𝑘𝑘𝑀𝑀/ℎ, green: −20𝑘𝑘𝑀𝑀/ℎ, blue: −30𝑘𝑘𝑀𝑀/ℎ) 

On the other hand, the penetration of AVA into the system was evaluated to determine the safety 

improvement under the reduced operational speed. Figure 41 and 42 show a significant reduction 

in the number of critical conflicts when vehicles drive with 20 km/h less operational speed in light 

and moderate traffic flow, respectively. However, reducing operational speed further than 10 km/h 

shows the same level of reduction in the number of conflicts, approximately 20%, in the near 

congestion traffic flow (Figure 43). Therefore, reducing the speed of AVNs to 20km/h may be the 

best optimal safe distance for driving under the sun glare. Although AVAs can select a 20 km/h 
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less operational speed for light and moderate traffic flow, a reduction of 10 km/h for the near 

congestion traffic was suitable enough to provide the maximum safety improvement.  

In conclusion, the effective reduction in desired speed of different AVs identified and represents 

in the table according to changes in the traffic flow. 

Table 10. Optimal speed reduction for different level of AVs in the mixed traffic flow 

Level of AVs Light traffic flow Moderate traffic flow Near congestion traffic flow 

AV Normal 20 km/h 20 km/h 20 km/h 

AV All-knowing 20 km/h 20 km/h 10 km/h 

 
(a) Overcast sky     (b) Sun glare 

Figure 41. Relative change in the number of conflicts in light traffic flow with different speed 
reduction and AVA penetration ratio 

(brown: −10𝑘𝑘𝑀𝑀/ℎ, green: −20𝑘𝑘𝑀𝑀/ℎ, blue: −30𝑘𝑘𝑀𝑀/ℎ) 

 
(a) Overcast sky     (b) Sun glare 

Figure 42. Relative change in the number of conflicts in moderate traffic flow with different 
speed reduction and AVA penetration ratio 

(brown: −10𝑘𝑘𝑀𝑀/ℎ, green: −20𝑘𝑘𝑀𝑀/ℎ, blue: −30𝑘𝑘𝑀𝑀/ℎ) 
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(a) Overcast sky     (b) Sun glare 
Figure 43. Relative change in the number of conflicts in near congestion traffic flow with 

different speed reduction and AVA penetration ratio 
(brown: −10𝑘𝑘𝑀𝑀/ℎ, green: −20𝑘𝑘𝑀𝑀/ℎ, blue: −30𝑘𝑘𝑀𝑀/ℎ) 

6.3 Collision Avoidance System Under Sun-Glare 

The implemented algorithm in the simulation model validated the application's functionality on 

the case study highway A20 and determined traffic flow metrics. CASUS advisory application 

works under a three-stage hierarchical framework as a plugin for any car-following models. In the 

first stage, the application detected the real-time location, speed, and vehicle type to evaluate the 

occurrence of vision impairment on the A20. In the second stage, the warning message for the 

beginning of the sun glare and the optimal-safe speed (following the table 10) for passing the 

segment was transmitted to the vehicle. In the final stage, the safe distance for having a smooth 

deceleration has been analyzed to enforce the optimal-safe speed to the vehicle with the highest 

comfort level. Using the same case study in the microsimulation model led us to evaluate the 

performance and efficiency of CASUS. 

 Advance Collision Warning Message 

The script of the CASUS was developed in the VISSIM model, and vehicles followed the same 

car-following model that has been used in chapter 4. The data and functions contained in the 

VISSIM application was accessed externally through the COM-Interface. Each vehicle's real-time 

situation in the network was evaluated through the “Vehicle in Network” attributes in every single 

time step. CASUS script read the position of each vehicle to identify the location of vision 

impairment [45] in the following road. CASUS also used further attributes of vehicle, such as 
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vehicles’ position, operational speed, and acceleration to calculate the remaining distance to the 

incident point.  

In terms of detecting the segment under vision impairment, four signal heads were placed in the 

VISSIM model at the sun glare's beginning and end location on each lane. Figure 44 shows the 

placement of signal heads on the simulated network when ACWS detected the occurrence of vision 

impairment on the following road. First, a pair of signal heads at the beginning of the sun glare 

sent a message to the upstream with the specific range corresponding to each vehicles’ velocity 

(Table 4). AVs were equipped to detect the signal heads and receive the corresponding warning 

message. The message has remained active until the vehicle enters the segment under sun glare. 

Then, a new message was sent to the driver to terminate the vision impairment, 𝑅𝑅𝑒𝑒. All calculation 

has been done through a script file (see Appendix 9.2.1) in the VISSIM model to simulate receiving 

warning message by target vehicles in the network. 

 

Figure 44. Positioning vision impairment points on VISSIM model 
The compliance level of 100% was considered for applying optimal-safe speed during vision 

impairment. Thus, all AVs began deceleration when receive the warning to continue with the 

maximum proposed speed. Figure (45-47) show improvement in traffic safety when either AVNs 

or AVAs chose to accept the new speed limit and decelerate with a standard rate (i.e., 2.5 𝑀𝑀/𝑠𝑠2). 

AVAs provided a significant reduction in the number of conflicts, more than 50%, in light and 

moderate traffic flow. The penetration of AVAs into the moderate traffic flow provided the same 

improvement for the reduction of 10km/h (green bars) and 20km/h (blue bars). Thus, speed 

reduction of 10 km/h is sufficient for AVAs to improve traffic safety.  
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On the other hand, speed control of AVNs in various traffic flow (Figure 45 - 47) show slight 

improvement in traffic safety when reducing 20 km/h from the desired speed of AVNs. Therefore, 

the results revealed while AVNs drive similar to conventional vehicles by providing smaller gaps, 

using ACWS with larger reduction in their speeds (i.e., 20 km/h) provided a better improvement 

in road safety. Also, full compliance of AVAs with ACWS provided significant safety 

improvement in light and moderate traffic flow due to using higher level of autonomy in AVAs 

for connectivity and visibility of further distances. This improvement is less in near congestion 

flow because of high density of vehicles on the network and less maneuver of AVAs. However, 

drivers may reject applying the new speed and keep their previous desired speed. Therefore, a 

control measure of IBA was tested as the second alternative for safe driving under the sun glare. 

 
(a) AV Normal    (b) AV All-knowing 

Figure 45. Relative change in the number of conflicts in light traffic flow by applying ACWS with 
different speed reduction (Green: -10 km/h, Blue: -20 km/h) and AV penetration ratio 

 
(a) AV Normal    (b) AV All-knowing 

Figure 46. Relative change in the number of conflicts in moderate traffic flow by applying ACWS 
with different speed reduction (Green: -10 km/h, Blue: -20 km/h) and AV penetration ratio 
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(a) AV Normal    (b) AV All-knowing 

Figure 47. Relative change in the number of conflicts in near congestion traffic flow by applying 
ACWS with different speed reduction (Green: -10 km/h, Blue: -20 km/h) and AV penetration 

ratio 
 Intelligent Braking Assistance 

IBA works as a complementary system for the noncompliance of ACWS warning to mitigate rear 

end collisions. CASUS supervised operational speed of each equipped vehicle to enforce the safe 

speed if the vehicle was driven with higher than the optima-safe speed. The minimum distance for 

the beginning of deceleration was identified according to the calculated distance in equation [46]. 

AVs reduced their speeds with comfortable deceleration rate 2.5 𝑀𝑀/𝑠𝑠2 to continue their movement 

based on applied optimal-safe speed.  

In order to simulate the IBA, the COM script of VISSIM detected the signal head at vision 

impairment location and reduced the speed of vehicle when the vehicle has higher speed than the 

optimal-safe speed.  In this regard, reducing 20 km/h in speed may lead to an abrupt deceleration 

for followers and increase the risk of rear-end collisions. Thus, a hierarchical speed reduction of 

10 km/h was considered when the deviation of vehicle speed and the optimal-safe speed was larger 

than 10km/h.  

Figure (48 - 50) show the safety improvement in the mixed traffic flow when IBA controlled 

speeds of AVs. The speed control of AVNs shows a better improvement in traffic safety when 

vehicles enforced reducing 20 km/h (green bars) from their desired speeds. Vehicles in moderate 

traffic flow experienced better safety by penetrating more AVNs into the network. As it was 

expected the crash potential reduction was higher for smaller speeds because reducing in speed of 

AVNs increased TTC which was exceeded from the threshold, 𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚 . However, the rate of safety 
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improvement is consistent with more penetration of AVNs into the near congestion traffic flow. 

This improvement was significant for AVAs when they had more transition into the mixed traffic 

(Figure 50). AVAs provided an acceptable response to the road safety by enforcing even 10km/h 

(brown bar) reduction in their desired speed. 

 

(a) AV Normal    (b) AV All-knowing 
Figure 48.Relative change in the number of conflicts in light traffic flow by applying IBA with 

different speed reduction (Brown: -10 km/h, Green: -20 km/h) and AV penetration ratio 

 

(a) AV Normal    (b) AV All-knowing 
Figure 49. Relative change in the number of conflicts in moderate traffic flow by applying IBA 
with different speed reduction (Brown: -10 km/h, Green: -20 km/h) and AV penetration ratio 
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(a) AV Normal    (b) AV All-knowing 
Figure 50. Relative change in the number of conflicts in near congestion traffic flow by applying 
IBA with different speed reduction (Brown: -10 km/h, Green: -20 km/h) and AV penetration ratio 
 

 Concluding Remarks 

The section examined the solution of using the proposed speed control methodology and collision 

avoidance system, CASUS, to improve traffic safety under the impaired visibility of drivers in the 

highway case study. An integrated algorithm of the ACWS and IBA in the simulation environment 

was developed to control speed for different AVs in mixed traffic.  Trajectories of vehicles were 

analyzed to identify the number of critical rear-end conflicts in the network.  

The results show a moderate improvement in traffic safety, approximately 30% when normal AVs 

accepted the proposed 20 km/h reduction in their speed by ACWS. However, AVAs used 10 km/h 

speed reduction by ACWS to provide the best traffic safety under the sun glare, and only during 

light traffic preferred to reduce speed 20 km/h. 

The results also indicated improved safety by using IBA in terms of noncompliance of drivers 

from the ACWS warning. This last-minute control of the vehicle before approaching the sun glare 

segment showed the same improvement, approximately 30%, for the moderate and near congestion 

traffic flow of AVNs compared with the use of ACWS. However, a small speed reduction of 

AVNs, 10 km/h, in light traffic improved safety significantly due to having fewer conflicts in low 

density on roadways. On the other hand, reducing the desired speed of AVAs improved traffic 

safety; however, it was half of the improvement that ACWS provided in light and moderate traffic 

flow for AVAs.  
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 CONCLUSION AND FUTURE DIRECTIONS 

This dissertation's main goal was to build a novel advisory system for AVs to understand and 

predict driver’s vision impairment on different types of roadways. The CASUS was developed as 

a study prototype to determine the impaired visibility locations on urban roadways. Sun glare and 

contrasting shadows were considered as the common types of vision impairment. The contrasting 

shadow was clustered based on sunlight's occlusion during a sun glare event by surface objects. 

The case study of the urban roadways in Montreal was used as a pilot project. The results revealed 

a dynamic situation of sun glare occurrence within the urban area. The most occurrence of sun 

glare frequently occurred at the middle of the roadways and inside the wide intersections. 

This study also investigated the impact of sun glare on driving behaviors. A homogenous traffic 

flow on a straight freeway was selected to limit vehicles' interaction with the environment and only 

consider the impact of vision impairment. A driving simulator study was conducted to model 

driving under sun glare and investigated car-following parameters' sensitivity. The traffic 

simulator generated the trajectory files for three different vehicle automation levels (i.e., 

conventional, normal AV, all-knowing AV) and various desired speed reductions to determine the 

conflict frequencies. A safety indicator of TTC was defined to determine critical rear-end conflicts 

by evaluating the difference in velocity and acceleration for each interaction of vehicles. The 

results indicated a proposed speed adjustment for driving a different type of AVs under the sun 

glare occurrence in highways. The conflict analysis of the simulation results revealed a significant 

improvement in road safety by using optimal-safe speed for each type of AVs. 

The CASUS was introduced as an innovative method to reduce rear-end crashes from the threat of 

the temporary blindness of drivers due to sun exposure. Instead of focusing on traditional speed 

limit signs, the CASUS provides an integrated combination of two different driving assistance 

conditions, ACWS and IBA, and acts based on microsimulation for safe stop driving under the sun 

glare. The result revealed a moderate improvement in traffic safety by ensuring AVNs’ drivers 

using the proposed speed reduction by ACWS. However, AVAs obtained greater improvement in 

road safety when vehicles comply 100% with the proposed speed of ACWS. The last-minute 

control of AVAs with IBA provided half of the improvement that ACWS obtained. However, 

AVNs responded better to road safety when the IBA controlled their speed through the sun glare 

segment. 
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The Presented CASUS can help road designers determine the intensity of vision impairment 

occurrence on predesigned road’s alignment. This study's most significant contribution is to 

improve safety on the existing roads with the highest number of vision impairments.  The study 

also helps researchers and car manufacturers identify real-time hazardous traffic locations and 

mitigate crash potentials by investing in the transition to different AVs' autonomous levels. 

This study considered the threat of vision impairment based on human drivers and evaluated the 

transition of AVs into the network for safe driving under the sun glare exposure. In the future, 

traffic composition may comprise only fully connected AVs and sensory system be a replacement 

to eliminate the deficiency of vision impairment on the road. In this regard, the defectiveness of 

the sensory system for bicycles and pedestrians needs to be investigated by using the CASUS 

application to provide the optimal speed based on the type and quality of on-vehicle sensors. 

Implementing the advisory system in the simulation environment is transferable to using the model 

for any other types of uncertain incidents on the road. Also, different car-following models can be 

applied through the created COM script to optimize the vehicle's maneuver and consider the 

passengers' comfort. 

In this thesis, it was not possible to conduct a real-world experimental test for the implementation 

of CASUS due to the limited availability of autonomous vehicles. Therefore, further research is 

recommended for implementing CASUS in an advanced driving simulator to analyze AVs' safety 

improvement over human drivers. Moreover, the methodology investigated the rear-end critical 

conflicts, and it could be developed and validated for a case study with a large number of lateral 

movements.  

This thesis considered a fully- or non-compliance of drivers with the proposed speed of ACWS 

due to the focus of the study on vehicle communication and control. Further compliance levels 

will be analyzed to replicate the responses of drivers to the system. Considering different 

compliance level may develop the length of initial warning range in the application of ACWS. 

Additionally, the control system of IBA was used to enforce speed reduction when AVs were 

approaching the sun glare segment. The future direction of IBA modeling is to investigate the 

traffic safety effects of incorrect estimation of safe following speed and distraction of drivers when 
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approaching the contrasting shadow. Further control measures can be added to this model by 

introducing a combination of different vision impairment on the roadways. 
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APPENDICES 

 

8.1 Appendices A: Vision Impairment Detection Python Code 

 Reading GIS data 

# Converting radians to degrees 
def angle_coverter(*args): 
    deg = degrees(*args) 
    return deg 
 
def get_directory(): 
    global directory 
    directory = "" 
    # Find the directory of the file 
    source_file = filedialog.askopenfile() 
    if source_file: 
        directory = source_file.name 
    return directory 
 
def get_directory_building(): 
    global directory_building 
    directory_building = "" 
    # Find the directory of the file 
    source_file = filedialog.askopenfile() 
    if source_file: 
        directory_building = source_file.name 
    return directory_building 
 
def sunboard_gui(): 
    parent = Tk() 
    parent.title("SunBoard - Ver 1.01") 
    parent.geometry('300x100') 
    directory_button = Button(parent, text="Choose the Road File", 
command=get_directory).pack() 
    directory_button_2 = Button(parent, text="Choose the Building File", 
command=get_directory_building).pack() 
    exit_button = Button(parent, text="Exit", command=parent.destroy).pack() 
    parent.mainloop() 
sunboard_gui() 
 
# Making workbook from 'sample data' 
workbook = openpyxl.load_workbook(directory) 
road_data_sheet = workbook["Road data"] 
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# Making workbook from 'Building Coordination' 
workbook_building = openpyxl.load_workbook(directory_building) 
building_data_sheet = workbook_building["Buildings"] 
 
# Indicating dimension of the table of data in excel (e.g., how many rows and columns are in the 
table) 
# Extracting data from 'sample_data' 
min_row = road_data_sheet.min_row 
max_row = road_data_sheet.max_row 
min_column = road_data_sheet.min_column 
max_column = road_data_sheet.max_column 
 
# 'Extracting data form 'Building Coordinations' 
max_building_row = building_data_sheet.max_row 
max_building_column = building_data_sheet.max_column 
 
# Step 1 : Extracting data for each row (segment) for "road data" 
def segment_info(road_data_sheet, max_row, max_column): 
    # Indicating index of 'headers_coords' elements, 'headers_long_lat' elements and 
'header_street_id' 
 
    headers = ['VOIE', 'SEG', 'LENGTH', 'XS', 'YS', 'XE', 'YE', 'LONG_S', 'LAT_S', 'LONG_E', 
'LAT_E', 'X_EMIN', 'Y_EMIN', 'X_EMAX', 'Y_EMAX', 'EMIN', 'EMAX']  # 'row' address will 
be added to this list later 
 
    headers_index = [] 
    segment_info_database = []  # List of segments with all required information (coordination, id) 
 
    # In this section 'r' stands for ROW and 'c' stands for COLUMN 
    # Step 2: Finding index of required columns (e.g. X,Y,Z, Elev,..) 
    n = 0 
    while n < 17: 
        for c in range(1, max_column + 1): 
            if road_data_sheet.cell(row=1, column=c).value == headers[n]: 
                headers_index.append(c) 
        n += 1 
 
    for r in range(2, max_row + 1): 
        temp = [] 
        for index in headers_index: 
            temp.append(road_data_sheet.cell(row=r, column=index).value) 
        temp.append(r)  # Address of row for selected segment 
        segment_info_database.append(temp)  # [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18], 
[...], ...] 
    return segment_info_database 
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segment_info_database = segment_info(road_data_sheet, max_row, max_column) 
 
# Step 3: Extracting data for each row (segment) for "Building Coordination" 
def building_info(building_data_sheet, max_building_row, max_building_column): 
    headers = ['ELEV', 'Xcoord', 'Ycoord'] 
    headers_index = [] 
    building_info_database = []  # List of segments with all required information (coordination, id) 
 
 # In this section 'r' stands for ROW and 'c' stands for COLUMN 
 # Finding index of required columns ( e.g., X,Y,Z, Elev,..) 
    n = 0 
    while n < 3: 
        for c in range(1, max_building_column + 1): 
            if building_data_sheet.cell(row=1, column=c).value == headers[n]: 
                headers_index.append(c) 
        n += 1 
    for r in range(2, max_building_row + 1): 
        temp = [] 
        for index in headers_index: 
            temp.append(round(building_data_sheet.cell(row=r, column=index).value)) 
        building_info_database.append(temp)  # [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18], 
[...], ...] 
    return building_info_database 
building_info_database = building_info(building_data_sheet, max_building_row, 
max_building_column) 
# building_info_database[0] : [[elev, xcoord, ycoord],...] 
 
# Step 4: Making categories based on the 'VOIE' 
def road_sections(segment_info_database): 
    road_section = []  # List of roads 
    temp_road_section = [] 
 
    temp = segment_info_database[:]  # Will be used to check the loop (Stopping the loop) 
    while len(temp) != 0: 
        temp_road_section = [] 
        start_point = temp[0][0]  # First random point (VOIE) e.g., 300207 
 
        for i in segment_info_database: 
            if i[0] == start_point: 
                temp_road_section.append(i)   
        road_section.append(temp_road_section)   
        for j in temp_road_section: 
            temp.remove(j)  # temp list is being updating (Removing points which we found in latest 
loop. Then we use updated 'temp' to extract the next 'start_point) 
    return road_section 
road_category = road_sections(segment_info_database) 
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def update_segment_info_database(segment_info_database): 
    for element in segment_info_database:   
        element_index = segment_info_database.index(element) 
        if element[3] == element[11]: 
            EMIN = element[15] 
            EMAX = element[16] 
        else: 
            EMIN = element[16]  # 44.6 
            EMAX = element[15]  # 44.2 
        segment_info_database[element_index].remove(element[15])  # removed : 44.2 
        segment_info_database[element_index].remove(element[15])  # removed : 61 
        segment_info_database[element_index].insert(5, EMIN) 
        segment_info_database[element_index].insert(8, EMAX) 
    return segment_info_database 
segment_info_database = update_segment_info_database(segment_info_database) 
 
def ascend_descend(element): 
    if element[len(element) - 1][6] > element[0][3]: 
        return 1 
    else: 
        return 0 
 
def temp_ends(segment_info_database):  # to do correction of start and end point for each segment 
    temp_test = [] 
    temp_all_segs = [] 
    temp_north = [] 
    temp_south = [] 
    temp_voie = [] 
 
    for i in segment_info_database: 
        temp_voie.append(i[0]) 
    temp_voie = list(set(temp_voie)) 
 
    for voie in temp_voie:  # temp_voie :  
        # In this case there are 11 categories which will be saved separately in 'temp' list. 
        temp = [i for i in segment_info_database if i[0] == voie] 
        temp_test.append(temp) 
        temp_south = [] 
        temp_north = [] 
        temp_north_south = [] 
        n = 0 
        for i in temp: 
            if n % 2 == 0: 
                temp_north.append(temp[n]) 
            else: 
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                temp_south.append(temp[n]) 
            n += 1 
        if ascend_descend(temp_north):  # If  'north' is ascending, therefor, 'south' will be 
'descending'. 
            for i in temp_north: 
                ref = deepcopy(i) 
                if ref[3] < ref[6]: 
                    pass 
                else: 
                    # Replacing XS with XE 
                    temp_north[temp_north.index(i)][3] = ref[6] 
                    temp_north[temp_north.index(i)][6] = ref[3] 
                    # Replacing YS with YE 
                    temp_north[temp_north.index(i)][4] = ref[7] 
                    temp_north[temp_north.index(i)][7] = ref[4] 
                    # Replacing LongS with LongE 
                    temp_north[temp_north.index(i)][9] = ref[11] 
                    temp_north[temp_north.index(i)][11] = ref[9] 
                    # Replacing LatS with LatE 
                    temp_north[temp_north.index(i)][10] = ref[12] 
                    temp_north[temp_north.index(i)][12] = ref[10] 
                    # Replacing EMIN with EMAX 
                    temp_north[temp_north.index(i)][5] = ref[8] 
                    temp_north[temp_north.index(i)][8] = ref[5] 
 
            for j in temp_south: 
                ref = deepcopy(j) 
                if ref[3] > ref[6]: 
                    pass 
                else: 
                    # Replacing XS with XE 
                    temp_south[temp_south.index(j)][3] = ref[6] 
                    temp_south[temp_south.index(j)][6] = ref[3] 
                    # Replacing YS with YE 
                    temp_south[temp_south.index(j)][4] = ref[7] 
                    temp_south[temp_south.index(j)][7] = ref[4] 
                    # Replacing LongS with LongE 
                    temp_south[temp_south.index(j)][9] = ref[11] 
                    temp_south[temp_south.index(j)][11] = ref[9] 
                    # Replacing LatS with LatE 
                    temp_south[temp_south.index(j)][10] = ref[12] 
                    temp_south[temp_south.index(j)][12] = ref[10] 
                    # Replacing EMIN with EMAX 
                    temp_south[temp_south.index(j)][5] = ref[8] 
                    temp_south[temp_south.index(j)][8] = ref[5] 
        else:   
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            for i in temp_north: 
                ref = deepcopy(i) 
                if ref[3] > ref[6]: 
                    pass 
                else: 
                    # Replacing XS with XE 
                    temp_north[temp_north.index(i)][3] = ref[6] 
                    temp_north[temp_north.index(i)][6] = ref[3] 
                    # Replacing YS with YE 
                    temp_north[temp_north.index(i)][4] = ref[7] 
                    temp_north[temp_north.index(i)][7] = ref[4] 
                    # Replacing LongS with LongE 
                    temp_north[temp_north.index(i)][9] = ref[11] 
                    temp_north[temp_north.index(i)][11] = ref[9] 
                    # Replacing LatS with LatE 
                    temp_north[temp_north.index(i)][10] = ref[12] 
                    temp_north[temp_north.index(i)][12] = ref[10] 
                    # Replacing EMIN with EMAX 
                    temp_north[temp_north.index(i)][5] = ref[8] 
                    temp_north[temp_north.index(i)][8] = ref[5] 
 
            for j in temp_south: 
                ref = deepcopy(j) 
                if ref[3] < ref[6]: 
                    pass 
                else: 
                    # Replacing XS with XE 
                    temp_south[temp_south.index(j)][3] = ref[6] 
                    temp_south[temp_south.index(j)][6] = ref[3] 
                    # Replacing YS with YE 
                    temp_south[temp_south.index(j)][4] = ref[7] 
                    temp_south[temp_south.index(j)][7] = ref[4] 
                    # Replacing LongS with LongE 
                    temp_south[temp_south.index(j)][9] = ref[11] 
                    temp_south[temp_south.index(j)][11] = ref[9] 
                    # Replacing LatS with LatE 
                    temp_south[temp_south.index(j)][10] = ref[12] 
                    temp_south[temp_south.index(j)][12] = ref[10] 
                    # Replacing EMIN with EMAX 
                    temp_south[temp_south.index(j)][5] = ref[8] 
                    temp_south[temp_south.index(j)][8] = ref[5] 
        temp_north_south.append(temp_north) 
        temp_north_south.append(temp_south) 
        temp_all_segs.append(temp_north_south) 
    return temp_all_segs, temp_north, temp_south 
all_segments, temp_north, temp_south = temp_ends(segment_info_database) 
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# Removing overlapped points  
for i in all_segments: 
    for j in i: 
        for k in j: 
            if k[3] == k[6] and k[4] == k[7]: 
                del all_segments[all_segments.index(i)][i.index(j)][j.index(k)] 
                # or i.remove(j) >>>> updating i, therefor, updating temp_all_segs 
 
# Step 5: Making 'sub-segments' 
sub_segments_coords = [] 
sub_segments_long_lat = [] 
step = 2.5   
sum_length = 0 
for i in all_segments: 
    for j in i: 
        if len(j) != 1:  # IF len(j) <=1,  "j" should be ignored from calculation because in this case 
there is one segment, therefor it is not possible to distinguish the driver direction. 
            for segment in j: 
                sum_length += segment[2] 
                n = 0 
                temp_long_lat = [] 
                sub_seg_id = 0 
                temp_coordination = [] 
                length = segment[2] 
                y_end = segment[7] 
                y_start = segment[4] 
                x_end = segment[6] 
                x_start = segment[3] 
                dx = x_end - x_start 
                dy = y_end - y_start 
                y_lat_end = segment[12] 
                y_lat_start = segment[10] 
                x_long_end = segment[11] 
                x_long_start = segment[9] 
                elev_start = segment[5] 
                elev_end = segment[8] 
                # rs stands for "road slope" 
                rs = (elev_end - elev_start) / sqrt(pow(dx, 2) + pow(dy, 2)) 
                road_slope = atan(rs) 
                road_slope = round(angle_coverter(road_slope), 1) 
 
                # Driving PHI 
                driver_direction = atan2(dy, dx) 
                # Converting the angle from 'Radian' to 'Degree'. 
                driver_direction = round(angle_coverter(driver_direction), 1) 
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                if -180 < driver_direction < 0: 
                    driver_direction += 360 
                else: 
                    pass 
 
                # Making sub_segments 
                while 5 * n + step < length: 
                    sub_seg_id += 1  # Making unique id for each 'sub_segment', will be used in 'critical 
point' analyzing. 
                    # Number 20 should be updated to 2.5 for real result 
                    y_mid = int((((n * 5) + step) / length) * (y_end - y_start) + y_start) 
                    x_mid = int((((n * 5) + step) / length) * (x_end - x_start) + x_start) 
                    elev_mid = round(((((n * 5) + step) / length) * (elev_end - elev_start) + elev_start), 2) 
                    lat_mid = round((((n * 5) + step) / length) * (y_lat_end - y_lat_start) + y_lat_start, 5) 
                    long_mid = round((((n * 5) + step) / length) * (x_long_end - x_long_start) + 
x_long_start, 5) 
 
                    temp_coordination.append([segment[0], segment[1], x_mid, y_mid, elev_mid, 
road_slope, driver_direction, long_mid, lat_mid, sub_seg_id]) 
                    n += 1                   
                sub_segments_coords.append(temp_coordination) 
 

 Sun positioning algorithm 

start_hour = int(input("Start Time 'HOUR' : ")) 
start_minute = int(input("Start Time 'MINUTE' : ")) 
finish_hour = int(input("Finish Time 'HOUR' : ")) 
finish_minute = int(input("Finish Time 'MINUTE' : ")) 
 
# Indicating a date in a year 
year = int(input("Year : ")) 
start_day = int(input("Start Day : ")) 
start_month = int(input("Start Month (input should be in number format) : ")) 
end_day = int(input("End Day : ")) 
end_month = int(input("End Month (input should be in number format) : ")) 
 
# Making a list >>> Foramt : [hour, mintue, second] 
def hour_minute(start_hour, start_minute, finish_hour, finish_minute): 
    temp_hour = start_hour 
    time_steps = [] 
    time_steps.append([start_hour, start_minute, 0]) 
    while (temp_hour * 60) + start_minute < (finish_hour * 60) + finish_minute: 
        if start_minute + 5 < 60: 
            start_minute += 5 
            time_steps.append([temp_hour, start_minute, 0]) 
        if start_minute + 5 >= 60: 
            start_minute = start_minute + 5 - 60 
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            temp_hour += 1 
            time_steps.append([temp_hour, start_minute, 0]) 
    return time_steps 
time_steps = hour_minute(start_hour, start_minute, finish_hour, finish_minute) 
 
# Make a list of days in a year 
def day_in_year(start_day, end_day, start_month, end_month): 
    days_in_year = [] 
    first_day_in_year = date(year, start_month, start_day).timetuple() 
    first_day_in_year = first_day_in_year[7] 
    last_day_in_year = date(year, end_month, end_day).timetuple() 
    last_day_in_year = last_day_in_year[7] 
    days_in_year = list(range(first_day_in_year, last_day_in_year + 1)) 
    return days_in_year 
 
# Check Saving Daylight Time 
def dstboundry(year): 
    # For March 
    march = calendar.monthcalendar(year, 3) 
    n = 1 
    for i in march: 
        if i[6] != 0 and n == 2:  # Second Sunday in March 
            march_sunday = i[6] 
            break 
        else: 
            n += 1 
    november = calendar.monthcalendar(year, 11) 
    november_sunday = november[0][6] 
    return march_sunday + 59, november_sunday + 304 
march_sunday, november_sunday = dstboundry(year) 
 
# Calculating based on days in year 
def time_zone(day): 
    if march_sunday <= day <= november_sunday: 
        timezone = -4 
    else: 
        timezone = -5 
    return timezone 
 
def sun_position(day, longitude, latitude, hour, minute, second): 
    timezone = time_zone(day) 
    # or get Hour, Minute and Second automatically from cpu (curent time) 
    # now = datetime.now() 
    # hour = now.hour 
    # minute = now.minute 
    # second = now.second 
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    fractional_year = round((2 * pi) * ((day - 1 + (hour - 12) / 24) / 365), 2)  # RESULT :  
"RADIANS" 
    equation_of_time = round(229.18 * (0.000075 + 0.001868 * cos(fractional_year) - 0.032077 * 
sin(fractional_year) - 0.014615 * cos(2 * fractional_year) - 0.040849 * sin(2 * fractional_year)), 
2)  # RESULT : MINUTES 
 
    solar_declination_angle = round(0.006918 - 0.399912 * cos(fractional_year) + 0.070257 * 
sin(fractional_year) - 0.006758 * cos(2 * fractional_year) + 0.000907 * sin(2 * fractional_year) - 
0.002697 * cos(3 * fractional_year) + 0.00148 * sin(3 * fractional_year), 2)  # RESULT :  
"RADIANS" 
    time_offset = round(equation_of_time + (4 * longitude) - (60 * timezone), 5)  # RESULT : 
MINUTES 
    true_solar_time = round((hour * 60) + minute + (second / 60) + time_offset, 2)  # RESULT : 
MINUTES 
    if (true_solar_time/4) > 0: 
        solar_hour_angle = round((true_solar_time / 4) - 180, 2)  # RESULT : DEGREES 
    else: 
        solar_hour_angle = round((true_solar_time / 4) + 180, 2)  # RESULT : DEGREES 
    latitude_radian = radians(latitude) 
    solar_hour_angle_radian = radians(solar_hour_angle) 
 
    # ZENITH ANGLE 
    z_angle = sin(latitude_radian) * sin(solar_declination_angle) + cos(latitude_radian) * 
cos(solar_declination_angle) * cos(solar_hour_angle_radian) 
    zenith_angle = round(acos(z_angle), 5) 
    elevation_angle = 90 - degrees(zenith_angle) 
 
    # AZIMUTH ANGLE 
    az_angle = round((sin(latitude_radian) * cos(zenith_angle) - sin(solar_declination_angle)) / 
(cos(latitude_radian) * sin(zenith_angle)), 2) 
    if az_angle > 1 or az_angle < -1: 
        az_angle = 1 
    else: 
        pass 
    if solar_hour_angle > 0: 
        azimuth_angle = fmod(degrees(acos(az_angle))+180, 360) 
    else: 
        azimuth_angle = fmod((540 - degrees(acos(az_angle))), 360) 
    return elevation_angle, azimuth_angle 
 

 Occlusion test 

def occluded_coords(azimuth_angle_compliment_angle, buffer_distance, x_mid, y_mid): 
    temp_az = deepcopy(azimuth_angle_compliment_angle) - 360 
    occluded_x = x_mid + (cos(radians(temp_az)) * buffer_distance) 
    occluded_y = y_mid + (sin(radians(temp_az)) * buffer_distance) 
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    return occluded_x, occluded_y, azimuth_angle_compliment_angle 
 
# Defining corners of buffer rectangle 
def buffer_corners(x_mid, y_mid, occluded_x, occluded_y, azimuth_angle_compliment_angle): 
    temp = [] 
    buff_corners = [] 
    modified_sun_phi = deepcopy(azimuth_angle_compliment_angle) - 90 
    dx = round(abs(3 * cos(radians(modified_sun_phi)))) 
    dy = round(abs(3 * sin(radians(modified_sun_phi)))) 
    temp.append([x_mid + dx, y_mid + dy]) 
    temp.append([x_mid - dx, y_mid - dy]) 
    temp.append([round(occluded_x + dx), round(occluded_y + dy)]) 
    temp.append([round(occluded_x - dx), round(occluded_y - dy)]) 
 
    # sorting corners 
    temp.sort() 
    start_pt = temp.pop(0) 
    buff_corners.append(start_pt) 
    buff_corners.append(temp[0]) 
    buff_corners.append(temp[2]) 
    buff_corners.append(temp[1]) 
    return buff_corners 
 
city_max_elevation = 314  # max_elevation >>> Maximum Hight in the city 
max_occluded = abs(elev_mid - city_max_elevation + 1)  # 1 > hight of driver eyes. !!!!!!!! Need 
attention! What is max_occluded? 
result = [] 
sub_seg_index = 1 
    for sub_seg in street:  # >>> sub_seg : [300517, 12603751, 298517, 5039572, 51.6, -1.2, 218.3, 
-73.58, 45.5, 1] 
        latitude = sub_seg[8] 
        longitude = sub_seg[7] 
        x_mid = sub_seg[2] 
        y_mid = sub_seg[3] 
        elev_mid = sub_seg[4] 
        for time in time_steps: 
            hour = time[0]  # 15 
            minute = time[1]  # 0 
            second = 0 
            days_in_year = day_in_year(start_day, end_day, start_month, end_month) 
            for day in days_in_year: 
                elevation_angle, azimuth_angle = sun_position(day, longitude, latitude, hour, minute, 
second) 
        
                # Reading direction from east 
                azimuth_angle_compliment_angle = (((90 - azimuth_angle) % 360) + 360) % 360 
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                driver_direct = sub_seg[6] 
                 

 Sun glare detection 

                if abs(driver_direct - azimuth_angle_compliment_angle) <= 30 and elevation_angle > 0 
and abs(road_slope - (elevation_angle)) <= 25: 
                    buffer_distance = round((city_max_elevation - sub_seg[4]) / 
tan(radians(elevation_angle)), 1) 
                    occluded_x, occluded_y, azimuth_angle_compliment_angle = 
occluded_coords(azimuth_angle_compliment_angle, buffer_distance, x_mid, y_mid) 
                    buff_corners = buffer_corners(x_mid, y_mid, occluded_x, occluded_y, 
azimuth_angle_compliment_angle) 
                    # Finding valid points which reside inside of buffer rectangle 
                    shadow_counter = 0 
                    shadow_counter_2 = 0 
                    for point in building_info_database:  # point : [elev, x, y] 
                        shadow_counter_2 += 1 
 
                        #test location of point is inside the buffer area (buff_corners) 
                        if (point[1] >= buff_corners[0][0] and point[1] <= buff_corners[2][0] and point[2] 
<= buff_corners[1][1] and point[2] >= buff_corners[3][1]): 
                            a1 = abs(0.5*(buff_corners[0][1] + buff_corners[1][1])*(buff_corners[0][0] - 
buff_corners[1][0]) + 0.5*(buff_corners[0][1] + buff_corners[3][1])*(buff_corners[3][0] - 
buff_corners[0][0])-0.5*(buff_corners[1][1] + buff_corners[3][1])*(buff_corners[3][0] - 
buff_corners[1][0])) 
                            a2 = abs(0.5*(buff_corners[1][1] + buff_corners[2][1])*(buff_corners[1][0] - 
buff_corners[2][0]) + 0.5*(buff_corners[1][1] + buff_corners[3][1])*(buff_corners[3][0] - 
buff_corners[1][0]) - 0.5*(buff_corners[2][1] + buff_corners[3][1])*(buff_corners[3][0] - 
buff_corners[2][0])) 
                            area_buffer = a1 + a2 
 
                            triangle_p12 = abs(0.5*(point[2]+buff_corners[0][1])*(point[1]-
buff_corners[0][0])+0.5*(point[2]+buff_corners[1][1])*(buff_corners[1][0]-point[1])-
0.5*(buff_corners[0][1]+buff_corners[1][1])*(buff_corners[1][0]-buff_corners[0][0])) 
                            triangle_p23 = abs(0.5 * (point[2] + buff_corners[1][1]) * (point[1] - 
buff_corners[1][0]) + 0.5 * (point[2] + buff_corners[2][1]) * (buff_corners[2][0] - point[1]) - 0.5 
* (buff_corners[1][1] + buff_corners[2][1]) * (buff_corners[2][0] - buff_corners[1][0])) 
                            triangle_p34 = abs(0.5 * (point[2] + buff_corners[2][1]) * (point[1] - 
buff_corners[2][0]) + 0.5 * (point[2] + buff_corners[3][1]) * (buff_corners[3][0] - point[1]) - 0.5 
* (buff_corners[2][1] + buff_corners[3][1]) * (buff_corners[3][0] - buff_corners[2][0])) 
                            triangle_p41 = abs(0.5*(point[2]+buff_corners[3][1])*(point[1]-
buff_corners[3][0])+0.5*(point[2]+buff_corners[0][1])*(buff_corners[0][0]-point[1])-
0.5*(buff_corners[3][1]+buff_corners[0][1])*(buff_corners[0][0]-buff_corners[3][0])) 
 
                            if area_buffer == triangle_p12 + triangle_p23 + triangle_p34 + triangle_p41: 
                                # Calculating distance between observer and selected building 
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                                observer_building_distance = sqrt(pow(point[2] - y_mid, 2) + pow(point[1] - 
x_mid, 2)) 
                                if observer_building_distance != 0: 
 
                                    # Calculating occluded angle 
                                    occluded_angle = degrees(atan((point[0] - elev_mid + 1) / 
observer_building_distance)) 
                                    # Verifying occlusion 
                                    if occluded_angle >= elevation_angle: 
                                        result.append(sub_seg + [round(elevation_angle, 1)] + [hour * 60 + 
minute] + [day] + [round(azimuth_angle_compliment_angle)] + ["Shadow"] + [sub_seg_index]) 
                                        shadow_counter += 1 
                    if shadow_counter == 0: 
                        result.append(sub_seg + [round(elevation_angle, 1)] + [hour * 60 + minute] + [day] 
+ [round(azimuth_angle_compliment_angle)] + ["Sun Glare"] + [sub_seg_index]) 
 
        sub_seg_index += 1 

8.2 Appendices B: Microsimulation Interface 

 Speed control – Python code 

def toList(NestedTuple): 
 #function to convert a nested tuple to a nested list 
    return list(map(toList, NestedTuple)) if isinstance(NestedTuple, (list, tuple)) else NestedTuple 
 
def Init(): 
    #Initialization. 
    global vehTypesEquipped 
    global vehsAttributes 
    global vehsAttNames 
    vehsAttributes = [] 
    vehsAttNames = [] 
    vehTypesAttributes = Vissim.Net.VehicleTypes.GetMultipleAttributes(['No', 
'ReceiveSignalInformation']) 
    vehTypesEquipped = [x[0] for x in vehTypesAttributes if x[1]] 
    # list of vehicle types which are able to adjust their speed, e.g. [630] 
def GetVissimDataVehicles(): 
 # This function reads vehicle attributes from PTV Vissim 
    global vehsAttributes 
    global vehsAttNames 
    vehsAttributesNames = ['No', 'VehType\\No', 'Lane\\Link\\No', 'Speed', 'DesSpeed', 
'OrgDesSpeed', 'DistanceToSigHead', 'Acceleration', 'C2X_HasCurrentMessage'] 
    vehsAttributes = toList(Vissim.Net.Vehicles.GetMultipleAttributes(vehsAttributesNames)) 
 
# create dictionary for the attribute names read from PTV Vissim: 
    vehsAttNames = {} 
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    cnt = 0 
    for att in vehsAttributesNames: 
        vehsAttNames.update({att: cnt}) 
        cnt += 1 
 
def ChangeSpeed(): 
# read vehicle attributes from PTV Vissim to global variable "vehsAttributes" 
    GetVissimDataVehicles()  
    # if there are any vehicles in the network 
    if len(vehsAttributes) > 1:  
        # loop over all vehicles in the network 
        for vehAttributes in vehsAttributes: 
 
#optimal speeds based on the analysis of sensitivity analysis [vehicle type, AV penetration 
rate, volume, optimal speed] 
            optspeed = [[620.0, 30.0, 1000.0, 80.0], ….] 
            vehtype = vehAttributes[vehsAttNames['VehType\\No']] 
            for i in range(1, len(optspeed)): 
     volume = Vissim.Net.VehicleInputs.ItemByKey(2).AttValue('Volume(1)') 
                if optspeed[i][0] == vehtype and optspeed[i][1] == 50 and optspeed[i][2] == volume: 
                    optimalspeed = optspeed[i][3] 
 
 # set easier variables of the current vehicle: 
         Speed = vehAttributes[vehsAttNames['Speed']] 
                    DesSpeed = vehAttributes[vehsAttNames['DesSpeed']] 
                    OrgDesSpeed = vehAttributes[vehsAttNames['OrgDesSpeed']] 
                    DistanceToSigHead = vehAttributes[vehsAttNames['DistanceToSigHead']] 
                    Acceleration = vehAttributes[vehsAttNames['Acceleration']]  
                     
         rw = 3.336 * Speed 
 
# if the original desired speed has not yet saved, save it to the UDA "OrgDesSpeed" 
                    if OrgDesSpeed is None:  
                        OrgDesSpeed = DesSpeed 
                        vehAttributes[vehsAttNames['OrgDesSpeed']] = DesSpeed  
 
#Activation of ACWS 

            if DistanceToSigHead < rw: 
              vehAttributes[vehsAttNames['C2X_HasCurrentMessage']] = 1 

 
#activation of IBA                         
                     if optimalspeed < Speed: 
                         optimaldistant = ((Speed ** 2) - (optimalspeed ** 2)) / 64.73 
 
                         if DistanceToSigHead < optimaldistant: 
   vehAttributes[vehsAttNames['DesSpeed']] = optimalspeed 
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 Conflict analysis 
 
def safe_cast(val, to_type, default=None): 
    try: 
        return to_type(val) 
    except (ValueError, TypeError): 
        return default 
 
def path_leaf(path): 
    head, tail = ntpath.split(path) 
    return tail or ntpath.basename(head) 
 
class Vehicle:  
    def __init__(self, no, typeNo, second, speed, acceleration, length, coordinationFrontX, 
coordinationFrontY, leadTargNo): 
        self.no = no 
        self.typeNo = typeNo 
        self.second = second 
        self.speed = speed 
        self.acceleration = acceleration 
        self.length = length 
        self.coordinationFrontX = coordinationFrontX 
        self.coordinationFrontY = coordinationFrontY 
        self.leadTargNo = leadTargNo 
 
root = tk.Tk() 
root.withdraw() 
 
file_path = filedialog.askopenfilename() 
 
input = [line.rstrip('\n') for line in open(file_path, "r")] 
i = 0 
 
sequence = {} 
start = datetime.datetime.now() 
print("Started", start) 
 
while i < 22: 
    input.pop(0) 
    i += 1 
 
for line in input: 
    inputVehicle = line.split(';') 
     
    vehicle = Vehicle(safe_cast(inputVehicle[0], int),  
                      safe_cast(inputVehicle[1], float, 0.0),  
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                      safe_cast(inputVehicle[2], float, 0.0),  
                      safe_cast(inputVehicle[3], float, 0.0),  
                      safe_cast(inputVehicle[4], float, 0.0),  
                      safe_cast(inputVehicle[5], float, 0.0),  
                      safe_cast(inputVehicle[6], float, 0.0),  
                      safe_cast(inputVehicle[7], float, 0.0),  
                      safe_cast(inputVehicle[8], int, 0)) 
    if not vehicle.second in sequence: 
        sequence[vehicle.second] = {} 
    sequence[vehicle.second][vehicle.no] = vehicle   
result = [] 
 
for second in sequence: 
    for follower in sequence[second].values():  
        if follower.leadTargNo in sequence[second]: 
            follower.leader = sequence[second][follower.leadTargNo] 
            #print(second, follower.no, "->", follower.leader.no) 
            x = follower.coordinationFrontX - follower.leader.coordinationFrontX 
            y = follower.coordinationFrontY - follower.leader.coordinationFrontY 
 
            follower.deltaX = round((math.sqrt(x ** 2 + y ** 2)) - follower.length, 2) 
            follower.deltaV = round(follower.leader.speed - follower.speed, 2) 
            follower.deltaA = round(follower.leader.acceleration - follower.acceleration, 2) 
 
            if follower.deltaV < 0 and follower.deltaA == 0.0: 
                ttc = round(-follower.deltaX / follower.deltaV, 2) 
            elif follower.deltaV < 0 and follower.deltaA < 0: 
                ttc = round((follower.deltaV / follower.deltaA) - 
                            ((math.sqrt(follower.deltaV ** 2 - 2 * 
                                        follower.deltaX * follower.deltaA)) / follower.deltaA), 2) 
            elif follower.deltaV >= 0 and follower.deltaA < 0: 
                ttc = round((-follower.deltaV / follower.deltaA) - 
                            ((math.sqrt(follower.deltaV ** 2 - 2 * 
                                        follower.deltaX * follower.deltaA)) / follower.deltaA), 2) 
            else: 
                ttc = 1000 
            follower.ttc = round(ttc, 2) 
            if follower.typeNo == 100: 
                ttct = 2.8 
            elif follower.typeNo == 610: 
                ttct = 3.0 
            elif follower.typeNo == 620: 
                ttct = 2.4 
            else: 
                ttct = 2.1 
            follower.ttct = ttct 
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            result.append(follower) 
 
outputFullName = path_leaf(file_path) 
outputName = outputFullName[0:len(outputFullName)-4]+"_ttc" 
outputTxt = filedialog.asksaveasfilename(initialfile=outputName+".txt",title = "Select 
file",defaultextension=".txt") 
with open(outputTxt, 'w') as output: 
    print(['Follower veh ID', 'Vehicle type', 'simulation seconds', 'Speed F', 'Acceleration F', 
'Length L',  
           'Lead veh ID', 'x follower F', 'y follower F', 'Speed L', 'Acc L', 'x Leader F',  
           'y Leader F', 'Delta X', 'Delta V', 'Delta A', 'TTC', 'TTCt'], file=output) 
    for follower in result: 
        if follower.ttc < 4: 
            print([follower.no, follower.typeNo, follower.second, follower.speed, 
follower.acceleration, follower.length,  
                   follower.leadTargNo, follower.coordinationFrontX, follower.coordinationFrontY, 
follower.leader.speed,  
                   follower.leader.acceleration, follower.leader.coordinationFrontX, 
follower.leader.coordinationFrontY,  
                   follower.deltaX, follower.deltaV, follower.deltaA, follower.ttc, follower.ttct], 
file=output) 
 
outputCsv = filedialog.asksaveasfilename(initialfile=outputName+".csv",title = "Select 
file",defaultextension=".csv") 
with open(outputCsv, 'w') as output: 
    print('Follower veh ID,Vehicle type,simulation seconds,Speed F,Acceleration F,Length L,'+  
           'Lead veh ID,x follower F,y follower F,Speed L,Acc L,x Leader F,'+  
           'y Leader F,Delta X,Delta V,Delta A,TTC,TTCt', file=output) 
    for follower in result: 
        if follower.ttc < follower.ttct: 
            print(str(follower.no)+','+ str(follower.typeNo)+','+ str(follower.second)+','+  
                  str(follower.speed)+','+ str(follower.acceleration)+','+ str(follower.length)+','+  
                  str(follower.leadTargNo)+','+ str(follower.coordinationFrontX)+','+  
                  str(follower.coordinationFrontY)+','+ str(follower.leader.speed)+','+  
                  str(follower.leader.acceleration)+','+ str(follower.leader.coordinationFrontX)+','+  
                  str(follower.leader.coordinationFrontY)+','+  
                  str(follower.deltaX)+','+ str(follower.deltaV)+','+ str(follower.deltaA)+','+  
                  str(follower.ttc)+','+str(follower.ttct), file=output) 
 
finish = datetime.datetime.now() 
print("Finished", finish) 
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