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Abstract 

Finding Groove in Behaviour and the Brain 

 

Tomas Matthews, Ph.D. 

Concordia University, 2021 

 

 Movement, perception, and reward are fundamental processes underlying much of our 

behaviour which, although separable, are strongly linked. For example, moving to music requires 

the extraction of timing information from auditory input to synchronize movements to musical 

rhythms, a process that often leads to pleasure. But why does it feel good to move to music, and 

what aspects of the music make us want to move? Further, what are the brain networks 

underlying this urge to move? One approach to answering these questions is to study the 

sensation of groove, which is defined as the pleasurable urge to move to music. The work 

presented in this thesis investigated groove using behavioural and neuroimaging methods to shed 

new light on music’s ability to move us and the fundamental processes that support this 

phenomenon.   

 Groove has been shown to be strongly influenced by rhythm, however, other aspects of 

music are likely to contribute. Article 1 investigated the role of harmonic complexity, showing 

that it interacts with rhythmic complexity in determining groove. A mediation analysis showed 

that harmonic complexity affects groove primarily via its impact on pleasure.  

 There is some evidence that moving to music increases groove. However, it is unclear if 

this depends on whether listeners feel as though they are synchronizing accurately. Article 2 

compared the relative impact of perceived and measured synchrony on groove. Perceived 

synchrony showed a stronger relation with groove indicating that ‘feeling in sync’ is a crucial 

driver of groove. 

 Separate lines of research have investigated the brain networks involved in rhythm 

perception and music-induced pleasure. Groove provides the opportunity to investigate these 

processes together. Article 3 investigated the brain regions underlying groove using functional 

magnetic resonance imaging. Groove elicited activation in motor timing and reward networks 

with the basal ganglia implicated in both.  
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 Together, these studies provide novel insight into groove and its underlying processes. 

These results are discussed in the context of the integration of predictive coding and dynamic 

attending treatments of rhythm perception and groove. I suggest that predictive timing processes 

form the foundation on which groove is built.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

Acknowledgements  

 Firstly, I thank my Master’s and PhD supervisor Dr. Virginia Penhune. Virginia provided 

me with so much support over the (many) years, both academically and in life. I really felt I 

could go to her with anything. Thank you for reining in my various dives down analysis rabbit 

holes, helping to structure my flailing ideas, and providing an amazingly supportive space for me 

to learn and grow. I have always looked forward to our discussions. 

This work was supported by Erasmus Mundus Student Exchange Network in Auditory 

Cognitive Neuroscience, the Fonds de Recherche du Quebec – Nature et Technologies, and the 

Natural Sciences and Engineering Research Council of Canada. I am also grateful to Concordia’s 

faculty of Arts and Sciences and School of Graduate Studies for financial support. 

 I am very grateful to have collaborated closely with Dr. Maria Witek and Dr. Peter Vuust. 

Maria has been and continues to be a great mentor and friend throughout all these years and 

many projects together. Working with Maria has been nothing but fun and I have learned so 

much from her. I feel lucky to have worked with Peter. His boundless excitement for research 

and approachability is an inspiration for me to continue pursuing an academic career. 

   I also feel very lucky to have met and worked with so many great people within the 

Penhune lab. Thanks to Dr. Kierla Ireland for your energy and enthusiasm and for always being 

there when I needed to talk. Thanks to Joe for all the patient guidance and wisdom. Thanks to 

Dr. Chris Steele for being a mentor in the early days of my graduate career. Thanks to Dr. Chiara 

Giascoco, Dr. Dilini Sumanapala, Dr. Lucia Vaquero, Dr. Fiona Manning, Brian Gunther, Jake 

Shenkar, and Alex Albury for all your help and wisdom over the years.  

 I also want to thank members of the Montreal music neuroscience community who have 

given me friendship and guidance over the years, including Dr. Dominique Vuvan, Dr. Pauline 

Trenchant, Dr. Megha Sharda, and Dr. Benjamin Gold. 

 Thanks also to Dr. Ole Heggli, Dr. Torben Lund, Dr. Rick Gurnsey, and Dr. Alexandre 

Morin for their help and guidance, and generosity with their time. Thanks to Sallamaari Vainio, 

Alessandra Brusa, and Dr. David Quiroga-Martinez for help collecting data, and to Dr. Michael 

Conway for use of his space. Thanks to Dr. Elvira Brattico for helping to get me to Aarhus and 

helpful comments on Article 1. Thanks also to Dr. Gabe Nespoli for analysis suggestions in 

Article 1. I am grateful to Dr. Robert Zatorre for helpful comments on Article 3 and to his lab 

members for helpful feedback.   



 

vi 

 I am thankful to my parents for their unwavering support and kindness over all these 

years. Finally, thank you to Dr. Jessica Thompson. Without her patience, wisdom, and caring 

support, I would not have finished this thesis.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

Contribution of Authors 

 

Article 1: The sensation of groove is affected by the interaction of rhythmic and harmonic 

complexity 

 

Tomas E. Matthews Conceptualized the research question and paradigm, 

generated stimuli, ran the statistical analyses, generated 

visualizations, and wrote and edited the manuscript 

Maria A. G. Witek Contributed to the conceptualization, stimuli generation, 

statistical analyses, visualization, and editing of manuscript 

Ole A. Heggli Generated and hosted web interface for online testing 

Virginia B. Penhune Contributed to the conceptualization, and editing of 

manuscript 

Peter Vuust Contributed to the conceptualization, stimuli generation, 

and editing of manuscript 

 

Matthews, T. E., Witek, M. A., Heggli, O. A., Penhune, V. B., & Vuust, P. (2019). The sensation  

of groove is affected by the interaction of rhythmic and harmonic complexity. PloS 

one, 14(1), 1-17. https://doi.org/10.1371/journal.pone.0204539 

 

Article 2: Perceived motor synchrony with the beat is a stronger predictor of groove than 

measured synchrony 

 

Tomas E. Matthews Conceptualized the research question and paradigm, 

modified existing stimuli, ran the statistical analyses, 

generated visualizations, and wrote and edited the 

manuscript 

Maria A. G. Witek Generated original stimuli. Contributed to the 

conceptualization, statistical analyses, visualization, and 

editing of manuscript 



 

viii 

Joseph N. L. Thibodeau 

 

Sallamaari Vainio 

Created data collection (tapping) apparatus, pre-processed 

tapping data 

Contributed to data collection 

Peter Vuust Contributed to the conceptualization, and editing of 

manuscript 

Virginia B. Penhune Contributed to the conceptualization, and editing of 

manuscript 

 

Matthews, T. E., Witek, M. A., Thibodeau, J. N. L., Vuust, P., & Penhune, V. B. (2021).  

Perceived motor synchrony with the beat is a stronger predictor of groove than measured 

synchrony. Under review at Music Perception (Article ID: MP-2021-0023).  

 

Article 3: The sensation of groove engages motor and reward networks 

 

Tomas E. Matthews Conceptualized the research question and paradigm, 

generated stimuli, collected data, ran the statistical 

analyses, generated visualizations, and wrote and edited the 

manuscript 

Maria A. G. Witek Contributed to the conceptualization, stimuli generation, 

data collection, statistical analyses, visualization, and 

editing of manuscript 

Torben Lund Contributed to data collection, preprocessed the fMRI data, 

and contributed to statistical analysis 

Peter Vuust Contributed to the conceptualization, stimuli generation, 

and editing of manuscript 

Virginia B. Penhune Contributed to the conceptualization, and editing of 

manuscript 

 

Matthews, T. E., Witek, M. A., Lund, T., Vuust, P., & Penhune, V. B. (2020). The sensation of  

groove engages motor and reward networks. NeuroImage, 214 (116768), 1-12. 

https://doi.org/10.1016/j.neuroimage.2020.116768 



 

ix 

Table of Contents 

List of Figures ........................................................................................................................................... xiii 

List of Tables ............................................................................................................................................ xiv 

CHAPTER ONE:  GENERAL INTRODUCTION ................................................................................. 1 

1.1 General introduction ........................................................................................................................ 2 

1.2 Rhythm and Groove ......................................................................................................................... 3 

1.3 Tapping studies ................................................................................................................................. 5 

1.3.1 Finger Tapping as a way to Investigate Sensorimotor Synchronization ............................... 6 

1.3.2 Tapping to Musical Rhythms .................................................................................................... 7 

1.3.3 Tapping and Groove .................................................................................................................. 8 

1.4 Theoretical treatments of Rhythm Perception and Groove .......................................................... 8 

1.4.1 Predictive Coding ....................................................................................................................... 9 

1.4.2 Dynamic Attending and Neural Resonance ........................................................................... 11 

1.5 The Neuroscience of Rhythm, Beat Perception and Music-Derived Reward ............................ 14 

1.5.1 The Brain Regions Involved in Rhythm and Beat Perception ............................................. 14 

1.5.2 Using Brain Stimulation to Investigate Rhythm and Beat Perception ................................ 16 

1.5.3 The Role of Neural Oscillations in Beat and Rhythm Perception ....................................... 17 

1.5.4 Dorsal Pathways and Rhythm and Beat Perception ............................................................. 18 

1.5.5 The Brain Regions Involved in Music-Derived Reward ....................................................... 19 

1.6 Introduction to the Research Chapters ......................................................................................... 21 

CHAPTER TWO:  ARTICLE 1 .............................................................................................................. 22 

Abstract .................................................................................................................................................. 23 

Introduction ........................................................................................................................................... 24 

Methods .................................................................................................................................................. 26 

Ethics statement ................................................................................................................................ 26 

Participants ........................................................................................................................................ 27 

Stimuli ................................................................................................................................................ 27 

Rhythmic complexity ........................................................................................................................ 28 

Harmonic complexity ........................................................................................................................ 30 

Procedure ........................................................................................................................................... 31 

Analysis .............................................................................................................................................. 32 

Mediation Analysis ............................................................................................................................ 34 

Group Analysis .................................................................................................................................. 34 

Results .................................................................................................................................................... 35 



 

x 

Wanting to move ............................................................................................................................... 35 

Pleasure .............................................................................................................................................. 36 

Mediation Analysis ............................................................................................................................ 37 

Musician vs non-musicians ............................................................................................................... 39 

Wanting to move ............................................................................................................................... 39 

Pleasure .............................................................................................................................................. 39 

Discussion .............................................................................................................................................. 40 

Data Availability ................................................................................................................................... 44 

Supporting Information ....................................................................................................................... 45 

CHAPTER THREE:  ARTICLE 2.......................................................................................................... 48 

Abstract .................................................................................................................................................. 49 

Introduction ........................................................................................................................................... 50 

Methods .................................................................................................................................................. 54 

Participants ........................................................................................................................................ 54 

Stimuli ................................................................................................................................................ 55 

Procedure ........................................................................................................................................... 55 

Measurement Apparatus .................................................................................................................. 56 

Preprocessing of tapping data .......................................................................................................... 56 

Statistical Analysis ............................................................................................................................ 57 

Effects of syncopation and group on tapping performance .......................................................... 58 

Effects of tapping performance, syncopation, and group on tap ratings ..................................... 58 

Effects of tap ratings, tapping performance, syncopation and group on groove ratings ........... 58 

Results .................................................................................................................................................... 59 

Effects of syncopation and group on tapping performance .......................................................... 59 

Effects of tapping performance, syncopation, and group on tap ratings ..................................... 61 

Effects of tap ratings, tapping performance, syncopation and group on groove ratings ........... 63 

Discussion .............................................................................................................................................. 66 

Perceived vs. Measured synchrony .................................................................................................. 67 

Perceived Synchrony and Syncopation ........................................................................................... 68 

Musicianship ...................................................................................................................................... 70 

Conclusion ......................................................................................................................................... 70 

Supplemental Material ......................................................................................................................... 71 

Effects of syncopation and group on tapping performance in models tuned for high efficiency
 ............................................................................................................................................................ 71 



 

xi 

Effects of tapping performance, syncopation, and group on tap ratings in a model tuned for 
high efficiency .................................................................................................................................... 71 

Effects of tapping performance, syncopation, and group on tap ratings in a model accounting 
for the censored nature of the data .................................................................................................. 72 

CHAPTER FOUR:  ARTICLE 3 ............................................................................................................ 73 

Abstract .................................................................................................................................................. 74 

Introduction ........................................................................................................................................... 75 

Material and Methods .......................................................................................................................... 78 

Participants ........................................................................................................................................ 78 

Stimuli ................................................................................................................................................ 78 

Procedure ........................................................................................................................................... 80 

Behavioural data analysis ................................................................................................................. 81 

MRI data acquisition ........................................................................................................................ 82 

MRI preprocessing and statistical analysis..................................................................................... 82 

Region of interest analyses ............................................................................................................... 83 

Results .................................................................................................................................................... 84 

Behavioural Results .......................................................................................................................... 84 

Whole-Brain fMRI Results .............................................................................................................. 86 

ROI Results ........................................................................................................................................ 89 

Discussion .............................................................................................................................................. 94 

Medium complexity rhythms drive the sensation of groove ......................................................... 95 

The sensation of groove involves reward regions of the brain ...................................................... 95 

The sensation of groove involves motor regions of the brain ........................................................ 96 

The sensation of groove involves frontoparietal networks ............................................................ 97 

Musicians show greater activation in regions associated with beat-based timing ...................... 98 

A proposed model ............................................................................................................................. 98 

Conclusion ......................................................................................................................................... 99 

Supporting Information ..................................................................................................................... 100 

CHAPTER FIVE:  GENERAL DISCUSSION .................................................................................... 104 

5.1 General Discussion ........................................................................................................................ 105 

5.2 Theoretical frameworks of rhythm perception .......................................................................... 105 

5.3 Relating these frameworks to groove .......................................................................................... 110 

5.4 Harmony and temporal predictions ............................................................................................ 113 

5.5 Temporal predictions, sensorimotor synchronization and groove ........................................... 114 

5.6 The neuroanatomy of temporal predictions in the context of groove ...................................... 115 



 

xii 

5.7 Temporal prediction errors in the brain ..................................................................................... 121 

5.8 Neural oscillations and PC ........................................................................................................... 123 

5.8 Reward, the urge to move, and neural oscillations .................................................................... 128 

5.9 Tying it all together ....................................................................................................................... 129 

5.10 Conclusion ................................................................................................................................... 132 

References ................................................................................................................................................ 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 



 

xiii 

List of Figures 
 
Figure 2.1. Stimuli Example ........................................................................................................27 

Figure 2.2. Indices of rhythmic and harmonic complexity ..........................................................29 

Figure 2.3. Ratings as a function of complexity ..........................................................................34 

Figure 2.4. Path model .................................................................................................................37 

Figure 2.5. Ratings as a function of musical training ..................................................................39 

Figure S2.1. Schematic representation of rhythms used to create the stimuli .............................44 

Figure S2.2. Chords used in the stimuli .......................................................................................44 

Figure S2.3. Indices for the chords used in the stimuli ................................................................45 

Figure S2.4. Counts for responses to groove and dance questions ..............................................46 

Figure 3.1. Circular plots of tapping data ....................................................................................59 

Figure 3.2. Relation between syncopation, tapping accuracy, and tapping precision .................59 

Figure 3.3. Relation between tap ratings, syncopation index, tapping accuracy, and tapping 

precision, for musicians and non-musicians .................................................................................64 

Figure 3.4. Relation between syncopation index and groove ratings in musicians and non-

musicians ......................................................................................................................................64 

Figure 3.5. Relation between tap ratings, syncopation index, and groove ratings ......................64 

Figure 4.1. Example of a stimulus with medium levels of rhythmic and harmonic complexity .77 

Figure 4.2. Subjective ratings as a function of rhythmic complexity, harmonic complexity, and 

group .............................................................................................................................................82 

Figure 4.3. Results of the medium > high rhythmic complexity contrast ....................................83 

Figure 4.4. Results of the musician > non-musician contrast ......................................................85 

Figure 4.5. Results of ROI analysis .............................................................................................87 

Figure 4.6. Estimated means from regression models testing the effects of pleasure and wanting 

to move ratings on activation in the regions of interest ................................................................88 

Figure S4.1. Schematic representation of rhythms with onsets (‘x’) shown on a grid ................97 

Figure S4.2. Indices of rhythmic and harmonic complexity for all stimuli .................................98 

Figure 5.1. Beat-based predictions, prediction certainty and prediction error in the context of an 

isochronous and non-isochronous rhythm ..................................................................................105 

 

 



 

xiv 

List of Tables 
Table S2.1. Musical Background .................................................................................................44 

Table 3.1. Standardized Parameter Estimates from Regression Model Predicting Groove Ratings 
.......................................................................................................................................................62 

Table 4.1. Participant Demographic Data ....................................................................................75 

Table 4.2. Stereotaxic Locations of Peak Voxels in the Medium > High Rhythmic Complexity 

Contrast .........................................................................................................................................84 

Table 4.3. Stereotaxic Locations of Peak Voxels in the Musicians > Non-Musicians Contrast ..85 

Table 4.4. Results of Hierarchical analysis Testing the Association between ROI Activations and 

Subjective Ratings ........................................................................................................................89 

Table 4.5. Final Models Testing the Association between ROI Activations and Subjective 

Ratings ..........................................................................................................................................90 

Table S4.1. Notes and corresponding frequencies for each chord ...............................................97 

Table S4.2. Stereotaxic Locations of Peak Voxels in the Medium > High Rhythmic Complexity 

Contrast using GLM Flex .............................................................................................................99 

Table S4.3. Stereotaxic Locations of Peak Voxels in the High > Medium Rhythmic Complexity 

Contrast using GLM Flex .............................................................................................................99 

Table S4.4. Stereotaxic Locations of Peak Voxels in the Musicians > Non-Musicians Contrast 

using GLM Flex ..........................................................................................................................100 

 



 

1 

 

 

 

 

 

 

 

 

 

 

CHAPTER ONE:  

GENERAL INTRODUCTION 
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1.1 General Introduction 
Whether unconsciously tapping your foot, or dancing to your favourite song, moving to 

music is a ubiquitous behaviour. These examples illustrate two fundamental yet still mysterious 

aspects of music’s power over us: It makes us want to move and doing so gives us pleasure. But 

why are we compelled to move to music? And why does it feel good? One way to address these 

questions is by studying the sensation of groove, which is defined as the pleasurable urge to 

move to music. Over the last two decades, studies on groove have provided novel insights into 

which rhythmic musical features engender a pleasurable desire to move. Meanwhile, 

neuroimaging studies on rhythm perception and the pleasure associated with music-listening 

have provided some clues as to the brain regions involved. However, although theoretical 

accounts have provided some suggestions, the underlying mechanisms are still unclear.  

As the definition implies, groove is likely to involve the integration of auditory, motor, 

and reward processes. One commonality between these processes, and something that is likely 

crucial to groove, is the role of prediction. Many psychological theories, going back to 

Helmholtz in the mid-19th century, suggest that prediction is fundamental to perception and 

behaviour, and the perception of music is likely no exception. In fact, the highly structured 

nature of music, both in time and in content, makes it particularly amenable to predictive 

processes. Indeed, the pleasure derived from listening to music is theorized to be largely driven 

by the confirmation and violation of predictions regarding what will happen and when it will 

happen. These predictions are based on the combination of explicit and implicit knowledge of 

musical structure and the preceding musical context (Cheung et al., 2019; Huron, 2006; Juslin & 

Västfjäll, 2008; Meyer, 1956; Salimpoor, Zald, Zatorre, Dagher, & McIntosh, 2015).  

Groove is strongly linked to musical rhythm, therefore, the temporal predictions that 

support rhythm perception are particularly relevant. Rhythm perception, and temporal prediction 

in general has been linked to the motor system, with motor cortical and subcortical brain areas 

involved in the processing of a regular beat and metre (Araneda, Renier, Ebner-Karestinos, 

Dricot, & De Volder, 2016; Bengtsson et al., 2009; Burunat, Tsatsishvili, Brattico, & Toiviainen, 

2017; Chapin et al., 2010; Chen, Penhune, & Zatorre, 2008; Grahn & Brett, 2007; Grahn & 

Rowe, 2009, 2013; Kung, Chen, Zatorre, & Penhune, 2013; Schubotz, Friederici, & von Cramon, 

2000; Thaut, Trimarchi, & Parsons, 2014). In addition, moving to music is a predictive rather 

than reactive process as it requires anticipatory initiation of movements for them to be 
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temporally aligned to the musical beat. Therefore, the sensation of groove can be thought of as 

the interaction of auditory, motor, and reward processes, with temporal prediction as a common 

mechanism. This makes groove a powerful phenomenon through which we can investigate how 

prediction drives the interaction of these fundamental processes. Further, the ubiquitous, highly 

structured, and modifiable nature of rhythmic music makes it a near-ideal tool with which to 

elucidate many of the processes of interest to psychologists and cognitive neuroscientists.      

However, many aspects of groove have yet to be investigated, including the influence of 

non-rhythmic musical features as well as the underlying brain networks. In addition, it is still 

unclear whether rhythmic movements enhance groove and why this might be the case. Therefore, 

the work presented in this thesis focuses on investigating these questions using behavioural and 

neuroimaging methods in order to better our understanding of the perceptual, cognitive, and 

neural processes underlying this powerful response to music. Article 1 describes a study 

investigating the impact of harmonic complexity, and its interaction with rhythmic complexity, 

on groove. Article 2 describes a study investigating the relative influence of perceived and 

measured tapping synchrony on groove. In Article 3, functional magnetic resonance imaging was 

used to elucidate the brain regions involved in groove. In addition to contributing to our 

understanding of groove, this work can also help us understand fundamental processes such as 

temporal prediction, audition, action, and reward, and how they interact.     

 

1.2 Rhythm and Groove 
 Rhythm, the temporal organization of sequences of sounds and silences, is crucial to 

groove as it creates the structure with which we align our movements. Musical rhythms are 

organized around a beat, which is the repeating, regular (i.e., isochronous) temporal pulse. This 

regular beat is what we tap our foot or bob our head to, and which determines the tempo of a 

musical passage. The beat provides a rhythmic anchor such that the timing of all other events is 

perceived in relation to it. The beat may be marked by sounded events on each iteration but will 

also be perceived, and will persist, when sounds fall on only some of the beats. Therefore, beat 

perception arises from the combination of external stimuli and endogenous processes (Large & 

Palmer, 2002). The pattern of strongly and weakly accented beats is called the metre (London, 

2012). For example, in some marches, the first strong beat is emphasized followed by three 

weaker beats, while in a waltz, the strong beat is followed by two weak beats. Together, beat and 
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metre lead to temporal predictions about where onsets will fall, with stronger predictions that 

onsets will fall on the beat versus off the beat and on stronger beats versus weaker beats. 

Syncopations, which are key to the sensation of groove, occur when an onset falls on a weak beat 

followed by a silence on a strong beat (Fitch & Rosenfeld, 2007; Longuet-Higgins & Lee, 1984). 

Syncopations contradict temporal predictions and can therefore be conceptualized as providing 

counterevidence to the beat or metre.  

 Syncopation is strongly linked with the sensation of groove. Musicians use syncopation 

to increase groove (Madison & Sioros, 2014) and rhythms with medium degrees of syncopation 

are rated higher in groove than those without syncopation or with high degrees of syncopation 

(Sioros, Miron, Davies, Gouyon, & Madison, 2014; Witek, Clarke, Wallentin, Kringelbach, & 

Vuust, 2014). Too little syncopation and a rhythm can seem boring, whereas too much 

syncopation makes a rhythm hard to follow. This suggests an inverted U-shaped relationship 

between degree of syncopation and groove. This inverted U-shaped function, known as the 

Wundt curve, has been proposed as a general relationship between complexity and aesthetic 

pleasure in art (Berlyne, 1971). For example, this relationship has been shown between 

preference and the verbal complexity of poems (Kammann, 1966) and the number of elements in 

abstract paintings (Rump, 1968). In the context of music, this relationship has been shown 

between objective and subjective measures of musical complexity, and ratings of liking or 

pleasantness with a variety of musical stimuli, from classical piano compositions to popular 

music (Heyduk, 1975; North & Hargreaves, 1997). These authors have suggested that this 

relationship reflects the degree to which stimuli increase arousal, with low arousal leading to 

disengagement and high levels of arousal having a deterring affect – and a sweet spot of 

moderate arousal that produces maximum engagement. This aligns with a recent study showing 

that high groove music and syncopated drum patterns elicited greater arousal as measured by 

ratings and pupil dilation, compared to low groove music and un-syncopated patterns (Bowling, 

Ancochea, Hove, Fitch, & Madison, 2019). The inverted U is likely to depend on musical 

expertise and personality factors (e.g., sensation seeking). For example, one study showed a 

‘flattening’ of the inverted U as musical training increases, suggesting other factors beyond 

complexity may become stronger determinants of liking as one gains musical expertise (Orr & 

Ohlsson, 2005). In order to explore the effect of musical expertise, the articles presented here 

involved either recruitment of participants with a wide range of musical training (Article 1) or 
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separate musician and non-musician groups (Articles 2 and 3). This allowed us to test the effects 

of training using both regression and group-comparison approaches.    

Based on early descriptions of groove, which focused on the expressive timing deviations 

that give music a certain rhythmic ‘feel’ (Danielsen, 2006), early experimental work on groove 

focused on the degree to which these microtiming deviations elicit groove. However, 

experiments testing the effect of microtiming have shown mixed results, with only one study 

showing a positive relation between the degree of microtiming deviations and ratings of groove 

(Kilchenmann & Senn, 2015), and others showing a negative relation (Butterfield, 2010; Davies, 

Madison, Silva, & Gouyon, 2013; Frühauf, Kopiez, & Platz, 2013; Madison & Sioros, 2014). 

However, these mixed results likely reflect the difficulty in studying such a phenomenon in the 

laboratory. Several other rhythmic features have been shown to be consistently associated with 

groove. For example, pulse clarity (the degree to which a rhythm induces perception of a beat), 

beat salience (how periodic the beat is), and event density (the number of between-beat onsets), 

have shown positive relations with ratings of groove (Madison, Gouyon, Ullén, & Hörnström, 

2011; Stupacher, Hove, & Janata, 2016). Other musical features, such as timbre, melody, and 

harmony can affect beat and metre perception. For example, chord changes or melodic contour 

can cue a strong beat point or the start of a phrase even while onset timing is kept constant 

(Dawe, Platf, & Racine, 1993; Hannon, Snyder, Eerola, & Krumhansl, 2004). In this way, these 

musical features may interact with rhythmic timing to influence groove. Harmony is likely to 

impact the affective component of groove as it can elicit emotional reactions even with a single 

chord (Lahdelma & Eerola, 2014). Article 1 focuses on the impact of harmonic complexity, and 

its interaction with rhythmic complexity, on groove.  

 

1.3 Tapping Studies 
 Article 2 describes a study in which participants tapped to the beat of rhythms of various 

degrees of complexity. Participants’ perception of how well they tapped were compared to how 

well they actually tapped in terms of their relative influence on their sensation of groove. 

Therefore, the next section briefly summarizes relevant literature on sensorimotor 

synchronization, focusing on the degree to which conscious awareness and automaticity 

influence this process.  
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1.3.1 Finger Tapping as a way to Investigate Sensorimotor Synchronization 
Sensorimotor synchronization (SMS) is the coordination of movements in time with a 

predictable stimulus (Repp, 2005). SMS relies on sensorimotor integration and temporal 

prediction processes as it requires participants to transform perceived timing information into 

motor timing information such that movements can be predictively aligned to the timing of 

stimulus onsets. In the context of metrical rhythms, participants can be asked to move to the beat 

or to other metrical levels. Therefore, SMS can provide overt indices of these psychological 

constructs and measure how they are affected by rhythmic context. Finger tapping tasks are the 

most common way of assessing SMS in the lab. Due to inherent variability in perceptual and 

motor processes, timing errors are intrinsic to SMS. Therefore, much work has focused on error 

correction processes in order to gain insight into the underlying perceptual, motor, and temporal 

prediction processes (Repp, 2005). In SMS, error comes in two forms: accuracy (often referred 

to as asynchrony), which is the difference between the onset of the tap and the onset of the 

stimulus; precision (often referred to as variability), which is the consistency of the tap-timing 

within or across trials.  

When tapping in synchrony to regular sequences, responses tend to be early by 10 to 80 

ms relative to the stimulus onset, a phenomenon known as negative mean asynchrony 

(Aschersleben, 2002; Repp, 2005). Although a full explanation of this phenomenon remains 

elusive, it has been shown to be reduced by training. That is, the negative mean asynchrony tends 

to be smaller in musicians (Repp, 2010) and is reduced in non-musicians following prolonged 

practice (i.e., 10 sessions of the same task) when accompanied by performance feedback 

(Aschersleben, 2002). Tapping precision is also enhanced in musicians and often covaries with 

regularity or predictability of the sequence (Matthews, Thibodeau, Gunther, & Penhune, 2016).   

Error correction is also thought to come in two forms: phase correction and period 

correction. Phase correction, where the timing of individual taps is altered to better align with 

target onsets following a perturbation, is thought to be automatic and independent of conscious 

awareness. For example, phase correction occurs even when participants are asked to ignore the 

perturbation and despite the fact that phase correction is counterproductive in this case (Repp, 

2002). In addition, participants will employ phase correction in response to local phase shifts, 

wherein the phase of an onset and all following onsets is shifted, even when this shift is so small 

as to be subconscious (Repp, 2000, 2001). Conversely, period correction, which is when one 
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maintains synchrony with a sequence that is changing in tempo, is thought to be under 

intentional, conscious control (Repp, 2005; Repp & Keller, 2004). For example, period 

correction depends on whether participants are aware of the tempo change, whether they are 

instructed to actively maintain synchrony with the tempo-changing sequence, and whether they 

are engaged in a distractor task (Repp & Keller, 2004). This relates to an influential model of 

SMS which suggests that natural variability in SMS comes from two sources; an internal 

timekeeper and peripheral motor processes (Wing & Kristofferson, 1973). It has been suggested 

that the internal timekeeper may be responsible for intentional period correction, while phase 

correction is an automatic motor process (Repp & Keller, 2004), thus explaining the lack of 

reliance on conscious awareness. However, recent work has suggested that motor kinematics and 

feedback from sensory consequences of motor actions influences timekeeping (Ross & 

Balasubramaniam, 2014), thus suggesting that peripheral and internal timekeepers are not as 

independent as previously assumed. 

 

1.3.2 Tapping to Musical Rhythms 
Tapping to the beat of a musical rhythm is thought be a special case of SMS, since the 

beat results from the combination of stimuli timing and endogenous process rather than an 

acoustic referent. Therefore, tapping to the beat, as well as the associated error correction, 

requires a combination of internally and externally driven timing processes (Repp & Su, 2013) 

and is susceptible to rhythmic context. For example, increased syncopation leads to a decrease in 

both tapping precision (Toiviainen & Snyder, 2003) and accuracy (Fitch & Rosenfeld, 2007). 

Metre also affects tapping, likely by affecting the temporal predictions. For example, as the 

perception of a clear metre increases by increasing the difference in volume between accented 

and non-accented tones, the duration of taps (i.e., the time that the finger is in contact with the 

surface) aligned with those accents also increases (Chen, Zatorre, & Penhune, 2006). In another 

study, participants tapped to metrical rhythms and a metronome (Patel, Iversen, Chen, & Repp, 

2005). Although performance was not better for the metrical rhythms overall, tap asynchrony 

was lower for the strong first beat of a phrase compared to the weaker following beats. This 

suggests that tap timing, and thus the temporal prediction that drives this tap timing, is more 

accurate for strong compared to weak beats. Finally, musical training also affects tapping to the 

beat, likely via the strength of beat-based temporal predictions. For example, the use of tapping 
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to find the underlying beat of a rhythm is more beneficial to non-musicians then musicians (Su & 

Pöppel, 2012). This suggests that musicians have a stronger endogenous representation of the 

beat and therefore can rely less on overt movements.  

 

1.3.3 Tapping and Groove  
 There are very few studies looking at the effects of SMS on groove. One study showed 

that tapping precision was not significantly associated with ratings of groove (Stupacher et al., 

2016). Another study showed that, although the degree of synchronization of head movements 

was related to ratings of groove, tap synchronization was not (Hurley, Martens, & Janata, 2014). 

These studies suggest that moving to music, but not tapping, can increase groove. However, as 

part of their seminal study on groove, Janata et al. (2012) showed that tapping increased the 

ratings of experienced groove, which the authors distinguish from perceived groove, compared to 

not moving, particularly for high-groove music. In addition, the degree to which taps 

synchronized with the music positively correlated with experienced groove. Finally, the 

perceived difficulty of synchronizing taps to the music was a strong predictor of groove. 

Together these results show that moving to music, and doing so accurately, increases the 

sensation of groove, and further that the feeling that one is successful in synchronizing is an 

important predictor of groove. This relates to the idea of fluency, which is the degree to which 

one is able to quickly and efficiently process task-relevant information. Fluency within a 

sensorimotor task has been linked to positive affect (Cannon, Hayes, & Tipper, 2010) and has 

been associated with lower tapping variability in a finger tapping task (Stupacher, 2019). 

Therefore, although it is still unclear whether the degree of tap synchronization is positively 

related to groove, it is likely that the feeling that one is able to synchronize their movements with 

music is associated with the pleasurable component of groove. This hypothesis is tested in the 

experiment reported in Article 2.  

 

1.4 Theoretical Treatments of Rhythm Perception and Groove 
 Rhythm perception and groove have been generally discussed in the context of two 

theoretical frameworks; predictive coding and dynamic attending. These frameworks, along with 

their relatives, have been applied to a broad set of functions, and across sensory modalities. Both 

frameworks emphasize the proactive and predictive nature of perception and its integration with 

motor control (cf., active inference, active sensing). That is, these frameworks assume that 
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perception is a combination of top-down and bottom-up processes. In particular, these 

frameworks rely on the concept of temporal predictions to explain rhythm (and groove), and 

therefore, despite their distinct ways of formalizing these predictions and how they come about, 

they are generally compatible.  

 

1.4.1 Predictive Coding 
Predictive coding (PC) is based on Bayesian inference and proposes that a core principle 

of information processing in the brain is the minimization of prediction error (Friston, 2005; Rao 

& Ballard, 1999). Because the brain only has indirect access to the environment via noisy 

sensory information, it generates internal models, or predictions regarding what will happen next 

and when it will happen. Inevitably there is a mismatch between the prediction and the incoming 

sensory information, resulting in a prediction error. It is this prediction error, rather than direct 

sensory information, that is passed to other brain regions for higher level processing. Prediction 

errors force the brain to adjust the existing internal model, thus refining these predictions to 

better align with sensory input. The precision, or certainty (here I will use certainty so as to avoid 

confusion with tapping precision), of the prediction determines the weight that is given to the 

prediction error, that is, the degree to which it will lead to an update in the internal model 

(Koelsch, Vuust, & Friston, 2019). Another way to minimize prediction error is by moving one’s 

body to alter the sensory input to better match the model. Further, efference copies of motor 

commands can function to suppress processing of the sensory consequences of self-generated 

actions (e.g., the sounds of one’s own steps), which may serve to down-weight prediction errors 

(Brown, Adams, Parees, Edwards, & Friston, 2013).  

As prediction errors lead to model refinement and thus learning, they are considered to be 

inherently rewarding (Vuust & Witek, 2014; Vuust, Witek, Dietz, & Kringelbach, 2018). That is, 

prediction errors can signal new information that can improve the model, thus acting as a form of 

intrinsic motivation serving the innate need for competence (Ryan & Deci, 2000; White, 1959). 

However, this depends on the context. For example, many strong prediction errors, particularly 

in a relatively uncertain context, can be aversive. In the context of music listening, relatively 

sparse prediction errors regarding a specific aspect of a musical passage (e.g., the rhythm) are 

likely rewarding, creating a pleasant sense of surprise (Gebauer, Kringelbach, & Vuust, 2012). 

This is partially because the listener is expecting some degree of prediction error, otherwise the 
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music would be boring. Therefore, musical prediction errors are rewarding particularly when 

they are themselves predictable (Koelsch et al., 2019).  

In the context of rhythm perception and groove, the internal model consists of the beat 

and/or metre (Vuust & Witek, 2014), thus aligning with the view that these are psychological 

constructs. These models engender predictions regarding when future onsets will occur with 

stronger or weaker predictions reflecting the metrical structure. These temporal predictions are 

conceptualized as probability distributions (or probability density functions) around a given 

timepoint, with the center of the distribution determining the point estimate, and the width of the 

distribution (in time) reflecting the certainty of the prediction (Koelsch et al., 2019). Prediction 

errors, for example in the form of syncopations, may lead to an updating in the model depending 

on the certainty of the antecedent prediction. This certainty will depend on the rhythmic context. 

For example, a metronome is perfectly regular and consistent, therefore certainty is high, as 

reflected by a narrow probability distribution. However, when a performer is playing a complex 

rhythm including both syncopations and microtiming deviations, certainty will be lower. 

Attention can also influence the degree to which a prediction error leads to an update in the 

model. For example, if the rhythm is complex and the listener is having trouble determining 

whether it is a duple or triple metre, the certainty of the predictions will be low. However, these 

predictions may nonetheless be strongly weighted by attention as the prediction error has the 

potential to resolve the uncertainty as to which metre is intended by the performer or composer. 

In this case, the listener will focus attention to each event and thus highly weight each prediction 

error until they can determine which metre is intended, and uncertainty is resolved.  

According to this framework, the inverted U-shaped relationship between the degree of 

syncopation and groove results from the fact that rhythms with medium levels of syncopation 

result in moderately certain predictions and produce a moderate degree of prediction error 

(Koelsch et al., 2019; Vuust & Witek, 2014). These rhythms are regular enough to allow the 

generation of temporal predictions, but the certainty of these predictions is only moderate due to 

the uncertainty created by syncopations, creating a pleasurable balance or tension. Further, the 

prediction errors, in this case, are themselves relatively predictable as the syncopations are 

expected, either due to familiarity with the particular piece or musical genre, or due to repetitions 

of the same rhythmic pattern. Conversely, low degrees of syncopation elicit little-to-no 

prediction errors therefore these rhythms are less engaging, while highly syncopated rhythms 
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subvert the ability to perceive a beat or metre and thus the ability to generate predictions in the 

first place. According to PC, rhythms with a medium degree of syncopation also increase the 

urge to move in order to test predictions and refine the internal model (beat or metre) or to down-

weight prediction errors that may signal an incorrect model (e.g., to maintain a given metre while 

some onsets suggest another metre). Therefore, by balancing predictability and prediction error, 

rhythms with medium syncopation elicit greater reward and a greater urge to move associated 

with groove (Vuust & Witek, 2014).  

PC is, generally speaking, a brain-based theory, therefore evidence for this framework 

tends to come from neural recordings. For example, many studies have focused on the mismatch 

negativity (MMN) which is an event-related neural response, measured by 

electroencephalography (EEG) or magnetoencephalography (MEG), that follows a perceptual 

deviant within a stream of ‘standards’. Based on this work, the MMN is thought to be a neural 

index of prediction error. In the context of music, MMNs occur in response to both rhythmic 

(Vuust, Ostergaard, Pallesen, Bailey, & Roepstorff, 2009) and melodic (Quiroga-Martinez et al., 

2019) deviants. MMNs associated with violations of rhythm-based temporal predictions have 

been localized to the parietal and auditory cortices (Lappe, Steinsträter, & Pantev, 2013). The 

parietal cortex is part of the dorsal auditory stream (Rauschecker, 2011; see section 1.5.4) and 

has been implicated in both rhythmic (Ross, Iversen, & Balasubramaniam, 2018b) and non-

rhythmic timing (Davranche, Nazarian, Vidal, & Coull, 2011). Interestingly, Vuust et al. (2009) 

showed higher amplitude MMNs for syncopations on strong beats compared to weak beats, and 

for expert musicians compared to non-musicians, supporting the suggestion that musical training 

strengthens metrical models. Similarly, the amplitude of MMNs in response to small temporal 

perturbations decreased as rhythmic complexity increased (Lumaca, Haumann, Brattico, Grube, 

& Vuust, 2019). This suggests that prediction errors, as reflected by MMNs are weaker for 

weaker metrical models and therefore also reflect the certainty or weight of the prediction error.        

 

1.4.2 Dynamic Attending and Neural Resonance  
The dynamic attending theory (DA) builds on dynamical systems theory to describe how 

temporal predictions come about and in turn lead to rhythm perception (Large & Jones, 1999). 

According to this framework, attention is a rhythmic process, formalized as an endogenous 

oscillator, or set of oscillators, continuously fluctuating between low and high states. These 
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oscillators are entrained by rhythms in the environment, such as music or speech, thus aligning 

periods of relatively high attention with relevant timepoints in the auditory stream. The coupling 

strength, describes the force with which a rhythm in the environment draws attention, thus 

determining how fast the attentional oscillator aligns with the environmental rhythm. 

Synchronization describes the consistency of the temporal relation between attentional oscillator 

and external rhythm and thus the degree of entrainment. In the context of rhythm perception, 

high phases of the attentional oscillator reflect temporal predictions. That is, once entrainment is 

established, rhythmic onsets are expected to occur at high rather than low phases of the 

attentional oscillator. As in PC, temporal predictions have varying degrees of precision 

depending on the rhythmic context and this precision is formalized as the width of a probability 

distribution. In DA, this distribution is referred to as the focus of attention, defined as rhythmic 

pulses of attention or ‘concentrations of attentional energy’ over time (Large & Jones, 1999, pg. 

129). Therefore, as in PC, the width of attentional focus will be broader when the rhythmic 

context engenders uncertainty, for example, when no note falls within the focus of attention and 

the temporal prediction is violated.  

The neural resonance theory, which is based on DA, proposes that attentional oscillations 

are instantiated in neural oscillations, which reflect the periodic increases and decreases of 

excitability in neuronal ensembles (Large & Snyder, 2009). These oscillations can be entrained 

by regularly timed stimuli such that phases of high neural excitability align with relevant time 

points in the stimuli, thus facilitating perception. Evidence for this comes from EEG and MEG 

studies involving perceptual target detection or discrimination within rhythmic or pseudo-

rhythmic streams. Within these tasks, task performance is predicted by the phase alignment 

between perceptual targets and neural signals (Auksztulewicz, Myers, Schnupp, & Nobre, 2019; 

Henry, Herrmann, & Obleser, 2014; Henry & Obleser, 2012; Lakatos, Karmos, Mehta, Ulbert, & 

Schroeder, 2008). Therefore, these studies provide a neural basis of the faciliatory effects of 

temporal prediction on perception.  

Neural oscillations are also thought to coordinate communication between brain regions, 

with higher frequency oscillations supporting local (e.g., within a brain region) communication 

and lower frequency communication supporting longer distance (e.g., between brain regions) 

communication (Buzsáki, 2006). Further, high frequency oscillations can be nested within low 

frequency oscillations, thus providing a mechanism by which local and long-distance processes 
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can be synchronized in time, for example, to facilitate multisensory integration (Bauer, Debener, 

& Nobre, 2020). This nesting is often measured via phase-amplitude coupling in which the high-

excitability phase of the low frequency oscillation correlates with high power or amplitude in the 

high frequency oscillation (Samiee & Baillet, 2017). Therefore, according to the neural 

resonance view, rhythmic neural activity is a fundamental component of neural computation, 

accounting for attentional sensory selection, temporal prediction mechanisms, and multi-sensory 

integration. Although, not measured in the projects discussed in this thesis, low-frequency neural 

oscillations may provide a neural substrate for beat-based predictions while coupling between 

low and high frequency oscillations may determine the precision of these predictions. In 

addition, this coupling may govern the timing of motor outputs, for example in an SMS task.  

Based on the above discussion, it is clear that there is strong overlap between the PC and 

DA frameworks in how they conceptualize and formalize temporal predictions, and their 

certainty, in the context of rhythm perception. However, the ways in which these frameworks 

account for the neural mechanisms of rhythm perception, and the degree to which they have been 

applied to groove, diverge. For example, the link between DA and neural resonance theories to 

rhythm and beat perception has been widely tested and discussed (see section 1.3.3), however, 

the link to groove has yet to be firmly established. Exceptions include a study linking subjective 

feelings of entrainment, including the urge to move and a subjective feeling of changes in bodily 

rhythms, to positive affect in the context of music listening (Labbé & Grandjean, 2014) and 

another showing a positive relation between neural entrainment and ratings of groove (Cameron 

et al., 2019). Conversely, PC has been repeatedly applied in the investigation of groove and its 

underlying mechanisms (Koelsch et al., 2019; Vuust & Witek, 2014; Vuust et al., 2018; Witek et 

al., 2014). The methodological approaches associated with these two frameworks also diverge. 

For example, due to the reliance on oscillatory processes, the neural correlates of DA have 

largely been tested using methods that can capture the temporal (e.g., phase) relationships 

between neural activity, as measured by EEG or MEG, and auditory rhythms. Conversely, the 

emphasis on prediction errors in PC has led to the focus on the event-related brain responses 

such as event-related potentials (with EEG) and event-related fields (with MEG), as well as 

event-related functional magnetic resonance imaging (fMRI).  

In the current context, these theoretical frameworks are most relevant for Article 2 in 

which they are used to generate hypotheses and interpret the relative contribution of perceived 
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and measured tapping synchrony to groove. Within the context of that study these frameworks 

make generally the same predictions. However, the final chapter will provide a more in-depth 

discussion of how these frameworks may explain the sensation of groove in general. 

  

1.5 The Neuroscience of Rhythm, Beat Perception, and Music-Derived Reward 
 There is now an abundance of work on the neural correlates of rhythm and beat 

perception and production, however, very little work has focused on the sensation of groove. 

One consistent result from neuroimaging studies on beat and rhythm perception is the 

involvement of motor regions of the brain, even during passive listening and with no intent to 

move (Araneda et al., 2016; Bengtsson et al., 2009; Burunat et al., 2017; Chapin et al., 2010; 

Chen et al., 2008; Grahn & Brett, 2007; Grahn & Rowe, 2009, 2013; Kung et al., 2013; Schubotz 

et al., 2000; Thaut et al., 2014). Given that the urge to move is fundamental to the sensation of 

groove as well as the importance of rhythm perception in groove, it is sensible to expect that 

even passive listening to groove-based music would engage the motor regions of the brain. There 

has also been a number of neuroimaging studies showing that music listening engages reward 

networks in the brain (Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011; Salimpoor et al., 

2013) corresponding to those involved in the processing of primary and secondary rewards such 

as food and money (Sescousse, Caldú, Segura, & Dreher, 2013). However, neuroimaging work 

investigating the reward associated with groove is lacking. Article 3 investigates whether the 

motor networks and reward networks involved in rhythm perception and music-derived pleasure 

are involved in the sensation of groove. Therefore, these two sets of literature are briefly 

summarized in the next two sections.   

  

1.5.1 The Brain Regions Involved in Rhythm and Beat Perception 
 Exploiting its high spatial resolution, researchers have used fMRI to investigate the brain 

regions involved in beat perception. The most common approach to the design and analysis of 

fMRI studies involves contrasting the blood oxygen-level dependent (BOLD) response between 

two or more conditions. Studies contrasting rhythms with a strong beat to those with no 

discernible beat (e.g., random onsets) show activity in brain regions associated with motor 

processes including the primary motor (M1), the dorsal and ventral premotor cortices (dPMC; 

vPMC), the supplementary motor area (SMA), the basal ganglia (BG) and the cerebellum 

(Araneda et al., 2016; Bengtsson et al., 2009; Burunat et al., 2017; Chapin et al., 2010; Chen et 
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al., 2008; Grahn & Brett, 2007; Grahn & Rowe, 2009, 2013; Kung et al., 2013; Schubotz et al., 

2000; Thaut et al., 2014). Many of these regions have been specifically implicated in both motor 

and perceptual timing tasks. The BG is thought to be involved in beat-based timing of regular 

repeating intervals in the hundreds of milliseconds range. In contrast, the cerebellum is 

implicated in timing of single intervals and in the fine-grained, automatic correction of 

movements (Breska & Ivry, 2018; Teki, Grube, & Griffiths, 2012; Teki, Grube, Kumar, & 

Griffiths, 2011).  

Based on the above work, it has been proposed that a network formed by the BG, PMC, 

and SMA (BG-SMA-PC; and likely other regions, such as the thalamus) is responsible for 

endogenous beat generation (Merchant et al., 2015). This is supported by behavioural work with 

Parkinson’s Disease patients. Parkinson’s Disease affects dopamine release by the substantia 

nigra to other regions of the BG. Patients with Parkinson’s Disease show a reduced ability to use 

the beat in a rhythm discrimination task compared to healthy controls (Grahn & Brett, 2009). 

Conversely, patients with cerebellar degeneration show decrements in duration-based (e.g., a 

single interval) but not beat-based timing tasks (Grube, Cooper, Chinnery, & Griffiths, 2010). A 

similar result was shown when cerebellar activity was disrupted using transcranial magnetic 

stimulation (TMS; Grube, Lee, Griffiths, Barker, & Woodruff, 2010). In addition, activity in the 

BG-SMA-PMC respond to the beat across auditory, and vibrotactile modalities (Araneda et al., 

2016; Grahn, Henry, & McAuley, 2011). In addition, oscillatory activity in these regions has 

been shown to track the beat and metre (Li et al., 2019; discussed further below).  

The BG-SMA-PMC hypothesis is also congruent with more general models of timing, 

such as the pacemaker-accumulator model and striatal beat frequency model, which are based on 

interval timing studies in animals. Both models implicate the BG and motor cortical regions, 

including the SMA, as crucial nodes in a core timing network (Coull, Cheng, & Meck, 2011; 

Matell & Meck, 2004; Merchant, Pérez, Zarco, & Gámez, 2013). Although based on interval 

timing tasks, these models are also compatible with beat perception and beat-based timing 

(Hartcher-O’Brien, Brighouse, & Levitan, 2016). These models provide promising accounts of 

how basic timing mechanisms within cortico-striatal networks may explain beat perception and 

generation, however, empirical evidence is still lacking. Further, these regions provide likely 

candidates for connecting rhythm perception and the urge to move in the context of groove, a 

hypothesis that is tested in Article 3.        
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1.5.2 Using Brain Stimulation to Investigate Rhythm and Beat Perception 
 TMS allows for the investigation of the causal involvement of cortical regions in beat or 

rhythm perception. TMS involves the application of electric current to a specific brain region via 

electromagnetic induction which leads to either excitation or inhibition of activity in this region. 

The effects of this stimulation on motor and perceptual processes is then measured. One 

approach is to deliver a single pulse of TMS over M1 and then use electromyography, for 

example with a surface electrode placed on the muscle controlling finger movements, to measure 

the resulting motor evoked potential (MEP). The amplitude of the MEP is related to corticospinal 

excitability which is considered an index of motor preparation. Using this method, studies have 

shown larger MEPs for rhythms with a strong beat compared to a weak beat (Cameron, Stewart, 

Pearce, Grube, & Muggleton, 2012) and enhancement of MEP amplitudes in response to stimuli 

with rates around participants’ spontaneous tapping tempo (Michaelis, Wiener, & Thompson, 

2014). Finally, one study showed larger MEPs for high-groove compared to low-groove music 

and that this effect was greater on the beat compared to off the beat (Stupacher, Hove, 

Novembre, Schütz-Bosbach, & Keller, 2013). Together these results show that beat perception 

and groove causally affect motor preparation.   

 Another approach is to use TMS to excite or inhibit activity in cortical regions and then 

measure changes in behaviour via beat perception or tapping tasks. As this approach does not 

rely on measuring changes in muscle activity, it can be used to investigate the involvement of 

regions other than M1 in beat or rhythm perception. Using this approach, one study showed that 

inhibitory TMS over the right dPMC during a rhythm reproduction task affected tap asynchrony 

but not the accuracy of produced intervals (Giovannelli et al., 2014). Inhibitory TMS over left 

dPMC and the SMA did not affect tapping performance. Two recent studies with perceptual 

rhythm and timing tasks showed that inhibitory TMS over the right dPMC affected performance 

on an interval timing and an inter-beat interval task, but not a phase-shift detection task (Ross, 

Iversen, & Balasubramaniam, 2018a). In a separate study, inhibitory TMS over the left parietal 

cortex reduced phase shift detection but stimulation over the SMA did not affect performance on 

either beat-based or interval timing-based tasks (Ross, Iversen, & Balasubramaniam, 2018b). 

Although supporting the role of the PMC in beat-based timing, these results contradict the 
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previously discussed results suggesting involvement of the SMA in beat perception (see also the 

next section). Therefore, the specific contributions of these two regions have yet to be clarified.  

 

1.5.3 The Role of Neural Oscillations in Beat and Rhythm Perception 
 Unlike fMRI, EEG provides high temporal resolution and therefore the ability to measure 

brain activity at and above frequencies corresponding to rhythmic stimuli. This makes EEG an 

excellent method for investigating neural resonance theory in the context of rhythm perception. 

One popular method is to ‘tag’ frequencies in the EEG frequency spectrum that correspond to 

those found in the spectrum of rhythmic stimulus and compare the amplitudes of these EEG 

signals across conditions (Nozaradan, 2014). For example, one study using this approach showed 

that when participants impose a metre on an isochronous rhythm, by imagining an accent on 

every second onset, EEG signals with frequencies corresponding to both the rhythm and metre 

were observed (Nozaradan, Peretz, Missal, & Mouraux, 2011). In addition, tapping to either the 

event or beat frequency enhances the amplitude of the corresponding EEG signal (Chemin, 

Mouraux, & Nozaradan, 2014). This approach was also applied to patients with BG or 

cerebellum lesions. Results indicated that BG patients had reduced signal amplitudes at slower 

tempos especially for more complex rhythms while cerebellum patients showed reduced signal 

amplitude for faster tempos (Nozaradan, Schwartze, Obermeier, & Kotz, 2017). A recent study 

combined this frequency-tagging approach with fMRI, showing that the putamen, caudate, SMA 

and thalamus tracked both metre and beat frequencies (Li et al., 2019). In addition, by 

contrasting beat and metre tracking conditions, the authors showed that the SMA showed greater 

tracking of the beat versus metre while putamen showed greater tracking of the metre compared 

to the beat. A recent study used a similar approach, but with MEG recordings and with 

syncopated rhythms with few or no onsets falling on the beat (Tal et al., 2017). Analysis of the 

MEG signal showed a significant peak corresponding to the beat frequencies in the right auditory 

cortex, thus providing a neural correlate of an endogenous beat.  

 Other studies of beat entrainment using MEG have focused on activity in the beta band 

(12.5 -30 Hz), a frequency range associated with motor preparation (Engel & Fries, 2010). 

Studies using a similar paradigm, where participants imagine or impose metrical accents on un-

accented stimuli, have shown beta power modulations following imagined accents (Fujioka, 

Ross, & Trainor, 2015; Iversen, Repp, & Patel, 2009). Further, they have shown that beta power 
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tracks rhythmic onsets (Fujioka, Trainor, Large, & Ross, 2009) and that this tracking is 

consistent across tempos, suggesting that this oscillatory response is predictive rather than 

simply reflecting a stereotypic evoked response (Fujioka, Trainor, Large, & Ross, 2012). Beta 

activity has been generally associated with motor functions (Engel & Fries, 2010) and may be 

generated in motor cortex (Baker, 2007). This has led to the suggestion that beta activity encodes 

predictive timing signals that facilitate auditory processing in a rhythmic context (Arnal, 2012; 

Patel & Iversen, 2014; Teki & Kononowicz, 2016). This conception has been recently given 

experimental support by a study showing directed signaling in the beta range from motor to 

auditory cortex during both covert and overt tracking of the beat (Morillon & Baillet, 2017). In 

addition, source localization of the beta activity associated with rhythmic onsets and imagined 

accents shows a large network of cortical and subcortical motor, auditory, parietal and frontal 

regions (Fujioka et al., 2015; Fujioka, Fidali, & Ross, 2014; Fujioka et al., 2012). Therefore, 

studies using EEG and MEG corroborate the involvement of a motor, frontoparietal, and 

auditory network supporting beat and rhythm perception as shown by the fMRI studies discussed 

above. Further, these studies provide evidence for entrainment-driven temporal predictions as the 

underlying mechanism.  

 

1.5.4 Dorsal Pathways and Rhythm and Beat Perception 
 Evidence demonstrating the involvement of auditory, parietal, premotor and prefrontal 

regions in both fMRI and MEG studies of rhythm and beat perception, is in line with the 

importance of the dorsal auditory stream in predictive motor control (Rauschecker, 2011) 

including speech (Hickok & Poeppel, 2004, 2007, 2016) and rhythm (Karabanov, Blom, 

Forsman, & Ullén, 2009; Kornysheva & Schubotz, 2011). This network is thought to be crucial 

for translating acoustic representations, such as speech, into motor commands in a feedforward 

manner, that is, generating a motor command based on the desired or predicted auditory output 

(Hickok & Poeppel, 2016). These networks are also thought to generate efference copies of a 

motor signal and send this signal to sensory regions, allowing for the facilitation or suppression 

of the resulting sensory input. A similar network, consisting of the dorsal premotor and posterior 

parietal cortices, is thought to be responsible for the coding of domain-general simulation of 

actions allowing for the manipulation of abstract representations such as that involved in mental 

rotation or melody transpositions (Foster, Halpern, & Zatorre, 2013; Ptak, Schnider, & Fellrath, 
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2017). The feedforward generation of motor commands, and their efference copies, is thought to 

occur for covert or simulated actions as well as those actually carried out. In the context of 

rhythm perception, the action simulation for auditory prediction (ASAP; Patel & Iversen, 2014) 

hypothesis suggests that the endogenous beat consists of covert actions generated in dorsal 

networks, along with the BG. The efference copies of these covert motor commands provide the 

pacing signal that focuses attentional and sensory processes to the predicted beat points (Kotz, 

Brown, & Schwartze, 2016). Specifically, covert motor signals, likely in the beta range, are 

thought to result in a phase reset of the slow neural oscillations in auditory cortex, thus 

enhancing or maintaining neural entrainment to rhythmic or pseudo-rhythmic input (Rimmele, 

Morillon, Poeppel, & Arnal, 2018). Activity in the parietal cortex has been implicated in 

focusing attention in time (Coull et al., 2011), for example when expecting a perceptual target to 

fall on a certain metrical beat, in both perceptual and motor tasks (Bolger, Coull, & Schon, 2014; 

Davranche et al., 2011). This likely relates to the purported role of the parietal cortex as the 

interface between efference motor signals and incoming sensory signals thought to support the 

comparison between temporal prediction and input (Rauschecker, 2011). 

 

1.5.5 The Brain Regions Involved in Music-Derived Reward 
Given that the sensation of groove involves a positive affective response, it is likely to 

engage regions involved in processing reward, including the caudate and nucleus accumbens 

(NAcc) in the basal ganglia as well as the medial orbitofrontal cortex (mOFC). Current research 

suggests that these regions are involved in processing music-derived pleasure (Salimpoor et al., 

2015) in addition to processing primary (e.g., food and sex) and secondary (money) rewards 

(Sescousse et al., 2013). The NAcc has been shown to be active during peak moments of music-

derived pleasure while the caudate is active in anticipation of these moments (Salimpoor et al., 

2011), suggesting differential roles in the anticipation and experience of reward. In addition, 

activity in the NAcc predicted the reward value of music as measured by the amount of money 

participants were willing to pay for each song (Salimpoor et al., 2013). Further, functional 

connectivity between the NAcc and auditory cortex, as well as structural connectivity between 

NAcc and mOFC, and between NAcc and the mOFC is associated with the degree to which 

listening to music induces reward (Martinez-Molina, Mas-Herrero, Rodríguez-Fornells, Zatorre, 

& Marco-Pallarés, 2019; Martínez-Molina, Mas-Herrero, Rodríguez-Fornells, Zatorre, & Marco-
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Pallarés, 2016). Together these results show that music-derived pleasure is supported by a 

network formed by the NAcc, mOFC, and auditory cortex.  

Activity in NAcc and other BG regions during positive emotional experiences, including 

those related to music listening, rely on dopaminergic signaling that is thought to reflect 

prediction processes (Gebauer et al., 2012; Juslin & Västfjäll, 2008; Koelsch & Skouras, 2014; 

Salimpoor et al., 2011). Dopamine release within subcortical regions including the substantia 

nigra and ventral tegmental area (VTA) are thought to code for reward prediction errors, for 

example when a stimulus is better than predicted (Schultz, 2016). Therefore, the pleasure 

experienced during music listening and the associated BG activation are thought to reflect the 

interaction between predictions about what and when musical elements will occur, and the value 

assigned to these elements (Hollerman & Schultz, 1998). This is supported by recent work 

showing that reward prediction errors related to melodic passages are coded in the NAcc (Gold, 

Mas-herrero, Zeighami, Benovoy, & Dagher, 2019). In addition, activity in the VTA and NAcc 

during music listening is highly correlated suggesting dopamine release from the VTA may be 

associated with NAcc activation (Menon & Levitin, 2005). The use of positron emission 

tomography allows for the tracking of dopamine release within the brain. Studies using this 

technique have shown greater dopamine release in the NAcc during moments of peak music-

induced pleasure (Salimpoor et al., 2011). Further, ingestion of a dopamine precursor led to 

increased pleasure ratings and electrodermal activity, during music listening, as well as increased 

money spent per song, compared to placebo (Ferreri et al., 2018). Ingestion of a dopamine 

agonist led to the opposite effect. This suggests a causal role of dopamine in music-derived 

pleasure.  

Together these studies show the importance of BG regions, along with the mOFC, in the 

experience of musical pleasure, with dopaminergic signaling as the likely neurobiological 

mechanism. The motor system as well as frontoparietal activity are also sensitive to reward 

incentive (Bundt, Abrahamse, Braem, Brass, & Notebaert, 2016; Etzel, Cole, Zacks, Kay, & 

Braver, 2016; Galaro et al., 2018) suggesting that cognitive, motor, and reward processes interact 

during incentivized task performance. This also relates to reward-based motor learning in which 

the BG has been shown to integrate reward value for action selection and optimization, a process 

that is also likely to rely on dopaminergic signaling (Graybiel, 2008; Graybiel & Grafton, 2015). 

As discussed above, the BG are also thought to be crucial for rhythm and beat perception and 
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production with dopamine likely playing a crucial role (Grahn & Brett, 2009; Koshimori et al., 

2019). Therefore, the BG seems a likely candidate for the integration of the motor-driven 

rhythm-based temporal prediction and reward processes associated with groove. For this reason, 

Article 3 focuses on BG, as well as whole-brain, activity associated with the sensation of groove.  

 

1.6 Introduction to the Research Chapters 
 Studying the sensation of groove helps us to better understand music’s power to move us 

both emotionally and physically, while also providing a powerful tool to further our 

understanding of how motor-driven timing and reward processes interact. In the following 

chapters, three research articles will be presented investigating perceptual, behavioural and 

neuroscientific aspects of groove. In Article 1, I investigate the degree to which harmonic 

complexity, and its interaction with rhythmic complexity, affects groove. This takes the 

investigation of groove beyond rhythm while elucidating how different aspects of music affect 

the pleasure and urge to move components of groove differentially. Article 2 focuses on whether 

‘feeling in sync’ with a rhythm predicts groove to a greater degree than measured synchrony by 

comparing the effects of tapping accuracy and precision, and tap ratings, on groove. In Article 3, 

I use fMRI to elucidate the brain regions involved in groove by investigating the neural 

correlates of both musical properties and subjective ratings. Together, this research aims to 

further our understanding of groove while investigating the fundamental processes that underlie 

this powerful aspect of music.      
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CHAPTER TWO:  

ARTICLE 1 

 

The sensation of groove is affected by the interaction of rhythmic and harmonic complexity 

 

 

Matthews, T. E., Witek, M. A., Heggli, O. A., Penhune, V. B., & Vuust, P. (2019). The sensation  

of groove is affected by the interaction of rhythmic and harmonic complexity. PloS 

one, 14(1), 1-17. https://doi.org/10.1371/journal.pone.0204539 
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Abstract 
The pleasurable desire to move to music, also known as groove, is modulated by 

rhythmic complexity. How the sensation of groove is influenced by other musical features, such 

as the harmonic complexity of individual chords, is less clear. To address this, we asked people 

with a range of musical experience to rate stimuli that varied in both rhythmic and harmonic 

complexity. Rhythm showed an inverted U-shaped relationship with ratings of pleasure and 

wanting to move, whereas medium and low complexity chords were rated similarly. Pleasure 

mediated the effect of harmony on wanting to move and high complexity chords attenuated the 

effect of rhythm on pleasure. We suggest that while rhythmic complexity is the primary driver, 

harmony, by altering emotional valence, modulates the attentional and temporal prediction 

processes that underlie rhythm perception. Investigation of the effects of musical training with 

both regression and group comparison showed that training increased the inverted U effect for 

harmony and rhythm, respectively. Taken together, this work provides important new 

information about how the prediction and entrainment processes involved in rhythm perception 

interact with musical pleasure. 
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Introduction 
When listening to music we often find ourselves spontaneously tapping or moving to the 

beat. This has led to the study of groove, which is the pleasurable desire to move to music 

(Janata, Tomic, & Haberman, 2012; Witek, 2009; Witek et al., 2014). Certain types of music are 

more likely to induce the sensation of groove than others. However, which specific aspects of 

music contribute to this sensation is less clear. Research on groove has focused on rhythmic 

complexity, but other musical properties may contribute as well. The harmonic complexity of 

simultaneous notes forming a chord is a likely contributor because it modulates affective 

responses (Pallesen et al., 2005), however, this may be influenced by musical expertise 

(Lahdelma & Eerola, 2014). Therefore, in the current study we investigated whether rhythmic 

and harmonic complexity work together to affect the sensation of groove and whether this 

depends on musical training.  

Early definitions of groove focused on the degree to which a piece of music will induce 

the desire to move to the beat (Madison, 2006; Pressing, 2002). Moving along with music, 

especially through dance, is often accompanied by feelings of pleasure. In a seminal study on 

groove, responses to a survey emphasized both the desire to move and the associated positive 

affect (Janata et al., 2012b). Since then, several rhythmic aspects have been studied in terms of 

their effectiveness in inducing groove. Music with a strong beat leads to higher groove ratings 

(Madison, Gouyon, & Ullen, 2009; Madison et al., 2011) and is more likely to induce whole 

body movements, compared to music with a weak beat (Burger, Thompson, Luck, Saarikallio, & 

Toiviainen, 2013).  

A strong beat may be necessary for groove but is likely not sufficient. A ticking clock 

could be considered to have a strong beat but is unlikely to be something people want to dance 

to. Syncopation, when a note falls on a weak beat, and is then followed by a silence on a strong 

beat (Fitch & Rosenfeld, 2007; Longuet-Higgins & Lee, 1984), is a critical component of 

groove. It is often found in musical genres associated with groove, such as jazz, soul, funk, Afro-

Cuban, and Hip Hop (Danielsen, 2006; Greenwald, 2002), and is used by musicians intentionally 

to create groove (Madison & Sioros, 2014). Meter is the pattern of differentially accented 

groupings and subdivisions of strong and weak beats which may or may not be acoustically 

present in the rhythm. Syncopation works against the meter by emphasizing a weak beat and de-

emphasizing a strong beat. This creates tension with the established meter, violating expectations 
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(Huron, 2006; London, 2012; Meyer, 1956). Listeners rate syncopated sequences as more 

enjoyable and sounding happier than non-syncopated sequences (Keller & Schubert, 2011), but 

this depends on the degree of syncopation. An inverted U-shaped relationship has been shown 

between degree of syncopation, and ratings of pleasure and the desire to move, where moderately 

syncopated rhythms are rated higher than rhythms with low or high degrees of syncopation 

(Witek et al., 2014). 

Non-rhythmic musical features have also been shown to contribute to groove, such as 

bass frequency content and variability in dynamics (Stupacher et al., 2016). While no current 

studies directly address whether harmony affects groove, there is evidence that consonance (i.e., 

a pleasant relation between notes in a chord) affects motor synchronization (Komeilipoor, 

Rodger, Craig, & Cesari, 2015) and feelings of entrainment (Trost et al., 2014). In the present 

study we tested the effect of harmony in single chords rather than chord sequences, therefore 

harmonic complexity was operationalized as the degree of consonance. Although chords most 

often occur in music as part of a sequence, some groove-based genres, such as salsa, funk, and 

house music, frequently feature only one or two chords (James Brown’s ‘The Payback’ is a well-

known example). Recent studies have shown that the harmonic complexity of single chords 

affects ratings of emotion and arousal (Lahdelma & Eerola, 2014) and that chords of 

intermediate complexity are preferred over highly consonant or dissonant chords (Lahdelma & 

Eerola, 2016). This result supports the inverted U hypothesis which, as discussed above, has 

been shown for rhythmic complexity, and is theorized to be a domain-general phenomenon 

(Berlyne, 1971). The use of single chords here allows for the modulation of affective responses 

by consonance alone, thus avoiding a confound with responses to violations of harmonic 

expectations from chord sequences.    

As affective, aesthetic and embodied effects of music are highly subjective and 

dependent on experience, musical training likely influences how individuals experience groove. 

However, the results of studies comparing musicians and non-musicians are somewhat 

contradictory. Musicians have shown a greater effect of syncopation on groove ratings (Senn, 

Kilchenmann, Bechtold, & Hoesl, 2018), stronger motor response to high groove music 

(Stupacher et al., 2013), and larger error-related neural response to rhythmic violations, 

compared to non-musicians (Vuust et al., 2009). Conversely, several studies have suggested that 

musical training has little or no effect on groove ratings (Stupacher et al., 2013; Witek et al., 
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2014) or leads to lower groove ratings (Hurley et al., 2014). Furthermore, it has been suggested 

that the inverted U-shaped relationship between overall complexity and liking disappears as 

musical training increases and other ‘learned aesthetic criteria’ become stronger predictors for 

music preference (Orr & Ohlsson, 2005), pg. 608). These contradictory results may be due to the 

fact that these studies differ in how musicianship is defined and tested (i.e., as a continuous 

regressor or via group comparison). For harmonic complexity in the context of chords the picture 

is somewhat clearer, as musicians show higher liking ratings (Lahdelma & Eerola, 2014), greater 

differences in ratings of consonance (Arthurs, Beeston, & Timmers, 2017; Pallesen et al., 2005), 

and larger mismatch negativity brain responses (Brattico et al., 2008). These results suggest that 

musical training leads to a greater sensitivity to consonance-dissonance manipulations, which 

may translate to greater affective response in the context of groove.  

Taken together, current evidence shows that the sensation of groove involves both a 

motor and affective response, and is predicted by syncopation, while the contribution of 

harmonic complexity and the impact of musical training are less clear. Therefore, in the present 

study we created stimuli that varied in both rhythmic and harmonic complexity. These stimuli 

were then rated for pleasure and wanting to move by a large sample of people with a broad range 

of musical training using an online paradigm. Based on previous research (Witek et al., 2014), 

rhythmic complexity was expected to show an inverted U-shaped relationship with ratings of 

both pleasure and wanting to move. Harmonic complexity was also expected to show an inverted 

U-shaped pattern with pleasure ratings and affect wanting to move only indirectly, if at all. 

Harmonic complexity was also expected to enhance the effect of rhythm via its effect on 

emotional valence. In order to reduce methodological bias, the contribution of musical training 

was investigated both as a continuous regressor and by comparing sub-groups of highly trained, 

practicing musicians to non-musicians. Musical training was expected to increase sensitivity to 

both harmonic and rhythmic complexity. 

  

Methods 
Ethics statement 

This study investigates subjective experiences of music via a web-based survey. The 

study was conducted through the Centre for Music in the Brain at Aarhus University, therefore, 

ethics were governed by the Central Denmark Region Committees on Health Research Ethics. 

According to their Act on Research Ethics Review of Health Research Projects (Act 593 of 14 
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July 2011, section 14.1), only health research studies shall be notified to the Committees. Our 

study is not considered a health research study (section 14.2) and therefore did not require ethical 

approval nor written/verbal consent, regardless of participants’ age. When recruited, participants 

were informed that their responses would be used for research purposes. Participants were 

anonymized, and no IP addresses were collected or stored. They were free to exit the survey at 

any time and were provided with an email address at the end of the survey to which they could 

address any questions or concerns.  

 

Participants 
Two hundred and one participants between the ages of 17 and 79 (M = 34.74 SD = 13.24) 

completed the survey (96 reported as female). Participants reported their nationality as being 

from countries in six different continents, with a majority in Europe (n = 130) and North 

America (n = 47). As can be seen in Table S2.1, there was a large range of musical training 

backgrounds. A majority (n = 189) of participants reported no university-level music degree. Of 

those currently playing music, a majority played piano (n = 50), guitar (n = 44) or sang (n = 25) 

and had 14.5 (SD = 5.31) years for formal music training. Musician responders played largely 

classical (n = 69) or pop/rock (n = 62) genres.   

For the group analysis, two subsets of the total sample were categorized as musicians (n = 

58, 15 F) and non-musicians (n = 51, 18 F). Musicians were defined as those who reported at 

least eight years of formal music training (M = 14.5, SD = 5.31) and were currently practicing on 

a weekly or more frequent basis (hours per week: M = 6.52, SD = 8.51). Non-musicians were 

defined as those who reported less than three years of formal training (M = 0.21, SD = 0.49) and 

were not practicing on a weekly or more frequent basis. Participants falling between these 

categories were excluded from the group analysis only. 

  

Stimuli 
 The stimuli consisted of short musical sequences with three levels (Low, Medium, High) 

of both rhythmic and harmonic complexity. There were three different rhythm patterns for each 

level of rhythmic complexity and three different chords for each level of harmonic complexity. 

These were combined into nine versions of each rhythmic and harmonic complexity 

combination, of which six were selected for inclusion in this study, resulting in a total of 54 
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stimuli. All stimuli were created using Cubase Pro version 8.0.30 (Steinberg Media 

Technologies). 

Each sequence consisted of a rhythmic chord pattern with one repeated chord in a piano 

timbre presented at 96 beats per minute in common time (see example stimuli in Figure 2.1). Each 

sequence also included an isochronous hi-hat pattern with an inter-onset interval (IOI) of .3125 

seconds, corresponding to an eighth note. The hi-hat provided a metrical context for the rhythms 

and prevented participants from perceptually shifting the beat of the high-complexity rhythms to 

reduce perceived complexity. Each piano chord lasted approximately .373 seconds including the 

full decay and were considered as eighth notes except in two of the high complexity rhythms which 

included IOI’s of .234 seconds corresponding to a dotted sixteenth note. Each sequence lasted one 

bar which was repeated four times for a total length of ten seconds.  

 

 

Figure 2.1. Stimuli example. Transcription of an example stimuli with a medium complexity 

rhythm (son clave) and a medium complexity chord (four note chord with extensions). The upper 

bar denotes the hi-hat. 

 

Rhythmic complexity 
Rhythms at all three levels of complexity consisted of five onsets in a 3+2 rhythmic 

pattern, that is, the first half of the bar consisted of 3 onsets, and the latter of 2 onsets. Medium 

complexity rhythms consisted of the son clave and the rumba clave, which are popular Afro-

Cuban five-stroke rhythm patterns, as well as an experimenter-created rhythm (see Figure S2.1 

for a schematic depiction of all rhythms). The claves were chosen as they induce a strong sense 
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of beat despite including syncopations. The son clave and rumba clave are widely used in South 

American and particularly Afro-Cuban music but are also found in many forms of western music 

including pop, jazz and electronic dance music. Low complexity rhythms followed the same 3+2 

rhythmic pattern as the medium complexity rhythms with all syncopation removed so that all 

onsets fall on strong beats. High complexity rhythms also followed the 3+2 rhythmic pattern, 

however only the first of the five onsets fell on strong beat points.  

 The degree of syncopation was quantified using the syncopation index created by Fitch 

and Rosenfeld (Fitch & Rosenfeld, 2007) based on the formalization of syncopation by Longuet-

Higgins and Lee (Longuet-Higgins & Lee, 1984). Each syncopation in a sequence was given a 

weight based on the position of the rests and preceding notes involved, then these values are 

summed for an overall index for that sequence. The syncopation indices are summarized in 

Figure 2.2A. C-scores were also calculated for each rhythmic sequence (see Figure 2.2B). The C-

score, created by Povel and Essens (Povel & Essens, 1985), measures the amount of 

counterevidence a rhythm provides against a given metrical interpretation based on the number 

of weak accents and silences falling on predicted beat points. C-scores and syncopation indices 

were highly correlated (r(7) = 0.99, p < .05) and both were highly consistent within each level of 

rhythmic complexity.  
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Figure 2.2. Indices of rhythmic and harmonic complexity. Scatterplots of measures of 
rhythmic complexity: (A) syncopation indices and (B) C-scores; and of harmonic complexity: 
(C) peak roughness and (D) inharmonicity.  
 

Harmonic complexity 
 There were three chords for each of the three levels of harmonic complexity (Low, 

Medium, and High). All chords were in the key of D major and included six notes spanning four 

octaves (D2 to #D5; see Figure S2.2). Low complexity chords consisted of the D major triad and 
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two inversions. Medium complexity chords consisted of four note chords with extensions. High 

complexity chords included a flat ninth interval between chord note and extension which is 

considered highly dissonant, when not specifically occurring as flat 9 th on major 7th chord, 

according to contemporary harmonic theory (Freeman & Pease, 1989; Levine, 2011; Nettles & 

Ulanowsky, 1987).  

Measures based on both acoustic and harmonic theory were used to quantify chord 

consonance. The acoustic measures of roughness and inharmonicity were calculated with the 

MIRtoolbox (Lartillot, Toiviainen, & Eerola, 2007). Roughness is due to combining sounds with 

similar frequencies, which causes beating and sensory dissonance (Plomp & Levelt, 1965; 

Sethares, 2004). Inharmonicity is the degree to which the partials in a chord are integer multiples 

of the fundamental frequency (Lartillot et al., 2007). A measure of consonance based on 

harmonic theory, called the aggregate dyadic consonance (ADC) (Huron, 1994) uses relations 

between pitch class sets rather than acoustic properties. Each interval class is given a consonance 

value which is multiplied by the number of occurrences of this interval class then summed for 

each chord. 

As can be seen in Figure 2.2C, peak roughness increased with level of harmonic 

complexity. Mean roughness shows a similar pattern (see Figure S2.3). Inharmonicity increased 

with level of harmonic complexity, however the medium and high complexity levels showed 

similar values (see Figure 2.2D). The ADC shows an inverted U-shaped pattern where the 

medium complexity chords have the highest value (see Figure S2.3). This is because ADC is 

dependent on the number of distinct notes in a harmonic set, leading to increased potential for 

consonant intervals as the number of notes increases (Huron, 1994; Lahdelma & Eerola, 2016). 

 

Procedure 
 Participants were recruited to visit a website hosting the survey via social media, email 

lists and word of mouth. Participants were offered the chance to win one of two Amazon gift 

cards worth 50 euros. First, participants completed a questionnaire regarding demographics, 

musical training, and musical preference. Participants reported years of formal training in music, 

the age at which they began formal training, and how often they currently practiced. Information 

regarding participants’ interest in groove music, how often they listen to groove music, their 
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enjoyment of dancing and how often they dance, were collected on five-point rating scales (see 

Figure S2.4). All questions required an answer before proceeding.  

Participants then heard two sequences similar to the stimuli used in the survey and were 

asked to adjust the volume on their computer to a comfortable level. They were told to maintain 

the chosen volume throughout the survey. The two sequences, which were not used in the actual 

experiment, illustrated the range of possible levels of rhythmic and harmonic complexity. The 

survey then began during which each stimulus was presented once in a randomized order. After 

each stimulus was presented, two rating scales appeared for the two questions: ‘How much does 

this musical pattern make you want to move?’ and ‘How much pleasure do you experience 

listening to this musical pattern?’. Participants used their mouse to select their rating on the two 

five-point scales where one indicated ‘not at all/none’ and five indicated ‘very much/a lot’. 

Participants were not able to proceed to the next stimulus until each stimulus had been presented 

in its entirety and a rating had been selected on both scales.  

 

Analysis 
Only data from participants who completed all 54 trials were saved. Therefore, the 

analysis was implemented with no missing values. In order to reduce the number of predictors in 

the main analysis, ratings regarding interest and frequency of listening to groove music were 

combined using a principle component analysis (PCA) and are henceforth referred to as groove 

engagement PCA. The identical approach was taken with the two questions regarding whether 

participants enjoy dancing and how often they dance (referred to as dance PCA) as well as hours 

of practice per week and years of formal training (referred to as musicianship PCA). 

Analysis of the main effects and interactions of rhythmic and harmonic complexity, as 

well as the effects of musical training, and enjoyment of dancing and groove music, were carried 

out using linear mixed effects regression in R (version 3.4.1) and RStudio (version 1.0.143), 

using the lme4 package (Bates, 2010). Random intercepts for participants were included as well 

as by-participant random slopes for the effects of rhythm and harmony, which accounted for 

inter-individual differences in average rating and effects of complexity, respectively (Barr, Levy, 

Scheepers, & Tily, 2013). By-item random intercepts were also included, which accounted for 

differences in ratings among the versions of stimuli within each level of rhythmic and harmonic 
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complexity. This also allowed for analysis of the raw rather than by-level aggregated ratings. 

Note that boxplots show ratings aggregated within complexity level for visualization purposes.   

A hierarchical approach was used, starting with an intercept-only model including all 

random effects. Predictors were then added incrementally and increases in model fit were 

assessed using the likelihood ratio test (Baayen, Davidson, & Bates, 2008). A final model 

including all significant predictors and random effects was then used to test follow-up contrasts. 

Along with visual inspection, inverted U-shaped relationships between harmonic and rhythmic 

complexity and ratings were tested using quadratic contrasts, which apply the contrast weights of 

1, -2, and 1, corresponding to the three levels of rhythmic and harmonic complexity. Therefore, 

inverted U-shaped relationships result in negative contrast estimates (b). Following a significant 

interaction, pairwise contrasts were used to test whether the result of the quadratic contrast for 

rhythmic complexity differed across levels of the other predictors (i.e., harmonic complexity and 

group). Linear contrasts were not included as they compare low and high levels of complexity 

which was not of interest here. Contrasts were carried out using the emmeans package in R 

(Lenth, Singmann, Love, Buerkner, & Herve, 2018). Confidence intervals were calculated using 

degrees of freedom approximated with the Satterthwaite method and were adjusted for multiple 

comparisons using the multivariate t method. As all contrasts involved comparing the estimates 

(b) to zero, confidence intervals not only reflect the precision of the estimate but also were used 

as two-tailed significance tests where an interval excluding zero indicates a statistically 

significant result. Diagnostic plots of the residuals from all models were inspected for violations 

of the assumptions of normality and homoscedasticity. No violations were detected. 

Linear regression models have been shown empirically to be robust to the potential 

violations of assumptions associated with Likert data (Norman, 2010). However, many believe 

that parametric statistics such as linear mixed effects models are not appropriate for Likert data 

(Jamieson, 2004). However, cumulative link mixed models (CLMM; from the ordinal package 

in R; Christensen, 2015), which are a standard method for analyzing ordinal data in a mixed 

effects context, do not allow for by-participant random slopes and are therefore less 

generalizable than linear mixed effect models (Barr et al., 2013). Furthermore, simulations 

suggest that CLMMs are more prone to Type I errors than linear mixed effects models for Likert 

data (Kizach, 2014). In the current study, secondary analyses were carried out using CLMMs to 

compare with the linear mixed effects approach. Overall, the pattern of results was very similar 
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for both types of models with slightly more statistically significant beta estimates in the CLMM 

models. Given their increased generalizability and potentially lower Type I error rates compared 

to CLMMs, only the results of the linear mixed effects models are reported here.  

 

Mediation Analysis 
Harmonic complexity was expected to affect pleasure directly and wanting to move only 

indirectly, while rhythmic complexity was expected to affect both variables directly. Therefore, 

following the main analysis, a mediation analysis was carried out to further examine the effect of 

harmonic and rhythmic complexity on wanting to move ratings, specifically to test whether their 

effects were mediated by pleasure. This analysis involved comparing two models predicting 

wanting to move ratings; one identical to that in the main analysis, and another including the 

addition of pleasure ratings as a predictor. If pleasure is a significant mediator, then the 

contributions of rhythmic and/or harmonic complexity will be reduced in the second model. 

The mediation effect was assessed using the mediation package (Tingley, Yamamoto, 

Hirose, Keele, & Kosuke, 2014) which provided point estimates and 95% confidence intervals 

for the mediation (indirect) and direct effects after taking the mediators’ effects into account. The 

mediation and direct effect estimates were considered significant if the confidence interval did 

not contain zero. Confidence intervals were calculated using a quasi-Bayesian Monte Carlo 

simulation with the number of simulations set to 1000. Given the limitations of the mediation 

package, the models included a by-subject random intercept only and only the medium versus 

high and medium versus low pairwise contrasts were tested.  

 

Group Analysis  
In addition to the main analysis which regressed a continuous musicianship variable on 

ratings, an additional group analysis was carried out to compare the ratings of two subsets of the 

whole sample; those who were trained musicians (n = 58) and those with little-to-no training (n = 

51; see Table S2.1 for musical background information). First, groove engagement and dance 

PCA scores were compared between the musicians and non-musicians to test whether musical 

training affected interest in groove and dance. A linear mixed effects analysis compared ratings 

between groups and tested for interactions between group and rhythmic and harmonic 

complexity.  
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Results 
Wanting to move  
 For the wanting to move ratings, likelihood ratio tests showed that model fit was 

significantly improved by adding rhythmic complexity (χ²(2) = 280.46, p < .001) and harmonic 

complexity (χ²(2) = 134.71, p < .001). Follow-up contrasts showed that both rhythmic (b(198) = 

2.269, 95% CI [-2.530, -2.008]) and harmonic complexity (b(199) = -0.327, 95% CI [-0.431, -

0.223]) showed significant quadratic trends, with rhythmic complexity showing a more 

pronounced trend. As can be seen in Figure 2.3A, rhythmic complexity showed a clear inverted 

U with highest ratings for medium complexity rhythms compared to both low and high. For 

harmony, despite a significant quadratic trend, an inverted U-shaped relationship was not shown 

as low and medium complexity chords were rated similarly, with a drop in ratings for high 

complexity chords.  

 

 

 

Figure 2.3. Ratings as a function of complexity. Boxplots showing the interaction between 

rhythmic and harmonic complexity for wanting to move ratings (A) and pleasure ratings (B). 

Boxplots represent ratings aggregated over items within each level of complexity for 
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visualization purposes. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, outliers. Dots represent means calculated from the raw ratings. 

 

Likelihood ratio tests also showed a significant interaction between rhythmic and 

harmonic complexity (χ²(4) = 55.27, p < .001). Follow-up contrasts showed a greater quadratic 

trend for rhythmic complexity when combined with medium harmonic complexity than high 

harmonic complexity (b(9840.02) = 0.201, 95% CI [-0.005, 0.406]) suggesting a more prominent 

inverted U-shaped relationship. However, this difference did not reach statistical significance 

after correction for multiple comparisons. There was a smaller difference in the quadratic trend 

between medium and low complexity chords which was also not significant (b(9840.02) = 0.129, 

95% CI [-0.076, 0.335]). Musicianship PCA scores showed a significant interaction with 

harmonic complexity (χ²(2) = 12.26, p < .01) with the follow-up contrast showing a more 

prominent quadratic trend as musicianship increased (b(199) = -0.108, 95% CI [-0.212, -0.004]). 

This was driven by lower ratings for low complexity chords as musicianship increased.  

 Dance PCA scores showed a significant main effect (χ²(1) = 8.20, p < .01). Those with 

greater interest in dancing showed higher wanting to move ratings overall (b(195.77) = 0.154, 

95% CI [0.033, 0.275]). There were also significant interactions between rhythmic complexity 

and both dance PCA (χ²(2) = 7.14, p < .05) and groove PCA (χ²(2) = 6.79, p < .05) scores 

however, the follow-up contrasts were not significant . 

  

Pleasure 
 For pleasure ratings, a likelihood ratio test revealed that there was a main effect of 

rhythmic complexity (χ²(2) = 227.49, p < .001). When harmonic complexity was added, the 

model failed to converge (Barr et al., 2013). Therefore, the main effect of harmonic complexity 

was added at the same step as the harmony by rhythm interaction, which together significantly 

improved model fit (χ²(6) = 295.69, p < .001). Follow-up contrasts showed that both rhythmic 

(b(198) = -1.673, 95% CI [-1.900, -1.446]) and harmonic complexity (b(199) = -0.546, 95% CI 

[-0.681, -0.411]) showed significant quadratic trends. As in the wanting to move results, rhythm 

showed a pronounced inverted U shape, whereas harmonic complexity did not, as low and 

medium complexity chords were rated similarly, with a drop in ratings for high complexity 

chords (see Figure 2.3B). 
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 Follow-up contrasts for the rhythm by harmony interaction showed that the quadratic 

trend for rhythmic complexity was significantly more pronounced for medium than high 

complexity chords (b(9840.02) = 0.345, 95% CI [0.137, 0.553]). There was a smaller, non-

significant difference in the trend between medium and low complexity chords (b(9840.02) = 

0.138, 95% CI [-0.069, 0.347]). Therefore, the inverted U relationship between rhythm 

complexity and pleasure was more pronounced for medium complexity chords compared to high 

complexity chords. As in the wanting to move results, there was a significant interaction between 

musicianship PCA scores and harmonic complexity (χ²(2) = 19.39, p < .001) showing that as 

musicianship increased, so did the quadradic trend (b(199) = -0.014, 95% CI [-0.023, 0.039]). 

 Likelihood ratio tests showed significant interactions between rhythmic complexity and 

both musicianship PCA (χ²(2) = 6.04, p < .05) and Dance PCA scores (χ²(2) = 7.25, p < .05). 

Due to convergence issues, both Dance and Groove PCA scores were added together which 

significantly improved model fit (χ²(2) = 7.06, p < .05). However, follow-up contrasts based on 

these effects were not significant suggesting that these were weak effects or, in the case of the 

interactions, were not related specifically to the quadratic trend of rhythmic complexity.  

 

Mediation Analysis      
Based on our finding that harmonic complexity affected wanting to move ratings and 

given that harmonic complexity was only expected to affect wanting to move ratings indirectly, 

we used a mediation analysis to test the extent to which the effects of rhythmic and harmonic 

complexity on wanting to move were mediated by their effects on pleasure ratings. 

For rhythmic complexity, adding pleasure ratings led to a significant drop in the effect of 

rhythmic complexity for the medium versus low contrast (b = 0.378, 95% CI [0.329, 0.430]). 

However, the direct effect of rhythm complexity for this contrast remained significant in the 

mediation model (b(1634.9) = 0.294, 95% CI [0.227, 0.361]). The identical pattern was seen in 

the difference in ratings between the medium and high complexity rhythms. Adding pleasure 

ratings significantly reduced the effect of this contrast (b = 0.777, 95% CI [0.718, 0.840]), while 

the direct effect remained significant (b(1729.54) = 0.821, 95% CI [0.741, 0.900]). Therefore, for 

both the medium versus low and medium versus high rhythm complexity contrasts, pleasure 

showed a significant mediation effect, while the direct effect remained significant.  
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 For harmonic complexity, the difference in ratings between medium and low complexity 

chords was not significant in the initial model (b(1592) = 0.012, 95% CI [-0.075, 0.099]) or the 

mediation model (b(1591.03) = 0.019, 95% CI [-0.044, 0.081]). For the medium minus high 

harmonic complexity contrast, adding pleasure ratings led to a significant drop in the estimate (b 

= 0.371, 95% CI [0.323, 0.420]) with the direct effect going from significant in the first model 

(b(1592) = 0.339, 95% CI [0.252, 0.426]) to non-significant in the mediation model (b(1633.31) 

= -0.031, 95% CI [-0.098, 0.036]).   

 These results, summarized in Figure 2.4, show that pleasure ratings fully mediated the 

effect of harmonic complexity on wanting to move ratings. However, pleasure only partially 

mediated the effect of rhythmic complexity on wanting to move ratings such that a direct effect 

of rhythmic complexity remained.  

 

 

 

Figure 2.4. Path model. Path model based on the mediation analysis showing the relations 

between the predictors – rhythmic and harmonic complexity; the mediator – pleasure ratings; and 

the outcome variable – wanting to move ratings. Regression estimates for the effects of rhythmic 

and harmonic complexity on wanting to move ratings are from the mediation model that takes 

into account the effect of pleasure ratings on wanting to move ratings. The dashed line indicates 

that the direct effect of the medium – high harmonic complexity contrast was no longer 

significant once pleasure ratings were included in the model. L = Low, M = Medium, H = High; 

* p < .05.    
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Musician vs non-musicians  
 Dance and groove engagement PCA scores were not significantly different between 

musicians and non-musicians (b(106.31) = 0.324, 95% CI [-0.257, 0.906]:  b(105.61) = - 0.099, 

95% CI [-0.675, 0.477]) and were thus excluded from the analysis. 

 

Wanting to move 
 There was no significant main effect of group (χ²(1) = 0.0014, p > .05), but there was a 

significant interaction between group and rhythmic complexity (χ²(2) = 7.47, p < .05) on wanting 

to move ratings. A follow-up contrast showed that the quadratic trend for rhythmic complexity 

was greater for musicians than non-musicians (b(109) = 0.770, 95% CI [0.213, 1.331]; see 

Figure 2.5A). Therefore, musicians showed a more prominent inverted U-shaped relationship 

between rhythmic complexity and wanting to move than non-musicians.  

 

Pleasure 
 There was a significant effect of group (χ²(1) = 4.52, p < .05) showing that musicians had 

higher pleasure ratings overall compared to non-musicians (b(107) = 0.227, 95% CI [0.023, 

0.431]; see Figure 2.5B).  
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Figure 2.5. Ratings as a function of musical training. A) Box plot showing the interaction 

between group and rhythmic complexity. Lines represent means calculated from raw ratings. B) 

Box plot of the effect of musical training on pleasure ratings. Boxplots represent ratings 

aggregated over items within each level of complexity for visualization purposes. Center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. 

Dots represent means calculated from the raw ratings.  

 

Discussion 
 This study used ratings of pleasure and wanting to move to assess whether harmony and 

rhythm work together to affect the sensation of groove. Rhythm showed a strong inverted U-

shaped relationship with both pleasure and wanting to move ratings while harmony did not. 

Consistent with our hypotheses, rhythm and harmony interacted such that medium complexity 

chords enhanced the inverted-U effect of rhythm complexity, particularly for pleasure ratings. 

Mediation analysis showed that rhythm directly affected both wanting to move and pleasure 

while the effect of harmony on wanting to move was driven by pleasure. Together these results 

suggest that rhythm plays a primary role in generating the sensation of groove, with harmony 

providing a modulatory role through its effect on pleasure. 
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In the group analysis musicians showed a stronger effect of rhythmic complexity on 

wanting to move ratings and higher pleasure ratings overall. Further, musicianship was 

associated with greater sensitivity to harmonic complexity. Together these results show that 

musical training strengthens the connection between syncopation and the desire to move and 

leads to greater reported pleasure. Finally, for all participants, interest in dance was associated 

with higher wanting to move ratings.    

 The inverted U effect of rhythm complexity on ratings may be interpreted in the context 

of predictive processes whereby listeners develop internal models, or musical expectancies, 

based on prior experience (Huron, 2006; London, 2012; Meyer, 1956). The strongest responses 

arise when listeners can make predictions, but expectancies are subtly violated, creating a 

balance between predictability and uncertainty (Salimpoor et al., 2015). In the current context, 

medium levels of syncopation achieve this balance by creating an optimal level of tension 

between a predictive model – the meter – and the current sensory input – the rhythm (Vuust et 

al., 2009, 2018; Vuust & Witek, 2014). According to this view, pleasure ratings show an 

inverted U-shaped relationship with rhythmic complexity because this tension between model 

and input engenders prediction errors, or violations of expectations, which are rewarding as they 

lead to further predictions and thus learning (Vuust & Witek, 2014). Similarly, the desire to 

move is highest for medium syncopation because this tension encourages the listener to reinforce 

and/or test their model by synchronizing their movements and fill in the gaps in the rhythmic 

surface created by syncopations (Patel & Iversen, 2014; Witek, 2017). It is also possible that 

familiarity may have contributed to the U-shaped relationship observed here because the medium 

complexity rhythms consist of son and rumba claves that are common to many types of popular 

music. However, the stimuli used here were entirely novel, and therefore would not be 

individually recognizable. 

Harmonic complexity modulated the inverted U-shaped relationship between rhythmic 

complexity and pleasure and to a lesser degree, the desire to move. Combined with the results of 

the mediation analysis, this suggests that harmony primarily influences groove by modulating the 

affective component of music. Positive mood has been shown to broaden auditory attention in a 

musical context (Putkinen, Makkonen, & Eerola, 2017). By contributing to positive affect, 

pleasant chords may broaden attention to rhythmic aspects of the stimuli thus enhancing the 

effect of rhythmic complexity, while unpleasant chords may focus attention on harmony. The 
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interaction between rhythm and harmony may also be accounted for by rhythmic entrainment. 

Theories of entrainment suggest that attentional focus predictively aligns with the onsets of a 

periodic stimulus thereby enhancing perceptual processing (Large & Jones, 1999), which is 

crucial for meter and beat perception (Large & Kolen, 1994; Large & Snyder, 2009). Subjective 

feelings of entrainment predict positive affective responses to music (Labbé & Grandjean, 2014) 

which is in line with the idea that entrainment at neural, cognitive, physiological, and social 

levels results in a positive affective response (Trost, Labbé, & Grandjean, 2017). Harmony, by 

modulating affect, may therefore alter the degree of entrainment to rhythmic stimuli thus 

affecting the precision of the temporal prediction processes that rely on this entrainment. 

Although this hypothesis has yet to be tested, promising evidence comes from a study showing 

that auditory-motor synchronization, which relies on precise temporal predictions, was reduced 

for dissonant compared to consonant tones (Komeilipoor et al., 2015). Intriguingly, motor 

regions in the brain are thought to be the origin of the neural processes underlying temporal 

predictions (Morillon & Baillet, 2017). Therefore, one possibility is that enhancement of 

entrainment by pleasant stimuli may also enhance motor activity leading to a greater desire to 

move, thus providing a possible mechanism for the interaction seen here.  

 Overall, harmonic complexity did not show an inverted U-shaped pattern because low 

and medium complexity chords were rated similarly, and only high complexity chords were rated 

lower. This may be because low and medium complexity chords are both relatively common in 

groove music while high complexity chords are uncommon, and thus were not only perceived as 

unpleasant but also violated expectations. In addition, rhythmic features appear to dominate for 

these stimuli, which may have reduced the attention paid to harmonic complexity. Another 

possibility is that the range of harmonic complexity was too limited to capture an inverted U-

shaped relationship. The addition of lower complexity chords such as the octave, might lead to 

lower ratings than the low complexity chords used here. However, as musicianship increased, 

ratings for the low complexity chords decreased, making the relationship more U-shaped. This 

adds to evidence suggesting that musical training leads to greater sensitivity to harmonic 

complexity in the context of single chords (Arthurs et al., 2017; Pallesen et al., 2005). Although, 

this interaction effect occurred for both pleasure and wanting to move ratings, given the results 

of the mediation analysis, it is likely that this effect was driven by pleasure ratings. Therefore, 
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those with higher levels of musical training and who practice more frequently may be more 

susceptible to the effects of harmony on groove.           

 In the group analysis, musicians showed a more prominent inverted U-shaped 

relationship between rhythm and wanting to move. Musical training may lead to an increased 

awareness and appreciation of syncopation and its effect on the desire to move. For example, 

musicians have been shown to use syncopation intentionally to convey groove (Madison & 

Sioros, 2014) and musical expertise has been positively linked with the effect of syncopation on 

groove ratings (Senn et al., 2018). Musical training may lead to more developed internal models 

that lead to stronger rhythmic expectations. This is supported by studies showing that musicians 

have greater error-related neural responses to rhythmic violations (Vuust et al., 2009) and 

enhanced neural entrainment to natural music (Doelling & Poeppel, 2015). Finally, a stronger 

connection between sound and movement may also account for the greater effect of rhythm on 

wanting to move in musicians (Alluri et al., 2017; Stupacher et al., 2013). Consistent with 

previous work (Witek et al., 2014), enjoyment and interest in dancing was also associated with 

higher wanting to move ratings overall. This further supports the link between motor processes 

and groove-based music in those with strong associations between music and movement. 

The musician group also showed greater overall pleasure ratings compared to non-

musicians. This is consistent with evidence that musicians demonstrate greater enjoyment of and 

increased neural reward activity for a range of musical stimuli (Alluri et al., 2015; Chapin, 

Jantzen, Kelso, Steinberg, & Large, 2010; Lahdelma & Eerola, 2014). Some studies have shown 

no effect of musicianship (Witek et al., 2014), or reduced groove ratings in musicians (Hurley et 

al., 2014). However, these studies defined musicianship less strictly, thus perhaps attenuating the 

effects of training-based internal models or expectancies on the sensation of groove.  

There were differing results depending on whether musicianship was tested as a 

continuous regressor with the whole sample or in a group comparison with a subset of the 

sample. This was despite the fact that both analyses used hours of weekly practice and years 

formal training as determinants. We originally hypothesized that the effect of harmonic 

complexity on groove would be greater for musicians, however, we only saw this in the main 

analysis and not in the group comparison. There are several possible reasons for this. First, the 

continuous regressor approach is more likely to reveal small effects that are distributed in a 

population, which likely applies to the interaction between musicianship and harmonic 
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complexity seen here. Secondly, the characteristics that define the musician group compared to 

others in the sample are many years of formal training, and active current practice. This suggests 

that the effect of musicianship on sensitivity to rhythmic complexity is less normally distributed 

or present only at the extremes. Together, these results highlight that the inverted U effect for 

both rhythm and harmony is sensitive to musicianship. Importantly, these results also provide 

further evidence that both the statistical approach used, and the way musicianship is defined, are 

important when testing the effects of musical training (Daly & Hall, 2018).   

 In conclusion, we have shown that rhythm and harmony interact to afford the sensation of 

groove. While rhythmic complexity is the primary driver, harmony both modulates the effect of 

rhythm and makes a unique contribution via its effect on pleasure. Syncopated rhythms create 

the optimal level of tension between expectancy and violation which increases pleasure and the 

desire to move. Harmony also affects pleasure, and by influencing emotional valence, may alter 

the attentional and temporal prediction processes that underlie rhythm perception. These 

predictive processes are encoded in auditory-motor networks and are influenced by experience, 

which may account for the increased sensitivity to groove in those with strong associations 

between movement and music, such as musicians and those who enjoy dancing. In addition, 

greater sensitivity to harmonic manipulations as musicianship increases may enhance the 

affective component of groove. Taken together, this work provides important new information 

about how the predictive and entrainment processes involved in rhythm perception interact with 

musical pleasure.  

 

Data Availability 
 The ratings and background data that support these findings are available in the Open 

Science Framework with identifier link: https://doi.org/10.17605/osf.io/76zwy 
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Supporting Information 
 

 
Table S2.1. Musical Background. 
 Full sample 

(n = 201, 96 F) 
Musicians 

(n = 58, 15 F) 
Non-Musicians 
(n = 51, 18 F) 

Age 34.74 (13.24) 35.59 (13.55) 37.29 (14.60) 
Years of formal training 6.68 (7.44) 14.5 (5.31) 0.21 (0.49) 
Years playing an instrument 15.96 (13.81) 25.12 (11.35) 4.25 (8.29) 
Age of start 10.18 (5.48) 7.93 (3.45) 7.96(6.43) 
Weekly Practice (Hours) 3.39 (5.86) 6.52 (8.51) 0 (0) 

 
 
 

 
 
Figure S2.1. Schematic representation of rhythms used to create the stimuli.  

Weights represent weights used to calculate the syncopation index. Medium 1 = Son clave,  

Medium 2 = Rumba clave. 

 
 

 
 
Figure S2.2. Chords used in the stimuli. a) low harmonic complexity, b) medium complexity 

chords, c) high complexity chords. 
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Figure S2.3. Indices for the chords used in the stimuli. A) Mean roughness, and B) Aggregate 

dyadic consonance. 
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Figure S2.4. Counts for responses to groove and dance questions. A) Enjoyment of groove-

based music, B) How often one listens to groove-based music, C) Enjoyment of dancing to 

music, and D) How often one dances to music.   
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CHAPTER THREE:  

ARTICLE 2 

 

Perceived motor synchrony with the beat is a stronger predictor of groove than measured 

synchrony  

Matthews, T. E., Witek, M. A., Thibodeau, J. N. L., Vuust, P., & Penhune, V. B. (2021).  

Perceived motor synchrony with the beat is a stronger predictor of groove than measured 

synchrony. Under review at Music Perception (Article ID: MP-2021-0023).  
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Abstract 
The sensation of groove is the pleasurable urge to move to music. Previous work has 

shown an inverted U-shaped relation between rhythmic complexity and groove, with medium 

levels of complexity leading to the highest groove ratings. Conversely, moving in synchrony 

with the beat of a rhythm becomes more difficult as the rhythms get more complex. This presents 

an interesting paradox. Why do we have an increased urge to synchronize our movements to 

medium compared to low complexity rhythms when it is more difficult to do so? One possibility 

is that perceived synchrony is more important in determining groove than actual (i.e., measured) 

synchrony. To test this hypothesis, we asked participants to rate the degree of groove of 50 drum 

breaks with varying rhythmic complexity then tap to the beat of the same drum breaks and rate 

how well they thought their taps synchronized with the beat. Supporting our hypothesis, 

perceived synchrony predicted groove ratings over and above measured synchrony and rhythm 

complexity. Additionally, the effect of perceived synchrony on groove was strongest for medium 

complexity rhythms. We interpret these results in the context of the beat bin hypothesis which 

suggests that the beat reflects a flexible window that expands and contracts depending on the 

rhythmic context. Applying this to beat synchronization suggests that medium complexity 

rhythms widen the beat bin thus increasing the number of movements that are perceived as 

synchronous and thus rewarded.  
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Introduction 
Groove is the pleasurable urge to move to music (Janata et al., 2012; Witek et al., 2014). 

It is the impulse to bob our heads, tap our feet, or get up and dance. This pleasurable urge is 

largely driven by rhythmic complexity, with medium complexity rhythms creating a stronger 

sensation of groove than rhythms that are very simple or very complex (Matthews, Witek, 

Heggli, Penhune, & Vuust, 2019; Sioros, Mirron, Davies, Gouyon, & Madison, 2014; Witek et 

al., 2014). Conversely, moving in synchrony with the beat of a rhythm becomes more difficult as 

the rhythms get more complex (Fitch & Rosenfeld, 2007). This presents an interesting paradox. 

Why do we have an increased urge to synchronize our movements to medium compared to low 

complexity rhythms when it is in fact more difficult to do so? One possibility is that perceived 

synchrony is more important in determining groove than actual (i.e., measured) synchrony. 

Previous work has shown that tapping synchrony is greater for rhythms rated high in groove and 

that perceived difficulty in synchronizing is a strong predictor of groove (Janata et al., 2012). 

However, the relative impact of perceived and measured synchrony on groove has yet to be 

directly tested.   

The urge to move to music, as well as our ability to do so, depends in large part on the 

beat. The beat is the perceived isochronous underlying pulse of a rhythm with which people 

typically synchronize their movements. The beat acts as a rhythmic anchor in that the timing of 

all other musical events are heard in relation to it, allowing us to form expectations or predictions 

about what will happen next. Therefore, the stronger the perceived beat, the more regular or 

predictable the rhythm. Metre is the pattern of strong and weak beats within a rhythm, for 

example, a waltz consists of a strong beat followed by two weak beats. Beat and metre can be 

perceived in rhythms that include syncopations – when no note falls on a strong beat but instead 

falls on a preceding, metrically weaker beat (Longuet-Higgins & Lee, 1984) – indicating that 

these structures reflect a combination of bottom-up sensory processes and top-down internal 

processes (Desain & Honing, 1999).  Previous work has used the number of syncopations as a 

measure of rhythm complexity (Matthews et al., 2019; Matthews, Witek, Lund, Vuust, & 

Penhune, 2020; Sioros, Mirron, et al., 2014; Witek et al., 2014). For rhythms with a low or 

medium number of syncopations, the beat (and metre) can still be perceived and beat-based 

predictions can still be made, however, with less confidence or certainty as the number of 

syncopations increases. Beyond a moderate number of syncopations, the beat and metre become 
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obscured, the sense of regularity is lost, it becomes difficult to predict future onsets, and 

therefore difficult or impossible to synchronize movements to the rhythm. Thus, the degree of 

syncopation can determine both the predictability (i.e., the ability to make predictions) and the 

certainty (i.e., the confidence in these predictions) of a rhythmic pattern or context.   

The above description frames the beat as a discrete event occurring at a fixed timepoint 

within each rhythmic cycle, as is represented by a metronome. A different account is provided by 

the beat bin hypothesis. According to this view, individual beats are perceived, not as a single 

point in time, but rather as a temporal window that expands or contracts depending on the 

rhythmic context (Danielsen, 2010, 2019). For example, onsets falling consistently slightly early 

or late relative to the metronomic beat, widen the beat bin such that these onsets are still 

perceived as on the beat despite not being perfectly aligned. Although the beat bin hypothesis 

focuses on the influence of small perturbations in the form of microtiming deviations (Danielsen, 

2010, 2019), the width of the beat bin may be affected by the rhythmic context more generally. 

For example, syncopations, particularly those that fall on a strong beat point, may create 

uncertainty about the timing of the next beat, thus widening the beat bin. There is evidence that a 

wider beat bin affects movement synchrony (Danielsen, Haugen, & Jensenius, 2015). Therefore, 

the beat bin may be analogous to a tolerance zone (Müller, Aschersleben, Koch, Freund, & Prinz, 

1999): taps within the zone are perceived as synchronous whereas taps outside it are not, and will 

thus lead to adjustment of tap timing. In this way, the beat bin hypothesis provides a mechanism 

for the expansion and contraction of the beat bin/tolerance zone based on the rhythmic context. 

Thus, the width of the beat bin may not only determine which onsets are perceived as on the 

beat, but also whether movements are perceived as synchronized with the beat.  

Moving to the beat of music, referred to here as beat synchronization allows for an 

explicit comparison between the internal representation of the beat, incoming auditory 

information and the sensory consequences of movement. Therefore, beat synchronization can be 

thought of as a way of testing temporal predictions (Patel & Iversen, 2014), with synchronous 

movements reflecting prediction confirmations. In addition, synchronization accuracy may 

reflect the certainty of beat-based predictions. For example, taps are more accurately aligned 

with the first beat in a phrase compared to other beats (Patel et al., 2005). That is, temporal 

predictions regarding the first beat are more certain as it represents the strongest beat within the 

metrical hierarchy (Fitch & Rosenfeld, 2007), and this increased certainty is reflected in higher 
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tapping accuracy. Prediction confirmations provide positive feedback that the internal model of 

the beat or metre is correct (Huron, 2006; Zald & Zatorre, 2011). This positive feedback can 

therefore be thought of as a reward signal and thus may be one of the motivating factors 

underlying the urge to move. When tapping to an auditory pacing signal, participants 

consistently to the beat, a phenomenon call the negative mean asynchrony (Aschersleben, 2002). 

However, participants are unaware of this asynchrony, reporting that they tapped accurately, and 

thus overestimate their tapping synchrony (Franěk, Radil, Indra, & Lánsky, 1987). This suggests 

a discrepancy between perceived and measured synchrony, which can lead to greater positive 

feedback despite no change in, or even a reduction in, tapping accuracy. This discrepancy may 

be increased as the rhythmic context leads to a wider beat bin. That is, with a wider beat bin, 

more taps would be perceived as synchronous leading to more prediction confirmations and 

greater reward, even if synchrony measured in relation to the metronomic beat has not increased. 

In this way, as perceived synchrony increases, the pleasurable aspect of groove may increase, 

regardless of whether there is an increase in measured synchrony. This suggests that perceived 

synchrony may contribute to groove independently of measured synchrony.   

The beat bin hypothesis corresponds well to both dynamic attending and predictive 

coding accounts of rhythm and beat perception because they emphasize temporal predictions and 

the precision or certainty with which these predictions are made. According to dynamic attending 

theory, rhythm perception is supported by endogenous attentional oscillations which are 

entrained by rhythmic stimuli such that windows of attentional focus are temporally aligned with 

the beat (Large & Jones, 1999; Large & Kolen, 1994). These windows of attentional focus or 

‘expectancy regions’ expand or contract depending on the certainty of the rhythmic context 

(Large and Jones, 1999, pg. 130). A similar account is provided by the predictive coding 

framework in which beat and metre emerge from the interaction between bottom-up sensory 

regularity and top-down internal models. A mismatch between the internal model (i.e., the beat 

or metre) and the sensory input results in a prediction error, which depending on the certainty of 

the prediction, leads to an update in the model. The certainty (or precision) of beat-based 

temporal predictions is formalized as the variance of a probability distribution around the point 

estimate, with increased variance (i.e., width of the distribution or extension in time) as certainty 

decreases (Koelsch et al., 2019; Vuust et al., 2018). Therefore, under both frameworks, the beat 

bin can be conceptualized as a probability distribution, with a point estimate (i.e., the mean) 
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reflecting the predicted beat and the spread of the distribution reflecting certainty of that 

prediction.  

According to predictive coding, medium degrees of syncopation elicit the highest groove 

ratings because they trigger a moderate number of prediction errors resulting from moderately 

certain beat-based predictions (Koelsch et al., 2019; Vuust & Witek, 2014; Vuust et al., 2018). 

Within this framework, the certainty of a prediction determines the weight of the resulting 

prediction error, that is, the degree to which it leads to improvement of the internal model, and 

thus its gain as a learning signal (Friston, 2019). The higher the certainty of the prediction, the 

greater the weight of the prediction error. Therefore, medium degrees of syncopation create 

moderately certain predictions, which when violated, elicit prediction errors that drive the 

listener to reaffirm and test current predictions via movement. Extending this model to beat 

synchronization, when we move to a syncopated rhythm, a prediction confirmation is assigned 

more weight as certainty decreases. In this way, the reward derived from perceiving movements 

as synchronous may be weighted by prediction certainty. Applying the beat bin hypothesis to 

beat synchronization suggests that the number of movements perceived as synchronous will 

depend on the rhythmic context, in this case, the degree of syncopation. Therefore, combining 

the predictive coding and beat bin accounts leads to the hypothesis that the degree of syncopation 

will affect both the number and weight of movements perceived as prediction confirmations, and 

thus impact the amount of rewarding feedback. Accordingly, the role of perceived synchrony in 

determining groove is hypothesized to depend on the degree of syncopation. Again, this effect 

may occur regardless, or in spite, of a change in measured synchrony.      

Musical expertise is likely to affect the degree to which perceived and measured 

synchrony contribute to the sensation of groove. Musicians and non-musicians have been shown 

to differ in their experience of groove, with musicians experiencing a greater urge to move for 

medium complexity rhythms (Matthews et al., 2019; Matthews et al., 2020). This suggests 

greater sensitivity to rhythmic complexity in musicians, possibly due to more developed beat-

based predictive models leading to more certain predictions and thus more strongly weighted 

prediction errors. Musicians are also better at synchronizing their taps to rhythms (Matthews et 

al., 2016; Repp, 2010; Repp & Doggett, 2007) and show smaller temporal windows for 

integrating self-generated actions with the resulting sounds (van Vugt & Tillmann, 2014). 

Therefore, musicians’ perception of synchrony may be less susceptible to the uncertainty 
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associated with syncopations and may be more aligned with measured synchrony, thus reducing 

the impact of perceived synchrony on groove.    

In order to assess the contribution of perceived and measured synchrony to groove, we 

asked musicians and non-musicians to listen and then to tap in synchrony to a set of synthesized 

drum sequences that varied in rhythmic complexity based on the number of syncopations. First, 

they passively listened to the sequence and rated the degree of perceived groove. Then they 

tapped to the beat of each sequence and immediately afterward rated how well they thought their 

taps were synchronized to the beat. The relation between groove ratings, tap ratings, measures of 

tapping performance (accuracy and precision), and number of syncopations were compared to 

test whether 1) the perception of synchrony (tap ratings) predicts groove over and above 

measured tapping performance and the number of syncopations, and 2) the effect of perceived 

synchrony on groove ratings is greatest for moderately syncopated rhythms. Tapping 

performance was also expected to depend on syncopation and musical training. Based on 

previous results (Matthews et al., 2019; 2020), musicians were expected to show a stronger 

relation between syncopation and groove. Additional analyses examined whether the effect of 

perceived synchrony depends on musical training and tested the relative effects of tapping 

precision and accuracy on perceived synchrony. 

 

Methods 
Participants 

Nineteen musicians (nine female) and twenty-four non-musicians were recruited to 

participate in this study. Musicians had an average age of 25.16 (SD = 3.86), had an average of 

13.58 years of formal music training (SD = 3.59) and practiced on average 12.63 hours a week 

(SD = 9.67) at the time of testing. Data of seven non-musicians were excluded from analysis due 

to not having enough analyzable trials (see preprocessing section below). The final sample 

consisted 17 non-musicians (11 female) with an average of one year of formal music training 

(SD = 1.03) and an average age of 24.13 (SD = 6.04).  

The protocol was approved by the Concordia University Human Research Ethics 

committee. Participants provided written informed consent in accordance with the Declaration of 

Helsinki and were compensated for their time.    
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Stimuli 
The stimuli were created for a previous study (Witek et al., 2014) and consisted of 50 

drum sequences generated using synthesized drum sounds (bass drum, snare drum, and hihat) in 

GarageBand 5.1 (Apple, Inc.). Thirty-four of these were derived from actual songs, 14 were 

experimenter-generated and two were templates from GarageBand. Each sequence consisted of a 

single pattern repeated four times in 4/4 time, had an inter-beat interval of 500 ms, and lasted 16 

seconds. In all sequences, the hihat maintained an isochronous pattern at twice the beat rate 

(inter-onset interval 250 ms). Therefore, the unique sequences were generated by the snare and 

bass drum patterns. 

Rhythmic complexity was quantified using a modified version of the syncopation index 

(Fitch & Rosenfeld, 2007; Longuet-Higgins and Lee, 1984; Witek et al., 2014) in which the 

degree of syncopation depends on both the metric position and the instrument (snare or bass 

drum; see Witek et al., 2014 for a detailed description). Each syncopation in a sequence is 

weighted based on its metric position and whether it involves a snare or bass drum. These 

weights are then summed within a sequence providing a syncopation index ranging from 1 (low 

syncopation) to 81 (high syncopation).  

  

Procedure 
Upon arrival participants filled out a musical experience questionnaire. Before starting 

the experiment, participants were given the definition of groove as the pleasurable desire to 

move to music. Participants then listened to all fifty drum sequences through headphones (type) 

in a randomized order and rated each sequence on the degree it elicited the sensation of groove 

on a scale from one to five. Participants then listened to the same drum sequences, in a different 

randomized order, and were asked to tap in synchrony with the beat. Participants were given a 

four-beat count-in at the start of each sequence. At the end of each sequence participants rated 

how well they felt they were able to synchronize their taps to the beat of the sequence on a scale 

from one to five.  
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Measurement Apparatus 
Taps were measured using a force-sensitive resistor1 (FSR) covered by a thin layer of 

foam, to dampen the tapping sound. The outgoing audio stimulus was re-captured alongside the 

incoming force measurement using an audio interface2 controlled by the experiment software at a 

sampling rate of 44.1kHz. At this sampling rate, and with the response time of the FSR rated at 

less than three microseconds, we concluded that any errors in the time-alignment between the 

recorded stimuli and tap measurements were negligible. In the recorded force measurements, we 

defined a tap as the maximum force produced by the impact of the participant’s finger on the 

sensor. Beats were extracted from the stimulus audio signal using a similar process, using the 

amplitude envelope of the stimulus signal to determine drum onsets. 

 

Preprocessing of tapping data 
Data from trials were removed if participants tapped twice per beat, tapped too fast (more 

than 25% of ITIs are less than .3 s), or did not have enough taps in the trial for analysis (less than 

eight of an expected 32 taps). Data from participants with more than five excluded trials (%10) 

based on the above criteria were removed from analysis. This led to removal of data of seven 

non-musicians. In addition, 19 trials (1.06% of all trials) were removed across seven non-

musician participants for the same reasons. 

Indices of tapping precision and accuracy were calculated using circular statistics (Fisher, 

1993) by calculating a vector on the unit circle for each tapping trial. The mean resultant length 

of this vector (MRL) is determined by the spread of taps around the unit circle and thus 

corresponds to a measure of tapping precision. MRL varies from zero to one with values closer 

to one indicating low spread and thus high tapping precision. The angle of the vector is 

calculated relative to the beat point with which participants are synchronizing and is therefore a 

measure of tapping accuracy. The angle is measured in radians and thus ranges from zero to 2*π. 

Subsequent analysis on the effect of tapping performance on tap ratings and groove ratings used 

the absolute value of the angle subtracted from π. This measure varies from zero to π with values 

closer to π indicating more accurate taps.  

 

 
1 Model 406 Square. Interlink Electronics FSR Integration Guide. Accessed 2021-02-15: 

https://cdn.sparkfun.com/assets/4/d/0/f/7/DS-9375-Force_Sensitive_Resistor_0.5in.pdf  
2 Lexicon Omega. Accessed 2021-02-15: https://lexiconpro.com/en/products/omega 
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Statistical Analysis 
All analyses were carried out using linear mixed effects regression in R (version 4.0.3; R 

core team, 2020). This approach was used as it allows for analysis of trial-level data while 

accounting for within-subject grouping of this data. Therefore, this approach accounts for inter-

individual differences in rating style and responses to the predictor variables. All analyses 

followed the same three steps; 1) determination of the random structure, 2) hierarchical 

regression analyses testing which predictor variables lead to significant increases in model fit 

using the likelihood ratio test 3) final models were estimated using restricted maximum 

likelihood and included the significant predictors from the hierarchical regression analyses to test 

parameter estimates against zero. For all analyses, Steps 1 and 2 were carried out using the lme4 

package (Bates, Mächler, Bolker, & Walker, 2014). The optimal random effects structure that 

can be supported by the data were determined by iteratively reducing the maximal random 

structure (Bates, Kliegl, Vasishth, & Baayen, 2015; Matuschek, Kliegl, Vasishth, Baayen, & 

Bates, 2017). Several final models showed non-normal and heteroscedastic residuals and were 

therefore re-estimated using robust linear mixed effects regression using the robustlmm package 

(Koller, 2016). These models are identical to the standard linear mixed effects models however, 

they automatically detect, and down-weight data points contaminated by the near-ceiling effects. 

The degree to which these data points are down-weighted can be tuned to prioritize robustness or 

efficiency of the parameter estimates. Results of models tuned for higher robustness are reported 

here. Results of the models tuned for maximum efficiency are reported in the supplementary 

material.  

For final models estimated using the standard approach, bootstrapped confidence 

intervals around parameter estimates were calculated with 5000 iterations. For these models, R 2 

values for the models and partial eta-squared (ηp
2) values and associated confidence intervals 

were calculated using the r2glmm package (Jaeger, 2017) using the standardized generalized 

variance approach. For models estimated using the robust approach, Wald confidence intervals 

were calculated for each parameter estimate. R2 and ηp
2 could not be calculated for the robust 

models.   

Previous work indicates that syncopation shows an inverted U-shaped relation with 

ratings of groove (Matthews et al., 2019; Witek et al., 2014) therefore, orthogonal polynomial 
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(both linear and quadradic) effects of syncopation were tested in all models. Only linear effects 

were tested for all other variables. 

 

Effects of syncopation and group on tapping performance  
To test the effect of syncopation, group, and their interaction on tapping performance, we 

conducted two hierarchical regression analyses, one for tapping precision (MRL) and one for 

tapping accuracy (absolute angle). Diagnostic plots of the final regression models showed non-

normal and heteroskedastic residuals, likely because musicians exhibited a ceiling in 

performance, with mean absolute angles close to π and MRLs close to one (see Figure 3.2). 

Therefore, results of the models fitted with the robust approach and tuned for higher robustness 

are reported here.  

 

Effects of tapping performance, syncopation, and group on tap ratings 
 To test the effect of tapping performance, syncopation, and group, as well as their 

interactions, on perceived synchrony, we used hierarchical regression analysis. Diagnostic plots 

of the final model showed non-normal and heteroskedastic residuals due to the fact that 

musicians frequently rated their tapping performance maximally (i.e., with a rating of five; see 

Figure 3.3A). Data with many points at the upper (or lower) limit of a scale are referred to as 

censored. Therefore, in addition to estimating a robust model, this data was analyzed using the 

lme4cens package which accounts for this censoring (Kuhn & Roeder, 2018). This approach 

does not allow for random slopes, therefore, only by-participant random intercepts were included 

in this model. Results of the final model tuned for higher robustness are reported here. Results of 

the final models tuned for higher efficiency and using lme4cens are reported in the supplemental 

material. Finally, because musicians’ tap ratings and tap performance were near ceiling, 

confirmatory analyses were implemented on the non-musicians’ data only.    

 

Effects of tap ratings, tapping performance, syncopation and group on groove ratings 
 Hierarchical regression was used to test the effects of tap ratings, tapping performance, 

syncopation, and group, as well as the relevant interactions, on groove rating. In order to assess 

whether tap ratings accounted for variance in groove ratings over and above that accounted for 

by tapping performance, variables were entered in the model in the following order: group, 

syncopation, tapping accuracy, tapping precision, then tap ratings, then the relevant interactions 
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following the same order. In the final model, standardized (z-scored) versions of the significant 

variables from the hierarchical analysis were used to allow for comparison between the effects of 

tap ratings and tapping performance on groove ratings. The standardized variables also served to 

reduce multicollinearity between the main effects and interactions involving the polynomial 

terms.   

 Diagnostic plots of the final model showed no violations of assumptions, therefore only 

the results from standard linear mixed effect models are reported. However, because musicians’ 

tap ratings and tap performance were near ceiling and may therefore have affected the 

relationship to groove ratings, confirmatory analyses were implemented on the non-musicians’ 

data only. 

 

Results 
Effects of syncopation and group on tapping performance  
 Figure 3.1 shows raw tapping data from musicians and non-musicians, showing that both 

groups clustered their taps just before the beat showing the expected negative mean asynchrony 

(Ascherleben, 2002). Figures 3.1 and 3.2 also indicate that musicians were precise and more 

accurate in their tapping than non-musicians, with more taps close to the beat.   

Hierarchical regression was used to test the effects of group and syncopation, and the 

interaction between the two, on tapping accuracy (absolute angle) and precision (MRL). The 

analysis on tapping accuracy showed that the main effects of group (χ²(1) = 12.33, p < .001) as 

well as the linear (χ²(1) = 27.67, p < .001) and quadratic (χ²(1) = 25.42, p < .001) effects of 

syncopation, improved model fit. The interaction between group and the linear effect of 

syncopation improved model fit (χ²(1) = 6.23, p = .013), but the interaction between group and 

the quadratic effect did not (χ²(1) = 1.02, p = .314). The final model tuned for higher robustness 

showed a significant negative quadratic effect of syncopation (b = -1.11, 95% CI[-1.474, -

0.752]). This effect can be seen in Figure 3.2A, where both groups show relatively similar 

degrees of tapping accuracy for low and medium complexity, with a drop-off in accuracy for 

high complexity rhythms. A steeper drop-off for non-musicians resulted in a significant 

interaction between groove and the linear effect of syncopation (b = 2.338, 95% CI[0.837, 

3.840]). A second model with the same predictors but tuned to produce higher efficiency 

estimates produced similar results (see supplementary materials).   
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The analyses on tapping precision showed similar results. Hierarchical regression showed 

that main effects of group significantly improved model fit (χ²(1) = 13.63, p < .001) as did linear 

(χ²(1) = 33.13, p < .001) and quadratic effects (χ²(1) = 26.42, p < .001) of syncopation. The 

interaction between group and the linear effect of syncopation improved model fit (χ²(1) = 8.64, 

p = .003), but the interaction between group and the quadratic effect did not (χ²(1) = 1.53, p = 

.217). The final model, tuned for higher robustness, showed a significant negative quadratic 

effect of syncopation (b = -1.236, 95% CI[-1.724, -0.759]). As with tapping accuracy, both 

groups showed a similar degree of tapping precision for low and medium complexity rhythms 

and a drop-off for high complexity rhythms (see Figure 3.2B). Non-musicians showed a steeper 

drop-off in tapping precision compared to musicians, resulting in a significant group by 

syncopation (linear) interaction (b = 2.896, 95% CI[1.204, 4.587]). A second model with the 

same predictors but tuned to produce higher efficiency estimates produced similar results (see 

supplementary materials).   

  

Figure 3.1. Circular plots of tapping data. A circular plot for each group showing every tap 

plotted on the circumference of the unit circle. The rose diagram in the centre shows the relative 

number of taps falling in each of 12 bins. The beat is represented by zero and taps 

counterclockwise to zero were early relative to the beat and taps clockwise to zero were late 

relative to the beat. Gray lines represent the mean vector, with the angle representing mean group 

accuracy and the length representing mean group precision. 
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Figure 3.2. Relation between syncopation, A) tapping accuracy, and B) tapping precision. Grey 

lines represent the second polynomial function for each participant. The lines represent estimated 

effects from the final model. Points represent partial residuals which are the observed values 

while accounting for the other predictors.    

 

Effects of tapping performance, syncopation, and group on tap ratings 
 Hierarchical regression was used to test the effects of tapping performance, syncopation 

and group, as well as the interactions between these variables, on tap ratings. This analysis 

showed that model fit was significantly improved by main effects of group (χ²(1) = 21.19, p < 

.001), tapping precision (χ²(1) = 32.17, p < .001), and both linear (χ²(1) = 20.11, p < .001) and 

quadratic effects (χ²(1) = 23.62, p < .001) of syncopation index. The main effect of tapping 

accuracy did not improve model fit (χ²(1) = 2.55, p = .110), however, the interaction between 

group and tapping accuracy did (χ²(1) = 10.75, p = .001). In addition, the interaction between 

tapping precision and the linear effect of syncopation (χ²(1) = 11.04, p < .001), and the 

interaction between group and the linear effect of syncopation (χ²(1) = 12.38, p < .001) improved 

model fit. Finally, a three-way interaction between group, tapping precision and the linear effect 

of syncopation improved model fit (χ²(1) = 4.17, p = .041).  

In the final model, tuned for higher robustness, syncopation showed a negative quadratic 

effect in both groups (β = -3.544, 95% CI[-4.689, -2.400]), while non-musicians showed a 

steeper drop off leading to significant group by syncopation (linear) interaction (β = 3.197, 95% 
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CI[1.000, 5.394]; see Figure 3.3A). As can be seen in Figure 3.3C both groups showed a strong 

positive effect of tapping precision on tap ratings, however, this effect was stronger in musicians 

leading to a significant group by tapping precision interaction (β = 0.089, 95% CI[0.014, 0.165]). 

Unexpectedly, a significant group by tapping accuracy interaction indicated that musicians 

showed a negative effect of tapping accuracy on tap ratings while non-musicians showed a small 

positive effect (β = -1.08, 95% CI[-0.156, -0.060]). However, this result appears to be driven by 

the relative lack of variability in the musicians’ tapping accuracy due to their near-ceiling 

performance (see Figure 3.3B).  

 Analysis of the non-Musicians’ data only were generally consistent with the results of the 

analysis on the full sample (see supplementary material). The only difference was that the non-

musicians analysis showed an interaction between tapping precision and both linear (β = -3.317, 

95% CI[-5.550, -1.063]) and quadratic (β = -1.548, 95% CI[-3.083, -0.025]) effects of 

syncopation, suggesting that the effect of tapping precision on tap ratings is weaker for rhythms 

with higher degrees of syncopation. This effect was also shown in the analysis that modeled the 

censored nature of both group’s data (see supplementary material). 

 

 

 

Figure 3.3. Relation between tap ratings, A) syncopation index, B) tapping accuracy, and C) 

tapping precision, for musicians and non-musicians. The lines represent estimated effects from 

the final model. The points represent partial residuals which are the observed values while 

accounting for the other predictors.    
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Effects of tap ratings, tapping performance, syncopation and group on groove ratings 
 Hierarchical regression was used to test the effects of tap ratings, tapping performance, 

syncopation and group, as well the relevant interactions on groove ratings. This analysis showed 

that group (χ²(1) = 12.03, p < .001) improved model fit and as did both the linear (χ²(1) = 11.51, 

p < .001) and quadratic effect (χ²(1) = 132.03, p < .001) of syncopation. In addition, the 

interaction between group and the quadratic effect of syncopation improved model fit (χ²(1) = 

5.23, p = .022), but the interaction with the linear effect of syncopation did not (χ²(1) = 1.51, p = 

.220). This analysis also showed main effects of tapping precision (χ²(1) = 31.85, p < .001), but 

not tapping accuracy (χ²(1) = 3.43, p = .064). Crucially, tap ratings improved model fit over and 

above syncopation and tap performance measures (χ²(1) = 100.38, p < .001). This suggests that 

tap ratings account for additional variance in groove ratings that was not accounted for by the 

other predictors. The interaction between tap ratings and the quadratic effect of syncopation led 

to significantly improved model fit (χ²(1) = 9.38, p = .002) but the interaction with the linear 

effect of syncopation did not (χ²(1) = 0.81, p = .368). Finally, the interaction between group and 

tap ratings did not improve model fit (χ²(1) = 2.38, p = .123) nor did the three-way interactions 

with group, tap ratings, and the linear (χ²(1) = 0.41, p = .520) and quadratic (χ²(1) = 0.48, p = 

.487) effects of syncopation. 

Results of the final model estimated using standard linear mixed effects with standardized 

predictor and outcome variables are shown in Table 3.1. Although tapping accuracy did not 

improve model fit in the hierarchical regression, it was included in the final model for 

comparison. The model accounted for 26.6% of the variability in groove ratings (95% CI[0.236, 

0.301)]. As can be seen in Figure 3.4, both groups showed a significant negative quadratic effect 

of syncopation on groove. Although the interaction between the quadratic effect of syncopation 

and group improved model fit, this effect was not significant in the final model, suggesting that 

both groups showed a similar inverted U relation between syncopation and groove. Comparing 

standardized regression coefficients (β) s in Table 3.1 shows that tap ratings was a stronger 

predictor of groove ratings compared to both measures of tapping performance, indicating that 

perceived synchrony has a stronger influence on the sensation of groove than measured 

synchrony. Due to the scaling involved in making the linear and quadratic polynomials of 

syncopation orthogonal to each other, the standardized regression coefficients for these variables 

cannot be compared to those of the other variables. However, comparing the partial eta squared 
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values (ηp
2) shows that tap ratings were strongest contributor to the model followed by the 

quadratic effect of syncopation. Finally, Figure 3.5 shows that the interaction between tap ratings 

and the quadratic effect of syncopation is due to a stronger effect of tap ratings on groove ratings 

for rhythms with medium levels of syncopation compared to those with low or high levels of 

syncopation. 

 

Table 3.1  

Standardized Parameter Estimates from Regression Model Predicting Groove Ratings 

Effect β  95% CI ηp
2 95% CI 

Group -0.071 -0.197, 0.047 0.004 0.000, 0.013 

Syncopation Index (Linear) -5.445 -7.891, -2.985 0.016 0.007, 0.030 

Syncopation Index (Quadratic) -9.671 -11.448, -7.880 0.052 0.034, 0.073 

Tap Ratings 0.327 0.267, 0.389 0.071 0.050, 0.096 

Absolute Angle 0.003 -0.056, 0.063 0.000 0.000, 0.003 

MRL 0.167 0.090, 0.244 0.015 0.006, 0.027 

Group:Syncopation Index (Linear) 2.022 -0.542, 4.499 0.002 0.000, 0.009 

Group:Syncopation Index (Quadratic) -0.270 -2.053, 1.554 0.000 0.000, 0.003 

Tap Ratings:Syncopation Index (Linear) -0.623 -2.698, 1.412 0.000 0.000, 0.004 

Tap Ratings:Syncopation Index (Quadratic) -2.910 -4.635, -1.135 0.005 0.001, 0.014 

Note: due to the scaling effect of the orthogonal polynomial on syncopation index, the parameter 

estimates for this variable and its interaction with group cannot be compared to the parameter 

estimates for the other effects. 

   

Analyses of the non-musicians’ data only showed very similar results to those carried out 

on the full data set. Importantly, the hierarchical regression showed that tap ratings improved 

model fit over and above syncopation and both measures of tap performance (χ²(1) = 77.02, p < 

.001). Further, the final model showed that tap ratings (β = 0.343, 95% CI[0.268,0.419]) had a 

stronger effect on groove than both tapping precision (β = 0.182, 95% CI[0.079, 0.285]) and 

tapping accuracy (β = 0.009, 95% CI[-0.075, 0.090]).    
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Figure 3.4. Relation between syncopation 

index and groove ratings in musicians and 

non-musicians. The lines represent 

estimated effects from the final model. 

Ribbons represent 95% confidence intervals.   

 

 

Figure 3.5. Relation between tap ratings, 

syncopation index, and groove ratings. The 

lines represent estimated effects from the 

final model at representative levels of 

syncopation index. Ribbons represent 95% 

confidence intervals. 
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Discussion 
In this study we investigated the relation between perceived and measured synchrony and 

the sensation of groove. To do this musicians and non-musicians rated the groove of rhythms that 

varied in degree of syncopation, and then tapped to the beat of those rhythms and rated how well 

they synchronized. First, we showed that syncopation and groove ratings showed an inverted U-

shaped relation for both musicians and non-musicians, replicating previous work (Matthews et 

al., 2019; Witek et al., 2014). Supporting our hypothesis, perceived synchrony showed a stronger 

relation with groove ratings than tapping precision, tapping accuracy, or syncopation. Perceived 

synchrony also accounted for unique variance in groove ratings over and above that accounted 

for by measured synchrony and syncopation. This latter result is important as it suggests that 

perceived synchrony has a unique effect on groove that goes beyond the effects of tapping 

performance and syncopation despite the relation among these variables. The result that 

perceived synchrony outweighed syncopation is particularly interesting given that syncopation 

has consistently shown a strong relation with groove across different stimuli and is intentionally 

used by musicians to engender groove (Madison et al., 2011; Matthews et al., 2019; Matthews et 

al., 2020; Sioros, Mirron, et al., 2014; Witek et al., 2014). However, these prior studies focused 

on the effect of syncopation on groove when listening without movement. When moving to 

music, the self-perception of how you are engaging with the music may become as important in 

determining your affective experience as specific features of the music itself. Crucially, the 

relation between perceived synchrony and groove was strongest for rhythms with a medium 

number of syncopations, thus extending work showing an inverted U-shaped relation between 

rhythmic complexity and groove. Finally, although musicians were close to ceiling for tapping 

performance and tap ratings, results were generally similar across groups suggesting that musical 

training does not have a strong influence on the relation between perceived synchrony and 

groove.  

Together, these results suggest that when moving to music, ‘feeling in sync’ is a strong 

driver of the sensation of groove. These results also provide indirect support for the hypothesis 

that prediction confirmations during beat synchronization contribute to the reward associated 

with moving to music. Based on the beat-bin hypothesis (Danielsen, 2010, 2019), which aligns 
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with both dynamic attending (Large & Jones, 1999) and predictive coding (Vuust & Witek, 

2014) treatments of rhythm perception and groove, we propose that rhythmic context affects the 

strength and certainty of beat-based temporal predictions and in turn, the perception of 

synchrony. Movements that are perceived as synchronous confirm beat-based temporal 

predictions, leading to greater reward and an increased sensation of groove. Therefore, perceived 

synchrony may contribute to the rewarding experience of moving to music, regardless of true 

accuracy.  

 

Perceived vs. Measured synchrony  
Our results showed a stronger relation between perceived synchrony and groove 

compared to measured synchrony. This suggests that there is a divergence between what is 

perceived and actual performance accuracy, with perception having a stronger role in 

determining our affective experience. In other words, overestimating how synchronous our 

movements are to music may contribute positively to the sensation of groove. Overestimation of 

synchrony is also seen during simple synchronization with a metronome where participants are 

unaware that they are consistently tapping early relative to the pacing signal (Franěk et al., 

1987). This lack of access to our degree of synchrony has been attributed to an asymmetric error 

tolerance zone where early taps are tolerated or go unnoticed, while late taps tend to be noticed 

and lead to correction (Müller et al., 1999). Corroborating this, Figure 3.1 shows that both 

musicians and non-musicians generally tapped early relative to the beat. We suggest that in the 

current context, the overestimation of synchrony increases the reward associated with groove as 

more taps perceived as synchronous increases the number of moderately-weighted prediction 

confirmations.  

A relative lack of conscious access to tapping accuracy is supported here as tapping 

accuracy showed little or no relation to perceived synchrony or groove ratings. However, tapping 

precision, or variability, was positively related to both perceived synchrony and groove in both 

groups, suggesting that participants have better access to tapping precision than tapping 

accuracy. Tapping precision has been linked to the perceived difficulty of synchronizing taps 

(Baath & Madison, 2012), whereas, studies on the effect of accuracy on perceived synchrony are 

lacking. A relative lack of access to tapping (in)accuracy may relate to the different types of 

error correction that can occur during motor synchronization. Phase correction, where 
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inaccuracies are minimized in the face of endogenous motor variance or perturbations in the 

stimuli, has been shown to be an automatic motor process that is not consciously accessible 

(Repp, 2005; Repp & Keller, 2004; Repp & Su, 2013). Studies relating motor synchronization 

performance and groove have shown mixed results with one showing a positive relation (Janata 

et al., 2012), while others have not shown this relation (Hurley et al., 2014), or have only shown 

a weak relation (Stupacher et al., 2016). However, these studies did not look at tapping precision 

and accuracy separately and involved different types of motor synchronization, including finger-

tapping, hand-tapping, and head-bobbing. Therefore, further work is necessary to clarify which 

aspects of motor synchronization influence perceived synchrony and groove, and to assess 

whether conscious awareness mediates these relationships. In the current study, it is important to 

note that despite greater conscious access to tapping precision, perceived synchrony was still a 

stronger predictor of groove.  

 

Perceived Synchrony and Syncopation 
The effect of perceived synchrony on groove depended on the degree of syncopation, 

with a stronger effect for rhythms with medium/low-medium degrees of syncopation. We 

suggest that the overestimation of synchrony seen by Franěk et al., (1987) may increase as 

moderate uncertainty in the rhythmic context widens the tolerance zone (Müller et al., 1999), 

allowing more movements to be perceived as synchronous. Integrating across theoretical 

frameworks, we propose that the beat bin reflects prediction certainty (from predictive coding) or 

attentional focus (from dynamic attending) which not only determine the predicted beat location 

but also how one moves to the beat. Support for this comes from a study showing that the spread 

of movement asynchronies around the beat increases when phase mismatch between 

instrumental layers is introduced (Danielsen et al., 2015). The current study extends these results, 

providing evidence that not only does rhythmic context affect measured synchrony, but that it 

also affects perceived synchrony and moderates the relation between perceived synchrony and 

groove.  

Rhythms with medium levels of syncopation combine moderate levels of predictability 

and certainty, thus leading to a relatively high number of moderately weighted prediction 

confirmations. For very simple rhythms, both predictability and certainty are high, leading to a 

narrow beat bin that allows only movements very close to the metronomic beat to be perceived 
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as synchronous and be considered as prediction confirmations. Further, following the inversion 

of the predictive coding account, because certainty is high, the relative weight of prediction 

confirmations is low. In other words, it is not very rewarding to be correct when the task is easy. 

For high complexity rhythms with many syncopations, both predictability and certainty are low 

such that it might be difficult to perceive a beat and thus make predictions. Further, these 

predictions will be so uncertain as to be uninformative. Therefore, rhythms with medium levels 

of syncopation strike a balance between predictability and uncertainty, thus engendering more 

rewarding feedback. An increase in moderately weighted prediction confirmations may 

contribute to groove regardless of whether one is moving or not. Indeed, the effect of perceived 

synchrony on groove shows an inverted U-shaped relationship with syncopation similar to that 

observed between syncopation and groove here and in previous work (Matthews et al., 2019; 

Witek et al., 2014). However, externalizing beat-based predictions via movement provides 

additional sensory information regarding prediction confirmation or violation, thus potentially 

amplifying the gain of these prediction-based signals to further increase reward.       

Neural resonance theory suggests that the attentional oscillations proposed by dynamic 

attending theory are the result of endogenous neural oscillations (Large & Snyder, 2009). That is, 

peaks of attention are thought to reflect peaks of neuronal excitability (Lakatos et al., 2008). The 

degree of neural entrainment has been positively linked with ratings of groove (Cameron et al., 

2019), suggesting the possibility that the width of the beat bin is determined by the dynamics of 

entrained neural oscillations. In addition to coordinating attentional and perceptual resources 

with external rhythms, neural oscillations are thought to coordinate communication between 

brain regions (Buzsáki & Draguhn, 2004; Fries, 2015). In this way, oscillatory dynamics may 

determine the temporal windows within which there is perceptual binding of multisensory inputs 

resulting from the same stimulus (Bauer et al., 2020). In the current study, sounds and taps do 

not result from the same source. Instead, integration of auditory, motor and somatosensory 

information is necessary to determine whether movements are synchronous with the beat. 

Therefore, in addition to affecting attentional windows, rhythmic context may affect the temporal 

window for integration across sensory inputs, and thus affect the perception of synchrony 

(Occelli, Spence, & Zampini, 2011). A recent study showed that temporal windows for 

integrating keypress and the resulting auditory feedback are relatively large and that the width of 

this window is associated with tapping synchronization accuracy (van Vugt & Tillmann, 2014). 
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Since rhythmic context affects synchronization accuracy, as shown here, it could be that this 

integration window is also affected. In the current study, sensory feedback from movements is 

reduced as tapping does not result in a sound, which may further contribute to the discrepancy 

between perceived and measured tap timing (Ross & Balasubramaniam, 2014). Therefore, the 

match between perceived and measured synchrony may depend on the amount of sensory 

feedback the movements create. This is particularly relevant for dancing, where movements 

often lead to little or no auditory or tactile, feedback.  

 

Musicianship 
The effect of perceived synchrony on groove, and its interaction with syncopation was 

similar across groups, with no significant effect of musical training. We expected that musicians 

would show a closer match between perceived and measured synchrony, as experts tend to show 

a stronger correlation between perceived and measured performance on a variety of tasks (Zell & 

Krizan, 2014). Musicians did show a larger effect of tapping precision on tap ratings, however 

this effect was relatively small and both groups showed a similar pattern. The relative lack of 

variability in musicians’ perceived and measured synchrony may have obscured group 

differences. Alternatively, even if musicians show a better match between perceived and 

measured synchrony, perceived synchrony may still be a stronger driver of groove. Further, it 

seems likely that rhythmic context would have a similar effect of widening the beat bin in 

musicians, even if their bin is narrower to start with. Future work should seek to replicate these 

results using a task with a level of difficulty optimized for musicians.  

  

Conclusion 
In this study we set out to investigate the relation between perceived and measured 

synchrony and the sensation of groove. We showed that perceived synchrony is a stronger 

predictor of groove than measured synchrony and even syncopation, and that this effect was 

strongest for medium complexity rhythms. This indicates that consciously accessible prediction 

confirmations contribute to the positive affective experience associated with moving to music 

over and above the fine-grained error correction mechanisms that determine measured 

synchrony. These results also support the application of the beat bin hypothesis to beat 

synchronization, suggesting that rhythmic context modulates the impact of movement-driven 

prediction confirmations on groove. These results align with previous work showing the primacy 
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of medium complexity rhythms in eliciting groove, extending this relation to the role of 

perceived synchrony during beat synchronization. Further, we show that in the context of groove, 

both predictive coding and dynamic attending make similar predictions, which are supported 

here. Finally, the current results provide additional support that temporal predictions, and the 

certainty with which they are made, are integral to the sensation of groove. This study represents 

an early step in understanding why it feels good to move to music, with many questions yet to be 

answered. For example, although our results provide indirect evidence that overestimation of 

synchrony contributes to the pleasure of moving (and listening) to music, future work should test 

this directly.  

 

Supplemental Material 
Effects of syncopation and group on tapping performance in models tuned for high 
efficiency 

The final model with tapping accuracy as the outcome variable and tuned for higher 

efficiency showed a significant negative quadratic effect of syncopation (b = -1.03, 95% CI[-

1.485, -0.570]). A significant group by syncopation (linear) interaction indicated that non-

musicians showed a stronger negative linear effect of syncopation than musicians (b = 1.62, 95% 

CI[0.029, 3.202]).  

The final model with tapping precision as the outcome variable and tuned for higher 

efficiency showed a significant negative quadratic effect of syncopation (b = -1.38, 95% CI[-

1.837, -0.925]). A significant group by syncopation (linear) interaction indicated that non-

musicians showed a stronger negative linear effect of syncopation than musicians (b = 2.56, 95% 

CI[1.210, 3.917]).  

 

Effects of tapping performance, syncopation, and group on tap ratings in a model tuned for 
high efficiency 

In the final model with tap ratings as the outcome variable and tuned for higher 

efficiency, syncopation showed a negative quadratic effect in both groups (β = -3.68, 95% CI[-

4.919, -2.444]), while non-musicians showed a steeper drop off leading to significant group by 

syncopation (linear) interaction (β = 3.046, 95% CI[0.675, 5.417]). Unlike the model tuned to 

high robustness, the model tuned for high efficiency did not show a significant group by tapping 

precision interaction (β = 0.066, 95% CI[-0.016, 0.147]). However, there was a significant main 

effect of tapping precision with tap ratings increasing as precision increased (β = 0.641, 95% 
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CI[0.556, 0.726). As in the high robustness model, the high efficiency model showed a 

significant group by tapping accuracy interaction indicating that musicians showed a negative 

effect (β = -1.07, 95% CI[-0.159, -0.056]).  

 

Effects of tapping performance, syncopation, and group on tap ratings in a model 
accounting for the censored nature of the data 
 Using lme4cens package a model was estimated which accounted for the fact that a large 

number of tap ratings were at the upper limit of the ratings scale (a rating of 5). Note that due to 

limitations of the package, only by-participant random intercepts were estimated and only the 

linear effect of syncopation was included in the model. In addition, p values but not confidence 

intervals were estimated. Syncopation (z-scored) showed a significant main effect indicating a 

negative relation with tap ratings (b = 0.205, p < .001). The group by syncopation index was not 

significant (b = 0.106, p = .12). The group by tapping precision interaction was significant (b = 

0.516, p < .001) as was the group by tapping accuracy interaction (b = -0.198, p = .028). 
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Abstract 
The sensation of groove has been defined as the pleasurable desire to move to music, 

suggesting that both motor timing and reward processes are involved in this experience. 

Although many studies have investigated rhythmic timing and musical reward separately, none 

have examined whether the associated cortical and subcortical networks are engaged while 

participants listen to groove-based music. In the current study, musicians and non-musicians 

listened to and rated experimentally controlled groove-based stimuli while undergoing functional 

magnetic resonance imaging. Medium complexity rhythms elicited higher ratings of pleasure and 

wanting to move and were associated with activity in regions linked to beat perception and 

reward, as well as prefrontal and parietal regions implicated in generating and updating stimuli-

based expectations. Activity in basal ganglia regions of interest, including the nucleus 

accumbens, caudate and putamen, was associated with ratings of pleasure and wanting to move, 

supporting their important role in the sensation of groove. We propose a model in which 

different cortico-striatal circuits interact to support the mechanisms underlying groove, including 

internal generation of the beat, beat-based expectations, and expectation-based affect. These 

results show that the sensation of groove is supported by motor and reward networks in the brain 

and, along with our proposed model, suggest that the basal ganglia are crucial nodes in networks 

that interact to generate this powerful response to music.   
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Introduction 
The sensation of groove, defined as the pleasurable desire to move to music (Janata et al., 

2012), is one of the most powerful sources of music-derived pleasure. One way in which music 

is thought to elicit pleasure is through the interplay between the violation and fulfillment of 

musical expectations (Cheung et al., 2019; Huron, 2006; Juslin & Västfjäll, 2008; Meyer, 1956; 

Salimpoor et al., 2015). Musicians and composers can manipulate the expectations of a listener 

by altering the complexity or predictability of the rhythms, melodies, harmonies, or other factors 

that make up a piece of music. For example, listeners prefer melodies that are moderately 

complex (i.e., moderately unpredictable) compared to very simple or very complex melodies 

(Pearce & Wiggins, 2012). Similarly, groove is thought to rely predominantly on rhythmic 

expectations, with moderately complex rhythms leading to greater pleasure and wanting to move 

(Matthews, Witek, Heggli, Penhune, & Vuust, 2019; Sioros, Mirron, Davies, Gouyon, & 

Madison, 2014; Witek et al., 2014).  

Rhythmic expectations are closely tied to the metre, which is the pattern of alternating 

strong and weak beats (London, 2012; Vuust & Witek, 2014). For example, in a waltz metre 

which consists of a strong beat followed by two weak beats, listeners will expect a note to fall on 

the strong beat. When notes fall between beats, or on weak beats rather than strong beats, they 

create syncopations which violate expectations and challenge the metre (Fitch & Rosenfeld, 

2007; Vuust & Witek, 2014). Very simple rhythms with no syncopations are highly predictable, 

but boring, as most, if not all rhythmic expectations are confirmed. Highly complex rhythms, 

with many syncopations, are unpredictable and hard to follow as it is difficult for the listener to 

perceive a metre, and thus generate rhythmic expectations. Medium complexity rhythms, with 

some syncopations, strike a balance allowing for both the formation and violation of rhythmic 

expectations. As the metre is challenged by syncopations, rhythmic expectations need to be 

assessed and updated. It has been proposed that this continuous engagement of rhythm 

expectation processes drives the pleasure associated with groove (Koelsch et al., 2019; Vuust & 

Witek, 2014; Vuust et al., 2018). One way of assessing rhythmic expectations is through 

movement (Patel & Iversen, 2014), which may account for the desire to move associated with 

groove (Koelsch et al., 2019).  

The link between rhythmic expectations and wanting to move suggests that motor regions 

of the brain may be involved in processing groove-based music such as funk, Afro-Cuban, and 
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hip-hop (Danielsen, 2006; Greenwald, 2002). There have been no previous neuroimaging studies 

investigating the brain regions involved in the sensation of groove. However, studies of beat 

perception show activity in brain networks associated with auditory-motor integration and motor 

timing (Araneda et al., 2016; Bengtsson et al., 2009; Burunat et al., 2017; Chapin et al., 2010; 

Chen et al., 2008; Grahn and Brett, 2007; Grahn and Rowe, 2013, 2009; Kung et al., 2013; 

Schubotz et al., 2000; Thaut et al., 2014). The basal ganglia (BG) seem to be particularly 

important for beat perception as they are crucial nodes in a core timing network proposed to 

underlie beat-based timing (Matell & Meck, 2004; Merchant et al., 2015; Teki et al., 2011). The 

BG also form distinct cortico-striatal circuits that may support different motor and motivational 

functions relevant to groove (Alexander, DeLong, & Strick, 1986; Haber, 2003). Recent studies 

have demonstrated that the putamen and supplementary motor area (SMA), which are parts of 

the cortico-striatal ‘motor circuit’, show selective responses to beat and metre (Araneda et al., 

2016; Li et al., 2019). The caudate forms circuits with both prefrontal and parietal regions (Jarbo 

& Verstynen, 2015) and has been implicated in both rhythmic (Trost et al., 2014) and harmonic 

expectations (Seger et al., 2013).  

Premotor, prefrontal, and parietal regions are also often activated in response to a strong 

beat (Bengtsson et al., 2009; Danielsen, Otnæss, Jensen, Williams, & Østberg, 2014; Grahn et 

al., 2011; Grahn & McAuley, 2009; Grahn & Rowe, 2009; Grahn & Schuit, 2012; McAuley, 

Henry, & Tkach, 2012; Schubotz et al., 2000; Schubotz & von Cramon, 2001). These regions are 

part of the dorsal auditory stream (Hickok & Poeppel, 2004; Rauschecker, 2011), while premotor 

and parietal regions together form the dorsal fronto-parietal network (Ptak et al., 2017). These 

networks are believed to underlie abstract motor representations that allow for integration of 

sensory information over time (Ptak et al., 2017; Rauschecker, 2011). Furthermore, rhythmic 

expectations can be thought of as temporal predictions which are thought to originate in the 

motor and premotor cortices (Morillon & Baillet, 2017; Rimmele et al., 2018) and may reflect 

covert action simulation (Arnal, 2012; Patel & Iversen, 2014; Ross, Iversen, & 

Balasubramaniam, 2016; Schubotz, 2007). Therefore, groove may activate motor regions of the 

brain via both the motor processes underlying rhythmic expectations and the overt or covert 

movement preparation purportedly involved in testing these expectations. Consistent with this, 

motor cortical excitability has been found to be greater for high compared to low groove music 

(Stupacher et al., 2013). 
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In addition to their role in beat-based timing, the BG, particularly the caudate and nucleus 

accumbens (NAcc), are associated with the anticipation and experience of music-derived 

pleasure (Blood & Zatorre, 2001; Blood, Zatorre, Bermudez, & Evans, 1999; Koelsch, 2014; 

Salimpoor et al., 2011, 2013). Activity in the NAcc has been associated with the experience of 

pleasure including from primary (e.g., food and sex) and secondary (e.g., money) rewards 

(Sescousse et al., 2013). During music-listening, the NAcc is active during moments of peak 

pleasure, while the caudate is active in the period just before peak pleasure, suggesting that the 

caudate is involved in the anticipation of pleasure (Salimpoor et al., 2011). The medial 

orbitofrontal cortex (mOFC) also plays a role in assigning, maintaining and monitoring the value 

of a stimulus (Kringelbach, 2005; O’Doherty, 2004), including music (Koelsch, 2014). A 

network formed by the NAcc, mOFC, and auditory cortex has been linked to the enjoyment of 

music as shown by both structural (Martinez-Molina et al., 2019) and functional (Salimpoor et 

al., 2013) connectivity measures.  

Taken together, the sensation of groove can be framed as the intersection of reward 

processing and the motor processes that underlie beat perception, with rhythmic expectations as 

the driving mechanism. Therefore, to test the role of both reward and motor networks in the 

experience of groove, we asked participants to listen to rhythms with medium and high levels of 

complexity (i.e., degree of syncopation), and rate both their desire to move and pleasure while 

undergoing functional magnetic resonance imaging (fMRI). Stimuli were drawn from a previous 

behavioural study showing that medium complexity rhythms were rated as more pleasurable and 

elicited a greater desire to move compared to low and high complexity rhythms (Matthews et al., 

2019). Because we also found that harmonic complexity modulated the affective component of 

groove, this factor was included here. Finally, we tested both musicians and non-musicians based 

on evidence that training can affect both the sensation of groove (Matthews et al., 2019; Senn et 

al., 2018) and neural processing in both auditory-motor (Alluri et al., 2017; Grahn & Brett, 2007;  

Grahn & Rowe, 2009) and reward networks (Alluri et al., 2015; Chapin et al., 2010).  

We expected medium complexity stimuli to elicit activation in brain networks involved in 

the processing of musical beat, as well as in cortical and striatal regions linked to reward, with 

stronger effects in musicians than non-musicians. Given the roles of the putamen, caudate, and 

NAcc in beat-based timing and reward, we focused analysis on these regions of interest.  
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Material and Methods 
Participants  

Fifty-seven participants were recruited into two groups (musicians and non-musicians). 

Musicians had a minimum of eight years of training and were currently practicing. Non-

musicians had less than one year of training and were not currently practicing. Informed consent 

was obtained, and the study was approved by the Central Denmark Region Committees on 

Health Research Ethics. Participants received 200 DKK remuneration. Two non-musicians were 

excluded from the scanning session due to technical problems. Another non-musician was 

excluded as their ratings showed no variability. Demographic data for the final sample are 

provided in Table 4.1.  

 
 
Table 4.1. Participant Demographic Data 

 Non-Musicians Musicians 
N (male/female) 25 (13/12) 29 (17/12) 
Age (SD) 23.20 (2.46). 23.76 (2.84) 
Years of musical training (SD) 0.16 (0.31) 11.5 (3.27) 
Hours of music practice per week (SD)  11.67 (10.20) 

 
 
Stimuli 

The stimuli were a subset of those developed and validated in a previously reported 

online study (Matthews et al., 2019). The stimuli consisted of short musical sequences with two 

levels of both rhythmic and harmonic complexity. There were three rhythms and three chords for 

each level of complexity resulting in 36 unique stimuli of four different categories: medium 

rhythm/medium harmony (Mr-Mh), medium rhythm/high harmony (Mr-Hh), high 

rhythm/medium harmony (Hr-Mh), and high rhythm/high harmony (Hr-Hh). These levels of 

complexity were chosen since, in the previous study, medium levels of rhythmic and harmonic 

complexity elicited the highest ratings and showed the greatest difference in ratings compared to 

high complexity rhythms and chords. In addition, two rather than three levels of complexity were 

chosen in order to maximize the number of trials for each level. The stimuli were created using 

Cubase Pro version 8.0.30 (Steinberg Media Technologies). 

 The sequences consisted of piano chords organized into rhythmic chord patterns in a 

piano timbre presented at 96 beats per minute. Each sequence was 10 seconds long and contained 

four repeats of a five-onset rhythm pattern with a single chord repeating throughout each 
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sequence plus an isochronous eighth-note hi-hat pattern (see Figure 4.1 for musical notation of a 

medium complexity rhythm and Figure S4.1 for a schematized representation of all rhythm 

patterns). The medium complexity rhythms consisted of two Afro-Cuban rhythms known as the 

son clave and rumba clave, and one experimenter-created rhythm. The high complexity rhythms 

had all but the first onsets shifted to be early or late relative to the medium complexity patterns, 

thus increasing their rhythmic complexity. Rhythmic complexity was quantified using the 

syncopation index (Fitch & Rosenfeld, 2007). As the hi-hat pattern was identical for all stimuli, 

it was not included when calculating the syncopation index. C-scores – a measure of counter-

evidence to the metre – (Povel & Essens, 1985) were also calculated for each rhythm and were 

consistent with the syncopation index within each level of complexity (see Figure S4.2A and 

3.2B).   

All chords were in the key of D major and included six notes spanning four octaves (D2 

to D#5; see Figure 4.1 for musical notation of a medium complexity chord and Table S4.1 for a 

list of notes and corresponding frequencies for all chords). In musical terms, the medium 

complexity chords consisted of four note chords with extensions. High complexity chords 

included a flat ninth interval between chord note and extension which is considered highly 

dissonant, when not specifically occurring as a flat 9 th on a major 7th chord, according to 

contemporary harmonic theory (Freeman & Pease, 1989; Levine, 2011; Nettles & Ulanowsky, 

1987). In lay terms, the high complexity chords contained notes with frequencies, or multiples of 

frequencies, that were very close to each other, thus creating an unpleasant sense of roughness or 

dissonance, while the medium complexity chords did not. Harmonic complexity was quantified 

using measures of peak roughness and inharmonicity, calculated using the MIRtoolbox version 

1.6.1 (Lartillot et al., 2007; see Figure S4.1D and S4.1C;). 
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Figure 4.1. Example of a stimulus with medium levels of rhythmic and harmonic complexity. 

 

Procedure 
Before arriving for the study, participants filled out a questionnaire about their musical 

background and demographic information. Upon arrival, participants were familiarized with the 

stimuli and rating task with four familiarization trials using stimuli that were not included in the 

main study. There were two sessions during which participants listened to and rated all 36 

stimuli, one inside the fMRI scanner and one outside the scanner. In order to avoid having 

ratings of wanting to move and pleasure influence each other, participants rated wanting to move 

in the scanner then pleasure and beat strength outside of the scanner, always in this order. 

Ratings of beat strength were collected in order to substantiate the rhythmic complexity 

manipulation and to investigate the association between the sensation of groove and perception 

of beat strength. In the scanning session, participants underwent three fMRI runs, each lasting 

around 11 minutes, during which they listened to all 36 stimuli in a pseudo-random order. A 

randomly selected subset of 12 stimuli were rated in each scanning run so that all 36 stimuli were 

rated over the three runs. Rating trials were randomly distributed within each run and 

participants were not aware that a given sequence would be rated until after it was presented, 

thus avoiding rating-specific activations. Participants selected their rating on a five-point visual 

scale by pressing two buttons on a button box to move a cursor right or left along the rating 

scale. Participants had seven seconds to make their rating and non-rated trials had inter-stimulus 
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intervals of five, 7.5, or 10 seconds. Participants were instructed to look at a fixation cross while 

sequences were presented.  

In order to reduce the effect of scanner noise, stimuli were presented with noise reduction 

headphones (Opto-Active, OptoAcoustics, Mazor, Israel, http://www.optoacoustics.com/me 

dical/optoactive/features). In addition, participants wore earplugs inside the headphones. In order 

to compensate for the low-pass filter effect of the earplugs, the stimuli were compared with and 

without earplugs and then altered so that they subjectively matched. This resulted in a 10 to 20 

decibel increase for frequencies greater than 1500 Hz. This adjustment was identical for all 

stimuli and participants.  

After the scanning, participants listened to the stimuli again while seated at a computer. 

After each sequence participants had 10 seconds to rate the degree of pleasure they experienced 

and the beat strength of the sequence, both on a five-point visual scale, using a computer mouse 

to select their rating.  

 

Behavioural data analysis 
  Correlations between rating types were tested on participants’ averaged ratings (one 

value per participant). Confidence intervals around correlation coefficients were calculated via 

bootstrapping with 5000 iterations. Analysis of the effects of rhythmic and harmonic complexity 

and group on ratings of pleasure, wanting to move, and beat strength were conducted on trial-

level ratings using linear mixed effects regression with the lme4 package (Bates, Mächler, 

Bolker, & Walker, 2014) in R (version 3.4.1, R core team, 2017). A linear mixed effects 

approach was used to account for inter-individual differences in ratings and in the effects of 

rhythmic and harmonic complexity as well as differences in effects across the three rhythms and 

chords (referred to as items) within each level of complexity. Starting with the maximal random 

structure, including by-participant and by-item random slopes and intercepts, this structure was 

then reduced to the optimal structure that could be supported by the data following the steps of 

Bates and colleagues (2015) and using their RePsychLing package. This led to by-participant 

random slopes and intercepts for rhythmic and harmonic complexity in all three models and by-

item random intercepts for the models with wanting to move and beat ratings as outcome 

variables.  



 

82 

For the effects of interest, a forward hierarchical approach was used whereby regressors 

were added incrementally to an intercept-only model, then tested for increases in fit using the 

likelihood ratio test. Regressors that significantly contributed to model fit were included in a 

final model (fit with restricted maximum likelihood criterion) which was used to get parameter 

estimates of these regressors. For interactions, estimates of means and mean differences were 

calculated using emmeans (Lenth et al., 2018). Confidence intervals around the parameter 

estimates were calculated via parametric bootstrapping with 5000 iterations. Diagnostic plots of 

the residuals from all models were inspected for violations of the assumptions of normality and 

homoscedasticity. No violations were detected. 

  

MRI data acquisition 
Scanning took place at Aarhus University Hospital on a 3T Siemens TIM Trio scanner 

with a 32-channel coil. Each participant underwent three runs of whole-brain echo-planar 

imaging (EPI) using a multi-echo sequence which involved acquiring two whole brain volumes 

at two different echo times (TE1 = 12.4 ms, TE2 = 27.92 ms) per repetition time (TR = 2000 ms 

and voxel size = 2.35 x 2.53 x 2.50 mm, number of slices = 54, flip angle = 78 degrees). Using 

the multi-echo sequence reduces signal drop out in regions near sinuses such as the orbitofrontal 

cortex. The two EPI images within each TR were combined using a signal-to-noise ratio 

weighted average. This resulted in 326 images per run, with a total of 978 images per participant. 

T1 structural images were collected for each participant at the start of each session (TR = 2420 

ms, TE = 3.7ms, voxel size = 1mm iso, flip angle = 9 degrees).  

 

MRI preprocessing and statistical analysis 
Statistical Parametric Mapping software (SPM12 Wellcome Trust Centre for 

Neuroimaging, University College London; www.fil.ion.ucl.ac.uk/spm/) was used for 

preprocessing and statistical analysis. Standard preprocessing steps were followed, including 

slice timing correction, unwarping, motion correction, coregistration to an MNI template, 

segmentation, spatial normalization, and spatial smoothing with an 8mm FWHM kernel. 

 First-level analysis used the general linear model with four condition regressors 

corresponding to the four types of stimuli (Mr-Mh, Mr-Hh, Hr-Mh, Hr-Hh) as well as twenty-

four regressors accounting for motion parameters, and an additional regressor accounting for 

rating responses which were modeled as events time-locked to button presses. Silent inter-
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stimulus intervals were unmodeled, thus acting as an implicit baseline. All regressors were then 

convolved with a canonical hemodynamic response function. Four contrast images were 

calculated per participant, corresponding to the four stimuli conditions. These were then entered 

into a second level analysis where group-level contrasts for each main effect and interaction were 

generated. All results are reported at a false discovery rate (FDR; peak-level) corrected p < .05. 

In a mixed design, SPM uses the same error term and degrees of freedom for main effects of 

both within and between-subject factors (McLaren et al., 2011). Therefore, a confirmatory 

analysis was implemented in GLM Flex (http://mrtools.mgh.harvard.edu/index.php/GLM_Flex) 

with the same contrasts and FDR correction (see Tables S4.2-S4.4 for results).   

 

Region of interest analyses  
Parameter estimates (betas) for each participant, for each condition were extracted from 

the putamen and caudate (left and right combined) as well as the left and right nucleus 

accumbens using Marsbar (Brett et al., 2002; http://marsbar.sourceforge.net/) with anatomical 

masks from a probabilistic atlas (Hammers et al., 2003). Effects of rhythmic and harmonic 

complexity and musical training were then assessed using the same approach as the analysis of 

the ratings. Only by-participant random effects were included since parameter estimates were 

extracted from group level contrast images which did not contain item (i.e., trial) level 

activations.  

An additional analysis was implemented to investigate the relation between subjective 

ratings and ROI activity. This analysis also used hierarchical linear mixed effects regression, 

with parameter estimates from the ROIs as outcome measures, and group, beat strength ratings, 

pleasure ratings, and wanting to move ratings, as well as interactions between group and the 

three types of ratings, as predictors. As in the above analysis, only by-participant random effects 

were included. In order to assess the degree of overlap in variance accounted for by pleasure and 

wanting to move ratings, and whether they accounted for variance over and above beat strength 

ratings and group differences, the hierarchical regression was implemented with two different 

orders: 1. Group, beat strength ratings, pleasure ratings, and wanting to move ratings, and 2. 

Group, beat strength ratings, wanting to move ratings, and pleasure ratings. The interactions 

between group and the ratings were entered after the main effects and followed the same orders. 

In addition to the final models including only the significant predictors from each hierarchical 
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analysis, models with only pleasure ratings, only wanting to move ratings, and both together as 

predictors, were assessed.  

Based on the findings of the whole brain analysis, a post hoc analysis was implemented 

to investigate the effect of rhythmic and harmonic complexity as well as the three ratings types 

on mOFC activity. The mOFC ROI was generated from the any effect whole brain F-contrast 

(thresholded at p < 0.05, FDR) and included two clusters on the left with peaks at x = -18, y = 

28, z =-18 and x = -14, y =  42, z = -20 and one cluster on the right with two peaks at x = 24, y = 

32, z = -12, and x = 26, y = 32, z = -22. The parameter estimates from this ROI were submitted 

to two analyses identical to those carried out on the BG ROIs. 

The subjective ratings, background data, relevant t-maps, extracted ROI activations that 

support these findings, as well as the python code for generating stimuli orders, presenting 

stimuli, and recording responses, are available in the Open Science Framework with identifier 

link: https://doi.org/10.17605/osf.io/z2sy9 

 

Results 
Behavioural Results  

All three types of ratings were strongly correlated yet independent enough to be analyzed 

separately: Pleasure and wanting to move ratings (r = 0.62, 95% CI[0.36, 0.81]); pleasure and 

beat strength ratings (r = 0.55, 95% CI[0.27, 0.77]); Wanting to move and beat strength ratings (r 

= 0.42, 95% CI[0.19, 0.61]).  

For both musicians and non-musicians, pleasure ratings decreased as rhythmic and 

harmonic complexity increased (Figure 4.2A). However, a significant interaction between 

rhythmic and harmonic complexity (χ²(1) = 8.98, p <.003) showed that the difference in ratings 

between Mr-Mh and Mr-Hh (mean difference (MD) = 0.696) was greater than the difference 

between Hr-Mh and Hr-Hh (MD = 0.440; b = 0.250, 95% CI[0.090, 0.409]). This suggests that 

medium complexity chords increased pleasure to a greater degree when combined with medium 

complexity rhythms compared to high complexity rhythms. The rhythm by group interaction 

improved model fit (χ²(1) = 4.69, p = .030) and showed that the difference in ratings between 

medium and high complexity was greater for non-musicians (MD = 1.53) than musicians (MD = 

1.17; b = -0.364, 95% CI[-0.679, -0.035]).  

For wanting to move ratings, there was a three-way interaction with rhythm, harmony, 

and group (χ²(1) = 5.84, p =.016; Figure 4.2B). Musicians showed a greater difference in ratings 
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between Mr-Mh and Mr-Hh (MD = 0.521) compared to Hr-Mh and Hr-Hh (MD = 0.226) 

whereas for non-musicians, the differences between Mr-Mh and Mr-Hh (MD = 0.116) and Hr-

Mh and Hr-Hh (MD = 0.151) were similarly small (b = 0.331, 95% CI[0.062, 0.601]). This 

suggests that musicians’ wanting to move ratings were increased by the combination of medium 

complexity rhythms and chords whereas non-musicians’ ratings were increased by medium 

complexity rhythms alone.  

For beat strength, the main effect of rhythmic complexity significantly improved model 

fit (χ²(1) = 74.83,  p < .001), with medium complexity rhythms rated as having a stronger beat 

than high complexity rhythms (b = 1.672, 95% CI[1.408, 1.933]). The rhythm by harmony 

interaction also improved model fit (χ²(1) = 4.08,  p = .043) showing that Hr-Mh were rated as 

having higher beat strength than Hr-Hh (MD = 0.207), whereas Mr-Mh and Mr-Hh were rated 

more similarly (MD = 0.077; b = -0.130, 95% CI[-0.254, 0.002]; Figure 4.2C). This suggests that 

high complexity rhythms combined with medium complexity chords are rated as having higher 

beat strength than high complexity rhythms with high complexity chords. However, the 

confidence interval contains zero suggesting that this effect may be unstable. There was no 

significant main effect of group nor a significant interaction between group and rhythmic and/or 

harmonic complexity. 

 

 

 

 

Figure 4.2. Subjective ratings as a function of rhythmic complexity, harmonic complexity and 

group. A. Pleasure ratings. B. Wanting to move ratings. C. Ratings of beat strength. Center line, 
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median; white dots, means; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 

range; black dots, outliers. 

 

Whole-Brain fMRI Results  
Whole-brain contrast images were used to assess the effects of rhythm, harmony, and 

musical training (group). Contrasting medium versus high complexity rhythms (medium > high 

complexity) revealed activations in the bilateral BG including the putamen, caudate, and 

pallidum, with activation in the left BG bordering the NAcc. This contrast also revealed 

activation in a network of cortical regions associated with beat perception including the left SMA 

(including pre-SMA), bilateral dorsal premotor regions, and bilateral parietal regions (see Table 

4.2 and Figure 4.3). In addition, this contrast revealed significant activation in the left prefrontal 

cortex, left mOFC, the bilateral inferior temporal cortex, and crus 1 in the right cerebellum. The 

opposite contrast (high > medium complexity rhythms) revealed no significant activations. 

Contrasting musicians versus non-musicians (musicians > non-musicians; averaging over all 

stimuli conditions) revealed activations in the bilateral caudate, bilateral motor cortex (extending 

into dorsal premotor cortices), bilateral SMA, right prefrontal cortex, right Heschl’s gyrus, and 

left posterior superior temporal gyrus (see Table 4.3 and Figure 4.4). There were no significant 

activations in the reverse contrast (non-musicians > musicians), nor activations related to 

harmonic complexity, nor interactions between rhythmic and harmonic complexity or group. 

 

 

 

Figure 4.3. Results of the medium > high rhythmic complexity contrast. dPMC, dorsal premotor 

cortex; mOFC, medial orbitofrontal cortex; PFC, prefrontal cortex; SMA, supplementary motor 

area. Images are thresholded at p < 0.05, FDR corrected at the whole-brain level. 
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Table 4.2. Stereotaxic Locations of Peak Voxels in the Medium > High Rhythmic Complexity 

Contrast. Peak activations thresholded at p < 0.05, FDR corrected at the whole-brain level. 

Brain region Cluster size t(208) pFDR x y z  
L putamen 345 5.53 0.004 -14 10 -2 
L thalamus  3.61 0.026 -2 -2 8 
R putamen 344 5.32 0.004 22 4 8 
L inferior parietal lobule 681 4.72 0.007 -42 -48 44 

  4.57 0.008 -28 -58 40 

  4.35 0.01 -36 -54 40 
L SMA 321 4.57 0.008 -6 20 48 

  4.31 0.01 -4 12 52 
L inferior temporal gyrus 153 4.53 0.008 -58 -40 -18 
R angular gyrus 557 4.34 0.01 38 -58 50 
R superior parietal lobule  4.32 0.01 34 -66 56 
R angular gyrus  4.16 0.011 36 -50 38 
L superior frontal gyrus 59 4.32 0.01 -24 14 68 
L SMA 210 4.27 0.01 -8 -10 60 
R SMA  3.64 0.025 8 -4 68 
R middle frontal gyrus 95 4.2 0.011 34 6 52 
R inferior temporal 50 3.97 0.015 58 -36 -16 
L cerebellum, Crus1 74 3.93 0.015 -14 -92 -22 
L inferior frontal pars triangularis 272 3.87 0.017 -40 26 28 
L middle frontal gyrus  3.81 0.019 -38 36 16 
R cerebellum, Crus 2 22 3.71 0.022 38 -68 -46 
R pons 1 3.57 0.028 6 -20 -44 
Calcarine sulcus 18 3.54 0.029 0 -82 -12 
L superior frontal gyrus 8 3.51 0.03 -20 64 0 
L middle frontal gyrus 13 3.47 0.032 -28 0 50 
L superior parietal lobule 16 3.46 0.032 -32 -60 62 
L medial orbital gyrus 18 3.46 0.033 -14 26 -22 
L anterior orbital gyrus  3.36 0.039 -22 24 -22 
L anterior cingulum 3 3.41 0.036 -12 32 28 
L precentral gyrus 8 3.4 0.036 -16 -18 72 
R mid cingulum 21 3.34 0.039 4 -4 30 
L precentral gyrus 31 3.34 0.04 -46 8 32 
R cerebellum, Crus 2 5 3.33 0.04 12 -88 -28 
L frontal superior gyrus 1 3.27 0.044 -16 66 2 
R inferior temporal 2 3.27 0.044 42 -50 -8 
L precentral gyrus 3 3.26 0.045 -36 6 46 
L frontal operculum 1 3.21 0.048 -46 14 2 
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Figure 4.4. Results of the musician > non-musician contrast. M/dPMC, motor/dorsal premotor 

cortex; PFC, prefrontal cortex; SMA, supplementary motor area. Images are thresholded at p < 

0.05, FDR corrected at the whole-brain level. 

 

 

Table 4.3. Stereotaxic Locations of Peak Voxels in the Musicians > Non-Musicians Contrast. 

Peak activations thresholded at p < 0.05, FDR corrected at the whole-brain level. 

Brain region Cluster size t(208) pFDR x y z  
L precentral gyrus 162 6.1 0 -46 -4 54 
White matter 89 4.84 0.004 -38 -42 20 
White matter  4.44 0.015 -40 -44 12 
R precentral gyrus 105 4.33 0.018 46 -6 48 
L SMA 101 4.24 0.023 -2 2 64 
R inferior frontal pars triangularis 63 4.19 0.024 44 18 24 
R Heschl’s gyrus 8 4.16 0.025 56 -8 6 
L caudate 55 4.04 0.031 -4 12 4 
L superior temporal gyrus 43 4.01 0.032 -58 -48 18 
White matter 15 3.98 0.033 22 -12 32 
R supramarginal gyrus 3 3.73 0.045 56 -36 26 
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ROI Results  
Activity in the right NAcc showed a rhythm by harmony interaction (χ²(1) = 6.50, p = 

.011). The difference between activation for Mr-Mh versus Mr-Hh (MD = 0.132) was greater 

than Hr-Mh versus Hr-Hh (MD= -0.063; b = 0.195, 95% CI[0.048, 0.343]; Figure 4.5B) showing 

that the largest activation was for stimuli with medium complexity rhythms combined with 

medium complexity chords. Activity in the left NAcc showed a main effect of rhythmic 

complexity (χ²(1) = 3.99, p = .046) with greater activation for medium compared to high 

complexity rhythms (b = 0.074, 95% CI[0.001, 0.148]; Figure 4.5C). Activity in the caudate 

showed main effects for both rhythmic complexity (χ²(1) = 12.43, p < .001) and group (χ²(1) = 

5.48, p = .019), with greater activation for medium compared to high complexity rhythms (b = 

0.083, 95% CI[0.038, 0.129]; Figure 4.5D) and greater activation in musicians compared to non-

musicians (b = 0.184, 95% CI[0.030, 0.337]). Activity in the putamen also showed a main effect 

of rhythmic complexity (χ²(1) = 5.93, p = .015), with greater activation for medium compared to 

high complexity rhythms (b = 0.073, 95% CI[0.015, 0.129]; Figure 4.5E). In a post-hoc analysis, 

activity in the mOFC also showed a main effect of rhythmic complexity (χ²(1) = 6.67, p = .01), 

with greater activation for medium compared to high complexity rhythms (b = 0.063, 95% 

CI[0.015, 0.111]). 

In order to assess the overlap in variance accounted for in the ROI activations by pleasure 

and wanting to move ratings, the hierarchical regression was implemented twice per ROI, once 

with pleasure added to the model first and once with wanting to move ratings added first (see 

Table 4.4 for results). In addition, final models with both the significant predictors from the 

hierarchical analyses as well as models with both wanting to move and pleasure as predictors, 

both alone and together, were assessed (see Table 4.5 for results and Figure 4.6 for summary).     

 Analyses on the right NAcc activations showed that pleasure and wanting to move ratings 

accounted for overlapping variance, but only pleasure ratings accounted for variance over and 

above that of beat strength ratings. For the left NAcc activations, both pleasure and wanting to 

move ratings accounted for variance over and above beat strength ratings, but the variance they 

accounted for was strongly overlapping. For activity in the caudate, wanting to move but not 

pleasure ratings, accounted for variance over and above beat strength ratings. A near-significant 

trend showed that wanting to move ratings accounted for marginally unique variance compared 

to pleasure ratings. Analyses on the putamen activations showed that wanting to move ratings 
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accounted for unique variance over and above that accounted for by both beat strength and 

pleasure ratings. In addition, there was an interaction between group by beat strength ratings, 

however, due to overlapping variance accounted for, the nature of this interaction depended on 

the inclusion of wanting to move ratings. Finally, in the mOFC, results showed that wanting to 

move ratings accounted for variance over and above pleasure ratings. In the final models, 

wanting to move ratings accounted for unique variance, however, this affect only approached 

significance.       

 

 

 

Figure 4.5. Results of ROI analysis. A. Coronal view of a single subject MNI template showing 

BG masks from probabilistic anatomical atlas used in region of interest analyses (Hammers et 

al., 2003). Blue, caudate; Green, putamen; Orange, nucleus accumbens. B. Right nucleus 

accumbens activation as a function of rhythmic and harmonic complexity. C. Left nucleus 

accumbens activation as a function rhythmic complexity. D. Caudate activation as a function of 

rhythmic complexity. E. Putamen activation as a function of rhythmic complexity. F. Medial 
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orbitofrontal cortex activation as a function of rhythmic complexity. NAcc, nucleus accumbens; 

mOFC, medial orbitofrontal. Center line, median; white dots, means; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range; black dots, outliers. 

 

  

 

Figure 4.6. Estimated means from regression models testing the effects of pleasure and wanting 

to move ratings on activation in the regions of interest. Pleasure + denotes models that also 

include wanting to move ratings and Wanting to Move + denotes models that also include 

pleasure ratings. Points on the graphs represent estimated mean activations for each rating on the 

five-point scale of the indicated rating type, while holding the other effects constant at their 

means. A. Right nucleus accumbens. Pleasure and Wanting to Move denote estimated means 
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from models with only those predictors. B. Left nucleus accumbens. The models are identical to 

those in A. C. Caudate. All models also include group and beat strength ratings as predictors. D. 

Putamen. All models also include group and beat strength ratings as predictors, as well as an 

interaction between the two. E. Medial orbitofrontal cortex. The models are identical to those in 

A. NAcc, nucleus accumbens; mOFC, medial orbitofrontal cortex. 

 

Table 4.4. Results of Hierarchical analysis Testing the  

Association between ROI Activations and Subjective Ratings.  

Region  Order Predictor χ²(1) p value 
R NAcc     
  Group 2.165 0.141 
  Beat 0.868 0.352 
 Pleasure First Pleasure 4.501 0.034 
  Move 0.084 0.772 
 Move first Move  2.534 0.111 
  Pleasure  2.050 0.152 
L NAcc     
  Group 0.487 0.485 
  Beat 2.649 0.104 
 Pleasure First Pleasure 4.172 0.041 
  Move 1.751 0.186 
 Move first Move  5.389 0.020 
  Pleasure  0.534 0.465 
Caudate     
  Group 5.481 0.019 
  Beat 4.956 0.026 
 Pleasure First Pleasure 2.812 0.094 
  Move 3.636 0.057 
 Move first Move  6.448 0.011 
  Pleasure  0.000 0.984 
Putamen     
  Group 0.863 0.353 
  Beat 1.607 0.205 
 Pleasure First Pleasure 3.499 0.061 
  Move 3.913 0.048 
  Group:beat 9.922 0.002 
 Move first Move  7.401 0.007 
  Pleasure  0.011 0.917 
mOFC     
  Group 2.510 0.113 
  Beat 3.329 0.068 
 Pleasure First Pleasure 0.630 0.427 
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  Move 4.414 0.036 
 Move first Move  4.499 0.034 
  Pleasure  0.546 0.460 

Beat, beat strength ratings; Move, wanting to move ratings; 

Pleasure, pleasure ratings; NAcc, nucleus accumbens;  

mOFC, medial orbitofrontal cortex. 

 

Table 4.5. Final Models Testing the Association between ROI  

Activations and Subjective Ratings 

Region Model Predictor β 95% CI 
R NAcc     
 Pleasure   0.047 [0.004, 0.089] 
 Move   0.042 [-0.004, 

0.090] 
 Pleasure and 

Move 
Pleasure 0.055 [-0.026, 

0.137] 
  Move -0.010 [-0.104, 

0.082] 
L NAcc     
 Pleasure   0.053 [0.015, 0.092] 
 Move   0.062 [0.018, 0.107] 
 Pleasure and 

Move 
Pleasure 0.021 [-0.053, 

0.094] 
  Move 0.042 [-0.040, 

0.123] 
Caudate     
 Group and Beat Group 0.182 [0.035, 0.335] 
  Beat 0.026 [0.003, 0.049] 
 Group, Beat, and 

Pleasure  
Pleasure 0.035 [-0.006, 

0.075] 
 Group, Beat, and 

Move 
Move 0.064 [0.014, 0.113] 

 Group, Beat, 
Pleasure, and 
Move 

Pleasure -0.001 [-0.056, 0.053 

  Move 0.064 [-0.000, 
0.132] 

Putamen     
 Group*Beat  -0.073 [-0.120, -

0.026] 
 Group*Beat, and 

Pleasure 
Pleasure 0.022 [-0.020, 

0.063] 
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 Group*Beat, and 
Move 

Move 0.061 [0.013, 0.109] 

 Group*Beat, 
Pleasure, and 
Move 

Pleasure -0.023 [-0.080, 
0.031] 

  Move 0.079 [0.014, 0.145] 
mOFC     
 Pleasure   0.028 [0.000, 0.057] 
 Move   0.045 [0.016, 0.077] 
 Pleasure and 

Move 
Pleasure -0.015 [-0.067, 

0.036] 
  Move 0.060 [-0.000, 

0.119] 
Beat, beat strength ratings; Move, wanting to move ratings; 

Pleasure, pleasure ratings; NAcc, nucleus accumbens;  

mOFC, medial orbitofrontal cortex. Group*Beat, a group by beat  

strength ratings interaction plus the main effect of each. 

 

Discussion 
In this study we set out to understand the brain networks involved in the sensation of 

groove. Consistent with previous findings, participants experienced a stronger sensation of 

groove for medium compared to high levels of both rhythmic and harmonic complexity, with 

higher ratings of pleasure and wanting to move (Matthews et al., 2019). This was coupled with 

greater activity for medium complexity rhythms in reward-related regions including the NAcc, 

caudate, and mOFC, and in regions associated with beat-based timing including the putamen, 

SMA, as well as prefrontal and parietal cortices. In addition, in both the left and right nucleus 

accumbens, pleasure and wanting to move ratings predicted activity to a similar degree, largely 

accounting for the same variance. In the mOFC, there was overlap in variance accounted for by 

wanting to move and pleasure, however, wanting to move was a stronger predictor. In the 

putamen, wanting to move ratings accounted for variance over and above that accounted for by 

both pleasure and beat strength ratings. In the caudate, wanting to move ratings and beat strength 

ratings accounted for overlapping variance. Finally, musicians showed overall greater activity in 

regions associated with beat perception.  

Together, these findings suggest that the sensation of groove is driven by a combination 

of motor and reward regions in the brain. We interpret these results in the context of rhythmic 

expectations, suggesting that the generation of these expectations based on a regular beat, and 
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their violation via syncopations, are core drivers of groove (Matthews et al., 2019; Vuust & 

Witek, 2014). Based on this formulation, we propose a theoretical model of the brain 

mechanisms underlying groove that is centered on the cortico-striatal circuits thought to underlie 

predictive timing and reward processing.  

 

Medium complexity rhythms drive the sensation of groove 
Behavioural results showed that medium complexity rhythms led to higher ratings of 

pleasure, wanting to move, and beat strength. Only the medium and high complexity conditions 

were included in order to maximize the number of trials per condition. Therefore, we could not 

confirm an inverted U-shaped pattern of ratings here. However, ratings for the medium and high 

complexity rhythms are consistent with those obtained in our previous study which included the 

low complexity condition (Matthews et al., 2019). Therefore, the current results provide further 

evidence that medium complexity rhythms strongly contribute to the sensation of groove.  

Consistent with previous results, medium complexity chords in combination with 

medium complexity rhythms increased pleasure ratings, providing further evidence that harmony 

enhances the affective component of groove (Matthews et al., 2019). Intriguingly, ratings of beat 

strength were also enhanced by medium complexity chords, supporting previous work showing 

that beat and metre perception are not driven by rhythmic factors alone (Dawe et al., 1993; 

Hannon et al., 2004). Finally, for musicians, the combination of medium complexity rhythms and 

chords enhanced the desire to move, suggesting that for those with musical training, the 

sensation of groove is more affected by non-rhythmic factors.  

 

The sensation of groove involves reward regions of the brain 
fMRI results showed that medium complexity rhythms were associated with greater 

activity in the left NAcc and left mOFC. Converging evidence from neuroimaging studies 

suggests that the NAcc and mOFC are important for the experience of music-derived pleasure 

(Koelsch, 2014; Martinez-Molina et al., 2019; Martínez-Molina et al., 2016; Salimpoor et al., 

2013). Here, activity in both left and right NAcc also showed a positive association with both 

pleasure and wanting to move ratings, suggesting an association with groove overall rather than 

the pleasure component alone. One explanation may be that the NAcc is not only involved in the 

experience of music-derived pleasure, but also in the processing of expectations that can lead to 

such pleasure (Gebauer et al., 2012; Koelsch, 2014; Salimpoor et al., 2015). For example, NAcc 
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activation has recently been associated with musical uncertainty (Cheung et al., 2019) and 

musical surprise (Shany et al., 2019), and has also been shown to track reward prediction errors 

associated with harmonic violations (Gold, Mas-herrero, et al., 2019). In the current study, the 

right NAcc showed greater activation in response to the combination of medium complexity 

rhythms and chords, which was the condition that elicited the highest pleasure and wanting to 

move ratings. Interestingly, this was the only region to show an effect of harmonic complexity, 

which might relate to the right-dominance of regions involved in tonal processing (Zatorre, 

Belin, & Penhune, 2002).  

Activity in the mOFC has been associated with assigning affective value to stimuli, 

including music (Zatorre & Salimpoor, 2013). However, in the current results mOFC activity 

showed a stronger association with wanting to move ratings than with pleasure ratings. A more 

recent hypothesis suggests that OFC involvement in value assignment is contingent on whether 

this process involves mental simulation of behavioural outcomes (Stalnaker, Cooch, & 

Schoenbaum, 2015). This is consistent with the current results as wanting to move ratings, in 

contrast to pleasure ratings, may involve action simulation. Therefore, one possibility is that the 

NAcc encodes the positive affective state of groove, while the mOFC encodes the association 

between the music and the desire to move.  

 

The sensation of groove involves motor regions of the brain 
Our results also showed greater activation in bilateral putamen and caudate as well as the 

SMA (including pre-SMA) and bilateral dorsal premotor cortices for medium complexity 

rhythms. The putamen and the SMA are part of the cortico-striatal ‘motor circuit’ (Alexander et 

al., 1986) and together with the caudate are suggested to be crucial nodes in both the striatal 

beat-frequency and pacemaker-accumulator models of timing (Coull et al., 2011; Matell & 

Meck, 2004; Merchant, Harrington, & Meck, 2013). In addition, recent theories suggest that 

temporal predictions are generated in the motor system via covert and unconscious action 

simulation (Arnal, 2012; Patel & Iversen, 2014; Rimmele et al., 2018; Ross et al., 2016; 

Schubotz, 2007). This is supported by a recent study showing that temporal predictions in the 

context of regular auditory stimuli are driven by motor signals to the auditory cortex (Morillon & 

Baillet, 2017). In the context of beat perception, the efferent signals of these covert actions may 
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act as an internal representation of the beat, or ‘pacing signal’ (Kotz et al., 2016), informing beat-

based expectations.  

Converging evidence suggest that the putamen, SMA and dorsal premotor cortices are 

crucial for generating an internal representation of a beat (Araneda et al., 2016; Grahn & Brett, 

2007; Grahn & Rowe, 2009; Merchant et al., 2015), with the putamen seeming particularly 

important (Grahn & Rowe, 2013). Studies with both Parkinson’s disease (Grahn & Brett, 2009) 

and lesion patients (Nozaradan, Schwartze, et al., 2017) also support the importance of the BG in 

beat perception. Furthermore, oscillatory activity in the SMA and putamen has been shown to 

entrain to frequencies denoting the beat and metre, respectively (Li et al., 2019). However, two 

recent studies using transcranial magnetic stimulation (TMS) support the role of the dorsal 

premotor cortex (Ross et al., 2018a) but not the SMA (Ross et al., 2018b) in beat perception. 

Interestingly, the caudate was the only region of interest whose activity showed a main 

effect of beat strength ratings. However, further analysis revealed strong overlap between the 

effects of beat strength and wanting to move ratings in this region. Beat strength ratings did show 

a relation to putamen activity via an interaction with group, the nature of which also depended on 

the inclusion of wanting to move ratings in the model. Together these results provide further 

evidence that beat perception and motor activation are strongly linked, both in terms of 

subjective experience and neural underpinnings.  

 

The sensation of groove involves frontoparietal networks 
Medium complexity rhythms also elicited increased activation in bilateral parietal (with 

peaks in inferior and superior parietal lobules) and left prefrontal cortical regions. Parietal and 

prefrontal regions are components of both the dorsal auditory (Hickok & Poeppel, 2004; 

Rauschecker, 2011) and the fronto-parietal networks (Ptak et al., 2017), which are thought to 

underlie the motor representations of stimuli allowing for the processing of sensory input that 

evolves over time (Ptak et al., 2017; Rauschecker, 2011). These regions have also been 

implicated in the cognitive aspects of temporal and rhythmic processing including temporal 

attention (Bolger et al., 2014; Coull & Nobre, 2008; Coull et al., 2011; Davranche et al., 2011; 

Nobre & van Ede, 2017), encoding and retrieval of beat-based time intervals (Konoike et al., 

2015, 2012), and rhythmic deviant detection (Lappe, Lappe, & Pantev, 2016; Lappe, Steinsträter, 

et al., 2013). A recent TMS study showed that down-regulating parietal activity disrupts 
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perception of phase shifts of the beat (Ross et al., 2018b). These results are consistent with the 

parietal cortices purported role as the interface between motor-driven temporal predictions and 

sensory input (Rauschecker, 2011; Rimmele et al., 2018).  

Prefrontal activity during beat perception has been linked to precision of sensory 

predictions (Bengtsson et al., 2009) and working memory (Kung et al., 2013), consistent with its 

role in beat-based timing (Teki et al., 2011). Therefore, the dorsal prefrontal activity seen here 

may represent the generation of beat-based expectations and monitoring of their outcome. The 

caudate is strongly connected to prefrontal and parietal regions (Haber, 2016), and both whole-

brain and ROI analyses showed greater caudate activation for medium complexity rhythms. A 

recent study using TMS suggests that a left dorsolateral prefrontal-caudate circuit determines 

music liking and wanting by coding musical expectancies based on structural properties (Mas-

herrero, Dagher, & Zatorre, 2018). In the current context, prefrontal and parietal regions, along 

with the caudate, may generate and update beat-based expectations and compare these 

expectations to incoming stimuli.  

 

Musicians show greater activation in regions associated with beat-based timing  

Although the overall pattern of activity was similar for both groups, musicians showed 

greater activity in the caudate, right prefrontal cortex, SMA, primary and premotor cortex and 

primary and secondary auditory regions, compared to non-musicians, regardless of rhythm 

complexity. Musicians have shown greater activity in the SMA and premotor cortex (Grahn & 

Brett, 2007) and greater connectivity between SMA and auditory regions (Grahn & Rowe, 2009) 

during rhythm perception tasks. Together, these results suggest that musical training leads to 

greater engagement of regions involved in beat perception as well as stronger auditory-motor 

associations (Alluri et al., 2017; Zatorre, Chen, & Penhune, 2007). This is in line with the current 

behavioural findings, as well as those from a previous study showing that musicians are more 

sensitive to rhythmic and harmonic manipulations (Matthews et al., 2019), and with results 

showing greater neural responses to rhythmic deviants (Geiser, Sandmann, Jancke, & Meyer, 

2010; Habibi, Wirantana, & Starr, 2014; Vuust et al., 2009).  

 

A proposed model 
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We propose a theoretical model integrating the current results with previous work 

discussed above. According to this model, the putamen, along with the SMA and premotor 

cortices automatically generate an internal representation of the beat. These regions interact with 

the caudate, prefrontal, and parietal regions which use this beat representation to inform 

rhythmic expectations and compare them to incoming stimuli. These regions may also use this 

beat information to generate higher-level expectations regarding the way music will unfold over 

longer timescales (Salimpoor et al., 2015). Information from both the putamen and caudate 

networks may then be passed to the NAcc-mOFC circuit which generates a positive affective 

response, including both pleasure and the desire to move, and assigns value to both rhythmic and 

higher-level expectations. Medium complexity rhythms activate these networks as they are 

regular enough to allow for internal beat generation, but also contain syncopations that challenge 

this regularity and thus engage expectation processes leading to the pleasurable desire to move. 

In addition, the repetition of rhythmic patterns, used here in our stimuli and common in groove-

based music (Danielsen, 2006), may engage processes involved in higher-level expectations. 

Furthermore, musical training may strengthen these expectations and the brain networks that 

support them. Finally, although rhythm appears to be the primary feature influencing groove, 

other factors, including harmony and familiarity also enhance pleasure (Matthews et al., 2019; 

Pereira et al., 2011; Senn, Bechtold, Hoesl, & Kilchenmann, 2019; van den Bosch, Salimpoor, & 

Zatorre, 2013).   

 

Conclusion 
The current study sought to investigate the brain networks underlying the pleasurable 

desire to move to music, known as the sensation of groove. Medium complexity rhythms led to 

greater activity in brain regions associated with both motor timing and reward. Subjective ratings 

of pleasure and wanting to move were associated with activity in BG regions of interest 

supporting their crucial role, not only in processing rhythmic complexity, but also in the 

subjective experience of groove. These results provide novel evidence supporting the 

formulation of groove as the intersection of motor timing and reward processes. Based on this 

formulation, we propose a model in which different cortico-striatal networks support the 

generation and affective valuation of beat-based expectations. Future studies will test the 
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interactions between these networks, leading to a better understanding of how prediction and 

reward-based mechanisms work together. 

 

Supporting Information 
 
Weights       0  -5  -4  -5  -3  -5  -4  -5  -2  -5  -4  -5  -3  -5  -4  -5  -1  -5  -4  -5  -3  -5  -4  -5  -2  -5  -4  -5  -3  -5  -4  -5  || 
Count           1•••e•••&•••a•••2•••e•••&•••a•••3•••e•••&•••a•••4•••e•••&•••a•••|| 
Hi-hat    x•••••••x•••••••x•••••••x•••••••x•••••••x•••••••x•••••••x•••••••|| 
Son       x•••••••••••x•••••••••••x•••••••••••••••x•••••••••••••••x•••••••|| 
Rumba     x•••••••••••x•••••••••••••••x•••••••••••x•••••••••••••••x•••••••|| 
Mariato   x•••••••••••••••x•••••••x•••••••••••x•••••••••••••••••••x•••••••|| 
High 1    x•••••x•••••••••••••••x•••••••••••••••••••x•••••••••••••••x•••••|| 
High 3    x•••••••••x•••••••x•••••••••••••••x•••••••••••••••••••x•••••••••|| 
High 7    x•••••••••••x•••••x•••••••••••••••••••x•••••••••••••••x•••••••••|| 
 
Figure S4.1. Schematic representation of rhythms with onsets (‘x’) shown on a grid. Weights 

refer to those used to calculate the syncopation index. Count shows the musical counting 

(traditional American system) with numbers denoting the beat, ‘&’ denoting eighth notes, and ‘e’ 

and ‘a’ denoting sixteenth notes.  

 
 
Table S4.1. Notes and corresponding frequencies for each chord 

Chord Type Notes Frequencies (Hz) 
Medium   
 D2, G3, C4, E4, B4, D5 73.416, 196.00, 261.60, 329.63, 493.88, 587.33 
 D2, F#3, C4, E4, A4, D5 73.416, 185.00, 261.60, 329.63, 440.00, 587.33 
 D2, F#3, B3, E4, A4, D5 73.416, 185.00, 246.94, 329.63, 440.00, 587.33 
High   
 D2, F#3, A3, C#4, A#4, D#5 73.416, 185.00, 220.00, 277.18, 466.16, 622.25 
 D2, F#3, A3, C#4, G4, D#5 73.416, 185.00, 220.00, 277.18, 392.00, 622.25 
 D2, F#3, A3, G4, A#4, D#5 73.416, 185.00, 220.00, 392.00, 466.16, 622.25 
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Figure S4.2. Indices of rhythmic and harmonic complexity for all stimuli. A. Syncopation 

indices. B. C-scores. C. Peak roughness. D. Inharmonicity. See main text for details. 
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Table S4.2 Stereotaxic Locations of Peak Voxels in the Medium > High Rhythmic Complexity 

Contrast using GLM Flex. Peak activations thresholded at p < 0.05, FDR corrected at the whole-

brain level. 

Brain region cluster size t(52) x y z 
L. Caudate 302 4.0071 -8 0 12 
L. Caudate 302 3.868 -14 4 18 
L. Pallidum 302 6.2786 -14 8 0 
R. Caudate 244 4.3744 8 8 4 
R. Pallidum 244 4.6245 16 8 2 
R. Putamen 244 5.3596 22 4 8 
L. Supplementary Motor Area 187 4.8392 -10 16 48 
L. Supplementary Motor Area 187 4.3533 -4 12 52 
L. Inferior Temporal Gyrus 117 4.6466 -56 -46 -16 
R. Angular Gyrus 127 4.0359 38 -58 52 
R. Superior Parietal Lobule 127 4.4686 36 -66 56 
L. Inferior Parietal Lobule 126 4.0674 -40 -50 44 
L. Inferior Parietal Lobule 126 3.9164 -28 -58 40 
L. Superior Frontal Gyrus - 
Orbital Part 4 3.7934 -14 26 -22 
R. Inferior Temporal Gyrus 6 3.7718 58 -34 -16 
R. Supplementary Motor Area 6 3.7685 8 -4 70 
L. Inferior Frontal Operculum 3 3.7425 -46 12 2 
L. Supplementary Motor Area 2 3.6768 -14 -4 56 
R. Cerebellum Crus II 2 3.6638 38 -68 -44 
L. Superior Frontal Gyrus 1 3.6144 -20 16 68 

 
 
Table S4.3. Stereotaxic Locations of Peak Voxels in the High > Medium Rhythmic Complexity 

Contrast using GLM Flex. Peak activations thresholded at p < 0.05, FDR corrected at the whole-

brain level. 

Brain region Cluster size t(52) x y z 
L. Middle Temporal Gyrus 282 -4.6228 -60 -20 -2 
L. Middle Temporal Gyrus 282 -3.9921 -50 -34 8 
L. Superior Temporal Gyrus 282 -4.804 -65 -34 10 
L. Superior Temporal Gyrus 282 -4.5049 -66 -22 8 
R. Superior Temporal Gyrus 42 -4.4466 60 -20 2 
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Table S4.4. Stereotaxic Locations of Peak Voxels in the Musicians > Non-Musicians Contrast 

using GLM Flex. Peak activations thresholded at p < 0.001, uncorrected at the whole-brain level. 

Brain region Cluster size t(52) x y z 
undefined 125 -4.7278 22 -12 32 
L. Precentral Gyrus 141 -4.6829 -46 -6 54 
L. Caudate 217 -4.5725 -6 14 4 
L. Caudate 217 -4.2379 0 6 2 
R. Inferior Temporal Gyrus 27 -4.2699 42 -6 -26 
R. Inferior Frontal Gyrus - pars 
triangulars 223 -4.0682 44 22 24 
R. Inferior Frontal Operculum 223 -4.1822 44 14 30 
R. Supplementary Motor Area 117 -4.0308 2 4 68 
R. Middle Cingulate Cortex 9 -3.8583 18 -20 46 
L. Middle Temporal Gyrus 10 -3.6997 -38 -46 10 
R. SupraMarginal Gyrus 21 -3.689 48 -36 34 
L. Insula 27 -3.6771 -22 30 12 
R. Angular Gyrus 10 -3.5177 34 -50 32 
R. Inferior Parietal Lobule 20 -3.5097 36 -50 46 
R. Middle Cingulate Cortex 12 -3.5078 6 -4 28 
L. Middle Frontal Gyrus 9 -3.4263 -46 22 32 
R. Precentral Gyrus 7 -3.375 46 -10 46 
L. Postcentral Gyrus 7 -3.352 -46 -16 48 
L. Fusiform Gyrus 1 -3.3264 -32 -66 -18 
R. Inferior Parietal Lobule 2 -3.2699 46 -46 48 
L. Middle Frontal Gyrus 1 -3.2557 -26 34 22 
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5.1 General Discussion 
 The work presented in this thesis sought to investigate the sensation of groove from three 

different angles: the interaction between rhythm and harmony, the perception of self-generated 

movement, and the brain regions implicated in the underlying processes. Results from Article 1 

suggest that harmonic complexity affects the sensation of groove via its effect on pleasure and its 

interaction with rhythmic complexity. Article 2 provides evidence that the perception of 

synchrony between self-generated movements and a musical beat contributes to groove to a 

greater degree than measured synchrony. Finally, Article 3 suggests that the motor, limbic, and 

associative cortico-striatal networks implicated in beat perception and music-derived reward 

underlie the sensation of groove. The following sections will discuss these results in the context 

of predictive coding and dynamic attending frameworks (and their relatives), with temporal 

predictions as a common mechanism. In doing so, I will try to illustrate how groove provides a 

novel way to integrate these frameworks, and to study the interaction of the underlying 

processes.  

 

5.2 Theoretical Frameworks of Rhythm Perception 
 The sensation of groove reflects the intrinsic link between perception, movement, and 

reward. Temporal predictions are a common element linking these processes. Predictive 

processes are ubiquitous in theories of perception. Two theoretical frameworks that have been 

applied to rhythm processing and groove are predictive coding (PC) and dynamic attending 

theory (DA). Both frameworks describe perception as an active process involving interactions 

between stimulus-driven and endogenous predictive processes. PC models perception as an 

inferential process in which predictions are generated based on internal models of the 

environment (or task/stimulus). Prediction errors, which reflect a mismatch between model and 

sensory input, lead to adjustments in the model depending on their weight, which is determined 

by the certainty (formalized as precision) of the antecedent prediction (Friston, 2019). DA 

suggests that perception is driven by ongoing, endogenous oscillations of attention, with peaks of 

attention aligning to salient components of the input. These frameworks are particularly well-

suited to auditory perception in which temporally structured sequences, such as speech and 

music, allow for the extraction of temporal regularities to predict incoming stimuli and thus 

facilitate perception (Arnal & Giraud, 2012; Giraud & Poeppel, 2012). An isochronous rhythm 

provides an idealized example of these processes as the perfect temporal regularity allows for a 
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highly precise and accurate internal representation, and thus highly accurate and precise temporal 

predictions. This allows for a near-optimal interaction between internal model, incoming stimuli, 

and behaviour. For example, participants show greater sensitivity and faster reaction times when 

detecting target sounds within isochronous or rhythmic compared to non-isochronous or random 

sequences (Ellis & Jones, 2010; ten Oever, Schroeder, Poeppel, van Atteveldt, & Zion-

Golumbic, 2014; van Atteveldt et al., 2015; Wollman & Morillon, 2018). In addition, an 

isochronous beat facilitates motor reproduction of multi-second time intervals (Daikoku, 

Takahashi, Tarumoto, & Yasuda, 2018). In the context of music, the isochronous beat provides a 

stable bedrock on which immensely complex structures can be built. This bedrock, and the 

sensitivity to deviations that flow from it, allows composers and performers to manipulate 

listeners’ temporal and content predictions with a granularity unparalleled in other auditory 

inputs (Barrett & Schulkin, 2017). It is this fine-grained and highly sophisticated manipulation of 

expectations that is thought to drive the affective responses to music (Huron, 2006; Meyer, 1956; 

Salimpoor et al., 2015), including the urge to move and pleasure associated with groove (Vuust 

& Witek, 2014). 

 In the context of rhythm perception, PC and DA can be seen as compatible frameworks 

together providing a comprehensive, systems-level account of the underlying processes. Based 

on this integrated view, a regular auditory rhythm engenders an internal model of the beat, as 

proposed by PC, consisting of an entrained attentional oscillator, as proposed by DA. Rhythms 

with hierarchical structures (i.e., metre), will entrain multiple endogenous oscillators with natural 

rates corresponding to the different levels of the metrical hierarchy. Therefore, attentional 

oscillations comprise not only the internal model of the beat but also the metre (Large & Jones, 

1999). This sets up implicit temporal predictions regarding future musical events, which when 

violated lead to prediction errors which, if strong enough, will necessitate an update of the model 

(e.g., via phase correction). According to DA, the strength of the entrainment, that is, how 

strongly the internal oscillator is synchronized with the external rhythm, determines the strength 

of the model which corresponds to the degree to which a listener ‘feels the beat’. In turn, 

stronger entrainment leads to more certain temporal predictions. In both PC and DA, this 

certainty is formalized as the width (i.e., extension in time) of the probability distribution around 

each temporal prediction. In PC, certainty determines the weight or strength of prediction error, 

that is, the degree to which it will lead to a correction to the model (Koelsch et al., 2019; Large 
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& Jones, 1999; Vuust et al., 2018). Similarly, in DA the width of the certainty window (or 

attentional focus) determines the threshold with which a temporal prediction necessitates a phase 

correction of the oscillator. The width of the certainty window is influenced by a number of 

endogenous and exogenous factors including attention, musical experience, and properties of the 

stimulus (i.e., the rhythmic context).  

The effect of relatively high or low certainty, reflected by narrow or wide distributions, 

on temporal prediction errors is illustrated in Figure 5.1. In the context of a metronome (Figure 

5.1, upper section), certainty is high and even a small temporally shifted onset will fall outside of 

the narrow probability window. This will lead to a strongly weighted prediction error which will 

thus be more likely to be propagated up the processing hierarchy, lead to a surprise response, and 

an update of the model. Conversely, the same temporal shift may have no impact if it occurs in a 

more complex, and therefore less certain, rhythmic context (Figure 5.1, lower section). In this 

case, the shifted note will fall into a wider window of temporal certainty and be registered as 

either a prediction confirmation or a weakly weighted prediction error. Within both PC and DA, 

prediction certainty can be thought of as a cyclic pulse that is phase-aligned to the beat. 

Additionally, global attention can also have influence on certainty. For example, focused 

listening may further increase prediction certainty whereas distracted listening would reduce 

certainty, even for a highly regular beat. A similar distinction can be made between global and 

local certainty reflecting the certainty of global or local internal models. For example, the 

temporal prediction of a beat directly following a perturbation may have reduced local certainty. 

Global uncertainty may result from a mix of syncopated and unsyncopated beats spread over 

many phrases and may therefore rely more heavily on working memory as predictions are 

monitored and adjusted over time. 
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Figure 5.1. Beat-based predictions, prediction certainty, and prediction error in the context of an 

isochronous and non-isochronous rhythm. The underlying beat of both rhythms is represented by 

the solid and dashed black lines. Blue rectangles represent auditory onsets. The blue continuous 

lines represent the endogenous oscillators/internal models of the beat. An isochronous rhythm 

leads to highly certain predictions reflects in narrow pulses of attention. The non-isochronous 

rhythm leads to less certain predictions and thus wider windows. The same perturbation (red 

dashed line) engenders a strongly-weighted prediction error in the isochronous context, and a 

weakly-weighted prediction error (or a prediction confirmation) in the non-isochronous context.  

 

Both PC and DA frameworks have relatives in active inference and active sensing models 

that account for the active nature of perception by linking it to overt or covert action. During 

overt action, motor effectors determine both the sensory input and the temporal context for this 

input. Efference copies of motor commands are sent to sensory and associative regions to 

temporally align perceptual processes to the input and to each other. This predictive alignment 

facilitates the selective processing of salient inputs as well as the synthesis of multimodal inputs 

into higher-level representations (Lakatos, Gross, & Thut, 2019). The same process also allows 

for attenuation of the sensory consequences of self-generated movements (Brown et al., 2013). 

This sensory attenuation is useful when the self-generated input, for example the sounds of one’s 

own footsteps, is not salient and thus to be ignored. According to active sensing, actions 

predictively align ongoing attentional oscillations to the sensory result of the movement, with the 
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phase alignment determining whether there is amplification or attenuation of the sensory 

processing (Morillon & Schroeder, 2015; Schroeder, Wilson, Radman, Scharfman, & Lakatos, 

2010). In active inference, actions are themselves predictions of their own sensory and kinematic 

consequences (Brown et al., 2013). Prediction error can therefore be minimized by changing the 

prediction, that is, adjusting the movement. Therefore, under both theories, motor commands 

provide temporal predictions to prepare sensory processes for an incoming signal and thus 

facilitate processing. Importantly, many motor processes are rhythmic (e.g., walking, breathing, 

chewing) which means the sensory input they generate is rhythmic. Therefore, there is an 

inherent rhythmicity and thus predictability to the link between action and perception.  

In the case of passive auditory perception, our ears do not move to determine the auditory 

input. However, an implicit action-perception link is still thought to be in effect, with motor 

commands of covert actions providing the temporal prediction signal. Covert actions are those 

that are never carried out. Therefore, the associated motor computations are abstracted away 

from any specific motor effector (Cannon & Patel, 2020). However, the predictive spatio-

temporal computations, for example, those necessary to clap your hands at a desired frequency 

and volume, still occur. The motor planning and timing functions underlying the vast repertoire 

of movements innate to humans, ranging from tens (e.g., speech) to hundreds of milliseconds 

(e.g., walking), are thus relied upon to organize sensory input (Schön & Morillon, 2019).  

Rhythm perception is the ideal context for this action-perception contingency, allowing 

for the exploitation of innately rhythmic motor processes to predictively align perceptual (and 

other) processes to rhythmic input. This optimality is even more striking considering that the 

tempo of most music matches the rate of most natural movements, with both falling around 2 Hz 

on average (Ding et al., 2017; MacDougall & Moore, 2005). This suggests a predisposition to 

make and enjoy music that aligns to the natural rate of movement. That is, we tend to make 

music around this tempo because that is the tempo at which we naturally move. And, we enjoy 

listening to music at this tempo because it resonates with the natural frequency of our motor 

system. The reliance on motor commands of covert actions for temporal predictions has been 

proposed by several authors (Arnal, 2012; Morillon, Schroeder, Wyart, & Arnal, 2016; Morillon 

& Schroeder, 2015; Schubotz, 2007). An example of this theory within rhythm and beat 

perception is known as the action simulation for auditory perception (ASAP) hypothesis (Patel & 

Iversen, 2014). 
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5.3 Relating these Frameworks to Groove 
 The perception of groove has been consistently associated with a U-shaped relation 

between rhythmic complexity and ratings of the urge to move and pleasure. Further evidence of 

this relation is provided by Articles 1 and 2, which show this relation in separate samples and 

with different stimuli. In the context of PC, the inverted U is determined by a combination of the 

number of prediction errors, and the certainty or weight of these errors (Koelsch et al., 2019; 

Vuust & Witek, 2014; Vuust et al., 2018). By integrating this with DA, I suggest that the 

frequency and weight of these prediction errors is linked to the degree of entrainment of motor or 

attentional processes. As is shown in Figure 5.1 (upper section), a rhythm with few or no 

syncopations will strongly entrain attentional oscillators leading to highly certain predictions, 

which are generally confirmed, thus leading to very few prediction errors. Prediction errors lead 

to the refinement of internal models by engaging the motor processes generating the temporal 

predictions in the first place. I suggest that this automatic engagement of the motor system to 

reaffirm and test further temporal predictions leads to the urge to move.  

Because refinement of the model based on prediction errors improves the match between 

model and environment, prediction errors constitute a learning signal. Since learning is adaptive, 

it is thought to be inherently rewarding (White, 1959). This in line with theories of intrinsic 

motivation which, in the context of learning, is the drive to get better at something as this 

improvement satisfies an innate need for competence and is thus inherently rewarding. 

Conversely, extrinsic motivation in learning is the drive to get better in order to receive an 

external, separable reward (e.g., a high grade; Ryan & Deci, 2000). This also aligns with the 

integration of concepts such as boredom and curiosity into models of learning (e.g., 

reinforcement learning), which are thought to affect a shift from exploitation to exploration 

(Dubey & Griffiths, 2020; Gomez-Ramirez & Costa, 2017). This shift is driven by the seeking of 

surprise (i.e., prediction error), novelty, or uncertainty in the form of more complex stimuli or 

environments. Therefore, if model refinement is a general goal, then seeking out moderately 

complex input that initially challenges model-based predictions via prediction errors, but is then 

incorporated into and accounted for by the model, will be intrinsically rewarding (Schmidhuber, 

2010). In the context of groove, medium complexity rhythms lead to greater reward as they 

challenge internal predictive models, thus providing the opportunity to refine these models and 



 

111 

resolve uncertainty by improving predictions and/or altering sensory input via movement (Vuust 

& Witek, 2014; Vuust et al., 2018). 

The idea that learning in the context of intrinsic motivation is inherently rewarding has 

received support from both behavioural and neural studies. For example, a sudden insight or ‘aha 

moment’ (e.g., when an incoherent ‘Mooney image’ resolves into a coherent image), was 

associated with ratings of positive affect, particularly when it was self-generated rather than 

provoked by a cue (Kizilirmak, Galvao Gomes da Silva, Imamoglu, & Richardson-Klavehn, 

2016). In other words, resolving uncertainty to gain new understanding of novel input led to 

reward, particularly when this new understanding was intrinsically driven. In an fMRI study, 

Ripollés et al (2014) showed that the intrinsic reward associated with learning new words was 

associated with activity in the ventral striatum. This activity matched that elicited by monetary 

gains (i.e., extrinsic rewards) in an independent gambling task. Crucially, they showed that 

ventral striatum activity was specifically related to the learning of novel words rather than the 

novelty itself. This indicates that the process of incorporating the novel input into an existing 

internal model of language elicited the reward-related activity.  

Based on the above discussion, I suggest that rhythmic complexity determines the degree 

of engagement of motor and reward systems depending on the certainty and number of 

prediction errors. Rhythmic contexts that elicit no prediction errors preclude learning and thus do 

not engage the motor processes involved in updating temporal predictions nor the reward 

processes associated with learning. In uncertain contexts, prediction confirmations may also be 

rewarding as they reflect positive feedback regarding the model. That is, they are an indication 

that the model is indeed correct despite the uncertain context. Therefore, it may be that 

prediction confirmations, like prediction errors, are weighted depending on the certainty of the 

rhythmic context. However, given that prediction confirmations serve to resolve uncertainty, this 

would be an inverse relationship, with uncertain contexts leading to strongly weighted prediction 

confirmations. In the case of a very simple rhythm, there is no uncertainty and the likelihood of a 

prediction being incorrect is very low, so there is no chance for learning, therefore prediction 

confirmations would have very low weight, which leads to boredom (Zald & Zatorre, 2011).  

Conversely, medium complexity rhythms lead to a moderate number of prediction errors 

which are weighted with a moderate degree of certainty. In this case, temporal predictions can be 

made, but they are less certain, as reflected by wider temporal windows around each beat. Here, 
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perturbations such as syncopations both lead to prediction errors, and attenuate the certainty or 

weight of these prediction errors. This introduces just enough uncertainty to increase the 

engagement of motor-supported, temporal prediction processes necessary to maintain 

entrainment to the beat. Therefore, the urge to move increases as the motor system is engaged to 

reaffirm temporal predictions, along with the compulsion to test these temporal predictions via 

movement. In addition, moderately weighted prediction errors provide strong learning signals 

which increases reward. Further, there is now a non-zero probability of making an incorrect 

prediction, thus increasing the weight of prediction confirmations. Therefore, the combination of 

moderately weighted prediction errors and confirmations leads to an overall greater affective 

response. Finally, for highly complex rhythms with no discernible beat, entrainment is reduced 

or unstable, therefore predictions are uncertain thus prediction errors are given very low weights, 

while prediction confirmations are rare, resulting in reduced reward.  

Recent studies on melodic and harmonic processing support the importance of both 

prediction errors and uncertainty in determining an affective response to music. For example, 

Gold et al. (2019) used information-theoretic models to quantify the degree of both predictability 

and uncertainty within monophonic melodic passages. They showed that both predictability, as 

indexed by information content (corresponding roughly to low prediction error), and uncertainty, 

as indexed by entropy, showed inverted U-shaped relations with liking ratings. Further, 

predictability and uncertainty interacted such that predictable events were rated more highly in 

melodies with more uncertain musical contexts. In other words, prediction confirmations elicited 

more reward as uncertainty increased. A similar result was shown in the context of chord 

progressions with higher pleasantness ratings for highly surprising chords in uncertain contexts, 

and relatively unsurprising chords in more certain contexts (Cheung et al., 2019). Although yet 

to be fully tested in the context of rhythm perception, these results support the suggestion that the 

degree to which a prediction error (or confirmation) leads to an affective response depends on 

the certainty of the rhythmic context. A salient example of this interaction is in electronic dance 

music, which often involves a highly regular metronome-like rhythmic pattern with relatively 

little deviation, and yet is highly successful in getting people on the dance floor. The highly 

regular beat, along with high volume and large low-frequency content, strongly entrains 

attentional oscillators thus leading to highly certain predictions and increased perceptual 



 

113 

sensitivity. This allows for a somewhat minimal approach to composition, in which even the 

smallest change can have a large impact on affective responses and motor engagement.   

   

5.4 Harmony and Temporal Predictions   
Articles 1 and 3 also showed that rhythm and harmony work together to engender the 

sensation of groove. In Article 1, pleasure and urge to move ratings were highest for the 

combination of medium complexity rhythms and low and medium complexity chords. In Article 

3, medium complexity chords enhanced pleasure, beat strength, and urge to move ratings, 

particularly in musicians. This suggests that pleasant harmonies may enhance attentional motor 

entrainment thus increasing the certainty of temporal predictions and thus the impact of 

prediction errors. Pleasant harmonies enhanced the effect of metre on reaction times in a visual 

detection task (Trost et al., 2014) and SMS is enhanced for pleasant versus unpleasant harmonies 

(Komeilipoor et al., 2015), suggesting that the modulatory effect of harmony extends to motor 

entrainment. This is in line with the mediation analysis in Article 1 which showed that harmony 

primarily affected pleasure which in turn affected the urge to move. In addition, recent work has 

shown that predictions regarding pitch dominate over temporal predictions, with temporal 

predictions increasing sensitivity and facilitating a motor response only when pitch predictions 

are confirmed (i.e., when the pitch of the standard tones is consistent from one trial to the next; 

Morillon, Schroeder, Wyart, & Arnal, 2016). Similarly, in both Articles 1 and 3, the chords were 

static within a trial. However, unlike the aforementioned study which dealt with individual 

pitches, Articles 1 and 3 involved chords. A highly dissonant chord is likely more surprising, at 

least initially, than an altered pitch as it violates implicit musical expectations. Therefore, the 

first onsets of such a chord may induce a prediction error which dissipates as the chord repeats. 

This paves the way for the temporal predictions to dominate, with the pleasantness of the chord 

playing a modulatory role.  

 Groove has also been associated with increased arousal. Both high-groove musical 

excerpts and syncopated synthesized rhythms increase arousal as measured by both physiological 

(pupil dilation) and subjective (ratings) measures (Bowling et al., 2019). Pupil dilation is 

specifically linked to the noradrenergic system, which is linked to greater sensorimotor 

activation associated with motor planning and auditory sensitivity (Bowling et al., 2019). 

Harmonic complexity affects other physiological indices of arousal, such as heart rate (Labbé & 
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Trost, 2020), and medium complexity chords may increase arousal by creating tension associated 

with a sense of suspended resolution (Huron, 2006; Lahdelma & Eerola, 2016). Thus, an increase 

in arousal may sharpen attention and activate motor preparatory processes, increasing the urge to 

move. Finally, arousal is known to affect time estimation, with higher arousal leading to an 

overestimation of durations, suggesting a faster internal clock (Droit-Volet & Meck, 2007). 

Together, these results along with our findings in Article 1 suggest that harmony can play a 

modulatory role on the sensation of groove by enhancing both attentional and motor entrainment 

and affecting arousal.      

 

5.5 Temporal Predictions, Sensorimotor Synchronization, and Groove   
 According to PC, certainty weighted prediction errors are not only necessary for 

improving internal models and thus learning, but are themselves informative signals that are 

propagated up the processing hierarchy (Friston, 2005). The more certain the prediction, the 

more weight is applied to the prediction error, reflecting a greater impact on the internal model. 

In Article 2, I showed that perceived synchrony predicts groove over and above measured 

synchrony. Therefore, the focus is on synchrony rather than asynchrony. In this context, it is 

useful to invert the PC account. That is, prediction confirmations are given more weight as 

certainty decreases, such that a prediction confirmation is a stronger signal as it resolves more 

uncertainty. In the context of SMS, this means that a synchronous movement has more weight 

when the rhythmic context is relatively uncertain as it provides feedback that the internal model 

is correct despite the uncertain context. Accordingly, prediction confirmations should lead to 

greater learning and reward for relatively complex compared to simple rhythms. This is 

supported in Article 2, as the impact of perceived synchrony on groove was greatest for medium 

complexity rhythms. Further, compared to passive listening, SMS provides additional 

proprioceptive and tactile information with which to determine whether each movement reflects 

a confirmation or violation of the temporal prediction. This greater sensory feedback may further 

increase the weight of prediction confirmations, thus leading to greater impact on the affective 

response.    

Many movements are themselves rhythmic, oscillatory processes. For example, when 

walking, oscillatory pattern generators send rhythmic signals to the leg muscles to generate 

movements (Damm, Varoqui, Cochen de Cock, Dalla Bella, & Bardy, 2020). This is generally an 
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automatic process as we do not have to consciously move each leg, unless some change in the 

environment requires the engagement of top-down supervision. Similar processes are involved in 

SMS, where automatic oscillatory processes may generate rhythmic movements, which can be 

entrained to external rhythms. In this case, the entrainment of endogenous oscillations 

corresponding to the internal beat model, and the associated temporal predictions are 

externalized to the motor effector as the beat is represented physically by the movement. 

Therefore, beat-based temporal predictions are offloaded to the motor effectors and beat 

perception becomes embodied in a literal sense (Maes, 2016). In a highly regular rhythmic 

context, such as a low complexity rhythm, the motor system can fully take over without the 

necessity of supervision of conscious processes. In this case, only automatic, phase correction 

processes are necessary to account for the inherent variability in motor timing. When some 

uncertainty is introduced, such as in medium complexity rhythms, then top-down processes are 

engaged to update and maintain the internal beat. This relates to the distinction between internal 

and motor timing processes, with both as potential sources of timing variability (Wing and 

Kristoffersen,1973). However, in the context of DA and active sensing, internal and motor 

timing would be considered different expressions of the same oscillatory processes, rather than 

two processes working in parallel.  

 

5.6 The Neuroanatomy of Temporal Predictions in the Context of Groove 
In Article 3, I showed that both objective determinants (degree of syncopation) and 

subjective experience (ratings) of groove are associated with a network of brain regions linked to 

rhythm and beat perception, and to music-derived reward. Based on this, as well as previous 

neuroimaging work, I proposed a model in which different cortico-striatal circuits supporting 

distinct functions work together to generate the sensation of groove. Specifically, I suggested 

that a BG-PMC-SMA network encodes the beat percept and associated temporal predictions 

which are then compared with ongoing auditory input in the parietal cortices. In parallel, 

prefrontal regions provide context by holding metrical and other music-structural information in 

working memory. Beat-based predictions and contextual information are then integrated in the 

BG and assigned affective value in the NAcc and mOFC. The following sections expand on this 

model and integrate it within the PC and DA frameworks.  
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 The proposed cortico-striatal network for groove overlaps with a network thought to 

underlie predictive processing more generally. A recent meta-analysis that included studies 

involving predictive processing in music, speech, and action perception found a network of 

regions including the BG, cerebellum, PMC, SMA/pre-SMA, parietal, posterior superior 

temporal cortex, and frontal prefrontal regions (Siman-Tov, Granot, Shany, Singer, & Gordon, 

2019). In addition, they showed that both prediction formation and prediction errors related to 

timing, content, and spatial location are processed in this network. Similar networks have been 

shown in studies of beat perception (Araneda et al., 2016; Bengtsson et al., 2009; Burunat et al., 

2017; Chapin et al., 2010; Chen et al., 2008; Grahn & Brett, 2007; Grahn & Rowe, 2009, 2013; 

Kung et al., 2013; Schubotz et al., 2000; Thaut et al., 2014), and in studies of motor and 

perceptual timing with both visual and auditory, rhythmic and non-rhythmic stimuli (Chen et al., 

2008a; Chen, Penhune, & Zatorre, 2008b; Coull & Nobre, 2008; Coull, Frith, Buchel, & Nobre, 

2000; Coull, Cotti, & Vidal, 2016; Coull et al., 2011; Henry, Herrmann, & Obleser, 2015; Lewis, 

Wing, Pope, Praamstra, & Miall, 2004; Macar et al., 2002; Pecenka, Engel, & Keller, 2013; 

Wiener, Turkeltaub, & Coslett, 2010).  

This prediction network also corresponds well to a theoretical network proposed to 

underlie learning in the context of PC (Friston et al., 2016). According to this proposal, the 

outcomes of behaviours are predicted in the parietal cortex, cerebellum, and dorsal striatum, and 

given value in the ventral prefrontal and ventral striatum (i.e., NAcc). Based on these 

predictions, dorsal striatal regions (putamen and caudate) select specific behaviours and 

determine the certainty (precision weighting) of the predicted outcomes via dopaminergic 

modulation. This information is then integrated into an internal model in dorsal prefrontal 

regions, which can then trigger actions via connections to motor cortices. This model has been 

extended beyond sensorimotor loops to include cognitive and affective processes by 

incorporating other parallel cortico-striatal circuits connecting BG regions to medial and lateral 

prefrontal regions (Friston, Parr, & de Vries, 2017) that correspond to those proposed by 

Alexander et al., (1985; see also Jahanshahi, Obeso, Rothwell, & Obeso, 2015).  

My proposed model for groove perception fits well with this neurophysiological model 

linking prediction and learning. It also corresponds well with the ASAP hypothesis (Cannon & 

Patel, 2020; Patel & Iversen, 2014), which builds on work suggesting that the dorsal pathway is 

responsible for transforming auditory signals into abstract motor representations for predictive 
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motor control (Hickok & Poeppel, 2007; Rauschecker, 2011). Echoing previous suggestions 

regarding motor involvement in temporal predictions (Arnal, 2012; Schubotz, 2007), the ASAP 

hypothesis (Cannon & Patel, 2020; Patel & Iversen, 2014) proposes that the endogenous 

component of the beat percept relies on covert motor processes within the BG, premotor, and 

motor regions. Building on this and other work, I suggest that the BG-SMA-PMC network 

implements the predictive timing computations necessary to temporally align movements to a 

regular sequence. In the context of ‘passive’ listening, these computations would never be sent to 

M1 and would therefore never be carried out. Instead they would establish regularly occurring 

temporal predictive signals which would be compared to the ongoing auditory input within the 

parietal cortex to maintain and update the predictive model. As these motor regions have evolved 

to generate rhythmic motor patterns, such as those involved in walking (Damm et al., 2020), they 

are the ideal candidates for generating these regularly timed predictive signals which provide the 

temporal context for perceptual and multisensory integration processes (Lakatos et al., 2019; 

Schroeder et al., 2010). Without inhibition to suppress overt actions, these motor computations 

may leak into M1, thus leading to synchronized movements such as unconsciously bobbing one’s 

head or tapping one’s foot to the beat. Therefore, within this model, the BG-SMA-PMC network 

is responsible for the combination of both the low-level regularity detection and top-down 

temporal prediction processes that result in the beat percept. 

The relative engagement of bottom-up and top-down temporal prediction processes in the 

context of beat perception likely depends on the complexity of the rhythmic pattern and the 

degree to which a beat or metre is automatically or intentionally imposed on this pattern. In the 

context of a highly regular rhythm such as a metronome, only low-level regularity detection mya 

be necessary. That is, neural oscillations within the BG-SMA-PMC network may be 

automatically entrained to the stimulus without the necessity of top-down oversight. Conversely, 

for syncopated rhythms, in which there is reduced or no acoustic energy falling on a some of the 

beats, top-down processes may be engaged to maintain the beat percept, that is, to ensure that 

oscillatory processes continue to be aligned with the rhythmic pattern. This is consistent with 

work showing that beat perception, along with activity in the BG-SMA-PMC, during more 

complex rhythms requires greater attentional engagement (Chapin et al., 2010). However, top-

down processes may be engaged even when listening to a metronome. For example, listeners 

may impose imagined accents on the metronome that lead to the perception of metre, which may 
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result in the entrainment of oscillations at frequencies other than the stimulation frequency 

(Iversen et al., 2009; Nozaradan, Peretz, & Mouraux, 2012). This can also occur automatically, 

as is the case in the tick-tock illusion in which every second note of a metronome is perceived to 

be accented (Brochard, Abecasis, Potter, Ragot, & Drake, 2003). This may be due to the 

metronomic signal acting as an attractor, drawing in endogenous oscillations that have natural 

frequencies close to the harmonic frequencies of the stimulation rate. The automatic imposition 

of imagined accents has been deployed to interpret results showing greater activity for an 

unaccented isochronous rhythm (Grahn & Rowe, 2009). However, further works is necessary to 

test the role of the BG-SMA-PMC in imagining or imposing a beat.  

 Barring the imposition of imagined accents on very simple rhythms, the above discussion 

implies an inverted U-shaped relation between rhythm complexity and activity in the BG-SMA-

PMC. That is, activity in this network should be relatively low for simple rhythms that require no 

top-down engagement and for highly complex rhythms that do not elicit a beat percept. Whereas, 

BG-SMA-PMC activity should be relatively high for medium complexity rhythms that are 

relatively regular but still require top-down engagement to maintain the beat and generate 

temporal predictions. This would possibly explain why several studies have shown a positive 

relation between BG-SMA-PMC activation and beat salience (Bengtsson et al., 2009;  Grahn & 

Brett, 2007; Toiviainen, Burunat, Brattico, Vuust, & Alluri, 2019) while others have shown the 

opposite relation (Burunat et al., 2017). That is, depending on the stimuli used, these studies may 

be capturing different parts of the inverted U. Articles 1 and 2 also showed an inverted U-shaped 

relation between ratings of groove and rhythmic complexity, suggesting that the neural activity 

associated with beat perception covaries with the sensation of groove. The stimuli in Article 3 

only capture the upper half of the inverted U, however, greater activity in BG-SMA-PMC for 

medium complexity rhythms as well as the link between BG activity and ratings is consistent 

with the inverted U hypothesis. Future studies combining a wide range of rhythmic complexity 

with subjective ratings could further clarify the relation between BG activity, the beat percept, 

and groove.  

The necessity of low-level regularity detection or top-down internal beat maintenance 

may engage different subregions within the BG-SMA-PMC network. Functional and structural 

connections between the cortex and the BG shows an anterior-posterior organization (Lehericy et 

al., 2004; Postuma & Dagher, 2006). For example, the SMA can be divided into the pre-SMA 
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and the SMA proper, with the more anterior pre-SMA connected to more anterior BG along with 

prefrontal regions, and the SMA proper connected to more posterior BG as well as to the PMC, 

M1, and motor part of the cerebellum (Johansen-Berg et al., 2004; Saga, Hoshi, & Tremblay, 

2017). Therefore, syncopated rhythms eliciting a more top-down, internally generated beat 

percept may rely on a more frontal BG-SMA-PMC network including the pre-SMA. In Article 3, 

the medium > high complexity rhythm contrast elicited activity in both pre-SMA and SMA 

proper. This aligns with the above discussion as medium complexity rhythms are regular but 

include syncopations that necessitate top-down attentional processes to maintain the beat. 

Conversely, high complexity rhythms do not elicit a beat. Further, participants were not 

instructed to try and find or impose a beat on these rhythms. Therefore, these rhythms engage 

beat-based processes to a lesser degree or lead to a more global mode of listening, similar to 

listening to random or non-rhythmic stimuli. The musicians > non-musicians contrast elicited 

activity in the SMA proper. This, along with the more posterior premotor/primary motor cortical 

activation, may reflect reduced engagement of top-down processes in musicians compared to 

non-musicians.  

 Activity in the auditory cortex, along with functional connectivity with the BG, has also 

been shown to be modulated by rhythmic complexity (Grahn & Rowe, 2009; Kung et al., 2013). 

Early auditory processing involves the analysis of spectral (high frequency) and rhythmic (low 

frequency) components of complex sounds (Nozaradan, Mouraux, et al., 2017). Information 

from this processing step is passed to the dorsal pathway, including parietal, premotor and 

prefrontal regions, via the planum temporale (PT; Damm et al., 2020). This places the PT as a 

crucial node in the network that transforms complex acoustic signals into abstract motor 

representations. Indeed, this region has shown selective response to the beat frequency in 

syncopated rhythms (Nozaradan, Mouraux, et al., 2017), suggesting a specific role in detecting 

regularity at the beat frequency. In Article 3, the medium > high rhythmic complexity contrast 

did not elicit STG activity (neither primary auditory cortex nor PT), but rather activity in regions 

in the dorsal pathway downstream to these auditory regions. Both medium and high complexity 

rhythms were matched acoustically. Therefore, low-level auditory processing in the auditory 

cortices and the PT may be common to both rhythm types with the differentiation of these 

complexity levels occurring at later processing stages. Conversely, in our experiment musicians 

showed greater activity in both right primary auditory cortex (Heschl’s gyrus) and left caudal 
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temporal gyrus (adjacent to the PT). As this contrast averaged over levels of rhythmic 

complexity, this further supports the involvement of lower-level auditory processes across levels 

of complexity, and to a greater degree in those with musical training.  

The cerebellum is thought to be crucial for various timing processes, particularly those 

involving overt motor timing on fast timescales (Bareš et al., 2019). Therefore, along with beat-

based timing in the BG-SMA-PMC, SMS tasks, such as that used in Article 2, likely involve the 

cerebellum for computing the fine motor timing adjustments necessary to align each tap to the 

beat. Along these lines, Teki et al. (2012) proposed a theoretical framework, based on lesion and 

TMS studies, distinguishing beat-based and absolute timing processes relying on BG and 

cerebellar networks, respectively. Beat-based timing works at a longer timescale (hundreds of 

milliseconds) and thus is more likely to involve conscious, attention-driven processes (Bouwer, 

2016; Chapin et al., 2010) such as those implicated in period correction during SMS (Repp & 

Keller, 2004). Conversely, absolute timing works on shorter timescales (tens of milliseconds), 

thus involving subconscious and automatic processes. This shorter timescale is crucial to making 

the fine-grained motor adjustments necessary to achieve the predicted sensory outcome (Krause 

et al., 2014; Pollok et al., 2008; 2017; Wolpert et al., 1998b; MacDonald and Paus, 1993; Ivry et 

al., 2002; Spencer et al., 2005; for a review, see Molinari et al., 2003). In SMS, these fine-

grained adjustments take the form of automatic phase correction (Repp, 2005; Repp & Keller, 

2004). This aligns with a model suggesting that the cerebellar pathway is involved in fast 

temporal processing while the BG and frontal regions represent a slow pathway focused on 

relational timing (Schwartze & Kotz, 2013). This is supported by recent data from non-human 

primates showing that although both caudate and cerebellum neurons tracked the regularity of 

visual stimuli, cerebellar neurons did so with greater temporal accuracy (Kameda, Ohmae, & 

Tanaka, 2019; Tanaka et al., 2020).  

In Article 2, groove ratings showed a stronger association with perceived synchrony than 

measured synchrony. This may suggest an imbalanced contribution and mismatch between beat-

based and absolute timing processes. That is, perceived synchrony may rely on conscious access 

to less accurate, beat-based timing mechanisms supported by the BG-SMA-PMC network. 

Conversely, measured synchrony was likely determined, to a large degree, by automatic fine-

grained (more accurate) timing mechanisms supported by a cerebellar network which is less 

accessible to conscious awareness. This suggests that it is conscious access to beat-based timing 
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mechanisms that interact with reward processes to generate groove. This proposal is particularly 

appealing given that both beat-based and reward processes are linked to the BG. Further, this 

may provide one explanation as to why fine-grained timing deviations (e.g., microtiming) have 

not consistently been linked to groove (Butterfield, 2010; Davies et al., 2013; Frühauf et al., 

2013; Kilchenmann & Senn, 2015; Madison & Sioros, 2014). Parietal cortices are likely 

involved in both beat-based and absolute timing contexts and are particularly important in 

contexts requiring greater attention or cognitive control (e.g., tapping to polyrhythms; Vuust, 

Wallentin, Mouridsen, Ostergaard, & Roepstorff, 2011) or when temporal prediction errors are 

consciously detected (Bijsterbosch et al., 2011).  

  

5.7 Temporal Prediction Errors in the Brain 
The above discussion implicates the parietal cortex in matching temporal predictions to 

sensory inputs in the contexts of both fast and slow timescales and in both SMS and passive beat 

perception. This suggests that the parietal cortex encodes temporal prediction errors and may be 

involved in communicating these prediction errors to motor and reward regions to update beat-

based models giving rise to an affective response. This places the parietal cortex as a crucial 

node in the network supporting the processes that underlie groove. Support for this comes from 

studies using an evoked neural response called the mismatched negativity (MMN), as measured 

by EEG or MEG, as a neural index of prediction error. MMNs related to rhythm-based temporal 

predictions are localized to the parietal and auditory cortices while melodic prediction errors are 

seen in frontal and auditory cortices, thus reflecting the dorsal and ventral auditory pathways, 

respectively (Lappe, Steinsträter, et al., 2013). Interestingly, the amplitude of the rhythm-based 

MMNs depends on the rhythmic context (Ladinig, Honing, Haden, & Winkler, 2009; Lappe et 

al., 2016; Lumaca et al., 2019). Similar context effects on MMNs have been shown for pitch 

deviants (Quiroga-Martinez et al., 2019). Therefore, MMNs within fronto-parietal and auditory 

regions may provide a neural index of both prediction error and certainty for both rhythmic and 

melodic contexts, particularly for consciously detected errors (Bijsterbosch et al., 2011).  

According to the proposal from Article 3, rhythm-based errors are communicated to the 

BG and motor network to update and maintain the beat-based model. In parallel, these errors, 

along with the antecedent prediction, are assigned affective and motivational value in the ventral 

BG-mOFC network. The parietal cortex has also been shown to process action-reward 
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associations (Dorris & Glimcher, 2004; Wisniewski, Reverberi, Momennejad, Kahnt, & Haynes, 

2015) in a movement and effector-specific fashion (Kubanek & Snyder, 2015), suggesting that 

the parietal regions may be crucial for linking motor and reward processes. Functional and 

structural connectivity studies show that both parietal and frontal regions show connectivity with 

the BG. For example, resting-state fMRI reveals functional connectivity between the ventral 

(including NAcc) and dorsal striatum with parietal and motor-related regions (Cauda et al., 2011; 

Di Martino et al., 2008). Meanwhile MRI measures of white matter tracts show a convergence of 

neurons from the parietal cortex, OFC, and DLPFC in the caudate and putamen, along with their 

well-established connections with motor regions such as the SMA and PMC (Jarbo & Verstynen, 

2015). Therefore, although direct evidence is lacking, the above pathways may provide the 

anatomical basis for the convergence of beat-based predictions (from the motor circuit) and 

consciously detected temporal prediction errors (from the frontoparietal network) on the BG. 

These signals may then be integrated in the BG to inform beat-based internal models as well as 

affective and motivational responses.  

Within the BG, the NAcc has been implicated in computing reward prediction errors 

which reflect the value, rather than the timing or content, of the sensory input and are thought to 

be driven by dopaminergic signalling (Chase, Kumar, Eickhoff, & Dombrovski, 2015; Schultz, 

2016). Work on reward prediction associated with rhythms is lacking, however, a recent study 

showed a link between reward prediction errors related to chord progressions and NAcc activity 

(Gold et al., 2019). However, prediction errors related to musical content, particularly those 

considered pleasant, have also been linked to both NAcc activity and connectivity between NAcc 

and auditory cortex (Shany et al., 2019). Conversely, another recent study showed that the 

certainty of harmonic predictions, but not prediction error, was positively associated with NAcc 

activation (Cheung et al., 2019). This latter result aligns with the proposed role of dopamine 

within the BG, as framed within PC, as determining prediction certainty, particularly for 

sensorimotor predictions (Friston et al., 2014; Owens, Allen, Ondobaka, & Friston, 2018). In this 

model, dopamine in the BG may encode prediction certainty for predictions about content, 

timing, or affective value, as long as it informs behavioural selection. This is in contrast with 

prediction certainty regarding interoceptive input, which is thought to be coded by noradrenergic 

signals in the amygdala (Owens et al., 2018). This suggests that contextual information regarding 

predictions relating to multiple musical structures (melody, harmony, rhythm) are integrated in 
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the BG to inform behaviour. In addition, prediction certainty likely affects the recruitment of 

attentional and cognitive resources supported by frontoparietal networks, with engagement of 

this network increasing as uncertainty increases (Koch et al., 2008). Taken together, the BG is 

seen as a crucial hub in which the errors, confirmations, and uncertainty of temporal predictions 

are integrated with the valuation of these predictions to inform the motor and affective responses 

to rhythmic music.    

 

5.8 Neural Oscillations and PC  
According to the neural resonance theory, neural oscillations are the mechanism 

underlying the attentional oscillations that, according to DA, are entrained by rhythmic auditory 

stimuli. Therefore, neural entrainment at beat and metre frequencies may provide the substrate 

for the internal models associated with beat and metre proposed by PC. However, due to a focus 

on different analytical methods and neural correlates (e.g., evoked potentials versus neural 

oscillations), the PC and DA frameworks have rarely been considered together. This has changed 

in recent years with theoretical and experimental work suggesting that these frameworks are not 

only compatible but convergent. For example, Arnal and Giraud (2012) proposed that neural 

oscillations provide a mechanism for PC in the context of auditory perception, suggesting that 

predictions about content and timing are encoded in high and low frequency oscillations, 

respectively. Specifically, they suggest that oscillations in the beta range (12-30 Hz) represent 

predictions of content (i.e., ‘what’) while low frequency oscillations (e.g., in the delta range, 0.5 

- 4 Hz) reflect temporal (‘when’) predictions by automatically entraining to a regular signal. And 

finally, gamma-band oscillations (> 30 Hz) are thought to encode prediction errors. Similar 

proposals have been made for language comprehension (Lewis & Bastiaansen, 2015; Lewis, 

Schoffelen, Schriefers, & Bastlaansen, 2016) and visual perception (Bastos et al., 2012; Friston, 

Bastos, Pinotsis, & Litvak, 2015), therefore the role of these frequency bands in predictive 

processes is thought to be domain general. However, as discussed below, more recent work 

indicates that the links between predictive processes and neural oscillations in specific frequency 

bands may not be quite so clear.    

Contradicting the idea that beta carries only ‘what’ information, there is mounting 

evidence that beta oscillations also encode temporal predictions (Arnal, 2012; Morillon & 

Baillet, 2017; Teki, 2014). In addition, modulations in the power of beta oscillations, which 
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indicate more or less neural synchrony in the beta range, have been linked to beat perception 

(Fujioka et al., 2015; Fujioka et al., 2012; Iversen et al., 2009). Crucially, beta modulations are 

similar for acoustic and imagined beats (Iversen et al., 2009), are larger for strong compared to 

weak beats (Fujioka et al., 2015), and, in the context of SMS, are stronger when participants tap 

on every fourth beat compared to tapping on every beat (Gompf, Pflug, Laufs, & Kell, 2017). 

Together, these studies strongly implicate beta oscillations in top-down temporal predictions 

based on both beat and metre rather than simply tracking temporal regularity in an auditory 

stimulus. That is, beta activity may be particularly engaged in situations requiring internal 

generation of the beat, for example during syncopated rhythms or when imposing metre on a 

metronome. This aligns with work linking beta to top-down processing more generally (Spitzer 

& Haegens, 2017).  

Beta oscillations have also been associated with sensorimotor processes (Engel & Fries, 

2010) as well as with communication between sensorimotor and other regions (Kilavik, Zaepffel, 

Brovelli, MacKay, & Riehle, 2013) including directed communication from motor to auditory 

regions (Abbasi & Gross, 2019; Morillon & Baillet, 2017). Consistent with this evidence, beta 

modulations associated with rhythm and beat perception are found in motor and auditory regions 

as well as other regions in the dorsal pathway. For example, beat-based beta activity has been 

localized to auditory, motor, and frontoparietal networks (Fujioka et al., 2015), while beta 

activity in the putamen of monkeys has been linked to self-paced tapping (Bartolo & Merchant, 

2015; Bartolo, Prado, & Merchant, 2014). Therefore, in the context of passive listening, beta 

activity may reflect the covert motor computations that act as beat-based temporal predictions, as 

suggested by the ASAP hypothesis (Patel & Iversen, 2014). Going further, I suggest that these 

predictive beta signals are generated within the BG-SMA-PMC and relayed to other brain 

regions, such as the parietal and auditory cortices where they influence perception and are 

compared against auditory input. However, as proposed by Arnal and Giraud (2012), beta 

activity has also been linked to predictions of content (i.e., pitch) in the context of auditory 

perception (Chang, Bosnyak, & Trainor, 2016, 2018). According to active inference, movements 

are themselves predictions of the timing and content of the sensory consequences of these 

movements, that is, both the consequent sound and the timing of that sound. Therefore, within 

music listening, beta oscillations may provide a general-purpose, top-down prediction 
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mechanism, generating expectations regarding both when an event will occur and what that event 

will be. 

In most music the beat occurs within the 0.5 – 4 Hz delta frequency range (Ding et al., 

2017), therefore, neural oscillations in this range, entrained to the beat, may reflect the low-level 

processing associated with detecting and tracking regularity (Doelling & Poeppel, 2015). By 

doing so, delta oscillations are thought to segment the auditory input into useful units (e.g., 

words or beats; Lakatos, Gross, & Thut, 2019) while also providing the time windows  in which 

various perceptual (e.g., multisensory binding) and cognitive (higher level predictions) processes 

are synchronized (Morillon, Arnal, Schroeder, & Keitel, 2019). Therefore, in music perception, 

just as the beat can be thought of as the fundamental temporal unit, delta oscillations likely 

provide a temporal context for the synchronization, and thus integration, of both low level and 

higher-level predictive processes. The work from Nozaradan and colleagues provides evidence 

of entrainment of neural oscillations to the beat and metre which naturally fall in the delta range 

(Lenc, Keller, Varlet, & Nozaradan, 2018; Nozaradan et al., 2012).  

Functionally speaking, entrainment of delta oscillations has been linked to low-level 

perceptual sensitivity. For example, the phase of delta oscillations, that is, the alignment of 

periods of high neural excitability to predicted time points, is linked to rhythm-based temporal 

judgements (Arnal, Doelling, & Poeppel, 2015; Arnal & Kleinschmidt, 2017) as well as 

behavioural adjustments in response to movement timing errors (Barne et al., 2017). The 

behavioural relevance of delta phase has also been shown in non-rhythmic, but temporally 

predictable contexts, linking it to target detection and reaction times (Stefanics et al., 2010). This 

link between delta phase and perceptual sensitivity suggests that delta oscillations may provide 

the neural substrate for the attentional entrainment proposed in the DA framework. Conversely, 

beta activity seems to be more engaged when top-down processes are necessary, for example by 

providing the motor-driven, endogenous component of the beat percept during medium 

complexity rhythms.  

During rhythm perception beta power fluctuates at a frequency matching the musical 

beat, that is, in the delta range (Fujioka et al., 2012; Iversen et al., 2009). This, along with the 

evidence described above, suggests that delta and beta oscillations are coupled in the context of 

rhythm perception, with the phase of delta oscillations modulating the power of beta oscillations 

(Morillon & Baillet, 2017). Indeed, delta-beta coupling has been linked to the accuracy of 
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temporal judgements and rhythm-based temporal predictions (Arnal et al., 2015; Morillon & 

Baillet, 2017). Therefore, given the role of beta in top-down processing and communication 

across auditory and motor regions, delta activity may serve to optimally align these processes to 

relevant (i.e., predicted) timepoints. In addition, low frequency neural oscillations may 

synchronize activity across distant brain regions while higher frequency activity may reflect local 

synchronization (Buzsáki & Draguhn, 2004). This supports the role of delta oscillations in 

coordinating the more local beta-band activity across a wide network of regions, thus allowing 

for the integration of predictive, attentional, motor, and reward processes within beat-based time 

windows.  

Top-down beta activity may also act on delta oscillations to influence perception. Recent 

studies have shown that, in the context of both rhythmic and non-rhythmic auditory stimulation, 

delta-beta coupling is directional, with beta activity in dorsal and motor regions influencing delta 

activity in auditory cortices (Abbasi & Gross, 2019; Morillon & Baillet, 2017). In the context of 

overt movement, this directed beta activity has been linked to the attenuation of the sensory 

consequences of self-generated movements (Abbasi & Gross, 2019). That is, beta reflects 

efference copies of motor commands which are sent to auditory regions to predictively suppress 

the processing of the resulting auditory input. These top-down beta signals may influence delta 

activity by phase resetting ongoing oscillations, realigning them with the auditory input when 

there is drift or a perturbation (Rimmele et al., 2018). This would be particularly important in 

more complex rhythms where top-down input is necessary to monitor and maintain entrainment 

to the beat. Therefore, in the context of beat perception, delta and beta oscillations may be 

interdependent, representing a recurrent network formed between auditory and motor (BG-SMA-

PMC) regions and thus reflecting different stages in the processing hierarchy. In this way, a loop 

is formed in which low level, auditory-driven delta sets the temporal context for top-down, 

motor-generated predictions which are fed back to auditory cortices to influence low-level 

auditory perception.  

Arnal and Giraud (2012) proposed that prediction errors are encoded in gamma 

oscillations based on evidence demonstrating a link between gamma modulations and mis-match 

signals (MMNs). As discussed above, MMNs have been shown to index prediction errors and 

their certainty in the context of both rhythmic timing and pitch deviations (Lappe et al., 2016; 

Lumaca et al., 2019; Quiroga-Martinez et al., 2019). MMNs in response to content prediction 
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errors have been linked to increases in gamma power (Arnal & Giraud, 2012). However, studies 

linking neural oscillations to temporal prediction errors are lacking. Fujioka et al. (2009) showed 

that omitting a note within an isochronous sequence leads to gamma followed by beta power 

modulations (Fujioka et al., 2009), which they interpreted as reflecting a prediction error 

followed by adjustment of the predictive model. However, omissions represent both a content 

and temporal prediction error, whereas syncopations, in which the note does occur but earlier 

than expected, violate temporal predictions but confirm content predictions (e.g., Lappe, et al., 

2013; Lappe et al., 2016). Therefore, work using syncopations could allow us to uncover the 

neural oscillations related specifically to temporal prediction errors.   

There is a similar lack of clarity in relating neural oscillations to the certainty of temporal 

predictions. The certainty of pitch predictions has been linked to alpha oscillations (Sedley et al., 

2016) and beta oscillations have been linked to sensorimotor prediction certainty in a visuomotor 

task (Palmer, Auksztulewicz, Ondobaka, & Kilner, 2019). Given that delta amplitude is 

modulated by rhythmic context (Nozaradan et al., 2012) and beta power modulations are affected 

by accent strength (Fujioka et al., 2015), temporal prediction certainty may be reflected in the 

neural oscillations that encode the predictions themselves. Therefore, the certainty of higher-

level temporal predictions (e.g., based on metre or musical schemas) may be reflected in the 

magnitude of beta power modulations. Conversely, the certainty of low-level temporal 

predictions (e.g., whether an onset will occur on or off the beat) may be reflected in the 

amplitude of delta oscillations. Given the purported role of beta in top-down predictive 

processes, it may be linked to the certainty of beat-based predictions that are available to 

conscious awareness while delta activity reflects more automatic, subconscious timing processes. 

Indirect support for this is provided by work showing that beta activity is involved in both the 

generation and self-evaluation of non-rhythmic time intervals (Kononowicz, Roger, & Van 

Wassenhove, 2019), suggesting that beta signaling allows for conscious access to timing 

performance. However, in more complex rhythmic contexts, rhythm perception involves a 

combination of both lower- and higher-level temporal predictions, thus necessitating the 

coupling between delta and beta oscillations. In this context, temporal predictions, and their 

certainty, may be reflected in the strength of the delta-beta coupling rather than one frequency 

band on its own.  
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5.8 Reward, the Urge to Move, and Neural Oscillations 

The link between the urge to move and affective responses associated with groove, 

observed across all of the studies in this thesis, can also be interpreted in terms of motivation: the 

reward-based drive to action. In the broader literature on reward processing, the experience of 

pleasure has been divided into wanting and liking. Wanting is described as an active, or 

motivational response, and liking as a more passive, (self-)reflective response (Berridge & 

Kringelbach, 2015). Beta activity in sensorimotor regions is sensitive to reward value during the 

decision phase of a decision-making task requiring a motor output (Go/NoGo task; Chen, 

McCarthy, & Kwak, 2019). In addition, beta activity in dorsal prefrontal regions is sensitive to 

reward feedback and therefore involved in strengthening stimulus-action associations (Hosseini 

& Holroyd, 2015). Studies combining EEG and fMRI have shown that positive (i.e., rewarding) 

feedback leads to beta activation in the NAcc and frontal regions (Andreou et al., 2017; Mas-

Herrero, Ripollés, HajiHosseini, Rodríguez-Fornells, & Marco-Pallarés, 2015). This reward-

based beta activity has been associated with dopaminergic signalling in the BG (Marco-Pallarés, 

Münte, & Rodríguez-Fornells, 2015; Mas-Herrero et al., 2015) suggesting a common function of 

beta activity and dopamine signaling in integrating predictive errors and their certainty to 

determine (i.e., motivate) behaviour. Therefore, beta activity may form the link between the 

internal endogenous beat, sensorimotor activation, and affective responses that characterize the 

sensation of groove.  

Studies relating neural oscillations to music-derived reward are sparse, however, several 

theoretical proposals have suggested strong links between neural and motor entrainment to 

music, and affective responses (Trost & Vuilleumier, 2013; Vuilleumier & Trost, 2015). One 

recent study showed a positive association between phase coherence of neural oscillations in the 

delta range and ratings of groove while participants listened to rhythmic stimuli (Cameron et al., 

2019). These results are in line with the application of neural resonance theory to music-induced 

affect (Flaig & Large, 2014). According to this proposal, entrainment of neural oscillations to 

musical components (e.g., low frequencies to rhythm, high frequencies to pitch) support the 

affective responses to music. For example, affective contagion, where listeners are thought to 

‘catch’ the emotion in an expressive performance, relies on the degree to which neural 

oscillations entrain to the various musical components. In this way, music does not lead us to 

internally mimic emotions (Juslin & Västfjäll, 2008), but directly engages these emotions by 
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‘speaking to the brain in its own language’ (Flaig & Large, 2014, pg. 7). A similar hypothesis 

proposes that entrainment of neural, physiological (e.g., heart rate), social (moving in synchrony 

with someone else) and other oscillatory processes to music is itself rewarding (Trost et al., 

2017; Trost & Vuilleumier, 2013; Vuilleumier & Trost, 2015). Neural evidence for this is 

lacking, however, subjective reports of visceral (i.e., physiological) and motor (urge to move) 

entrainment were linked to a positive affective response (Labbé & Grandjean, 2014). Therefore, 

according to these accounts, the music that elicits the strongest sensation of groove is that which 

resonates with the natural frequencies of motor and affective systems.   

 

5.9 Tying it all Together 
 The work in my thesis and the literature reviewed in this discussion suggest possible 

neural substrates for the processes underlying the sensation of groove, particularly the temporal 

prediction processes involved in rhythm perception. The following section attempts to tie all of 

this together with the theoretical model proposed in the Article 3.  

The first step towards a pleasurable urge to move is beat induction, that is perceiving or 

extracting a beat from rhythmic music, which then provides a temporal scaffold on which higher 

level processes are built upon. Beat induction may be driven by the entrainment of neural 

oscillations in the delta range to the stream of auditory input. This delta activity would interact 

with beta oscillations that represent predictions to generate percepts corresponding to the beat 

and metre. Delta entrainment would provide temporal alignment to the beat while beta 

oscillations would use this temporal context to form top-down temporal (and content) 

predictions, possibly in the form of efference copies of covert motor computations. The coupling 

of delta and beta activity may establish bidirectional communication between the BG-SMA-

PMC network and auditory regions, forming a loop. I propose that this loop is the neural 

substrate for the attentional oscillations that form the beat percept. That is, low-level regularity 

tracking in auditory cortices may drive motor-generated temporal predictions which in turn 

focuses auditory perception to those timepoints.  

Once a beat percept is established, beat-based predictions and on-going auditory input 

may be compared within parietal and prefrontal cortices. If a mismatch is detected, the prediction 

error would be passed back to the BG-SMA-PMC, possibly via gamma oscillations to refine the 

model. Depending on the size and nature of the perturbation and the degree to which it engages 
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attention, the associated prediction error may contribute to the uncertainty of future predictions. 

For larger perturbations, such as a tempo change, top-down beta activity may affect period 

correction of the delta oscillations representing the internally generated beat via repeated phase 

resetting. In addition, frontoparietal networks may be engaged, reflecting the necessity of top-

down, conscious mechanisms to realign perceptual processes to the beat. Small perturbations, 

such as microtiming deviations, would engage fine-grained processes such as those involved in 

phase correction and which rely on cerebellar networks. During SMS, the same processes would 

take place, with greater engagement of the fine-grained, cerebellar processes necessary for 

accurate and precise motor control. The greater degree of explicit feedback during SMS also 

allows for greater refinement of the predictive models representing the beat and metre.  

Rhythm complexity, dictated by the size and number of perturbations, would determine 

the engagement of top-down mechanisms. Medium-sized perturbations such as syncopations, 

falling between tempo changes and microtiming, may engage conscious, attentional processes in 

frontoparietal networks as well as delta-beta coupling in order to update and maintain the current 

beat model. That is, only when comparisons between predictions and input are necessary is the 

motor system and the affective valuation of these prediction engaged. Conversely, for a highly 

regular rhythm or one with only very small timing perturbations, delta entrainment and the 

associated prediction processes can go on ‘autopilot’ (assuming that the listener is not imposing a 

beat or metre). In this case, when high certainty predictions are continuously confirmed, higher 

level processes can disengage, pending any new information. Whereas, if there is a syncopation, 

the predictive system would be activated to check whether the model and the associated 

predictions are still valid. This check would engage both the motor and reward system, via beta 

oscillations in the BG, to either reinforce or punish the current state of the oscillatory model. 

This information would then determine whether the delta phase reflecting the internal beat is 

maintained, refined, or requires a phase reset. This provides a potential mechanism by which 

both temporal prediction errors and prediction confirmations lead to reward, particularly in the 

context of medium complexity rhythms.  

Rhythmic complexity, along with other factors such as global attention, would also 

determine the global uncertainty of the rhythmic context, thus affecting the confidence with 

which predictions are made. I propose the degree of uncertainty is reflected in the modulations of 

delta-coupled beta oscillations. That is, the specific pattern of beta power fluctuations within the 
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delta rate may set the width of the temporal window that determines the precision of the temporal 

prediction. Therefore, during SMS, a medium degree of certainty would be reflected in a 

relatively wide beta modulation window which increases the number of movements that fall 

within that window (or beat bin) and are considered synchronous. This would permit movements 

(and onsets) to be further away from the predicted beat point without affecting the ongoing delta 

entrainment representing the internal beat. Thus, I suggest that it is the interaction between low-

level, delta-driven processes and the effect of uncertainty on beta modulations that leads to a 

disparity between perceived and measured synchrony and the greater influence of the former on 

groove. 

Repetitions of rhythmic patterns within a composition, along with familiarity with the 

composition or genre, may afford higher level predictions about the occurrence of perturbations 

such as syncopations. In other words, the perturbations may be incorporated into the model such 

that the syncopations themselves are predicted and no longer register as prediction errors. This 

might further free up resources for higher level processing including the interaction of melodic, 

harmonic, and rhythmic components on longer timescales. This information may be maintained 

and contextualized within frontoparietal networks via working memory processes to generate an 

overall percept of the musical input. Beta oscillations have been implicated in both content and 

temporal predictions as well as the maintenance (Engel and Fries, 2010) and reactivation (Spitzer 

& Haegens, 2017) of cognitive and sensory representations. Therefore, beta oscillations are 

likely involved in this high-level processing. It follows then that beta activity would underlie the 

processing stage at which harmonic and rhythmic complexity combine to influence the sensation 

of groove. As predictions shift towards higher level processes representing the overall percept 

and its longer timescale structure, these higher-level processes may become stronger drivers of 

affective responses. However, delta oscillations entrained to low-frequency musical components 

would still be necessary to maintain the temporal context and synchronization of these processes 

across the levels of the processing hierarchy. This delta engagement, as well as coupling with 

beta oscillations, would thus continue to resonate in the motor system preventing the attenuation 

of the urge to move even after repeated listens.   
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5.10 Conclusion 
  This thesis presents three research articles focusing on the sensation of groove viewed 

through three different lenses representing the perceptual, behavioural, and the neural, while 

framing groove as the integration of perceptual, motor, and reward processes. I have emphasized 

the role of temporal predictions, as the linking mechanism between these processes in the context 

of groove. The high degree of temporal regularity, and thus predictability, inherent to rhythmic 

music makes it a uniquely powerful tool for studying the role of predictions, and their certainty, 

on behaviour and the brain. This inherent predictability, as well as the capacity for controlled 

manipulation of this predictability, makes musical rhythm an ideal test bed for theoretical 

treatments of temporal prediction. Although, there are many other relevant theoretical 

frameworks, I have focused on dynamic attending and predictive coding as they are highly 

influential and have been explicitly applied to musical rhythm. Within the idealized context of 

rhythmic music and the sensation of groove, I show how these frameworks, and their relatives, 

can be integrated. Focusing this integrated framework on temporal predictions also highlights the 

importance of the motor system in the low-level, perceptual, and high-level, cognitive processes, 

thus placing groove as a thoroughly embodied process. Finally, rhythmic music, and groove in 

particular, provides a platform on which to build the links between elemental processes such as 

prediction, motor-learning and motivation. Therefore, if nothing else, I hope I have made clear 

that groove is not some frivolous phenomenon relegated to pop music, but an essential part of the 

human experience. Or at least, one of the good parts.   
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