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Abstract

Invariant Measures of Random Dynamical Systems with Constant Probabilities

Eyad AlFarajat, Ph.D.

Concordia University, 2021

In this PhD thesis we are concerned with the existence of the invariant measures and the abso-

lutely continuous invariant measures under one-dimensional transformations. The thesis consists of

two articles [1], [21].

We establish the existence of invariant measures for random maps with constant probabili-

ties and for nonautonomous random dynamical systems generalizing Krylov-Bogoliubov Theorem.

We present results on the existence of an absolutely continuous invariant measure for the nonau-

tonomous random maps on [a, b] using the theory of bounded variation.

We study the dynamics of a new family of transformations. We defined a general formula for the

density function for any transformation belonging to our family, and we find some special properties

for this family. This allowed us to study the random maps with constant probabilities based on these

maps and to prove that the density function f of random map which is constructed from our family

maps T = {τ1 , τ2 , ..., τn ; p1 , p2 , ..., pn} is the combination f(x) = p1f1 + p2f2 + ... + pnfn ,

where f1 , f2 , ..., fn are the invariant density functions of τ1 , τ2 , ..., τn respectively. We defined

another family of transformations, and we proved that the density functions for any transformations

belonging to this family are f(x) = 1. We present an example to find the density function of the

random maps by conjugations.

We created two classes of chaotic maps with desired invariant densities using two methods of

solving the inverse Frobenius-Perron problem (IFPP). We studied the Lyapunov exponent and the

autocorrelation properties for one of these classes.
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Chapter 1

Introduction

Ergodic theory is the mathematical study of the long-term average behaviour of systems, con-

cerned with study of dynamical systems from the point of view of orbits’ statistical behaviour under

a transformation. The basic ingredients are a measurable space, a measurable transformation acting

on points in the measurable space and an invariant measure on the measurable space. Most special-

ists consider it is as a study of invariant measures of dynamical systems. Dynamical systems can

have a large set of invariant measures. One of the most important problems in the ergodic theory of

dynamical systems is the existence of absolutely continuous invariant measures.

In this thesis, we present results about the absolutely continuous invariant measures in dynam-

ical systems of a simple single maps, in the random dynamical systems and in nonautonomous

random dynamical systems.

The importance of absolutely continuous invariant measures follows from the fact that they

are considered physically significant, for example, only these measures can be visualized using

computers. The existence of acim, theory and examples of the maps of [0, 1] into itself has a long

history. See for instance, the works of Ulam and von Neumann ([52] 1947), Rényi ([44] 1957),

Lasota and Yorke ([36] 1973) and Jabloński, Góra and Boyarsky ([29] 1996).

There is a natural procedure for finding an absolutely continuous invariant measure. It is the

iterating of the canonical measure µ. First construct the images of µ under the mapping µn =

µ ◦ τ−n, then take the averages νn =
∑n−1

k=0 µk/n and take some ∗-weak accumulation point.

Special properties of the mapping (e.g. its uniform expansion) may be reflected in the properties of

1



the limit measure (absolute continuity). An alternative way is to iterate the density function with

the transfer operator, and use the properties of τ to prove a compactness property of a resulting

sequence. The existence of an absolutely continuous invariant measure is not granted and is due

in many cases to hyperbolic properties of the mapping, such as large derivatives on big sets of

points. Once found, the absolutely continuous invariant measure serves via the ergodic theorem to

pronounce statements about typical (with respect to the canonical measure) behaviour of the system

[26].

The main tool we shall use throughout is the Frobenius-Perron Operator. The Frobenius-Perron

operator describes the evolution of density functions in a dynamical system, the invariant density

is a fixed point of Pτ , Pτ (f) = f . The existence of invariant densities for a class of chaotic point

transformations has been proved by Lasota and Yorke [36]. We can approximate the fixed point of

the Frobenius-Perron operator Pτ by the fixed point of a matrix operator. Frobenius-Perron operator

is an example of Markov operator [35], and possesses nice properties such as linearity, positivity,

preservation of integrals. With the aid of this operator we will be able to find meaningful invariant

measures, study their properties, and show why they are important in describing chaotic phenomena

[11].

A random dynamical system of special interest is a random map where the process switches

from one map to another according to fixed probabilities [42]. Random maps with constant prob-

abilities are an important special case of skew products. Let T = {τ1 , τ2 , ..., τk ; p1, p2, ..., pk},

be a random map with constant probabilities, where {τ1 , τ2 , ..., τk} is a set of measurable trans-

formations, and {p1, p2, ..., pk} is a set of constant probabilities, that is pi > 0, i = 1, 2, ..., k,∑k
i=1 pi = 1. In the case that pi are not constant functions, the random map is said to have a po-

sition dependent probabilities pi(x) and the random map is a position dependent random map. A

measure µ is called invariant under the random maps with constant probabilities T if it satisfies the

condition that µ(A) =
∑k

i=0 piµ(τ−1
i

(A)), for each measurable set A. The existence and properties

of invariant measures for random maps reflect their long-time behaviour and play an important role

in understanding their chaotic nature. In 1984, Pelikan [42] proved sufficient conditions for the

existence of acim for random maps with constant probabilities. For the theory of the existence and

properties of invariant measures for random maps see [42, 11, 5, 50, 8, 30, 9]. Random dynamical
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systems provide a useful framework for modeling and analyzing various physical, social, finance

and economic phenomena [50, 12, 48]. A random map as a model was introduced by mathemati-

cians half a century ago [40]. Since the 1970s, the random map model has attracted the attention of

physicists [32]. Such a dynamical system has recently found application in the study of fractals [7],

in modeling interference effects in quantum mechanics [13], and in computing metric entropy [49].

Autonomous systems are rare in nature. A more realistic approach to modeling real life pro-

cesses is to consider non-autonomous models. In this thesis we review the framework for studying

a nonautonomous random dynamical systems. We consider the non-autonomous dynamical system

{Tn} , where Tn =
{
τ

1(n)
, τ

2(n)
, ..., τ

k(n)
; p1, p2, ..., pk

}
. See the definition in Section 4.1. We study

the existence of the invariant measures and the absolutely continuous invariant measures under one-

dimensional non-autonomous random transformations. We present results on the existence of an

absolutely continuous invariant measure (acim) on [a, b] using the theory of bounded variation.

The general solution of the inverse Frobenius– Perron problem (IFPP), i.e., constructing a

chaotic dynamical system with given invariant density is obtained for the class of one-dimensional

unimodal complete chaotic maps. There are different approaches to solving the IFPP. We presented

two approaches from them. The first approach is matrix approach. Matrix method is outlined in the

work of P. Góra and A. Boyarsky (1993 [22]), the work of Bollt (1999 [10]), the work of McDonald

and Wyk (2017 [39]), the work of Rogers, Shorten and Naughton (2007 [45]) and the work of Nie

and Coca (2016 [41]). The matrix method, gives us a simple relationship between the given density

f and τ , where f is any piecewise constant density function. That is by expressing f in the form of

the leading eigenvector, one we can determine the Ulam’s matrix and hence the chaotic map τ . The

column stochastic matrix can be treated as Ulam’s transition matrix. The second approach is the

conjugation approach, this approach was developed by Ulam (1960 [51]) Grossman and Thomae

(1977 [24]), Gyorgyi and Szepfalusy (1984 [25]), Baranovsky and Daems (1995 [6]) and Jiang

(1995 [31]). Conjugation function approach, makes use of the following equivalence relation be-

tween two mappings: The map τ : I → I is conjugate to a piecewise linear map σ : J → J , i.e.,

there exists a one-to-one map h : I
onto−−→ J such that τ = h ◦ σ ◦ h−1

, for a σ with a uniform

invariant density, τ can then be found via the conjugating function (see Example 2.5.14).

The thesis is organized as follows.

3



In Chapter 2, we introduce some relevant concepts of random dynamical system including nec-

essary theorems from measure theory and ergodic theory.

In Chapter 3, we proved the existence of invariant measure for random maps with constant

probabilities, which is constructed from a continuous maps on compact space. These results are a

generalization of Krylov-Bogoliubov Theorem.

In Chapter 4, we prove the existence of invariant measure for nonautonomous random dynam-

ical systems. These results are a generalization of Krylov-Bogoliubov Theorem. We present the

properties of the Frobenius-Perron operator with respect to T̂n0 . We obtain a Lasota-Yorke inequal-

ity under an expanding on average condition. We present results on the existence of an absolutely

continuous invariant measure for the nonautonomous random maps on [a, b] using the theory of

bounded variation.

In Chapter 5, We present results about a new class of families of piecewise linear transformations

and about random maps with constant probabilities constructed from those transformations on the

interval [0, 1]. We present the properties of these families. The main result is in Proposition 5.2.2.

For another family of transformations we prove that the invariant density for any transformation of

the family is f = 1. Finally, we present an example of finding the density function of the random

maps by conjugations.

In Chapter 6, We present a particular class of Markov transformations.

In Chapter 7, We created two classes of chaotic maps with desired invariant densities using

two methods of solving the inverse Frobenius-Perron problem (IFPP). We studied the Lyapunov

exponent and the autocorrelation properties for one of these classes.

4



Chapter 2

Background

2.1 Review of dynamical systems and ergodic theory

Let us consider a probability space (X,B, µ) where X is a set, B is a σ-algebra of subsets of

X and µ is a measure such that µ(X) = 1. The measurable transformation τ : X → X is said

to be µ-preserving transformation if µ(τ−1(A)) = µ(A) for all A ∈ B. Sometimes we say that µ

is τ -invariant measure. The quadruple (X,B, µ, τ) is called a dynamical system, while one refers

to τ as the dynamics. It models a system with motion; being at an instance in state x0, in the next

instance the system is going to be in state τ(x0). For a x0 ∈ X the elements of the set

{
x0, τ(x0), τ2(x0), ...

}
are called iterates of x0 where τn+1 = τn ◦ τ = τ ◦ τn, the whole set is called the orbit starting in

x0 and the collection of all such orbits is called discrete dynamical system in X induced by τ . Here

”discrete” refers to the fact that we may think of n as a discrete time parameter.

If τ is a (one to one) transformation from X to itself, then it said to be invertible and the

condition for τ to be measure preserving in this case can be written as µ(τ(A)) = µ(A) for all

A ∈ B.

A measurable set A is said to be invariant under τ (with respect to µ) provided

µ(A \ τ−1(A)) = µ(τ−1(A) \A) = 0,
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that is, modulo sets of measure 0, τ−1(A) = A. The dynamics on A is independent of X \ A

and (X,B|A, µ|A, τ |A) is a dynamical system as well.

If A is any set, the characteristic function of A, χA is the function on X defined by χA = 1 if

x ∈ A, and 0 otherwise. It is clear that the function χA is measurable if and only if the set A is

measurable. For any measurable set A,

A is invariant under τ if and only if χA ◦ τ = χA almost everywhere (abbreviated as a.e.) on X .

Another interesting behaviour is the accumulation of states around some subset of the phase space.

We call a compact set A ⊂ X an attractor if the iterates of every bounded set B ⊂ X are uniformly

tending to A. Sometimes not all states in X tend to A.

Ergodicity describe a dynamical system which has same behaviour averaged over time as aver-

aged over the space of the system states, here is the formal definition.

Definition 2.1.1. A measure preserving transformation is ergodic if for every A ∈ B, such that

τ−1(A) = A, µ(A) = 0 or µ(X \A) = 0.

Lemma 2.1.2. [34] τ is ergodic if and only if every measurable invariant function is constant.

The most fundamental idea in ergodic theory is the following fact proved by G.D. Birkhoff in

1931 .

Theorem 2.1.3. (Birkhoff’s Ergodic Theorem) [11]: Suppose τ : (X,B, µ)→ (X,B, µ) is mea-

sure preserving, where (X,B, µ) is σ−finite, and f ∈ L1(X,B, µ). Then there exists a function

f∗ ∈ L1(X,B, µ) such that

1

n

n−1∑
k=0

f(τk(x)) −→ f∗, µ− a.e. (2.1.4)

Furthermore, f∗ ◦ τ = f∗ µ − a.e. and if µ(X) < ∞, then
∫
X f
∗dµ =

∫
X fdµ. Moreover if τ is

ergodic and (X,B, µ) is a normalized measure space, then f∗ is constant and

1

n

n−1∑
k=0

f(τk(x)) −→
∫
X
fdµ (2.1.5)

for almost every x.

6



The Birkhoff’s Ergodic Theorem implies that if τ : (X,B, µ)→ (X,B, µ) is ergodic and µ is

τ -invariant and E is a measurable subset of X , then the orbit of almost every point of X visits the

set E with asymptotic frequency µ(E).

Definition 2.1.6. Let µ and ν be two measures on the same measurable space. We say that ν is

absolutely continuous with respect to µ, (and write ν � µ) if for everyA ∈ B for which µ(A) = 0,

we have ν(A) = 0.

Definition 2.1.7. Let (X,B, µ) be a normalized measure space. Then τ : X → X is said to

be nonsingular if and only if τ∗µ � µ, i.e., if for any A ∈ B such that µ(A) = 0, we have

τ∗µ(A) = µ(τ−1(A)) = 0.

To test absolute continuity it is often useful to use the next theorem.

Theorem 2.1.8. [16] ν � µ if and only if for given ε > 0 there exists δ > 0 such that µ(A) < δ

implies ν(A) < ε.

If ν � µ, then it is possible to represent ν in terms of µ. This is the essence of the Radon-

Nikodym Theorem:

Theorem 2.1.9. [11] Let (X,B) be a space and let ν and µ be two normalized measures on

(X,B). If ν � µ , then there exists a unique f ∈ L1(X,B, µ) such that for every A ∈ B,

ν(A) =

∫
A
fdµ� µ. (2.1.10)

f is called the Radon-Nikodym derivative and is denoted by dν/dµ.

Example 2.1.11. µ is the length measure on X . ν assigns to each subset Y of X , twice the length

of Y . Then, dνdµ = 2.

2.2 Frobenius-Perron Operator

Let I = [a, b] and consider the measure space (I,B, λ) where B is a σ-algebra of subsets of I

and λ is the normalized Lebesgue measure on I . Let τ : I → I be a non-singular transformation,

7



i.e., λ(τ−1(A)) = 0 whenever λ(A) = 0, and µ be a measure absolutely continuous with respect to

λ (µ� λ) where µ has a density f . Let us assume that τ is nonsingular, we define the Frobenius-

Perron operator Pτ on L1 corresponding to τ by

∫
A
Pτfdλ = µ(τ−1(A)) =

∫
τ−1(A)

fdλ (2.2.1)

for all A ∈ B and f ∈ L1. Let A = [a, x], differentiating both sides, we obtain,

Pτf(x) =
d

dx

∫
τ−1([a,x])

fdλ, a.e., (2.2.2)

and the corresponding Frobenius-Perron operator Pτ can be expressed by

Pτf(x) =
∑

w∈τ−1(x)

f(w)

|τ ′(w)|
. (2.2.3)

The existence and the uniqueness of Pτ , follows by the Radon-Nikodym Theorem. The oper-

ator Pτ transforms probability density functions into probability density functions under the trans-

formation τ , where τ is assumed to be nonsingular. One of the most important properties of Pτ is

that its fixed points are the densities of measures invariant under τ [11].

Next we will state some useful properties for Frobenius-Perron operator in general.

Proposition 2.2.4. [11] Let f, g ∈ L1, h ∈ L∞, and α, β ∈ R. Pτ : L1 → L1 satisfies the

following properties:

• (Linearity) Pτ (αf + βg) = αPτf + βPτg, a.e.

• (Positivity) If f > 0 then Pτf > 0.

• (Preservation of Integrals)
∫
I Pτfdλ =

∫
I fdλ.

• (Contraction property) ‖Pτ‖ ≤ ‖f‖.

• (Composition property) If τ, σ : I → I are nonsingular, then Pτ◦σf = Pτ ◦ Pσf . In particu-

lar, Pτnf = Pnτ f .
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• (Adjoint property)
∫
I(Pτf) · gdλ =

∫
I f · Uτgdλ, where Uτ : L∞ → L∞ is called the

Koopman operator and is defined by Uτg = g ◦ τ .

The following proposition says that a density f∗ is a fixed point of Pτ if and only if it is the

density of a τ−invariant measure µ, absolutely continuous with respect to a measure λ.

Proposition 2.2.5. [11] Let τ : X → X be nonsingular. Then Pτf∗ = f∗ a.e., if and only if the

measure µ = f∗·λ, defined by µ(A) =
∫
A f
∗dλ, is τ−invariant, i.e., if and only if µ(τ−1A) = µ(A)

for all measurable sets A, where f∗ ≥ 0 and ‖ f∗ ‖1= 1.

Let

D = D(X,B, µ) = {f ∈ L1(X,B, µ) : f > 0 and ‖f‖1 = 1},

denote the space of probability density functions. A function f ∈ D is called a density function

or simply a density.

If f ∈ D, then

ν(A) =

∫
A
fdµ� µ

is a measure and f is called the density of ν and is written as dν/dµ.

2.3 Spaces of Functions and Measures

The results which are presented in this section are derived from the books of Góra and Boyarsky

[11] (1997), Royden and Fitzpatrick [47] (2010), Kingman and Taylor [34] (1966), Roussas [46]

(2014), Walkden [53] (2002).

We recall some fundamental ideas from measure theory.

Definition 2.3.1. Let F be a linear space. A function ‖ · ‖ : F → R+ is called a norm if it has the

following properties for each f, g ∈ F and α ∈ R,

(1) ‖f‖ = 0⇔ f = 0

(2) ‖αf‖ = |α|‖f‖

9



(3) ‖f + g‖ ≤ ‖f‖+ ‖g‖.

The space F endowed with a norm ‖ · ‖ is called a normed linear space.

Definition 2.3.2. A sequence {fn} in a normed linear space is said to converge to f in the metric

space F provided

lim
n→∞

‖fn − f‖ = 0.

Definition 2.3.3. A sequence {fn} in a normed linear space is a Cauchy sequence if for any ε > 0,

there exists an N ≥ 1 such that for any n,m ≥ N ,

‖fn − fm‖ < ε.

Every convergent sequence is a Cauchy sequence.

Definition 2.3.4. A normed linear space F is complete if every Cauchy sequence converges, i.e., if

for each Cauchy sequence {fn} there exists f ∈ F such that fn → f . A complete normed space is

called a Banach space.

Let (X,B, µ) be a normalized measure space. If a property is true except for a subset having

measure zero, then we say this property is true almost everywhere.

Definition 2.3.5. Let 1 ≤ p < ∞. The family of real-valued measurable functions (or rather

a.e.-equivalence classes of them) f : X → R satisfying

∫
X
|f(x)|pdµ <∞ (2.3.6)

is called the Lp(X,B, µ) space and is denoted by Lp(µ) when the underlying space is clearly

known, and by Lp where both the space and the measure are known. The integral in 2.3.6 is assigned

a special notation

‖f‖p =

(∫
X
|f(x)|pdµ

) 1
p

,

and is called the Lp norm of f . Lp with the norm ‖ · ‖p is a complete normed space, i.e., a Banach

space. The space of almost everywhere bounded measurable functions on (X,B, µ) is denoted

10



by L∞. Functions that differ only on a set of µ−measure 0 are considered to represent the same

element of L∞. The L∞ norm is given by

‖f‖∞ = ess sup f(x) = inf {M : µ {x : |f(x)| > M} = 0} .

The space L∞ with the norm ‖ · ‖∞ is a Banach space.

Definition 2.3.7. The space of bounded linear functionals on a normed space F is called the adjoint

space of F and is denoted by F∗. The weak convergence in F is defined as follows: a sequence

{fn}∞1 ⊂ F converges weakly to an f ∈ F if and only if for any G ∈ F∗, G(fn) → G(f) as

n→∞. Similarly, a sequence of functionals {Gn}∞1 ⊂ F∗ converges in the ∗−weak topology to a

functional G ∈ F∗ if and only if for any f ∈ F, Gn(f)→ G(f) as n→∞.

Theorem 2.3.8. (Kakutani-Yosida Theorem) [11]: Let F be a Banach space and let T : F → F

be a bounded linear operator. Assume there exists c > 0 such that ‖Tn‖ ≤ c, n = 1, 2, ....

Furthermore, if for any f ∈ A ⊂ F, the sequence {fn}, where

fn =
1

n

n∑
k=1

T kf,

contains a subsequence {fnk} which converges weakly in F, then for any f ∈ A,

1

n

n∑
k=1

T kf → f∗ ∈ F

(norm convergence) and T (f∗) = f∗.

We now consider spaces of continuous and differentiable functions. Let X be a compact metric

space.

Definition 2.3.9. Let f be a real valued function defined on a set A of real numbers. We say that f

is continuous at the point x0 in A provided that for each ε > 0, there is a δ > 0 for which if x ∈ A

and |x− x0| < δ, then |f(x)− f(x0)| < ε. The function f is said to be continuous (on A) provided

it is continuous at each point in its domain A.

11



The following definitions and theorems are from [11].

Definition 2.3.10. C0(X) = C(X) is the space of all continuous real functions f : X → R, with

the norm

‖f‖C0 = sup
x∈X
|f(x)|. (2.3.11)

Definition 2.3.12. Let r > 1, Cr(X) denotes the space of all r−times continuously differentiable

real functions f : X → R, with the norm

‖f‖Cr = max
06k6r

sup
x∈X
|f (k)(x)|. (2.3.13)

where f (k)(x) is the k−th derivative of f(x) and f (0)(x) = f(x).

Definition 2.3.14. M(X) denotes the spaces of all measures µ on B(X). The norm, called the

total variation norm onM(X), is defined by

‖µ‖ = sup
A1

⋃
...

⋃
AN=X

{|µ(A1)|+ ...+ |µ(AN )|} . (2.3.15)

where the supremum is taken over all finite partitions of X .

Theorem 2.3.16. Let X be a compact metric space. Then the adjoint space of C(X), C∗(X), is

equal toM(X).

Theorem 2.3.17. (Scheffé’s Theorem) If fn ≥ 0,
∫
fndλ = 1, n = 1, 2, ... and fn −→ f a.e. with∫

fdλ = 1, then fn −→ f in L1 − norm.

Definition 2.3.18. Let X be a metric space and µ a measure defined on the σ- algebra of Borel sets.

We say that µ is a Radon measure if µ(K) <∞ for all compact sets and

µ(E) = inf
U⊃E
U−open

µ(U) = sup
K⊂E

K−compact

µ(K) , for all E ⊂ B(X).

Theorem 2.3.19. (Lusin’s Theorem)[18] Suppose that µ is a Radon measure on metric space X

and f : X → C is a measurable function that vanishes outside a set of finite measure. Then for any
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ε > 0 there exists g ∈ Cc(X) such that g = f except on a set of measure < ε. If f is bounded, g

can be taken to satisfy

sup
x∈X
|g(x)| < sup

x∈X
|f(x)|.

Where Cc(X) is the linear space of continuous real-valued functions on X .

Definition 2.3.20. The weak topology of measures is a topology of weak convergence onM(X).

i.e.,

µn → µ⇔
∫
gdµn →

∫
gdµ

for all g ∈ C(X).

In view of Theorem 2.3.16 this is sometimes referred to as the topology of ∗−weak convergence.

Theorem 2.3.21. The weak topology of measures is metrizable and any bounded (in norm) subset

ofM(X) is compact in the weak topology of measures.

We now present an important corollary of Theorem 2.3.16.

Corollary 2.3.22. The set of probability measures is compact in the weak topology of measures.

Definition 2.3.23. A function f : X → R is simple if it takes only a finite number of different

values.

Note these values must be finite. Writing them as ai, 1 ≤ i ≤ N , and lettingAi = {x ∈ X : f(x) = ai},

we can write

f =

N∑
i=1

aiχAi ,

where χA is the characteristic function of A.

Theorem 2.3.24. Simple Approximation Theorem [47] Let (X,B, µ) be a measure space and f a

measurable function on X . Then there is a sequence {ψn} of simple functions on X that converges

pointwise on X to f and has the property that

|ψn| ≤ |f | on X for all n.
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(1) If X is σ−finite, then we may choose the sequence {ψn} so that each ψn vanishes outside a

set of finite measure.

(2) If f is nonnegative, we may choose the sequence {ψn} to be increasing and each ψn ≥ 0 on

X .

(3) if f is bounded on X. Then for each ε > 0, there are simple functions φε and ψε on X such

that φε ≤ f ≤ ψε and 0 ≤ ψε − φε ≤ ε on X .

2.4 Krylov-Bogolyubov Theorem

Theorem 2.4.1. [11] Let τ : X → X be a measurable transformation of (X,B, µ). Then τ is

µ−preserving if and only if

∫
f(x)dµ =

∫
f(τ(x))dµ, (2.4.2)

for any f ∈ L∞. If X is compact and (2.4.2) holds for any continuous function f , then τ is

µ−preserving.

Proof. Assume τ is µ−preserving. Let f ∈ L∞. For a simple function f = Σn
k=1ckχAk , since τ is

measure preserving,

∫
f ◦ τdµ =

∫ [ n∑
k=1

ck · χAk ◦ τ

]
dµ =

∫ [ n∑
k=1

ck · χτ−1(Ak)

]
dµ

=

n∑
k=1

ck · µ(Ak) =

∫
fdµ

(2.4.3)

Therefore, the Equation (2.4.2) holds for f simple, for this reason and according to the Simple

Approximation Theorem 2.3.24, there is an increasing sequence {fn} of simple functions onX that

converge pointwise on X to f . Hence {fn ◦ τ} is an increasing sequence of simple functions on X

that converge pointwise on X to f ◦ τ . By using the Monotone Convergence Theorem twice, we

have ∫
f ◦ τdµ = lim

n→∞

∫
fn ◦ τdµ = lim

n→∞

∫
fndµ =

∫
fdµ
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Conversely, assume (2.4.2) holds. For A ∈ B, since µ(X) < ∞, the function f = χA belongs to

L1(X,µ) and f ◦ τ = χτ−l(A).

µ(τ−1(A)) =

∫
τ−1(A)

fdµ =

∫
A
f ◦ τdµ =

∫
A
fdµ = µ(A).

Krylov-Bogolyubov Theorem says that for every a probability measure ν, every limit point of

the sequence
1

n

n−1∑
i=0

v ◦ τ−i

is an invariant measure.

Theorem 2.4.4. (Krylov-Bogoliubov ) [11] Let X be a compact metric space and let τ : X −→ X

be continuous. Then there exists a τ−invariant normalized measure on X .

Proof. Let ν be a normalized measure on X . Consider the sequence µn defined by

µn =
1

n

n−1∑
i=0

τ i∗ν, (2.4.5)

where the operator τ i∗ν = v◦τ−i. The sequence {µn}∞k=1 contains a weakly convergent subsequence

{µnk}
∞
k=1, since it is precompact in the weak topology of measures. Let µ be a limit point of this

subsequence. We will prove that µ is τ−invariant normalized measure on X . To this end it is

enough to show that for any continuous function g the Equation (2.4.2) holds. We have

|µ(g)− µ(g ◦ τ)| = lim
k→∞

|µnk(g)− µnk(g ◦ τ)|

= lim
k→∞

| 1

nk

nk−1∑
i=0

(v ◦ τ−i)(g)− 1

nk

nk−1∑
i=0

(v ◦ τ−i−1)(g)|

= lim
k→∞

1

nk
|v(g)− v ◦ τnk(g)|

≤ lim
k→∞

2 sup |g|
nk

= 0,

and Equation (2.4.2) is proved. Note that since τ is continuous g ◦ τ is continuous for any

continuous g and then the ∗−weak convergence of µnk implies µnk(g ◦ τ)→ µ(g ◦ τ).
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2.5 Some theorems on the existence of acim’s

In this section we will present some results about the existence of an absolutely continuous

invariant measure for a piecewise differentiable mapping on an interval.

Let P = {I1, I2, ..., In} , Ii,= (xi−1, xi), i = 1, 2, ..., n be a partition of I , τ : I → I and

τi = τ|Ii. τ is a Markovian map for {Ii} if it satisfies::

M1 (Piecewise smoothness) τi has a C2−extension to the closure Ii of Ii,

M2 (Local invertibility) τi is strictly monotone,

M3 (Markov property) τ(Ii) is a union of some intervals Ij .

If for each i = 1, 2, ..., n, if τi is linear, then τ is called a piecewise linear Markov transformation.

The class of piecewise linear Markov transformations is a simple class of piecewise monotonic

transformations and the matrix representation of the corresponding Frobenius–Perron operator can

be calculated easily. In fact, it is a matrix which follows from the following theorem.

Theorem 2.5.1. [11] Let τ : (I,B, λ) → (I,B, λ) be a piecewise linear Markov transformation

with respect to the partition P = {I1, I2, ..., In}. Then there exists a n × n matrix Mτ such that

Pτf = fMT
τ for every piecewise constant f = (f1, f2, ..., fn). The matrix Mτ = (mij) is defined

by

mij =
λ(Ii ∩ τ−1(Ij))

λ(Ii)

Where T denotes transpose.

Example 2.5.2. Let ω : [0, 1]→ [0, 1] be a piecewise linear Markov transformation on the partition{
0, 1

4 ,
1
2 ,

3
4 , 1
}

, defined by

ω(x) =



1− 4x, for 0 ≤ x < 1
4

2(x− 1
4), for 1

4 ≤ x <
1
2

1
2 − 2(x− 1

2), for 1
2 ≤ x <

3
4

4x− 3, for 3
4 ≤ x < 1
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Figure 2.1: The map ω in Example 2.5.2.

ω-map is piecewise expanding and satisfy the conditions of Theorem 2.5.5. The matrix repre-

sentation of Pω is Mω where

Mω =



1
4

1
4

1
4

1
4

1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4


.

Let f = [x1, x2, x3, x4] , where xi = f |Ii, Ii =
[
i−1

4 , i4
]
, i = 1, 2, 3, 4. The normalized density of

the map ω is the left eigenvector of Mω with eigenvalue 1. Hence

f = [3, 3, 1, 1].

Therefore, the density of the invariant measure with respect to the Lebesgue measure is

g(x) =
3

2
· χ[0, 12 ] +

1

2
· χ[ 1

2
,1].

Theorem 2.5.3. (Folklore theorem)[11] Assume that (M1-M3) hold, and τ satisfy:

F1 (Aperiodicity) there exists an integer n such that τn(Ii) = X for all i.

F2 (Eventually expansive) there exist n ∈ N and a constant C > 1 such that the derivative is
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defined and |(τn)′| ≥ C.

Then τ has an ergodic invariant probability measure µ such that dµ = ρdx, where ρ is piecewise

continuous and satisfies 1/A ≤ ρ(x) ≤ A for some A > 0.

Theorem 2.5.4. [43] The invariant measure is unique and has density bounded if it’s satisfy:

U1 τ is a Markov transformation.

U2 |τ ′′/(τ ′)2| ≤ θ <∞ where τ ′, τ ′′ are defined,

U3 |τ ′(x)| ≥ λ > 1, where τ ′ are defined.

Let ∨(.) be the standard one dimensional variation of a function and BV (I) be the space of

functions of bounded variations on I equipped with the norm ‖.‖BV = ∨(.) + ‖.‖L1 . Lasota

and Yorke [36] proved the following important result for the existence of an acim for a single

transformation using bounded variation methods:

Theorem 2.5.5. [36] Let τ : [0, 1]→ [0, 1] be a piecewiseC2 transformation such that inf |τ ′| > 1.

Then for any f ∈ L1[0, 1] the sequence 1
n

∑n
k=1 P

k
τ f is convergent in norm to f∗ ∈ L1[0, 1]. The

limit function has the following properties:

(1) f > 0⇒ f∗ > 0.

(2)
∫ 1

0 fdλ =
∫ 1

0 f
∗dλ.

(3) Pτf∗ = f∗ and consequently dµ∗ = f∗dλ is invariant under τ .

(4) f∗ ∈ BV [0, 1]. Moreover there exists c independent to the choice of initial f such that

∨[0,1]f
∗ ≤ c ‖ f ‖1.

Example 2.5.6. [11] Let τ : [0, 1] → [0, 1] be defined for any α ∈ (0, 1), τ(x) =
x

α
· χ

[0,α]
(x) +

1− x
1− α

· χ
[α,1]

(x), and let f(x) = 1. Then f(x) is the invariant density of τ on [0, 1], Pτf = f .

Pτf(x) = (α) + (1− α) = 1
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Example 2.5.7. Let τ : [0, 1]→ [0, 1] be defined by τ(x) = x+x2(mod1), and let h(x) = 1
x+ 1

1+x .

Then h(x) is the infinite invariant density of τ on [0, 1], Pτh = h.

Pτh(x) =
h(τ−1

1 (x))

τ ′(τ−1
1 (x))

+
h(τ−1

2 (x))

τ ′(τ−1
2 (x))

=

1
− 1

2
+ 1

2

√
1+4x

+ 1
1
2

+ 1
2

√
1+4x

1 + (−1 +
√

1 + 4x)
+

1
− 1

2
+ 1

2

√
5+4x

+ 1
1
2

+ 1
2

√
5+4x

1 + (−1 +
√

5 + 4x)

= 2

(
2

4x
+

2

4 + 4x

)
= h(x)

(2.5.8)

Definition 2.5.9. Two transformations τ : I → I and σ : J → J on intervals I and J are called

conjugate if there exists a bijective continuous map h : I −→ J such that:

σ(x) = (h ◦ τ ◦ h−1)(x).

The map h is called the conjugation.

Theorem 2.5.10. [11] Let τ : I → I be nonsingular and let h : I → I be a diffeomorphism. then

we have:

(1) Pτf = f implies Pσg = g, where σ = h ◦ τ ◦ h−1 and g = (f ◦ h−1).|(h−1)′|;

(2) if f is a τ−invariant density, then g is a σ−invariant density.

Proof. (1) Let Pτf = f . Using the composition property for Frobenius-Perron operator we get

Pσ(Phf) = Ph ◦ Pτ ◦ Ph−1 ◦ Phf = Ph ◦ Pτ ◦ Ph−1◦hf = Ph ◦ Pτf = Phf. (2.5.11)

We have to show that Phf = g. But that immediately follows from

Phf(x) =

n∑
i=1

f ◦ h−1
i |(h

−1
i )′|χ[ai−1,ai] = (f ◦ h−1)|(h−1)′| = g. (2.5.12)

where h is monotonic (n = 1), since it is a diffeomorphism. By using the Equation 2.5.11, we

get

Pσ(g) = Pσ(Phf) = Phf = g
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Figure 2.2: Top left graph is the map τ0(x). Top right graph is the map G4(x). Bottom graph
shows the conjugation map h(x). For Example 2.5.14.

(2) Let
∫
I fdλ = 1. Then

∫
I gdλ =

∫
I Phfdλ =

∫
I fdλ = 1.

Corollary 2.5.13. If τ1 is the tent map and τ1 and τ2 are conjugated by h (τ2 = h ◦ τ1 ◦ h−1), then

f2 = |(h−1
)′|.

From corollary 2.5.13 we can find the relation,

h
−1

(x) = ±
∫ x

0
f2(t)dt.

Example 2.5.14. Let X = [0, 1]. Consider the map τ0 : [0, 1]→ [0, 1] defined by τ0 = 1−|2x−1|

(tent map) and G4 : [0, 1] → [0, 1] be the logistic map that is defined by G4 = 4x(1 − x). Let,
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moreover, h : [0, 1]→ [0, 1] be defined by h(x) = sin2(πx2 ). τ0 and G4 are conjugated by h.

Notice that the probability density function of τ0 is g(x) = 1. By applying Proposition 2.5.10,

g = (f ◦ h−1).|(h−1)′|, where h−1(x) = 2
π arcsin(

√
x), and then we have,

g = 1 ·
(
h−1(x)

)′
.

Therefore, using the change of variables formula we obtain,

g =
1

π
√
x(1− x)

,

and g is the invariant density of the logistic map.

Example 2.5.15. Let X = [0, 1] , and let us consider the maps

τ1(x) =


2x

1− x2
, for 0 ≤ x <

√
2− 1

1− x2

2x
, for

√
2− 1 ≤ x < 1

,

τ2(x) =



50x

25− 16x2
, for 0 ≤ x < 5

8(
√

29− 5)

100x

75− 48x2
+

1

6
, for 5

8(
√

29− 5) ≤ x < 1
2

25− 150x

108x2 − 36x− 72
+

1

6
, for 1

2 ≤ x <
5
6

√
2− 2

3

3x2 − x− 2

1− 6x
+

1

6
, for 5

6

√
2− 2

3 ≤ x <
1
6(
√

29− 1)

3x2 − x− 2
2
3 − 4x

, for 1
6(
√

29− 1) ≤ x < 1

.

The invariant densities for τ1 and τ2 are f1(x) =
4

π

1

1 + x2
and

f2(x) =


80

π(25 + 16x2)
, for 0 ≤ x < 1

2

10

π(3x2 − x+ 13
6 )
, for 1

2 ≤ x < 1,

respectively. τ1 and τ2 are conjugated by h(x) = (5
4x)χ

[0, 25 ]
+ (5

6x+ 1
6)χ

[ 2
5 ,1]

.
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2.6 Random dynamical systems

Let (X,BX , µ) be a probability space and let τ be an µ−preserving measurable map on X . A

random dynamical system f on the measurable space (Y,BY ) over (X,BX , µ, τ) is generated

by mappings fα , α ∈ X , so that:

(1) the map (α, x)→ fα(x) is measurable, and

(2) it satisfies the cocycle property fn+m
α = fnτm(α) ◦ f

m
α for all n,m ∈ Z+, α ∈ X .

The associated random orbits are x0, x1, ..., where x0 ∈ Y and xn+1 = fτn(α)(xn). This

random dynamical system is denoted by (X,BX , µ, τ, f).

Let X be a nonempty set and T be the set of two sided or one sided discrete or continuous times

(T = R,R+, R−, Z, Z+, Z−).

Definition 2.6.1. [3](Random dynamical systems) Let (X,B, µ, {φ(t), t ∈ T}) be a metric dy-

namical system and (Y,F) be a measurable space. A random dynamical system on (Y,F) over

(X,B, µ, {φ(t), t ∈ T}) is a mapping θ : T × X × Y → Y , (t, x, y) 7→ θ(t, x, y) satisfying the

following condition: the mappings θ(t, x) : θ(t, x, ·) : Y → Y form a cocycle, that is, they satisfy

(i) θ(0, x) = idY , for all x ∈ X (if 0 ∈ X); (ii) θ(t+ s, x) = θ(t, φ(s)x) ◦ θ(s, x) for all t, s ∈ R,

x ∈ X .

Figure 2.3: The map τ(x) in Example 2.6.2.
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Example 2.6.2. ([0, 1],B, λ, τ) is a metric dynamical system where τ : [0, 1] → [0, 1] is defined

by τ(x) = 3x(mod1) and λ is the Lebesgue measure on [0,1].

Definitions 2.6.3. [3]

(1) A random dynamical system on (Y,F) over (X,B, µ, {φ(t), t ∈ T}) is a measurable random

dynamical system if B(T)×B×F , F measurable.

(2) A measurable random dynamical system on (Y,F) over (X,B, µ, {φ(t), t ∈ T}) is a con-

tinuous or topological random dynamical system if Y is a topological space and θ(., x, .) :

T× Y → Y is continuous for every x ∈ X .

(3) A continuous or topological random dynamical system on (Y,F) over (X,B, µ, {φ(t), t ∈ T})

is a smooth random dynamical system of class Ck if Y is a manifold and θ(t, x) = θ(t, x, .) :

Y → Y is Ck, 1 ≤ k ≤ ∞ for every (t, x) ∈ T×X .

2.6.1 Skew product

Let (Ω,A, σ, ν) be a dynamical system and let (Y,B, τw, µw)w∈Ω be a family of dynamical

systems such that the functions τw(x) are A×B measurable. A skew product of σ and {τw}w∈Ω is

a transformation S : Ω× Y → Ω× Y defined by

S(w, x) = (σ(w), τw(x)), (2.6.4)

where w ∈ Ω and x ∈ Y .

In fact, An important application of a skew product construction is the random maps with con-

stant probabilities. Let (X,B, λ) be a measure space and Ω = Σ+ = {1, 2, 3, ..., k}{N∪0} =

{w = {wi}∞i=0 : wi ∈ {1, 2, 3, ..., k}}, be the set of set of all one sided infinite sequences. Let

τj : X → X , j = 1, 2, ..., k be nonsingular piecewise one-to-one transformations and p1, p2, ..., pk

be constant probabilities such that Σk
j=1pj = 1. The topology on Ω is the product of the discrete

topology on {1, 2, 3, ..., n} and the Borel probability measure µp on Ω is defined as

µp ({w : w0 = i0, w1 = i1, ..., wn = in}) = pi0 , pi1 , ..., pin .
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Let σ : Ω→ Ω be the left shift. Now consider the skew product S : Ω×X → Ω×X defined by

S(w, x) = (σ(w), τw0(x)), (2.6.5)

where w ∈ Ω and x ∈ X ,

S2(w, x) = (σ2(w), τw1 ◦ τw0(x)), (2.6.6)

and for any integer N ≥ 1,

SN (w, x) = (σN (w), τwN−1 ◦ τwN−2 ◦ ... ◦ τw1 ◦ τw0(x)), (2.6.7)

A random map with constant probabilities is

T = {τ1 , τ2 , ..., τk ; p1 , p2 , ..., pk} ,

with constant probabilities pi > 0,
∑k

i=1 pi = 1. The random map with constant probabilities

T is defined by choosing τi with probability pi , i.e., for any x ∈ X , T (x) = τi(x) with probability

pi . For any integer N ≥ 0, the iterates of the random map T are TN (x) = τiN ◦ τiN−1
◦ ... ◦ τi1 (x)

with probability
∏N
j=1 pij . TN (x) can be viewed as the second component of the SN of the skew

product S. Pelikan [42] defined a T -invariant measure m as follows:

Definition 2.6.8. Let T be a random map on X and µ be a measure on X . The measure µ is

invariant under the random map T if

µ(E) = ΣK
k=1pkµ(τ−1

k (E)), (2.6.9)

for any measurable set E ∈ B.
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2.7 The existence of absolutely continuous invariant measures for ran-

dom maps

Pelikan [42] gives the following sufficient condition for the existence of absolutely continuous

invariant measures for these random maps T = {τ1 , τ2 , ..., τk ; p1 , p2 , ..., pk}:

k∑
j=1

pj
|τ ′
j
|
≤ α < 1, (2.7.1)

for some constant α. the existence of acim, theory and examples of the maps of [0, 1] into itself

has a long history. See for instance, the works of Ulam and von Neumann ([52] 1947), Rényi ([44]

1957), Lasota and Yorke ([36] 1973) and Jabloński, Góra and Boyarsky ([29] 1996).

The Frobenius-Perron operator PT with respect to the random map with constant probabilities

T is given by

PT f =

k∑
i=1

piPτif, (2.7.2)

where Pτi is the Frobenius-Perron operator of the transformation τi . Operator PT can be expressed

by

PT f(x) =

k∑
i=1

pi
(
Pτi (f)

)
(x) =

k∑
i=1

pi

ni∑
j=1

f(τ−1
i,j

(x))

|τ ′(τ−1
i,j

(x))|
χτi ([xj−1 ,xj ])(x). (2.7.3)

Where χ
[xj−1 ,xj ]

is the characteristic function of the interval [xj−1 , xj ], i.e., χ[xj−1 ,xj ]
(x) = 1 if

x ∈ [xj−1 , xj ], and 0 otherwise. The key for the indices in Equation (2.7.3):

i = transformation numbers, i = 1, 2, · · · , k.

ni = the total number of sub-transformation for each τi , i = 1, 2, · · · , k.

j = sub-transformation numbers τi,j = τ
i|Ij

, j = 1, 2, · · · , ni and i = 1, 2, · · · , k.

Measure µ is T−invariant measure if and only if µ(A) =
∑k

i=0 piµ(τ−1
i

(A)) for all A ∈ B.

PT f
∗ = f∗ if and only if µ = f∗λ is T−invariant absolutely continuous measure.

Next we will state some useful properties for Frobenius-Perron operator with respect to the

random map .
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Proposition 2.7.4. [50] Let α, β be constant. Then if f, g ∈ L1([0, 1]), h ∈ L∞([0, 1]), and .

PT : L1([0, 1])→ L1([0, 1]) enjoys the following properties:

(1) (Linearity) PT (αf + βg) = αPT f + βPT g, a.e.

(2) (Positivity) If f > 0 then PT f =
∑K

k=1 pkPτkf > 0.

(3) (Preservation of Integrals)
∫

[0,1] PT fdλ =
(∑K

k=1 pk

) ∫
[0,1] fdλ =

∫
[0,1] fdλ.

(4) (Contraction property) ‖PT f‖1 ≤ ‖f‖1.

(5) (Composition property) If T,R : L1([0, 1])→ L1([0, 1]) are two random maps, thenPT◦Rf =

PT ◦ PRf . In particular, for any n ≥ 1, PTnf = PnT f .

Lemma 2.7.5. PT f∗ = f∗ if and only if µ = f∗λ is T−invariant.

2.7.1 Random maps of piecewise linear Markov transformations and the Frobenius-

Perron operator:

One of the important property for the piecewise linear Markov transformations is the invariant

densities can be computed easily since the Frobenius-Perron operator can be represented by a finite-

dimensional matrix (see Theorem 2.5.1). This property is inherited by random maps which are

constructed from piecewise linear Markov transformations (see Section 3.4.6. in [50]).

Example 2.7.6. Consider the random map

T =

{
τ1, τ2, τ3;

1

2
,
1

8
,
3

8

}
,

where τ1, τ2 and τ3 are the piecewise linear Markov transformations shown in Figure 2.4.

Using, Theorem 2.5.1 and the Frobenius-Perron operator PT , we have

PT f = (
1

2
M c
τ1 +

1

8
M c
τ2 +

3

8
M c
τ3)πf .

Where c denotes transpose. It can be easily shown that the solution of the matrix equation

M c
Tπ

f = πf is

πf =

[
239

483
,
2584

3703
,
24

23
, 1

]c
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Figure 2.4: Top left: τ1(x). Top right: τ2(x). Bottom: τ3(x), Example 2.7.6.

and the invariant density of T is

f(x) =



5497

35950
, for 0 ≤ x < 1

4

3876

17975
, for 1

4 ≤ x <
1
2

5796

17975
, for 1

2 ≤ x <
3
4

11109

35950
, for 3

4 ≤ x < 1

.
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Figure 2.5: The invariant density of T , Example 2.7.6.
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Chapter 3

Existence of invariant measures for

continuous random maps.

In this section 3.2 we prove necessary and sufficient conditions for existence of an invariant

measure for random maps. Before that in section 3.1, we mentioned some basics and discussed

some rationale. The Krylov-Bogoliubov Theorem 2.4.4 is one of the theory which establishes the

existence of invariant measures for continuous transformations (regardless it’s expanding or nonex-

panding transformations) on a compact space. In [3], For a Polish space, the author introduces a

topology of weak convergence of measures which let him carry over the Krylov-Bogoliubov theo-

rem and prove that each continuous random dynamical system on a compact space has at least one

invariant measure and he generalized that to a random compact set.

3.1 Measurable transformation

Let X be a compact metric space and consider the measure space (X,B, µ), where B is a σ-

algebra of subsets of X and µ is the normalized measure on X . LetM(X) denotes the spaces of

all measures on B(X). A random map

T = {τ1 , τ2 , ..., τk ; p1 , p2 , ..., pk} ,
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where τ1 , τ2 , ..., τk be a collection of measurable transformations from (X,B) to (X,B), pi >

0,
∑k

i=1 pi = 1. The random map with constant probabilities T is defined by choosing τi with

constant probability pi , in other words for any x ∈ X , T (x) = τi(x) with probability pi . For an

integer N ≥ 0, the iterate of the random map T is performed as follows:

TN (x) = τiN ◦ τiN−1
◦ ... ◦ τi1 (x),

with probability
∏N
j=1 pij . The transition function of the Markov process of the random map T is

the following

P(x,A) = p1χA(τ1(x)) + ...+ p
k
χA(τ

k
(x)),

from a point x ∈ X into a set A ∈ B(X), and χA is the characteristic function of the set A on

X that takes the value 1 on A and 0 on X \A.

Given the random map with constant probabilities T and g : X → Y we can consider the

composition g(T ) : X → Y to generate a random map with constant probabilities g(T )(x) =

{g(τ1(x)), g(τ2(x)), ..., g(τ
k
(x)); p1 , p2 , ..., pk} ,. In particular if g : X → R∗ is an extended real-

valued function on X (R∗ is the extended real number system defined by adding two points −∞

and +∞ to the real numbers), then g(T ) defines an extended random map on X .

Lemma 3.1.1. Let τi , i = 1, 2, ..., k, be a collection of measurable transformations from (X,B) to

(X,B) and g : X → R∗ a measurable as a function with extended real-values, then the composition

g(τi) is measurable.

Proof. For each i and for any Borel set in B in R∗ we have

{x : g(τi)(x) ∈ B} = τ
−1

i
{y : g(y) ∈ B}

= τ
−1

i
(A), for some A ∈ B

.

If µ is a measure on (X,B) and T is a random map with constant probabilities constructed

by collection of measurable transformations from (X,B) to (X,B) then we can use T to define a

measure v on B by putting

v(A) = µ(T
−1

(A)), for A ∈ B. (3.1.2)
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By this definition of v, (X,B, v) is a measure space.

The following change of variable formula in an integral.

Theorem 3.1.3. Let g : X → R∗ be a measurable function. Then we have

∫
X
g(T )dµ =

∫
X
gdv (3.1.4)

Proof. Consider non-negative functions g : X → R+. It is enough to prove (3.1.4) when g = χA

is the characteristic function of the set A (where χA is the characteristic function , and g ◦ T =∑n
i=0 pig ◦ τi =

∑n
i=0 piχτ−1

i
). Then

g(τi)(x) =


1, if x ∈ τ−1

i
(A)

0, if x /∈ τ−1

i
(A)

,

so that g(τi) is the characteristic function of τ
−1

i
(A), a set in B. Thus, by 3.1.2∫

X
gdv = v(A) = µ(T

−1
(A)) =

K∑
k=1

p
k
µ(τ

−1

k
(A))

=
K∑
k=1

∫
τ−1
k (A)

p
k
.1dµ =

∫
X

K∑
k=1

p
k
χA(τ

k
(x))dµ

=

K∑
k=1

p
k

∫
X
g(τ

k
(x))dµ =

∫
X
g(T (x))dµ.

The proof is completed.

Definition 3.1.5. µ is called T−invariant measure if and only if it satisfies the following condition:

µ(A) =
K∑
k=1

∫
τ−1
k (A)

p
k
dµ(x) =

K∑
i=0

piµ(τ−1
i

(A)). (3.1.6)

Lemma 3.1.7. Let X be a compact metric space and let (X,B, µ) be a measure space with nor-

malized measure µ and T be a random map on X . Then µ is T−invariant measure if and only if

for any function g ∈ C(X)

∫
gdµ =

∫
g ◦ Tdµ, (3.1.8)
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where g ◦ T =
∑n

i=0 pig ◦ τi.

Proof. Assume (3.1.8) holds. For the measurable function g, by Theorem 3.1.3 we have
∫
X g ◦

Tdµ =
∫
X gdv. By Theorem 2.3.16, we infer from 3.1.8 that µ(T−1(A)) = µ(A) for every

measurable set A.

Conversely, assume µ is T−invariant measure. X is a compact metric space, then the adjoint

space of C(X) is equal toM(X) (Theorem 2.3.16). First we have to prove that 3.1.8 holds when

f = χA for the characteristic function .

∫
f ◦ Tdµ =

∫
χA ◦ Tdµ =

∫
A

1 ◦ Tdµ

=
n∑
k=1

pk

∫
A

1 ◦ τkdµ =
n∑
k=1

pk

∫
τ−1
k (A)

1dµ

=
n∑
k=1

pkµ(τ−1
k (A)) = µ(A) =

∫
χAdµ =

∫
A
fdµ.

For a simple function f = Σn
k=1ckχAk , since µ is T−invariant measure,∫

f ◦ Tdµ =

∫ [ n∑
k=1

ck.χAk ◦ T

]
dµ =

∫ [ n∑
k=1

ckpk.χτ−1
k (Ak)

]
dµ =

n∑
k=1

ck.µ(Ak) =

∫
fdµ.

Thus, ∫
fdµ =

∫
f ◦ Tdµ, (3.1.9)

Therefore (3.1.8) holds for f simple. According to the the Simple Approximation Theorem (Theo-

rem 2.3.24), there is an increasing sequence {fn} of simple functions on X that converge pointwise

on X to the any continuous function g. Hence {fn ◦ T} is an increasing sequence of simple func-

tions on X that converge pointwise on X to g ◦ T . By using the Monotone Convergence Theorem

two times and applying the equality of (3.1.9) for simple functions, we have

∫
g ◦ Tdµ = lim

n→∞

∫
fn ◦ Tdµ = lim

n→∞

∫
fndµ =

∫
gdµ.
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3.2 The Generalization of Krylov-Bogoliubov Theorem for random

maps

Next, we generalize Krylov-Bogoliubov Theorem to random maps. An analogous result, for

continuous time Random Dynamical Systems, is proven in Theorem 1.5.8. of Arnold’s book [3].

For simplicity we consider k = 2.

Theorem 3.2.1. (The Generalization of Krylov-Bogoliubov Theorem) Let X be a compact metric

space and let (X,B, λ) be a measure space with normalized measure λ and let τi : X −→ X , i =

1, 2 be continuous transformations. Consider the random map T = {τ1 , τ2 , p1 , p2} with constant

probabilities p1 , p2 . Then there exists a T−invariant normalized measure µ.

Proof. Let ν inM(X) be a normalized measure ( for example we can take a Dirac measure ). De-

fine the sequence µn ∈M(X) by

µn =
1

n

n−1∑
j=0

T j∗ ν

Then for B ∈ B

µn(B) =
1

n

(
ν + T∗ν + ...+ Tn−1

∗ ν
)

(B)

=
1

n

(
ν(B) + ν(T−1(B)) + ...+ ν(T−(n−1)(B))

)
=

1

n

ν(B) +
2∑

k1=1

p
k1
ν(τ−1

k1
(B)) + ...+

∑
k1,k2,..,kn

p
k1
p
k2
...p

kn
ν(τ−1

k1
τ−1
k2
...τ−1

kn
(B))


where

∏n−1
i=1 pki is the probability of Tn−1(x) . For example,

∑
k1,k2

p
k1
p
k2
ν(τ−1

k1
τ−1
k2

(B)) = p2
1
ν(τ−2

1
(B))+p1p2ν(τ−1

1
τ−1

2
(B))+p1p2ν(τ−1

2
τ−1

1
(B))+p2

2
ν(τ−2

2
(B))

SinceM(X) is weak∗ compact, some subsequence µnk converges, as k −→ ∞, to a measure

µ ∈ M(X), We shall show that µ is T−invariant, and for that it is enough to show that for any

function f ∈ C(X).
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∫
fdµ =

∫
f ◦ Tdµ. (3.2.2)

We have,

|µ(f)− µ(f ◦ T )| = lim
nk−→+∞

|µnk(f)− µnk(f ◦ T )|

= lim
nk−→+∞

∣∣∣∣ 1

nk

(
ν + ...+ Tnk−1

∗ ν
)

(f)− 1

nk
(T∗ν + ...+ Tnk∗ ν) (f)

∣∣∣∣
= lim

nk−→+∞

1

nk
|ν(f)− Tnk∗ ν(f)|

≤ lim
nk−→+∞

2 sup |f |
nk

= 0.

Therefore, µ is T−invariant, as claimed.
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Chapter 4

Existence of an absolutely continuous

invariant measure for nonautonomous

random maps

We present results on the existence of invariant measures for nonautonomous random dynami-

cal systems. We prove the existence of an absolutely continuous invariant measure for the nonau-

tonomous random maps on [a, b] using the theory of bounded variation.

In Section 4.1, we give the definitions and introduce the notation to the nonautonomous random

dynamical systems. In Section 4.2, we prove the generalization of the Krylov-Bogoliubov Theorem

to the nonautonomous random dynamical systems. In Section 4.3, we prove the existence of an

absolutely continuous invariant measures for the limit random map T . In Section 4.4, we introduce

the properties of Frobenius-Perron operator for nonautonomous random maps. Finally, in Section

4.5, we prove a form of the Lasota-Yorke inequality and we prove the existence of invariant BV

densities for nonautonomous random maps.
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4.1 Definitions and notations for nonautonomous random dynamical

systems.

LetX be a compact metric space and let (X,B, λ) be a measure space, B is a σ-algebra of sub-

sets ofX with normalized measure λ. Let τ
1(n)

, τ
2(n)

, ..., τ
k(n)

be a k sequences of a transformations

with a continuous limits τ1 , τ2 , ..., τk respectively. Consider the random maps

Tn =
{
τ

1(n)
, τ

2(n)
, ..., τ

k(n)
; p1 , p2 , ..., pk

}

which converge uniformly to a continuous random map

T = {τ1 , τ2 , ..., τk ; p1 , p2 , ..., pk} ,

with constant probabilities p1 , p2 , ..., pk , pi > 0,
∑k

i=1 pi = 1.

Definition 4.1.1. The nonautonomous random dynamical systems on the metric compact space X

is defined by:

xm+1 = Tm(xm), m = 0, 1, 2, ...

where x0 ∈ X and T0 =
{
τ

1(0)
, τ

2(0)
, ..., τ

k(0)
; p1 , p2 , ..., pk

}
, where τ

i(0)
are the identity transfor-

mations for all i. This generates the discrete time process T̂nm , which is defined for all x ∈ X

T̂nm = Tn ◦ Tn−1 ◦ ... ◦ Tm+1 ◦ Tm, m ≤ n.

In particular,

T̂n0 = Tn ◦ Tn−1 ◦ ... ◦ T1 ◦ T0.
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4.2 Existence of invariant measures for continuous nonautonomous

random maps.

In [23] Góra, Boyarsky and Keefe proved the generalization of the Krylov-Bogoliubov’s Theo-

rem to the nonautonomous setting : every limit point of the sequence

1

n

n−1∑
i=0

(τ̂ i0)∗ν,

is a τ -invariant measure for every probability measure ν. We generalize this result to random maps.

Theorem 4.2.1. Let T̂n0 be as defined as in Section 4.1. Let ν be normalized measure on X . Define

the measures µn = 1
n

∑n−1
i=0 (T̂ i0)∗ν. Let µ be a ∗−weak limit point of the sequence {µn}n≥1. Then

µ is a T−invariant normalized measure.

Proof. We follow the proof of original Krylov-Bogoliubov theorem. We use k = 2. We have the

random maps

Tn =
{
τ

1(n)
, τ

2(n)
; p1 , p2

}
, n = 1, 2, ....

Which converge uniformly to the continuous random map

T = {τ1 , τ2 ; p1 , p2} ,

with constant probabilities p1 , p2 .

For B ∈ B, we have

µn(B) =
1

n

(
ν(B) + (T̂ 1

0 )∗ν(B) + ...+ (T̂n−1
0 )∗ν(B)

)
=

1

n
(ν(B) + (T1 ◦ T0)∗ν(B) + ...+ (Tn−1 ◦ ... ◦ T1 ◦ T0)∗ν(B))

=
1

n
(ν(B) +

2∑
j1=1,j2=1

pj1pj2ν(τ−1
j1(0)
◦ τ−1

j2(1)
(B)) + ...

+

2∑
j1=1,j2=1,j3=1,...,jn−1=1

pj1pj2pj3 ...pjn−1
ν(τ−1

j1(0)
◦ τ−1

j2(1)
◦ τ−1

j3(2)
◦ ... ◦ τ−1

jn(n−1)
(B))

By assumption, µ is a ∗-weak limit point of the sequence {µn}n≥1, some subsequence µnj

converges, as j −→ ∞, to a measure µ. We shall show that µ is T - invariant, and for that it is
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enough to show that for any function g ∈ C(X), µ(g) = µ(g ◦ T ).

We have,

|µ(g)− µ(g ◦ T )| = lim
∣∣µnj (g)− µnj (g ◦ T )

∣∣
= lim

∣∣∣∣∣∣ 1

nj

nj−1∑
i=0

(
(T̂ i0)∗ν

)
(g)− 1

nj

nj−1∑
i=0

(
(T̂ i0)∗ν

)
(g ◦ T )

∣∣∣∣∣∣
= lim

1

nj

∣∣∣(ν(g ◦ T̂ 1
0 ) + ...+ ν(g ◦ T̂nj−1

0 )
)
−
(
ν(g ◦ T ◦ T̂ 1

0 ) + ...+ ν(g ◦ T ◦ T̂nj−1
0 )

)∣∣∣
= lim

1

nj

∣∣∣∣∣∣
ν(g ◦ T̂ 1

0 ) +

nj−1∑
i=1

(
ν(g ◦ T̂ i0)− ν(g ◦ T ◦ T̂ i−1

0 )
)
− ν(g ◦ T ◦ T̂nj−1

0 )

∣∣∣∣∣∣
= lim

1

nj

∣∣∣∣∣∣
ν(g ◦ T̂ 1

0 ) +

nj−1∑
i=1

(
ν(g ◦ Ti ◦ T̂ i−1

0 )− ν(g ◦ T ◦ T̂ i−1
0 )

)
− ν(g ◦ T ◦ T̂nj−1

0 )

∣∣∣∣∣∣
= lim

1

nj

∣∣∣∣∣∣
ν(g ◦ T̂ 1

0 ) +

nj−1∑
i=1

(
ν
(

(g ◦ Ti − g ◦ T )(T̂ i−1
0 )

))
− ν(g ◦ T ◦ T̂nj−1

0 )

∣∣∣∣∣∣ .
We have,

ν
(

(g ◦ Ti − g ◦ T )(T̂ i−1
0 )

)
≤ sup |g ◦ Ti − g ◦ T | ≤ ωg (sup |Ti − T |)

≤ ωg
2∑
j=1

pj sup |τ
j(i)
− τj |,

where ωg is the modulus of continuity of g,

ωg = sup
ρ(x,y)<δ

|g(x)− g(y)|.

By assumption, τ
i(n)
→ τi uniformly so we can find N > 1, such that for an arbitrary ε > 0 there

exist δ > 0 when ωg(δ) < ε and sup ρ(τ
j(i)
− τj ) < δ for all i > N .

Therefore, for nj > N , we have

|µ(g)− µ(g ◦ T )| ≤ lim
1

nj
((2N + 2) · sup |g|+ (nj −N)ε).

Thus, µ is T−invariant, as claimed.
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4.3 Existence of an absolutely continuous invariant measure for the

limit map.

The next definition is for Frobenius-Perron operator with respect to T .

Definition 4.3.1. Let T = {τ1 , τ2 , ..., τk ; p1 , p2 , ..., pk} be a random map constructed from nonsin-

gular transformations {τi}
k
i=1 on I . For all f ∈ L1(I)

PT f =
k∑
i=1

pi · Pτif, (4.3.2)

where Frobenius-Perron operator Pτ can be expressed by

Pτf(x) =
∑

w∈τ−1(x)

f(w)

|τ ′(w)|
. (4.3.3)

In case τ = τn ◦ τn−1 ◦ · · · ◦ τ2 ◦ τ1 the Frobenius-Perron operator Pτ can be expressed by

Pτf(x) =
∑

w∈τ−1(x)

f(w)

|Dτ (w)|
, (4.3.4)

where Dτ is the first derivative of the composite function τ .

Theorem 4.3.5. [50] Let T = {τ1 , τ2 , ..., τk ; p1 , p2 , ..., pk} be a random map andPT be its Frobenius-

Perron operator. For every density f∗, PT f∗ = f∗ , a.e., if and only if µ = f∗λ is T−invariant.

We going to prove the following theorems.

Theorem 4.3.6. Let Tn and T be as defined as in Section 4.1 and let Tn → T uniformly, fn is the

invariant density associated with Tn and fn → f weakly in L1. Then PT f = f .

Proof. To prove that PT f = f , it is sufficient to prove that for any continuous function g on X ,

|
∫
g(f − PT f)dλ| = 0.
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We have

|
∫
g(f − PT f)dλ| ≤ |

∫
g(f − fn)dλ|+ |

∫
g(fn − PTnfn)dλ|

+ |
∫
g(PTnfn − PT fn)dλ|+ |

∫
g(PT fn − PT f)dλ|

(4.3.7)

Since fn → f weakly in L1 the first summand tends to 0. The second is equal to 0 since PTnfn =

fn.

Let us set

I1 = |
∫
g(PTnfn − PT fn)dλ|

I2 = |
∫
g(PT fn − PT f)dλ|

We have,

I1 = |
∫

(g ◦ Tn − g ◦ T )fndλ|

= |
∫

(
∑
i

pi(g ◦ τi(n)
)−

∑
i

pi(g ◦ τi))fndλ|

≤
∑
i

(pi sup |g ◦ τ
i(n)
− g ◦ τi |)

∫
|fn|dλ

≤
∑
i

(
piωg

(
sup |τ

i(n)
− τi |

))∫
|fn|dλ→ 0,

(4.3.8)

we reached this through the assumption, for every i, τ
i(n)
→ τi uniformly,

∫
|fn|dλ are uni-

formly bounded and ωg is the modulus of continuity of g.

I2 ≤
∫

(g ◦ T )|fn − f |dλ→ 0 (4.3.9)

Since fn → f weakly and g ◦ T is bounded. Hence, PT f = f.

4.4 Properties of the Frobenius-Perron operator with respect to T̂ n
0 .

The Frobenius-Perron operator P
T̂n0

for the nonautonomous random map T̂n0 is coming from

random maps composition property, and it is given by
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P
T̂n0
f = PTn◦Tn−1◦...◦T1◦T0f = PTn ◦ PTn−1 ◦ ... ◦ PT1 ◦ PT0f, (4.4.1)

where PTk is the Frobenius-Perron operator of the random map Tk, k ∈ {0, 1, 2, ..., n}.

The properties of P
T̂n0

resemble the properties of the classical Frobenius-Perron operator of a

single transformation see [11].

Proposition 4.4.2. Let α, β be constant. Then if f, g ∈ L1([0, 1]). P
T̂n0

: L1([0, 1]) → L1([0, 1]),

P
T̂n0

has the following properties:

(1) (Linearity) P
T̂n0

(αf + βg) = αP
T̂n0
f + βP

T̂n0
g.

(2) (Positivity) If f > 0 then P
T̂n0
f > 0.

(3) (Preservation of Integrals)
∫

[0,1] PT̂n0
fdλ =

∫
[0,1] fdλ.

(4) (Contraction property) ‖P
T̂n0
f‖1 ≤ ‖f‖1.

(5) (Composition property) If T̂n0 , R̂
n
0 : L1([0, 1]) → L1([0, 1]) are two nonautonomous random

maps, then P
T̂n0 ◦R̂n0

f = P
T̂n0
◦ P

R̂n0
f . In particular, for any m ≥ 1, P

(T̂n0 )m
f = Pm

T̂n0
f , where

Pm
T̂n0
f = P

T̂n0
◦ P

T̂n0
◦ ... ◦ P

T̂n0
, m times. (4.4.3)

Proof. It is enough to prove this properties for T̂nn−1 = Tn◦Tn−1, where Tn =
{
τ

1(n)
, τ

2(n)
; p1 , p2

}
.

Using the properties of the Frobenius-Perron operator with respect to τ and T .

(1) (Linearity) Let F = αf + βg. Then,

P
T̂nn−1

(F ) = PTn◦Tn−1(F ) = PTn ◦ PTn−1(F )

= p1Pτ1(n)

(
PTn−1(F )

)
+ p2Pτ2(n)

(
PTn−1(F )

)
= p2

1
Pτ

1(n)
◦ Pτ

1(n−1)
(F ) + p1p2Pτ1(n)

◦ Pτ
2(n−1)

(F )

+ p1p2Pτ2(n)
◦ Pτ

1(n−1)
(F ) + p2

2
Pτ

2(n)
◦ Pτ

2(n−1)
(F ).
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Then by using the linearity of Pτ two times, we have

P
T̂nn−1

(αf + βg) = αp2
1
Pτ

1(n)
◦ Pτ

1(n−1)
(f) + βp2

1
Pτ

1(n)
◦ Pτ

1(n−1)
(g)

+ αp1p2Pτ1(n)
◦ Pτ

2(n−1)
(f) + βp1p2Pτ1(n)

◦ Pτ
2(n−1)

(g)

+ αp1p2Pτ2(n)
◦ Pτ

1(n−1)
(f) + βp1p2Pτ2(n)

◦ Pτ
1(n−1)

(g)

+ αp2
2
Pτ

2(n)
◦ Pτ

2(n−1)
(f) + βp2

2
Pτ

2(n)
◦ Pτ

2(n−1)
(g)

= αP
T̂nn−1

f + βP
T̂nn−1

g.

(2) (Positivity) Let f > 0 by using the positivity of Pτ two times, then we have

P
T̂nn−1

(f) = p2
1
Pτ

1(n)
◦ Pτ

1(n−1)
(f) + p1p2Pτ1(n)

◦ Pτ
2(n−1)

(f)

+ p1p2Pτ2(n)
◦ Pτ

1(n−1)
(f) + p2

2
Pτ

2(n)
◦ Pτ

2(n−1)
(f)

> 0.

(3) (Preservation of Integrals) By using the preservation of integrals of Pτ two times, then we

have ∫
[0,1]

P
T̂nn−1

fdλ =

∫
[0,1]

p2
1
Pτ

1(n)
◦τ

1(n−1)
(f) + p1p2Pτ1(n)

◦τ
2(n−1)

(f)

+ p1p2Pτ2(n)
◦τ

1(n−1)
(f) + p2

2
Pτ

2(n)
◦τ

2(n−1)
(f)dλ

=

∫
τ−1
1(n−1)

([0,1])
p2

1
Pτ

1(n)
(f)dλ+

∫
τ−1
2(n−1)

([0,1])
p1p2Pτ1(n)

(f)dλ

+

∫
τ−1
1(n−1)

([0,1])
p1p2Pτ2(n)

(f)dλ+

∫
τ−1
2(n−1)

([0,1])
p2

2
Pτ

2(n)
(f)dλ

=

∫
[0,1]

p2
1
Pτ

1(n)
(f)dλ+

∫
[0,1]

p1p2Pτ1(n)
(f)dλ

+

∫
[0,1]

p1p2Pτ2(n)
(f)dλ+

∫
[0,1]

p2
2
Pτ

2(n)
(f)dλ

= p2
1

∫
τ−1
1(n)

([0,1])
fdλ+ p1p2

∫
τ−1
1(n)

([0,1])
fdλ

+ p1p2

∫
τ−1
2(n)

([0,1])
fdλ+ p2

2

∫
τ−1
2(n)

([0,1])
fdλ

= (p1 + p2)2
∫

[0,1]
fdλ =

∫
[0,1]

fdλ
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(4) (Contraction property) Let f ∈ L1([0, 1]). Let f+ = max(f, 0) and f− = max(−f, 0).

Then f+, f− ∈ L1([0, 1]), f = f+ − f− and |f | = f+ + f−. By the linearity of P
T̂nn−1

we

have

P
T̂nn−1

f = P
T̂nn−1

(f+ − f−) = P
T̂nn−1

f+ − P
T̂nn−1

f−

and

‖P
T̂nn−1

f‖1 =

∫
[0,1]

∣∣∣PT̂nn−1
f
∣∣∣ dλ ≤ ∫

[0,1]
P
T̂nn−1
|f | dλ =

∫
[0,1]
|f | dλ = ‖f‖1.

(5) (Composition property) Let T̂nn−1, R̂
n
n−1 : L1([0, 1]) → L1([0, 1]) are two nonautonomous

random maps, then by using the composition property of PT two times we have

P
T̂nn−1◦R̂nn−1

f = PTn◦Tn−1◦Rn◦Rn−1f = PTn ◦ PTn−1 ◦ PRn ◦ PRn−1f = P
T̂nn−1

◦ P
R̂nn−1

f.

4.5 Existence of an absolutely continuous invariant measure for the

nonautonomous random maps on [a, b].

In this section we present results on the existence of an absolutely continuous invariant measure

for the nonautonomous random maps on [a, b] using the theory of functions of bounded variation.

The original result for maps is due to Lasota and Yorke 1973 [36], Since then, the bounded variation

proof has been generalized in a number of directions [29, 4, 27, 23].

Let I = [a, b] and (I,B, λ) be a measure space, where λ is normalized Lebesgue measure on I .

Let T̂n0 be as defined as in Section 4.1. T̂n0 is a nonautonomous random maps for the random maps

Tn =
{
τ

1(n)
, τ

2(n)
, ..., τ

k(n)
; p1 , p2 , ..., pk

}
,

where τ
1(n)

, τ
2(n)

, ..., τ
k(n)

are k sequences of a transformations of I into I . For all n they are

piecewise one-to-one and differentiable, nonsingular transformations on a partition P of I , P =
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{I1, I2, ..., Im}. Denote by V (·) the standard one dimensional variation of a function, and byBV (I)

the space of functions of bounded variations on I equipped with the norm ‖ · ‖BV = V (·) + ‖ · ‖1.

The following theorems come from [11].

Theorem 4.5.1. Let f and g be of bounded variation on I = [a, b]. Then so are their sum, difference

and product. Also, we have

VI(f ± g) ≤ VIf + VIg,

VI(f · g) ≤ AVIf +BVIg,

where A = sup{|g(x)| : x ∈ I}, B = sup{|f(x)| : x ∈ I}.

Theorem 4.5.2. Let f : [a, b] −→ R have a continuous derivative f ′ on [a, b]. Then

V[a,b]f =

∫ b

a
|f ′(x)|dλ (4.5.3)

Theorem 4.5.4. Let A,B ⊂ I and λ(A ∩B) = 0. If f ∈ BV (A ∪B), then,

VA∪B(f) ≥ VA(f |A) + VB(f |B).

Theorem 4.5.5. (Yorke’s Inequality) Let f : I −→ R be of bounded variation. Let A ⊂ I and let

χA be the characteristic function of the interval A. Assume l = l(A) > 0. Then fχA is of bounded

variation and

VI(fχA) ≤ 2VA(f |A) +
2

l

∫
A
|f |dλ (4.5.6)

Theorem 4.5.7. (Helly’s First Theorem) Let an infinite family of functions F = {f} be defined on

all interval [a, b]. If all functions of the family and the total variation of all functions of the family

are bounded by a single number, i.e.,

|f(x)| ≤ K,V[a,b]f ≤ K, for all f ∈ F,

then there exists a sequence {fn} ⊂ F that converges at every point of [a, b] to some function f∗ of

bounded variation, and V[a,b]f
∗ ≤ K.
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Let gi(n)(x) =
pi
|τ ′
i(n)
| , i = 1, ..., k. We assume the following conditions for all n

C1 (Average expanding condition)
∑

i gi(n)(x) < α < 1, x ∈ I .

C2 gi(n) ∈ BV ([0, 1]), i = 1, 2, ..., k.

We going to prove the following theorem.

Theorem 4.5.8. Let f ∈ L1(I) and τi : I −→ I be a piecewise C2 transformations on a partition

P of I . Suppose Ii ∈ P . For m ≥ 1 let us define

T = τm ◦ τm−1 ◦ · · · ◦ τ2 ◦ τ1 , (4.5.9)

Ti = T |Ii andDT (x) = τ ′
m

(τm−1◦· · ·◦τ1)·τ ′
m−1

(τm−2◦· · ·◦τ1)·...·τ ′
2
(τ1)·τ ′

1
(x). If f |Ii ∈ BV (Ii).

Then

VTi(Ii)

((
f · |D−1

Ti
|
)
◦ T−1

i (x)
)
≤ Γ · VIi (f |Ii) + Λ

∫
Ii

|f |dλ, (4.5.10)

where Γ = sup(D−1
Ti

) and Λ =
max |(D−1

Ti
)′|

min |(D−1
Ti

)|
.

Proof. We have

VTi (Ii)

(
f · |D−1

Ti
| ◦ T−1

i

)
=

∫
Ti (Ii)

|d
(
f · |D−1

Ti
| ◦ T−1

i

)
|, by Theorem 4.5.2,

=

∫
Ii

|d
(
f · |D−1

Ti
|
)
|, using the standard change of variables,

≤
∫
Ii

|f ′ · |D−1
Ti
||dλ+

∫
Ii

|f · |D−1
Ti
|′|dλ

≤ Γ · VIi (f |Ii) + Λ

∫
Ii

|f |dλ

(4.5.11)

where Γ = sup(D−1
Ti

) and Λ =
max |(D−1

Ti
)′|

min |(D−1
Ti

)|
.

In [42], Pelikan proved a form of the Lasota-Yorke inequality for Random maps.

Lemma 4.5.12. Let T = {τ1 , τ2 , ..., τk ; p1 , p2 , ..., pk} be a random map, where τi are piecewise

monotonic transformations that satisfy the C1 and C2 conditions, then, for any f ∈ BV (I),

VI (PT (f(x))) ≤ AVI (f) +B‖f‖1, (4.5.13)
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where

A = 3

(
max
k

m∑
i=1

pi
inf |τ ′i(x)|

)
,

and

B =
∑
i,k

sup |σj′i |
inf σji

+ supσji ,

with σji = | ddxψ
j
i |, ψ

j
i =

(
τi|Ij

)−1.

Theorem 4.5.14. Let Tn be a sequence of random maps as defined as in Section 4.1, for the random

map which is constructed from piecewise C2 transformations that satisfying the Condition 4.5.13,

with common constants 0 < A < 1 and B < ∞. Then, for any density f ∈ BV (I), the sequence

fn =
1

n

∑n
i=1 PT̂ i1

f forms a pre-compact set in L1 and any convergent subsequence converges to a

density of an acim of the limit map T .

Lemma 4.5.15. Under the assumptions of Lemma 4.5.12, for any density f ∈ BV (I)

VI

(
P
T̂n1

(f)
)
≤ AnVI (f) +

B

1−A
, (4.5.16)

where 0 < A < 1, and B > 0.

Proof. The Frobenius–Perron operator P
T̂n1

preserves the integral of positive functions and since f

is a density function, we have
∫
|P
T̂n1
f |dλ = ‖f‖1 = 1 for all n ≥ 1. Since P

T̂n1
f = PTn ◦PTn−1 ◦

... ◦ PT1f , by applying the Lasota-Yorke inequality for Random maps 4.5.13, we have

VI

(
P
T̂n1

(f)
)
≤ AnVI (f) +B

n∑
i=1

Ai−1 ≤ AnVI (f) +
B

1−A
, n ≥ 1.

Lemma 4.5.17. Let Tn and T be as defined as in Section 4.1 and let Tn → T uniformly. Under the

assumptions of Theorem 4.5.14, for any density function f , PTnf → PT f weakly in L1, as n→∞.

Proof. We will prove that for any density function f , PTnf → PT f weakly in L1, as n → ∞. Let

g ∈ L∞(I, λ) be an arbitrary bounded function, fix an ε > 0 . By Lusin’s 2.3.19 for any δ > 0

there exists an open set U ⊂ I , λ(U) < δ, and a continuous function G ∈ C0(I) such that g = G
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on I \ U and sup |G| ≤ ‖g‖∞ . The Frobenius–Perron operator is a conjugate of the Koopman

operator, that is for any f ∈ L1 and any g ∈ L∞, we have
∫
I Pτfgdλ =

∫
I fg ◦ τdλ. Therefore,

we can write

|
∫
I

(PTnfg − PT fg) dλ| = |
∫
I

(
k∑
i=1

pi · Pτi(n)
fg −

k∑
i=1

pi · Pτifg

)
dλ|

≤
k∑
i=1

pi |
∫
I

(
Pτ

i(n)
f · g − Pτif · g

)
dλ|

≤
k∑
i=1

pi

∫
I
f |g ◦ τ

i(n)
− g ◦ τi |dλ

=

k∑
i=1

pi

∫
I
f |g ◦ τ

i(n)
−G ◦ τ

i(n)
+G ◦ τ

i(n)
−G ◦ τi +G ◦ τi − g ◦ τi |dλ

≤
k∑
i=1

pi(

∫
I
f |g ◦ τ

i(n)
−G ◦ τ

i(n)
|dλ+

∫
I
f |G ◦ τ

i(n)
−G ◦ τi |dλ

+

∫
I
f |G ◦ τi − g ◦ τi |dλ)

Let sup |G| ≤ ‖g‖∞ = Mg. Let If (t) = supA:λ(A)<t

∫
A |f |dλ. It is known that If (t) → 0 as

t→ 0. Let ωG be the modulus of continuity of G i.e. ωG(t) = sup|x−y|≤t |G(x)−G(y)|. We have,

ωG(t) → 0 as t → 0. By Lemma (5) in [23] there exists a constant K such that for any interval J

we have λ(τ−1
i

(J)) ≤ Kλ(J). Then we have

|
∫
I

(PTnfg − PT fg) dλ| ≤ 2MgIf (Kδ) + ωG(sup |τ
i(n)
− τi |) + 2MgIf (Kδ)

= ωG(sup ‖τ
i(n)
− τi‖∞) + 4MgIf (Kδ)

(4.5.18)

Let us fix an ε > 0. Since ‖τ
i(n)
− τi‖∞ → 0, as n → 0 we can find N ≥ 1 such that for all

n ≥ N we have ωG(sup ‖τ
i(n)
− τi‖∞) < ε. We can also find an δ > 0 that 4MgIf (Kδ) < ε.

The proof of Theorem 4.5.14 follows the ideas of the proof of Theorem 4 in [23].

Proof of Theorem 4.5.14. By the assumption, let f be a density function, f ∈ BV (I). Let fn =
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1

n

∑n
i=1 PT̂ i1

f . Using the Equation 4.5.16, P
T̂ i1
f and fn , i, n ≥ 1 have uniformly bounded varia-

tion. Hence, for a bounded variation density f , these functions are uniformly bounded and Helly’s

Theorem 4.5.7 implies the existence of a subsequence {fnk}k≥1 convergent almost everywhere

to a function f∗ of bounded variation. Thus, by the Lebesgue dominated convergence theorem,∫
I f
∗dλ = 1. Therefore, by Scheffé’s Theorem 2.3.17, fnk → f∗ in the L1-norm. Thus, the

sequence fn =
1

n

∑n
i=1 PT̂ i1

f forms a pre-compact set in L1.

By Lemma 4.5.17, for any density function F , PTnF → PTF weakly in L1, as n → ∞. Now,

let {fnk}k≥1 be a subsequence of {fn}n≥1 convergent in L1 to f∗. We will show that f∗ is the

density of an acim of T . We have

PT f
∗ = PT

(
lim

nk→∞
fnk

)
= lim

nk→∞
PT fnk

We will show that PT fnk−fnk converges weakly in L1 to 0. Let φi = P
T̂ i1
f , i = 1, 2, .... Moreover,

φi+1 = PTi+1φi. Then, fn = 1
n(φ1 + φ2 + ...+ φn−1 + φn), . We have

PT fnk − fnk =
1

nk
(PTφ1 + PTφ2 + + PTφn−1 + PTφnk)− 1

nk
(φ1 + φ2 + + φn−1 + φnk)

=
1

nk
(PTφnk − φ1) +

1

nk

nk−1∑
i=1

(PTφi − φi+1)

=
1

nk
(PTφnk − φ1) +

1

nk

nk−1∑
i=1

(PTφi − PTi+1φi)

Let N and δ be chosen as in Lemma 4.5.17 . Let nk ≥ N + 2. Then, using estimate 4.5.18, we have

|
∫
I
(PT fnk − fnk)gdλ| ≤ 1

nk

∫
I
|(PTφnk − φ1)g|dλ

+
1

nk

N∑
i=1

∫
I
|(PTφi − PTi+1φi)g|dλ+

1

nk

nk−1∑
i=N+1

∫
I
|(PTφi − PTi+1φi)g|dλ

≤ 2

nk
Mg +

2

nk
NMg +

nk − 1−N
nk

(2ε).

The right hand side becomes smaller than (2ε) as nk →∞. Since ε > 0 is arbitrary this proves that

PT fnk − fnk converges weakly in L1 to 0 and PT f∗ = f∗.
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Chapter 5

On the absolutely continuous invariant

measures for the random maps:

We study the dynamics of a new family of transformations. We find a general formula for

the invariant density of any transformation in our family. The properties of the family allow us to

prove that the invariant density function f of random map constructed from our family maps T =

{τ1 , τ2 , ..., τn ; p1 , p2 , ..., pn} is the combination f = p1f1 + p2f2 + ...+ pnfn , where f1 , f2 , ..., fn

are the invariant density functions of τ1 , τ2 , ..., τn , respectively. We also consider another family of

transformations, and prove that the invariant density for any transformation of the family is f = 1.

We present an application example to find the density function of the random maps by conjugations.

5.1 Introduction

A dynamical system, a space X with a mapping τ : X → X or a family of mappings T ,

may have a large number of invariant measures. There are invariant measures that are absolutely

continuous with respect to some canonical measure on X . When X is an interval those which are

playing the most important role are measures absolutely continuous with respect to the Lebesgue

measure. The importance of absolutely continuous invariant measures (acim) is due to a heuristic

belief that canonical measures are the ones that represent physical objects. Regarding previous

studies of the absolutely continuous invariant measures, there are many examples of transformations
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on an interval and the absolutely continuous measures invariant under those transformations. Rényi

(1957) [44] was the first one to define a class of transformations that have an acim. He introduced

a family of one-dimensional maps τβ(x) = βx(mod1), β ∈ (1,∞), x ∈ [0, 1), where β > 1 is

not necessarily an integer. Lyubich (2002) [38] proved that almost any real quadratic map τc : x→

x2 + c, c ∈ [−2, 1/4], has either an attracting cycle or an acim. The literature on the existence and

the properties of acim is very rich, see for example references in [20, 36, 11, 28].

In this chapter we will consider some families of piecewise linear maps. Let I be the interval

[0, 1]. Let P = {I1 , ..., IN } where I =
⋃
Ii and I

o

i
∩ Io

j
= ∅, i 6= j, N ≥ 2 and Ii = [xi−1 , xi ].

We assume that N is even and xN
2

= 1
2 . There is no condition for the intervals to be of the same

length. Let τ be a transformation of I onto itself, and τi = τ|Ii for each i = 1, 2, ..., N . We assume

the following conditions:

C1. τ(x) is a piecewise linear map, and for every Ii ⊂
[
0, 1

2

]
there exist Ij ⊂

[
1
2 , 1
]

such that they

have the same image and the same slope of the line, i.e., τ(Ii) = τ(Ij ) with |τ ′
i
(x)| = |τ ′

j
(y)|,

x ∈ Ii , y ∈ Ij . The Ij corresponding to different Ii’s are different.

C2. τ(xi) ∈
{

0, 1
2 , 1
}

where xi , i = 1, ..., N are the partition points, τ(Ii) ∈
{

[0, 1], [0, 1
2 ], [1

2 , 1]
}

and τ(I) = [0, 1].

These conditions define the family of simple maps from the unit interval to itself. Let T be the

family of all transformations that are satisfying the above conditions. The graphs in Figure 7.1

show some examples.

Maps of our class T find application in modelling and designing true random number generators

(TRNG) with decreased voltage supply sensitivity in electronics [19].

In Section 5.2,we present the notation and summarize the results that we will need in the sequel.

In Section 5.3, we study properties of T and give some examples. The main result is proved in

Section 5.4. More results about the random map T with constant probabilities are in Section 5.5. In

Section 5.6, we present examples of transformations and study the density functions of these trans-

formations by the conjugations. In Section 5.7, we define another new family of transformations

and we prove its properties.
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Figure 5.1: Examples of a transformations satisfying C1 and C2.
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5.2 Some properties of T and the main result with motivating exam-

ples.

Let us consider the random map with constant probabilities T = {τ1 , τ2 ; p1 , p2}, where τi :

[0, 1] −→ [0, 1]; k = 1, 2 are piecewise expanding maps. If τ1 preserves a density f1 and τ2 pre-

serves a density f2 , then consider the combination f = p1f1 + p2f2 . We can ask if our random map

T preserves the density f? In general, the answer is no. We have

PT f = PT (p1f1 + p2f2)

= p1PT f1 + p2PT f2

= p1

[
p1Pτ1f1 + p2Pτ2f1

]
+ p2

[
p1Pτ1f2 + p2Pτ2f2

]
= p2

1
f1 + p1p2

[
Pτ1f2 + Pτ2f1

]
+ p2

2
f2 .

in general different from f .

Example 5.2.1. Let T =
{
τ, ω; 1

2 ,
1
2

}
and

τ(x) =


4x, for 0 ≤ x < 1

4

3
2 − 2x, for 1

4 ≤ x <
3
4

2x− 3
2 , for 3

4 ≤ x < 1

, ω(x) =



1− 4x, for 0 ≤ x < 1
4

2x− 1
2 , for 1

4 ≤ x <
1
2

3
2 − 2x, for 1

2 ≤ x <
3
4

4x− 3, for 3
4 ≤ x < 1

.

The invariant densities for τ and ω are fτ (x) = 8
7χ[0, 12 ]

(x) + 6
7χ[ 1

2 ,1]
(x), fω(x) = 3

2χ[0, 12 ]
(x) +

1
2χ[ 1

2 ,1]
(x), respectively. Thus, the combination of the invariant density functions of τ and ω is

f = 37
28χ[0, 12 ]

(x)+ 19
28χ[ 1

2 ,1]
(x) and PT f = 281

224χ[0, 12 ]
(x)+ 167

224χ[ 1
2 ,1]

(x). Therefore, f is not the fixed

point for PT .

For transformations of family T this property holds. The following proposition presents some

properties of T .

Proposition 5.2.2. Any τ ∈ T has the following properties:

(1.) τ is a piecewise monotonic expanding map.
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(2.) The unique invariant density function of τ is piecewise constant on
[
0, 1

2

]
and

[
1
2 , 1
]
, i.e.,

f(x) = (c)χ
[0, 12 ]

(x) + (2− c)χ
[ 1
2 ,1]

(x). The invariant density of τ can be also expressed as

f(x) =
n∑
i=1

1

|τ ′
i
(τ−1
i

(x))|
χ
τi ([xi−1 ,xi ])

(x).

(3.) Let f1 , f2 , ..., fn be the invariant densities of τ1 , τ2 , ..., τn respectively, τi ∈ T , i = 1, 2, ..., n.

Then, for each j,

Pτj fi(x) = fj (x),

for any i = 1, 2, ..., n. Moreover, the invariant density function of the random map T =

{τ1 , τ2 , ..., τn ; p1 , p2 , ..., pn} is f = p1f1 + p2f2 + ...+ pnfn .

We will prove the Proposition 5.2.2 in the next section. The following examples illustrate prop-

erties described in Proposition 5.2.2.

Example 5.2.3. Let I = [0, 1] , consider the transformations:

Figure 5.2: τ1 and τ2 , for example 5.2.3.
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τ1(x) =



5x, for 0 ≤ x < 1
10

5
4x+ 3

8 , for 1
10 ≤ x <

1
2

13
8 −

5
4x, for 1

2 ≤ x <
9
10

5− 5x, for 9
10 ≤ x < 1

, τ2(x) =



5
2x, for 0 ≤ x < 2

10

5
3x+ 1

6 , for 2
10 ≤ x <

1
2

11
6 −

5
3x, for 1

2 ≤ x <
8
10

5
2 −

5
2x, for 8

10 ≤ x < 1

.

The invariant densities for τ1 and τ2 are f1(x) = 2
5χ[0, 12 ]

(x)+8
5χ[ 1

2 ,1]
(x) and f2(x) = 4

5χ[0, 12 ]
(x)+

6
5χ[ 1

2 ,1]
(x) respectively. Consider the random map T1 = {τ1 , τ2 ; p1 , p2} , where p1 , p2 > 0 and

p1 + p2 = 1. Let f = p1f1 + p2f2 . Then, we have

f =

[
p1

(
2

5

)
+ p2

(
4

5

)]
χ

[0, 12 ]
(x) +

[
p1

(
8

5

)
+ p2

(
6

5

)]
χ

[ 1
2 ,1]

(x).

We want to prove that T1 preserves the density f . We need to find the Frobenius-Perron operator:

PT1
f(x) =

2∑
k=1

pk (Pτk(f)) (x) =
2∑

k=1

pk

2∑
i=1

f(τ−1
k,i (x))

|τ ′(τ−1
k,i (x))|

χ
τ(xi−1,xi)

(x)

= p1

1

5

[
p1

(
2

5

)
+ p2

(
4

5

)]
χ

[0, 12 ]
+ p1

4

5

[
p1

(
2

5

)
+ p2

(
4

5

)]
χ

[ 1
2 ,1]

+ p1

4

5

[
p1

(
8

5

)
+ p2

(
6

5

)]
χ

[ 1
2 ,1]

+ p1

1

5

[
p1

(
8

5

)
+ p2

(
6

5

)]
χ

[0, 12 ]

+ p2

2

5

[
p1

(
2

5

)
+ p2

(
4

5

)]
χ

[0, 12 ]
+ p2

3

5

[
p1

(
2

5

)
+ p2

(
4

5

)]
χ

[ 1
2 ,1]

+ p2

3

5

[
p1

(
8

5

)
+ p2

(
6

5

)]
χ

[ 1
2 ,1]

+ p2

2

5

[
p1

(
8

5

)
+ p2

(
6

5

)]
χ

[0, 12 ]

= [p2
1

(
2

25

)
+ p1p2

(
4

25

)
+ p2

1

(
8

25

)
+ p1p2

(
6

25

)
+ p1p2

(
4

25

)
+ p2

2

(
8

25

)
+ p1p2

(
16

25

)
+ p2

2

(
12

25

)
]χ

[0, 12 ]
+ [p2

1

(
8

25

)
+ p1p2

(
16

25

)
+ p2

1

(
32

25

)
+ p1p2

(
24

25

)
+ p1p2

(
6

25

)
+ p2

2

(
12

25

)
+ p1p2

(
24

25

)
+ p2

2

(
18

25

)
]χ

[ 1
2 ,1]
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PT1
f(x) =

[
p2

1

(
10

25

)
+ p1p2

(
10

25
+

20

25

)
+ p2

2

(
20

25

)]
χ

[0, 12 ]

+

[
p2

1

(
40

25

)
+ p1p2

(
40

25
+

30

25

)
+ p2

2

(
30

25

)]
χ

[ 1
2 ,1]

=

[
p1

(
10

25

)
(p1 + p2) + p2

(
20

25

)
(p1 + p2)

]
χ

[0, 12 ]

+

[
p1

(
40

25

)
(p1 + p2) + p2

(
30

25

)
(p1 + p2)

]
χ

[ 1
2 ,1]

=

[
p1

(
2

5

)
+ p2

(
4

5

)]
χ

[0, 12 ]
(x) +

[
p1

(
8

5

)
+ p2

(
6

5

)]
χ

[ 1
2 ,1]

(x).

The proof is complete.

The following example of seven different piecewise linear transformations from family T il-

lustrates property (3.) in Proposition 5.2.2.

Example 5.2.4. Consider the following seven transformations defined on different partitions of the

interval [0, 1]. The first map:

τ1(x) =



1
2α1

x, for 0 ≤ x < α1

1
2(α2−α1)(x− α1) + 1

2 , for α1 ≤ x < α2

1
2(α2− 1

2
)
(x− α2) + 1, for α2 ≤ x < 1

2

−1
2(α2− 1

2
)
(x− 1

2) + 1
2 , for 1

2 ≤ x < α4

−1
2(α2−α1)(x− α4) + 1, for α4 ≤ x < α5

−1
2α1

(x− α5) + 1
2 , for α5 ≤ x < 1

Where α0 = 0 < α1 < α2 < α3 = 1
2 < α4 < α5 < α6 = 1, α4 = 1 − α2 and α5 = 1 − α1.

The invariant density of τ1(x) is f1(x) = (4α1)χ
[0, 12 ]

(x) + (2− 4α1)χ
[ 1

2 ,1]
(x).

The second map:
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Figure 5.3: τ1 with α1 = 1
8 and α2 = 1

3 .

τ2(x) =



−1
2β1

x+ 1
2 , for 0 ≤ x < β1

1
1
2
−β1

(x− β1), for β1 ≤ x < 1
2

−1
1
2
−β1

(x− 1
2) + 1, for 1

2 ≤ x < β3

1
2β1

(x− 1) + 1
2 , for β3 ≤ x < 1

Where β0 = 0 < β1 < β2 = 1
2 < β3 < β4 = 1 and β3 = 1 − β1. The invariant density of

τ2(x) is f2(x) = (2β1 + 1)χ
[0, 12 ]

(x) + (1− 2β1)χ
[ 1

2 ,1]
(x).

Figure 5.4: τ2 with β1 = 1
5 .

First we show that Pτ1f2 = f1 :
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Pτ1f2(x) =

6∑
i=1

f2(τ−1
1,i

(x))

|τ ′
1
(τ−1

1,i
(x))|

χ
τ1 ([xi−1,xi])

(x)

= (2β1 + 1) (2α1)χ
[0, 12 ]

+ (2β1 + 1) (2α2 − 2α1)χ
[ 1

2 ,1]
+ (2β1 + 1) (1− 2α2)χ

[ 1
2 ,1]

+ (1− 2β1) (1− 2α2)χ
[ 1

2 ,1]
+ (1− 2β1) (2α2 − 2α1)χ

[ 1
2 ,1]

+ (1− 2β1) (2α1)χ
[0, 12 ]

= (4α1β1 + 2α1 + 2α1 − 4α1β1)χ
[0, 12 ]

+ (4α2β1 − 4α1β1 + 2α2 − 2α1 − 4α2β1 + 2β1 − 2α2 + 1

− 2α2 + 1 + 4α2β1 − 2β2 + 2α2 − 2α1 − 4α2β1 + 4α1β1)χ
[ 1

2 ,1]

= (4α1)χ
[0, 12 ]

+ (2− 4α1)χ
[ 1

2 ,1]

= f1(x)

Now, Pτ2f1 = f2 :

Pτ2f1(x) =
4∑
i=1

f1(τ−1
2,i

(x))

|τ ′
2
(τ−1

2,i
(x))|

χ
τ2 ([xi−1,xi])

(x)

= (4α1) (2β1)χ
[0, 12 ]

+ (4α1)

(
1

2
− β1

)
χ

[0,1]

+ (2− 4α1)

(
1

2
− β1

)
χ

[0,1]
+ (2− 4α1) (2β1)χ

[0, 12 ]

= (8α1β1 + 2α1 − 4α1β1 + 1− 2β1 − 2α1 + 4α1β1 + 4β1 − 8α1β1)χ
[0, 12 ]

+ (2α1 − 4α1β1 + 1− 2α1 − 2β1 + 4α1β1)χ
[ 1

2 ,1]

= (2β1 + 1)χ
[0, 12 ]

+ (1− 2β1)χ
[ 1

2 ,1]

= f2(x)

The third map:

τ3(x) =



−1
γ1
x+ 1, for 0 ≤ x < γ1

−1
1−2γ1

(x− 1
2) + 1

2 , for γ1 ≤ x < 1
2

1
1−2γ1

(x− 1
2) + 1

2 , for 1
2 ≤ x < γ3

1
γ1

(x− 1) + 1, for γ3 ≤ x < 1

Where γ0 = 0 < γ1 < γ2 = 1
2 < γ3 < γ4 = 1 and γ3 = 1− γ1. The invariant density of τ3(x)
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is f3(x) = (2γ1)χ
[0, 12 ]

(x) + (2− 2γ1)χ
[ 1
2 ,1]

(x).

Figure 5.5: τ3 with γ1 = 1
4 .

Now, Pτ2f3 = f2 :

Pτ2f3(x) =
4∑
i=1

f3(τ−1
2,i

(x))

|τ ′
2
(τ−1

2,i
(x))|

χ
τ2 ([xi−1,xi])

(x)

= (2γ1) (2β1)χ
[0, 12 ]

+ (2γ1)

(
1

2
− β1

)
χ

[0,1]

+ (2− 2γ1)

(
1

2
− β1

)
χ

[0,1]
+ (2− 2γ1) (2β1)χ

[0, 12 ]

= (4γ1β1 + γ1 − 2γ1β1 + 1− 2β1 − γ1 + 2γ1β1 + 4β1 − 4γ1β1)χ
[0, 12 ]

+ (γ1 − 2γ1β1 + 1− γ1 − 2β1 + 2γ1β1)χ
[ 1

2 ,1]

= (2β1 + 1)χ
[0, 12 ]

+ (1− 2β1)χ
[ 1

2 ,1]

= f2(x)

Now, Pτ3f2 = f3 :
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Pτ3f2(x) =

4∑
i=1

f2(τ−1
3,i

(x))

|τ ′
3
(τ−1

3,i
(x))|

χ
τ3 ([xi−1,xi])

(x)

= (2β1 + 1) (γ1)χ
[0,1]

+ (2β1 + 1) (1− 2γ1)χ
[ 1

2 ,1]

+ (1− 2β1) (1− 2γ1)χ
[ 1

2 ,1]
+ (1− 2β1) (γ1)χ

[0,1]

= (γ1 + 2γ1β1 + γ1 − 2γ1β1)χ
[0, 12 ]

+ (γ1 + 2γ1β1 + 1− 2γ1 + 2β1 − 4γ1β1 + 1− 2γ1 + 2β2 + 4γ1β1 + γ1 − 2γ1β1)χ
[ 1

2 ,1]

= (2γ1)χ
[0, 12 ]

+ (2− 2γ1)χ
[ 1

2 ,1]

= f3(x)

The fourth map:

τ4(x) =



−1
2δ1
x+ 1, for 0 ≤ x < δ1

1
2(δ2−δ1)(x− δ1) + 1

2 , for δ1 ≤ x < δ2

−1
1
2
−δ2

(x− 1
2), for δ2 ≤ x < 1

2

−1
2δ1

(x− 1
2) + 1, for 1

2 ≤ x < δ4

1
2(δ2−δ1)(x− δ4) + 1

2 , for δ4 ≤ x < δ5

−1
1
2
−δ2

(x− 1), for δ5 ≤ x < 1

Where δ0 = 0 < δ1 < δ2 < δ3 = 1
2 < δ4 < δ5 < δ6 = 1, δ4 = 1

2 + δ1 and δ5 = 1
2 + δ2. The

invariant density of τ4(x) is f4(x) = (1− 2δ2)χ
[0, 12 ]

(x) + (1 + 2δ2)χ
[ 1
2 ,1]

(x).

Figure 5.6: τ4 with δ1 = 1
10 and δ2 = 5

12 .
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Now, Pτ4f3 = f4 :

Pτ4f3(x) =

6∑
i=1

f3(τ−1
4,i

(x))

|τ ′
4
(τ−1

4,i
(x))|

χ
τ4 ([xi−1,xi])

(x)

= (2γ1) (2δ1)χ
[ 1

2 ,1]
+ (2γ1) (2δ2 − 2δ1)χ

[ 1
2 ,1]

+ (2γ1)

(
1

2
− δ2

)
χ

[0,1]

+ (2− 2γ1) (2δ1)χ
[ 1

2 ,1]
+ (2− 2γ1) (2δ2 − 2δ1)χ

[ 1
2 ,1]

+ (2− 2γ1)

(
1

2
− δ2

)
χ

[0,1]

= (γ1 − 2γ1δ2 + 1− γ1 − 2δ2 + 2γ1δ2)χ
[0, 12 ]

+ (4γ1δ1 + 4γ1δ2 − 4γ1δ1 + γ1 − 2γ1δ2 + 4δ1 − 4γ1δ1

+ 4δ2 − 4δ1 − 4γ1δ2 + 4γ1δ1 + 1− 2δ2 − γ1 + 2γ1δ2)χ
[ 1

2 ,1]

= (1− 2δ2)χ
[0, 12 ]

+ (1 + 2δ2)χ
[ 1

2 ,1]

= f4(x)

Now, Pτ3f4 = f3 :

Pτ3f4(x) =

4∑
i=1

f4(τ−1
3,i

(x))

|τ ′
3
(τ−1

3,i
(x))|

χ
τ3 ([xi−1,xi])

(x)

= (1− 2δ2) (γ1)χ
[0,1]

+ (1− 2δ2) (1− 2γ1)χ
[ 1

2 ,1]

+ (1 + 2δ2) (1− 2γ1)χ
[ 1

2 ,1]
+ (1 + 2δ2) (γ1)χ

[0,1]

= (γ1 − 2γ1δ2 + γ1 + 2γ1δ2)χ
[0, 12 ]

+ (γ1 − 2γ1δ2 + 1− 2γ1 − 2δ2 + 4γ1δ2 + 1− 2γ1 + 2δ2 − 4γ1δ2 + γ1 + 2γ1δ2)χ
[ 1

2 ,1]

= (2γ1)χ
[0, 12 ]

+ (2− 2γ1)χ
[ 1

2 ,1]

= f3(x)

The fifth map:
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τ5(x) =



1
ζ1
x, for 0 ≤ x < ζ1

1
2(ζ2−ζ1)(x− ζ1), for ζ1 ≤ x < ζ2

−1
1
2
−ζ2

(x− 1
2), for ζ2 ≤ x < 1

2

1
ζ1

(x− 1
2), for 1

2 ≤ x < ζ4

1
2(ζ2−ζ1)(x− 1

2 − ζ1), for ζ4 ≤ x < ζ5

−1
1
2
−ζ2

(x− 1), for ζ5 ≤ x < 1

Where ζ0 = 0 < ζ1 < ζ2 < ζ3 = 1
2 < ζ4 < ζ5 < ζ6 = 1, ζ4 = 1

2 + ζ1 and ζ5 = 1
2 + ζ2. The

invariant density of τ5(x) is f5(x) = (1 + 2(ζ2 − ζ1))χ
[0, 12 ]

(x) + (1− 2(ζ2 − ζ1))χ
[ 1
2 ,1]

(x).

Figure 5.7: τ5 with ζ1 = 5
24 and ζ2 = 7

24 .

Now, Pτ5f4 = f5 :
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Pτ5f4(x) =

6∑
i=1

f4(τ−1
5,i

(x))

|τ ′
5
(τ−1

5,i
(x))|

χ
τ5 ([xi−1,xi])

(x)

= (1− 2δ2) (ζ1)χ
[0,1]

+ (1− 2δ2) (2ζ2 − 2ζ1)χ
[0, 12 ]

+ (1− 2δ2)

(
1

2
− ζ2

)
χ

[0,1]

+ (1 + 2δ2) (ζ1)χ
[0,1]

+ (1 + 2δ2) (2ζ2 − 2ζ1)χ
[0, 12 ]

+ (1 + 2δ2)

(
1

2
− ζ2

)
χ

[0,1]

= (ζ1 − 2ζ1δ2 + 2ζ2 − 2ζ1 − 4ζ2δ2 + 4ζ1δ2 +
1

2
− ζ2 − δ2 + 2ζ2δ2 + ζ1 + 2ζ1δ2

+ 2ζ2 − 2ζ1 + 4ζ2δ2 − 4ζ1δ2 +
1

2
− ζ2 + δ2 − 2ζ2δ2)χ

[0, 12 ]

+ (ζ1 − 2ζ1δ2 +
1

2
− ζ2 − δ2 + 2ζ2δ2 + ζ1 + 2ζ1δ2 +

1

2
− ζ2 + δ2 − 2ζ2δ2)χ

[ 1
2 ,1]

= (1 + 2(ζ2 − ζ1))χ
[0, 12 ]

+ (1− 2(ζ2 − ζ1))χ
[ 1
2 ,1]

= f5(x)

Now, Pτ4f5 = f4 :

Pτ4f5(x) =

6∑
i=1

f5(τ−1
4,i

(x))

|τ ′
4
(τ−1

4,i
(x))|

χ
τ4 ([xi−1,xi])

(x)

= (1 + 2(ζ2 − ζ1)) (2δ1)χ
[ 1

2 ,1]
+ (1 + 2(ζ2 − ζ1)) (2δ2 − 2δ1)χ

[ 1
2 ,1]

+ (1 + 2(ζ2 − ζ1))

(
1

2
− δ2

)
χ

[0,1]
+ (1− 2(ζ2 − ζ1)) (2δ1)χ

[ 1
2 ,1]

+ (1− 2(ζ2 − ζ1)) (2δ2 − 2δ1)χ
[ 1

2 ,1]
+ (1− 2(ζ2 − ζ1))

(
1

2
− δ2

)
χ

[0,1]

= (2δ1 + 4ζ2δ1 − 4ζ1δ1 + 2δ2 + 4ζ2δ2 − 4ζ1δ2 − 2δ1 − 4ζ2δ1 + 4ζ1δ1

+
1

2
− δ2 + ζ2 − 2ζ2δ2 − ζ1 + 2ζ1δ2 + 2δ1 − 4ζ2δ1 + 4ζ1δ1 + 2δ2 − 4ζ2δ2

+ 4ζ1δ2 − 2δ1 + 4ζ2δ1 − 4ζ1δ1 +
1

2
− δ2 − ζ2 + 2ζ2δ2 + ζ1 − 2ζ1δ2)χ

[0, 12 ]

+ (
1

2
− δ2 + ζ2 − 2ζ2δ2 − ζ1 − 2ζ1δ2 +

1

2
− δ2 − ζ2 + 2ζ2δ2 + ζ1 − 2ζ2δ2)χ

[ 1
2 ,1]

= (1− 2δ2)χ
[0, 12 ]

+ (1 + 2δ2)χ
[ 1

2 ,1]

= f4(x)

The sixth map:
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τ6(x) =



1
2η1
x+ 1

2 , for 0 ≤ x < η1

−1
1
2
−η1

(x− 1
2), for η1 ≤ x < 1

2

−1
1
2
−η1

(x− η3), for 1
2 ≤ x < η3

1
2η1

(x− 1) + 1, for η3 ≤ x < 1

Where η0 = 0 < η1 < η2 = 1
2 < η3 < η4 = 1, η3 = 1− η1 . The invariant density of τ6(x) is

f6(x) = (1− 2η1)χ
[0, 12 ]

(x) + (1 + 2η1)χ
[ 1
2 ,1]

(x).

Figure 5.8: τ6 with η1 = 1
6 .

Now, Pτ6f5 = f6 :

Pτ6f5(x) =
4∑
i=1

f5(τ−1
6,i

(x))

|τ ′
6
(τ−1

6,i
(x))|

χ
τ6 ([xi−1,xi])

(x)

= (1 + 2(ζ2 − ζ1)) (2η1)χ
[ 1

2 ,1]
+ (1 + 2(ζ2 − ζ1))

(
1

2
− η1

)
χ

[0,1]

+ (1− 2(ζ2 − ζ1))

(
1

2
− η1

)
χ

[0,1]
+ (1− 2(ζ2 − ζ1)) (2η1)χ

[ 1
2 ,1]

= (
1

2
− η1 + ζ2 − 2ζ2η1 − ζ1 + 2ζ1η1 +

1

2
− η1 − ζ2 + 2ζ2η1 + ζ1 − 2ζ1η1)χ

[0, 12 ]

+ (2η1 + 4ζ2η1 − 4ζ1η1 +
1

2
− η1 + ζ2 − 2ζ2η1 − ζ1 + 2ζ1η1 +

1

2
− η1 − ζ2

+ 2ζ2η1 + ζ1 − 2ζ1η12η1 − 4ζ2η1 + 4ζ1η1)χ
[ 1

2 ,1]

= (1− 2η2)χ
[0, 12 ]

+ (1 + 2η2)χ
[ 1

2 ,1]

= f6(x)

We have Pτ5f6(x) = Pτ5f4(x) = f5 .
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The seventh map:

τ7(x) =



1
2ϑ1

x, for 0 ≤ x < ϑ1

−1
2(ϑ2−ϑ1)(x− ϑ1) + 1, for ϑ1 ≤ x < ϑ2

−1
1
2
−ϑ2

(x− 1
2), for ϑ2 ≤ x < 1

2

1
2ϑ1

(x− 1
2), for 1

2 ≤ x < ϑ4

1
2(ϑ2−ϑ1)(x− ϑ5) + 1, for ϑ4 ≤ x < ϑ5

1
1
2
−ϑ2

(x− ϑ5), for ϑ5 ≤ x < 1

Where ϑ0 = 0 < ϑ1 < ϑ2 < ϑ3 = 1
2 < ϑ4 < ϑ5 < ϑ6 = 1, ϑ4 = 1

2 + ϑ1 and ϑ5 = 1
2 + ϑ2.

The invariant density of τ7(x) is f7(x) = (1− 2(ϑ2− 2ϑ1))χ
[0, 12 ]

(x) + (1 + 2(ϑ2− 2ϑ1))χ
[ 1
2 ,1]

(x).

Figure 5.9: τ7 with ϑ1 = 1
10 and ϑ2 = 1

3 .

Now, Pτ7f6 = f7 :
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Pτ7f6(x) =

6∑
i=1

f6(τ−1
7,i

(x))

|τ ′
7
(τ−1

7,i
(x))|

χ
τ7 ([xi−1,xi])

(x)

= (1− 2η1) (2ϑ1)χ
[0, 12 ]

+ (1− 2η1) (2ϑ2 − 2ϑ1)χ
[ 1

2 ,1]
+ (1− 2η1)

(
1

2
− ϑ2

)
χ

[0,1]

+ (1 + 2η1) (2ϑ1)χ
[0, 12 ]

+ (1 + 2η1) (2ϑ2 − 2ϑ1)χ
[ 1

2 ,1]
+ (1 + 2η1)

(
1

2
− ϑ2

)
χ

[0,1]

= (2ϑ1 − 4ϑ1η1 +
1

2
− ϑ2 − η1 + 2ϑ2η1 + 2ϑ1 + 4ϑ1η1 +

1

2
− ϑ2 + η1 − 2ϑ2η1)χ

[0, 12 ]

+ (2ϑ2 − 2ϑ1 − 4ϑ2η1 + 4ϑ1η1 +
1

2
− ϑ2 − η1 + 2ϑ2η1 + 2ϑ2

− 2ϑ1 + 4ϑ2η1 − 4ϑ1η1 +
1

2
− ϑ2 + η1 − 2ϑ2η1)χ

[ 1
2 ,1]

= (1− 2(ϑ2 − 2ϑ1))χ
[0, 12 ]

+ (1 + 2(ϑ2 − 2ϑ1))χ
[ 1
2 ,1]

= f7(x)

And, eventually, Pτ6f7 = f6 :

Pτ6f7(x) =

4∑
i=1

f7(τ−1
6,i

(x))

|τ ′
6
(τ−1

6,i
(x))|

χ
τ6 ([xi−1,xi])

(x)

= (1− 2(ϑ2 − 2ϑ1)) (2η1)χ
[ 1

2 ,1]
+ (1− 2(ϑ2 − 2ϑ1))

(
1

2
− η1

)
χ

[0,1]

+ (1 + 2(ϑ2 − 2ϑ1))

(
1

2
− η1

)
χ

[0,1]
+ (1 + 2(ϑ2 − 2ϑ1)) (2η1)χ

[ 1
2 ,1]

= (
1

2
− η1 − ϑ2 + 2ϑ2η1 + 2ϑ1 − 4ϑ1η1 +

1

2
− η1 + ϑ2 − 2ϑ2η1 − 2ϑ1 + 4ϑ2η1)χ

[0, 12 ]

+ (2η1 − 4ϑ2η1 + 8ϑ1η1 +
1

2
− η1 − ϑ2 + 2ϑ2η1 + 2ϑ1 − 4ϑ1η1 +

1

2

− η1 + ϑ2 − 2ϑ2η1 − 2ϑ1 + 4ϑ2η1 + 2η1 + 4ϑ2η1 − 8ϑ1η1)χ
[ 1

2 ,1]

= (1− 2η2)χ
[0, 12 ]

+ (1 + 2η2)χ
[ 1

2 ,1]

= f6(x)

5.3 The main result proof.

We can describe three types of transformations that belong to T . The first type: the maps are

symmetric around x = 1
2 . The second type: the graphs of the maps in (0, 1

2) and in (1
2 , 1) are

identical. The third type: is neither symmetric nor identical maps and satisfying the conditions C1

and C2.
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Figure 5.10: Examples of a T transformations types.
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5.3.1 Proposition 5.2.2 proof.

(1.) τ(x) is a piecewise monotonic expanding map, since for every interval Ii = (xi−1 , xi) we

have |τ(xi)− τ(xi−1)| ∈
{

1
2 , 1
}

and |xi − xi−1 | < 1
2 . Thus, |τ ′(x)| > 1 for all x ∈ Ii.

(2.) In this proof we will start with the first type of maps in the family T , when the transforma-

tions are symmetric. The other types are treated similarly.

Let τ be a piecewise linear symmetric transformation with N branches, τ ∈ T . N is even

number, there are N
2 branches on each side of xN

2

= 1
2 . The interval [0, 1

2 ] is the domain of the

branches τ1 , τ2 , ..., τN
2

and the interval [1
2 , 1] is the domain of the branches τN

2 +1
, τN

2 +2
, ..., τN . The

pairs τi , τN+1−i where i = 1...N2 , have the same image and the same slope of the line. For more

clarity, see Figure 5.11. We consider the density in the form f(x) = (c)χ
[0, 12 ]

(x)+(2− c)χ
[ 1
2 ,1]

(x).

We have

Figure 5.11: An example of a T transformation of the first type with N = 10.
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Pτf(x) =

N∑
i=1

f(τ−1
i

(x))

|τ ′(τ−1
i

(x))|
χ
τ([xi−1,xi])

(x)

=
c

|τ ′
1
(τ−1

1
(x))|

χ
τ([x0,x1])

+ ...+
c

|τ ′
N
2

(τ−1
N
2

(x))|
χ
τ(

[
xN

2 −1
,xN

2

]
)

+
2− c

|τ ′
N
2 +1

(τ−1
N
2 +1

(x))|
χ
τ(

[
xN

2
,xN

2 +1

]
)

+ ...+
2− c

|τ ′
N

(τ−1
N

(x))|
χ
τ([xN−1,xN ])

=
c+ 2− c
|τ ′

1
(τ−1

1
(x))|

χ
τ([x0,x1])

+ ...+
c+ 2− c
|τ ′
N
2

(τ−1
N
2

(x))|
χ
τ(

[
xN

2 −1
,xN

2

]
)

=
2

|τ ′
1
(τ−1

1
(x))|

χ
τ([x0,x1])

+ ...+
2

|τ ′
N
2

(τ−1
N
2

(x))|
χ
τ(

[
xN

2 −1
,xN

2

]
)

=

(
1

|τ ′
1
(τ−1

1
(x))|

+
1

|τ ′
N

(τ−1
N

(x))|

)
χ
τ([x0,x1])

+ ...

...+

 1

|τ ′
N
2

(τ−1
N
2

(x))|
+

1

|τ ′
N
2 +1

(τ−1
N
2 +1

(x))|

χ
τ(

[
xN

2 −1
,xN

2

]
)

=
1

|τ ′
1
(τ−1

1
(x))|

χ
τ([x0,x1])

+ ...+
1

|τ ′
N
2

(τ−1
N
2

(x))|
χ
τ(

[
xN

2 −1
,xN

2

]
)

+
1

|τ ′
N
2 +1

(τ−1
N
2 +1

(x))|
χ
τ(

[
xN

2
,xN

2 +1

]
)

+ ...+
1

|τ ′
N

(τ−1
N

(x))|
χ
τ([xN−1,xN ])

=
N∑
i=1

1

|τ ′
i
(τ−1
i

(x))|
χ
τi ([xi−1 ,xi ])

(x).

For each i, the interval τi([xi−1 , xi ]) is equal to one of the intervals [0, 1
2 ], [1

2 , 1] or [0, 1]. Let

J1 = {i : 1 ≤ i ≤ N, [0, 1
2 ] ⊂ τ([xi−1, xi])} and J2 = {i : 1 ≤ i ≤ N, [1

2 , 1] ⊂ τ([xi−1, xi])}. J1

and J2 are not necessarily disjoint. Then, we have

Pτf(x) =
N∑
i=1

1

|τ ′
i
(τ−1
i

(x))|
χ
τi ([xi−1 ,xi ])

(x) =
∑
i∈J1

1

|τ ′
i
(τ−1
i

(x))|
χ

[0, 12 ]
(x)+

∑
i∈J2

1

|τ ′
i
(τ−1
i

(x))|
χ

[ 1
2 ,1]

(x)

And by the linearity property of each of τi , first derivative of τi is constant. Therefore,

f(x) = C1χ[0, 12 ]
(x) + C2χ[ 1

2 ,1]
(x).
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Since it is a density C2 = 2− C1 . If we set

c =
∑
i∈J1

1

|τ ′
i
(τ−1
i

(x))|
,

we proved that f(x) = (c)χ[0,1/2](x) + (2 − c)χ[1/2,1](x) is Pτ invariant. It is easy to show that

c ¡ 2 given conditions C1 and C2. The uniqueness of the invariant density, follows, for example,

by the Folklore Theorem 6.1.1. of [11]. The proof is complete for the symmetric transformations

type. If τ belongs to the second type or the third type of T then the construction of the proof in an

analogous way.

(3.) Let τ1 , τ2 ∈ T and f1 , f2 be the density functions of τ1 , τ2 respectively. First, we want to

prove that, Pτ2f1(x) = f2(x) and Pτ1f2(x) = f1(x).

Pτ2f1(x) =
n∑
i=1

f1(τ−1
2,i

(x))

|τ ′
2
(τ−1

2,i
(x))|

χ
τ2 ([xi−1,xi])

(x)

=
c1

|τ ′
2,1

(x)|
χ
τ2 ([x0,x1])

(x) + ...+
c1

|τ ′
2, n2

(x)|
χ
τ2 (

[
xn

2−1,x n2

]
)

(x)

+
2− c1

|τ ′
2, n2 +1

(x)|
χ
τ2 (

[
xn

2
,x n

2 +1

]
)

(x) + ...+
2− c1

|τ ′
2,n

(x)|
χ
τ2 ([xn−1,xn])

(x)

=
c1 + 2− c1

|τ ′
2,1

(x)|
χ
τ2 ([x0,x1])

(x) + ...+
c1 + 2− c1

|τ ′
2, n2

(x)|
χ
τ2 (

[
xn

2−1,x n2

]
)

(x)

=
2

|τ ′
2,1

(x)|
χ
τ2 ([x0,x1])

(x) + ...+
2

|τ ′
2, n2

(x)|
χ
τ2 (

[
xn

2−1,x n2

]
)

(x)

=
1

|τ ′
2,1

(x)|
χ
τ2 ([x0,x1])

(x) + ...+
1

|τ ′
2, n2

(x)|
χ
τ2 (

[
xn

2−1,x n2

]
)

(x)

+
1

|τ ′
2, n2 +1

(x)|
χ
τ2 (

[
xn

2
,x n

2 +1

]
)

(x) + ...+
1

|τ ′
2,n

(x)|
χ
τ2 ([xn−1,xn])

(x)

= f2(x).

Note that the linearity of τ2 gives us |τ ′
2
(τ−1

2,i
(x))| = |τ ′

2
(x)|. The proof of Pτ1 f2 = f1 will be

the same argument, and the same proof steps for any two transformations in T .

Next, we claim that the invariant density function of the random map

T = {τ1 , τ2 , ..., τn ; p1 , p2 , ..., pn} ,

is f = p1f1 + p2f2 + ... + pnfn . We have to prove that f is a fixed point for PT . For this we will
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use the properties of Frobenius–Perron operator for random maps and the T property, Pτj fi = fj .

Therefore,

PT f(x) = PT (p1f1(x) + p2f2(x) + ...+ pnfn(x))

= p1PT f1(x) + p2PT f2(x) + ...+ pnPT fn(x)

= p1

[
p1Pτ1f1(x) + p2Pτ2f1(x) + ...+ pnPτnf1(x)

]
+ p2 [p1Pτ1f2(x) + p2Pτ2f2(x)

+ ...+ pnPτnf2(x)] + ...+ pn
[
p1Pτ1fn(x) + p2Pτ2fn(x) + ...+ pnPτnfn(x)

]
= p1 [p1f1(x) + p2f2(x) + ...+ pnfn(x)] + p2 [p1f1(x) + p2f2(x) + ...+ pnfn(x)]

+ ...+ pn [p1f1(x) + p2f2(x) + ...+ pnfn(x)]

= p1 [f(x)] + p2 [f(x)] + ...+ pn [f(x)]

= f(x)[p1 + p2 + ...+ pn ] = f(x).

This completes the proof.

5.4 More results in random map with constant probabilities which is

constructed from T .

The result in Theorem 2.5.10 can be generalized to random maps.

Theorem 5.4.1. Let τ1 , τ2 ∈ T , T1 = {τ1 , τ2 ; p1 , p2} be a random map with constant probabilities

p1 , p2 > 0, p1 + p2 = 1, and let h : I → I be a diffeomorphism function. Then we have:

(1) PT1
f = f implies PT2

g = g, where T2 = {τ3 , τ4 ; p1 , p2}, τ3 = h◦τ1 ◦h−1, τ4 = h◦τ2 ◦h−1

and g = (f ◦ h−1).|(h−1)′|;

(2) if f is a T1−invariant density, then g is a T2−invariant density.

Proof. We follow the proof of the Theorem 2.5.10.

(1) Let PT1
f = f where f = p1f1 +p2f2 . Using the composition property for Frobenius-Perron

operator in random map and the properties of the family T we get
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PT2
(P

h
f) = p1Pτ3 (P

h
f) + p2Pτ4 (P

h
f)

= p1Ph ◦ Pτ1 ◦ Ph−1 ◦ Phf + p2Ph ◦ Pτ2 ◦ Ph−1 ◦ Phf

= p1Ph ◦ Pτ1 ◦ Ph−1◦hf + p2Ph ◦ Pτ2 ◦ Ph−1◦hf

= p1Ph ◦ Pτ1f + p2Ph ◦ Pτ2f

= p1Ph ◦ Pτ1 (p1f1 + p2f2) + p2Ph ◦ Pτ2 (p1f1 + p2f2)

= p1Ph
(
p1Pτ1f1 + p2Pτ1f2

)
+ p2Ph

(
p1Pτ2f1 + p2Pτ2f2

)
= p1Ph (p1f1 + p2f1) + p2Ph (p1f2 + p2f2)

= p
2

1
Phf1 + p1p2Phf1 + p1p2Phf2 + p

2

2
Phf2

=
(
p

2

1
Phf1 + p1p2Phf2

)
+
(
p1p2Phf1 + p

2

2
Phf2

)
= p1Ph (p1f1 + p2f2) + p2Ph (p1f1 + p2f2)

= p1Phf + p2Phf

= Phf (p1 + p2)

= Phf

We have to show that Phf = g. But that immediately follows from

Phf(x) =

n∑
i=1

f ◦ h−1
i |(h

−1
i )′|χ[ai−1,ai](x) = (f ◦ h−1)|(h−1)′| = g.

where h is monotonic (n = 1), since it is a diffeomorphism.

Therefore,

PT2
(g) = PT2

(Phf) = Phf = g

(2) Follow the proof of Proposition 2.5.10 property number 2.

Definition 5.4.2. Let T1 = {τ1 , τ2 ; p1 , p2} and T2 = {σ1 , σ2 ; p3 , p4} be a two random maps with

constant probabilities p1 , p2p3 , p4 > 0, p1 + p2 = 1 and p3 + p4 = 1. Where the transformations

τi : I → I and σi : J → J on intervals I and J . T1 and T2 are called conjugate if there exists a
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bijection continuous map h : I −→ J such that

σi(x) = (h ◦ τi ◦ h−1)(x).

The map h is called the conjugation transformation.

Corollary 5.4.3. If

T1 =

{
σ, ω;

1

2
,
1

2

}
and

σ(x) =



4x, for 0 ≤ x < 1
4

3
2 − 2x, for 1

4 ≤ x <
1
2

4x− 2, for 1
2 ≤ x <

3
4

5
2 − 2x, for 3

4 ≤ x < 1

, ω(x) =



1− 4x, for 0 ≤ x < 1
4

2x− 1
2 , for 1

4 ≤ x <
1
2

3
2 − 2x, for 1

2 ≤ x <
3
4

4x− 3, for 3
4 ≤ x < 1

,

The invariant densities are fσ(x) = 1
2χ[0, 12 ]

(x) + 3
2χ[ 1

2 ,1]
(x), fω(x) = 3

2χ[0, 12 ]
+ 1

2χ[ 1
2 ,1]

, cor-

respondingly. Thus, the invariant density of T1 is f(x) = 1. T1and T2 are conjugated by h, then

invariant density of T2 is

g = |(h−1
)′|.

From corollary 5.4.3 we can find the relation,

h
−1

(x) = ±
∫ x

0
f2(t)dt.

5.5 Examples of the conjugation transformations.

In this section, we give three examples. The first two examples show application of the Theorem

2.5.10. The last example is application of Theorem 5.4.1.
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Example 5.5.1. Let h : [0, 1]→ [0, 1] be defined by h(x) = sin2(πx2 ), and let

Λ1(x) =



3x, for 0 ≤ x < 1
6

3
2x+ 1

4 , for 1
6 ≤ x <

1
2

−3
2x+ 7

4 , for 1
2 ≤ x <

5
6

3− 3x, for 5
6 ≤ x < 1

.

The map Λ1(x) belongs to family T , with a density function fΛ1
(x) = 2

3χ[0, 12 ]
(x) + 4

3χ[ 1
2 ,1]

(x).

Consider the map Λ2(x) =
(
h ◦ Λ1 ◦ h−1

)
(x). Using trigonometric identities, we obtain:

Λ2(x) =



x(4x− 3)2, for 0 ≤ x < 2−
√

3
4

1
2 − (2)

1
2

(
(1− x)3/2 + (x)3/2

)
+ 3

(2)
3
2

(
(1− x)1/2 + (x)1/2

)
, for 2−

√
3

4 ≤ x < 2+
√

3
4

(1− x)(4(1− x)− 3)2, for 2+
√

3
4 ≤ x < 1

.

By Theorem 2.5.10, the density function of Λ2 is fΛ2
= (fΛ1

◦ h−1).|(h−1)′|, and we have

fΛ2
(x) =


2
3

1

π
√
x(1−x)

, for 0 ≤ x < 1
2

4
3

1

π
√
x(1−x)

, for 1
2 ≤ x < 1

.

Example 5.5.2. In this example, we show a sequence of transformations that are conjugate to the

tent map (τ0 = 1− |2x− 1|) through conjugating functions hn(x) = sin2n(πx2 ). Consider τn(x) =(
hn ◦ τ0 ◦ h−1

n

)
(x), h−1

n
(x) = 2

π arcsin(x
1

2n ). Then,

τn(x) = 22nx(1− x
1
n )n.

Note that, if n = 1 we get the logistic map τ1(x) = 4x(1 − x). The invariant density of the tent

map τ0 is constant f0(x) = 1. By applying Theorem 2.5.10, we have fn = (f0 ◦ h−1
n

).|(h−1
n

)′|.
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Figure 5.12: (a) Λ1 and Λ2 maps. (b) The graph of fΛ2
(x). (c) The histogram of 25000 iterations

of Λ2 .
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Therefore,

fn(x) = 1 ·
(
h−1
n

(x)
)′

=
1

nπ

√
x2− 1

n (1− x
1
n )

is the invariant density of the τn .

Figure 5.13: (a) τ0 , τ1 , τ2 , τ3 and τ4 maps. (b) h1 , h2 , h3 and h4 .

Example 5.5.3. In this example, we use transformations from Example 5.5.1 and from Example

5.5.2. Let T1 =
{
τ0 ,Λ1 ; 1

2 ,
1
2

}
be a random map with constant probabilities. By applying Propo-

sition 5.2.2, the invariant density function of the random map T1 is f(x) = 1
2f0(x) + 1

2fΛ1
(x),

i.e.,

f(x) =
5

6
χ

[0, 12 ]
(x) +

7

6
χ

[ 1
2 ,1]

(x).
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Consider the random map T2 =
{
τ1 ,Λ2 ; 1

2 ,
1
2

}
. Applying Theorem 5.4.1, the invariant density

function of the random map T2 is g = (f ◦ h−1).|(h−1)′|. We have

g(x) =


5
6

1

π
√
x(1−x)

, for 0 ≤ x < 1
2

7
6

1

π
√
x(1−x)

, for 1
2 ≤ x < 1

.

5.6 Absolutely continuous invariant measures for a large class of trans-

formations

Let I be the unit interval, and let P be a finite partition of I into subintervals. More specifically,

P = {It , ..., IN }, where I =
⋃
Ii , I

o

i
∩ Io

j
= ∅, i 6= j, N ≥ 2 and Ii = [xi−1 , xi ]. Let T ∗ denote

the class of a piecewise linear transformations τ : I → I and τi = τ|Ii, i = 1, 2, ..., N . We assume

the following conditions:

C∗1. The image of every subinterval Ii belonging to
[
0, 1

2

]
, is equal to

[
0, 1

2

]
or equal to

[
1
2 , 1
]
.

C∗2. For every subinterval Ii belonging to
[
0, 1

2

]
, there exist Ij ∈

[
1
2 , 1
]

such that τ(Ii) = [0, 1] \

(τ(Ij))
◦, and |τ ′

i
(x)| = |τ ′

j
(x)|.

The graphs in Figure 5.14 show some examples of maps in T ∗:

Lemma 5.6.1. Let τ be a piecewise linear transformations τ :
[
0, 1

2

]
→ [0, 1], defined on the

partition Q = {Ii} and τi = τ|Ii , i = 1, 2, ...,K. If the image of every subinterval Ii ∈ Q , is

equal to
[
0, 1

2

]
or equal to

[
1
2 , 1
]

then,

n∑
i=1

1

tan(θi)
= 1, (5.6.2)

where θi are the angles made by the graphs of τi with the lines y = 0 or y = 1
2 . An example is

shown in the Figure 5.15.

Proof. Let Q =
{
Ii =

(
xi−1 , xi

)
: i = 1, 2, ...,K

}
be a partition of

[
0, 1

2

]
, where 0 = x0 < x1 <

... < xK−1 < xK = 1
2 , and it satisfies the lemma condition. Then we have tan(θi) = 1

2(xi−xi−1 )
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Figure 5.14: Examples of transformations satisfying C∗1 and C∗2.
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for all i. Therefore,

n∑
i=1

1

tan(θi)
= 2(x1 − 0) + 2(x2 − x1) + 2(x3 − x2) + ...+ 2(

1

2
− xK−1) = 1.

Figure 5.15: We have tan(θ1) = 1
2x1

, tan(θ2) = 1
2x2−2x1

, tan(θ3) = 1
2x3−2x2

, tan(θ4) = 1
2x4−2x3

and tan(θ5) = 1
1−2x4

.
∑n

i=1
1

tan(θi )
= 1.

Proposition 5.6.3. Any τ(x) ∈ T ∗ enjoys the following properties:

• (1.) τ(x) is a piecewise monotonic expanding map.

• (2.) The
∑n

i=1
1

|τ ′
i
(τ−1
i (x))|χτi ([xi−1 ,xi ])

(x) = 1.

• (3.) The invariant density of τ is f(x) = 1.

Proof. We will prove (2.). Let Q =
{
Ii =

(
xi−1 , xi

)
: i = 1, 2, ...,K

}
be a partition of [0, 1],

where 0 = x0 < x1 < ... < xN
2

= 1
2 < xN

2 +1
< ... < xN−1 < xN = 1. Let the transformation

τ ∈ T ∗ be defined on the partition Q and τi = τ|Ii , then τi satisfies the conditions C∗1 and C∗2 .

Then we have:
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N∑
i=1

1

|τ ′
i
(τ−1
i

(x))|
χ
τ([xi−1,xi])

(x) = ∑
τ(Ii)=[0, 12 ]

1

|τ ′
i
(τ−1
i

(x))|
χ

[0, 12 ]
(x) +

∑
τ(Ii)=[0, 12 ]

1

|τ ′
i
(τ−1
i

(x))|
χ

[ 1
2 ,1]

(x)


+

 ∑
τ(Ii)=[ 1

2
,1]

1

|τ ′
i
(τ−1
i

(x))|
χ

[0, 12 ]
(x) +

∑
τ(Ii)=[ 1

2
,1]

1

|τ ′
i
(τ−1
i

(x))|
χ

[ 1
2 ,1]

(x)


=

 N
2∑
i=1

1

|τ ′
i
(τ−1
i

(x))|

χ
[0, 12 ]

(x) +

 N
2∑
i=1

1

|τ ′
i
(τ−1
i

(x))|

χ
[ 1

2 ,1]
(x).

By Lemma 5.6.1, we have
∑N

2
i=1

1
|τ ′
i
(τ−1
i (x))| = 1. The proof is complete.

The following example gives a piecewise linear map in T ∗.

Figure 5.16: Map τ8 of Example 5.6.4 (x1 = 1
8 and x2 = 7

8 ).

Example 5.6.4. Let X = [0, 1] , and let us consider the following map in the family T ∗.

τ8(x) =



1
2x1

x, for 0 ≤ x < x1

1
2( 1

2
−x1)

(x− 1
2) + 1, for x1 ≤ x < 1

2

1
2( 1

2
−x1)

(x− 1
2), for 1

2 ≤ x < x3

1
2x1

(x− 1) + 1, for x3 ≤ x < 1

Where x0 = 0 < x1 < x2 = 1
2 < x3 < x4 = 1, x3 = 1 − x1. We claim that, the invariant

density of τ8(x) is f(x) = 1.
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Pτ8f(x) =

4∑
i=1

f(τ−1
8,i

(x))

|τ ′
8
(τ−1

8,i
(x))|

χ
τ8 ([xi−1,xi])

(x)

= (2x1)χ
[0, 12 ]

(x) + (1− 2x1)χ
[ 1

2 ,1]
(x) + (1− 2x1)χ

[0, 12 ]
(x) + (2x1)χ

[ 1
2 ,1]

= (1)χ
[0, 12 ]

(x) + (1)χ
[ 1

2 ,1]
(x)

= 1 = f(x).
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Chapter 6

On a particular class of Markov

transformations

In the this chapter we will present a class of transformations which are P-semi-Markov trans-

formations but after more detailed analysis turn out to be P-Markov transformations as well.

6.1 Preliminaries

In this section, we going to present some results about Markov transformations and semi-

Markov transformations and the matrix representation of the corresponding Frobenius–Perron op-

erator.

Definition 6.1.1. Let P = {I1, I2, ..., In} , Ii,= (xi−1, xi), i = 1, 2, ..., n be a partition of I ,

τ : I → I and τi = τ|Ii. If for each i = 1, 2, ..., n τi is a homeomorphism from Ii to a connected

union of intervals of P , then τ is called a P-Markov transformation.

The partition P = {Ii}
n

i=1
is referred to as a Markov partition with respect to τ . Let us define

the class of transformations TM as

TM =
{
τ : |τ ′(x)| > 0, on each Ii

}
.

If each τi is also linear on Ii we say τ is a piecewise linear P-Markov transformation and denote
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this class of P-Markov transformations by LM ⊂ TM . The class of piecewise linear P-Markov

transformations is a class of piecewise monotonic transformations and the matrix representation of

the corresponding Frobenius–Perron operator can be calculated easily. In fact, it is a matrix defined

in the following theorem.

Theorem 6.1.2. [11] Let τ : (I,B, λ) → (I,B, λ) where τ ∈ LM with respect to the partition

P = {I1, I2, ..., In}. Then there exists a n×nmatrixMτ such that Pτf = fMT
τ for every piecewise

constant f = (f1, f2, ..., fn). The matrix Mτ = (mij)1≤i,j≤n is defined by

mij =
λ(Ii ∩ τ−1(Ij)

λ(Ii)
.

The following theorem is proved in [14].

Theorem 6.1.3. If a transformation τ ∈ LM and is piecewise expanding, then any τ -invariant

density is constant on intervals of P .

In [22], the authors introduce a new class of piecewise linear transformation called a P-semi-

Markov. They prove a number of theorems about these new maps, showing that given a piecewise

constant density on intervals of a partition, it is always possible to find a P-semi-Markov transfor-

mation that leaves the density invariant.

Definition 6.1.4. A transformation τ : I → I is called P-semi-Markov transformation if there

exist disjoint intervalsQ
(i)

j
such that for any i = 1, ..., N we have Ii = ∪k(i)

j=1
Q

(i)

j
, τ

Q
(i)

j

is monotonic,

and τ(Q
(i)

j
) ∈ P .

Theorem 6.1.3 can be generalized to the semi-Markov case.

Theorem 6.1.5. [22] Let τ be a P-semi-Markov transformation, and τ
Q

(i)

j

is linear with slope

greater than 1 for j = 1, ..., k(i), i = 1, ..., N . Then any τ -invariant density is constant on intervals

of P .

Next theorem from [22] and [54] allows us to represent a Frobenius-Perron operator of a P-

semi-Markov map as a matrix.
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Theorem 6.1.6. Let τ : (I,B, λ) → (I,B, λ) be a piecewise linear P-semi-Markov transforma-

tions. The Frobenius-Perron matrix is Mτ = (aij )1≤i,j≤n , where

aij =


∑

k |
(
τ

(i)

k

)′
|−1
, if τ(Q

(i)

k
) = Ij

0, otherwise.

Let f = [f1 , f2 , .., fn ]. If f = fMτ , f is a fixed point of the Frobenius-Perron operator Pτ of

τ , i.e., for all j,

n∑
i=1

∑
k

f(τ
(i)

k
(x)−1)

|τ ′(τ (i)

k
(x)−1)|

.χ
τ(Q

(i)

k
)
(x) = fj , (6.1.7)

where the second summation runs over all subintervals of Ii such that τ(Q
(i)

k
) = Ij . This equation

can be simplified by noticing that f(τ
(i)

k
(x)−1) = fj , so

n∑
i=1

∑
k

fi

|τ (i)′

k
|

= fj ,

n∑
i=1

(∑
k

1

|τ (i)′

k
|

)
.fi = fj ,

n∑
i=1

aij .fi = fj .

Hence equation (6.1.7) is equivalent to f = fMτ .

6.2 A class of transformations belonging to the class of Markov trans-

formations

It is easy to notice that any P-Markov transformation is P-semi-Markov and there are many

P-semi-Markov transformations that are not P-Markov.
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Let Z denote the set of integers. Define the class of transformations TZ as

TZ =
{
τ : |τ ′(x)| = zi > 0, on each Ii , zi ∈ Z

}
.

If each τi is also linear on Ii we say τ is a piecewise linear transformation. We define the class

LZ = {τ ∈ TZ ; τ is a piecewise linear transformation}.

Theorem 6.2.1. If τ : (I,B, λ) → (I,B, λ), where τ ∈ LZ with respect to the partition P =

P {x1, x2, ..., xn}, where x1, x2, ..., xn are rational numbers. Then there is a finite partition of I

with equal subintervals P∗ = P∗ {x∗1, x∗2, ..., x∗N} such that τ is a P∗-Markov transformations.

Proof. Let P∗ be a finite partition for I with equal subintervals

P∗ = P∗ {x∗1, x∗2, ..., x∗N} ,

and the number of the subintervals N is equal to the least common multiple (LCM) of the denomi-

nators of the interval limits ofP and the denominators of the intercepts of the linear transformations.

For example, if the the interval limits are x0 = 0, x1 = 1
4 , x2 = 2

3 and x3 = 1, and the intercepts of

the linear transformations are
{

2, 1
2 ,

7
9

}
then the N =LCM(4, 3, 2, 9) = 36. Based on that, we have

{x1, x2, ..., xn} ⊆ {x∗1, x∗2, ..., x∗N}, and for each i the image τ(x∗i ) ∈ {x∗1, x∗2, ..., x∗N}. Therefore,

τ |
(x∗
i−1

,x∗
i

)
is monotonic and τ |

(x∗
i−1

,x∗
i

)
is a union of intervals of P∗.

Example 6.2.2. Let

τ1(x) =



2x+ 1
3 , for 0 ≤ x < 1

3

4
3 − 3x, for 1

3 ≤ x <
4
9

11
4 − 4x, for 4

9 ≤ x <
2
3

3x− 2, for 2
3 ≤ x < 1

The map of τ1(x) is a P∗-Markov transformation with respect to the partition P∗, see Figure 6.1.

The number of the intervals for the partition P∗ is LCM(4, 3, 9) = 36.

Example 6.2.3. Let τ be a piecewise linear P-semi-Markov transformation with the condition that

the value of (τ ′
i
) belongs to the non-zero integer numbers, and we have a disjoint intervals Q

(i)

j
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Figure 6.1: The map τ1(x).

such that for any i = 1, ..., N we have Ii = ∪k(i)

j=1
Q

(i)

j
. Then there is a finite partition P∗ with

equal intervals and the number of the intervals is equal to the least common multiple (LCM) of the

denominators of the interval limits, such that τ is P∗-Markov transformations.

Example 6.2.4. Let

τ2(x) =



4x+ 1
3 , for 0 ≤ x < 1

6

−8x+ 7
3 , for 1

6 ≤ x <
1
4

4x− 1, for 1
4 ≤ x <

1
3

2x− 2
3 , for 1

3 ≤ x <
1
2

−2x+ 2, for 1
2 ≤ x <

2
3

4x− 2, for 2
3 ≤ x <

3
4

4x− 8
3 , for 3

4 ≤ x <
5
6

−2x+ 2, for 5
6 ≤ x < 1
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τ2 is a piecewise linear P-semi-Markov (see Figure (6.2) ), with respect to the partition P =

{I1 , I2 , I3}, where I1 =
{
Q

(1)

1
, Q

(1)

2
, Q

(1)

3
, Q

(1)

4
, Q

(1)

5

}
, I2 =

{
Q

(2)

1
, Q

(2)

2

}
and I3 =

{
Q

(3)

1
, Q

(3)

2
, Q

(3)

3

}
.

The map τ2(x) is a Markov transformation with respect to the partition P∗. The number of the in-

tervals of the partition P∗ is 24 (see Figure (6.3) ). By using Definition 6.1.6 we have the transition

matrix and the τ2-invariant density function,

Mτ2
=


1
4

3
8

3
8

1
2 0 1

2

1
2

1
4

1
4



f(x) =



6
5 , for 0 ≤ x < 1

3

18
25 , for 1

3 ≤ x <
2
3

27
25 , for 2

3 ≤ x < 1

Figure 6.2: The map τ2(x) is semi-Markov transformation.
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Figure 6.3: The map τ2(x) is a Markov transformation with respect to the partition P∗.
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Chapter 7

Create chaotic maps.

In Chapter 5 we defined a family of transformations T . This family is a class of chaotic maps

for which we can find the matrix representation of the corresponding Frobenius–Perron operator.

In this chapter, we present more properties for the transformations family T . We created two

classes of chaotic maps with desired invariant densities using two methods of solving the inverse

Frobenius-Perron problem (IFPP). In the last section, we studied the Lyapunov exponent and the

autocorrelation properties for one of these classes.

The Frobenius-Perron operator describes the evolution of density functions in a dynamical sys-

tem. Finding the fixed points of this operator is referred to as the Frobenius-Perron problem (i.e.,

Pτf = f , f is the invariant density under τ ). Therefore, if we are given a density function f , the

Inverse Frobenius–Perron Problem (IFPP) is to determine a point transformation τ such that the

dynamical system xi+1 = τ(xi) has f as its unique invariant probability density function. There are

different approaches to solving the IFPP. The most popular of these branches matrix approach and

conjugation approach.

7.1 Matrix approach.

Matrix method is outlined in the work of P. Góra and A. Boyarsky (1993 [22]), the work of

Bollt (1999 [10]), the work of McDonald and Wyk (2017 [39]), the work of Rogers, Shorten and

Naughton (2007 [45]) and the work of Nie and Coca (2016 [41]). The matrix method, gives us a
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relationship between the given density f and τ , where f is any piecewise constant density function.

By expressing f in the form of the leading eigenvector, we can determine the Ulam’s matrix and

hence the chaotic map τ . The column stochastic matrix can be treated as Ulam’s transition matrix.

7.1.1 The Ulam’s matrix

We will start by choosing a natural number ρ > 0, then we build the eigenvector

πf =

[
1

ρ
,

1

ρ
, ...,

1

ρ
,

1

ρ
, 1, 1, ..., 1, 1

]
2(ρ+1)

. (7.1.1)

The number of 1
ρ ’s is the same as number of 1’s . Next we determined the Ulam’s matrix Aρ .

The matrix Aρ has the form:



1
ρ+1 0 0 · · · 0 0 0 0 · · · 0 0 1

ρ+1

1
ρ+1 0 0 · · · 0 0 0 0 · · · 0 0 1

ρ+1

1
ρ+1 0 0 · · · 0 0 0 0 · · · 0 0 1

ρ+1

...
...

... · · ·
...

...
...

... · · ·
...

...
...

1
ρ+1 0 0 · · · 0 0 0 0 · · · 0 0 1

ρ+1

1
ρ+1 0 0 · · · 0 0 0 0 · · · 0 0 1

ρ+1

0 ρ
ρ+1 0 · · · 0 0 0 0 · · · 0 ρ

ρ+1 0

0 1
ρ+1

ρ−1
ρ+1

. . . 0 0 0 0
... ρ−1

ρ+1
1
ρ+1 0

...
. . . . . . . . . . . .

...
...

... ... ... ...
...

0 0 0
. . . 2

ρ+1 0 0 2
ρ+1

... 0 0 0

0 0 0
. . . ρ−1

ρ+1
1
ρ+1

1
ρ+1

ρ−1
ρ+1

... 0 0 0

0 0 0
. . . 0 ρ

ρ+1
ρ
ρ+1 0

... 0 0 0



(7.1.2)

The size of the matrix Aρ is 2(ρ + 1) × 2(ρ + 1). There are several interesting properties of

matrix A, which we outline here:

1. Each column sums to 1 in the matrix A (column stochastic),

2. The matrix is a positive matrix,
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3. The matrix has a single dominant eigenvalue of value 1, and the corresponding eigenvector

πf is [
1

ρ
,

1

ρ
, ...,

1

ρ
,

1

ρ
, 1, 1, ..., 1, 1

]
2(ρ+1)

.

4. There is a unique invariant probability density function

f(x) =

(
2

ρ+ 1

)
χ

[0, 12 ]
(x) +

(
2ρ

ρ+ 1

)
χ

[ 1
2 ,1]

(x).

By FP-eigenvector of A we mean the eigenvector with eigenvalue 1.

Example 7.1.3. Let ρ = 5, then we have

πf =

[
1
5

1
5

1
5

1
5

1
5

1
5 1 1 1 1 1 1

]
Therefore,

A5 =



1
6 0 0 0 0 0 0 0 0 0 0 1

6

1
6 0 0 0 0 0 0 0 0 0 0 1

6

1
6 0 0 0 0 0 0 0 0 0 0 1

6

1
6 0 0 0 0 0 0 0 0 0 0 1

6

1
6 0 0 0 0 0 0 0 0 0 0 1

6

1
6 0 0 0 0 0 0 0 0 0 0 1

6

0 5
6 0 0 0 0 0 0 0 0 5

6 0

0 1
6

4
6 0 0 0 0 0 0 4

6
1
6 0

0 0 2
6

3
6 0 0 0 0 3

6
2
6 0 0

0 0 0 3
6

2
6 0 0 2

6
3
6 0 0 0

0 0 0 0 4
6

1
6

1
6

4
6 0 0 0 0

0 0 0 0 0 5
6

5
6 0 0 0 0 0


There is the unique invariant probability density function f(x) =

(
1

3

)
χ

[0, 12 ]
(x)+

(
5

3

)
χ

[ 1
2 ,1]

(x).

See Figure 7.1.
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Figure 7.1: The one-dimensional map corresponding to matrix A5 and the histogram of 106 itera-
tions of τ (approximation to the invariant density).

7.1.2 The chaotic map

There are infinitely many of integer numbers ρ > 0, for each ρ we consider the eigenvector

πf =
[

1
ρ ,

1
ρ , ...,

1
ρ ,

1
ρ , 1, 1, ..., 1, 1

]T
with respect to (2(ρ+ 1)) equal subintervals. This eigenvector

is FP-eigenvector of Aρ . To generate a chaotic map with a desired invariant density, we interpret the

matrix Aρ as a map of the unit interval to itself. Generally, τρ is defined as:

τρ(x) =



(ρ+ 1)x, for 0 ≤ x < 1
2(ρ+1)

ρ+1
ρ (x− 1

2) + 1, for 1
2(ρ+1) ≤ x <

1
2

−ρ+1
ρ (x− 1

2) + 1, for 1
2 ≤ x <

2ρ+1
2(ρ+1)

−(ρ+ 1)(x− 1), for 2ρ+1
2(ρ+1) ≤ x < 1

(7.1.4)

τρ is 1−parameter family of maps of the interval [0, 1] into itself, τρ ∈ T . For each ρ, we have

the invariant probability density function

f(x) =

(
2

ρ+ 1

)
χ

[0, 12 ]
(x) +

(
2ρ

ρ+ 1

)
χ

[ 1
2 ,1]

(x).

We can check τρ preserves the density f , using the Frobenius-Perron operator Pτ . We have
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Pτρf(x) =

4∑
i=1

f(τ−1
ρi

(x))

|τ ′
ρ
(τ−1
ρi

(x))|
χ
τ(xi−1,xi)

(x)

=
2

ρ+ 1

1

ρ+ 1
χ

[0, 12 ]
+

2

ρ+ 1

ρ

ρ+ 1
χ

[ 1
2 ,1]

+
2ρ

ρ+ 1

ρ

ρ+ 1
χ

[ 1
2 ,1]

+
2ρ

ρ+ 1

1

ρ+ 1
χ

[0, 12 ]

=

(
2

(ρ+ 1)2
+

2ρ

(ρ+ 1)2

)
χ

[0, 12 ]
+

(
2ρ

(ρ+ 1)2
+

2ρ2

(ρ+ 1)2

)
χ

[ 1
2 ,1]

=

(
2

ρ+ 1

)
χ

[0, 12 ]
+

(
2ρ

ρ+ 1

)
χ

[ 1
2 ,1]
.

The invariant density f is a fixed point of Pτρ . Therefore, f is the unique invariant probability

density function under τρ . The uniqueness follows, for example, by the Folklore Theorem 6.1.1.

in [11]. A natural entry point to delve into the study of maps τρ is to consider τρ when ρ = 1,

because it is one of the famous maps studied in the dynamical systems. It’s called the tent map

τ1 = 1 − |2x − 1|. The τρ is easy to analyze because it is piecewise linear. The τρ possesses rich

dynamics and has several interesting properties. We will start by finding the fixed point of τρ . The

nature of the fixed points plays an important role in analyzing the dynamical behaviour of the map.

The fixed points satisfy the relation τρ(x) = x. There are two fixed points of τρ at x = 0 and at

x =
3ρ+ 1

4ρ+ 2
and they are unstable fixed points (|τ ′(x)| > 1). The plot of τn

ρ
map, n−th iterates

of τρ are shown in the Figure 7.2. τn
ρ

map has exactly 2n periodic points of period n. The set of

periodic points of the tent map is countable and it is dense in [0, 1]. Using the definition of τρ ,

τ2
ρ

= τρ ◦ τρ can be explicitly written as follows:

τ2
ρ
(x) =



(ρ+ 1)2x, for 0 ≤ x < 1
2(ρ+1)2

(ρ+1)2

ρ x+
(
ρ−1
2ρ

)
, for 1

2(ρ+1)2 ≤ x < 1
2(ρ+1)

−
(
ρ+1
ρ

)2
x+ 1

2

(
ρ+1
ρ

)2
+
(
ρ−1
2ρ

)
, for 1

2(ρ+1) ≤ x <
1
2 −

ρ
2(ρ+1)2

− (ρ+1)2

ρ x+ (ρ+1)2

2ρ , for 1
2 −

ρ
2(ρ+1)2 ≤ x < 1

2

(ρ+1)2

ρ x− (ρ+1)2

2ρ , for 1
2 ≤ x <

1
2 + ρ

2(ρ+1)2(
ρ+1
ρ

)2
x− 1

2

(
ρ+1
ρ

)2
+
(
ρ−1
2ρ

)
, for 1

2 + ρ
2(ρ+1)2 ≤ x < 2ρ+1

2(ρ+1)

− (ρ+1)2

ρ x+ (ρ+1)2

ρ +
(
ρ−1
2ρ

)
, for 2ρ+1

2(ρ+1) ≤ x < 1− 1
2(ρ+1)2

− (ρ+ 1)2 x+ (ρ+ 1)2 , for 1− 1
2(ρ+1)2 ≤ x < 1

(7.1.5)
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Figure 7.2: First, Second, Third and Sixth Iterate for the τρ Map, ρ = 4.

7.2 Conjugation approach

Conjugation approach, developed by Ulam (1960 [51]) Grossman and Thomae (1977 [24]),

Gyorgyi and Szepfalusy (1984 [25]), Baranovsky and Daems (1995 [6]) and Jiang (1995 [31]).

Conjugation function approach, makes use of the following equivalence relation between two map-

pings: The map τ : I → I is conjugate to a piecewise linear map σ : J → J if there exists a

homeomorphism map h : I → J such that τ = h ◦ σ ◦ h−1
. For a σ with a uniform invariant den-

sity, τ can then be found via the conjugating function (see Example 5.5.1 when ρ = 2). Conjugacy

takes orbits of τ to orbits of σ. This follows since we have h(τn(x)) = σn(h(x)) for all x ∈ I ,

so h takes the n−th point on the orbit of x under τ to the n−th point on the orbit of h(x) under σ.
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Similarly, h−1 takes orbits of σ to orbits of τ .

Definition 7.2.1. [25] Let I = [0, 1]. A map τ : I → I is said to be unimodal if there exists

a turning point x∗ ∈ I such that the map τ can be expressed as τ(x) = min {τl(x), τr(x)} =

τl(x) · χ
[0,x∗] + τr(x) · χ

[x∗,1]
, where τl : [0, x∗] → I and τr(x) : [x∗, 1] → I are continuous,

differentiable except possibly at finite points, monotonically increasing and decreasing, respectively,

and onto the unit-interval in the sense that τl(0) = τr(1) = 0 and τl(x∗) = τr(x
∗) = 1.

A unimodal map τ : I → I is said to be complete chaotic if it is chaotic in a probabilistic sense

that it preserves an absolutely continuous invariant measure, i.e., there exists such an absolutely

continuous invariant measure, denoted as η, that the following identity is held for any measurable

subset A of I:

η(A) = η(τ−1(A)).

By the previous definition, τρ is a class of unimodal complete chaotic maps.

Now, to explain the conjugation function approach, we start with the τρ , with a density function

fτρ (x) = 2
ρ+1χ[0, 12 ]

(x)+ 2ρ
ρ+1χ[ 1

2 ,1]
(x). Let h : [0, 1]→ [0, 1] be defined by h(x) = x

2−x . Consider

the map σρ(x) =
(
h ◦ τρ ◦ h−1

)
(x). We have

σρ(x) =



(ρ+1)x
1−ρx , for 0 ≤ x < 1

4ρ+3

5ρx+ρ+3x−1
3ρ−ρx−3x+1 , for 1

4ρ+3 ≤ x <
1
3

3ρ−ρx−3x+1
5ρx+ρ+3x−1 , for 1

3 ≤ x <
2ρ+1
2ρ+3

−(ρ+1)(x−1)
−ρ+ρx+3x+1 , for 2ρ+1

2ρ+3 ≤ x < 1

(7.2.2)

By Theorem 2.5.10, the density function of σρ is fσρ = (fτρ ◦ h
−1).|(h−1)′|, and we have

fσρ (x) =


2
ρ+1

2
(1+x)2 , for 0 ≤ x < 1

3

2ρ
ρ+1

2
(1+x)2 , for 1

3 ≤ x < 1

.

See Figure 7.3.
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Figure 7.3: (Top) τ5 and σ5 maps. (Middle) The graph of fσ5
(x). (Bottom) The histogram of

250000 iterations of σ5 (approximation to the invariant density).
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7.3 Lyapunov exponent and autocorrelation properties

The theory of autocorrelation functions is given in most books on time series analysis, for ex-

amples [37], [17] and [33]. In this section, we explain the relationship between chaotic maps and

the important concepts of Lyapunov exponent, mean functions, autocovariance functions, and auto-

correlation functions.

For a 1−dimensional map, the Lyapunov exponent gives the average rate of divergence of tra-

jectories over the attractor. We used definition from [15].

Definition 7.3.1. For discrete system (one-dimensional maps or fixed point iterations) xn = τ(xn−1)

and for an orbit starting with x0 , the Lyapunov exponent can be defined as follows:

λ(x0) = lim
n→∞

1

n

n−1∑
i=0

log |τ ′(xi)| (7.3.2)

The Lyapunov exponent can be negative (stable fixed point), zero (bifurcation point), and pos-

itive (chaos). In [2] a chaotic orbit of a map τ is defined to be a bounded orbit with a positive

Lyapunov exponent. If µ is an ergodic invariant measure for τ , then the right hand side in Equa-

tion 7.3.2 converges to
∫ 1

0 log |τ ′(x)|dµ by the Birkhoff Ergodic Theorem. Thus
∫ 1

0 log |τ ′(x)|dµ

measures the exponent of the speed of the divergence.

Definition 7.3.3. The number
∫ 1

0 log |τ ′(x)|dµ is called the Lyapunov exponent of τ .

It is straightforward to calculate the value of the Lyapunov exponent of τρ because τρ is a

piecewise linear map and it is related to the slopes of the map segments. Then we have

∫ 1

0
log |τ ′

ρ
(x)|dµ = log(ρ+ 1)− ρ

ρ+ 1
log(ρ). (7.3.4)

The value of the Lyapunov exponent in Equation 7.3.4 is positive since

(ρ+ 1) log(ρ+ 1) > (ρ) log(ρ),

that is a signature of chaos. The Lyapunov exponent is dependent on the value of the ρ, when the
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value of ρ increases, the value of the Lyapunov exponent decreases.

lim
ρ−→∞

(∫ 1

0
log |τ ′

ρ
(x)|dµ

)
= lim

ρ−→∞

(
log(ρ+ 1)− ρ

ρ+ 1
log(ρ)

)
= 0 (7.3.5)

The Figure 7.4 shows the values of the Lyapunov exponent (Equation 7.3.2) for τ3 are getting

arbitrarily close to the value 0.2442190501 which we calculated by Equation 7.3.4 and the values

of the Lyapunov exponent for τ20 are getting arbitrarily close to the value 0.08314310874.

Figure 7.4: The Lyapunov exponent for τ3 (left). The Lyapunov exponent for τ20 (right). For lags
1− 300.

Autocorrelation is another of the statistical properties of chaotic maps. We use the definition of

autocorrelation in [37] to find how quickly two approaching trajectories diverge.

We calculate

C(k) =

∫ 1

0

(
τn+k
ρ

(x)− τρ(x)
)(

τn
ρ

(x)− τρ(x)
)
dµ(x)

=

∫ 1

0
τn+k
ρ

(x)τn
ρ

(x)dµ(x)−
(
τρ(x)

)2
,

(7.3.6)

and

C(0) = τ2
ρ
(x)−

(
τρ(x)

)2
, (7.3.7)

where

τρ(x) =

∫ 1

0
τn
ρ

(x)dµ(x), ∀n. (7.3.8)
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τ2
ρ
(x) =

∫ 1

0

(
τn
ρ

(x)
)2
dµ(x). (7.3.9)

Note that τn
ρ

denotes n−times composition of the map τρ . The mean function τρ(x) is indepen-

dent of n since the integral is with respect to the invariant measure. By Equation 7.3.6, if C(k) = 0,

then there is no correlation.

The definition of the autocorrelation coefficient of a stochastic process is

R(k) =
C(k)

C(0)
, R(0) = 1. (7.3.10)

For n = 1, the following are calculated for τρ

C(0) =
ρ2 + 14ρ+ 1

48(ρ+ 1)2
, (7.3.11)

τρ(x) =
3ρ+ 1

4(ρ+ 1)
, (7.3.12)

and

C(k) =

∫ 1

0
τ1+k
ρ

(x)τρ(x)dµ(x)−
(
τρ(x)

)2
. (7.3.13)

τρ τρ(x) C(0) R(1) R(2) R(3) R(4) R(5)

τ2 0.583333 0.076388 -0.171717 0.057239 -0.019079 0.006359 -0.002119
τ4 0.650000 0.060833 -0.336986 0.202191 -0.121315 0.072789 -0.043673
τ7 0.687500 0.048177 -0.466216 0.349662 -0.262246 0.196684 -0.147513
τ15 0.718750 0.035481 -0.634174 0.554902 -0.485539 0.424847 -0.371741
τ30 0.733870 0.028637 -0.765524 0.716135 -0.669933 0.626712 -0.586279
τ99 0.745000 0.023308 -0.910625 0.892413 -0.874564 0.857073 -0.839932

Table 7.1: Table for autocorrelation function values when n = 1, for lags 1− 5.

We conclude from the Table (7.1) and from the Figure (7.5), that the autocorrelation function

R(k) decays from R(0) = 1 down to zero. The autocorrelation function is dependent on the value

of the ρ. When the value of ρ increases, the absolute value of the autocorrelation function increases.

For large values of ρ the autocorrelation function decays slowly to zero. If ρ are close to 1 leading

to a rapid decay of the autocorrelation function, and approaching trajectories diverge rapidly. τρ is
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Figure 7.5: Autocorrelations R(k)(n=1) for τ15(x) map, for lags 1− 100.

mixing since C(k) −→ 0 as k −→ ∞ for every ρ. Note that, mixing implies weak mixing and

weak mixing implies ergodicity.

Note that,

∫ 1

0

(
τn+k
ρ

(x)− τn
ρ

(x)
)2
dµ(x) =

∫ 1

0

(
τn+k
ρ

(x)
)2
dµ(x)− 2

∫ 1

0
τn+k
ρ

(x)τn
ρ

(x)dµ(x)

+

∫ 1

0

(
τn
ρ

(x)
)2
dµ(x).

(7.3.14)

We have

C(k) = τ2
ρ
(x)−

(
τρ(x)

)2
− 1

2

∫ 1

0

(
τn+k
ρ

(x)− τn
ρ

(x)
)2
dµ(x)

= C(0)− 1

2

∫ 1

0

(
τn+k
ρ

(x)− τn
ρ

(x)
)2
dµ(x).

(7.3.15)

Then, we calculate

2 (C(0)− C(k)) =

∫ 1

0

(
τn+k
ρ

(x)− τn
ρ

(x)
)2
dµ(x). (7.3.16)

99



Chapter 8

Conclusion

In this thesis, we used the Perron-Frobenius operator Pτ with respect to the single map τ and

PT with respect to the random map with constant probabilities T , to discuss the properties of the

Frobenius-Perron operator with respect to the nonautonomous random map T̂n0 and to prove the

existence of an absolutely continuous invariant measure for the nonautonomous random maps on

[a, b] using the theory of bounded variation and the Lasota-Yorke inequality from [42]. We extend

the Lasota-Yorke inequality, in [36], into a form for the composition function that constructed from

a piecewise C2 transformations.

We present results on the existence of invariant measures for nonautonomous random dynamical

systems, generalizing Krylov-Bogoliubov Theorem.

We discuss the dynamics of a new family of transformations. We find the invariant density for

any transformation belonging to our family and the special properties for this family allowed us to

get a unique acim under the random maps with constant probabilities T which is constructed from

our family maps. We created two classes of chaotic maps with desired invariant densities by using

one parameter ρ. We studied the Lyapunov exponent and the autocorrelation properties for one of

these classes.

The multiplicity of the topics and the results in this thesis give us a great horizon for looking

forward to the next steps. In chapters 3 − 4, we present results on ergodic theory for the random

maps with constant probabilities which are constructed from continuous maps on compact space,

which build our ability to study the ergodic theory of multidimensional random maps on compact
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space. We also aspire to study ergodic theory for other spaces like Polish space ( Polish space is a

separable completely metrizable topological space). In chapters 5− 7, Our study focus on a type of

transformations, which is a piecewise linear transformations. We will continue to study this type of

transformations and try to find more results and more practical applications in the real life.
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[22] Góra, P. ; Boyarsky, A. A matrix solution to the inverse Perron-Frobenius Problem. Proceed-

ings of the American Mathematics Society, Vol. 118, No.2 1993.

103
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[49] Słomczyń ski, W. ; Kwapień, J. ; Życzkowski, K. A random map model for quantum interfer-

ence. Chaos: An Iterdis. Journal of Nonlinear Science 10 2000, 180.

[50] Swishchuk, A. ; Islam, S. Random Dynamical Systems in Finance. Taylor and Francis Group

2013.

[51] Ulam, S. M. A Collection of Mathematical Problems. Interscience 1960.

[52] Ulam, S. ; Von Neumann, J. On combination of stochastic and deterministic processes. Amer-

ican Mathematical Society 53 1947, 1120.

[53] Walkden, C. Ergodic Theory CUP 2002. (ISBN0521808413).

[54] Wei, N. Solutions of the Inverse Frobenius-Perron Problem. A Thesis for The Department of

Mathematics and Statistics, Concordia University 2015.

106


	List of Figures
	Introduction
	Background
	Review of dynamical systems and ergodic theory
	Frobenius-Perron Operator
	Spaces of Functions and Measures
	Krylov-Bogolyubov Theorem 
	Some theorems on the existence of acim's
	Random dynamical systems
	Skew product

	The existence of absolutely continuous invariant measures for random maps
	Random maps of piecewise linear Markov transformations and the Frobenius-Perron operator:


	Existence of invariant measures for continuous random maps. 
	Measurable transformation
	The Generalization of Krylov-Bogoliubov Theorem for random maps

	Existence of an absolutely continuous invariant measure for nonautonomous random maps
	Definitions and notations for nonautonomous random dynamical systems.
	Existence of invariant measures for continuous nonautonomous random maps.
	Existence of an absolutely continuous invariant measure for the limit map.
	Properties of the Frobenius-Perron operator with respect to T"0362Tn0 .
	Existence of an absolutely continuous invariant measure for the nonautonomous random maps on [a,b].

	On the absolutely continuous invariant measures for the random maps:
	Introduction
	Some properties of T  and the main result with motivating examples. 
	The main result proof.
	 Proposition 5.2.2 proof.

	More results in random map with constant probabilities which is constructed from T.
	Examples of the conjugation transformations.
	Absolutely continuous invariant measures for a large class of transformations

	On a particular class of Markov transformations 
	Preliminaries
	A class of transformations belonging to the class of Markov transformations

	Create chaotic maps.
	Matrix approach.
	The Ulam's matrix
	The chaotic map

	Conjugation approach
	Lyapunov exponent and autocorrelation properties

	Conclusion

