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Abstract

Augmenting Network Performance Datasets with Weather, Sports, and
Social Media Data for Improved Predictions

Shivam Dimplekumar Patel

Understanding network performance enables network providers to manage their network

better. Network performance degradation can lead to network service issues causing mon-

etary loss and customer churn for the network providers. Accurate network performance

prediction potentially enables proactive resource allocation to attenuate the anticipated net-

work performance degradation and associated service issues. Previous literature attempted

to predict network performance using historical network data. However, real-world net-

work performance is impacted by various external factors. Existing literature fails to con-

sider such external factors that can improve the understanding and predictions of the net-

work performance. This thesis aims to examine if external factors can improve the network

performance understanding and predictions. To this end, we inspect the correlation of

network performance data with various external data sources such as weather parameters,

sports events, and social media posts. Then, we perform network performance data aug-

mentation using the contextual information in such external data. We investigate the net-

work performance prediction improvements using Recurrent Neural Network (RNN) with

Long Short Term Memory (LSTM) units after data augmentation. Predictive experiments

with data augmentation using NFL sports events highlight a 23% improvement in the net-

work performance predictions. Data augmentation using other external sources considered

fails to improve the network performance predictions.
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Chapter 1

Introduction

1.1 Open Data Opportunities and Challenges

Organizations have been publishing open data on digital platforms to encourage public

engagement and research. For example, weather monitoring organizations have published

weather records and satellite data to promote open data research. Road accident data and

statistics are increasingly published in the digital space for similar reasons. Sports league

firms publish game schedules, various statistics and analyses to attract and engage more

audiences.

Open data can be independently used to gain results and insights. For example, Krumm

et al. [27] provides accurate urban insights using the tweet counts of the areas around

New York City. Open data can also be utilized to augment existing data for achieving bet-

ter results and insights. For example, Yang et al. [49] used financial news from multiple

sources to augment historical events data and attempted to improve financial event predic-

tion. Hébert et al. [18] tried to improve the predictability of road accidents for the city of

Montreal by augmenting historical road accident data using weather information.

Open data exists in various structures and granularity. Brynjolfsson et al. [13] found
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a 5-6 percent improvement in output and productivity when the companies adopt data-

driven decision-making. Data augmentation using irrelevant data can degrade the results,

incurring resource wastage. Hence, it is crucial to identify the potential use of open data

for every use case before using them to gain insights.

1.2 Network Performance Prediction

Network service providers sell their services with specific requirement thresholds called

Service Level Agreement (SLA). A failure to provide adequate network service can yield

customer churn and monetary loss for service providers. Service providers want to retain

and attract customers to minimize such losses.

Previous Research has attempted to address this issue by predicting the most likely churners

(customers) using the customer interaction data [9, 10, 36]. Another area of research has

aimed to improve network traffic prediction using historical network traffic data to improve

traffic management and Quality of Service (QoS).

Network performance can be quantified by various network Key Performance Indica-

tors (KPI). Network delay KPI indicates the time required by a packet to reach a destination

from the source. This KPI is called "Latency" in the literature. Packet loss KPI is the dif-

ference between the packets sent by the source and the packets received by the receiver.

An increase in these KPI values indicate poor network performance resulting in inadequate

service. Estimating the network performance can enable the service providers to manage

network resources better and proactively address performance issues.

Past research has also attempted to estimate the network performance by predicting one

or more network KPIs using historical network KPIs data [24, 39, 41, 35]. Network perfor-

mance is directly impacted by the number of active users and their usage (Web Browsing,

Video Streaming, etc.). Since most of these users are human beings, factors influencing

their network needs can significantly impact network performance.
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External events and natural phenomena can directly affect people’s activity and their net-

work usage. For example, a concert attracting thousands of people might increase the local

network usage, causing higher service delays and poor network performance.

Consequently, understanding the network performance and such impacting factors has

multi-fold benefits. Improved performance understanding can be translated to improved

future network performance predictions. Service providers can enhance their network re-

source management and proactively allocate resources to attenuate the predicted network

impact.

Existing studies predicting network KPIs leverage temporal patterns in historical net-

work data. Such data might lack information regarding external factors responsible for

changes in the network performance. Consequently, these studies did not leverage the

knowledge of such external factors to improve predictions. Little research has aimed to

identify, understand and link the network performance behaviour, to external real-world

factors, for improved predictions.

1.3 Problem Statement

In this thesis, we examine if certain external factors can improve the network performance

understanding and predictability in terms of network packet loss.

To this end, we identify certain external factors that potentially impact network perfor-

mance. We perform a correlation analysis between the external factors and the network

KPIs to assess the strength of similarity between the changes in network KPIs and the

external factors within a specific area. We augment packet loss data using external data

to improve packet loss predictions. We compare the predictions of Deep learning models

trained using the augmented data vs. the predictions of models trained with only packet

loss data.
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1.4 Thesis Contributions and Outline

The contributions of this thesis are the following:

• We analyze the correlation between weather parameters and KPIs;

• We show the benefit of augmenting network packet loss with information on sports

events for better predictions using Deep learning;

• We present a set of experiments augmenting network packet loss with social media

(Twitter) data.

This thesis is organized in six chapters. Chapter 2 provides an overview of the exist-

ing literature in network KPI prediction. It also discusses the predictive analysis enabled

using external data like weather, sports events, and social media. Chapter 3 details the

experiments to correlate the network performance behaviour with the weather parameters.

Chapter 4 identifies the sports events with potential impact on the network performances

and presents the events data. Then we discuss the performed statistical analysis to assess

the impact on network performance during identified sports events. Then we describe the

network data augmentation using the sports events data and present a predictive experi-

ment using LSTM models to quantify the network “packet loss” prediction improvements

because of sports events data augmentation. Chapter 5 uses the Twitter data and assesses

the strength of correlation with the network variables by correlation analysis. Then we

augment the network data and describe a predictive experiment using LSTM models to

quantify the network “packet loss” prediction improvements because of Twitter data aug-

mentation.
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Chapter 2

Related Work

This section reviews the studies covering network KPI prediction and predictive analytics

enabled by weather, sports events, and social media data.

2.1 Network KPI prediction

Raca et al. [39] utilized Random Forests, AdaBoost, Gradient Boosting, Support Vector

Machine, Gaussian Process, Neural Networks and other conventional algorithms like Au-

toregressive Integrated Moving Average (ARIMA) to compare the performance for cellular

throughput prediction using user device based metrics. They conducted a simulation using

ns-3 framework to collect the simulated data. However, a summary of utlilized datasets

could not be derived from this work. Random Forest performed the best, and the ARIMA

model performed slightly worse than the Random Forests at different sampling frequen-

cies. The study also noted that SVM and Gaussian Process generated the highest prediction

Mean Average Error. The study concluded that integrating measurements from the network

with measurements from the end device would not introduce any significant benefits due

to the high predictability of static devices throughput but helped reduce the throughput
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prediction error by 25 % for mobile devices (using Random Forests).

Sayeed et al. [41] used the ARIMA model to predict the wireless link quality metric

at the application level. The metric used was the signal-to-noise ratio. The study use

an Alcatel-Lucent sample level simulator to generate device metrics with a frequency of

20 millisecond (ms) for 2400 seconds. The study observed that link quality prediction

accuracy varied between 90 to 97 % depending on the prediction horizons.

Pierucci et al. [37] used Learning Vector Quantization Neural Network to provide a

classification of warnings related to problems due to high traffic and bad quality of radio

channel. The authors used Key Performance Indicators related to active users and Channel

Quality Indicator, derived from the counters located on network equipment of Italia Tele-

com. The training data spanned 14 minutes with a 4 ms frequency. The test results for

an entire day showcased only 0.7 % false positives in detecting the warnings. The pre-

sented neural network enabled better real-time network monitoring to automatically detect

the congestion to improve the user-perceived quality of service.

Bhorkar et al. [11] proposed a hierarchical Deep learning framework using LSTM

for real-time prediction of cell load and radio channel quality KPI using historical KPI

data. They collect the network measurement data from cellular networks and Cell Traffic

Recordings data from various network management systems. They collected three months

of data within same geographical area containing about 1 million records with a frequency

of 15 minutes. The proposed framework embeds the weather, day of the week, and holidays

information using a separate neural network. The framework successfully reduced the Root

Mean Squared Error by 15 % for real time short term load prediction compared to Random

Forest and XGBoost methods. This methodology also reduced the real-time long term cell

load prediction RMSE by 32%.

We observe that different network KPIs are utilized to measure and predict network
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performance and network Quality of Service (QoS). Due to the easier availability of com-

putational resources, studies are increasingly using Deep Learning techniques to obtain

better results. Many studies base their results on simulated network performance data due

to a lack of open data availability. The simulation data might not accurately capture the

real-world characteristics limiting the use of such research. Many reviewed studies fail

to adequately summarize and quantify their results, hindering replicating and extending

research using existing literature.

2.2 Predictive analytics enabled by Weather, Sports, and

Twitter data

Koesdwiady et al. [26] attempted to improve the traffic flow prediction using localized

weather information. The weather data from 16 weather sites are hourly sampled and the

traffic data is sampled every 15 minutes at 47 roads. The weather data is linearly inter-

polated to achieve 15 minutes sampling frequency . The authors performed a correlation

study between traffic and weather variables. Both the data are collected in the weekdays and

weekends from August 1, 2013 to November 25, 2013. They proposed a deep belief net-

works architecture to enhance the traffic flow prediction accuracy using the historical traffic

flow and current weather data. The proposed architecture outperforms the ARIMA (0.26)

and Artificial Neural Networks (0.08) models by achieving a 0.07 Root Mean Squared

Error error.

Klein et al. [25] presented a predictive model built using the Weather Impacted Traffic

Index toolset to predict the airport delay using weather forecast data. While the study

did not specify the exact data time length used for their experiments, they presented the

visual plots for the weather and airport delay for the year 2007. This study analyzed the

weather impacts by twelve types of weather (snow, storm, wind, etc.) to improve the delay
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predictions. The presented approach could predict the delay with 80 % accuracy.

He et al. [17] used the road traffic-related content on Twitter to improve the traffic

predictions. They collected the hourly traffic measurements from 943 loop detectors be-

tween August 3, 2011 and September 30, 2011 using California Performance Measurement

System. The tweet data is also extracted for the same time and pre-processed to remove

unwanted elements. They performed a correlation analysis to identify the potential simi-

larity between four weeks of traffic measurements and tweet counts based in the San Fran-

cisco Bay area. Then the study provided an optimization framework that extracts the tweet

semantic-based traffic indicators for each time-point. They built an auto-regression model

using only traffic data (base) and another model using two different types of semantic-based

traffic indicators (enhanced) to predict the traffic. The enhanced model produced 4.51 Mean

Absolute Percentage Error (MAPE) while the base model produced 5.18 MAPE.

Ranjan et al. [40] presented a sentiment-based prediction model to estimate the sub-

scriber growth rates for five telecom companies in India. The study collected tweets related

to five Indian telecom operators from March to July, 2017 and performed Ontology as-

signment and semantic analysis of the tweets to categorize them into five types of opinion

metrics. Such categorical opinions were used to predict a sentiment score and growth rate

associated with each telecom company. This approach predicted the growth rates for each

of the four months with 90 % correlation strength with the actual growth rates.

Wang et al. [46] successfully utilized the Twitter posts data to improve the crime pre-

dictions using Latent Dirichlet allocation and a generalized linear regression model. The

twitter activity of a news media agency was collected for the period of February 22, 2011

till October 21, 2011. The ground-truth crime data were obtained from local law enforce-

ment agencies, focusing on hit-and-run incidents during the above mentioned time frame.

The authors analyzed and combined the semantics of the tweets with the historical hit-

and-run incidents data to attain a better predictions. The proposed approach successfully

8



identified 25 % additional incidents than the baseline model.

Sport events data has been used extensively to model their impact on tourism, national

and local economy [29, 16]. Such studies do not aim to augment existing data to improve

the results. However, various sporting events account for increased physical traffic, on-

line activity, and interactions. Hence, there is merit in evaluating the potential impact on

network performance during such events.

While abundant studies utilize various open data to augment a primary dataset and

improve results, we observe a shortage of external data-aided research to understand the

external factors impacting the network performance and use such insights to improve per-

formance prediction.
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Chapter 3

Weather data for improved Network

Performance predictability

Weather affects the decisions of people in a variety of instances. For example, people

avoid going out on rainy days and spend time at their homes streaming video content of

different online media. A similar observation holds for scorching and humid days when

people are advised to be indoors. An upcoming storm encourages employees to work from

home and attend meetings over the network. The survey in [3] notes that as of 2019, more

than 85 percent of adults in the United States (18 or older) have an internet subscription.

The 2020 study in [43] reports that an average household in the US uses 3.5 times the

amount of data they used five years ago and 38 times the amount they used ten years ago.

An average network user consumes more bandwidth to access Netflix, YouTube, and other

video streaming applications. Hence, an additional amount of time spent by people at home

due to unpleasant weather conditions results in higher (than usual) network and data usage.

We hypothesize that such a change in network usage due to weather will impact the overall

network performance. This chapter investigates if weather data can be used to improve

prediction of the network performance.

We first determine the weather and network variables to be used for the analysis. Then a
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statistical analysis is performed using the selected variables to detect a correlation between

weather and network variables. Based on the correlation results, we evaluate the issue of

improving network performance predictability using weather variables.

The rest of the chapter is organized as follows: Section 3.1 describes the data and

preprocessing done for this study. Section 3.2 describes the visualizations and seasonal

adjustments performed for the analysis. Section 3.3 discusses correlation aspects. Sec-

tion 3.4 provides the correlation results and observations used to determine the usability

of the weather records to improve network performance estimation. Section 3.5 presents

inferences and conclusions obtained from the correlation results.

3.1 Datasets and Preprocessing

This section describes the data and preprocessing steps performed for this study. Then, it

covers the network monitoring data with its preprocessing and later presents the weather

data with the appropriate preprocessing steps.

3.1.1 Communications Service Provider (CSP) monitoring

The CSP monitoring data is collected through Ethernet Service Operations, Administration

and Management (SOAM) active test [22]. The SOAM test is a standardized test method

used to provide health assessment of Ethernet services. One of the functionalities of this

test is to record and check network performance to compare with the Service Level Agree-

ment requirements. The SOAM test is usually conducted at the beginning of the network

deployment and at regular intervals after deployment to monitor the fulfilment of the SLA

requirements and detect service faults.
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CSP Data

The data spans over six network sites. One of the goals of this test is to ensure network

performance for all the Service Level Agreements. Each Service Level Agreement is tested

using one or more tests. Multiple tests for different Service Level Agreement are conducted

at a time interval of one minute where a unique test id identifies each test.

The data records start in December 2017 and are collected until May 2018. The dataset

contains following variables:

1. Time stamp: Time of test execution.

2. clli site: Location of sender node.

3. Service Level Agreement (SLA): Id of the Service Level Agreement targeted by the

conducted tests. The dataset contains tests for 38 SLAs.

4. Test id: Id of the test conducted. Multiple tests are conducted to check the fulfilment

of the requirements for each SLA. There are approximately 300 test ids for each

SLA.

5. Delay: Round trip delay. It is the time taken by a packet to travel from the sender

node to the destination endpoint and back to the sender. There are three fields asso-

ciated with delay: average, minimum, and maximum. This field is also referred to as

"Latency."

6. Variational Delay: Variation in the delay values across multiple packet transmissions.

There are three fields associated to Variational Delay: average, minimum, and maxi-

mum.

7. Transmitted packets: Number of transmitted packets by a sender node.

8. Received packets : Number of received packets by the sender node (after completing

one round trip).

12



9. Packet loss: Number of lost packets during a round trip test.

Preprocessing

We group the data using the network site associated with each data point to create a separate

dataset for all six network sites. The per-minute sampled data is aggregated to hourly sam-

ples by summation at each network site. This procedure aligns the frequency of network

(SOAM test) data to the weather data.

With the help of industry experts, we identify three parameters out of the above-described

parameters that are more likely to reflect the network state (network performance) at each

network site. We perform a correlation analysis among these three parameters to identify

redundancy. Table 1 shows the correlation matrix of the selected parameters at one of the

network sites.

Table 1: Network Parameters correlation matrix at a network site

packet_loss delay_avg delay_var_avg
packet_loss 1.0 0.51 0.73
delay_avg 0.51 1.0 0.71
delay_var_avg 0.73 0.71 1.0

We observe that the "delay_var_avg" has a high correlation with "packet_loss" and

"delay_avg". Similar correlation results are observed with the dataset associated with the

rest of the five network sites. Hence, we retain "packet_loss" & "delay_avg" and eliminate

"delay_var_avg" from further analysis to avoid the generation of redundant results.

The plots in Figure 1 show the scaled (min-max normalization) hourly packet loss and

hourly average delay recorded at one of the network sites. Both the variables exhibit high

seasonality with occasional peaks in packet loss and troughs in the average delay time

series. We exclude certain time points with high value to highlight the patterns of both

variables.
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Figure 1: Scaled Network Performance

3.1.2 Weather

We use weather data from [2]. This website offers hourly weather data for multiple cities

in the USA. We select cities closest to the network site locations and collect the weather

data for each selected city. We only collect the weather data from December 2017 to May

2018 to align the data with network data.
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Data

The Weather data contains the following variables:

1. Site: A four-letter representation of the city of site location

2. Date: Date of the observation

3. Hour: Hour of the observation

4. Temperature: Observed temperature at given time point

5. Dewpoint: Temperature at which the water vapor would become liquid

6. RH: Relative Humidity

7. WindDir: Wind direction

8. Windspeed: Wind Speed

9. CldFrac: Fraction of sky covered by cloud

10. MSLP: Mean surface level pressure

11. Weather: A textual representation of the type of observed overall weather

12. Precip: Amount of Precipitation in the atmosphere

13. Source: Either recorded by instruments or filled using interpolation

Preprocessing

Daily temperatures and wind are the most fundamental phenomena that affect peoples’

decision-making. Heyes and Saberian [20] studied decision making of 207,000 court cases

and concluded that an average increase of 1 Fahrenheit temperature resulted in the reduction

of positive outcomes by 8.5 percent. Cheema and Patrick [15] demonstrated that warm (vs.
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cold) temperatures deplete human resources, influencing peoples’ performance on complex

choice tasks. The authors discover that Tokyo people were less likely to keep travelling

on calm (<2km/h wind-speed) days. They also observed that severe wind and weather

conditions interrupt the routine behaviour of people. Based on such pieces of evidence, we

select the temperature and wind-speed parameters for our analysis. To eliminate redundant

weather features, we inspect the correlation matrix generated using the weather data. The

features strongly correlated to the temperature and wind speed are excluded from further

analysis.

Table 3 presents the weather correlation matrix at one weather site. We observe that

Dewpoint is highly correlated with temperature. Hence we do not consider Dewpoint for

the rest of the analysis. We also limit the number of features for this study by eliminating

RH and MSLP features. Further analyses are conducted using temperature, wind speed,

CldFrac, and Precip weather features.

Table 2: Correlation matrix for a weather site

Temperature Windspeed RH Dewpoint CldFrac MSLP Precip
Temperature 1.0 0.26 −0.003 0.81 0.09 −0.16 −0.15
Windspeed 0.26 1.0 −0.16 0.16 0.16 −0.03 0.015

3.2 Visualization and Seasonal Adjustment

Figure 2 presents a line plot of hourly temperature and hourly packet loss at one of the six

network sites. We observe that values of both variables tend to increase as the day pro-

gresses and starts to decrease in the latter half of the day. This constitutes a seasonality

because the variable values follow a cyclic pattern every day. Natural phenomena predom-

inantly govern such seasonality in weather variables. In contrast, the cause of seasonality

in network performance data is quite intuitive as most people sleep throughout the night,

reducing the network load and increasing the network usage during the daytime.
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Such a seasonality might lead to a strong correlation among the variables that dominate

any hypothetical similarity introduced by any other causal relation. To determine such

latent similarity, we remove the seasonality from the relevant variables.

Figure 2: Hourly Temperature and Packet loss
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3.2.1 Seasonal Decomposition

Seasonal Decomposition is based on the notion that any time series can be separated into

following three components.

1. Trend Component

It is a long-term increase or decrease in the data values. It can be imagined as a

long-term path of a time series. The trend value for each time-point is calculated by

averaging "m" values centred at the time-series value of each time-point. The length

of this moving average window can be customized to get the trend component of

various granularity.

2. Seasonal Component

The patterns that repeat themselves at a constant frequency/time are seasonal com-

ponents. A time series may have more than one seasonal component with different

periods of seasonality. The trend component is removed from the time series to get a

"Detrended series." Each time-point seasonal value is calculated by averaging all the

values with the same time-points in the detrended series.

3. Residual Component

The component that does not contribute to the trend or the seasonality is the residual

component of the time series. This component is calculated by removing the trend

and the seasonal components from the original time series.

The Statsmodel library [6] is used to implement seasonal decomposition. The library pro-

vides two methods for the task at hand.

Seasonal_decompose: This method is a naive implementation of decomposition using

simple moving averages for the given periodicity.
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STL: It uses Locally Estimated Scatterplot Smoothing (LOESS) to extract smooths esti-

mates of the three components. This method consists of number of parameters to

fine-tune the decomposition and get optimal results.

Both methods provided equivalent results in terms of end correlation results. Hence, results

with only "Seasonal_decompose" method is used for further analysis. Figure 3 shows the

decomposed temperature and packet loss variable using seasonal_decompose method.

19



Figure 3: Seasonally decomposed temperature and packet loss
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3.3 Correlation

The association between two signals can be measured with the correlation coefficient. The

value of such coefficient lies in the range [-1,1]. +/-1 indicates a perfect correlation between

two variables. The strength of such association decreases as the value shifts towards 0.

There are three extensively used statistical correlation coefficients, explained briefly in the

following sections.

3.3.1 Pearson Correlation (Pearson r)

The Pearson correlation measures the degree of the association between linearly related

variables. This metric is sensitive to outliers and only measures linear correlation. For two

discrete time series x and y of length n, the Pearson correlation is given by the equation:

ρxy =

∑n
i=0 (xi − x̄) (yi − ȳ)√∑n

i=0 (xi − x̄)2
∑n

i=0 (yi − ȳ)2

Here the terms x̄ and ȳ are the mean values.

3.3.2 Spearman Rank Correlation

Spearman rank correlation measures the monotonic relationship between two variables.

The Spearman correlation between two variables is equal to the Pearson correlation be-

tween the rank values of those variables. The rank of a point is its position when the data

is sorted in ascending or descending order.

This coefficient is not highly susceptible to outliers because the ranks are lower-bounded

by zero and upper-bounded by the data length.
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3.3.3 Kendall Tau Correlation

Kendall Tau correlation also assesses the similarity of two variables based on the rank of the

data points. However, it uses a different approach than Spearman correlation to calculate

the coefficient. This coefficient is given by the following equation:

τ =
( number of concordant pairs ) − ( number of discordant pairs ) n

2


(1)

For two time-series x = x0, . . . , xn and y = y0, . . . , yn, a data-point pair (xi, yi), (xj, yj) is

concordant if:

( xj > xi and yj > yi ) OR ( xj < xi and yj < yi ) (2)

The pair is discordant if:

( xj > xi and yj < yi ) OR (xj < xi and yj > yi ) (3)

And the pair is tied if:

xt+i = xt, or yt+i = yt (4)

The denominator represents all the possible combination of pairs (xi, yi), (xj, yj). This

correlation is not susceptible to outliers since the rank of data points is used to determine

the strength of similarity.

The correlation between network data and weather parameters is likely to be non-linear,

and to be affected by outliers. Puth et al. [38] examined the performance of rank correlation

coefficients to describe association strength. They observe that any tie in the ranks of

data decreases the confidence of the Kendall Tau coefficient compared to the Spearman

coefficient. Hence, we use Spearman Rank correlation to generate a robust similarity metric
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for our analysis.

3.4 Numerical Results

We decompose all sites’ network and weather data into the seasonal, trend, and residual

components using the seasonal decompose method described in the Section 3.2. The sea-

sonal component represents the daily cycle which is not pertinent to this study.

We perform a correlation analysis between the trends of network parameters and trends of

weather parameters. Table 3 presents these correlation results.

Table 3: Spearman Correlation results for data from December - May

Trends pct_lost delay_avg
Temp Wind Precip Cloud Temp Wind Precip Cloud

Site1 0.16 −0.11 0.06 −0.05 −0.12 −0.14 0.12 0.3
Site2 −0.13 0.02 0.08 0.08 −0.32 −0.08 0.12 0.14
Site3 0.39 −0.02 0.0 −0.05 −0.2 −0.02 0.15 0.07
Site4 0.06 −0.08 −0.08 −0.11 −0.21 −0.25 −0.03 0.04
Site5 0.17 −0.04 0.11 0.07 0.22 −0.01 −0.01 0.0
Site6 0.21 −0.1 0.05 −0.23 0.1 −0.17 −0.01 −0.06

We try to detect any impact on network performance when the network users adapt to

weather changes by observing latent similarities in weather and network performance data.

From the results in Table 3, we observe a consistently negative correlation of network

parameters and wind speed which suggests that an increase (resp. decrease) in wind speed

happens simultaneously as an decrease (resp. increase) in packet loss and average delay

values.

Intuitively, Network users would prefer to stay indoors during unfavourable high-wind

conditions, increasing the network load, and choose to go out when the weather is calmer,

reducing the network load. The observed correlation indicates the opposite. However, the

magnitude of the observed correlations is very low for conclusive arguments and results.

The correlation of temperature vs. packet loss suggested an increase in temperature
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and increased packet loss simultaneously at all network sites except “Site 2,” where the

correlation is negative. It might indicate that network usage increases during very hot

periods as network users choose to stay indoors, potentially increasing packet loss.

The correlation of temperature vs. average delay suggests an increase in temperature

and decreased average delay co-occur at all network sites except “Site 5” and ”Site 6”.

This might mean that the average delay decreases because less network usage is observed

as more people choose to perform activities excluding network usage.

These observations are contradictory because network performance variables measure

network degradation and ideally increase/decrease simultaneously.

To summarize the results in Table 3, all the correlation values between trends of weather

and network variables are very low to derive fruitful conclusions.

3.5 Conclusion

Experiments did not allow the detection of a significant similarity between trend compo-

nents of network performance and weather features. Owing to the above discussions, we

conclude that the considered weather parameters do not have potential value in improving

our dataset’s predictability of network packet loss.

Clustering the correlation analysis of sites with similar geographical features can help

explain the variability of correlation results. Our study measured monotonic relationships

between different data. Non-linear analysis considering various natural factors spanning

multiple years that potentially affect network user behaviour may extend the findings of

this study. However, for the scope of this study, we move on to investigate other variables

that potentially have a significant impact on network performance.
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Chapter 4

Sports events for improved Network

Performance predictability

Sports events have effects ranging from short-term employment generation to economic

and social development of neighborhoods to attract the event’s organizers. Charlebois and

Stevens [14] examined the impacts of sports events in the Niagara region of Canada and

provided qualitative social and economic impact by surveying 251 people. They deter-

mined that the considered events had a positive perceived social and economic impact.

Athletes, participants, officials, and fans travelling to attend sports events constitute sports

tourism. The report in [5] found that travellers attending sports events increased by more

than 10 million since 2015 to a total of 169 Million. The study reported a business sales

impact of 3.5 Billion USD and a labor income impact of 0.9 Billion USD in the communi-

cations sector due to sports tourism.

The website in [1] reports the top 50 sport events viewerships in the USA for 2018. The

viewership includes television broadcasts and online streams. Upward of 20 Million views

are generated for almost all 50 events.

25



Since sport events generate a lot of physical and digital traffic, we hypothesize that a sport-

ing event will significantly impact people’s behaviour, affecting telecommunication net-

work usage and performance.

This study identifies the type of sport events with potential impact on network perfor-

mance and conducts statistical tests to quantify the network performance impact during the

event time. Then we utilize a Deep learning technique to discover the network performance

prediction improvements by augmenting the data with identified events with potential im-

pact.

The rest of the chapter is organized as follows: Section 4.1 explains the selection pro-

cess of sports events and introduces the event data. Section 4.2 introduces the statistical

test, presents the conducted experiments, and discussed the results. Section 4.3 details the

proposed Deep learning solution for inspecting improvements in Network KPI predictions

and describes the conducted experiment. Section 4.4 provides a conclusion to the chapter.

4.1 Sports Events

American Football, Baseball, and Basketball are the most popular sports in stated order

in the USA [7] based on TV ratings. The most popular tournaments for these sports are

the National Football League with 111 Million TV views, Major League Baseball with

40 Million TV views, and National Basketball Association League with 30 Million TV

views since 2005. We identify the sport league schedules that intersect with the timespan

of network data at hand. The Major Baseball League does not overlap with the network

data timespan. The other two league schedules overlap with our network data’s timespan;

hence, we select the National Football League and National Basketball league. The events

data for both leagues are extracted from the resource in [4].

SubSection 4.1.1 introduces the National Basketball Association League data and the

required preprocessing steps. SubSection 4.1.2 presents the National Football League data
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and the appropriate preprocessing steps.

4.1.1 National Basketball Association League

The extracted data contains a row for each game played in the 2017-18 NBA session. Each

row of the data holds information for a single league match of the NBA.

The dataset contains the following variables:

1. Date: Date of the game

2. Start(ET): Start time of the game

3. Visitor: Team that visits the home stadium of Opposite team

4. Home: Team that is playing at their home stadium

5. Attendance: Number of people who attended the game at the stadium

Data Filtering

According to industry experts at EXFO, the network parameters are affected by the un-

usual magnitude of packet traffic. We suspect that an NBA game impacts the network

traffic around the match location and at places with the most fans (home cities of each

team). Hence, an impact in network usage around the network sites might directly affect

the network performance. In terms of NBA games, peoples’ behaviour changes when their

favourite team plays a game.

Therefore, we select the teams with a home city that contains at least one of the network

monitoring sites. There are two such teams. To maintain anonymity of the proprietary

network performance data, we address teams as team one and team two and the network

sites associated with each team’s home city as site one and site two in that order. For this
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analysis, we select the games played by the chosen teams such that their dates coincide

with the period of network data.

The Figure 4 presents a line plot for the total packet loss on one particular NBA game day

and other non-game days

Figure 4: Hourly packet loss on different days at site 1

We observe that a direct visual inspection does not hint at any differences in the network

performance on game day vs. non-game days. We perform a statistical analysis detailed in

Section 4.2 to derive concrete inferences.

4.1.2 National Football League

The collected NFL events data contain follow important features:

1. Date: Date of the game

2. Time: Start time of the game
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3. Loser/tie: Indicates the loser of the game

4. Winner/tie: Indicates the winner of the game

5. Attendance: Number of spectators in the stadium

Data Filtering

We use the same logic to filter NFL events as we applied to filter NBA events.

We observe that three cities are home to one of the NFL teams and consist of a network

monitoring site. For anonymity, we address the teams and network sites as Team 1, Team

2, Team 3, and Site 1, Site 2, and Site 3 such that Team X’s home city is the same as the

location of Site X. Figure 5 shows the total hourly packet loss at Site 1 during an NFL event

day and other non-event days.
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Figure 5: Hourly packet loss at site 1

4.2 Statistical Analysis

This section summarizes a statistical significance test to examine the network performance

impact during sports games. This test is performed to examine the means of two time series

to determine if they are statistically the same. The rest of the section introduces Welch’s

test, followed by the statistical tests and analysis.
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4.2.1 Welch’s Two sample t-Test

Welch’s test is the two-sample t-test for testing the hypothesis that two populations have

equal means. This test is more reliable when the samples have unequal variances, or un-

equal sizes [47]. In our case, the samples have an unequal size because each NBA team

plays approximately 50 games from December to May (which overlap the network data

time frame). For this analysis, we use an existing implementation of Welch’s t-test from

SciPy library [45].

4.2.2 Statistical analysis of NBA League and Network Parameters

We hypothesize that sports games impact the motive and total time of network usage, af-

fecting network performance. Such an effect might be observed due to weekends and public

holidays. Therefore, data points on US public holidays and weekends are removed from

the network data to avoid detecting their effect on network traffic.

We observe that almost all the NBA games start between 7 pm - 8 pm. An average NBA

game lasts 3 hours. However, the anticipation & interactions few hours before the game

and post-game reactions and analyses might impact the network user behavior just like the

actual game. Hence, we intuitively consider 4 pm to 12 am as hours of the potential impact

and divide the data into following two parts.

1. Days with an event: This subset contains network data from 4 pm to 12 am on the

relevant team’s game days. We identify this partition as (A).

2. Days without an event: This subset contains network data from 4 pm to 12 am on

days without the relevant team’s game. We identify this partition as (B).

31



Results and Inferences

We define the following null hypothesis and perform the Welch’s test to examine its cor-

rectness.

• Null Hypothesis: The means of samples (A) and (B) are equal.

• Alternate Hypothesis: The means of samples (A) and (B) are unequal.

• With a significance threshold of 0.05, Welch’s test is performed using (A) and (B)

for each site to test the hypothesis.

The resulting p-values for site 1 and site 2 are 0.69 and 0.08.

The results are summarized in the Figure 6.

Figure 6: NBA: Box Plots with Welch’s test results

These p-values indicate that the probability of sample means being different by chance

and randomness is higher than the significance threshold. Here, we fail to reject the null
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hypothesis. This implies that the average network performance on an event day is not sig-

nificantly different from the average network performance. The Network might be robust

enough to maintain the performance and withstand potential impact during the NBA events.

However, we do not expect the NBA event games to contribute to improving the network

performance prediction as the network performance is not statistically impacted during the

NBA games.

4.2.3 Statistical analysis of NFL and Network Parameters

NFL games have the highest average in-person attendance, and at-home views among all

the sports in the United States of America [7]. As a result, more people across a broader

territory might be affected by an NFL game. Hence, we use the games played by all three

teams to perform a statistical test at each network site to examine the network performance

impact during the games.

We observe that all NFL events are organized on a Sunday or a Monday. As a result,

we analyze the network performance on NFL event days against the network performance

on Sundays and Mondays without any NFL event. All NFL events occur in the afternoon,

and each lasts for an average of three hours.

The audience at home engages with the event a few hours before the game while an-

alyzing the previous games, anticipating the outcomes, and watching reruns of previous

games. The attendees of an event tend to reach the stadium at the earliest to locate the

best spot for match viewing. Many viewers tend to engage in pre-match and post-match

activities at the venue and on the internet.

We expect an impact on network performance during such pre-event and post-event activ-

ities during the game days. Therefore, we consider the network performance from 12 PM

to 12 AM (hours of potential impact) to identify the network performance impact during
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an NFL game.

We separate network performance data for the statistical analysis as below.

1. Days with an event: This subset contains network data during hours of the potential

impact on game days. This dataset is addressed as (A) in the rest of the Section.

2. Days without an event: This subset contains network data during hours of the po-

tential impact on Sundays and Mondays without any NFL event This dataset is ad-

dressed as (B) in the rest of the Section.

Results and Inferences

We use the datasets (A) and (B) to examine the impact of NFL events by performing the

Welch’s test. The hypotheses and significance threshold are defined as follows

• Null Hypothesis: The means of samples (A) and (B) are equal.

• Alternate Hypothesis: The means of samples (A) and (B) are unequal.

• Significance Threshold: A threshold of 0.05 is used to test the significance.

Performing multiple simultaneous hypothesis tests can increase the chances of observing

a rare event, increasing the probability of incorrectly rejecting a null hypothesis [32] .

Hence we use the Bonferroni correction to address the issue and obtain a new significance

threshold following the equation 5.

Corrected Threshold = Original Threshold/Number of statistical tests (5)

The corrected significance threshold for each test is 0.008.

Figure 7 presents the box-plot of samples for each network site with a dashed line to

indicate the mean value of the samples. The Table 4 shows the p-values for corresponding

to Welch’s test for each network site.
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Figure 7: NFL: Box Plots with Welch’s test results

Table 4: Welch’s Test p-values

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

3.54 × 10−17 1.62 × 10−15 1.62 × 10−15 6.34 × 10−21 7.12 × 10−9 6.06 × 10−8

At each network site, we observe that the p-value of test is significantly below 0.008.

Hence the null hypothesis is rejected to accept the alternate hypothesis implying that there
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is less than 1 percent probability that the sample means are different due to statistical chance

and randomness.

This means that the average network performance in the subset (A) differs significantly

from the average network performance in the subset (B).

Consequently, we deduce that the NFL events can an interesting factor that potentially

impacts the network performance parameters. Hence, we augment the hourly packet loss

data with NFL events to examine improvements in hourly packet loss prediction.

Performed statistical tests reflects improved network performance during an NFL game

day. This is counter-intuitive to a certain extent as we expect the network load to increase

due to increased online activity on an NFL game day. One probable explanation is that

during an NFL game, people tend to watch the games in groups and reduce data usage

from individual devices. Another possible reason is that network providers allocate more

network resources around the event location during highly anticipated events, resulting in

reduced overall network load, thus improving the network performance.

4.3 Network Parameter Predictive Analysis

We observe a difference in network performance during NFL events. As a result, We hy-

pothesize that the network performance data can be augmented with the NFL events infor-

mation to improve the network performance prediction. The rest of the section elaborates

on the experiments to test our hypothesis.

4.3.1 Recurrent Neural Networks and Long Short Term Memory Units

Multiple studies show that recent advancements in Deep learning (RNNs) have enabled the

Deep learning methods to outperform the conventional methods for the task of time series

prediction. RNNs can efficiently learn the temporal information in a sequence because of
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recursive units that learn the model parameters from all the time steps in an input sequence.

Due to this fact, RNNs have been used extensively in time series prediction tasks.

A plethora of external phenomena affect the network usage making the network data

very complicated and non-linear. A highly anticipated sports game might affect the network

for a few hours of the day, while conferences and online game launches can potentially dis-

rupt the network behaviour for days. Modelling all such intricacies needs an architecture

capable of handling and retaining information from a faraway temporal data sequence.

RNNs are limited due to the vanishing and exploding gradients problems. They cannot ef-

ficiently retain information very far in the temporal sequence because of their architecture.

Exploding gradients can be handled by clipping them to keep them from reaching infinity.

Addressing vanishing gradients in RNNs is notoriously difficult and expensive.

Hochreiter and Schmidhuber [21] proposed the LSTM unit to address the vanishing

gradient problem. An LSTM unit is more complicated than an RNN unit as the LSTM

architecture has four trainable parameters for each RNN’s trainable parameter. The archi-

tecture modification of the vanilla RNN addresses the vanishing gradient problem. Conse-

quently, the solution to the vanishing problem comes with higher model complexity. Hence

we use RNN with LSTM units for the rest of the experiments.
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Figure 8: LSTM model architecture used for network performance prediction

4.3.2 Experiment Setup

We design a Deep learning Model consisting of RNNs with LSTM and Feed Forward

networks to determine if the NFL event information can improve network performance

prediction. Figure 8 provides an overview of the model architecture used in this research.

While the impact is observed at all the network sites, the most observable impact is

expected at the network sites associated with the participating teams. We use the same

architecture to train two types of models identified as Type 1 & Type 2 models with different

input dimensions. We compare their prediction results and conduct the same experiments

for all three network sites associated with an NFL team city.

• Type 1: Models are trained before network performance data is augmented by NFL

events information.

• Type 2: Models are trained after augmenting the network performance data by NFL
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events information.

4.3.3 Dataset and Data Augmentation

This section describes the performed data augmentation and feature engineering to integrate

NFL event information with the network packet loss data and then highlights the features

used to train the two type of models. The hourly packet loss is a time series ranging from

December 2017 to May 2018 with an hourly frequency. Each value is the total packets lost

in that hour as shown in the Figure 1.

Converting discrete events into time series

A time series with values in {0,1} is created with the hourly frequency and same length as

the network performance variable "hourly packet loss." In such time series variables, the

hours of interest are encoded as "1" and all the other hours are encoded as "0."

Feature Engineering

We define new features that can improve the performance predictions as follows:

The general population would transition from work-related network usage to personal

network usage on weekends. We expect this behaviour change in users to affect the network

load. Therefore, we create a cyclical feature called "Weekday" that encodes the day of the

week by a unique numeric value. This feature represents the day of the week indicated

by an integer in range [0,6]. "0" represents a Monday and "6" represents a Sunday. As the

packet loss has hourly frequency, the "Weekday" value assumes identical value for 24 hours

depicting a single day. The following features are defined to encode temporal information

about NFL events.

• Site event: This is a binary time series variable that encodes the NFL gameplay. All

the hours of NFL gameplay are represented as "1" and the other hours are encoded

39



as "0."

• Site pre-event: This is a binary time series variable that encodes the hours before

NFL gameplay. The three hours before all NFL games are encoded as "1" and the

other hours are encoded as "0."

The number of data points indicating either an ongoing NFL event and the hours before

an NFL event is comparatively lesser than the data points during no NFL gameplay.

A Deep learning model might consider the changes in value of such variables as noise as

they might not provide additional information to predict network performance during non-

game days, potentially leading the model to significantly rely on the network packet loss

information.

Hence we add redundancy in terms of a new time series variable, "Site event and pre-event,"

as a possible strengthening mechanism so that the model might learn to utilize the event

information more efficiently. We also limit our data till the third week of January since no

relevant NFL games are played after that week.

• Site event and pre-event

This time-series is the point-wise summation (feature cross) of the features "Site pre

event" and "Site event".

We do not use a feature identifying post-event hours with the intuition that LSTMs can

efficiently derive the post-event based on the event information because the information

flows in the forward direction (Unidirectional LSTMs). We tested this intuition and did not

observe degradation in model performance when the post-event information is excluded

from training data.

We use the features "packet loss" and "Weekday" to train Type 1 models for network

performance prediction. And we use the features "packet loss," "Weekday," "Site event,"
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"Site pre-event", and "Site event and pre-event" to train Type 2 models for network perfor-

mance prediction.

4.3.4 Cross Validation in Time Series Prediction

Proposed Cross Validation splits

As the dataset spans six weeks, we separate each week and propose a Cross Validation

setup as shown in Table 5.

Table 5: Cross Validation - 5 splits

Training set(Week) Validation set(Week)

1,2,3,4 5,6

2,3,4,5 1,6

3,4,5,6 1,2

2,4,5,6 1,3

1,3,5,6 2,4

Data Preparation

The model accepts fix-sized input sequences to produce the next time-point predictions.

Faulty input sequences or targets can lead to inaccurate training and prediction results.

An input sequence is faulty if each value does not follow the previous one in time. For

example, a 24 point input sequence consisting of 12 data points from week one and the

other 12 points from week 4 data is a faulty input sequence. An input sequence-target pair

is faulty if there is a time gap between the label time point and the last point of the input

sequence. An example is an input sequence consisting last 24 points from week one and

the first point of week three as the label is considered faulty.

Above described faults are possible while preparing the training and validation data for
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Cross Validation splits that contain non-consecutive weeks of data (data with time gaps).

Consequently, we generate sequences and their targets for each week separately and com-

bine them later to produce different Cross Validation splits to train both types of models.

4.3.5 Experiments and Results

We perform the above-described CV for all the three network sites associated with an NFL

team and compare the average mean absolute percentage prediction error for Type 1 and

Type 2 models.

Set of Hyperparameters

We use one train-validate split to optimize the network hyperparameters to obtain baseline

predictions experimentally for both the type of models. We utilize these hyperparameter

values to train the models in the Cross Validation experiment. Experimentally, we get good

baseline predictions using the following hyperparameter value.

• Input sequence length: 24

The number of past data points used by the model to learn and predict the network

performance for the next time-point. By this hyper-parameter, we control the direct

amount of past information exposed to the model for a single prediction. Increasing

the input sequence length increases the training time complexity and can improve

model performance.

• Learning Rate: 0.001

After processing each training batch, the model calculates the loss based on the pre-

dictions. After calculating the loss, the model takes controlled steps in the direction

of minimum loss by updating the model parameters. This variable controls these

steps.
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• Number of Epochs: 1000

This parameter represents the number of times the model goes through all the training

data made available for the experiment.

• Number of LSTM layers: 2

This parameter defines the number of hidden layers with LSTM units. Hermans and

Schrauwen [19] found that using more than one hidden layer improves the interme-

diate representations learnt by hidden layers and ultimately helps the model achieve

better performance. Hence increasing the number of such hidden layers can improve

model performance.

• Number of LSTM units in each layer: 32

This parameter represents the number of LSTM units in each LSTM layer. Increas-

ing the number of LSTM units increases information retention since each unit has its

memory. Hence, more LSTM units in a layer can contribute to better model perfor-

mance. However, increasing the number of LSTM units and the number of LSTM

layers in an irresponsible manner can increase the model complexity and result in

over-fitting.

• Dropout Probability: 0.3

This parameter introduces a dropout layer on top of LSTM layers, ignoring the layer

output for each LSTM unit with pre-defined probability. This procedure reduces

over-fitting chances by explicitly forgetting some currently learned information, forc-

ing the model to engage other LSTM units to optimize the model.

Cross Validation Results and Inferences

We train Type 1 and Type 2 models for each Cross Validation split using the above-derived

hyper-parameters. Model performance is represented using the Mean Absolute Averaged
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Error metric. Table 6 presents the validation set model performance for all Cross Validation

splits corresponding to all sites.

Table 6: Mean Averaged Percent Error across all event hours in the validation set

Site 1 Site 2 Site 3

CV folds Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

1 29 0.36 0.41 0.49 0.87 0.27

2 0.98 0.76 1.42 0.62 2.18 0.4

3 0.92 1.57 1.43 0.7 2.18 0.53

4 0.76 1 1.43 0.72 1.98 0.58

5 0.54 0.68 0.52 0.51 2.02 0.39

Average 6.46 0.874 1.042 0.604 1.846 0.434

STD DEV 12.6 0.45 0.53 0.11 0.55 0.12

We observe that type 2 models outperform type 1 models consistently across most Cross

Validation splits corresponding to Site 2 and Site 3. This observation is not valid for models

corresponding to Site 1.

For Type 1 models corresponding to Site 1, we observe a high variability in model

performance across five Cross Validation splits. One potential reason might be that the

network performance at Network Site 1 is more convoluted than the other two. Multiple

external factors might affect the network performance at a given time-point resulting in a

very intricate and complex variable that is more difficult to model than the network perfor-

mances at the other two Network sites. Interestingly, Network Site 1 is located around the

biggest and most populous city among them. This potentially imply more network users

accessing network for distinct reasons affecting the network performance in multiple ways.

However, we observe significant prediction improvements for Cross Validation splits

at Site 2 and Site 3. The error values exhibit less variability. These results support our
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hypothesis that NFL event information contributes to improving the network performance

prediction.

Now that we have experimental evidence of prediction improvements by augmenting

performance data by NFL events, we optimize the model hyper-parameters to obtain an

optimized network performance prediction model for each Network Site. We detail this

experiment and quantify the prediction improvements in the rest of this chapter.

4.3.6 Model Optimization by Automated Hyperparameter Tuning

We established that network data augmentation by NFL events improves the network per-

formance predictions. A company can execute better business decisions using our models’

predictions if they are as accurate as possible. Hence, we try to optimize the prediction

models at each network site by exploring different hyperparameter combinations. We

present an experiment to evaluate different combinations of hyper-parameters using the

library Ray-Tune [30] to enhance model performance.

Hyperparameter Search Space

The library provides multiple data structures to define the hyperparameter search space.

The parameter selection and the number of hyperparameter combinations used for opti-

mization depend on the type of data structure used for search space definition. We describe

the structures used for our experiments.

• tune.grid_search

Forces the algorithm to evaluate all hyperparameter combinations with each value

defined for this variable.

• tune.choice

Provides a value (with equal probability) from a set of discrete options defined using

this variable.
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• tune.uniform

Provides a range of continuous values from which a value is chosen with uniform

distribution (equal probability)

The library also provides a scheduler mechanism to prune the under-performing models

and intelligently select the hyperparameters based on previous performance improvements.

Dataset

We use the dataset described in SubSection 4.3.3. Now that we want to improve the pre-

diction performance of our model, the Cross Validation approach is not used in this exper-

iment. We define a single train-validate-test split for the rest of the section. The training

data spans four weeks, while the validation and test data span one week each.

The Experiment

Book [23] states that the range of values for each hyper-parameter must be defined based on

previous experience and initial experiments. We define an initial search space with the help

of hyper-parameters obtained from the cross validation experiment in SubSection 4.3.5.

Then we expand and modify the initial search space to further optimize the model perfor-

mance. Table 7 shows the initial search space and Table 8 depicts the modified search space.

Table 7: Initial search space

epochs tune.grid_search[500,700,1000]

n_steps tune.grid_search[48,72,84]

hidden_layer_size tune.grid_search[32,64,128]

num_layer tune.grid_search[1,2,3,4,5]

learning rate tune.grid_search[0.001, 0.0005, 0.0007, 0.0001]
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Table 8: Updated search space

epochs tune.choice[500,700,1000,2000]

n_steps tune.uniform[24,84]

batch_size tune.uniform[8,16]

hidden_layer_size tune.choice[8,10,12,16,24,32,48,64]

num_layer tune.choice[1,2,3,4]

learning rate tune.choice[0.0001, 0.0005, 0.0007, 0.001, 0.0025, 0.005, 0.01]

We specify distributions to sample hyper-parameter values in updated search space to

explore more hyper-parameter combinations. Two thousand different combinations of hy-

perparameters are sampled following specified distributions from the updated search space

to find the optimized model.

To obtain a performance comparison of optimized models, we use both search spaces

to separately optimize Type 1 and Type 2 models. All the models are trained on the training

dataset. We select the models that provide the highest prediction accuracy on the validation

dataset. Then we measure the prediction performance on the test sets to inspect model

performance. Table 9 represents the model performance on the validation set, and Table

10 represents the model performance on the test set using the best model configuration

provided by the experiment from each type of model.

Table 9: Mean Averaged Percentage Er-
ror on validation set

Site Type 1 Type 2

1 0.43 0.38

2 0.59 0.41

3 0.63 0.5

Table 10: Mean Averaged Percentage Er-
ror on test set

Site Type 1 Type 2

1 3.36 0.36

2 0.59 0.4

3 0.67 0.51

We observe a Type 2 model prediction accuracy improvement by at least 23 % on test
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data at each network site compared to the respective Type 1 models.

4.4 Discussion and Conclusion

Figure 7 shows that the network performance during NFL events significantly differs from

the rest of the network performance. Moreover, the LSTM predictions show that data aug-

mentation with NFL events significantly improves the predictions. Owing to the prediction

improvements, we infer that NFL events have a significant impact on network performance.

However, the NBA events do not incur a similar impact on the network performance as ob-

served in Figure 6.

As mentioned in Section 4.1, NFL is the most popular sports league in the US. It is

vastly more popular than the NBA league regarding stadium attendance and at-home views

[7]. Popularity and viewership might be an essential distinguishing factor to measure any

events’ impact on the network performance and their potential to improve the network

performance predictions.
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Chapter 5

Tweets for improved Network KPI

predictability

In the last decade, major news, sports, and government organizations have started to publish

news on Twitter. Twitter allows the users to instantly react to news and events by publishing

messages called tweets. Twitter data has been extensively used to perform various tasks.

Vieweg et al. [44] used posts generated during two disaster events to identify and extract

information to facilitate disaster response and management. Blanford et al. [12] used

peoples geo-tagged tweets and their temporal information to map regional and cross-border

connectivity in Kenya. A 2019 Forbes article in [28] studied Twitter, news, and Google

search activities during multiple disasters and concluded that while news media provide

the earliest warnings, Twitter activity rises during an active event. The study suggests that

Twitter data should be perceived as a behavioural and attention signal to understand event

insights. Martín et al. [31] performed Twitter messages analysis to evaluate and locate

the activities in the city of Valencia to improve special event management. Twitter activity

is influenced by global and local events. As mentioned earlier, special events can help in

estimating their impact on a telecom network performance. However, keeping track of all

local activities becomes expensive as the services expand geographically.
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Twitter is a very important social network and information network [33]. The Telecom

network performance is influenced by the active number of users and type of access. The

increase in Twitter activity suggests an increase in the number of people engaging on the

platform. Depending on the reasons for such activity increase, the number of active network

users, type of network usage can be potentially affected.

Owing to the above discussion, we use local Twitter activity data at each network site

to inspect improvements in the (site-specific) network performance prediction. We perform

a statistical correlation analysis between Twitter and network performance data to discover

similarities between these variables and describe the experiments to analyze prediction

improvements of network performance using Twitter data.

The rest of the chapter is organized as follows: Section 5.1 introduces the collected

Twitter dataset and preprocessing performed for the experiments. Section 5.2 defines the

correlation experiment and results. Section 5.3 presents the Deep learning experiment,

results, their statistical significance, and conclusion.

5.1 Twitter Data

This section details the process of tweets collection.

5.1.1 Data Collection

We collect all the tweets posted on Twitter between December 2017 and May 2018 within

a circular area with a 50 km radius measured from each network site. We use the open-

source library Twint [8] to enforce the geographical constraint and collect the tweets. In

total, six Twitter data files are generated that contain tweet features around a network site.

The collected data includes following important fields:

1. Date: Date of the tweet

50



2. Day: Day of the week

3. Tweet: The whole tweet

4. Place: Geo-location of the tweet

5.1.2 Transformations on the acquired data

We want to correlate the Twitter activity in a region around each network site with its

network performance. However, there is no predefined limit around the network sites to

limit the tweets collection for analysis. Consequently, we define multiple boundaries to

filter the tweets at each network site.

At each network site, the tweets are filtered from a circular area around the network site

based on the radii: 15km, 25km, 40km, 50km and stored in CSV files separately. To capture

the changes in Twitter usage, a feature "tweet count" is calculated using the filtered tweets.

• Tweet Counts: Frequency of tweets every hour

The correlation of filtered tweet counts and network performance data is calculated at each

site. Then we perform comparative correlation analysis to detect if the size of the geological

area used to filter tweets play any significant role in the resulting correlation.

Table 11 summarizes the total, average, and median tweet count per hour when filtered with

a 50 km radius at each site. We observe that the network sites located around small cities

have very few tweets every hour, and larger cities have more average tweet counts every

hour.
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Table 11: Summary of tweets volume

Total tweets across months Average count per hour Median count per hour

Site1 234 150 64 72

Site2 94 163 25 27

Site3 15 042 4 4

Site4 435 172 119 137

Site5 216 795 59 66

Site6 44 376 12 12

Figure 9: 7 days of tweet volume per hour
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5.1.3 Seasonality Adjustment

The Figure 9 shows a plot of tweet volume every hour at one of the sites for seven consecu-

tive days. We observe a cycle that repeats every day. The feature assumes a higher value as

the day progresses and then drops as dusk sets in. We expect this cycle because most users

tend to sleep at night and remain the most active during the daytime. We observe a very

high correlation between tweet volumes and packet loss as their values follow a 24-hour

pattern observed in both the time series, as outlined in the Figure 10. However, we want to

examine the underlying similarities in the features that can improve network performance

predictability. Hence, we perform the seasonality adjustment of Twitter data using the Sea-

sonal Decompose method discussed in Section 3.2. Figure 11 shows the decomposed tweet

volume per hour corresponding to one of the network sites.

Figure 10: Correlation before Seasonal Decomposition
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Figure 11: Decomposed Twitter variable associated to one network site

5.2 Correlation Analysis

We use the Spearman correlation summarized in Section 3.3 to generate correlation results

in this analysis.

The trend component of the packet loss feature calculated in Section 3.2 and the trend

component of the tweet volumes filtered with different radii are used to calculate the cor-

relation coefficient for each network site. The correlation results are summarized in the

Figure 12.

5.2.1 Inferences and Discussions

Based on the results at each site, we do not observe a consistent change in the magnitude of

the correlation coefficient while moving from a smaller to a larger Twitter data filter radius.

54



Figure 12: Spearman correlation between trend components of packet loss vs tweets vol-
ume

The only exception to this observation is the correlation of packet loss vs. tweet volumes

at Network site 6 with a consistent decrease in correlation magnitude.

Figure 12 shows an average correlation of 15 percent or more at each site other than

site 1 and site 2. As Twitter activity relies on network services, an increase in active Twitter

usage can reflect an increase in the network usage and network load. Any planned event

might cause an increase in the number of people streaming it on the network and expressing

their views and commentary on Twitter at the same time, which can add to the correlation

of both time series. Local news and activities that concern the nearby population, like an

unexpected storm, can lead to the spread of information and caution via twitter resulting in

increased network access.

The correlation results confirm the existence of significant similarity between the trends

of tweet volumes and packet loss. This implicates that the underlying factors affecting the

network performance might have a similar effect on the tweet volumes (Positive correla-

tion). Hence, the prediction mechanism should benefit by augmenting the network data

with tweet volume values. In the next section, we utilized the Neural Network, described
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in Section 4.3, to quantify the improvements in network performance prediction by aug-

menting the network data with tweet count information.

5.3 Network Performance Predictive Analysis

We train two types of models as defined in Section 4.3 to predict the network performance

parameter. Type 1 models are trained without the Twitter data, and Type 2 models are

trained after data augmentation using the Twitter data.

5.3.1 Walk Forward Validation

Walk Forward validation is a specific application of the Cross Validation technique [48].

The Walk Forward validation method defines multiple training sets with incremental size

where each test set follows the corresponding training set. Having multiple train and test

sets reduces model over-fitting [48]. Each test set temporally follows the corresponding

train set. We define a five-fold Walk Forward validation split as shown in Table 12.

Table 12: Walk forward - 5 splits

Split Training set(Month) Validation set(Month)

1 1 2

2 1,2 3

3 1,2,3 4

4 1,2,3,4 5

5 1,2,3,4,5 Last 10 days
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5.3.2 Experiment and Results

We define the following two types of models for the next hour performance prediction and

inspect the improvements in the prediction of network performance.

• Type 1 models are trained without Twitter data using "Packet loss" and "Weekday"

features.

• Type 2 models are trained with the additional feature "Tweet Counts".

The validation set results for each network site and walk forward validation split is

provided in Table 13.

Table 13: 5 Split walk forward validation Mean Absolute Percentage Errors

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Split 1 0.81 0.73 1.09 0.82 0.68 0.43 1.15 0.9 0.68 0.62 0.81 0.67

Split 2 0.4 0.41 1 0.84 0.71 1.01 0.78 0.96 2.67 1.95 0.43 0.44

Split 3 0.77 0.75 0.84 0.52 0.29 0.42 1.2 1.17 2.98 2.24 0.72 0.65

Split 4 0.49 0.48 0.61 0.63 0.3 0.39 0.77 0.97 2.01 1.62 0.47 0.48

Split 5 0.64 0.6 0.43 0.47 0.25 0.23 1.2 1.2 0.58 0.58 0.68 0.63

Average 0.622 0.594 0.794 0.656 0.446 0.496 1.02 1.04 1.784 1.402 0.622 0.574

STD DEV 0.178 0.149 0.273 0.169 0.228 0.298 0.224 0.135 1.110 0.764 0.164 0.105

The error values across each split exhibit minor variability except for site 5, where

the standard deviation is much higher than the other sites. Type 2 models improve the

validation performance by 3% at site 1, 6% at site 2, 5% at site 6, and by a bigger margin

at site 5. However, such improvements might reflect the randomness in the model training

rather than deterministic improvement due to data augmentation using tweet volumes.

To determine if the average Type 1 models’ validation set errors are statistically different

from Type 2 models’ validation set errors, we perform a significance test described as

follows.
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5.3.3 Significance Test

We compare the average errors (Type 1 vs. Type 2) at each site using a Student’s t-test [42]

and determine if the average Type 1 validation errors are statistically the same as Type 2

validation errors for each site. We define the null hypothesis, alternate hypothesis, and the

significance threshold for the t-tests as follows.

• Null Hypothesis: The mean error of type 1 models and type 2 models are statistically

the same.

• Alternative Hypothesis: The mean error of type 1 models and type 2 models are

statistically different.

• Significance Threshold: We use a significance threshold of 0.05 (5%).

• Bonferroni corrected Threshold: 0.008

Table 14 denotes the p-values associated with the test performed at each site. We observe

a p-value of 0.15 or higher at all sites, which indicates a minimum 15 percent chance that

the observed difference in error values is statistically random and not statistically different.

Hence, we fail to reject the null hypothesis of performed t-tests between walk-forward

performances across all sites and derive that the network performance data augmentation

using tweet volumes does not contribute to improving network performance prediction

using the proposed LSTM model.

Table 14: t-test P-values for each network site

Site 1 Site 2 Site 3 Site 4 Site 5 site 6

P-value 0.396 0.182 0.386 0.434 0.272 0.299

The Type I error is the possibility of falsely rejecting the null hypothesis due to the

erroneous p-value of the test. Nadeau and Bengio [34] examined the type I and type II
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errors associated with the t-tests applied on various types of Cross Validation results to

compare two models. They point out that the p-values might erroneously dip towards

significance due to violation of the data independence assumption, potentially resulting in

high type 1 errors. Such a violation does not affect the current analysis as we do not reject

the null hypothesis for any performed t-tests. Based on the above statistical test results, we

do not observe a significant prediction improvement after augmenting the packet loss data

using tweet volumes.

5.4 Discussion and Conclusion

Due to trend correlations, we hypothesised that the behavior of Twitter activity might re-

flect the network performance behaviour. This motivated the network data augmentation

and Deep learning experiment to inspect the packet loss prediction improvements. Insignif-

icant improvements are observed in network performance prediction at few network sites.

Hence, we conclude that the tweet volume data does not improve the packet loss predic-

tions.

Performing a similar analysis for more network sites and broader geographical area

might produce interesting results. The network performance data spans five months. Using

a longer data span can also provide more walk-forward splits to compare the prediction

performances and solidify our inferences. However, we performed an extensive analysis

with network data at six network sites and expect similar results if this work inspires a

deeper study.
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Chapter 6

Conclusion and Future Work

In this thesis, we presented separate experiments to evaluate the impact of three different

types of external factors on network performance. We performed exploratory data anal-

yses using these factors and network performance KPIs to identify correlations between

them. Finally, we performed the network packet loss data augmentation using external

data, trained LSTM models on the augmented datasets, and measured the performance

improvements resulting from data augmentation.

Data augmentation using NFL events improved LSTM prediction performance by more

than 23 % at each considered network site. Trends in the temperature and wind speed val-

ues did not exhibit sufficient correlation with the network KPIs. Data augmentation using

tweet counts did not provide prediction improvements at few sites and provided statistically

insignificant prediction improvements at other network sites.

We identify the following future research possibilities. Extreme weather has the poten-

tial to impact various daily activities. Such weather events can also disable physical net-

work devices, rerouting and increasing network traffic on other locations. Certain weather

events (heat waves, freezing temperatures) might prompt people to remain home and in-

crease the network load in the residential areas. Identifying and exploring such upcoming
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weather events and anomalies might improve network performance predictions and under-

standing.

Regarding sports events, event popularity and average viewership might help identify

potential impact on the network performance. Hence, such event characteristics can be

integrated into the exploratory analysis to identify events and to examine their impact on

network. This work can also be extended to include other location-specific popular events

including, but not limited to, political speeches and highly anticipated concerts. In addition,

since service providers deploy additional resources to attenuate performance impact due

to certain events, identifying the events which go unnoticed to the service providers may

improve the network performance understanding and predictability.

Regarding social media, companies announce their products and exciting news on their

Twitter handle to reach more audience. Depending on the nature of such announcements

and news, network load might increase, resulting in performance degradation. Performing

semantic analysis of tweet contents can also identify user activities with potential network

impact. Such announcements and semantic information can be used to predict and under-

stand the network KPIs. Finally, this research can also be extended using more prolonged

data periods to analyze and quantify the network impact due to any of the above mentioned

external factors.
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