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Abstract

Accurate and Precise Displacement Estimation for Ultrasound
Elastography

Morteza Mirzaei, Ph.D.
Concordia University, 2021

Elastography is a technique for detecting pathological tissue alterations by extract-
ing mechanical properties of the tissue. It can be performed using different imaging
modalities, including magnetic resonance imaging and ultrasound. Unlike biopsy that
is invasive and considers a small portion of tissue, elastography is a non-invasive
technique that interrogates a larger part of the tissue and reduces the probability of
missing abnormalities. UltraSound Elastography (USE) is an approach for detecting
mechanical properties of tissue by using ultrasound imaging. Ultrasound as an imag-
ing tool has emerged in the latter half of the 20th century and has become one of the
most popular imaging modalities. The main advantages of ultrasound imaging lie in
its noninvasive nature, low cost, convenience, and wide availability. USE may help in
early diagnosis which substantially increases the success probability of treatment. In
recent years, USE has been explored for several clinical applications including abla-
tion guidance and monitoring, differentiating benign thyroid nodules from malignant
ones and breast lesion characterization. Surgical treatment of liver cancer, assessment
of non-alcoholic fatty liver disease, assessment of fibrosis in chronic liver diseases, de-
tecting prostate cancer, differentiating abnormal lymph nodes in benign conditions
and brain tumor surgery are other relevant clinical applications of USE.

An important challenging step for USE is Time Delay Estimation (TDE) between
pre- and post-deformed tissue. TDE is an ill-posed problem since the 2D displace-
ment of one sample cannot be uniquely calculated based on its intensity. Moreover,
presence of noise due to speckles, out-of-plane movement, blood flow and other bio-
logical motions affect the accuracy of TDE. The other limiting factors for TDE are
low resolution of ultrasound data, low sampling rate and lack of carrier signal in the
lateral direction. In this thesis, we propose high level techniques for increasing the
accuracy and preciseness of the estimated displacement.
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Chapter 1

Introduction and Literature
Review

Audible range of human-being is between 20 Hz to 20 kHz, and any sound wave above
20 kHz is called an ultrasound wave [3]. For medical diagnostic applications, a major
advantage accrues from the ability of ultrasound to penetrate biological tissue and to
return signals that contain information about tissue’s acoustic structure [4]. In the
following section, the basic principles of medical ultrasound imaging are summarized.

1.1 Ultrasound Imaging

Ultrasound imaging is one of the most commonly used imaging modalities since it
is inexpensive, safe, convenient and widely available including at the bedside. An ul-
trasound machine is shown in Fig. 1.1. For ultrasound wave, electrical excitation of
a crystal generates vibration with high frequency. More specifically, crystals trans-
form the electrical exciting signal into a mechanical movement. The same transducer
receives the back scattered wave and converts it to electrical signals.

Acoustic waves in general are described as propagating energy in 3D space. For
the purposes of analysis, this propagation is categorized into two fundamental modes:
longitudinal and transverse, that are shown in Fig. 1.2. In longitudinal waves, the
direction of wave propagation is parallel to particle displacement. However, for trans-
verse waves, the direction of particle displacement is perpendicular to energy flow [1].
In soft tissues, couplings between particles in the direction of wave propagation are
higher than those in the transverse direction, which supports longitudinal waves with
high velocities and attenuates transverse particle movements [5]. However, recent de-
velopments in USE use shear wave to extract stiffness of tissue. By receiving reflected
pulse and mapping time-of-arrival to round-trip distance, an ultrasound image is gen-
erated. If the surface of discontinuity is large, the wave reflects in a single path with
an angle equal to angle of incidence as shown in Fig. 1.3.

In the human body, the discontinuities are often small (compared to the wave-
length of the waves), which causes scattering. Scattering is a more complex reflection
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(a)

Figure 1.1: Ultrasound machine at the PERFORM Centre.

(a) (b)

Figure 1.2: Ultrasound wave propagation in tissue (from [1]).

of ultrasonic waves in which the reflection is not in a single path as shown in Fig.
1.4. For discontinuities with dimensions close to the wavelength, reflections are non-
uniform and cannot be modeled. However, for objects in tissue smaller than about
a tenth of the wavelength of the ultrasound energy, the wave reflects equally in all
directions [5]. Another problem of imaging is attenuation wherein energy is absorbed
or refracted as ultrasound propagates. As the transmitted pulse propagates, echoes
are scattered in the tissue, and detected by the transducer elements. Beamforming
the signals by applying appropriate time-delays to recorded data of each element and
averaging the detected signals allows localization of the scattering structures [6].
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Figure 1.3: Specular reflection.

Figure 1.4: Scattering.

The raw echo data that is received by transducer is called RF data. It is shown
that for an application such as USE, utilizing RF data significantly improves results.

1.2 Ultrasound Elastography

USE techniques have received substantial attention in recent years due to their ability
in detecting bio-mechanical tissue alterations non-invasively, which can substantially
improve the capabilities of ultrasound imaging in both diagnosis and image guided
interventions. Pathological changes are generally known to be correlated with changes
in tissue stiffness. Many cancers, such as scirrhous carcinoma of the breast, appear
as extremely hard nodules [7]. It is also worth noting that some lesions like prostate
or breast tumors do not possess echogenic properties (i.e. ability to reflect the the
ultrasound wave), which makes them ultrasonically detectable. However, they have
different stiffness than normal tissue. Since the echogenicity and the stiffness of tissue
are generally uncorrelated, it is expected that imaging tissue stiffness or strain will
provide new information that is related to pathological tissue structure [7].
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Different classifications for USE are proposed in the literature, however, it can
be broadly grouped into dynamic and quasi-static USE. How ever, displacement es-
timation is the main step for both classes. In both classes, The scatterers in tissue
are displaced by external stimuli or internal forces, and shear modulus or Young’s
modulus can be calculated by estimating tissue motion.

1.2.1 Dynamic Methods

Dynamic methods, such as shear wave imaging (SWI) [13, 14] and acoustic radia-
tion force imaging (ARFI) [15, 16], use Acoustic Radiation Force (ARF) to generate
displacement in the tissue. Transient USE is another common dynamic method in
which low-frequency vibrations are applied to the tissue [17]. Internal or endogenous
deformations that are often created by the pumping action of the heart are the other
method of deformation. The mechanical properties of the cardiac tissue can be esti-
mated from the velocity of this wave [10–12]. These methods can be used to estimate
quantitative mechanical properties of tissue. For ARFI, the impulsive force generates
a localized displacement of the tissue. By removing the force, the tissue relaxes to its
original position. A number of parameters can be used to characterize the response of
the tissue, including the peak displacement, the time it takes to reach peak displace-
ment, and the recovery time. The excitation is performed at one location and the
response is measured, and then the excitation line is translated and the response is
measured. The alternations of stimulation and detection are performed to construct
images of the tissue response. This process can be parallelized to push and track the
tissue displacements simultaneously along multiple lines of sight.

In the case of SWI, mechanical generation of shear waves and measurement of wave
propagation should be considered. Different methods are employed to generate shear
wave, then by measuring its velocity, mechanical properties of tissue are extracted.

1.2.2 Quasi-static Methods

For quasi-static USE, excitation is performed by simply pressing an ultrasound probe
against tissue [18,19], which can be done by utilizing a robotic arm [20,21] or a hand-
held probe (i.e. free-hand palpation) [22,23]. Another approach is to use the ablation
probe to generate displacements [24].

The main reason for the name of quasi-static is the low velocity of the deforma-
tion such that static mechanics can be assumed [19]. Free-hand quasi-static USE does
not require additional hardware other than an ultrasound machine, and as such, is
very convenient and has even been applied in image-guided surgery [25] and radio-
therapy [26]. Compared to SWI and ARFI, displacements in quasi-static USE are
usually substantially larger, leading to a higher signal to noise ratio in displacement
estimation. The disadvantage is that it cannot readily generate quantitative tissue
properties and an inverse problem approach is applied to infer quantitative proper-
ties in tissue [8, 9, 27,28].
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1.2.3 Displacement Estimation

The problem of displacement estimation is ill-posed since the intensity of one sam-
ple provides one equation. Most biological tissues are nearly incompressible, i.e., the
volume of the tissue does not change by compressing it. Therefore, axial compression
will also lead to lateral and out of plane deformations. Even after neglecting out of
plane motion, each sample moves in two directions which results in two unknown
variables, and two unknowns cannot be uniquely determined from one equation [29].
To make the problem a well-posed one, different methods for quasi-static USE are
proposed in the literature, which in turn can be broadly categorized into window-
based and regularized optimization-based approaches. Recently, artificial intelligence
is also exploited in displacement estimation. In [30–32], the general modes of de-
formation are extracted by Principal Component Analysis (PCA) and a network is
trained to estimate the displacement approximately 10 times faster than [33] as a
regularized optimization-based approach. Deep neural networks and more specifically
Convolutional Neural Network (CNN) models have been also successfully trained for
displacement estimation [34–36] and USE [37,38].

1.2.4 Clinical Application

In recent years, USE has been explored for several clinical applications, including
ablation guidance and monitoring [39], differentiating benign thyroid nodules from
malignant ones [40–42] and breast lesion characterization [43–45]. Surgical treatment
of liver cancer [46–48], assessment of non-alcoholic fatty liver disease [49], assessment
of fibrosis in chronic liver diseases [50,51], detecting prostate cancer [52,53], differenti-
ating abnormal lymph nodes in benign conditions [54] and brain tumor surgery [55,56]
are other relevant clinical applications of USE.

1.2.5 Thesis Statement

USE is based on deforming the tissue and estimating tissue motion between pre- and
post-compressed ultrasound data. Signal de-correlation and low resolution of ultra-
sound data in addition to limited number of samples and lack of carrier signal in
lateral direction are the main challenges of estimating displacement. We have devel-
oped multiple techniques to address some of theses limitations.

In Chapter 2, a 3D window-based technique is proposed. Window-based tracking
methods are one of the most popular tracking techniques that assume displacements of
spatially neighboring samples are the same and look for a similar window in the other
image. In traditional window-based methods, 2D spatial windows were considered and
information of spatially neighbors was utilized. In this chapter, we use 3D windows
to benefit from additional information made available by including samples in the
third dimension. In this chapter, two approaches named STNCC and CNCC are
proposed. In STNCC, the third dimension is temporally neighboring samples and in

5



CNCC time-delayed pre-beam-formed data that is collected by neighboring channels
are utilized as the third dimension.

In Chapter 3, OVERWIND time-delay estimation method as a regularized optimization-
based method is proposed. In OVERWIND, a cost function containing two parts is
introduced for optimal displacement estimation. In the first part of the proposed cost
function, the difference of two images as pre- and post-compressed RF data are pe-
nalized. By assuming that neighboring samples have the same displacement, small
windows are considered around each sample and all samples in these windows are
forced to have the same displacement in the pre- and post-compression RF data.
Therefore, this method increases robustness against noise by utilizing information
from neighboring samples. The second term of cost function deals with regularization
which penalizes displacement of neighbor samples. Herein, we use L1 norm regular-
ization which assigns a smaller penalty to discontinuities compared to the more com-
monly used L2 norm regularization. This modification adds nonlinear terms to the
cost function, and therefore, we use iterative methods to optimize the cost function.

In Chapter 4, CGLUE is proposed for USE. The novelty of CGLUE is using time-
gain and time delay corrected pre-beamformed channel data instead of RF data. The
channel data contains more information than RF data which intuitively informs that
their comparison results in better displacement estimation than RF data. We also
prove that utilizing channel data in data term decreases bias and variance of error.
In Chapter 5, we beamform the row data utilizing VSSA. Despite the capability of
proposed USE methods in estimating both axial and lateral displacements, the latter
is of lower quality compared to the former for three main reasons: low sampling
rate, lack of carrier signal and low resolution in the lateral direction. In this chapter,
we propose to use VSSA imaging that implements Synthetic Aperture (SA)-based
beamforming on focused transmitted signals. On the one hand, this enables us to
benefit from advantages of SA such as high resolution and the capability to increase
the sampling frequency to increase the resolution and number of A-lines. On the other
hand, we can take advantageous of line-by-line imaging in high penetration depth.

In Chapter 6, we propose a novel method for 2D displacement estimation method
for more precise and accurate lateral displacement estimation called MUSCULAR.
In MUSCULAR, we add physics-based constraints as a regularization part to the
cost function, as well as absolute intensity differences and displacement continuity
of neighboring samples. We show that the additional physics-based constraints sub-
stantially improve the accuracy of the 2D displacement estimation, and outline a
computationally efficient way to exploit physics-based constraints.

The last chapter concludes the thesis and proposes some ideas for future work.
Despite the proposed USE methods to increase accuracy of tracking tissue motion,
still the estimation is lateral direction is not as good as the axial one. Low resolution
and lack of carrier signal in lateral direction is two of the important factors. However,
increasing resolution in lateral direction does not necessarily increase the estimation
accuracy. We outline avenues for future work to address these issues.
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Chapter 2

Window-based Elastography

This chapter is based on our published paper [57].

Estimation of tissue displacement is often referred to as Time Delay Estima-
tion (TDE), which usually relies on raw RF data. Since one sample of RF data does
not provide enough information to calculate displacement, most methods are based
on dividing the RF data into several overlapping windows and calculating the dis-
placement of each window [58]. The underlying assumption here is that displacement
of all samples within the window is the same, and therefore, additional information
from the neighboring samples is exploited to calculate the displacement of the sample
at the center of the window. This additional information helps reduce the estimation
variance.

Maximization of the NCC of windows was one of the first approaches used for
TDE, which is still a very popular approach because it is easy-to-implement and is
computationally efficient [59–61]. Phase correlation wherein zero crossing of phase
determines displacement [62, 63] and sum of absolute difference of windows [64] are
other major window-based techniques for USE.

Window-based techniques are easy to implement, but one of the most important
disadvantages of these algorithms is false peaks. False peaks occur when a secondary
NCC peak or zero crossing of phase or sum of absolute difference, exceeds true ones.
False peaks are a common error in window-based USE methods since all windows
of post-compressed image should be searched to find the best match. To overcome
false peaks, time-domain cross correlation with prior estimates (TDPE) is introduced
in [60]. In TPDE, only a small part of post-compressed image should be searched for
correlated window and the searching area is limited to a neighborhood around the pre-
vious time-delay estimate. By utilizing TDPE, the problem of false peaks can be ad-
dressed, but still window-based algorithms are sensitive to signal de-correlation which
can be caused by the out of plane or lateral displacement which are common prob-
lems especially in free-hand palpation. Another major source for signal de-correlation
is blood flow and other biological motions that are common in in-vivo data.

In all of the aforementioned studies, the RF lines of just two images are compared
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Figure 2.1: Two frames of ultrasound RF data corresponding to (a) pre- and (b) post-
compression. The images are severely down-sampled for visual illustration.

with each other and the displacement fields across small spatial windows are assumed
to be constant as it is shown in Fig. 2.1.

In [57] we propose to utilize 3D information instead of 2D data and for the third
dimension we have two options. In the first method, inspired by [65], we extend 2D
spatial information to the temporal domain. We consider the cine ultrasound RF data
as 3D, where the third dimension is the time domain. In other words, based on high
frame rate of ultrasound machine, we consider a set of temporally neighboring frames
as pre-compressed data and a set of temporally neighboring frames as post-compressed
data as shown in Fig. 2.2.

In the second approach, we consider time-delayed pre-beamformed data (channel
data) for USE. In ultrasound imaging, for generating an RF line several crystals
record reflected waves. Time gain and also time delay due to transmission will be
compensated and all data will be summed up to make one RF line. In this work we
propose to use time gain and also time delay compensated channel data instead of RF
data for USE, where in for each RF line its corresponding channels will be considered
as third dimension as it is shown in Fig.2.3.

We maximize NCC in between 3D windows, and therefore, we name our first pro-
posed algorithms as STNCC and the second one as CNCC. These simple and intuitive
ideas substantially improves results of TDE. It is important to note that although the
windows that we utilize to calculate NCC are 3D, the estimated displacement field is
2D.

STNCC and CNCC are more robust to signal de-correlation compared to NCC
as shown in the simulation experiments. We also show that as the amplitude of noise
increases, STNCC exhibits much less susceptibility as compared to NCC. In addition,
STNCC and CNCC are less sensitive to the window size in comparison to NCC.
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Figure 2.2: Two sequence of data used for spatial and temporal estimation of normalized
correlation.

Figure 2.3: All of received data (shown in red dashed-arrows) will be beamformed to generate
one line corresponding to ‘u’(a). We rearrange time-delayed information of neighboring
elements as shown in (b) to utilize them for CNCC.
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2.1 Methods

Most USE methods consider two images I1 and I2 as pre- and post-compressed im-
ages and calculate displacement of tissue using RF data of these images. The pre-
compressed RF data set is divided into several windows and for each window one
should look for a window in the post-compressed RF data set that maximizes NCC
as shown in Fig. 2.1.

NCC for two windows A and B is calculated as

NCC(A, B) =
Σj=W

j=1 A(j)B(j)
√︂

Σj=W
j=1 A(j)2Σj=W

j=1 B(j)2
, (2.1)

where W is the number of samples in the windows and j represents samples of win-
dows. The peak of NCC corresponds to the displacement of windows in the pre-
compressed image. Maximization of NCC only provides an integer displacement es-
timate, and interpolation should be performed to find a more accurate sub-pixel
displacement estimate [66–68].

In [57] we introduced two novel techniques to use temporal or channels informa-
tion. Hence instead of two 2D windows, two 3D boxes should be considered as shown
in Figs. 2.2 and 2.3. In these techniques, one should look for a box in the second
sequence that has the maximum NCC with the box of first sequence and peak of
NCC represents displacement of the center of first box. The only assumption of these
algorithms is that all samples within the box have equal displacements. This is a good
assumption for STNCC since the frame rate of ultrasound machines are more than
30 fps (more than 500 fps if plane-wave imaging is used) and consecutive frames (the
third dimension of data for STNCC) and their displacement will be very close to each
other. It is also worthwhile to mention that by considering temporal neighbors for
STNCC, temporal behavior of the estimated strains improves significantly. Temporal
accuracy plays an important role in poroelastic USE [69], viscoelasticity measurement
of the tissue [70], dynamic USE methods such as shear-wave USE [39,71] and vibro-
USE [72]. The results of temporal behavior of the estimated strains by STNCC are
reported in the supplementary material. For CNCC the assumption of same displace-
ment for all samples of a box is exactly the same assumption that was made for 2D
Rf data.

By considering the third dimension of size n for each box, the NCC of the two
boxes is defined as

NCC(A, B) =
Σl=n

l=1 Σj=W
j=1 Al(j)Bl(j)

√︂

Σl=n
l=1 Σj=W

j=1 Al(j)2Σl=n
l=1 Σj=W

j=1 Bl(j)2
(2.2)

where Al and Bl are windows in the lth layer of the third dimension for the first and
second boxes. W is the number of samples in a 2D window and j shows samples of
2D windows. The peak of STNCC or CNCC provides an integer displacement esti-
mate and has to be interpolated to generate a subpixel displacement estimation. To
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avoid false peaks and to reduce the computational complexity of the algorithm, the
search area is determined based on the displacement of the neighboring boxes. By
calculating the displacement field, strain of the tissue can be determined by differ-
entiating displacement field in the axial direction. Differentiating amplifies the noise,
and therefore, least square techniques are common method to obtain the strain field.

2.1.1 Data Acquisition

In this Section we describe the data that is utilized in different experiments of this
chapter and then results of STNCC and CNCC are provided in the Results Section
and compared with NCC in two separate subsections. For sake of comparison, contrast
to noise ratio (CNR) is used to provide quantitative means for assessing the proposed
method according to

CNR = 20log10

⎞2(s̄b − s̄t)
2

σ2
b + σ2

t

)︂

, (2.3)

where s̄t and s̄b are the spatial strain average of the target and background, and σ2
b

and σ2
t are the spatial strain variance of the target and background windows in the

strain image, respectively.
In all simulations and experiments, 7 frames are considered for STNCC and out-

puts of STNCC are compared with strains of middle frames that are estimated by
NCC.

In all experiments (except the back muscle experiment) windows of size 10λ where
λ is wavelength with 86% overlap of windows are considered and 3-point parabolic
interpolation is utilized to find the 2D sub-sample location of the correlation peak.
For the back muscle experiment, overlap of windows is reduced to 70% and 30% to
show its effect on STNCC and NCC.

Simulation Data

A simulated phantom is generated by utilizing the Field II ultrasound simulation
software [73]. FEM-based deformations are computed using the ABAQUS software
package (Johnston, RI, USA). The simulated phantom is homogeneous except for a
cylindrical inclusion with zero stiffness which is placed in the middle of the phantom
as an inclusion. The ground truth strain is shown in Fig. 2.4 where the white part
represents the inclusion. The inclusion simulates a blood vein that easily compresses
under force. Zero stiffness can be obtained by considering a hole inside the phantom.
It will not lead to infinite strain because the surrounding medium supports the hole
from collapsing. The Young module of background is equal to 4kPa in our simulation.

To make the simulation experiment more realistic, images are normalized and
uniform noises are added to images as

Iij =
Iij

maxi,j(Iij)
+ noise. (2.4)
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Figure 2.4: Ground truth strain in the simulation phantom. The displacement is estimated
using the ABAQUS FEM software.

For calculating contrast to noise ratio, for each level of noise we ran a Monte Carlo
simulation by estimating strain 100 times with different random noise. The SNR of
the noisy data is calculated as

SNR = 10log10

⎠
mean

⎞

I2
ij

)︂

mean
⎞

noise2
)︂

⎜

. (2.5)

Phantom Data

We use conventional beamformed RF data and time-delayed channel data for compar-
ison of STNCC and CNCC with NCC. Conventional beamformed RF data is acquired
from a tissue mimicking breast phantom (CIRS, Norfolk, VA, USA) with an Antares
Siemens ultrasound machine (Siemens, Issaquah, WA, USA) and VF 13-5 probe at
the center frequency of 7.27 MHz, sampling frequency of 40 MHz and frame rate of
37 fps.
Channel data is acquired from a tissue mimicking phantom (059 tissue mimicking
breast phantom, CIRS tissue simulation & phantom technology, Norfolk, VA, USA)
using an E-Cube R12 ultrasound machine (Alpinion, Bothell, WA, USA) with a L3-
12H probe at the center frequency of 11.5 MHz, sampling frequency of 40 MHz.

13



-10 -5 0 5 10

Width (mm)

0

5

10

15

20

D
e
p
th

 (
m

m
)

(a)

-10 -5 0 5 10

Width (mm)

0

5

10

15

20

D
e
p
th

 (
m

m
)

(b)

-10 -5 0 5 10

Width (mm)

0

5

10

15

20

D
e
p
th

 (
m

m
)

(c)

-10 -5 0 5 10

Width (mm)

0

5

10

15

20

D
e

p
th

 (
m

m
)

(d)

-10 -5 0 5 10

Width (mm)

0

5

10

15

20

D
e
p
th

 (
m

m
)

(e)

-10 -5 0 5 10

Width (mm)

0

5

10

15

20

D
e

p
th

 (
m

m
)

(f)

0 0.05 0.1 0.15 0.2

(g)

Figure 2.5: Strain images of the simulation phantom calculated using NCC and STNCC. The
first row shows strain images that are calculated using NCC, and the second row depicts
strain images computed using STNCC. In the first, second and third columns, the SNR
values of data are 6.55 dB, 3.56 dB and 2.17 dB, respectively.
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In-vivo Data

The liver data is acquired from a patient undergoing open surgical radio frequency
thermal ablation for liver cancer before ablation. This data was collected at the Johns
Hopkins hospital with an Antares ultrasound machine (Siemens, Issaquah, WA, USA)
with a VF10-5 linear probe with a center frequency of 6.6 MHz, sampling frequency of
40 MHz and frame rate of 30 fps. The study was approved by the ethics institutional
review board at Johns Hopkins. Fig. 2.9 (a) shows the B-Mode image, where the
tumor is marked with red arrows.

2.2 Results

2.2.1 STNCC

In this part, results of the proposed STNCC method are presented and compared
against NCC for simulated phantom and experimental data in separate subsections.

Simulation Results

The phantom is compressed by 0.5% and the compression rate between two consec-
utive frames is 0.02%. To make simulation experiment more realistic, noise is added
to the images in three steps with zero mean and standard deviation of 0.086, 0.144
and 0.202. Fig. 2.5 shows outputs of STNCC and NCC for different levels of noise.

It is clear that results of STNCC are closer to ground truth and outperform results
of NCC. Higher signal to noise ratio and contrast to noise ratio of STNCC that are
represented in Table 2.1 also validate better performance of STNCC. For each level of
noise we ran a Monte Carlo simulation by estimating strain 100 times with different
random noise. The mean and variance of CNR for these 100 experiments are reported
at Table 2.1.

Table 2.1: The mean and variance of CNR for 100 strain images of the simulated phantom
for different methods and noise levels. Windows that are considered for calculating CNR
are shown in blue and red lines in Figure 2.5.

SNR CNR
of noisy data
mean (var.) mean (var.)

6.55 (6.91×10−5)
STNCC 28.28 (6.4)
NCC 21.96 (13.12)

3.56 (8.14×10−5)
STNCC 24.88 (8.96)
NCC 9.84 (23.20)

2.17(7.53×10−5)
STNCC 18.56 ( 17.92)
NCC -4.12 (67.84)
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As one can see in Fig. 2.5 and Table 2.2, not only does STNCC outperform NCC
for each range of noise, but it also has more robust performance against increasing
amplitude of noise.

Table 2.2: Effect of increasing noise on CNR values.

SNR of noisy data Method CNR%

From 6.55 to 3.56
STNCC -12.02
NCC -55.19

From 3.56 to 2.17
STNCC -25.40
NCC -141.86

In the next experiment, we compressed the simulated phantom by 1%, 1.5% and
2% and repeated the experiment for these amounts of compression. For representing
CNR, simulation is run 100 times for each case and it is shown in Fig. 2.6 that for
all three compression rate and for all three different noise levels, STNCC has better
performance than NCC.
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Figure 2.6: CNR values for different levels of compression and noise. The SNR of data in
(a), (b) and (c) are respectively 6.55 dB, 3.56 dB and 2.17 dB.

Phantom Results

Similar to the previous section, the images are normalized and uniform noise is added
to images in three steps with zero mean and standard deviation of 0.028, 0.144 and
0.202. The estimated strains obtained from STNCC and NCC are shown in Fig. 2.7.

As one can see, results of STNCC outperform NCC. Also, STNCC is more ro-
bust to increasing magnitude of noise. For computing CNR for each level of noise,
experiments are repeated for 100 times and mean and variance of CNR is presented
in Table 2.3.

Edge spread functions of strains obtained by NCC and STNCC are shown in Fig.
2.8. For calculating edge spread function, two rectangular with length of 60 and width
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Figure 2.7: Comparison of strains that are calculated using NCC and STNCC for phantom
data. The first and second rows show strain images calculated using NCC and STNCC,
respectively. In the first, second and third columns, the SNR of data are 13.95 dB, 5.62 dB
and 2.91 dB, respectively.

of 10 pixels are considered in strain of NCC and STNCC as shown in Figure 2.8 (a).
The edge spread function is calculated by averaging intensity of pixels across width
of these rectangular and it is clear in Figure 2.8 (b) that the edge spread function of
STNCC is smoother than NCC.
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Table 2.3: Mean and variance of CNR in 100 strain images for the conventionally beam-
formed RF data of the phantom at different noise levels. Windows that are considered for
calculating CNR are shown in Figure 2.7.

SNR CNR
of noisy data
mean (var.) mean (var.)

13.95(4.04×10−5)
STNCC 24.64 ( 1.12)
NCC 21.48 (1.92)

5.62(3.81×10−5)
STNCC 19.44 (6.56)
NCC -13.08 ( 8.32)

2.91(4.17×10−5)
STNCC -8.48 (8)
NCC -24.80 (8.48)
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Figure 2.8: Edge spread function for strain images that are calculated using NCC and
STNCC. The red box in (a) shows the region of strain image where edge profiles are plotted.
(b) shows the edge profiles.

In-vivo Results

The estimated strains are presented in Figure 2.9 (b)-(c). Visual comparison of the
strain images shows that STNCC generates a strain image with less noise. This is
corroborated with quantitative results of Table 2.4, which shows CNR. Compared to
NCC, STNCSS improves CNR by 71.11%.
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Figure 2.9: B-mode image of the liver with a tumor (marked with red arrows). Strain images
calculated using NCC and STNCC are shown in (b) and (c) respectively.

Table 2.4: CNR values in strain images of Figure 2.9. Windows that are considered for
calculating CNR are shown in Figure 2.9.

CNR
STNCC 21.56
NCC 12.60

2.2.2 CNCC

Simulation Results

The phantom is compressed by 1% and time-delayed channel data is acquired from
Filed II software for CNCC experiment. Same channel data are summed-up to gener-
ate corresponding RF data. Strain fields estimated by NCC and CNCC are illustrated
in Fig. 2.10.

To further clarify better performance of CNCC, a histogram analysis is done for
CNR comparison in Fig. 2.11. We have moved the small blue colored window within
the big blue window to take 12 target windows. At the same time, the small red colored
window is swiped within the large red window to consider 32 background windows.
CNR is calculated for every combination of target and background windows. It is
clear that for small values, NCC has higher frequencies than CNCC but for higher
values of CNR, CNCC has higher frequency.
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Figure 2.10: Strain images of simulated phantom calculated using NCC and CNCC are
shown in (a) and (b) respectively.

Phantom Results

For fair comparison of CNCC and NCC, channel data that are utilized for providing
results of CNCC are beamformed with the same ultrasound machine and then fed
to NCC. Estimated strains of CNCC and normal NCC are shown in Fig. 2.12. For
comprehensive CNR comparison, histogram analysis is done which is shown in Fig.
2.13. We have moved the small red colored window within the big red window to take
12 target windows. At the same time, the small blue colored window is swiped within
the large blue window to consider 24 background windows. CNR is calculated for
every combination of target and background windows. Fig. 2.13 shows distribution
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Figure 2.11: Histogram distribution of CNR for estimated strain of simulated phantom by
NCC and CNCC.
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Figure 2.12: Strain images of experimental phantom calculated using NCC and CNCC are
shown in (a) and (b) respectively.

of the aforementioned 288 CNR values. It is clear that for small CNR values, NCC
has higher frequencies than CNCC but for higher values of CNR, CNCC has higher
frequency.
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Figure 2.13: Histogram distribution of CNR for estimated strain of experimental phantom
by NCC and CNCC.

2.3 Conclusions

Ultrasound systems are capable of acquiring images at a very high frame rate. This
capability is not exploited in previous window-based USE algorithms where the win-
dows were only in the spatial domain. As well as a high frame rate, we know that
for generating one RF line multiple channels are employed to record data. In this
chapter, a novel idea was proposed to consider third dimension information which
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can be two sequence of images instead of just two images or considering all channels
that play role in producing one RF line. In these methods, 3D boxes in the first series
are matched to those of the second series. It was shown using simulation, phantom
and in-vivo experiments that extension of information to third direction substantially
improves the quality of displacement estimation.
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Chapter 3

Combining total variation
regularization with window-based
time delay estimation in
ultrasound elastography

This chapter is based on our published paper [74].

Optimizing a regularized cost function is another approach for USE to impose
smoothness regularization to make the problem well-posed [75–81]. These methods
were computationally complex, but real-time USE based on regularized cost functions
have recently been developed by exploiting Dynamic Programming and Analytic Min-
imization (DPAM) [2,46] and GLUE [33]. These methods result in dense displacement
and strain fields with the same size as the RF data. The main disadvantage of these
methods is that utilizing quadratic regularization term leads to over-smoothed dis-
placement fields. In recent research, temporal information is also considered in the
optimization [82].

Inspired by [29] in utilizing both window based and regularized optimization based
techniques for optical flow research field, we combine window-based and regularized
optimization-based methods to increase robustness of the algorithm against noise
which is abundant in free-hand USE due to out-of-plane movement, blood flow and
other biological motions common in in-vivo data. The second major novelty of this
paper is that we use total variation regularization (also known as the L1 norm reg-
ularization), which results in substantially sharper displacement maps. An iterative
method is utilized for estimating the displacement, which further increases accuracy
and robustness of the estimation against noise. We call our method OVERWIND
and show that it outperforms both window-based and standard regularization-based
approaches.
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3.1 Methods

Let I1 and I2 be the two frames of RF data collected as the tissue is undergoing
some deformation. TDE entails estimating the displacement field between these two
images. In this section, we first briefly describe the closely related previous work
(GLUE) [33] and then present OVERWIND and derive equations to calculate TDE
using this method.

3.1.1 GLUE: GLobal Ultrasound Elastography

In GLUE, the displacements are divided into integer and subsample displacement
estimates. The initial integer displacement estimates come form Dynamic Program-
ming (DP) [78]. The goal of GLUE is to calculate the subsample displacement com-
ponent by minimizing the following cost function:

C(∆a1,1, ∆l1,1, , . . . , ∆am,n, ∆lm,n) = Σn
j=1Σ

m
i=1¶D(i, ai,j, ∆ai,j, j, li,j, ∆li,j)

+R(i, ai,j, ∆ai,j, j, li,j, ∆li,j)♢
(3.1)

where the data term D is:

D(i, ai,j, ∆ai,j, j, li,j, ∆li,j) = [I1(i, j) − I2(i + ai,j + ∆ai,j, j + li,j + ∆li,j)]
2

and the regularization term R is:

R(i, ai,j, ∆ai,j, j, li,j, ∆li,j) = α1(ai,j + ∆ai,j − ai−1,j − ∆ai−1,j)
2

+α2(ai,j + ∆ai,j − ai,j−1 − ∆ai,j−1)
2

+β1(li,j + ∆li,j − li−1,j − ∆li−1,j)
2

+β2(li,j + ∆li,j − li,j−1 − ∆li,j−1)
2.

In these equations, I1 and I2 are pre- and post-compressed RF data of size m × n.
Notation ai,j and lij are axial and lateral integer displacements that are estimated
using DP and ∆ai,j and ∆li,j are axial and lateral subsample displacements that
should be calculated. Finally, α1, α2, β1 and β2 are regularization parameters.

GLUE calculates the displacement estimates of all samples of the RF data si-
multaneously. As such, GLUE is relatively robust to local signal decorrelations since
correlated areas guide the decorrelated regions. However, its displacement maps are
very smooth, which leads to blurry strain images. In the next subsection, we increase
robustness and also tackle the problem of blurriness by introducing OVERWIND,
which replaces the data term with a window-based term, and substitutes the regular-
ization term with total variation regularization.
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3.1.2 Utilizing Window-Based Data Terms

Inspired by [29], we combine window- and optimization-based methods to increase
robustness of elastogram against noise by utilizing information available in the neigh-
borhood of the reference sample. Therefore, for pixel (i, j), we consider a window
of size (2wa + 1) × (2wl + 1) around sample (i, j) and assume that all samples in
this neighborhood have the same displacement as sample (i, j), an assumption that
is similar to the one used in the window-based methods. Therefore, the data term in
Eq. (3.1) is replaced by

D(i, ai,j, ∆ai,j, j, li,j, ∆li,j) = 1
(2wa+1)(2wl+1)

Σwa

k=−wa
Σwl

r=−wl
(I1(i + k, j + r)

−I2(i + k + ai,j + ∆ai,j, j + r + li,j + ∆li,j))
2

The unknown variables ∆a and ∆l are now inside the “nonlinear function”I2, which
means that the cost function cannot be optimized efficiently. To make the data term
quadratic, we replace I2(i+k+ai,j +∆ai,j, j +r+ li,j +∆li,j) with its first order Taylor
series expansion around (i+k+ai,j, j +r+ li,j). Furthermore, to simplify the notation,
we denote 1

(2wa+1)(2wl+1)
Σwa

k=−wa
Σwl

r=−wl
(.) as 1

L
Σk,r(.) and I2(i + k + ai,j, j + r + li,j) as

I2(.), so the data term can be rewritten as

D(i, ai,j, ∆ai,j, j, li,j, ∆li,j) =
1

L
Σk,r

⎞

I1(i + k, j + r) − I2(.) − ∆ai,jI
′

2a(.) − ∆li,jI
′

2l(.)
)︂2

(3.2)

where I ′

2a(.) and I ′

2l(.) are derivatives of I2 in axial and lateral directions, respectively.

3.1.3 Using L1 Norm Regularization

The second issue of GLUE arises from the L2 norm regularization, which penalizes
high gradients of displacement, and as such, prevents discontinuities in the displace-
ment field. To cope with this problem, a non-quadratic regularization term should be
utilized. The L1 norm regularization, which has a form of δ(s) = ♣s♣=

√
s2 has opti-

mal characteristic in terms of allowing sharp transitions. Although this regularization
is convex, it is not differentiable at s = 0, which means that it cannot be efficiently
optimized. A commonly used technique to address this problem is to slightly perturb

the regularization term around s = 0 [83]. In this paper, we use δx(s) = 2λx

√︂

λ2
x + s2

for regularization, where λx is a scaling parameter.
An inherent feature of regularization is that it reduces estimation variance at the

cost of increased bias. In other words, we penalize the difference between ai,j + ∆ai,j

and ai−1,j − ∆ai−1,j, which leads to an underestimated displacement estimation. To
prevent this kind of underestimation bias, εa and εl can be considered in the regular-
ization term, where εa is the average of integer axial displacement difference between
subsequent samples i and i − 1 and εl is the average of integer lateral displacement
difference between samples j and j − 1 which are available from DP.
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Inserting the proposed non-quadratic and unbiased regularization term, we have:

R(i, ai,j, ∆ai,j, j, li,j, ∆li,j) = α1δ1(ai,j + ∆ai,j − ai−1,j − ∆ai−1,j − εa)
+α2δ2(ai,j + ∆ai,j − ai,j−1 − ∆ai,j−1)
+β1δ3(li,j + ∆li,j − li−1,j − ∆li−1,j)
+β2δ4(li,j + ∆li,j − li,j−1 − ∆li,j−1 − εl).

(3.3)

Considering Eqs. (3.2) and (3.3), the final cost function can be presented as

C(∆a1,1, . . . , ∆am,n) = Σn
j=1Σ

m
i=1

[︃

1
L

Σk,r

⎞

I1(i + k, j + r)

−I2(.) − ∆ai,jI
′

2a(.) − ∆li,jI
′

2l(.)
)︂2

+α1δ1(ai,j + ∆ai,j − ai−1,j − ∆ai−1,j − εa)
+α2δ2(ai,j + ∆ai,j − ai,j−1 − ∆ai,j−1)
+β1δ3(li,j + ∆li,j − li−1,j − ∆li−1,j)

+β2δ4(li,j + ∆li,j − li,j−1 − ∆li,j−1 − εl)
]︃

.

To find the optimal ∆ai,j and ∆li,j values, one needs to differentiate C with respect
to ∆ai,j and ∆li,j and set the derivatives to zero, i.e. ∂C

∂∆ai,j
= 0, and ∂C

∂∆li,j
= 0. To

cope with the nonlinearity that δ′

x(s) will introduce to equations, we can use iter-

ative methods wherein we assume ϑ =
1

√︂

λ2
x + s2

is fixed and equations are linear

in each iteration. After every iteration, ϑ will use the updated value in the previ-
ous iteration. In this case by stacking all 2mn unknown parameters in a vector as
∆d2m×n = [∆a1,1, ∆l1,1∆a1,2, ∆l1,2, · · · , ∆am,n, ∆lm,n]T , the following linear equation
should be solved to obtain the optimal subsample displacements

(H + D)∆d =
1

L
Σk,r(Pµ) − Dd − b1εa − b2εl (3.4)

where
H = diag¶h(1, 1), · · · , h(1, n), · · · , h(m, 1), · · · , h(m, n)♢

and h(i, j) is a 2 × 2 matrix as

h(i, j) =

⎟
1
L

Σk,r(I
′

2a(.))2 1
L

Σk,r(I
′

2a(.)I ′

2l(.))
1
L

Σk,r(I
′

2a(.)I ′

2l(.))
1
L

Σk,r(I
′

2l(.))
2

⟨︂

.

P is a diagonal matrix as

P = diag¶e(1, 1), · · · , e(1, n), · · · , e(m, 1), · · · , e(m, n)♢
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where e(i, j) is a 2 × 2 matrix as

e(i, j) =

⎟

I ′

2a(.) 0
0 I ′

2l(.)

⟨︂

.

µ is a vector as
µ = [g1,1, g1,2, · · · , gm,n]T ⊗ [1, 1]T

where gi,j is subtraction of two images as

gi,j = I1(i + k, j + r) − I2(.)

and ⊗ is Kronecker tensor product. The matrix D can be organized as

D =

⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

Q1 R1 0 0 . . . . . . 0
R1 S1 R2 0 0 . . . 0

0 R2 S2 R3 0
. . .

...
...

. . . . . . . . . . . . . . .
...

0 0 0 Rm−3 Sm−3 Rm−2 0

0 0 0
. . . Rm−2 Sm−2 Rm−1

0 . . . . . . 0 0 Rm−1 Q2

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

where Q1, Q2 and Sz, z ∈ ¶1, · · · , m−2♢ are pentadiagonal matrices with the following
structure ⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

∗ 0 ∗
0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗

. . . . . . . . . . . . . . .

∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0

∗ 0 ∗

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

with the main diagonals (md) given in Eqs. (3.8) and (3.9). The first upper/lower
diagonals are zero, while the second upper/lower diagonals (sd) are

Q1sd = −
[︂

Θ2(1, 2), Γ2(1, 2), · · · , Θ2(1, n), Γ2(1, n)
]︂T

,

Q2sd = −
[︂

Θ2(m, 2), Γ2(m, 2), · · · , Θ2(m, n), Γ2(m, n)
]︂T

,

Szsd = −[Θ2(z + 1, 2), Γ2(z + 1, 2), · · · , Θ2(z + 1, n), Γ2(z + 1, n)]T
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Q1md =

⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

Θ1(2, 1) + Θ2(1, 2)
Γ1(2, 1) + Γ2(1, 2)

Θ1(2, 2) + Θ2(1, 2) + Θ2(1, 3)
Γ1(2, 2) + Γ2(1, 2) + Γ2(1, 3)

...
Θ1(2, n − 1) + Θ2(1, n − 1) + Θ2(1, n)
Γ1(2, n − 1) + Γ2(1, n − 1) + Γ2(1, n)

Θ1(2, n) + Θ2(1, n)
Γ1(2, n) + Γ2(1, n)

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

,

Q2md =

⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

Θ1(m, 1) + Θ2(m, 2)
Γ1(m, 1) + Γ2(m, 2)

Θ1(m, 2) + Θ2(m, 2) + Θ2(m, 3)
Γ1(m, 2) + Γ2(m, 2) + Γ2(m, 3)

...
Θ1(m, n − 1) + Θ2(m, n − 1) + Θ2(m, n)
Γ1(m, n − 1) + Γ2(m, n − 1) + Γ2(m, n)

Θ1(m, n) + Θ2(m, n)
Γ1(m, n) + Γ2(m, n)

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

,

(3.8)

where

Θ1(i, j) =
α1λ1

√︂

λ2
1 + (ai,j + ∆ai,j − ai−1,j − ∆ai−1,j − ε)2

,

Θ2(i, j) =
α2λ2

√︂

λ2
2 + (ai,j + ∆ai,j − ai,j−1 − ∆ai,j−1)2

,

Γ1(i, j) =
β1λ3

√︂

λ2
3 + (li,j + ∆li,j − li−1,j − ∆li−1,j)2

,

Γ2(i, j) =
β2λ4

√︂

λ2
4 + (li,j + ∆li,j − li,j−1 − ∆li,j−1)2

.

Rκ, κ ∈ ¶1, · · · , m − 1♢, are diagonal matrices with the main diagonal given by

−
[︂

Θ1(κ + 1, 1), Γ1(κ + 1, 1), · · · , Θ1(κ + 1, n), Γ1(κ + 1, n)
]︂T

.

Finally vectors b1 and b2 are defined in Eq. (3.10).
In the final step, the estimated displacement field is spatially differentiated to

calculate strain. In particular, a least squares regression technique is used to limit the
effect of noise on the gradient operator.
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Szmd =

⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

Θ1(z + 1, 1) + Θ1(z + 2, 1) + Θ2(z + 1, 2)
Γ1(z + 1, 1) + Γ1(z + 2, 1) + Γ2(z + 1, 2)

Θ1(z + 1, 2) + Θ1(z + 2, 2) + Θ2(z + 1, 2) + Θ2(z + 1, 3)
Γ1(z + 1, 2) + Γ1(z + 2, 2) + Γ2(z + 1, 2) + Γ2(z + 1, 3)

...
Θ1(z + 1, n − 1) + Θ1(z + 2, n − 1) + Θ2(z + 1, n − 1) + Θ2(z + 1, n)
Γ1(z + 1, n − 1) + Γ1(z + 2, n − 1) + Γ2(z + 1, n − 1) + Γ2(z + 1, n)

Θ1(z + 1, n) + Θ1(z + 2, n) + Θ2(z + 1, n)
Γ1(z + 1, n) + Γ2(z + 2, n) + Γ2(z + 1, n)

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

,

(3.9)

b1 = [Θ1(2, 1), 0, · · · , Θ1(2, n), 0, Θ1(3, 1) − Θ1(2, 1), 0, · · · , Θ1(3, n) − Θ1(2, n), 0, · · · ,
Θ1(m, 1) − Θ1(m − 1, 1), 0, · · · , Θ1(m, n) − Θ1(m − 1, n), 0, −Θ1(m, 1), 0, · · · , −Θ1(m, n), 0]

b2 = [0, Γ2(2, 1), · · · , 0, Γ2(2, n), 0, Γ2(3, 1) − Γ2(2, 1), · · · , 0, Γ2(3, n) − Γ2(2, n), · · · , 0,
Γ2(m, 1) − Γ2(m − 1, 1), · · · , 0, Γ2(m, n) − Γ2(m − 1, n), 0, −Γ2(m, 1), · · · , 0, −Γ2(m, n)]

(3.10)

3.1.4 Data Acquisition and Comparison Methods

Simulation Data

The first simulation experiment has a sharp change in the displacement field to high-
light the differences between GLUE and OVERWIND. All samples of the image have
a displacement of zero, except for a rectangle in the middle which is moved by two
pixels as shown in Fig. 3.2(a).

In the next step, a homogeneous phantom with a cylindrical inclusion with zero
stiffness as shown in Fig. 3.1 is considered. The inclusion simulates a vein which has
little resistance to compression. Ultrasound images are generated using the Field II
ultrasound simulation software [73] by considering slightly more than 10 scatterers per
mm3 to satisfy Rayleigh scattering regime [84]. Deformations are computed using the
ABAQUS FEM software package (Providence, RI, USA). For computing displacement
of scatterers, the phantom is meshed and compressed using finite element simulation
to get the 3D displacement of each node of the mesh. The displacement of each
scatterer is then calculated by interpolating the displacement of its neighboring nodes.

Phantom Data

The phantom experiment was carried out at PERFORM centre, Concordia Univeristy.
RF data is acquired from a model 059 tissue mimicking breast phantom (CIRS, Nor-
folk, VA, USA) using an E-Cube R12 ultrasound machine (Alpinion, Bothell, WA,
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Figure 3.1: Schematic of the simulated phantom by Field II with the simulated vein in the
middle with zero stiffness (from [2]).

USA) with a L3-12H probe operating at the center frequency of 7.27 MHz and sam-
pling frequency of 40 MHz.

In-vivo Data

For the clinical study, we analyze data from three patients with liver cancer. The data
were collected at the Johns Hopkins hospital with an Antares ultrasound machine
(Siemens, Issaquah, WA, USA) using a VF10-5 linear probe with a center frequency
of 6.6 MHz and sampling frequency of 40 MHz. The study was approved by the ethics
institutional review board at Johns Hopkins University.

Comparison Methods

OVERWIND combines window-based methods with regularized optimization-based
techniques. To illustrate its performance, we compare it to NCC (a pure window-based
method) and GLUE (a pure regularized optimization-based method) on data collected
from simulations, phantom and in-vivo experiments. For comparison to GLUE, the
publicly available GLUE code is used. NCC is straightforward to implement, but
suffers from sensitivity to signal de-correlation and false peaks which occur when a
secondary NCC peak or zero crossing of phase or sum of absolute difference exceeds
the true ones. To reduce the chance of false peaks, time-domain cross correlation with
prior estimates (TDPE) is introduced in [60] which is also utilized in this paper to
complement NCC with windows of size (10 × 4) λ and 86% overlap of windows. In
addition, 3-point parabolic interpolation is used to find the 2D sub-sample location
of the correlation peak. The results of NCC with a spline-based interpolation method
to find the subsample displacement estimates are shown in the Supplementary Ma-
terial In TPDE, only a small part of post-compressed RF data should be searched
for correlated window and the searching area is limited to a neighborhood around
the previous time-delay estimate. To improve the results of NCC, we up-sample the
RF data using 2D splines by a factor of 10 in both dimensions and down-sample esti-
mated displacement from NCC using 2D splines by a factor of 1/10. This significantly
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Figure 3.2: Comparison of GLUE and OVERWIND in a simulation experiment.

improved the results at a cost of increased computational complexity by a factor of
more than 100.

The Contrast to Noise Ratio (CNR) is also considered to highlight differences in
the outputs of the two approaches quantitatively. The CNR is computed according
to [7]:

CNR = 20log10(
2(s̄b − s̄t)

2

σ2
b + σ2

t

), (3.5)

where s̄t and s̄b are averages of strain in the target and background windows, σ2
b and

σ2
t are variances of the strain in the target and background windows, and s̄ and σ are

the average and variance of strain over small windows, respectively. It is important
to note that each window should be large enough to ensure statistically meaningful
values of mean and variance, and should be located in a region where the ground
truth strain is uniform within the window.

3.2 Results

Simulation Results

For the first simple simulation experiment, the estimated displacement fields obtained
from GLUE and OVERWIND are shown in Fig. 3.2(b) and (c), respectively. This
example clearly illustrates the limitation of the L2 norm in GLUE, which puts very
heavy penalty in sharp changes in the displacement field because of the power 2.
Whereas the L1 norm in OVERWIND tolerates sharp changes in displacement, and
as such, creates a displacement field that is very sharp.

In the second simulation study, the simulated phantom is compressed by 1% and
the resulting strain images estimated by NCC, GLUE and OVERWIND are shown in
Fig. 3.3. The OVERWIND strain image is the closest one to the ground-truth strain,
especially around the inclusion where its edges are substantially sharper. To better
compare the results, the Edge Spread Functions (ESF) of the estimated strain fields
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Figure 3.3: Strain estimated by three methods in the FEM simulated phantom.
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Figure 3.4: Edge spread function of NCC, GLUE and OVERWIND for the FEM simulated
phantom across two perpendicular lines shown in Fig. 3.3 (c).

across two vertical and horizontal lines of Fig. 3.3 (a) are depicted in Fig. 3.4. It is
further clarified from these plots that the ESF of OVERWIND is substantially closer
to the ground truth as compared to both NCC and GLUE. The ESF of all horizontal
and vertical lines in this experiment are shown in the Supplementary Material.

To compare the sensitivity of different methods against noise, we add two levels
of Gaussian noise with peak signal-to-noise ratio (PSNR) values of 20 and 16.4 to
the simulated RF data. NCC fails to estimate strain given the large energy of noise,
and therefore, only the results of GLUE and OVERWIND are shown in Fig. 3.5. It is
clear that the strain image of OVERWIND substantially outperforms that of GLUE.

To quantitatively compare the results, the CNR of strain images are shown in
Table 3.1. For calculating these values, we ran a Monte Carlo simulation by estimating
strains 1000 times with different random noise realizations. The mean and standard
deviation (SD) of CNR for these 1000 experiments are reported for different levels of
noise. As seen from Figs. 3.3 and 3.5, and Table 3.1 not only OVERWIND outperforms
GLUE for each level of noise, but also has more robust performance against increasing
the amplitude of noise.

Phantom Results

For the phantom data, strain images estimated by NCC, GLUE and OVERWIND
are shown in Fig. 3.6. The estimated strain by GLUE suffers from artifacts and
regularization weights should be increased to remove these artifacts. However, by
increasing the regularization weights, more blurriness especially on the edges of the
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Figure 3.5: Estimated strain images in the FEM simulation experiment by adding Gaussian
noise to pre- and post-compressed RF data.
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Table 3.1: Mean and standard deviation of CNR for 1000 strain images of the simulated
phantom for different methods and noise levels. Windows that are considered for calculating
CNR are shown in white and black lines in Fig. 3.3. The mean improvement of OVERWIND
compared to GLUE is also reported for each level of noise.

PSNR CNR
mean (SD)

∞
NCC 49.29 (0)
GLUE 54.85 (0)
OVERWIND 58.2 (0)

(No noise)

20
NCC fails
GLUE 50.95 (2.89)
OVERWIND 56.27 (3.30)

16.4
NCC fails
GLUE fails
OVERWIND 50.56 (5.06)

inclusion is generated. OVERWIND produces a much smoother image than other
methods while preserving the sharpness of edges. It can be seen from this figure that
the strain values at the right and left side of the phantom are not equal. This is caused
by applying a compression that is not purely axial and likely contains some in-plane
rotation, which is possible in hand-held compressions.

For a comprehensive CNR comparison, the results of histogram analysis are shown
in Fig. 3.7. The target and background windows considered for CNR calculation are
shown in Fig. 3.6 (a). We have moved the small red window within the large red
window to take 9 target windows. At the same time, the small blue window is swiped
within the large blue window to consider 24 background windows. CNR is calculated
for every combination of target and background windows, resulting in 216 values.
Fig. 3.7 shows the distribution of the aforementioned CNR values. It is clear from
these histograms that OVERWIND produces strain images with higher CNR. The
mean of 216 CNR values are 15.40, 6.31 and 6.28 for OVERWIND, GLUE and NCC,
respectively.

In-vivo Results

NCC fails in estimating strains for this in-vivo data and therefore only the results of
GLUE and OVERWIND are presented in Figs. 3.8, 3.9 and 3.10. While the strain
images clearly show the tumor in these three patients, the B-mode image hardly shows
the tumor especially in patients 1 and 3.

The OVERWIND strain images are much smoother than GLUE while preserving
the sharp edges of the tumors and the veins. For quantitative comparison of two
methods, the CNR of the strains are calculated and the results are presented in Table
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Figure 3.6: B-mode and strain images of the CIRS phantom.
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Fig. 3.6 (a).
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Figure 3.8: B-mode and strain images of patient 1 (P1).

3.2, which also corroborate better performance of OVERWIND.
In the last experiment, data collected from patient 3 shows the left anterior branch

of portal vein. This vein is marked by the symbol ‘A’ in Fig. 3.10-(a) and has low
pressure. Therefore, it compresses easily during free-hand palpation, which results
in high strain values. The boundaries of the veins are substantially sharper in the
OVERWIND strain image.

3.3 Conclusions

In this chapter we proposed a novel method for real time USE. We coupled the two
well-known window-based and regularized optimization-based methods to increase
robustness against noise. Another advantage of the proposed method was utilizing the
total variation L1 norm regularization instead of the L2 norm regularization, which
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Figure 3.9: B-mode and strain images of patient 2 (P2).

Table 3.2: CNR values in calculated strain fields of two patients. Windows that are consid-
ered for calculating CNR are shown in Figs. 3.8, 3.9 and 3.10.

CNR
OVERWIND GLUE

P1 38.11 35.39
P2 40.81 30.89
P3 27.28 16.53
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Figure 3.10: B-mode and strain images of patient 3 (P3).
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results in sharper strain images. We compared the performance of our approach with
GLUE and NCC on data collected from simulations, phantom set-ups, and in-vivo
experiments.
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Chapter 4

Channel Data for Ultrasound
Elastography

This chapter is based on our published papers [85, 86].

To the best of authors knowledge, all previously developed methods use RF or
B-mode data for USE. In this chapter, we propose to use pre-beamformed channel
data. An ultrasound image comprises of multiple scan lines (RF lines). For generating
each line, an array of transducers transmit the acoustic energy pulse while timing
the piezoelectric crystals to focus the beam (as shown with blue curves in Fig.4.1).
Reflections are collected by the same piezoelectric crystals and digitized. Based on
the classic Nyquist-Shannon sampling theorem, the sampling rate must be at least
twice the bandwidth, in order to avoid aliasing [87]. Time gain and time-delay due to
transmission are compensated for the sampled data (i.e, channel data) as shown in
part A of Fig. 4.1. By integrating data, a RF line is generated as shown in part B of
Fig. 4.1. TDE is often performed using RF data, however in this paper we use time-
gain and time-delay corrected channel data (shown in section A of Fig. 4.1) instead
of RF data (shown in section B of Fig. 4.1). We name our method CGLUE and prove
that the error of estimated displacement with CGLUE is less than GLUE.

4.1 Methods

Let I1 and I2 of size (m, n, c) be two sets of time-gain and time-delay compensated
channel data collected as the tissue undergoing some deformation. I1b and I2b of size
(m, n) are the corresponding beamformed RF data. In these data sets, m and n are
depth and width of the imaged tissue and c is the number of channels that receive the
reflected data. The goal of TDE is estimating the displacement field between these
two data sets. In this section, we first briefly review our previous work, GLUE [33],
and then present CGLUE. More importantly, we derive an analytically proof of the
superiority of CGLUE over GLUE by comparing the error for the estimated TDEs.
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In GLUE and CGLUE, the displacements are estimated in two steps as integer and
subsample displacement estimates. The initial integer displacement estimates come
from DP, which is a recursive optimization based method for image registration. In
this method, different integers are nominated for displacement of each RF sample.
The cost function incorporates similarity of RF samples and displacement continuity
and optimizing this cost function leads to integer displacement of RF samples [78].

4.1.1 GLUE: GLobal Ultrasound Elastography

The goal of GLUE is to calculate the subsample displacement part by minimizing the
following cost function:

C(∆a11, ∆l11, . . . , ∆amn, ∆lmn) =
n∑︁

j=1

m∑︁

i=1
¶D(i, aij, ∆aij, j, lij, ∆lij)

+R(i, aij, ∆aij, j, lij, ∆lij)♢
(4.1)

where the data term D is:

D(i, aij, ∆aij, j, lij, ∆lij) = [I1b(i, j) − I2b(i + aij + ∆aij, j + lij + ∆lij)]
2 (4.2)

and the regularization term R is:

R(i, aij, ∆aij, j, lij, ∆lij) = α1(aij + ∆aij − ai−1j − ∆ai−1j)
2

+α2(aij + ∆aij − aij−1 − ∆aij−1)
2

+β1(lij + ∆lij − li−1j − ∆li−1j)
2

+β2(lij + ∆lij − lij−1 − ∆lij−1)
2.

(4.3)

In these equations, I1b and I2b are pre- and post-compressed beamformed RF data
of size m × n. The symbols aij and lij are axial and lateral integer displacements
for sample (i, j) that are estimated by DP while ∆aij and ∆lij are subsample axial
and lateral displacements that should be calculated. Finally, α1, α2, β1 and β2 are
regularization parameters.

In the next section, CGLUE is proposed that modifies the data term by utilizing
channel data instead of beamformed data.

4.1.2 CGLUE: Channel data for GLobal Ultrasound Elastog-
raphy

By considering pre-beamformed channel data, the data term of Eq. (4.2) is replaced
by

D(i, aij, ∆aij, j, lij, ∆lij) = 1
c

c∑︁

k=1

⎞

I1(i, j, k) − I2(i + aij + ∆aij, j + lij + ∆lij, k)
)︂2

.

Optimizing the cost function based on the proposed data term is not a trivial problem
due to nonlinearity of I2. To linearize I2 with respect to unknown variables, we replace
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Figure 4.1: Schematic of transmission and receive of signal for reconstructing one line of RF
data.

I2(i + aij + ∆aij, j + lij + ∆lij, k) with its first order Taylor series expansion around
(i+aij, j + lij, k). Furthermore, to simplify the notation, we denote I2(i+aij, j + lij, k)
as I2(.), so the data term can be rewritten as

D(i, aij, ∆aij, j, lij, ∆lij) = 1
c

c∑︁

k=1

⎞

I1(i, j, k) − I2(.) − ∆aijI
′

2a(.) − ∆li,jI
′

2l(.)
)︂2

(4.4)
where I ′

2a(.) and I ′

2l(.) are derivatives of I2 in the axial and lateral directions, respec-
tively.

The regularization term in Eq. (4.3) reduces estimation variance at the cost of
increased bias by penalizing the difference between aij + ∆aij and ai−1j − ∆ai−1j,
which leads to an underestimated displacement estimation. Therefore, as proposed
in [2,74], we consider εa and εl in the regularization term, where εa is the average of
integer axial displacement difference between subsequent samples i and i − 1 and εl

is the average of integer lateral displacement difference between samples j and j − 1
which are available from DP. Therefore, the regularization term can be modified as

R(i, aij, ∆aij, j, lij, ∆lij) = α1(aij + ∆aij − ai−1j − ∆ai−1j − εa)2

+α2(aij + ∆aij − aij−1 − ∆aij−1)
2

+β1(lij + ∆lij − li−1j − ∆li−1j)
2

+β2(lij + ∆lij − lij−1 − ∆lij−1 − εl)
2.

(4.5)

By considering the cost function C as a summation of data and regularization
terms that are proposed in Eqs. (4.4) and (4.5), differentiating it with respect to ∆aij

and ∆lij, and stacking all 2mn unknown parameters in a vector as

∆d2m×n = [∆a11, ∆l11∆a12, ∆l12, · · · , ∆amn, ∆lmn]T ,
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we have

(H + V )
⏞ ⏟⏟ ⏞

X

∆d =
1

c

c∑︂

k=1

(Pµ) − V d − b ⊗
⎟

εa

εl

⟨︂

⏞ ⏟⏟ ⏞

y

, (4.6)

where X and y are two known matrices, ⊗ is Kronecker tensor product and ∆d can
be calculated by the lower-upper (LU) decomposition (e.g. the X\y command in
MATLAB).

The matrix V is a 2mn × 2mn matrix as

V =

⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

Q R 0

R S R 0 0
0 R S R 0

. . . . . . . . .

0 R S R 0

0 . . . R S R
0 R Q

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

in which Q, S are pentadiagonal matrices as shown in Eqs. (4.7), (4.8) and R is a
diagonal matrix as

R = diag¶−α1, −β1, · · · , −α1, −β1♢.

The matrix H is a diagonal matrix as

H = diag¶h(1, 1), · · · , h(1, n), · · · , h(m, 1), · · · , h(m, n)♢

where h(i, j) is a 2 × 2 matrix as

h(i, j) =
1

c

⋃︁

⋁︁
⋁︁
⨄︁

c∑︁

k=1
(I ′

2a(.))2
c∑︁

k=1
(I ′

2a(.)I ′

2l(.))
c∑︁

k=1
(I ′

2a(.)I ′

2l(.))
c∑︁

k=1
(I ′

2l(.))
2

⋂︁

⎥
⎥
⋀︁

.

P is a diagonal matrix given by

P = diag¶e(1, 1), · · · , e(1, n), · · · , e(m, 1), · · · , e(m, n)♢.

e(i, j) is a matrix of size 2 × 2 as

e(i, j) =

⎟

I ′

2a(.) 0
0 I ′

2l(.)

⟨︂

.

µ is a vector as
µ = [g1,1, g1,2, · · · , gm,n]T ⊗ [1, 1]T,
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gi,j is difference of two images as

gi,j = I1(i + k, j + r) − I2(.)

and ⊗ is Kronecker tensor product.
The vector d contains integer displacements as

d = [a11, l11, a12, l12, · · · , amn, lmn]T

and finally the vector b is a mn × mn vector as

b = [1, 0, · · · , 0, −1]T.

Q =

⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

α1 + α2 0 −α2 0

0 β1 + β2 0 −β2 0 0
−α2 0 α1 + 2α2 0 −α2 0

0 −β2 0 β1 + 2β2 0 −β2 0
. . . . . . . . . . . . . . .

0 −α2 0 α1 + 2α2 0 −α2 0
0 −β2 0 β1 + 2β2 0 −β2

0 0 −α2 0 α1 + α2 0
0 −β2 0 β1 + β2

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

(4.7)

S =

⋃︁

⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⋁︁
⨄︁

2α1 + α2 0 −α2 0

0 2β1 + β2 0 −β2 0 0
−α2 0 2α1 + 2α2 0 −α2 0

0 −β2 0 2β1 + 2β2 0 −β2 0
. . . . . . . . . . . . . . .

0 −α2 0 2α1 + 2α2 0 −α2 0
0 −β2 0 2β1 + 2β2 0 −β2

0 0 −α2 0 2α1 + α2 0
0 −β2 0 2β1 + β2

⋂︁

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︁

(4.8)

4.1.3 Error Analysis

To analytically compare the errors of GLUE and CGLUE, we derive equations for the
error of TDE as functions of noise in the data. Let d̂ij = (âij, l̂ij) denote the ground
truth displacement of sample (i, j). For simplicity of mathematical derivations, we

assume that the motion is only in the axial direction and l̂ij = 0 without loss of
generality. Also by assuming the ultrasound noise to be an additive noise [88,89], the
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data at sample (i, j, k) is

I1(i, j, k) = Î(i, j, k) + n1(i, j, k)

I2(i, j, k) = Î(i − âij, j, k) + n2(i, j, k)
(4.9)

where n1(i, j, k) and n2(i, j, k) can have any distribution with expected values of µ1, µ2

and variances of σ1, σ2. In this section we denote the estimated displacements as aij

and lij, which represent summation of integer and subsample displacements.

GLUE Error

In beamforming the channel data corresponding to one element, the collected data
with different channels should be time-delayed and time-gained with respect to their
spatial distances from the element. The beamformed data is generated by adding the
time-delayed and time-gained data across all channels. Since time-delay and time-
gain compensation are linear operations and as such do not change the distribution
of noise, therefore we consider beamforming as summation of channel data as follows

I1b(i, j) =
c∑︁

k=1
I1(i, j, k) =

c∑︁

k=1
Î(i, j, k) + n1(i, j, k)

I2b(i, j) =
c∑︁

k=1
I2(i, j, k) =

c∑︁

k=1
Î(i − âi,j, j, k) + n2(i, j, k).

(4.10)

The cost function for GLUE can be written as

C =
n∑︁

j=1

m∑︁

i=1

⎞

I1b(i, j) − I2b(i + ai, j)
)︂2

=
n∑︁

j=1

m∑︁

i=1

⎟
c∑︁

k=1

⎞

Î(i, j, k) + n1(i, j, k) − Î(i + aij − âij, j, k) − n2(i + aij, j, k)
)︂
⟨︂2

+R.
(4.11)

By applying the first order Taylor series approximation for nonlinear functions, we
have

C =
n∑︁

j=1

m∑︁

i=1

⎟
c∑︁

k=1

⎞

Î(i, j, k) + n1(i, j, k) − Î(i, j, k) − (aij − âij)Î
′

a(i, j, k)

−n2(i + aij, j, k)
)︂
⟨︂2

+ R.

(4.12)

By differentiating the cost function and setting the derivative to zero, we have

aij = âij +

c∑︁

k=1
n1(i, j, k) − n2(i + aij, j, k)

c∑︁

k=1
Î

′

a(i, j, k)
. (4.13)
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The expected value and variance of the ai,j at sample (i, j) are

Eg[aij] = âij +
c(µ1 − µ2)
c∑︁

k=1
Î

′

a(i, j, k)

varg[aij] =
c(σ1 + σ2)

⎞ c∑︁

k=1
I ′̂

a(i, j, k)
)︂2

.
(4.14)

CGLUE Error

Considering Eq. (4.9), the cost function of CGLUE is

C =
1

c

n∑︁

j=1

m∑︁

i=1

c∑︁

k=1

⎞

I1(i, j, k) − I2(i + aij, j, k)
)︂2

+ R

=
1

c

n∑︁

j=1

m∑︁

i=1

c∑︁

k=1

⎞

Î(i, j, k) + n1(i, j, k) − Î(i + aij − âij, j, k) − n2(i + aij, j, k)
)︂2)︂

(4.15)
Following the same approach as the one used in previous section for estimating the
displacement, we have

aij = âij +

c∑︁

k=1
Î

′

a(i, j, k)
⎞

n1(i, j, k) − n2(i + aij, j, k)
)︂

c∑︁

k=1
Î

′2

a (i, j, k)
. (4.16)

The expected value and variance of the aij are

Ec[aij] = âij +
(µ1 − µ2)

c∑︁

k=1
Î

′

a(i, j, k)

c∑︁

k=1
Î

′2

a (i, j, k)

varc[aij] =
σ1 + σ2

c∑︁

k=1
Î

′2

a (i, j, k)
.

(4.17)

Statistical error analysis

To compare the expected values and variances, we rewrite (
c∑︁

k=1
I ′̂

a(i, j, k))2 as (1.I ′̂

a(i, j))2

where 1 and I ′̂

a(i, j) are vectors of size 1 × c as 1 = [1, . . . , 1] and I ′̂

a(i, j) =

[I ′̂

a(i, j, 1), . . . , I ′̂

a(i, j, c)]. The operator ‘.’ is the inner product of the two vectors.
According to Cauchy Schwarz inequality we have

⎞ c∑︁

k=1
I ′̂

a(i, j, k)
)︂2

=
⎞

1.I ′̂

a(i, j)
)︂2

≤
⎞ c∑︁

k=1
12
)︂⎞ c∑︁

k=1
Î

′2

a (i, j, k)
)︂

= c
c∑︁

k=1
Î

′2

a (i, j, k),
(4.18)
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therefore

Ec[aij] = âij +
(µ1 − µ2)

c∑︁

k=1
Î

′

a(i, j, k)

c∑︁

k=1
Î

′2

a (i, j, k)
≤ âij +

c(µ1 − µ2)
c∑︁

k=1
Î

′

a(i, j, k)
= Eg[aij].

and also

varc[aij] =
σ1 + σ2

c∑︁

k=1
Î

′2

a (i, j, k)
≤ c(σ1 + σ2)

⎞ c∑︁

k=1
I ′̂

a(i, j, k)
)︂2

= varg[aij].

4.1.4 Data Acquisition

In this section, the data that is utilized in different experiments of this chapter are
described and then results of CGLUE are compared with GLUE in Results Section
to illustrate improved performance of the CGLUE. For phantom and ex-vivo data
where ground truth is not known, the bias and variance of the error cannot be com-
pared quantitatively. However, we know that the strain maps should not have large
fluctuations in a homogeneous medium as shown in the FEM and analytical strain
maps. For the sake of comparison, the CNR is used to provide a quantitative mean
for assessing the proposed method according to [90]

CNR = 20log10(
2(s̄b − s̄t)

2

σ2
b + σ2

t

), (4.19)

where s̄t and s̄b are the spatial strain averages of the target and background, σ2
b and

σ2
t are the spatial strain variances of the target and background, respectively [7].

For estimating the axial strain, the displacement field should be differentiated. To
reduce noise effect of differentiating, it is common to use LSQ estimation for strain
estimating. For estimating strain of each sample, a few neighboring samples in a
window of size ρ should be considered and a line is fitted to their displacements. The
tangent of the line is considered as the strain for the middle sample. Considering more
data points for least square makes the strain smooth at the cost of losing resolution.
For each experiment, three different window sizes (with ρ = 3, ρ = 35 and ρ = 65)
are utilized for least square estimation to illustrate the superior performance of the
CGLUE.

Simulation Data

A simulated phantom is generated by utilizing the Field II ultrasound simulation
software [73] by randomly distributing slightly more than 10 scatterers per mm3 to
satisfy the Rayleigh scattering regime. The simulated phantom is homogeneous with
a Young’s modulus of 16 kPa. Two cylindrical inclusions with Young’s modulus of
40 kPa and 70 kPa are included in the phantom. For compressing the phantom and
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computing its ground truth displacement, FEM-based deformations are computed us-
ing the ABAQUS software package (Johnston, RI, USA) with mesh size of 0.05 mm2.
It should be mentioned that we had to interpolate the position of scatterers to gen-
erate the ground truth for the deformed digital phantom. However, this interpolation
itself can introduce bias and variance, which is inevitable for any FEM simulation.
Therefore, to overcome this issue, we have simulated another phantom with four uni-
form layers wherein the displacements can be calculated analytically (without FEM)
with Poisson ratio of 0.49 to test the validity of the results of GLUE and CGLUE.
Ultrasound images are simulated utilizing the Field II software. The probe consists
of 192 elements with width of 0.22 mm and height of 5 mm for each element and also
kerf of 0.05 mm. For each transmission, the reflected data is recorded by 64 channels.
The center and sampling frequencies are 8 MHz and 100 MHz, respectively.

Phantom Data

The phantom data is acquired from a tissue mimicking breast phantom (059 tissue
mimicking breast phantom, CIRS tissue simulation & phantom technology, Norfolk,
VA, USA) using an E-Cube R12 ultrasound machine (Alpinion, Bothell, WA, USA)
with a L3-12H probe at the center frequency of 11.5 MHz and sampling frequency of
40 MHz.

Ex-vivo Data

To highlight the improved performance of CGLUE, an ex-vivo experiment is organized
by placing a small piece of olive in a lamb liver. We purchased a fresh liver from a
local butcher and made a very small hole in the liver. We then inserted a small piece
of olive with roughly size of (10 × 5 × 5) mm3 into the liver through the hole. The
data are collected by E-Cube R12 ultrasound machine (Alpinion, Bothell, WA, USA)
with a L3-12H probe at the center frequency of 11.5 MHz and a sampling frequency
of 40 MHz.

4.2 Results

Simulation Results

The time delay profile for the simulated phantom is estimated by GLUE and CGLUE
and the strain is estimated by the LSQ method for windows of lengths 3, 35 and
65. As shown in Fig. 4.2, CGLUE exhibits substantially better performance in all
scenarios.

To provide a better comparison, we illustrate the Edge Spread Function (ESF) of
the estimated strains across a vertical line shown in Fig. 4.2 (a). As it is clear form
Fig. 4.3, the ESF of the CGLUE is closer to the ground truth as compared to GLUE
in all cases. The noticeable point is that the estimated strain by CGLUE with ρ = 3
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Table 4.1: Mean and variance of strain estimation error for GLUE and CGLUE with different
levels of noise for FEM simulation study. For each level of noise the experiment is repeated
100 times and the reported values in this table are averages of the 100 experiments.

SNR (dB) ME×105 VE×107

∞ GLUE -28.23 10.69
CGLUE -7.14 3.12

40
GLUE -28.95 10.81
CGLUE -7.2 3.2

30
GLUE -29.2 10.97
CGLUE -7.3 3.21

25
GLUE -41.2 11.04
CGLUE -14.3 3.4

is smooth, however, the result of GLUE for ρ = 3 has much more fluctuations and
increasing ρ has a significant smoothing effect on the estimated strain.

We also have added different levels of noise to channel data and have calculated
Mean of estimation Error (ME) and Variance of estimation Error (VE) based on the
following formulas

ME =

m∑︁

i=1

n∑︁

j=1
Se(i, j) − Sg(i, j)

m × n
,

VE =

m∑︁

i=1

n∑︁

j=1
(Se(i, j) − Sg(i, j))2

m × n
− ME2,

(4.20)

where Se and Sg are estimated and ground truth strains and m, n are the axial and
lateral size of data. Table 4.1 shows bias and variance of estimation error for different
levels of noise and different methods. For each level of noise, we have repeated the
experiment 100 times and the results are reported in Table 4.1.

The estimated strain profiles for the simulated phantom with four uniform layers
are shown in Fig. 4.4. ESFs across a vertical line are also shown in Fig. 4.5 which
verify a low bias and a low variance of the TDE error corresponding to CGLUE and
GLUE.

Similar to the previous experiment, we have added different levels of noise to the
channel data and have calculated bias and variance of the strain error according to Eq.
(4.20). Table 4.2 shows bias and variance of estimation error for GLUE and CGLUE
with different levels of noise. For each level of noise, we have repeated the experiment
100 times and the results are reported in Table 4.2.
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(h) CGLUE, ρ = 65

Figure 4.2: Strain images of the simulation phantom calculated using GLUE and CGLUE.
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Figure 4.3: Strain profiles of the simulated phantom across the vertical line in Fig. 4.2(a)
calculated by GLUE and CGLUE. Windows of length 3, 35 and 65 are used for estimating
strain by LSQ in (a), (b) and (c), respectively.

Phantom Results

The strain of phantom data is illustrated in Fig. 4.6. Three different windows are
considered for LSQ with sizes of 3, 35 and 65. CGLUE provides a lower variance strain
error estimation than that of GLUE in all cases. This is important as the background
and inclusions of the experimental phantoms are uniform and linear elastic materials.
Moreover, the smoother strain field of CGLUE for ρ = 3 shows that the corresponding
TDE profile has lower variance than TDE profile for GLUE. The ESF profiles that
are calculated across the yellow line in Fig. 4.6 (a) are also shown in Fig. 4.7 clarifies
that CGLUE exhibits better performance than GLUE for all LSQ window sizes by
generating smoother results. The length of LSQ windows do not impact results of
CGLUE as much as GLUE, which implies a less noisy TDE field by CGLUE. To
make sure that low variance strain error estimation does not result in a large bias
error, the CNR is utilized to show the contrast between lesion and background. The
calculated CNRs are reported in Table 4.3.

Ex-vivo Results

Similar to the previous sections, three different windows are considered for estimating
strain. The windows of LSQ have sizes of 3, 35 and 65. CGLUE displays the olive
piece more clearly than GLUE by providing a higher contrast and lower noise in the
background.

The ESFs of the estimated strains across the vertical line in Fig. 4.8 (a) are also
shown in Fig. 4.9. According to Fig. 4.9, the TDE field obtained from CGLUE is
much less noisy than the TDE field obtained from GLUE, since the resulted strain
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Figure 4.4: Ground truth strain of the simulated phantom is shown in (a). Estimated strains
by GLUE and CGLUE are shown in (b) and (c), respectively.
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Figure 4.5: Strain profiles of the simulated uniform phantom across a vertical line, calculated
by GLUE and CGLUE.
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Table 4.2: Mean and variance of strain estimation error for different levels of noise for 4-
layers uniform simulation study. For each level of noise, the experiment is repeated 100
times and the reported values in this table are averages of all experiments.

SNR (dB) ME×105 VE×105

∞ GLUE 30.45 3.20
CGLUE -2.64 2.94

40
GLUE 30.51 3.21
CGLUE -3.90 2.98

30
GLUE 30.79 3.26
CGLUE -4.33 2.92

25
GLUE 46.34 3.63
CGLUE 17.08 3.04
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Figure 4.6: Strain images of the tissue mimicking phantom calculated using GLUE and
CGLUE.
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Figure 4.7: Strain profiles of the tissue mimicking phantom across the horizontal yellow line
in Fig. 4.6(a) calculated by GLUE and CGLUE.

Table 4.3: CNR for strain images of the phantom data for different methods. Windows that
are considered for calculating CNR are shown in red and blue lines in Fig. 4.6.

ρ CNR (dB)

3
GLUE 4.54 (6.58)
CGLUE 5.39 (7.32)

35
GLUE 4.69 (6.72)
CGLUE 5.44 (7.36)

65
GLUE 4.81 (6.83)
CGLUE 5.50 (7.41)
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(b) GLUE, ρ = 3
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(c) GLUE, ρ = 35
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(d) GLUE, ρ = 65
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(f) CGLUE, ρ = 35
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Figure 4.8: B-mode image of the lamb liver with small piece of olive placed in (a). Estimated
strain images using GLUE and CGLUE for different LSQ window sizes are shown in (b)-(g).
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Figure 4.9: Strain profiles of the liver data across the vertical yellow line in Fig. 4.8(a)
calculated by GLUE and CGLUE. Windows of length 3, 35 and 65 are used for estimating
strain by LSQ in (a), (b) and (c), respectively.

of CGLUE with ρ = 3 is smoother than the strain of GLUE. Meanwhile, strain of
CGLUE with ρ = 35, 65 are smoother than GLUE.

For quantitative comparison of CGLUE and GLUE, the calculated CNRs are
reported in Table 4.4. The improvement of CGLUE with respect to GLUE in this
experiment is much more than simulation and phantom experiments due to high level
of noise that is present in ex-vivo data.

Table 4.4: CNR for strain images of the ex-vivo data for different methods. Windows that
are considered for calculating CNR are shown in white and black lines in Fig. 4.8.

ρ CNR (dB)

3
GLUE 10.20 (10.09)
CGLUE 31.76 (15.02)

35
GLUE 20.09 (13.03)
CGLUE 49.88 (16.98)

65
GLUE 28.84 (14.60)
CGLUE 63.24 (18.01)
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4.3 Conclusions

In this paper we proposed a novel method for USE and named it as CGLUE. We
utilized time-gain and time-delay corrected channel data instead of RF data for USE.
We proved that the proposed method decreases the bias and variance of error for
estimated displacement as compared to the recently proposed method GLUE. The
results of simulation, phantom and ex-vivo experiments were presented to illustrate
better performance of CGLUE over GLUE. The estimated strain of CGLUE was
smoother than the result of GLUE even for small LSQ window sizes. The smoothness
of the estimated strains for small data sizes of LSQ further corroborates more accurate
estimated displacement by CGLUE over GLUE.
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Chapter 5

Virtual Source Synthetic Aperture
for Accurate Lateral Displacement
Estimation

This chapter is based on our published paper [91].

Different methods are proposed to perform TDE that can be broadly categorized as
window-based, regularized optimization-based, and deep-learning approaches [38,92].
Despite the capability of USE methods in estimating both axial and lateral displace-
ments, the latter is of lower quality compared to the former for three main reasons: low
sampling rate, lack of carrier signal and low resolution in the lateral direction [93,94].
One of the most utilized techniques for increasing the data size in lateral direction
is interpolation [95, 96]. It is shown by experimental results that spline interpolation
has the best performance among different techniques of interpolation [93]. In these
methods, the bandwidth should be large enough to have sufficient overlap between
adjacent lines [95]. It is shown that the minimum density of A-lines for original data
should be at least 2 A-line per beam width to have an acceptable interpolation [95].
Accordingly, not only interpolation does not change the resolution, it cannot be im-
plemented for high resolution data to increase the number of samples. Besides low
resolution, another disadvantage of interpolation especially for large factor interpola-
tions is decreasing the robustness of the TDE, since interpolation can be a source of
error [97].

SA imaging is used for lateral strain estimation in [98]. SA has narrow and fixed
beam width in all field of view in contrast to line by line imaging, which has narrow
beam width in the focal zone only. Moreover, SA has capability of increasing sampling
rate in lateral direction without interpolation, which also improves the resolution. It is
shown that the accuracy of TDE increases by decreasing the beam width [98]. Accord-
ingly, SA is better than line by line imaging for lateral USE, with the disadvantage
of lower transmission power and penetration depth, which could hinder clinical use

60



(a) SA (b) Line by line
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Figure 5.1: Schematics of different imaging modes. The red dashed lines show the beam
pattern, while the gray areas show the regions that received data should be focused.

of SA [99,100].
In this chapter, we propose to use VSSA imaging that implements SA-based beam-

forming on focused transmitted signals. On the one hand, this enables us to benefit
from advantages of SA such as high resolution and the capability to increase the
sampling frequency to increase the resolution and number of A-lines. On the other
hand, we can take advantage of line by line imaging in high penetration depth. Then
the beamformed data is fed to our recently published TDE method, OVERWIND [74]
that has shown to outperform window-based and other regularized optimization-based
techniques. We call the results of OVERWIND on VSSA with high sampling frequency
in lateral direction as High Frequency OVERWIND (HF OVERWIND) and compare
the results with OVERWIND on spline based interpolated data (Inter. OVERWIND)
and also with OVERWIND on VSSA with low sampling frequency in lateral direc-
tion in which the number of A-lines is equal to the number of piezo-electrics (LF
OVERWIND).

5.1 Methods

Most USE techniques like OVERWIND requires two sets of data collected as the
tissue undergoes some deformation. Let I1 and I2 of size (m, n) be the beamformed
RF data where m and n are depth and width of the imaged tissue. The goal of TDE
is estimating the displacement field between these two data sets. In this section, we
first briefly review our recently developed USE method, OVERWIND [74], and then
present the beamforming technique to increase the number of lines and resolution in
the lateral direction to help OVERWIND in accurately estimating displacements.
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5.1.1 OVERWIND: tOtal Variation Regularization and WIN-
Dowbased time delay estimation

The displacement estimation in OVERWIND comprises two steps for increasing the
capabilities of the technique in estimating large deformations. In the first step, an
integer estimation of the displacement is calculated using DP, which is a recursive
optimization based method for image registration. In this method, we consider a range
of displacements for each sample and optimize the cost function that incorporates
similarity of RF samples and displacement continuity to estimate integer displacement
of RF samples [78]. In the second step, the sub-sample displacements are calculated
by minimizing the following cost function:

C(∆a1,1, . . . , ∆lm,n) = Σn
j=1Σ

m
i=1

[︃

1
L

Σk,r

⎞

I1(i + k, j + r)

−I2(.) − ∆ai,jI
′

2a(.) − ∆li,jI
′

2l(.)
)︂2

+α1δ1(ai,j + ∆ai,j − ai−1,j − ∆ai−1,j − εa)
+α2δ2(ai,j + ∆ai,j − ai,j−1 − ∆ai,j−1)
+β1δ3(li,j + ∆li,j − li−1,j − ∆li−1,j)

+β2δ4(li,j + ∆li,j − li,j−1 − ∆li,j−1 − εl)
]︃

,

where i and j are indices of RF samples in the region of interest and the symbols
i + k and j + r represent indices of RF samples inside the window that is con-
sidered around each sample. ¶ai,j, ∆ai,j♢ and ¶li,j,∆li,j♢ represent the integer and
sub-sample displacement of (i, j) in axial and lateral directions, respectively. I2(.)
represent I2(i + k + ai,j, j + r + li,j) and I ′

2a(.) and I ′

2l(.) are derivatives of I2 in axial

and lateral directions, respectively. δx(s) = 2λx

√︂

λ2
x + s2 is an approximate of norm

L1 for regularization which allows sharp transitions where λx is a scaling parame-
ter. Finally, α1, α2, β1 and β2 are regularization parameters to be tuned. These four
parameters can be related to each other as explained in Discussion Section.

OVERWIND considers both displacements in axial and lateral directions, but the
estimation in the former direction is more accurate since, among other reasons, ultra-
sound data usually has less samples in lateral direction compared to axial direction.
One of the most common techniques to cope with this issue is interpolating data in
lateral direction. Not only it does not change the resolution but also its performance
can deteriorate for the high resolution data sets since the A-lines do not have high
overlap with each other in the high resolution data [101, 102]. Another disadvantage
of interpolation is low robustness for complex interpolation techniques.

In this paper, we propose to use VSSA imaging mode for USE, which has the abil-
ity of increasing sampling frequency in the lateral direction as much as axial direction
and also has high resolution in lateral direction while allowing high penetration. In
the next subsection we describe SA, line by line imaging, and then show how VSSA
can benefit to relax two main limitations for lateral displacement estimation in USE.
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5.1.2 SA: Synthetic Aperture

In SA, a single element transmits a wave through the tissue as shown in Fig. 5.1(a)
and all elements record reflections. Each element generates an image of tissue (the
gray area of Fig. 5.1(a)) by focusing the received beam at any point according to the
expression

tp(ij) =

√︂

(xp − xi)2 + (zp)2 +
√︂

(xp − xj)2 + (zp)2

c
(5.1)

where c is the speed of sound in soft tissue and i and j are the transmitter and receiver
elements symbols. xi, xj and xp are the horizontal positions of the transmitter i,
receiver j and point p where the beam is focused and zp is depth of point p by
assuming the probe is at zero depth. During each transmission, all receivers in the
aperture focus the received beam at all points of the aperture and summation of
these data for all receivers generate a low-resolution image. The next element of
the array transmits and the previously described operation is repeated to generate
another low-resolution image. By repeating the experiment for all piezo-electrics as
transmitter and adding up all low-resolution images, the final image is generated as
per the following expression

yp =
e∑︂

i=1

e∑︂

j=1

tp(ij), (5.2)

where e is the total number of elements in the transducer array. The main disad-
vantage of this technique for USE is the limitation in imaging deep areas since the
emitted signal from one piezo-electric does not have enough power to penetrate deep
areas.

5.1.3 Line-by-Line Imaging

In this imaging technique, a group of elements (i.e. transmission aperture) transmits
the beam to increase the penetration of signal to image deeper areas. The transmitted
beam focuses at a single point during each transmission. The data received at different
channels is processed to generate one line of the US image. Fig. 5.1-(b) shows the
pattern of transmission by dashed red lines, while the area that is imaged in each
transmission is highlighted by gray. In this technique, the lateral resolution at the
focal depth is high and close to the resolution of the SA imaging. Further away from
this point, the resolution decreases. Moreover, the number of lines is limited to the
number of elements (without interpolation).

5.1.4 VSSA: Virtual Source Synthetic Aperture

This imaging technique benefits from both SA and line by line imaging and has
the ability of increasing sampling frequency and resolution in lateral direction in all
imaged area while penetrating to deep fields which are essential for USE. Similar to
line by line imaging, a group of elements transmits the beam by focusing at a single
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Figure 5.2: Estimated lateral displacement with LF OVERWIND, Inter. OVERWIND and
HF OVERWIND for simulation data are shown in (b)-(d), respectively. The second row
shows the corresponding strains.

point [103,104]. Since the beam at the focal point is very narrow, we can assume the
focal point as a virtual source that transmits the beam similar to SA as shown in Fig.
5.1-(c). Then each receiver focuses the received data at any point inside the aperture
according to the following expression [105]

tp(fj) =
zf ±

√︂

(xp − xf )2 + (zf − zp)2 +
√︂

(xj − xp)2 + z2
p

c
(5.3)

where c is the speed of sound in soft tissue, xp, xf , zp and zf are the positions of the
focal point f and p is the location at which the beam is focused. The ± term in Eq.
5.3 divides the imaging area into regions above and below the virtual source. Similar
to SA, summation of focused data by different receivers generates a low-resolution
image and by switching the transmissions new focal points will be the virtual sources
and in each step a new low resolution image will be generated. Similar to SA, adding
up these images will end up with a high-resolution image as

yp =
e∑︂

f=1

e∑︂

j=1

tp(fj) (5.4)

Similar to line by line imaging, the number of A-lines is usually equal to number
of elements in VSSA, and interpolation is the most commonly used technique for
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increasing the sampling frequency in the lateral direction for USE purposes. However,
for the VSSA the received data can be focused at any point inside the aperture
(highlighted by gray in Fig. 5.1-(c)). To increase the sampling frequency, we consider
a grid consisting of nodes with same spatial distance of nodes in axial and lateral
direction as pd = c

2fs
. Each receiver element generates an image on that grid as shown

in Fig. 5.1-(c). Therefore, we can increase number of data and resolution in lateral
direction without interpolation.

5.1.5 Data Acquisition and Comparison Metrics

In this section, the data that are utilized in different experiments of the paper are
described and then results of HF OVERWIND are compared with Inter. OVERWIND
and also LF OVERWIND wherein number of data in lateral direction is equal to
number of piezo-electrics. In the Results Section, the CNR metric is used to provide
a quantitative value for assessing the proposed method [90]

CNR = 20 log10

⎞2(s̄b − s̄t)
2

σ2
b + σ2

t

)︂

, (5.5)

where s̄t and s̄b are the spatial strain averages of the target and background, σ2
t and

σ2
b are the spatial strain variances of the target and background, respectively [7]. For

the simulation results where we know the ground truth, we use Root Mean Square
Error (RMSE), Mean of estimation Error (ME) and Variance of estimation Error
(VE) as other metrics according to

RMSE% = 100 ∗

√︄

m × n ×
m∑︁

i=1

n∑︁

j=1
(Se(i, j) − Sg(i, j))2

m∑︁

i=1

n∑︁

j=1
Sg(i, j)

,

ME =

m∑︁

i=1

n∑︁

j=1
Se(i, j) − Sg(i, j)

m × n

VE =

m∑︁

i=1

n∑︁

j=1
(Se(i, j) − Sg(i, j))2

m × n
− ME2

(5.6)

where m and n are size of estimated strains. Se and Sg are estimated and ground
truth strains, respectively. For estimating the axial strain, the displacement field
should be differentiated. To reduce the impact of noise during differentiating, it is
common to use LSQ for strain estimating. For estimating the strain at each sample,
a few neighboring samples in a window of size ρ are considered and a line is fitted to
their displacements. The tangent of the line is considered as the strain for the middle
sample. Considering more data points for least square makes the strain smooth at
the cost of losing resolution. Throughout the paper, the size of LSQ window is 5% of
total data size.
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Figure 5.3: Edge spread function of the lateral strain in horizontal (a) and vertical line (b).
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Figure 5.4: Estimated axial displacement with LF OVERWIND, Inter. OVERWIND and
HF OVERWIND for simulation data are shown in (b)-(d), respectively. The second row
shows the corresponding strains.
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Figure 5.5: Edge spread function of the axial strain in horizontal (a) and vertical line (b).

Simulation Data

A simulated phantom is generated by utilizing the Field II ultrasound simulation
software [73] by randomly distributing slightly more than 10 scatterers per resolution
cell to satisfy the Rayleigh scattering regime.

The simulated phantom consists of a homogeneous region with a Young’s mod-
ulus of 4 kPa and one cylindrical inclusion with a Young’s modulus of 40 kPa. For
compressing the phantom and computing its ground truth displacement, Finite Ele-
ment Method (FEM)-based deformations are computed using the ABAQUS software
package (Johnston, RI, USA) with triangular mesh sizes of 0.05 mm2. The probe
consists of 128 elements with pitch of 0.15 mm. The center frequency is 7 MHz, while
the sampling rate is 100 MHz. The lateral sampling frequency in HF OVERWIND
is 19 times higher than LF OVERWIND. Therefore, the data is interpolated by a
factor of 19 and using a cubic spline method for Inter. OVERWIND, so that Inter.
OVERWIND and HF OVERWIND have the same number of samples.

Phantom Data

The phantom data is acquired from a tissue mimicking breast phantom (059 tissue
mimicking breast phantom, CIRS tissue simulation & phantom technology, Norfolk,
VA, USA) using an E-Cube R12 ultrasound machine (Alpinion, Bothell, WA, USA)
with a L3-12H probe at the center frequency of 8 MHz and sampling frequency of
40 MHz. The lateral sampling frequency in HF OVERWIND is 8 times higher than
LF OVERWIND, therefore, the data is interpolated by a factor of 8 using the cubic
spline method for Inter. OVERWIND.
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Figure 5.6: Results on a tissue mimicking phantom. B-Mode image is shown in (a). Estimated
lateral displacement with LF OVERWIND, Inter. OVERWIND and HF OVERWIND are
shown in (b)-(d), respectively. The second row shows the corresponding strains.
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Table 5.1: Quantitative comparison of lateral strain estimation on simulated phantom.

LF Inter. HF
OVERWIND OVERWIND OVERWIND

ME −1.1 × 10−3 1.6 × 10−3 4.33 × 10−4

VE 9.77 × 10−6 2.18 × 10−6 6.21 × 10−7

RMSE 85.04% 56.73% 23.09%
CNR 0.37 -1.49 21.70

Table 5.2: Quantitative comparison of axial strain estimation on simulated phantom.

LF Inter. HF
OVERWIND OVERWIND OVERWIND

ME −3.13 × 10−5 −3.93 × 10−5 −4.38 × 10−5

VE 5.21 × 10−7 4.97 × 10−7 4.96 × 10−7

RMSE 7.99% 7.82% 7.81%
CNR 50.76 52.56 54.09

5.2 Results

Simulation Results

Fig. 5.2 shows the lateral displacement and strain for LF OVERWIND, Inter. OVERWIND
and HF OVERWIND. It is clear that USE on data sampled at a higher rate sig-
nificantly improves the estimations. As anticipated, the interpolation decreases the
variance of estimation significantly at the expense of over smoothing compared to
low sampled data. The reported RMSE, ME and VE and CNR in table 6.1 also
corroborate improvements in lateral estimations. To provide a better comparison, we
illustrate the Edge Spread Function (ESF) of the estimated strains across two vertical
and horizontal lines shown in Fig. 5.2 (a). As illustrated in Fig. 5.3, the ESF of the
HF OVERWIND is substantially closer to the ground truth as compared to those of
Inter. OVERWIND and LF OVERWIND.

Fig. 5.4 also shows the axial displacement and axial strain for laterally low sampled
data, interpolated data and laterally high sampled data. It is inevitable that correct
lateral estimation leads to slightly improved axial estimations. Table 5.2 and Fig. 5.5
show marginal improvement of axial strain.

Phantom Results

Estimated lateral displacement and strain for experimental phantom are shown in
Fig. 5.6. Similar to the simulation study, the lateral estimation by spline interpolation
is over smoothed and HF OVERWIND outperforms the previous methods. Fig. 5.7
shows the axial displacements and strains and it illustrates better performance of HF
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Table 5.3: The CNR comparison of different method on the phantom experiment in axial
and lateral estimations.

CNR
Axial Lateral

LF OVERWIND 10.80 -29.89
inter OVERWIND 10.28 -1.55
HF OVERWIND 11.01 6.35

OVERWIND over both LF OVERWIND and Inter. OVERWIND. The reported CNR
values in Table 5.3 also show improvement in both lateral and axial estimations by
HF OVERWIND.

5.3 Conclusions

Accurate estimation of the tissue mechanical parameters requires accurate strain es-
timation in all direction. Although USE techniques estimate displacements in both
axial and lateral directions, estimation in the axial direction is more accurate than in
the lateral direction due to high sampling frequency, improved axial resolution and
a carrier signal propagating in the axial direction. In this paper we proposed to use
VSSA imaging mode to benefit from advantages of both SA and line by line imaging
in a high resolution with high number of A-lines and penetration depth. The beam-
formed data is fed to our recently developed TDE method, OVERWIND. The results
exhibit significant improvement compared to interpolating data in lateral direction
as one of the commonly used techniques in estimating lateral strain.

In this paper we proposed to use VSSA as an advanced beamforming technique
for time delay estimation in OVERWIND. In this imaging technique multiple piezo-
electrics participate in the transmission which improves the beam strength in deep
regions. The focused region of the beam can be considered as a virtual element that
transmits a beam in tissue. As such, the imaging procedure becomes closer to the
operation of the synthetic aperture and received data can be beamformed similar
to synthetic aperture. In this imaging mode, the sampling frequency in the lateral
direction can be increased as much as the sampling frequency in the axial direction
to increase the resolution and addresses two of the major limitations in estimation
lateral displacements. Meanwhile, VSSA has fixed and narrow beam width in all
imaging field which results in accurate and high-resolution displacement estimation.

Virtual source synthetic aperture assumes the focal point as a beam source that
transmits the signal and conducts beamforming according to Eq. (5.3). The ± term
in Eq. (5.3) divides the imaging area into top and bottom regions above and below
the virtual source resulting in a discontinuity at the focal depth as shown in Fig. 5.8.
This discontinuity is a source of error for USE. Therefore, the focal point should be
established in an area outside the region of interest and corresponding data should
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Figure 5.7: Results on a tissue mimicking phantom. Estimated axial displacement with LF
OVERWIND, Inter. OVERWIND and HF OVERWIND are shown in (a)-(c), respectively.
The second row shows the corresponding strains.

be cropped before USE to avoid this discontinuity.

(a)

Figure 5.8: Discontinuity of the VSSA imaging in the focal depth
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Chapter 6

2D Displacement Estimation for
Qausi-Static Ultrasound
Elastography with mechanical
constraints.

The proposed method of this chapter is submitted to
IEEE Transaction on Medical Imaging.

Different methods are proposed for 2D displacement estimation including window-
based, regularized optimization-based and deep learning approaches. All methods
have the capability of estimating displacement in two directions. However, estimation
in the axial direction is much more precise and accurate compared to that of lateral
direction due to three main reasons [93, 94]: lower sampling frequency, wider point
spread function and a lack of carrier signal (i.e. ultrasound beam is an longitudinal
beam propagating in axial direction).

Several supplementary techniques are proposed to increase the accuracy of 2D
estimation methods in estimating lateral displacement. Interpolating data in lateral
direction is one of the most commonly used techniques [95, 96]. It is shown that
spline-based interpolation has the best performance compared to other interpolating
methods, but the bandwidth of RF signal should be large enough to have sufficient
overlap between adjacent Radio Frequency (RF) lines. In a recent work, we proposed
beamforming with VSSA for better displacement estimation. The main advantage
of VSSA is its capability in increasing sampling rate without interpolation [91]. The
other approach for increasing accuracy of estimation is beam steering [106, 107]. In
these methods, multiple RF data should be acquired in different angels which requires
hardware modification (for rotating the probe with exact angles) or software modi-
fication (for steering the transmitted beam). The displacement at each angle should
be estimated individually and results should be mapped to extract correct estimation
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Figure 6.1: Intensity variation of a PSF in axial and lateral directions.

in lateral direction. Finally, the third commonly used techniques are post processing
techniques that reconstruct lateral displacement from the initial estimations in both
axial and lateral directions and considering some mechanical based constraints like
incompressibility or satisfying momentum equation [27, 108, 109]. The reconstructed
lateral displacements by these methods are highly affected by initially estimated poor
lateral estimations and also solely rely on axial displacements instead of also exploit-
ing the RF data.

In this chapter, we propose a MUSCULAR as a 2D displacement estimation
method for more precise and accurate lateral displacement estimation without im-
plementing any of the above mentioned supplementary techniques. In MUSCULAR,
we add the mechanical constraints as a regularization part to the cost function as well
as absolute intensity differences and displacement continuity of neighboring samples.
Regarding the mechanical constraint, it is well known that by assuming tissue to be
incompressible, linear plane stress and linear plane strain assumptions could be valid
approximations for describing the behavior of the tissue. The force magnitude in the
out-of-plane direction determines the choice of plane stress or plane strain [109]. In
this paper we focus on plane stress as a thin layer of the tissue in out of plane direc-
tion is compressed. MUSCULAR is a displacement estimation method that estimates
high accuracy deformation without exploiting supplementary steps and it significantly
reduces the computational complexity.

We compare MUSCULAR with the two other 2D displacement estimation meth-
ods. The first method is the recently published regularized optimization based USE
method OVERWIND [74] and the second one is the commonly used window-based
technique that estimates deformation by maximizing NCC. We show that MUSCULAR
significantly outperforms OVERWIND and NCC in terms of lateral displacement es-
timation. We use one set of simulation data, two sets of phantom and two sets of
in-vivo in our experiments. MUSCULAR is a displacement estimation method and
all supplementary techniques for improving lateral estimation can be implemented
for MUSCULAR as well as other displacement estimation method. However we show
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Figure 6.2: Ground truth axial and lateral strains are shown in (a) and (f), respectively.
Estimated axial strains with NCC, OVERWIND and MUSCULAR for simulation data are
shown in (b)-(d), respectively. The estimated lateral strains are shown in (g)-(i).
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Figure 6.3: Edge spread function of the estimated lateral strain for simulated data across
vertical and horizontal lines that are shown in Fig. 6.2-(f).
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Figure 6.4: Normalized RMSE of simulation results for different combination of α1 and α2.
The slope of the main diagonal is 60.

that pure estimation of MUSCULAR (without any supplementary techniques) out-
performs the other estimation methods combined with supplementary techniques.

6.1 Methods

Let I1 and I2 denote two RF data collected before and after some deformation. The
only assumption that USE techniques make to increase the accuracy and robustness
of the displacement estimation is the continuity assumption, wherein the neighboring
samples -spatially or temporally- are assumed to have similar displacements. In our
recent work for USE, we proposed a cost function and added the continuity assump-
tion as norm L1 regularization of the difference between displacements of neighboring
samples in both axial and lateral directions. For quasi-static USE, the plane stress
assumption is also a valid one [27]. In this paper we consider plane stress assumption
as the regularization to the optimization problem.
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Figure 6.5: B-mode image of the inclusion one in the phantom is shown in (a). The estimated
axial strains by NCC, OVERWIND and MUSCULAR are shown in (b)-(d). Figures (f)-(h)
show the estimated lateral strain by NCC, OVERWIND and MUSCULAR, respectively.
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Figure 6.6: B-mode image of the inclusion two in the phantom is shown in (a). The estimated
axial strains by NCC, OVERWIND and MUSCULAR are shown in (b)-(d). (f)-(h) are the
estimated lateral strain by NCC, OVERWIND and MUSCULAR, respectively.
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6.1.1 MUSCULAR: Mechanical_based qUaSi-statiC Ultrasound
eLAstogRaphy

Di,j = 1
L

Σk,r

⎞

I1(i + k, j + r) − I2(i + k + ai,j, j + r + li,j) − ∆ai,j

∂I2(i + k + ai,j, j + r + li,j)

∂y

−∆li,j
∂I2(i + k + ai,j, j + r + li,j)

∂x

)︂2
,

Ri,j = α1 ♣ ∂āi,j

∂y
− θa ♣ +α2 ♣ ∂āi,j

∂x
♣ +β1 ♣ ∂l̄i,j

∂y
♣ +β2 ♣ ∂l̄i,j

∂x
− θl ♣ .

(6.1)

In quasi-static USE, loading in the out of plane direction is small, which makes the
plane stress approximation a proper assumption for relating the deformations in axial
and lateral directions [109]. By considering the displacement vector as u = [āi,j, l̄i,j]

T ,
the plane stress assumption can be modeled as [27]

∇.A(εi,j) = 0 (6.2)

where
A(εi,j) = 2tr(εi,j)I + 2εi,j (6.3)

and εi,j is the 2D linearized strain tensor as

εi,j =
∇ui,j + ∇ui,j

T

2
. (6.4)

The extended form of Eq. (6.2) can be written as

4
∂2āi,j

∂y2
+

∂2āi,j

∂x2
+ 3

∂2l̄i,j

∂xy
= 0

4
∂2l̄i,j

∂x2
+

∂2l̄i,j

∂y2
+ 3

∂2āi,j

∂xy
= 0

(6.5)

In the MUSCULAR method we add the Eq.(6.5) as regularization parameters to the
optimization problem. As optimizing the new cost function makes divergence in the
bottom part of the tissue, we add a new term to limit the displacement of the last
row to the estimated integer displacement by DP. The proposed cost function for
MUSCULAR is as

C = Σn
j=1Σ

m
i=1Di,j + Ri,j + Wi,j + λ3∆

2amj (6.6)
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Figure 6.7: B-mode image of patient 1 is shown in (a). The estimated axial strains by NCC,
OVERWIND and MUSCULAR are shown in (b)-(d). (f)-(h) are the estimated lateral strain
by NCC, OVERWIND and MUSCULAR, respectively.
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where

Wi,j = λ1(4
∂2a

∂y2
+

∂2a

∂x2
+ 3

∂2l

∂xy
)2 + λ2(4

∂2l

∂x2
+

∂2l

∂y2
+ 3

∂2a

∂xy
)2.

By differentiating Eq. (6.6) with respect to ∆ai,j and ∆li,j and setting them to zero
and stacking all 2mn unknown parameters in a vector as ∆d2mn = [∆a1,1, ∆l1,1, ∆a1,2, ..., ∆lm,n]T ,
we end up with a linear equation as M∆d = b. By solving this linear equation we
obtain the optimal subsample displacements.

6.1.2 Tunning the regularization parameters

The proposed cost function of MUSCULAR has seven regularization parameter and
by properly tunning these parameters, deformation of any kind of material can be
estimated. However, most biological soft tissues can be considered as an almost in-
compressible tissues [8]. In this section, we describe how regularization parameters
of the MUSCULAR can be related to each other for almost incompressible tissues.
By relating regularization paramters to each other, seven parameters are reduced to
three independent regularization parameters that could be tunned easily.

In incompressible tissues, compression does not change the volume of the tissue. In
such materials, the Poisson’s ratio as a relationship between compression/extension
of tissue in lateral direction and extension/compression in axial direction is about
0.5 [95, 110]. The parameters α1 and β1 in Eq.(6.6), represent the regularization of
axial and lateral displacements in axial direction, then by assuming the Poisson’s
ratio for biological tissues about 0.5, we can set β1 = 0.5α1. Similarly, we can set
β2 = 0.5α2.

In the next step, we relate α1 and α2 to each other. To this end, the point spread
function (PSF) of the ultrasound RF data should be known. Then the size of PSF in
axial and lateral direction could be measured as shown in Fig. 6.1. The relationship
between α1 and α2 can be represented as

α1

α2

=
Y

X
× SA

SL

, (6.7)

where SA and SL are sampling rates in axial and lateral directions, respectively.
As mentioned, MUSCULAR can estimate displacement for all imaging modalities,

however as the focus of the present manuscript is ultrasound, we can set the λ2 = 0.
A rough explanation for λ2 = 0 is that the number of samples in lateral direction
is much less than axial direction and this makes the second order gradient in lateral
direction very large compared to axial direction, therefore λ2 should be much less than
λ1 in Eq. (6.6). The remained three regularization parameters can be tuned easily as
they do not affect the performance of each other. α1 is smoothing the estimations in
axial directions. λ1 is for accuracy of lateral displacement and λ3 is for prohibiting
MUSCULAR from divergence at the bottom part of the estimations. The code of
MUSCULAR will be publicly available following the publication of the paper.
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6.1.3 Data Acquisition and comparison metrics

For validation of better performance of MUSCULAR compared to other USE tech-
niques, we perform simulation, phantom and in-vivo experiments. In this section, the
data that are utilized in different experiments of the paper are described and then the
performance of the MUSCULAR is compared to other methods in Results Section.
For quantitative assessing the MUSCULAR method, CNR metric is used [7, 90]

CNR = 20 log10

⎞2(s̄b − s̄t)
2

σ2
b + σ2

t

)︂

, (6.8)

where s̄t and s̄b are the strain averages and σ2
t and σ2

b are the strain variances of the
target and background windows, respectively. For the simulation study, as we know
the ground truth strain values, Root Mean Square Error (RMSE) is also calculated
as

RMSE% = 100 ∗

√︄

m × n ×
m∑︁

i=1

n∑︁

j=1
(Se(i, j) − Sg(i, j))2

m∑︁

i=1

n∑︁

j=1
Sg(i, j)

, (6.9)

where m and n are size of estimated strains. Se and Sg are estimated and ground
truth strains, respectively.

Simulation Data

We have simulated a 20 × 20 mm2 phantom utilizing Field II ultrasound simulation
software [73, 111]. The imaging probe consists of 128 elements with pitch of 0.15
mm operating at the center frequency of 7 MHz and the sampling rate is 100 MHz.
The simulated phantom consists of a homogeneous region with a Young’s modulus
of 4 kPa and one cylindrical inclusion with a Young’s modulus of 40 kPa. We have
compressed the phantom 1% using the ABAQUS software package (Johnston, RI,
USA) as Finite Element Method (FEM)-based software with triangular mesh sizes of
0.05 mm2.

Phantom Data

The phantom experiment is carried out at PERFORM centre, Concordia University.
Two sets of the phantom data are acquired from a tissue mimicking breast phantom
(059 tissue mimicking breast phantom, CIRS tissue simulation & phantom technology,
Norfolk, VA, USA) using an E-Cube R12 ultrasound machine (Alpinion, Bothell, WA,
USA) in different compression levels. The imaging probe is L3-12H probe operated
at the center frequency of 8 MHz and sampling frequency of 40 MHz.
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Figure 6.8: B-mode image of patient 2 is shown in (a). The estimated axial strains by NCC,
OVERWIND and MUSCULAR are shown in (b)-(d). Figures (f)-(h) are the estimated
lateral strain by NCC, OVERWIND and MUSCULAR, respectively.
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In-vivo Data

For in-vivo experiment, we have analyzed two data sets collected at the Johns Hopkins
hospital from two patients with liver cancer. The RF data are recorded with an
Antares ultrasound machine (Siemens, Issaquah, WA, USA) using a VF10-5 linear
probe with operating at center frequency of 6.6 MHz and sampling frequency of 40
MHz. The study was approved by the ethics institutional review board at Johns
Hopkins University.

6.2 Results

Simulation Results

Displacement of simulated data is estimated by NCC, OVERWIND and MUSCULAR
methods. Estimated Displacements are differentiated by the LSQ and strains are
shown in Fig. 6.2. Estimated axial strain by MUSCULAR is close to that of OVERWIND.
However, the estimated lateral strain by MUSCULAR significantly outperforms other
methods. For better visualizing the improved estimated lateral strain by MUSCULAR,
we consider two lines shown by green at Fig. 6.2 (f) and plot the Edge Spread Function
(ESF) of estimation with different methods across these lines. As shown in Fig. 6.3,
results of MUSCULAR are much closer to the ground truth compared to OVERWIND
and NCC. Table 6.1 is a quantitative comparison between three methods which indi-
cates a remarkable decrease in RMSE and significant increase in CNR of estimated
strain by MUSCULAR.

For the simulated data, α1 should be about 60 times bigger than α2 according to
Eq.(6.7). For validating this ratio, we estimate the RMSE of ground truth with the
results of MUSCULAR, estimated with different combination of regularizations for
α1 and α2 as shown in Fig. 6.4. For better visualization, we have normalized each
row of the Fig. 6.4. According to the presented RMSE map, for an arbitrary α1, the
lowest RMSE is achieved by setting the α2 to a number that is almost 60 times less
than α1.

Phantom Results

Fig. 6.5 shows the axial and lateral estimation for the first inclusion of the phantom
with compression rate about 2%. Similar to the simulation study, axial strain of
MUSCULAR is close to the estimated axial strain by OVERWIND, however there is
a large improvement in the lateral strain. As there is no ground truth for the phantom
study, we can compare the strain value of lateral strain with the axial strain as an
accuracy metric for the estimated lateral strain. As shown in Fig. 6.5-(b),(c) the axial
strain is in a range of 0% − 2.5%, by assuming the Poisson ratio of 0.5 for the soft
tissue, we expect a strain value in range of 0% − 1.2% for the lateral strain which
agrees with the estimated lateral strain by MUSCULAR in Fig. 6.5 (h).
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Table 6.1: Quantitative comparison of simulation results.

RMSE(%) CNR(dB)

NCC 34.98 23.09

Axial OVERWIND 19.01 48.53

MUSCULAR 17.40 50.28

NCC 394.72 -35.90

Lateral OVERWIND 247.73 -17.68

MUSCULAR 64.31 16.38

Fig. 6.6 is the result of second phantom data with the compression level of about
4%. Similar to the previous experiment axial strains are almost the same, but a signif-
icant improvement in the lateral direction. As high resolution, longitudinal behavior
and high sampling frequency in the axial direction implies a more accurate estimation
in the axial direction, we consider axial strain as a reference with estimated range
of 0% − 4%. By assuming the Poisson ratio as 0.5, we expect a lateral strain in the
range of 0% − 2% which agrees with Fig. 6.6(f).

In-vivo Results

Figs. 6.7 and 6.8 are the results of two patients with liver cancer. In both of the data
sets, MUSCULAR has estimated lateral strains better than other methods. Besides
of visual improvement by MUSCULAR that detects the tumors in lateral strain,
the lateral strain value of the MUSCULAR can be validated by assuming the axial
strain as a reference, similar to the phantom results. The almost half strain range
in the lateral direction compared to axial direction, clarifies that lateral strain is not
biased by axial strain which is one the main limitation of the the methods that try
to reconstruct lateral strain based on axial strain.

Calculating strain tensor requires differentiating displacement in different direc-
tions. In this manuscript we presented only the two axial and lateral strains, but
future work can use the output of MUSCULAR to estimate more components of
the strain tensor. To decrease the noise effect in differentiating, we have used the
well-known LSQ method. The number of samples considered for LSQ determines the
smoothness of the calculated strains. In both OVERWIND and MUSCULAR the
number of samples we have considered for LSQ is about 5% of the total data size.
For a fair comparison the size of LSQ is about 10% of the total data size for NCC
method as NCC does not have any regularization in displacement estimation step.

NCC is implemented in MATLAB by considering windows of size 51 × 9 samples
by 90% overlap between consecutive windows. The proposed TDPE method in [60]
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Figure 6.9: Estimated lateral strain for the simulation (top row) and in-vivo data (bottom
row). (a) and (d) are the result of OVERWIND on interpolated simulation and in-vivo RF
data, respectively. (b) and (e) are the result of MUSCULAR on the original simulation and
in-vivo RF data, respectively.

85



is also utilized to prevent the false peaks as much as possible by limiting the search
range based on displacement of neighboring windows. The position of window by
maximum NCC in the post compressed data provides only the integer displacement.
Interpolating NCC values of all windows in the search range determined by TPDE
by factor of 100 in both directions utilizing spline based interpolation, provides a
smooth surface of NCCs. By calculating maximum of the smoothed surface and its
corresponding position, the exact displacement is estimated.

6.3 Conclusions

We proposed a method called MUSCULAR for estimating lateral displacement with
high accuracy which is an important step in quasi static USE for estimating Young’s
modulus. MUSCULAR calculates the displacement by optimizing a regularized cost
function. The cost function involves intensity similarity of pre- and post-compressed
data, continuity of displacement for neighboring samples and also plane stress ap-
proximation for making a link between deformation in axial and lateral directions.
The improvement of estimation is significant compared to two powerful methods as
regularized optimization based and window based techniques.

Interpolating data, beam steering and reconstructing displacement based on initial
estimations are some supplementary techniques that can be implemented for all 2D
estimation methods including MUSCULAR to increase accuracy of estimation. In con-
trast with other 2D displacement estimation methods that computationally complex
pre- or post-processing techniques are essential for improving the lateral estimation,
MUSCULAR estimates high accuracy deformation without exploiting supplementary
steps and it significantly reduces the computational complexity. Besides outperform-
ing other estimations techniques as shown in Results Section, MUSCULAR has a
better performance compared to these techniques even by implementing additional
steps. Fig. 6.9 compares the performance of MUSCULAR implemented on original
RF data with the performance of OVERWIND implemented on spline-based interpo-
lated RF data by factor of 10 in lateral direction. As shown in Fig. 6.9, interpolating
data improves the results of OVERWIND, but MUSCULAR still has a much better
performance.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

USE is a well-known technique for extracting pathological information of the tissue by
estimating strain distribution and Lamé constants. It is a non-invasive technique that
has untapped potential in early diagnosis and treatment of diseases that change the
mechanical properties of the tissue. Ablation guidance and monitoring, differentiating
benign thyroid nodules from malignant ones and breast lesion characterization are
some of the evolving clinical applications of USE.

Different classifications for USE are proposed in the literature, however, it can be
broadly grouped into dynamic and quasi-static USE. The main difference in the two
USE groups is how the tissue is deformed with the quasi-static approaches applying a
static compression of the tissue, while the dynamic approaches typically propagating
mechanical waves in the tissue. However, in both methods, TDE between pre- and
post-deformed tissue should be estimated as the first step. In this thesis, we developed
novel methods for increasing the accuracy of TDE which is crucial for estimating
Lamé constants as the next step of USE. The proposed TDE techniques (except for
MUSCULAR in Chapter 6) can be utilized for both dynamic and quasi-static USE.
However, all the experiments of this thesis are for quasi-static USE, wherein, tissues
are slowly compressed by simply pressing the probe against the tissue.

Even though, the probe is pressed uniformly in axial direction, deformation of
tissue in both lateral and out-of-plane directions is inevitable. An ideal TDE tech-
nique should estimate deformation in 3D, but would require 3D ultrasound imaging.
To make TDE methods compatible with conventional 2D ultrasound imaging, we ne-
glect the deformation in out-of-plane direction and assume each sample moves in a
2D plane. Even after neglecting out-of-plane motion, each sample has two unknown
variables that should be estimated. As the intensity of each sample is the only known
parameter, TDE becomes an ill-posed problem. Different techniques and assump-
tions based on the continuity and very similar displacement of neighboring samples
are proposed to make TDE a well-posed problem.
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Window-based tracking methods are among the oldest and most popular tech-
niques for TDE. For estimating displacement of one sample, a window is considered
around the sample assuming that all samples inside the window have exactly the
same displacement. A window of samples in the post-deformed data with maximum
similarity would provide the displacement of the sample in the center of window. One
of the main disadvantage of these techniques is high sensitivity to de-correlation of
samples in pre- and post-deformed data which is inevitable due to different factors
such as blood flow and other biological motions common in in-vivo data. Increasing
the size of window makes these techniques more robust to signal de-correlation at
the cost of over-smoothing the estimated displacement and loosing useful informa-
tion. Experimental study in [112, 113] demonstrate the windows with size of 10λ
in axial direction, where λ is the wavelength of ultrasound signal has the optimum
performance. In Chapter 2, we proposed two methods to extend the assumption of
spatial continuity to temporal continuity or using channel data instead of RF data.
The proposed methods keep the spatial size of windows fixed, but increase size of win-
dows by adding non-spatial information and makes the TDE more robust to signal
de-correlation without spatial over-smoothing.

The first proposed method is STNCC (introduced in Chapter 2) wherein the
information of the temporally neighbors is utilized for TDE. In this method, we
benefit from the high frame rate of ultrasound imaging which is about 30 frame per
seconds for traditional ultrasound imaging. Therefore, we can assume that temporally
neighboring samples have close displacement. The second proposed method is CNCC
(introduced in Chapter 2) which increases the size of windows by considering pre-
beamformed data instead of beamformed RF data. The underlying idea for CNCC
is that for generating one sample, several channels collect data and after applying
appropriate time-delay, they sum up to generate the sample. We proposed to increase
size of windows by considering all information collected by different channels.

Regularized optimization-based techniques are another class of TDE methods.
The main concept behind these techniques is minimizing a cost function that com-
prises a data term and a regularization term. The data term compares intensities of
pre- and post-compressed data, while the regularization term penalize displacement
of neighboring samples to be close to each other. In Chapter 3, a method named
OVERWIND is proposed for TDE as a regularized optimization-based techniques.
Inspired by window-based techniques, the data term of OVERWIND compares inten-
sities of windows in pre- and post-compressed data which enhances the robustness of
the TDE. The second novelty of OVERWIND is utilizing total variation regulariza-
tion (L1 norm) instead of commonly used squared regularization (L2 norm). Squared
regularization is a popular choice for optimization as it is differentiable and makes the
optimization straight forward, however it causes over-smoothing especially at the bor-
ders of the inclusions. We used L1 norm for the regularization term of OVERWIND
which assigns a smaller penalty to discontinuities. This modification added nonlinear
terms to the cost function, and therefore, we used iterative methods to optimize the
cost function.
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To the best of our knowledge, all previously proposed TDE techniques used RF
data for displacement estimation. In Chapter 2, we proposed CNCC and used pre-
beamformed channel data for the first time for window-based techniques resulting in
significant improvement in the results. Inspired by CNCC, we used pre-beamformed
channel data for regularized optimization-based technique in Chapter 4 and named
the method CGLUE. In contrast with CNCC, there is a closed form solution for
CGLUE which allows us to analytically compare its accuracy with other regularized
optimization-based methods. We analytically compared CGLUE with a recently pub-
lished method GLUE and proved that the error of estimated displacement by CGLUE
in less than estimation of GLUE. This comparison directly focuses on the advantage
of utilizing pre-beamformed channel data since that is the only difference between
GLUE and CGLUE.

Previously proposed methods estimate displacement in both axial and lateral di-
rections. However estimation in the axial direction is notably more accurate than
lateral direction. Low accuracy of lateral displacement estimation is one of the most
important challenges for USE, as the Lamé parameters are calculated based on esti-
mated displacements. The main reasons for poor lateral estimation are low sampling
rate, low resolution and lack of carrier signal in this direction. Interpolating data in
lateral direction is the main approach proposed in the literature for addressing the
first limitation. In Chapter 5, we proposed to use VSSA as an advanced beamform-
ing technique for TDE to address the first and second limiting factors. In a nutshell,
VSSA is the combination of SA and line-by-line imaging, which enables increased res-
olution and sampling rate in lateral direction as well as improving the beam strength
in deep regions. The results presented in Chapter 5 show the outstanding performance
of VSSA compared to interpolation.

Although the idea of utilizing VSSA helped us in improving accuracy of lateral
displacement estimation, still it is not compatible with axial estimation. Moreover,
VSSA increases computational cost of TDE by increasing size of data. In Chapter
6, we proposed a method named MUSCULAR to increase the estimation accuracy
in lateral direction without increasing data size. In this method, we benefit form the
mechanical behavior of the compressed biological tissue in quasi-static USE. On one
hand, the biological tissues are nearly in-compressible and on the other hand, pres-
sure of the probe in free-hand palpation quasi-static USE is approximately uniform,
and the size of probe in out-of-plane direction is typically small. The mechanical
information makes the plane stress approximation a valid one for modeling the de-
formation of the tissue. In the MUSCULAR method, we modified the regularization
term of previously developed OVERWIND by adding the information of plane stress
approximation.

7.2 Future Work

USE is an interesting research subject with numerous clinical applications that has
attracted a lot of researchers. Although a large number of papers get published in
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this field every year, there is still room for increasing the accuracy of USE and TDE.
The limiting factors of the TDE are mostly known, but an interesting question is
the impact of each limiting factor on the accuracy of TDE. A wide simulation study
that studies different limitations and their impact on TDE would be very interesting
and helpful. Moreover, addressing some high-impact limitations like low resolution
of ultrasound data do not necessarily guarantee enhanced accuracy of the TDE as
increasing resolution would lead to a decreased signal-to-noise ratio of the data. An
interesting research work is studying the relation of resolution and signal-to-noise ratio
with TDE. The aforementioned research could expedite developing high accuracy
TDE methods.

One of the challenges of TDE is validating metrics, especially for experimental
data that does not have ground truth. Although the relation of CNR and accuracy
of TDE is studied in the literature, it is also shown that CNR as the only metric
of TDE is not a very strong metric. Developing better metrics instead of CNR for
validation of experimental results is a vary interesting research area. Recent work
has investigated how experimental data can be selected for TDE methods [114]. The
correct data for any TDE methods assures the best performance of TDE method, but
still the main question for validating and comparing performance of different TDE
methods are remained.

Estimating Lamé constants requires calculating strain tensor. The present pipeline
of estimating strain tensor is estimating motion and differentiating displacement in
different directions. The artifacts and noise in motion estimation is inevitable and
their impact would be magnified in differentiating step. The most popular technique
for reducing the noise in strain tensor is utilizing LSQ. However it reduce the im-
pact of noise by smoothing the result which highly affects the precision. Developing
techniques that directly estimate strain tensor is of high impact in USE.

Deep learning is a fast developing tool for addressing variety of problems including
registration and motion estimation. Few studies have trained deep networks and more
specifically CNN networks for TDE. However, the accuracy of the proposed networks
still is not compatible with classical methods of TDE. One of main limitations for
deep learning techniques in all medical applications including TDE is limited data
sets. Developing deep learning methods that can estimated motion of tissue is another
interesting research topic.

Aberration correction is an interesting research field to compensates difference of
sound wave in different part of a heterogeneous tissue [115]. The aberration is a source
of error in the elastography that is not addressed. The CGLUE project that utilizes
channel data for elastography can be modified to find the speed of sound as well as
displacement in different parts of tissue.
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