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Abstract 

Control-Oriented Thermal Network Models for Predictive Load Management 

in Canadian Houses with On-Site Solar Electricity Generation: Application to 

a Research House 

Seyed Matin Abtahi 

This study presents a methodology to develop suitable control-oriented thermal RC 

network models for optimized HVAC load management in typical electrically heated 

single-family detached houses. Using recurring parameter identification and model-reset, 

the building dynamics are represented by an explicit discrete time-varying state-space 

formulation.  

Next, these models are applied in a predictive control framework in which the objective 

is to enhance energy efficiency and energy flexibility of the building by prioritizing the 

import from the most efficient energy source(s), storing energy in the building's thermal 

mass and/or a battery, and shifting the HVAC load to lower the stress on the local grid. 

Finally, the benefits of predictive control strategies for HVAC load management, both 

for the building owners and the local grid, are studied through a seasonal simulation where 

the performance of the building subject to a reference reactive controller and a predictive 

controller are compared. Applying the predictive controller, the results show an average of 

12.1% reduction in the daily heating load, 19.8% reduction in the total daily import, 68.1% 

reduction in the peak demand, 67.0% reduction in the daily energy cost, and 13.4% increase 

in the self-consumption of on-site generated solar electricity for the duration of January 1st 

to March 31st (90 days), compared to the reactive controller. 
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Nomenclature 

 

T̂i Measured temperature of node i (°C) 

Awindow Effective window size (m2) 

Cbatt Total electrical charge inside battery (Ah) 

Cbatt,ref Battery capacity (Ah) 

Ci Thermal capacitance of node i (J/°C) 

ei Difference between measured temperature and setpoint of node i (°C) 

Gtot Total incident irradiance on PV array (W/m2) 

Gvert Total incident irradiance on vertical surfaces (W/m2) 

Ibatt,c Battery charge current (A) 

Ibatt,d Battery discharge current (A) 

KI Integral constant of PI controller (W/˚C.s) 

KP Proportional constant of PI controller (W/°C) 

Nc Control horizon (h) 

Nh Prediction horizon (h) 

NID Identification period length (h) 

np Number of parallel strings in PV array (-)  

ns Number of modules in a string of PV array (-) 

Pbatt Power to/from battery (W) 

Pmax Rated maximum power of PV array (W) 

Pnet Net electrical power demand from grid (W)  

Ppv Predicted PV generation (W) 

Qaux,i Auxiliary heat from the electric heater at node i (W) 

Qi Total heat generated and/or received at node i (W) 

Qsol,i Solar Gains at node i (W) 

Rij Thermal resistance between node i and node j (°C/W) 

SoCbatt Battery state of charge (%) 

Tcell PV cell temperature is estimated (°C) 

Tgrd Average soil temperature (°C) 

Ti Predicted temperature of node i (°C) 

Tout Outside ambient air temperature (°C) 

Tsp,i Temperature setpoint of node i (°C) 

Uij Thermal conductance between node i and node j (W/°C) 

Vbatt,nom Battery nominal voltage (V) 

αi Solar utilization factor of node i (-) 

δt Sampling time (s) 

ηinv Inverter efficiency 

λ PV cell temperature coefficient (-) 



 

Chapter 1: Introduction 

1.1 Background 

In the province of Québec, 94% of generated electricity comes from hydroelectric  plants 

(Le Bel & Gelinas, 2012). Québec primary electricity  generation was 170,260 GWh in 

2011 (Statistics Canada, 2011b), while household energy  use of electricity was 56,272 

GWh, 33% of total electricity generation. 

Fig.  1.1 shows that 82% of Québec’s households reported electricity as their main  

heating fuel (Statistics Canada, 2011a). This figure also shows 66% of houses in Québec 

reported using baseboards as the main heating equipment and 9% reported electric radiant 

heating. It is expected that the installation of electric space heating will increase over the 

coming years due to their low initial and operating cost. The shape of the region's demand 

profile is strongly coincident with the demand profile of residential sector. 

  

Figure 1.1:  Heating fuels (left) and equipment (right) used in Québec, 2011  

 

Due to its cold winter weather, Québec has a  high space heating demand. In the winter, 

the peak demand periods typically occur on very cold weekday mornings between 6:00 and 

9:00, and/or evenings between 16:00 and 20:00 (Fig. 1.2) during which space heating 

represents up to 80% of the total demand of the households (Le Bel & Handfield, 2008) 

and effectively puts the grid under stress. 

The total generating capacity of the Québec’s grid from 87 stations which are operated 

by Hydro- Québec is 37.3 GW (Belanger, 2018). In January 2013 there was a reported peak 

demand of 39.1 GW (Hydro- Québec, 2013). Therefore, in Québec, electric space heating 
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in residential sector is a relevant load for demand response in the winter. Finding practical 

ways to shift and/or shave the load during the peak period can significantly reduce the 

stress on the grid. The newly-introduced dynamic tariff (Rate Flex-D) in combination with 

tailored instructions from a Hydro-Québec subsidiary (Hilo) gives the residential 

customers the opportunity to actively reduce the pressure on the grid and save money 

during the peak periods, by shifting the load to the off-peak periods when electricity is 

cheaper. 

 

Figure 1.2:  Normalized power demand of the grid in Québec on a typical very cold day of 

winter (Team MTL engineering narratives for Solar Decathlon China, 2018) 

 

Even though it has been repeatedly reported that advanced control strategies 

significantly improve the operation of HVAC systems and reduce their carbon footprint, 

still the majority of buildings adopt simple on/off control or PID controllers with limited 

capacity for energy savings (Afram et al., 2014). Reactive approaches attempt to maintain 

a predefined profile of setpoint for different variables (e.g., inside air temperature, humidity 

and state of charge (SoC) of energy storage devices), with no regard to future weather 

conditions and energy price. Relatively large oscillation from the temperature setpoint 

when adopting on/off control and improper performance of untuned PID controllers are 

other drawbacks of rule-based control (RBC) techniques (Kuboth, Heberle, Konig-Haagen 

& Brüggemann, 2019). 
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On the other hand, buildings are also expected to play a major role in the high 

penetration of decentralized renewable energy. Solar electricity appears to have the greatest 

potential for renewable integration due to the significant drop in the price of photovoltaic 

(PV) technologies and also, the unutilized roof spaces (Mavromatidis et al., 2015); 

However, a major challenge associated with the integration of intermittent solar electricity 

generation and the building is the mismatch between the period of maximum solar 

generation and the peak consumption and/or high energy price periods (Date et al., 2020). 

High-accuracy weather forecasts and digitalization facilitate the adoption of advanced 

control strategies using dynamic programming (DP) such as model predictive control 

(MPC), in buildings. MPC uses a mathematical model of the building to predict its future 

behaviour, based on which optimal control actions are implemented to systematically 

satisfy the occupants’ thermal comfort while ensuring energy savings, grid flexibility 

services and/or maximization of self-consumption (Drgona et al., 2020).  

 

1.2 Scope & Objectives 

The main objectives of this study are: 

1. To develop suitable control-oriented thermal network models for optimal HVAC load 

management in an experimental house for building energetics (EHBE) which represents 

typical Canadian single-family detached houses. The building dynamics are represented by 

an explicit discrete time-varying state-space model through recurring parameter 

identification considering the uncertainty of parameters. 

2. To apply the developed models in an MPC framework for day-ahead operation 

planning that enhances energy efficiency and energy flexibility of the building by storing 

energy in the building’s thermal mass and/or a battery, and shifting the load to reduce the 

demand for electricity as needed/incentivized by the grid. 

3. To compare the performance of the HVAC system subject to a reference reactive 

controller and a predictive controller within seasonal simulations to quantify the benefits 

of MPC for HVAC load management in the Canadian residential context, both for the 

building owners and the local grid. 
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1.3 Outline 

 The following list summarizes the content of each chapter in this thesis: 

Chapter 1) Introduction: Presents the motivation, the scope and the objectives of the 

research as well as the thesis outline. 

Chapter 2) Literature Review: Presents a review on different building’s thermal load 

modelling approaches with focus on gray-box modelling and proceeds by reviewing the 

literature and previous works in application of MPC, mostly in residential context. 

Chapter 3) Methodology: Starts with a description of the Hydro-Québec Experimental 

House for Building Energetics (EHBE) and explains the methodology used to develop and 

calibrate the low-order RC thermal network and PV/battery performance models. Next, the 

application of developed models in an MPC framework where the objective is to enhance 

energy efficiency and energy flexibility of the building is presented. Finally, the benefits 

of predictive control strategies for HVAC load management are showcased through a 

seasonal simulation where the performance of the heating system subject to a reference 

reactive controller and a predictive controller are compared. 

Chapter 4) Conclusions: Includes a summary of the main contributions and the 

recommendations for future work. 
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter reviews the literature related to the building thermal load modeling and 

discusses different approaches in section 2.2. This review will also provide an overview of 

building thermal load model calibration in section 2.3, with specific attention to frequently 

used statistical indices. Another topic presented in section 2.4 is the literature and previous 

works in application of predictive control in the buildings, mainly in the residential context. 

Finally, section 2.5 reviews the definitions and drivers of energy flexibility in buildings. 

 

2.2 Building thermal load modeling 

The most common purpose of thermal load modeling is to study different design options 

and respective energy profiles and carbon footprint. To slow down the demand growth and 

reduce the amount of energy used within existing buildings, it is crucial to understand the 

energy distribution throughout a building and how each parameter contributes to the 

demand (Langner et al, 2012). Energy consumption analysis of buildings is an effortful 

task as it requires detailed knowledge of interactions among the building, the HVAC 

system and the surroundings or external factors such as weather, as well as obtaining 

mathematical and physical models that effectively characterize each of those items. The 

dynamic behaviour of weather conditions, building operations and occupant behaviour, and 

the presence of multiple variables, require computer simulations in the design and 

operation of high-performance buildings.  

Building thermal modeling involves three main research approaches (Foucquier et al., 

2013). First, the white-box modelling approach, based on the principles of heat transfer 

and conservation of energy and mass with physically meaningful parameters that are 

identified from geometry, material properties and equipment specifications. Second, the 

black-box modelling approach, based on machine learning (ML) techniques with 

parameters that are identified from the measured data with no assumption regarding the 

building geometry, envelope and equipment. And finally, a hybrid approach (gray-box), 
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based on simplified physical relationships with parameters identified from the measured 

data. 

 

2.2.1 White-box approach 

The physics-based approach to building thermal modeling is based on the solving of 

equations describing the physical behaviour of heat transfer throughout the building. The 

principal thermal fluxes are conduction through the walls, convection, long wave and 

shortwave radiation and the ventilation. 

 

Figure 2.1: Heat transfers through an external wall (Yan et al., 2017) 

 

Heat storage capacity and heat transmissibility are the fundamental thermal properties 

of building elements. Walls, ceilings, floors and the air inside enclosures are building 

components that can store energy. The capacity of these elements in storing energy is a 

function of their mass and their specific heat capacity. Heat is not only stored, but it can be 

transmitted through building elements in different ways.  

Due to the perfect analogy between diffusion of heat and electrical charge, a useful 

representation of a thermal network utilizes an RC circuit analogue where heat storage is 
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represented by capacitors and heat transmission by resistors. Lumped element approach 

further simplifies the description of spatially distributed RC networks into a topology 

consisting of discrete entities and approximates dynamics of the network, assuming that all 

the elements of the network are concentrated into idealized components. This approach 

reduces a thermal RC network to several discrete control volumes (CV) and assumes that 

the temperature difference within each CV is negligible. Thus, it is a common simplifying 

approximation in transient conduction, which can be employed whenever heat conduction 

within a CV is much faster than heat transfer across its boundaries. From this scheme it is 

possible to derive the equations that govern the thermal dynamics of the building with 

finite-difference (FD) (Athienitis et al., 1985; Goyal & Barooah, 2012; Hazyuk et al., 2012; 

Date et al., 2015), state-space (SS) (Athienitis et al., 1990; Candanedo et al., 2011 & 2015) 

or conduction transfer function (CTF) (Armstrong, Leeb & Norford, 2006; Zakula, 

Armstrong & Norford, 2014; Blum, Xu & Norford, 2016) formulation. 

 

Figure 2.2: Schematics of a sample resistance thermal RC network (Buonomano, 2016) 

 

Goyal & Barooah (2012) used the lumped parameter RC analogy to predict the 

temperature and the humidity in multi-zone buildings from outside temperature and 

humidity, heat gains from occupants and solar radiation, supply air flow rates and supply 

air temperatures. Their objective was to decrease the order of this model by testing several 

reduction methods. Hazyuk et al. (2012) developed multi zone model using lumped 

parameter RC analogy and proposed a description of the walls and the floor by two 

identical resistances and one capacity. The thermal mass is characterized by a single 

capacity and windows by single resistances. Athienitis et al. (1985) used the same approach 

to model multi-zone passive solar buildings. The main advantage of the state-space 
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formulation is the facilitated integration of design and control (Chen et al., 2013) and the 

main disadvantage is the difficulty of accommodating non-linearity, such as temperature 

dependent heat transfer coefficients. However, in practice, linearization of heat transfer 

phenomena is often an acceptable compromise (Shou, 1991). 

Athienitis & O’Brien (2015) state that commonly introduced assumptions in 

mathematical models to facilitate representation of the building thermal behaviour are: 

1. Linearization of heat transfer: Convective and radiative heat transfer are nonlinear 

processes and the respective heat transfer coefficients are usually linearized so that the 

system energy balance equations can be solved by direct linear algebra techniques and, if 

desired, represented by a linear thermal network. Linearization generally introduces less 

error for long-wave radiant exchanges between surfaces than convection between surfaces 

and room air. A linear lumped parameter system can be represented by a set of ordinary 

differential equations and thermal networks. An important subset of linear systems is those 

with time varying coefficients, an important case in building energy analysis, where we 

can often represent thermal conductances as known variable level of natural ventilation or 

time-varying infiltration. 

2. Spatial and/or temporal discretization: Transient heat conduction is described by a 

parabolic, diffusion type partial differential equation. Thus, when using finite difference 

methods, a conducting medium with significant thermal capacity such as concrete or brick 

must be discretized into a number of CVs which may be modelled by lumped network 

elements. Also, time domain discretization is required in which an appropriate time step is 

employed. 

3. Approximations for appropriate model resolution: These approximations are 

employed in order to reduce the number of simultaneous equations to be solved and the 

required data input or to enable the derivation of analytical solutions. Combining radiative 

and convective heat transfer coefficients, assuming that surfaces are at the same 

temperature, or considering certain heat exchanges as negligible are some examples. 

The one-dimensional heat transfer process for a section is governed by the following 

parabolic, diffusion-type partial differential equation:  

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
                                                                                                                                                        (2.1) 

where: 
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𝛼 =  𝑘/𝜌𝑐 = thermal diffusivity 

k = thermal conductivity 

ρ = density  

c = thermal capacitance 

In explicit finite difference schemes, the temperature at time n+1 depends explicitly on 

the temperature at time n. The explicit finite difference discretization of Eq. 2.1 is: (α and 

∆x2 are assumed to be the same on all sides of the node i)  

𝑇𝑖
𝑛+1−𝑇𝑖

𝑛

𝛥𝑡
= 𝛼

𝑇𝑖+1
𝑛−2𝑇𝑖

𝑛+𝑇𝑖−1
𝑛

𝛥𝑥2                                                                                                               (2.2)  

This can be rearranged in the following manner: 

𝑇𝑖
𝑛+1 =  𝑇𝑖

𝑛 +  𝛼𝛥𝑡
𝑇𝑖+1

𝑛−2𝑇𝑖
𝑛+𝑇𝑖−1

𝑛

𝛥𝑥2                                                                                                 (2.3)  

Ti+1
n, Ti

n and Ti-1
n are all known, thus Ti

n+1 is computable. This is schematically shown 

on Fig. 2.3. The main advantage of explicit finite difference method is its relative simplicity 

which makes this method computationally fast. However, the main drawback is that stable 

solutions are obtained only when the following condition is satisfied: 

0 ˂
 𝛼𝛥𝑡

𝛥𝑥2  ˂ 0.5                                                                                                                                                  (2.4)  

If this condition is not satisfied, the solution becomes unstable and starts to wildly 

oscillate. The explicit finite difference method is particularly suitable for modeling of non-

linear heat diffusion problems such as heat transfer through a section. It can easily 

accommodate non-linear heat transfer coefficients and control actions.  

 

Figure 2.3: Explicit finite difference discretization (Jennifer Date, 2015) 
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In the transient one-dimensional finite difference thermal network, a node with a 

thermal capacitance, C, connected to two thermal resistances, R, each equal to half the R-

Value of the layer, forms a T-section that represents each sub-layer of the section. For a 

multi-layered section, an energy balance is applied at each node at regular time intervals to 

obtain the temperature of the nodes as a function of time. These equations may be solved 

with implicit method as a set of simultaneous equations or with the explicit method, in 

which we march forward in time from a set of initial conditions. The general form of the 

explicit finite difference formulation corresponding to node i and time interval n is: 

𝑇𝑖
𝑛+1 =  𝑇𝑖

𝑛 +
𝛿𝑡

𝐶𝑖
(𝑄𝑖

𝑛 + ∑
𝑇𝑗

𝑛−𝑇𝑖
𝑛

𝑅𝑖,𝑗
𝑗 )                                                                                               (2.5) 

where n + 1 indicates the next time step, j is all the nodes connected to the node i and 

Q is the heat sources at the node i. When the thermal capacitance C can be negligible, the 

equation is as follows: 

𝑇𝑖
𝑛+1 = (𝑄𝑖 + ∑

𝑇𝑗
𝑛

𝑅𝑖,𝑗
𝑗 ) ∑

1

𝑅𝑖,𝑗
𝑗⁄                                                                                                               (2.6) 

A proportional-integral (PI) control algorithm can approximate the auxiliary heat by the 

heating system. The relationships for thermal energy satisfied by the heating system and 

the corresponding power demand are expressed, respectively, as: 

𝑄𝑎𝑢𝑥
𝑛+1 =  𝑘𝑝(𝑇 𝑠𝑝

𝑛 − 𝑇 𝑎𝑖𝑟
𝑛) + 𝑘𝑖 ∑ (𝑇 𝑠𝑝

𝑘 − 𝑇 𝑎𝑖𝑟
𝑘)𝑛

𝑘=0 . 𝛿𝑡                                            (2.7) 

𝑃𝐿𝑜𝑎𝑑 =  𝑄𝑎𝑢𝑥 𝑐𝑜𝑝⁄                                                                                                                                     (2.8) 

where:  

kp = Proportional control constant 

ki = Integral control constant 

sp = Air temperature setpoint 

Tair = Actual measured air temperature 

cop = Heating system’s coefficient of performance 

 

2.2.2 Black-box approach  

Problems in which there is no insight into the physical properties or prior knowledge of 

the process under study are dealt with differently; a data-driven approach that 

mathematically connects the system input(s) to its output(s) without including any physical 



11 

 

meaning in the equation parameters is useful for solving such problems. Black-box models 

are built using data gathered from the system responses to disturbances and/or controlled 

inputs. 

In building energy analysis, multiple linear regression (MLR) and artificial neural 

networks (ANN) are usually used for the prediction of the energy consumption or the 

forecasting of energy use as the cooling or heating demand without knowing the geometry 

or the thermal properties of the building.  

 

2.2.3 Gray-box approach 

A large amount of measured data is required to identify the parameters used for complex 

models that represent multi-zone buildings; thus, it is crucial to consider reduced-order 

models with a simpler structure and fewer parameters for the ease of parameter estimation 

and data fitting. In practice, there is a trade-off between the model accuracy and its 

computational complexity that can be addressed by choosing an appropriate order of 

reduction. 

 

 

Figure 2.4: Data science continuum and the concept of gray-box modeling (Top: Duun-

Henriksen, 2013 – Bottom: Sedar, 2016) 
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The principle of gray-box (hybrid) approach is based on coupling of physics-based and 

mathematics-based approaches, where a combination of prior physical knowledge and 

data-driven modelling is utilized. Gray-box modeling is a comprehensive and accurate 

method to model dynamic systems and obtain knowledge of the building’s thermal 

properties. A sufficient gray-box model is the smallest model that describes all the useful 

information embedded in the data (Bacher & Madsen, 2011). 

Detailed building models that are commonly used to optimize building designs require 

thousands of parameters, which makes them unsuitable for classical parameter 

identification techniques. Models with fewer parameters facilitate setting-up initial states, 

also reduce the number of calculations required by the optimization algorithm. Simplified 

models have been applied to the study of advanced building controls, but a systematic 

methodology to generate simplified models for control applications is still needed. 

Robust parameter identification is the main challenge related to the development of 

gray-box models. The parameters of gray-box models have physical meaning and offline 

or online mathematical techniques are implemented to identify their values. The offline 

approach identifies the values by minimizing the model error over a specific period, once 

or frequently; however, a global optimization such as the multi-start technique (De Coninck 

et al., 2016) is required due to various local optima (Drgona et al., 2020).  The online 

approach can be formed for example based on Bayesian calibration techniques (Rouchier, 

Jimenez, & Castano, 2019; Shi & O’Brien, 2019) or re-initializing the optimization within 

the “model-reset” approach (Date et al., 2020). In contrast to black-box models that achieve 

higher accuracy if trained on more data, gray-box models’ accuracy tends to decline if the 

training period is too long relative to the involved thermal mass. Braun and Chaturvedi 

(2002) showed one to two weeks of data is sufficient to train a reduced-order thermal RC 

network model to predict transient cooling load accurately. Arendt et al. (2018) showed 

value identification in a reduced-order thermal RC network model may result in an 

overestimation of the thermal mass if the training period is unreasonably long. Blum et al. 

(2019) concluded that the optimal training period length depends on the horizon of the 

optimal control problem and suggested that regular re-calibration is necessary. 
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2.3 Model calibration 

Calibration of a model is the process of obtaining outputs from that model, which are 

very close to the measured data. Generally, calibrating a model implies adjustment of the 

model parameters within a reasonable range to achieve a representation of the reality that 

produces reliable outputs. Reddy (2006) states that the followings are the main sources of 

uncertainties, which cause error: 

1. Improper model assumptions and simplifications due to use of semi-empirical models 

and/or inaccuracies in the physical model 

2. Improper input parameters due to user’s lack of experience (they often have to assume 

or predict certain input parameters like air infiltration) and/or inaccurate specification of 

material properties and systems structures (mainly HVAC) 

3. Inaccurate numerical algorithms, mathematical model limitations and errors in 

simulation code 

The match between the predicted and the measured values can be assessed and 

minimized using different statistical indices. Some of the most used indices for this matter 

are: 

1. The root mean squared error (RMSE), which estimates the magnitude of the error. In 

other words, RMSE shows how much spread exists in the difference between measured 

and predicted values: 

𝑅𝑀𝑆𝐸 = √∑(𝑀 − 𝑃)2/𝑁                                                                                                                      (2.9)                                                                                     

where: 

RSME = Root mean squared error;  

P = Predicted value;  

M = Measured value;  

N = Number of values 

2. The dimensionless quantity called the coefficient of variation of the root mean 

squared error (CVRMSE), which quantifies the relative error and is a normalized measure: 

𝐶𝑉𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/𝜇                                                                                                                            (2.10)                                                                                      

where:  

µ = Mean measured value 
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3. The mean bias error (MBE), which represents the average difference between the 

measured values and predicted values: 

𝑀𝐵𝐸 =  ∑(𝑀 − 𝑃)/𝑁                                                                                                                           (2.11) 

ASHRAE Guideline 14 (Reddy, 2006) suggests that when comparing the whole 

building energy consumption, CVRMSE of maximum 15% and MBE of maximum 5%, on 

a monthly basis, or CVRMSE of maximum 30% and MBE of maximum 10%, on an hourly 

basis guarantee a calibrated model. The International Performance Measurement & 

Verification Protocol (IPMVP-Committee, 2002) suggests that when comparing the whole 

building energy consumption, CVRMSE of maximum 5% on a monthly basis, or 

CVRMSE of maximum 20% on an hourly basis guarantee a calibrated model. 

Calibration can be done manually, through trial and error. Varying inputs and observing 

the changes to the outputs, identifies which parameters have a significant impact on the 

output. It is a straight-forward procedure; however, according to Troncoso (1997), a major 

problem with manual calibration of a model is that the analyst has to adjust the input data 

without sufficient evidence on which data should be modified or to what extent. 

Troncoso (1997) presented a methodology to perform a manual calibration of building 

simulation. This calibration methodology is composed of following stages:  

1. Definition of power and schedule of constant loads 

2. Simulation of design days for thermal loads analysis 

3. Sensitivity analysis over input parameters related to significant gain/loss 

4. Adjustment of input values of high level of influence and uncertainty 

5. Whole year simulation and final results 

Another way to calibrate a model is an automatic iterative optimization process, which 

determines the optimal values of all model parameters, given a proper objective function 

and the desired threshold. There are two major problems when performing this automatic 

approach: 

1. It is highly possible that the optimization algorithm finds values, which 

mathematically result in the best possible match but do not have physical meaning. To 

tackle this problem, experience is needed to set up proper initial values and to limit the 

boundaries in which the initial values can change. 
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 2. The result of the optimization depends on the objective function and the threshold. 

Practically, there are several possible objective functions to be minimized for calibrating a 

model, any of which converge a set of values for the parameters.  

Candanedo et al. (2013) suggests that the Euclidean distance between the predicted and 

the measured values is a useful objective function for model calibration. The Euclidean 

distance between points P and Q is the length of the line segment connecting them (𝑃𝑄). 

In Cartesian coordinates, if P = (P1, P2,…, Pn) and Q = (Q1, Q2,…, Qn) are two points in 

Euclidean n-dimensional space, then the Euclidean distance from P to Q, or from Q to P is 

given by the Pythagorean formula: 

𝑃𝑄 = √(𝑃1 − 𝑄1)2 + ⋯ + (𝑃𝑛 − 𝑄𝑛)2 = √∑ (𝑃𝑖 − 𝑄𝑖)2𝑛
𝑖=1                                              (2.12) 

 

2.4 Model predictive control (MPC) 

Accurate live weather forecasts and decreasing costs in sensing and computation 

facilitate the adoption of predictive control strategies based on a simplified building model. 

MPC is an optimal control strategy that employs a mathematical model of the system to 

solve a constrained optimization problem and estimates the optimal set of future actions 

which minimizes (maximizes) a certain objective function with regards to weather forecast 

and price of energy. Constraints of the problem include the physical limitations of the 

system and occupants’ comfort (Winn & Wins, 1985; Kintner-Meyer & Emery, 1995; 

Henze et al., 1997; Henze et al., 2005; Kummert et al., 2006). 

Minimizing the total energy use (Picard & Helsen, 2018; Jorissen, 2018) and cost 

(Bianchini, Casini, Vicino & Zarrilli, 2016; Avci, Erkoc, Rahmani & Asfour, 2013; 

Vrettos, Lai, Oldewurtel & Andersson, 2013) are the most frequent motivations for MPC 

in buildings. Economic MPC could be applied to effectively reduce the peak electricity 

demand (Oldewurtel, Ulbig, Parisio, Andersson & Morari, 2010) or to increase the building 

energy flexibility (Patteeuw, Henze & Helsen, 2016). Cutsem, Kayal, Blum & Pritoni 

(2019) concluded that economic MPC formulation under commercial time-of-use (ToU) 

energy prices could provide services such as load shifting to the grid with the same energy 

cost as conventional control. 

 Another well-studied objective is the maximization of the share of renewable energy 

sources (RES) by incorporating energy storage and advanced control. Tarragona, 
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Fernandez & de Gracia (2020) applied MPC to minimize annual energy costs of a heat 

pump integrated with thermal energy storage (TES) and PV in a detached house located in 

Spain and showed up to 58% savings can be achieved compared to the same system with 

conventional control strategies. Kuboth, Heberle, Konig-Haagen & Brüggemann (2019) 

investigated economic MPC for a residential building with combined thermal and electric 

supply and air source heat pump and reported an 11.6% reduction in operational costs and 

3.5% increase in self-consumption of photovoltaic energy. Cao, Du & Soleymanzadeh 

(2019) concluded employing TES in a commercial building could maintain the occupants’ 

comfort level and increase the flexibility to take part in demand-response (DR) programs, 

and consequently, reduction in energy costs and demand charge. Toradmal et al. (2018) 

investigated boosting the PV self-consumption by optimized scheduling of a heat pump 

and incorporating thermal mass in a residential building and reported considerable 

improvements. Fischer et al. (2017) reported effective cost reduction and increase in PV 

self-consumption when applying MPC to variable-speed air source heat pumps. Salpakari 

& Lund (2016) investigated optimal control strategies for energy flexibility in residential 

buildings with PV, battery and ground source heat pump, and reported a 13–25% reduction 

in energy costs compared to a reference RBC control with a constant price of energy. 

 

2.5 Building energy flexibility 

To reduce greenhouse gas (GHG) emissions, the integration of renewable energy 

sources (RES) to the power grid is vital; however, due to the intermittent nature of these 

sources, this may associate problems such as instability, congestion, and curtailment. To 

mitigate this serious risk, a transition in the perception of energy availability is necessary. 

The production-on-demand principle where energy is thought of as unlimited should be 

replaced by the consumption-on-demand principle where demand management helps to 

minimize the stress on the grid. Demand-side flexibility enables demand-side management, 

which results in reduction of mismatch between demand and supply. 

The International Energy Agency Energy in Buildings and Communities (IEAEBC) 

Annex 67 program defines an “Energy Flexible Building” as “A building which is able to 

manage its demand and generation according to the local climate conditions, user needs 

and grid requirements without jeopardizing indoor comfort and technical requirements of 



17 

 

the building and heating, ventilation and cooling systems.” (Jensen et al., 2017). Buildings’ 

energy flexibility can be utilized to respond to the grid’s requirements and lower the stress 

on it when needed. 

Athienitis et al. (2020) states that energy flexibility may be enhanced by actions ahead 

of the peak periods, and is enabled through 1) building’s thermal mass and modification of 

zone setpoints, 2) thermal storage in HVAC systems, 3) specific active mass systems like 

a radiant slab, 4) integrated operation of heat pumps, possible on-site renewable energy 

generators and thermal storage and 5) battery storage/electric vehicle and controllable 

appliance and lighting. 

Two major applications of demand-side energy flexibility are: (Hydro- Québec, 2019) 

1. Reserve: Thermostatically-controlled and other fast-responsive loads in the 

residential sector may serve as contingency (non-spinning) reserve upon a short notice 

from the grid’s operator, which practically leaves the end users with no time for 

preparation. 

2. Peak load shifting/shaving: Energy flexible end users can shift/cancel the operation 

of equipment and/or appliances during the peak demand period. They possibly can 

discharge a thermal storage medium to maintain the comfort and consume less power for 

air conditioning or discharge an electrical storage to reduce the power demand directly. An 

early notification from the grid’s operator gives them enough time to charge their thermal 

and/or electrical storage mediums. 

Buildings may potentially support other grid ancillary services, such as spinning 

reserves, frequency stability or voltage regulation; but only if responsive and reliable at 

short notice. 

Two of the most referred performance indicators for buildings with PV system are self-

generation and self-consumption (Salom et al., 2014; Baetens et al., 2010; De Coninck et 

al., 2014; Vanhoudt et al., 2014; and Klein et al., 2015). Self-generation is the proportion 

of electrical demand met by on-site generation and self-consumption is defined as the 

proportion of on-site generation consumed by building. Alternative design options such as 

generators, storage mediums and control strategies can be simulated and compared in terms 

of self-generation and self-consumption over a desired period of time which helps building 

owners to effectively manage their financial resources.  
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2.6 Conclusions 

Control-oriented models in combination with advanced control strategies make the 

buildings’ energy flexibility available to the grid. Control-oriented models are 

computationally simple as they are developed to be implemented in real controllers or 

building automation systems (BAS); they are not an oversimplification of the system, but 

an acutely understood selection of relevant system information. Normally, parameters of 

these models have physical meaning and mathematical techniques are implemented to 

identify the value of parameters. The development and application of control-oriented 

models require a good understanding of all the involved phenomena, a coherent choice of 

significant parameters and variables, and much care and thinking when analyzing and 

interpreting the data (Lachal, 1992).  
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Chapter 3: Methodology and Evaluation1,2 

3.1 Introduction 

This study presents a methodology to develop suitable control-oriented thermal RC 

network models for optimized heating, ventilation and air conditioning (HVAC) load 

management in typical electrically heated single-family detached houses, with optional 

photovoltaics system and battery storage, based on detailed measured data from a research 

house of Hydro-Québec LTE. Using recurring parameter identification and model-reset, 

the building dynamics are represented by an explicit discrete time-varying thermal network 

model with state-space formulation (sections 3.3 and 3.4). 

Next (section 3.6), these models are applied in a model predictive control MPC 

framework in which the objective is to enhance energy efficiency and energy flexibility of 

the building by storing energy in the building's thermal mass and/or a battery, and shifting 

the HVAC load to lower the stress on the local grid.  

Finally in section 3.8, the benefits of predictive control strategies for HVAC load 

management, both for the building owners and the local grid, are studied through a seasonal 

simulation for months of January, February and March where the performance of the 

heating system subject to a reference traditional reactive controller and a predictive 

controller are compared.  

 

3.2 Description of the case study3 

The case study is an experimental house for building energetics, located in Shawinigan, 

Québec, Canada. This test bench is a two-storey detached house with an excavated 

basement. The house has outer dimensions of 7.6 m7.9 m and 60 m2 footprint. It has 

three bedrooms and a bathroom on the second floor, while the kitchen, the living room, the 

dining room and a small washroom are on the ground (first) floor. The wall assemblies of 

the building represent the typical lightweight wood-framed house in Canada. The total 

fenestration area is 19 m2, consisting of vinyl framed double-glazing windows with an air 

 
1 A paper based on this chapter is submitted to the Journal of Building Performance Simulation. 
2 A paper based on this chapter is accepted at the conference of IBPSA-Canada, eSim 2021 Vancouver. 
3 Appendix C presents a comprehensive description of the case study. 
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gap. The building is oriented 35° west of the south. It is heated with baseboard heaters in 

each room with individual electronic room thermostats. The total installed capacity of 

baseboard heaters is 15 kW. A 36000 Btu/h air-to-air heat pump, also delivers heat to the 

building when required. 

    

Figure 3.1: Hydro- Québec experimental house for building energetics, Shawinigan, Québec 

 

There are many sensors in the building and the soil around it. The recordings include 

15-minute average observations of zone-by-zone heating, plug and lighting loads plus 

instant observations of solar irradiance on vertical and horizontal planes, outside ambient 

air temperature, soil temperature, and zone-by-zone air and surface temperature at every 

15 minutes. The available dataset for this study includes all the aforementioned 

observations for the period of 2019-01-01 to 2019-03-31.4 

 

3.3 Adjustable model resolution5 

In gray-box models, there is a trade-off between robust parameter identification and 

complexity. As the model grows in order, meaning it is describing the thermal dynamics 

of the building with higher resolution, it becomes more difficult to minimize the model’s 

error and identify the parameters with reasonable uncertainty. The motivations to develop 

models with higher resolution than a simple first-order model, which looks at the building 

as one lumped thermal capacitance, are 1) to be able to identify the optimal set of predictive 

control actions for different zones of the building while maintaining the acceptable thermal 

 
4 Appendix A presents an unsupervised analysis of weather data as a part of data preparation process. 
5 Appendix E presents an explanation on resolution selection in gray-box models and the issue of over-parametrization. 
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comfort, and 2) to be able to investigate the impact of model resolution on the convergence 

of parameter identification and MPC algorithms. Choosing an appropriate order of 

reduction requires analysis of the building's past behaviour. 

Two third-order thermal RC network models are proposed in this study: 1) The 3C6R 

network (Fig. 3.2), in which C1 represents the first floor, C2 represents the second floor, 

and C3 represents the basement; and 2) The 3C7R network (Fig. 3.3), in which C1 

represents the southern zone of the above-grade space, C2 represents the northern zone of 

the above-grade space, and C3 represents the basement.  

 

3.4 Sequential parameter identification 

Robust calibration of model parameters helps quantify the expected cost savings and 

zone temperatures, with a sufficient accuracy. Therefore, a systematic sequential approach 

is employed to reduce the number of parameters being calibrated simultaneously: 

1. First, a theoretical set of values for parameters and their bounds is estimated from 

simplified geometry and material properties, under certain assumptions about infiltration.  

 

Figure 3.2: 3C6R network model  

 

2. Next, an identification period, chosen from immediate past data, is split into the train 

(70-80%) and test (20-30%) sets and an inclusive preliminary algorithm updates all the 

theoretical values by minimizing the model error. The length of the identification period 

depends on control horizon of the optimal strategy.  
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Figure 3.3: 3C7R network model 

 

3. Finally, a series of exclusive complementary algorithms over sub-periods of the 

identification period are used to calibrate the parameters. To be able to estimate the 

uncertainty associated with each parameter, it is recommended to concurrently calibrate as 

few parameters as possible in the final step.  

The assumptions used in calculation of initial values are tabled below: 

Table 3.1: Assumptions for calculation of initial values 

Parameters Assumptions for calculation of initial values 

Above-grade space capacitances • Gypsum board with 10 mm depth of 

penetration in the exterior walls  

• Gypsum board with 10 mm depth of 

penetration in the roof 

• Plywood with 10 mm depth of penetration in 

the floor 

• Air multiplier = 10 

Basement capacitance • Gypsum board with 10 mm depth of 

penetration in the foundation walls 



23 

 

• Gypsum board with 5 mm depth of penetration 

in the ceiling 

• Concrete with 25 mm depth of penetration in 

the slab 

• Air multiplier = 10 

Resistances connecting capacitances to 

the outside ambient air 
• Air change = 1 / hr 

Resistances connecting basement to the 

ground 
• Air change = 1 / hr 

Resistances connecting above-grade 

space capacitances 
• Modelled as an infiltration resistance 

• Air change = 5 / hr  

 

Table 3.2: Initial values of proposed models 

Parameters Initial Magnitude 

3C6R network model 3C7R network model 

α1 0.40 0.60 

0.30 

0.05 

α2 0.50 0.30 

α3 0.05 0.05 

C1 6.75×106 J/°C 6.60×106 J/°C 

C2 6.25×106 J/°C 6.40×106 J/°C 

C3 7.45×106 J/°C 7.45×106 J/°C 

R1 0.016 °C/W 0.015 °C/W 

R2 0.014 °C/W 0.015 °C/W 

R3 0.019 °C/W 0.019 °C/W 
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R4 0.002 °C/W 0.002 °C/W 

R5 0.006 °C/W 0.014 °C/W 

R6  0.036 °C/W  0.014 °C/W 

R7  0.036 °C/W 

 

 

Algorithm 16 presents the general parameter identification procedure in this study: 

 

Algorithm 1: Parameter Identification 

 Input: 

Indoor air temperature observations (Ti in ˚C) 

Heating demand observations (Qaux,i in W) 

Outdoor air temperature observations (Text in ˚C) 

Soil temperature observations (Tgrd in ˚C) 

Irradiance on the vertical plane observations (G in W/m2) 

 Output: 

Calibrated values of model parameters 

 Steps: 

1 Split the identification period into train and test periods. 

2 Select the training dataset. 

3 Form the vector of indoor air temperature prediction and initialize. 

𝑇𝑖 =  [0]1 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑇𝑖
0= �̂�𝑖

0
 

 
6 Appendix D presents a sample python code for training the 3C7R network model using SciPy.optimize package. 
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4 Calculate a theoretical set of values for parameters and define their boundaries. 

5 Define an objective function that properly represents the model error. 

6 Minimize the objective function subject to the system dynamics, the initial value set and 

the boundaries on the values using a least-square solver. 

𝑚𝑖𝑛
𝑅𝑖,𝑗,𝐶𝑖,𝛼𝑖

∑ 𝜔𝑖√∑ 𝜔𝑘 (𝑇𝑖
𝑘 − �̂�𝑖

𝑘
)

2

𝑁𝑡𝑟𝑎𝑖𝑛 ⁄
𝑁𝑡𝑟𝑎𝑖𝑛
𝑘=1

𝑁𝐼
𝑖=1     

s.t: 

Param0 = [Uij,0, Ci,0, αi,0] 

Parammin < Param < Parammax 

𝑇𝑖
𝑘+1 =  𝑇𝑖

𝑘 + (
𝛿𝑡

𝐶𝑖
)(𝑄𝑎𝑢𝑥,𝑖

𝑘 + 𝛼𝑄𝑠𝑜𝑙,𝑖
𝑘  +  ∑ 𝑈𝑖𝑗(𝑇𝑗

𝑘 − 𝑇𝑖
𝑘)𝑗 )  𝑘 ∈  𝑁0

𝑁𝑡𝑟𝑎𝑖𝑛−1 

7 Calculate fit metrics (RMSE and MBE). 

8 If fit metrics do not satisfy the predefined thresholds: 

Change the identification period and spatial/temporal weights in the objective function; 

Repeat steps 1-7.  

If fit metrics satisfy the predefined thresholds: 

Validate the training and proceed to the next step. 

8 Select the test dataset. 

9 Form the vector of indoor air temperature prediction and initialize 

𝑇𝑖 =  [0]1 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑇𝑖
0= �̂�𝑖

0
 

10 Predict the indoor air temperature for duration of the test dataset, using the calibrated 

parameters from the training. 

Param = [Uij,train, Ci,train, αi,train] 

𝑇𝑖
𝑘+1 =  𝑇𝑖

𝑘 + (
𝛿𝑡

𝐶𝑖
)(𝑄𝑎𝑢𝑥,𝑖

𝑘 + 𝛼𝑄𝑠𝑜𝑙,𝑖
𝑘  +  ∑ 𝑈𝑖𝑗(𝑇𝑗

𝑘 − 𝑇𝑖
𝑘)𝑗 )  𝑘 ∈  𝑁0

𝑁𝑡𝑒𝑠𝑡−1 
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13 Calculate fit metrics (RMSE and MBE). 

14 If fit metrics do not satisfy the predefined thresholds: 

Change the train-test ratio; Repeat steps 1-13  

If fit metrics satisfy the predefined thresholds: 

Validate the testing; Print calibrated values of model parameters 

 

 

3.5 Performance of PV system and battery7 

A simplified model is used to predict the output of the PV system, using weather forecast 

together with the module’s specifications. (Evans & Florschuetz, 1977; Luque & Hegedus, 

2003). In Eq. 3.1, where the PV cell temperature is estimated, Tcell, Tout, Tcell,nom and Tout,nom 

are the cell temperature, the outside air temperature, the nominal operative cell temperature 

and the outside air temperature at nominal operative conditions, respectively. Also, Gtot 

and Gtot,nom are the total plane of array (POA) irradiance at any given instance and nominal 

operative conditions, respectively. Nominal operative conditions are predefined test 

conditions defined by manufacturers. Eq. 3.2 calculates the PV system; Pmax,stc, Gtot,stc and 

Tcell,stc are the rated maximum power of the array, the total POA irradiance and the cell 

temperature at standard testing conditions (STC), respectively; λ is the cell temperature 

coefficient at maximum power point (MPP) and reflects the effect of cell's technology. 

Also, np is the number of strings in parallel and ns is the number of modules in each string 

set in series. Finally, ηinv is the efficiency of the inverter. (Pmax,stc = 280 Watt, Gtot,stc = 1000 

Watt/m2, Tcell,stc = 25 ˚C, λ = 0.0043 1/˚C, Tcell,nom = 45 ˚C, Gtot,nom = 800 Watt/m2, Tout,nom 

= 20 ˚C, np = 2, ns = 8, ηinv = 0.96) 

𝑇𝑐𝑒𝑙𝑙
𝑘 = 𝑇𝑜𝑢𝑡

𝑘 +
𝐺𝑡𝑜𝑡

𝑘

𝐺𝑡𝑜𝑡,𝑛𝑜𝑚
(𝑇𝑐𝑒𝑙𝑙,𝑛𝑜𝑚 − 𝑇𝑜𝑢𝑡,𝑛𝑜𝑚)                                                                         (3.1)                                           

𝑃𝑝𝑣
𝑘 = 𝜂𝑖𝑛𝑣 . 𝑛𝑠. 𝑛𝑝 (𝑃𝑚𝑎𝑥,𝑠𝑡𝑐 .

𝐺𝑡𝑜𝑡
𝑘

𝐺𝑡𝑜𝑡,𝑠𝑡𝑐
(1 − 𝜆(𝑇𝑐𝑒𝑙𝑙

𝑘 − 𝑇𝑐𝑒𝑙𝑙,𝑠𝑡𝑐)))                                                                               (3.2) 

In Eq. 3.3, an explicit mathematical correlation estimates the total electrical charge 

inside the battery. As per this correlation, the electrical charge left inside the battery at the 

 
7 Appendix B provides a review on different approaches to PV system performance modeling. 
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end of the k-th time step equals the charge left at the beginning of the time step (at the end 

of the (k-1)-th time step) plus the net charge which is transferred to/from the battery during 

that time step. Here, Cbatt is the total charge inside the battery and, Ibatt,c and Ibatt,d are the 

charge and the discharge current, respectively. Eq. 3.4 calculates the SoC of battery, where 

Cbatt,ref is the battery capacity in Ampere-hour (Ah) (Vbatt,nom = 50 V, Cbatt,ref = 200 Ah). 

𝐶𝑏𝑎𝑡𝑡
𝑘 = 𝐶𝑏𝑎𝑡𝑡

𝑘−1 + 𝛿𝑡(𝐼𝑏𝑎𝑡𝑡,𝑐
𝑘 − 𝐼𝑏𝑎𝑡𝑡,𝑑

𝑘)                                                                                  (3.3) 

𝑆𝑜𝐶𝑏𝑎𝑡𝑡
𝑘 = 𝐶𝑏𝑎𝑡𝑡

𝑘 𝐶𝑏𝑎𝑡𝑡,𝑟𝑒𝑓⁄                                                                                                                  (3.4) 

𝑃𝑏𝑎𝑡𝑡
𝑘 =  𝐼𝑏𝑎𝑡𝑡

𝑘 . 𝑉𝑏𝑎𝑡𝑡,𝑛𝑜𝑚                                                                                                                      (3.5) 

 

3.6 Predictive HVAC control 

The MPC algorithm uses an explicit discrete time-varying state-space formulation, in 

which the model parameters are periodically re-calibrated at certain reset intervals. The 

model is expressed in Eq. 3.6, where xk, uk, dk and wk denote the values of states, inputs, 

disturbances and model uncertainty at the k-th time step of the prediction horizon Nh with 

a sampling time of δt, respectively. 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐶𝑘𝑑𝑘 + 𝑤𝑘                                                                                               (3.6) 

𝑥𝑘 =  [𝑇1
𝑘, 𝑇2

𝑘 , 𝑇3
𝑘, 𝑆𝑜𝐶𝑏𝑎𝑡𝑡

𝑘]                                                                                                             (3.7) 

𝑢𝑘 =  [𝑄𝑎𝑢𝑥,1
𝑘 , 𝑄𝑎𝑢𝑥,2

𝑘, 𝑄𝑎𝑢𝑥,3
𝑘, 𝐼𝑏𝑎𝑡𝑡

𝑘]                                                                                         (3.8) 

𝑑𝑘 =  [𝑇𝑜𝑢𝑡
𝑘, 𝑇𝑔𝑟𝑑

𝑘, 𝑄𝑠𝑜𝑙
𝑘, 𝑃𝑝𝑣

𝑘]                                                                                                         (3.9) 

𝑄𝑠𝑜𝑙
𝑘 =  𝐺𝑣𝑒𝑟𝑡

𝑘 . 𝐴𝑤𝑖𝑛𝑑𝑜𝑤                                                                                                                      (3.10) 

𝑃𝑙𝑜𝑎𝑑
𝑘 = 𝑄𝑎𝑢𝑥,1

𝑘 + 𝑄𝑎𝑢𝑥,2
𝑘 +  𝑄𝑎𝑢𝑥,3

𝑘                                                                                        (3.11)       

𝑃𝑛𝑒𝑡
𝑘 = 𝑃𝑙𝑜𝑎𝑑

𝑘 +  𝑃𝑏𝑎𝑡𝑡
𝑘 − 𝑃𝑝𝑣

𝑘                                                                                                      (3.12) 

The states in Eq. 3.7, represent dynamics of energy storage elements in the system and 

are as follows: the temperature of C1 (T1), the temperature of C2 (T2), the temperature of C3 

(T3), and the SoC of the battery (SoCbatt). The inputs in Eq. 3.8, are the optimal actions 

corresponding to each of the states, which are computed by solving the optimal control 

problem and are as follows: the auxiliary heat to C1 (Qaux,1), the auxiliary heat to C2 (Qaux,2), 

the auxiliary heat to C3 (Qaux,3), and the current to/from the battery (Ibatt). The disturbances 

(Eq. 3.9) are the predictions of outside ambient air temperature (Tout), average ground 

temperature (Tgrd), solar gains (Qsol) and PV generation (Ppv). Propagation of the 
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uncertainty associated with parameters and weather forecast throughout the state 

estimation process results in the process noise (w). All the measurements are assumed to 

be perfect (zero uncertainty). Matrices A, B and C are the products of the parameter 

identification process. 

Using the weather forecast, Eq. 3.10 estimates the solar gains through the fenestration 

on the vertical walls (Gvert = total irradiance on the vertical walls, Awindow = 5.5 m2). Eq. 

3.11 calculates the total heating demand at each time step, simply by summing the auxiliary 

heat to all the zones; and considering the on-site solar electricity and the power to/from the 

battery, Eq. 3.12 calculates the net demand of the building at each time step. 

The MPC algorithm solves a constrained optimization problem and computes the 

optimal set of future actions. The constraints on the states include the occupants’ thermal 

comfort (here, soft constraint with a linear penalty associated to its violation) and the pre-

defined bounds on the battery state of charge (Eq. 3.13), which are normally set to maintain 

its health (SoCbatt,min= 10%, SoCbatt,max = 90%). The inputs are constrained by the size of 

the heating system in each zone (Eq. 3.14), and the maximum possible C-rate of the battery 

(Eq. 3.15).  

𝑆𝑜𝐶𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 ≤  𝑆𝑜𝐶𝑏𝑎𝑡𝑡
𝑘 ≤ 𝑆𝑜𝐶𝑏𝑎𝑡𝑡,𝑚𝑎𝑥                                                                                       (3.13) 

0 ≤  𝑄𝑎𝑢𝑥,𝑖
𝑘 ≤ 𝑄𝑎𝑢𝑥,𝑖,𝑚𝑎𝑥                                                                                                                    (3.14) 

0 ≤  𝐼𝑏𝑎𝑡𝑡
𝑘 ≤ 𝐼𝑏𝑎𝑡𝑡,𝑚𝑎𝑥                                                                                                                          (3.15) 

The MPC algorithm minimizes the multi-goal objective function l(xk, uk, dk, wk, rk) in 

Eq. 3.22, that associates a certain cost to the selection of a particular set of future actions, 

given the estimated states and disturbances. The objective function accommodates 1) 

minimization of heating energy cost (Eq. 3.16), 2) maximization of self-consumption (Eq. 

3.17), 3) minimization of inputs’ slew rate to avoid intense cycling (Eq. 3.18 & 3.19), 4) 

penalization of thermal comfort violation (Eq. 3.20), and 5) penalization of peak demand 

(Eq. 3.21): 

𝑙1 = (∑ 𝑃𝑙𝑜𝑎𝑑
𝑘. 𝑝𝑟𝑖𝑐𝑒𝑘𝑁𝑆−1

𝑘=0 ). 𝜔1                                                                                                      (3.16) 

𝑙2 = (∑ ‖𝑃𝑛𝑒𝑡
𝑘‖

2
𝑁𝑆−1
𝑘=0 ) . 𝜔2                                                                                                                 (3.17) 

𝑙3 = (∑ (∑ ‖𝑄𝑎𝑢𝑥,𝑖
𝑘 − 𝑄𝑎𝑢𝑥,𝑖

𝑘−1‖
2

3
𝑖=1 )𝑁𝑆−1

𝑘=0 ) . 𝜔3                                                                  (3.18) 
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𝑙4 = (∑ ‖𝐼𝑏𝑎𝑡𝑡
𝑘 − 𝐼𝑏𝑎𝑡𝑡

𝑘−1‖
2

𝑁𝑆−1
𝑘=0 ) . 𝜔4                                                                                        (3.19) 

𝑙5 = (∑ (∑ 𝑚𝑎𝑥 (3
𝑖=1 𝑇𝑖,𝑚𝑖𝑛

𝑘 − 𝑇𝑖
𝑘, 0, 𝑇𝑖

𝑘 − 𝑇𝑖,𝑚𝑎𝑥
𝑘). 𝜋𝑐𝑜𝑚𝑓𝑜𝑟𝑡,𝑖

𝑘)𝑁𝑆−1
𝑘=0 ). 𝜔5           (3.20) 

𝑙6 = (∑ ‖𝑄𝑎𝑢𝑥,𝑖‖∞
. 𝜋𝑝𝑒𝑎𝑘,𝑖

𝑘 3
𝑖=1 ) . 𝜔6                                                                                             (3.21) 

𝑙(𝑥𝑘, 𝑢𝑘, 𝑑𝑘 , 𝑤𝑘 , 𝑟𝑘) =  ∑ 𝑙𝑣
6
𝑣=1                                                                                                         (3.22) 

Where the comfort violation and peak demand penalty factors are the results of problem 

fine-tuning (πcomfort,1 = πcomfort,2 = 20000, πcomfort,3 = 10000, πpeak,i = 100). Each cost 

component (l1, l2, …, l6) is scaled and weighted before it contributes to the objective 

function. Here, all the components are equally weighted (ω1 = ω2  = ω3  = ω4  = ω5  = ω6  = 

1). 

Algorithm 2 presents the general MPC procedure in this study: 

 

Algorithm 2: Model predictive control 

 Input: 

Building thermal model 

PV system and battery performance models 

Weather forecast 

Price of electricity and other references 

 Output: 

Optimal operation plan of HVAC system and battery 

 Steps: 

1 Define the prediction horizon (Nh) and the control horizon (Nc). 

2 Estimate the current states of the system. 

3 Collect the disturbances {d0, d1, …, dNh-1}. 

4 Collect the references {r0, r1, …, rNh-1}. 

5 Compute the sequence of optimal inputs {u0, u1, …, uNc} by solving the general MPC 

problem through a convex optimizer. 
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𝑚𝑖𝑛
𝑢0,𝑢1,…,𝑢𝑁𝑐−1

𝑙(𝑥𝑘, 𝑢𝑘, 𝑑𝑘 , 𝑤𝑘, 𝑟𝑘) 

s.t: 

xk+1 = Akxk + Bkuk + Ckdk + wk 

f(xk, uk, dk, rk) = 0 

g(xk, uk, dk, rk) > 0 

x0 = current states 

6 Implement the first optimal input (u0) over the sampling time δt. 

7 Update; Repeat steps 2-6. 

 

3.7 Reactive HVAC control 

The reference controller to which the performance of the predictive controller is 

compared, reactively provides heat to the building to maintain the inside air temperature at 

a predefined setpoint, with no regard to weather forecast and energy price. Eq. 25 and 26 

explain how the PI controller works. In Eq. 3.23 Tsp,i
k is the heating setpoint at the k-th time 

step, Ti
k is the sensed inside air temperature at that time step, and ei

k is the residual. The 

Eq. 3.24 calculates the auxiliary heat provided to the zone at the (k+1)-th setpoint based 

on residual of last time step, where KP = 3000 Watt/˚C, KI = 5 Watt/˚C.s. These constants 

are computed through a constrained minimization within a reasonable range for tuned PI 

control constants, where the error between the model’s predictions and observations is 

minimized over 72 hours of data during which the heating setpoint is constantly 21 ˚C. 

𝑒𝑖
𝑘 =  𝑇 𝑠𝑝,𝑖

𝑘 − 𝑇 𝑖
𝑘                                                                                                                                  (3.23) 

𝑄𝑎𝑢𝑥,𝑖
𝑘+1 =  𝐾𝑃. 𝑒𝑖

𝑘 + 𝐾𝐼 ∑ 𝑒𝑖
𝑗𝑘

𝑗=0 . 𝛿𝑡                                                                                          (3.24) 

 

3.8 Evaluation of methodology 

The methodology is evaluated through a seasonal simulation from January 1st to March 

31st for optimal day-ahead heating load management, in which the objective is to minimize 

the energy costs by importing from the most efficient energy source(s) and storing energy 

in the building’s thermal mass and/or a battery for later use. Within this simulation the 

prediction horizon (Nh) is 24 hours and the control horizon (Nc) is 6 hours. The 

identification period length is set to 120 hours (NID / Nh = 5), and the reset interval is also 
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set to 24 hours, meaning the parameters are re-calibrated every 24 hours, at the beginning 

of each day. The sampling time (δt) is 15 minutes. The forecast of the outside air 

temperature for the next control horizon (next 6 hours) is assumed to be perfect (no 

uncertainty) and the uncertainty of the irradiance for the next control horizon is 12.8% 

(Voyant et al., 2017). All the measurements are also assumed to be perfect. The references 

of the simulation include the price of electricity (Fig. 3.4), the heating setpoints for the 

reactive controller and the allowable zone temperature range for the predictive controller 

(Fig 3.5) which are identical for every day in the simulation. Starting with the price of 

electricity, it is constantly 4.33 ¢/kWh except for the peak demand periods when it is 50.65 

¢/kWh. 

 

Figure 3.4: Simulation reference: Price of electricity as per Hydro-Québec Rate Flex-D 

 

  

Figure 3.5: Simulation reference: Heating setpoints for the reactive controller (left) and 

allowable zone air temperature range for the predictive controller (right) 

 

The room heating setpoint is 21 °C from 9:00 to 21:00, otherwise, it is 19 °C. The 

morning set-up and the night set-back represent a typical practice in Canadian houses 

(lower inside air temperature when people sleep). The basement heating setpoint is 
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constantly 17 °C, naturally lower than the room setpoint. Applying the predictive control 

strategies, thermal comfort is a soft constraint with linear penalty associated to its violation. 

In fact, there is no penalty if the inside air temperature is in the comfort (allowable) range; 

however, the further it gets from the allowable range, the more penalty is associated to the 

control strategy. The higher bound for room air temperature is 25 °C from 9:00 to 21:00, 

otherwise, it is 23 °C. The lower bound for room air temperature is 21 °C from 9:00 to 

21:00, otherwise, it is 19 °C. The area in between the bounds is assumed to be the allowable 

room air temperature range. For basement air temperature, the higher and lower bounds are 

18 °C and 16 °C, respectively. The area in between the bounds is assumed to be the 

allowable basement air temperature range. Naturally, the basement is kept cooler than the 

above-grade space. 

For the sake of brevity, the visualized and discussed results correspond only to the 3C7R 

network model on two random consecutive days in late March 2019, 27th and 28th. 

According to the weather forecasts, March 27th is a sunny day with approximately 26 kWh 

PV generation where the minimum and maximum of the outside air temperature are -13.5 

°C and 4.9 °C, respectively. March 28th, is a warmer day with a smaller difference between 

the minimum and maximum of the outside air temperature. Being covered by passing 

clouds, the PV system is predicted to only generate about 6 kWh throughout the day. Fig. 

3.6 displays the forecast of outside ambient air temperature for both days. 

  

Figure 3.6: Forecast of outside ambient air temperature for March 27th (left) and March 28th 

(right) 

 

The model is re-calibrated at the beginning of the day (March 27th, 00:00) using the 

observations of the last 120 hours (March 22nd to March 26th) as the identification period. 

The identification period is split into 75% (90 hours) for training and 25% (30 hours) for 
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testing. Fig. 3.7 illustrates a comparison between the predictions and the observations of 

zones air temperature over the train and test periods; the residual is also plotted. 

  

Figure 3.7: Results of the 3C7R network model training (left) and testing (right) for simulation 

on March 27th - training period length: 90 h, testing period length: 30 h 

 

Parameters are identified using Algorithm 1 and their uncertainty is calculated. The 

results of the parameter identification are summarized in Table 3.3, where the theoretical 

values, estimated from simplified geometry and material properties, and the calibrated 

values for March 27th together with their uncertainty (95.45% confidence) are listed. The 

simulation uses equal weights for all the zones and all the time steps by default; however, 

it is possible to manipulate the spatial/temporal weights in the objective function to 

emphasize certain zone(s) or period(s). The model’s performance is evaluated with RMSE 

and MBE as fit metrics. The calibrated values are assumed to be validated if RMSEtest ≤ 

0.5°C and MBEtest ≤ 0.25°C.  

 

Table 3.3: Results of the 3C7R network model re-calibration for simulation on March 27th - 

Identification period: March 22nd to March 26th; 75% train and 25% test 

Parameters Theoretical values Calibrated values for March 26th Calibrated values for March 27th 

α1 0.60 0.59  0.51 ± 6.1% 

α2 0.30 0.37  0.34 ± 9.0% 

α3 0.05 0.02  0.02 ± 25.0% 

C1 6.75 M J/°C 4.81 M J/°C  4.73 M J/°C ± 1.1% 
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C2 6.25 MJ/°C 4.25 M J/°C  4.28 M J/°C ± 4.6% 

C3 7.45 MJ/°C 5.05 M J/°C  5.01 M J/°C ± 8.3% 

R1 0.015 °C/W 0.055 °C/W  0.053 °C/W ± 0.8% 

R2 0.015 °C/W 0.045 °C/W  0.045 °C/W ± 1.9% 

R3 0.019 °C/W 0.027 °C/W  0.029 °C/W ± 4.8% 

R4 0.005 °C/W 0.002 °C/W  0.002 °C/W ± 19.6% 

R5 0.014 °C/W 0.044 °C/W  0.039 °C/W ± 7.0% 

R6 0.014 °C/W 0.003 °C/W  0.002 °C/W ± 41.4% 

R7 0.036 °C/W 0.004 °C/W 0.004 °C/W ± 27.1% 

Fit metrics 

States RMSE (°C) MBE (°C) 

T1 – Train  0.624 0.023 

T2 – Train  0.637 0.071 

T3 – Train  0.393 - 0.014 

T1 – Test 0.435 0.052 

T2 – Test  0.389 0.027 

T3 – Test  0.464 - 0.062 

 

Fig. 3.8 (left) displays the optimal operation plan of the heating system and the battery 

for March 27th, applying the predictive control. Knowing that at 6:00 the high energy price 

period starts, the predictive controller constantly stores energy in the above-grade space 

thermal mass and maintains the basement air temperature at a comfortable level with 
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minimum energy consumption from 00:00 to 6:00. During this time, as shown in Fig. 3.9 

(left), the temperature of the above-grade space air is optimally increased; however, the 

basement air temperature continuously stays within its boundaries. Letting the air 

temperature float in all the zones with no auxiliary heating from 6:00 to 9:00, the building 

is able to have no demand during this period. According to the forecast of solar radiation, 

the PV system is predicted to generate about 22 kWh from 9:00 to 16:00. Aiming for 

maximized self-consumption and also knowing that at 16:00 another high energy price 

period starts, the predictive controller consumes the PV generation for maintaining the 

thermal comfort and charging the battery with minimum cost, first. As long as the comfort 

is satisfied, the excess solar electricity is exported. In a sunny day such as March 27th, solar 

gains can effectively reduce the need for auxiliary heating between the two high energy 

price periods, which allows for charging the storage and/or exporting.  The linear increase 

in the battery state of charge, shown in Fig. 3.10 (left), is the result of charging the battery 

at a constant C-rate. During the evening high energy price period (16:00 to 20:00), there is 

no auxiliary heating demand as the predictive controller prioritizes the minimization of 

energy cost over the penalization of thermal comfort violation and lets the air temperature 

float, even though it receives comfort violation penalty. Also, the battery discharges at a 

constant C-rate, partly during this period. The night set-back causes the auxiliary heating 

to be very small from 21:00 to 24:00.  

The reactive PI controller, on the other hand, attempts to maintain the zone air 

temperature at the pre-defined heating setpoint, disregarding the energy price. Having no 

insight about the future, the PI controller covers as much heating load as possible with the 

PV generation at any time, and if there is excess, it first charges the battery and then exports 

to the grid. The results of controlling the heating system with a PI controller are shown in 

Fig. 3.8, 3.9 and 3.10 (right). During the period of maximum solar gains, when the inside 

air temperature is above the heating setpoint, the reactive controller stores approximately 

8 kWh in the battery and exports more than 1.5 times of that to the grid.   
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Figure 3.8: Electrical demand and generation subject to the predictive controller (left) and the 

reactive controller (right) – March 27th  
 

  

Figure 3.9: Zone air temperature subject to the predictive controller (left) and the reactive 

controller (right) – March 27th 
 

  

Figure 3.10: Battery state of charge subject to the predictive controller (left) and the reactive 

controller (right) – March 27th  
 

For simulation on March 28th, the model is re-calibrated at the beginning of the day 

using the observations of the last 5 days (March 23nd to March 27th) as the identification 
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period, with train to test ratio (TTR) of 3.0. The same procedure explained for March 27th, 

updates all the model parameters.  

  

Figure 3.11: Electrical demand and generation subject to the predictive controller (left) and the 

reactive controller (right) – March 28th 
 

  

Figure 3.12: Zone air temperature subject to the predictive controller (left) and the reactive 

controller (right) – March 28th 
 

  

Figure 3.13: Battery state of charge subject to the predictive controller (left) and the reactive 

controller – March 28th 
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Optimal increase in the temperature of the above-grade space air and maintenance of 

the basement air temperature with minimal auxiliary heating are obvious from 00:00 to 

6:00, in Fig. 3.11 and 3.12 (left). With the start of the morning high price period, the 

predictive controller stops heating and lets the building thermal mass discharge, which 

results in the air temperature float during this period. The PV system is predicted to 

generate a small amount of energy due to passing clouds or snow which is forecasted for 

March 28th. Therefore, all the PV generation from 9:00 to 16:00 is consumed for heating 

the building to help demand shaving during the evening high price period. Like the 

previous day, the night set-back effectively lowers the need for auxiliary heating from 

21:00 to 24:00. The results of controlling the heating system with the reactive PI controller 

on March 28th are shown in Fig. 3.11, 3.12 and 3.13 (right). The inside air temperature 

oscillates around the heating setpoint at the cost of 12.3 kW peak demand and roughly 7 

kWh consumption of the high price energy. 

  

Figure 3.14: Building’s net electrical demand subject to both controllers on March 27th (left) 

and March 28th (right) 

 

Fig. 3.14 and Table 3.4 compare the building performance subject to both controllers 

on March 27th and 28th. The building’s net electrical demand is plotted in Fig. 3.14, and the 

building’s daily measures are presented in Table 3.4. On March 27th (sunny day), 21.2% 

reduction in the total heating load, 24.8% reduction in the total import, 70.4% reduction in 

the peak demand, and the smooth profiles of auxiliary heating and battery charge/discharge 

clearly demonstrate the effectiveness of the predictive control. 8.0% reduction in the total 

heating load, 17.3% reduction in the total import, and 67.5% reduction in the peak demand 

show the advantages of applying the predictive controller over the reactive controller also 

on partly-cloudy days such as March 28th. Actively attempting to maximize the self-

consumption, the predictive controller utilizes the on-site solar electricity approximately 

11% more than the reactive controller. 
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Table 3.4: Building’s daily measures subject to both controllers on March 27th and March 28th 

Day March 27th March 28th 

Control Reactive Predictive Reactive Predictive 

PV Generation (kWh/Day) 26.2 6.1  

Auxiliary heating (kWh/Day) 37.3 29.4 48.7  44.8 

Total import (kWh/Day) 31.8 23.9  46.9  38.8  

Total export (kWh/Day) 12.4 20.6  0.7  0.0 

Net load (kWh/Day) 19.4 3.3  46.2 38.8 

Self-cons. (kWh/Day) 13.8 5.6 5.5  6.1  

Self-cons. (%/Day) 5.25 21.4 89.2 100 

Peak demand (kW) 13.5 4.0  12.3 4.0 

 

 

Table 3.5: Effect of control horizon on daily measures – March 27th 

Control horizon (Nc) 6h 12h 24h 

Auxiliary heating (kWh/Day) 29.4 32.4 32.8 

Total import (kWh/Day) 23.9 27.7 28.7 

Total export (kWh/Day) 20.6 21.5 22.1 

Self-consumption (kWh/Day) 5.6 4.7 4.1 

Self-consumption (%/Day) 21.4 18.0 15.6 

Peak demand (kWh/Day) 4.0 4.6 5.1 
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The selection of an appropriate control horizon requires analysis and tuning. Normally, 

a large control horizon leads to more heating load, higher peak demand and more battery 

cycles, which are not desirable. On the other hand, reducing the control horizon (increasing 

the Nh/Nc ratio in general) puts the convergence of the optimization at risk. Therefore, there 

is an optimal control horizon within the feasible range. Table 3.5 compares how different 

control horizons influence the performance of the predictive controller on March 27th. The 

predictive controller with Nc = 12 or 24 h cycles the battery more and stores approximately 

10% more energy in the thermal mass during the low-price period to ensure the 

minimization of energy cost. The reason is that as per step 5 of Algorithm 2, the controller 

computes the sequence of optimal inputs for a longer period, which results in exploitation 

of the thermal mass and battery. According to this analysis, the 6-hour control horizon is 

selected for the seasonal simulation of optimal day-ahead heating load management. 

 

Table 3.6: Seasonal average of building’s daily measures 

Control Reactive Predictive 

Model 3C6R 3C7R 3C6R 3C7R 

PV Generation (kWh/Day) 11.2 

Auxiliary heating (kWh/Day) 50.5 45.9 43.8 40.9 

Total import (kWh/Day) 47.5 43.2 37.6 35.1 

Total export (kWh/Day) 2.9 3.6 10.9 11.8 

Self-cons. (kWh/Day) 3.1 3.7 4.6 5.2 

Self-cons. (%/Day) 27.7 33.0 41.1 46.4 

Peak demand (kW) 13.5 13.5 4.6 4.0 

Energy cost ($/Day) 4.8 4.6 1.6 1.5 
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Table 3.6 compares the building performance subject to both controllers based on 

seasonal average of daily measures. Applying the predictive controller, the results show an 

average of 12.1% reduction in the daily heating load, 19.8% reduction in the total daily 

import, 68.1% reduction in the peak demand, 67.0% reduction in the daily energy cost, and 

13.4% increase in the self-consumption of on-site generated solar electricity for the 

duration of January 1st to March 31st (90 days), compared to the reactive controller. This 

table also presents a comparison between the two thermal RC network models. Generally, 

the 3C7R network model performs more advantageously, as it systematically reduces the 

above-grade space auxiliary heating due to better anticipation of the effective solar gains. 

In other words, during sunny days the predictive controller with the 3C6R model consumes 

more auxiliary heating in the above-grade space [than the predictive controller with the 

3C7R model], as it underestimates the solar gains. 

The simulation is written and performed in the Google CoLaboratory™ environment 

using various packages and libraries. NumPy and pandas are used for data preparation; 

SciPy.optimize, lmfit and Scikit-learn are used for parameter identification; CVXPY and 

uncertainties are used for implementation of MPC; And finally, Matplotlib is used for 

visualization of the results. 
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Chapter 4: Conclusions 

4.1 Summary of contributions 

Suitable low-order control-oriented models for optimal heating load management in 

typical Canadian single-family detached houses were developed, calibrated and employed 

in a predictive framework for day-ahead operation planning, in which the objective is to 

enhance energy efficiency and energy flexibility of the building. The building dynamics 

are represented by a discrete time-varying state-space formulation with recurring parameter 

identification.  

The effectiveness of the predictive control strategies is demonstrated within a seasonal 

simulation from January 1st to March 31st, where the performance of the heating system 

subject to a reference reactive PI controller and a predictive controller are compared. The 

results show an average of 12.1% reduction in the daily heating load, 19.8% reduction in 

the total daily import, 68.1% reduction in the peak demand, 67.0% reduction in the daily 

energy cost, and 13.4% increase in the self-consumption of on-site generated solar 

electricity for the period of simulation. 

To investigate the impact of model resolution on the convergence of parameter 

identification and MPC algorithms, two third-order thermal RC network models with 

different resolutions are developed. The first one divides the above-grade space to the 

southern and northern zones and the second one divides this space to the first and second 

floors. The simulation shows that due to more accurate anticipation of the effective passive 

solar gains, using the 3C7R network model results in 6.6% less auxiliary heating load, 

6.3% less energy costs and 5.3% more self-consumption of on-site generated solar 

electricity, compared to the 3C6R network model. 

 

4.2 Recommendations for future work 

The following are recommended topics for future research: 

1. Continue studies on control-oriented RC thermal network models for predictive 

control applications and establish a systematic way for order selection. 
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2. Develop an online systematic approach for parameter identification of the RC thermal 

network models, using Bayesian approach. 

3. Conduct experimental research for investigation of the energy flexibility provided by 

different control strategies and system configurations. 

4. Perform statistical analysis on large raw datasets consisting the consumption and on-

site generation data of various prosumers in order to produce classified datasets for 

machine learning purposes. 

5. Investigate the predictive control strategies effectiveness within a cluster of 

prosumers. 
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Appendix A: Winter Weather Clustering 

An unsupervised learning with K-means clustering method is performed to classify the 

coldest days of winter 2019 and the average silhouette test is performed to measure the 

quality of the clustering. This test investigates intra-class similarity and inter-class 

dissimilarity and ranges from -1 to +1, where a high value indicates a good clustering 

solution. In other words, the optimal number of clusters is the one that maximizes the 

average silhouette over a range of possible values for K.  

Figure AA.1 shows the results of classification based on the outside ambient air 

temperature. As per the average silhouette test, 2-cluster solution is an optimal answer, 

where the blue trajectory represents the daily profile of outside ambient air temperature for 

a typical very cold day, and the red trajectory reflects the daily profile of outside ambient 

air temperature for a typical cold day. 

The results of classification based on the global irradiance are presented in figure AA.2. 

The average silhouette test based on the vertical irradiance suggests that 3-cluster is an 

optimal solution, where the red trajectory represents clear sky, the green trajectory 

represents partly-cloudy sky, and finally, the blue trajectory represents overcast sky. 

  

Figure AA.1: Classification of the coldest days of year based on the daily profiles of outside 

ambient air temperature using K-means method and the associated average silhouette test results 
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Figure AA.2: Classification of the coldest days of year based on the daily profiles of global 

irradiance using K-means method and the associated average silhouette test results 

 

K-means clustering is the most commonly used unsupervised machine learning 

algorithm for partitioning a given data set into a set of K groups (clusters), where K 

represents the number of clusters pre-specified by the analyst. It classifies objects in 

multiple groups, such that objects within the same cluster are as similar as possible (high 

intra-class similarity), whereas objects from different clusters are as dissimilar as possible 

(low inter-class similarity). In K-means clustering, each cluster is represented by its center 

(centroid) which corresponds to the mean of points assigned to the cluster. 
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Appendix B: Photovoltaics System Performance 

Modelling 

When it comes to grid-connected photovoltaics systems, it is crucial to precisely model 

the impact of introducing this intermittent power source to the grid and also to help 

distribution planners perform the necessary interconnection impact studies. 

The time-varying ambient temperature and solar irradiance influence the total 

photovoltaics system output and ultimately the net power demand of the prosumer. Both 

accurate data and time series simulations are often required to fully understand the impact 

of variability on distribution system operations and reliability. There are different 

approaches to model and simulate the performance of photovoltaics systems.  

Assuming the photovoltaics module, the effective cell temperature and the effective 

irradiance are known, there are two main approaches to output the module’s current-

voltage curve: 

1. Single-diode circuit approach which is developed by De Soto et al. (2006) and 

defines the entire curve as a continuous function of inputs 

2. Point-value approach which is developed by King et al. (2004) at Sandia National 

Laboratories and predicts five points on the curve as a function of inputs.  

 

Single-Diode Circuit Approach 

Solar cells and photovoltaics modules can be modeled as a current source in parallel 

with a diode. A diode is a two-terminal device that allows an electrical current to flow in 

only one direction. The standard model of a solar cell is called a single-diode model and 

includes a parallel resistance (shunt resistance Rsh) to account for leakage losses and a 

series resistance (RS) to account for voltage losses, between the semiconductor and the 

electrical contacts of the module. 

In figure AB.1, V is the solar cell terminal voltage, Io is the diode reverse saturation 

current, IL is the so-called light current or photocurrent (the ideal current produced by the 

panel), Ish is the parallel resistor current or shunt current, I is the solar cell terminal current, 
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Rsh is the parallel or shunt resistance, and RS is the series resistance. The characteristic 

equation of the circuit is given by: 

𝐼 = 𝐼 − 𝐼𝐿 −= 𝐼𝑠ℎ = 𝐼𝐿 − 𝐼𝑜 [𝑒
𝑉+𝐼𝑅𝑆

𝑎 − 1] −
𝑉+𝐼𝑅𝑆

𝑅𝑠ℎ
                                           

where the first term corresponds to the photocurrent, the second term represents the 

current through the diode, and the third term represents the current through the parallel 

resistor. The electrical power is the product of the current multiplied by the voltage (P = 

I.V).  

 

Figure AB1: Single-diode circuit (De Soto, W. et al., 2006) 

 

The parameters I0, a, RS and RSH depend on the photovoltaics technology employed, as 

well as on the construction of each cell.  The physical parameter a depends on the 

temperature of the panel (De Soto, W. et al., 2006) and is given by: 

𝑎 =  
𝑁𝑠𝑛𝑖𝑘𝑇𝑐

𝑞
                                                                                                       

where q represents the electron charge, k is Boltzmann’s constant, ni is the ideality 

factor, NS is the number of cells in series and TC is the cell temperature. 

The single-diode circuit approach is simple and suitable as its parameters can be found 

with typical data provided by the photovoltaics module manufacturer. 

 

Point-Value Approach 

The point-value approach appears as a set of equations which describe the electrical 

performance of an individual photovoltaics module; however, can be scaled for any series 

or parallel combination of modules in an array. Assuming that module performance 
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parameters and solar resource information are available, equations below are used to 

calculate the expected power and energy produced by a module: 

𝐼𝑠𝑐 = 𝐼𝑠𝑐𝑜𝑓1(𝐴𝑀𝑎) [
𝐸𝑏𝑓2(𝐴𝑂𝐼)+𝑓𝑑𝐸𝑑𝑖𝑓𝑓

𝐸𝑜
] + [1 + 𝛼𝐼𝑠𝑐(𝑇𝑐 − 𝑇𝑜)]                   

𝐼𝑚𝑝 = 𝐼𝑚𝑝𝑜[𝐶0𝐸𝑒 + 𝐶1𝐸𝑒
2][1 + 𝛼𝐼𝑚𝑝(𝑇𝑐 − 𝑇𝑜)                                             

𝑉𝑜𝑐 = 𝑉𝑜𝑐𝑜 + 𝑁𝑠𝛿(𝑇𝑐) 𝑙𝑛 𝑙𝑛 (𝐸𝑒)  + 𝛽𝑉𝑜𝑐(𝐸𝑒)(𝑇𝑐 − 𝑇𝑜)                                

𝑉𝑚𝑝 = 𝑉𝑚𝑝𝑜 + 𝐶2𝑁𝑠𝛿(𝑇𝑐) 𝑙𝑛 𝑙𝑛 (𝐸𝑒)  + 𝐶3𝑁𝑠[𝛿(𝑇𝑐) 𝑙𝑛 𝑙𝑛 (𝐸𝑒)] 2 + 𝛽𝑉𝑚𝑝(𝐸𝑒)(𝑇𝑐 − 𝑇𝑜)  

𝑃𝑚𝑝 = 𝐼𝑚𝑝𝑉𝑚𝑝                                                                                                

𝐹𝐹 = 𝑃𝑚𝑝𝑉𝑜𝑐/𝐼𝑠𝑐                                                                                            

𝐸𝑒 = 𝐼𝑠𝑐/[𝐼𝑠𝑐𝑜[1 + 𝛼𝐼𝑠𝑐(𝑇𝑐 − 𝑇𝑜)]]                                                               

𝛿(𝑇𝑐) = 𝑛𝑘(𝑇𝑐 + 273.15)/𝑞                                                                           

𝐼𝑥 = 𝐼𝑥𝑜[𝐶4𝐸𝑒 + 𝐶5𝐸𝑒
2][1 + 𝛼𝐼𝑠𝑐(𝑇𝑐 − 𝑇𝑜)]                                                 

𝐼𝑥𝑥 = 𝐼𝑥𝑥𝑜[𝐶6𝐸𝑒 + 𝐶7𝐸𝑒
2][1 + 𝛼𝐼𝑚𝑝(𝑇𝑐 − 𝑇𝑜)]                                            

where: 

Isc = Short-circuit current (A) 

Imp = Current at the maximum-power point (A) 

Ix = Current at module voltage equal to 0.5 Voc (A) 

Ixx = Current at module voltage equal to 0.5(Voc + Vmp) (A) 

Voc = Open-circuit voltage (V) 

Vmp = Voltage at maximum-power point (V) 

Pmp = Power at maximum-power point (W) 

FF = Fill Factor (dimensionless) 

Ns = Number of cells in series in a module’s cell-string 

Np = Number of cell-strings in parallel in module 

k = Boltzmann’s constant, 1.38066E-23 (J/K) 

q = Elementary charge, 1.60218E-19 (coulomb) 

Tc = Cell temperature inside module (°C) 

To = Reference cell temperature, typically 25°C 

Eo = Reference solar irradiance, typically 1000 W/m2 

δ(Tc) = Thermal voltage per cell at temperature Tc 

Ee = The effective solar irradiance 
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C0, C1 = Empirically determined coefficients relating Imp to effective irradiance, C0 + 

C1=1 (dimensionless) 

C2, C3 = Empirically determined coefficients relating Vmp to effective irradiance (C2 is 

dimensionless and C3 has units of 1/V)  

C4, C5 = Empirically determined coefficients relating the current Ix to effective 

irradiance, C4 + C5=1 (dimensionless) 

C6, C7 = Empirically determined coefficients relating the current Ixx to effective 

irradiance, C6 + C7=1 (dimensionless) 

n = Empirically determined ‘diode factor’ associated with individual cells in the module, 

with a value typically near one, (dimensionless) 

Tc = Temperature of cells inside module, typically determined from module back 

surface temperature measurements, or from a thermal model using solar resource and 

environmental data (°C) 

AMa = Absolute air mass, calculated from sun elevation angle and site altitude and 

provides a relative measure of the path length the sun must travel through the atmosphere 

(dimensionless) 

f1(AMa) = Empirically determined polynomial relating the solar spectral influence on 

Isc to air mass variation over the day, where:  

f1(AMa)=a0 + a1·AMa + a2·(AMa)2 + a3·(AMa)3 + a4·(AMa)4 

AOI = Solar angle-of-incidence, the angle between a line perpendicular to the module 

surface and the beam component of sunlight (degrees) 

f2(AOI) = Empirically determined polynomial relating optical influences on Isc to solar 

angle-of-incidence (AOI), where:  

f2(AOI)=b0 + b1·AOI + b2·(AOI)2 + b3·(AOI)3 + b4·(AOI)4 + b5·(AOI)5 

αIsc = Normalized temperature coefficient for Isc (1/°C) 

αImp = Normalized temperature coefficient for Imp (1/°C) 

βVoc(Ee) = βVoco + mβVoc⋅(1-Ee) (V/°C)  

βVoco = Temperature coefficient for module Voc at a 1000 W/m2 irradiance level (V/°C) 

mβVoc = Coefficient providing the irradiance dependence for the Voc  temperature 

coefficient, typically assumed to be zero (V/°C) 
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βVmp(Ee) = βVmpo +mβVmp⋅(1-Ee), Temperature coefficient for module maximum 

power-voltage as a function of effective irradiance (V/°C)  

βVmpo = Temperature coefficient for module Vmp at a 1000 W/m2 irradiance level (V/°C) 

mβVmp = Coefficient providing the irradiance dependence for the Vmp temperature 

coefficient, typically assumed to be zero (V/°C) 

To = STC Reference cell temperature for rating performance, typically 25°C 

Eo = STC Reference solar irradiance, typically 1000 W/m2 

Isco = Isc  (Ee = Eo W/m2, AMa = 1.5, Tc = To °C, AOI = 0°) (A) 

Impo = Imp (Ee =1, Tc = To) (A) 

Voco = Voc (Ee =1, Tc = To) (V) 

Vmpo = Vmp (Ee =1, Tc = To) (V) 

Ixo = Ix (Ee =1, Tc = To) (A) 

Ixxo = Ixx (Ee =1, Tc = To) (A) 

 

Figure AB.2: Illustration of a module I-V curve showing the five points on the curve that are 

provided by the Sandia performance model (King et al., 2004) 

 

The inverter performance model presented does not provide an electrical engineering 

model of circuit characteristics or power conditioning algorithms used in the development 

of new inverter designs; rather it is an empirical, or phenomenological, model that simply 

but accurately replicates the power delivery characteristics of the dc-to-ac inversion 

process. 
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𝑃𝑎𝑐 = [(
𝑃𝑎𝑐𝑜

𝐴−𝐵
) − 𝐶(𝐴 − 𝐵)] (𝑃𝑑𝑐 − 𝐵) + 𝐶(𝑃𝑑𝑐 − 𝐵)2                               

𝐴 = 𝑃𝑑𝑐𝑜[1 + 𝐶1(𝑉𝑑𝑐 − 𝑉𝑑𝑐𝑜)]                                                                      

𝐵 = 𝑃𝑠𝑜[1 + 𝐶2(𝑉𝑑𝑐 − 𝑉𝑑𝑐𝑜)]                                                                        

𝐶 = 𝐶𝑜[1 + 𝐶3(𝑉𝑑𝑐 − 𝑉𝑑𝑐𝑜)]                                                                         

where: 

Pac = ac-power output from inverter based on input power and voltage (W) 

Pdc = dc-power input to inverter, typically assumed to be equal to the PV array maximum 

power (W) 

Vd = dc-voltage input, typically assumed to be equal to the PV array maximum power 

voltage (V) 

Paco = maximum ac-power “rating” for inverter at reference or nominal operating 

condition, assumed to be an upper limit value (W) 

Pdco = dc-power level at which the ac-power rating is achieved at the reference operating 

condition (W) 

Vdco = dc-voltage level at which the ac-power rating is achieved at the reference 

operating condition (V) 

Pso = dc-power required to start the inversion process, or self-consumption by inverter, 

strongly influences inverter efficiency at low power levels (W) 

Co = parameter defining the curvature (parabolic) of the relationship between ac-power 

and dc-power at the reference operating condition, default value of zero gives a linear 

relationship (1/W) 

C1 = empirical coefficient allowing Pdco to vary linearly with dc-voltage input, default 

value is zero (1/V) 

C2 = empirical coefficient allowing Pso to vary linearly with dc-voltage input, default 

value is zero (1/V) 

C3 = empirical coefficient allowing Co to vary linearly with dc-voltage input, default 

value is zero (1/V) 

 

Linear correlations for maximum power  

Assuming that Fig. AB.3 illustrates the I-V curve of a typical photovoltaics cell, fill 

factor (FF) is the ratio of the actual maximum obtainable power (dark blue box), to the 
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product of short-circuit current and open-circuit voltage (light blue box) and is essentially 

a measure of the photovoltaics cell’s efficiency. The theoretical maximum value of fill 

factor for a cell mainly depends on its technology; however, deviation from the expected 

value or changes in fill factor can mean that a fault is present. 

 

Figure AB.3: Illustration of a module I-V curve and the concept of fill factor 

(www.seaward.com) 

 
If cell temperature increases, the open-circuit voltage and the fill factor both increase; 

however, the short-circuit current decreases, but only slightly. The effect of temperature 

on the electrical efficiency of a cell can be traced to its effect on the current and the voltage 

as the maximum power is given by: 

𝑃𝑚𝑝 = 𝐼𝑚𝑝. 𝑉𝑚𝑝 = 𝐹𝐹. 𝑉𝑜𝑐/𝐼𝑠𝑐                                                                                 

𝐹𝐹 = 𝐼𝑚𝑝. 𝑉𝑚𝑝 . 𝑉𝑜𝑐/𝐼𝑠𝑐                                                                                                 

The latter equation serves as a definition of the fill factor. Evans (1981) developed a 

linear expression which applies the net effect of temperature and plane of array irradiance 

to the cell electrical efficiency: 

𝜂𝑐 = 𝜂𝑜 . (1 − 𝛽𝑟𝑒𝑓. (𝑇𝑐 − 𝑇𝑜) + 𝛾. 𝑙𝑜𝑔10𝐺𝑇)                                                   

where: 

𝜂o = Module’s electrical efficiency at the reference temperature 

To = STC Reference cell temperature for rating performance, typically 25°C 

https://www.seaward.com/
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𝛽𝑟𝑒𝑓 = Temperature coefficient for the maximum power point at a 1000 W/m2 irradiance 

level (1/°C) 

𝛾 = Irradiance coefficient for the maximum power point at 25°C 

If 𝛾 equals to zero, then the previous equation simplifies to the equation below which 

represents the well-known Evans-Florschuetz linear correlation for the photovoltaics cell 

electrical efficiency (Evans and Florschuetz, 1977). 

𝜂𝑐 = 𝜂𝑜 . (1 − 𝛽𝑟𝑒𝑓. (𝑇𝑐 − 𝑇𝑜))                                                                                

The quantities 𝜂𝑜 and 𝛽𝑟𝑒𝑓 are normally given by the manufacturer. However, they can 

be obtained from flash tests in which the cell’s electrical output is measured at two different 

temperatures for a given irradiance. (Hart and Raghuraman, 1982). 
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Appendix C: Hydro- Québec EHBE 

Location  

Latitude: 46.56° N 

Longitude: 72.77° W  

Time zone: UTC-5  

 

Orientation  

Twin houses facade is facing south-south-west. House 2 is shifted 1.22 m back of house 

1 to limit shading.   

 

 

Figure AC.1: Houses shift and orientation 

 

Dimensions  

House zones per floor are given in Table 1. Abbreviated reference to data point names 

is given for each zone. The entrance hall, living room, bedroom 2 and bedroom 3 comprise 

the house facade. The kitchen, dining room, bathroom and bedroom 1 comprise the house 

back. The washroom is adjacent to the entrance hall and garage.   

Table AC.1: House zones 

Basement  First Floor  Second Floor 



66 

 

basement 1 (SS)  hall  bedroom 3 (CH3) 

basement 2 (SS2)  washroom (SE)  bedroom 1 (CH1) 

other  kitchen (CU)  bedroom 2 (CH2) 

garage (GA)  living room (SA)  bathroom (SB) 

attic  dining room (SM)  hall 

 
 

 

 
Figure AC.2: Front and back elevations (mm) 

 

 
Figure AC.3: Side elevations (mm)
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Figure AC.4: Basement and first floor plans (mm) 

 

Figure AC.5: Second floor and roof plans (mm) 

 

 

Constructions  

Measured properties are marked (*). Others are from component specification sheets or 

from AHSRAE fundamentals (chapter 26, 2009). When air gaps are labeled as effective, 

conduction, convection and radiation contributions are included using ASHRAE 

procedure. 



68 

 

 

Table AC.2: Foundation walls (outside to inside) 

material  wall segment  thickness  

(mm) 

rsi  

(m²K/W) 

specific 

heat 

(kJ/kgK) 

density  

(kg/m³) 

above 

soil 

insulated less than 

24-inch 

from 

footing 

soil  

 

X  X  - 

   

backfill  

 

X  X  - 

   

drainage 

board  

 

X  X  10 (0.4’’)  0.16  -  - 

bituminous 

coating  

 

X  X  -  -  -  - 

parging  X  

  

~5  0.070  0.84  1860 

concrete  X  X  X  others  

203 (8’’)  

front wall  

254 (10’’) 

0.078 - 

0.156  

0.098 - 

0.195 

0.9  2200 

insulating 

panel  

X  X  

 

50.4 (2’’)  1.76*  1.47  25-40 

polyethylene 

film  

   

0.15  neglected 
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air 

(effective)  

X  X X other  

19 (0.75’’)  

no 

insulation 

70 (2.75””) 

0.18  

0.19 

  

gypsum 

board  

X  X  X  12.7 

(0.5’’)  

0.079  1.15  640 

 

Table AC.3: Slab (inside to outside) 

material basement garage thickness  

(mm) 

rsi  

(m²K/W) 

specific heat 

(kJ/kgK) 

density  

(kg/m³) 

concrete  

with metallic 

framework  

X  X  101 (4’’)  

152 (6’’)  

0.039 - 

0.078  

0.058 - 

0.117 

0,9  2200 

waterproofing 

membrane  

X  

 

3 

   

geotextile  X  

 

~ 1  0.011  -  - 

crushed stone  X  

 

350 

(13.75’’) 

   

stone dust  

 

X  152 (6’’) 

   

backfill  

 

X 
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geotextile  X  

 

~ 1  0.011  -  - 

soil  X  X 

    

 

Table AC.4: Exterior walls (outside to inside)  

material  thickness  

(mm) 

rsi  

(m²K/W) 

density  

(kg/m³) 

brick or vinyl 90 (3.5’’)  0.06-0.07  2474 

air (effective)  19 (0.75’’)  0.18 

 

air barrier  

 

neglected 

 

fiberboard or  

plywood (bracing) 

12.7 (0.5’’)  

12.7 (0.5’’) 

0.19-0.23  

0.14 

 

glass wool or  

wood studs (2x6’’)  

140 (5.5’’)  

140 (5.5’’)  

3.52 (2.94 combined) 1.1-1.3 

 

insulating board  12.7 (0.5’’)  0.20 

 

air (effective)  19 (0.75’’)  0.61 

 

gypsum board  12.7 (0.5’’)  0.079 
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Table AC.5: Wall adjacent to garage  

material  thickness  

(mm) 

rsi  

(m²K/W) 

gypsum board  12.7 (0.5’’)  0.079 

air (effective)  19 (0.75’’)  0.18 

air barrier  

 

neglected 

fiberboard  

or  

plywood (bracing) 

12.7 (0.5’’)  

12.7 (0.5’’) 

0.19-0.23  

0.14 

glass wool  

or  

wood studs (2’’x6’’)  

140 (5.5’’)  

140 (5.5’’)  

3.52 (2.94 combined) 1.1-1.3 

insulating board  12.7 (0.5’’)  0.20 

air (effective)  19 (0.75’’)  0.61 

gypsum board  12.7 (0.5’’)  0.079 

 

Table AC.6: Garage walls (outside to inside) 

material  thickness  rsi  density  
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(mm) (m²K/W) (kg/m³) 

brick or vinyl 90 (~3.5’’)  0.06-0.07  2474 

air (effective)  19 (0.75’’)  0.18 

 

air barrier  

 

neglected 

 

fiberboard or  

plywood (bracing) 

12.7 (0.5’’)  

12.7 (0.5’’) 

0.19-0.23  

0.14 

 

glass wool or  

wood studs (2x6’’)  

140 (5.5’’)  

140 (5.5’’)  

3.52 (2.94 combined) 1.1-1.3 

 

polyethylene film  0.15  neglected 

 

air (effective)  19 (0.75’’)  0.18 

 

gypsum board  12.7 (0.5’’)  0.079 

 

 

Table AC.7: Exterior wall at joist (outside to inside)  

material  thickness  

(mm) 

rsi  

(m²K/W) 

density  

(kg/m³) 

brick or vinyl 90 (3.5’’)  0.06-0.07  2474 

air (effective)  19 (0.75’’)  0.18 

 



73 

 

air barrier  

 

neglected 

 

fiberboard or  

plywood (bracing) 

12.7 (0.5’’)  

12.7 (0.5’’) 

0.19-0.23  

0.14 

 

air barrier  

 

neglected 

 

particle board  12.7 (0.5’’)  0.14 

 

glass wool  140 (5.5’’)  3.52 

 

 

Table AC.8: Plywood covered floors  

material 1st floor 2nd floor thickness  

(mm) 

rsi  

(m²K/W) 

varnish plywood  X  X  19 (0.75’’)  0.19 

plywood  X  X  15.7 (0.625’’)  0.15 

air/floor joists  X  X  300 (11.75’’) 

 

air  

 

X  19 (0.75’’) 

gypsum board  

 

X  12.7 (0.5’’)  0.079 
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Table AC.9: Ceramic covered floors 

material washroom kitchen bathroom thickness  

(mm) 

rsi  

(m²K/W) 

ceramic  X  X  X  9.5 

(0.375’’)  

0.116±0.006* 

heating wired and self 

levelling cement 

 

X  X  9.5 

(0.375’’)  

0.12 

plywood  X  

  

9.5 

(0.375’’)  

0.08 

plywood  X  X  X  15.7 

(0.625’’)  

0.15 

air/floor joists  X  X  X  300 

(11.75’’)  

0.079 

air  

  

X  19 (0.75’’) 

 

gypsum board  

  

X  12.7 (0.5’’)  0.079 

 

Table AC.10: Roof - attic – ceiling (outside to inside)  

Material house garage 

 

thickness (mm) rsi (m2K/W) 

asphalt shingles  X  X  

 

0.078 



75 

 

felt paper  X  X 

  

waterproofing membrane  X  X  

 

to 915 mm of roof edge 

plywood  X  X  12.7 (0.5’’)  0.14 

air  X  X  - 

 

batt insulation and  

wood studs 

X  X  240 (9.5’’)  

90 (3.5’’) 

5.28 (5.11 combined)  

0.90 

insulating board  X  

 

12.7 (0.5’’)  0.20 

polyethylene film  

 

X  0.15  neglected 

air (effective)  X  X  19 (0.75’’)  0.61 

gypsum board  X  X  12.7 (0.5’’)  0.079 

 

Table AC.11: Outside doors  

location  width (mm)  height (mm)  comment 

house  1321  2105  two clear glass panels  

559 x 1220 mm  

203 x 1220 mm 
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garage  920  2105  clear glass slider panel  

585 x 940 mm 

house-garage  920  2105  no panel 

 

Table AC.12: Window dimensions  

location  width (mm)  height (mm) 

living room façade  2135  1420 

living room side  610  1420 

bedrooms 2 and 3  915  1420 

kitchen  915  1015 

bathroom  915  1420 

bedroom 1  1220  1420 

garage  610  1220 

basement back  914  610 

basement side close to back  1220  610 

basement side close to facade  1400  610 
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For better access, the basement ceiling is unfinished. Floors are finished with varnished 

plywood to emulate hardwood flooring. The aluminium framed casement windows are 

double glazed clear glass with a thermoplastic divider. Facade windows glazed section is 

30 mm thick with 6 mm thick glass while others glazed section is 22.2 mm thick.  

The kitchen sliding glass door has an aluminium-pvc frame with double clear glass 3 

mm thick. Other outside doors are foam insulated, steel finished wood doors. Interior room 

and wardrobe doors are made of MDF. 

 

HVAC 

The twin houses are heated by electric baseboards controlled by line-voltage electronic 

programmable thermostats.  

Table AC.13: Baseboard power per zone  

zone  power (W) 

garage (GA)  2000 

basement 1 (SS)  2000 

basement 2 (SS2)  2000 

washroom (SE)  500 

kitchen (CU)  1500 

living room (SA)  1500 

dining room (SM)  1250 
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bedroom 2 (CH2)  1250 

bathroom (SB)  1000 

bedroom 3 (CH3)  1250 

bedroom 1 (CH1)  1250 

 

Electric heating wires embedded in cement and covered by ceramic tiles are installed in 

the kitchen (9 W/pi2) and bathroom (12 W/pi2). Each heated floor is controlled by his 

electronic programmable thermostat offering three operation modes (air, floor, both). 

Heated floors are activated only for dedicated experiments.   

Although not used, pulse air ducts are installed. Inlet and outlet plenums are in the 

basement. Air diffusion grilles are located below windows of every room on the first and 

second floors. In the basement, they are located in the ceiling above windows. The first 

and second floor halls each have an air return. No central heating/cooling system is 

present.  

A heat recuperating ventilator of 35 l/s nominal capacity in installed in the basement. 

Air inlets are in the three bedrooms, while outlets are in the bathroom and first floor hall. 

The controller has three speeds and three operation modes (recirculation, intermittent, 

continuous). The heat recuperating ventilator is activated only for dedicated experiments.  

The washroom and bathroom ventilation fans nominal capacities respectively are 42.5 

l/s and 51.9 l/s. The kitchen exhaust hood has four speeds and a nominal capacity of 306.8 

l/s. As usual, there is a dryer exhaust vent. These exhausts are unsealed only for dedicated 

experiments. In addition, soffit and louvers insure attic natural ventilation.   

Appliances (electric water heater, washing machine, dryer, oven and refrigerator) are 

powered only for dedicated experiments.  
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Appendix D: Python Code Samples 

Parameter Identification 

The following piece of code corresponds to the training of the 3C7R network model 

using the Sequential Least Squares Programming (SLSQP) solver from the SciPy.optimize 

package: 

Tout, Tgrd, P_pv, Q_bb1, Q_bb2, Q_bb3, Q_hp, Q_sol, T_int1, T_int2, T_int3 = 
df_assign(df_train) 
n = len(df_train.index) #length of dataset 
t = (np.arange(n)+1) * dt #time array                                                                                                                                                         
T_int1_hat, T_int2_hat, T_int3_hat  = np.zeros(len(t)), np.zeros(len(t)), 
np.zeros(len(t)) #temperature arrays 
T_int1_hat[0], T_int2_hat[0], T_int3_hat[0] = df_train.T_int1[0], df_train.T_int2[0], 
df_train.T_int3[0] #temperature arrays initialization 
diff_1, diff_2, diff_3 = np.zeros(len(t)), np.zeros(len(t)), np.zeros(len(t)) 
w1, w2, w3 = 1, 1, 1 #zonal weights 
init_train = [0.015, 0.015, 0.019, 0.002, 0.014, 0.014, 0.036, 6.6e6, 6.4e6, 7.45e6, 
0.6, 0.3, 0.05] #initial values 
bnds_train = so.Bounds([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 
0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001], 
                       [1, 1, 1, 1, 1, 1, 1, 1e10, 1e10, 1e10, 0.5, 0.5, 0.5]) 
#boundaries 
lincons_train = so.LinearConstraint([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], [0], 
[1]) #linear constraints  
def calib_train(param): #minimization  
    for i, v in enumerate(param): 
        if abs(v) > 1e15: param[i] = init_train[i] 
    R1, R2, R3, R4, R5, R6, R7, C1, C2, C3, alpha1, alpha2, alpha3 = param 
    for i in range(len(t)-1): 
        T_int1_hat[i+1]=(dt/C1)*(alpha1*Q_sol[i] + Q_bb1[i] + Q_hp[i]/3 + 
(T_int2_hat[i]-T_int1_hat[i])/R4 + (T_int3_hat[i]-T_int1_hat[i])/R5 + (Tout[i]-
T_int1_hat[i])/R1) + T_int1_hat[i] 
        T_int2_hat[i+1]=(dt/C2)*(alpha2*Q_sol[i] + Q_bb2[i] + Q_hp[i]/3 + 
(T_int1_hat[i]-T_int2_hat[i])/R4 + (T_int3_hat[i]-T_int2_hat[i])/R6 + (Tout[i]-
T_int2_hat[i])/R2) + T_int2_hat[i] 
        T_int3_hat[i+1]=(dt/C3)*(alpha3*Q_sol[i] + Q_bb3[i] + Q_hp[i]/3 + 
(T_int1_hat[i]-T_int3_hat[i])/R5 + (T_int2_hat[i]-T_int3_hat[i])/R6 + (Tout[i]-
T_int3_hat[i])/R3 + (Tgrd[i]-T_int3_hat[i])/R7) + T_int3_hat[i] 
    calib_train = w1*norm2(T_int1 - T_int1_hat) + w2*norm2(T_int2 - T_int2_hat) + 
w3*norm2(T_int3 - T_int3_hat) 
    return calib_train 
opt_train = so.minimize(calib_train, init_train, bounds=bnds_train, 
constraints=lincons_train, method='SLSQP') 
param_trained = opt_train.x 
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MPC  

The following piece of code corresponds to the predictive control based on the 3C7R 

network model using the ECOS solver from the CVXPY package: 

ph. # define the prediction horizon  
ct= 1 # time step where to start optimization {> 0} 
x = cp.Variable((nx, ph)) 
u = cp.Variable((nu, ph)) 
c = np.ones((nu, ph)) # unit cost 
constraints = cons = [] 
cons.append(x[0,0] == 18.3,) 
cons.append(x[1,0] == 17.9,) 
cons.append(x[2,0] == 17,) 
#NOTE:the comfort violation penalty is not considered if there is hard constraint on 
temperature 
#cons.append(x[0,:] >= comfort_min,) 
#cons.append(x[0,:] <= comfort_max,) 
cons.append(x[3,:] >= soe_min,) 
cons.append(x[3,:] <= soe_max,) 
cons.append(u[0,:] >= heating_min,) 
cons.append(u[0,:] <= heating_max,) 
cons.append(u[1,:] >= heating_min,) 
cons.append(u[1,:] <= heating_max,) 
cons.append(u[2,:] >= heating_min,) 
cons.append(u[2,:] <= heating_max,) 
cons.append(u[3,:] >= battery_min,) 
cons.append(u[3,:] <= battery_max,) 
cons.append(d[0,:] == df_sim['Tout'][st:st+ph],) #ambient air temperature 
cons.append(d[1,:] == df_sim['P_pv'][st:st+ph],) #PV generation 
cons.append(d[2,:] == df_sim['Q_sol'][st:st+ph],) #solar gains 
cons.append(d[3,:] == df_sim['Tgrd'][st:st+ph],) #ground temperature 
cost = 0 #cost initialization 
  cons.append(x[3,ch*j] == soe_min,) #initialization of battery soe 
  for k in range((ch*j)+1,ch*(j+1)): #step loop 
    cons.append(x[0,k] == x[0,k-1] + (dt/C1)*(u[0,k] + alpha1*d[2,k] + (d[0,k]-x[0,k-
1])/R1 + (x[1,k-1]-x[0,k-1])/R4 + (x[2,k-1]-x[0,k-1])/R5),) #state estimator 0 
    cons.append(x[1,k] == x[1,k-1] + (dt/C2)*(u[1,k] + alpha2*d[2,k] + (d[0,k]-x[1,k-
1])/R2 + (x[0,k-1]-x[1,k-1])/R4 + (x[2,k-1]-x[1,k-1])/R6),) #state estimator 1 
    cons.append(x[2,k] == x[2,k-1] + (dt/C3)*(u[2,k] + alpha3*d[2,k] + (d[0,k]-x[2,k-
1])/R3 + (x[0,k-1]-x[2,k-1])/R5 + (x[1,k-1]-x[2,k-1])/R6 + (d[3,k]-x[2,k-1])/R7),) 
#state estimator 2 
    cons.append(x[3,k] == x[3,k-1] + (u[3,k]*dt)/cap_bat,) #state estimator 3 
    cost += (u[0,k] + u[1,k] + u[2,k] + u[3,k] - d[1,k]) * price[k] #minimize 
electricity bill based on rate flex-D 
    cost += cp.norm2(u[0,k] + u[1,k] + u[2,k] + u[3,k] - d[1,k]) #maximize self-
consumtion 
    cost += cp.maximum(comfort_min[k] - x[0,k], 0, x[0,k] - comfort_max[k]) * 
penalty[k] #penalize comfort violation 
    cost += cp.maximum(comfort_min[k] - x[1,k], 0, x[1,k] - comfort_max[k]) * 
penalty[k] 
    cost += cp.maximum(comfort_base_min[k] - x[2,k], 0, x[2,k] - comfort_base_max[k]) 
* penalty_base[k] 
    cost += cp.norm2(u[0,k] - u[0,k-1]) #penalize high slew rate 
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    cost += cp.norm2(u[1,k] - u[1,k-1]) 
    cost += cp.norm2(u[2,k] - u[2,k-1]) 
    cost += cp.norm2(u[3,k] - u[3,k-1])  
  cost += cp.norm_inf(u[0,:])*price_peak + cp.norm_inf(u[1,:])*price_peak + 
cp.norm_inf(u[2,:])*price_peak #penalize peak demand 
  constraints.extend(cons) 
  # form and solve the problem 
  problem.solve(verbose=True, solver=cp.ECOS) 
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Appendix E: Model Selection and Over-

Parameterization 

Low-order thermal RC networks involve parameters that are not (or cannot be) directly 

observed and must be identified using the observed characteristics of a building or group 

of buildings. Parameter identification in these networks is an inverse problem, as the 

parameters that are used to form the model are selected according to the available 

observations and/or the purpose of study. Practically, the observations and the predictions 

are two vectors and by minimizing the Euclidean distance between them, the involved 

parameters are identified. The sum of Euclidean distances between the observations and 

the predictions for each of the zones over the training period can serve as a useful objective 

function to be minimized. Different weights can be assigned to each term based on their 

importance in the overall characteristics of the building, the available training data and the 

framework of the study. 

As these networks grow in complexity, the number of parameters used to form the 

model may increase to the point where overparameterization can result in overfitting and 

deterioration in prediction accuracy. 

The number of parameters in a 3rd order model tend to be relatively higher, when 

compared to a 1st order model, as there are more heterogeneous zones and more 

predominant heat transfer paths in a 3rd order model compared to a 1st order model. This 

means in such model there are greater number of parameters to be identified and it is a 

common view that identifying a great number of parameters simultaneously may cause 

overparameterization and overfitting. Therefore, it is highly desirable to cut the number of 

parameters that are being identified at the same time in the identification process.  

Assuming that some parameters of the model are fixed and are not subject to the 

optimization algorithm helps to reduce the complexity of the calibration; however, this has 

to be done carefully and needs strong reasoning.   

Overfitting refers to the production of an analysis that corresponds too closely or exactly 

to a particular set of data and may therefore fail to fit additional data or predict future 

observations reliably. An overfitted model contains more parameters than can be identified 
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by the available training data. Overfitting is to unknowingly extract some of the residual 

variation as if it represents underlying model structure. In other words, overfitting refers to 

the circumstance where the model starts fitting the existing noise in the training data, as 

well as the actual observations. The result of an overfitted model is minimal error for the 

available training data, but larger errors in validation and prediction with other data sets. A 

model saturates statistically when it has as many parameters as the number of available 

observations (data points) by which one tries to estimate. In fact, a saturated model is a 

model that is overparameterized to the point that it is just interpolating the data. Saturated 

models lead to extremely high-variance predictors that are being pushed around by the 

noise more than the actual data. Naturally, these models provide a perfect fit to the available 

training data because they just interpolate or iterate the data. 

Calibrating too many parameters simultaneously makes it more likely that 

overparameterization occurs; however, this definition is independent from the number of 

parameters. The issue of overparameterization must be solved before sensitivity and 

uncertainty analysis take place. In an overparameterized model the mean and the standard 

deviation (if applicable) estimates for the parameters are unreliable. A non- 

overparameterized calibrated model is a necessary condition for sensitivity and uncertainty 

analysis. 

  

Figure AE.1: Effect of the model resolution on describing the embedded information in the data 


