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Abstract

Ensemble Graph Neural Networks
on Melanoma and Cervical Cancer Screening Datasets

using SLIC Superpixels

Negin Ashouri

Graph neural networks (GNNs) have become the standard procedure to deal with graph-

structured data and data in non-Euclidean spaces. Since 2017, numerous researchers have been

using GNN models in their experiments. However, despite GNNs’ recent rapid growth, there are

not yet many real-world applications that benefit from these models. In this thesis, we use GNNs

as image classifiers. To improve the efficiency and reduce the complexity of the models, we first

generate graphs from the images by creating superpixels of the images and use them as our graph

nodes instead of individual pixels. Then, we define edges on these nodes based on the distance

of each superpixel to their closest ones. We propose two ensemble frameworks containing a pre-

trained ResNet18 and two Graph Neural Network (GNN) models (GAT and GIN). We call these

frameworks GATRes and GATGIN, respectively.

We test these frameworks on two real-world medical applications: Cervical Cancer Screening

and Melanoma detection. Cervical cancer is among the top four common cancer in women world-

wide. Cervical cancer can be easily prevented if caught in its pre-cancerous stage. Determining

the appropriate treatment method depends on patients’ physiological differences. A treatment that

works effectively for one woman may obscure future cancerous growth in another woman due to

differences in the type of their cervix. In this thesis, we experiment with multiple GNNs on this

dataset to distinguish the cervix types and examine if these models enhance detection performance

and accuracy.

The other problem we consider is Melanoma skin cancer. Melanoma is the most lethal skin

cancer. If melanoma gets diagnosed in the early stages, the patients’ survival rate will increase
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significantly. This research applies GNN models on the Melanoma dataset to discriminate between

melanoma and benign skin lesions.

We show that our models’ sensitivity and accuracy outperform the individual models in our

classification tasks. Our GATRes model also outperforms the accuracies achieved by previously

published papers on the Cervical Cancer Screening dataset.
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Chapter 1

Introduction

In this chapter, we will give a brief introduction to this thesis. First, we will describe the moti-

vation of the thesis and the contributions, and then we give the outline of this thesis.1

1.1 Introduction and Motivation

Graph Representation Learning is a fairly new domain in machine learning that has become

popularly in use since 2017. It helps to understand and solve machine learning problems on data

from not-Euclidean spaces and is graph-structured in nature. The most common tasks on graphs are

node classification and visualization, link prediction and graph classification. Although much re-

search is being conducted on this domain, not many graph networks are implemented in real-world

applications. Developing powerful and theoretically expressive Graph Neural Network (GNN) ar-

chitectures is a key concern towards practical applications and real-world adoption of graph machine

learning. However, tracking recent progress has been challenging as most models are evaluated on

small datasets[7]. In order to tackle this problem, Dwivedi et al. newly published [7] in June 2020.

This paper benchmarks GNNs to identify and quantify what types of architectures, first principles

or mechanisms are universal, generalizable, and scalable when moving to larger and more challeng-

ing datasets. One of their experiments includes using graphs as image classifiers on MNIST and
1Warning: this paper has graphics containing blood that some people might find disturbing.
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CIFAR10. They provide a reproducible GNN benchmarking framework 2, with the facility for re-

searchers to add new models for arbitrary datasets. In this thesis, with leveraging from their frame-

work, we implement GNN models on our two medical applications. Cervical Cancer Screening

(hereafter ”Cervix” dataset) and Melanoma Skin Cancer (hereafter ”Melanoma” dataset) obtained

from Cervical Cancer Screening Challenge [23] and the balanced version of dermoscopic images

from the International Skin Imaging Collaboration (ISIC) archive 3 [24], respectively.

We firstly implemented simple linear iterative clustering (SLIC) superpixel algorithm[1] on our

original images. Super-pixels represent small regions of homogeneous intensity in images, and can

be extracted with the SLIC technique[1][7]. Superpixel algorithms cluster a group of pixels together

in order to increase computation efficiency. Then, we generate graphs from these obtained super-

pixels. The nodes in these graphs will be the center coordinates of the superpixels, and each node’s

features are the superpixel coordinates and intensity. The edges will be the distance of neighboring

superpixels. Using superpixels instead of individual pixels decreases the computational expense.

Afterward, we implemented GNN models on these graphs. The models used are GraphSage, Gated

GCN, Graph Attention (GAT) and Graph Isomorphism Network (GIN)). GAT and GIN had shown

better performance on accuracy.

In the second step, we propose two ensemble frameworks, with the first one being a combina-

tion of a pre-trained Residual Network ResNet18 (with conducting transfer learning on ResNet18)

and GAT (we call it GATRes network) and the second one being the combination of the GAT and

GIN networks, called GATGIN. We concatenate the feature extractions done by each model in this

framework and then feed them into a fully connected classifier for the final classification. Our en-

semble models outperform all the individual models on these classification tasks. Also, our GATRes

model outperforms all the previous published accuracies on the Cervix dataset.

1.2 Contribution

The objectives and contributions of this work are twofold that include:

1) Generation of a superpixel graph representation of images in two real-world medical datasets:
2https://github.com/graphdeeplearning/benchmarking-gnns
3https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
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Melanoma and Cervix and implementation of four GNN models on them. In one, GNN

models have never been implemented.

2) Proposing two ensemble framework containing:

(a) Two graph neural networks (GAT and GIN) and named it GATGIN

(b) A pre-trained ResNet18 and a graph neural network (GAT) and named it GATRes

Our framework also prepares any color images to be fed into graph networks.

We transformed these dataset images into a graph of superpixels and then fed them to our en-

semble models.

1.3 Thesis Outline

This thesis is organized as follows: A comprehensive literature review on image classification

methods, superpixel image segmentation, and graphs for classification are presented in Chapter 2.

Chapter 3 will present the methodology and the framework that has been proposed in the exper-

iments. Chapter 4 will present the setup, experiments performed, and corresponding results. In

Chapter 5, we will conclude this thesis and discuss some future work and research directions.
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Chapter 2

Background

In this chapter, we will cover related background works of this thesis. First of all, we will review

the image classification methods currently being used in medical applications such as ResNet. Then

we will explain superpixel methods and how they are used to improve the outcome of classification

tasks and highlighting the superpixel method used in this thesis (SLIC). After that, we will review

graph representation learning and algorithms and how they can be used in image classification tasks.

Also, we will review ensemble methods and finally, we will explain the Graph models being used

in this thesis.

2.1 Image Classification

Image classification, one of the most fundamental tasks in computer vision and pattern recog-

nition, assigns one or more labels to an image. Classic machine learning approaches for image

classification use low-level or mid-level features to represent the image, and then the label will

be assigned by a trainable classifier. The deep learning approach combines feature extraction and

classification tasks and estimates high-level features, which significantly outperforms hand-crafted

low-level and mid-level features. These techniques have also been applied to medical image classi-

fication and computer-aided diagnosis [65].
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2.1.1 Medical Image Classification

Skilled medical professionals use various imaging techniques to capture anomalies of the hu-

man body. These images will be used for diagnosis, prognosis and treatment planning. Captured

anomalies are usually understood and annotated by these clinicians. However, the lack of availabil-

ity of human experts and the their exhaustion along with the difficulty involved with this procedure

limit the effectiveness of image understanding[50].

Medical image classification aims to help medical professionals with diagnosis, analysis and

educational purposes. The primary objective of medical image classification is to achieve good

accuracy and understand which parts of the anatomy are affected by the disease to help clinicians in

early diagnosis and in learning the progression of a disease[30].

Convolutional neural networks (CNNs) have reached state-of-the-art performance in image un-

derstanding. In many cases, they even outperformed medical professionals.[50]. Convolutional

Neural Network (CNN) model automatically learns the needed features and extracts them for med-

ical image understanding. The CNN model comprises convolutional filters whose primary function

is to learn and extract necessary features for efficient medical image understanding. CNN started

gaining popularity in 2012 due to AlexNet [29], which outperformed all the others models in the

imageNet challenge 2012. Later on, GoogleNet reached an accuracy of 89% in cancer detection

while human pathologists could only achieve the accuracy of 70%[50, 44]. The following para-

graph describes how CNN works.

CNN

CNNs consist of a series of neurons that have learnable weights and biases. Each neuron re-

ceives inputs, performs a dot product and will be followed with a non-linearity. It consists of three

layers:

• Convolution Layer (Kernel) is used to extract features.The Convolution operation is used to

extracts the high-level features from the input image. The first Convolution layer is respon-

sible for understanding the Low-Level features such as edges, colors and many more. With

layers being added, the architecture starts to understand the High-Level features, and it ends

5



Figure 2.1: Types of pooling [48]

up with a broad comprehension of the whole image.

• Pooling Layer. The Pooling layer reduces the dimensionality to optimize the computational

power. It achieves this goal by decreasing the size of the obtained features from its previous

layer. Two types of Pooling consist of: Max Pooling and Average Pooling. Max Pooling

calculates the maximum value from the chunk of the convolved features, and Average Pooling

calculates the average of all the values from that chunk. (Figure 2.1).

The Convolutional Layer and the Pooling Layer will be stacked together to form any multi-

layer CNN we want to create. The final step is to flatten the output and feed it to a fully

connected network for the final classification.

• Classification — Fully Connected Layer (FC Layer). The FC Layer will learn the non-

linear combination of the captured high-level features from the convolution layer. (Figure

2.2).

In the following paragraph, we will review ResNet (Residual Network), one of the most popular

models of CNN, that has been used in the previous works on the datasets we will be using in our

6



Figure 2.2: Fully Connected Layer [48]

Figure 2.3: A building block of Residual network [18].

thesis.

ResNet(Residual Network)[18]

In Figure 2.3 you can see a residual block. The residual network consists of multiple of these

residual blocks stacked together. You can see a Shortcut connection [5, 45, 61] in the picture. These

shortcut connections skip one or multiple layers showed by F(x)+x, which in this case will be an

identity mapping, and their outputs are added to the outputs of the stacked layers (Fig. 2.3). This

architecture prevents the gradient from vanishing. In deep neural network architectures, the gradient

usually becomes very small as the gradient gets back-propagated to earlier layers. ResNet solves

this problem with its shortcut connection architecture.
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Figure 2.4: Images segmented using SLIC into superpixels of size 64, 256, and 1,024 pixels (ap-
proximately) [1].

2.2 Superpixel Image Segmentation

Medical image segmentation is one of the critical steps in medical image processing and analy-

sis. The purpose of medical image segmentation is to divide an image into multiple non-overlapping

regions based on some criterion or rules such as similar color, texture etc. Based on various tradi-

tional techniques, many researchers proposed a great number of automated segmentation approaches

such as thresholding, edge detection, active contours and so on [49, 52].

Superpixel algorithms cluster a group of pixels together in order to increase computation ef-

ficiency. Achanta et al. [1] explain how superpixel algorithms group pixels into bigger regions,

which can replace the stiff structure of the pixel grid (Figure 2.4). By capturing the image similari-

ties in each region, superpixels increase computational efficiency. They are now being used in many

applications including depth estimation [71], segmentation [32], etc.

There are different methods for creating superpixels which can be divided into two categories.

Graph-based and Gradient-Ascent-based methods.

Graph-Based Algorithms

Graph-based algorithms set each pixel as a node of a graph. Then the similarity of adjacent

pixels creates the edge weights between two nodes. Superpixels are generated by minimizing a cost
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function defined over this graph[1]. The following algorithms are some examples of this method.

NC05 The Normalized cuts algorithm [22] uses contours on images and repeatedly divides the

image into graphs of all pixels. It produces very regular superpixels, but the boundary adherence of

NC05 is poorer and slower than other methods. NC05 has a complexity of O
(
N

3
2

)
[31], wherein

N is the number of pixels.

GS04 Felzenszwalb and Huttenlocher [10] propose a hierarchical clustering of pixels as nodes on a

graph and create superpixels in a way that each superpixel is the lowest spanning tree from the base

pixels. GS04 holds well to the image’s boundaries, but the superpixels it makes are irregular in size

and shape. However, this method is fast, but we can not control the number of superpixels or the

compactness. It has O(N logN) complexity. Also, SL08 from Moore et al. [37], which strongly

influence the quality and speed of the output, and GCa10 and GCb10 Veksler et al. [59] are other

example methods of this approach.

Gradient-Ascent-Based Algorithms

Gradient-ascent-based algorithms start from an initial clustering of pixels and reiterate through

them until it meets the defined criteria for creating superpixels [1].

One of the examples of this approach is WS91 [62], watershed approach, performs a gradient as-

cent starting from local minima to produce watersheds, metaphoric to a geological watershed, which

divides adjacent drainage basins. The superpixels made by this method are irregular in shape and

do not adhere to the image boundaries. Although it is a fast algorithm ((O(N logN) complexity),

the compactness and the number of segments of the superpixels cannot be controlled.

SLIC superpixel

Achanta et al. [1] propose a new method of generating superpixels called SLIC (simple linear

iterative clustering). The authors compared the methods mentioned above, their advantages and

disadvantages, and provide useful information on how these models are unsatisfactory. The authors

show how SLIC is improving performance in segmentation tasks. Further, they explain that each

of these approaches may be better suited for certain applications. The authors also believe that

although it would be difficult to find a perfect method that applies to all applications, if the generated
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superpixels adhere well to the images’ boundaries, be fast to compute and provide control over

its hyper-parameters such as compactness and number of segments, they will perform better and

improve the results. Compactness is a parameter that controls the regularity in shape and size and

the smoothness of the superpixels’ boundaries [51].

On their paper, Achanta et al. [1] compared five state-of-the-art superpixel methods [58, 10,

22, 59, 31] on their speed, ability to adhere to image boundaries, and impact on segmentation

performance. The authors state that none of these methods were satisfactory enough in all sense.

Therefore, they proposed a new superpixel algorithm which is called simple linear iterative clus-

tering (SLIC). This method uses k-means clustering to generate superpixels similar to [70]. The

authors show that SLIC outperforms the mentioned state-of-the-art methods in terms of boundary

adherence on the Berkeley benchmark [35] and also outperforms existing methods when used for

segmentation on the PASCAL [9], and MSRC [53] data sets, which contain RGB images normally

used for object detection and gesture recognition tasks. SLIC is also faster and more computation-

ally efficient than those previous methods. Furthermore, SLIC offers control over the compactness

and the number of segments of superpixels [1]. SLIC’s algorithm is shown in Figure 2.5.

Our approach, in this thesis, is to use the SLIC superpixels, not for segmentation but to benefit

from it to reduce the complexity of our classification task. Therefore, we did not review all the

image segmentation methods as a part of the thesis background information.

2.3 Graphs

This section will talk about graph representation learning, machine learning on graphs, and,

finally, graphs for image classification.

2.3.1 Graph Representation Learning

A graph G = (V, E) is generally defined by a set of nodes V and a set of edges E between these

nodes. We indicate an edge going from node u ∈ V to node v ∈ V as (u, v) ∈ E . Usually, we deal

with simple graphs with only one edge between each node, and there are no self loops on the nodes.

(u, v) ∈ E ↔ (v, u) ∈ E . We usually represent graphs by an adjacency matrix A ∈ R|V |×|V |.
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Figure 2.5: SLIC Segmentation Algorithm [1]

To represent a graph with an adjacency matrix, the nodes will be vertices on the column/row and

elements of the matrix and then we indicate whether pairs of nodes are connected by an edge or not.

The matrix will be: A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0, otherwise [15].

2.3.2 Machine Learning on Graphs

Many of the real-world data around us have graph structures in nature. From chemistry and

drug architectures to social networks. However, these problems could not be solved with machine

learning until years ago. Machine learning algorithms and deep learning models are only able to

solve problems defined in a Euclidean space. The graph representation learning was introduced to

solve the graph-structured problems and where data is in non-euclidean space. In machine learning,

we seek to build models that can learn from data to solve particular tasks. Machine learning tasks

are categorized into three types: Supervised, Unsupervised or Reinforcement Learning Tasks. Ma-

chine learning with graphs is the same, but the usual categories of supervised, unsupervised, and

reinforcement learning are not necessarily the most informative for graphs [15].
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Three main tasks implemented using machine learning on graph data are as follow:

1. Node classification

The goal is to predict the label yu which can be a type, category, or attribute corresponded to

all the nodes u ∈ V , when we are given the true labels on only a small training set of nodes

Vtrain ⊂ V . Some of the instances of node classification are social networks and using hyperlinks

or citation graphs for classifying the topic of documents [27], etc. Node classification may seem

an easy task of supervised classification. However, one of the most important differences between

this task and a classic supervised classification task is that nodes in a graph are not independent

and identically distributed (i.i.d.). Usually, in classic supervised classification tasks, we assume that

each datapoint is statistically independent of all the other data points and is identically distributed.

In node classification, rather than modeling a set of i.i.d. data points, we are instead modeling set

nodes interconnected in a graph structure [15].

2. Relation prediction

In this task, we want to predict the relations between the nodes when they are missing. This task

is also called link prediction and graph completion. Some of the examples of this task include:

predicting drug side-effects [72], recommending content to users in social platforms [69], etc. On

this task, a set of nodes V and a partial set of edges between these nodes Etrain ⊂ E is presented.

The goal is using this information to predict the missing edges E\Etrain [15].

3. Clustering and community detection

Community detection is the graph analog of unsupervised clustering. We would expect this network

to build a community structure, where nodes are more likely to create edges with nodes that belong

to their same community. The challenge is doing this given only the input graph G = (V, E) [15].

4. Graph classification (and clustering)

This task aims to learn over graph data and classify (or cluster) problems over entire graphs. For

instance, predicting a molecule’s toxicity or solubility when the structure of a molecule is given

[11]. In these applications, we are given a dataset of multiple different graphs, and we seek to make

independent predictions specific to each graph. Each graph is an i.i.d. data point associated with a

label, and the goal is to predict the labels of unseen graphs [15].

The experiments in this thesis are graph classification tasks.
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2.3.3 Graph Neural Networks and Graph Convolution Networks

This section discusses the graph neural network (GNN) framework, which defines deep neural

networks on graph data. Representations of nodes are generated depending on the structure of the

graph and any feature information there might be [15].

Neural Message Passing

GNNs use a form of neural message passing between the graph’s nodes where vector messages

interchanged between nodes in the graph and get updated through neural networks [15].

Overview of the Message Passing Framework :

GNNs perform iterative message passing among graph’s nodes. During each message-passing

iteration, the embedding h
(k)
u corresponding to each node u ∈ V is updated according to information

aggregated from u′s graph neighborhood N (u) (Figure 2.6). This message-passing update is:

h(k+1)
u = UPDATE(t)

(
h(k)
u , AGGREGATE (t)

({
h(k)
v , ∀v ∈ N (u)

}))
= UPDATE(k)

(
h(k)
u ,m

(k)
N (u)

)
In this equation, UPDATE and AGGREGATE are arbitrary differentiable functions (i.e., neural

networks) and mN (u) is the “message” that is aggregated from u′s graph neighborhood N (u).

Superscripts are used to distinguish the embeddings and functions at different message passing

iterations (different ”layers” of the GNN). At each iteration of the GNN, a set of embeddings of the

nodes in u′s graph neighborhood N (u) will be input to the AGGREGATE function and a message

mN (u) will be generated based on this aggregated information. Then, the message mN (u) will be

combined with the previous embedding hu of node u by the update function UPDATE to generate

the updated embedding. The embeddings at the starting point k = 0 are set to the input features

for all the nodes, i.e., h(0)
u = xu, ∀u ∈ V . After running K iterations, the output of the final layer

will be used to define the embeddings for each node, i.e., zu = h
(K)
u , ∀u ∈ V . Also, since the

AGGREGATE function takes a set as input, GNNs defined in this way are permutation equivariant

by design [15].
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Figure 2.6: Message aggregation to the nodes from its adjacent neighbors. The model aggregates
messages from A’s neighbors (B, C, and D), and the messages coming from these neighbors are
based on messages aggregated from their respective neighborhoods, and so on. This figure demon-
strate a two-layer message-passing model.[15]

In summary, the GNN message-passing framework’s intuition is that at each iteration, every

node aggregates information from its adjacent nodes, and as iterations pass, each node embedding

gains more information from further reaches of the graph. So, after the first iteration (k = 1),

every node embedding gains the information from its 1-hop neighborhood, after the second iteration

(k = 2), all node embeddings will have information from their 2-hop neighborhood and, after k

iterations, they hold information about their k-hop neighborhood. This information can carry two

main things. First is the structural information of the graph, such as degrees of all nodes throughout

the iterations. The second form is that after t iterations, each node will also have information of all

features of their t-hop neighbor nodes [15].

The Basic GNN

The following is the most basic form of the GNN framework. The basic GNN message passing

can be expressed as:

h
(k)
u = σ

(
W

(k)
self h

(k−1)
u +W

(k)
neigh

∑
v∈N (u) h

(k−1)
v + b(k)

)
where W

(k)
self ,W

(k)
neigh ∈ Rd(k)×d(k−1)

are trainable parameter matrices and σ denotes an element-

wise non-linearity (e.g., a tanh or ReLU). The bias term b ∈ Rd(k) is ommitted for notational

simplicity but it is critical for achieving strong performance.

In the message passing in the basic GNN framework, the incoming messages from the neighbors
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are summed and then the neighborhood information will be combined with the nodes the previous

embedding using a linear combination; and finally, an element-wise non-linearity will be applied.

UPDATE and AGGREGATE functions in the basic GNN are calculated through the:

mN (u) =
∑

v∈N (u) hv

UPDATE
(
hu,mN (u)

)
= σ

(
Wself hu +Wneigh mN (u)

)
The parameters Wself ,Wneigh and b can be either shared over the iterations or be trained separately

[15].

2.3.4 Using GNN for image classification

There are many graph neural networks and graph convolutional networks that can be used for

different applications. In a very recent publication, Dwivedi et al. [7] provided a benchmark for

GNN models on different datasets for the first time. In this paper, they examined different GNN

models on different datasets. One of their experiments was on MNIST and CIFAR10 Data. They

used the SLIC superpixel method from [60]. They obtained their data from the same paper wherein

they prepared the superpixeled files from the images. Then Dwivedi et al. [7] fed these files to their

GNN models and reported the benchmarks on them. They have found that the SLIC superpixel is

the best method among superpixel methods, they used the superpixeled dataset from the mentioned

paper. Therefore, in this thesis, we will also examine the SLIC superpixel on our images, and we

will also use the best-performed models that have been used in this paper. The following sections

provide a brief description of each graph model we will be experimenting on and how they work:

GraphSage [14]

Low-dimensional embeddings of nodes in large graphs are useful in various prediction tasks.

Hamilton et al. propose an inductive method that leverages node feature information (e.g., text at-

tributes) to generate node embeddings for previously unseen data efficiently instead of needing all

the nodes to be present in the training phase for embeddings to be generated. However, most of the

current methods need all nodes in the graph to be present for training of the embeddings; these ap-

proaches are transductive and lack generalization to unseen data. This paper presents GraphSAGE,
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Figure 2.7: Visual illustration of the GraphSAGE sample and aggregate approach [14]

a general inductive framework that leverages node feature information (e.g., text attributes) to gen-

erate node embeddings for previously unseen data efficiently. Training individual embeddings for

each node is computationally expensive especially for large graphs. Their alternative is to estimate

a function that samples and aggregates features from a node’s local neighborhood and generates

embeddings (Figure 2.7). They propose a general framework, called GraphSAGE (SAmple and

aggreGatE), for inductive node embedding. Adding node features helps the algorithm to learn the

topological structure of each node’s neighborhood as well as the distribution of node features. Their

algorithm can also be applied to graphs without node features.

Each aggregator function aggregates information from different hops or search depths, away

from a given node. They use their trained system to generate embeddings for entirely unseen nodes

by applying the learned aggregation functions at the test or inference time. Algorithm 1 (Figure 2.8)

is the algorithm of GraphSAGE generating embeddings.

The intuition behind Algorithm 1 is that at each iteration, or search depth, nodes aggregate

information from their local neighbors. As this process iterates, nodes incrementally gain more and

more information from further reaches of the graph. The GraphSage diagram is shown in Figure 2.9

GIN (Graph Isomorphism Network )[67]

Graph Isomorphism Networks (GIN)’s architecture is based the Weisfeiler-Lehman Isomorphism

Test [66] to study the expressive power of GNNs. The node update equation is expressed as:

ĥ`+1
i = (1 + ε)h`i +

∑
j∈Ni

h`j

h`+1
i = ReLU

(
U `
(
ReLU

(
BN

(
V `ĥ`+1

i

))))
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Figure 2.8: GraphSAGE Algorithm[14]

Figure 2.9: GraphSAGE Layer [7]
.
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Figure 2.10: GIN Layer [7]
.

where ε is a learnable constant,U `, V ` ∈ Rd×d and BN denotes Batch Normalization [7]. You

can find the GIN layer diagram in Figure 2.10.

GAT (Graph Attention Networks)

In [60], the Graph Attention Network (GAT) was developed, which consists of stacked graph

attention building block layers. First, the authors explain the single graph attention layer. The input

to this layer is a set of node features, h =
{
~h1,~h2, . . . ,~hN

}
,~hi ∈ RF , where N is the number of

nodes, and F is the number of features in each node. The layer creates a new set of node features

(with possibly different degree of freedom F’) h′ =
{
~h′1,

~h′2, . . . ,
~h′N

}
,~h′i ∈ RF ′ , as its output.

The network employs a multi-headed architecture to increase the learning capacity. The node

update equation is given by:

h`+1
i = Concat Kk=1

(
ELU

(∑
i∈N1

ek,`ij U
k,`h`j

))
where Uk,` ∈ R

d
K
×d are the K linear projection heads, and ek,`ij are the attention coefficients for

each head defined as:

êk,`ij = LeakyReLU
(
V k,`Concat

(
Uk,`h`i , U

k,`h`j

))
ek,`ij =

exp
(
êk,`ij

)
∑

j′∈Ni
exp
(
êk,`
ij′

)

18



Figure 2.11: GAT Layer [7]
.

Model Name CIFAR10 MNIST

GIN 55.25% 96.48%
GAT 64.22% 95.53%

GraphSAGE 65.76% 97.31%

Table 2.1: GraphSAGE, GAT and GIN accuracy on CIFAR10 and MNIST

where V k,` ∈ R
2d
K see Figure 2.11. GAT learns a mean over each node’s neighborhood features

sparsely weighted by the importance of each neighbor [7].

Bechmark results on CIFAR10 and MNIST

In Table 2.1 you can find the accuracy of GraphSAGE, GAT and GIN networks on CIFAR10

and MNIST datasets. CFAR10 consists of 60000 32x32 color images in 10 classes, and MNIST is

a dataset of 60,000 small square 28×28 pixel grayscale images of handwritten single digits between

0 and 9.

19



2.4 Transfer Learning

In machine learning, transfer learning is a technique where a model will be trained on one

dataset for a specific task, and then this pre-trained model will be used as a starting point for the

same task on a different dataset. Depending on the second task of interest, the model may require

fine-tuned input, layers, and output.

2.5 Ensemble Models

In recent years ensemble learning has become the hot spot in the machine learning field for

many researchers. The main idea of this method is to create multiple models and aggregate their

outputs to improve the results. This approach brings in a unique advantage when dealing with small

datasets, high dimensionality, and complexity in data structures. Its performance is generally better

than individual models and improves the generalization of the solution [68].

Many researchers have investigated the improvement of skin lesion classification with ensemble

approaches. They have shown, it is possible to improve performance significantly [16, 39].

Ensemble learning is also showing promising progress on graph representation learning. Most

graph learning methods are trying to preserve certain characteristics of the original graph in the

low dimensional space. Graphs in the real world are huge and have a combination of different fac-

tors, which makes it difficult to capture all of the important characteristics with a single method [12].

In the next chapter, we propose our two ensemble models consisting of a pre-trained ResNet18

model and a GAT network and the second one consisting of the GIN and GAT.
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Chapter 3

Datasets, Methodology and Frameworks

In this chapter, we introduce our ensemble frameworks and the datasets used in our experiments.

3.1 Our Proposed Frameworks

Recent studies show that using superpixels instead of original pixel set of the image, increases a

the performance of classification task on GNNs significantly [7]. Regions of interest in the colored

image datasets as used in this thesis, were quite distinguishable from other parts which makes it

a great fit to use superpixel. The dataset was converted to superpixel through SLIC algorithm

and then superpixels were converted to graphs and fed into Graph neural networks. In the second

part of our experiment, we are proposing two ensemble frameworks. At first, we combine a pre-

trained ResNet18, and a GNN model (GAT Network), which we call it GATRes Network. Using the

principles of transfer learning [38, 55], the first 10 layers on the ResNet18 have been frozen and the

last 8 layers were fine-tuned on our dataset. In this approach, we simultaneously input the images

into the ResNet18 network and the generated graphs on these images to the GAT network. Then we

concatenate the features extracted by the two networks and pass them to a linear classifier for the

final classification. The same process is applied to the second framework.

The second ensemble model is a combination of two Graph Neural Network models (GAT and

GIN). We call this model GATGIN. The same method will be used as the final classification of each

image. We implemented these frameworks on two real-world image datasets in the medical field,
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Figure 3.1: Proposed ensemble framework, GATRes

Figure 3.2: Proposed ensemble framework, GATGIN

and we report the results in Chapter 4. Figures 3.1 and 3.2 show the architecture of our framework.

Our frameworks can be used:

1- to convert any color images into superpixels, then into graphs and finally to be used as inputs

of graph networks (implemented using a modification to the code from [28]).

2- as an ensemble method for colored image classifications using neural graph networks.

In the next sections, we explain the problem statements and datasets we implemented our en-

semble frameworks on.
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3.2 Problem Statements

In this section, two real-word medical problems have been discussed and the methodology of

proposed models are explained. The first problem is the Cervical Positioning task to screen cervical

cancer, and the second one is the skin cancer classification task (Melanoma).

3.2.1 Cervical Position Screening

Cervical cancer is easy to prevent if caught in its pre-cancerous stage. Today, women worldwide

in low-resource settings benefit from programs where cancer is identified and treated in a single visit.

However, due to lacking expertise in the field, one of the greatest challenges of these cervical cancer

screens and treatment programs is determining the appropriate treatment method, which can vary

depending on patients’ physiological differences. Especially in rural areas, many women at high

risk for cervical cancer are receiving treatment that will not work properly and it may even worsen

the situation. This deficiency is mainly due to the high variability of the positioning of cervix in

different patients. Health providers can identify high-risk patients but may not have the skills to

discern which treatment will prevent cancer in these women reliably. Even worse, applying the

wrong treatment has a high cost. A treatment that works effectively for one woman may obscure

future cancerous growth in another woman, greatly increasing health risks. Healthcare providers’

workflows would be greatly improved given the ability to make real-time determinations about

patients’ treatment eligibility based on cervix type [23].

The image dataset used in this thesis is coming from a Kaggle competition wherein Intel is part-

nering with MobileODT, which offers a Quality Assurance workflow to support remote supervision

which helps healthcare providers make better treatment decisions in rural settings, to develop an

algorithm that accurately identifies a woman’s cervix type based on images. Doing so will prevent

ineffective treatments and allow healthcare providers to properly refer to cases that require more

advanced treatment.1

The objective here is to develop algorithms to classify cervix types based on cervical images
1A written permission for using this dataset is obtained.
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Figure 3.3: Vaginal Canal and the Cervix position [23], Os : Orifice

correctly. There are three cervix types: type 1, 2 and 3. So, this problem is a multi-class classifi-

cation, and it consists of three classes representing three cervix positions. We will explain what a

cervix is and what we mean by cervical position in the following paragraphs.

In Figure 3.3 you can see the cervix anatomy and how it is positioned in the body. There is a

zone called the transformation zone (TZ) on the entrance of the cervix (as indicated in Figure 3.4).

Most cervical cancers begin in the cells in the transformation zone [23].

These TZs can be ectocervical or endocervical. The cervix is made of two parts and is covered

with two different types of cells. The endocervix is the opening of the cervix that leads into the

uterus. It is covered with glandular cells. The exocervix (or ectocervix) is the outer part of the cervix

that can be seen by the doctor during a speculum exam2 (please see Figure 3.5). In Type 1, the TZ

is completely ectocervical, and it is fully visible. In Type 2, the TZ has an endocervical component,

is fully visible, and may also have an ectocervical component. In Type 3, the TZ has endocervical

component, however, it is not fully visible and it may also have ectocervical component (Figures
2https://www.cancer.org/cancer/cervical-cancer/about/what-is-cervical-cancer.html
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Figure 3.4: Transformation zone[23]

3.6a, 3.6b, and 3.6c).

These different types of the cervix in the data set are all considered normal (not cancerous).

However, since the transformation zones are not always recognizable, some patients require further

testing while some do not. This decision is critical for both the patient and the healthcare profes-

sional. Identifying the transformation zones is not an easy task for these heath care professionals.

Therefore, an algorithm-aided decision will be extremely helpful and improve the efficiency of cer-

vical cancer screening. Cervix Types 2 and 3 might include hidden lesions and require different

treatment [23].

Previous work on the Cervix dataset

Since the Kaggle challenge in May 2017, a number of papers have been published using different

machine learning methods on this dataset. The followings are a summary of these works (also shown

in Table 3.1).

25



Figure 3.5: Endocervical versus ectocervical [23]

(a) Type 1 (b) Type2 (c) Type3

Figure 3.6: Cervix Types [23]

Dataset ResNet32 VGGNet16 SqueezeNet AlexNet

Cervix 58.8[18] 62.1[25] 63.3[2] 62.6[2]

Table 3.1: Comparison of previous models’ accuracy on Cervix test set
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Figure 3.7: Transformation Zones [23]

In [41] the authors used ResNet32 and ResNet52 with various setups and the best results they

achieved was with ResNet32 [18] with data augmentation which reached 58.8% accuracy on their

validation set. In [2] the authors performed AlexNet[29] and SqueezeNet and reached the accuracies

of 62.6% and 63.3% respectively. They have reported that SqueezeNet [20] was achieving this

accuracy very quickly. The other paper is [25] where in Kaur et al. used pretrained VGG16/19 [54]

and achieved 62.1% on VGG16.

3.2.2 Melanoma

Skin cancer is the most frequent type of cancer. Melanoma, specifically, is the cause for 75%

of skin cancer deaths, despite being the least common skin cancer. At the moment, dermatologists

evaluate every patient’s moles to identify outlier lesions that are most likely to be melanoma [24].

Melanoma is a deadly disease, but most melanomas can be cured with minor surgeries if caught

early. Better detection of melanoma will impact millions of people’s lives positively [24]. In Fig. 3.8

you can see a melanoma lesion and Fig. 3.9 shows a benign lesion.

The dataset is generated by the International Skin Imaging Collaboration (ISIC), with images

gathered from the following sources: Hospital Clinic de Barcelona, Medical University of Vienna,
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Figure 3.8: Melanoma lesion [4]

Figure 3.9: Benign lesion [4]
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Memorial Sloan Kettering Cancer Center, University of Queensland, Melanoma Institute Australia,

and the University of Athens Medical School [47]. The dataset used in this thesis is a balanced ver-

sion of dermoscopic images from the International Skin Imaging Collaboration (ISIC) archive. The

objective of our models is to correctly classify the images into “benign” and “malignant” classes.

Previous work on the Melanoma Dataset

The International Skin Imaging Collaboration (ISIC) publishes melanoma skin lesion images

every year. Many papers have been written using these datasets or combining these data from

multiple years using deep learning architectures for classification and segmentation purposes. For

instance, Jaworek-Korjakowska et al. [21] conducted superpixel segmentation of pigmented skin

lesions using the SLIC algorithm. Then, they constructed a region adjacency graph (RAG) im-

age. Their graph nodes were the superpixels, and edges represent their neighborhood relationships.

However, this study aimed to improve the segmentation method on this task and not a classification

method. Deep learning architectures, especially convolutional neural networks (CNN), have been

recently used in tasks of dermoscopic image analysis. Some examples of the previous work on

Melanoma dataset and classification task of benign and malignant using ISIC dataset are as follows.

Also, a summary of their results along with other models is shown in Table 3.2.

Majtner et al. [34] trained a support vector machine (SVM) on their extracted features on the

ISIC 2016 dataset and achieved an accuracy of 82.6%. Gutman et al. [13] reviewed the ISIC 2016

challenge where all participants used deep learning methods. The best method achieved an AUC

of 86%. Lopez et al. [33] conducted various VGG16 CNN architectures for melanoma detection

and achieved an accuracy of 81.33% and a sensitivity of 78.66%. Esteva et al. [8] gathered 129,450

dermoscopic images consisting 2,032 different diseases. They trained a CNN on this data and its

performance was tested against 21 board-certified dermatologists on biopsy-proven clinical images

with two binary classification use cases. One of them was malignant melanoma versus benign le-

sions. Moreover, on this task, they achieved an accuracy of 72.10%. Brinker et al. [6] compared the

performance of a CNN architecture against the performance of nine dermatologists on the classifi-

cation of malignant melanoma and benign images. Oliveira et al. [39] applied ensemble classifiers

with hand-crafted features and achieved 94.3% accuracy. And, finally, in a very recent publication
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Author Year published Dataset Classifier Accuracy Sensitivity

Gutman et al. [13] 2016 ISIC2016 Deep Networks 85.50% 50.70%
Majtner et al. [34] 2016 ISIC2016 SVM 82.60% 53.30%
Lopez et al. [33] 2017 ISIC2016 VGG16 81.33% 78.66%

Esteva et al. [8] 2017

ISIC,
Edinburgh Dermofit

Library
and the Stanford

Hospital

CNN 72.1% -%

Oliveiraet al. [39] 2017 ISIC2016
Ensemble of

classifiers
94.30% 91.80%

Menegola et al. [36] 2017 ISIC2017 VGG16 72.10% 54.70%
Reboucas Filho

et al. [42]
2018 ISIC2017 SVM 89.93% 92.15%

ISIC2016 SVM 94.50% 95.23%

Brinker et al. [6] 2019
ISIC

Dermoscopic
Archive

CNN -% 82.30%

Annaby et al. [3] 2021
ISIC2017
+250ISIC

melanoma images
Random Forest 97.50% 100.00%

Table 3.2: Comparison of previous models’ accuracy and sensitivity on Melanoma

(January 2021), Annaby et al. [3] applied SLIC superpixel algorithm on ISIC2017 images + 215

melanoma images and generated graphs on these obtained superpixels. They then used these graph

superpixel features and trained a random forest classifier. They achieved 97.5% on accuracy and

100% on sensitivity. Although, they focus more on the feature extraction techniques in their paper.

The dataset we used in this thesis is none of the above-mentioned ones as they are highly im-

balanced. We used a balanced version of the ISIC archive. We kept the malignant samples and

removed the benign ones to reach 1800 images for both.
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Chapter 4

Experiments, Setup and Results

In this chapter, we describe how we used the ensemble framework on two medical datasets.

We firstly describe the datasets’ setup and the amount of data each of them contains. Then, we

describe how we prepared the data and all the pre-processing steps. The experiment setup details

are explained next, and finally, we report the results of the experiments and compare the results of the

different networks on the proposed method. Results show that the ensemble approach outperforms

the accuracy of the individual GNNs in our classification tasks.

4.1 Datasets’ splitting

This section will explain the amount of data in each dataset and the portions of the training,

validation, and test sets.

4.1.1 Cervical Position Screening

This dataset consists of 1481 labeled training images. 250 images of type 1 , 781 of type 2 and

450 of type 3. There are also 6734 additional images ((1191 type 1, 3567 type 2 , 1976 type 3))

to help train the models. These images sometimes come from duplicated patients, so the images

might look alike since they are taken in the same session; sometimes, they are not selected because

of image quality. We went through all the images and selected the best quality images. We also

removed the duplicate ones. This selection led us to the following proportions in the training set:
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1638 type 1, 1580 in type 2 and 1556 in type 3. We used 1/5 of the images in each type as validation

data. We were also provided with test images data with the following portions: Type 1: 84, Type 2:

260 and Type 3: 150 images.

4.1.2 Melanoma

ISIC publishes melanoma skin lesion datasets every year, and the dataset used in this thesis is

the combination of the last 3 years. It is balanced through removing of benign images to match the

number of malignant cases. This dataset contains 1440 benign and 1197 malignant images in the

training set. In addition, it has 360 benign and 300 malignant in the test set. We used 1/5 of the

training images in each type as validation data.

4.2 Data Preparation

This section describes the experiment environment, packages used for the experiment, and the

data preparation steps. The programming language used is Python3.7 [46]. The models are imple-

mented using DGL 0.4.2 [64] and Pytorch framework [40]. Other packages and libraries used for

processing and segmenting the images are Numpy [17], Scipy [63], Skimage [57], PIL [56] and the

plots are generated using Mathplotlib [19].

The pre-processing steps are as follows:

• Resizing: As the resolution of each image was different, all images were resized to 224 ×

224 pixels.

• Cropping: On the Cervix dataset, the various views (angles and distances that each image

has been taken from) and the existence of multiple objects on each image raised the need for

cropping the images to show the same part of the cervix. We had to manually crop the images

as the images were taken from different angles, lights, and patient positions. Other cropping

methods, such as center-based crops or color-crops, were also explored. However, the results

were not satisfying as the uterus’ colors, and position also varied in each image.
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(a) 15 segments (b) 200 segments (c) 300 segments

Figure 4.1: Superpixel segments

4.3 SLIC superpixel algorithm on the images and hyperparameter se-

lection

After the pre-processing, the SLIC superpixel method was implemented on the pre-processed

images. The hyperparameters of the SLIC method are superpixels’ compactness, sigma and the

number of segments. We tried various values for compactness and the number of segments. Four

different numbers of segmentation (15,100, 200 and 300) were explored, as you can see in Figure

4.1 the higher number of segments, the more accurate the segmentation. We chose 300 segments

as it leads to a better determination of the transformation zone, our region of interest. We also tried

multiple values for compactness. In Figures 4.2 you can see the effect of different compactness (2

and 25) and how superpixels are shaped. Based on the results, we realize that the smaller compact-

ness results in the better acquisition of the lesion’s shape or the cervix. After multiple choices for

this number, we heuristically chose 2 as a valid compactness value for our experiment.

4.4 Graph preparation

In order to be able to feed the images to the graph neural network models, we need to generate

graphs over the images. The nodes, edges and adjacency matrix should be defined. We calculate

the center coordinate of the mass for each superpixel, relative to the position of the superpixel in

the image, and use them as our graph’s nodes. We assign each node’s features as the superpixel
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(a) compactness = 2 (b) compactness = 25

Figure 4.2: SLIC superpixels with compactness of 2 and 25 on a benign skin lesion

coordinates and intensity. The edges will be the Euclidean distance between the nodes, and for each

sample, a k-nearest neighbor adjacency matrix with

W k−NN
ij = exp

(
−‖xi−xj‖

2

σ2
x

)
where xi, xj are the 2-D coordinates of super-pixels i, j and σx is the scale parameter defined as

the averaged distance xk of the k nearest neighbors for each node [7]. We use k = 8 for both of our

datasets. Some examples of the graphs created based on the superpixels are shown in Figures 4.3.

4.5 Models and setup details

This section describes the models we used to train our data in this thesis and the information on

the models’ parameters and setup. We performed multiple experiments on our two medical datasets.

The first experiment was to implement GNN models on these datasets and investigate the results.

As the GraphSage model had one of the best performances on CIFAR10 [7] and our datasets were

also more similar to CIFAR10 in terms of colored images, we decided to start with the GraphSage

model. Then we implemented GAT and GIN model and investigated the results on both datasets.

(Results are shown in the next section)

Our second experiment was proposing two ensemble frameworks as described in 3.1. On the

first framework, we ensembled a pre-trained ResNet18 with GAT and called this model GATRes.
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Figure 4.3: Graphs created based on superpixels

On the ResNet18, which was pre-trained on the ImageNet dataset, firstly, we experimented with

the feature extraction method (we froze all the layers except for the final layer). However, the

results were not satisfactory. We tried multiple combination of fine tuned layer and the best results

was achieved when the last 8 layers of this network was fine tuned on our data, and finally, we

concatenated the results from this network with the output of the GAT network. As the second

framework, we combined the GAT and GIN Networks and called it GATGIN. We performed these

two frameworks on our generated graphs and compared the results with individual models.

The loss function used in our experiments is cross-entropy loss, and as for the optimizer, the

Adam optimizer [26] was used.

The overall parameters are shown in Table 4.1. In all the experiments, the learning rate will start

from an initial amount of 5e−5 and gradually decrease (by half) until it reaches 10−6. From then

onward, it will continue with the 10−6 learning rate.

The networks hyper parameters are explained in Tables 4.2 to 4.6. As shown in Table 4.6 due

to the excessive number of parameters, our GATGIN model was prone to over-fitting on the cervix.

Therefore, we modified the hyper parameters from the following values to the values indicated in

the table. Number of heads: 8, hidden dimension: 20, number of layers: 4 and number of MLP :3.
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Parameters Values
Epochs 1000

Batch size 50
Initial learning rate 5e−5

Table 4.1: Parameters

HyperParams Cervix Melanoma HyperParams Cervix Melanoma
Input dim 300 300 # of heads 5 5

Hidden dim 10 10 # of Layers 4 4
Dropout 0.1 0.1 Readout sum

Table 4.2: GAT hyper-parameters

HyperParams Cervix Melanoma HyperParams Cervix Melanoma
Input dim 300 300 # of MLP 2 2

Hidden dim 110 110 # of Layers 4 4
Dropout 0.1 0.1 Readout sum

Neighbor aggr sum sum Learn Eps True True

Table 4.3: GIN hyper-parameters

HyperParams Cervix Melanoma HyperParams Cervix Melanoma
Input dim 300 300 Sage Aggregator meanpool meanpool

Hidden dim 108 108 # of Layers 4 4
Dropout 0.1 0.1 Readout sum sum

Table 4.4: GraphSage hyper-parameters

HyperParams Cervix Melanoma HyperParams Cervix Melanoma
Input dim 300 300 # of heads 8 8

Hidden dim 19 19 # of Layers 4 4
Dropout 0.1 0.1 Readout mean mean

Table 4.5: GATRes hyper-parameters
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HyperParams Cervix Melanoma HyperParams Cervix Melanoma
Input dim 300 300 # of heads 6 8

Hidden dim GIN 50 110 # of Layers 2 4
Hidden dim GAT 10 20 # of MLP 3 2

Dropout 0.1 0.1 Readout sum sum
Neighbor aggregation sum sum Learn Eps True True

Table 4.6: GATGIN hyper-parameters

Figure 4.4: 5-Fold Cross Validation 1

We performed 5-fold cross-validation (Figure 4.4) on both datasets. the data was divided into 5

roughly equal parts, and throughout the training, we iteratively trained 4/5th of the data and validated

the model on the 1/5th. Finally, outcomes were averaged and reported results were achieved.

4.6 Results

We calculated three metrics for our experiments, accuracy, sensitivity and specificity. For both

Cervix and Melanoma datasets, we report the best-achieved accuracy from implementing models,

individually as well as the ensemble form in Table 4.7. We also can have a better insight and inter-

pretation of our results by looking at their confusion matrices in Figures 4.5 and 4.6. These matrices

show us how precise and reliable our networks are in predicting a certain class and help us calculate

sensitivity and specificity. Sensitivity evaluates the model’s ability to detect the disease. Sensitivity
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Cervical Screening Melanoma

Models #Params Accuracy #Epochs #Params Accuracy #Epochs

GraphSage 102711 55.4% 999 102683 78.9% 999
GAT 110431 49.4% 276 110392 80.4% 545
GIN 101769 55.8% 471 101214 79.2% 695
ResNet18 11178051 64.5% 103 11177538 86.1% 157
GATRes 11294749 65.3% 366 11294084 88.0% 198
GATGIN 28148 56.4% 370 230140 83.6% 595

Table 4.7: Results on Cervix and Melanoma test sets

is an important factor in medical studies as it can aid decision-makers in understanding the results

better. Specificity evaluates the model’s ability to identify the healthy class. In order to calculate

these two factors, we need 4 metrics from the confusion matrices: True Positive samples (TP), False

Positives (FP), True Negatives (TN), and False Negatives (FN). These elements’ descriptions are as

follows:

True Negative (TN) will be the outcome when the model correctly predicts the negative class (usu-

ally the healthy data).In the case of the Melanoma dataset, TN refers to benign images that have

been correctly classified as benign.

False Positive (FP) is an outcome where the model incorrectly predicts the positive class (benign

images that are classified as malignant).

And False Negative (FN) is an outcome where the model incorrectly predicts the negative class

(malignant lesions being classified as benign).

With these elements, we can now calculate the Sensitivity and Specificity with the following

equations:

Sensitivity = True Positives
True Positives + False Negatives

Specificity = True Negatives
True Negatives + False Positives

The Sensitivity and Specificity of our models are shown in Tables 4.8 and 4.9.
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(a) GAT (b) GIN

(c) ResNet18

(d) GATGIN (e) GATRes

Figure 4.5: Confusion matrices on Melanoma dataset
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(a) GAT (b) GIN

(c) ResNet18

(d) GATGIN (e) GATRes

Figure 4.6: Confusion matrices on Cervix dataset
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Models Sensitivity Specificity
GAT 86.6 70.2
GIN 63 89.4

ResNet18 91.6 82.5
GATRes 85 88
GATGIN 91.3 76.6

Table 4.8: Sensitivity and Specificity on Melanoma dataset

Sensitivity Specificity

Models Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

GAT 91 47 15 68 57 87
GIN 63 71 25 83.6 50.8 89.8
ResNet18 53 54 76 88 73 75
GATRes 59 59 63 81.7 72.2 82.5
GATGIN 64 28.8 72 81 76 62.7

Table 4.9: Sensitivity and Specificity on Cervix datasets

An example of convergence diagrams in the process of training GATRes on the Melanoma

dataset is shown in Figure 4.7. The diagram ensures us that there has not been any over-fitting

during the training.

The comparison of the results with the other models previously implemented on the Cervix

dataset can be found in Table 4.10.

As we can see in the Results Table 4.7, our proposed GATRes model achieved the highest

accuracy on both of our datasets. It even outperformed ResNet18, a state-of-the-art model. How-

ever, despite achieving the best accuracy, its sensitivity is lower than GATGIN which has achieved

91.3% in sensitivity 4.8. It’s worth noting that for specificity, GIN showed higher performance on

the melanoma dataset. For this problem sensitivity is the most important factor because if patients

Dataset ResNet32[18] VGG16[54] Squeeze[20] AlexNet[29] GATRes GATGIN

Cervix 58.8[18] 62.1[25] 63.3[2] 62.6[2] 65.3 56.4

Table 4.10: Comparison of different models’ accuracy on the test set
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(a) Training and validation accuracy (b) Training and validation loss

(c) Test accuracy

Figure 4.7: Convergence Diagram of GATRes on Melanoma dataset

get diagnosed with a disease they do not have (False positive), some extra tests will be done. How-

ever, if a patient does not get diagnosed with their disease (False negative), their life will be at risk.

Thus, for this problem, GATGIN would be the best model in our experiment.

For the Cervix dataset, accuracy is a better metric than sensitivity as we are dealing with 3

classes instead of two, and all of our classes are equally important for detection. Therefore, as we

can see on the sensitivity table of the Cervix dataset 4.9 that GATRes performed better than other

models as it has a better performance on all the three classes and it correctly classifies all the three

datasets in 60% of the time.

As shown in the tables, our ensemble models outperform the accuracy of all the individual

GNNs networks and the ResNet18 in this classification task.

As we can see, the GAT-ResNet network works better than ResNet18 on the Melanoma dataset;

we can conclude that the graph neural network approach determines features that the CNN model

does not learn. Therefore, the combination of these approaches can be very beneficial in many

applications.
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Chapter 5

Conclusions and Future Work

This chapter will give the conclusions and future work of this thesis.

5.1 Conclusions

This thesis conducted two experiments on two real-world medical applications: Cervical Cancer

screening and Melanoma. Our first experiment applied three GNN models (GAT, GIN and Graph-

Sage) on these datasets and investigated the results. Our second experiment was proposing two

ensemble graph frameworks. The first framework consisted of a pre-trained ResNet18 and a GNN

model (GAT), named it GATRes. The second framework included two graph neural network models

(GAT and GIN) called GATGIN.

We transformed original images of the mentioned datasets into a graph of superpixels using the

SLIC algorithm. Then we defined the center coordinates of these superpixels as nodes and their

relative distances as edges. Then we fed these graphs to the three GNN models as well as our

ensemble models. We demonstrated that our GATRes model had the highest accuracy among all

the previous published papers on the Cervix dataset. It also outperforms the individual models in

terms of accuracy on both datasets. Our GATGIN model also achieved a fairly high sensitivity on

the Melanoma dataset. Our results showed:

• Our ensemble models outperform the current methods on the Cervical Cancer Screening

dataset.
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• Due to the high dimensionality of graphs, one GNN approach cannot capture all of the impor-

tant characteristics of graphs’ data. Thus, leveraging from multiple and ensemble approaches

would increase the ability to capture more features and enhance the accuracy.

• Our framework can be used for transforming any color images into superpixels and then into

graphs that can be fed to graph neural network models.

• Although our approach is not beating the results from deep neural networks on Melanoma

such as ResNet, we can conclude that there is still a long way to explore for the implemen-

tation of graphs for image classification. However, the proposed ensemble approach has a

better performance than any individual models on both datasets.

5.2 Future Work

• SLIC Segmentation Hyper parameters We picked the most optimized segmentation num-

ber and compactness for the SLIC segmentation manually and heuristically. However, an

automated comparison among different segments and compactness is open to investigation to

pick the most optimized ones (implementing a hyperparameter tuning system).

• Automated Cropping For this particular dataset, cropping showed very better results. This

cropping can also become automated and part of the preparation. This automation experiment

can be done using algorithms such as Yolo [43], etc.

• Graph generation The nodes for feeding the graph are now based on the center of the super-

pixels. Other ways can be investigated. Also, the defining edges based on different distance

methods can be explored.

• Ensemble method In this thesis, the final classification was made with concatenation (the

ensemble method). Other methods such as majority vote and Averaging can be explored as

well.

• Ensemble of other networks On the cervix dataset, the ensemble of GAT and Squeeze net

or GAT and Random Forest can be explored to investigate if any computation time can be
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saved while maintaining the accuracy. Also, based on the achieved results on sensitivity and

accuracy of different models on the Cervix dataset, the ensemble of three models of GAT,

ResNet18 and GIN can be a proper investigation to increase the overall accuracy.
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