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Preface 

This textbook introduces the basic concepts of database systems. These concepts are 

presented through numerous examples in modeling and design. The material in this 

book is geared to an introductory course in database systems offered at the junior or 

senior level of Computer Science. It could also be used in a first year graduate course 

in database systems, focusing on a selection of the advanced topics in the latter 

chapters. 

The Textbook Organization 

The text is organized in a manner suitable for use in an undergraduate database 
course. The format of each chapter is as follows: introduction, concepts (illustrated 

with abundant examples), summary, key terms, exercises, bibliographic notes, and 

bibliographic references. 
The key features of the text are its indepth coverage of the relational, network 

and hierarchical models as well as the extensive use of the E-R model. All these 

models are introduced and compared early in the text in Chapter 2 to provide the 

student with their essential features. Another aspect of the text is the self-contained 

nature of the material covered in each chapter. Coverage of the recent trends in 

database research with sections on knowledge representation, expert systems, deduc¬ 

tive databases, the object approach and the object database is included. The text has 

been classroom tested in manuscript form and has incorporated the suggestions of 

expert reviewers. 

Supplements 

The following ancillary material is available, on request, from the publisher: instruc¬ 

tor’s manual, transparency masters and a floppy disk containing the implementation 

details of a sample data base application. 

Objectives of the Text 

The book’s objective is to provide a conceptual understanding of the principles of 

database systems in a tutorial manner. Formal definitions are preceded by informal 

xv 



xvi Preface 

discussion allowing readers to gain an intuitive understanding of the concepts. Each 

chapter generally offers self-contained illustrative examples and can be studied inde¬ 

pendently. Since the intent is to present the concepts of the various database models, 

the details of the syntax of a particular implementation of a model are replaced by a 

uniform Pascal-like language wherever possible. Each chapter is summarized and 
offers numerous exercises of varying complexity. 

In Chapter 1, the basic concepts of the database systems are introduced. The 

structure of a Database Management System and its components are presented. The 

interaction of the different classes of users with the database, and the database with 

the operating system are explained. Chapter 2 introduces the concepts of data mod¬ 

eling and association of data. The entity-relationship model is introduced; this model 

will be used throughout the text to present the various database design examples. An 

introduction to the relational, network and hierarchical models is also given. An 

implementation of the same database application example using these models along 
with a comparison is presented. 

Chapter 3 deals with file organization and for most database courses it is op¬ 

tional and could be skipped without loss of continuity. Here the various file structures 

used in a database environment and their relative merits for retrieval and update 

operations are presented. The serial, sequential, indexed sequential and direct file 

structures to support primary key retrieval are focused on. The topic of retrieval 

based on secondary keys is presented using the inverted, multilist, and ring files. The 

use of the tree structured files using B + -tree and B-tree is also considered. 

Chapters 4 and 5 encompass the relational model, the relational operators of 

relational algebra, and relational calculus. The query languages based on these ap¬ 

proaches (SQL, QUEL and QBE) are introduced. Chapter 6 focuses on the theory of 

relational database design. The basic normal forms and the process of normalization 

are demystified. The synthesis approach to relational database design and higher or¬ 
der normal forms are discussed in Chapter 7. 

The CODASYL and hierarchical approaches are considered in a conceptual 

frame in Chapters 8 and 9. These two chapters could be skipped for a single semester 

course. If it is included, the material could easily be handled by a teaching assistant/ 

tutor. The subject of query processing in a relational database system is addressed in 

Chapter 10. Methods for the estimation of the query processing costs and their min¬ 
imization are examined. 

The topics of recovery, concurrency, and database security and integrity are 

addressed in Chapters 11 through 13. The concepts of transactions and concurrency 

are introduced. The problems associated with the concurrent execution of transactions 

and the various schemes used to resolve them are presented in Chapter 11. Various 

methods of recovery from the loss of data are examined in Chapter 12. Methods of 
protecting the database are elaborated in Chatper 13. 

Chapter 14 outlines the step by step approach used in designing a database 

application. Issues involved in the three level design are discussed. A number of 

suggested database design projects are given. The special problems that arise when a 

database is distributed over a number of sites connected via a communication net¬ 

work are elaborated in Chapter 15. Chapter 16 treats the advanced topics and may 

be omitted from a junior level course. Concepts of database machines are briefly 
examined in the final chapter. 

The diagram on the following page is a suggested plan for a single semester 
course. 
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File Organization, Network Model and Hierarchical Model chapters are optional 

and could be skipped without loss of continuity. Alternatively, as is the practice at 

Concordia, the Network and Hierarchical Models are covered by a teaching assistant/ 

tutor. It is suggested that the students be assigned a database design and implemen¬ 

tation project and the chapter on Database Design and Query Processing could be 

covered concurrently. In a single term course, the instructor may choose to omit the 

database design project, Chapters 7 and 10. 
When used in a second level or graduate course the latter chapters which deal 

with design and implementation issues such as concurrency, recovery, and security 

may be included. It is also the usual practice to discuss distributed database systems 

and recent trends in database systems in a second level course. Higher order normal 

forms and query processing techniques may be brought in at this level. 
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2 Chapter 1 Basic Concepts 

An organization must have accurate and reliable data for effective decision mak¬ 

ing. To this end, the organization maintains records on the various facets of its op¬ 

erations by building appropriate models of the diverse classes of objects of interest. 

These models capture the essential properties of the objects and record relationships 

among them. Such related data is called a database. A database system is an inte¬ 

grated collection of related files, along with details of the interpretation of the data 
contained therein. 

A database management system (DBMS) is a software system that allows 

access to data contained in a database. The objective of the DBMS is to provide a 

convenient and effective method of defining, storing, and retrieving the information 

contained in the database. The DBMS interfaces with application programs, so that 

the data contained in the database can be used by multiple applications and users. In 

this chapter we look at the structure of a database management system, its main 

components and their interactions, and the different classes of users. The database 

system allows these users to access and manipulate the data contained in the database 

in a convenient and effective manner. In addition the DBMS exerts centralized con¬ 

trol of the database, prevents fraudulent or unauthorized users from accessing the 
data, and ensures the privacy of the data. 

Data Modeling for a Database 

An organization is established to undertake one or several operations or projects. 

Typically, it is an environment with a single administrative control. Examples of an 

organization are a bank, conglomerate, government, hospital, manufacturer, or uni¬ 

versity. An organization may be a single venture such as a university located on a 

single campus under a single board of governors, or it may consist of a number of 

units, each of which could be considered a separate organization. An instance of the 

latter is a conglomerate, which is made up of various quasi-independent enterprises. 

All organizations have some basic, common functions. Typically an organiza¬ 

tion needs to collect, process, store, and disseminate data for its human, financial, 

and material resources and functions. The functions performed by an organization 

depend on its nature and purpose and could include some of the following: payroll, 

accounts receivable and payable, sales reports and forecasts, design and manufactur¬ 

ing, course offerings, course enrollment, student transcripts, medical histories. The 

database system is an attempt to consolidate under a single administration the collec¬ 
tion, storage, and dissemination of the data required for these operations. 

The database is used to store information useful to an organization. To represent 

this information, some means of modeling is used. The components used in modeling 

are limited to the objects of interest to the organization and the relationships among 

these objects. One category of objects of concern to any organization is its personnel, 

and one relationship that exists within this category of objects is that of supervisor to 

employees. Another area in which the definition, management, and manipulation of 

a considerable amount of data is required is in computer-aided design (CAD) and 

computer-aided manufacturing (CAM). The objects in these applications consist of 
the specifications of various components and their interrelationships. 

Each category of objects has certain characteristics or properties, called its attri¬ 

butes. Relationships have certain properties as well, represented as the attributes of 
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the relationship. We briefly look at these components of modeling in this chapter and 
defer detailed discussion of data modeling to the next chapter. 

1.1.1 Entities and Their Attributes 

Entities are the basic units used in modeling classes of concrete or abstract objects. 
Entities can have concrete existence or constitute ideas or concepts. Each of the 
following is an entity: building, room, chair, transaction, course, machine, em¬ 
ployee. An entity type or entity set is a group of similar objects of concern to an 
organization for which it maintains data. Examples of entity sets are transactions, 
concepts, job positions, courses, employees, inventories of raw and finished prod¬ 
ucts, inventories of plants and machinery, students, academic staff, nonacademic 

staff, managers, flight crews, flights and reservations. 
Identifying and classifying objects into entity sets can be difficult, because an 

object can belong to different entity sets simultaneously. A person can be a student 
as well as a part-time employee. Consider the modeling of a flight crew. It consists 
of a group of individuals employed by an organization who belong to the entity sets 
EMPLOYEE and PERSON. These individual members of the flight crew have dif¬ 
ferent skills and functions. Some are assigned to the flight deck, others make up the 
cabin crew. In modeling we may decide simply to use the entity set EMPLOYEE 
and add the attribute Skill with possible values such as pilot, first officer, navigator, 
engineer, steward, purser, and stewardess. A FLIGHT-CREW can then be considered 
as a relationship among the instances of the entity set EMPLOYEE with appropriate 
value of Skill. Or we could consider creating entity sets PILOT, FLIGHT_ENGI- 
NEER, NAVIGATOR, and so forth for each distinct group of employees required in 
a flight crew. We can then set up a relationship, let us call it FLIGHT-CREW, among 

these entity sets. 
One of the first steps in data modeling is to identify and select the entity sets 

that will best organize useful information for the database application (see Figure 
11) Problems to be resolved include delimiting an entity and distinguishing and 
identifying occurrences of entities of the same type. In effect, entities such as bolts, 
electrons, trees, or cattle cannot be uniquely identified. However, with these types 
of entities, their number, density, weight, or other such attributes may be sufficient 
for modeling. For instance, we want to distinguish a #8-24 bolt that is two inches 
long from a #10-24 bolt of the same length. However, an instance of the former 
need not be distinguished from another instance of the same. Another problem to be 
resolved is the method of handling the changes that occur in an entity over time. An 
instance of the entity EMPLOYEE could successively be a junior engineer, an engi¬ 

neer, a senior engineer, and a manager. 
To store data on an entity set, we have to create a model for it. For example, 

employees of an organization are modeled by the entity set EMPLOYEE. We must 
include in the model the properties or characteristics of employees that may be useful 
to the organization. Some of these properties are EMPLOYEE.Name, EMPLOYEE 
SocSec-No (Social Security number), EMPLOYEE .Address, EMPLOYEE.Skill, 

EMPLOYEE.Annual-Salary. Other properties, which are not deemed useful to the 
organization and not recorded, could be the color of the employees’ hair or the size 
of the shoes they wear. The properties that characterize an entity set are called its 
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Figure 1.1 Identifying the requirements for database applications. 

attributes (see Figure 1.2). An attribute is also referred to by the terms data item, 

data element, data field, item, elementary item, or object property. Figure 1.2 

gives examples of entities relevant to a database application for an organization such 

as a hotel. In the figure an entity set is represented as a rectangle and each of its 
attributes is represented by an oval connected to the rectangle. 

Attribute Values and Domains 

The entity set EMPLOYEE is a classification whereby we view a set of persons 

employed by an organization. We record the details of each such person by recording 

the value of each attribute used in the classification. Therefore, we record facts about 

the person George Hall, who is an employee, by giving the values for the attributes 

used in modeling the entity set EMPLOYEE as shown in Figure 1.3. Having defined 

an entity set for the employees, we can represent the data for all the employees of 

the organization HOTEL PLEIN AIR by using the entity type EMPLOYEE. For each 

person employed by the hotel, we give the value for each of the attributes. In Figure 

1.3, we associate the value George Hall with the attribute EMPLOYEE .Name, the 

value 787394510 with the attribute EMPLOYEE.SocSec-No, the value 110 Wool- 
sey Drive with the attribute EMPLOYEE.Address, and so forth. 
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Figure 1.2 Entity sets and their attributes. 

Each attribute of an entity set has a particular value. The set of possible values 

that a given attribute can have is called its domain. For example, the set of values 

that the attribute EMPLOYEE.Soc_Sec_Ari can assume is a positive integer of nine 

digits; similarly, the set of values that the attribute EMPLOYEE .Annual-Salary may 

take is a positive number ranging between 0.00 and 9,999,999.00. It is possible for 

different attributes to share a domain, as in the case of the attribute GUEST.S<?c_ 

Sec-No, which shares its domain with the attribute EMPLOYEE.SocSec^No. If the 

EMPLOYEE .Annual-Salary were recorded in cents, then both the attributes EMPLOY- 

Figure 1.3 An entity set, its attributes, and their values. 

Entity set Attribute Value 

EMPLOYEE EMPLOYEE. Name George Hall 

EMPLOYEE. SocSec-No 787394510 

EMPLOYEE .Address 110 Woolsey Dr. 

EMPLOYEE. Skill cook 

EMPLOYEE .Annual-Salary 42650.00 
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EE. Annual-Salary and EMPLOYEE.SocSec-No would have a domain consisting 

of positive nine-digit integers. Although the set of values for the two attributes are 

identical, their domains are treated differently because we interpret the salary as a 

monetary unit and the Social Security number as an identifying number. 

Keys 

A key is a single attribute or combination of two or more attributes of an entity set 

that is used to identify one or more instances of the set. The attribute EMPLOYEE. 

SocSec-No uniquely identifies an instance of the entity set EMPLOYEE. The value 

787394510 for the attribute EMPLOYEE.SocSec-No uniquely identifies the em¬ 

ployee George Hall. A key would not be unique if an attribute such as EM¬ 

PLOYEE. Skill were used. Such attributes identify more than one instance of the 

entity set EMPLOYEE. The value of cook for EMPLOYEE. SA/// identifies all em¬ 
ployees with this skill. 

Two instances of an entity set could have the same values for all its attributes. 

In the case of the entity set GUEST, it is likely that the two guests Don Smith and 

David Smith, who are identical twins living at 123 New Brunswick Drive, are both 

registered as D. Smith. To distinguish such instances, we introduced the attribute 

GUEST.SocSec-No. This attribute is unique and will identify an instance of the 

entity set GUEST. Such a unique entity identifier as GUEST.SocSec-No is referred 
to as a primary key. 

If we add additional attributes to a primary key, the resulting combination would 

still uniquely identify an instance of the entity set. Such augmented keys are called 

superkeys: a primary key is, therefore, a minimum superkey. It is possible that some 

existing attribute or combination of attributes of an entity set uniquely identifies an 

instance of the set. In this case, additional attributes need not be introduced. How¬ 

ever, if no such attribute or combination of attributes exists, then in order to identify 

the object uniquely, an additional attribute needs to be introduced. Examples of such 

additional attributes are found in the introduction of identifiers such as car serial 

numbers, part numbers, customer and account numbers to uniquely identify cars, 

parts, customers and accounts, respectively. Instances of these entities would be 

harder to distinguish by their other attributes. Suppose that George Hall banks with 

the First National Bank. Even though each customer has a unique SocSec-No, the 

bank uses a unique identifier called the Account-Number to identify each account. 

The fact that George Hall may have more than one account of the same type, for 

example, two current accounts, three savings accounts, and a mortgage account, 

necessitates such identification. The attribute Account—Number is a better choice for 

the primary key of the entity set ACCOUNT than the attribute SocSec-No. 

There may be two or more attributes or combinations of attributes that uniquely 

identify an instance of an entity set. These attributes or combinations of attributes 

are called candidate keys. In such a case we must decide which of the candidate 

keys will be used as the primary key. The remaining candidate keys would be con¬ 
sidered alternate keys. 

A secondary key is an attribute or combination of attributes that may not be a 

candidate key but that classifies the entity set on a particular characteristic. A case in 

point is the entity set EMPLOYEE having the attribute Department, which identifies 

by its value all instances of EMPLOYEE who belong to a given department. More 
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Figure 1.4 Relationships between entity sets. 

than one employee may belong to a department, so the Department attribute is not a 

candidate key for the entity set EMPLOYEE, since it cannot uniquely identify an 

individual employee. However, the Department attribute does identify all employees 

belonging to a given department. 

1.1.2 Relationships 

The relationship set is used in data modeling to represent an association between 

entity sets. This association could have certain properties represented by the attributes 

of the relationship set. A Grade is an attribute of the ENROLLMENT relationship 

set between the entity sets COURSE and STUDENT. 
Each relationship set is named. The fact that an employee is assigned to a given 

department is indicated by the named relationship set WORKS-FOR between the 

entity sets EMPLOYEE and DEPARTMENT. Compare this with using the attribute 

Department as an attribute of EMPLOYEE. Figure 1.4 shows this relationship set as 

a diamond connected to the entity sets involved in the relationship. There could be a 

number of entity sets involved in a relationship and the same entity set could be 

involved in a number of different relationship sets. The relationship set REPORTS- 

TO in Figure 1.4 involves the same entity set EMPLOYEE and indicates that an 

employee reports to another employee, the supervisor. The same entity set EM¬ 

PLOYEE is involved in both these relationship sets. We discuss the concept of rela¬ 

tionships further in the next chapter. 

1 m2 Records and Files 

The physical representation of an entity set is made by aggregating the attributes 

used to model the entity set. Such a representation is called a record type. An 

instance of a record type is a record occurrence. The usual practice is to group 

together in predetermined order the values of the attributes of an instance of an entity 

set and store them in an appropriate storage medium. Therefore, 

[George Hall, 787394510, 110 Woolsey Drive, cook, 42650.00] 
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Figure 1.5 Storing records in a file. 

! George Hall ! 787394510 ! 110 Woolsey Dr. ! cook ! 42650.00 ! 

! Denise Benoit ! 632749291 ! 357 Joseph Blvd. ! busboy \ 19700.00 ! 

is an example of a physical representation of an instance of the entity set EM¬ 

PLOYEE. It represents an occurrence of the record type to which we refer by using 

the same name as the corresponding entity set, EMPLOYEE. The stored value of the 

attribute is referred to as an attribute value, stored field, or simply field. A file is 

a collection of identical record type occurrences pertaining to an entity set and is 
labeled to identify the entity set. 

Two occurrences of the record type for the entity set EMPLOYEE may be stored 

in a file as shown in Figure 1.5. Only the values for the attributes of the record are 

stored and the interpretation of these values is left to the user or program using the 

file. Each record of Figure 1.5 represents a collection of data fields and could be 

interpreted as the attribute values for the attributes EMPLOYEE.Name, EMPLOYEE. 

SocSec-No, EMPLOYEE. A(/<:/rc.s.?, EMPLOYEE. Skill, and EMPLOYEE .Annual- 

Salary, respectively. All occurrences of such records are grouped together and stored 

in a file. The storage medium could be manual (a file folder or a ledger) or computer 
oriented (magnetic tape, disk, drum, or optical disk). 

Data for a record and its interpretation may also be stored together. This may 

be done by preceding each data value with the name of its attribute as shown in 

Figure 1.6. In this method of storage, the relative positions of the various attribute 

names and attribute value pairs within the record are not significant. However, where 

the data is stored as in Figure 1.5, the relative positions of the value for each of the 

attributes of the record must conform to the relative positions of the corresponding 
attribute used in the interpretation of the data. 

The disadvantage of storing the name of the attribute along with the value, as 

shown in Figure 1.6, is the waste of storage space. The advantage is that the inter¬ 

pretation of the value is stored with the value in the file. However, the program using 

Figure 1.6 Storing attribute names with values. 

Attribute 

EMPLOYEE./Vame 

EMPLOYEE. SocSec-No 

EMPLOYEE .Address 

EMPLOYEE .Skill 

EMPLOYEE. Annual-Salary 
cook 

42650.00 

Value 

George Hall 

787394510 

110 Woolsey Dr. 

EMPLOYEE. Name 

EMPLOYEE. 5k/// 

EMPLOYEE. A Jr/rcis 

EMPLOYEE. Annual-Salary 

EMPLOYEE. SocSec-No 

Denise Benoit 

busboy 

357 Joseph Blvd. 

19700.00 

632749291 
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this data still requires information on the size of the descriptors used to store the 

attribute names and the size and type of the attribute values unless they, too, are 

stored. In addition, the program has to be aware of the file access method and the 

type of storage device employed. The volume of description required to interpret the 

data when it is stored using the method of Figure 1.5 is correspondingly greater. 
Such descriptors, being data about data, are called metadata. 

Physical representation of a relationship is not quite as straightforward as the 

representation of the entity set. The representation of a relationship depends on the 

data model used by the database system. We discuss relationships further in the next 
chapter, where we introduce the various data models. 

1.3 Abstraction and Data Integration 

A user’s program (the application program) interprets the world portrayed by the 

data, and this data represents a portion of the real world with which the program is 

concerned. Each program needs data relevant to its task. It is usual for a program to 

use some portion of data that is also used by other programs, and the simplest method 

of sharing common data is by duplicating it. In the early days of computerization, 

when each application was independently implemented (computerized), the practice 

was for each application programmer to design the file structure and for the applica¬ 

tion program to contain the metadata about the file organization and the access 

method to be used. Thus, each application program used its own data; the details 

concerning the structure of the data as well as the method of accessing and interpret¬ 

ing it were all embodied in the application program. Users’ programs were also 

responsible for devising structures for data storage on secondary storage devices so 

that the data could be accessed efficiently. Consequently, users were required to 

choose an appropriate file access method. (We discuss files and access methods in 

Chapter 3.) A change in storage media required changes to these structures and ac¬ 

cess methods. Because the files were structured for one application, it was difficult 

to use the data in these files in new applications requiring data from several files 

belonging to different existing applications. 
It might be necessary to duplicate data because of a different interpretation of 

the data or for the protection of some portion of the data from the general class of 

users. An employee’s telephone number, for instance, could be made available to all 

users but not the employee’s salary. Large-scale storage of redundant data is a waste 

of resources and results in inconsistency when some copies of the data are changed 

and others are not. A database system remedies these problems by centralizing the 

storage and management of data. The database management system has access to 

metadata, relieving users (or their application programs) of its maintenance and ma¬ 

nipulation. The database system also provides the application programs or users with 

data in the form they require, with the database performing the appropriate translation 

of the actual data. 
Consider a nondatabase operating environment consisting of a number of appli¬ 

cation programs as shown in Figure 1.7. Each such application has its own need of 

viewing the real world and the necessary data is stored in private files. Sharing is 

achieved in this environment by duplicating common data. 
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Figure 1.7 Nondatabase environment without any shared data. 

Consider two applications that require data on the entity set EMPLOYEE. The 

first application involves the public relations department sending each employee a 

newsletter and related material. This material is mailed to employees’ homes, neces¬ 

sitating printing mailing labels. The application, therefore, is interested in the record 

type EMPLOYEE, which contains the values for the attributes EMPLOYEE.vVame 

and EMPLOYEE .Address. This record type is the view of the real world as far as 

this application is concerned and can be described in pseudocode as shown in Fig¬ 
ure 1.8. 

The second application involves the payroll application for paycheck prepara¬ 

tion. It requires the record type EMPLOYEE, which contains the values for the 

attributes EMPLOYEE.Name, EMPLOYEE.SocSec-No, EMPLOYEE.Address, and 
EMPLOYEE.Annual-Salary. This record type is shown in Figure 1.9. 

In a nondatabase environment, each application program is responsible for main¬ 
taining the currency of the data and a change in a data item must be effected in each 

copy of the data. Therefore, if an employee changes her or his address, each appli¬ 

cation program using the EMPLOYEE entity set with the attribute EM- 

PLOYEE.Address would be required to update the address of that employee. 

As shown in Figure 1.10, in a database environment data can be shared by these 

two applications. Their requirements can be integrated by the person (or a group of 

persons) who has the responsibility of centralized control. Such a person is referred 

to as the database administrator or DBA. The integrated version could appear as a 

record containing the following attributes: EMPLOYEE.Name, EMPLOYEE.5oc_ 

Sec-No, EMPLOYEE .Address, EMPLOYEE.Skill, and EMPLOYEE.Annual-Sal¬ 
ary. This integrated record type is shown in Figure 1.11. Note the inclusion of the 

Figure 1.8 The view for the public relations application. 

type EMPLOYEE = record 

EMPLOYEE.Name: string; 

EMPLOYEE .Address: string; 
end 
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Figure 1.9 The view for the payroll application. 

type EMPLOYEE = record 

EMPLOYEE.Aame: string; 

EMPLOYEE.SocSec-No: integer; 

EMPLOYEE.Address: string; 

EMPLOYEE.Annual-Salary: integer; 

end 

attribute EMPLOYEE.Skill, which is not being used by either of the above described 

applications. 
The integrated record EMPLOYEE described above can be considered a con¬ 

ceptual record. The views of the two applications it supports can be derived from it 

by using appropriate mapping, which in this case is done by simply hiding (i.e., 

masking out) the unnecessary attributes. The two views of this record as seen by the 

two applications are shown in Figure 1.12. Each application views only a portion of 

the conceptual record. The record each application is concerned with is called a 

logical record. 
In addition to masking out the irrelevant attributes, it is possible to have a view 

that contains one or more attributes obtained by computation from the conceptual 

record. For instance, a new application that requires the monthly salary for each 

employee can be supported by the conceptual record of Figure 1.11. The monthly 

salary is derived by a simple computation on the data in the database for the attribute 

EMPLOYEE .Annual-Salary. 
The application programs discussed above can continue to view the employee 

record in the same manner as before; however, they no longer are required to contain 

information about the file structure. Any change in the storage structure, storage 

Figure 1.10 Database environment with shared data. 
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Figure 1.11 Integrated record definition. 

type EMPLOYEE = record 

EMPLOYEE.yVarae: string; 

EMPLOYEE.Soc~Sec-No: integer; 

EMPLOYEE.Address: string; 

EMPLOYEE.SAf//: string; 

EMPLOYEE.Annual-Salary: integer; 

end 

device type, or access method is absorbed by the DBMS. Alteration of the applica¬ 

tion program is not required for such changes because data accessed by the applica¬ 
tion program is done via the DBMS. 

Changes in the conceptual record do not affect the application programs. If a 

field such as EMPLOYEE.Department were added to the EMPLOYEE record and 

stored, the application programs discussed earlier would not require modifications. 

The database management system would simply be instructed to mask out this addi¬ 

tional field from existing application programs. Similarly, the DBMS would insulate 

Figure 1.12 Conceptual record and two views of it. 

Employee name 

Employee address 

* Logical record 1 

Employee name 

Employee Soc Sec No 

Employee address 

Employee annual salary 

Logical record 2 

User 1 

Employee name 

Employee social security number 

Employee address 

Employee skill 

Employee annual salary 

Conceptual record 
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Figure 1.13 

Logical view 

Conceptual view 

Internal view 

the application programs from any changes in the file structure or physical storage 

device storing the data. 

Thus, in a nondatabase environment the logical record as viewed by the appli¬ 

cation program is identical to the conceptual record, and the physical record is deter¬ 

mined and controlled by the application program. In a database environment, the 

logical record as viewed by the application program need not be the same as the 

conceptual record. In the above example, the logical record in each case is a simple 

subset of the conceptual record. 

We have abstracted the data in three levels corresponding to three views as 

shown in Figure 1.13. The highest level, seen by the application program or user, is 

called the external view, user view, or simply view. The next level of abstraction 

is the sum total of users’ views, called the global view or conceptual view. The 

Three views of the data. 

Employee name 

Employee address 

Logical record 1 

Employee name 

Employee Soc_Sec_No 

Employee address 

Employee annual salary 

Logical record 2 

Employee name: string 

Employee Social Security number: key 

Employee address: string 

Employee skill: string 

Employee annual salary: integer 

Conceptual record 

EMPLOYEE 
record 
length 

120 

Name: string length 25 offset 0 

Soc__Sec_No: 9 dec offset 25 unique 

Department: string length 6 offset 34 

Address: string length 51 offset 40 

Skill: string length 20 offset 91 

Salary: 9, 2 dec offset 111 

Internal record 
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lowest level, a description of the actual method of storing the data, is the internal 

view. The database system can be designed using these levels of abstractions as 

described in the following section. 

The Three-Level Architecture Proposal 

for a DBMS 

In this section we describe the generalized architecture of a database system called 

the ANSI/SPARC1 model. A large number of commercial systems and research da¬ 

tabase models fit this framework. The architecture, shown in Figure 1.14, is divided 

into three levels: the external level, the conceptual level, and the internal level. 

The view at each of these levels is described by a scheme. A scheme is an 

outline or a plan that describes the records and relationships existing in the view. 

The word scheme, which means a systematic plan for attaining some goal, is used 

interchangeably in the database literature with the word schema. The word schemas 

is used in the database literature for the plural instead of schemata, the grammatically 

correct word. The scheme also describes the way in which entities at one level of 

abstraction can be mapped to the next level. 

External or User View 

The external or user view is at the highest level of database abstraction where only 

those portions of the database of concern to a user or application program are in¬ 

cluded. Any number of user views (some of which may be identical) may exist for a 

given global or conceptual view. 

Each external view is described by means of a scheme called an external 

schema. The external schema consists of the definition of the logical records and the 

relationships in the external view. The external schema also contains the method of 

deriving the objects in the external view from the objects in the conceptual view. 

The objects includes entities, attributes, and relationships. (The terms view, scheme, 

and schema are sometimes used interchangeably when there is no confusion as to 
what is implied.) 

Conceptual or Global View 

At this level of database abstraction all the database entities and the relationships 

among them are included. One conceptual view represents the entire database. This 

conceptual view is defined by the conceptual schema. It describes all the records 

and relationships included in the conceptual view and, therefore, in the database. 

There is only one conceptual schema per database. This schema also contains the 

'ANSI/SPARC: American National Standards Institute/Standards Planning and Requirements Committee 
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Figure 1.14 The three levels of architecture of a DBMS. 

External level 

User/application view 
Defined by user or 
application programmer 

in consultation with DBA 

Conceptual level 
Defined by DBA 

Internal level 
DBA defined for 

optimization 

method of deriving the objects in the conceptual view from the objects in the internal 
view. 

The description of data at this level is in a format independent of its physical 

representation. It also includes features that specify the checks to retain data consis¬ 

tency and integrity. 

Internal View 

We find this view at the lowest level of abstraction, closest to the physical storage 

method used. It indicates how the data will be stored and describes the data structures 

and access methods to be used by the database. The internal view is expressed by 

the internal schema, which contains the definition of the stored record, the method 

of representing the data fields, and the access aids used. 

1.4.1 Mapping between Views 

The conceptual database is the model or abstraction of the objects of concern to the 

database. Thus, the conceptual record of Figure 1.13 is the conceptual database and 

represents the abstraction of all the applications involving the entity set EMPLOYEE, 

for the present discussions. The view is the subset of the objects modeled in the 

conceptual database that is used by an application. There could be any number of 

views of a conceptual database. A view can be used to limit the portion of the 

database that is known and accessible to a given application. 
Two mappings are required in a database system with three different views as 

shown in Figure 1.14. A mapping between the external and conceptual views gives 

the correspondence among the records and the relationships of the external and con- 
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ceptual views. The external view is an abstraction of the conceptual view, which in 

its turn is an abstraction of the internal view. It describes the contents of the database 

as perceived by the user or application program of that view. The user of the external 

view sees and manipulates a record corresponding to the external view. There is a 

mapping from a particular logical record in the external view to one (or more) con¬ 

ceptual record(s) in the conceptual view. A number of differences could exist be¬ 

tween the two. Names of the fields and records, for instance, may be different. A 

number of conceptual fields can be combined into a single logical field, for example, 

Last-Name and First-Name at the conceptual level but Name at the logical level. A 

given logical record could be derived from a number of conceptual records. 

Similarly, there is a mapping from a conceptual record to an internal one. An 

internal record is a record at the internal level, not necessarily a stored record on a 

physical storage device. The internal record of Figure 1.14 may be split up into two 

or more physical records. The physical database is the data that is stored on second¬ 

ary storage devices. It is made up of records with certain data structures and orga¬ 

nized in files. Consequently, there is an additional mapping from the internal record 

to one or more stored records on secondary storage devices. This may have been 

implemented using some form of nonlinear addressing. The internal record is as¬ 

sumed to be linearly addressed. However, this complexity is managed by the DBMS 

and the user need not be aware of its presence nor be concerned with it. 

Mapping between the conceptual and the internal levels specifies the method of 

deriving the conceptual record from the physical database. Again, differences similar 

to those that exist between external and conceptual views could exist between the 

conceptual and internal views. Such differences are indicated and resolved in the 
mapping. 

Differences that could exist, besides the difference in names, include the fol¬ 
lowing: 

• Representation of numeric values could be different in the two views. One view 

could consider a field to be decimal, whereas the other view may regard the 

field as binary. A two-way transformation between such values can be easily 

incorporated in the mapping. If, however, the values are stored in a binary 

format, the range of values may be limited by the underlying hardware. 

• Representation of string data can be considered by the two views to be coded 

differently. One view may perceive the string data to be in ASCII code, the 

other view may consider the data to be in EBCDIC code. Again, two-way 
transformation can be provided. 

• The value for a field in one view could be computed from the values in one or 

more fields of the other view. For example, the external view may use a field 

containing a person’s age, whereas the conceptual view contains the date of 

birth. The age value could be derived from the date of birth by using a date 

function available from the operating system. Another example of a computed 

field would be where an external view requires the value of the hours worked 

during a week in a field, whereas the conceptual view contains fields 

representing the hours worked each day of the week. The former can be derived 

from the latter by simple addition. These two examples of transformation 

between the external and conceptual views are not bidirectional. One cannot 

uniquely reflect a change in the total hours worked during a week to hours 

worked during each day of the week. Therefore, a user’s attempt to modify the 
corresponding external fields will not be allowed by the DBMS. 
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Such mapping between the conceptual and internal levels is a correspondence 

that indicates how each conceptual record is to be stored and the characteristics and 

size of each field of the record. Changing the storage structure of the record involves 

changing the conceptual view to internal view mapping so that the conceptual view 
does not require any alteration. 

The conceptual view can assume that the database contains a sequence of rec¬ 

ords for each conceptual record type. These records could be accessed sequentially 

or randomly. The actual storage could have been done to optimize performance. A 

conceptual record may be split into two records, with the less frequently used record 

(part of the original record) on a slower storage device and the more frequently used, 

record, on a faster device. The stored record could be in a physical sequence, or one 

or more indices may be implemented for faster access to record occurrences by the 

index fields. Pointers may exist in the physical records to access the next record 

occurrence in various orders. These structures are hidden from the conceptual view 

by the mapping between the two. 

1.4.2 Data Independence 

Three levels of abstraction, along with the mappings from internal to conceptual and 

from conceptual to external, provide two distinct levels of data independence: logical 

data independence and physical data independence. 
Logical data independence indicates that the conceptual schema can be changed 

without affecting the existing external schemas. The change would be absorbed by 

the mapping between the external and conceptual levels. Logical data independence 

also insulates application programs from operations such as combining two records 

into one or splitting an existing record into two or more records. 
Physical data independence indicates that the physical storage structures or de¬ 

vices used for storing the data could be changed without necessitating a change in 

the conceptual view or any of the external views. The change would be absorbed by 

the mapping between the conceptual and internal levels. 
Logical data independence is achieved by providing the external level or user 

view of the database. The application programs or users see the database as described 

by their respective external views. The DBMS provides a mapping from this view to 

the conceptual view. The view at the conceptual level of the database is the sum 

total of the community view (current and anticipated) of the database There will be 

many external views, but only one conceptual view of a database. The users are only 

interested in that portion of the database that is described by their external view. It 

is an abstraction of the physically stored data and the user manipulates this abstrac¬ 

tion. 
Figure 1.15 gives the external views of the users from the public relations and 

payroll departments. Each of these external views is represented in a high-level lan¬ 

guage declaration in accordance with the normal rules of such languages. Figure 1.16 

represents the conceptual level definition, using a similar facility for data definition. 

For simplicity, we have used the same names for both the external records and their 

components and the conceptual records and their components. However, the names 

used in each external view could be different and a correspondence is indicated be¬ 

tween the names used in the external level and those in the conceptual level. Con¬ 

sequently, the way to derive the external view of the application program for the 
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Figure 1.15 External schemes of (a) user in public relations department and (b) user in payroll 
department. 

type EMPLOYEE = record 

EMPLOYEE.Name: string; 

EMPLOYEE.Address: string; 

end 

(a) 

type EMPLOYEE = record 

EMPLOYEE.Name: string; 

EMPLOYEE.SocSec-No: integer unique; 

EMPLOYEE.Address: string; 

EMPLOYEE.Salary: integer; 

end 

(b) 

public relations department given in Figure 1.15a from the conceptual view given in 

Figure 1.16 is to map the first and fourth fields of the record EMPLOYEE in the 

conceptual scheme into the first and second field of the record EMPLOYEE of the 

external scheme. 

Figure 1.17 presents the internal level definition corresponding to the conceptual 

record type defined in Figure 1.16. The scheme indicates that the record EM¬ 

PLOYEE is a record of length 120 bytes. There are six fields in this record and the 

scheme gives their sizes, types, and relative position from the beginning of the rec¬ 

ord. It also indicates that for faster access in random order, an index is to be built 

using the values from the primary key field EMPLOYEE.SocSec-No. 
Consider a change in the conceptual view such as merging two records into one 

or adding fields to an existing record. This would require a change in the mapping 

(for external views that are based on the records undergoing changes) from the ex¬ 

ternal view to the conceptual view so as to leave the external view unchanged. How¬ 

ever, not all changes in the conceptual schema can be absorbed by the adjustment of 

the mapping. Some changes, such as the deletion of a conceptual view field or rec- 

Figure 1.16 Conceptual schema portion of database corresponding to Figure 1.15. 

type EMPLOYEE = record 

EMPLOYEE.Name: string; 

EMPLOYEE.SocSec-No: integer primary key; 

EMPLOYEE .Department: string; 

EMPLOYEE.Address: string; 

EMPLOYEE.Skill: string; 

EMPLOYEE .Annual-Salary: integer; 

end 
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Figure 1.17 Internal schema of the portion of database corresponding to Figure 1.16. 

type EMPLOYEE = record length 120 

EMPLOYEE.Name: string length 25 offset 0; 

EMPLOYEE.SocSec-No: integer positive 

9 dec digits offset 2.5 

unique 

use for index; 

EMPLOYEE.Department: string length 6 offset 34; 

EMPLOYEE.Address: string length 51 offset 40; 

EMPLOYEE.Skill: string length 20 offset 91; 

EMPLOYEE.Salary: integer positive 9,2 dec 

digits offset 111; 

end 

ord, may require changes in the external view and application programs using this 

external view. 

Physical data independence is achieved by the presence of the internal level of 

the database and the mapping or transformation from the conceptual level of the 

database to the internal level. Conceptual level to internal level mapping, therefore, 

provides a means to go from the conceptual view (conceptual records) to the internal 

view and thence to the stored data in the database (physical records). If there is a 

need to change the file organization or the type of physical device used as a result of 

growth in the database or new technology, a change is required in the transformation 

functions between the physical and conceptual levels. This change is necessary to 

maintain the conceptual level invariant. Altering the physical database organization, 

however, can affect the response and efficiency of existing application programs. 

This may mean that while some application programs run faster, others may be 

slowed down. Regardless, no changes are required in the application programs them¬ 

selves and they will run correctly with the new physical data organization. 

The physical data independence criterion requires that the conceptual level does 

not specify storage structures or the access methods (indexing, hashing method, etc.) 

used to retrieve the data from the physical storage medium. Making the conceptual 

schema physically dataindependent means that the external schema, which is defined 

on the conceptual schema, is in turn physically dataindependent. 
Another aspect of data independence allows different interpretations of the same 

data. The storage of data is in bits and may change from EBCDIC to ASCII coding, 

SI (metric) to imperial units of measure, or the data may be compressed to save 

storage space without affecting the application programs. In addition, a data field 

required by an application may be derived from one or several fields from one or 

more records of the database. As mentioned earlier, a field such as EMPLOYEE.Ag^ 

may be derived from the stored field EMPLOYEE.Birthdate and from the calendar 

function DATE usually provided by the operating system. This is an example of a 

virtual field. Another such virtual field could be Total-HoursJWorked-ForJWeek, 

which is derived from the total of the seven entries for Hours-Worked-During_ 

Week (record of hours worked on each day of the week). Note that unlike a real 

field, a virtual field may not be directly modified by a user. 
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1 a5 Components off a DBMS 

Let us now examine the components and structure of a database management system. 

A DBMS is a complex software system that is used to manage, store, and manipulate 

data and the metadata used to describe the data. It is utilized by a large variety of 

users, from the very naive to the most sophisticated, to retrieve and manipulate data 

under its control. The users could be utilizing the database concurrently from online 

terminals and/or in a batch environment via application programs written in a high- 

level language. Before looking at the various components of the DBMS, let us clas¬ 

sify its users and examine the facilities it provides for the definition and manipulation 

of data. 

1.5.1 Classification of DBMS Users 

The users of a database system can be classified in the following groups, depending 

on their degree of expertise or the mode of their interactions with the DBMS. 

Naive Users 

Users who need not be aware of the presence of the database system or any other 

system supporting their usage are considered naive users. A user of an automatic 

teller machine falls in this category. The user is instructed through each step of a 

transaction; he or she responds by pressing a coded key or entering a numeric value. 

The operations that can be performed by this class of users are very limited and 

affect a precise portion of the database; in the case of the user of the automatic teller 

machine, only one or more of her or his own accounts. Other such naive users are 

end users of the database who work through a menu-oriented application program 

where the type and range of response is always indicated to the user. Thus, a very 

competent database designer could be allowed to use a particular database system 
only as a naive user. 

Online Users 

These are users who may communicate with the database directly via an online ter¬ 

minal or indirectly via a user interface and application program. These users are 

aware of the presence of the database system and may have acquired a certain amount 

of expertise in the limited interaction they are permitted with the database through 

the intermediary of the application program. The more sophisticated of these users 

may also use a data manipulation language to manipulate the database directly. On¬ 

line users can also be naive users requiring additional help, such as menus. 
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Application Programmers 

Professional programmers who are responsible for developing application programs 

or user interfaces utilized by the naive and online users fall into this category. The 

application programs could be written in a general-purpose programming language 

such as Assembler, C, COBOL, FORTRAN, Pascal, or PL/I and include the com¬ 
mands required to manipulate the database. 

Database Administrator 

Centralized control of the database is exerted by a person or group of persons under 

the supervision of a high-level administrator. This person or group is referred to as 

the database administrator (DBA). They are the users who are most familiar with 

the database and are responsible for creating, modifying, and maintaining its three 
levels. 

The DBA is the custodian of the data and controls the database structure. The 

DBA administers the three levels of the database and, in consultation with the overall 

user community, sets up the definition of the global view or conceptual level of the 

database. The DBA further specifies the external view of the various users and ap¬ 

plications and is responsible for the definition and implementation of the internal 

level, including the storage structure and access methods to be used for the optimum 

performance of the DBMS. Changes to any of the three levels necessitated by 

changes or growth in the organization and/or emerging technology are under the 

control of the DBA. Mappings between the internal and the conceptual levels, as 

well as between the conceptual and external levels, are also defined by the DBA. 

Ensuring that appropriate measures are in place to maintain the integrity of the data¬ 

base and that the database is not accessible to unauthorized users is another respon¬ 

sibility. The DBA is responsible for granting permission to the users of the database 

and stores the profile of each user in the database. This profile describes the permis¬ 

sible activities of a user on that portion of the database accessible to the user via one 

or more user views. The user profile can be used by the database system to verify 

that a particular user can perform a given operation on the database. 

The DBA is also responsible for defining procedures to recover the database 

from failures due to human, natural, or hardware causes with minimal loss of data. 

This recovery procedure should enable the organization to continue to function and 

the intact portion of the database should continue to be available. 

1.5.2 DBMS Facilities 

Two main types of facilities are provided by a DBMS: 

• The data definition facility or data definition language (DDL). 

• The data manipulation facility or data manipulation language (DML). 
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Data Definition Language 

Database management systems provide a facility known as data definition language 

(DDL), which can be used to define the conceptual scheme and also.give some 

details about how to implement this scheme in the physical devices used to store the 

data. This definition includes all the entity sets and their associated attributes as well 

as the relationships among the entity sets. The definition also includes any constraints 

that have to be maintained, including the constraints on the value that can be assigned 

to a given attribute and the constraints on the values assigned to different attributes 

in the same or different records. These definitions, which can be described as meta¬ 

data about the data in the database, are expressed in the DDL of the DBMS and 

maintained in a compiled form (usually as a set of tables). The compiled form of the 

definitions is known as a data dictionary, directory, or system catalog. The data 

dictionary contains information on the data stored in the database and is consulted 

by the DBMS before any data manipulation operation. 

The database management system maintains the information on the file struc¬ 

ture, the method used to efficiently access the relevant data (i.e., the access method). 

It also provides a method whereby the application programs indicate their data re¬ 

quirements. The application program could use a subset of the conceptual data defi¬ 

nition language or a separate language. The database system also contains mapping 

functions that allow it to interpret the stored data for the application program. (Thus, 

the stored data is transformed into a form compatible with the application program.) 

The internal schema is specified in a somewhat similar data definition language 

called data storage definition language. The definition of the internal view is com¬ 

piled and maintained by the DBMS. The compiled internal schema specifies the im¬ 

plementation details of the internal database, including the access methods employed. 

This information is handled by the DBMS; the user need not be aware of these 

details. 

Data Manipulation Language 

The language used to manipulate data in the database is called data manipulation 

language (DML). Data manipulation involves retrieval of data from the database, 

insertion of new data into the database, and deletion or modification of existing data. 

The first of these data manipulation operations is called a query. A query is a state¬ 

ment in the DML that requests the retrieval of data from the database. The subset of 

the DML used to pose a query is known as a query language; however, we use the 
terms DML and query language synonymously. 

The DML provides commands to select and retrieve data from the database. 

Commands are also provided to insert, update, and delete records. They could be 

used in an interactive mode or embedded in conventional programming languages 

such as Assembler, COBOL, FORTRAN, Pascal, or PL/I. The data manipulation 

functions provided by the DBMS can be invoked in application programs directly by 

procedure calls or by preprocessor statements. The latter would be replaced by ap¬ 

propriate procedure calls by either a preprocessor or the compiler. An example of a 

procedure call and a preprocessor statement is given below: 
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Procedure call: Call Retrieve (EMPLOYEE. Name, EMPLOYEE .Address) 

Preprocessor statement: %select EMPLOYEE. Name, EMPLOYEE .Address 

from EMPLOYEE; 

These preprocessor statements, indicated by the presence of the leading % sym¬ 

bol, would be replaced by data manipulation language statements in the compiled 

version of the application program. Commands in the conventional languages allow 

permissible operations on the database such as data retrieval, addition, modification, 

or deletion. 
The DML can be procedural; the user indicates not only what to retrieve but 

how to go about retrieving it. If the DML is nonprocedural, the user has to indicate 

only what is to be retrieved. The DBMS in this case tries to optimize the exact order 

of retrieving the various components to make up the required response. 
Data definition of the external view in most current DBMSs is done outside the 

application program or interactive session. Data manipulation is done by procedure 

calls to subroutines provided by a DBMS or via preprocessor statements. In an inte¬ 

grated environment, data definition and manipulation are achieved using a uniform 

set of constructs that forms part of the user’s programming environment. 

1.5.3 Structure of a DBMS 

For our purposes, we may assume that the database management system is structured 

and interfaces with various users as shown in Figure 1.18. The major components of 

this system are described below. 

Data Definition Language Compiler 

The DDL compiler converts the data definition statements into a set of tables. These 

tables contain the metadata concerning the database and are in a form that can be 

used by other components of the DBMS. 

Data Manager 

The data manager is the central software component of the DBMS. It is sometimes 

referred to as the database control system. One of the functions of the data manager 

is to convert operations in the user’s queries coming directly via the query processor 

or indirectly via an application program from the user’s logical view to a physical 

file system. The data manager is responsible for interfacing with the file system. In 

addition, the tasks of enforcing constraints to maintain the consistency and integrity 

of the data, as well as its security, are also performed by the data manager. Synchro¬ 

nizing the simultaneous operations performed by concurrent users is under the control 

of the data manager. It is also entrusted with backup and recovery operations. We 

discuss backup and recovery, concurrency control, and security and integrity in 

Chapters 11, 12, and 13, respectively. 
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Figure 1.18 Structure of a database management system. 

Naive user 

File Manager 

Responsibility for the structure of the files and managing the file space rests with the 

file manager. It is also responsible for locating the block containing the required 

record, requesting this block from the disk manager, and transmitting the required 

record to the data manager. The file manager can be implemented using an interface 

to the existing file subsystem provided by the operating system of the host computer 
or it can include a file subsystem written especially for the DBMS. 

Disk Manager 

The disk manager is part of the operating system of the host computer and all 

physical input and output operations are performed by it. The disk manager transfers 

the block or page requested by the file manager so that the latter need not be con¬ 

cerned with the physical characteristics of the underlying storage media. 
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Query Processor 

The database user retrieves data by formulating a query in the data manipulation 

language provided with the database. The query processor is used to interpret the 

online user’s query and convert it into an efficient series of operations in a form 

capable of being sent to the data manager for execution. The query processor uses 

the data dictionary to find the structure of the relevant portion of the database and 

uses this information in modifying the query and preparing an optimal plan to access 

the database. 
We now focus on the common method of using the database in an application 

program written in a high-level language (HLL) as illustrated in Figure 1.19. The 

data manipulation statements in the application program are replaced during a pre¬ 

compilation stage by a subroutine call to invoke the run-time system. The data ma¬ 

nipulation statements are subsequently compiled separately into a sequence of optim¬ 

ized operations on the database that can be performed by the data manager. Many of 

the same optimization functions used by the query processors are also used in the 

compilation of the data manipulation statements. During execution, when a subrou¬ 

tine call inserted in place of the data manipulation statements is encountered, control 

transfers to the run-time system. This system in turn transfers control to the compiled 

Figure 1.19 Processing database applications in HLL. 

Main 
memory 
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version of the original data manipulation statements. These data manipulation oper¬ 

ations are executed by the data manager. The data manager transfers data to or from 

a work area indicated in the subroutine call and control returns to the application 

program. 

For online users who manipulate the database through the intermediary of a user 

interface (such as a form-based or menu-driven system) and a supporting application 

program written in a high-level language, the interaction is indirect. A user action 

that requires a database operation causes the application program to request the ser¬ 

vice via its run-time system and the data manager. 

Batch users of the database also interact with the database via their application 

program, its run-time system, and the data manager. 

Telecommunication System 

Online users of a computer system, whether remote or local, communicate with it by 

sending and receiving messages over communication lines. These messages are 

routed via an independent software system called a telecommunication system or a 

communication control program. Examples of these programs are CICS, IDMS-DC, 

TALKMASTER, and IERCOMM. The telecommunication system is not part of the 

DBMS but the DBMS works closely with the system; the subject is covered exten¬ 

sively in (Cyps 78). The online user may communicate with the database directly or 

indirectly via a user interface (menudriven or formbased) and an application program. 

Messages from the user are routed by the telecommunication system to the appropri¬ 

ate target and responses are sent back to the user. 

Data Files 

Data files contain the data portion of the database. 

Data Dictionary 

Information pertaining to the structure and usage of data contained in the database, 

the metadata, is maintained in a data dictionary. The term system catalog also 

describes this metadata. The data dictionary, which is a database itself, documents 

the data. Each database user can consult the data dictionary to learn what each piece 
of data and the various synonyms of the data fields mean. 

In an integrated system (i.e., in a system where the data dictionary is part of 

the DBMS) the data dictionary stores information concerning the external, concep¬ 

tual, and internal levels of the database. It contains the source of each data-field 

value, the frequency of its use, and an audit trail concerning updates, including the 
who and when of each update. 

Currently data dictionary systems are available as add-ons to the DBMS. Stan¬ 

dards have yet to be evolved for integrating the data dictionary facility with the 

DBMS so that the two databases, one for metadata and the other for data, can be 
manipulated using an unified DDL/DML. 
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Figure 1.20 Steps in data access. 
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Access Aids 

To improve the performance of a DBMS, a set of access aids in the form of indexes 

are usually provided in a database system. Commands are provided to build and 

destroy additional temporary indexes. 

1.5.4 Database Access 

Any access to the stored data is done by the data manager. The steps involved in 

database access can be summarized as shown in Figure 1.20. 
A user’s request for data is received by the data manager, which determines the 

physical record required. The decision as to which physical record is needed may 

require some preliminary consultation of the database and/or the data dictionary prior 

to the access of the actual data itself. 
The data manager sends the request for a specific physical record to the file 

manager. The file manager decides which physical block of secondary storage de¬ 

vices contains the required record and sends the request for the appropriate block to 

the disk manager. A block is a unit of physical input/output operations between 

primary and secondary storage. The disk manager retrieves the block and sends it to 

the file manager, which sends the required record to the data manager. 

1.6 Advantages and Disadvantages of a DBMS 

Let us consider the pros and cons of using a DBMS. 

1.6.1 Advantages of a DBMS 

One of the main advantages of using a database system is that the organization can 

exert, via the DBA, centralized management and control over the data. The database 

administrator is the focus of the centralized control. Any application requiring a 
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change in the structure of a data record requires an arrangement with the DBA, who 

makes the necessary modifications. Such modifications do not affect other applica¬ 

tions or users of the record in question. Therefore, these changes meet another re¬ 

quirement of the DBMS: data independence, the advantages of which werfe discussed 
in section 1.4.2. 

Reduction of Redundancies 

Centralized control of data by the DBA avoids unnecessary duplication of data and 

effectively reduces the total amount of data storage required. It also eliminates the 

extra processing necessary to trace the required data in a large mass of data. Another 

advantage of avoiding duplication is the elimination of the inconsistencies that tend 

to be present in redundant data files. Any redundancies that exist in the DBMS are 

controlled and the system ensures that these multiple copies are consistent. 

Shared Data 

A database allows the sharing of data under its control by any number of application 

programs or users. In the example discussed earlier, the applications for the public 

relations and payroll departments could share the data contained for the record type 
EMPLOYEE described in Figure 1.11. 

Integrity 

Centralized control can also ensure that adequate checks are incorporated in the 

DBMS to provide data integrity. Data integrity means that the data contained in the 

database is both accurate and consistent. Therefore, data values being entered for 

storage could be checked to ensure that they fall within a specified range and are of 

the correct format. For example, the value for the age of an employee may be in the 

range of 16 and 75. Another integrity check that should be incorporated in the data¬ 

base is to ensure that if there is a reference to certain object, that object must exist. 

In the case of an automatic teller machine, for example, a user is not allowed to 
transfer funds from a nonexistent savings account to a checking account. 

Security 

Data is of vital importance to an organization and may be confidential. Such confi¬ 

dential data must not be accessed by unauthorized persons. The DBA who has the 

ultimate responsibility for the data in the DBMS can ensure that proper access pro¬ 

cedures are followed, including proper authentication schemes for access to the 

DBMS and additional checks before permitting access to sensitive data. Different 

levels of security could be implemented for various types of data and operations. The 

enforcement of security could be datavalue dependent (e.g., a manager has access to 

the salary details of employees in his or her department only), as well as data-type 
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dependent (but the manager cannot access the medical history of any employees, 
including those in his or her department). 

Conflict Resolution 

Since the database is under the control of the DBA, she or he should resolve the 

conflicting requirements of various users and applications. In essence, the DBA 

chooses the best file structure and access method to get optimal performance for the 

response-critical applications, while permitting less critical applications to continue 
to use the database, albeit with a relatively slower response. 

Data Independence 

Data independence, as discussed in section 1.4.2, is usually considered from two 

points of view: physical data independence and logical data independence. Physical 

data independence allows changes in the physical storage devices or organization of 

the files to be made without requiring changes in the conceptual view or any of the 

external views and hence in the application programs using the database. Thus, the 

files may migrate from one type of physical media to another or the file structure 

may change without any need for changes in the application programs. Logical data 

independence implies that application programs need not be changed if fields are 

added to an existing record; nor do they have to be changed if fields not used by 

application programs are deleted. Logical data independence indicates that the con¬ 

ceptual schema can be changed without affecting the existing external schemas. Data 

independence is advantageous in the database environment since it allows for changes 

at one level of the database without affecting other levels. These changes are ab¬ 

sorbed by the mappings between the levels. 

1.6.2 Disadvantages of a DBMS 

A significant disadvantage of the DBMS system is cost.2 In addition to the cost of 

purchasing or developing the software, the hardware has to be upgraded to allow for 

the extensive programs and the work spaces required for their execution and storage. 

The processing overhead introduced by the DBMS to implement security, integrity, 

and sharing of the data causes a degradation of the response and through-put times. 

An additional cost is that of migration from a traditionally separate application envi¬ 

ronment to an integrated one. 
While centralization reduces duplication, the lack of duplication requires that 

the database be adequately backedup so that in the case of failure the data can be 

recovered. Backup and recovery operations are fairly complex in a DBMS environ- 

^The costs of acquiring and using a database system are considerably lower for database systems on microprocessor-based 

personal workstations. 
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Figure 1.21 Pros and cons of a DBMS. 
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ment, and this is exacerbated in a concurrent multiuser database system. Further¬ 

more, a database system requires a certain amount of controlled redundancies and 

duplication to enable access to related data items. 

Centralization also means that the data is accessible from a single source, 

namely the database. This increases the potential severity of security breaches and 

disruption of the operation of the organization because of downtimes and failures. 

The replacement of a monolithic centralized database by a federation of independent 

and cooperating distributed databases resolves some of the problems resulting from 

failures and downtimes. 

The pros and cons of a DBMS system are summarized in Figure 1.21. 

Summary 

Data are facts from which a conclusion can be drawn; for this reason, humans record 

data. Data is required in the operation of any organization, and the same or similar 

data may be required in various facets of its functioning. 

Entity sets are the categories of objects of interest to an organization for which 

the organization maintains data. To store the data about an entity set, a reasonable 

model of the entity is made by listing the characteristics or attributes that are of 

relevance to the database application. In order to uniquely identify a single instance 

of an entity set, a primary key is devised either from the attributes that are used to 

model the entity set or by adding such an attribute. The values for each attribute of 

an instance of an entity set are grouped together and this collection is called a record 

type. A file is a collection of identical record type occurrences pertaining to an en¬ 
tity set. 

A database system is an integrated collection of related files along with the 

details about their definition, interpretation, manipulation, and maintenance. It is an 

attempt to satisfy the data needs of the various applications in an organization without 

unnecessary duplication. The DBMS not only makes the integrated collection of re¬ 

liable and accurate data available to multiple applications and users, but also exerts 

centralized control, prevents fraudulent or unauthorized users from accessing the 
data, and ensures privacy. 
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The DBMS provides users with a method of abstracting their data requirements 

and removes the drudgery of specifying the details of the storage and maintenance of 

data. The DBMS insulates users from changes that occur in the database. Two levels 

of data independence are provided by the system. Physical independence allows 

changes in the physical level of data storage without affecting the conceptual view. 

Logical independence allows the conceptual view to be changed without affecting the 
external view. 

A DBMS is a complex software system consisting of a number of components. 

It provides the user with a data definition language and a data manipulation language. 

The user defines the external and conceptual views by using the DDL and manipu¬ 

lates the data contained in the database by using the DML. 

The data manager is the component of the DBMS that provides an interface 

between the user (via the query processor or the compiled application program) and 

the file system. It is also responsible for controlling the simultaneous use of the 

database and maintaining its integrity and security. Responsibility for recovery of the 

database after any failure lies with the data manager. 

The database administrator defines and maintains the three levels of the database 

as well as the mapping between levels to insulate the higher levels from changes that 

occur in the lower levels. The DBA is responsible for implementing measures for 

ensuring the security, integrity, and recovery of the database. 
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Exercises 

1.1 Explain the differences between a file-oriented system and a database-oriented system. 

1.2 Consider the application program for the support of an automatic teller machine. How does 

such a program communicate with the user and the database? 

1.3 Define the following terms: 

metadata 

data independence 

database administrator 

query processor 

data manager 

external view 

1.4 Give the mappings required to derive (a) the conceptual record of Figure 1.16 from the 

internal record of Figure 1.17, and (b) the external records of Figure 1.15 from the 

conceptual record of Figure 1.16. 

1.5 Suppose the field EMPLOYEE.Address of the internal record of Figure 1.17 is replaced by 

the following fields: 

EMPLOYEE.Street-Number: string length 7 offset 40; 

EMPLOYEE.Street: string length 20 offset 47; 

EMPLOYEE.City: string length 16 offset 67; 

EMPLOYEE.State: string length 2 offset 83; 

EMPLOYEE.Zip: string length 5 offset 85; 

What changes are required in the mappings of Exercise 1.4? 

1.6 Consider an airline reservation database system in which travel agents are allowed online 

access to make reservations on any flight. Is it possible for two travel agents located in 

different cities to book their respective clients the last seat on the same flight? Explain your 

answer. 

1.7 What problems are caused by data redundancies? Can data redundancies be completely 

eliminated when the database approach is used? Why or why not? 

1.8 Why is data important to an enterprise? How does an enterprise that has better control of its 

data have a competitive edge over other organizations? 

1.9 Choose from the following list an enterprise you are most familiar with: college or 

university, public library, hospital, fast-food restaurant, department store. What are the 

entities of interest to this enterprise? For each such entity set, list the attributes that could be 

used to model each of the entities. Are there any attributes (or collections of attributes) in 

each entity set that would uniquely identify an instance of the entity set? What are some of 

the applications that may be automated using the DBMS? Design the views of these 

applications and the conceptual view. 

1.10 Softcraft Ltd. is a corporation involved in the design, development, and marketing of 

software products for a family of advanced personal computers. What entities are of interest 

to such an enterprise? Give a list of these entities and the relationships among them. 
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In this chapter we look at the method of representing or modeling concrete and 

abstract entities. We introduce the concept of association among various attributes of 

an entity and the relationships among these entities. We also briefly look at the data 

models used in database applications. They differ in the method used to represent 
the relationships among entities. 

2.1 Introduction 

A model is an abstraction process that hides superfluous details while highlighting 

details pertinent to the applications at hand. A data model is a mechanism that 

provides this abstraction for database applications. Data modeling is used for repre¬ 

senting entities of interest and their relationships in the database. It allows the con¬ 

ceptualization of the association between various entities and their attributes. A num¬ 

ber of models for data representation have been developed. As with programming 

languages, there is no one “best” choice for all applications. Most data representa¬ 

tion models provide mechanisms to structure data for the entities being modeled and 

allow a set of operations to be defined on them. The models can also enforce a set 

of constraints to maintain the integrity of the data. These models differ in their 

method of representing the associations amongst entities and attributes. The main 

models that we will study are the hierarchical, network, and relational models. Da¬ 

tabase management systems based on these models or variations thereof, are avail¬ 

able from various software houses and are used to maintain corporate databases. In 

addition to these widely used models, others, such as the entity-relationship model, 

have been developed by researchers. 

2.2 Data Associations 

Information is obtained from raw data by using the context in which the data is 

obtained and made available, and the applicable conventions for its usage. For ex¬ 

ample, if we want to record the phone numbers of our friends, we usually keep a list 

as shown in Figure 2.1a. If we had simply written the list of the phone numbers as 

in Figure 2.1b, we might not be able to associate a number with a given friend. The 

only time we sometimes note only the phone number is when it is the only one on 

the list and is to be used within a very short time. 
The association between Bill’s name and his phone number is obtained by writ¬ 

ing the name and number on the same line, and this mechanism, a simple data 

structure, is used to retrieve the corresponding information. It can also be used to 

modify the information if Bill changes his phone number. 

When a large amount of data is stored in a database, we have to formalize the 

storage mechanism that will be used to obtain the correct information from the data. 

We have to establish a means of showing the relationship among various sets of data 

represented in the database. A relationship between two sets, X and Y, is a corre¬ 

spondence or mapping between members of the sets. A possible relationship that 

may exist between any two sets may be one-to-one, one-to-many, or many-to-many 

as shown in Figure 2.2. 
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Figure 2.1 Examples of telephone lists. 

Bill 377-9219 371-5933 

Jill 371-5933 377-9219 

(a) (b) 

2.2.1 Entities, Attributes, and Associations 

Entities are distinguishable objects of concern and are modeled using their character¬ 

istics or attributes. Associations exist between different attributes of an entity. An 

association between two attributes indicates that the values of the associated attri¬ 

butes are interdependent. This correspondence between attributes of an entity is a 

property of the information that is used in modeling the object. It indicates that there 

is a constraint regarding the value that can be assigned to one of these attributes 

when a given value is assigned to the other. 

We distinguish between the association that exists among the attributes of an 

entity, called an attribute association, and that which exists between entities, called 

a relationship. 

Consider the employees of an organization. The organization maintains certain 

information about each employee, such as name, date of birth, a unique identifier 

such as an employee identification number and/or Social Security number, address, 

name and relationship the employee’s dependents, and employment history, consist¬ 
ing of the positions held and the corresponding salary. 

If we consider the association between an employee identification number and 

his or her Social Security number, we find that for a given employee identification 

Figure 2.2 Different types of relationships between sets. 
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Figure 2.3 One-to-one association between attributes. 

EmployeeJd Social ^Security_Number 

Social Security Number 

Social Security_Number ) -< 

>- ( Employee Jd 

>- ( Employee Id 

number there can exist only one Social Security number. Consequently, the associa¬ 

tion from the employee identification number to the Social Security number is 

unique. Similarly, the association from the Social Security number to the employee 

identification number is unique. The association between these attributes is therefore 

one to one. We can show this one-to-one association pictorially as in Figure 2.3. 

Here the attributes are shown as ovals and the association between the attributes is 

represented by a direct line. The arrow points to the dependent attribute in the attrib¬ 

ute association. 

Now consider the association between the attributes Social-Security-Number 

and Employee-Name. There can be only one Employee-Name associated with a 

given Social-Security-Number. Names are typically not unique. (This was demon¬ 

strated when the Nobel prize committee reached the wrong person while trying to 

contact the winner of the 1987 Nobel prize in chemistry. There were two persons 

with the same name in Los Angeles.) In a large organization, more than one em¬ 

ployee could have the same name. A given Employee-Name has associated with it 

one or more Social-Security-Numbers; however, a given Social-Security-Number 

has only one corresponding name. These associations are shown in Figure 2.4. Here 

the double arrow indicates that for a given value of the attribute on the left side, 

Figure 2.4 One-to-many association between attributes. 

Social Security Number Employee_Name 

Employee Name >-*- SocialJSecurityJl umber 

Social Security_Number ■* ■< - Employee _Name 
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Figure 2.5 

there could be one or more values for the attribute on the right side. The association 

between these attributes is one-to-many. 

Consider the entity part with the attributes Part# and Color. Part# is a unique 

part number and Color represents the colors in which that part is available, there 

being a choice of one or more. In this instance the association from the attribute 

Part# to attribute Color is one-to-many. There could be many parts with a given 

color, thereby making the association between the attributes Part# and Color many- 

to-many. We show these associations in Figure 2.5. 

Let us return to the employee entity and its attributes: Employee-Id, Employee- 

Name, Address, Phone, Skill, Dependent-Name, Kinship-tO-Employee, Position- 

Held, PositionStart-Date, Salary, Salary-Start-Date. 

There is one value for the attribute Employee-Id for a given instance of the 

entity type EMPLOYEE. It corresponds to the property that one employee is assigned 

a unique identifier. Similarly, there is one value for the attribute Employee-Name for 

one instance of the entity type EMPLOYEE. The value of the attribute Employee- 

Name depends on the value of the attribute Employee-Id. We show this dependence 

by the following notation: 

Employee-Id —» Employee-Name 

to indicate that the (value of the) attribute Employee-Name is uniquely determined 

by the (value of the) attribute Employee-Id. 

There could be many values of the attribute pair Dependent-Name, Kinship- 

to-Employee for a given instance of the entity EMPLOYEE to indicate that each 

employee could have many dependents. The multiple values of these attribute pairs 

depend on the value of the attribute Employee-Id. We show this dependence by the 
following notation: 

Employee-Id -■»--> (Dependent-Name, Kinship-tO-Employee) 

Similarly, an employee could have held different positions with the organization 

and would have received increments in salary giving rise to the following associa¬ 

tions from Employee-Id: 

Employee-Id ■■■■■> > (Position-Held, PositionStart-Date) 

Employee-Id ■>■■■■> (Salary, Salary-Start-Date) 

An employee could have had many salaries for a given position and in the event 

been promoted without a salary increase, could have had many positions for a given 

Many-to-many association. 

Part# >-► ( Color 

Color Part# 

Part# ) ► ( Color 
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salary. Consequently, the association between Position-Held and Salary is many to 

many. We show this dependence by the following notation: 

Position-Held <—•<—» Salary 

The association of these attributes is shown in Figure 2.6. 

In Figure 2.7, we show the associations among the attributes of an instance of 

the EMPLOYEE entity. The number 12345678 identifies the employee Jill Jones, 

who lives at 50 Main. She has a single phone number (371-5933) and two depen¬ 

dents, Bill Jones, her spouse, and her son Bob Jones. She has the skills of an elec¬ 

trical engineer and an administrator. She was a junior engineer from December 15, 

1984 and an engineer as of January 20, 1986. Her starting salary was $38,000.00 

with an increment on December 15, 1985 to $39,200.00 and again on May 15, 1986 

to $42,000.00. 

So far, we have considered only the associations between attributes belonging 

to the same entity type. The definition of a given entity, however, is relative to the 

point of view used. [One case is illustrated with respect to the EMPLOYEE entity in 

Section 2.2.3 and Figure 2.16, where the attributes (Dependent-Name, Kinship-to_ 

Employee) are removed from the EMPLOYEE entity and a one-to-many relationship 

is established.] Consequently, there could be associations between any two attributes 

regardless of their entities. We can approach the design of a database by considering 

the attributes of interest without concerning ourselves with the associated entities. 

We look at the associations among these attributes and design the database, grouping 

Figure 2.6 Association between attributes. 
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Figure 2.7 An instance of the entity set EMPLOYEE. 

-► Jill Jones 
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together those attributes that have a desirable association. Such an approach, called 
the synthesis approach, is discussed in Chapter 7. 

Formally, the association or interdependence between attributes is called func¬ 
tional dependency, defined below. 

Definition: Functional Dependency: 

Given two sets of attributes X and Y, Y is said to be functionally dependent on 

X if a given value for each attribute in X uniquely determines the value of the 

attributes in Y. X is called the determinant of the functional dependency (FD) 
and the FD is denoted as X —» Y. 

The process of identifying functional dependencies and selecting those attributes 

that should be grouped together in a given record is central to the process of database 
design. We deal with this topic in Chapter 6. 

The primary key concept can be explained using the concept of functional de¬ 

pendency between attributes. Let X and Y be two sets of attributes of an entity type. 

If X —» Y and if this dependency holds for all attributes Y in the entity and for all 

instances of the entity type, then X is a candidate key. For the entity type EM¬ 

PLOYEE, the attribute Employee-Id is an example of a candidate key. Another can¬ 

didate key for EMPLOYEE is the attribute Social-Security-Number. One of these 

candidate keys can be chosen as the primary key. 

2.2.2 Relationships among Entities 

In addition to the associations that exist between the attributes of an entity, relation¬ 

ships exist among different entities. Relationships are used to model the interactions 

that exist among entities and the constraint that specifies the number of instances of 

one entity that is associated with the others. Even though a relationship may involve 

more than two entities, we concentrate on the relationship between two entities be¬ 

cause it is the most common type encountered in database applications. Such a rela¬ 

tionship is known as a binary relationship. It may be one-to-one (1:1), one-to-many 

(1 :M), or many-to-many (M:N). The 1:1 relationship between entity sets E| and E2 

indicates that for each entity in either set there is at most one entity in the second set 

that is associated with it. The 1 :M relationship from entity set E, to E2 indicates that 

for an occurrence of the entity from the set Ei, there could be zero, one, or more 

entities from the entity set E2 associated with it. Each entity in E2 is associated with 

at most one entity in the entity set E(. In the M:N relationship between entity sets 

Ej and E2, there is no restriction as to the number of entities in one set associated 

with an entity in the other set. 
To illustrate these different types of relationships, consider the following entity 

sets: DEPARTMENT, MANAGER, EMPLOYEE, and PROJECT. 

The relationship between a DEPARTMENT and a MANAGER is usually one- 

to-one; there is only one manager per department and a manager manages only one 

department. This relationship between entities is shown in Figure 2.8. Each entity is 
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Figure 2.8 One-to-one relationship. 

DEPARTMENT ■<-► MANAGER 

represented by a rectangle and the relationship between them is indicated by a direct 

line. The relationship from MANAGER to DEPARTMENT and from DEPART¬ 

MENT to MANAGER is both 1:1. Note that a one-to-one relationship between two 

entity sets does not imply that for an occurrence of an entity from one set at any 

time there must be an occurrence of an entity in the other set. In the case of an 

organization, there could be times when a department is without a manager or when 

an employee who is classified as a manager may be without a department to manage. 

Figure 2.9 shows some instances of one-to-one relationships between the entities 

DEPARTMENT and MANAGER. The sets of all instances of the entities are repre¬ 

sented by the ovals. 

A one-to-many relationship exists from the entity MANAGER to the entity EM¬ 

PLOYEE because there are several employees reporting to the manager. As we just 

pointed out, there could be an occurrence of the entity type MANAGER having zero 

occurrences of the entity type EMPLOYEE reporting to him or her. A reverse rela¬ 

tionship, from EMPLOYEE to MANAGER, would be many to one, since many 

employees may be supervised by a single manager. However, given an instance of 

the entity set EMPLOYEE, there could be only one instance of the entity set MAN¬ 

AGER to whom that employee reports (assuming that no employee reports to more 

than one manager). These relationships between entities are illustrated in Figure 

2.10. Figure 2.11 shows some instances of these relationships. 

The relationship between the entity EMPLOYEE and the entity PROJECT can 

be derived as follows: Each employee could be involved in a number of different 

projects, and a number of employees could be working on a given project. This 

relationship between EMPLOYEE and PROJECT is many-to-many. It is illustrated 

in Figure 2.12. Figure 2.13 shows some instances of such a relationship. 

Figure 2.9 One-to-one relationships. 

DEPARTMENT set MANAGER set 
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Figure 2.10 One-to-many relationship. 

MANAGER -<- EMPLOYEE 

Figure 2.11 One-to-many relationships from MANAGER to EMPLOYEE and many-to-one reverse 
relationships. 

MANAGER set EMPLOYEE set 

Figure 2.12 Many-to-many relationship. 

EMPLOYEE -< -<-► ► PROJECT 

Figure 2.13 Many-to-many relationships between EMPLOYEE and PROJECT. 

EMPLOYEE set PROJECT set 
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Figure 2.14 A one-to-many association between attributes of EMPLOYEE. 

Employeeld >• >■ (Dependent Name, Kinship to Employee) 

2.2.3 Representation of Associations and Relationships 

In database modeling we have to represent both the attribute associations and the 

entity relationships. These representations are determined by the database manage¬ 

ment system’s underlying data model. 

One common way of representing the attribute associations is by grouping the 

attributes together. Such a grouping is a record and a representation of an entity. We 

look at this briefly below. The relationship between entities is represented in a variety 

of ways by the different data models. 

When the association between sets of attributes is one-to-many, we can repre¬ 

sent it by storing the attributes in a variable-size record. One case is the entity EM¬ 

PLOYEE of Figure 2.6 and the one-to-many association between the attribute Employ¬ 

ee-Id and (Dependent-Name, Kinship- to-Employee) as shown in Figure 2.14. Fig¬ 

ure 2.15 is an example showing the record of Figure 2.7 with the multiple values of 

the attributes Dependent-Name, Kinship-tO-Employee, and so on, repeated a num¬ 

ber of times. The multiple sets of values for a set of attributes is known as a repeat¬ 

ing group. Each repeating group is associated with a single value of the attribute Employ¬ 

ee-Id. 

The distinction between attribute association and entity relationship is difficult 

to make, especially when the perception of the object being modeled is modified. 

This observation leads to another method of representing a one-to-many association 

between sets of attributes. In this approach we separate each set of the entity’s attri¬ 

butes having a one-to-many association into another entity. We then establish a one- 

Figure2.15 Representing a record. 

repeating group 

12345678 ; Jill Jones 1 50 Main 1371-5933 IF 
3ill Jones | spouse | ^ 

repeating group repeating group 

^ Bob Jones 1 son Electrical Engineer 1 Administration Junior - S 

repeating group 

) Engineer ; 12/15/84 ; Engineer ; 01/20/86 38000.00 ; \ 

^ 12/15/84 39200.00 j 12/15/85 V 42000.00 1 05/15/86 
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Figure 2.16 Converting an association to a relationship. 

EMPLOYEE* ► DEPENDENTS 

to-many relationship between the newly created entity and the original one (minus 

the attributes contained in the newly created entity). Therefore, in the entity EM¬ 

PLOYEE, the attributes for the dependents can either be viewed as attributes of the 

entity or, as illustrated in Figure 2.16, as a distinct entity DEPENDENTS having a 

relationship to the modified entity denoted as EMPLOYEE*. Here entity EM¬ 

PLOYEE* does not contain the attributes Dependent-Name or Kinship-to-Em¬ 

ployee, which are the attributes of DEPENDENTS. 

2.3 Data Models Classification 

Data models can be classified as file-based systems, traditional data models, or se¬ 

mantic data models. 

File-Based Systems or Primitive Models 

Entities or objects of interest are represented by records that are stored together in 

files. Relationships between objects are represented by using directories of various 

kinds. We will not discuss file-based models here since there is no accepted standard 

for this method. The subject of files and different access aids, however, is discussed 

in Chapter 3. 

Traditional Data Models 

Traditional data models are the hierarchical, network, and relational models. The 

hierarchical model evolved from the file-based system and the network model is a 

superset of the hierarchical model. The relational data model is based on the math¬ 

ematical concept of relation. The concept of data models evolved about the same 

time as the proposal of the relational model. A brief introduction of these data models 

is given in Sections 2.6, 2.7, and 2.8. We implement an example using these models 

and compare the implementations in Section 2.9. We return to an in-depth study of 

these models in Chapters 4 (relational model), 8 (network model), and 9 (hierarchical 

model). 

Semantic Data Models 

This class of data models was influenced by the semantic networks developed by 

artificial intelligence researchers. Semantic networks were developed to organize and 
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represent general knowledge. Semantic data models are able to express greater in¬ 

terdependencies among entities of interest. These interdependencies consist of both 

inclusion and exclusion, enabling the models to represent the semantics of the data 

in the database. 
In Section 2.4 we encounter the entity-relationship data model. It provides 

a means for representing relationships among entities and is popular in high-level 

database design. Other data models in this class are beyond the scope of this text. 

2.4 Entity-Relationship Model 

The entity-relationship (E-R) data model grew out of the exercise of using com¬ 

mercially available DBMSs to model application databases. Earlier commercial sys¬ 

tems were based on the hierarchical and network approach. The entity-relationship 

model is a generalization of these models. It allows the representation of explicit 

constraints as well as relationships. Even though the E-R model has some means of 

describing the physical database model, it is basically useful in the design and com¬ 

munication of the logical database model. In this model, objects of similar structures 

are collected into an entity set. The relationship between entity sets is represented by 

a named E-R relationship and is 1:1, 1 :M, or M:N, mapping from one entity set to 

another. The database structure, employing the E-R model is usually shown pictori- 

ally using entity-relationship (E-R) diagrams. The entities and the relationships 

between them are shown in Figure 2.17 using the following conventions: 

• An entity set is shown as a rectangle. 

• A diamond represents the relationship among a number of entities, which are 

connected to the diamond by lines. 

• The attributes, shown as ovals, are connected to the entities or relationships by 

lines. 

• Diamonds, ovals, and rectangles are labeled. The type of relationship existing 

between the entities is represented by giving the cardinality of the relationship 
on the line joining the relationship to the entity. 

Figures 2.17, 2.21, and 2.22 depict a number of entity-relationship diagrams. 

In Figure 2.17, the E-R diagram shows a many-to-many relationship between entities 

Figure 2.17 Entity-relationship diagram. 
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ENTITY! and ENTITY2 having the attributes (Atr.Atrl{) and (Atr2i. 

respectively. The attributes of the relationship are (AtrRl.ArrRj). The 

relationship ENROLLMENT in Figure 2.21 is many to many. In Figure 2.22, the 

relationship MARRIAGE is one-to-one and REPORTS-TO is one-to-many. 

Before discussing the E-R model in more detail, we reexamine the two compo¬ 
nents of the E-R model: entities and relationships. 

2.4.1 Entities 

As discussed in Chapter 1, an entity is an object that is of interest to an organization. 

Objects of similar types are characterized by the same set of attributes or properties. 

Such similar objects form an entity set or entity type. Two objects are mutually 

distinguishable and this fact is represented in the entity set by giving them unique 
identifiers. 

Consider an organization such as a hotel. Some of the objects of concern to it 

are its employees, rooms, guests, restaurants, and menus. These collections of simi¬ 

lar entities form the entity sets, EMPLOYEE, ROOM, GUEST_LIST, RESTAU¬ 
RANT, MENUS. 

Given an entity set, we can determine whether or not an object belongs to it. 

An object may belong to more than one entity set. For example, an individual may 

be part of the entity set STUDENT, the entity set PART_TIME_EMPLOYEE, and 

the entity set PERSON. Entities interact with each other to establish relationships of 

various kinds. 

Objects are represented by their attributes and, as objects are interdistinguish- 

able, a subset of these attributes forms a primary key or key for uniquely identifying 

an instance of an entity. Entity types that have primary keys are called strong enti¬ 

ties. The entity set EMPLOYEE discussed in Section 2.2 would qualify as a strong 

entity because it has an attribute Employee-Id that uniquely identifies an instance of 

the entity EMPLOYEE; no two instances of the entity have the same value for the 

attribute Employee-Id. Figure 2.18 shows some examples of strong entities. Only 

the attributes that form the primary keys are shown. 

Entities may not be distinguished by their attributes but by their relationship to 

another entity. Recall the representation of the entity EMPLOYEE wherein the 1 :M 

association involving the attributes (Dependent-Name, Kinship-tO-Employee) is re¬ 

moved as a separate entity, DEPENDENTS. We then establish a relationship, DE¬ 

DUCTIONS, between the modified entity EMPLOYEE* and DEPENDENTS as 

Figure 2.18 Strong entities. 
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Figure 2.19 Converting an attribute association to a relationship. 

shown in Figure 2.19. In this case, the instances of the entity from the set DEPEN¬ 

DENTS are distinguishable only by their relationship with an instance of an entity 

from the entity set EMPLOYEE. The relationship set DEDUCTIONS is an example 

of an identifying relationship and the entity set DEPENDENTS is an example of a 

weak entity. 

Instances of weak entity sets associated with the same instance of the strong 

entity must be distinguishable from each other by a subset of the attributes of the 

weak entity (the subset may be the entire weak entity). This subset of attributes is 

called the discriminator of the weak entity set. For instance, the EMPLOYEE 

12345678 (Jill Jones) in Figure 2.7 has two DEPENDENTS, Bill Jones, spouse and 

Bob Jones, son. These are distinct and can be distinguished from each other. The 

organization could have another Jones in its employ (with given name Jim and Employ¬ 

ee-Id = 12345679), who has dependents Lydia Jones, spouse and Bob Jones, son. 

This is illustrated in Figure 2.20. Note also that by adding attributes such as Social- 

Security-Number of the dependent to the weak entity it can be converted into a 

strong entity set. However, there may be no need to do so in a given application if 
there is an identifying relationship. 

The two instances (Bob Jones, son) of the weak entity set DEPENDENTS as¬ 

sociated with different instances of the strong entity set EMPLOYEE are not distin¬ 

guishable from each other. They are nonetheless distinct because they are associated 

with different instances of the strong entity set EMPLOYEE. The primary key of a 

weak entity set is thus formed by using the primary key of the strong entity set to 

which it is related, along with the discriminator of the weak entity. We rule out the 

case where a dependent such as Bob Jones is the son of two different employees, 

namely his mother and father, since only one of them will claim him as a deduction! 

Figure 2.20 Instances of a 1: M converted relationship. 
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Figure 2.21 A binary relationship between different entity sets. 

However, if we allow this possibility, the relationship between EMPLOYEE* and 

DEPENDENTS becomes many to many. 

2.4.2 Relationships 

An association among entities is called a relationship. We looked at a relationship 

indirectly when we converted a 1 :M association into a strong entity, a weak entity, 

and a relationship. A collection of relationships of the same type is called a relation¬ 

ship set. A relationship is a binary relationship if the number of entity sets involved 

in the relationship is two. In Figure 2.21, ENROLLMENT is an example of a binary 

relationship involving two distinct entity sets. However, the entities need not be from 

distinct entity sets. Figure 2.22 illustrates binary relationships that involve the same 

entity sets. A marriage, for example, is a relation between a man and woman that is 

modeled by a relationship set MARRIAGE between two instances of entities derived 

from the entity set PERSON. 
A relationship that involves N entities is called an N-ary relationship. In Figure 

2.23, COMPUTING is an example of a ternary relationship involving three entity 

sets. COMPUTING represents the relationship involving a student using a particular 

computing system to do the computations for a given course. 

Figure 2.22 Binary relationships involving the same entity sets. 
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Figure 2.23 A ternary relationship. 

A relationship set or simply a relationship is formally defined as follows: 

A relationship can be characterized by a number of attributes. In the case of 

the relationship MARRIAGE, we can identify the attributes Date-of-Marriage and 

Place-of-Marriage. Similarly, in the many-to-many relationship ENROLLMENT of 

Figure 2.21, the attributes of the relationship are Year, Semester, and Grade. The 

attributes of the ternary relationship COMPUTING of Figure 2.23 are Account-Code 

and Limits to indicate the accounting code and the computing limits assigned to a 

specific student for a given course on a particular computing system. 

In a relationship the roles of the entities are important. This is particularly sig¬ 

nificant when some of the entities in the relationship are not distinct. Consequently, 

in an occurrence of a relationship from the relationship set MARRIAGE involving 

two members from the entity set PERSON, the role of one of the entities is that of a 

husband and the role of the other is that of a wife. Another role that can be assigned 

in a more symmetrical manner in this relationship is that of spouse, as shown in 

Figure 2.22. In some relationships the roles are implied and need not be specified. 

For example, in the binary relationship ASSIGN ED-TO between the entity sets EM¬ 

PLOYEE and DEPARTMENT, the roles of the two entities are implicit. 

Identification of a relationship is done by using the primary keys of the entities 

involved in it. Therefore, in the relationship R involving entity sets E[, E2, . . . , 

Ek, having primary keys pu p2, . . . , pk respectively, the unique identifier of an 

instance of the relationship R is given by the composite attribute (pu p2, . . . , pk). 
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The composite attribute (p\, p2, . . . , pk) forms the primary key of the relationship 

R. An instance of the relationship R is represented by concatenating its attributes 

(ru r2, . . . , rm) with the primary keys of the instances of the entities involved in 

the relationship. Figure 2.27 represents such a relationship. 

2.4.3 Representation of Entities 

Consider an application such as a hotel and its restaurants. Here we use a simplified 

version of the strong entity set EMPLOYEE with the following attributes: Empl-No, 

Name, Skill. The primary key for this entity is Empl-No. 

The entity set EMPLOYEE can be described as follows: 

entity set EMPLOYEE 

Empl-No: numeric; (* primary key*) 

Name: string; 

Skill: string; 

We represent the entity set EMPLOYEE by a table that can, for the sake of 

simplicity, be named EMPLOYEE. This table contains a column for each of its 

attributes and a row for each instance of the entity. We add a new instance of the 

entity EMPLOYEE by adding a row to this table. We also delete or modify rows to 

reflect changes that occur when employees leave or upgrade their skills. Figure 2.24 

depicts an EMPLOYEE table. (We assume that each employee has but one skill.) 

The weak entity DEPENDENTS, having as before the attributes Depend¬ 

ent-Name and Kinship-to-Employee, is dependent on the strong entity EM¬ 

PLOYEE. We represent the weak entity by the table DEPENDENTS, which contains 

a column for the primary key of the strong entity EMPLOYEE. The DEPENDENTS 

table in Figure 2.25 includes instances of the weak entities (Rick, spouse) and 

(Chloe, daughter), which are dependent on EMPLOYEE 123459. 

In general, to represent a weak entity such as W with the attributes wlt w2, vv3, 

. . . , wn such that the weak entity is dependent on strong entity S with the primary 

key 5), s2, . . . , sp, we use a table with a column for each of the above attributes. 

Figure 2.24 The EMPLOYEE table. 

EMPLOYEE 

Empl-No Name Skill 

123456 Ron waiter 

123457 Jon bartender 

123458 Don busboy 

123459 Pam hostess 

123460 Pat bellboy 

123461 Ian maitre d’ 
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Figure 2.25 The DEPENDENTS table. 

DEPENDENTS 

Empl-No Name Kinship-to-Employee 

123459 Rick spouse 

123459 Chloe daughter 

123458 Cathy spouse 

2.4.4 Representation of Relationship Set 

The entity-relationship diagrams are useful in representing the relationships among 

entities. They show the logical model of the database. In Figure 2.26, an E-R dia¬ 

gram shows the relationship between the entity sets EMPLOYEE and POSITION. 

The relationship set is called DUTY-ALLOCATION and its attributes are Date and 

Shift. 

A relationship set involving entity sets E,, E2, . . . , En can be represented via 

a record containing the primary key of each of the entities Es and the attributes of 

the relationship. Where the relationship has no attributes, only the primary keys of 

the entity involved are used to represent the relationship set. 

Data for an E-R relationship could be represented by a number of tables. Each 

of the entities involved in the relationship is represented by a table, as is the relation¬ 

ship among these entities. The relationship DUTY-ALLOCATION between the enti¬ 

ties EMPLOYEE and POSITION, shown in Figure 2.26, is represented by three 

tables displayed in Figure 2.27. 

The table EMPLOYEE contains data about the entities representing the hotel 

employees. POSITION contains data on the duties to be performed by the hotel’s 

employees in the restaurants run by the hotel. A relationship set is also represented 

by a table. DUTY-ALLOCATION is represented by the table DUTY_ALLOCA- 

TION, which contains the primary keys of the entities EMPLOYEE and POSITION 

along with the attributes of the relationship Date and Shift. 

Figure 2.26 E-R diagram showing DUTY-ALLOCATION relationship between entity sets EM¬ 
PLOYEE and POSITION. 
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Figure 2.27 Representation of a relationship. 

EMPLOYEE 

Empl-No Name Skill 

pi 23456 Ron waiter 

123457 Jon bartender 

123458 Don busboy 

123459 Pam hostess 

123460 Pat bellboy 

123461 lan waiter 

POSITION 

Posting-No Skill 

— 321 waiter 

322 bartender 

323 busboy 

324 hostess 

325 maitre d’ 

326 waiter 

DUTY-ALLOCATION 

Posting-No Empl-No Date Shift 

■>321 1- -> 123456 19/04/86 1 
323 123458 19/04/86 1 
321 123461 20/04/86 2 

2.4.5 Generalization and Aggregation 

Abstraction is the simplification mechanism used to hide superfluous details of a set 

of objects, it allows one to concentrate on the properties that are of interest to the 

application. As such, car is an abstraction of a personal transportation vehicle but 

does not reveal details about model, year, color, and so on. Vehicle itself is an 

abstraction that includes the types car, truck, and bus. 

There are two main abstraction mechanisms used to model information: gener¬ 

alization and aggregation. Generalization is the abstracting process of viewing sets 

of objects as a single general class by concentrating on the general characteristics of 

the constituent sets while suppressing or ignoring their differences. It is the union of 

a number of lower-level entity types for the purpose of producing a higher-level 

entity type. For instance, student is a generalization of graduate or undergraduate, 

full-time or part-time students. Similarly, employee is a generalization of the classes 

of objects cook, waiter, cashier, maitre d’. Generalization is an IS-A relationship; 

therefore, manager IS-An employee, cook JS-An employee, waiter IS-An employee, 

and so forth. Specialization is the abstracting process of introducing new character¬ 

istics to an existing class of objects to create one or more new classes of objects. 

This involves taking a higher-level entity and, using additional characteristics, gen¬ 

erating lower-level entities. The lower-level entities also inherit the characteristics of 

the higher-level entity. In applying the characteristic size to car we can create a full- 

size, mid-size, compact, or subcompact car. Specialization may be seen as the re¬ 

verse process of generalization: additional specific properties are introduced at a 

lower level in a hierarchy of objects. Both processes are illustrated in Figure 2.28 

wherein the lower levels of the hierarchy are disjoint. 
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Figure 2.28 Generalization and specialization. 

| GENERALIZATION | | SPECIALIZATION { 

The entity set EMPLOYEE is a generalization of the entity sets FULL_TIME_ 

EMPLOYEE and PART_TIME_EMPLOYEE. The former is a generalization of the 

entity sets faculty and staff; the latter, that of the entity sets TEACHING and CAS¬ 

UAL. FACULTY and STAFF inherit the attribute Salary of the entity set FULL_ 

TIME_EMPLOYEE and the latter, in turn, inherits the attributes of EMPLOYEE. 

FULL_TIME_EMPLOYEE is a specialization of the entity set EMPLOYEE and is 

differentiated by the additional attribute Salary. Similarly, PART TTMF. F.M- 

PLOYEE is a specialization differentiated by the presence of the attribute Type. 

In designing a database to model a segment of the real world, the data modeling 

scheme must be able to represent generalization. It allows the model to represent 

generic entities and treat a class of objects uniformly by assigning attributes common 

to the class of objects and specifying relationships in which the generic objects par¬ 

ticipate. 

Generalization forms a hierarchy of entities and can be represented by a hierar¬ 

chy of tables as shown in Figure 2.29. Here the primary key of each entity corre¬ 

sponds to entries in different tables and directs one to the appropriate row of related 
tables. 

Another method of representing a generalization hierarchy is to have the lowest- 

level entities inherit the attributes of the entities of higher levels. The top and inter¬ 

mediate-level entities are not included as only those of the lowest level are repre- 
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Figure 2.29 

Figure 2.30 

Tabular representation of a generalization hierarchy. 

EMPLOYEE 

EmpENo Name Date—of—Hire 

23456 Sheila 81/04/27 

23457 Jerry 85/07/16 

23458 Pavan 86/02/27 

23459 Rajen 87/03/16 

23460 Lettie 88/01/31 

23461 Drew 88/09/20 

FULL_TIME 

EmpENo Salary 

23456 57000 

23457 48000 

23458 24500 

PART_TIME 

EmplJNo Type 

23459 permanent 

23460 sessional 

23461 sessional 

FACULTY STAFF 

EmpENo Degree Interest 

23456 MSc ecology 

23457 PhD physics 

EmpENo Classification 

23458 secretary 6 

TEACHING CASUAL 

EmpENo Stipend 

23460 5000 

23461 5000 

EmpENo Hour-Rate 

23459 14.25 

sented in tabular form. For instance, the attributes of the entity set FACULTY would 

be [EmpENo, Name, Date-of-Hire, Salary, Degree, Interest). A sample table rep¬ 

resentation for this entity set is given in Figure 2.30. A separate table would be 

required for each lowest-level entity in the hierarchy. The number of different tables 

required to represent these entities would be equal to the number of entities at the 

lowest level of the generalization hierarchy. 

Tabular representation of entity set FACULTY with inherited attributes. 

FACULTY 

EmpENo Name D ate-of-Hire Salary Degree Interest 

23456 Sheila 81/04/27 57000 MSc ecology 

23457 Jerry 85/07/16 48000 PhD physics 



56 Chapter 2 Data Models 

Aggregation is the process of compiling information on an object, thereby ab¬ 

stracting a higher-level object. In this manner, the entity person is derived by aggre¬ 

gating the characteristics name, address, and Social Security number. Another form 

of aggregation is abstracting a relationship between objects and viewing the relation¬ 

ship as an object. As such, the ENROLLMENT relationship between entities student 

and course could be viewed as entity REGISTRATION. Examples of aggregations 

are shown in Figure 2.31. 
Consider the ternary relationship COMPUTING of Figure 2.23. Here we have a 

relationship among the entities STUDENT, COURSE, and COMPUTING SYSTEM. 

Figure 2.31 Examples of aggregation. 

(a) 

REGISTRATION 

(b) 

BILL 

(c) 
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A student registered in a given course uses one of several computing systems to 

complete assignments and projects. The relationship between the entities STUDENT 

and COURSE could be the aggregated entity REGISTRATION (Figure 2.31b), as 

discussed above. In this case, we could view the ternary relationship of Figure 2.23 

as one between registration and the entity computing system. Another method of 

aggregating is to consider a relationship consisting of the entity COMPUTING SYS¬ 

TEMS being assigned to COURSES. This relationship can be aggregated as a new 

entity and a relationship established between it and STUDENT. Note that the differ¬ 

ence between a relationship involving an aggregation and one with the three entities 

lies in the number of relationships. In the former case we have two relationships; in 

the latter, only one exists. The approach to be taken depends on what we want to 

express. We would use the ternary relationship to express the fact that a STUDENT 

or COURSE cannot be independently related to a COMPUTING SYSTEM. 

Let us investigate the relationship among the entities WAITER, TABLE, and 

GUEST shown in Figure 2.31c. These entities are of concern to a restaurant. There 

is a relationship, SERVE, among these entities; i.e., a waiter is assigned to serve 

guests at a given table. The waiters could be assigned unique identifiers. For exam¬ 

ple, a waiter is an employee and the employee number uniquely identifies an em¬ 

ployee and hence a waiter. A table could be assigned a number; however, this may 

be more informal, since on occasion two or more tables are put together to accom¬ 

modate a group of guests. The guests, even though identifiable by their features and 

other unique identifiers such as Social-Security-Number or driver’s license number, 

are not distinguishable for this application. Thus the SERVE relationship can best be 

handled by an aggregation. The aggregation can be called a BILL (Figure 2.31c), 

and requires an introduction of an unique bill number for identification. In addition, 

the following attributes from the SERVE relationship and the entities involved in the 

relationship can be used for the aggregated entity: unique bill number, waiter identi¬ 

fier, table identifier, date, number of guests in party, total, tip. 

2m5 A Comparative Example 

In this section we describe a small database modeling problem and provide a E-R 

model for it. We give its implementation in each of the other three modeling schemes 

in Sections 2.6, 2.7, and 2.8. 

Consider a database for the Universal Hockey League (UHL), a professional ice 

hockey league with teams worldwide. It consists of a number of divisions and nu¬ 

merous franchises under each division. The database records statistics on teams, 

players, and divisions of the league. 
A franchise may relocate to another city and may become part of a different 

division. Players are under contract to a franchise and are obliged to move with it. 

This relationship between a franchise and a division is called a team. We use the 

word team synonymously with franchise. Consequently, we can view a franchise as 

consisting of a collection of players, coaches, and a general manager. Players are 

required to play for a given franchise for the entire season. 

First we present the entity relationship diagram. We convert the E-R diagram to 

relational, network, and hierarchical models in Sections 2.6, 2.7, and 2.8. 
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E-R Model for the Universal Hockey League (UHL) 

We limit ourselves to the entities DIVISION, FRANCHISE, and PLAYERS. The 

attributes of interest for each of these are as follows: 

entity set DIVISION 

Division^Name: string; (* unique identifier *) 

entity set FRANCHISE 

Franchise-Name: string; (* unique identifier *) 

Year-Established: integer; (* yyyy *) 

entity set PLAYERS 

Name: string; (* assumed to be an unique identifier *) 

Birth-Place: string; 

Birth-Date: string; (*in yyyymmdd format: year,month,date*) 

In addition to the above entities we have the following relationships. A player 

plays during a season (which we assume is a calendar year) for a given team. We dis¬ 

tinguish the player’s involvement as being a goalie or one of the forwards. (Here we 

are making a simplifying assumption: All players on the team who are not goalies are 

called forwards. Thus players who play defense are considered forwards in our model.) 

Since goalie is a specialized position, a player plays either in the goalie position or a 

forward position, but never in both. The entity PLAYER is in fact a generalization of 

the entities GOALIE and FORWARD. However, for this example we are not using any 

distinguishing attributes, so we will not consider such specialization (see Exercise 

2.11). Consequently we have two relationships between a player and a team, FOR¬ 

WARD and GOAL. These relationships are many-to-many since a number of players 

play during a given season for a franchise and a given player over his lifetime plays for 

different franchises. We assume that a player plays the entire season for a single fran¬ 

chise and is not traded during the season. As a franchise may relocate and change di¬ 

visions, the relationship between a franchise and division is also many-to-many. 

The attributes of these relationships are: 

relationship set FORWARD 

Year: integer; 

Goals: integer; (* number of goals scored by the player *) 

Assists: integer; (* number of assists made by the player *) 

relationship set GOAL 

Year: integer; 

Goals-Against-Avg: integer; (* average number of goals scored*) 

Shutouts: integer; (* games where no goals were allowed*) 

A TEAM is a relationship between a DIVISION and a FRANCHISE and for a 

given season may be in only one city. The attributes of the relationship are: 

relationship set TEAM 

Year: integer; 

City: string; 

Points: integer; (* cumulative value: 2 points for a win, 1 point for a tie, 
0 point for a loss*) 

The E-R diagram to model this database application is shown in Figure 2.32. 



2.6 Relational Data Model 59 

Figure 2.32 E-R diagram for the UHL database. 

2.6 Relational Data Model 

The relational data model, after more than a decade, has emerged from the research, 

development, test and trial stages as a commercial product. Software systems using 

this approach are available for all sizes of computer systems. This model has the 

advantage of being simple in principle; users can express their queries in a powerful 

query language. It is expected that many existing database applications will be ret¬ 

rofitted to use this approach. 

In this model, the relation is the only construct required to represent the asso¬ 

ciations among the attributes of an entity as well as the relationships among different 

entities. One of the main reasons for introducing this model was to increase the 

productivity of the application programmer by eliminating the need to change appli¬ 

cation programs when a change is made to the database. Users need not know the 

exact physical structures to use the database and are protected from any changes 

made to these structures. They are, however, still required to know how the data has 
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Figure 2.33 A tabular representation of relations. 

EMPLOYEE POSITION 

Posting-No Skill 

321 waiter 

322 bartender 

323 busboy 

324 hostess 

325 maitre d’ 

326 waiter 

Empl-No Name Skill 

123456 Ron waiter 

123457 Jon bartender 

123458 Don busboy 

123459 Pam hostess 

123460 Pat bellboy 

123461 Ian waiter 

been partitioned into the various relations. While it is possible to infer access paths 

from the relational model, as we will see later, the relational approach does require 

the user to provide logical navigation through the database for the query. 

The relation is the only data structure used in the relational data model to rep¬ 

resent both entities and the relationships between them. A relation may be visualized 

as a named table. Figure 2.33 shows the two relations EMPLOYEE and POSITION 

using a tabular structure. Each column of the table corresponds to an attribute of the 
relation and is named. 

Rows of the relation are referred to as tuples of the relation and the columns 

are its attributes. Each attribute of a relation has a distinct name. The values for an 

attribute or a column are drawn from a set of values known as a domain. The domain 

of an attribute contains the set of values that the attribute may assume. In the rela¬ 

tional model, note that no two rows of a relation are identical and the ordering of the 

rows is not significant. 

A relation represented by a table having n columns, defined on the domains D,, 

D2, . . . , Dn is a subset of the cartesian product D, x D2 x . . . Dn. 

A relationship is represented, as in the E-R model, by combining the primary 

keys of the entities involved in a relation and its attributes, if any. 

A correspondence between two relations is implied by the data values of attri¬ 

butes in the relation defined on common domains. Such correspondence is used in 

navigating through the relational database. In the example in Figure 2.33 both the 

EMPLOYEE and POSITION relations contain the identically named attribute1 Skill 

defined on a common domain. Consequently we can join these two relations to form 

the relation, POSITION_ELIGIBILITY (Figure 2.34) using the common values of 

the attribute Skill. Joining the two relations involves taking two rows, one from each 

table, such that the value of Skill in the two rows is identical, and then concatenating 

these rows. Note that in Figure 2.34 the first attribute Skill is from the EMPLOYEE 

relation and the second is from the POSITION relation. Qualifying these attributes 

in POSITION_ELIGIBILITY by their respective relation names would allow us to 

more strictly adhere to the relational model where names of attributes in the same 
relation are distinct. 

'The names of these attributes are identical in this instance to remind us that they have a common domain. 
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Figure 2.34 The relation obtained after joining the two relations of Figure 2.33 

POSITION_ELIGIBILITY 

Empl-No Name 
EMPLOYEE. 

Skill Posting-No 

POSITION. 

Skill 

123456 Ron waiter 321 waiter 
123456 Ron waiter 326 waiter 
123457 Jon bartender 322 bartender 
123458 Don busboy 323 busboy 
123459 Pam hostess 324 hostess 
123461 Ian waiter 321 waiter 
123461 Ian waiter 326 waiter 

Relational Model for the UHL 

Using the relational model, each of the entities in the UHL can be represented by a 

relation. The description of the relation is given by a relation scheme. A relation 

scheme is like a type declaration in a programming language. It indicates the attri¬ 

butes included in the scheme, their order, and their domain. However, we will ignore 

the domain for the present. 

Each relation scheme is named and we indicate this name by boldface capital 

letters. We have a relation scheme for each of the PLAYER, FRANCHISE, and 

DIVISION relations. These relation schemes are similar to the corresponding entities 

in the E-R model: 

PLAYER {Name, Birth-Place, Birth-Date) 

FRANCHISE {Franchise-Name, Year-Established) 

DIVISION (Division-Name) 

Relationships between entities are also represented by relations. 

The relationship GOAL is represented by a relation whose scheme includes the 

primary keys Name and Franchise-Name, respectively, of the entities PLAYER and 

FRANCHISE. In addition, it contains the attributes corresponding to those of the 

relationship, namely Year, Goals-Against-Avg, and Shutouts. Therefore, the relation 

scheme for GOAL is: 

GOAL {Name, Franchise-Name, Year, Goals-Against-Avg, Shutouts) 

FORWARD is also represented by a relation scheme with attributes that consist 

of the same primary keys Name and Franchise-Name. It contains, as well the attri¬ 

butes Year, Goals and Assists. Accordingly, the relation scheme for FORWARD is: 

FORWARD {Name, Franchise-Name, Year, goals, Assists) 

TEAM is represented by a relation scheme with attributes consisting of the pri¬ 

mary keys Franchise-Name and Division-Name, respectively, of the entities FRAN¬ 

CHISE and DIVISION. It also contains the attributes corresponding to those of the 

relationship, namely Year, City, and Points. The relation scheme for TEAM is: 

TEAM {Franchise-Name, Division-Name, Year, City, Points) 
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Figure 2.35 Parts of relations from the UHL relation database. 

PLAYER 

Name Birth-Place Birth-Date 

Zax Viviteer Prague, Czec 1962-04-29 

Bam Kurri Detroit, Mich 1964-07-17 

Todd Smith Roseau, Minn 1963-05-09 

Dave Fisher Edmonton, Canada 1959-10-28 

Ozzy Xavier Kiruna, Sweden 1965-02-19 

Gaston Vabr Montreal, Canada 1958-05-12 

Ken Dorky Chicago, Ill 1958-05-13 

Brian Lafontaine Paris, France 1960-07-03 

Bruce McTavish Rio, Brazil 1966-10-27 

Dave O’Connell Dublin, Ireland 1967-03-16 

Johnny Brent Boston, Mass 1964-12-23 

FRANCHISE 

Franchise-Name Year-Established 

Bullets 1975 

Rodeos 1921 

Zippers 1917 

Blades 1982 

Flashers 1967 

DIVISION 

Division-Name 

Northern 

Southern 

European 

World 

FORWARD 

Name Franchise-Name Year Goals Assists 

Bam Kurri Bullets 1986 40 67 

Bruce McTavish Bullets 1986 30 37 
Todd Smith Rodeos 1986 17 24 
Ozzy Xavier Blades 1986 56 119 
Ozzy Xavier Flashers 1985 36 49 
Gaston Vabr Flashers 1986 16 22 
Zax Viviteer Blades 1986 80 162 
Dave O’Connell Zippers 1986 12 59 
Brian Lafontaine Zippers 1985 10 40 
Brian Lafontaine Zippers 1986 22 73 

Sample tuples from these relations, which have the same names as the corre¬ 
sponding schemes, are shown in the tables of Figure 2.35. 

We return to in-depth discussions of the relational data model in Chapter 4. 
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Figure 2.35 Continued 

GOAL 

Name Franchise-Name Year Goals-Against-A vg Shutouts 

Ken Dorky Blades 1986 1.21 1 

Dave Fisher Zippers 1986 4.02 4 

Johnny Brent Flashers 1986 7.61 0 

Dave Fisher Flashers 1985 3.05 5 

TEAM 

Franchise-Name Division-Name Year City Points 

Flashers Northern 1986 St. Louis 93 

Blades Northern 1986 Edmonton 97 

Zippers European 1985 Paris 82 

Zippers Northern 1986 Montreal 99 

Rodeos Southern 1986 Rio 65 

Bullets World 1986 Tokyo 79 

2.7 Network Data Model 

The network data model was formalized in the late 1960s by the Database Task 

Group of the Conference on Data System Languages (DBTG/CODASYL). Their first 

report (CODA 71), which has been revised a number of times, contained detailed 

specifications for the network data model (a model conforming to these specifications 

is also known as the DBTG data model). The specifications contained in the report 

and its subsequent revisions have been subjected to much debate and criticism. Many 

of the current database applications have been built on commercial DBMS systems 

using the DBTG model. 
The DBTG model uses two different data structures to represent the database 

entities and relationships between the entities, namely record type and set type. A 

record type is used to represent an entity type. It is made up of a number of data 

items that represent the attributes of the entity. 
A set type is used to represent a directed relationship between two record types, 

the so-called owner record type, and the member record type. The set type, like 

the record type, is named and specifies that there is a one-to-many relationship (1 :M) 

between the owner and member record types. The set type can have more than one 

record type as its member, but only one record type is allowed to be the owner in a 

given set type. A database could have one or more occurrences of each of its record 

and set types. An occurrence of a set type consists of an occurrence of the owner 

record type and any number of occurrences of each of its member record types. A 

record type cannot be a member of two distinct occurrences of the same set type. 
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Figure 2.36 

To avoid the confusion inherent in the use of the word “set” to describe the 

mechanism for showing relationships in the DBTG-network model, a more precise 

terminology has been suggested. Such terms as co-set, fan set, owner-coupled set, 

CODASYL set, and DBTG set are used to refer to a set. 
Bachman (Bach 69) introduced a graphical means called a data structure dia¬ 

gram to denote the logical relationship implied by the set. Here a labeled rectangle 

represents the corresponding entity or record type. An arrow that connects two la¬ 

beled rectangles represents a set type. The arrow direction is from the owner record 

type to the member record type. Figure 2.36 shows two record types (DEPART¬ 

MENT and EMPLOYEE) and the set type DEPT-EMP, with DEPARTMENT as the 

owner record type and EMPLOYEE as the member record type. 
The data structure diagrams have been extended to include field names in the 

record type rectangle, and the arrow is used to clearly identify the data fields in¬ 

volved in the set association. A one-to-many (1:M) relationship is shown by a set 

type arrow that starts from the owner field in the owner record type. The arrow points 

to the member field within the member record type. The fields that support the rela¬ 

tionship are clearly identified. 

Each entity type in an E-R diagram is represented by a logical record type with 

the same name. The attributes of the entity are represented by data fields of the 

record. We use the term logical record to indicate that the actual implementation 

may be quite different. 

The conversion of the E-R diagram into a network database consists of convert¬ 

ing each 1: M binary relationship into a set (a 1:1 binary relationship being a special 

case of a 1 :M relationship). If there is a 1 :M binary relationship R, from entity type 

E, to entity type E2, then the binary relationship is represented by a set. An instance 

of this would be S, with with an instance of the record type corresponding to entity 

E! as the owner and one or more instances of the record type corresponding to entity 

E2 as the member. If a relationship has attributes, unless the attributes can be as¬ 

signed to the member record type, they have to be maintained in a separate logical 

record type created for this purpose. The introduction of this additional record type 

requires that the original set be converted into two symmetrical sets, with the record 

corresponding to the attributes of the relationship as the member in both the sets and 

the records corresponding to the entities as the owners. 

Each many-to-many relationship is handled by introducing a new record type to 

represent the relationship wherein the attributes, if any, of the relationship are stored. 

We then create two symmetrical 1: M sets with the member in each of the sets being 

the newly introduced record type. The conversion of a many-to-many relationship 

into two one-to-many sets using a common member record type is shown in Figure 
2.37. 

A DBTG set. 
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Figure 2.37 Conversion of an M: N relationship into two 1: M DBTG sets. 

In the network model, the relationships as well as the navigation through the 

database are predefined at database creation time. 

When a relationship involving a weak entity set is converted to a network set, 

it is possible that several identical occurrences of the logical record type correspond¬ 

ing to a weak entity could exist. These identical occurrences are distinguished by 

their membership in different occurrences of the sets (similar to the method of distin¬ 

guishing identical weak entities by their relationship with unique strong entities). 

Network Model for the UHL 

Each entity type in the E-R diagram of Figure 2.32 is represented by a logical record 

type with the same name. The attributes of the entity are represented by data fields 

of the record. The logical record types corresponding to the entities PLAYER, 

FRANCHISE, and DIVISION are given by: 

PLAYER (Name, Birth-Place, Birth-Date) 

FRANCHISE (Franchise-Name, Year-Established) 

DIVISION (Division-Name) 

Furthermore, for the E-R diagram of Figure 2.32, we create logical record types 

for the attributes of each relationship and these record types are named for the cor¬ 

responding relationship, i.e., GOAL, FORWARD, and TEAM. These logical record 

types are expressed as: 

GOAL (Year, Goals-Against-Avg, Shutouts) 

FORWARD (Year, Goals, Assists) 

TEAM (Year, City, Points) 

Since the relationships in the E-R diagram of Figure 2.32 are many to many, 

we handle this by creating two symmetrical 1 :M sets with the attribute, if any, being 
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the member record type of each of these symmetrical sets. Corresponding to the 

relationship GOAL, we create the logical record type GOAL, and the sets Fr_G and 

P_G. The record types FRANCHISE and PLAYER are owners and the record type 

GOAL is the common member in these sets. 

The data structure diagram for the database for the UHL is shown in Figure 

2.38. The sets included are: 

• P-G and Fr_G, corresponding to the many-to-many relationship GOAL between 

the entities PLAYERS and FRANCHISE. GOAL is the common member record 

type, the owner record types being PLAYER (of the set P_G) and FRANCHISE 

(of the set Fr_G). The attributes of the relationship are the fields of the record 

type GOAL. 

• F_F and Fr_F, corresponding to the many-to-many relationship FORWARD 

between the entities PLAYERS and FRANCHISE. The member record type 

is FORWARD, with PLAYER (of the set F_F) and FRANCHISE (of the set 

Fr_F) being the owner record types. The fields of the common member record 

type FORWARD are the attributes of the relationship. 

• FrJT and DJT, corresponding to the many-to-many relationship TEAM between 

the entities FRANCHISE and DIVISION. TEAM is the member record type; 

the owner record types are FRANCHISE (of the set FrJT) and DIVISION (of 

the set DJT). The attributes of the relationship are the fields of the record type 

TEAM, the common member of FrJT and DJT. 

Figure 2.39 features a sample of the data contained in some of these logical 

record types and some of the sets in which these records are involved as member or 

owner. The common records, which are shaded, are the links in establishing a many- 

to-many relationship. The connecting lines between two records indicate the exis- 

Figure 2.38 Network model for the UHL database. 

PLAYER FRANCHISE 
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DIVISION 
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Shutouts 
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Figure 2.39 Part of the data in the network database of the UHL. 

— Brian Lafontaine Paris, France 1960/07/03 

PLAYER 

Gaston Vabr Montreal, Canada 1958/05/12 

FORWARD 

to 40 
-^- 

1986 22 73 
-^- 

1986 16 22 

FRANCHISE 

Zippers 1917 Flashers 1967 

tence of an owner/member relationship between the record occurrences and some 

mechanism to go from one to the other. For instance, the occurrence (Brian Lafon¬ 

taine, Paris, France, 1960-07-03) of the logical record type PLAYER is the owner 

in the set occurrence P-F. The members of this set occurrence owned by him are 

the FORWARD logical record occurrences (1985, 10, 40) and (1986, 22, 73). These 

are also owned by the franchise Zippers and establish the relationship between the 

player and the franchise. 
We return to detailed discussions of the network model in Chapter 8. 

2.8 Hierarchical Model 

A tree may be defined as a set of nodes such that there is one specially designated 

node called the root (node) and the remaining nodes are partitioned into disjoint sets, 

each of which in turn is a tree, the subtrees of the root. If the relative order of the 

subtrees is significant, the tree is an ordered tree. 
Like an organization chart or a family tree, a hierarchy is an ordered tree and is 

easy to understand. At the root of the tree is the single parent; the parent can have 

none, one, or more children. (Note that in comparing the hierarchical tree with a 

family tree, we are ignoring one of the parents; in other words, both the parents are 

represented implicitly by the single parent.) 
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In a hierarchical database, the data is organized in a hierarchical or ordered tree 

structure and the database is a collection of such disjoint trees (sometimes referred 

to as a forest or spanning trees). The nodes of the tree represent record types. Each 

tree effectively represents a root record type and all of its dependent record types. If 

we define the root record type to be at level 0, then the level of its dependent record 

types can be defined as being at level 1. The dependents of the record types at level 

1 are said to be at level 2, and so on. 

An occurrence of a hierarchical tree type consists of one occurrence of the root 

record type along with zero or more occurrences of its dependent subtree types. Each 

dependent subtree is, in turn, hierarchical and consists of a record type as its root 

node. In a hierarchical model, no dependent record can occur without its parent 

record occurrence. Furthermore, no dependent record occurrence may be connected 

to more than one parent record occurrence. 

A hierarchical model can represent a one-to-many relationship between two en¬ 

tities where the two are respectively parent and child. However, to represent a many- 

to-many relationship requires duplication of one of the record types corresponding to 

one of the entities involved in this relationship. Note that such duplications could 

lead to inconsistencies when only one copy of a duplicated record is updated. 

Another method of representing a many-to-many relationship by the use of a 

virtual record is presented in Chapter 9. For the present, we implement the database 

for the UHL using duplication. 

Hierarchical Model for the UHL 

Each entity in the E-R model for the UHL can be represented by a record type. The 

UHL database can be represented in the hierarchical model by a number of hierar¬ 

chies. The first one used is the normal organizational hierarchy of the league and is 

displayed in Figure 2.40a, The record type YEAR_CITY_POINTS is created with 

Figure 2.40 Hierarchical model for the UHL database. 

(a) 

PLAYER 

FRAN CHISE 

YEAR_CITY_POINTS 

(b) 
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the attributes of the relationship TEAM. The record types GOAL and FORWARD 

represent all the attributes of the relationship GOAL and FORWARD, respectively, 

except the attribute year, which is inherited from the ancestor YEAR_CITY_ 

POINTS. Note that a given occurrence of the PLAYER record type will have a single 

dependent record in either the GOAL hierarchy or the FORWARD hierarchy. Since 

we need to quickly locate the franchise of which a player is a member, we use a 

second hierarchy rooted with the record type PLAYER, shown in Figure 2.40b. 

As we see in Figure 2.40, representing the many-to-many relationship between 

the players and the franchise requires the introduction of certain redundancies and 

inefficiencies. Furthermore, we cannot follow the player hierarchy to find out the 

player’s score in a given year. This involves, first, finding the franchises to which a 

player belonged from the PLAYER hierarchy. Second, we have to refer to the DI¬ 

VISION hierarchy to find this FRANCHISE and, for the required year, find the 
player and his score. 

In the hierarchical model, we can have duplications of certain record occur¬ 

rences as well. For example, if a franchise was in two different divisions, we would 

have two identical records for the same franchise. The parent record (DIVISION) 

would distinguish the fact that the franchise was in different divisions in different 

years. The TEAM relationship is represented only indirectly in the hierarchical model 

shown in Figure 2.40. 

Part of the hierarchical database for the UHL is given in Figure 2.41. It shows 

that the Zipper franchise was in the European division and was located in Paris in 

1985. In 1986 the franchise was in the the Northern division and was relocated to 

Montreal. This information is represented by duplication of the record for the fran¬ 

chise. For the year 1986 the players in the Blades franchise were Ozzy Xavier, Zax 

Viviteer, and Ken Dorky. 
Since the late 1960s and early 1970s, the hierarchical model has been widely 

used in database applications. The most prominent commercial implementations are 

the IMS system from IBM (IBM 75) and the SYSTEM 2000 from MRI Systems 

Corporation (MRI 74). We return to detailed discussions of the hierarchical model in 

Chapter 9. 

2.9 A Comparison 

Having designed an E-R diagram for a database application, the relational represen¬ 

tation of the model is relatively straightforward. Each entity type in the E-R diagram 

is represented by a relation wherein each attribute of the entity becomes an attribute 

of the relation. Each instance of the entity is represented by a tuple of the relation. 

A weak entity can also be represented by a relation but must include the primary key 

of the identifying strong entity. Each relationship in the E-R diagram is also repre¬ 

sented by a relation, the attributes of this relation being the primary keys of the 

entities involved in the relationship plus the attributes of the relationship. Each in¬ 

stance of the relationship set among the entities is represented by a tuple of this 

relation. 
Converting an E-R diagram to a network model can be accomplished as follows. 

Each entity type in the E-R diagram is represented by a record type and each instance 
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Figure 2.41 Part of the data in the hierarchical database of the UHL. 

of the entity is represented by a record occurrence. A weak entity can be represented 

as a separate record type. In this case, the identifying relationship is represented as 

a set type wherein the record type corresponding to the weak entity type forms the 

member and the record type corresponding to the strong entity is the owner. A 1:1 

or 1 :N relationship is represented as a set type. An M:N relationship requires intro¬ 

ducing an intermediate record type. This record type is a common member in two 

set types, one of which is owned by each of the record types involved in the M:N 

relationship. 

Converting an E-R diagram to a hierarchical model can be accomplished as 

follows. Each entity type in the E-R diagram is represented by a record type. A 1 :N 

relationship is represented as a hierarchy type where the record type corresponding 

to the one side of the relationship is the parent (a 1:1 relationship is a special case 

of the 1 :N relationship). A weak entity can be represented as a separate record type. 

This record type becomes a dependent in a hierarchy where the record type, corre¬ 

sponding to the strong entity in the identifying relationship, is the parent. An M:N 

relationship requires introducing duplicate record types or using multiple hierarchies 

and introducing virtual records. 
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In the network model, it is possible that several identical occurrences of the 

same logical record type could exist. These multiple identical occurrences are distin¬ 

guished by their membership in different occurrences of the sets. Similarly, in the 

hierarchical model, identical occurrences of a record type are distinguished by their 

associations with different ancestor record type occurrences. The tuples of a relation 

are, however, unique because if the relation represents a relationship between enti¬ 

ties, the relationships between occurrences of the entities are explicitly recorded in 
the tuples by inclusion of the corresponding primary keys. 

The relational model allows for a fairly straightforward method of selecting 

certain entities or relationships. This is done by selecting those tuples of the relation 

corresponding to the entity or relationship that meet certain selection conditions. For 

instance, all franchises for which the player Ozzy Xavier played could be derived by 

choosing tuples from the relation FORWARD (Figure 2.35) with Name = Ozzy 

Xavier. Similarly, all players who scored more than 50 goals in 1986 could be se¬ 

lected from the FORWARD relation. Likewise, finding all cities in which Ozzy Xav¬ 

ier played can be done by first selecting the tuples from FORWARD with the value 

of Name = Ozzy Xavier. These selected tuples are then joined (concatenated) with 

those in the table TEAM such that the values of Franchise-Name and Year in both 
is the same. 

In the network model, the selection operation on a record type is similar to that 

in the relational model. However, the operation corresponding to the join operation 

of the relational model is handled differently. This involves following the owner-to- 

member or the member-to-owner pointers. Therefore, in order to identify all fran¬ 

chises for which Ozzy Xavier played, we would first find the record for Ozzy Xavier 

in the player record type. We would then follow the pointers in the set P-F to 

the occurrences of the member record type FORWARD for his score, and last, 

follow the pointers to the owner of each such occurrence in the set Fr-F to find the 

FRANCHISE. Since the player Ozzy Xavier is not a goalie, the set P-G for the 

occurrence of his record in record type PLAYER would be empty. Consequently, 

following the set P-G and then the owner in the set Fr-G for this player would not 

be possible. 

Selection operations for the record type corresponding to the root of a hierarchi¬ 

cal tree are similar to operations for its counterpart in the relational and network 

models. As in the case of the network model, we have to traverse pointers from 

parent to child since there is no method of traveling from descendant to parent. 

However, a virtual scheme using a virtual record concept (to be discussed in chapter 

9) introduces this reverse-navigation facility. 
The process of joining relations in the case of the relational model or following 

the pointers from owner to member, from member to owner, or from parent to child 

is known as navigating through the database. Navigation through relations that rep¬ 

resent an M:N relationship is just as simple as through a 1:M relationship. This 

leads us to conclude that it is easier to specify how to manipulate a relational data¬ 

base than a network or hierarchical one. This in turn leads to a query language for 

the relational model that is correct, clear, and effective in specifying the required 

operations. Unfortunately, the join operation is inherently inefficient and demands a 

considerable amount of processing and retrieval of unnecessary data. The structure 

for the network and hierarchical models can be implemented efficiently. Such an 

implementation would mean that navigating through these databases, though awk¬ 

ward, requires the retrieval of relatively little unnecessary data. 
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Summary 

In this chapter we previewed the major data modeling concepts and thfe data models 

used in current DBMSs. The E-R model is used increasingly as a tool for database 

applications modeling. 

A number of data representation models have been developed over the years. 

As in the case of programming languages, one concludes that there is no one “best” 

choice for all applications. These models differ in their method of representing the 

associations between entities and attributes. 

Traditional data models are hierarchical, network, or relational models. The hi¬ 

erarchical model evolved from the file-based system; the network model is a superset 

of the hierarchical model. The relational data model is based on the mathematical 

relational concept. The data model concept evolved at about the same time as the 

relational data model. 

The entity-relationship data model, which is popular for high-level database de¬ 

sign, provides a means of representing relationships between entities. The entity re¬ 

lationship data model was developed using commercially available DBMSs to model 

application databases. 

The DBTG proposal was the first data model to be formalized in the late 1960s. 

Many current database applications have been built on commercial DBMSs using this 
approach. 

Key Terms 

data model 

association 

attribute association 

relationship 

functional dependency 

determinant 

candidate key 

primary key 

binary relationship 

repeating group 

file-based model 

hierarchical model 

network model 

relational data model 

semantic data model 

entity-relationship (E-R) data 
model 

entity-relationship (E-R) 
diagram 

strong entity 

identifying relationship 

weak entity 

discriminator 

relationship set 

N-ary relationship 

ternary relationship 

abstraction 

generalization 

specialization 

aggregation 

tuple 

attribute 

domain 

relation scheme 

record type 

set type 

owner record type 

member record type 

logical record 

forest 

spanning trees 

selecting 

intermediate record type 

navigating 

Exercises 

2.1 Define the following terms: 

(a) association 

(b) relationship 
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(c) aggregation 

(d) specialization 

(e) generalization 

2.2 Choose from the following list an organization you are most familiar with: college or 

university, public library, hospital, fast-food restaurant, department store. Determine, as in 

Exercise 1.9, the entities of interest and the relationships that exist between these entities. 

Draw the E-R diagram for the organization. Construct a tabular representation of the entities 

and relationships. 

2.3 Are weak entities necessary? What is the distinction between a weak entity and a strong one? 

Can a weak entity be converted to a strong entity? 

2.4 Using the EMPLOYEE entity of Figure 2.6, convert each of the one-to-many associations 

into a weak entity and a relationship. Identify the discriminator of each weak entity and the 

attributes of each relationship. 

2.5 Convert the E-R diagram that you prepared for Exercise 2.2 into a network database model. 

List the record types and the set types in your model. Indicate for each set type the owner 

and member record types. 

2.6 Convert the E-R diagram that you prepared for Exercise 2.2 into a hierarchical database 

model. List the record types and the hierarchy. Indicate how you can handle the situation 

where a record type occurs in more than one hierarchy or occurs more than once in the same 

hierarchy. 

2.7 Explain the distinction between the representation of association and relationship in the 

network and hierarchical models. 

2.8 The People’s Bank offer five types of accounts: loan, checking, premium savings, daily 

interest saving, and money market. It operates a number of branches and a client of the bank 

can have any number of accounts. Accounts can be joint, i.e., more than one client may be 

able to operate a given account. Identify the entities of interest and show their attributes. 

What relationships exist among these entities? Draw the corresponding E-R diagram. 

2.9 Give a sample of each of the tables that would be required for the E-R diagram of Exer¬ 

cise 2.8. 

2.10 Complete the network sets and the hierarchical trees for the portion of the data for the 

Universal Hockey League given in the tables of Figure 2.35. Comment on the relative merits 

of the three models from the point of view of data duplication and ease of retrieval. 

2.11 Suppose that in the database design for the UHL of Section 2.5, we wished to maintain the 

career statistics for each player. (The total goals and assists over the lifetime—career—of a 

player are to be maintained in addition to the season statistics.) Draw the modified E-R 

diagram and give the corresponding database design using the relational, network, or 

hierarchical model. 

2.12 In each of the database designs given in Section 2.8, how would you find out if a certain 

player played as a forward or as a goalie? Introduce two IS-A relationships between players 

and entities FORWARD_POSITION and GOAL-POSITION and draw an E-R diagram for a 

database application that requires keeping the player’s career statistics as well as the statistics 

indicated in the text. 

2.13 Explain why navigation is simpler in the relational data model than in the hierarchical data 

model. 
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In this chapter we focus on a number of methods used to organize files and the 

issues involved in the choice of a method. File organization deals with the structure 

of data in secondary storage devices. In designing the structure the designer is con¬ 

cerned with the access time involved in the retrieval of records based on primary or 

secondary keys, as well as the techniques involved in updating data. We discuss the 

following file organization schemes: sequential, index sequential, multilist, direct, 

extendable hashing, and tree structured. The general principles involved in these 

schemes are presented, although we do not discuss the implementation issues under 

a specific operating system. 

3.1 Introduction 

Just as lists, arrays, trees, and other data structures are used to implement data or¬ 

ganization in main memory, a number of strategies are used to support the organi¬ 

zation of data in secondary memory. We can expect, as in main memory data orga¬ 

nization, that there is no universal secondary data organization strategy suitable under 

all usage conditions. As discussed earlier, certain attribute (or field) values can 

uniquely identify a record, i.e., these attributes makeup the primary key of the rec¬ 

ord. Other attribute values identify not one but a set of records. These attributes are 

called secondary or nonprimary keys. In this chapter we consider both primary key 

and nonprimary key retrieval and updates, bearing in mind that there are space/time 

trade-offs for all structures. 

Traditionally the term file has been used to refer to the folder that holds related 

material in ordered storage for quick reference. We use the same word, file, to de¬ 

scribe the object as well as its contents. The order of the file is an arrangement of its 

contents according to one’s expected needs for future reference. For example, if we 

have a file of birth dates of persons we know, we may wish to arrange them by date. 

We could also arrange them alphabetically by family or first name. The choice of 

arrangement depends on the reason for the file. If we wish to consult the file peri¬ 

odically to discover upcoming birthdays, chronological order would be chosen. If, 

however, we wish to know the date of Bill’s birthday, we would opt for the alpha¬ 

betical ordering on first names. What are we to do when we have both types of 

requirements? We could, for example, maintain a copy of the file in chronological 

order and another in lexical order. In this case, the contents would be the same but 

the order would be different. We would rarely remove (or delete) a person’s birth 

date from the file; rather, we would add new names and dates to the file. We may 

need to change someone’s name. In all of these cases both copies of the file would 

be changed. It is impossible to change both files at the same instance, i.e., we first 

alter one copy and then the other. Can we, while the changes are being made, make 

use of either file? Imagine what would happen when a number of copies and a large 

number of users exist. The method of creating a copy for each application is replete 

with problems. A possible solution is to maintain the file in some physical order and 

allow access in some other order, i.e., the logical access order is different from the 

physical access order. This concept is very important because the same file could 
then be used to support different access orders. 

To further classify the contents, a file should be labeled. We can label the file 

described above as a file of Birth_Dates. Similarly, we can create suitably named 
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files for other things such as Recipes, Bills, and so on. We could keep all these files 

in a box. The box, by definition, is also a file—it is a file of files. We could treat 

the secondary storage medium as this box (a file of files). In this chapter we look at 

techniques for managing files. The same techniques are applicable to the file of files. 

3.1.1 Storage Device Characteristics 

Presently, the common secondary storage media used to store data are disk and tape. 

Tape is generally used for archival data. The storage medium used in a disk is a disk 

pack. A disk pack, shown in Figure 3.1, is made up of a number of surfaces. Data 

is read and written from the disk pack by means of transducers called read/write 

heads. The number of read/write heads depends on the type of disk drive. If we trace 

the projection of one head on the surface associated with it as the disk rotates, we 

would create a circular figure called a track. The tracks at the same position on 

every surface of the disk form the surface of an imaginary cylinder. In disk termi¬ 

nology, therefore, a cylinder consists of the tracks under the heads on each of its 

surfaces. 

In one type of disk drive each track on each surface has a dedicated stationary 

head, which does not move. Such a disk drive is called a fixed head drive. The 

other type of disk drive is a moving head drive, wherein a single head is used for 

each surface. When data from a given track is to be read, the head is moved to the 

track. Figure 3.2 shows the cross section of a fixed head drive and Figure 3.3 shows 

that of a moving head drive. 

The disk stores data along concentric tracks. It takes some time for the read/ 

write head of a moving head disk drive to move from track (or cylinder) i to track 

(or cylinder) j. This is called the seek time. (For a fixed head disk, the seek time is 

0.) In the case of a moving head drive, the seek time depends on the distance be¬ 

tween the current head and the target head positions. Typical values are from 10 to 

50 msec (msec = 1/1000 sec). If a file consists of c consecutive cylinders and we 

assume uniform and random distribution of requests for the different cylinders, we 

can show that the average distance (in cylinders) the head moves is c/3 (proof for 

this is given in Appendix 3.2 at the end of the text). Before data can be read or 

written the disk has to rotate so that the head is positioned at some point relative to 

Figure 3.1 Structure of a disk pack with read/write heads. 
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Figure 3.2 Fixed head disk with read/write head per track. 
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a marked start point. The time needed for the reading or writing to start depends on 

the rotational delay. On the average, the rotational delay is half the rotation time, 

that is, the time for the disk to rotate once. The rotational delay is called latency 

time. For a drive that rotates at 3600 revolutions per minute, the average latency 

time is 8.33 msec. The access time, therefore, depends on the seek time and the 
latency time. 

On magnetic tapes, data blocks are separated by interblock gaps (IBG). The 

IBG can be attributed to the deceleration/ acceleration (stop/start) that takes place 

between successive block reads. This only happens when, after a single access, time 

is needed to process the data before a second read. When continuously scanning over 

the data, there is no need to stop/start after reading each block. The IBG is also 

scanned at the faster rate. The typical value for the IBG is 0.6 inch. The access time, 

i.e., the time required to locate the target block on a magnetic tape, depends on the 
distance between the current and target blocks. 

As we see from the above, the access time depends on the distance between the 

current and target positions for both types of storage devices. This time can be optim¬ 

ized by suitably placing records. It can also be affected by the file organization 
employed. 

We car. abstract the disk storage medium in terms of a two-dimensional array 

and the tape as a one-dimensional array of data blocks (see Figure 3.4). Note that in 

both cases we can specify a unique address for a block (or physical record). We will 
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Figure 3.3 Moving head disk with a single read/write head per surface. 
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omit details of these physical mediums on which the files are stored. These details 

can be found in most elementary texts in computer organization. It is sufficient to 

say that some file organizations may be unsuitable for some mediums. 

A block of data may contain one or more logical records (henceforth, unless 

otherwise stated, a record denotes a logical record), or a single record may be split 

across more than one block (Figure 3.5). Therefore, in addition to the block address, 

we require data on the start position, length, and pointer to continuation block for 

Figure 3.4 Abstraction of secondary storage medium. 
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Figure 3.5 Organization of records on blocks (shaded area marks unused space). 
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every record. As different blocks may be assigned to different files, a mapping must 

be maintained to record the particular files to which the blocks are assigned. 

The importance of the study of file organization methods is that different meth¬ 

ods have different properties and hence efficiencies for different applications. A ma¬ 

jor factor that determines the overall system performance is response time for data 

on secondary storage. This time depends not only on physical device characteristics, 

but also on the data arrangement and request sequencing. In general, the response 

cost has two components: access time and data transfer time. Data transfer time is 

the time needed to move data from the secondary storage device to processor mem¬ 

ory; access time is the time needed to position the read/write head at the required 

position. The data transfer time depends on physical device characteristics and cannot 

be optimized. In the case of reading a 1KB (kilobyte = 1024 bytes) block of data 

from a device that can transfer it at lOOKB/sec (KB/sec = kilobyte/second), the data 

transfer time is 10 msec. The response time, while influenced by physical character¬ 

istics, depends on the distance between current and target positions and, therefore, 

on data organization. 

i 
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3.1.2 The Constituents of a File 

Data is organized on a secondary storage medium in the context of a logical unit, 

the file. Some areas on the storage medium are designated by the file manager (FM) 

subsystem of the operating system (OS) for a specific file. The FM designates areas 

on the storage medium for every file, records information concerning the particular 

area each file occupies, and uses it whenever access to a file is required. Note that 

on the storage medium there is no distinction among the files. Although a file is 

mapped onto some physical areas of a storage medium, we consider a file to be made 

up of some logical units known as records. A record is used to store data about some 

entity of interest. 

Example 3.1 We want to store birth date information. Obviously we shall use a record 

for every person whose data we store; that is, if there are 10 persons, we 

shall create 10 records. Although we are primarily interested in the birth 

date, it would not be of much use unless we could associate the date with a 

person. We shall therefore store data about a person’s name (first and last) 

and date of birth. First-Name, Last-Name, and Birth-Date are the fields 

that constitute a record. Note that when we speak of a record we use the 

term field instead of attribute. We will use these terms interchangeably. ■ 
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Before we go on to more formal material, let us examine the attribute Birth- 

Date in greater detail. We are all well aware that every date is not a legal date, eg, 

January 33, 1959. Furthermore, a future date could not be a valid value for this file. 

If we want to restrict the values that can be assigned to some attribute for a given 

record, we must define the set of legal values for that attribute. We refer to this set 
of legal values as the domain of an attribute. 

Until now, we have been informally discussing certain concepts related to data 

organization on secondary storage. We shall now set these concepts in more formal 
terms. 

A file F is a collection or “bag” of records, that is, F = {r,, r2, . . . , rn}, 

where the r/s are used to represent the records in a file F containing n records. File 

F, in general, is not a set of records because duplicate records may be permitted. A 

“bag” permits duplicate occurrences although it may be difficult to visualize many 
situations where this would occur. 

As discussed earlier, an attribute is used to capture some characteristic or prop¬ 

erty of an entity. A record q is a set of <attribute (or field), value> pairs defined on 

the set of attributes A = {Atl, . . . , Ajm} over the set of corresponding domains 

D = {Dj|, . . . , D,m}. It is not necessary that Djj and Djk, j + k, be distinct 

domains, as different attributes can be defined on the same domain. 

The record q can be represented as the set q = {(An, Vn), . . . , (Aim, vim)}, 

where each Vy e Dy, for j = 1, . . . , m. If every record of a file contains attrib¬ 

ute,value> pairs for the same set of attributes, the file is said to contain homoge¬ 

neous records. If the attribute-value pairs are similarly ordered in all the records of 

the file, i.e., for all ri; (An = A21 = . . . = Anl), (A12 = A22 = . . . An2), 

. . . , (A,m = A2m = . . . = Anm), then the fact that the attribute order is known 

can be used to achieve efficiency in record representation. It is in fact usual to rep¬ 

resent a record using positional notation, i.e., r, = (vu, . . . , vim), where the 

attributes are discerned from the position of the associated value. This is how we 

represented a record in Figure 2.15. The order of the attributes has no semantic 

importance. For a data record using positional notation to make sense, the mapping 

between position and attribute names must be known. Although the attribute name 

may not be specifically incorporated in the record, we can logically associate the 

appropriate attribute name with the values stored. 

Example 3.2 In the above example, the attribute order in each record of the file is given 

as Birth-Date, followed by Last-Name and then First-Name. On an access 

to a record we are presented with a sequence of bytes that we map, logi¬ 

cally, to our three attributes. The first k bytes represent the Birth-Date, the 

succeeding k' bytes the Last-Name, and the remaining k” bytes the First- 

Name. Given the sequence of bytes, their decoding mechanism, and the 

values k, k', and k”, we can interpret the sequence of bytes that constitutes 

the record. H 

A file that contains nonhomogeneous records needs to store the attribute names 

(or identification codes) within the records. 
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3.1.3 Formal Specification of Storage of a File 

All storage organizations are ultimately constituted from bytes. Let us call the set of 

all possible bytes BYTES. We can define an attribute value, a record, and a file in 

terms of a sequence of bytes. The length of a sequence, s, is written as #s. An 

informal treatment of sequences is given in Appendix 3.1 at the end of the text. 

An attribute value or simply an attribute is some sequence of bytes': 

ATTRIBUTE :: = sequence of BYTES 

The values for different attributes and also the different values for some attri¬ 

butes would not all be encoded using equal-length sequences. We have to specify 

the length of the sequence. For attributes that can accept variable-length sequences 

as values, we specify the minimum (#min) and maximum (#max) sequence lengths. 

Fixed-length values have #min = #max. Thus we have: 

ATTRIBUTE :: = sequence of BYTES of length (#min . . #max) 

A record is defined in terms of some bag of attribute values. Physically a record 

is defined as: 

RECORD :: = sequence of BYTES 

However, logically we think of a record as: 

RECORD :: = sequence of ATTRIBUTES 

Records are stored on the physical medium in blocks. For simplicity we assume 

fixed-length blocks. Then we have: 

FL_BLOCK :: = array [1 . . BLOCK_SIZE] of BYTES 

FL_BLOCK :: = sequence of RECORD 

The first definition pertains to physical blocks and the second to logical blocks. The 
first definition allows a logical record to span over physical blocks. 

Similarly, we define the file: 

FILE :: = sequence of FL_BLOCK 

(Note that from the definition of FL_BLOCK, we may physically consider a file to 
be just a sequence of BYTES, or logically as a sequence of RECORD.) 

The emphasis on “sequence of BYTES” is deliberate, for this precisely repre¬ 

sents the fact that all data is stored in the form of bytes (or bits). This is important, 

too, for if we have a sequence and we wish to map it into a given logical structure, 

we should know (1) the beginning point of the sequence and (2) a definition of the 

logical structure into sequences of bytes. This has implications for searching without 

transferring data between the secondary medium and main memory. A processing 

element associated with the read/write head of a storage device can decide that it has 

located some desired sequence only if it knows the starting point. These are encoded 
or physically embedded in actual storage devices. 

Note that some attributes are Boolean and need less than one byte; however, many implementations use an entire byte to 
store a single Boolean valued attribute. 
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A number of initialization operations must be performed by the file manager 

before the initial access is made to a file. This is usually done by issuing an open 

file (or in Pascal, a reset/rewrite command). This initiates some internal housekeep¬ 

ing by the file manager. The creation of a number of buffers of appropriate size and 

initializing pointers (one each for blocks and records within blocks) would be nec¬ 

essary. We shall name these pointers BLOCK_PTR and RECORD_PTR, respec¬ 

tively. 

Assume that we have issued an open command for some file; then we can as¬ 

sume that BLOCK_PTR= 1 and RECORD_PTR= 1. The number of blocks in the 

file is given by #file_block and the number of records in the block BLOCK_PTR is 

given by #record(BLOCK_PTR). Algorithm 3.1 for get_record follows. Here we 

ensure that we do not attempt to access a record past the last record of a block or 

access a block past the last block in the file. Provided that the pointers are correctly 

set, the next record is made available. If we had already accessed the last record in 

the block, the block pointer is incremented and the record pointer within the block is 

reset to 1. (Note that this algorithm is much more simple than what happens in 

reality. First, it is implicit that somehow the data from the secondary storage is 

already available. In practice, the blocks would have to be read off the secondary 

storage. Second, the sizes (# . . .) are made available from some system record 

Algorithm 

3.1 Algorithm to Get a Record 

Input: initialized values for BLOCK_PTR, RECORD-PTR, #file_block(number of 

blocks in the file) and #record(BLOCK_PTR) (number of records in the 

block) 

Output: next record in file or end_of_file error condition 

retum_flag : = true 

while return-flag do 
if BLOCK-PTR > #file_block then begin 

error end-of-file (“reading after end”) 

return-flag : = false 

end 
else if RECORD-FI R < #record(BLOCK_PTR) then begin 

record : = file(BLOCK_PTR,RECORD_PTR) 

RECORD-PTR : - RECORD_PTR + 1 

return-flag : = false 

end 

else begin 
BLOCK-PTR : = BLOCK-PTR + 1 

RECORD_PTR ; = 1 

end 
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area. Thus, the algorithm should be taken as giving the general picture.) The suc¬ 

cessful execution of get_record logically (not physically) alters the file: 

file' : — file — record 

The above expression specifies that the record is no longer available from the logical 

file. A sequence of get records would not fetch the already obtained record unless 

we reposition BLOCK_PTR and RECORD-PTR, for instance, by issuing an open 

or rewind command. 

We can specify similar algorithms for insertion, deletion, and modification. Let 

us consider insertion. Suppose we have already identified the block into which the 

new record is to be inserted. In the simple scheme of things, the BLOCK_PTR and 

RECORD_PTR have been correctly set. We can specify the insertion as: 

file(BLOCK_PTR,RECORD_PTR) : = file(BLOCK_PTR,RECORD_PTR) + 

record, 

where record is the record to be inserted. The operation + indicates the insertion of 

the record in the block specified by BLOCK_PTR at the position specified by 

RECORD_PTR. This would be perfectly correct if the block could accept any num¬ 

ber of records. However, this is not so. If the block cannot accept the record, we 

must either reject the insertion or devise some scheme to make believe that the block 

is larger than it really is. In the latter scheme we implicitly or explicitly chain to¬ 

gether blocks to logically extend a given block. The implicit method inserts the rec¬ 

ord in the next block with sufficient free space; this method is the same as that used 

in some of the hashing schemes to handle collision. Explicitly, we can either prede¬ 

signate a block (or set of blocks) or point to a block that would accept the overflow 

record(s). In this scheme the original block is called the primary block and the block 

for the overflow record is the overflow block. Another possibility would be to ask 

the file manager to allocate a new block in which the overflow record(s) would be 

accepted. 

In the above discussion, we have conveniently forgotten to look into our rec¬ 

ords. How is the sequence of bytes that constitutes the record interpreted? It is usual 

to specify the structure of the record within a program. This allows the physical 

sequence of bytes to be mapped into the logical sequence of attributes that we have 

defined. In Example 3.2, we defined a file that stored birth dates as Birth-Date, 

Last-Name, First-Name, or was it specified as Birth-Date, First-Name, Last- 

Name, or some other sequence? Two programs with the above different record struc¬ 

tures would still be able to read the same data file. Remember that in the physical 

sense, we just stored a sequence of bytes. The results from one of the programs 

would be very interesting. For example, if the size for the two name attributes was 

the same, one program would have interchanged the first with the last name of every 

person. In this simple case we might be able to identify the malfunctioning program, 

but can we be sure that this would be the situation in all cases? The moral of the 

discussion is that for every file created, a repository of its structure is necessary. 

3.1.4 Operations on Files: Logical Access 

Having looked at the storage structure of a file and operations on it, we now consider 

both physical and logical sequencing or ordering of its records. Assume that we are 
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Figure 3.6 Physical and logical file. 
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given a file containing data on student names and grade point averages (GPA). The 

records in the file are stored in lexicographic order. A subset of the records of the 

file is shown in Figure 3.6a. We can access the records in their physical (stored) 

order or we can do so in some other order, such as in decreasing GPA order. We 

assume that a logical access method is available that allows us to retrieve records in 

decreasing GPA order. For data in our file, the first record fetched will be that of 

Mary with a GPA of 3.95, as shown in the first entry in Figure 3.6b. The next record 

obtained will be that of Marc. The records are being fetched in their logical sequence 

(that of decreasing GPA) and not in their stored (or physical) sequence. After we 

access the last record in the file, a call for the next record in the file causes the end- 

of_file exception. 
To reiterate, the records q of a file F may be accessed in some given logical 

sequence while being stored on the physical storage medium in another (physical) 

sequence. Access can be considered to be a mapping from file F and a pointer i to a 

record: 

ACCESS : (F,i) q 

The record, r, may be allocated space on the physical medium and stored as follows: 

STORE : (F,j,r) —> location 

The ACCESS mapping function needs to know where record r, is stored to allow 

access to the record. Ideally, the STORE mapping function should not have to know 

how the records are accessed. The fact is, however, that in order to allow efficient 

access in a desired logical sequence, the store function needs additional information. 

In addition to the ACCESS function, we need the following functions to access 

records relative to the current record accessed and the first and the last record of the 

file. These functions may be termed FIRST, LAST, NEXT, and PREVIOUS. If we 

assume that the logical sequence of the file F is {q, r2, . . . , rn} (the physical 

sequence may be same as the logical sequence), then 
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FIRST: F —> r, NEXT: (F,rj) -> ri + I if i * n 

LAST: F -> rn NEXT: (F,rn) -»• ERROR (end_of_file) 

PREVIOUS: (F,rj) -> r, _, if i > 1 

PREVIOUS: (F,r,) -> ERROR (beginning_of_file) 

We sometimes do not require access to every attribute of a record, simply to a 

subset. Similarly, we may access only those records that satisfy some given condi¬ 

tion. In general, we can specify access or retrieve operations on a file as: 

<target_list | qualification> 

where the target_list is the list of attributes for which the values of records satisfying 

the specified qualification clause are to be retrieved. The qualification clause is a 

Boolean expression, a sequence of terms connected with Boolean operators as de¬ 

fined below: 

<qualification> :: = <term> [<Boolean_operator> <qualification>] 

<term> : : = [<negation>] <attribute> <relational operator> <constant> 

< relational opera tor > ::= ' — '|' =£ '|'>T—T<T—' 

<Boolean operator> :: = AND|OR 

<negation> :: = NOT 

In principle, we can retrieve records from a file based on the value of any 

attribute. However, it is common to retrieve records based on some subset of the 

attributes, designated as key attributes. The file is organized so that retrievals based 

on these key attributes will be efficient. Remember that certain attributes, primary 

keys, may be used to uniquely identify records in a file, while other attributes, sec¬ 

ondary or nonprimary keys, can identify a set of records. 

Example 3.3 In Figure 3.6, assume that the names are unique, i.e., the name can be used 

to identify a record. As such, name would be the primary key for the GPA 

file. 

In the Birth_Date file we recorded information about the birth dates of 

persons we know. We can assume that the combination of First-Name and 

Last-Name uniquely identifies a record, i.e., that every person we know has 

a unique name. Suppose that a person’s First-Name and Birth-Date also 

uniquely identify a record. In other words, some persons have a common 

birth date and a few of the persons have the same first name, but no two 

persons with the same first name have the same birth date (at least for 

this example). Thus we can assume that either one of the two combinations 

<First-Name, Last-Name> or <First-Name, Birth-Date> can be used 
as a primary key. 

Let us choose the <First-Name, Last-Name> combination as our pri¬ 

mary key. We can choose any or all of the attributes First-Name, Last- 

Name, and Birth-Date as secondary keys. For simplicity, we choose Birth- 

Date. Now, since we allow the possibility of more than one person with the 

same birth date, we expect to retrieve zero, one, or several records when 

we use Birth-Date to access this file. Accessing the file using the <First_ 

Name, Last-Name> combination would retrieve at most one record. ■ 
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The data contained within the file may have to be changed. The changes could 

be the addition (or insertion) of new records, the removal (or deletion) of an existing 

one, or the changing (or modifying) of some of the contents of an existing one. The 

insertion, deletion, and modification operations are collectively known as update 

opei ations. Update operations can also be expressed in terms of target—list and 

qualification-list. The target-list permits assignment statements in the form of attrib¬ 
ute : = expression. Insert operations have an empty qualification clause. 

An update is a mapping from one (old) version of a file to another (new) version 

of it, i.e., F —> F . Assume that #F_record represents the number of records in the 

file F. An update may include any of the following four possible procedures: 

U,. Insert records in their proper logical sequence. Let F = {r,, . . . , rk_,,rk + 1, . . .} 

and #F_record = n, then 

INSERT: (F, rk) -> F' 

where F' = {r,, . . . , rk_,, rk, rk+), . . .} and #F'_record = n+1. 

The operation is accomplished logically by copying records r,, . . . , rk_, into file 

F', then storing record rk and copying the remaining records, rk, rk+1, . . . into F'. 

U2. Delete one or more existing records from the file. Let F = {r,, . . . , rk_,, rk, 
rk + l, . . .} and #F_record = n, then 

DELETE : (F, rk) -*• F' 

where F' = {r,, . . . , rk_i, rk+1, . . .} and #F'_record = n — 1. 

The operation is accomplished logically by copying records r( . . . , rk_| into file 

F', ignoring record rk, and then copying the remaining records, rk, rk + 1, . . . 
into F'. 

U3. Modify the data values in some existing record. This is akin to deleting record r, 
and inserting r,', where r,' is the modified record. 

MODIFY: (F, r;) -> F' 

Let F = {r,, . . . , rif . . . , rk_,, rk, rk+1, . . .} and 

F {u* • • • , Tj > • • • > he— i, rk, rk +1, . . .} 

The operation is accomplished logically by copying records r,, . . . , rj _ ) into 

the file F', modifying record r, to r/ and copying it to file F', and then copying the 

remaining records, ri + i, . . . into F\ Note that the relative positions of the records 

remain unchanged. 

U4. Modify the data values in existing records (it is common to assume that the record 

length remains the same). 

MODIFY: (F, Ai; v;, v/) F' 

This modifies data values in all records that have value v, for the attribute Aj. 

The operation is accomplished logically as follows: Copy a record rp such that the 

value of attribute A, + Vj, into the file F'; or modify a record rk, such that the value 

of attribute Aj = vs, to rk' where the value of attribute Aj is modified to v/ and copy 

the modified record to file F'. 

Remember that update operations may also cause exceptions, such as when we 

try to delete or modify a nonexistent record. In most applications insertion of a 
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duplicate record creates an exception condition. Updates to primary key attributes of 

a record are either disallowed or handled by a deletion followed by an insertion. The 

reason for this two-step operation is to ensure that the change was intended. 

We mentioned earlier that access is usually required only on certain attributes. 

Our logical record may then be considered as composed of two distinct parts; KEYS 

and ATTS, where both are sequences of ATTRIBUTES: 

RECORD ::= <KEYS> <ATTS> 

KEYS :: = sequence of ATTRIBUTE 

ATTS :: = sequence of ATTRIBUTE 

This is more than just some whimsical rearrangement. It is a deliberate splitting of 

the key from the nonkey attributes. Now when a search is performed using some key 

attribute, we need only search the area where the key attributes are stored. We can, 

if we wish, store the key attributes and nonkey attributes in physically separate areas. 

The advantage will come when the size of the storage required by the key attributes 

is significantly smaller then the storage required for the complete record. We could 

store the key attributes and nonkey attributes in different, marked areas on the same 

block and use the read head, as it scans the surface, to locate records with certain 

key values. This is what is done on some disk storage technologies, wherein only a 

single key attribute is used. 

3.1.5 Primary Key Retrieval 

In this section we present an overview of the logical (or access mappings) and phys¬ 

ical (or store mappings) file organizations commonly supported by the file manage¬ 

ment systems of operating systems. We consider here the sequential, indexed- 

sequential, and direct file organizations. We are not concerned with their implemen¬ 

tations under individual operating systems, only with general principles. 

In a sequential file, records are stored in ascending or descending primary key 

order. The logical sequence is the same as the physical sequence. The difference 

between a serial and a sequential file is that in a serial file, records are stored in no 

particular order. No logical sequence of records applies; the physical order is merely 

the order in which the records were added to the file. 

The advent of disks made it possible to move randomly through a file. To access 

a given record, however, we must know its physical location. In a sequential file the 

records are stored in a physical sequence depending on the primary key value. Ad¬ 

ditional information giving the physical location for a given key value is needed to 

move directly to a random record. For example, at the beginning of a book, the 

contents section indicates the starting page number (physical location) for each chap¬ 

ter or section (key values). A similar concept can be used with a sequential file. In 

an index-sequential file the physical location of a record in the sequential file is 

maintained in a set of indexes. These indexes provide fast and random access to the 
records in the file. 

In direct file organizations the physical location of a record is based on some 

relationship with its primary key value. The physical location is given directly or 

indirectly by a hash address. In the next sections, we shall look at each of the above 
file organizations. 
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3*2 Serial Files 

We stated earlier that in a serial file records are stored in no particular logical order; 

therefore, the serial file is equivalent to an unordered sequence. Let us take, for 

instance, a deck of shuffled playing cards and spread some of the cards facedown 

from left to right on a tabletop. We shall call these cards on the table a cardfile. We 

are allowed to pick one card at a time from the cardfile, starting from the left. The 

card picked (the record just read) is placed faceup. We can assume that we have 

some pointer that points to the next card to be picked; the last faceup card acts as a 

pointer. If we pick a card and then another, the first and second cards picked bear 

no logical relationship with each other. For instance, if we treat all cards belonging 

to a given suit as logically related, it is not always the case that the two cards picked 

belong to the same suit. The cards can only be picked in their physical sequence. A 

card on the table may be referred to as the last card of the cardfile. The next card is 

placed to the immediate right of it, i.e., appended after the last card. Our layout of 
the cards simulates a serial file (see Figure 3.7) 

A serial file is generated by appending records at the end, and if the records are 

randomly appended as in the case of a shuffled deck of cards, the logical ordering of 

the file with respect to a given key bears no correspondence to the physical sequence. 

The updates of type U3 (updating an individual record) and U4 (updating a group of 

records meeting certain criteria) can be done in place if we assume that the records 

are of fixed length and modifications do not change their size. The retrieval of a 

particular record entails searching the file from the beginning to end, if necessary. 

On average, the search requires the examination of half the records in the file. 

The deletion of a record can be handled in a number of ways. All records 

following the deleted record can be moved forward or the last record in the file can 

be brought in to replace the deleted record. Both of these options require many 

additional accesses up to the end of file. A more practical alternative is to logically 

delete a record, that is, mark the record as having been deleted. In future insertions 

or file reorganizations, the space occupied by a deleted record can be reclaimed. In 

the case of insertions, this requires that every record of the file be checked until we 

find one that has been deleted and marked as such. A new record could be inserted 

in the space occupied by the first such deleted record. 

A serial file is also referred to as a nonkeyed sequential file. In a serial file, 

The entire file has to be processed in searching for a nonexisting record, whereas in 

a sequential file, on average, only half the file has to be searched. A serial file is 

Figure 3.7 Example of a serial file. 
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typically used to maintain records chronologically; one such application is to record 

transactions. 

3.3 Sequential Files 

In a sequential file, records are maintained in the logical sequence of their primary 

key values. The processing of a sequential file is conceptually simple but inefficient 

for random access. However, if access to the file is strictly sequential, a sequential 

file is suitable. A sequential file could be stored on a sequential storage device such 

as a magnetic tape. 

Search for a given record in a sequential file requires, on average, access to half 

the records in the file. Consider a system where the file is stored on a direct access 

device such as a disk. Suppose the key value is separated from the rest of the record 

and a pointer is used to indicate the location of the record. In such a system, the 

device may scan over the key values at rotation speeds and only read in the desired 

record. A binary2 or logarithmic search technique may also be used to search for a 

record. In this method, the cylinder on which the required record is stored is located 

by a series of decreasing head movements. The search, having been localized to a 

cylinder, may require the reading of half the tracks, on average, in the case where 

keys are embedded in the physical records, or require only a scan over the tracks in 

the case where keys are also stored separately. 

Updating usually requires the creation of a new file. To maintain file sequence, 

records are copied to the point where amendment is required. The changes are then 

made and copied into the new file. Following this, the remaining records in the 

original file are copied to the new file. This method of updating a sequential file 

creates an automatic backup copy. It permits updates of the type U, through U4. 

Addition can be handled in a manner similar to updating. Adding a record ne¬ 

cessitates the shifting of all records from the appropriate point to the end of file to 

create space for the new record. Inversely, deletion of a record requires a compres¬ 

sion of the file space, achieved by the shifting of records. Changes to an existing 

record may also require shifting if the record size expands or shrinks. 

The basic advantage offered by a sequential file is the ease of access to the next 

record, the simplicity of organization, and the absence of auxiliary data structures. 

However, replies to simple queries are time consuming for large files. Updates, as 

seen above, usually require the creation of a new file. A single update is an expensive 

proposition if a new file must be created. To reduce the cost per update, all such 

requests are batched, sorted in the order of the sequential file, and then used to 

update the sequential file in a single pass. Such a file, containing the updates to be 

made to a sequential file, is sometimes referred to as a transaction file. 

In the batched mode of updating, a transaction file of update records is made 

and then sorted in the sequence of the sequential file. The update process requires 

the examination of each individual record in the original sequential file (the old mas¬ 

ter file). Records requiring no changes are copied directly to a new file (the new 

2Factors such as seek and latency time rule out the use of binary search in favor of some form of indexing scheme for disk- 
based files. 
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Figure 3.8 A file with empty spaces for record insertions (the figure shows some fixed-length 
records and unused space). 
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master file); records requiring one or more changes are written into the new master 

file only after all necessary changes have been made. Insertions of new records are 

made in the proper sequence: They are written into the new master file at the appro¬ 

priate place. Records to be deleted are not copied to the new master file. A big 

advantage of this method of update is the creation of an automatic backup copy. The 

new master file can always be recreated by processing the old master file and the 
transaction file. 

A possible method of reducing the creation of a new file at each update run is 

to create the original file with “holes” (space left for the addition of new records, 

as shown in Figure 3.8). As such, if a block could hold k records, then at initial 

creation it is made to contain only L * k records, where 0 < L < 1 is known as the 

loading factor. Additional space may also be earmarked for records that may “over¬ 

flow” their blocks, e.g.. If the record r, logically belongs to block Bj but the physical 

block Bt does not contain the requisite free space. This additional free space is known 

as the overflow area. A similar technique is employed in index-sequential files. 

3.4 Index-Sequential Files 

The retrieval of a record from a sequential file, on average, requires access to half 

the records in the file, making such enquiries not only inefficient but very time con¬ 

suming for large files. To improve the query response time of a sequential file, a 

type of indexing technique can be added. 

An index is a set of <key, address> pairs. Indexing associates a set of objects 

to a set of orderable quantities, which are usually smaller in number or their proper¬ 

ties provide a mechanism for faster search. The purpose of indexing is to expedite 

the search process. Indexes created from a sequential (or sorted) set of primary keys 

are referred to as index sequential. Although the indices and the data blocks are held 

together physically, we distinguish between them logically. We shall use the term 

index file to describe the indexes and data file to refer to the data records. The index 

is usually small enough to be read into the processor memory. 

A sequential (or sorted on primary keys) file that is indexed is called an index- 

sequential file. The index provides for random access to records, while the sequential 

nature of the file provides easy access to the subsequent records as well as sequential 

processing. An additional feature of this file system is the overflow area. This feature 

provides additional space for record addition without necessitating the creation of a 

new file. 
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Figure 3.9 Implicit index for starting page numbers of words in a dictionary. 

Words starting 

with letter Page# Index Entries 

A 3 3 

B 43 43 

C 85 85 

E 159 -1000 

159 

X 807 807 

Y 808 808 

Z 811 811 

(a) <Key, address > pairs (b) Implicit index 

3.4.1 Implicit Index 

The index file can be simplified or its storage requirements reduced if only the ad¬ 

dress part of the <key, address> pair is held in the index. This, however, necessi¬ 

tates holding the address of every possible key in the key range, including addresses 

of records not in the file. The addresses of nonexistent records can be set to an 

impossibly high or low value to indicate their absence from the file. If the number 

of such missing records in the range of stored key values is small, the saving ob¬ 

tained by not storing the key is considerable. Figure 3.9b is an example of an im¬ 

plicit index corresponding to the explicit index given in Figure 3.9a. Note that the 

record with a key of D is not in the file. This fact is indicated with a negative pointer 

value. This scheme requires that the value of the key be implicit in the position of 

the entry in the index. In this example, the first key is A, the second, B, and so on. 

In such a scheme, the maintenance of the index becomes simpler. The space require¬ 

ment depends on the proportion of existent records to the key range. 

3.4.2 Limit Indexing 

Because data on a direct access storage device is stored as a block of records on 

tracks and the entire contents of each track3 are read into main memory for process¬ 

ing, it is not necessary to use full indexing. In a limit indexing or partial indexing 

scheme, a single entry per track is maintained in the index. It is possible to group 

together a number of storage locations and identify these by a single address. In this 

manner, the storage on a track, a group of tracks, a cylinder, a group of cylinders, 

3In the case of a sector-oriented direct access storage device, the track is divided into a number of sectors and the basic unit of 
transfer is a sector. Limit indexing may be either with respect to a track or with respect to a sector within a track. 
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Figure 3.10 Group formations for limit indexing. 
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and so on can be grouped together and referred to by a single address. Certain op¬ 

erating systems permit such logical grouping to form what is referred to as a block 

or a bucket. The index may then have one entry per block. 

Consider a set of sorted keys <Kl5 K2, . . . , Kn>, with K] < K2 < . . . 

< Kn, divided into m groups of sizes <S|, s2, . . . , sm> with the sorted order of 

the keys being maintained within each group. Each group is identified by the key 

with the largest value in that group and called the sequential index key. Figure 3.10 

illustrates the keys in the groups, their sizes, and the index key. In an index-sequen¬ 

tial file the groups correspond to blocks. 

Example 3.4 Consider a file with records having keys of 037, 039, 048, 052, 057, 065, 

073, 081, 090, 103, 141, 157, 235, 241, 267, 299. We can create, for 

instance, six groups as shown in the Figure. The addition of a record that 

lies between 090 and 141, let us say with the key of 095, will be appended 

in group 3. 

Example of limit indexing. 

Group 

Group 

Size Keys in Group 

Sequential 

Index 

1 3 037, 039, 048 048 

2 6 052,057,065,073,081,090 090 

3 2 103, 141 141 

4 1 157 157 

5 2 235, 241 241 

6 2 267, 299 299 

Within a sequential index the sequential index keys are maintained in sorted order. 

Let us assume an ascending order, as shown in Example 3.4. In the search for a record, 

its key Kr is first compared with the sequential index keys. If Kr is greater than a sequen¬ 

tial index key, it is compared with the next sequential index key. The process is contin¬ 

ued until a sequential index key greater or equal to Kr is found. 
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If the group corresponding to the first index key greater than Kr is, let us say, 

Gs, then the logical position of record corresponding to the key Kr is in group Gs. 

This is because Kr is greater than the largest key in group GS_| but smaller than or 

equal to the largest key in group Gs. The key Kr is then compared to the keys in the 

group Gs to find a match. 
This search procedure based on a set of ordered indexes, (the largest keys of 

different groups of sorted keys) is called an index-sequential search. It is shown in 

Algorithm 3.2. 
In Algorithm 3.2 we assume that the index is available in memory and the 

entries are INDEXKEY and ADDRESS. This first entry in the index gives us the 

first sequential index key value and the location address of the associated block. We 

compare the given search key value with that of successive index key value entries 

until we get to the desired entry. This would be a block suitable for holding a record 

with the search key value. LOCATION returns the address of the block to which the 

record corresponding to SEARCHKEY belongs (logically). 

In some systems, instead of the largest keys of the different groups being main¬ 

tained in the sequential index, the smallest keys are kept. This requires that the key 

Kr be compared with the group keys until the group with the key Gj > Kr is located. 

Then Kr may be contained in the preceding group, G;_ ]. 

Number of Comparisons 

Assume that the groups are of the same size, i.e., s, — s2 = - . . = sm = s. Then 

the number of records n = m*s where there are m groups. In every group, more 

than one key value may exist; therefore, when searching for a record with a given 

key value, we have to check this key value against those of the records in the group. 

The number of comparisons associated with index-sequential search for different keys 

is presented in Figure 3.11. Part a of the figure shows the index and the number of 

Algorithm 

3.2 Index-Sequential Search Algorithm 

Input: Index table, and SEARCHKEY the key of record to be retrieved 

Output: The address of block for the record with key equal to SEARCHKEY 

{Assumption: The last index entry has a key value that cannot be exceeded} 

get first index entry, <INDEXKEY, ADDRESS> 

while INDEXKEY < SEARCHKEY do 

get next index entry 

LOCATION : = ADDRESS 

{the record associated with the SEARCHKEY logically belongs in the block 

with the address LOCATION, and this address can be used to lookup, insert, 
delete, or modify the record.} 
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Figure 3.11 Index key comparisons. 
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comparisons required to sequentially search for a key in the index. Part b indicates 

the block structure and the number of comparisons required for the sequential search 

for a record with a given key. The total number of comparisons made in searching 

for a key is the sum of the comparisons for the index and the block, given within 

parentheses in Figure 3.11b. 
For key K; the total number of comparisons is given by: 

fi/sl + (i — 1) mod s + 1 

and the average number of comparisons is given by 

1 + (m + s)/2 

Example 3.5 Assume a file of 10,000 records distributed over 100 blocks, i.e., every 

block has 100 records. Also assume that every record is equally likely to be 

accessed. In trying to locate a particular record, we first examine the index, 

which is assumed to be within a single block. To locate the block containing 

the required record, we have to examine each index entry. The number of 

comparisons required are: 

Search for # Comparisons 

First entry 1 

Second entry 2 

Third entry 3 

99th entry 

100th entry 

99 

100 
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The total number of comparisons made is 100 * (101 )/2 = 5050 and the 

average number of comparisons per access is 50.5. By similar reasoning, 

we know that the average number of comparisons required for the actual 

record from the data block (it also contains 100 entries) is also 50.5. 

Therefore, the average number of comparisons required is lO'l. This value 

agrees with the value calculated using the expression 1 + (m + s)/2, 

since in our example the block size, s, is 100 and the number of blocks, 

m, is 100. ■ 

It is normal to organize a file with several logical records per track (we can even 

consider a lower division of a track into a number of sectors and assign several 

logical records per sector). If the records are held in key sequence, it is sufficient to 

index only the highest record key within each track (or sector). The index entries, 

then, consist of <track number, highest key in track> pairs. A record (with a given 

search key) is located by reading the index into main memory and comparing its key 

with the index entries to locate the track. The record is then searched for within the 
track. 

At the beginning of this chapter we abstracted a disk as a two dimensional array 

with tracks and blocks (sectors). Instead of labeling all the tracks uniquely, we can 

group them in sets. One such grouping is formed around cylinders. Let c be the 

number of cylinders on which n records are organized in an indexed sequential or¬ 

ganization. Each cylinder contains m tracks for storing records and each track con¬ 

tains s records. Let us also assume that n = cms. Assuming that access to all records 

is equally likely, the average number of comparisons is given by (c -I- m + s 

+ 3)/2. 

Example 3.6 Assume that a file occupies 100 cylinders of 20 tracks each. Each track 

holds 20 records. Then the average number of comparisons to locate a given 
record is (100 + 20 + 20 + 3)/2 = 71.5. ■ 

The above expressions are for average number of comparisons. They do not 

indicate the number of disk accesses made in the retrieval of a record. Expressions 
for disk accesses are given in Section 3.4.4. 

3.4.3 Multilevel Indexing Schemes: Basic Technique 

In a full indexing scheme, the address of every record is maintained in the index. 

For a small file, this index would be small and can be processed very efficiently in 

main memory. For a large file, the index’s size would pose problems. It is possible 

to create a hierarchy of indexes with the lowest level index pointing to the records, 

while the higher level indexes point to the indexes below them (Figure 3.12). The 

higher level indices are small and can be moved to main memory, allowing the 
search to be localized to one of the larger lower level indices. 
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Figure 3.12 Hierarchy of indexes. 
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The lowest level index consists of the <key, address> pair for each record in 

the file; this is costly in terms of space. Updates of records require changes to the 

index file as well as the data file. Insertion of a record requires that its <key, ad- 

dress> pair be inserted in the index at the correct point, while deletion of a record 

requires that the <key, address> pair be removed from the index. Therefore, main¬ 

tenance of the index is also expensive. In the simplest case, updates of variable 

length records require that changes be made to the address field of the record entry. 

In a variation of this scheme, the address value in the lowest level index entry points 

to a block of records and the key value represents the highest key value of records 

in this block. Another variation of this scheme is described in the next section. 
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3.4.4 Structure of Index Sequential Files 

An index-sequential file consists of the data plus one or more levels of indexes. 

When inserting a record, we have to maintain the sequence of records ■and this may 

necessitate shifting subsequent records. For a large file this is a costly and inefficient 

process. Instead, the records that overflow their logical area are shifted into a desig¬ 

nated overflow area and a pointer is provided in the logical area or associated index 

entry points to the overflow location. This is illustrated below. Record 615 is inserted 

in the original logical block causing a record to be moved to an overflow block. 

Multiple records belonging to the same logical area may be chained to maintain 

logical sequencing. When records are forced into the overflow areas as a result of 

insertion, the insertion process is simplified, but the search time is increased. Dele¬ 

tion of records from index-sequential files creates logical gaps; the records are not 

physically removed but only flagged as having been deleted. If there were a number 
of deletions, we may have a great amount of unused space. 

An index-sequential file is therefore made up of the following components: 

1. A primary data storage area. In certain systems this area may have unused 

spaces embedded within it to permit addition of records. It may also include 
records that have been marked as having been deleted. 

2. Overflow area(s). This permits the addition of records to the files. A number of 

schemes exist for the incorporation of records in these areas into the expected 
logical sequence. 

3. A hierarchy of indices. In a random enquiry or update, the physical location of 
the desired record is obtained by accessing these indices. 

The primary data area contains the records written by the users’ programs. The 

records are written in data blocks in ascending key sequence. These data blocks are 

in turn stored in ascending sequence in the primary data area. The data blocks are 

sequenced by the highest key of the logical records contained in them. 

When using a disk device to store the index-sequential files, the data is stored 

on the cylinders, each of which is made up of a number of tracks. Some of these 

tracks are reserved for a prime data area and others are used for an overflow area 
associated with the prime data area on the cylinder. 

A track index is written and maintained by the file system. Each cylinder of 

the index-sequential file has its own track index. The track index contains an entry 

for each prime data track in the cylinder as well as an entry to indicate if any records 

have overflowed from the track. Each prime track may be considered as a logical 
block. 

Each track index entry is made up of the following items: 
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Figure 3.13 

1. The address of the prime data track to which the entry refers. 

2. .,The highest key of a record in the prime data track. 

3. The highest key of a logical record in that data track, including records in the 

overflow areas (i.e., it is the highest key of an overflow record, if there were 
one or more, associated with that track). 

4. The address of a record with the lowest key in the overflow area associated 

with that track (the address of the first record in the overflow chain). 

Items 1 and 2 make up the normal track index entry and items 3 and 4 make up the 

overflow track index entry. If there were no overflow from a given track, items 2 

and 3 would contain the same key value and item 4 would be set to a null value. If 

more than one record were required to be stored in an overflow area, these records 

will be chained so they can be reached from the first track overflow record. The 

structure of these track index entries for the cylinder is shown in Figure 3.13. 

The address of the prime track entry in the normal track index does not change, 

nor does the highest key value of the logical block. The highest key value entry in 

the prime data track and the address of the first overflow record changes when a new 

record inserted in the prime data track causes an existing record to be bumped into 

the overflow area. (This is illustrated in Figure 3.14b). The last digit in the pointer 
refers to the record number on the track. 

Typical cylinder organization. 
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Figure 3.14 Structure of an index-sequential file. 
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The track index entries are used by the file system to determine the track address 

of a given logical record. The cylinder’s overflow area is used to store records that 

are forced off the prime data track when new records are inserted. The records in the 

overflow area are unblocked and stored in the order of their insertions or placement 

rather than, in key sequence. The logical sequence of records is maintained by pre¬ 

fixing a sequence link to each logical record. The access to records in an overflow 
area is via these links and therefore inefficient. 

A file with records in overflow areas and with deleted records needs reorgani¬ 

zation. (It has to be recreated.) Deleted records are not physically deleted, but 

marked as having been deleted. The space and the contents are physically undis¬ 

turbed. Such marked records are retrieved by the file manager, and it is up to the 

application program to ascertain their status. Normally, on subsequent insertions, a 

marked record is not forced off the prime area to the overflow area. The only excep¬ 

tion is when a record having the highest key value in a cylinder is marked as deleted. 

When such a record is forced off the prime data track due to subsequent insertions, 

it is written in the overflow area. Additional independent overflow areas are used 
when a cylinder overflow area becomes full. 

The structure of an index-sequential file, including the index, prime data, and 

overflow areas is shown in Figure 3.14. The address is given as the cylinder address 

followed by the track address, both being two digits in this example. The final digit 

represents a record number. The index area of the file contains a cylinder index 

(shown in the figure as being stored in record 0 of cylinder 00, track 03) and may 

contain a master index (shown on cylinder 00, track 00). It does not contain the track 

index (which is stored on the cylinders themselves). Each cylinder in the prime data 

area has an entry in the cylinder index. The entry contains the address of the track 

index in that cylinder and the highest key stored on that cylinder. The cylinder index 

is used by the file system to determine the cylinder on which a record might or should 

be and the address of the track index for the cylinder. 

An index-sequential file may be updated in sequential or random mode. In se¬ 

quential mode, the insertion of new records in their proper sequence (update type 

U]) requires the creation of a new file, so it is performed only if a very large number 

of new records are being added. Under certain file managers new records may be 

added to the end of the file in sequential mode only if there is enough space in the 

prime data areas, not the overflow areas. In random mode all types of updates can 

be performed on an existing file. 

Retrieval from an index-sequential file may be sequential or random. In sequen¬ 

tial mode, it may be possible to specify both a start and an end point. This is very 

useful for processing grouped data. The records, including those in the overflow area, 

are available in their logical sequence. All pointers between the overflow records in 

a sequence are handled automatically by the FM to retain the logical sequence. In 

random processing mode any arbitrary record may be accessed. Skip-sequential pro¬ 

cessing, wherein the records not needed for processing are skipped over, is also made 

very easy and efficient. For low hit rates, whole tracks and cylinders may be skipped. 

In a sequential file in which keys are stored separately from data, it is possible to 

skip records but every key must be read. 

Number of Disk Accesses 

Let us now consider the number of disk accesses required when searching for a given 

record. We again assume uniform distribution of records within blocks, tracks, and 
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cylinders. Let there be L levels of indexing and the size of the index at a level, for 

instance j, be Ij blocks. Assume that each block is on a different track and access to 

a block consequently requires one disk access. Then, at each level, as we have as¬ 

sumed uniform distribution, we expect on average that half the number of index 

blocks will be accessed (in a sequential search). Therefore, the average total number 

of index blocks accessed is: 

]i 
2 2 

; = i 

In addition, we need to access the block on which the actual record resides. If the 

record is in a prime area, only one block has to be accessed; otherwise number O 

(>0) overflow blocks are also accessed. As such, the total number of blocks accessed 

on average is: 

L 

2 
i = I 

1 if data on prime area 

0 if data not on prime area 

3.4.5 vsam 

The major disadvantage of the index-sequential organization is that as the file grows, 

performance deteriorates rapidly because of overflows and consequently there arises 

the need for periodic reorganization. Reorganization is an expensive process and the 

file becomes unavailable during reorganization. The virtual storage access method 

(VSAM) is IBM’s advanced version of the index-sequential organization that avoids 

these disadvantages. The system is immune to the characteristics of the storage me- 

Figure 3.15 Index and data blocks of a VSAM control interval. 
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dium, which could be considered as a pool of blocks. The VSAM files are made up 

of two components, the index and data. However, unlike index-sequential organiza¬ 

tion, overflows are handled in a different manner. The VSAM index and data are 

assigned to distinct blocks of virtual storage called a control interval. To allow for 

growth, each time a data block overflows it is divided into two blocks and appropri¬ 
ate changes are made to the indexes to reflect this division. 

Figure 3.15 shows the structure of a control interval of a VSAM file. The index 

block and the data blocks are included in a control interval. We can consider the 

control interval to serve the same purpose that the track does in the index-sequential 

organization. Higher level indices also exist in VSAM; however, these are not shown 

in Figure 3.15. The control interval contains a number of empty index and data 

blocks, which are used when a data block overflows. The index entry I, indicates 

that the highest key value of a record in data block D2 is 73; the pointer to data block 

D2 is indicated by j D2. The method of handling overflow is illustrated in Example 
3.7. 

Example 3.7 Suppose the records to be added have the key values of 55 and 60. These 

records will logically be added into data block D2. However, since D2 has 

a block size of 4, only one record can be added without an overflow. The 

solution used in VSAM is to split the logical block D2 into two blocks, let 

us say D2 and D7. The records are inserted in the correct logical sequence. 

Furthermore, the index entry It is divided into two index entries as shown 
below: 

d2 

d7 

057 060 073 

052 055 

h 055iD7 073f D2 

In VSAM, a number of control intervals are grouped together into a control 

area. An index exists for each control area. A control interval can be viewed as a 

track and a control area as a cylinder of the index-sequential organization. 

Each control interval also contains control information that can be used in con¬ 

junction with routines provided in VSAM to allow retrieval of records, using either 

the key value or the relative position of a record. The relative position can either be 

the relative position in bytes from the start of the file or, in the case of fixed-length 

records, the relative number of the record. 

3.5 Direct File 

In the index-sequential file organization considered in the previous sections, the map¬ 

ping from the search-key value to the storage location is via index entries. In direct 
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Figure 3.16 Mapping from a key value to an address value. 

Key value Hash function -► Address 

file organizations, the key value is mapped directly to the storage location. The usual 

method of direct mapping is by performing some arithmetic manipulation of the key 

value. This process is called hashing. 

Let us consider a hash function h that maps the key value k to the value h{k). 

The value h(k) is used as an address and for our application we require that this value 

be in some range. If our address area for the records lies between S, and S2, the 

requirement for the hash function /z(k) is that for all values of k it should generate 

values between S| and S2 (see Figure 3.16). 

It is obvious that a hash function that maps many different key values to a single 

address or one that does not map the key values uniformly is a bad hash function. A 

collision is said to occur when two distinct key values are mapped to the same 

storage location. Collision is handled in a number of ways. The colliding records 

may be assigned to the next available space, or they may be assigned to an overflow 

area. We can immediately see that with hashing schemes there are no indexes to 

traverse. With well-designed hashing functions where collisions are few, this is a 

great advantage. 

Another problem that we have to resolve is to decide what address is represented 

by /z(k). Let the addresses generated by the hash function be addresses of buckets in 

which the <key, address> pair values of records are stored. Figure 3.17 shows the 

buckets containing the <key, address> pairs that allow a reorganization of the actual 

data file and actual record address without affecting the hash functions. A limited 

number of collisions could be handled automatically by the use of a bucket of suffi¬ 

cient capacity. Obviously the space required for the buckets will be, in general, much 

smaller than the actual data file. Consequently, its reorganization will not be that 

expensive. Once the bucket address is generated from the key by the hash function, 

a search in the bucket is also required to locate the address of the required record. 
However, since the bucket size is small, this overhead is small. 

The use of the bucket reduces the problem associated with collisions. In spite 

of this, a bucket may become full and the resulting overflow could be handled by 

providing overflow buckets and using a pointer from the normal bucket to an entry 

in the overflow bucket. All such overflow entries are linked. Multiple overflow from 

the same bucket results in a long list and slows down the retrieval of these records. 

In an alternate scheme, the address generated by the hash function is a bucket address 

and the bucket is used to store the records directly instead of using a pointer to the 
block containing the record. 

Let s represent the value: 

s = upper bucket address value - lower bucket address value + 1 

Here, s gives the number of buckets. Assume that we have some mechanism to 

convert key values to numeric ones. Then a simple hashing function is: 

h(k) = k mod s 

where k is the numeric representation of the key and h(k) produces a bucket address. 

A moment’s thought tells us that this method would perform well in some cases and 
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Figure 3.17 Bucket and block organization for hashing. 
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not in others. It has been shown, however, that the choice of a prime number for s 

is usually satisfactory. A combination of multiplicative and divisive methods can be 

used to advantage in many practical situations. 
There are innumerable ways of converting a key to a numeric value. Most keys 

are numeric, others may be either alphabetic or alphanumeric. In the latter two cases, 

we can use the bit representation of the alphabet to generate the numeric equivalent 

key. A number of simple hashing methods are given below. Many hashing functions 

can be devised from these and other ways. 

1. Use the low order part of the key. For keys that are consecutive integers with 

few gaps, this method can be used to map the keys to the available range. 

End folding. For long keys, we identify start, middle, and end regions, such 

that the sum of the lengths of the start and end regions equals the length of the 
2. 
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middle region. The start and end digits are concatenated and the concatenated 

string of digits is added to the middle region digits. This new number, mod s, 

where s is the upper limit of the hash function, gives the bucket address: 

-1-1 

123456 123456789012 654321 

For the above key (converted to integer value if required) the end folding gives 

the two values to be added as: 123456654321 and 123456789012. 

3. Square all or part of the key and take a part from the result. The whole or 

some defined part of the key is squared and a number of digits are selected 

from the square as being part of the hash result. A variation is the 

multiplicative scheme where one part of the key is multiplied by the remaining 

part and a number of digits are selected from the result. 

4. Division. As stated in the beginning of this section, the key can be divided by 

a number, usually a prime, and the remainder is taken as the bucket address. A 

simple check with, for instance, a divisor of 100 tells us that the last two digits 

of any key will remain unchanged. In applications where keys may be in some 

multiples, this would produce a poor result. Therefore, division by a prime 

number is recommended. For many applications, division by odd numbers that 

have no divisors less than about 19 gives satisfactory results. 

We can conclude from the above discussion that a number of possible methods 

for generating a hash function exist. In general it has been found that hash functions 

using division or multiplication perform quite well under most conditions. 

Let us now consider the retrieve, insert, and delete operations using hashing to 

locate our records. Let K be the set of keys and A be the set of bucket addresses so 

that the hashing function h is a function from K to A. The hash value h(k) is the 

address of the bucket that contains the <key, address> pair for the record with key 

k. Here we assume the size of the bucket is chosen such that overflow would not 

occur. A special dummy record is always assumed to be the last record in each 

bucket and it is used in the search to indicate a failure. The bucket with address h{k) 

is examined for the <k, address> pair. If there is no match, the record with key k 

does not exist. If the operation was either a simple retrieval or a deletion, this results 

in a notfound message (or error condition). For insertions, the <k, address> pair is 

inserted in this bucket. The record is, of course, inserted in the file at the location 

given by the address. If the <k, address> pair exists, then for an insertion this would 

be an attempt to insert a duplicate record (which may or may not be permitted in the 

application). In the case of a deletion, we would delete the actual record as well as 

the bucket entry. Algorithm 3.3 specifies the sequence of steps. 

As mentioned earlier, we require that the hash function uniformly distribute the 

keys in the buckets. This seems to be a reasonable approach until we examine certain 

details more closely. Although we may know the range of key values, do we also 

know their distribution characteristics? Note that not all key values are likely to 

occur. Different distributions require different hash functions to satisfy the uniformity 

requirement. The hash value is also required to lie within the range of addresses for 

the buckets, i.e., this range is prespecified. These considerations preclude any 

changes to the hash function once it has been implemented. Over a volatile file we 

can choose our range of addresses, A, to be large, but we waste valuable space. If 
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Algorithm for Search, Delete, Insert Using Hashing 

{To find, delete, or insert a record with key labeled SEARCHKEY; the 

operation types (OPTYPE) are FIND, DELETE or INSERT. If a record has to 

be inserted, we assume that the address of the block (INSERTADDR) in 

which the record will be inserted is specified by the file manager.} 

i : = h (SEARCHKEY) 

{The hash function h will convert nonnumeric keys too. The hash value is 
numeric and lies in the bucket address range.} 

read bucket with address i into memory. 

{Bucket entries are <key, address> pairs. The last key in each bucket is a 

dummy and cannot be exceeded. It is used for detecting the last entry.} 

get first <key,address> pair 

while key =£ SEARCHKEY and key i= DUMMY do 

get next <key,address> pair 

found : = key = SEARCHKEY {found is Boolean} 
case (OPTYPE) of 

'INSERT' : if found then error ('Record Already Exists') 

else 

begin {insert record} 

insert record in data block at INSERTADDR 

insert <SEARCHKEY, INSERTADDR> pair in bucket 

end{ insert} 

'FIND': if not found then error ('Record Does Not Exist') 

else 

begin 

a : = address 

get data from block a 

search for record within block 

<?n<r/{find} 

'DELETE' : if not found then error ('Record Does Not Exist') 

else 

begin 

a : = address 

delete <SEARCHKEY,address> entry from bucket 

get data from block a 

delete the appropriate record from block 

end {delete} 

end{case) 
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A is too small, the buckets will be large, containing a larger proportion of key val¬ 

ues, and the performance will degrade. File reorganization is an expensive proposi¬ 

tion. What we want is to be able to modify the hash function as and when required. 

There are a number of techniques to do this, referred to as dynamic-hashing. We 

look at a simple technique called extendable hashing. 

3.5.1 Extendable Hashing 

Extendable hashing handles file growth and shrinkage by splitting or coalescing 

buckets, i.e., the number of buckets or the bucket address range changes with the 

file. Since the hash function, once implemented, can only generate values in some 

predefined range, the extendable hashing scheme requires that the hash function gen¬ 

erates values over a very large range. Instead of using these values as addresses to 

buckets, some variable number of bits from these values are used as a key for entries 

in a bucket address table (Figure 3.18). In other words, another level of indirection 

is introduced. The entries in the bucket address table (BAT) are <length (of key), 

key, bucket address> triplets. 

Let the hash function generate an a bit long value, b]b2 . . . ba. A number of 

high order bits are used as a pseudosearch key into the bucket address table. The 

number of bits to be used for each match is determined from the entries in the BAT 

table. Each key in the BAT table is of different length and the length is specified by 

the corresponding entry in the length field. For a given entry in the BAT table, if the 

value of the length field is pip < a), the p high order bit sequence b,b2 . . . bp of 

the hash function generated value becomes the search key and is matched against the 

key entry in the BAT table. A match gives the bucket address where the required 

search key can be found. 

Insertion 

When a record is inserted, we follow the same procedure as in the simple hashing 

scheme. The only difference is when a bucket is full. We refer to it as the original 

bucket (with bucket address given by original-address). A new bucket is created; let 

us call it the new bucket (with bucket address given by new_address). Let us assume 

that the key was p bits long. Now since we have two buckets where there was one 

before, the length value has to be increased by one. Thus, the old key b[b2 - . . bp 

is replaced by the new keys b,b2 . . . bpbp+1 with the bit bp+1 being either 0 or 1. 

The key for the old bucket becomes b,b2 . . . bp0 and for the new bucket bib2 . . . 

b^l. We divide the entries from the original bucket into the original and new buck¬ 

ets. In this manner, all keys with their high order bits equal to b]b2 . . . bp0 are 

placed in the original bucket and all keys with their high order bits equal to b,b2 

. . . b^l are placed in the new bucket. We modify the BAT entry <p, b,b2 . . . bp, 

original-address> for original bucket to become <p -I- 1, bib2 . . . bp0, original_ 

Figure 3.18 Using extendable hashing. 
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address and insert a new entry <p + 1, b|b2 . . . bpl, new~address> in the bucket 
address table. 

An example of insertion is illustrated in Example 3.8. Note that in this version 

of extendable hashing we allow multiple pointers to the same bucket, thus economiz¬ 
ing on the number of buckets. 

Example 3.8 Consider a numerical key and a division-based hash function. Suppose the 

hash function consists of dividing the key value by 31 and using high order 

bits of the remainder as a pseudosearch key in the BAT. Figure A gives the 

successive steps in generating the entries in the BAT and the buckets as 

records with following key values are inserted, in the given order: 

176, 227, 371, 741, 629, 913, 345, 547, 806 

After inserting 176, 227, 371, 741 the bucket b, becomes full (see part i) 

causing the bucket to split when 629 is inserted. This requires the entries in 

the bucket bl to be redistributed and the address value in the BAT to be 

modified as shown in part ii. Insertion of 806 causes the bucket b2 and an 
entry in the BAT to split as shown in part iii. ■ 

Figure A Structure and usage of BAT in extendable hashing. 
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Deletion 

When a bucket becomes empty after a deletion, it can be deleted together with its 

corresponding entry from the bucket address table. An alternate scheme,-wherein two 

paired buckets are merged into a single bucket when the amount of entries in these 

buckets falls below some small number, can also be used. However, in the current 

discussion we only delete a bucket when it becomes empty. Let the entry in the 

bucket address table be: 

<g, b,b2 . • • bg_,0, Az> 

Then we also modify the entry <g, b]b2 . . . bg_ 11, Ay> in the table to become: 

<'B 1, bib2 . . . bg_i, Ay> 

If no such entry exists in the BAT, the first entry is simply deleted. An example 

of deletion is illustrated in Example 3.9. Note that in this version of extendable 

hashing we avoid multiple pointers to the same bucket. 

Example 3.9 Consider a numerical key of seven decimal digits with a multiplicative hash 

function that generates a product of the four high order digits by the three 

lower order digits. The key, the hash function generated values, and the 

corresponding binary equivalent of these values are given below: 

Key H(key) 

1544542 836848 

1329632 839928 

1022821 839062 

0892941 839372 

1458576 839808 

H(key) in binary 

iioo iioo oioo mi oooo; 
noo noi oooo mi iooo 
1100 1100 1101 1001 0110; 

1100 1100 1110 1100 1100; 

1100 1101 0000 1000 oooo 

Consider a bucket capacity of 4 and assume that the records are inserted in 

the order shown above with a minimum key length of 7 bits. Thus, after 

the first four records are inserted, an entry in the BAT and the 

corresponding bucket are as shown in part i of the Figure B. 

When the record 145876 is to be inserted its key gives the hash value, 

which for a length of 7 high order bits matches an entry in the BAT. This 

entry, however, points to bucket bj which is already full. This means that 

the bucket is split and the key length is increased to 8 bits. The entries in 

b, are redistributed between bj and a new bucket, bj as shown in part ii of 

Figure B. 

Subsequent deletion of the records with keys 1544542, 0892941, and 

1022821 causes bucket bj to become empty. This leads to the deletion of 

the BAT entry 11001100, compression of the entry 11001101 to 1100110, 

and a change in the length field to 7, as shown in part iii of Figure B. 
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Figure B 

Example of 
extendable 
hashing. 

. 7 1100110 bi 

Bucket address table 

(i) 

8 11001100 bi 

8 11001101 bj 

Bucket address table 

(ii) 

7 1100110 bj 

Bucket address table 

Bucket 

1544542 Pi 

1329632 P2 

1022821 P3 

0892941 P4 

Bucket 

1544542 Pi 

1022821 P3 

0892941 P4 

1329632 P2 

1458576 P5 

Bucket 

1329632 P2 

1458576 P5 

(ill) 

3.6 Secondary Key Retrieval 

In the previous sections we have considered the retrieval and update of data based 

on the primary key. In the following sections we consider file organizations that 

facilitate secondary key retrieval. Secondary key retrieval is characterized by the 

multiplicity of records satisfying a given key value. As such, there is no longer a 
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one-to-one correspondence between key values and records. File organizations for 

secondary key retrieval are used in conjunction with methods for primary key re¬ 

trieval. 

Query and Update Types 

Queries are in general formulated to retrieve records based on one or multiple key 

values. In the latter case, the retrieval expression contains key values punctuated with 

Boolean operators. 

Query Types: 

1. Find all employees working in the computer science department. 

2. Find all employees working in the computer science department who are 

analysts. 

3. Find all students who are taking the files and database course, but not the 

artificial intelligence course. 

Update types: 

1. Add records in proper sequence. 

2. Delete records satisfying some condition. 

3. Modify attribute values of records, satisfying some condition. 

The above queries and updates can be simply but inefficiently handled by scan¬ 

ning every record in the file. A number of file organizations permit faster and more 

efficient retrieval. The choice between them, just as in the case of primary key re¬ 

trieval, is solely dependent on the application. Faster access to the records is pro¬ 

vided by the use of indexes and/or the linking together in lists or some other suitable 

structure of logically related records. It is usual to relate records based on <attribute, 

value> pairs. 

The secondary key structures support access to all records that satisfy some 

<attribute, value> pair. Logically, as shown in Figure 3.19a, the secondary key 

access file is made up of a set of records containing (attribute, value, record-list). 

Here record-list is a list of records that contain the <attribute, value> pair. For 

example, in the following secondary key access file entry, the records Ry , . . . , 

RiJn contain the value Vy for the attribute A,\ 

{<Ai, vij>,(Rij|, . . . , Rjjn)} 

The R,jk’s are used to represent the associated records and may be either the primary 

key values, some unique system assigned identifiers, or unique physical addresses. 

In general, the record-list (Ry,, . . . , Rijn) may be maintained as a number of 
separate stored lists, for instance, hy, such that we have 

<'Aj, Itij> hjj> (Pjj|, . . . , P 

where n^ is the number of records with value Vy for the attribute A, (i.e., n^ is the 

number of records in the record-list Ry,, . . . , RiJn) and Pijk is the pointer to 

the kth stored list, for all k = 1, . . . , hy. The average length of each stored list 
is ny/hy. 

Physically, as shown in Figure 3.19b, the names of the attributes may be sepa¬ 

rated from the values and record-list and kept in a directory. Each entry in the 



3.6 Secondary Key Retrieval 115 

Figure 3.19 Structure of the directory and index. 

INDEX for A, 
Attribute Value Record-list 

Aj vn R]» R3. • • 
A) v12 R2. R-5> • • 

INDEX for A2 

A2 v2, R2, R3, . . . 

A2 v22 R5, R6, . . . 

(a) Logical structure 

DIRECTORY INDEX for A, 

Pointer 

Attribute to Index 

A, -► 

Attribute Number of Pointers to 

Value Records Lists Stored List 

V|| nn h„ P"|- • - P'S, 

V12 nl2 h|2 P'V • • P>v 

VU nu h,j p‘Ji • • • P'Jhjj 

INDEX FOR A2 

-► • ■ • 

(b) Physical structure 

directory is associated with a given attribute and points to a structure containing the 

set of associated (value, record_list) pairs. For the moment, we can think of the 

structure containing the (value, record-list) pairs as a sequential file, referring to it 

as the value-access file or as the attribute index. There are two common methods of 

organizing the value-access file: the inverted index method and the multilist. We 

discuss these organizations in the following sections. 

3.6.1 Inverted Index Files 

The inverted index file (or simply the inverted file) contains the list of all records 

satisfying the particular <attribute, value> pair in the index, wherein hy (the number 

of separate stored lists) is equal to n4i (the number of records with the given attribute 

value) and each points to a list of records of length one (Pjkm is in effect Ry, a 

pointer to the record instead of to a record list). In other words, a pointer for every 

record with the given value Vy for the attribute A, is kept in the index. This pointer 
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could be in the form of an address, the primary key value, or a unique record 

number. 
Query processing does not require access to the primary data areas until some 

of the records satisfying the query need to be furnished. For Boolean queries, the 

retrieved lists of record pointers may be manipulated to minimize the number of 

primary data area accesses. Also, the user can be made aware of the number of 

records satisfying a query before the data records are accessed. This gives us an 

opportunity to modify the query if our expectation of the number is different. 

Example 3.10 Consider an automobile dealership that records the interior and exterior color 

and engine size availability of the models it sells. The inverted list for each 

value of the attribute is given in Figure C. Here we use the model name to 

identify the corresponding automobile model record. 

Figure C Inverted index for Example 3.10. 

DIRECTORY .-►INDEX for Interior-Color 

Attribute Record-list 

brown Cutlass, Pontiac6000 

cream Audi4000, Audi5000, 

Cutlass, Jaguar, Malibu 

gray Audi4000, Audi5000, 

Malibu, Pontiac6000 

Interior-Color 

Exterior-Color 

Engine-Size 

INDEX for EngineSize ▼ 

Attribute Record-list 

4 Audi4000 

5 Audi5000 

6 Cutlass, 

Pontiac6000 

8 Malibu 

12 Jaguar 

INDEX for Exterior-Color 

Attribute Record-list 

black Jaguar 

maroon Audi4000, Malibu, 

Pontiac6000 

metallic Audi5000, 

gray Cutlass, Malibu 

Complete inversion requires that every attribute of a record be treated as a key 

and the record addresses associated with every attribute value be stored in inverted 

lists. Partially inverted files store record addresses associated with all values of only 
certain attributes. 

Logically, the inverted index structure can be visualized as tabular with a vari¬ 

able number of entries in each row. This variable number of entries makes the index 

difficult to maintain. Inverted files thus have a built-in advantage when the query 

volume is much greater than the update volume or when the updates can be batched. 

Inverted organizations are used mostly in document/reference retrieval systems and 
less frequently in general purpose database management systems. 
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Query processing involves searching the directory for the attribute entry and 

then through the associated value access file to the associated attribute value en¬ 

tries. For Boolean queries, this results in the retrieval of a number of reeorcLlists. 

For conjunctive clauses, an intersection, and for disjunctive clauses a union of the 
record_lists is made. 

Example 3.11 Return to the automobile dealership example above. A customer requires a 

car with metallic gray exterior and gray interior. This query can be ex¬ 
pressed as: 

Find car models where Interior-Color = 'gray' and 

Exterior-Color — 'metallic gray'. 

We first search the directory (see Figure C) to locate the attribute entry for In¬ 

terior ^.Colors, and then search the Interior-Color index for the attribute 

value gray. We obtain the list <Audi4000, Audi5000, Malibu, Pontiac600> 

of models that come with gray interior trim. We repeat the search process 

for the Exterior_Color attribute, obtaining the list of models with metallic 

gray exteriors: <Audi5000, Cutlass, Malibu>. An intersection of the two 

lists gives <Audi5000, Malibu> as the list of models that satisfy the 
query. ■ 

Insertion of a record requires that its identifiers be inserted in the record lists, 

associated with the values of its attributes. Deletion of a record entails the removal 

of the record identifier entry from every record list in which its entry exists. Modi¬ 

fying the attribute value of a record necessitates changes to the affected index. 

Clearly, index maintenance is a computationally expensive process. 

Example 3.12 The dealership has been informed that the Pontiac6000 will from now on be 

available with only five cylinders instead of six. The update is performed by 

searching the directory for the index for the attribute Engine-Size. In the En- 

gineSize index, the entry corresponding to the attribute value six cylinders 

is retrieved and Pontiac6000 is deleted from the recorcLlist. The entry for 

five cylinder models is then retrieved and Pontiac6000 is inserted into the record 

list. The old and updated indexes for the attribute Engine-Size are shown in 

Figure D. 

Figure D 

Update of 
inverted index. 

Old 

Engine-Size Index 

Attribute Record_list 

4 Audi4000 

5 Audi5000 

6 Cutlass, Pontiac6000 

8 Malibu 

12 Jaguar 

New 

Engine-Size Index 

Attribute RecorcLlist 

4 Audi4000 

5 Audi5000, Pontiac6000 

6 Cutlass 

8 Malibu 

12 Jaguar 
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Figure 3.20 A simple implementation of an inverted index. 

DIRECTORY 

A| 

A2 

INDEX for A, 

(attribute 
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-► 

■> 

Sequential 

file 

A simple implementation of an inverted list to maintain the record_list for each 

value for a given attribute as a sequential file is shown in Figure 3.20. The index 

contains a <value, pointer> pair, where the pointer points to the starting position of 

the associated record_list in the sequential file. 

3.6.2 Multilist Files 

In a multilist file there is only one stored list for every <attribute, value> pair. 

Therefore, the index of a multilist file contains only the single address Pjj for the 

<attribute,value> pair <Al, Vy>; hjj = 1. There is only one stored list of length n^. 

The records in the stored list are linked together in the form of a list. Thus, the 

record list of a multilist file is implemented as a list of records. One exists for every 

<attribute, value> pair (as the name suggests), with each stored record containing a 

pointer indicating the succeeding member of every list to which it belongs. A pointer 

to the first member of every list is maintained in the index. The length of each list 

can also be maintained in the index (this is illustrated in Figure 3.22a). 

Figure 3.21 gives, in pseudo-Pascal, the definition of a record, all of whose 

attributes participate in multilists. The pointer field associated with each attribute can 

Figure 3.21 Pseudo-Pascal definition of a stored record in a multilist file. 

attribute-rec-type-i — record 

value : attribute_type_i; 

next : pointer {pointer to next record} 

end; 

stored-record = record 

attribute_1 : attribute-rec-type- 1; 

attribute^ : array[l..m] of attribute-rec-type-i; 

attribute^n : attribute-rec-type-n; 
end; 
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Figure 3.22 Multilist file. 

DIRECTORY 

Interior_Color 

Exterior_Color 

Engine_Size 

INDEX for Interior_Color 

brown 2 Cutlass 

cream 5 Audi4000 

gray 4 Audi4000 

INDEX for Engine_Size -► INDEX for Exterior Colors 

4 1 Audi4000 

5 1 Audi5000 

6 2 Cutlass 

8 1 Malibu 

12 1 Jaguar 

black 1 Jaguar 

maroon 3 Audi4000 

metallic 
gray 

3 Audi5000 

(a) 

Pointers from Index for 
Interior Colors Exterior Colors Engine Size 

brown cream gray black maroon metallic gray 4 5 6 8 12 

(b) 

store the pointer to the next record with the same value. If an attribute has multiple 

values (e.g., the same model car in the automobile dealership example comes in 

many interior and exterior colors and engine sizes), the attribute may be stored as an 

array of size m, as indicated for the attribute_/' in Figure 3.21. 
A simple method of creating multilist files is to insert new records at the front 

of the list. Searching for a specific record with a given value for an attribute requires 
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traversal through that list. On average half the list has to be scanned. The advantage 

of such a scheme is that maintenance is simple. The list can also be maintained in a 

particular order, increasing the insertion costs but reducing the search costs. If a 

multilist index is created for every attribute, then every record will be part of a 

multitude of lists. It is not always necessary, however, to retrieve information based 

on every attribute value; lists need only be created for a few of the attributes. 

For the automobile dealership example, the multilist file for interior and exterior 

colors and engine sizes is shown in Figure 3.22. The directory and the index entries 

are given in part a and the actual records showing the multilists are shown in part b. 

As before, we use the model as symbolic pointers. Note that within the record for 

Cutlass corresponding to the attribute value for Interior-Color = brown, there is a 

pointer to the record for Pontiac6000. Similarly, for the value cream there is a pointer 

to the record for Jaguar. 

Search in Multilist Files 

For conjunctive queries (e.g., attribute, = value, A attribute2 = value2 A . . . ), 
a search over the shortest list is made, every record accessed being examined to see 

if it satisfies the conjuncts. Those records satisfying all the conjuncts are included in 

the response. We illustrate this in Example 3.13a. 

For disjunctive queries (e.g., attribute, = value, V attribute2 = value2 V 
. . .), all of the lists associated with the attributes in the condition have to be trav¬ 

ersed. If we are not concerned with duplicate record retrieval, then all records are 

accessed, some of them possibly more than once. 

Efficiency considerations demand that a record that has already been accessed 

should not be accessed again. This may suggest that a list of accessed records be 

maintained, possibly in a DO_NoT_Access_a Gain (DONTAG) list. This DONTAG 

list could become very large. Actually, we need only maintain a DONTAG list of 

those records that would be accessed again, because they are also members of the 

other lists to be traversed in response to the query. Having retrieved a record, it is 

easy to check if the record also satisfies any of the other conjuncts in the query. If 

so, then for every conjunct it satisfies, it is added to the DONTAG list. A moment 

of thought should tell us that just adding the record address to the DONTAG list is 
not sufficient. Consider the query 

Get records where A V B V C 

where A, B and C are some simple clauses of the form attribute = constant. Assume 

that we have already retrieved all the records satisfying the clause A. We have also 

created a DONTAG list. Next we traverse the list of records satisfying B and the 

next record, R,, to be retrieved is in the DONTAG list. Having accessed R, before, 

we would not need to do so again if and only if we knew the next member in B’s 

list following R,. Therefore in the DONTAG list we have to maintain the following 
information for each attribute appearing in the query: 

<accessed-record, attribute, value, next-record-in-list> 

Let us satisfy ourselves as to why we need the attribute and value information. 

Consider the above query. When a record has satisfied all the terms A, B, and C, 

then it would be entered onto the DONTAG list. The address of the next record for 
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the lists, corresponding to B as well as C, will be added to the DONTAG list. Now, 

when processing for B, which of the records in the DONTAG list is the next record 

for B and which is for C? This justifies the inclusion of the attribute. Consider the 

situation where a record can possess multiple values for the same attribute, and we 

have the query: Get records where A| = v, V A| = v2. We can see that the value 

also needs to be stored in such situations. We illustrate the use of the DONTAG list 
in Example 3.13b. 

Example 3.13 (a) Consider the conjunctive query: Find cars with Interior-Color = 

cream A Exterior-Color = metallic gray. 

For this conjunctive query, we consult the index entries for Interior-Color 

- cream and Exterior-Color = metallic gray and note that the first entry 

is of length 5, whereas the second one is of length 3. Therefore, we use the 

second list to retrieve the records for Audi5000, Cutlass, and Malibu to find 

that only two of these satisfy both the conjuncts. 

(b) Consider the disjunctive query: Find cars with Interior-Color — cream 

V Interior-Color = gray. 

We process this query by using the Interior-Color index for the color cream 

and retrieve the first record for Audi4000. We examine the record and find 

that it also comes with gray Interior-Color. The next record in this list is 

Audi5000. We enter the following in the DONTAG list: <Audi4000, Interior 

Color, gray, Audi5000>. We retrieve the next record in the Interior-Color 

— cream list, namely Audi5000, and find that it also comes with gray Interior 

Color. The next record for the list for Interior-Color = gray is Malibu. 

We enter <Audi5000, Interior_Color, gray, Malibu> in the DONTAG list. 

We next process the records for Cutlass and, as it does not come in the Interior 

Color gray, we do not make any entry in the DONTAG list. The record for 

Cutlass does not satisfy the second query predicate; consequently we will 

not be reaccessing it. We process Jaguar and again make no entry in the 

DONTAG list. Finally we get the last record in the Interior-Color = cream 

list, namely Malibu, and find that it also comes with gray Interior-Color. 

The next record in the list for Interior-Color = gray is Pontiac6000 so we 

make the following entry in the DONTAG list: <Malibu, Interior-Color, 

gray, Pontiac6000>. Since Malibu is the last entry in the list for Interior- 

Color = cream, we have retrieved all records satisfying the first term in the 

query. 

Contents of DONTAG List After Processing 

First Term of the Disjunctive Query 

of Example 3.14b 

<Audi4000, Interior-Color, gray, Audi5000> 

<Audi5000, Interior-Color, gray, Malibu> 

<Malibu, Interior-Color, gray, Pontiac6000> 

Now we start the list for the second query predicate. We consult the 

directory for Interior-Color = gray and find that the first record in the list 

is Audi4000. Before we retrieve this record, we consult the DONTAG list 
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and discover that we already retrieved the record for Audi4000. We do not 

retrieve that record and find from the entry for Audi4000 that the next record 

in the list for Interior-Color — gray is Audi5000. Before actually retrieving 

this record we consult the DONTAG list again and discover, that the re¬ 

cord for Audi5000 has been processed and the next record in the list for Inte¬ 

rior-Color = gray is Malibu. However, since there is an entry for Malibu 

in the DONTAG list, it was already retrieved. From this entry for Malibu 

in the DONTAG list we find the next record in the list for Interior-Color 

= gray to be Pontiac6000. There being no entry for Pontiac6000 in the 

DONTAG list, we retrieve and process it. Since there are no more records 

in the list for Interior-Color = gray, we have accessed all records. In this 

way we ensure that each record satisfying more than one term in the disjunct 

will be retrieved only once. ■ 

Maintenance of Multilist Files 

The deletion of records entails the removal of the record from the various lists. In 

some implementations of the multilist where the record is not physically removed but 

only flagged to indicate its deletion, no change is involved. While the record is still 

physically part of the lists, it is not so logically. If a record is both deleted and 

physically removed, all the lists of which the record forms a part have to be altered 

as well. In any case, the length of each of the lists in which the record was involved 

is decremented. 
A record must first be located before a change can be made to its data values. 

If the value to be changed belongs to a secondary key field, we would have to alter 

the relevant list. This entails that the list be traversed with the old value, the record 

removed from the list, the value changed, and the record added to the list for the 

new value. If data values in a number of fields are changed, this may require the 

traversal and update of many lists. The process is simpler if records are double- 

chained with pointers to both successor and predecessor records. 

The performance of a multilist file is satisfactory when the individual lists are 

short. Regarding conjunctive queries, if the length of the lists are included in the 

index, the shortest list is used for record retrieval. However, the number of records 

actually satisfying all terms of the query may be a very small fraction of those re¬ 

trieved. The use of the DONTAG list avoids reaccessing the same records in the case 

of disjunctive queries. When the lists become lengthy, it is desirable to break each 

list up into a number of sublists as in the case of the cellular lists discussed in the 

next section. 

3.6.3 Cellular Lists 

Lists in a multilist file can become lengthy. The fact that the stored records may 

be distributed among many physical (disk) storage units, or within the same storage 

unit in some manageable cluster of cylinders (the cluster may be a single cylinder), 

or some other manageable storage area, could be used to advantage by partitioning 
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Figure 3.23 Cellular list. 

-Cylinder (cell) 

logical list (ell, cl2,... 
c21,..., c2n,... } 

View of cell 
(all pointers are local to cell i) 

the lists along these boundaries (or cells). Thus, in a cellular list organization the 

lists are limited to be within a physical area of storage, referred to as a cell. Figure 

3.23 is an example of a cellular list. The lists are limited to a single cylinder of a 

movable-head-disk-type storage device. The number of stored lists, hy, for a given 

<attribute, value> pair <Ai? Vy>, may be more than 1, 1 < hy < ny. 
The number of stored lists still does not approach the inverted file case, except 

where there is only a single record in every cell. However, there are more stored 

lists than in the multilist case. The processing complexity lies between the inverted 

and multilist cases. Such an organization is particularly useful if the cell size is 

chosen so that the lists may be traversed in internal memory. In the case of paged 

systems, this may equal the page size. In multiprocessor systems, different proces¬ 

sors may traverse lists within different cells in parallel to improve response times. 
Let us reconsider the index structure of Figure 3.19 to explain the three file 

structures examined so far. In an inverted index the number of groups chosen is equal 

to the number of records, i.e., hy = ny. Each group is of length one and each pointer 

points to a single record. In a multilist file, hy = 1 and only one list of length ny 

exists for value Vy of attribute A;. With a cellular multilist, there are hy lists for value 

Vjj of attribute A*, each list being limited to a convenient size to maximize the re¬ 

sponse time. The size of the list may be determined by the characteristics of the 

physical storage device. In the case of a disk-type device, the list may be limited to 

a single cylinder. 

3.6.4 Ring Files 

The last records of the lists in a multilist file points to a null record. In ring files the 

last record entry in each list points back to the index entry. Therefore, from any 

point within the list a forward traversal of the Jinks would bring us to the index 

entry. The index entries contain the value for the attribute, making it unnecessary to 

store the attribute-value in the physical records. This makes for a smaller record. 

Figure 3.24 shows a number of rings for the car dealership data, shown in Figure C 

of example 3.10. 
In DBMSs using the network data model, a set is implemented as a ring by 

linking the member record occurrences in a ring that starts at the owner record oc- 
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Figure 3.24 Ring file. 
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currence. The owner record occurrence points to the first member record occurrence. 

The members are linked together and the last member occurrence points back to the 

owner record occurrence. 

3.7 Indexing Using Tree Structures 

In the previous sections we considered some primary and secondary key indexing 

schemes. Here we consider two tree-based indexing schemes that are widely used in 

practical systems as the basis for both primary and secondary key indexing. 

3.7.1 Introduction 

In a tree-based indexing scheme the search generally starts at the root node. Depend¬ 

ing on the conditions that are satisfied at the node under examination, a branch is 

made to one of several nodes, and the procedure is repeated until we find a match or 

encounter a leaf node (i.e., there are no more nodes beyond this node). There are 

several kinds of trees: binary, m-way, height-balanced, and so on. In this section we 

concern ourselves principally with the B + -tree and for informational purposes, its 

ancestor the B-tree. The VSAM file discussed earlier is a version of the B + -tree. For 

more detailed coverage of trees, consult a text on data structures. 

Let us consider a file of records R,, R2, . . . ., Rn. Each record R„ is identified 

by a key k|. The record Rj contains other data in addition to the key k, that does not 
affect the indexing in any way. 

A multilevel index file featuring some pertinent details is shown in Figure 3.25. 

The indices at various levels are shown as ovals and the address to the next index 

level is represented as a pointer. The index is similar to a tree. The leaf nodes are 

the blocks containing the actual records and are shown as rectangles in the figure. 

(Instead of the actual records, the leaf nodes may contain pointers to storage areas 
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Figure 3.25 Multilevel index shown as a tree. 

containing the actual records, or pointers directly to the actual records.) The similar¬ 

ity between the indexing schemes considered in the previous sections and the tree 

schemes ends here. The major disadvantage of index-sequential organization is that 

as the database grows, performance deteriorates rapidly due to overflows and conse¬ 

quently there arises the need for periodic reorganization. Reorganization is not only 

an expensive process but makes the file unavailable while it takes place. The tree 

structure overcomes this problem by splitting a node whenever it overflows. We 

illustrate this scheme in Section 3.7.3. 

3.7.2 Tree Schemes 

Each node of the tree except the leaf nodes, can be considered to consist of the 

following information: 

Til, l^il> T i2> kj2* * • • • ? Tin, kjn, Tj(n-t-1)] 

where the kij’s are key values and the Tjj’s are pointers. For an m-order tree the 

following conditions are true: 

• n < m 

• k;i < ki2 ^ ^ kin (we assume that kj0 = — °°, ki(n + 1) = +°°) 

• each of the pointers, T,j, 1 < j < (n+ 1), points to a subtree containing values 

less than ky and greater than or equal to ki(j_i) 

It is clear from the node structure and the condition n < m that for an m-order 

tree, the maximum number of pointers in a node is m (or the maximum number of 

keys contained in a node is m - 1). The minimum number of pointers that may 

exist in a node is fm/21 (or the minimum number of keys contained in a node is 

fm/21 — 1 keys). This minimum condition is enforced to avoid the situation in which 

a large number of nodes exist and each has very few keys. Such a situation not only 

increases the storage space for the index nodes but also the height of the tree. The 

minimum criterion is not enforced, for obvious reasons, for the root node. 

The leaf nodes of the B+-tree are quite similar to the nonleaf (or internal) 

nodes, except that the pointers in the leaf nodes do not point to subtrees. (They 
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cannot, because they are the leaf nodes.) The pointers TLj, 1 < j < n (note, not n 

+ 1), in the leaf nodes point to storage areas containing either records having a key 

value ky, or pointers to records, each of which has a key value k|r The number of 

key values in each leaf node is at least [(m - l)/2] and at most m — 1. 

Note that unlike the index-sequential file, the B + -tree need not be a clustering 

index. That is, records may or may not be arranged in storage according to their key 

values. 

The pointer TL(n+|) is used to chain the leaf nodes in a sequential order. This 

allows for sequential processing of the underlying file of records. 

The following conditions are satisfied by the nodes of a B + -tree (and also by 

the nodes of the older B-tree scheme): 

1. The height of the tree is > 1. 

2. The root has at least two children. 

3. All nodes other than the root node and the leaf nodes have at least fm/21 

children, where m is the order of the tree. 

4. All leaf nodes are at the same level. 

Example 3.14 Assume that we are given a file containing the following records: 

Book# Subject Area 

2 Files 

3 Database 

4 Artificial intelligence 

5 Files 

7 Discrete structures 

8 Software engineering 

9 Programming methodology 

40 Operating systems 

50 Graphics 

51 Database 

52 Data structures 

A B + -tree of order 4 on Book# is shown in Figure E. 
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Figure E A B+-tree (showing only some of the leaf nodes). Each Pj 
is a pointer to the storage area containing records (or point¬ 
ers) for the key Book# = i; 1 represents a null pointer. 

3.7.3 Operations 

The nonleaf nodes of the B + -tree act as a traversal map with the leaf nodes contain¬ 

ing the actual records or the key values with pointers to the storage location contain¬ 

ing the records. Therefore, all operations require access to the leaf nodes. 

Search 

The search algorithm for the B + -tree is given in below. The number of nodes ac¬ 

cessed is equal to the height of the tree. Once the required leaf node is reached, we 

can retrieve the pointer for the storage location containing the records; knowing the 

storage location, we can retrieve the required record(s). 

Insertion and Deletion 

The insertion and deletion of records with a given key first requires a search of the 

tree. Below, we discuss the insertion (or deletion) of record keys from the trees. We 

assume that the records themselves would be inserted in (or deleted from) the perti¬ 

nent storage locations. Insertion and deletion that violates the conditions on the num¬ 

ber of keys in a node requires the redistribution of keys among a node, its sibling, 

and their parent. 
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Algorithm 

3.4 Searching B+>tree. 

Input: Ks, the search key 

Output: found, (a Boolean value), and 

A, the address of record if found 

{nodes content: [n, T,, k,, T2, k2, . . . , Tn, kn, Tn+1] kn+, = °° 
is assumed} 

get root_node 

while not leaf_node do 

begin 

i : = 1 

while not (i>n or Ks<kj) do 

i : = i + 1 

{Tj points to the sub-tree that may contain Kj 
get sub-tree Tj 

end {while not leaf_node} 

{search leaf node for key Ks} 

{content of leaf node: [n, P,, k,, P2, k2, . . . , Pn, kn, Pn + 1]} 
i : = 1 

found : = false 

while not (found or i>n) do 

begin 

found : = Ks = kj 

t/found then 

A : = Pj 

else i : = i + 1 

end {while not (found or i>n)} 

Insertion 

If, after insertion of the key, the node has more than m-1 keys, the node is said to 

overflow. Overflow can be handled by redistribution if the number of entries in the 

left or right sibling of the node is less than the maximum. Such redistribution in¬ 

cludes the key from the parent node and hence, the key value in the parent node may 

change. If there are no sibling nodes with space to receive the overflow keys, the 

node is split into two nodes, with the middle key inserted in the parent of the node 

being split. Such insertion into the parent node may in turn require redistribution or 

splitting and an increase in the height of the tree. Example 3.15 illustrates the inser¬ 
tion scheme. 

The search for the key value, K,, to be inserted locates the leaf node in which 

the key belongs. This node may be full or have space for the key. In the latter case, 
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the key is inserted in its rightful place, maintaining the key order. In the former case, 

we would now have a node, let us say TL, with m (instead of m-1) key values, 

assuming an m-order tree. The set of m values is split into two sets. The set of keys: 

|k|, k2, . . . , k|m/2i-i} 

is written in the existing node TL, and the remaining set of keys: 

{k|m/2]> k|m/2)+|, . . . , km} 

in a new node, let us say TN. The new node is inserted into the leaf node chain. 

The key k(m/2| (the smallest key in the new node) and a pointer to the node TN 

are passed to the parent node for insertion. Let us represent the key k[m/2i by k'. Let 
the contents of the parent node before the insertion of k' be 

[n, T,, k,, . . . , Tl, kL, . . . , Tn, kn, Tn + I] 

where TL is the pointer to the child node that split; that child node originally con¬ 

tained keys smaller than kL. The node pointed to by TL now contains keys smaller 

than k', while the node TN contains keys greater than or equal to k' but smaller than 

kL. The logical place for the insertion of the pair <TN, k'> is between the pair <TL, 

kL>. The parent node contents after the insertion of <k',TN> are: 

[n, Ti, kj, . . . , Tl, k', Tn, kL, . . . , Tn, kn, Tn+)] 

The insertion of <k',TN > may itself cause a redistribution or a node split. The 

values would be distributed between the old and new node and a key value sent to 

its parent node for insertion, as before. 

Example 3.15 In the B + -tree of Example 3.14, let us insert an entry for Book# 1. The 

original contents of the leaf node (with the label PT0) in which the key 

would be inserted are: 

PT„ 

P, 2 P, 3 P4 4 -*■ PTV 

This node does not have a left sibling and the right sibling is already full. 

Hence, insertion of the key 1 would cause a split. Let the new node be PTN. 

The contents of these nodes are shown below: 

PT0 PTn 

Pi 1 f2 1 

The pair <3, PTN> are passed to the parent node (reproduced below) for 

insertion as indicated: 

PT0 3 PTN 5 T, 9 T2 15 T3 
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The insertion causes a split of this node into the following two nodes with 

the key value 5, along with a pointer passed to the parent of the node: 

Py_ _ . 
( PTp 3 PTn ) 5 ( T} 9 T2 15 T3 ^ 

Let the address of the new node be PY. Then the pair <5, PY> is passed to 

the parent node (in this case the root) for insertion. The relevant portion of 

the resultant B + -tree is shown in Figure F. 

Figure F The B + -tree of Example 3.14 after insertion of the key for 
Book# 1. 
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Deletion 

When a key is deleted, the leaf node may end up with less than f(m— 1)/21 keys. 

This situation may also be handled by moving a key to the node from one of its left 

or right sibling nodes, and redistributing the keys in the parent node. However, if 

the siblings have no keys that could be spared, such redistribution is not possible. In 

this case, the node is merged with a sibling along with the deletion of a key from 

the parent node. The loss of the key from the parent node may in turn cause further 

redistribution or merging at this higher level of the tree. 

The leaf node containing the key to be deleted is found and the key entry in the 

node deleted. If the resultant node (let us refer to it as TD) is empty or has fewer 

than !(m— l)/2] keys, 

1. The data from the sibling node could be redistributed, i.e., the sibling has 

more than the minimum number of keys and one of these keys is enough to 

bring the number of keys in node TD to be equal to f(m— 1)/21. 

2. Or, the node TD is merged with the sibling to become a single node. This is 

possible if the sibling has only the minimum number of keys. The merger of 

the two nodes would still make the number of keys in the new node less than 

the maximum. 
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In the former case the key entry in the parent node will be changed to reflect the 

redistribution, and in the latter case the associated entry in the parent node would 

also be deleted. 

Example 3.16 Let us delete the entry for Book# 5 from the tree shown in Example 3.14. 

The resultant tree is shown in part i of Figure G. Note that the key value 5 

is maintained in the internal node. 

Figure G (i) The B+-tree that results after the deletion of key 5 from 
the tree of Example 3.14. (ii) The B+-tree after the deletion 
of key 7. 

(i) 

(ii) 
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If we now delete key 7 from the B + -tree of Figure G, the leaf node 

containing key 7 would have less than the minimum number of keys. The 

left sibling of this node contains P2 2 P3 3 P4 4 x and can spare a key. 

This key and the appropriate pointers are moved to the about-to-be-under- 

flow node. The resultant tree is shown in part ii of Figure G. Note that the 

index entry of the parent node reflects the redistribution. ■ 

3.7.4 Capacity 

The upper and lower limits of the capacity of a B + -tree of order m may be calculated 

by considering each node of the tree to be maximally (m — 1 keys) or minimally full 

(fm/21— 1 keys). We assume that the height of the tree is h. The two situations are 

depicted in Figure 3.26. As every key must occur in the leaf node and the leaf nodes 

may also contain a minimum of l(m— 1)/21 and a maximum of (m— 1) keys, we 

have 

2*f(m — 1)/21 * fm/21h~2 < N < (m- 1) * mh_1 

3.7.5 B-trees 

In the previous sections we looked at the B + -tree, a descendant of the B-tree. The 

B + -tree differs from the B-tree in the organization of the nodes. In the B-tree, the 

leaf nodes do not contain any information. During lookup, if the leaf node is reached 

without a match, the key does not exist (thus the leaf nodes are called failure nodes). 

Note that because the leaf nodes do not contain any information, they may be imple¬ 

mented in the parent node as null pointers. Because the leaf nodes do not contain 

pointers to the storage areas where the records reside, the pointers are included with 

the keys in the internal nodes. We may consider each kj to represent a <key-value, 

address> pair. The advantage of the B-tree over the B + -tree is that the key values 

appear only once in the tree, with consequent savings in space. We therefore require 

fewer nodes than in a corresponding B + -tree. Another advantage is that it is no 

longer necessary to traverse up to the leaf nodes during lookup operations. Searches, 
on average, require fewer node accesses. 

Whereas retrieval of the next record is relatively easy in the B + -tree, this is not 

the case in the B-tree unless the internal nodes of the B-tree are linked in a sequential 

order. The deletions in a B + -tree are always made in the leaf nodes. In a B-tree, 

however, a value can be deleted from any node, making deletions more complicated 
than in a B + -tree. 

Insertions in a B + -tree are always made in the leaf nodes. In the B-tree, how¬ 

ever, insertions are made at the lowest nonleaf node. Insertions (or deletions) may 

cause node splits (coalescing or key redistribution) and thereby affect the height of 
the tree in both cases. 

The capacity of the B-tree can be calculated in a manner similar to that used for 

the B + -tree. Note that the order of the tree is dictated by physical storage (buffer) 
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Figure 3.26 Capacity of a B+-tree. 
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availability, among other factors. For the same buffer size, the order of the B-tree 

would be less than that of the B + -tree. 

3.8 Logical and Physical Pointers 

Some of the file organizations considered in the previous sections required the use of 

pointers in their implementations. In many situations the use of pointers in file design 

arises. So far, we have not addressed the issue in any detail. What are these pointers 

and how are they implemented? We know, for example, that in the multilist file the 

pointers give us the address of the succeeding record. Are all pointers physical ad¬ 

dresses? If they are, then any movement of the records or the file itself on the disks 
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Figure 3.27 Deriving address for clustered storage. 

Pointer using Page# and 
offset or displacement 

Physical block# 

would necessitate changes to their values. Then should all pointers be implemented 

as logical addresses (i.e., by some key of the record)? This requires that there exist 

a mapping scheme from the key to the physical address. If this mapping is provided 

by an index, it entails additional accesses for each logical pointer access. Similarly, 

this applies for the hashing of the key values, except in unlikely hash functions that 

produce no collisions. 
It is possible to use addresses based on page or bucket numbers and displace¬ 

ment within page where each page or bucket contains a set of blocks, i.e., a page 

contains a large number of records. The physical location of each of these file pages 

can be stored in a small table; this table can be brought into main memory when the 

file is in use. The displacement is used as a modifier, and the logical to physical 

address mapping can be done as shown in Figure 3.27 without additional secondary 

storage accesses. When the file is moved around on the disks, the only requirement 

is that the cluster of records in the page are moved together so that their displace¬ 

ments are not altered. 

3.9 Record Placement 

We began this chapter by stating that the time needed to access data on secondary 

storage could be optimized by minimizing the component of response time that we 

called the access time. In the sections above, we considered how access is facilitated 

by employing certain file organizations. The primary consideration in all organiza¬ 

tions is access to the next or some particular logical record. Our main concern has 

been with access methods. We stated that the response time could also be optimized 

by suitable record placement. 

A suitable placement strategy necessitates the knowledge or estimation of access 

frequencies or probabilities. We want the records to be placed in such a manner that 

the average head movement is minimal. It has been proven that the cost is minimal 

when the most frequent (or likely) records are grouped together in blocks and the 

blocks arranged such that the block access probabilities form an organ pipe arrange¬ 

ment. This type of arrangement results when we sequence block placement in non- 
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Figure 3.28 Organ pipe arrangement. 

P6 P4 P2 Pi P3 P5 P7 

increasing access probability order. We first place the block with the highest access 

probability at some point and the other blocks in nonincreasing access probability 

order, alternately to the left or to the right of the already-placed blocks. Let us 

consider, for instance, n blocks and let the access probability of the <th block be ph 

where p, > p2 > . . . > pn. The resultant optimal placement of blocks is hown in 

Figure 3.28. The optimal record placement strategy is applicable, even to the file 
organizations considered earlier in this chapter. 

Concluding Remarks 

In this chapter we looked at some common file organizations. They occur quite often 

in systems and applications work. As we have seen, no one organization can effi¬ 

ciently support all applications and types of access. It may be necessary to design a 

file that supports different organizations for different key fields, depending on the 

application requirements. However, it is not wise to design elaborate organizations 

for rare types of access. In file design, particular emphasis is placed on usage and 

factors of growth. We should also be aware of the space/time tradeoff in file design. 

Speeding up some accesses is always accompanied by increased storage demands. 

The simplest serial file has minimal wastage of storage space or overheads. However, 

as we have seen, access and updates are expensive. The other file organizations 

improve performance of certain operations, but require additional storage space. 

In the index-sequential file the records are ordered with respect to the primary 

key. In this way it is possible to allow random and sequential access to any record. 

An index-sequential scheme, however, becomes inefficient if there are a large num¬ 

ber of insertions and consequent overflows, and it requires periodic maintenance. For 

a file that is growing rapidly, index-sequential organization may be inappropriate. 

B + -tree indexing, with its built-in maintenance, allows growth without the penalty 

of performance degradation. Both types of indexing allow random search followed 

by sequential search. However, the records in the case of the B + -tree file may not 

be clustered and therefore it is possible that a disk access may be required to retrieve 

each record. Range queries, wherein records have a range of key values, can be 

handled by these file organizations. 

With direct access supported by hashing, random access to any record is ob¬ 

tained in a fixed time but if the records are not clustered on the key used for hashing, 

sequential or range queries can only be handled as a series of independent requests. 

The hashing function maps a key value into a bucket address. With a good hashing 

function sequential keys need not be mapped to the same or consecutive buckets. 

However, having obtained the first bucket address, we have no way of knowing 

which bucket will contain the next key. 
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The steps involved in designing a file system for secondary key retrieval to 

reduce search time can be summarized as follows: 

1. Determine the most likely secondary search keys. 

2. Make an appropriate index for each such secondary key and generate the 

entries for each value of the key. 

Consider the index structure of Figure 3.19b, an inverted index. The number of 

groups chosen is equal to the number of records hy = n,, and each pointer is directed 

to a single record. In a multilist file, hy = 1 and only one list of length ny exists for 

value Vy of attribute A;. With a cellular multilist, there are hy lists for value Vy of 

attribute A„ each list being limited to a convenient size, such as the cylinder of a 

disk drive, to maximize the response time. 
Remember that with a multitude of indexes, the space occupied by them could 

exceed the space occupied by the actual data file. 

When the same file is required for different applications or when a set of files 

are required by these applications, it becomes impossible to fully satisfy the require¬ 

ments of every application. While it is not impossible to support secondary structures 

that can meet all requirements, any updates would require changes to all of them. 

These updates would be prohibitively expensive. Furthermore, different applications 

entail different logical relationships between data. Earlier in this book we introduced 

database systems. Just as file management systems remove the programmer/user from 

the knotty details of bits, bytes, and blocks, database management systems provide 

independence from details of data organization and access strategies. 

With large random access memories available on the smallest of microcompu¬ 

ters, we hope that the file organizations considered in this chapter would only be the 

concern of system designers when dealing with very large files. 

Summary 

A file is a collection or bag of records. Having stored the records in a file, it is 

necessary to access these records using either a primary or secondary key. The type 

and frequency of access required determines the type of file organization to be used 

for a given set of records. In this chapter we looked at some common file organiza¬ 

tions, examining the following: serial, sequential, index sequential, multilist, ring 

list, cellular list, direct, and tree-structured. 

In a serial file, records are stored in no particular order and therefore the serial 

file is equivalent to an unordered sequence. Such a file is generated by appending 

records at the end of the file. The search for a record in a sequential file entails 

examining each record until it is found. Updates to records can be done in place if 

the records are of fixed length and the updates do not change the size of the records. 

Deletion of a record can be performed either by compressing the file or marking the 

record as deleted, and logically ignoring such records. 

In a sequential file, records are maintained in the logical sequence of their pri¬ 

mary key value. The search for a given record requires, on average, access to half 

the records in the file. Update operations, including the appending of a new record, 

require the creation of a new file. Updates could be batched and a transaction file of 

updates used to create a new master file from the existing one. This scheme auto¬ 

matically creates a backup copy of the file. 
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Access to a sequential file can be enhanced by creating an index. The index 

provides random access to records and the sequential nature of the file provides easy 

access to the next record. To avoid frequent reorganization, an index-sequential file 

uses overflow areas. This scheme provides space for the addition of records without 

the need for the creation of a new file. In index-sequential organization, it is the 

usual practice to have a hierarchy of indexes with the lowest level index pointing to 

the records while the higher level ones point to the index below them. Updates to an 

index-sequential file may entail modifications to the index in addition to the file. In 

VS AM the solution to the update overhead is found by providing free blocks for the 
indexes and records. 

In direct file organization the key value is mapped directly or indirectly to a 

storage location, avoiding the use of indices. The usual method of direct mapping is 

by some arithmetical manipulation of the key value; the process is called hashing. 

However, hashing schemes usually give rise to collisions when two or more distinct 

key values are mapped to the same value. Collisions are handled in a number of 

ways. The colliding records may be assigned to the next available free space, or they 

may be assigned to an overflow area. In using the hash function to generate a value, 

which is the address of a bucket where the <key, address> pair values of records 

are stored, we can handle limited collisions as well as reorganization of the file 

without affecting the hash function. In extendable hashing, the database size changes 
are handled by splitting or coalescing buckets. 

Secondary key retrieval is characterized by the multiplicity of records satisfying 

a given key value. Fast access to records is provided by the use of indexes and/or 

linking together logically related records in some suitable structure. 

An inverted file contains the list of all records, satisfying the particular attrib¬ 

ute, value> pair in the index. The list contains a pointer to every record with a given 

value for the attribute. 

In a multilist file the logically related records are linked together in the form of 

a list. A pointer to the first member of every list is maintained in the index. In a 

cellular list organization, lists are limited to a physical area of storage, referred to as 

a cell. In a ring file the last record of a linked list of records points back to the index 

entry. 

Tree-based data organization schemes are used both for primary and secondary 

key retrieval. We considered the B + -tree scheme, wherein each node of the tree 

except the leaf node contains a set of keys and pointers pointing to subtrees. The leaf 

nodes of the B+ -tree are similar to the nonleaf or internal nodes, except that the 

pointers in the leaf node point directly or indirectly to storage areas containing the 

required records. We also examined the method of performing the search and update 

operations using the B + -tree and compared the B+-tree with the B-tree. 

Finally, we considered the implementation of pointers and the placement of 

records based on their probability of access. 
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homogeneous records explicit index extendable hashing 

primary block limit indexing inverted index file 

overflow block block inverted file 

update operations bucket multilist file 

sequential file sequential index key cellular list 

serial file index-sequential search cell 

index-sequential file track index ring file 

direct file skip-sequential processing leaf node 

nonkeyed sequential file virtual storage access m-order tree 

transaction file method (VSAM) B + -tree 

old master file control interval overflow 

new master file control area redistribution 

index file hashing B-tree 

data file collision failure nodes 

implicit index dynamic hashing record placement 

msm 
3.1 Access methods are measured by access and storage efficiencies. Define each term and its 

major objectives. Which is the most important consideration in a batch environment? In an 

online environment? Give reasons. 

3.2 Discuss the differences between the following file organizations: 

(a) serial 

(b) index-sequential 

(c) hashed 

(d) inverted 

Compare their storage and access efficiencies. To what type of application is each of the 

organizations suited? 

3.3 We are given a file of 1 million records, each record being 200 bytes long, of which 10 

bytes are for the key field. A physical block is 1000 bytes long and block addresses are 5 

bytes long. 

(a) Using a hashed file organization with 1000 buckets, calculate the bucket size in 

blocks. Assume all blocks contain the average number of records. What is the average 

number of accesses needed to search for a record that exists in the file? 

(b) Using an index-sequential file with one level of indexing and assuming that all 

file blocks are as full as possible (with no overflow), how many blocks are needed for 

the index? If we employ a binary search on the index, how many accesses are required 

on average to find a record? 

(c) If we use a B+-tree and assume that all blocks are as full as possible, how many 

index blocks are needed? What is the height of the tree? 

(d) Repeat part (c) if all blocks are half full. 

3.4 We are given a file of 10 million records, each record being 100 bytes long, of which 5 

bytes are for the key field. A physical block is 10000 bytes long and block addresses are 5 

bytes long. 

(a) Using a hashed file organization with 10,000 buckets, calculate the bucket size in 

blocks; assume all buckets are half full. What is the average number of accesses 

needed to search for a record that exists in the file? 
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(b) Using an index-sequential file with two levels of indexing and assuming that all 

data blocks are half full, how many blocks are needed for the index? If we employ a 

binary search on the index, how many accesses are required on average to find a 

record? 

(c) If we use a B + -tree of order 500, how many index blocks are needed? What is 

the height of the tree? How many disk accesses are required to find a record? 

3.5 A file of 1,000,000 fixed-length records, each 200 bytes long, is stored on a magnetic tape. 

The tape handler characteristics are a lOOKB/sec transfer rate and a start/stop time of 25 

msec. Compare the time required to read all the records if the block size is chosen as (a) 

5000 bytes, (b) 50,000 bytes and the tape has to be stopped after reading a block. Ignore the 

time used for processing after a block is read. 

3.6 Records of 250 bytes are stored in blocks with a blocking factor of 20. A drive using a 

3600-foot tape having a recording density of 6400 bpi (bytes per inch), an interblock gap 

size of 0.5 inch, a read/write speed of 200 kilobytes per second, and a start-stop time of 

0.010 seconds is being used. How many records can the tape hold? What percentage of the 

tape is wasted? How long will it take to read the file from the tape without stopping? How 

much time is spent in reading the file if only one block is read at a time? 

3.7 Given a record length of 32 bytes, a recording density of 1600 bpi, and an interblock gap 

size of 0.6 inch, calculate the blocking factor to have 80% of a 1600-foot tape holding data. 

3.8 A file of 100,000 fixed-length records, each 100 bytes long, is stored on a magnetic tape. 

The tape handler characteristics are a 40KB/sec transfer rate and a start/stop time of 20 msec. 

The file is recorded at 1600 bpi and the interblock gap is 1/2 inch. Find the length of the 

tape required and compare the times required to read all the records if the block size is 

chosen as (a) 100 bytes, and (b) 10,000 bytes. 

3.9 Consider a hash function h(k) = k mod 17 for a direct access file using extendable hashing. 

Assume that the bucket capacity is four records. Show the structure of the file including the 

bucket address table after the insertion of the following records: 87,13, 53, 82, 48, 921, 872, 

284, 36, 128, 172. 

3.10 In a multilist organization, give efficient algorithms to process the following queries: 

(a) get all records with Key, = x and Key2 = y 

(b) get all records with Key, = x or Key2 = y 

If a ring organization is used instead, what complications are introduced into the processing 

of the above queries? 

3.11 The following file contains student records. The Rec# is the address used to retrieve the 

record using a direct access function on the primary key (Id). 

(a) Generate a directory for a multilist that has indexes for Dept, Advisor, and 

Status. Fill in the appropriate record number values in the Ptr field provided 

within the file. 

(b) Using this multilist directory and the data file, indicate how you will answer the 

query to retrieve all records for students who are in the COMP department, or 

who have SMITH F. as an advisor, or whose status is F2, without accessing 

redundant records. 

(c) Using the above data and assuming that there are three records per cell, generate 

a directory for a cellular multilist file with entries for Dept, Advisor, and Status. 
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Rec# Name Id Dept Ptr Advisor Ptr Status Ptr 

1 MICROSLAW Kalik 3634592 COMP * SMITH F. F2 

2 PASSASLO Joseph 3894336 PHYS JONES A. F3 

3 PRONOVOST Pierre 6888954 ELEC WAGNER B. 11 

4 LOANNIDES Lambi 3518445 CHEM ACIAN R. F3 

5 MACIOCIA Charles 7564019 ENGL BROST A. P2 

6 CHO BYUNG Chu 2566984 CHEM JONES A. F2 

7 CANNON Joe 7868286 PHYS JONES A. F3 

8 BERGERON Daniel 2736849 COMP JONES A. 12 

9 ABOND Daniel 7382943 ELEC WEGNER B. 13 

10 HAMMERBELL Abraham 6792839 COMP SMITH F. P2 

11 LANGEVIN Joseph 2768736 ENGL NEWELL J. P3 

12 PELLERIN George 6689184 COMP WEGNER B. F2 

13 ROBERT Louis 3707939 COMP MARTIN R. PI 

14 SHARPE George 9877546 CHEM SMITH F. 12 

15 PETIT Guy 2742619 ELEC SMITH F. 13 

3.12 What are the advantages and disadvantages of the index-sequential file? 

3.13 Consider a cylinder of an index-sequential file as shown below. Only the key values are 

shown. The following changes are made to this cylinder: 

add ID, add FW, add KP, delete FV, add FU, delete IQ, add JK, add IS, add IT, add JR 

Here add indicates that a record is to be inserted into the file and delete indicates that the 

record is to be deleted from the file. Only the key values are given. The changes occur in the 

order specified. 1 indicates null pointers. 

HA Block1 Block2 Block3 Block4 Blocks Block6 

2900 Tr. Index FP FR FT FV FZ 

P 2901 GB GE GH GK GM GR 

r 2902 GV GY HB HC HF HI 

i A 2903 HL HO HQ HT HX IA 

m r 2904 IC IG IJ IM IQ IY 

e e 2905 IZ JB JF JJ JN JQ 
a 2906 KA KD KG KL KO KS 

L_2907 KT KV KY KZ LB LF 

Overflow 2908 1 1 1 1 _L 1 

Area 2909 1 1 1 1 1 1 

Show the initial and final values of the track index. Also show the contents of the cylinder 

after all of the above changes have been made. 
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3*14 A software development company’s employee records contain the following information: 

ID (10), Name (25), Position (10), Age (2), Qualifications (9), Projects (10 repeated) 

The value in the parentheses is the size of each entry in bytes. An employee can be involved 

in a number of projects at the same time; thus, this field is repeated. An internal coding 

mechanism groups qualifications into three types, each requiring 3 bytes to encode. The age 

of employees is divided into 10 groups. The total number of employees is 500 and, at any 

given time, up to 100 projects are handled. The file is to be maintained on disk with a 

physical block size of 4096 bytes. The pointer size for addresses is 4 bytes. 

(a) Design file organizations for each of the access methods listed below that at least 

satisfy the retrieval/query transactions, also specified below, as efficiently as 

possible. Diagram the organization and discuss how your file organization 

satisfies the retrieval requirements. 

Access methods: Index-sequential, inverted, and B + -tree. 

Retrieval requirements (specified in %): 

1. List employees by name in alphabetical order (10%). 

2. Print data for employees in some age group and with certain qualifications (50%). 

3. Print names and current projects of employees with certain qualifications and 

holding certain positions (40%). 

(b) Compare your design with organizations based on a single type of access method 

with respect to space and access time. In the derivation of the access time, use the 

following terms: 

Block access time (random): tR 

Block Access time (next in sequence): ts 

Method Space Total Access Time 

A B C 

Your Design 

Index-sequential 

Inverted 

B + -tree 

(c) Which access method minimizes total access time for all three application types? 

(Be sure to take transaction frequencies into account.) If accesses for application B 

also required the changing of age and qualifications, would this method still be the 

most efficient? Justify your answer. 

3.15 The manufacturer’s specifications for a disk drive are: 

Number of surfaces 20 

Number of tracks/surface 800 

Number of sectors/track 20 

Number of bytes/sector 512 

Rotational speed 6000 rpm 

Time to move arm to adjacent cylinder 5 msec 

Average time to move arm to any cylinder 20 msec 

(a) How many cylinders will be required to store 100,000 records each 100 bytes 

long if no logical record is split across sector boundaries? 
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(b) If the key plus cylinder-cum-track addresses require 8 bytes, when the above file 

is created as an indexed-sequential file with cylinder and track indexing, estimate the 

average time to locate a record. Assume that there are no overflow records and that the 

search of an index or sector, after having been transferred to main memory, is 

negligible. 

3.16 Consider the cylinder of an index-sequential file as shown below. Each cylinder has six 

surfaces and a surface has four sectors. Each sector can hold three records. Surface 05 is 

used for the overflow records. (1 indicates null pointers) 

Cyl. Surface Sectors 

1 2 3 4 

00 Tr.Index A|,A4 A5,A6,A9 Aio>A13 

01 A)7,A|8 A20 A28»A29 A3o»A3i ,A36 

02 A42,A43 A45, A4g, A48 A5i,A52,A56 A39, Ag] 

03 A75,A76,A7g A79,A80 a83 Ag9,A9] 

04 A93,A94 A96,A9g A100 Ai20»Aj25 

05 1 1 1 1 

Give a track index that captures the current state of the cylinder. Also give the status of the 

cylinder and track index after the following operations have been performed: 

I A34, I A4|, I A95, D A83, I A3, I Ag2, I Ag4, I A33, D A36, I A2, D A4, I Ai22> D A|25, I 

Ai24' I A54, D A6|, I Ago 

where I represents the insert, and D the delete, operation. 

3.17 Create an index-sequential file using three cylinders, each of which has eight tracks. Up to 

four records can be stored in each track. Make appropriate provisions for overflow. The file 

is created initially with the following records in the order given: 

132, 38, 87, 64, 88, 40, 759, 12, 459, 45, 362, 85, 835, 638, 414, 820, 41, 91, 29, 194, 

517, 491, 524, 294, 43, 185, 791, 139, 59, 44, 11, 414, 37, 184, 472, 39, 88, 42, 758, 

460, 412, 48, 415 

Indicate the reorganization of the file if the following records are subsequently deleted and 

added. D preceding the key indicates that the record is to be deleted; A indicates that it has 

to be added: 

D91, A92, D44, A43, A47, A46 

3.18 Comment on the differences between index-sequential files and B + -tree file organizations. 

Compare them for use wherever an indexed access may be required. 

3.19 Give algorithms for the insertion and deletion of records in a B + -tree. 

3.20 In a B-tree file, pointers to the blocks containing the records exist even in the index level 

nodes. How does this alter the algorithms for insertion and deletion that you wrote for 

Exercise 3.19? Comment on the relative advantages and disadvantages of B-trees and B + - 

trees. 

3.21 The accompanying figure shows the B + -tree index and the leaf nodes of a B + -tree of order 

3. The blocks containing the leaf nodes hold the actual records. (Only the key values are 

shown in the figure.) Each block must hold at least three and at most five records. Show the 

structure of the index after the following records are inserted or deleted. D preceding the key 

indicates that the record is to be deleted; A indicates that it has to be added: 

D91, A98, D44, A43, A47, A46 
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The data models introduced in Chapter 2 differed only in the manner in which rela¬ 

tionships among data are represented. In this chapter we concentrate on the relational 

data model (RDM), which was formally introduced in 1970. Since that time, it has 

undergone extensive study. The relational model frees the user from details of storage 

structures and access methods. It is also conceptually simple and, more'importantly, 

based on sound theoretical principles that provide formal tools to tackle problems 

arising in database design and maintenance. 

Numerous different formulations of the RDM have been presented and recently 

interest has been shown in its formalization. We shall, however, take a semiformal 

approach. 

Introduction 

In practice we can distinguish between entities and the relationships that exist be¬ 

tween them. In modeling, we represent an entity set in the database by a set of its 

properties. However, only those properties of the entity type of interest to the appli¬ 

cation are used in the model. A data model allows the capturing of these properties 

using its data structures. Note that the association between the properties is only 

implicitly captured, i.e., we do not state what kind of association exists between the 

properties. 

Furthermore, we may wish to retrieve or update the stored data and for this 

purpose a data model supports certain operations. The data may also need to conform 

to certain consistency and integrity rules, as in the case of a bank’s rule that a cus¬ 

tomer’s account balance remain nonnegative (i.e., > 0). These constraints are spec¬ 

ified as integrity rules. 

The relational data model, like all data models, consists of three basic compo¬ 
nents: 

• a set of domains and a set of relations 

• operations on relations 

• integrity rules 

Each of these components is illustrated in the following examples. 

Example 4.1 In this simple example we model certain properties of a number of database 

management systems (DBMSs). Let us assume that we want to maintain a 

database of these DBMSs. This database will register their names, the par¬ 

ticular data models employed, and the company that developed and markets 

the DBMSs. Some of these DBMSs are shown in the table SOME_DBMS 
in Figure A. ■ 
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Figure A Sample relation SOME _DBMS (Name, Data-Model, 
Company) 

SOME_DBMS 

Name Data—Model Company 

Data Network WXY Inc. 

Data-R Relational WXY Inc. 

ISS Hierarchical BCD Systems 

ISS/R Relational BCD Systems 

ISS/R-PC Relational BCD Systems 

Tables Relational ABC Relational Systems Inc. 

From our knowledge of the relational model gained in Chapter 2, we can iden¬ 

tify SOMELDBMS as a relation with the attributes Name, Data-Model, and Com¬ 

pany. The fact that a relation has certain attributes is specified by its scheme, usually 

written as RELATION_SCHEME_NAME(7Utr//?«tc_/VamC|, Attribute-Name2, 

. . .). Each attribute is defined over a set of values known as its domain. For our 

sample relation, the scheme can be specified as SOME_DBMS(Aa/ne, Data-Model, 

Company). The relation SOMELDBMS shown in Figure A in Example 4.1 consists 

of six tuples, i.e., the cardinality of the relation SOME_DBMS is six. The number 

of attributes in the relation scheme is called its degree or arity. The degree of the 

scheme SOME_DBMS is three. Each tuple captures the association among the prop¬ 

erties name, data model, and company of a DBMS package. Here the attribute Name 

can be used to uniquely identify a given DBMS and the corresponding tuple in the 

relation. 

Just as we are able to model an entity and its properties by a relation, we can 

model relationships between entities using a relation. This is illustrated in Example 

4.2. In Section 4.2 we shall study the relational database structures in a more formal 

manner. 

Example 4.2 Certain DBMSs of Example 4.1 are used in particular applications. The 

application can be modeled using the budget code of the application as an 

identifying attribute or key and the name of the application. Some tuples for 

the relation APPLICATION(Ap/>_/Vame, Budget-Code) are shown in part i 

of Figure B. The E-R diagram of the relationship between APPLICATION 

and SOME-DBMS, named WHERE-USEf), is shown in part ii of the fig¬ 

ure. We can record the information abou/ this relationship in the relation 

WHERE_USED by pairing the keys from the entities SOME_DBMS and 

APPLICATION. This relationship can be expressed as a relation, some tu¬ 

ples of which are shown in part iii of Figure B. ■ 
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Figure B Relationship between entities. 

APPLICATION WHERE_USED 

Budget Code Name 

X06-250 ISS 
X21-250 Tables 
Y77-300 ISS/R 

App Name Budget Code 

Payroll X06-250 
Public Rel. X21-250 
Personnel Y77-300 

(ii) 

The relational operations define a set of data manipulation operations. The in¬ 

formation recorded in the relation SOMELDBMS is of limited value by itself. Nor¬ 

mally, we want to operate on the relation so that we can find, for example, the name 

of the DBMSs produced by a particular company. Another query that requires oper¬ 

ation on more than one relation is illustrated in Example 4.3. 

Example 4.3 Software packages are continually being modified. The modification may be 

performed to improve the product or remove errors that may have been 

encountered during its use. The modified package retains its name, but a 

new version or release number is assigned to it. 

Let us record the name, release number, and year of release of the 

version for the DBMSs in the relation VERSION. Some tuples of the rela¬ 

tion VERSION are shown in Figure C with the attributes given as Name, 

Release, and Year. 

Figure C VERSION relation. 

Name Release Year 

ISS 1.0 1975 

ISS 2.0 1979 

ISS/R 1.0 1984 

ISS/R-PC 1.0 1985 

Data 1.0 1976 

Data 2.0 1980 

Data-R 2.0 1981 

Data 3.0 1985 

Data-R 3.0 1986 

Tables 1.0 1987 
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Figure D Join of relations SOME_DBMS and VERSION. 

VERSION. 

Name Release Year 

SOME_DBMS. 

Name Data-Model Company 

ISS 1.0 1975 ISS Hierarchical BCD Systems 

ISS 2.0 1979 ISS Hierarchical BCD Systems 

ISS/R 1.0 1984 ISS/R Relational BCD Systems 

1SS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems 

Data 1.0 1976 Data Network WXY Inc. 

Data 2.0 1980 Data Network WXY Inc. 

Data-R 2.0 1981 Data-R Relational WXY Inc. 

Data 3.0 1985 Data Network WXY Inc. 

Data-R 3.0 1986 Data-R Relational WXY Inc. 

Tables 1.0 1987 Tables Relational ABC 

Figure E (i) Join of selected tuples of relation SOME_DBMS with re¬ 
lation VERSION and (ii) Join of relation SOME_DBMS with 
selected tuples of relation VERSION. 

VERSION. 

Name Release Year 

SOME-DBMS. 

Name Data—Model Company 

ISS/R 1.0 1984 ISS/R Relational BCD Systems 

ISS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems 

Data-R 2.0 1981 Data-R Relational WXY Inc. 

Data-R 3.0 1986 Data-R Relational WXY Inc. 

Tables 1.0 1987 Tables Relational ABC 

(i) 

VERSION. 

Name Release Year 

SOME-DBMS. 

Name Data-Model Company 

ISS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems 

Data 3.0 1985 Data Network WXY Inc. 

Data-R 3.0 1986 Data-R Relational WXY Inc. 

Tables 1.0 1987 Tables Relational ABC 

(ii) 

Now consider the query “Find the names of the companies that re¬ 

leased relational DBMSs versions after 1984.” This particular query re¬ 

quires that we join the two relations SOME_DBMS and VERSION on the 

common attribute Name. The result of the join is shown in Figure D. The 
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required rows of the table of Figure D are then identified to respond to the 

above query. Note that in joining the rows of the two tables, we only join 

those rows or tuples that have the same value for the attribute Name that is 

common to both these relations. As we will see in Section 4.3.2, the rela¬ 

tions shown in Figures D and E, are the result of the so-called equi-join 

operations. ■ 

The number of tuples in the join of SOME_DBMS and VERSION is the same 

as those in VERSION because a tuple in SOME_DBMS has the same value of the 

Name attribute as a tuple in VERSION. Note that the two occurrences of the attribute 

Name in the join can be distinguished by preceding each with the corresponding 

relation name. The first attribute is labeled VERSION.Name and the second similarly 

named attribute is called SOME_DBMS./Vame. 

Figure D in Example 4.3 demonstrates that many of the tuples in the resulting 

tables are not required for answering the query. We could have approached the se¬ 

lection on the table of Figure A in Example 4.1, choosing only relational DBMSs 

and thereby giving a joined table as shown in Figure Ei in Example 4.3. But if we 

had selected only those rows or tuples from Figure B in Example 4.2, released after 

1984, and joined this reduced set of tuples with the table SOME-DBMS, we would 

get a smaller table as illustrated in Figure Eii in Example 4.3. The response to the 

query is obtained by selecting only those tuples from one of the tables in Figure E 

that satisfy the two conditions of the query (in other words, taking a “horizontal 

subset” of the tables of Figure E). The resulting tuples are given in Figure 4. la. The 

names of the companies are obtained by taking a “vertical subset” of the table on 

the column Company (in other words, projecting the table of Figure 4.1a on the 

column Company). The result is shown in Figure 4.1b. The method of determining 

which operation to perform first is the topic of query optimization, which we discuss 

in Chapter 10. 

The join is just one way in which data in a relational database can be manipu¬ 

lated. Several kinds of data manipulation languages have been defined for the rela¬ 

tional model. Most relational data manipulation languages are more assertional than 

procedural. In a purely assertional data manipulation language the target data are 

specified by stating their properties instead of describing how they can be retrieved. 

The majority of languages are based on a combination of relational algebra and re- 

Figure 4.1 (a) Selecting only some tuples from the join of relation SOME_DBMS relation VER¬ 
SION and (b) projecting on the column Company. 

VERSION. 

Name Release Year 

SOME_DBMS. 

Name Data—Model Company 

ISS/R-PC 1.0 1985 ISS/R-PC Relational BCD Systems 
Data-R 3.0 1986 Data-R Relational WXY Inc. 

Tables 1.0 1987 Tables Relational ABC 

Company 

BCD Systems 

WXY Inc. 

ABC 

(a) (b) 
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lational calculus. We look at these in more depth in Sections 4.3 and 4.4, respec¬ 
tively. 

Example 4.4 looks at the relational rules that define certain properties that the 
database must satisfy. 

Example 4.4 If we intend to keep only information on currently available DBMS pack¬ 

ages in our database, we could specify that in our VERSION relation the 

release year of a version not go beyond the current year. We could also 

specify that the DBMS name be unique. With the unique name and tuple 

properties, it is apparent that the name determines the company that pro¬ 

duces the DBMS and its data model. We may conclude that Name uniquely 

determines Company and Name uniquely determines Data_Model. ■ 

This unique identification is an integrity constraint, which ensures that each 

instance of an entity is distinguishable. Functional dependency is also a form of 

constraint, as it specifies which combination of values is legal. Certain constraints 

are defined in terms of functional dependencies between the attributes and form the 

basis of the normalization theory (see Chapters 6 and 7). The entity and referential 

integrity rules are two general rules that all relational databases are expected to sat¬ 

isfy. Both rules will be studied in Section 4.2.8. Additional rules may also be defined 
for the application in hand. 

Relational database theory borrows heavily from set algebra; therefore a brief 

review of set concepts is given in the following section. Some data manipulation 

languages make use of first-order predicate calculus and the relevant material is 

briefly covered in Section 4.4. The material presented here is not exhaustive but 

should be sufficient to understand the relational model. 

4.1.1 A Brief Review of Set Theory 

A set is well-defined collection of objects. It is commonly represented by a list of its 

elements (called members) or by the specification of some membership condition. 

The intension of a set defines the permissible occurrences by specifying a member¬ 

ship condition. The extension of the set specifies one of numerous possible occur¬ 

rences by explicitly listing the set members. These two methods of defining a set are 

illustrated in the following example. 

Example 4.5 Intension of set G: {g|g is an odd positive integer less than 20} 

Extension of set G: {1,3,5,7,9,11,13,15,17,19} H 

A set is determined by its members. The number 3 is a member of the set G 

and this is denoted by 3 e G. Given an object g and the set G exactly one of the 
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statements “g is a member of G” (written as g e G) or “g is not a member of G” 

(written as g i G) is true. 

Operations on sets include the union, intersection, cartesian product, and differ¬ 

ence operations. The union of two sets G and H (written G U H) is the set that 

contains all elements belonging either to set G or to set H. If sets G and H have any 

elements in common, the union will not duplicate those members. The intersection 

of the sets G and H (written G fl H) is the set composed of all elements belonging 

to both G and H. If G and H are two sets, then G is included in H, written as G C 

H, if and only if each member of G is also a member of H. Should there be an 

element h such that h e H but h ^ G, then G is a proper subset of H, written as 
G C H. 

Example 4.6 If we let set G represent the companies that produce a hierarchical database 

and set H represent those that produce a relational database then, from the 

SOME_DBMS relation of Figure A in example 4.1 we have: 

G = {BCD} 

H = {WXY Inc., BCD, ABC} 

G U H = {WXY Inc., BCD, ABC} 

G D H = {BCD} 

Note that G Cl H C G and G fl H C H and in the above example G C 
H. ■ 

The cartesian product of two sets G and H (denoted by G x H) is defined in 

terms of ordered pairs or 2-tuples. An ordered pair is conventionally denoted by 

enclosing it in parentheses, e.g., (g,h). The product G x His the set consisting of 

all ordered pairs (g,h) for which g e G and h e H. (Note that here the symbols g and 

h are being used as variables.) Example 4.7 shows the cartesian product of the sets 
J and K. 

Example 4.7 Let J = {BCD, ABC}, and 

K = {Hierarchical, Relational} 

J x K = {(BCD,Hierarchical), (BCD,Relational), 

(ABC,Hierarchical), (ABC, Relational)} 

K x J = {(Hierarchical,BCD), (Relational,BCD), 

(Hierarchical,ABC), (Relational,ABC)} ■ 

Note that the individual n-tuples in the cartesian product are ordered. Therefore, 

J x K and K X J are entirely different sets, as illustrated in Example 4.7. 

The difference of two sets G and H (denoted G - H) is the set that contains 
all elements that are members of G but not of H. 

Example 4.8 If G = {BCD}, and 

H = {WXY Inc., BCD, ABC} then the sets G - H and H - G are 
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G — H = <j> (the null set) 

^ ' H - G = {WXY Inc., ABC} ■ 

In set theory, relations between sets can be of many kinds, such as a subset of 

(C), complement of (—i), and so on. Pairing relations can also be defined in terms 

of some specific criterion. We can, for instance, pair the application name and the 

budget code for the application. In fact, this is what we did in the example relation 

APPLICATION of Figure Bi of Example 4.2. Pairing relations in general can be 

defined on sets of the same or different kinds. If G and H are sets of objects, g e G 
and h e H, then the possible pairing relations of degree 2 are: 

(g,g) (g,h) (h,g) (h,h) 

Each is a relation. We can see that a pairing relation must be a subset of the cartesian 

product of the sets involved in the relationship. In the four relationships above, these 

cartesian products areG x G,G x H, H x G, and H x H, respectively. 

Example 4.9 The pairs of DBMSs produced by one company: 

{(Data, Data-R), (ISS, ISS/R), (ISS,ISS/R-PC), (ISS/R,ISS/R-PC), (ISS/R, 

ISS), (Data-R, Data), (ISS/R-PC,ISS), (ISS/R-PC,ISS/R)} 

We can see that this is a subset of Name x Name. ■ 

4.2 Relational Database 

In this section we cover the terminology, notation, and structural aspects of relational 

databases. We first look at the basic building blocks of relational systems: the attri¬ 

butes and the domains on which they are defined. Later we specify the meaning of 

tuples and then look at relations and their schemes. 

4.2.1 Attributes and Domains 

An object or entity is characterized by its properties (or attributes). In conventional 

file systems the term field refers to the smallest item of data with some practical 

meaning, i.e., a field is used to capture some specific property of the object. In 

relational database systems, attributes correspond to fields. For a given application, 

an attribute may only be allowed to take a value from a set of the permissible values. 

This set of allowable values for the attribute is the domain of the attribute. In Ex¬ 

amples 4.10 and 4.11 we illustrate the definition of domains. 

Example 4.10 If persons can only be between 0 and 255 years of age, then the attribute 

Age will be defined over the domain P_Age where 

P_Age: {x | x a positive integer A 0 < x < 255} ■ 
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Note that the value of 255 in Example 4.10 may appear to have been arbitrarily 

chosen. The range in fact neatly fits into a 8-bit byte. In practical database design, 

as in this example, the choices are never arbitrary but depend on the system require¬ 

ments. 

Example 4.11 In the development of a software package, an estimate of the number of 

lines of code is made and this can only be a positive integer greater than 

zero. We can therefore define a domain consisting of only positive integers 

for this application. ■ 

Definition: Domain: 

We define a domain, Di; as a set of values of the same data type. 

The domain D;, a set having “homogeneous” members, is conceptually similar 

to the data type concept in programming languages. A domain, like a data type, may 

be unstructured (atomic) or structured. Domain Dj is said to be simple if all its 

elements are nondecomposable (i.e., atomic). (When we use the term decomposable, 

we mean in terms of the DBMS.) In typical DBMSs, atomic domains are general 

sets, such as the sets of integers, real numbers, character strings, and so on. Atomic 

domains are sometimes referred to as application-independent domains because 

these general sets are not dependent on a particular application. We can also define 

application-dependent domains by specifying the values permitted in the particular 

database. Structured or composite domains can be specified as consisting of nona- 

tomic values. The domain for the attribute Address, for instance, which specifies 

street number, street name, city, state, and zip or postal code is considered a com¬ 
posite domain. 

It is unfortunate that many of the currently available commercial relational da¬ 

tabase systems do not support the concept of domains. Such support of both appli¬ 

cation-independent and user-defined domains specified as types in programming lan¬ 

guages allows for the validation of the value assigned to an attribute. 

Attributes are defined on some underlying domain. That is, they can assume 

values from the set of values in the domain. Attributes defined on the same domain 

are comparable, as these attributes draw their values from the same set. It is mean¬ 

ingless to compare attributes defined on different domains, as exemplified below. 

Example 4.12 Assume that in a given city house numbers are between 0 and 255. The 

domain HLNumber for the attribute House-Numbers can be defined to be 

the set of values from 0 to 255. The attribute House-Numbers is defined 

over the same domain as Age (Example 4.10) and without any additional 

constraints, they are comparable. Semantically, we say that the domain of 

Age represents a value that is a measure of a number of years and the do¬ 

main HLNumber represents a part of an address. Therefore, comparing the 

age in years of persons with the house number part of an address is mean- 
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ingless. Consequently, we have to consider the domain of House-Numbers 

- as distinct from the domain of Age, and these domains are not com¬ 
patible. ■ 

It is possible, however, to relax the above rule for two semantically compatible 

domains Dj and Dj where D( D Dj j= <f>. Then attribute A, defined on domain Dj and 

attribute A} defined on Dj can be compared if a( € Dj n D> and a,- e Dj D Dr Here, 
a, and aj are the values of attributes A, and Aj, respectively. 

It has become traditional to denote attributes by uppercase letters from the be¬ 

ginning of the alphabet. Thus, 4, B, C, . . . , with or without subscripts denote 

attributes. In applications, however, attributes are given meaningful names. Sets of 

attributes are denoted by uppercase letters from the end of the alphabets such as 
. . . , X, Y, Z. 

Using the concept of attributes and domains, we can now define a tuple. 

4.2.2 Tuples 

An entity type having n attributes can be represented by an ordered set of these 

attributes called an n-tuple. Assume that these n attributes take values from the 

domains D,, . . . , Dn. The representation of the entity must then be a member of 

the set Dj x D2 x . . . x Dn, as the resulting set of this cartesian product contains 
all the possible ordered n-tuples. 

Example 4.13 A job applicant may be characterized for a particular application by her or 

his name, age, and profession. An applicant, John Doe, who is 55 years old 

and is an analyst, may be represented as a 3-tuple: “John Doe, 55, analyst” 

(Figure F). This is a possible ordered triple obtained from the cartesian prod¬ 

uct of the domain for attributes Name, Age, and Profession. The implication 

of this 3-tuple is that an instance of the entity type has the value John Doe 

for its attribute Name, the value 55 for Age, and the value analyst for 

Profession. ■ 

Figure F Representation of a association among attributes. 

Applicant 

Name is 

John Doe 

NAME 

Age is 

55 

Profession is 

analyst 

AGE PROFESSION 

APPLICANT 
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A tuple is comparable to a record in conventional file systems and is used for 

handling entities and relationships between entities. Tuples are generally denoted by 

lowercase letters r, s, t, . . . of the alphabet. An n-tuple t can be specified as 

t = (a,, . . . , an) 

where each a; for 1 < i < n is a value in the domain Dj, and is the value of the 

attribute A, in the tuple t. While it is required that the attribute names be different 

for unambiguous identification, no such restriction exists for domains. We may have 

the same domain for different attributes. 

In the tuple representation above, the order of the attributes is significant, im¬ 

plicitly understood, and fixed (i.e., time invariant). If, however, we associate the 

attribute names with the corresponding values, we can relax the ordering require¬ 

ment. Although the ordered set (a1; a2) is not equal to (a2, a^, we shall treat the sets 

{(A^a,), (A2:a2)} and {(A2:a2), (A^a,)} as the same. Formally, we view a tuple as 

a mapping from attribute names to values in the domains of the attributes. 

Thus, a tuple can be represented in a number of ways, some of which are shown 
below: 

t = 

t = 

t = 

t = 

t = 

(ai, . . . 

(ai, • • • 

(|A„ . . 

((Ai: a^, . 

(04| I 3l)> 

an) attribute value order must be constant 

> ^n)— attribute value can be 

deduced from relative 

ordering of the names 

of the attribute 

n | |^1> • • • » ^n|) 

, (An.an)) 

> O^n I ^n)) 

In the above formulations the aj’s are values drawn from D„ the domain of Aj. 

It is usual to denote the value of a tuple t over an attribute A, as t[A,], i.e., t[AJ = 

a,. It is known as the projection of the tuple t over Aj. 

We can define a simple projection (or attribute restriction) operation on a given 

tuple. Let us represent the set of attributes of the tuple t by X, i.e., X = {Aj, . . . , 

AJ. Let Y = {Ak, . . . , Am} be a nonempty proper subset of X. Then the projec¬ 
tion of the tuple t over Y, denoted t[Y], is given by: 

t[Y] = ((Aga;) | a; = t[A;], k < i < m, A;eX) 

(We assume that the set of attributes and the tuple values can be rearranged such that 
the attributes in set Y are consecutively ordered within X.) 

Example 4.14 For the applicant tuple of Example 4.13, let t = (John Doe, 55, analyst). 
We then have the following projections: 

t[Name, Profession] = (John Doe, analyst) 

t[Name, Age] = (John Doe, 55) 

t[Age, Profession] = (55, analyst) 

t[Name] = (John Doe) 

t [Age] = (55) 

t [Profession] = (analyst) 

In addition, we could use a projection to reorder the attrubutes as follows: 

t[Name, Profession, Age] = (John Doe, analyst, 55) H 
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4.2.3 Relations and Their Schemes 

A relation consists of a homogeneous set of tuples. In the case of the SOMELDBMS 

relation of Figure A, Example 4.1, all the tuples have a similar structure and contain 

the same set of attributes. From another point of view, a relation is a subset of the 
cartesian product of the domains. 

Example 4.15 Let the set of job applicant names be S( = {Smith, Doe}, the set of job 

applicant ages be S2 = {32,47,55}, and S the set of applicants, which ex¬ 

presses a correspondence between name and age, be {(Smith, 32), 

(Doe,55)}. Now S is a subset of the cartesian product of the sets S| and S2, 

where St x S2 = {(Smith,32), (Smith,47), (Smith, 55), (Doe,32), 

(Doe,47), (Doe,55)}. ■ 

Since each tuple in a relation represents an identifiable instance of an object type, 

duplicate tuples are not allowed. (This also follows from the definition of a relation 

in terms of sets.) Note that the set of tuples in the relation are not static but can vary 

with time. In our discussion of tuples, the set of attributes on which the tuples are 

defined is the invariant. This is called the scheme of the relation or the relation 

scheme. 

The relation has two parts: a relation scheme (or header), and a time-varying 

set of tuples (or body). The semantics of the specific relationships among the attri¬ 

butes, as we have seen, are not represented in the relation. The attribute names are 

specified in a relation scheme, i.e., the syntax is specified. The ordering of the attri¬ 

butes in the scheme is immaterial; however, the tuple layout matches this ordering. 

The entity job applicant of Example 4.13 can be represented by a relation such as 

APPLICANT(Name, Age, Profession). Examples of relation schemes used so far in 

this chapter are given below in Example 4.16. 

Example 4.16 Examples of relation schemes: 

SOME-DBMS (Name, Data-Model, Company) 

VERSION (Name, Version#, Year) 

WHERE_USED (DBMS-Name, Application-Name) 

APPLICANT (Name, Age, Profession) ■ 

We can formally define a relation in terms of set concepts. A mathematical relation 

is a set that expresses a correspondence between two or more sets and is a subset of 

the cartesian product of the sets. For example, a binary relation expresses a corre¬ 

spondence between two sets. This is illustrated below. 

On a more formal basis we represent the relation scheme as R(A,, . . . , An), 

the domain of each attribute Aj by D, for 1 < i < n, and define the relation R over 

the set of attributes R, denoted R(R), as a set of n-tuples such that: 

R(R) C D, x D2 . . . x D„ 
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The value n (the number of attributes in the relation) is known as the degree or 

arity of the relation. A relation of degree one is called an unary relation, of degree 

two a binary relation, and of degree n an n-ary relation.1 Attribute names could be 

considered a convenience rather than a formal requirement. However, when a num¬ 

ber of attributes of a relation are defined on the same domain, the importance of 

unique attribute names becomes evident. Codd (Codd 70) originally described the 

relational model referring only to domains. 

We formally represent a relation R as a 4-tuple: 

R(Tr, ANr, n, m) 

where TR represents the set of tuples, m = |Tr| is the cardinality of the relation (i.e., 

the number of tuples in the relation), ANR represents the set of attribute names, and 

n = |ANr| is the cardinality of the set of attribute names (the degree or arity of the 

relation). 

In the above definition of a relation, we have specified the relation having these 

constituents: a set of tuples, a scheme (or set of attribute names), the degree, and the 

cardinality of the relation. The last two are conceptual values as they can be obtained 

from the set of attributes and tuples, respectively. 

It is therefore more usual to represent the relation R defined on a relation scheme 

R in terms of just the scheme and set of tuples. The set of tuples of a relation, unless 

there is confusion, can be expressed by the name of the relation. We shall use an 

uppercase letter to represent both the relation name and its set of tuples and a bold 

uppercase letter for the relation’s scheme and its set of attributes. This gives us a 

shorter form of the representation of a relation as simply R(R). The degree (or arity) 

of the relation is given by the number of attributes in scheme R, i.e., |R|, while the 

cardinality of the relation is given by the number of tuples in R and is indicated by 

|R|. As such, R(R) represents the relation R defined on scheme R having the set of 
tuples R. 

We discuss other methods of representing a relation in the following section. 

4.2.4 Relation Representation 

Conceptually, a relation can be represented as a table. Remember that the contents 

of a relation are positionally independent, while a table gives the impression of po¬ 

sitional addressing. Each column of the table represents an attribute and each row 

represents a tuple of the relation. Figure 4.2 shows the tabular representation of the 
APPLICANT relation of Example 4.13. 

It is a myth that a relation is just a flat file. A table is just one of the conceptual 

representations of a relation. It is possible to store the relations using, for instance, 
inverted files. 

As seen in Section 4.2.2, a tuple may be represented either as a labeled n-tuple 

or as an ordered n-tuple. The labeled n-tuples are represented using distinct attribute 

names Au . . . , An and the values a1; . . . , an from the corresponding domains. 

The labeled n-tuples consist of unordered attribute value pairs: (Ax:ax, 

'A domain can be thought of as a unary relation. 
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Figure 4.2 Example representation of a relation as a table. 

APPLICANT: 

Name Age Profession 

John Doe 55 Analyst 

Mirian Taylor 31 Programmer 

Abe Malcolm 28 Receptionist 

Adrian Cook 33 Programmer 

Liz Smith 32 Manager 

An:an). Ordered n-tuples are represented simply as (ai, . . . , an), where the values 

appear in the same order as their domains in the cartesian product of which the 

relation is a subset. 

4.2.5 Keys 

In the relational model, we represent the entity by a relation and use a tuple to 

represent an instance of the entity. Different instances of an entity type are distin¬ 

guishable and this fact is established in a relation by the requirement that no two 

tuples of the same relation can be the same. It is possible that only a subset of the 

attributes of the entity, and therefore the relation, may be sufficient to distinguish 

between the tuples. However, for certain relations, such a subset may be the com¬ 

plete set of attributes. In the instance of an EMPLOYEE relation, values of an attrib¬ 

ute such as Emp# may be sufficient to distinguish between employee tuples. Such a 

subset of attributes, let us say X of a relation R(R), XCR, with the following time- 

independent properties is called the key of the relation: 

• Unique identification: In each tuple of R, the values of X uniquely identify 

that tuple. To elaborate, if s and t represent any two tuples of a relation and if 

the values s[X] and t[X] for the attributes in X in the tuples s and t are the 

same, then s and t must be the same tuple. Therefore, s[X] = t[X] => s = t. 

Here the symbol is used to indicate that the left-hand side logically implies 

the right-hand side. 

® Nonredundancy: No proper subset of X has the unique identification property, 

i.e., no attribute KeX can be discarded without violating the unique 

identification property. 

Since duplicate tuples are not permitted in a relation, the combination of all 

attributes of the relation would always uniquely identify its tuples. There may be 

more than one key in a relation; all such keys are known as candidate keys. One of 

the candidate keys is chosen as the primary key; the others are known as alternate 

keys. An attribute that forms part of a candidate key of a relation is called a prime 

attribute. 
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Example 4.17 In many applications, arbitrary attributes are assigned to the objects and 

these attributes play the role of keys. Emp# is such a key (the domain for 

the attribute Emp# is application specific and unique for a given applica¬ 

tion). A Social Security number in the U.S. and a Social Insurance number 

in Canada also identify a person uniquely in these countries. Both numbers 

are of nine digits and are assigned to individuals without any coordination 

between these countries. It is likely that the same number may identify two 

different individuals. Furthermore, there are many individuals who, having 

lived and worked in both countries, have been assigned different values for 

their Social Security numbers and Social Insurance numbers. ■ 

4.2.6 Relationship 

The key property and the fact that every tuple must have a key are used to capture 

relationships between entities. 

Example 4.18 An employee may perform different roles in the software development teams 

working on different products. John Doe may be an analyst in the develop¬ 

ment team for product “Super File System” and manager of the team for 

product “B+ + l”. The different job requirements are given in the relation 
JOB-FUNCTION. ■ 

ASSIGNMENT is a relationship in Figure 4.3a between the entities Employee, 

Product and Job-Function. A possible representation of this relationship is by using 
the entities involved in the relationship: 

ASSIGNMENT (Employee, Product, Job-Function) 

Using the unique identification properties of keys we can replace the Employee, 

Product, and Job-Function entities in ASSIGNMENT by their keys. The keys act as 

surrogates for their respective entities. We can represent, let us say, the scheduled 
duties of an employee by the relation scheme: 

ASSIGNMENT {Emp#, Prod#, Job#) 

ASSIGNMENT is a relation that establishes a relationship among three “owner” 

relations. Such a relation may be thought of as an associative relation. The key of 

the associative relation is always the union of the key attributes of the owner rela¬ 

tions. Thus the key of the relation ASSIGNMENT is the combination of the attri¬ 
butes Emp#, Prod#, Job#. 

The attributes Emp#, Prod#, and Job# in the relation ASSIGNMENT are 

known as foreign keys. A foreign key is an attribute or set of attributes of a relation, 

let us say R(R), such that the value of each attribute in this set is that of a primary 

key of relation S(S) (R and S need not be distinct). For instance, we could not have 

a tuple in the ASSIGNMENT relation of Figure 3 with the value 127 for the attribute 

Emp# unless there were a tuple in the EMPLOYEE relation with that value for 

Emp#. We look at rules applicable to primary and foreign keys in Section 4.2.8. 
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Figure 4.3 (a) E-R diagram for employee role in development teams; (b) 
schemes; and (c) sample relations. 

corresponding relation 

(a) 

EMPLOYEE (Emp#, Emp_Name, Profession) 

PRODUCT (Prod#, ProdName, Prod Details) 

JOB FUNCTION (Job#. Title) 

ASSIGNMENT (Emp#, Prod#, Job#) 

(b) 

EMPLOYEE: PRODUCT: 

Prod# Prod Name Prod Details 

HEAP1 
BINS9 
FM6 
B++1 
B++2 

HEAP_SORT 
B IN ARY_SE ARCH 
FILE_MANAGER 
B++_TREE 
B++TREF. 

ISS module 
ISS/R module 
ISS/R-PC subsys 
ISS/R turbo sys 
ISS/R-PC turbo 

Emp# Name Profession 

101 Jones Analyst 
103 Smith Programmer 
104 Lalonde Receptionist 
106 Byron Receptionist 

107 Evan VPR&D 

110 Drew VP Operations 

112 Smith Manager 

JOB_FUNCTION: 

Job# Title 

1000 CEO 

900 President 

800 Manager 

700 Chief Programmer 

600 Analyst 

ASSIGNMENT: 

Emp# Prod# Job# 

107 HE API 800 
101 HEAP1 600 
110 BINS9 800 

103 HEAP1 700 
101 BINS9 700 

110 FM6 800 

107 B++1 800 

(c) 

4.2.7 Relational Operations 

Codd (Codd 72) defined a “relationally complete” set of operations and the collec¬ 

tion of these, which take one or more relations as their operand(s), forms the basis 

of relational algebra (to be discussed in Section 4.3). In the same paper Codd in¬ 

cluded the formal definition of relational calculus (now known as tuple calculus). An 
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alternative relational calculus called the domain calculus has also been proposed. (We 

study tuple and domain calculus in Section 4.4). 

A number of operations are defined in these approaches to manipulate the rela¬ 

tions. Relations can be derived from other relations (by taking a subset of the set of 

attributes) or a number of relations can be combined to define a new relation (by 

joining the relations). The transformation of relations is useful in obtaining results 

from the database. 

Relational algebra, tuple calculus, and domain calculus form the underlying 

structure of the special-purpose languages provided by commercial database systems 

for data manipulation. A sampling of the commercially used data manipulation (or 

query) languages will be studied in Chapter 5. 

4.2.8 Integrity Rules 

The relational model includes two general integrity rules. These integrity rules im¬ 

plicitly or explicitly define the set of consistent database states, or changes of state, 

or both. Other integrity constraints can be specified, for example, in terms of de¬ 

pendencies during database design (see Chapter 6). In this section we restrict our¬ 

selves to the integrity rules formulated by Codd (Codd 70). 

Integrity Rule 1 (Entity Integrity) 

Earlier in this section we defined two properties for keys: unique identification and 

nonredundancy. Integrity rule 1 is concerned with primary key values. Before we 

formally state the rule, let us look at the effect of null values in prime attributes. A 

null value for an attribute is a value that is either not known at the time or does not 

apply to a given instance of the object. It may also be possible that a particular tuple 

does not have a value for an attribute; this fact could be represented by a null value. 

If any attribute of a primary key (prime attribute) were permitted to have null 

values, then, because the attributes in the key must be nonredundant, the key cannot 

be used for unique identification of tuples. This contradicts the requirements for a 

primary key. Consider the relation P(P) in Figure 4.4a. The attribute Id is the pri- 

Figure 4.4 (a) Relation without null values and (b) relation with null values. 

P: P: 

Id Name 

101 Jones 

103 Smith 

104 Lalonde 

107 Evan 

110 Drew 

112 Smith 

Id Name 

101 Jones 

@ Smith 

104 Lalonde 

107 Evan 

110 Drew 

@ Lalonde 

@ Smith 

(b) 
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mary key for P(P). If null values (represented as @) were permitted, as in Figure 

4.4b, then the two tuples <@,Smith> are indistinguishable, even though they may 

represent two different instances of the entity type employee. Similarly, the tuples 

<@,Lalonde> and <104,Lalonde>, for all intents and purposes, are also indistin¬ 

guishable and may be referring to the same person. As instances of entities are dis¬ 

tinguishable, so must be their surrogates in the model. 

Integrity rule 1 specifies that instances of the entities are distinguishable and 

thus no prime attribute (component of a primary key) value may be null. This rule is 

also referred to as the entity rule. We could state this rule formally as: 

Definition: Integrity Rule 1 (Entity Integrity): 

If attribute A of relation R(R) is a prime attribute of R(R), then A cannot accept 

null values. 

Integrity Rule 2 (Referential Integrity) 

Integrity rule 2 is concerned with foreign keys, i.e., with attributes of a relation 

having domains that are those of the primary key of another relation. 

Relation (R) may contain references to another relation (S). Relations R and S 

need not be distinct. Suppose the reference in R is via a set of attributes that forms 

a primary key of the relation S. This set of attributes in R is a foreign key. A valid 

relationship between a tuple in R to one in S requires that the values of the attributes 

in the foreign key of R correspond to the primary key of a tuple in S. This ensures 

that the reference from a tuple of the relation R is made unambiguously to an existing 

tuple in the S relation. The referencing attribute(s) in the R relation can have null 

value(s); in this case, it is not referencing any tuple in the S relation. However, if 

the value is not null, it must exist as the primary attribute of a tuple of the S relation. 

If the referencing attribute in R has a value that is nonexistent in S, R is attempting 

to refer a nonexistent tuple and hence a nonexistent instance of the corresponding 

entity. This cannot be allowed. We illustrate this point in Example 4.19. 

Example 4.19 Consider the example of employees and their managers. Every employee 

has a manager and as managers are also employees, we may represent man¬ 

agers by their employee numbers, if the employee number is a key of the 

relation employee. Figure G illustrates an example of such an employee 

relation. The Manager attribute represents the employee number of the man¬ 

ager. Manager is a foreign key; note that it is referring to the primary key 

of the same relation. An employee can only have a manager who is also an 

employee. The chief executive officer (CEO) of the company can have him¬ 

self or herself as the manager or may take null values. Some employees may 

also be temporarily without managers, and this can be represented by the 

Manager taking null values. 
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Figure G Foreign keys. 

Emp# Name Manager 

101 Jones @ 

103 Smith 110 

104 Lalonde 107 

107 Evan 110 

110 Drew 112 

112 Smith 112 

(We can see that using a single null value for all cases can cause problems. 

Such problems are a topic of research and beyond the scope of this text.) 

Definition: Integrity Rule 2 (Referential Integrity): 

Given two relations R and S, suppose R refers to the relation S via a set of 

attributes that forms the primary key of S and this set of attributes forms a 

foreign key in R. Then the value of the foreign key in a tuple in R must either 

be equal to the primary key of a tuple of S or be entirely null. 

If we have the attribute A of relation R(R) defined on domain D and the primary 

key of relation S(S) also defined on domain D, then the values of A in tuples of R(R) 

must be either null or equal to the value, let us say v, where v is the primary key 

value for a tuple in S(S). Note that R(R) and S(S) may be the same relation. The 

tuple in S(S) is called the target of the foreign key. The primary key of the refer¬ 

enced relation and the attributes in the foreign key of the referencing relation could 

be composite. 

Referential integrity is very important. Because the foreign key is used as a 

surrogate for another entity, the rule enforces the existence of a tuple for the relation 

corresponding to the instance of the referred entity. In Example 4.19, we do not 

want a nonexisting employee to be manager. The integrity rule also implicitly defines 

the possible actions that could be taken whenever updates, insertions, and deletions 
are made. 

If we delete a tuple that is a target of a foreign key reference, then three explicit 
possibilities exist to maintain database integrity: 

• All tuples that contain references to the deleted tuple should also be deleted. 

This may cause, in turn, the deletion of other tuples. This option is referred to 

as a domino or cascading deletion, since one deletion leads to another. 

• Only tuples that are not referenced by any other tuple can be deleted. A tuple 

referred by other tuples in the database cannot be deleted. 

• The tuple is deleted. However, to avoid the domino effect, the pertinent foreign 
key attributes of all referencing tuples are set to null. 



4.3 Relational Algebra 165 

4.3 

Similar actions are required when the primary key of a referenced relation is 

updated. An update of a primary key can be considered as a deletion followed by an 
insertion. 

The choice of the option to use during a tuple deletion depends on the applica¬ 

tion. For example, in most cases it would be inappropriate to delete all employees 

under a given manager on the manager’s departure; it would be more appropriate to 

replace it by null. Another example is when a department is closed. If employees 

were assigned to departments, then the employee tuples would contain the depart¬ 

ment key too. Deletion of department tuples should be disallowed until the employ¬ 

ees have either been reassigned or their appropriate attribute values have been set to 

null. The insertion of a tuple with a foreign key reference or the update of the foreign 

key attributes of a relation require a check that the referenced relation exists. 

Although the definition of the relational model specifies the two integrity rules, 

it is unfortunate that these concepts are not fully implemented in all commercial 

relational DBMSs. The concept of referential integrity enforcement would require an 

explicit statement as to what should be done when the primary key of a target tuple 
is updated or the target tuple is deleted. 

Relational Algebra 

4.3.1 

Relational algebra is a collection of operations to manipulate relations. We have 

informally introduced some of these operations such as join (to combine related tu¬ 

ples from two relations), selection (to select particular tuples of a relation) and pro¬ 

jection (to select particular attributes of a relation). The result of each of these oper¬ 
ations is also a relation. 

Relational algebra is a procedural language. It specifies the operations to be 

performed on existing relations to derive result relations. Furthermore, it defines the 

complete scheme for each of the result relations. The relational algebraic operations 

can be divided into basic set-oriented operations and relational-oriented operations. 

The former are the traditional set operations, the latter, those for performing joins, 

selection, projection, and division. 

Basic Operations 

Basic operations are the traditional set operations: union, difference, intersection, and 

cartesian product. Three of these four basic operations—union, intersection, and dif¬ 

ference—require that operand relations be union compatible.2 Two relations are 

union compatible if they have the same arity and one-to-one correspondence of the 

attributes with the corresponding attributes defined over the same domain. The carte¬ 

sian product can be defined on any two relations. Two relations P(P) and Q(Q) are 

2We assume that in the case of the union, difference, and intersection operations, the names of the attributes of the operand 
relations are the same and that the result relation inherits these names. If these names are not identical, some convention, for 
instance, using the names from the first operand relation, must be provided to assign names to the attributes of the result 

relation. 
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said to be union compatible if both P and Q are of the same degree n and the 

domains of the corresponding n attributes are identical, i.e., if P = {P,, . . . , Pn} 
and Q = {Qu . . . , Qj then 

Dom(Pi) = Dom((2i) for i = {1,2, . . . , n} 

where Dom(Pj) represents the domain of the attribute P,. 

Example 4.20 In the examples to follow, we utilize two relations P(P) and Q(Q) given in 

Figure H. R(R) is a computed result relation. We assume that the relations 

P(P) and Q(Q) in Figure H represent employees working on the develop¬ 

ment of software application packages J] and J2, respectively. 

Figure H Union Compatible Relations 

P: Q: 

Id Name 

101 Jones 

103 Smith 

104 Lalonde 

107 Evan 

110 Drew 

112 Smith 

Id Name 

103 Smith 

104 Lalonde 

106 Byron 

110 Drew 

UNION (U) 

If we assume that P(P) and Q(Q) are two union-compatible relations, then the union 

of P(P) and Q(Q) is the set-theoretic union of P(P) and Q(Q). The resultant relation, 
R = P U Q, has tuples drawn from P and Q such that 

R = {t | t e P V t e Q} and 
max(|P|,|Q|) < |R| < |P| + |Q| 

The result relation R contains tuples that are in either P or Q or in both of them. 
The duplicate tuples are eliminated. 

Remember that from our definition of union compatibility the degree of the 

relations P(P), Q(Q), and R(R) is the same. The cardinality of the resultant relation 

depends on the duplication of tuples in P and Q. From the above expression, we can 

see that if all the tuples in Q were contained in P, then R = P and |R| = |P|, while 
if the tuples in P and Q were disjoint, then |R| = |P| + |Q|. 

Example 4.21 R, the union of P and Q given in Figure H in Example 4.20, is shown in 

Figure Ii. R represents employees working on the packages J, or J2, or both 

of these packages. Since a relation does not have duplicate tuples, an em- 
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Figure I Results of (i) union, (ii) difference, and (iii) intersection 
operations. 

ployee working on both J! and J2 will appear in the relation R only 

once. ■ 

R: 

Id Name 

101 Jones 

107 Evan 

112 Smith 

(ii) P - 

R: 

Id Name 

103 Smith 

104 Lalonde 

110 Drew 

(iii) P fl Q 

R: 

Id Name 

101 Jones 

103 Smith 

104 Lalonde 

106 Byron 

107 Evan 

110 Drew 

112 Smith 

(i)PUQ 

Difference (-) 

The difference operation removes common tuples from the first relation. 

R = P - Q such that 

R = {t | t e P A t 4. Q} and 

0 < |R| < |P| 

Example 4.22 R, the result of P — Q, gives employees working only on package J, (Fig¬ 

ure Iii in Example 4.21). Employees working on both packages J! and J2 

have been removed. ■ 

Intersection (n) 

The intersection operation selects the common tuples from the two relations. 

R = P D Q where 

R = {t | t e P A t e Q} and 

0 < |R| < min(|P|,|Q|) 

Example 4.23 The resultant relation of P D Q is the set of all employees working on both 

the packages (Figure Iiii of Example 4.21). ■ 
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The intersection operation is really unnecessary. It can be very simply expressed 

as: 

p n q = p - (P - Q) 

It is, however, more convenient to write an expression with a single intersection 

operation than one involving a pair of difference operations. 

Note that in these examples the operand and the result relation schemes, includ¬ 

ing the attribute names, are identical i.e., P = Q = R. If the attribute names of 

compatible relations are not identical, the naming of the attributes of the result rela¬ 

tion will have to be resolved. 

Cartesian Product (x) 

The extended cartesian or simply the cartesian product of two relations is the conca¬ 

tenation of tuples belonging to the two relations. A new resultant relation scheme is 

created consisting of all possible combinations of the tuples. 

R = PxQ 

where a tuple r e R is given by {t, || t2 | t] e P A t2 e Q}, i.e., the result relation is 

obtained by concatenating each tuple in relation P with each tuple in relation Q. 
Here, || represents the concatenation operation. 

The scheme of the result relation is given by: 

R = P || Q 

The degree of the result relation is given by: 

1*1 = |P| + IQI 

The cardinality of the result relation is given by: 

|R| = |P| * |Q| 

Example 4.24 The cartesian product of the PERSONNEL relation and SOFTWARE 

PACKAGE relations of Figure Ji is shown in Figure Jii. Note that the rela¬ 

tions P and Q from Figure H of Example 4.20 are a subset of the PERSON¬ 
NEL relation. ■ 
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Figure J (i) PERSONNEL(Emp#,Name) and SOFTWARE_PACK- 
AGES(S) represent employees and software packages re¬ 
spectively; (ii) the Cartesian product of PERSONNEL and 
SOFTWARE_PACKAGES. 

PERSONNEL: SOFTWARE_PACKAGES: 

Id Name 

101 Jones 

103 Smith 

104 Lalonde 

106 Byron 

107 Evan 

110 Drew 

112 Smith 

0) 

P .Id P .Name S 

101 Jones Ji 
101 Jones J2 
103 Smith J, 

103 Smith h 
104 Lalonde J. 
104 Lalonde h 
106 Byron J. 
106 Byron h 
107 Evan J, 
107 Evan h 
110 Drew J. 
110 Drew J2 

112 Smith J, 
112 Smith h 

(ii) ■ 

The union and intersection operations are associative and commutative; there¬ 

fore, given relations R(R), S(S), T(T): 

R U (S U T) = (R U S) U T = (S U R) U T = T U (S U R) = . . . 

r n (S n T) = (R n s) n t = . . . 

The difference operation, in general, is noncommutative and nonassociative. 

R — S ifc S — R noncommutative 

R — (S — T) =£ (R — S) — T nonassociative 
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4.3.2 Additional Relational Algebraic Operations 

The basic set operations, which provide a very limited data manipulation facility, 

have been supplemented by the definition of the following operations: projection, 

selection, join, and division. These operations are represented by the symbols tt, cr, 

[XI, and -r-, respectively. Projection and selection are unary operations; join and 

division are binary. 

Projection (tt) 

In Section 4.2.2 we defined the projection of a tuple. The projection of a relation is 

defined as a projection of all its tuples over some set of attributes, i.e., it yields a 

“vertical subset” of the relation. The projection operation is used to either reduce 

the number of attributes in the resultant relation or to reorder attributes. In the first 

case, the arity (or degree) of the relation is reduced. The projection operation is 

shown graphically in Figure 4.5. In Figure 4.5a we illustrate the possibility that when 

the number of attributes in the relation is reduced, the cardinality may also be re¬ 

duced; this is due to the deletion of duplicate tuples in the projected relation. In 

Figure 4.5b we illustrate the rearrangment of the attributes of a relation. Figure 4.5c 

shows the projection of the relation PERSONNEL on the attribute Name. The cardi¬ 

nality of the result relation is also reduced due to the deletion of duplicate tuples. 

We defined the projection of a tuple t; over the attribute A, denoted tj[A] or 

TT^Ctj), as (a), where a is the value of tuple tj over the attribute A. Similarly, we 

Figure 4.5 Projection: (a) graphical representation of reduction of degree or a relation; (b) graph¬ 
ical representation of re-ordering of attributes; (c) projection of relation PERSONNEL 
over attribute Name. 

PERSONNEL: 

Id Name 

101 Jones 
103 Smith 
104 Lalonde 
106 Byron 
107 Evan 
110 Drew 
112 Smith 

V 

Name 

Jones 
Smith 
Lalonde 
Byron 
Evan 
Drew 

(a) (b) (c) 



4.3 Relational Algebra 171 

define the projection of a relation T(T), denoted by T[A] or tt^(T), on the attribute 

A. This is defined in terms of the projection for each tuple in tj e T on the attribute 
A as: 

T[A] = {aj | tj [A] = a, A tj e T} 

where T[A] is a single attribute relation and |T[A]| < |T|. The cardinality |T[A]| may 

be less than the cardinality |T| because of the deletion of any duplicates in the result. 
A case in point is illustrated in Figure 4.5c. 

Similarly, we can define the projection of a relation on a set of attribute names, 

X, as a concatenation of the projections for each attribute A in X for every tuple in 
the relation. 

T[X] = { || tj[A] | t, e T} 
A eX 

where || tj[A] represents the concatenation of all tj[A] for all A e X. 

A e X 

Simply stated, the projection of a relation P(P) on the set of attribute names Y 

e P is the projection of each tuple of the relation P on the set of attribute names Y. 

Note that the projection operation reduces the arity if the number of attributes 

in X is less than the arity of the relation. The projection operation may also reduce 

the cardinality of the result relation since duplicate tuples are removed. (Note that 

the projection operation produces a relation as the result. By definition, a relation 

cannot have duplicate tuples. In most commercial implementations of the relational 

model, however, the duplicates would still be present in the result.) 

Selection (ct) 

Suppose we want to find those employees in the relation PERSONNEL of Figure Ji 

of Example 4.24 with an Id less than 105. This is an operation that selects only some 

of the tuples of the relation. Such an operation is known as a selection operation. 

The selection operation is represented graphically in Figure 4.6a. 

The projection operation yields a vertical subset of a relation. The action is 

defined over a subset of the attribute names but over all the tuples in the relation. 

The selection operation, however, yields a horizontal subset of a given relation, i.e., 

the action is defined over the complete set of attribute names but only a subset of the 

tuples are included in the result. To have a tuple included in the result relation, the 

specified selection conditions or predicates must be satisfied by it. The selection 

operation, represented by the symbol u in this text, is sometimes known as the re¬ 

striction operation. 

Example 4.25 Consider the selection operation 

(jid < l05 (PERSONNEL) 

over the relation PERSONNEL of Figure J of Example 4.24. The selection 

is over the relation PERSONNEL and the predicate specifies that only those 

tuples in PERSONNEL are to be selected in which the value of the attribute 

Id is less than 105. Figure 4.6b presents PERSONNEL and the resulting 

relation. ■ 
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Figure 4.6 

Join (XI) 

(a) Graphical representation of selection that selects a subset of the tuples; (b) result 
of selection over PERSONNEL for Id < 105. 

1 

(a) 

PERSONNEL: 

Id Name 

101 Jones 
103 Smith 
104 Lalonde 
106 Byron 
107 Evan 
110 Drew 
112 Smith 

Result of selection 

Id Name 

101 Jones 
103 Smith 
104 Lalonde 

(b) 

Any finite number of predicates connected by Boolean operators may be speci¬ 

fied in the selection operation. The predicates may define a comparison between two 

domain-compatible attributes or between an attribute and a constant value; if the 

comparison is between attribute Ax and constant c,, then c, e Dom(AJ. 

Given a relation P and a predicate expression B, the selections of those tuples 

of relation P that satisfy the predicate B is a relation R written as: 

R = orB(P) 

The above expression could be read as “select those tuples t from P in which the 

predicate B(t) is true.” The set of tuples in relation R are in this case defined as 
follows: 

R = {t | t e P A B (t)} 

The join operator, as the name suggests, allows the combining of two relations to 

form a single new relation. The tuples from the operand relations that participate in 

the operation and contribute to the result are related. The join operation allows the 

processing of relationships existing between the operand relations. 
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In Figure D of Example 4.3 we illustrated an example of a join of the relations 

SOME_DBMS and VERSION. We joined those tuples of the two relations that had 

the same value for the common attribute Name defined on a common domain. In this 

case, this common value was used to establish a relationship between these relations. 

Note that referential integrity dictates that a tuple in VERSION could not exist with¬ 

out a tuple in SOME_DBMS with the same value for the Name attribute. Join is 

basically the cartesian product of the relations followed by a selection operation. 

Example 4.26 In Figure 4.3 we encountered the following relations: 

ASSIGNMENT (Emp#, Prod#, Job#) 

JOB_FUNCTION (Job#, Title) 

Suppose we want to respond to the query “Get product number of assign¬ 

ments whose development teams have a chief programmer.” This requires 

first computing the cartesian product of the ASSIGNMENT and JOB_ 

FUNCTION relations. Let us name this product relation TEMP. This is 

followed by selecting those tuples of TEMP where the attribute Title has the 

value chief programmer and the value of the attribute Job# in ASSIGN¬ 

MENT and JOB_FUNCTION are the same. The required result, shown be¬ 

low, is obtained by projecting these tuples on the attribute Prod#. The 

operations are specified below: 

TEMP = (ASSIGNMENT x JOB_FUNCTION) 

TtProdviv Title = ‘chief programmer’ A ASSIGNMENT. Job = JOBJFUNCTION.Vcb# 

(TEMP)) 

Prod# 

HEAP1 

BINS9 

In another method of responding to this query, we can first select those 

tuples from the JOB_FUNCTION relation so that the value of the attribute 

Title is chief programmer. Let us call this set of tuples the relation TEMPI. 

We then compute the cartesian product of TEMPI and ASSIGNMENT, call¬ 

ing the product TEMP2. This is followed by a projection on Prod# over 

TEMP2 to give us the required response. These operations are specified 

below: 

TEMPI = (crTitle = vfe/programnier'(JOB_FUNCTION)) 

TEMP2 = (o'ASSIGNMENT.yofc# = JOB_FUNCTION../ofc#(ASSIGNMENT x 

TEMPI)) 
n>r^#(TEMP2) gives the required result. H 

Notice that in the selection operation that follows the cartesian product we take 

only those tuples where the value of the attributes ASSIGNMENT./ob# and JOB_ 

FUNCTION.Job# are the same. These combined operations of cartesian product 

followed by selection are the join operation. Note that we have qualified the identi¬ 

cally named attributes by the name of the corresponding relation to distinguish them. 
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In case of the join of a relation with itself, we would need to rename either the 

attributes of one of the copies of the relation or the relation name itself. We illustrate 

this in Example 4.27. 
In general the join condition may have more than one term, necessitating the 

use of the subscript in the comparison operator. Now we shall define the different 

types of join operations. 

Definition: Theta join: 

The theta join of two relations P(P) and Q(Q) is defined as 

R = PMQ 
B V 

such that 

R = {t | tj || t2 A t, e P A t2 e Q A B} 

where B is a selection predicate consisting of terms of the form: 

(ti[AJ 0J t2[BJ) for i = 1,2, . . . ,n 

where 0; is some comparison operator (0; e {= , =£ <,<,>, >}) and and Bt 

are some domain-compatible attributes of the relation schemes P and Q 

respectively: 

0 S |R| s |P|*|Q| 

M = |P| + IQI 

In the these discussions we use P, Q, R, and so on to represent both the relation 

scheme and the collection or bag of underlying domains of the attributes. We call it 

a bag of domains because more than one attribute may be defined on the same do¬ 

main. 

Typically, P IT Q may be null and this guarantees the uniqueness of attribute 

names in the result relation. When the same attribute name occurs in the two schemes 

we use qualified names. 

Two common and very useful variants of the join are the equi-join and the 

natural join. In the equi-join the comparison operator 0i(i = 1,2, . . . , n) is 

always the equality operator ( = ). Similarly, in the natural join the comparison op¬ 

erator is always the equality operator. However, only one of the two sets of domain- 

compatible attributes is retained in the result relation of the natural join. It follows 

that if the attributes involved in the natural join are from P and B{ from Q, for 

i = 1, . . . , n, the natural join predicate is a conjunction of terms of the following 
form: 

(tfiA,] = t2[fli]) for i = 1,2,. . . , n 

Domain compatibility requires that the domains of and B, be compatible, and 

for this reason relation schemes P and Q have attributes defined on common do¬ 

mains, i.e., P IT Q ¥= <J>. Therefore, join attributes have common domains in the 

relation schemes P and Q. Consequently, only one set of the join attributes on these 

common domains needs to be preserved in the result relation. This is achieved by 
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taking a projection after the join operation, thereby eliminating the duplicate attri¬ 

butes. If the relations P and Q have attributes with the same domains but different 
attribute names, then renaming or projection may be specified. 

Example 4.27 In Figures D and E of Example 4.3 we encountered examples of the equi- 

join operation. Given the EMPLOYEE and SALARY relations of Figure 

Ki, if we have to find the salary of employees by name, we join the tuples 

in the relation EMPLOYEE with those in SALARY such that the value of 

the attribute Id in EMPLOYEE is the same as that in SALARY. The natural 

join takes the predicate expression to be EMPLOYEE./d = SALARY./d 

The result of the natural join is shown in Figure Ki. When using the natural 

join, we do not need to specify this predicate. The expression to specify the 

operation of finding the salary of employees by name is given as follows. 

Here we project the result of the natural join operation on the attributes 
Name and Salary: 

V(Name,Salary) (EMPLOYEE SALARY) 

Figure K (i) The natural join of EMPLOYEE and SALARY relations; 
(ii) the joint of ASSIGNMENT with its renamed copy. 

EMPLOYEE: SALARY: EMPLOYEE IX SALARY 

Id Name 

101 Jones 

103 Smith 

104 Lalonde 

107 Evan 

Id Name Salary 

101 Jones 67 

103 Smith 55 

104 Lalonde 75 

107 Evan 80 

Id Salary 

101 67 

103 55 

104 75 

107 80 

(i) 

ASSIGNMENT.£mp# COASSIGN .Emp# 

107 107 

107 101 

107 103 

101 107 

101 101 

101 103 

110 110 

110 101 

103 107 

103 101 

103 103 

101 110 

(ii) 
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Consider the ASSIGNMENT relation of Figure 4.3c. If we want to find the 

coworkers in all projects (but not necessarily doing the same job) we can 

join ASSIGNMENT with itself on the Prod# attribute. However, to have 

unique attribute names in the result relation, we can proceed as follows. 

Copy ASSIGNMENT into COASSIGN(£/n/;#, Prod#, Job#) and then 

perform the operation given below, using qualified attribute names. The re¬ 

sult of the operation is shown in Figure Kb. Note that a simple join of 

ASSIGNMENT with itself, using the definition of natural join, gives the 

original relation: 

TT(ASSIGNMENT.£^#,COASSIGN.£mp#)(ASSIGNMENTIX]COASSIGN) 
ASSIGNMENT.= COASSIGN. Prod# ■ 

Formally, the natural join of P(P) and Q(Q) is performed on the attributes of P 
and Q defined on common domains, i.e., P fl Q. The resultant relation consists of 

the attributes PUQ. 
In the cartesian product of two relations, we take a tuple from each relation and 

concatenate them to obtain a tuple in the result relation. Any duplication of attributes 

in the tuples, as well as duplicate tuples, remains. (Note that duplicate tuples are not 

generated in a cartesian product of two proper relations.) In a relational join, we 

select the subset of the product tuples that satisfy the join predicates. In an equi-join, 

the predicate involves equality constraints. In a natural join, which also involves 

equality constraints, the common attributes are not duplicated. In the majority of 

cases when we speak of a join, we are actually speaking about the natural join. 

If two relations that are to be joined have no domain-compatible attributes, the 

natural join operation is equivalent to a simple cartesian product. If they have iden¬ 

tical relation schemes, the natural join operation is an intersection operation. 

We can summarize the above discussion on the various types of join operations 

using the cartesian product as follows: 

• The equi-join and the theta join are horizontal subsets of the cartesian product. 

This is equivalent to applying a selection to the resulting tuple of the cartesian 

product. The selection is explicitly specified in the theta join and implicitly 
specified in the equi-join. 

• The natural join is equivalent to an equi-join with a subsequent projection to 

eliminate the duplicate attributes. In this sense, a natural join is both a 

horizontal and vertical subset of the cartesian product. 

Division { + ) 

Before we define the division operation, let us consider an example. 

Given the relations P(P) and Q(Q) as shown in Figure Li, the result of 

dividing P by Q is the relation R and it has two tuples. For each tuple in R, 

its product with the tuples of Q must be in P. In our example (a,,b,) and 

(a,,b2) must both be tuples in P; the same is true for (a5,b,) and (a5,b2). 

Example 4.28 
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Figure L Examples of the division operation, (i) R = P - Q; (ii) R = 
P -h Q (P is the same as in part i); (iii) R = P -h Q (P is 
the same as in part i); (iv) R = P h- Q (P is the same as in 
part i). 

P(P): 

A B 

ai b, 
a. b2 

a2 b, 

a3 b, 

b2 

a5 b, 

a5 

Q(Q): R(R) (result): 

B A 

b, ai 
b2 a5 

(i) 

Q(Q): 

B 

b, 

(ii) 

Q(Q): 

B 

b, 

b2 

^3 

(iii) 

Q(Q): 

B 

(iv) 

then R(R) is: 

A 

al 

a2 

a3 

a5 

then R(R) is: 

A 

then R(R) is: 

A 

ai 

a2 

a3 

a4 

a5 

Simply stated, the cartesian product of Q and R is a subset of P. 

In Figure Lii, the result relation R has four tuples; the cartesian product 

of R and Q gives a resulting relation which is again a subset of P. 

In Figure Liii, since there are no tuples in P with a value b3 for the 
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attribute B (i.e., |crs = b3(P)| = 0), we have an empty relation R, which has 

a cardinality of zero. 

In Figure Liv, the relation Q is empty. The result relation can be de¬ 

fined as the projection of P on the attributes in P — Q. However, it is usual 

to disallow division by an empty relation. 

Finally, if relation P is an empty relation, then relation R is also an 

empty relation. ■ 

Let us treat the relation Q as representing one set of properties (the properties 

are defined on the scheme Q, each tuple in Q representing an instance of these 

properties) and the relation P as representing entities with these properties (entities 

are defined on P — Q, and the properties are, as before, defined on Q); note that P 
U Q must be equal to P. Each tuple in P represents an object with some given 

property. (In Figure Li of Example 4.28, the relation P has 7 tuples. A tuple, for 

instance, (a^b,) of P, represents the object a! with the property b|.) The resultant 

relation R, then, is the set of entities that possesses all the properties specified in Q. 

The two entities a, and a5 possess all the properties, i.e., b, and b2. The other entities 

in P, a2, a3, and a4, only possess one, not both, of the properties. The division 

operation is useful when a query involves the phrase ‘ for all objects having all the 

specified propertiesNote that both P — Q and Q in general represent a set of 
attributes. It should be clear that Q C P. 

Example 4.29 Consider the relations of Figure M: 

PRODUCT {Prod#, Prod-Name, Prod-Details) 
DEVELOPED_BY {Prod#, Emp#) 

The following method is used to find all employees who developed both the 

HEAPSORT and BINARY-SEARCH modules. We first find an intermedi¬ 

ate relation, let us say TEMP, that contains the product numbers of these 

two modules. TEMP is obtained, as shown in the following equation, by a 

selection on these product names followed by a projection of the resulting 
relation on the attribute Prod#: 

TEMP — ITprod#{v(Prod-Name = ‘HEAPSORT’ V Prod-Name = ‘BINARY-SEARCH’) 

(PRODUCT)) 

The product and TEMP relations are shown in Figure Mi. We can then 

obtain the Emp# of employees involved in the development of these two 

modules by dividing the DEVELOPED-BY relation by TEMP: 

RESULT = DEVELOPED_BY - TEMP 

These operands and the result of the division are shown in Figure Mii. The 
overall operations can be written as shown below: 

DEVELOPED_BY -r (tT'Prod# {&{Prod-Name — ‘HEAPSORT’ V Prod—Name = 

‘BINARY-SEARCH’) (PRODUCT)) 

The result of the selection and projection is the set of tuples with the Prod# 

of the two modules HEAPSORT and BINARY-SEARCH. These tuples are 
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4.3.3 

Figure M Finding employees who developed both HEAPSORT and 
BINARY-SEARCH, (i) *PrM . ,HEAPSOBT. v 
Name = BINARY-SEARCH) (PRODUCT)); (ii) DEVELOPED-BY 
h- TEMP 

PRODUCT: 

Prod# Prod-Name Prod-Details 

HEAP1 

BINS9 

FM6 

B+ + l 

B + +2 

HEAP-SORT 

BINARY-SEARCH 
FILE-MANAGER 

B++_TREE 

B++_TREE 

ISS module 

ISS/R module 

ISS/R-PC subsys 

ISS/R turbo sys 

ISSR-PC turbo 

(i) 

TEMP: 

Prod# 

HEAP1 

BINS9 

DEVELOPED_BY: TEMP RESULT: 

Prod# Emp# 

HEAP1 103 
HEAP1 107 

FM6 103 
B + + l 109 

BINS9 105 

BINS9 107 

BINS9 103 

Prod# Emp# 

HEAP1 — 103 

BINS9 107 

(ii) 

then used as a divisor; the result of the division is all employees involved in 

the development of both modules. This result is presented in Figure Mii. 

If we had incorrectly formulated our query expression as: 

DEVELOPED_BY 1X1 (tT'prod# (CT{Prod-Name = 'HEAPSORT’ V Prod-Name = 

‘BINARY-SEARCH’) (PRODUCT)) 

then we would find the (Emp#, Prod#) tuples for employees involved in 

the development of the HEAPSORT or BINARY_SEARCH modules, rather 

than employees involved in the development of both the modules. ■ 

Some Relational Algebra Queries 

Let us illustrate the use of relational algebra to express a number of queries. For the 

examples in this section, we will consider a part of our database consisting of the 

following relations corresponding to the entities EMPLOYEE and PROJECT and the 
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Figure 4.7 Sample database 

EMPLOYEE: ASSIGNED_TO 

Emp# Name 

101 Jones 
103 Smith 
104 Lalonde 
106 Byron 
107 Evan 
110 Drew 
112 Smith 

Project# Emp# 

COMP453 101 
COMP354 103 
COMP343 104 
COMP354 104 
COMP231 106 
COMP278 106 
COMP353 106 
COMP354 106 
COMP453 106 
COMP231 107 
COMP353 107 
COMP278 110 
COMP353 112 
COMP354 112 

PROJECT: 

Project# Project Name Chief Architect 

COMP231 Pascal 107 
COMP278 Pascal/Object 110 
COMP353 Database 107 
COMP354 Operating Sys 104 
COMP453 Database 101 

relationship ASSIGNED-TO between them. Some sample tuples from these relations 
are shown in Figure 4.7. 

PROJECT (Project#, Project-Name, Chief-Architect) 
EMPLOYEE (Emp#, EmpName) 

ASSIGNED_TO (Project#, Emp#) 

Example 4.30 “Get Emp# of employees working on project COMP353.” To evaluate this 

query, we select those tuples of relation ASSIGNED_TO such that the value 

of the Project# attribute is COMP353. We then project the result on the 

attribute Emp# to get the response relation. The query and the response 
relation are shown below: 

17Emp#(®Project* = 'COMP353' (ASSIGNED_TO)) 
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Emp# 

106 

107 

112 

The following example entails a join of two relations. 

Example 4.31 “Get details of employees (both number and name) working on project 

COMP353.” The first part of the evaluation of this query is the same as in 

the query in Example 4.30. It is, however, followed by a natural join of the 

result with EMPLOYEE relation to gather the complete details about the 

employees working on project COMP353. The result and the the query are 
shown below: 

EMPLOYEE IX 'nEmp#{<jProject# = comp353'(ASSIGNED-TO)) 

Emp# Name 

106 Byron 

107 Evan 

112 Smith 

Example 4.32 requires using three relations to generate the required response. 

Example 4.32 “Obtain details of employees working on the Database project.” This query 

requires two joins. The first step is to find the number(s) of the project(s) 

named Database. This involves a selection of the relation PROJECT, fol¬ 

lowed by a projection on the attribute Project#. The result of this projection 

is joined with the ASSIGNED-TO relation to give tuples of the ASSIGNED 

_TO involving Database. This is projected on Emp# and subsequently 

joined with EMPLOYEE to get the required employee details. The query in 

relational algebra and the result are shown below: 

EMPLOYEE X ^^(ASSIGNED-TO X (TTProject# (<xProject-Name = 

Database’ (PROJECT)))) 

Emp# Name 

101 Jones 

106 Byron 

107 Evan 

112 Smith 



182 Chapter 4 The Relational Model 

The use of the division operation is illustrated in the following examples. 

Example 4.33 “Gather details of employees working on both COMP353 and'COMP354.” 

In evaluating this query, we first create an unary relation with two tuples 

with the required project numbers. We select those tuples of ASSIGNED- 

TO where the project numbers are either COMP353 or COMP354 and then 

project the result on Project#. Next, we divide ASSIGNED-TO by the 

unary relation from the previous step to get another unary relation whose 

tuples correspond to those employees who are working on both projects. To 

collect the complete details about these employees, we join this last relation 

with EMPLOYEE. The query in relational algebra and the resulting relation 
are shown below: 

EMPLOYEE [XI (ASSIGNED_TO 4- n'pr0ject# {&(project# = comp353' v 

Project# = 'COMP354') (ASSIGNED_TO))) 

Emp# Name 

106 

112 
Byron 

Smith 

Example 4.34 “Find the employee numbers of employees who work on at least all of the 

projects that employee 107 works on.” Here, we first find all of employee 

107’s project numbers. Having found this, we divide the relation ASSIGNED 

_TO by this unary relation to get a result that includes employee 107. To 

remove the tuple for 107, we find the difference. In the following expres¬ 

sion, 107 is a shorthand method of writing a single tuple unary relation, 

obtained by 'nEmp#(o'Emp# = 107 (ASSIGNED_TO)). The query in relational 
algebra and the resulting relation are shown below: 

(ASSIGNED_TO - TtProject#(<JEmp# = 107 (ASSIGNED_TO))) - 107 

Emp# 

106 

The use of the difference operation is illustrated in Example 4.35. 

Example 4.35 “Find the employee numbers of employees who do not work on project 

C0MP453.” The evaluation here was done by first determining those em¬ 

ployees who are working on project C0MP453 (and other projects as well). 

We also find all employees assigned to projects. Both of these are obtained 
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used 

Example 4.36 

Example 4.37 

by projections on relation ASSIGNED_TO and will have no duplicate tu¬ 

ples. From the result of these projections we find the difference to arrive at 

the Emp# of employees not working on C0MP453. The query expressed in 
relational algebra and the response to it are shown below: 

/Tr£mp#(ASSIGNED_TO) - TTEmp#^Project# = COMP453'(ASSIGNED_TO)) 

Emp# 

103 

104 

107 

110 

112 

The division operation which finds objects having all specified properties can be 
to advantage in the following example. 

“Get the employee number of employees who work on all projects.” The 

sequence to follow in evaluating this query is to first compile a list of all 

projects from the PROJECT relation by a simple projection on Project#; 

then divide the ASSIGNED_TO relation by it to derive a unary relation 

containing the required employee numbers: 

ASSIGNED_TO - -tt^,c;#(PROJECT) 

Emp# 

106 

A join involving a relation with itself is illustrated below. 

“List the employee numbers of employees other than employee 107 who 

work on at least one project that employee 107 works on.” This is similar 

to the query in Example 4.36, except the list of projects is now comprised 

of those that include at least one project in which employee 107 is involved. 

This can be obtained by a selection and projection on the relation ASSIGNED 

_TO. Joining ASSIGNED_TO with the result relation gives us a relation 

that includes tuples for employee 107. Projecting this latest result relation 

on Emp# gives an unary relation, which includes a tuple for 107. This tuple 

is eliminated as in the query in Example 4.34 to give all employees who are 

involved in at least one project with employee 107. 
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(TT£mp#(ASSIGNED_TOtXlTTpr^c,#(a£mp#= 107(ASSIGNED_TO)))) - 107 

Emp# 

106 

112 

4.4 Relational Calculus 

Tuple and domain calculi are collectively referred to as relational calculus. As we 

have seen, queries in relational algebra are procedural. In general, a user should not 

have to be concerned with the details of how to obtain information. In relational 

calculus, a query is expressed as a formula consisting of a number of variables and 

an expression involving these variables. The formula describes the properties of the 

result relation to be obtained. There is no mechanism to specify how the formula 

should be evaluated. It is up to the DBMS to transform these nonprocedural queries 

into equivalent, efficient, procedural queries. In relational tuple calculus, the vari¬ 

ables represent the tuples from specified relations; in relational domain calculus, the 

variables represent values drawn from specified domains. 

Relational calculus is a query system wherein queries are expressed as variables 

and formulas on these variables. Such formulas describe the properties of the re¬ 

quired result relation without specifying the method of evaluating it. 

Relation calculus, which in effect means calculating with relations, is based 

on predicate calculus, which is calculating with predicates. The latter is a formal 

language used to symbolize logical arguments in mathematics. In the following 

paragraphs we briefly introduce predicate calculus; additional details are given in 
Chapter 16. 

In formal logic the main subject matter is propositions. If, for instance, p and q 

are propositions, we can build other propositions “not p,” “p or q,” “p and q,” 

and so on. In predicate calculus, propositions may be built not only out of other 

propositions but also out of elements that are not themselves propositions. In this 

manner we can build a proposition that specifies a certain property or characteristic 
of an object. 

Propositions specifying a property consist of an expression that names an indi¬ 

vidual object (it may also be used to designate an object), and another expression, 

called the predicate, that stands for the property that the individual object possesses. 

Example 4.38 Consider these statements: 

BCD is a company 

WXY is a company 

Jill is an analyst 

John is an analyst 

Canada is a country 

U.S.A. is a country 
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Each of these is a statement about an object having a certain feature or 

property. In these examples, the parts “is a company,” “is an analyst,” 

is a country are instances of predicates. Each describes some property or 
characteristic of an object, fl 

A convenient method of writing the statements of Example 4.38 is to place the 

predicate first and follow it with the object enclosed in parentheses. Therefore, the 

statement “BCD is a company” can be written as “is a company(BCD).” Now we 

drop the “is a” part and write the first statement as “company(BCD).” Finally, if 

we use symbols for both the predicate and the object, we can rewrite the statements 

of Example 4.38 as P(x). The lowercase letters from the end of the alphabet (. 

x, y, z) denote variables, the beginning letters (a, b, c, . . . ) denote constants, and 

uppercase letters denote predicates. P(x), where x is the argument, is a one-place or 

monadic predicate. DBMS(x) and COMPANY(y) are examples of monadic predi¬ 

cates. The variables x and y are replaceable by constants (or names of individual 
objects) such as DBMS(ISS). 

The use of constants and variables is similar to that in some high-level lan¬ 

guages. A constant specifies a particular value or object; a variable is used as a place 
holder for the values in an expression or procedure. 

Example 4.39 Consider these statements: 

Jill is taller than John 

WXY is bigger than BCD 

Canada is north of the U.S.A. 

In these statements, the predicates “is taller than,” “is bigger than,” 

“is north of” require two objects and are called two-place predicates. ■ 

In general, we have predicates of degree n, where the predicate takes n argu¬ 

ments. In the case of bigger_than(WXY, BCD), the predicate BIGGER_THAN spec¬ 
ifies the relation between WXY and BCD. 

Example 4.40 Let DBMS_TYPE(x,y) specify the relation between DBMSs and their data 

model. The predicate DBMS_TYPE takes two arguments. ■ 

A predicate followed by its arguments is called an atomic formula. Examples 

of these are DBMS(x), COMPANY(y), and DBMS_TYPE(x,y). 

We stated earlier that predicate calculus is a formal language. A language con¬ 

sists of symbols. We have already seen some of the primitive symbols, i.e., vari¬ 

ables, constants, and predicates. We can also specify logical connectors such as 

“not” or negation, denoted by —i, “or” (V), “and” (A), and “implication” (—»). 

Atomic formulas may be combined using the logical connectors to generate for¬ 

mulas such as P(x) A Q(y), P(x) V Q(y)> and so on. DBMS(ISS) A COM- 

PANY(BCD), for instance, can represent “ISS is a DBMS and BCD is a company.” 
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Other interesting formulas are formed with the use of quantifiers: universal or 

“for all,” denoted by V and existential or “for some,” denoted by 3. The notions 

expressed by the quantifiers assert that “everything has a certain property” (or deny 

that something lacks it) and that “something has a certain property”, (or deny that 

everything lacks it). Therefore, (\/x)P(x) and (3x)P(x) are used to specify that “for 

all x, x is P” (or simply that “everything is P”) and “for some x, x is P” (or simply 

that “something is P”). 

“x is a DBMS” is an example of a formula. If the symbol x in the formula is 

replaced by the name of a DBMS, we have a declarative sentence that is either true 

or false. The phrase “x is a DBMS produced by company y” is a formula with two 

variables. If the occurrences of the variables x and y are replaced by the appropriate 

specific objects, the result is again a declarative sentence that is either true or false. 

For example, the declarative sentence “ISS is a DBMS produced by ABC” is false. 

The sentence “ISS is a DBMS produced by BCD” is true. 

Example 4.41 (3x)DBMS(x) is a formula that states that there is something that is a 

DBMS. We can also say that there exists something that possesses the prop¬ 
erty of being a DBMS. ■ 

It can be shown that the following are equivalent: 

P(x) A Q(x) = i( iP(x) V —iQ(x)) 

P(x) V Q(x) = —1(—iP(x) A -iQ(x)) 

This pair of transformations is called De Morgan’s law. A generalization of 

these transformations involving the quantifiers is obtained as follows: 

V*(P(x)) = ~i(3x)(—iP(x)) 
3x(P(x)) = —i(\/x)(—iP(x)) 

Consequently, the quantifiers and the operations A and V are connected and 
only one of these need be taken as the primitive. 

In any formal system, it is necessary to specify which sentences (sequence of 

symbols) are acceptable. In the case of the English alphabet, not every sequence 

generated from it can be considered an English language sentence. In formal systems, 

the acceptable sentences (or formulas) are usually called well-formed formulas 

(wffs). The wff s should be those sequences of symbols that are unambiguous and 

make sense. This can be ensured by stating some rules for the construction of wffs. 

We will see rules in relational calculus used to ensure that only wffs are used. 

Let x be any variable and W be a wff. Every occurrence of x in W is said 

to be bound by the quantifiers when occurring in the wffs (\/x)W and (3x)W. 

Any occurrence of a variable that is not bound is said to be free. For example, in 
(3x)(P(x) A Q(y)), x is bound and y is free. 

Free and bound variables may be compared with the global and local variables 

of programming languages. A bound variable is local to the quantified expression 

and dissimilar from the variable with the same name that is not within the quantified 
expression. In the following example, 

3x(P,) A (P2) 
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the variable x is bound in the expression P,; however, any occurrence of x in P2 is 
free and not the same variable as x in P,. 

A wff containing no free variables is said to be closed (otherwise open). 

Given a wff in which we only have free variables, we can replace the variables 

by names of individual objects and, in so doing, obtain a proposition. DBMS(x) is 

such a wff, in which by replacing the variable x by some constant (or individual 

name) we obtain a proposition; e.g., DBMS(ISS), DBMS(Relational). When the var¬ 

iable is bound, for example, in (3x)DBMS(x), we already have a proposition that 
states “something is a DBMS.” 

Variables in relational calculus are like variables in programming languages in 

that they are restricted by their types. The declaration, for instance, that tuple vari¬ 

able t is defined on relation R signifies that t can only take a tuple value from the 

relation R. We may say that the relation R is the domain of the tuple variable t. Here 

a tuple variable can be equated to a record variable in Pascal (or similar high-level 

language). A record variable in Pascal takes on the value of a single record from 

among many records of its type. Similarly, in domain calculus, a domain variable d 

defined over a given domain Dj implies that the values associated with the variable 

d can only be elements from the domain D(. 

4.4.1 Tuple Calculus 

Queries in tuple calculus are expressed by a tuple calculus expression. A tuple cal¬ 

culus expression is of the form 

{X | F(X)} 

where F is a formula involving X and X represents a set of tuple variables. The 

expression characterizes a set of tuples of X such that the formula F(X) is true. For 

the present we will assume that the formula involves predicates; however, we will 

examine the method of constructing and identifying valid formulae a little later. 

For the examples in this section, we will continue to use the same database that 

we used for relational algebra. It consists of the following relations, some tuples of 

which are shown in Figure 4.7: 

PROJECT 0Project#, Project-Name, Chief-Architect) 

EMPLOYEE (Emp#, EmpName) 

ASSIGNED_TO {Project#, Emp#) 

Example 4.42 Consider the following query: “Obtain the employee numbers of employees 

working on project COMP353.” 
The result of this query is the set of tuples t such that there exists a 

tuple u in ASSIGNED-TO with value COMP353 for the Project#, and the 

same value for the Emp# attribute in both u and t. We can formulate this 

in the manner of the calculus expression above as: 

{t{Emp#) | 3u(u e ASSIGNED_TO A u[Project#] = 'COMP353' 

A t[Emp#] = u [Emp#])} ■ 
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In this formulation, we specify the set of tuples t(Emp#) such that the predicate 

is true for each element of that set. The predicate specifies that there exists some 

tuple, u, in the relation ASSIGNED_TO such that it has the value COMP353 for the 

Project# attribute. Also, the value for the Emp# attributes of the result tuple t is 

the same as that for the tuple u. 

Free variables appear to the left of the | (bar) symbol. The variable t is a free 

tuple variable in the above formula and assumes whatever attributes and correspond¬ 

ing values, assigned to it by the formula. The formula restricts t to the relation 

scheme {Emp#). 

Example 4.43 Consider this query: “Obtain a list of employees (both numbers and names) 

working on the project COMP353,” which can be rephrased as: “Obtain 

employee details for those employees assigned to the project COMP353.’’ 

To verify whether or not an employee is working on COMP353, we 

can compare the employee’s Emp# with Emp# values of tuples in the re¬ 

lation ASSIGNED_TO. What we are really specifying is that “for the em¬ 

ployee whose details we want, there exists a tuple in the relation ASSIGNED 

_TO for that employee with the value of the attribute Project# in that tuple 

being COMP353.” This is a calculuslike formulation for our query. In the 

database we use surrogates to represent entities. For example, Emp# is used 

to represent an employee in the ASSIGNED-TO relation {Project# is used 

to represent a project). To check if an employee is working on some project, 

we would need to compare the employee’s surrogate, Emp#, from EM¬ 

PLOYEE, with the tuples of the ASSIGNED_TO relation containing the 

project’s surrogate, Project#. Thus, the query can be reformulated as: “Get 

those tuples in employee relation such that there exists an ASSIGNED_TO 

tuple with ASSIGNED-TO.Emp# = EMPLOYEE.Emp# and ASSIGNED- 
TO .Project# = COMP353.” 

In tuple calculus this can be specified as: 

{t | 3e(e e EMPLOYEE A e[Emp#] = t[Emp#] 

A e[EmpName] = t [EmpName] 

A 3u(u e ASSIGNED_TO A u[Emp#] = e[Emp#] 

A u[Project#] = 'COMP353'))} 

The above may be simplified to the following form where the domain of the 
free variable t is the relation EMPLOYEE. 

{t | t e EMPLOYEE 

A 3u(u e ASSIGNED_TO A u[Emp#] = t[Emp#] 

A u[Project#] = 'COMP353'))} D 

In the tuple calculus query formulations given above, we have only specified 

the characteristics of the desired result. The system is free to decide the operations 

and their execution order to satisfy the request. For comparison, a relational algebra 

like query would have to be stated as, “Select tuples from ASSIGNED_TO such 

that Project# = 'COMP353' and perform their join with the employee relation, 

projecting the results of the join over Emp# and EmpName.” It is obvious that a 

calculus query is much simpler because it is devoid of procedural details. 
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Tuple Calculus Formulas 

At this point it is useful to see how tuple calculus formulas are derived. A variable 

appearing in a formula is said to be free unless it is quantified by the existential (for 

some) quantifier, 3 or the universal (for all) quantifier, V- Variables quantified by 
or are said to be bound. 

In tuple calculus we define a qualified variable as t[A], where t is a tuple vari¬ 

able of some relation and A is an attribute of that relation. Two qualified variables, 

s[A] and t[fi], are domain compatible if attributes A and B are domain compatible. 

Tuple calculus formulas are built from atoms. An atom is either of the forms 
given below: 

x € R, where R is a relation and x is a tuple variable. 

A2. x 0 y or x 0 c, where 0 is one of the comparison operators { =, =£,<,<,>, >}, 

x and y are domain-compatible qualified variables, and c is a domain compatible-con¬ 

stant. 

For example, s[A] = t[B] is an atom in tuple calculus, where s and t are tuple 

variables. 

Formulas (wffs) are built from atoms using the following rules: 

Bi. An atom is a formula. 

B2. If f and g are formulas, then “if, (0, f V g> f A g. f g are also formulas. 

B3. If f(x) is a formula where x is free, then 3x(f(x)) and \/x(f(x)) are also formulas; 

however, x is now bound. 

The logical implication expression f —» g, meaning if f then g, is equivalent to —if 

V g- Some well-formed formulas in tuple calculus are given below: 

u e ASSIGNED_TO (declares u as a tuple variable; the domain of u is the rela¬ 

tion ASSIGNED-TO) 

u [Project#] = 'COMP353' 

u e ASSIGNED_TO A u[Project#} = 'COMP353' 

3u(u e ASSIGNED_TO A s e EMPLOYEE 

A u[Project#] = 'COMP353' 

A s[Emp#] = u[Emp#]) 

(here u is a bound variable, and s is a free variable) 

3u,t (u e ASSIGNED_TO A s e EMPLOYEE A t e PROJECT 

A t[Project-Name] = ‘Database’ 

A u[Project#] = t[Project#\ 

A s[Emp#] = u[Emp#]) 

In the following examples we give some sample queries in tuple calculus using 

the relations shown in Figure 4.7. 
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Example 4.44 “Get complete details of employees working on a Database project,” The 

query can be stated as given below. In this case, the tuple variable s is 

defined on the relation EMPLOYEE and it appears by itself to signify that 

we are interested in all attributes of its domain relation. We are saying that 

there exist tuples u and t on the domain relations ASSIGNED_TO and PRO¬ 

JECT, respectively, such that the conditions indicated below are true. The 

tuple t has for the Project-Name attribute a value of ‘Database,’ and the 

Project# in u and t are the same. The Emp# value of s and u are the same, 

as well. Note that 3u,t(F(u,t)) is a shorthand notation for 3u(3t(F(u,t))). 

{s | s e EMPLOYEE 

A 3u, fit e PROJECT A t[Project-Name] = 'Database' 

A u e ASSIGNED_TO A u[Project#] = {[Project#] 
A s[£>np#] = u[Emp#])} 

The query “Get complete details of employees working on all Database 

projects” can be expressed as follows: 

{s j s e EMPLOYEE 

A \/fit e PROJECT A t[Project-Name] = 'Database' 

—> 3u(u e ASSIGNED_TO A u[Project#] = t[Project#] 
A s[Emp#] = u[Emp#])} 

An alternate method of writing this query without the logical implication is 

to replace f —> g by its equivalent form —if V g as follows: 

{s | s e EMPLOYEE 

A \/(t <£ PROJECT V t[Project-Name] # 'Database' 

V 3u(u e ASSIGNED_TO A u[Project#] = t[Project#] 
A s [Emp#] = u[Emp#])} ■ 

Any number of tuple variables can have the same relation as their domain as illus¬ 
trated in the following example. 

Example 4.45 “List the complete details about employees working on both COMP353 and 

COMP354.” In this instance, we require that there exist two tuples u1? u2 

of the relation ASSIGNED_TO with the values COMP353 and COMP354 

for the attribute Project#. The Emp# attributes of s, u1; and u2 are equal. 

{s | s € EMPLOYEE A 3u,,u2 (uj e ASSIGNED_TO 

A u2 e ASSIGNED_TO A ux[Emp#] = u2[Emp #] 

As [Emp#] = \i\[Emp#[ A Project#] = 'COMP353' 
A u^Project#] = 'COMP354')} 

We modify the above query to read “List the complete details about em¬ 

ployees working on either COMP353 or COMP354 or both.” Here we re¬ 

quire that there exist tuples u, of the relation ASSIGNED_TO with the value 

COMP353 or u2 of the same relation with the value COMP354 for the at¬ 

tribute Project#. The two “there exist” clauses are connected by the V 

operator. The Emp# attribute of s and either u, or u2, are equal. 
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{s | s e EMPLOYEE A 3u,(u, e ASSIGNED_TO 

A s[Emp#] = ux[Emp#] A u^[Project#] = 'COMP353' 

V 3u2(u2 e ASSIGNED_TO 

A s[Emp#] = u2[Emp#] A u2[Project#] = 'COMP354')} 

This query can be simplified to the following form: 

{s | s e EMPLOYEE A 3u,(u, e ASSIGNED_TO 

A s [Emp#] = ux[Emp#] A 

(u,[Project#] = 'COMP353'\/u ^Project#] = 'COMP354'))} ■ 

The following example illustrates the use of the universal quantifier. 

Example 4.46 “Get the employee numbers of employees other than employee 107 who 

work on at least all those projects that employee 107 works on.” Here a 

qualified variable, t[Emp#], is used to indicate that we are interested in 

finding the projection of tuple t on the attribute Emp#. The tuple t is from 

the relation ASSIGNED_TO, such that for all tuples Uj from ASSIGNED- 

TO with u\[Emp#] — 107, there exists a tuple u2 e ASSIGNED_TO with 

u2[Emp#] # 107. The value of the attribute Project# in u2 is the same as 

in U! with identical values in the attribute Emp# of tuples t and u2. The 

tuple expression for this query is given below: 

{t[Emp#]\ t e ASSIGNED_TO A 

\/u,(Ui e ASSIGNED-TO A ux[Emp#] = 107 

-» 3u2(u2 e ASSIGNED_TO A u2[Emp#] + 107 

A \ix[Project#} = u2[Project#]/\ t[Emp#] = u2[Emp#]))} 

Alternatively we can write this query without the logical implication by sub¬ 

stituting its equivalent form —if V g as follows: 

{t[Emp#]\ t e ASSIGNED_TO A 

Vu,(u! * ASSIGNED_TO V u,[Emp#] # 107 
V 3u2(u2 e ASSIGNED_TO A u2[Emp#] # 107 

A u\[Project#] = u2[Project#\A t[Emp#] = \x2[Emp#]j)] 

To avoid a procedural operation such as projection in a calculus query, we 

could define t to be on the relation scheme {Emp#) and rewrite this query 

expression as: 

{t(Emp#)\ \/ui(ui £ ASSIGNED_TO V ui [Emp#] # 107 
V 3u2(u2 e ASSIGNED_TO A u2[Emp#] # 107 

Au,[Project#] = u2[Project#]/\ t[Emp#] = u2[Emp#]))} ■ 

Negation and its transformation is illustrated in Example 4.47. 

Example 4.47 “Get employee numbers of employees who do not work on project 

COMP453.” In this query we are interested in a qualified tuple variable, 
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{[Emp#], t € ASSIGNED_TO, to satisfy the following condition: There 

does not exist a tuple u in the same relation such that the Project# attribute 

of u has the value COMP453 with identical values in the attribute Emp# of 

tuples t and u. The tuple calculus expression for this query is given below: 

{{[[Emp#]\ t e ASSIGNED_TO A 

—i3(u e ASSIGNED_TO A u[[Project#] = 'COMP453' 

A t[Emp#] = u[Emp#])} 

Alternatively, we can express this query in the following equivalent 

form: 

{{[Emp#]\ t e ASSIGNED_TO A 

\/u(u t ASSIGNED_TO V t[Emp#] # u[Emp#] 

V u[Project#] # 'COMP453')} ■ 

To find employees who work on all projects we use the universal quantifier and 

logical implication. 

Example 4.48 “Compile a list of employee numbers of employees who work on all proj¬ 

ects.” The qualified tuple variable t[Emp#] satisfies the following 

predicates: For all tuples p from PROJECT, there exists a tuple u in 

ASSIGNED_TO such that the value of Project# in u and p are the same, 

and furthermore, the value of the qualified tuple variables t[Emp#] and 

u\Emp#] are the same. 

{t[Emp#]\ t e ASSIGNED_TO A 
\/p(p e PROJECT -* 3u(u e ASSIGNED_TO 
A p[Project#] = u[Project#] 

A t[Emp#] = u[Emp#]))} 

The above can be rewritten as: 

{t[Emp#]| t e ASSIGNED_TO A 
\/P(P * PROJECT V 3u(u e ASSIGNED_TO 
A p[Project#] = u[Project#] 

A {[Emp#] = u[Emp#]))} ■ 

The following example illustrates a method of finding employees who work at 
least one of a selected group of projects. 

Example 4.49 “Get employee numbers of employees, not including employee 107, who 

work on at least one project that employee 107 works on.” We are con¬ 

cerned here with a tuple t such that there exist tuples s and u in the relation 

ASSIGNED_TO, such that for the tuples s and u, the value of Project# is 

identical with the value of the attribute Emp#; in s, 107 and in t, not 107. 

The value of the attribute Emp# in t and u is the same. This query can be 
expressed in tuple calculus as follows: 
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{i[Emp#}\ t e ASSIGNED_TO A 

3s, u (s e ASSIGNED_TO A u e ASSIGNED_TO 
A s[Project#] = u[Project#] 
A s[Emp#] = 107 

A t[Emp#] # 107 

A t[Emp#] = u[Emp#])} U 

We can use tuple calculus to define the division operation on the two relations 
P(P) and Q(Q), where QCP: 

R = P v Q 

The tuples in R are those projections of P on the set of attributes P-Q such 

that each tuple in the relation Q, when concatenated with all the tuples in R, gives 

the tuples in P. We can express this conditions for tuples in R as follows: 

R = {t | teP[P —Q] A \/s(seQA(t||s e P)} 

To simplify the above, we can say that the tuples in R are those projection of 

tuples in P such that for all tuples s in Q there is a tuple u in P, which when projected 

on Q gives s and when projected on P-Q gives the tuples in R. In other words, the 

tuples in R are elements of the projection of P, on P — Q, each of which when 

concatenated with all tuples s of Q is an element of P. We can express this modifi¬ 
cation to conditions for tuples in R as follows: 

R = {t | teP[P —Q] A \/s(seQ —» 3u(ueP A u[Q] = s A u[P — Q] = t[P — Q]))} 

From this second specification, we can express the division operation in terms 
of the other relational algebraic operations as: 

R = P Q = 7tp_q(P) - ttp_q((ttp_q(P) x Q) - P) 

We illustrate the above using the relations P(P) and Q(Q) shown in Figure Li 

of Example 4.28. The term ttp_q(P) gives all objects in the relation P. Some of 

these objects do not have all the properties given in Q. The term ttp_q(P) x Q - 

P gives those tuples of P that will not participate in the result of the division. To find 

the objects that do not have all the properties in Q, we project these nonparticipating 

tuples on the attributes P — Q. The result is obtained by subtracting these nonpar¬ 

ticipating objects from all objects. These steps are illustrated in Figure 4.8. 

4.4.2 Domain Calculus 

As in tuple calculus, a domain calculus expression is of the form 

{X | F(X)} 

where F is a formula on X and X represents a set of domain variables. The expres¬ 

sion characterizes X such that F(X) is true. 

For the examples in this section, we continue to use the same database that we 
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Figure 4.8 Division operation is in terms of other relational algebraic operations. 

ttp-q(P) Q ttp-q(P) * Q ttp_q(P) X Q - P 

A B A B 

al b, ai b, 

a2 b2 a2 b, 

a3 a3 b, 

a4 a4 b, 

a5 a5 b, 
a. b2 

TTp-qI'H' p-q(P) x Q P) 
a2 

a3 

b2 
b2 

A a4 t>2 
a5 b2 

34 

a2 

a3 

A B 

a» b. 

a2 t>2 

a3 b2 

TTp_q(P) - Up —Q(lTp —Q(P) X Q - P) 

A 

a, 

a5 

used for relational algebra and tuple calculus. It consists of the following relations, 

some tuples of which are shown in Figure 4.7: 

PROJECT (Project#, Project-Name, Chief-Architect) 

EMPLOYEE (Emp#, EmpName) 

ASSIGNED-TO (Project#, Emp#) 

Example 4.50 Consider the following query: “Get employee numbers for employees work¬ 

ing on project COMP353.” The method of converting this query into a 

domain calculus expression is by conjecturing the existence of p, a Pro¬ 

ject#. This Project# is such that the current value of the domain variables 

e (the domain of e being the domain of Emp#) and p (the domain of p 

being the domain of Project#) are in a tuple of the relation ASSIGNED- 

TO and the value of p is COMP353. We can formulate this in the manner 

of a domain calculus expression as follows: 

{e | 3 p (<e, p>e ASSIGNED_TO A p = 'COMP353')} 

In the above formulation, we are specifying the set of domain values 

for the domain variable e such that the predicate is true. The predicate spec¬ 

ifies that there exists a value of the domain variable p such that its current 

value along with the value of the domain variable e is in (the same tuple of) 

the relation ASSIGNED_TO. The specific value of p is the value 
COMP353. 

Since we are interested in a particular known value of p, the quantifier 

can be dropped and the query simplified further to: 

{e | <e, p> e ASSIGNED_TO A p = 'COMP353'} ■ 
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We use two domain variables to retreive both the employee number and name 
as illustrated in the following example. 

Example 4.51 Consider the query: “Get list of employees (both number and name) work¬ 

ing on the project COMP353,’’ which can be rephrased as: “Get employee 

details such that the employee is assigned to the project COMP353.” 

Here we are really specifying that “for the employee whose details we 

want, there exists a tuple in the relation ASSIGNED_TO for that employee 

for the COMP353 project.” Now the value e that is associated with the 

value COMP353 in the ASSIGNED_TO tuple must also appear along with 

a value for m in a tuple of the employee relation. In domain calculus this 
can be specified as: 

{e,, m | <e,, m> e EMPLOYEE) A 3e2 (<p, e2> (ASSIGNED_TO A 
p = 'COMP353' A e, = e2)} ■ 

As in the case of tuple calculus, we have only specified the characteristics of 

the desired result; the system is free to decide the operations and their execution 

order to satisfy the request. Furthermore, a variable appearing in a formula is said to 

be free unless it is quantified by the existential quantifier 3 or the universal quanti¬ 

fier V- 

Domain Calculus Formulas 

Domain calculus formulas are also built from atoms. As in tuple calculus, an atom 

is either of the form given below in A) or of the form in A2. Here R(R) is a relation 

and X is the set of domain variables {x,, x2, . . . , xn} in domain calculus, defined 

on a subset of the relation’s attributes. 

A, X C R 

A2. x 0 y or x 0 c, where € is one of the comparison operators { =, =£, <, <, >, >}, 

x and y are domain-compatible variables, and c is a domain-compatible constant. 

For example, A = B is an atom in domain calculus. 

Formulas (wffs) are built from atoms using the following rules: 

B|. An atom is a formula. 

B2. If f and g are formulas, then “if, (f), f V f A g, f —» gare also formulas. 

B3. If f(X) is a formula where X is free, then 3X(f(X)) and \/X(f(X)) are also for¬ 

mulas. 

The expression f —> g, meaning if f then g, is equivalent to —if V g. Domain 

calculus expressions use the same operators as those in tuple calculus. The difference 

is that in domain calculus, instead of using tuple variables, we use domain variables 

to represent components of tuples. A tuple calculus expression can be converted to a 

domain calculus expression by replacing each tuple variable by n domain variables; 

here n is the arity of the tuple variable. Some well-formed domain calculus formula 

examples are given on the next page. 
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<a,b> e ASSIGNED_TO (declares a and b as domain variables defined on the 

domain of the attributes of the ASSIGNED_TO relation) 

a = 'COMP353' 

<a,b> e ASSIGNED_TO Aa = 'COMP353' 

3a,b (<a,b> e ASSIGNED_TO A <c,d> e EMPLOYEE A a = 'COMP353' A 

b = c) 

3a,b,e,f (<a,b> e ASSIGNED_TO A <c,d> e EMPLOYEE 

A <e,f,g> e PROJECT 

Ab = c Aa = e Af = 'Database') 

(Note that g is used as a placeholder, so that we know what domain the variable 

belongs to.) 

Here we give some sample queries in domain calculus. We continue to use the 

relations given below and shown in Figure 4.7 for these queries: 

PROJECT (Project#, Project-Name, Chief-Architect) 

EMPLOYEE (Emp#, EmpName) 

ASSIGNED-TO (Project#, Emp#) 

Furthermore, we use the domain variables p, e Dom(Project#), nj e Dom(Project- 

Name), Cj e Dom( Chief-Architect), e, e Dom (Emp#), m, e Dom (EmpName), where 

Dom (Project#), etc. are the domains of the corresponding attributes. The expression 

<Pi,e i > e ASSIGNED_TO evaluates as true if and only if there exists a tuple in 

relation ASSIGNED_TO with the current value of the corresponding domain vari¬ 

ables. As before we use the notation Bp^edP) as shorthand for 3p|3ei(P). 

Example 4.52 The query “Compile the details of employees working on a Database pro¬ 
ject” can be stated as: 

{e,m | 3pi,e,,p2,n2 (<p,,e,> e ASSIGNED_TO 

A <e,m> e EMPLOYEE 

A <p2,n2,c2> e PROJECT 

A e, = eA p, = p2 A n2 = 'Database')} ■ 

Any number of domain variables can be defined on the domains of the attributes 
of a relation as illustrated below. 

Example 4.53 Compile the details of employees working on both COMP353 and 
COMP354. 

{e,m | 3p1,e1,p2,e2 ( <e,m> e EMPLOYEE 

A <Pl,e,> e ASSIGNED_TO 

A <p2,e2> e ASSIGNED_TO 

A e = e, A e = e2 

A p, = 'COMP353' A p2 = 'COMP354')} ■ 
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The use of the universal quantifier and logical implication is demonstrated in 
Example. 4.54. 

Example 4.54 “Obtain the employee numbers of employees, other than employee 107, 

who work on at least all those projects that employee 107 works on.” 

{e | <p,e> € ASSIGNED_TO V Pi,e, 
(<p,,e,> e ASSIGNED_TO A e, = 107 

(3p2,e2(<p2,e2> e ASSIGNED_TO 
A e2 + 107 A pi = p2 A e = e2))} 

An equivalent form of this query where the implication is replaced by the 
V operator is given below: 

{e | <p,e> € ASSIGNED_TO A 

V Pi,e,(<pi,e,> <£ASSIGNED_TO V e, ^ 107 

V (3p2,e2(<p2,e2> e ASSIGNED_TO 
A e2 + 107 A p, = p2 A e = e2))} ■ 

Negation is illustrated in Example 4.55. 

Example 4.55 “Get employee numbers of employees who do not work on the COMP453 
project.” 

{e | 3p (<p,e> e ASSIGNED_TO 

A V pi,e, (<p,,e,> <£ ASSIGNED_TO 

V Pi ^ COMP453 V ei ^ e))} ■ 

Another example of the use of the universal qualifier and logical implication is 
given below. 

Example 4.56 “What are the employee numbers of employees who work on all projects?” 

{e | 3 p(<p,e> e ASSIGNED_TO 

A V Pi(<Pi ,ni ,Cj > e PROJECT 
<pi,e> e ASSIGNED_TO))} ■ 

The domain calculus formula to find employees who are assigned to at least one 

of a selected group of projects is given in Example 4.57. 

Example 4.57 “Get the employee numbers of employees, other than employee 107, who 

work on at least one project that employee 107 works on.” 
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{e | 3 p,pl,ei,p2,e2(<p,e> e ASSIGNED_TO 

A <p„e,> e ASSIGNED_TO 

A <p2,e2> e ASSIGNED_TO 

A e2 + 107 A pi = p2 A ei = 107 A e = e2)} ■ ; 

4.5 Concluding Remarks on Data Manipulation 

Consider tuple calculus expression: 

{x | x ^ R} 

Evaluating this expression generates tuples that are not in the relation R and entails 

generating an infinite number of tuples. If the domain of the tuple variable x were a 

relation scheme X, the tuples generated would be an indeterminate number of such 

tuples on the relation scheme X. However, in spite of this limitation, the number of 

tuples generated will be immense and the majority of these tuples are not likely to 

be in the actual database. In a database application an additional limitation is im¬ 

posed: that all evaluating is done with respect to the content of the database at the 

time of the evaluation of the query. This further limitation generates, for the above 

expression, only those tuples that are in the database and not in the relation R. 

However, this evaluation is also prohibitively expensive in terms of computing re¬ 

sources used. 

For relational calculus, by definition, infinite relations might be generated. In 

practice, this might be limited to finite relations because of condition imposed in the 

formula. It is therefore clear that the tuple relation calculus formulas are not only 

wffs, but they do not generate infinite relations. This in turn requires that the domain 

of the formula be clearly defined. The domain of a formula F(X), where X is a set 

of tuple variables, is the set of values either appearing explicitly in the formula or 

being referenced in it. The values that appear explicitly are constants and the values 

being referenced are from the relations appearing in the formula. Each such relation 

is assumed to be of finite cardinality. The purpose of defining the domain of a for¬ 

mula is to ensure that the result relation generated by evaluating the formula is also 

in the domain of the formula. This ensures that the result relation is finite and only 

tuples from the domain of the formula have to be examined in evaluating the expres¬ 

sion. Such a tuple relational calculus expression is said to be safe. 

The concept of safety can be applied to domain calculus expressions by defining 

a domain of a domain calculus expression and by ensuring that the result relation is 

within this domain. If we limit the relational calculus expressions to safe expressions, 

then tuple calculus and domain calculus are equivalent. Furthermore, both are equiv¬ 

alent to relational algebra. This means that for every safe relational calculus expres¬ 

sion there exists a relational algebraic expression and vice versa. Also, we can write 

an equivalent domain calculus expression for a tuple calculus expression and vice 
versa. 

Even though the final calculus expression for a query is more compact than an 

algebraic expression, it does not mean that calculus is a better interface, particularly 

with complex queries. It is natural to break such queries down into smaller steps (as 

in the case of the algebraic formulation; we presented a few examples of this in 

Section 4.3.3) and then compose the steps into a neat calculus formula. This may be 
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the reason behind the success of SQL as a relational query language. SQL is clearly 

not assertional and includes intersection, union, and difference operations. 

In Sections 4.3 and 4.4 we considered the features of relational data manipula¬ 

tion operations using relational algebra and relational calculus, respectively. The data 

manipulation language for the DBMS must supplement them with additional capabil¬ 

ities, such as relation creation, deletion, and modifications. Facilities are also pro¬ 

vided for the insertion, deletion, and modification of tuples. These additional opera¬ 

tions enables users to manipulate and update the data contained in the database. In 

the derivation operations, the attributes of one tuple are compared with attributes of 

another tuple or constants. In the alteration operations, the attribute values are altered 

or tuples are removed or inserted. As in the case of other relational operations, com¬ 
patibility is also required in derivation and alteration operations. 

A number of query languages based on the concepts of these sections have been 

developed. Three of these query languages (SQL, QUEL, and QBE) have gained 

wider acceptance than the others. SQL is in widespread use and, with an ANSI 

standard definition, has become the de facto query language for relational database 

systems. This in no way detracts from the elegance of QUEL. We consider all three 
languages in Chapter 5. 

Relational Algebra vs. Relational Calculus 

The relational algebra operations described in Section 4.3 allow the manipulation of 

relations and provide a means of formally expressing queries. The sequence of op¬ 

erations necessary to answer the query is also inherent in the relational algebraic 

expression. In other words, relational algebra is a procedural language. In Section 

4.4 we considered two nonprocedural relational calculus query systems: tuple and 

domain calculus. In calculus queries we specify only the information required, not 

how it is obtained. 

It can be proved that the expressive power of relational algebra and relational 

calculus are equivalent (Ullm 82). This means that any query that could be expressed 

in relational algebra could be expressed by formulas in relational calculus. Further¬ 

more, any safe formula of relational calculus may be translated into a relational 

algebraic query. 

There have been a number of proposed changes and additions to both relational 

algebra and calculus; for instance, the need for aggregation (average, count, and 

other such functions) and update operations in these query systems. Many researchers 

recognize this as omissions from the original formulation of relational algebra and 

calculus. 

4.6 Physical Implementation Issues 

So far, we have considered the relational model and the operations defined in the 

model. We have refrained from mentioning any implementation issues because, to 

the end user, these are of little concern. The relational algebra operations in some 

respects define what is to be done, but even then the DBMS can optimize the actual 

processing of the query and perform the operations in a different order (see Chapter 
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10 on query processing). In relational calculi we do not even specify the operations. 

To the users, the DBMS is a black box that insulates them from the details of file 

definitions and file management software as supported by the operating system. As 

we mentioned in Chapter 1, one function of the DBMS is to provide physical data 

independence. 
The DBA cannot optimize the database for all possible query formulations. 

Thus, for every relation the anticipated volume of different types of queries, updates, 

and so on is estimated to come up with an anticipated usage pattern. Based on these 

statistics, decisions on physical organization are made. For example, it would be 

inappropriate to provide an access structure (say a B + -tree) for every attribute of 

every relation; these secondary access structures have storage and search overheads. 

The DBMS can make use of all the features of the file management system. As 

most DBMSs have versions that run on different machines and under different oper¬ 

ating system environments, the DBMS may support file systems not available under 

the host machine environment. Thus, every DBMS defines the file and index struc¬ 

tures it supports. The DBA chooses the most appropriate file organization. In the 

event of changes to usage patterns or to expedite the processing of certain queries, a 

reorganization can take place. 

A large number of queries requires the joining of two relations. It may be ap¬ 

propriate to keep the joining tuples of the two relations either as linked records or 

physically grouped into a single record. 

We may consider a relation to be implemented in terms of a single (or multiple) 

file(s) and a tuple of the relation to be a record (or collection of records). For the 

file, we may define a storage strategy, for example, sequential, indexed, or random, 

and for each attribute we can define additional access structures. 

The more powerful DBMSs allow a great deal of implementation detail to be 

defined for the relations. The more common but less powerful DBMSs (mostly on 

microcomputers) allow very simple definitions, for example, indexing on certain at¬ 

tributes (this is usually a B + -tree index). Some systems require the index to be 

regenerated after any modification to the indexing attribute values. Additional com¬ 

mands for sorting and other such operations are also supported. The typical file or¬ 

ganization is plain sequential. (In fact, many micro-based DBMSs confuse a relation 

or table with a flat sequential file.) 

A single relation may be stored in more than one file, i.e., some attributes in 

one, the rest in others. This is known as fragmentation. This may be done to im¬ 

prove the retrieval of certain attribute values; by reducing the size of the tuple in a 

given file more tuples can be fetched in a single physical access. The system asso¬ 

ciates the same internally generated identifier, called the tuple identifier, to the dif¬ 

ferent fragments of each tuple. Based on these tuple identifiers a complete tuple is 
easy to reconstruct. 

In addition to making use of the file system,3 the DBMS must keep track of the 

details of each relation and its attribute defined in the database. All such information 

is kept in the directory. The directory can be implemented using a number of system- 

defined and -maintained relations. For each relation, the system may maintain a tuple 

in some system relation, recording the relation name, creator, date, size, storage 

3To achieve satisfactory performance, many DBMSs develop their own file management systems and use disk input/output 
routines that directly access the secondary storage devices. 
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structure, and so on. For each attribute of the relation, the system may maintain a 

tuple recording the relation identifier, attribute name, type, size, and so forth. Dif¬ 

ferent DBMSs keep different amounts of information in the directory relations. How¬ 

ever, because the implementation is usually as relations, the same data manipulation 

language that the DBMS supports can be used to query these relations. 

In this section we briefly examined some implementation issues. Implementors 

of databases and DBMSs must be aware that there exists much more detail than that 
contained in the model. 

Summary 

In this chapter we studied the relational data model, consisting of the relational data 

structure, relational operations, and the relational integrity rules. This model borrows 

heavily from set theory and is based on sound fundamental principles. Relational 

operations are applied to relations, and the result is a relation. 

Conceptually, a relation can be represented as a table; each column of the table 

represents an attribute of the relation and each row represents a tuple of the relation. 

Mathematically a relation is a correspondence between a number of sets and is a 

subset of the cartesian product of these sets. The sets are the domains of the attributes 

of the relation. 

Duplicate tuples are not permitted in a relation. Each tuple can be identified 

uniquely using a subset of the attributes of the relation. Such a minimum subset is 

called a key (primary) of the relation. The unique identification property of the key 

is used to capture relationships between entities. Such a relationship is represented 

by a relation that contains a key for each entity involved in the relationship. 

Relational algebra is a procedural manipulation language. It specifies the oper¬ 

ations and the order in which they are to be performed on tuples of relations. The 

result of these operations is also a relation. The relational algebraic operations are 

union, difference, cartesian product, intersection, projection, selection, join, and di¬ 

vision. 
Relational calculus consists of two distinct calculi, tuple calculus and domain 

calculus. In relational calculus queries are expressed using variables, a formula in¬ 

volving these variables, and compatible constants. The query expression specifies the 

result relation to be obtained without specifying the mechanism and the order used 

to evaluate the formula. It is up to the underlying database system to transform these 

nonprocedural queries into equivalent, efficient, procedural queries. In relational tu¬ 

ple calculus the variables represent tuples from specific relations; in domain calculus 

the variables represent values from specific domains. 

Since relational calculus specifies queries as formulas, it is important that these 

formulas generate result relations of finite cardinality in an acceptable period of time. 

This in turn requires that the formulas be defined on a finite domain and the result 

be within that domain. The domain consists of relations and constants appearing in 

the formulas. Such formulas are called safe. With a safe formula, it is possible to 

convert a query expression from one representation to another. 

In the next chapter we consider a number of commercial query languages based 

on relational algebra and calculus. 
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Key Terms 

cardinality n-tuple predicate calculus 

degree projection predicate 

arity relation scheme one-place predicate 

projecting unique identification monadic predicate 

join nonredundancy two-place predicate 

set prime attribute atomic formula 

members associative relation well-formed formula (wff) 

intension foreign key bound variable 

extension target free variable 

union domino deletion closed 

intersection cascading deletion open 

cartesian product union compatible tuple calculus 

difference set-theoretic union atom 

atomic domain restriction operation domain calculus 

application-independent domain theta join safe 

application-dependent domain equi-join fragmentation 

structured domain natural join tuple identifier 

composite domain relational calculus 

Exercises 

4.1 For the relations P and Q shown in Figure N, perform the following operations and show the 

resulting relations. 

(a) Find the projection of Q on the attributes (B,C). 

(b) Find the natural join of P and Q on the common attributes. 

(c) Divide P by the relation that is obtained by first selecting those tuples of Q where 

the value of B is either b, or b2 and then projecting Q on the attributes (C,D). 

Figure N For Exercise 4.1. 

P 

A B C D 

a> b2 c2 ^2 

a2 b, C) d2 

ai b, c2 d, 

a2 b, C2 d2 

a. t>2 Cl d2 

a3 b, c2 d, 

a. b2 C2 ^2 

a2 b, Cl d2 

a. b3 C2 ^2 

Q 

B C D 

b, Cl 

tb Cl 

t>2 C2 d, 

b. Cl d2 

b3 C2 d2 
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4.2 Given the E-R diagram in Figure O, give the most suitable relational database scheme to 

implement this database. For each relation, choose a suitable name and list corresponding 

attributes, underlining the primary key. For each relation, also identify the foreign keys. 

Could any problems result as a consequence of tuple additions, deletions, or updates? 

Figure O For Exercise 4.2. 

4.3 For the database of Figure O, write relational algebra and calculus expressions to pose the 

following queries: 

(a) Get the supplier details and the price of bolts for all suppliers who supply ’bolts’. 

(b) Find details of parts that suppliers who supply ‘bolts’ costing less than $0.01 are 

capable of supplying, with the parts being of a quality better than ‘x’. 

4.4 Given the relational schemes: 

ENROLL (S#, C#, Section)—S# represents student number 

TEACH (Prof, C#, Section)—C# represents course number 

ADVISE (Prof, S#)—Prof is thesis advisor of S# 

PRE-REQ (C#, Pre-C#)—Pre-C# is prerequisite course 

GRADES (5#, C#, Grade, Year) 

STUDENT (S#, Sname)—Sname is student name 

Give queries expressed in relational algebra, tuple calculus, and domain calculus for the 

following queries: 

(a) List all students taking courses with Smith or Jones. 

(b) List all students taking at least one course that their advisor teaches. 

(c) List those professors who teach more than one section of the same course. 

(d) List the courses that student “John Doe” can enroll in, i.e., has passed the 

necessary prerequisite courses but not the course itself. 
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4.5 An orchestra database consists of the following relations: 

CONDUCTS (Conductor, Composition) 

REQUIRES (Composition, Instrument) 

PLAYS (Player, Instrument) 

LIKES (Player, Composition) 

Give relational algebra, tuple calculus, and domain calculus queries for the following 

queries? 

(a) List the players and their instruments who can be part of the orchestra when 

Letitia Melody conducts. 

(b) From the above list of players, identify those who would like the composition 

they are to play. 

4.6 Give the equivalent 

(a) English statement, 

(b) domain calculus, and 

(c) algebra 

expressions for the following tuple calculus query: 

{t|t e rel, A 3s(s € rel2 A (s.c = t.b))} 

given the relations reli(A,B) and rel2(C,D). 

4.7 Convert the following domain calculus query 

{<A,B> | <A,B> e rel, A B = 'B,' V B = 'B2'} 

into 

(a) an English statement 

(b) relational algebra 

(c) tuple calculus. 

4.8 Investigate the physical implementation details of a relational DBMS with which you are 

familiar. Under what circumstances would any file organization not supported by the system 

be beneficial? 

4.9 An inverted file management system allows for the definition of inverted files and supports 

queries of the form “List records (or tuples) where the attribute_name has value x,” and a 

Boolean combination of such queries. Discuss how the relational algebra operations can be 

handled using such a system. 

4.10 Consider the queries in Examples 4.44 through 4.49. Rewrite the queries in tuple calculus; 

however, use the quantifier \y instead of 3 and vice versa. 

4.11 Consider the queries in Examples 4.52 through 4.57. Rewrite the queries in domain calculus; 

however, use the quantifier V instead of 3 and vice versa. 

4.12 Using the relations ASSIGNED_TO, EMPLOYEE, and PROJECT given in the text, generate 

the following queries in relational algebra. 

(a) Acquire details of the projects for each employee by name. 

(b) Compile the names of projects to which employee 107 is assigned. 

(c) Access all employees assigned to projects whose chief architect is employee 109. 

(d) Derive the list of employees who are assigned to all projects on which employee 

109 is the chief architect. 

(e) Get all project names to which employee 107 is not assigned. 

(f) Get complete details of employees who are assigned to projects not assigned to 

employee 107. 
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4.13 Repeat Exercise 4.12 using tuple calculus. 

4.14 Repeat Exercise 4.12 using domain calculus. 

4.15 Give the tuple calculus expressions for the relational algebraic operation of (a) the union of 

two relations P and Q, (b) the difference P —Q, (c) the projection of relation P on the 

attribute X, (d) the selection aB(P), (e) the division of relation P by Q, i.e., P 4- Q. 

4.16 Consider the following relations concerning a driving school. The primary key of each 

relation is in boldface. 

STUDENT : (St-Name, Class#, Th-Mark, Dr-Mark) 

STUDENT_DRIVING_TEACHER : (St-Name, Dr_T-Name) 

TEACHER_THEORY_CLASS : (Class#, Th-T-Name) 

TEACHER-VEHICLE : (Dr-T-Name, License#) 

VEHICLE : (License#, Make, Model, Year) 

A student takes one theory class as well as driving lessons and at the end of the session 

receives marks for theory and driving. A teacher may teach theory, driving, or both. Write 

the following queries in relational algebra, domain calculus, and tuple calculus. 

(a) Find the list of teachers who teach theory and give driving lessons on all the 

vehicles. 

(b) Find the pairs of students satisfying the following conditions. 

They have the same theory mark and 

They have different theory teachers and 

They have the same driving mark and 

They have different driving teachers 

(c) Find the list of students who are taught neither theory lessons nor driving lessons 

by “Johnson” (teacher). 

(d) Find the list of students who have better marks than “John” in both theory and 

driving. 

(f) Find the list of students who have more marks than the average theory mark of 

class 8 (Class#). 

(g) Find the list of teachers who can drive all the vehicles. 

4.17 Comment on the correctness of the following relational calculus solutions to the query: “Get 

employee numbers of employees who do not work on project COMP453.” 

(a) {t[Emp#] | t e ASSIGNED-TO A 
\/u(u € ASSIGNED_TO A t [Emp#] = u[Emp#] 

A u[Project#] # 'COMP453')} 

(b) {e |3p (<p,e> e ASSIGNED_TO 

A \/ p,,e! (<p,,e,> e ASSIGNED_TO 

A p, = 'COMP453' A e # e,)))} 

4.18 Comment on the correctness of the following relational calculus solutions to the query: 

“Compile a list of employee numbers of employees who work on all projects.” 

(a) {t[Emp#]\ t e ASSIGNED_TO A 
3p,u (p e PROJECT Aue ASSIGNED_TO 

A p[Project#] = u [Project#] 

A t [Emp#] = u[Emp#] 

(b) {e | V P2(<P2,n2,c2> e PROJECT 

A <p,e> € ASSIGNED_TO 
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—> 3 pi ,e, (<p1,e1> e ASSIGNED_TO 

A p, = p2 A e = e,))} 

(c) {e | 3p (<p,e> e ASSIGNED_TO 

A \/ p,,e, (<p,,e!> £ ASSIGNED_TO 

v P. * COMP453 V e, * e))} 

(d) {e | 3p (<p,e> e ASSIGNED-TO 

A \/ Pi(<Pi,n1,c1> e PROJECT 

-> <p,,e> e ASSIGNED_TO))} 

4.19 Comment on the correctness of the following relational calculus solution to the query: 

“Acquire the employee numbers of employees, other than employee 107, who work on at 

least one project that employee 107 works on.” 

{e |3p,p,,ei (<p,e> e ASSIGNED_TO 

A <p,,e,> e ASSIGNED_TO 

A p, = p A e # e, A e, = 107)} 
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In this chapter we focus on a number of commercial data manipulation languages. 
We look at their main features and illustrate their usage. 

Introduction 

In the preceding chapter we looked at query languages for the relational model based 

on relational algebra or calculus. Data manipulation languages for commercial data¬ 

base systems, however, do not conform precisely to any of these languages. The 

commercial implementation of the query languages have some restrictions and omis¬ 

sions, as well as extensions. Most of the commercial languages, for example, support 

arithmetic, string and aggregate operators (such as average, maximum, etc.). 

Relational algebra or relational calculi provide a powerful set of operations or 

means to specify queries, as we saw in Chapter 4. These operations form the basis 

for the data manipulation language component of a DBMS. The DBMS must also 

support data definition capabilities, with commands for the creation, deletion, and 

modification of relations, the insertion, deletion, and modification of tuples, and fea¬ 
tures to make it easier or more convenient to use. 

In this chapter, although we do not provide detailed syntax or semantics, we 

demonstrate some of the features of Structured Query Language (SQL), Query Lan¬ 

guage (QUEL), and Query-By-Example (QBE). SQL is not truly non-procedural and 

uses features of relational algebra as well as relational calculus. QUEL is based on 

tuple calculus. QBE is a two-dimensional language based on domain calculus. None 

of these languages are purely procedural and consequently none of them quite follows 

the relational algebraic philosophy. Individual implementation of these languages, as 

with programming languages, has its own flavor. 

In the examples of this chapter we use the relations discussed below, referring 

to the hotel and restaurants example presented in Chapter 2. 

As we saw in Chapter 2, the aggregation BILL represents the SERVE relation¬ 

ship among the entities GUEST, TABLE, and WAITER. The aggregation BILL re¬ 

quires The introduction of a unique bill number for identification'. In addition, the 

following attributes from the SERVE relationship and the entities involved in the 

relationship can be used for the aggregated entity: unique bill number, waiter identi¬ 

fier, table identifier, day, number of guests in party, total, tip. We have used day 

here as the name of one of the attributes instead of date, which is a reserved keyword 

in some commercial DMLs. 

Now let us consider the relationship ORDR, shown in Figure 5.1, between the 

entities bill and menu. (Because ORDER is a reserved keyword in most query lan¬ 

guages we use the name ORDR for this relationship.) A menu has a number of dishes 

with a price and description for each item. The guests order a number of dishes (more 

than one of the same dish may be consumed). The structure of the tables for the 

relations and the data type declarations are given below. Some tuples of these rela¬ 

tions are shown in Figure 5.2. 

MENU (Dish#, Dish-Description, Price) 

Dish#: integer—unique identifier 

Dish-Description: text—name and other details of dish 

Price: real—price of the dish 
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Figure 5.1 The ORDR relationship. 

BILL (Bill#, Day, Table#, Waiter#, Total, Tip) 

Bill#: integer—unique bill identifier 

Day. date—in yyyymmdd unsigned decimal digits format 

Table#: integer—table number 

Waiter#: integer—employee identifier 

Total: real—total amount 

Tip: real 

ORDR (Bill#, Dish#, Qty ) 

Bill#: integer—bill identifier 

Dish#: integer—dish identifier 

Qty: integer—number of dish ordered by client 

The DUTY-ALLOCATION relationship (Figure 5.3) between various positions 

(POSITION) and employees (EMPLOYEE) in a restaurant can be described by the 

attributes Day and Shift. Each position in the restaurant is defined by a unique Posting 

-No and requires a (minimum) skill specified by Skill. The structure of the tables for 

these entities and the relationship is given below. Some tuples from these relations 

are given in Figure 5.4. 

Figure 5.2 Some tuples from the MENU, BILL, and ORDR relations. 

MENU ORDR 

Dish# Dish—Description Price 

50 Coffee 2.50 

100 Scrambled eggs 7.50 

200 Special du jour 19.50 

250 Club sandwich 10.50 

300 Pizza 14.50 

Bill# Dish# Qty 

9234 50 2 

9234 250 2 

9235 300 1 

BILL 

Bill# Table# Day Waiter# Total Tip 

9234 12 19860419 123456 26.00 3.90 
9235 17 19860420 123461 14.50 2.20 
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Figure 5.3 The DUTY-ALLOCATION relationship. 

EMPLOYEE (Empl-No, Name, Skill, Pay-Rate) 

Empl-No: integer—unique identifier 

Name: string—employee’s name 

Skill: string—employee’s skill 

Pay-Rate: real—hourly pay rate 

POSITION (Posting-No, Skill) 

Posting-No: integer—unique position identifier 

Skill: string—skill required for the position 

Figure 5.4 Some Tuples from EMPLOYEE, POSITION, DUTY-ALLOCATION relations. 

EMPLOYEE POSITION 

Empl-No Name Skill Pay-Rate 

123456 Ron waiter 7.50 

123457 Jon bartender 8.79 

123458 Don busboy 4.70 

123459 Pam hostess 4.90 

123460 Pat bellboy 4.70 

123461 Ian maitre d’ 9.00 

123471 Pierre chef 14.00 

123472 Julie chef 14.50 

Posting-No Skill 

321 waiter 

322 bartender 

323 busboy 

324 hostess 

325 maitre d’ 

326 waiter 

350 chef 

351 chef 

DUTY-ALLOCATION 

Posting-No Empl-No Day Shift 

321 123456 19860419 1 

322 123457 19860418 2 

323 123458 19860418 1 

321 123461 19860420 2 

321 123461 19860419 2 

350 123471 19860418 1 

323 123458 19860420 3 

351 123471 19860419 1 



212 Chapter 5 Relational Database Manipulation 

DUTY-ALLOCATION (Posting-No, Empl-No, Day, Shift) 

Posting-No\ integer—indicates the position assigned 

Empl-No: integer—employee identifier 

Day : date—in yyyymmdd format 

Shift: integer—work day divided into shifts 

5.2 SQL 

Structured Query Language (SQL) originated with the System R project in 1974 

at IBM’s San Jose Research Center. The purpose of this project was to validate the 

feasibility of the relational model and to implement a DBMS based on this model. 

The results of this project are well documented in the database literature. In addition 

to contributing to the concept of query compilation and optimization and concurrency 

control mechanisms, the most salient result of this research project was the develop¬ 

ment of SQL. The System R project, concluded in 1979, was followed by the release 

of a number of commercial relational DBMS products from IBM. The first of these 

was SQL/DS for IBM’s mid-range computers. Subsequently, DB2 was released for 

IBM’s mainframe systems. 

SQL (the original version was called SEQUEL and a predecessor of SEQUEL 

was named SQUARE) was the data definition and manipulation language for System 

R. SQL has emerged as the standard query language for relational DBMSs, and 

most of the commercial relational database management systems use SQL or a 

variant of SQL. 

Response times and throughput in relational database applications have tradition¬ 

ally been slow, when compared to a similar application using network or hierarchical 

systems. This necessitated generating the best method for evaluating a query. A re¬ 

cent release of DB2 (version 2) promises a performance, measured in terms of 

throughput in real-time transaction processing, comparable to those available with 

the application using DBMSs based on other data models. This throughput, on IBM’s 

3090 600S six-processor running under the MVS/ESA operating system, is reported 

to be over 400 simple transactions per second and over 200 complex transactions per 

second. In addition, the new release of DB2 provides entity integrity, although full 

referential integrity is still not supported. 

SQL is both the data definition and data manipulation language of a number of 

relational database systems (the IBM prototype System R, IBM’s DB2 and SQL/DS, 

ORACLE, and many other commercial systems, including its recent introduction for 

INGRES), just as QUEL is for the INGRES RDBMS. SQL is based on tuple calcu¬ 

lus, though not as closely as QUEL. SQL resembles relational algebra in some places 
and tuple calculus in others. 

5.2.1 Data Definition: SQL 

Data definition in SQL is via the create statement. The statement can be used to 

create a table, index, or view (i.e., a virtual table based on existing tables). To create 
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a table, the create statement specifies the name of the table and the names and data 
types of each column of the table. Its format is: 

create table <relation> (<attribute list>) 

where the <attribute list> is specified as: 

<attribute list> :: = <attribute name> (<data type>)[not null] 

[,<attribute list>] 

The data types supported by SQL depend on the particular implementation. 

However, the following data types are generally included: integer, decimal, real (i.e., 

floating point values), and character strings, both of fixed size and varying length. A 

number of ranges of values for the integer data type are generally supported, for 

example, integer and smallint. The decimal value declaration requires the specifica¬ 

tion of the total number of decimal digits for the value and (optionally), the number 

of digits to the right of the decimal point. The number of fractional decimal digits is 

assumed to be zero if only the total number of digits is specified. 

<data type> :: = <integer>|<smallint>|<char(n)>|<varchar(n)>| 
<float>|<decimal(p[,q])> 

In addition, some implementations can support additional data types such as bit 

strings, graphical strings, logical, date, and time. Some DBMSs support the concept 

of date. One possible implementation of date could be as eight unsigned decimal 

digits representing the date in the yyyymmdd format. Here yyyy represents the year, 

mm represents the month and dd represents the day. Two dates can be compared to 

find the one that is larger and hence occurring later. The system ensures that only 

legal date values are inserted (19860536 for the date would be illegal) and functions 

are provided to perform operations such as adding a number of days to a date to 

come up with another date or subtracting a date from the current date to find the 

number of days, months, or years. Date constants are provided in either the format 

given above or as a character string in one of the following formats: mm/dd/yy; mm/ 

dd/yyyy; dd-mmm-yy; dd-mmm-yyyy. In this text we represent a date constant as 

eight unsigned decimal digits in the format yyyymmdd. 
The employee relation for the hotel database can be defined using the create 

table statement given below. Here, the Empl-No is specified to be not null to disal¬ 

low this unique identifier from having a null value. SQL supports the concept of null 

values and, unless a column is declared with the not null option, it could be assigned 

a null value. 

create table EMPLOYEE 

(Empl-No integer not null, 

Name char(25), 

Skill char(20), 

Pay-Rate decimal(10,2)) 

The definition of an existing relation can be altered by using the alter statement. 

This statement allows a new column to be added to an existing relation. The existing 

tuples of the altered relation are logically considered to be assigned the null value 

for the added column. The physical alteration occurs to a tuple only during an update 

of the record. The syntax of the alter statement and an example showing the attribute 

phone number added to the EMPLOYEE relation is given on the next page. 
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alter table existing-table-name 

add column-name data-type [, . . .] 

alter table EMPLOYEE 

add Phone-Number decimal (10) 

The create index statement allows the creation of an index for an already exist¬ 

ing relation. The columns to be used in the generation of the index are also specified. 

The index is named and the ordering for each column used in the index can be 

specified as either ascending or descending. The cluster option could be specified to 

indicate that the records are to be placed in physical proximity to each other. The 

unique option specifies that only one record could exist at any time with a given 

value for the column(s) specified in the statement to create the index. (Even though 

this is just an access aid and a wrong place to declare the primary key.) Such col¬ 

umns, for instance, could form the primary key of the relation and hence duplicate 

tuples are not allowed. One case is the ORDR relation where the key is the combination 

of the attribute Bill#, Dish#. In the case of an existing relation, an attempt to create an 

index with the unique option will not succeed if the relation does not satisfy this unique¬ 

ness criterion. The syntax of the create index statement is shown below: 

create [unique] index name-of-index 

on existing-table-name 

(column-name [ascending or descending] 

[, column-name [order] . . .]) 

[cluster] 

The following statement causes an index called empindex to be built on the 

columns Name and Pay-Rate. The entries in the index are ascending by Name value 

and descending by Pay-Rate. In this example there are no restrictions on the number 
of records with the same Name and Pay-Rate. 

create index empindex 

on EMPLOYEE {Name asc, Pay-Rate desc); 

An existing relation or index could be deleted from the database by the drop 

SQL statement. The syntax of the drop statement is as follows: 

drop table existing-table-name; 

drop index existing-index-name; 

5.3 Data Manipulation: SQL 

In this section we present the data manipulation statements supported in SQL. Ex¬ 

amples of their usage are given in subsequent sections. SQL provides the following 
basic data manipulation statements: select, update, delete, and insert. 

Select Statement 

The select statement, the only data retrieval statement in SQL, specifies the method 

of selecting the tuples of the relation(s). The tuples processed are from one or more 
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relations specified by the from clause of the select statement; the selection predicates 

are specified by the where clause. The select statement could also specify the projec¬ 

tion of the target tuples. Do not confuse the select verb of SQL with ct, the select 

operation of relational algebra. The difference is that the select statement entails 
selection, joins, and projection, whereas a is a simple selection. 

The syntax of the select statement is as follows: 

select [distinct] Ctarget list> 

from Crelation list> 

[where <predicate>] 

The distinct option is used in the select statement to eliminate duplicate tuples 

in the result. Without the distinct option duplicate tuples may appear in the result. 

The Ctarget list> is a method of specifying a projection operation of the result 
relation. It takes the form: 

Ctarget list> :: = Cattribute name> [,Ctarget list>] 

The from clause specifies the relations to be used in the evaluation of the state¬ 
ment. It includes a relation list: 

Crelation list> : : = Crelation name> [Ctuple variable>] 

[.Crelation list>] 

A tuple variable is an identifier; the domain of the tuple variable is the relation 
preceding it. 

The where clause is used to specify the predicates involving the attributes of 
the relation appearing in the from clause. 

An example of the use of a simple form of select to find the values for the 

attribute Name in the employee relation is given below: 

select Name 

from EMPLOYEE 

The result of this select operation is a projection of the EMPLOYEE relation on 

the attribute Name. Unlike the theoretical version of projection, this projection con¬ 

tains duplicate tuples. The reason for not eliminating these duplicates is the large 

amount of processing time required to do so. If the theoretical equivalent is desired, 

however, the distinct clause is added to the select statement, as shown below: 

select distinct Name 

from EMPLOYEE 

The predicates used to specify selection are added to a select statement by the 

use of the where clause. Additional features and examples of the select statement 

will be discussed in following sections. 

Update Statement 

The update statement is used to modify one or more records in a specified relation. 

The records to be modified are specified by a predicate in a where clause and the 

new value of the column(s) to be modified is specified by a set clause. The syntax 

of the update statement is shown on the next page. 
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update <relation> set <target_value_list> 

[where < predicate >] 

where the <target value list> is of the form: 

<target value list> :: = <attribute name> = <value expression> 

[,<target value list>] 

The following statement changes the Pay-Rate of the employee Ron in the EM¬ 

PLOYEE relation of Figure 5.4: 

update EMPLOYEE 

set Pay-Rate = 7.85 

where Name -- 'Ron' 

Delete Statement 

The delete statement is used to delete one or more records from a relation. The 

records to be deleted are specified by the predicate in the where clause. The syntax 

of the delete statement is given below: 

delete <relation> [where <predicate>] 

The following statement deletes the tuple for employee Ron in the EMPLOYEE 

relation of Figure 5.4. 

delete EMPLOYEE 

where Name = 'Ron' 

If the where clause is left out, all the tuples in the relation are deleted. In this 

case, the relation is still known to the database although it is an empty relation. A 

relation along with its tuples could be deleted by the drop statement. 

Insert Statement 

The insert statement is used to insert a new tuple into a specified relation. The value 

of each field of the record to be inserted is either specified by an expression or could 

come from selected records of existing relations. The format of the insert statement 
is given below: 

insert into <relation> 

values (<value list>) 

where the <value list> takes the form: 

<value list> :: = Cvalue expression> [,<value list>] 

In another form of the insert statement, a list of attribute names whose values 
are included in the <value list> are specified: 

insert into <relation> (<target list>) 

values (<value list>) 
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and the Ctarget list> takes the form: 

Ctarget !ist> :: = <attribute name> [,<target list>] 

The value clause can be replaced by a select statement, which is evaluated, and 

the result is inserted into the relation specified in the insert statement. 

The following statement reinserts a tuple for the employee Ron in the EM¬ 
PLOYEE relation of Figure 5.4: 

insert into EMPLOEE 

values (123456, 'Ron', 'waiter', 7.50) 

5.3.1 Basic Data Retrieval 

The SQL mapping operation basically consists of a selection and join followed by a 

projection. The select verb of SQL is used to represent this mapping operation. 

Example 5.1 Here we give two simple examples of the data retrieval operation. 

(a) The Posting-No and Empl-No values from the DUTY-ALLOCA- 

TION relation can be retrieved by the SQL statement shown below. For the 

DUTY_ALLOCATION table of Figure 5.4, the statement produces the re¬ 

sult shown in part i of Figure A. 

select Posting-No, Empl-No 

from DUTY-ALLOCATION 

The above query resembles the relational algebra projection operation. 

This is not strictly a projection because duplicates are not removed, as 

shown in part i of Figure A. Duplicates may be removed by using the dis¬ 

tinct option in the select statement, as indicated on page 218. The distinct 

option is applied to the entire result relation (Posting-No, Empl-No). The 

result of this statement is shown in part ii of Figure A. 

Figure A (i) A simple projection via select with duplicates tuples; (ii) 
Eliminating duplicate tuple by the distinct clause in the se¬ 
lect statement. 

Posting-No Empl-No 

321 123456 

322 123457 

323 123458 

321 123461 

321 123461 

350 123471 

351 123471 

(i) 

Posting-No Empl-No 

321 123456 

322 123457 

323 123458 

321 123461 

350 123471 

351 123471 
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select distinct Posting-No, Empl-No 

from DUTY_ALLOCATION 

(b) “Get complete details from DUTY-ALLOCATION.” 

select * 

from DUTY-ALLOCATION 

The asterisk character is used as shorthand for the full attribute list. 

The result of this statement is the entire DUTY-ALLOCATION relation 

shown in Figure 5.4. ■ 

5.3.2 Condition Specification 

SQL supports the following Boolean and comparison operators: and, or, not, =, A 

(not equal), >, >, >, <. These operators allow the formulation of more complex 

predicates, which are attached to the select statement by the where clause. Such 

predicates in the where clause specify the selection of specific tuples and/or a join of 

tuples from two relations (i.e., they provide the capability of the selection and join 

operations of relational algebra). If more than one of the Boolean operators appear 

together, not has the highest priority while or has the lowest. Parentheses may be 

used to indicate the desired order of evaluation. 

Example 5.2 “Get DUTY-ALLOCATION details for Empl-No 123461 for the month of 

April 1986.” This query is given on page 219. The result of the query is 
shown in part i of Figure B. 

Figure B (i) Selecting specified tuples followed by projection; (ii) Or¬ 
dering the result; (iii) Selecting tuples specified by disjunc¬ 
tive predicates. 

Posting_ Shift Day 

No 

321 2 19860420 

321 2 19860419 

Posting_ Shift Day 

No 

321 2 19860419 

321 2 19860420 

(') (ii) 

Posting-No Empl-No Day Shift 

321 123461 19860420 2 

321 123461 19860419 2 

323 123458 19860420 3 

(iii) 
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select Posting-No, Shift, Day 

from DUTY_ALLOCATION 

where Empl_No = 123461 and 

Day >19860401 and 

Day <19860430 

If the result had to be rearranged, the order clause could be specified as 

shown below. The result of this statement on our sample database is shown 
in part ii of Figure B. 

select Posting-No, Shift, Day 

from DUTY_ALLOCATION 

where EmplJNo = 123461 

order by Day asc 

The following statement selects the posting information about employee 

123461 for the month of April 1986, as well as for all employees for shift 

3 regardless of dates. The result of this statement on our sample database is 
shown in part iii of Figure B. 

select * 

from DUTY_ALLOCATION 

where (Empl_No = 123461 and 

Day >19860401 and 

Day <9860430) or 

(Shift =3) ■ 

5.3.3 Arithmetic and Aggregate Operators 

SQL provides a full complement of arithmetic operators and functions. This includes 

functions to find the average, minimum, maximum, sum, and to count the number 
of occurrences. 

Let us first consider the SQL facility to specify arithmetic operations on attribute 
values. 

Example 5.3 Consider the relation SALARY(£>n/?/_/Vo, Pay-Rate, Hours), used for com¬ 

puting the weekly salary in our sample database. Part of this relation is 

shown in part i of Figure C. Consider the evaluation of the weekly salary 

(gross). This operation can be expressed in SQL as shown below. The result 

of this statement is shown in part Hr of Figure C. 

select Empl-No, Pay-Rate*Hours 

from SALARY 

where Hours >0.0 
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Figure C (i) The SALARY relation; (ii) Result of computing the weekly 
salary. 

SALARY: result: 

Empl—No Pay-Rate* 

Hours 

123456 303.50 

123457 373.58 

123458 223.25 

123460 225.60 

123461 432.00 

123471 597.80 

123472 659.75 

Empl—No Pay-Rate Hours 

123456 7.50 40.5 

123457 8.79 42.5 

123458 4.70 47.5 

123459 4.90 0.0 

123460 4.70 48.0 

123461 9.00 48.0 

123471 14.00 42.7 

123472 14.50 45.5 

(i) (ii) 

SQL also provides the following set of built-in functions. The operand of each 

of these functions is a column of an existing relation. Null values are ignored except 

in the case of count(*). The functions are described below; examples are given in 

Example 5.4. 

• count: This function must be used either with the distinct option of the select 

statement or as count(*). When used with the distinct option, it counts the 

number of distinct values in the column. If the total number of rows in a 

relation is to be determined, count(*) must be used. 

• sum: The operand of this function must have a numeric value. It finds the sum 

of these values. If the distinct option is specified, the duplicate values are 
ignored in computing the result. 

• avg: The operand of this function must have a numeric value. It finds the 

average of these values. If the distinct option is specified, the duplicate values 
are not used for computing the average. 

• min: This function finds the minimum of the values in the column. The distinct 

option has no effect on this function. 

• max: This function finds the maximum of the values in the column. The 

distinct option has no effect on this function. 

In some of the following examples, the predicate has been omitted and the 

aggregate operations are carried out on the complete relation, except tuples that have 

null values in the argument. The distinct option may be specified with the argument 

to eliminate duplicates. Distinct must be specified with the arguments for count; 

count(*) is provided to count all rows without null or duplicate elimination. 

Example 5.4 (a) “Get Average Dish-Price.” 

select avg (Price) 

from MENU 
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For the menu relation shown in Figure 5.2, the result of this statement is 
10.90. 

(b) “Get minimum and maximum dish prices.” 

select min (Price), max (Price) 
from MENU 

For the menu relation shown in Figure 5.2, the result of this statement is 
2.50 and 19.50. 

(c) The average pay rate for employees can be derived using the following 
SQL statement. 

select avg (Pay-rate) 

from EMPLOYEE 

For the EMPLOYEE relation shown in Figure 5.4 the result of this state¬ 
ment, as shown below, is a relation of arity and cardinality one: 

result 

avg (Pay-Rate) 

8.51 

(d) “Find the average pay rate for employees working as a chef. 

select avg (Pay-Rate) 

from EMPLOYEE 

where Skill = 'chef' 

For the employee relation shown in Figure 5.4, the result of this statement 
is 14.25. 

(e) “Get the number of distinct pay rates from the EMPLOYEE relation.” 

select countfdistinct Pay-Rate) 

from EMPLOYEE 

For the Employee relation shown in Figure 5.4, the result of this statement 
is 7. ■ 

5.3.4 SQL Join: Multiple Tables Queries 

SQL does not have a direct representation of the join operation. However, the type 

of join can be specified by an appropriate predicate in the where clause of a select 

statement, wherein the relations to be joined are specified in the from clause. The 

join is performed by using the appropriate tuples of the participating relations, fol¬ 

lowed by selection and projection. Consider the following SQL statement. The rela¬ 

tion name precedes the attribute name, the two being separated by a period. This 

method of qualifying is used to distinguish identical attribute names. 

select Ti.an, . . . Ti.aln, T2.a2i, . . . , T2.a2m 

from Ti, T2, 

where Tj.a,j = T2.a2k . . . 
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This statement is evaluated1 by performing a cartesian product of the tables T,, 

T2, and thence the tuples satisfying the where clause are selected. These tuples are 

then projected on the attributes T,.a,,, . . . T,.a,n, T2.a2i, . . . T2.a2m. The rela¬ 

tional algebraic form of this statement is 

'"’a 11.aln’ a21 ’ • • • •a2m<'lj! ^ T2) 
alj — a2k • • • 

In general the select statement represents the following relational algebraic op¬ 

erations where X is the cartesian product of the relations represented by the from 

list. 

^(represented by the target list,^(represented by the where clause)!-^)) 

Joins involving more than two relations can be similarly encoded in SQL. Quer¬ 

ies of this form need data from more than one relation. In the case where the join 

involves a relation with itself, the query needs data from more than one record of 

the same relation. 

Example 5.5 The following SQL query is used to retrieve the shift details for employee 

Ron: 

select Posting-No, Day, Shift 

from DUTY-ALLOCATION, EMPLOYEE 

where DUTY- ALLOC ATION. Empl-No = EMPLOYEE. Empl-no 

and Name ='Ron' 

Note that attributes Empl-No have been qualified, since the names of these 

attributes are identical. The result of the query on the DUTY-ALLOCA¬ 

TION, EMPLOYEE tables of Figure 5.4 is the triple (321, 19860419, 

1). ■ 

SQL uses the concept of tuple variable from relational calculus. In SQL a tuple 

variable is defined in the from clause of the select statement. The syntax of the 

declaration requires that the name of the tuple variable be declared after the relation 
name in the from clause, as shown below: 

from relation-name, tv, [,relation_name2 tv2 , . . .] 

We use tuple variables in Example 5.6 to compare two tuples of the relation 

EMPLOYEE. The two tuple variables e,, and e2 are defined on the same relation. 

Example 5.6 “Get employees whose rate of pay is more than or equal to the rate of pay 
of employee Pierre.” 

select o{.Name, e,.Pay_Rate 

from EMPLOYEE e,, EMPLOYEE e2 

'This is a conceptual explanation. The actual evaluation of the query may be optimized. 
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where e,. Pay-Rate > e2. Pay-Rate 

and z2.Name = ‘Pierre’ 

The result of this query for the EMPLOYEE table shown in Figure 5.4 is 
the tuple (Julie, 14.50). ■ 

Now we turn to an example of a join involving one relation. 

Example 5.7 “Compile all pairs of Posting-Nos requiring the same Skill.” 

select p1.Pastmg.JV0, p2.Posting-No 

from POSITION p, POSITION p2 

where px. Skill = p2.Skill 

and pi.Posting-No < p2.Posting-No 

Pi- P2- 
Posting-No Posting-No 

321 326 

350 351 

For the POSITION table of Figure 5.4, this SQL statement generates the 

result shown above. Posting-Nos 321 and 326 require a skill of waiter and 

Posting-Nos 350 and 351 require a skill of chef. The predicate px.Posting- 

No < p2.Posting—No is used to avoid including tuples such as (326, 321), 

(350,350), (351,350), etc., in the result. ■ 

The following is an example that requires joining two relations. 

Example 5.8 Consider the requirement to generate the eligibility of employees to fill a 

given position. Each position (Posting-No) requires a skill and only those 

employees who have this skill are eligible to fill that position. Thus to gen¬ 

erate the position eligibility relation, we are required to join the relations 

EMPLOYEE and POSITION for equal values of the common attribute Skill. 

The following SQL statement implements the join. The result of the join is 

shown on the next page. 

select EMPLOYEE. Empl-No, POSITION. Posting -No, POSITION. Skill 

from EMPLOYEE, POSITION 

where EMPLOYEE.S'/:/// = POSITION.Skill 
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EMPLOYEE. 

Empl-No 

POSITION. 

Posting-No 

POSITION. 

Skill 

123456 321 waiter 

123456 326 waiter 

123457 322 bartender 

123458 323 busboy 

123459 324 hostess 

123461 325 maitre d’ 

123471 350 chef 

123471 351 chef 

123472 350 chef 

123472 351 chef 

The following is an example of joining three relations. 

Example 5.9 Consider the requirement to generate the itemized bill for table 12 for the 

date 19860419. This requires details from three relations, BILL, ORDR, 

and MENU. The itemized bill can be generated using the following query. 
The result is shown in Figure D. 

Figure D Itemized bill 

result 

Bill# Dish-Description Price Qty Price*Q ty 

9234 Coffee 2.50 2 5.00 
9234 Club sandwich 10.50 2 21.00 

select BILL.5///#, MENU .Dish-Description, MENU. Price, 

ORDR.Qty, MENU.Price*ORDR.(2/y 
from BILL, MENU, ORDR 

where BILL.Bill# = ORDR.Bill# 

and ORDR.Dish# = MENU .Dish 

and BILL.Table# = 12 

and BILL.Day = 19860419 

A select statement can be nested in another select statement. The result of 

the nested select statement is a relation that can be used by the outer select 

statement. An alternate method of generating this itemized bill is by using 

the nested select statement (which forms a sub-query) as shown below: 

select ORDR.Pi//#, MENU .Dish-Description, MENU. Price, 

ORDR.Qty, MENU.Price*ORDR.Qty 
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from MENU, ORDR 

where ORDR.Dish# = MENU.Dish# 
and ORDR.Bill# = 

(select BILL .Bill# 

from BILL 

where BILLTaWc# = 12 

and BILL.Day = 19860419) ■ 

5.3.5 Set Manipulation 

SQL provides a number of set operators: any, in, all, exists, not exists, union, minus, 

intersect, and contains. These constructs, based on the operations used in relational 

calculus and relational algebra, are used for testing the membership of a value in a 

set of values, or the membership of a tuple in a set of tuples, or the membership of 

one set of values in another set of values. When using these operators, remember 

that the SQL statement “select . . returns a set of tuples (which is a set of values 

in cases where the target list is a single attribute). We describe these set manipulation 

operators below and illustrate them with a number of examples. 

Any 

The operator any allows the testing of a value against a set of values. The compari¬ 

sons can be one of {<,<,>, >, = , #=}, and are specified in SQL as the operators, 

<any, <any, >any, >any, =any, and ^any (not equal to any). We refer to any 

one of these operators by the notation Oany. 

In general, the condition 

c Oany (select X from . . .) 

evaluates to true if and only if the comparison “c Oany {at least one value from the 

result of the select X from . . . }”is true.2 Let us illustrate this condition with the 

following example: 

Example 5.10 Let the result of 

select X 

from rel 

where P 

be the set of values {'30', '40', '60', '70'}. Then the following statements, 

which compare the two sets on both sides of the Oany operators, are valid 

and give the result indicated on the next page. 

2The implementation of any and all leads to some confusion since =£ any actually is implemented, in some systems, to be 
not equal to some (any one of the set of values). For example {’50'} i= any ({'30', 40 , 50 , 70 }) is evaluated to true since 
50 + 30. To justify this implementation, some is used as an alias for any in these systems! Such an implementation tends to 

give results that do not agree with the interpretation given here. 
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Example 5.11 

ies. 

'50' = any ({'30', '40', '60', '70'}) is false 

'50' = any ({'30', '40', '50', '70'}) is true 

'69' <any ({'30', '40', '60', '70'}) is true 

'29' >any ({'30', '40', '60', '70'}) is false 

'31' >any ({'30', '40;', '60', '70'}) is true 

'50' =£any ({'30', '40', '60', '70'}) is true 

'50' ^any ({'30', '40', '50', '70'}) is false 

Example 5.11 illustrates the use of 0any operator. 

“Get the names and pay rates of employees with Empl-No less than 123460 

whose rate of pay is more than the rate of pay of at least one employee with 

Empl-No greater than or equal to 123460.” This query can be expressed 

as given below. Here we are using a nested form of the SQL query. 

The expression in the parentheses is evaluated first to give a set containing the 

Pay-Rates for employees with Empl-No greater than or equal to 123460. 

For the EMPLOYEE relation shown in Figure 5.4, this gives the set {4.70, 

9.00, 14.00, 14.50} for the right-hand side of the >any test. For the EM¬ 

PLOYEE relation shown in Figure 5.4, the result relation is shown below. 

Employee 123458 does not appear in the result since his pay rate of 4.70 is 

not greater than any value in the above set. 

Result 

Name Pay-Rate 

Ron 7.50 

Jon 8.79 

Pam 4.90 

select Name, Pay-Rate 

from EMPLOYEE 

where Empl-No < 123460 and 

Pay-Rate >any 

(select Pay-Rate 

from EMPLOYEE 

where Empl-No > 123460) ■ 

In the SQL query formulation used in Example 5.11, we used the nested quer- 
This is a powerful query formulation tool. 

In 

The operator in, equivalent to = any, tests for the membership of a value within a 
set. An example of its use is given in Example 5.12. 
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Example 5.12 “Get employees who are working either on the date 19860419 or 
-19860420.” 

select Empl_No 

from DUTY_ALLOCATION 

where Day in (19860419,19860420) 

This query is equivalent to the following query involving two predicates 
connected with an or operator: 

select Empl-No 

from DUTY_ALLOCATION 

where Day = 19860419 

or Day = 19860420 

The same query can be expressed in another, albeit convoluted, way: 

select Empl-No 

from DUTY_ALLOCATION 

where Day in 

(select Day 

from DUTY_ALLOCATION 

where Day = 19860419 or Day = 19860420) 

The in test could also be replaced by = any. H 

Contains 

The set operator in tests the membership of a single value within a set of values, but 

the operator contains is used to test for the containment of one set in another. For 

instance, the expression X contains Y tests whether or not set X is a superset of set 

Y and, consequently, X contains at least all those elements contained in Y. If set X 

contains set Y, the expression evaluates to true. An example of the use of contains 

is given below in Example 5.13. 

This set operator is not always available in all implementations of SQL. How¬ 

ever, it can be simulated using the not exists operator as shown below in Example 

5.18b. 

Example 5.13 “Find the names of employees who are assigned to all positions that require 

a chefs skill.” 

select e.Name 

from EMPLOYEE e 

where 

(select Posting-No 

from DUTY_ALLOCATION d 

where e.Empl-No = d.Empl-No) 

contains 
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(select p.Posting-No 

from POSITION p 

where p.Skill = 'chef') 

Here the first nested subquery finds the positions where an employee is as¬ 

signed. The second nested subquery finds the set of positions requiring a 

chefs skill. The main select statement considers each employee and for that 

employee finds all the positions and tests if this is a superset of the positions 

requiring a chefs skill. If this test evaluates to a true value, the attribute 

Name is output. For our sample database, the result of this query is 

(Pierre). ■ 

All 

The set operator all is used, in general, to show that the condition 

c Sail (select X from . . .) 

evaluates to true. This is so, if and only if the comparison “c 0 all the values from 

the result of (select X from . . . )” is true. We illustrate the various format of this 
condition in the following example: 

Example 5.14 Let the result of: 

select X 

from rel 

where P 

be the set of values {'30', '40', '60', '70'}. Then each of the following 

statements is valid and produces the results indicated: 

'50' = all ({'30', '40', '60', '70'}) is false 

'29' <all ({'30', '40', '60', '70'}) is true 

'50' *all ({'30', '40', '60', '70'}) is true 

'70' >all ({'30', '40', '60', '70'}) is false 

'70' >all ({'30', '40', '60', '70'}) is true ■ 

Example 5.15 below uses the all condition to find the employee with the lowest 

pay rate from the EMPLOYEE relation. 

Example 5.15 “Find the employees with the lowest pay rate.” 

select Empl-No, Name, Pay-Rate 

from EMPLOYEE 

where Pay-Rate - all 

(select Pay-Rate 

from EMPLOYEE) 
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Empl-No Name Pay-Rate 

123458 Don 4.70 

123460 Pat 4.70 

Here we use a nested version of the select statement. The second select 

statement produces the set of values {7.50, 8.79, 4.70, 4.90, 4.70, 9.0, 

14.00, 14.50}. The first select uses this to compare the Pay-Rate of each 

record of EMPLOYEE to determine if it is <all of this set. The result of 

the query is shown above. ■ 

A variation of the above example is given below. 

Example 5.16 “Get the names of chefs paid at the minimum Pay-Rate.” We first find the 

pay rates for all chefs: 

select Pay-Rate 

from EMPLOYEE 

where Skill = 'chef' 

This query returns a set of values and if we compare it with the pay rates of 

all chefs we get the desired result: (Pierre): 

select Name 

from EMPLOYEE 

where Skill = 'chef' and 

Pay-Rate *?all 

(select Pay-Rate 
from EMPLOYEE 

where Skill = 'chef') ■ 

Not In 

The set operator not in is equivalent to + all. 

Not Contains 

The set operator not contains, the complement of contains, is true if one set of 

values is not a superset of another set of values. 

Exists 

The set operator exists is the SQL version of the existential quantifier. The expres¬ 

sion 
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exists (select X from . . . ) 

evaluates to true if and only if the result of “select X from ... is not empty. 

Example 5.17 “Find the names and the rate of pay of all employees who are allocated a 

duty.’’ This query can be expressed in SQL using the exists set operator. 

select Name, Pay-Rate 
from EMPLOYEE 

where exists 

(select * 
from DUTY_ALLOCATION 

where EMPLOYEE.Empl-No = 

DUTY ALLOCATION .EmpLNo) 

Name Pay-Rate 

Ron 7.50 

Jon 8.79 

Don 4.70 

Ian 9.00 

Pierre 14.00 

In this example, for each employee tuple from the EMPLOYEE relation, 

the exists clause is evaluated. If there is at least one tuple in DUTY-AL¬ 

LOCATION for that employee, the second select statement will produce a 

nonempty result whereby the exists expression evaluates to the true value. 

There is a reference to the relation of the first from clause in the second 

select statement. This reference is made through the use of qualified column 

names. The result of this query for the relations shown in Figure 5.4 is given 

above. Notice that this query could be easily handled using a join. ■ 

Not Exists 

The set operator not exists is the complement form of exists. The expression 

not exists (select X from . . . ) 

evaluates to true if and only if the result of “select X from . . . ” is empty. 

The universal quantifier, \y is not directly implemented in SQL but can be in¬ 
directly implemented using the identity: 

\/x(f(x)) = —i3x(—if(x)) 

In other words, we implement the predicate, \/x(f(x)), by not exist x(~if(x)). An 

example of the use of not exists to implement the universal quantifier is given in 
Example 5.18b. 



5.3 Data Manipulation: SQL 231 

Example 5.18 (a) “Find the names and the rate of pay of all employees who are not allo¬ 

cated a duty.” This query can be expressed in SQL using the not exists set 
operator. 

select Name, Pay-Rate 

from EMPLOYEE 

where not exists 

(select * 

from DUTY-ALLOCATION 

where EMPLOYEE.Empl-No = 

DUTY-ALLOC ATION .Empl-No) 

In this example, for each employee tuple from the EMPLOYEE relation, 

the not exists clause is evaluated. If there is at least one tuple in DUTY- 

ALLOCATION for that employee, the second select statement produces a 

nonempty result whereby the not exists expression evaluates to the false 

value. The tuple is not included in the result, which is shown above. 

The query can also be expressed using not in, as illustrated below: 

Name Pay-Rate 

Pam 4.90 

Pat 4.70 

Julie 14.50 

select EMPLOYEE.Name, EMPLOYEE.Pay-Rate 

from EMPLOYEE 

where EMPLOYEE.Empl-No not in 

(select DUTY-ALLOCATION.Empl-No 

from DUTY-ALLOCATION) 

(b) “Find the names of employees who are assigned to all positions that 

require a chefs skill.” The tuple calculus expression for this query can be 

written as: 

{e[Name]|e e EMPLOYEE A 
V p(p e POSITION A p[Skill] = 'chef' 
-* 3d (d e DUTY-ALLOCATION A 
d[ Posting-No] — p [Posting-No] A 
e[Empl-No] = d [Empl-No]))} 

Using \/x(f) = —i3x(—if), we can rewrite the tuple calculus expression as: 

{e[Aamc]|e e EMPLOYEE A 
—i3p(—i(p e POSITION A p[Skill] = 'chef' 

-»• 3d (d e DUTY-ALLOCATION A 
d [Posting-No] = p [Posting-No] A 
e[Empl-No] d[Empl-No])))} 

An alternate method of writing this query without the logical implication is 

to replace f —»g by its equivalent form —if V g to give the following expres¬ 

sion: 

{e[Name]\e e EMPLOYEE A 
—13p(—i(—i(p e POSITION A p[Skill] = 

'chef') 
V 3d (d e DUTY-ALLOCATION A 
d [Posting-No] = p [Posting-No] A 
e[Empl-No] = d[ Empl-No])))} 
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which is equivalent to: 

{e[Name]\e e EMPLOYEE A 
-i3p(p e POSITION A p[Skill] = 'chef' 

A -i3d (d e DUTY_ALLOCATION A 
d [Posting-No] = p [Posting-No] A 
e[Empl-No] = d [Empl-No]))} 

This expression can be converted to SQL using not exists: 

select e.Name 

from EMPLOYEE e 

where not exists 

(select p. Posting-No 

from POSITION p 

where p.Skill = 'chef' 

and not exists 

(select A.Empl-No 

from DUTY_ALLOCATION d 

where d. Posting-No = p. Posting-No 

and e.Empl-No = A.Empl-No )) 

Here the first (outer) nested subquery finds the positions requiring a chefs 

skill. For each such position, the second (inner) nested subquery finds if the 

employee whose name is to be output is assigned to that position. If the 

result of the second nested subquery is empty (i.e., the employee being 

considered is not assigned to a position requiring the skill of a chef), the 

second not exists evaluates to true, causing the first not exists to evaluate to 

false, and the employee is not selected. In effect, we are saying that for 

those employees whose names are to be output, if there exists a position 

requiring a skill of chef, then there exists a tuple in DUTY-ALLOCATION 

where this position is assigned to that employee. If these combined tests 

evaluate to a true value, the attribute Name of the employee is output. For 

our sample database, the result of this query is (Pierre). We will get identi¬ 

cal results even if a tuple such as (350, 123472, 19860420,1) were inserted 

in the DUTY-ALLOCATION relation. ■ 

Union 

The traditional set theory union operator is union. Duplicates are removed from the 
result of a union. 

Example 5.19 “Get employees who are waiters or work at Posting-No 321.” 

(select Empl-No 

from EMPLOYEE 

where Skill = 'waiter') 

union 

(select Empl-No 

from DUTY-ALLOCATION 

where Posting-No = 321 ■ 

Empl-No 

123456 

123461 
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Minus 

The traditional set theory difference operator is minus. 

Example 5.20 (a) “Get employee numbers of persons who work at Posting-No 321, but 

don t have the skill of waiter”. This query, which uses the minus operator, 

and its results are shown below: 

(select distinct Empl-No 

from DUTY_ALLOCATION 
where Posting-No = 321) 

minus 

(select Empl-No 

from EMPLOYEE 

where Skill = 'waiter') 

(b) “Get a list of employees not assigned a duty.” 

(select Empl-No 

from EMPLOYEE ) 

minus 

(select Empl-No 

from DUTY_ALLOCATION) ■ 

Empl-No 

123459 

123460 

123472 

Empl-No 

123461 

Intersect 

The traditional set theory set intersection operator is intersect. 

Example 5.21 “Get a list of the names of employees with the skill of chef who are as¬ 

signed a duty.” 

select Name 

from EMPLOYEE 

where Empl-No in 

((select Empl-No 

from EMPLOYEE 

where Skill = 'chef') 

intersect 

(select Empl-No 

from DUTY_ALLOCATION)) 

The result for the sample database of Figure 5.4 is given above. ■ 

Name 

Pierre 

5.3.6 Categorization 

It is sometimes necessary to classify a relation into a number of groups. Each such 

group of tuples has a certain common property. Aggregation functions such as aver- 



234 Chapter 5 Relational Database Manipulation 

age, sum, and so on can be applied to each group instead of to the entire relation. 

SQL provides the group by function to allow data to be classified into categories. 

The aggregation functions are performed separately for each category or group. Each 

element in the list attached to the select clause of the select statement with the group 

by function must have a single value per group. The having option can be added to 

the group by function to specify a predicate to eliminate those elements that do not 

satisfy the predicate. The having option must have only one value for each group. 

The where clause could be used to specify predicates that would select those tuples 

of the relation to be considered in the categorization. 

The having option usually appears with the group by function. If the having 

option appears without the group by function, the entire relation is treated as a single 

group. 

Example 5.22 Consider the sample database given in Figures 5.2 and 5.4. 

(a) The following SQL query generates the total charge for table 12 for the 

date 19860419. The result of this query for our database is the tuple (9234, 

19860419, 26.00). 

select BILL.Bill#, BILL.Day, sum(MENU.P/7ce*ORDR.<2o0 
from BILL, MENU, ORDR 

where BILL.#///# ORDR.Bill# 

and ORDR.Dish# = MENU .Dish# 

and BILL.Table# = 12 

and BILL.Day = 19860419 

group by BILL.Bill#, BILL.Day 

We illustrate the group by function and the having option using the follow¬ 

ing queries requiring the categorization of a relation or selected tuples of the 
relation. 

(b) “Get a count of different employees on each shift.” 

select Shift, count (distinct Empl-No) 

from DUTY_ALLOCATION 

group by Shift 

Shift count 

1 4 
2 3 
3 1 

For the DUTY_ALLOCATION relation of Figure 5.4, the result of this 
statement is as shown above. 

(c) “Get employee numbers of all employees working on at least two 
dates.” 

select Empl-No 

from DUTY_ALLOCATION 
group by EmplJSo 

having count (*) > 1 

Empl^No 

123458 

123461 

123471 
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For the DUTY-ALLOCATION relation of Figure 5.4, the result of this 
statement is as shown above. 

(d) “Get employee numbers and dates for all employees working on 
19860418 and at least one other date.” 

select Empl-No, Day 

from DUTY-ALLOCATION 

where Empl-No in 

(select Empl-No 

from DUTY-ALLOCATION 

where Empl-No in 

(select Empl-No 

from DUTY-ALLOCATION 
where Day = 19860418) 

group by Empl-No 

having count (*) > 1) 

For the DUTY-ALLOCATION relation of Figure 5.4, the result of this 

statement is as shown above. Here, the inner nested select statement is used 

to find those employees who are working on 19860418. For our sample 

relation it gives the set {123457, 123458, 123471}. The where clause of the 

second select statement is used to eliminate tuples of DUTY-ALLOCA¬ 

TION where the Empl-No is not in the set. Only the tuples not so eliminated 

are considered for the grouping. The having count(*) > 1 eliminates the 

group of employees working only on 19860418. The result of the second 

select statement is the set {123458, 123471}. The outer select statement is 

used to provide multiple Day values per group ■ 

Empl-no Day 

123458 

123458 

123471 

123471 

19860418 

19860420 

19860418 

19860419 

5.3.7 Updates 

SQL includes three update statements to modify the data. These are the insert, up¬ 

date, and delete statements. In Section 5.3, we saw the syntax of these statements. 

Here we give some examples of their usage. 

Example 5.23 (a) “Insert a tuple in the BILL relation with Bill# 9234 for Table# 12 on 

Day 19860419, where the waiter is 123456.” 

insert into BILL {Bill#, Day, Waiter#, Table#) 

values (9234, 19860419, 123456, 12) 

The attributes given in the statement above are ordered differently from 

those in the relation scheme. The values for these attributes are given in the 

value clause. The remaining attributes are set to null. 

(b) “Insert a DUTY-ALLOCATION tuple for Posting-No 321, 

Empl-No 123456, Shift 2, and Day 86/04/22.” 

insert into DUTY-ALLOCATION 

values(321, 123456, 19860422, 2) 
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The same insertion can also be specified as: 

insert into DUTY-ALLOCATION (EmpLNo, Shift, Day, 

Posting-No) 

values (123456, 2, 19860422, 321) ■ 

Note that in the second format of the insert statement, the attribute names may 

appear in a different order than in the relation. The latter format of the insert state¬ 

ment is used where data values for all the attributes are not being specified. The 

attributes whose values are not explicitly specified are assigned the NULL value. 

Example 5.24 (a) “Copy all tuples from DUTY-ALLOCATION into NEW_DUTY-AL¬ 

LOCATION,” is specified as shown below. Here the attributes of NEW_ 

DUTY-ALLOCATION are those specified in a create statement for it. In 

this example these attributes are compatible to those in DUTY-ALLOCA¬ 
TION. 

insert into NEW_DUTY-ALLOCATION: 

select * 

from DUTY-ALLOCATION 

(b) “Create a relation of duty records for shift 1.” 

insert into SHIFT 1_DUTY_ALLOCATION: 
select * 

from DUTY-ALLOCATION 

where Shift = 1 

(c) “Increase the rate of pay of all employees by 10%.” 

update EMPLOYEE 

set Pay-Rate =1.1* Pay-Rate 

(d) “Increase the rate of pay of waiters by 10%.” 

update EMPLOYEE 

set Pay-Rate =1.1* Pay-Rate 

where Skill = 'waiter' 

(e) “Remove employee record for Empl_No 123457.” 

delete EMPLOYEE 

where Empl-No = 123457 

(f) “Remove all EMPLOYEE records and retain the relation.” 

delete EMPLOYEE 

(g) “Remove all EMPLOYEE records and drop the relation.” 

drop EMPLOYEE B 



5.4 Views: SQL 237 

Views: SQL 

We have seen how users can manipulate the relations stored in the database. In 

examples presented so far, we have been manipulating the conceptual or “physical”3 

relations. Such conceptual relations are sometimes referred to as base relations. Cor¬ 

responding to each of these base relations there exists one (or more) physical rec¬ 

ord^) in one (or more) data file(s). Sometimes, for security and other concerns, it is 

undesirable to have all users see the entire relation. It would also be beneficial if we 

could create useful relations for different groups of users, rather than have them all 

manipulate the base relations. Any relation that is not a part of the physical database, 

i.e., a virtual relation, is made available to the users as a view. It is possible to 

create views in SQL. A relation in a view is virtual since no corresponding physical 

relation exists. A view represents a different perspective of a base relation or rela¬ 

tions. 

The result of a query operation on one or more base relations is a relation. 

Therefore, if a user needs a particular view based on the base relations, it can be 

defined using a query expression. To be useful, we assign the view a name and relate 

it to the query expression: 

create view <view name> as <query expression> 

A view is a relation (virtual rather than base) and can be used in query expres¬ 

sions, that is, queries can be written using the view as a relation. Views generally 

are not stored, since the data in the base relations may change. The base relations on 

which a view is based are sometimes called the existing relations. The definition 

of a view in a create view statement is stored in the system catalog. Having 

been defined, it can be used as if the view really represented a real relation. How¬ 

ever, such a virtual relation defined by a view is recomputed whenever a query refers 

to it. 

Example 5.25 (a) For reasons of confidentiality, not all users are permitted to see the 

Pay-Rate of an employee. For such users the DBA can create a view, for 

example, EMP-VIEW defined as: 

create view EMP_VIEW as 

(select Empl-No, Name, Skill 

from EMPLOYEE) 

(b) A view can be created for a subset of the tuples of a relation, as in this 

example. For assigning employees to particular jobs, the manager requires 

a list of the employees who have not been assigned to any jobs: 

create view FREE as 

(select Empl-No 

from EMPLOYEE) 

3By physical we mean that the relation corresponds to some stored data. This data may not be stored as a table and may 

actually be split horizontally or vertically and reside on one or more storage devices (at one or more sites). 
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minus 

(select Empl-No 
from DUTY-ALLOCATION) 

(c) The view in part b above can also be created using the following state¬ 

ments: 

create view FREE as 

(select Empl-No 

from EMPLOYEE) 

where Empl-No + any 

(select Empl-No 

from DUTY-ALLOCATION) H 

In the above examples, the names of the attributes in the views are implicitly 

taken from the base relation. The data types of the attribute of the view are inherited 

from the corresponding attributes in the base relation. We can, however, give new 

names to the attributes of the view. This is illustrated in the syntax of the create view 

statement given below: 

create view VIEW-NAME 

(Namel, Name2, . . . ) 

as ( select . . . ) 

Here the attributes in the view are given as Namel, Name2, . . . and these 

names are associated with the existing relation by order correspondence. The defini¬ 

tion of a view is accomplished by means of a subquery involving a select statement 

as given in the syntax above. Since a view can be used in a select statement, a view 

can be defined on another existing view. 

We could use French names for the relation and some of its attributes for the 

view defined in Example 5.24(a) above by modifying the view definition as follows: 

create view EMPLOYE 

(Nom-de-Emp, Nom, Habilete) 

as (select Empl-No, Name, Skill 

from EMPLOYEE) 

A view can be deleted by means of a drop view statement as shown below. 

When a view is deleted, all views defined on that view are dropped as well. 

drop view FREE 

The addition of a new attribute such as Phone-Number to the EMPLOYEE 

relation will not affect users, who view this relation through, let us say, EMP_ 

VIEW. The definition of this view remains unchanged. Views allow a certain degree 
of logical data independence. 

The addition of a new relation or restructuring the EMPLOYEE relation will not 

affect users either, although in the latter case the definition of the view will change 

but what the users manipulate will remain unchanged. In terms of ANSESPARC 

nomenclature, the view definition gives the external schema and the conceptual to 

external schema mapping. A change of the conceptual schema requires a change in 

this mapping, so that the external schema remains invariant. We illustrate this by the 
following example. 
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Suppose, as a result of changes in the needs of the user community of the 

database, the EMPLOYEE relation is split into two relations as shown below: 

create table EMPLOYEE_INFO 

(Empl-No integer not null, 

Name char (25), 

Skill char (20), 

Phone-Number decimal(lO)) 

create table EMPLOYEE_PAY_RATE 

(Empl# integer not null, 

Hourly-Rate decimal(10,2)) 

The users of the relation EMPLOYEE are now provided with the following 
view, which insulates them from this split: 

create view EMPLOYEE Empl-No,Name,Skill,Pay-Rate as 

(select Empl-No, Name, Skill, Hourly-Rate 

from EMPLOYE_INFO, EMPLOYEE_PAY_RATE 
where Empl-No = Empl# ) 

The users of the views EMP_VIEW, FREE, and QUALIFICATIONS (defined 

in Section 5.4.1) also continue to use the database exactly as before. However, the 

relations they are now using are views of a view, instead of views of a base relation. 

This change is transparent to the users. In this way views provide for both security 
and logical data independence. 

5.4.1 Views and Update 

The DBMS must be able to unambiguously determine the target tuples of an update 

operation. When a tuple in a view can be mapped to a tuple in a base relation, the 

update may be made. However, when the tuple in a view does not map to a single 

tuple, the update operation may not be determined unambiguously. 

A tuple in a view can be theoretically updated, under the following constraints: 

• Any update operation through a view requires that the user has appropriate 

authorization. 

• If the definition of the view involves a simple query on a single base relation 

and includes the primary key, the following update operations are possible: a 

new tuple could be inserted into the database via a view, an existing tuple could 

be deleted via a view, and the value of a nonprime attribute could be modified. 

The simple query proviso rules out the possibility that the attributes in the view 

are derived using an aggregate function or a nonreversible operation. The 

definition of the reverse operation has to be stored with the view. For example, 

if the view uses the value of weight in pounds and the value in the base relation 

is stored in grams, the view attribute Weight is obtained by dividing the base 

value by 453.6 and the stored value, inserted via the view, is multiplied by the 

same amount. 

• The insertion of a new record using a view requires that the primary attributes 

are included in the view, and the values for these are specified for the insertion 

(i.e., they are not null). 
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Views that involve a join may or may not be updatable. Such views are not 

updatable if they do not include the primary keys of the base relations. When the 

view includes the primary keys of the base relations, the target base tuples may be 

identifiable and hence updatable, provided the attributes included in the views are 

derived using reversible operations and both the forward (from the attribute in the 

base relation to the view) and reverse (from the attribute in the view to the base 

relation) operations are known to the DBMS. 
The need for allowing a view to update a relation derived from the join of two 

relations can be illustrated by the following example. 
Consider our EMPLOYEE! Empl-No, Name, Skill, Pay-Rate) relation. Suppose 

as a result of a reorganization of the database this relation is replaced by two relations 

EMPL(Empl-No, Name, Skill) and PAYRATE(Empl#, Pay Rate), defined as fol¬ 

lows: 

create table EMPL 
(Empl-No integer not null, 

Name char(25), 

Skill char(20)) 

create table PAYRATE 

(Empl# integer not null, 

Pay-Rate decimal! 10,2)) 

Applications and users of the original relation EMPLOYEE continue using the 

database as before since they are now provided with the following view: 

create view EMPLOYEE Empl-No, Name, Skill, Pay-Rate as 

(select Empl-No, Name, Skill, Hourly-Rate 

from EMPL, PAYRATE 

where Empl-No = Empl# ) 

The user of the EMPLOYEE relation should be insulated from this split and 

allowed to continue to use the database as they were accustomed to before the data¬ 

base reorganization. This would include making appropriate updates. If this view 

derived from a join could not be used to insert a tuple or make changes, then the 

users of the relation EMPLOYEE are not insulated from the database reorganization. 

Some problems could arise when a new record is inserted in the database using 

a view instead of the base relation. One problem is that of assigning data values to 

attributes not included in the view. A method of resolving this is to insert null values 

for these attributes. However, this can be done only if the attributes in the base 

relation are defined without the not null option. If a value of a nonprimary attribute 

included in the view is not specified for insertion, then a null value is assigned to the 

corresponding attribute in the base relation. Such insertion into the base relation via 

the view can succeed provided the base attributes can accept a null value. 

The other problem is the possibility of a record inserted by a view disappearing 

from that view. This is illustrated by the following example: 

create view SOME-EMPLOYEE as 

(select (*) 

from EMPLOYEE 

where Empl-No < 123470) 
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The user of the view, SOME_EMPLOYEE, can insert the tuple (123481, 'Pa- 

van.,z Developments , 50.00) in this relation. However, once inserted, this rec¬ 
ord will be inaccessible. Such anomalies could be avoided if the DBMS verifies that 

any record that is allowed to be inserted in the database satisfies the predicates of the 
view. 

The view to be used in updates must include the primary attributes of the base 

relation, and these must have a nonnull value for insertion. If these conditions are 

not satisfied, the record to be inserted will have null values for the primary attributes. 
This cannot be allowed; in such cases the insertion will fail. 

Any attribute in the view can be updated as long as the attribute is simple and 

not derived from a computation involving two or more base relation attributes. The 

view must, of course, include the primary attributes (or the attributes of a candidate 

key), otherwise the record to be updated cannot be determined and the update will 
fail. 

The view EMP_VIEW of Example 5.25a can be used to insert a new record in 

the database. It is easy to see that no updates can be allowed through the following 
view, since it does not include the primary attribute: 

create view QUALIFICATIONS as 
(select Name, Skill 

from EMPLOYEE) 

When a view is defined on the natural join of a number of relations, the view, 

if used for updates, is required to include the primary keys of all base relations. 

Consider the view ELIGIBILITY(£’mp/_JVo, Posting—No, Skill), obtained as in Ex¬ 

ample 5.8 by a join of EMPLOYEE and POSITION. It contains the primary attri¬ 

butes of the two relations. A tuple such as (123481, 331, cashier) inserted using this 

view could succeed provided no tuples with Empl-No = 123481 or Posting-No = 

331 exist in the EMPLOYEE and POSITION relations. The result of the insertion 

would be the tuples (1234581, null, cashier, null) and (331, cashier) in the two 
relations. 

On the other hand, consider the view ITEMIZED_BILL(5/7/#, Dish-Descrip¬ 

tion, Price, Qty, Price*Qty) created by a query such as the one given in Example 

5.9 and involving the relations BILL, MENU, and ORDR. This view does not con¬ 

tain the primary attributes of all its underlying relations. Consider the tuple (9234, 

Club sandwich, 10.50, 2, 21.00) of ITEMIZED_BILL. An attempt to update Dish- 

Description will fail because the Dish# cannot be determined uniquely. (The club 

sandwich may be offered as Dish# 100 on the lunch menu and as Dish# 400 on the 

room service menu with different prices and both items may be included on the same 

bill.) An attempt to update Price*Qty of the club sandwich from 21.00 to 27.00 

cannot be unambiguously translated into a change in the base relations. Suppose a 

change in Price*Qty is given along with a change in Price and Qty to be 27.00, 

9.00, 3, respectively. It is then possible to determine, in the current state of the 

example database, the actual tuples to be updated by examining all the tuples of 

ORDR, MENU and the previous values of the tuple of ITEMIZED_BILL. Even 

though this update is possible in this particular example, attempts to make such an 

update will fail in most DBMSs. Finally, updating Bill# can succeed, although it is 

debatable if such a change should be made through a view rather than the base 

relation BILL. 
There remains a grey area in determining if an update to a view is theoretically 

sound under the following conditions: the view is derived from (a) a relation that is 
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not in the proper normal form, or (b) the join of a number of relations. This is a 

current topic of research and most DBMSs treat updates via a view in an ad hoc 

manner, allowing updates to views that are either a proper horizontal subset (a selec¬ 

tion) or a proper vertical subset (a projection) of a base relation. Many commercial 

DBMSs disallow updates through a view unless the view is based on a single relation 

and includes the primary attributes of the relation. 

We summarize below the conditions under which most DBMSs determine 

whether an update is allowed through a view: 

• Updates are allowed through a view defined using a simple query involving a 

single base relation and containing either the primary key or a candidate key of 

the base relation. 

• Updates are not allowed through views involving multiple relations. 

• Updates are not allowed through views involving aggregation or grouping 

operations. 

5.5 Remarks 

SQL supports the basic relational algebraic operations of union (union), difference 

(minus), cartesian product (from), and intersection (intersect). The select statement 

along with the where clause are used for selection. Projection is included in the 

select statement by specifying the attributes. Join is implemented by a cartesian prod¬ 

uct with the where clause indicating the joining attributes and the type of join. 

SQL also provides for a wide variety of set operators to allow the expression of 

relational calculus types of predicates and the testing of the membership of a tuple in 

a set. In addition, the use of aggregate operators and categorization provide SQL 

with additional data manipulation features not included in relational algebra or cal¬ 
culus. 

Unlike the theoretical languages, SQL provides statements for the definition and 
modification of data and indexes, and includes views. 

Most commercial relational DBMSs support some form of the SQL data manip¬ 

ulation language, and this creates different dialects of SQL. SQL has been standard¬ 

ized; that is, a minimum compatible subset is specified as a standard. In addition, 

embedded versions of SQL are supported by many commercial DBMSs. This allows 

application programs written in a high-level language such as BASIC, C, COBOL, 

FORTRAN, Pascal, or PL/I to use the database accessing SQL by means of appro¬ 
priate preprocessors (refer to Section 5.8). 

5.6 QUEL 

INGRES (INteractive GRaphics and REtrieval System) is a relational database sys¬ 

tem developed at the University of California at Berkeley. This project ran almost 

concurrently with the System R project at IBM’s San Jose Research Center. 

QUEL (QUEry Language), the data manipulation language for INGRES, is 

based on relational tuple calculus. Unlike SQL, it does not support relational alge- 



5.6 QUEL 243 

braic operations such as intersection, minus, or union. QUEL does not support nested 

queries, i.e., the where clause is not allowed to use a subquery. However, equivalent 
queries could be formulated easily in QUEL. 

The original version of INGRES is used extensively in the academic milieu and 

runs under UNIX on VAX systems, as well as workstations based on the MC68000 

family of microprocessors. A commercial product, also named INGRES, is currently 

marketed by Relational Technology Inc., and runs on a variety of machines and 
operating systems. 

The basic data retrieval statement in QUEL is the retrieve statement, used in 

conjunction with the range statement and the where clause. The range statement is 

used to define tuple variables and their domain. (The domain of a tuple variable is 

the relation from which the variable takes on values.) The where clause is used to 
specify the predicates as in SQL. 

We will use the same relations for the restaurant database as in the previous 
sections to illustrate the features of QUEL. 

5.6.1 Data Definition 

The basic statements used to define relations and access aids in QUEL are create, 

range, index, destroy, and modify. 

Create Statement 

The create statement is used to create a new relation. Its syntax is: 

create Crelation name> (<attribute list>) 

where <attribute list> is defined as: 

<attribute list> :: = <attribute name> = <format>[,<attribute list>] 

Example 5.26 The statement 

create NEW_DUTY_ALLOCATION (Posting-No = i, Empl-No = i, 

Shift — i, Day = i) 

will create a new relation called NEW_DUTY_ALLOCATION with attri¬ 

butes Posting-No, Empl-No, Shift, and Day, with all the attributes defined 

as integers. ■ 

Range Statement 

Tuple variables (known as range variables in QUEL, although we will continue to 

refer to these by the familiar term) are defined using the range declaration statement. 

Its usage is: 

range of <tuple variable> is Crelation name> 
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This allows us to declare a tuple variable and restrict it to assume values that 

are tuples from the relation following the keyword is. This relation is the domain 

(the set of tuple values) of the tuple variable. A reference to the tuple variable is a 

reference to a tuple of the relation. The use of a tuple variable is similar to that in 

tuple calculus wherein a tuple variable is defined by writing 

<tuple variable> e <relation> 

The use of a tuple variable is similar to the variable declaration in programming 

languages where a variable is allowed to have, at a given time, a value from a set of 

declared values (specified by the type). The tuple variable can thus be visualized as 

a place marker in our relation. 

Example 5.27 range of d is DUTY-ALLOCATION 

range of e is EMPLOYEE 

The tuple variables d and e, at any given time, refer to a tuple in the DUTY 

ALLOCATION and EMPLOYEE relations, respectively. ■ 

In Chapter 4, we used RELATION_NAME[Attr/6«^_Aam^] to refer to the val¬ 

ues of an attribute of a relation. In QUEL this requires the use of qualified names: 

RELATION_NAME.Attn7?Mte_/Vamc, or 

T uple_ V ariable .Attribute-Name 

The period is used to qualify the attribute by the relation. Note that in the convention 

followed in Chapter 4, a group of attribute names could be specified within brackets. 

There is no such simple grouping technique in QUEL. 

Example 5.28 We assume that the tuple variable d has been declared as in Example 5.27. 
Then, 

d .Posting-No 

refers to the value of the Posting-No attrbitue of a tuple in the DUTY_ 
ALLOCATION relation. H 

Index Statement 

The indexes are defined for an existing relation using the index statement. It specifies 

the name of the secondary index to be built and the attributes from the relation that 

are used for indexing. The purpose of creating a secondary index is to increase the 

efficiency of secondary key retrieval. A relation could have any number of secondary 

indexes created for it in addition to the index created on the primary key. All indexes 

are destroyed when the relation is destroyed. Once created, an index is maintained 

and used automatically by the DBMS. The syntax of the index statement is as fol¬ 
lows: 
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index on Crelation name> is index_name 

(attribute_name [,attribute_name, . . .] ) 

Example 5.29 The following statement creates an additional index named nameindex for 
the EMPLOYEE relation using the Name attribute: 

index on EMPLOYEE is nameindex (Name) ■ 

Destroy Statement 

The destroy statement is used in QUEL to eliminate a relation, index, or view (dis¬ 

cussed in Section 5.7.9). The syntax of the destroy statement is: 

destroy <name[,name, . . . ]> 

where each name is the name of an existing relation, index, or view. 

Example 5.30 The following statement destroys the index named nameindex: 

destroy nameindex ■ 

Modify Statement 

The modify statement is used to modify the storage structure of a relation from the 

current one to that specified in the statement. The storage structures supported in 

INGRES are B-tree, hash, ISAM, and heap. The compressed versions of these stor¬ 

age structures are also supported; the compression is on the physical storage medium. 

One example of a compression scheme is to suppress the trailing blanks of a char¬ 

acter string. The syntax of the modify statement is as follows: 

modify relation_name to storage-structure [on attribute 1 [order ascend- 

ing|descending] [, . . , ]] 

Here the name of the relation is specified by relation-name and the new storage 

structure by storage-structure. The on clause indicates the attribute(s) to be used for 

ordering the relation. The order can be specified optionally as ascending or descend¬ 

ing; ascending being the default. If the on clause is not specified, ascending order of 

the relation by the first attribute is assumed. 

Example 5.31 The following statement modifies the storage structure of the EMPLOYEE 

relation to a compressed hash (chash) structure with Empl-No as the 

hash key: 

modify EMPLOYEE to chash on Empl-No ■ 
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5.7 Data Manipulation: QUEL 

The basic data retrieval statement in QUEL is retrieve. It is used for both projection 

and selection. 

retrieve [unique] (<target list>) 

[where <condition>] 

In <target list> we specify the data items to be retrieved. The target list can be used 

to specify the attributes on which the result should be projected. If the unique option 

is specified, the relation is sorted on the first attribute in the target list and duplicate 

tuples are removed. 
The retrieve unique command, except for the ordering, is equivalent to the 

calculus expression: 

{X | P(X)} 

where X represents the “target list” and the predicate(s) specify the “conditions” 

that must hold true. In fact, we can read the retrieve command as “get tuples with 

attributes specified in target list such that the tuples make the condition(s) true.” 

Example 5.32 Project the DUTY_ALLOCATION relation on the Posting-No and Empl_ 

No attributes.” 

5.7.1 

range of d is DUTY_ALLOCATION 

retrieve (d.Posting-No, d.Empl-No) 

Remember that according to the syntax of QUEL, the target list must be 

enclosed within parentheses. ■ 

The need to specify every attribute of the result relation can sometimes be te¬ 

dious. The all keyword is used to represent all of the attributes of a tuple variable. 

Condition Specification 

Now let us see how we can specify conditions in QUEL. QUEL supports.the follow¬ 

ing Boolean and comparison operators: and, or, not, = , + (not equal)4, >, >, <, 

<. Evaluation occurs in left-to-right order. When more than one Boolean operators 

are together, the evaluation order is based on the priority of the operators: not has 

the highest priority and or has the lowest. Parentheses may be used to change the 

order of evaluation. 

INGRES and SQL use ! = , < =, > = instead of ^s 
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Example 5.34 The query 

range of d is DUTY_ALLOCATION 

retrieve (d.all) where d.Empl-No = 123471 

and (d.Day = 19860418 or 

d .Day = 19860419) 

restricts the tuples in the result to only those DUTY-ALLOCATION tuples 

with the Empl_No attribute value of 123471, and Day is either 19860418 or 

19860419. (This is equivalent to the use of the selection operation in rela¬ 
tional algebra.) ■ 

We can specify complex qualification using the Boolean operators. 

5.7.2 Renaming 

The attribute names in the result relation can be changed from those in the base 

relation. This becomes necessary if the attribute name in the resulting relation would 

occur more than once or where a computation was performed. All attributes must 

have names, and remember that the result of a query is also a relation. In general, 

this attribute name assignment takes the form newname = <expression> and is 
included in the <target list>. 

Example 5.35 “Get employee names and pay rates, renaming them as EmpSame and 

Hourly-Pay.” 

range of e is EMPLOYEE 

retrieve (Emp-Name = t.Name, Hourly-Pay = e. Pay -Rate) ■ 

5.7.3 Arithmetic Operators 

The following arithmetic operators are supported in QUEL: -I-, —,*,/,** (expo¬ 

nentiation), abs (absolute value), and mod (modular division). These operators to¬ 

gether with the large library of computational functions (SIN, COS, SQRT, etc.) 

available to the users of INGRES make the system useful for performing arithmetic 

operations. Numeric data can thus be manipulated to derive additional information. 

Consider the weekly salary relation, part of which is shown in part i of 

figure E (this figure is a modified version of Figure C from Example 5.3). 

Consider the evaluation of the weekly salary (gross). This operation can be 

expressed in QUEL as on p. 248 and the result of this statement is shown 

Example 5.36 
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Figure E Modified form of Figure C. 

SALARY: result: 

Empl-No Pay-Rate Hours 

123456 7.50 40.5 

123457 8.79 42.5 

123458 4.70 47.5 

123459 4.90 0.0 

123460 4.70 48.0 

123461 9.00 48.0 

123471 14.00 42.7 

123472 14.50 45.5 

Empl-No Gross-Pay 

123456 303.50 

123457 373.58 

123458 223.25 

123460 225.60 

123461 432.00 

123471 597.80 

123472 659.75 

in part ii of Figure E (the second column heading has been renamed Gross_ 

Pay instead of Pay-Rate* Hours)-. 

range of s is SALARY 

retrieve (s.Empl-No, Gross-Pay = s.Pay-Rate*s.Hours) 
where s.Hours >0.0 ■ 

5.7.4 Multiple Variable Queries 

So far we have expressed queries using a single tuple variable and these queries 

required information from a single relation. However, when we are required to re¬ 

trieve information stored in multiple relations we need to use multiple variables— 

one tuple variable for each relation. In this section we give examples of queries that 
require the use of multiple variables. 

Example 5.37 “Get the name of the waiter for table 17, identified as Waiter-Name.” 

range of e is EMPLOYEE 

range of b is BILL 

retrieve (Waiter-Name = t.Name) 

where e.Empl-No = b.Waiter# and b.Table# = 17 ■ 

In this query we get the identifier for waiter assigned to table 17 and compare 

it with the employee identifier of employee tuples (the attribute Waiter# in BILL 

refers to the same instance of the entity set employee as attribute Empl-No in EM¬ 

PLOYEE). For the relations MENU and EMPLOYEE of Figures 5 2 and 5.4, the 
result of this query is the name Ian. 
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Example 5.38 “Get shift details of the employee named Pierre.” 

range of d is DUTY_ALLOCATION 

range of e is EMPLOYEE 

retrieve (d.Posting-No,d.Shift,d.Day ) 

where d.Empl-No = e.Empl-No and e.Emp-Name - 'Pierre' ■ 

The use of multiple variables is not restricted to different relations. Sometimes 

it becomes necessary to declare multiple tuple variables over the same relation. Thus 

if we want to compare the tuples of the same relation, we can have several tuple 

variables ranging over the relation. We demonstrate this in the following example. 

Example 5.39 “Find employees whose rate of pay is more than that of employee Jon.” 

In this query, at any given time, we need data on two employees: one 

is fixed (the data for employee Jon) and the other will be another employee. 

Thus, we need one tuple variable that can be used to refer to the tuple for 

employee Jon, and another tuple variable for the other employee. (Imagine 

that this second tuple variable will be used to scan the complete relation, 
one tuple at a time.) 

range of e is EMPLOYEE 

range of e, is EMPLOYEE 

retrieve (e.Name,e.Pay-Rate) 

where e. Pay -Rate > e, .Pay-Rate 

and &\.Name = 'Jon' 

The tuple variable e] has the data for employee Jon while at any given 

instance the tuple variable e has data for another employee. The result of 
this query is shown in the example. H 

Name Pay-Rate 

Ian 9.00 

Pierre 14.00 

Julie 14.50 

Example 5.40 “Get all pairs of Empl-No with the same Posting-No.” 

range of d is DUTY_ALLOCATION 

range of d, is DUTY_ALLOCATION 

retrieve (d.Empl-No, d,.Empl-No ) 

where d.Posting-No = dx.Posting-No 

and (d.Empl-No < di.Empl-No ) 

Empl—No Empl-No 

123456 

123456 

123461 

123461 

In this query we need to compare two tuples of the DUTY_ALLOCATION 

relation. The condition (d.Empl-No < d(.Empl-No) guarantees that only unique em¬ 

ployee pairs are retrieved. Employee 123458, who is posted twice to Posting-No 

323, is not in the result since the Empl-Nos are the same. Also, by using this con¬ 

dition we avoid including symmetrical tuples in the result. Thus the tuple (123461, 

123456) is excluded from the result. (In Example 5.39 we did not need to specify 

such a condition). Note, however, that the result shown above does have duplicate 

tuples because Posting-No 321 is associated with Empl-No 123456 twice in the 
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relation DUTY_ALLOCATION. We could use the unique option in the retrieve 

statement to remove such duplicate tuples. 
We next illustrate a query requiring the join of three relations: 

Example 5.41 Consider the requirement to generate the itemized bill for table 12 for the 

date 19860419. This requires details from three relations, BILL, ORDR, 

and MENU. The itemized bill can be generated using the statements given 

below. The result of the query on the relations given in Figure 5.2 is also 

shown. 

range of b is BILL 

range of m is MENU 

range of o is ORDR 
retrieve (b.Bill#,m.Dish-Description,m.Price, o.Qty, 

Dish-Total = m.Price* o.Qty) 

where b.B/7/# = o.Bill# 

and o.Dish# = m.Dish# 

and b.Table# = 12 

and b.Day = 19860419 

Bill# Dish-Description Price Qty Dish-Total 

9234 Coffee 2.50 2 5.00 

9234 Club sandwich 10.50 2 21.00 

QUEL does not allow nested retrieve statements (similar to the nested select 

statement) and hence unlike SQL this method cannot be used to generate the itemized 

bill. 

5.7.5 Set Operations in QUEL 

The set operations, for example union and intersection, are not supported by QUEL. 

A number of queries require us to use some of these operators. In relational calculus 

a tuple variable can be declared independent of the relation and thus can accept 

values from different relations. In QUEL a qualified tuple variable appears in the 

target list and since the tuple variable ranges over a single relation, we need some 

explicit mechanism for creating unions. The same holds true for the other operations. 

In Section 5.7.8 we introduce some of the data modification commands, and show 

how they can be used to encode the set operations indirectly. 

5.7.6 Aggregation Operators in QUEL 

QUEL provides a number of aggregation operators to be used in expressions. These 

allow a user to perform computations on the values of the relation’s attributes. 
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The aggregation operators supported are any, avg, min, max, count, and sum, 

similar to the corresponding functions available in SQL. The operators avg, count, 

and sum have versions that eliminate duplicates before applying the operator. These 

“unique” versions are distinguished by the suffix u. The any aggregate operator can 

be used to check if any tuple satisfies a given qualification. The value returned by 

the any operator is 1 if the qualification is satisfied and 0 otherwise. The advantage 

of using the any operator as opposed to using the count operator is that if the quali¬ 

fication is satisfied, the processing of additional tuples is discontinued, resulting in a 

faster evaluation of the query. The format for using these operators is: 

aggregation operator (<expression>) 

The tuple variables appearing as arguments of an aggregate operator are always local 

to it and distinct from any tuple variable with the same name appearing external to 

the arguments of the aggregate operator. The aggregate operator could logically be 

considered to be processed separately, and a computed single value replaces it. We 

illustrate the use of some of these operators in the following examples. 

Example 5.42 (a) “Obtain the average dish price.” 

range of r is MENU 

retrieve (Ave-Price = avg(r.Price)) 

The term avg(r.Price) returns the average of the r.Price values. For our 

sample database the Ave-Price is 10.90. 

(b) “Get minimum and maximum dish prices.” 

range of r is MENU 

retrieve (Minprice = minfr. Price), 
Maxprice = max (r. Price)) 

(c) “Get the average rate of pay for all employees and list it against each 

employees’ names and rates of pay.” 

range of e is EMPLOYEE 
retrieve (e.Name, e.Pay-Rate, Avg-Pay = avg (e.Pay-Rate)) 

The result of this query for our sample database is shown below: 

Name Pay-Rate Avg-Pay 

Ron 7.50 8.51 

Jon 8.79 8.51 

Don 4.70 8.51 

Pam 4.90 8.51 

Pat 4.70 8.51 

Ian 9.00 8.51 

Pierre 14.00 8.51 

Julie 14.50 8.51 
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Note that in the query in Example 5.42c the aggregation operation is independent of 

the current tuple values. The average rate of pay from all employee tuples is returned 

by the avg operator. We see this important difference in the next few queries where 

the aggregates are themselves qualified. 

Example 5.43 “Find the average rate of pay for employees with the skill of chef.” 

First attempt: 

range of e is EMPLOYEE 

retrieve (e.Empl-No, e.Skill, AvgchefJPay — 

avg(e.Pay-Rate where e.Skill = 'chef')) 

The result relation includes tuples with the above details for all em¬ 

ployees including those who are not chefs. In the above query the qualifi¬ 

cation “e.Skill = 'chef'” applies only to the aggregate, not to the query. 

The aggregate qualification is local; it is not affected by and does not affect 

the rest of the query. Thus, the scheme of the result is (Empl-No, Skill, 

Avgchef-Pay), and each tuple of the result relation contains the same value 

for the Avgchef-Pay attribute. 

Second attempt: The query 

range of e is EMPLOYEE 

retrieve (e.Empl-No, e.Skill, 

Avgchef-Pay = avg {t.Pay-Rate)) 

where e.Skill = 'chef' 

gets employee number and skill for all employees who are chefs and the 

average rate of pay of all employees (not just chefs). 

The correct query (to get the employee number, skill, and average sal¬ 

aries of employees who are chefs) should be formulated as given below in 

the third attempt. Here we are using two qualification clauses; one is for the 

computation of the average salary of employees with a skill of chef and the 

other is to ensure that the result contains only tuples for chefs. 

Third attempt: 

range of e is EMPLOYEE 

retrieve (e.Empl-No, e.Skill, Avgchef-Pay = 

avg(e.Pay-Rate where e.Skill = 'chef')) 

where e.Skill = 'chef' ■ 

The use of count operator is illustrated in Example 5.44. 

Example 5.44 “Get the total number of employees.” 

range of e is EMPLOYEE 

retrieve (cnt = count(e.Empl_No)) 

Because we defined Empl-No as the key for the relation EMPLOYEE we 

expect no duplicate employee records and the unique version of count is 
unnecessary. ■ 
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Another aggregation facility supported in QUEL is called the aggregate func¬ 

tion. This facility allows data to be grouped into categories and aggregations to be 

performed separately on each group. The aggregate function is invoked by including 
the by clause in the expression for the aggregate operator: 

by <by-list> 

Unlike simple aggregates, aggregate functions are not local; the by-list links the 

function to the rest of the query. The tuple variable appearing in by-list is global to 

the query and is therefore restricted by the qualification of the entire query as well 

as by any aggregate qualification. The value of an aggregate function is a set of 
values. 

The aggregate function any can be used as an existential quantifier. The use of 

it in any(. . .) = 1 or any(. . .) = 0 makes the quantification explicit, as illustrated 

in Example 5.45e. 

Example 5.45 (a) “Obtain a count of employees on each shift.” 

range of e is DUTY_ALLOCATION 

retrieveicnt = count(e.£7n/?/_JVo by e.Shift)) 

(b) “Find the number of employees on shift number 1.” 

range of e is DUTY_ALLOCATION 

retrieve (cnt = count (e.Empl-No by e.Shift)) 

where e.Shift = 1 

The tuple variable e is global and the by clause links it to the where clause, 

limiting the count to those for shift number 1. The result of this query for 

the sample database given in Figure 5.4 is as shown above. 

A simpler formulation of this query, where the use of a local tuple 

variable is acceptable, is given below: 

range of e is DUTY_ALLOCATION 

retrieve (cnt = count (e.Empl-No where e.Shift = 1)) 

(c) “Determine the average Pay-Rate by skill.” 

range of e is EMPLOYEE 

retrieve (e.Skill, Avg-Rate = avg(e.Pay-Rate 

by e.Skill)) 

cnt 

4 

Skill Avg-Rate 

waiter 7.50 

bartender 8.79 

busboy 4.70 

hostess 4.90 

bellboy 4.70 

maltre d’ 9.00 

chef 14.25 
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The query shows the global scope of the tuple variable used in the by clause. 

Here the use of the by clause causes the tuple variable associated with it to 

be global; it is the same as the one used outside the aggregate function. The 

tuple variable associated with e.Pay-Rate is strictly local. The avg function 

generates a number of values of average pay rate, namely one for each skill. 

However, a skill and its corresponding value is displayed only once, as 

shown above for the sample EMPLOYEE relation in Figure 5.4. 

(d) “Obtain the average of the total pay rate for each skill.” 

range of e is EMPLOYEE 

retrieve (Avg-of-Total = avg( sum (e.Pay-Rate 

by e. Skill))) 

The above query demonstrates the aggregate function nested in an aggregate 

operator. The sum aggregate function generates the sum of Pay-Rates by 

Skill giving the set {7.50, 8.79, 4.70, 4.90, 4.70, 9.00, 28.50} as its result 

for the sample EMPLOYEE relation of Figure 5.4. 

The avg operator is applied to this set to get a single value, indicated 
below: 

Avg-of-Total 

9.73 

Note that this query is not the same as the following, which generates 

the value 8.51, being the overall average value of the Pay-Rate for all 
employees: 

retrie\e(Overall^\vgJRate = avg(EMPLOYEE.Pay_/?ate) ) 

(e) “Get the names of employees who are assigned to Posting-No 321.” 

range of e is EMPLOYEE 

range of d is DUTY_ALLOCATION 

retrieve unique (e.Name) 

where any (d.Empl-No by e.Empl-No 

where d. Posting-No = 321 

and d. Empl-No = e. Empl-No) = 1 

In this example, the any aggregate function is evaluated over the argument 

attribute Empl-No, which is grouped using the by clause. The predicates 

specified by the where clause must be satisfied by each value of the argu¬ 

ment. For our sample database, the result of the query is the employee 
names Ian and Ron. 

The following can be used to find the names of employees who are not 
assigned to Posting-No 321: 

range of e is EMPLOYEE 

range of d is DUTY_ALLOCATION 

retrieve unique (t.Name) 
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where any (d.Empl-No by e.Empl-No 

where d.PostingJ^o = 321 

and d.Empl-No = e.Empl-No) = 0 

For our sample database, the result of the query is the employee names 

Don, Jon, Julie, Pam, Pat, Pierre. Note that the function count could have 

been used here instead of any giving the same result. 

(f) “Get the Empl-No of the employees who are assigned a duty on at 

least one date in addition to 19860419.” The first version for this query uses 

the count operator and accesses each tuple of the relation. The second ver¬ 

sion, which uses the any operator, will terminate the evaluation of the where 

clause when it accesses the first tuple satisfying the qualification. The result 

in each case is the employee numbers 123461 and 123471. 

First version: 

range of d is DUTY_ALLOCATION 

retrieve (d.Empl-No) 

where d.Day = 19860419 

and count(d.Day by d.Empl-No) > 1 

Second version: 

range of d is DUTY_ALLOCATION 

retrieve (d.Empl-No) 

where d.Day — 19860419 

and any(d.Day by d.Empl-No where d.Day =£ 19860419) = 1 ■ 

5.7.7 Retrieve into Temporary Relation 

So far we have not considered what happens to the retrieved data; in an interactive 

environment the results would have been listed on the user’s output device. It is also 

possible to assign the result of the retrieval to a relation. The format of such a 

retrieve command is: 

retrieve into <new-relation > (Ctarget list>) 

[where <condition>] 

The new relation will be created with the correct attribute names and the result of 

the query put into this relation. The content of the new relation will be similar to a 

simple retrieve statement. 
This scheme of using a relation to accept the result of a retrieve statement can 

be used in places where SQL uses a nested subquery, as illustrated in the next ex¬ 

ample. 

Example 5.46 “Get total amount for Bill table 12 for the date 19860419.” Here we create 

a temporary relation ITEMIZED_BILL and subsequently use it to find the 

total amount for the bill. 
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range of b is BILL 

range of m is MENU 

range of o is ORDR 

retrieve into ITEMIZED_BILL(b.fl///#,m.Description,m.Price, 

o.Qty, Dish-Total = m.Price*o.Qty) 

where b.Table# = 12 

and b.Day = 19860419 

and o.Dish# = m .Dish# 

and b.Bill# — o.Bill# 

range of i is ITEMIZED_BILL 

retrieve unique(i.fl///#, Total-Amount = sum(i.Dish-Total)) ■ 

5.7.8 Updates 

So far we have seen the QUEL data retrieval commands. Data in relations can also 

be changed using the three update commands append, replace, and delete. The for¬ 

mat of the append command is: 

append to Crelation name> (<value list>) 

[where <condition>] 

and the value list takes the form 

<value list> :: = <attribute name> = <value expression> [,<value list>] 

Append is used to insert new tuples into a relation. The replace and delete 

commands are used to replace or delete existing tuples. Thus the append requires the 

use of a relation name and the replace and delete commands should use a tuple 

variable. The format of the replace and delete commands is: 

replace <tuple variable> (Cvalue list>) 

[where <condition>] 

delete Ctuple variable> 

[where <condition>] 

Example 5.47 (a) “Append a tuple to DUTY_ALLOCATION for Posting-No = 322, 
Empl-No = 123457, Shift = 2, Day = 19860421.” 

append to DUTY_ALLOCATION 

(Posting-No = 322, Empl-No = 123457, Shift = 2, 
Day = 19860421) 

(b) “Copy the DUTY_ALLOCATION relation into NEW_DUTY_ALLO- 
CATION.” 

range of d is DUTY_ALLOCATION 

append to NEW_DUTY_ALLOCATION (d.all) 

In this example, all tuples from the DUTY_ALLOCATION relation are cop¬ 
ied into NEW_DUTY_ALLOCATION. 
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(c) “Copy only the tuples for shift 1 into the NEW DUTY Al l.Of A- 
TION.” 

range of d is DUTY_ALLOCATION 

append to NEW_DUTY_ALLOCATION (d.all) 
where d.Shift = 1 ■ 

Example 5.48 illustrates the use of the replace command. 

Example 5.48 (a) “Increase the pay rate of all employees by 10%. ” 

range of e is EMPLOYEE 

replace e (Pay-Rate = 1.1 * e. Pay-Rate) 

The value for the attribute Pay-Rate in each tuple is increased by 10%. 
The other attributes are unchanged. 

(b) “Increase the pay rate of all waiters by 10%.” 

range of e is EMPLOYEE 

replace e (Pay-Rate = 1.1 * e.Pay-Rate) 

where e.Skill = 'waiter' 

(c) To insert the total amount and the suggested tip into BILL with Bill# 

= 9234 from the relation ITEMIZED_BILL, we can use the following 

statements: 

range of i is ITEMIZED-BILL 

range of b is BILL 

replace b 
(Total = sum(i.Dish-Total where i.Bill# = 9234), 

Tip = 0.\5*sum(i.Dish-Total where [.Bill# = 9234)) 

where b.5/7/# = 9234 ■ 

Example 5.49 illustrates the delete command. 

Example 5.49 “Remove the record for employee with Empl-No 123457.” 

range of e is EMPLOYEE 

delete e 
where e.Empl-No = 123457 

and to delete all tuples from a relation: 

range of e is EMPLOYEE 

delete e 

The result of the last command is an empty relation. ■ 
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Now let us look at examples that illustrate the method of performing set unions 

and difference in QUEL. 

Example 5.50 “Get all employees (employee numbers only) who are either waiters or 

work on Posting-No 321.” This query requires that we obtain the union of 

the employee numbers obtained from the DUTY_ALLOCATION and EM¬ 

PLOYEE relations As discussed in Section 5.7.5, QUEL does not support 

set operations. QUEL is based on relational calculus, so let us first write a 

calculus expression to help us formulate this query in QUEL: 

{t | 3d(d e DUTY_ALLOCATION 

A t[Empl-No] = d[Empl-No] 

A d [Posting-No] = 321) V 
3r(r e EMPLOYEE 

A t [Empl-No] = r[Empl-No] 

A r[Skill] = 'waiter')} 

An examination of this query shows that we create a relation over which we 

define the tuple variable t. We append to this relation the relevant Empl-No 

from the DUTY_ALLOCATION relation and the Empl-No from the EM¬ 

PLOYEE relation. This is our clue for writing the QUEL query. The crea¬ 

tion of a new relation and the appending of the appropriate Empl-No from 

the DUTY_ALLOCATION relation can be expressed as: 

range of d is DUTY_ALLOCATION 

retrieve into TEMP (d.Empl-No) 

where d. Posting-No = 321 

Now we append to our TEMP relation the employee numbers of all waiters: 

range of r is EMPLOYEE 

append to TEMP (Empl-No = r.Empl-No) 

where r.Skill = 'waiter' 

The TEMP relation contains all employees (via the surrogate employee num¬ 

bers) who work at Posting-No 321 or have the skill of waiter. If some 

persons work both at Posting-No 321 and have the skill of a waiter, their 

numbers will appear more than once in the relation TEMP. So as a final 

step we need to remove these duplicates by the following statements: 

range of t is TEMP 

retrieve unique (t.EmplJNo) ■ 

Example 5.51 illustrates a method of implementing the difference operation. 

Example 5.51 “Get employee numbers of persons who work at Posting-No 321 but who 

do not have the skill of waiter.” We create a TEMP relation with the em¬ 

ployee numbers of persons working at Posting-No 321 (as in Example 
5.50): 
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range of d is DUTY_ALLOCATION 

retrieve into TEMP (d.Empl^No) 

where d.Posting-No = 321 

Now we need to delete all tuples in TEMP corresponding to employees 
with the skill of waiter: 

range of r is EMPLOYEE 

range of t is TEMP 

delete t 

where t.Empl-No = r.Empl_No and r.Skill = 'waiter' 

Now the temp relation consists of the desired tuples and can be retrieved as: 

range of t is TEMP 

retrieve unique (t.Empl-No) ■ 

5.7.9 Views 

QUEL supports views in a manner similar to SQL. A view can be defined on an 

existing (or a base) relation. The syntax of a define view definition is as follows: 

define view VIEW_NAME <target_list> 

[where < predicates >] 

The target list specifies the attributes to be included in the virtual relation 

VIEW_NAME and must specify the names by which the virtual attributes will be 

referred. 
As in the case of SQL, the data corresponding to a view are retrieved whenever 

a query refers to a view. Data retrieval is via a query modification as illustrated in 

the following example. 

Example 5.52 range of e is EMPLOYEE 

define view EMP_VIEW 

(Emp-No = Q.Empl-No 

Emp-Name — t.Name 
Emp-Profession = e. Skill) 

where e.Empl-No < 123460 

A subsequent query to the view, for instance the one given below, is 

modified to refer to the existing base relation: 

range of e is EMP-VIEW 

retrieve (e.Emp-no, e.Emp-Profession) 

where e.Emp-No > 123300 

This query is converted to the following form, which refers to the base 

relation EMPLOYEE before any retrieval: 

range of e is EMPLOYEE 
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retrieve (Emp-No = e.Empl-No, 

Emp-Profession = e. Skill) 

where t.Empl-No > 123300 

and e.Empl-No < 123460 ■ 

Such query modifications produce an appropriate external scheme to conceptual 

scheme mapping in a orderly manner. Updates via view, create problems similar to 

the ones we discussed under SQL. 
Once defined, a view can be used until it is destroyed by means of a destroy 

statement as follows: 

destroy EMP_VIEW 

5.7.10 Remarks 

Other QUEL commands deal with database creation, database removal, interface to 

the file system, index organization, and index modification. These do not deal spe¬ 

cifically with data manipulation, so we have not emphasized them here. 

The commercial version of INGRES provides a form-based interface, a report 

writer, interactive as well as embedded SQL and QUEL with HLL interface to 

BASIC, C, COBOL, Pascal, and PL/I. The database response has been much im¬ 

proved (about one order) over the INGRES used in the academic milieu. 

5.8 Embedded Data Manipulation Language 

SQL and QUEL only provide facilities to define and retrieve data interactively. To 

extend the data manipulation operations of these languages, for example to separately 

process each tuple of a relation, these languages have to be used with a traditional 

high-level language (HLL). Such a language is called a host language and the pro¬ 

gram is called the host program. The use of a database system in applications writ¬ 

ten in an HLL requires that the DML statements be embedded in the host programs. 

All the statements and features that are available to an interactive user must be avail¬ 

able to the application programmer using the HLL. The DML statements are distin¬ 

guished by means of a special symbol or are invoked by means of a subroutine call. 

One approach that is commonly used is to mark the DML statements and par¬ 

tially parse them during a precompilation step to look for statements and variables 

from the host HLL appearing in DML statements. Such variables are appropriately 

identified by looking for a variable declaration in the host program or by appropri¬ 

ately marking such variables (e.g., with a colon). In this way, it is possible to use 

identical names for both the HLL variables and the objects in the database. 

The need for domain compatibility between host language variables and con¬ 

stants and database attributes has to be observed in the design and writing of HLL 

programs with embedded DML statements. Any data type mismatch between HLL 

variables and DML attributes must be resolved. One way to handle type mismatch is 

to do type conversion at run time. Such type conversions must either be established 
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(e.g., converting temperatures given in Celsius to Fahrenheit) or provided by the user 

(e.g., the current rate of exchange between U.S. and Canadian currency). 

In addition to executable DML statements, there is a need for declarative state¬ 

ments. Such declarative statements are used to declare names of relations, their attri¬ 

butes, and currency indicators (or cursors). Also, the program is informed of the 

status of the execution of a DML statement by appropriate status indicators, which 

have to be declared as well. We will not discuss status indicators here, but we rec¬ 

ognize their importance in the HLL program to verify the status of the execution of 

the DML statement and take appropriate actions under various error conditions. 

Let us illustrate the use of embedded DML statements by the following exam¬ 

ple. Note that the syntax and convention we are using are simply for illustration; they 

do not necessarily correspond to those used in any system known to the author. The 

SQL statements are indicated by the presence of the leading % symbol. The HLL 

variables Emp_Name, Emp_Skill, Emp_Id, Emp_Pay_Rate are declared to be com¬ 

patible with the attributes of the EMPLOYEE relation. The EMPLOYEE relation is 

also declared in the HLL program and allows the precompiler to verify the data types 

of corresponding attributes and HLL variables match. The HLL variables in the SQL 
statements are indicated by preceding them with a colon. 

We want to update the pay rate of selected employees in our database; each 

employees increase may be different. To implement this application in a high-level 

language, we read in the employee number and the percent pay rate of the employee. 

We retrieve the tuple for this employee and update the pay rate. Subsequently, we 

select each updated tuple of the EMPLOYEE relation and assign the value of the 

attributes to the HLL program variables using the %into statement. Finally, the val¬ 
ues of these HLL variables are written out. 

var {HLL variables} 

input_file: text; 

numb: integer; 

raise_pct: real; 

var Emp_Name char(25), Emp_Skill char{25); 

var Emp_Id decimal(6), Emp_Pay_Rate decimaK 10,2); 
record EMPLOYEE relation 

(Empl-No decimal(6). 

Name char(25). 

Skill char(25), 

Pay-Rate decimal( 10,2)); 

ra/d/«(input_file, numb, raise_pct); 

while not <?o/(input_file) do 

begin 

% update EMPLOYEE 

set Pay—Rate = Pay-Rate * : raise_pct 

where Empl-No — : numb 

readln(\np\it-f\\z, numb, raise_pct); 

end; 

r£ser(input_file); 

razd/n(input_file, numb, raise_pct); 

while not £o/(input_file) do 

begin 
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%select Empl-No, Name, Pay-Rate 

into :Emp_Id :Emp_Name : Emp_Pay_Rate 

from EMPLOYEE 

where Empl-No = : numb 

writelnfEmployee Number = ' Emp_Id, 

'Employee Name = ', Emp_Name, 

'Employee New Pay Rate =', Emp_Pay_Rate); 

reading input-file, numb, raise_pct); 

end; 

The need for currency indicators is illustrated by the following example. The 

select statement will generally retrieve a set of tuples. The elements of this set will 

be processed one at a time in the do-while loop. We can associate a currency indi¬ 

cator ptrl with the relation EMPLOYEE by a declare statement. This currency indi¬ 

cator is used to step through elements of the set retrieved by the select statement. 

The do-while loop will terminate when the last element is processed. 

var Emp_Name char{25), Emp_Skill char(25); 

var Emp_Id decimal(6), Emp_Pay_Rate decimal( 10,2); 

record EMPLOYEE relation 

(Empl-No decimal(6). 

Name char(25), 

Skill char(25), 

Pay-Rate decimal{ 10,2)); 

%var ptrl currency-indicator for EMPLOYEE 

%select * 

from EMPLOYEE 

where Skill = 'chef' 

%do while ptrl =£ end of set 

%assign using ptrl to :Emp_Name :Emp_Skill :Emp_Id 

: Emp_Pay_Rate 
. . . other statements to process : Emp_Name : Skill 

:Emp-Id : Pay -Rate 

end while 

Some DML statements do not require currency indicators. Examples of these 

are where a single tuple is retrieved, inserted, or updated. Deletion or updating of all 

tuples meeting certain predicates needs no currency indicators either. The following 

example shows the embedded SQL statements for adjusting the pay rates of employ¬ 

ees with the skill of chef by the adjustment factor Adj-Chef. The latter is a host 
language variable indicated by the leading colon. 

% update EMPLOYEE 

% set Pay-Rate = Pay-Rate *:Adj_Chef 

% where Skill = 'chef' 

As in the case of SQL, QUEL can be used in a form called EQUEL (embedded 

QUEL) in a high-level language. EQUEL allows application programs to access an 

INGRES database. The EQUEL statements are not precompiled nor optimized as in 

the case of embedded SQL. Rather, they are processed and optimized dynamically 
at runtime by INGRES. 
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A Critique: SQL, QUEL 

SQL and QUEL are easier to use and more powerful as data sublanguages than the 

ones used in DBMSs based on the network and hierarchical models. However, these 

languages do not fully support some of the basic features of the relational data model: 

the concept of domains, entity and referential integrity and hence the concept of 

primary and foreign keys. Furthermore, these languages are redundant in the sense 
that the same query may be expressed in more than one way. 

Redundancy is not a sin as long as different ways of expressing the same query 

yield the same results in approximately the same period of time. However, tests with 

a number of implementations of SQL, the most widely available query language for 

relational DBMSs, indicate a wide variation in response time. Furthermore, some 

forms of the query generate duplicate tuples whereas others do not. 

Proponents of QUEL claim that it is more orthogonal and powerful than SQL. 

The term orthogonal is used in programming languages to mean that concepts and 

constructs are designed independently and can be used consistently in a uniform 

manner. In an orthogonal language, there are no special cases and few restrictions 

imposed on the use of the components of the language. The current SQL standard is 

viewed as one that tried to reconcile the various commercial implementations and 

came up with one that is, in effect, the lowest common denominator. An attempt is 
currently underway to upgrade the SQL standard. 

The following illustrates the nonorthogonality of SQL. The first version is valid 

while the second, though symmetrical, is invalid. This is so because the nested select 

operand is required to be on the right-hand side of the 0 operator. 

First version: 

select Name 

from EMPLOYEE 

where Pay-Rate > 

(select avg (Pay-Rate) 

from EMPLOYEE) 

Second version: 

select Name 

from EMPLOYEE 

where (select avg (Pay-Rate) 

from EMPLOYEE) < Pay-Rate 

As mentioned earlier, the select statement of SQL represents the following re¬ 

lational algebraic operations: 

projeCtion(represented ()v (|lc target list) (selection (represented by the where clause) (cartesian product 
of the relations represented by the from list)) 

It is not possible to change the order of these operations in SQL. Consequently, the 

user has to express a query in this format, making the query less like a natural 

language query. 
The treatment of nested select statements in various set operators such as exists, 

0any, 0all, in, and contains is also nonuniform. Whereas a nested select statement 
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producing a relation as the result is required in the case of exists, nested select is 

only permitted if the value produced in the case of one of the operators {= , + , >, 

>, <, <} is a relation of cardinality and degree one (a single value). On the other 

hand, the result of the nested select in the case of one of the set operators {0any, 

Ball, in, contains} is required to be a relation of degree one and arbitrary cardinality. 

Suppose we want to create a table that contains the names of employees, their 

pay rate, and, for comparison, the average pay rate. This can be expressed in QUEL 

as shown in Example 5.42c. However, an attempt to create such a table using the 

following SQL statement, though intuitively valid, will fail because such usage is 

illegal in SQL. The reason is that the select is a projection and the cardinality of 

Name, Pay-Rate, is not the same as the cardinality of avg(Pay-Rate). 

select Name, Pay-Rate, avg (Pay-Rate) 

from EMPLOYEE 

However, the following is legal and produces a table of skill and the average 
pay rate for each skill: 

select Skill, avg (Pay-Rate) 

from EMPLOYEE 

group by Skill 

QUEL allows updates to involve values from two relations. As such, the pay 

rates of employee in the relation EMPLOYEE can be adjusted according to the values 
in a relation ADJUSTMENT shown below: 

range of a is ADJUSTMENT 

range of e is EMPLOYEE 

replace (e.Pay-Rate — a.Raise * e.Pay-Rate) 

where e.Skill = a.Skill 

ADJUSTMENT 

Skill Raise 

waiter 1.08 

bartender 1.07 

busboy 1.12 

hostess 1.09 

maitre d’ 1.08 

chef 1.09 

A similar attempt to use a value from another relation, as illustrated below, is 
invalid in SQL: 

update EMPLOYEE 

set Pay-Rate = Pay-Rate ^(select a.Raise 

from ADJUSTMENT a 

where EMPLOYEE.Skill = a.Skill) 

However, in some implementations of SQL the following statement would pro¬ 

duce the required adjustment in Pay-Rates. It should be obvious that for this state- 
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ment to work correctly, the relation ADJUSTMENT must have a tuple corresponding 
to each value of Skill in EMPLOYEE. 

update EMPLOYEE 

set Pay_Rate = (select Pay-Rate * a Raise 

from ADJUSTMENT a 

where EMPLOYEE.Skill = a.Skill) 

The nonorthogonality of SQL in allowing nested query in some places and not 

in others is illustrated below. Whereas the select statement on the left is legal in SQL 

a similar form in the update statement on the right is not valid in all implementations 
of SQL. 

select Name update EMPLOYEE 

from EMPLOYEE set Pay-Rate = 1.3 * Pay-Rate 

where Empl-No = where Empl-No in 

(select Empl-No (select Empl-No 

from DUTY_ALLOCATION from DUTY_ALLOCATION 
where Shift = 3) where Shift = 3) 

QUEL, on the other hand, has required the use of tuple variables in its query to 
date. This restriction has been modified and QUEL now allows the use of a relation 

name as the tuple variable. This was implemented by a query modification introduc¬ 

ing the relation name as a tuple variable. However, as illustrated in the following 

query, using both a tuple variable and a relation name could produce an incorrect 
result: 

range of e is EMPLOYEE 

replace EMPLOYEE (Pay-Rate = 10.50) 

where e.Empl-No = 123456 

This query is modified by the introduction of a range statement: 

range of e is EMPLOYEE 

range of EMPLOYEE is EMPLOYEE 

replace ENVPEOYEE( Pay-Rate = 10.50) 

where e.Empl-No = 123456 

The result is unexpected since the query sets the pay rate of all employees to 10.50 

if there exists an employee with the number 123456. 

One of the more mystifying features of QUEL is the scope rule of tuple vari¬ 

ables in aggregation operators and aggregate functions. In aggregation operators tuple 

variables are strictly local, whereas in aggregate functions the presence of the by 

clause requires that the tuple variable used in that clause has a global scope. Consider 

the query “Find the average Pay-Rate by Skill." The QUEL version of this query 

is shown in Example 5.45c. However, it may be expressed by a novice user using 

an additional tuple variable as follows: 

range of e is EMPLOYEE 

range of el is EMPLOYEE 

retrieve (e.Skill, Avg-Rate = avg(el.Pay-Rate by e.Skill)) 

This query shows the global scope of the tuple variable used in the by clause, which 

is the same as that used outside the aggregate function. The tuple variable el is 
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Figure 5.5 * 

strictly local, causing the result to be computed on the cartesian product of EM¬ 

PLOYEE with itself. This average value, as shown in Figure 5.5, is the same for all 

skills for our sample EMPLOYEE relation of Figure 5.4. 

The correct result for the average pay rate by skill, when using an additional 

tuple variable, is obtained by adding a predicate in the aggregate function to select 

appropriate tuples of the cartesian product. This is illustrated in the following modi¬ 

fied query: 

range of e is EMPLOYEE 

range of el is EMPLOYEE 

retrieve (e.Skill, Avg-Rate = avg(el.Pay-Rate by e.Skill 

where e.Skill — el.Skill)) 

The same result could have been obtained using the following query wherein 

only one tuple variable is used. Here the by clause causes the tuple variable e to be 

global and distinct from the local tuple variable in e.Pay-Rate. 

range of e is EMPLOYEE 

retrieve (e.Skill, Avg-Rate = avg(e. Pay-Rate by e.Skill)) 

The following is another example that illustrates the confusion in novice QUEL 

users due to a mixture of scope of tuple variables. Consider the query of finding, for 

each skill, the average pay rate of those employees whose pay rate is less than the 

average pay rate for their skill. Assume that the MORE_EMPLOYEE relation con¬ 

tains the tuples shown in Figure 5.6. Consider the following QUEL implementation 

of this query: 

range of e is MORE_EMPLOYEE 

range of el is MORE_EMPLOYEE 

retrieve (e.Skill, Low-Avg-Rate = 

avg(e.Pay-Rate by e.Skill where e.Pay-Rate < 

avg(el .Pay-Rate where el .Skill = e. Skill) ) ) 

The result of this QUEL query for our sample relation MORE_EMPLOYEE is shown 

in Figure 5.7. Here the use of the by clause in the first avg aggregate function causes 

the tuple variable e associated with it to be global and the same as one used outside 

the aggregate function in e.Empl-No and e.Skill. The identically named tuple vari¬ 

able e associated with the two occurrences of e. Pay -Rate in the first avg aggre¬ 

gate function are, on the other hand, local. The tuple variable el appearing in the 

An attempt to compute average Pay-Rate by Skill. 

Skill Avg-Rate 

waiter 8.51 

bartender 8.51 

busboy 8.51 

hostess 8.51 

bellboy 8.51 

maitre d’ 8.51 

chef 8.51 
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Figure 5.6 Tuples from MORE EMPLOYEE relation. 

MORE_EMPLOYEE 

Empl-No Name Skill Pay-Rate 

123446 Art waiter 7.75 
123456 Ron waiter 7.50 
123466 Sam waiter 7.25 
123476 Ram waiter 7.00 
123486 Hon waiter 6.75 
123477 Tom bartender 8.99 
123457 Jon bartender 8.79 
123467 Mario bartender 8.59 
123448 Dan busboy 4.60 
123458 Don busboy 4.70 
123468 Dave busboy 4.50 
123459 Pam hostess 4.90 
123449 Mary hostess 4.80 
123460 Pat bellboy 4.70 
123450 Steve bellboy 4.50 
123461 Ian maitre d’ 9.00 
123451 Andre maitre d’ 8.00 
123471 Pierre chef 14.00 
123472 Julie chef 14.50 

avg aggregation operator is also local and the average is computed on the join of 

MORE_EMPLOYEE with itself. This average value, as seen earlier, will be the 

same for all skills and in this case equal to 7.41. Hence the query gives us the nonzero 

Low-Avg-Rate for those employees whose Pay-Rate is lower than the average pay 

rate of all employees. For skills wherein all employees’ pay rates are higher than this 

Figure 5.7 Attempt at computing the average Pay-Rate by Skill of employees whose Pay-Rate is 
below the average for their skills. 

Skill Low Avg-Rate 

bartender 0.00 

bellboy 4.60 

busboy 4.60 

chef 0.00 

hostess 4.85 

maitre d’ 0.00 

waiter 7.00 

chef 0.00 
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Figure 5.8 

average pay rate, the result is derived as 0.0. The result relation produced by this 

query is evidently wrong. This would be not apparent to the user unless he or she 

had known the contents of the MORE_EMPLOYEE relation and had computed some 

sample results. 

Let us modify the query as shown below. Here the by clause forces the tuple 

variable in both the aggregate functions to be global. 

range of e is MORE_EMPLOYEE 

range of el is MORE_EMPLOYEE 

retrieve (e.Skill, Low—AvgJRate = 

avg {z.Pay-Rate by e. Skill where e. Pay -Rate < 

avg(el.Pay-Rate by e.Skill where el.Skill = z.Skill) ) ) 

The second average is now computed using only those tuples of the join of 

MORE_EMPLOYEE with itself where the skill is the same as one outside the func¬ 

tion. This indicates the correct tuples to choose for computing the low average pay 

rate. The result is shown in Figure 5.8. 

We can simplify the last query as shown below. This simplified query gives the 

same result as shown in Figure 5.8. 

range of e is MORE_EMPLOYEE 

retrieve (e.Skill, Low_Avg-Rate = 

avg {z. Pay-Rate by e. Skill where z.Pay-Rate < 

avg(z.Pay-Rate by e.Skill) ) ) 

As illustrated above, a mixture of local and global scope of tuple variables in QUEL 

tends to create confusion and retrieve incorrect data. 

The SQL version of this query is relatively simple as shown below: 

select e.Skill, avg(z.Pay-Rate) 

from MORE_EMPLOYEE e 

where e. Pay -Rate < (select a\g(z\.Pay-Rate) 

from MORE_EMPLOYEE el 

where el.Skill = e.Skill) 

group by z.Skill 

Correct values by Skill of average Pay-Rate of employees below the average for their 
skills. 

Skill Low Avg-Rate 

bartender 8.59 
bellboy 4.50 
busboy 4.50 
chef 14.00 
hostess 4.80 
maitre d’ 8.00 
waiter 6.88 
chef 14.00 
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The above discussion illustrates that neither SQL nor QUEL are perfect for 
expressing all queries. A user has to know the “correct” versions without which the 

information gleaned from the DBMS may be incorrect. The user may have no way 
of ascertaining the correctness of the response. 

The SQL standard is under review and as with all such standards will go through 

a number of versions. It is hoped that future standards will address some of the 
criticisms leveled at SQL. 

5.10 QBE 

Query-By-Example (QBE) was originally developed by M. M. Zloof at IBM’s 

Yorktown Heights Research Laboratory and has now been marketed for various re¬ 

lational systems from IBM as part of their QMF (Query Management Facility). In 

QMF, QBE is implemented not as in the system developed by Zloof, but rather by 

translating the QBE queries into equivalent SQL queries. Other relational DBMSs 

such as DBASE IV, INGRES, and ORACLE have some form of example or form- 
based query system. 

QBE is based on domain calculus and has a two-dimensional syntax. The quer¬ 

ies are written in the horizontal and vertical dimensions of a table. Queries are 

formed by entering an example of a possible answer in a skeleton (empty) table, as 

shown in Figure 5.9. This example contains variables as in domain calculus and 

specifies the conditions that have to be satisfied by the response. Conditions specified 

on a single row of the table are generally considered to be conjunctive (i.e., 

“omfed”); conditions entered on separate rows are disjunctive (i.e., “ored”). An 
empty skeleton is displayed by pressing a function key. 

The skeleton table does not have column headings. The first column is used for 
the relation name. 

To get a list of relations, we enter P. for the PRINT command in the first 
column of the column heading: 

p. 

To get the attribute names for a given relation we enter the relation name fol¬ 
lowed by a P. 

DUTY_ALLOCATION P. 
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Figure 5.9 QBE skeleton table for writing QBE example query. 

Attribute Names 

Relation 

name 

' ' 

Tuple 

operations 

t \ t \ 

Domain variables, domain constants, and predicates 

Having obtained a skeleton table, we specify queries by filling in the table with 

appropriate variables and constants. Variables are called example elements. Variable 

names are represented in QBE by preceding the name with an underscore. However, 

in this text, for ease in reading, the variables are denoted by underlined strings and 

in no way affect the interpretation of a query. It is usual to use example values from 

an attribute’s domain as free variable names. The example value, chosen as a vari¬ 

able name, need not be in the database. Constants are nonunderlined strings. There¬ 

fore, Waiter# is a variable; Waiter# is a constant. 123456 is a variable; 123456 is a 

constant. 

5.10.1 Basic Data Retrieval in QBE 

The basic data retrieval command in QBE is the PRINT command indicated by P. 

with an optional variable name as shown below and in the following examples: 

P.[<variable>] 

Example 5.53 “Get employee position assignment.” We first obtain the DUTY_ALLO- 

CATION skeleton table. Next we enter variables or the example query. 

DUTY-ALLOCATION Posting-No Empl-No Shift Day 

P.P1 P.E1 

This is the domain calculus query 

{p,e | <p,e,s,d> e DUTY_ALLOCATION} ■ 

Duplicates in QBE are automatically eliminated. To suppress such elimination 

the variable name must include the ALL. keyword prefix. (In the above query it 
would be P.ALL.PL) 



5.10 QBE 271 

Two alternative forms of expressing the same query are given below. In the first 

the domain values are used as variables and in the second we only specify the col¬ 
umns to be printed. 

DUTY_ALLOCATION Posting-No Empl-No Shift Day 

P.325 P.123456 

DUTY_ALLOCATION Posting-No Empl-No Shift Day 

P. P. 

Example 5.54 “Get full details of duty assignment.” This query can be expressed in QBE 

by entering on a skeleton table for the DUTY_ALLOCATION relation the 

present or print directive followed by a variable name for all attributes of 
the relation. Such a sample is illustrated below: 

DUTY_ALLOCATION Posting-No Empl-No Shift Day 

P.P1 P.E1 P.S1 P.D1 

A simpler method of representing the same query is to enter a P. under 

the relation name as indicated below: 

DUTY_ALLOCATION Posting-No Empl-No Shift Day 

P. 

Predicates are introduced in queries by means of constants in appropriate columns as 

illustrated in the following example. 

Consider the query that requires all duty assignments for Empl-No 123456. 

The domain calculus version of this query, given below, can be translated 

readily into an example on the skeleton table. The condition Empl-No = 

123456 is expressed by entering the value under the column for Empl-No. 

Example 5.55 
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The fact that all details are required is indicated by the P. under the relation 

name. 

{p,e,s,d | <p,e,s,d> e DUTY_ALLOCATION A e = 123456} 

DUTY_ALLOCATION Posting-No Empl-No Shift Day 

P. 123456 

QBE supports the usual comparison operators: =, ^(not equal), <, <, >, >; 

= is normally omitted as seen in the previous example. The Boolean operators and, 

or, not are also supported. Conditions specified within a single row are andtd. For 

multiple conditions on the same column, k, to be anded, QBE requires multiple rows 

with the same example element in the /rth column of each row. To specify conditions 

to be ored we use different rows with different example elements. 

Example 5.56 “Get names of employees with the skill of chef earning more than $14.00 

per hour.” The above query reads “Get employee names where Skill = 

'chef' and Pay-Rate > 14.00“ and is the domain calculus query: 

{n | <e,n,s,p> e EMPLOYEE A s = 'chef' A p > 14.00} 

This query requires two conditions to be true for the tuples that are 

retrieved. It can be expressed on the skeleton table as illustrated below: 

EMPLOYEE Name Skill Pay-Rate 

P.EX ‘chef >14.00 

In the above example not all attribute names of the employee relation were 

listed. It is possible in QBE to eliminate columns from the display if they are irrele¬ 
vant to the query. 

Example 5.57 “Get names of chefs who earn more than $10 per hour but less than $20 

per hour.” To specify a conjunctive predicate of the form P,(attrf A 
P2(attri) A . . . PJattrJ, QBE allows multiple columns for the same attrib¬ 

ute in the skeleton table. Hence this query can be expressed as shown below: 

EMPLOYEE Empl-No Name Skill Pay-Rate Pay-Rate 

P.EX chef >10.00 <20.00 
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An alternate scheme with multiple rows with the same domain vari¬ 

able to express the conjunctive predicate can also be used. The query could 

be reexpressed as “Get employee names whose Skill = 'chef' with 

Pay—Rate> 10 AND (the same) employee names whose Skill is also 'chef' with 

Pay-Rate<20.’ This is expressed in QBE by two rows with the same var¬ 
iable in the Name column as indicated below: 

EMPLOYEE Empl_No Name Skill PayJKate 

P.EX chef >10.00 
EX chef <20.00 

The following example illustrates a disjunctive predicate. 

Example 5.58 “Get names of employees who are either chefs or earn more than $8 per 

hour.’ In this query, the conditions to be ored are indicated by using 

two rows in the skeleton table with different variable names for the Name 
column. 

EMPLOYEE Empl-No Name Skill Pay-Rate 

P.EX chef 
P.EY >8.00 

Data from multiple tables can be manipulated as shown in Example 5.59. 

Example 5.59 “Get shift details for the employee named Ian.” This query is “Print Posting 

No, Shift and Day (e.g., P1_,SJ_,D1_ respectively) for employee number EX 

where EX is the Empl-No for employee Ian. The response to the query 

involves a join of relations EMPLOYEE and DUTY_ALLOCATION. In 

QBE the join is implemented by utilizing the example element EX as a link 

between these relations. The link in QBE is used whenever a join would be 

used in relational algebra. 

DUTY_ALLOCATION Posting-No Empl—No Shift Day 

P. P.P1 EX P.S1 P.D1 
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EMPLOYEE Empl-No Name Skill Pay-Rate 

P.EX Ian 

QBE also provides a “conditions” box to specify additional constraints. This is 

particularly helpful as it sometimes becomes impossible to specify all the constraints 

within the skeleton table. We illustrate the use of a condition box in the following 

example. 

A number of variables can be defined over the same attribute of a relation. This 

is used in Example 5.60. 

Example 5.60 “Get Empl-No of all pairs of chefs working on the same shift.” The do¬ 

main calculus version of this query is given below. Here f and s are domain 

variables on the domain of Emp# and x and y are domain variables on the 

domain of Shift: 

{f,s | <f,x> e DUTY_ALLOCATION A <s,y> e DUTY_ALLOCATION 

A <ef,nf,sf,pf> e EMPLOYEE 

A <es,ns,ss,ps> e EMPLOYEE 

Ax = yAf<sAf=efAs = es 
A ps = 'chef' A pf = 'chef'} 

This calculus query states “Get employee numbers of chefs working 

on the same shift (x = y).” The conditions f = pf and s = es guarantee 

that we have the same employees from the two relations. Finally, to elimi¬ 

nate redundant pairs of the form (123471, 123472) and (123472, 123471) 

we impose the condition, f < s on the employee numbers. This calculus 
form of the query is converted into QBE as shown below: 

DUTY_ALLOCATION Posting-No Empl-No Shift Day 

EX SI 

EY SI 

EMPLOYEE Empl_No Name Skill Pay-Rate 

EF chef 

ES chef 
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RESULT First Second CONDITIONS 

P.EX P.EY EX < EY and 

EF = EX and 

ES = EY 

We could have used EX and EY instead of EF and ES respectively in 

the skeleton table for EMPLOYEE, eliminating the conditions EF = EX 

and ES = EY in the condition box to indicate that the skill of the employees 

are those of chefs. ■ 

5.1 0.2 Aggregation in QBE 

QBE also provides min, max, cnt (count), sum, and avg aggregation functions. The 

latter three may be qualified by the UNQ. operator to eliminate duplicates. The ALL. 

qualifier must always be specified. We illustrate the use of these functions in Exam¬ 

ple 5.61. 

MIN.ALL. 

MAX.ALL. 

CNT. [UNQ.] ALL. 

SUM. [UNQ.] ALL. 

AVG.[UNQ.]ALL. 

Example 5.61 (a) “Get average dish price.” 

MENU Dish# Dish-Description Price 

P. AVG. UNQ. ALL.CX 

(b) “Get minimum and maximum dish prices.” 

MENU Dish# Dish-Description Price 

P.MIN.ALL.CX 

P.MAX. ALL.CY 

(c) “Get names and rate of pay compared with average rate of pay.” 
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EMPLOYEE Empl-No Name Skill Pay-Rate 

P.EX P.RX 

P.AVG.ALL.RY 

(d) “Find names of employees with Pay-Rate less than the average Pay- 

Rate.” 

CONDITIONS 

P.EX P.RX 

AVG.ALL.RY 

RX < AVG.ALL.RY 

5.10.3 Categorization in QBE 

The equivalent of the SQL group by operator is obtained in QBE by preceding the 

variable with G. 

Example 5.62 (a) “Get count of employees on each shift.” 

DUTY-ALLOCATION Empl-No Shift Day 

P.CNT.ALL.EX G.SX 

(b) “Get employee numbers of all employees assigned a duty on dates in 

addition to the date 19860419.” 

DUTY-ALLOCATION Empl-No Day CONDITIONS 

EX 

P.G.EX 
19860419 CNT.ALL.EX > 1 
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5.10.4 Updates 

QBE includes the three update operations for inserting, modifying, and deleting. 

These are indicated on the skeleton table in the relation name column by I. (insert), 

U. (modify/replace), and D. (delete). For the U. update operation based on an old 

value, the user first specifies the old version and next the new version. We illustrate 
the syntax for specifying these operations in the following examples. 

Example 5.63 (a) “Insert a record into DUTY-ALLOCATION at Posting-No 321 for Empl 
No 123458, Shift 2, and Day 19860421.” 

DUTY-ALLOCATION Posting-No Empl-No Shift Day 

I. 321 123458 2 19860421 

Here the I. in the relation name column indicates the insertion opera¬ 

tion. The values for the columns are indicated on the skeleton of the table. 

(b) “Copy DUTY_ALLOCATION into NEW_DUTY_ ALLOCATION.” 

DUTY-ALLOCATION Posting-No Empl-No Shift Day 

PX EX SX DX 

NEW-DUTY-ALLOCATION Posting-No Empl-No Shift Day 

I. PX EX SX DX 

Here the I. in the relation name column for the NEW_DUTY_ALLO¬ 

CATION table indicates the insertion operation. The similarly named vari¬ 

ables in DUTY-ALLOCATION and NEW_DUTY_ALLOCATION indi¬ 
cate the source of the values to be used for the insertion. 

(c) “Copy into NEW_DUTY_ALLOCATION records for Shift 1 in DUTY 
-ALLOCATION.” 
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DUTY_ALLOCATION Posting-No Empl-No Shift Day 

PX EX SX DX 
* 

NEW_DUTY_ALLOCATION Posting-No Empl-No Day 

I. PX EX DX 

(d) “Increase Pay-Rate of all employees by 10%.’’ 

EMPLOYEE Empl-No Pay-Rate 

EX PX 
U. EX 1.1 * PX 

Here U. in the relation name column indicates the update operation, 

(e) “Increase Pay-Rate of employees with the skill of waiter by 10%.” 

EMPLOYEE Empl-No Name Skill Pay-Rate 

EX waiter PX 
U. EX 1.1 * PX 

(0 Assign all bellboys with a Pay—Rate of less than 5.00 and not working 

on third shift of 19860419 to Posting-No 327 for the third shift of 
19860419.” 

EMPLOYEE Empl-No Name Skill Pay-Rate 

EX bellboy < 5.00 
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DUTY_ALLOCATION Posting-No Empl-No Shift Day 

EX =£ 3 * 19860419 
U. 327 EX 3 19860419 

Another method of specifying the second table, which says that there 

does not exist a tuple in DUTY_ALLOCATION for the Empl-No EX such 

that the Shift is 3 and the Day is 19860419, is indicated below. Here we 

show that the tuple does not exist by using the not (—i) symbol in the relation 

name column with the same variable as in the EMPLOYEE relation and the 

other conditions specified in the Shift and the Day columns. 

DUTY_ALLOCATION Posting-No Empl-No Shift Day 

“i EX 3 19860419 
U. 327 EX 3 19860419 

(g) “Delete employee record for Emp# 123459.” 

EMPLOYEE Empl-No Name Skill Pay-Rate 

D. 123459 

Here the D. in the relation name column indicates the deletion opera¬ 
tion. 

(h) “Delete employee records for all employees.” 

EMPLOYEE Empl-No Name Skill Pay-Rate 

D. 

(i) “Delete employee Ian and remove him from DUTY_ALLOCATION.” 

EMPLOYEE Empl-No Name Skill Pay-Rate 

EX Ian 

D. EX Ian 
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DUTY_ALLOCATION Posting-No Empl—No Shift Day 

D. EX 

In the first line of the EMPLOYEE skeleton we indicate that we are 

interested in the employee with the name of Ian and hence select these tu¬ 

ples. On the second line we indicate that these tuples are to be deleted. The 

use of the EX with D. in the DUTY_ALLOCATION skeleton indicates that 

tuples satisfying this predicate are to be deleted as well. ■ 

5.11 Concluding Remarks 

In this chapter we considered some of the salient features of the more popular com¬ 

mercial data manipulation languages. We can see how they borrow heavily from 

relational algebra and calculus concepts. In query design, relatively little attention 

needs to be paid to evaluation. Users benefit greatly from this philosophy. In some 

ways data manipulation resembles programming and, like good programming, comes 

from practice. The requirement is that we be able to express exactly what we desire. 

We can reflect on the complexity of what is achieved by some very simple 

queries. As is normal in most database systems, suppose that every relation is sup¬ 

ported by an underlying file of records. Let us consider the SQL query 

select R.A, S.D 

from R, S 

where R.B = S.C 

Let the tuples of relations R and S be stored as records in the files FR and FS, 

respectively. The above query requires that starting with the first record of FR (tuple 

of R), we compare its field, B, with field C of every record of file FS, outputting 

field A value from FR and field D value from FS whenever the comparands are 

equal. For n records in file FR and m in file FS, this would require some m * n 

combinations. Even for moderate-sized relations this signifies a large number. In 

Chapter 10 we consider how we can optimize this query. More immediately, how¬ 

ever, we should reflect on how to program this task in a file environment. In this 

case, the task of translating the query into a file processing program is easy. For 

more complex queries, the programming task is much more difficult. We can there¬ 

fore appreciate the productivity improvements, among other benefits, of using a re¬ 
lational database system. 

Summary 

In this chapter we examined the commercial versions of languages used for relational 

database systems. These languages, unlike their theoretical counterparts, include fa¬ 
cilities to define data as well as manipulate it. 
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SQL borrows both from relational algebra and tuple calculus. It is easy to use 

and contains only four data manipulation statements: select, update, insert, and de¬ 

lete. The data definition part of SQL consists of three statements: create, alter, and 
drop. Views can be created by using the create view statement. 

QUEL is mainly based on tuple calculus and supports set operations only indi¬ 

rectly. Consequently, some queries that could be formulated easily using set opera¬ 
tions require the use of temporary relations in QUEL. 

QBE is a graphical query language based on domain calculus. Queries are for¬ 

mulated in QBE by generating on a skeleton table an example of what the user 
wishes to retrieve. 

SQL has become the most popular and widely supported data manipulation lan¬ 

guage for relational database systems. Because of this force of the marketplace, SQL 
has emerged as the de facto standard for relational DBMSs. 

Key Terms 

Structured Query Language 
(SQL) 

create 

not null 

alter 

create index 

cluster 

unique 

drop 

select 

distinct 

from 

where 

update 

set 

delete 

insert 

value 

and 

or 

not 

count 

sum 

Exercises 

avg 

min 

max 

any 

in 

contains 

all 

not in 

not contains 

exists 

not exists 

union 

minus 

intersect 

group by 

having 

base relation 

view 

existing relation 

create view 

drop view 

Query Language (QUEL) 

range 

is 

index 

destroy 

modify 

on 

retrieve 

retrieve unique 

aggregate function 
by 

append 

replace 

define view 

host language 

host program 

orthogonal 

Query-By-Example (QBE) 

skeleton table 

conjunctive 

disjunctive 

example element 

5.1 For the queries of Exercise 4.4 in Chapter 4, give SQL, QUEL, and QBE query expressions. 

5.2 For the queries of Exercise 4.5 in Chapter 4, give SQL and QUEL query expressions. 

5.3 For the queries of Exercise 4.12 in Chapter 4, give SQL, QBE, and QUEL query 

expressions. 
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5.4 Express the following tuple calculus query in SQL and QUEL: 

{t|t e rel| A 3s(s e rel2 A (s.c = t.b))} 

given the relations rel,(A,B) and rel2(C,D). 

5.5 Convert the following domain calculus query into SQL, QUEL and QBE: 

{<a,b> | <a,b> e rell A b = b,' V b = 'b2'} 

5.6 Given the following relations 

CONSISTS_OF (Module, Sub-Module) 

DEVELOPED-BY (Module, Employee) 

give SQL and QUEL queries for the following: 

(a) List all modules that use the HEAPSORT and BINARY_SEARCH modules. 

(b) List employees who were involved in the development of all modules that use the 

HEAPSORT and BINARY_SEARCH modules. 

If a module uses another module that uses either the HEAPSORT or BINARY-SEARCH 

modules, would your query list the employees who were involved? How should you express 

such a query? 

5.7 Consider the relationship REGISTERED_GUEST_CHARGE between the entity 

REGISTERED_GUEST(7?0£Wf#, Name, Address) and the view TOTAL-BILL as shown 

below with some tuples from this relation. Write the definition for TOTAL-BILL as a view 

of BILL in (a)SQL and (b)QUEL. 

REGISTERED_GUEST_CHARGE 

Use these relations to express a query in SQL and QUEL that gives the total charges 

attributable to a REGISTERED-GUEST. 

5.8 Express the query, in SQL and QUEL to increase the pay rate of employees who work on 

the third shift at Posting-No 1 by 5% (use the relations defined in the chapter). 

5.9 Create a view (in both SQL and QUEL) for employees assigned to a given table as a waiter. 

The user needs the table number, day (date), shift, and the waiter’s name. The base relations 

BILL, DUTY-ALLOCATION, and EMPLOYEE given in Figures 5.2 and 5.4 should be 

used in the definition. 

5.10 For the PROJECT, EMPLOYEE, and ASSIGNED-TO relations given in Chapter 4, express 

the following queries in SQL: 

(a) Get Emp# of employees working on project numbered COMP353. 

(b) Get details of employees (name and number) working on project COMP353. 

(c) Get details of employees working on all database projects. 

(d) Get details of employees working on both COMP353 and COMP354. 

(e) Get employee numbers of employees who work on at least all those projects that 

employee 107 works on. 

Room# Bill# 

1267 

1492 

9234 

9235 

TOTALBILL 

Bill# Day Total 

9234 

9235 

19860419 

19860420 

29.90 

16.70 
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(f) Get employee numbers of employees who do not work on project COMP453. 

(g) Get employee numbers of employees who work on all projects. 

(h) Get employee numbers of employees who work on at least one project that 

employee 107 works on. 

5.11 

5.12 

5.13 

5.14 

5.15 

5.16 

5.17 

(a) Give the names of the players who played as forwards in 1987 in the franchise 

Blades. 

(b) Find the names of all the goalies who played with the forward Ozzy Xavier over 

the span of his hockey career. 

(c) List forwards and their franchises for those forwards who had at least 50 goals in 

the years 1985 and 1986. A player must have at least 50 goals in both the years 

but may have been with two different franchises. 

(d) Give the complete details of players who played in the same franchises as Ozzy 

Xavier did over his career, but not necessarily in the same year or as a forward. 

(e) Compile the list of goalies who played during their career for franchises in St. 

Louis, Edmonton, and Paris. A goalie should be listed if and only if he played in 

all three cities. 

Repeat Exercise 5.10 using QUEL. 

Repeat Exercise 5.10 using QBE. 

Express the queries of Exercise 4.16 of Chapter 4 using SQL or QUEL. 

Using SQL, get the Empl-No, Skill, and average chef’s pay rate for the EMPLOYEE 

relation shown in Figure 5.4. 

For the sample tuples given in Figures 5.2 and 5.4, evaluate the QBE queries given in 

Examples 5.53 through 5.59. 

Repeat Exercise 5.15 for Examples 5.60 through 5.63. 

Consider a database for the Universal Hockey League (UHL), discussed in Chapter 2, which 

records statistics on teams, players, and divisions of the league. Write the following queries 

in SQL and QUEL: 
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A relation in a relational database is based on a relation scheme, which consists 

of a number of attributes. A relational database is made up of a number of relations 

and the relational database scheme, in turn, consists of a number of relation schemes. 

In this chapter, we focus on the issues involved in the design of a database scheme 

using the relational model. Section 6.2 discusses the importance of having a consis¬ 

tent database without repetition of data and points out the anomalies that could be 

introduced in a database with an undesirable design. Section 6.3 presents the univer¬ 

sal relation assumption. In Section 6.4 we look at some of the theoretical results 

from the functional dependency theory and present basic algorithms for the design 

process. In Section 6.5 we present the relational database design process. This pro¬ 

cess uses the functional dependencies among attributes to arrive at their desirable 

groupings. We discuss the first, second, third, and Boyce Codd normal forms and 

give algorithms for converting a relation in the first normal form into higher order 

normal forms. The next chapter introduces the synthesis approach to relational data¬ 

base design and higher order normal forms. 

6.1 Relation Scheme and Relational Design 

A relation scheme R is a plan that indicates the attributes involved in one or more 

relations. The scheme consists of a set S of attributes {A{, A2, . . ., An}, where 

attribute A, is defined on domain D( for 1 < i < n. We will use R(S), or R if there 

is no confusion, to indicate both the logical construction of the relation (its scheme) 

as well the name of this set S of attributes. Relation R on the relation scheme R is a 

finite set of mappings or tuples {t,, t2, . . ., tp} such that for each tj 6 R, each of 

the attribute value tj(A,) must be in the corresponding domain Dj. 

Example 6.1 Consider the relation SCHEDULE shown in Figure A. It contains the attri¬ 

butes Prof, Course, Room, Max-Enrollment (enrollment limit). Day, Time. 

Thus, the relation scheme for the relation SCHEDULE, say SCHEDULE, 

Figure A The SCHEDULE relation. 

Prof Course Room Max-Enrollment Day Time 

Smith 353 A532 40 mon 1145 

Smith 353 A532 40 wed 1145 

Smith 351 C320 60 tue 115 

Smith 351 C320 60 thu 115 

Clark 355 H940 300 tue 115 

Clark 355 H940 300 thu 115 

Turner 456 B278 45 mon 845 
Turner 456 B278 45 wed 845 
Jamieson 459 D110 45 tue 1015 
Jamieson 459 D110 45 thu 1015 
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is (Prof, Course, Room, Max-Enrollment, Day, Time). The domain of the 

attribute Prof (professors) is all the faculty members of the university; the 

domain of the attribute Course is the courses offered by the university; that 

of Room is all the rooms in the buildings of the university; that of Max_ 

Enrollment is an integer value and indicates the maximum enrollment in the 

course (which is related to the capacity of the room, i.e., it should be less 

than or equal to the capacity of the room in which the course is scheduled). 

The domain of Day is {MON, TUE, WED, THU, FRI, SAT, SUN} and 

that of Time is the possible times of day. ■ 

The relation SCHEDULE of Figure A has ten tuples, the first one being Prof = 

Smith, Course = 353, Room = A532, Max-Enrollment = 40, Day = mon, Time 

= 1145. As mentioned earlier, the tabular representation of a relation is only for the 

purpose of illustration. Explicitly naming the columns of the table to show the map¬ 

ping or association of an attribute and its value for a particular tuple avoids the 

requirement of a particular ordering of the attributes in the relation scheme and hence 

in the representation of the time-varying tuples of the relation. We will continue to 

represent relations as tables. We will also write the attributes of the relation in a 

particular order and show the tuples of the relation with the list of values for the 

corresponding attributes in the same order. The attribute names will be attached to 

the columns of the table when the tuples of a relation are shown in a table. 

Since a relation is an abstraction of some portion of the real world that is being 

modeled in the database, and since the real world changes with time, the tuples of a 

relation also vary over time. Thus, tuples may be added, deleted, or updated over a 

period of time. However, the relation scheme itself does not change, (at least until 

the database is reorganized). 

6.2 Anomalies in a Database: 
A Consequence of Bad Design 

Consider the following relation scheme pertaining to the information about a student 

maintained by an university: 

STDINF(Aa/we, Course, Phone-No, Major, Prof, Grade) 

Figure 6.1 shows some tuples of a relation on the relation scheme STDINF 

(Name, Course, Phone-No, Major, Prof, Grade). The functional dependencies' 

among its attributes are shown in Figure 6.2. The key of the relation is Name Course 

and the relation has, in addition, the following functional dependencies {Name —» 

Phone-No, Name —> Major, Name Course —> Grade, Course —> Prof). 

Here the attribute Phone-No, which is not in any key of the relation scheme 

STDINF, is not functionally dependent on the whole key but only on part of the 

‘Recall the definition of functional dependency from Chapter 2, repeated here: Given attributes X and Y (each of which may 
contain one or more attributes), Y is said to be functionally dependent on X if a given value for each attribute in X uniquely 
determines the value of the attributes in Y. X is called the determinant of the functional dependency (FD) and the FD is 

denoted as X —*■ Y. 
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Figure 6.1 Student data represented in relation STDINF. 

Name Course Phone-No Major Prof ; Grade 

Jones 353 237-4539 Comp Sci Smith A 

Ng 329 427-7390 Chemistry Turner B 

Jones 328 237-4539 Comp Sci Clark B 

Martin 456 388-5183 Physics James A 

Dulles 293 371-6259 Decision Sci Cook C 

Duke 491 823-7293 Mathematics Lamb B 

Duke 356 823-7293 Mathematics Bond in prog 

Jones 492 237-4539 Comp Sci Cross in prog 

Baxter 379 839-0827 English Broes C 

key, namely, the attribute Name. Similarly, the attributes Major and Prof, which are 

not in any key of the relation scheme STDINF either, are fully functionally depen¬ 

dent on the attributes Name and Course, respectively. Thus the determinants of these 

functional dependencies are again not the entire key but only part of the key of the 

relation. Only the attribute Grade is fully functionally dependent on the key Name 

Course. 

The relation scheme STDINF can lead to several undesirable problems: 

• Redundancy: The aim of the database system is to reduce redundancy, 

meaning that information is to be stored only once. Storing information several 

times leads to the waste of storage space and an increase in the total size of the 

data stored. Updates to the database with such redundancies have the potential 

of becoming inconsistent, as explained below. In the relation of Figure 6.1, the 

Major and Phone-No of a student are stored several times in the database: once 

for each course that is or was taken by a student. 

• Update Anomalies: Multiple copies of the same fact may lead to update 

anomalies or inconsistencies when an update is made and only some of the 

multiple copies are updated. Thus, a change in the Phone-No of Jones must be 

made, for consistency, in all tuples pertaining to the student Jones. If one of the 

Figure 6.2 Function dependencies in STDINF. 

t " 

Name Course Phone No. Major Prof Grade 

t t k 
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three tuples of Figure 6.2 is not changed to reflect the new Phone^No of Jones, 
there will be an inconsistency in the data. 

• Insertion Anomalies: If this is the only relation in the database showing the 

association between a faculty member and the course he or she teaches, the fact 

that a given professor is teaching a given course cannot be entered in the 

database unless a student is registered in the course. Also, if another relation 

also establishes a relationship between a course and a professor who teaches 

that course (for example, the SCHEDULE relation of Figure A), the 

information stored in these relations has to be consistent. 

• Deletion Anomalies: If the only student registered in a given course 

discontinues the course, the information as to which professor is offering the 

course will be lost if this is the only relation in the database showing the 

association between a faculty member and the course she or he teaches. If 

another relation in the database also establishes the relationship between a 

course and a professor who teaches that course, the deletion of the last tuple in 

STDINF for a given course will not cause the information about the course’s 
teacher to be lost. 

The problems of database inconsistency and redundancy of data are similar to 

the problems that exist in the hierarchical and network models. These problems are 

addressed in the network model by the introduction of virtual fields and in the hier¬ 

archical model by the introduction of virtual records. In the relational model, the 

above problems can be remedied by decomposition. We define decomposition as 
follows: 

Definition: Decomposition: 

The decomposition of a relation scheme R = (A/, A2, . . AJ is its 

replacement by a set of relation schemes {Rx, R2, . . Rm}, such that Rj C R 
for 1 < i < m and Rj U R2 U . . . U Rm = R. 

A relation scheme R can be decomposed into a collection of relation schemes 

{Ri, R2, R3, . . Rm} to eliminate some of the anomalies contained in the original 

relation R. Here the relation schemes R( (1 < i < m) are subsets of R and the 

intersection of R; IT Rj for \i= j need not be empty. Furthermore, the union of Rj 
(1 < i < m) is equal to R, i.e., R = Rj U R2 U . . . U Rm. 

The problems in the relation scheme STDINF can be resolved if we replace it 

with the following relation schemes: 

STUDENT_INFO (Name, Phone-No, Major) 

TRANSCRIPT (Name, Course, Grade) 

TEACHER (Course, Proof) 

The first relation scheme gives the phone number and the major of each student 

and such information will be stored only once for each student. Any change in the 

phone number will thus require a change in only one tuple of this relation. 

The second relation scheme stores the grade of each student in each course that 

the student is or was enrolled in. (Note: In our database we assume that either the 
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student takes the course only once, or if he or she has to repeat it to improve the 

grade, the TRANSCRIPT relation stores only the highest grade.) 

The third relation scheme records the teacher of each course. 

One of the disadvantages of replacing the original relation scheme STDINF with 

the three relation schemes is that the retrieval of certain information requires a natural 

join operation to be performed. For instance, to find the majors of student who ob¬ 

tained a grade of A in course 353 requires a join to be performed: (STUDENT_INFO 

tX] TRANSCRIPT). The same information could be derived from the original rela¬ 

tion STDINF by selection and projection. 
When we replace the original relation scheme STDINF with the relation 

schemes STUDENT_INFO, TRANSCRIPT, and TEACHER, the consistency and 

referential integrity constraints have to be enforced. The referential integrity enforce¬ 

ment implies that if a tuple in the relation TRANSCRIPT exists, such as (Jones, 353, 

in prog), a tuple must exist in STUDENT_INFO with Name = Jones and, further¬ 

more, a tuple must exist in TEACHER with Course = 353. The attribute Name, 

which forms part of the key of the relation TRANSCRIPT, is a key of the relation 

STUDENT_INFO. Such an attribute (or a group of attributes), which establishes a 

relationship between specific tuples (of the same or two distinct relations), is called 

a foreign key. Notice that the attribute Course in relation TRANSCRIPT is also a 

foreign key, since it is a key of the relation TEACHER. 

Note that the decomposition of STDINF into the relation schemes STU- 
DENT(7Vamc, Phone-No, Major, Grade) and COURSEfCourse, Prof) is a bad de¬ 

composition for the following reasons: 

1. Redundancy and update anomaly, because the data for the attributes Phone-No 

and Major are repeated. 

2. Loss of information, because we lose the fact that a student has a given grade 

in a particular course. 

The rest of this chapter examines the problem of the design of the relational data¬ 

base and how to decide whether a given set of relations is better than another set. 

6.3 Universal Relation 

Let us consider the problem of designing a database. Such a design will be required 

to represent a finite number of entity sets. Each entity set will be represented by a 

number of its attributes. If we refer to the set of all attributes as the universal scheme 

U then a relation R(U) is called the universal relation. The universal relation is a 

single relation made up of all the attributes in the database. The term universal 
relation assumption is the assumption that all relations in a database are derived 

from the universal relation by appropriate projection. The attribute names in the uni¬ 

versal relation scheme U have to be distinct to avoid obvious confusion. One reason 

for using the universal relation assumption is to allow the user to view the database 

using such a relation. Consequently, the user does not have to remember the relation 

schemes and which attributes are grouped together in each such scheme. 

Consider the relation R| (Course, Department) in Figure 6.3: The attribute De¬ 

partment is used to indicate the department responsible for the course. For instance, 
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Figure 6.3 Relation Rv 

Course Department 

353 Comp Sci 

355 Mathematics 

456 Mathematics 

221 Decision Sci 

course 353 is offered by and is under the jurisdiction of the Comp(uter) Sci(ence) 

department. 

The relation R2(Professor, Department) of Figure 6.4 shows another role or 

interpretation of the attribute Department; here it is used to signify that a given 

professor is assigned to a given department. Thus, Smith is a member of the Comp 

Sci department. Note from Figures A, 6.3, and 6.4 that we are allowing for the 

incidence of a professor teaching a course in a outside department. Professor Clark 

of the Comp Sci department is teaching course 355 of the Mathematics department, 

and Professor Turner of the Chemistry department is teaching course 456, also of the 

Mathematics department. 

The domain of the attribute Department in the relations R] and R2 is the same, 

that is, all the departments in the university. Let us consider the representation of the 

data in the limited database indicated in Figures 6.3 and 6.4 as a universal relation 

U,, where Ui is defined as Ui(Course, Department, Professor). The problem of 

using the universal relation U! becomes obvious when we try to represent the data 

from the relations R| and R2 as shown in Figures 6.3 and 6.4. Here we have to 

decide whether or not data from different relations could appear in the same tuple of 

the universal relation. In Figure 6.5 we do not allow the data from different relations 

to appear in the same tuple of U|, giving rise to a large number of empty or null 

values (±). These null values could signify one of three things: (1) the values, are 

not known, but they exist, (2) the values do not exist, or (3) the attribute does not 

apply. In case (1) we have to distinguish the null values by indicating them as _Li5 

and thus the two null values _Lj and lj (for i 4= j) are not equal and indicate that the 

values are not known to be the same. 

In Figure 6.6, we have combined the data from the relations R! and R2 in the 

same tuple of the universal relation U2 with the scheme (Course, Department, Pro- 

Figure 6.4 Relation R2. 

Professor Department 

Smith 

Clark 

Turner 

Jamieson 

Comp Sci 

Comp Sci 

Chemistry 

Mathematics 



292 Chapter 6 Relational Database Design 

Figure 6.5 Relation 

Course Department Professor 

353 Comp Sci 1 

456 Mathematics 1 

355 Mathematics 1 

221 Decision Sci 1 

1 Comp Sci Smith 

1 Comp Sci Clark 

1 Chemistry Turner 

1 Mathematics Jamieson 

fessor). Now the number of null values has been reduced at the expense of a certain 

amount of duplication. For instance, course 353 appears in two tuples of R2 as being 

offered by the Comp Sci department. 

When the roles that the attribute Department play in the relation R| and R2 are 

explicitly expressed, we get the universal relation U3 with the scheme (Course, Crs- 

Dept, Fac-Dept, Professor). Here, Crs^Dept is the attribute Department in the re¬ 

lation Ri renamed to indicate the department responsible for a given course and 

Fac-Dept is the attribute Department in the relation R2 renamed to indicate the de¬ 

partment of a professor. In Figure 6.7 we have allowed tuples from different relations 

to appear in a tuple of the universal relation. For symmetry, we express the cross 

product of the tuple of relations R] and R2 in the universal relation U3. This gives a 

representation that does not involve any null values but leads to an extensive amount 

of duplication of data and the associated problems of maintaining data consistency. 

A tuple in U3 represents two independent facts. For example, the fourth tuple of U3 

represents the facts “221 is a course in Decision Sci’’ and “Smith is a professor in 

Comp Sci.” 

We can retrieve the original relations R| and R2 by a projection operation as 

follows: 

^ I ^{Course, Department}(\-^ l) 

^2 ^{Professor, Department}(\^ l) 

Figure 6.6 Relation U2. 

Course Department Professor 

353 Comp Sci Smith 

353 Comp Sci Clark 

456 Mathematics Jamieson 

355 Mathematics Jamieson 

221 Decision Sci J_ 

1 Chemistry Turner 
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Figure 6.7 Relation U3. 

Course Crs-Dept Fac-Dept Professor 

353 Comp Sci Comp Sci Smith 

456 Mathematics Comp Sci Smith 

355 Mathematics Comp Sci Smith 

221 Decision Sci Comp Sci Smith 

353 Comp Sci Comp Sci Clark 

456 Mathematics Comp Sci Clark 

355 Mathematics Comp Sci Clark 

221 Decision Sci Comp Sci Clark 

353 Comp Sci Chemistry Turner 

456 Mathematics Chemistry Turner 

355 Mathematics Chemistry Turner 

221 Decision Sci Chemistry Turner 

353 Comp Sci Mathematics Jamieson 

456 Mathematics Mathematics Jamieson 

355 Mathematics Mathematics Jamieson 

221 Decision Sci Mathematics Jamieson 

However, we will get some tuples with null values that did not exist in the 

original R, and R2 relations. These tuples are called spurious tuples and they have 

to be ignored! The above example of representing data by the universal relation 

shows some of the problems of this assumption. 

The universal relation is obtained by including all database attributes in a single 

relation. There is controversy in the database community as to the validity of the 

universal assumption. However, it is helpful in encouraging some consistency in the 

use of attribute names in the database. A given attribute name appearing in the da¬ 

tabase must have the same meaning to make meaningful interpretation of the natural 

join operation. Without such universal meaning of an attribute, we will be forced to 

assume that multiple occurrences of an attribute in multiple relation schemes have 

different meanings and hence the interrelation connection cannot be made. 

We will refer to the universal relation assumption in the synthesis approach to 

relational database design in the following chapter. 

6.4 Functional Dependency 

As we discussed in Chapter 2, functional dependencies are the consequence of the 

interrelationship among attributes of an entity represented by a relation or due to the 

relationship between entities that is also represented by a relation. Thus, if R repre¬ 

sents an entity and the set X of attributes represents the key of R, then for any other 

set of attribute Y of R, X —> Y. This is because the key of a relation identifies a 

tuple and hence a particular instance of the corresponding entity. Two tuples of a 

relation having the same key must represent the same instance of the corresponding 

entity and since duplicate tuples are not allowed, these two tuples must indeed be the 
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same tuple and the value of the attributes in Y must be determined by the key value. 

Similarly, if R represents a many-to-one relationship between two entities, say from 

E, to E2, and if X contains attributes that form a key of E, and Y contains attributes 

that contain a key of E2, again the FD X —> Y will hold. But if R’ represents a one- 

to-one relationship between entity E, and E2, the FD Y —> X will hold in addition to 

the FD X Y. 
Let R be a relation scheme where each of its attribute A, is defined on some 

domain Dj for 1 < i < n. Let X, Y, Z, etc. be subsets of {A,, A2, . . •, A„}. We 

will write X U Y as simply XY. 

Let R be a relation on the relation scheme R. Then R satisfies the functional 

dependency X —> Y if a given set of values for each attribute in X uniquely deter¬ 

mines each of the values of the attributes in Y. Y is said to be functionally dependent 

on X. The functional dependency (FD) is denoted as X —* Y, where X is the left- 

hand side or the determinant of the FD and Y is the right-hand side of the FD. We 

can say that the FD X Y is satisfied on the relation R if the cardinality of 

tty(ctx=x(R)) is at most one- In other words> if two tuples t, and t, of R have the 

same X value, the corresponding value of Y will be identical. 

A functional dependency X —» Y is said to be trivial if Y C X. 

Example 6.2 In the relation SCHEDULE(Pra/, Course, Room, Max-Enrollment, Day, 

Time) of Figure A, the FD Course —> Prof is satisfied. However, the FD 

Prof —» Course is not satisfied. ■ 

In order to verify if a given FD X —> Y is satisfied by a relation R on a relation 

scheme R, we find any two tuples with the same X value; if the FD X —* Y is 

satisfied in R, then the Y values in these tuples must be the same. We repeat this 

procedure until we have examined all such pairs of tuples with the same X value. A 

simpler approach involves ordering the tuples of R on the X values so that all tuples 

with the same X values are together. Then it is easy to verify if the corresponding Y 

values are also the same and verify if R satisfies the FD X —> Y. 

Figure 6.8 The SCHEDULE relation. 

Prof Course Room Max-Enrollment Day Time 

Smith 353 A532 40 mon 1145 

Smith 353 A532 40 wed 1145 

Clark 355 H940 300 tue 115 

Clark 355 H940 300 thu 115 

Turner 456 B278 45 mon 845 

Turner 456 B278 45 wed 845 

Jamieson 459 duo 45 tue 1015 

Jamieson 459 duo 45 thu 1015 
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The FD X ^ Y on a relation scheme must hold for all possible relations defined 

on the relation scheme R. Thus, we cannot look at a table representing a relation on 

the scheme R at a point in time and say, simply by inspection, that some FD X —» 

Y holds. For example, if the relation SCHEDULE at some point in time contained 

the tuples as shown in Figure 6.8, we might erroneously conclude that the FD {Prof 

Course} holds. The examination of the real world situation corresponding to the 

relation scheme SCHEDULE tells us that a particular professor may be teaching 
more than one course. 

Example 6.3 In the relation scheme STDINF (Name, Course, Phone-No, Major, Prof, 

Grade), the following functional dependencies are satisfied: {Name —> Phone 

-No, Name —> Major, Name Course —» Grade, Course —> Prof}. ■ 

6.4.1 Dependencies and Logical Implications 

Given a relation scheme R and a set of functional dependencies F, let us consider a 

functional dependency X —» Y, which is not in F. F can be said to logically imply 

X —> Y if for every relation R on the relation scheme R that satisfies the functional 

dependencies in F, R also satisfies X —* Y. 

F logically implies X —» Y is written as F Y X —> Y. 

Example 6.4 R = (A, B, C, D) and F = {A -> B, A -> C, BC -> D}, then F ¥A -> D. 

Inference Axioms 

Suppose we have F, a set of functional dependencies. To determine whether a func¬ 

tional dependency X —> Y is logically implied by F (i.e., F X —> Y), we use a 

set of rules or axioms. The axioms are numbered FI through F6 to indicate that they 

pertain to functional dependencies (as opposed to multivalued dependencies, which 

we examine in Chapter 7). 
In the following discussions, we assume that we have a relation scheme R(A/; 

A2, A3, . . ., An); R is a relation on the relation scheme R and W, X, Y, Z are 

subsets of R. The symbol 1= used below is read as “logically implies.” 

• FI: Reflexivity: (X —» X and NJC Z) 

• F2: Augmentation: (X —> Y) |= (XZ —» Y, and XZ —» YZ) 

• F3: Transitivity: (X —» Y and Y —» Z) (= (X —» Z) 

• F4: Additivity: (X —» Y and X —» Z) f= (X —* YZ) 

• F5: Projectivity: (X -» YZ) |= (X —» Y and X—>Z) 

• F6: Pseudotransitivity: (X —» Y and YZ —> W) (= (XZ —» W) 
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Example 6.5 We use the relation R of Figure B to illustrate the above inference axioms. 

Reflexivity: This is obvious since any set of attributes implies the same set 

of attributes. The consequence of this axiom, along with F5, is that for any 

Figure B Relation R on the scheme R(A, B, C, D, E). 

A B C D E 

»i b, c2 d, e, 

a2 Cl ^2 e2 

a3 b, C2 d, e3 

a3 t>3 C3 d3 e4 

at t>2 C, d2 e5 

a4 b4 c4 d4 e6 

a3 t>2 Cl e7 

a5 b4 C4 d4 e8 

Y C X, X —» Y. A FD X —> Y is said to be a trivial functional depen¬ 
dency if Y C X. 

Augmentation: This axiom indicates that the left-hand side alone or both 

sides of an FD can be augmented. 

If the relation R satisfies the FD X —■» Y, then for a given X value that 

appears in R, the number of tuples having some Y value that will be exactly 

1. In other words, the cardinality of ity(o'X = x(R)), written as |tty(o’x=x(R))|» 
is equal to 1. 

If Z C R, then axz=xz(R) Ccrx=x(R), i.e., the set of tuples selected 
with a given value of XZ is a subset of the set of tuples selected for a given 

value of X alone. Now the number of tuples having a given Y value in 

°xz=xz(R) will be a subset of the tuples having the same Y value in 

ax = x(R); since the latter is at most 1, the number of tuples having a given 
Y value in XZ will be at most 1. hence XZ —» Y. 

It follows that XZ —» Y |= XZ —» YZ and X —» Y (= XZ —> YV for 
VCZ. 

In Figure B, the FD B —> C is satisfied and by augmentation we find 

that the FDs AB C, BC ->• C, BD -> C, BE -> C and ABC C, BCD 

—> C, etc. are also satisfied. 

Additivity: The axiom indicates that if there are two FDs with the same 

left-hand side, the right-hand side of these FDs can be added to give an FD 

where the left-hand side is the original one and the right-hand side is the 

union of the right-hand sides of the two FDs. Thus, if X -» Y, then 

tty(ox = x(R)) has at most one tuple and similarly, if X Z, then 

^z(°x=x(R)) has at most one tuple. Hence, ttZy(ctX=x(R)) cannot have more 
than one tuple. The additivity axiom follows from these observations. 

We note from Figure B that the FDs B -> C, B -» D, and consequently 
B —> CD are all satisfied. 
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Projectivity: This axiom is the inverse of the additivity axiom; it splits up 

or projects an FD whose right-hand side is a union of attributes into a num¬ 

ber of FDs. Each projected FD has the same left-hand side as the original 

FD and each contains a subset of the original right-hand side. 

For the relation R of Figure B, the FD B —> CD is satisfied and hence, 

by projectivity, B —> C and B —> D. 

Transitivity: For the relation R of Figure B, the FDs B -> C and C -> D 

are satisfied and hence, by transitivity, B —*■ D. Thus, when the value for B 

is b[ in R, the value of C is c2. Similarly, when the value of C is c2, the 

value of D is d|. When the value of B is b(, the value of D is dp 

Pseudotransitivity: This axiom follows from axioms F2 and F3. Given 

X —» Y, by F2, XZ —> YZ and since YZ —> W is given, then by F3, 

xz w. 
The relation R of Figure B satisfies the FDs C —> B and AB —* E, so 

by pseudotransitivity, the FD CA -» E is also satisfied. ■ 

Inference rules FI through F3 are variations of the Armstrong axioms, so called 

after W. W. Armstrong, who first proposed them (Arms 74). Example 6.5 gave 

informal arguments showing that each of the inference axioms FI through F6 is 

sound (i.e., correct). This means that whenever an FD X —> Y can be derived from 

a set of FDs F using these axioms, then F (= X —» Y. It has been shown that the 

converse also holds, even for the subset FI through F3. Whenever F (= X —» Y, 

X —» Y can be derived from F using these inference axioms. These axioms form a 

complete axiom system for FDs. Rules F4 through F6 in particular can be derived 

from rules FI through F3. 

6.4.2 Closure of a Set of Functional Dependencies 

The set of functional dependencies that is logically implied by F is called the closure 
of F and is written as F + . 

Definition: If F is a set of FDs on a relation scheme R, then F+, the closure of F, is the 

smallest set of FDs such that2 F+ D F and no FD can be derived from F by 

using the inference axioms that are not contained in F+. If R is not specified, it 

is assumed to contain all the attributes that appear in F. 

F+ is the set of FDs that are implied by the FDs in F, i.e., F+ = {X —» Y | F 

H X - Y}. 

An FD / in F+ is logically implied by F since any relation R on the relation 

scheme R that satisfies the FDs in F also satisfies the FD in F+ and, hence,/. 

2F+ D F denotes that F+ contains F. 
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Example 6.6 Let R = (A, B, C, D) and F = {A -> B, A -> C, BC -> £>}. Since A -» B 

and A —> C, then by F4 A —» fiC. Now since flC —» D, then by F3 A —> 

D, i.e., F f= A —> D and thus A —» D is in F 1 . ■ 

An example of an FD not implied by a given set of FDs is illustrated below. 

Example 6.7 Let F = {W -> X, X Y, W -» XY}. Then F+ includes the set {W -> 

W, X -> X, Y -> Y, W -> X, X -> Y, W -* XY, W —Y}. The first 

three FDs follow from axiom FI; the next three FDs are in F and hence in 

F + . Since W —> XY, then by axiom F5, W —» X and W —» Y. However, 

F+ does not contain an FD, e.g., W —> Z, because Z is not contained in 

the set of attributes that appear in F. ■ 

6.4.3 Testing if F (= X Y: Algorithm to Compute a Closure 

To compute the closure F+ for a set of FD F is a lengthy process because the number 

of dependencies in F+, though finite, can be very large. The reason for computing 

F+ is to determine if the set of FDs F f= X —» Y; this would be the case if and only 

if X —> Y € F + . However, there is an alternative method to test if F \= X —» Y 

without generating F+. The method depends on generating X + , the closure of X 

under F. 

Definition: The closure of X under a set of functional dependencies F, written as X + , is the 

set of attributes {Ah A2, . . .. Am} such that the FD X -» A, for A, € X+ 

follows from F by the inference axioms for functional dependencies. 

X + , the closure of X with respect to the set of functional dependencies F, is 

the set of attributes {A,, A2, AJt . . Am} such that each of the FDs X -> A,-, 1 < i 

< m can be derived from F by the inference axioms. Also, by the additivity axiom 

for functional dependency, F f= X -> Y if Y C X+. (By the completeness of the 

axiom system, if F^X^Y, then Y C X+—see lemma below.) 

Having found X + , we can test if F (= X -» Y by checking if Y C X+: X —> 

Y is logically implied by F if and only if Y C X + . 

We now present the algorithm to compute the closure X+ given a set of FDs F 

and a set of attributes X. The importance of computing the closure X+ is that it can 

be used to decide if any FD X -> Y can be deduced from F. The following lemma 

establishes that if Y C X+ then F |= X —» Y. 

Lemma: F )= X —» Y if and only if Y C X+. 

Proof: Suppose that YC X+. Then by the definition of X+, X -> A can be derived from 

F using the inference rules for each A £ Y. By the soundness of these rules, F |= X —» 

A for each A € Y and by the additivity rule, F |= X -> Y. Now suppose that F |= X -»■ 
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Algorithm 

6.1 Algorithm to Compute X+ 

Input: A set of functional dependencies F and a set of attributes X. 

Output: The closure X+ of X under the FDs in F. 

X+ : = X; (* initialize X+ to X *) 

change : = true; 

while change do 

begin 

change : = false; 

for each FD W —» Z in F do 

begin 

if W C X+ then do 

begin 

X+ := X+ U Z; 

change : = true; 

end 

end 

end 

(* X+ now contains the closure of X under F *) 

Y. Then by completeness of the inference rules, X —» Y can be derived from F using 

them. By projectivity, X —» A can be derived for each A ( Y. This clearly implies that 

Y C X+ by the definition of X+. 

Algorithm 6.1 to compute X+ follows. It starts with the set X+ initialized to X, 

the left-hand side of the FD X -» Y, which is to be tested for logical implication 

under F. For each FD W —» Z in F, if W C X + , the algorithm modifies X+ by 

forming a union of X+ and Z. The algorithm terminates when there is no change 

in X + . 

Example 6.8 Let X = BCD and F = {A -* BC, CD -*■ E, E -» C, D -> AEH, ABH -> 

BD, DH BC}. We want to compute the closure X+ of X under F. 

We initialize X+ to X, i.e., X+ := BCD. Now since the left-hand side of 

the FD CD -» E is a subset of X+, i.e., CD C X + , X+ is augmented by 

the right-hand side of the FD, i.e., E; thus X+ now becomes equal to 

BCDE. Similarly, since D C X + , the right-hand side of the FD D —> AEH 

is added to X + , which now becomes ABCDEH. X+ cannot be augmented 

any further and Algorithm 6.1 ends with X+ equal to ABCDEH. ■ 

The time complexity of the closure algorithm can be derived as follows. Sup¬ 

pose the number of attributes in F is a and the number of FDs in F is f where each 

FD in F involves only one attribute on the right-hand side. Then the inner for loop 

will be executed at most f times, one for each FD in F, and each such execution can 
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take the time proportional to a to check if one set is contained in another set. Thus 

the order of execution of the for loop is O(af). In the worst case each execution of 

the while loop can increase the closure by one element and since there are f FDs, the 

while loop can be repeated at most f times. Hence the time complexity of the algo¬ 

rithm is Ofaf2). The algorithm can be modified to run in time proportional to the 

number of symbols needed to represent the FDs in F. The modification takes into 

account the fact that the FDs whose right-hand sides are already added to X+ need 

not be reconsidered in the for loop. Furthermore, the FDs whose left-hand side 

lengths are greater than the current length of X+ need not be tested in the for loop. 

See the bibliographic notes for reference to a closure algorithm with these modifica¬ 

tions. 

6.4.4 Testing if an FD is in a Closure 

As mentioned earlier, to find out whether F f= X —> Y without computing F re¬ 

quires the computation of X+ under the set of FDs F, and if Y C X+ then F 

logically implies the functional dependency X —* Y, otherwise it does not. Algorithm 

6.2 tests the membership of X —> Y in F+ by this indirect scheme. It uses Algorithm 

6.1 to compute the closure of X under F. 

Example 6.9 Let F = {A -> BC, CD -> E, E -> C, D -> AEH, ABH BD, DH -* 

BC}. We want to find if F 1= BCD —> H. 

Having computed BCD + as being ABCDEH we can clearly see that the FD 

BCD —> H is implied by the FD F since H C BCD +. ■ 

The time complexity of the membership algorithm is similar to the closure al¬ 

gorithm because the membership algorithm uses the closure algorithm. 

6.4.5 Covers 

Given a set of FDs F, F+ is the closure of F and contains all FDs that can be derived 

from F. As mentioned earlier, F+ can be very large; hence, we will look for a 

smaller set of FDs that are representative of the closure of F. Suppose we have 

another set of FDs G. We say that F and G are equivalent if the closure of F is 

identically equal to the closure of G, i.e., F+ = G + . If the sets of FDs F and G 
are equivalent, we can consider one to be representative of the other or one covers 
the other. Thus F covers G and G covers F. 

Definition: Given two sets of FDs F and G over a relation scheme R, F and G are 

equivalent (i.e., F = G) if the closure of F is identically equal to the closure of 

G (i.e., F+ = G + ). If F and G are equivalent, then F covers G and G covers 
F. 
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Algorithm 

6.2 Membership Algorithm 

Input: A set of functional dependencies F and the functional dependency X —» Y. 

Output: Is X -* Y 6 F+ or not? 

Compute X+ using Algorithm 6.1. 

if Y C X+ then X -> Y 6 F+ : = true; 

else X > Y £ F+ : = false. 

If G covers F and if no proper subset G'(G' C G) covers F, G is called a 
nonredundant cover. 

Definition: Given a set of FDs F, we say that it is nonredundant if no proper subset F' of F 

is equivalent to F, i.e., no F' exists such that F,+ = F+. 

Given a functional dependency X —» Y, where Y = A,A2A3 . . . An, the func¬ 

tional dependency X —> Y can be replaced by an equivalent set of FDs {X —> A], X 

A2, X —> A3, . . X —» An} by using the inference axioms F4 and F5 (additivity 

and projectivity). A nontrivial FD of the form X —> A, where the right-hand side has 

only one attribute is called a simple FD. Thus every set of FDs F can be replaced 

by an equivalent set of FDs G where G contains only simple FDs. 

6.4.6 Nonredundant and Minimum Covers 

Given F, a set of FDs, if a proper subset F' of F covers F (i.e., F' C F and F'+ = 

F + ), then F is redundant and we can remove some FD, say X —» Y, from F to find 

a nonredundant cover of F. Algorithm 6.3 finds a nonredundant cover of F. It does 

so by removing one FD X —» Y from F and then checking if this FD is implied by 

the FD set {F — (X —» Y)} by using Algorithms 6.1 and 6.2—finding the cover X + 

under the set of FDs {F — (X —» Y)}. If {F — (X —*• Y)} f= X —» Y, then X -» Y 

can be removed from F. Algorithm 6.3 repeats this procedure for each FD that re¬ 

mains in F. Note that the nonredundant cover so obtained depends on the order in 

which the functional dependencies are considered. Thus, starting with a set F of 

functional dependencies we can derive more than one nonredundant cover. (See Ex¬ 

ercise 6.7.) 



302 Chapter 6 Relational Database Design 

Algorithm 

6.3 Nonredundant Cover 

Input: A set of FDs F. 

s- 

Output: A nonredundant cover of F. 

G : = F; (* initialize G to F *) 

for each FDX^YinGrfo 

if X-* Y € {F -(X-> Y)}+ 

then F := {F - (X -> 

G : = F; (* G is the nonredundant 

end; 

(* i.e., {F - (X-» Y)} (= X^ Y *) 
Y)}; 
cover of F *) 

Example 6.10 If F = {A -> BC, CD -> E, E -» C, D AEH, ABH BD, DH fiC} 

then the FDs CD —> E and DH -» AC are redundant. We find that (CDJ + 

under {F - (CD -»• £)} is equal to ABCDEH, and since the right-hand side 

of the FD (CD -» E) C (CD) + under {F - (CD -» £)}, {F - (CD -*• £)} 

|= CD —> F. We now remove this redundant FD from F and then find that 

for the FD (DH BC), (DH)+ under {F - (DH -» BC)} is ABCDEH. 

Since the right-hand side of the FD (DH -* 50 C (D//) + , the FD (DD 

BC) is also redundant. No remaining FDs can be removed from the modified 

F. Thus a nonredundant cover for F is {A —> BC, E —> C, D —> AEH, ABH 

-> BD}. m 

If F is a set of FDs and if G is a nonredundant cover of F, then it is not true 

that G has the minimum number of FDs. In fact, there may exist a cover G' of F 

that has fewer FDs than G. Thus, a minimum cover G' of F has as small a number 

of FDs as any other cover of F. It is needless to add that a minimum cover G' of F 

has no redundant FDs; however, a nonredundant cover of F need not be minimal, as 

we see in Example 6.11. We will not discuss an algorithm to derive a minimum 

cover in this text. The interested reader is referred to the bibliographic notes at the 

end of the chapter. 

6.4.7 Canonical Cover 

A set of functional dependencies Fc is a canonical cover if every FD in Fc satisfies 

the following: 

1. Each FD in Fc is simple. Recall that in a simple FD the right-hand side has a 
single attribute, i.e., each FD is of the form X —> A. 
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2. For no FD X —» A with Z C X is {(Fc - (X A)) U (Z A)} (= Fc. In 

other words, the left-hand side of each FD does not have any extraneous 
attributes, or the FDs in Fc are left reduced. 

3. No FD X —» A is redundant, i.e., {Fc - (X -> A)} does not logically im¬ 
ply Fc. 

A canonical cover is sometimes called minimal. 
Given a set F of functional dependencies we can find a canonical set Fc; ob¬ 

viously Fc covers F. 

Example 6.11 If F = {A —> BC, CD -> E, E -> C, D -> AEH, ABH -> BD, DH -*■ BC}, 

then a nonredundant cover for F is {A —» BC, E —> C, D —> A£7/, A5// —> 

fiD}. The FD ABH —> BD can be decomposed into the FDs ABH —> B and 

ABH —» D. Now, since the FD A —» B is in F, we can left reduce these 

decomposed FDs into AH —> B and AH —» D. We also notice that AH —> B 

is redundant since the FD A —> B is already in F. This gives us the canonical 

cover as {A —» 5, A —> C, £ —> C, D A, D —» £, Z) -* //, AH —> D). U 

Note that if Fc is a canonical cover and if we form G using the additivity axiom 

(such that the FDs with the same left-hand sides are merged into a single FD with 

the right-hand sides combined), then Fc and G are equivalent. However, G will 

contain nonsimple FDs. 

6.4.8 Functional Dependencies and Keys 

Earlier we discussed the concept of uniquely identifying an entity within an entity 

set by a key, the key being a set of attributes of the entity. A relation scheme R has 

a similar concept, which can be explained using functional dependencies. 

Definition: Given a relation scheme R {A/A2A? . . . A„} and a set of functional dependencies 

F, a key of R is a subset of R such that K —> AjA2A3 . . . An is in F+ and for 

any Y C K, Y —» AjA2A3 . . . A„ is not in F+. 

The first requirement indicates that the dependency of all attributes of R on K 
is given explicitly in F or can be logically implied from F. The second requirement 

indicates that no proper subset of K can determine all the attributes of R. Thus, the 

key used here is minimal with respect to this property and the FD K —» R is left 

reduced. A superset of K can then be called a superkey. 

If there are two or more subsets of R such that the above conditions are satis¬ 

fied, such subsets are called candidate keys. In such a case one of the candidate keys 

is designated as the primary key or simply as the key. 

We do not allow any attribute in the key of a relation to have a null value. 
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Example 6.12 If R (ABCDEH) and F = {A BC, CD -> E, E -> C, D -> AEH, ABH 

BD, DH —> BC}, then CD is a key of R because CD -> ABCDEH is in 

F+ (since (CD)+ under F is equal to ABCDEH and ABCDEH C ABCDEH). 

Other candidate keys of R are AD and ED. ■ 

Full Functional Dependency 

The concept of left-reduced FDs and fully functionally dependency is defined below 

and illustrated in Example 6.13. 

Definition: Given a relational scheme R and an FD X —* Y, Y is fully functionally 

dependent on X if there is no Z, where Z is a proper subset of X such that Z 

Y. The dependency X —» Y is left reduced, there being no extraneous attributes in 

the left-hand side of the dependency. 

Example 6.13 In the relation scheme R (ABCDEH) with the FDs F = {A -* BC, CD —> 

E, E C, CD —» AH, ABH -* BD, DH -> BC}, the dependency A —» BC 

is left reduced and BC is fully functionally dependent on A. However, the 

functional dependency ABH —> D is not left reduced, the attribute B being 

extraneous in this dependency. ^ 

Prime Attribute and Nonprime Attribute 

We defined the key of a relation scheme earlier. We distinguish the attributes that 

participate in any such key as indicated by the following definition. 

Definition: An attribute A in a relation scheme R is a prime attribute or simply prime if A is 

part of any candidate key of the relation. If A is not a part of any candidate key of 

R, A is called a nonprime attribute or simply nonprime. 

Example 6.14 If R (ABCDEH) and F = {A BC, CD -> E, E -» C, AH D}, then 

AH is the only candidate key of R. The attributes A and H are prime and 
the attributes B, C, D, and E are nonprime. H 

Partial Dependency 

Let us introduce the concept of partial dependency below. We illustrate partial de¬ 
pendencies in Example 6.15. 
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Definition: Given a relation scheme R with the functional dependencies F defined on the 

attributes of R and K as a candidate key, if X is a proper subset of K and if F }= 
X A, then A is said to be partially dependent on K. 

Example 6.15 

Name Course Grade Phone No. Major Course Dept. 

t k k / k 

(a) In the relation scheme STUDENT_COURSE_INFO(Aame, Course, 

Grade, Phone-No, Major, Course-Dept) with the FDs F = {Name —» Phone 

-NoMajor, Course —» Course—Dept, NameCourse —> Grade}, NameCourse 

is a candidate key. Name and Course are prime attributes. Grade is fully 

functionally dependent on the candidate key. Phone-No, Course-Dept, and 

Major are partially dependent on the candidate key. 

(b) Given R (A, B, C, D) and F = {AB —> C, B —» D), the key of this 

relation is AB and D is partially dependent on the key. ■ 

Transitive Dependency 

Another type of dependency which we have to recognize in database design is intro¬ 

duced below and illustrated in Example 6.16. 

Definition: Given a relation scheme R with the functional dependencies F defined on the 

attributes of R, let X and Y be subsets of R and let A be an attribute of R such 

that X (t Y, A (t XY. If the set of functional dependencies {X —> Y, Y —» A} is 

implied by F (i.e., F f= X —» Y —> A and F —1|= Y —> X), then A is transitively 

dependent on X. 

Example 6.16 ▼ V 
Prof Name Department Chairperson 

, k 

(a) In the relation scheme PROF_INFO(Pro/lAcwj<?, Department, Chair¬ 

person) and the function dependencies F = {Prof-Name —» Department, 



306 Chapter 6 Relational Database Design 

Department —> Chairperson}, Prof—Name is the key and Chairperson is 

transitively dependent on the key since Prof-Name —» Department 

Chairperson. 

(b) Given R (A, B, C, D, E) and the function dependencies F = [AB —> 

C, B —> D, C —^ E), AB is the key and E is transitively dependent on the 

key since AB —» C —» E. B 

6.5 Relational Database Design 

Relational database design, like database design using any other data model, is far 

from being a completely automated process3 in the current state of database technol¬ 

ogy. It is an activity that requires the close attention of the database designer, who 

may be one individual, for example the DBA, or a team working with the DBA. 

This activity consists of identifying that portion of the enterprise for which the data¬ 

base application is being designed: the entity sets, their attributes, the domains on 

which the attributes are defined, and the constraints that these attributes have to 

satisfy. Then the design of the relational schemes can begin. 

Two approaches are generally used in designing a relational database: the de¬ 

composition approach and the synthesis approach. The decomposition approach 

starts with one (the universal) relation and the associated set of constraints in the 

form of functional dependencies, multivalued dependencies, and join dependencies. 

A relation that has any undesirable properties in the form of insertion, deletion, or 

update anomalies is replaced by its projections. A number of desirable forms of 

projections have been identified, which we examine in the following sections. A 

number of algorithms for decomposing the input relation have been developed and 

reported in the database literature. We will examine some of these. These algorithms 

produce relations that are desirable from the point of view of some of the criteria 

described below. We discuss the synthesis approach, multivalued dependencies, and 
joint dependencies in Chapter 7. 

The synthesis approach starts with a set of functional dependencies on a set of 

attributes. It then synthesizes relations of the third normal form. 

Regardless of the approach used, the criteria for the design are the following: 

• The design is content preserving if the original relation can be derived from 

the relations resulting from the design process. Since the join operation is used 

in deriving the original relation from its decomposed relations, this criterion is 

also called a lossless join decomposition. The design is minimally content 

preserving if there are no relations in addition to those included in the design 
which are required in recovering the original relation R. 

• The relation design is dependency preserving if the original set of constraints 

can be derived from the dependencies in the output of the design process. The 

3However, design aid tools do exist. 
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design is minimally dependency preserving if there are no extraneous 

dependencies in the output of the design process and the original dependencies 

cannot be derived from a subset of the dependencies in the output of the design 
process. 

• The relation design is free from interrelation join constraints if there are no 

dependencies that can only be derived from the join of two or more relations in 

the output of the design process. This criterion is significant. If the design 

produces a database scheme in which some dependencies are only enforceable 

in a relation that is derived from the join of two or more relations, then in order 

to enforce these dependencies, joins will have to be produced. Consider for 

instance an FD X —» Y. Suppose the decomposition doesn’t contain any relation 

Ri such that XY 6 Rj, but it contains Rj and Rk such that X € Rj and Y £ Rk. 
Then the FD X —> Y can only be enforced by joining Rj and Rk. Since the join 

operation is a computationally expensive process, it is desirable that the 

database design be free of such interrelational joint constraints. 

6.5.1 Recharacterizing Relational Database Schemes 

Let us extend the relation scheme to include not only the set of attributes but also 

the set of functional dependencies among these attributes. We therefore indicate a 

relation scheme as Rj<Sj, F,>. Here Sj is a set of attributes {Au, Ai2, . . ., Aim} and 

Fj is a set of constraints on these attributes. Given U, a set of attributes each of 

which is defined over some designated domain, a relational database scheme is a 

collection of relation schemes R = {R|, R2, . . ., Rp} where each Rj = <Sj = 
{Aji, Ajj, . . Ajm\, Fj>. 

A relational database D on a relational database scheme R is a collection of 

relations {R,, R2, . . ., Rp} such that the relation Rj is defined on the relation scheme 

Ri<Si, F;>. 
As indicated, a relation scheme R<S, F> consists of two components: a set S 

of attributes and a set of constraints F. However, we will continue to use R to also 

denote S, the set of attributes. Thus, to define a subset of attributes, we may use X 

C R to mean X C S. Also, unless there is confusion, we will simply use the term 

relation to denote a relation scheme as well as a relation on a relation scheme. 

6.5.2 Normal Forms—Anomalies and Data Redundancies 

A number of normal forms have been defined for classifying relations. Each normal 

form has associated with it a number of constraints on the kind of functional depend¬ 

encies that could be associated with the relation. The normal forms are used to ensure 

that various types of anomalies and inconsistencies are not introduced into the data¬ 

base. Here we describe these normal forms, which are related either to the form of 

the relations or based on the type of functional dependencies that are allowed to exist 

among the attributes of the relations or among different relations. 
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Unnormalized Relation 

Consider the table of Figure 6.9, which shows the preferences that faculty members 

have for teaching courses. As before, we allow the possibility of cross-departmental 

teaching. For instance, a faculty member in the Computer Science department may 

have a preference for a course in the Mathematics department, and so bn. The table 

of Figure 6.9 is said to be unnormalized. Each row may contain multiple set of 

values for some of the columns; these multiple values in a single row are also called 

nonatomic values. In Figure 6.9 the row corresponding to the preferences of faculty 

in the Computer Science department has two professors. Professor Smith of the Com¬ 

puter Science department prefers to teach three different courses, and Professor Clark 

prefers four. 

Definition: An unnormalized relation contains nonatomic values. 

First Normal Form 

The data of Figure 6.9 can be normalized into a relation, say CRS_PREF(7Ve>/, 

Course, Fac-Dept, Crs-Dept), as shown in Figure 6.10. Note that we have shown 

Figure 6.9 Course preferences. 

Fac-Dept Prof Courst 

Course 

Preferences 

Course-Dept 

Comp Sci Smith 353 Comp Sci 

379 Comp Sci 

221 Decision Sci 

Clark 353 Comp Sci 

351 Comp Sci 

379 Comp Sci 

456 Mathematics 

Chemistry Turner 353 Comp Sci 

456 Mathematics 

272 Chemistry 

Mathematics Jamieson 353 Comp Sci 

379 Comp Sci 

221 Decision Sci 

456 Mathematics 

_ 469 Mathematics 
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Figure 6.10 The relation CRS_PREF. 

Prof Course Fac-Dept Crs-Dept 

Smith 353 Comp Sci Comp Sci 

Smith 379 Comp Sci Comp Sci 

Smith 221 Comp Sci Decision Sci 

Clark 353 Comp Sci Comp Sci 

Clark 351 Comp Sci Comp Sci 

Clark 379 Comp Sci Comp Sci 

Clark 456 Comp Sci Mathematics 

Turner 353 Chemistry Comp Sci 

Turner 456 Chemistry Mathematics 

Turner 272 Chemistry Chemistry 

Jamieson 353 Mathematics Comp Sci 

Jamieson 379 Mathematics Comp Sci 

Jamieson 221 Mathematics Decision Sci 

Jamieson 456 Mathematics Mathematics 

Jamieson 469 Mathematics Mathematics 

the attributes in Figure 6.10 in a different order from those in Figure 6.9; however, 

as mentioned earlier, as long as the columns are labeled there is no significance in 

the order of the columns of a relation. Now, suppose the set of FDs that have to be 

satisfied is given by {Prof —» FacS)ept, Course, —» Crs-Dept}; then the only key 

of the relation CRS_PREF is (Prof, Course). 

Definition: A relation scheme is said to be in first normal form (INF) if the values in the 

domain of each attribute of the relation are atomic. In other words, only one value 

is associated with each attribute and the value is not a set of values or a list of 

values. A database scheme is in first normal form if every relation scheme included 

in the database scheme is in INF. 

The first normal form pertains to the tabular format of the relation as shown in 

Figure 6.10. 
The representation of the data for the courses that a faculty member would like 

to teach by the relation CRS-PREF has the following drawbacks. The fact that a 

given professor is assigned to a given department is repeated a number of times. The 

fact that a given course is offered by a given department is also repeated a number 

of times. These replications lead to some anomalies. For example, if a professor 

changes department, unless all the rows of Figure 6.10 where that professor appears 

are changed, we could have inconsistencies in the database. If the association be¬ 

tween a course and its department is only kept in this relation, a new course cannot 

be entered (without null values) unless someone would like to teach it. Deletion of 
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the only professor who teaches a given course will cause the loss of the information 

about the department to which the course belonged. 

Second Normal Form 

A second normal form does not permit partial dependency between a nonprime at¬ 

tribute and the relation key(s). The STDINF relation given in Section 6.2 involves 

partial dependency and hence it is not in the second normal form. 

Definition: A relation scheme R<S, F> is in second normal form (2NF) if it is in the INF 

and if all nonprime attributes are fully functionally dependent on the relation 

key(s). A database scheme is in second normal form if every relation scheme 

included in the database scheme is in second normal form. 

Even though second normal form does not permit partial dependency between a 

nonprime attribute and the relation key(s), it does not rule out the possibility that a 

nonprime attribute may also be functionally dependent on another nonprime attribute. 

This latter type of dependency between nonprime attributes also causes anomalies, 

as we see below. 

Consider the TEACHES relation of Figure 6.11. It contains the attributes 

Processor), Course, Room, Room-Cap (capacity of room), Enrol—Lmt (enrollment 

limit). The relation scheme for the relation TEACHES is (Prof, Course, Room, Room 

Cap, EnrolJLmt). The domain of the attribute Prof is all the faculty members of the 

university. The domain of the attribute Course is the courses offered by the univer¬ 

sity. The domain of Room is the rooms in the buildings of the university. The domain 

of Room-Cap is an integer value indicating the seating capacity of the room. The 

Figure 6.11 The TEACHES relation. 

Course Prof Room Room-Cap EnrolJLmt 

Course Prof Room Room-Cap Enrol-Lmt 

353 Smith A532 45 40 
351 Smith C320 100 60 
355 Clark H940 400 300 
456 Turner B278 50 45 
459 Jamieson DUO 50 45 
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Figure 6.12 Decomposition of TEACHES relation: (a) COURSE-DETAILS; (b) ROOM-DETAILS; 
and (c) Decomposition of COURSE_DETAILS to eliminate transitive dependency. 

Course Prof Room Enrol-Lmt 

353 Smith A532 40 

351 Smith C320 60 

355 Clark H940 300 

456 Turner B278 45 

459 Jamieson duo 45 

Room Room-Cap 

A532 45 

C320 100 

H940 400 

B278 50 

duo 50 

(a) (b) 

Course Room 

353 A532 

351 C320 

355 H940 

456 B278 

459 duo 

Course Prof Enrol-Lmt 

353 Smith 40 

351 Smith 60 

355 Clark 300 

456 Turner 45 

459 Jamieson 45 

(c) 

domain of Enrol-Lmt is also an integer value and should be less than or equal to the 

corresponding value for Room-Cap. 
The TEACHES relation is in first normal form since it contains only atomic 

values. However, as mentioned earlier, since the course is scheduled in a given room 

and since the room has the given maximum number of available seats, there is a 

functional dependency Room —» Room-Cap, and hence by transitivity. Course —» 

Room —> Room-Cap. Thus, the functional dependencies in this relation are {Course 

—» (Prof, Room, Room-Cap, Enrol-Lmt), Room —» Room-Cap}. Also, there is an¬ 

other transitive dependency4 Room —» Room-Cap —> Enrol-Lmt. The presence of 

these transitive dependencies in TEACHES will cause the following problems. The 

capacity of a room cannot be entered in the database unless a course is scheduled in 

that room; and the capacity of a room in which only one course is scheduled will be 

deleted if the only course scheduled in that room is deleted. Because the same room 

can appear more than once in the database, there could be inconsistencies between 

the multiple occurrences of the attribute pair Room and Room-Cap. 
Consider the decomposition of the TEACHES relation into the relations COURSE 

_DETAILS (Course, Prof, Room, Enrol-Lmt) of Figure 6.12a and ROOM-DETAILS 

(Room, Room-Cap) of Figure 6.12b. The set of functional dependencies in COURSE 

DETAILS is given by {Course —> Prof, Course -* Room, Course -> Enrol 

—Lmt} and the functional dependency in ROOM—DETAILS is {Room —> Room—Size}. 

These relations do not have any partial dependencies: each of the attributes is fully 

4Here we assume that Enrol-Lmt is the upper limit on registration for a course and is based solely on the room capacity. 
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functionally dependent on the key attribute, namely Course and Room, respectively. 

Hence, these relations are in second normal form. However, the relation COURSE- 

DETAILS has a transitive dependency since Course —» Room Enrol-Lmt. In 

addition there is an interrelation join dependency between the relation COURSE- 

DETAILS and ROOM-DETAILS to enforce the constraint that the Enrol-Lmt be 

less than or equal to the Room-Cap. 

Third Normal Form 

A relation scheme in third normal form does not allow partial or transitive depend¬ 

encies. The decomposition of STDINF into STUDENT_INFO TRANSCRIPT and 

TEACHER gives third normal form relations. 

Definition: A relation scheme R<S, F> is in third normal form (3NF) if for all nontrivial 

functional dependencies in F+ of the form X —> A, either X contains a key (i.e., 

X is a superkey) or A is a prime attribute. A database scheme is in third normal 

form if every relation scheme included in the database scheme is in third normal 

form. 

In a third normal form relation, every nonprime attribute is nontransitively and 

fully dependent on the every candidate key. A relation scheme R is not in third 

normal form if any functional dependency such as X —> Y implied by F is in conflict 

with the above definition of third normal form. In this case one of the following must 
be true: 

• X is a subset of a key of R and in this case X —» A is a partial dependency. 

• X is not a subset of any key of R and in this case there is a transitive 

dependency in F+. Since for a key Z of RZ —» X with X not in Z, and X —> A 

with A not in X, Z —> X —» A is a nontrivial chain of dependencies. 

The problems with a relation scheme that is not in 3NF are discussed below. 

If a relation scheme R contains a transitive dependency, Z —> X —» A, we 

cannot insert an X value in the relation along with an A value unless we have a Z 

value to go along with the X value. This means that we cannot independently record 

the fact that for each value of X there is one value of A. This is the insertion anom¬ 

aly. Similarly, the deletion of a Z -> X association also requires the deletion of an 

X —* *• A association leading to the deletion anomaly. If a relation R contains a partial 

dependency, i.e., an attribute A depends on a subset X of the key K of R, then the 

association between X and A cannot be expressed unless the remaining parts of K 
are present in a tuple. Since K is a key, these parts cannot be null. 

The 3NF scheme, like the 2NF scheme, does not allow partial dependencies. 

Furthermore, unlike the 2NF scheme, it does not allow any transitive dependencies. 

The relation COURSE—DETAILS of Figure 6.12a has a transitive dependency 

because Course —> Room —> Enrol-Lmt. We can eliminate this transitive dependency 

by decomposing COURSE-DETAILS into the relations (Course, Prof, Enrol-Lmt) 

and (Course, Room). These decomposed relations are shown in Figure 6.12c. Note 

that enforcing the constraint that Enrol-Lmt be less than the Room-Cap now requires 
a join of three relations! 
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Normalization through Decomposition (Based on FDs) 

We noted above the presence of insertion and deletion anomalies when R contains a 

partial or transitive dependency. The insertion of values for Z and X without an A 

value may be handled by using a null value, provided the attribute A allows null 

values. If null values are not allowed for A, the Z to X association cannot be repre¬ 

sented without a corresponding A value. 

In this section we will examine how to start with a relation scheme R and a set 

of functional dependencies F such that R is not in third normal form with respect to 

the set F, and arrive at a resultant set of relation schemes that are a lossless join 3NF 

decomposition of R. The relation scheme R can be decomposed into a number of 

relation schemes by projection (the intent of the decomposition being to produce 
simpler schemes in 3NF). 

Example 6.17 Consider the relation of Figure C, ENROLLMENT(SfM<fe/if_JVa/ne, Course, 

Phone-No, Department, Grade). In this relation the key is Student-Name, 

Course and it has the following dependencies: {Student-Name —> Phone- 

No, Student-Name —> Department, Student-Name Course —> Grade). Here 

the nonprime attribute Phone-No is not fully functionally dependent on the 

key but only on part of the key, namely the^ttribute Student-Name. Simi¬ 

larly, the nonprime attribute Department is/^ully functionally dependent on 

the attribute Student-Name. These are examples of partial dependen¬ 

cies. 

Figure C The ENROLLMENT relation. 

Student-Name Course Phone—No Department Grade 

Jones 353 237-4539 Comp Sci A 

Ng 329 427-7390 Chemistry A 

Jones 328 237-4539 Comp Sci B 

Martin 456 388-5183 Physics C 

Dulles 293 371-6259 Decision Sci B 

Duke 491 823-7293 Mathematics C 

Duke 353 823-7293 Mathematics B 

Jones 491 237-4539 Comp Sci C 

Evan 353 842-1729 Comp Sci A + 

Baxter 379 839-0827 English B 

The problem with the relation ENROLLMENT is that unless the student takes 

at least one course, we cannot enter data for the student. Note that we cannot enter 

a null value for the Course portion of a tuple since Course is part of the primary key 
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Figure 6.13 Decomposition of ENROLLMENT: (a) The STUDENT relation; (b) The ENROL relation. 

Student-Name Course Grade 

, Jones 353 A 

Ng 329 A 

Jones 328 B 

Martin 456 C 

Dulles 293 B 

Duke 491 C 

Duke 353 B 

Jones 491 C 

Evan 353 A + 

Baxter 379 B 

(b) 

Student—Name Phone-No Department 

Jones 237-4539 Comp Sci 

Ng 427-7390 Chemistry 

Martin 388-5183 Physics 

Dulles 371-6259 Decision Sci 

Duke 823-7293 Mathematics 

Evan 842-1729 Comp Sci 

Baxter 830-0827 English 

of the relation. The other problem with this relation is that the changes in the Phone 

No or Department of a student can lead to inconsistencies in the database. 

We can rectify these problems in the ENROLLMENT relation by decomposing 

it into the following relations: STUDENT (Student-Name, Phone-No, Department) 

with the FDs {Student—Name —* Phone-No, Student—Name —> Department), and EN¬ 

ROL (Student-Name, Course, Grade) with the FDs {Student-Name Course —» 

Grade). The relations STUDENT and ENROL are shown in Figure 6.13. 

Example 6.18 Consider the relation MAJOR (Student—Name, Major, Department) of Figure 

D with the functional dependencies {Student-Name —*■ Major, Student- 

Name —> Department, Major —» Department). Since the attribute Major is 

not in the key, and because of the functional dependency of Department on 
Major, we have a transitive dependency in this relation. 

Figure D The MAJOR relation. 

Student-Name Major Department 

Jones Information Systems Comp Sci 
Ng Biochemistry Chemistry 
Martin Honors Physics Physics 
Dulles Quantitative Methods Decision Sci 
Duke Statistics Mathematics 
James Systems Architecture Comp Sci 
Evan Information Systems Comp Sci 
Baxter Creative Writing English 
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Figure 6.14 A decomposition MAJOR: (a) The STUDENT_MAJOR relation and (b)The MAJOR. 
DEPARTMENT relation. 

Student-Name Major 

Jones Information Systems 

Ng Biochemistry 

Martin Honors Physics 

Dulles Quantitative Methods 

Duke Statistics 

James Systems Architecture 

Evan Information Systems 

Baxter Creative Writing 

(a) 

Major Department 

Information Systems Comp Sci 

Biochemistry Chemistry 

Honors Physics Physics 

Quantitative Methods Decision Sci 

Statistics Mathematics 

Systems Architecture Comp Sci 

Creative Writing English 

(b) 

The problem with the relation MAJOR is that unless a student is registered in 

one of the majors offered by a department, that major cannot be shown to be offered 

by the given department. Similarly, deleting the only student in a major loses the 

information of that major being offered by a given department. 

This problem can be overcome by decomposing the relation MAJOR into the 

relations STUDENT_MAJOR(Sfi«fe/tf_JVame, Major) with the functional depen¬ 

dency {Student—Name —> Major), and MAJOR-DEPT (Major, Department) with the 

functional dependency {Major —» Department). These relations are shown in Figure 
6.14. 

The relations of Figures 6.13 and 6.14 do not exhibit the anomaly and inconsis¬ 

tency problems that were present in the relations of Figures C and D, respectively. 

Elimination of some of these anomalies is the motivation behind the decomposition 

of a scheme R<S, F> (which suffers from anomalies and inconsistency problems) 

into relation schemes Rl5 R2, etc., each of which is not necessarily a disjoint subset 

of R so that the resulting relation schemes contain the same data as the original 

scheme. 

6.5.3 Lossless Join and Dependency-Preserving Decomposition 

A relation scheme R can be decomposed into a collection of relation schemes to 

eliminate some of the anomalies contained in the original relation scheme R. How¬ 

ever, any such decomposition requires that the information contained in the original 

relation be maintained. This in turn require^ that the decomposition be such that a 

join of the decomposed relations gives the sqme set of tuples as the original relation 

and that the dependencies of the original relation be preserved. Let us illustrate, with 

an example, a decomposition that violates these requirements. 

Example 6.19 Consider the relation STUDENT_ADVISOR(Aame, Department, Advisor) 

of Figure Ei with the functional dependencies F{Name —» Department, 

Name —> Advisor, Advisor —> Department). The decomposition of STUDENT 
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Figure E Example of a lossy decomposition: (i) The STUDENT- 
ADVISOR relation; (ii) STUDENT-DEPARTMENT; (iii) DE¬ 
PARTMENT-ADVISOR; and (iv) Join of STUDENT-DE¬ 
PARTMENT and DEPARTMENT-ADVISOR. 

Name Department Advisor 

Jones Comp Sci Smith 

Ng Chemistry Turner 

Martin Physics Bosky 

Dulles Decision Sci Hall 

Duke Mathematics James 

James Comp Sci Clark 

Evan Comp Sci Smith 

Baxter English Bronte 

Name Department 

Jones Comp Sci 

Ng Chemistry 

Martin Physics 

Dulles Decision Sci 

Duke Mathematics 

James Comp Sci 

Evan Comp Sci 

Baxter English 

(i) (ii) 

Department Advisor 

Comp Sci Smith 

Chemistry Turner 

Physics Bosky 

Decision Sci Hall 

Mathematics James 

Comp Sci Clark 

English Bronte 

Name Department Advisor 

Jones Comp Sci Smith 

Jones Comp Sci Clark 

Ng Chemistry Turner 

Martin Physics Bosky 

Dulles Decision Sci Hall 

Duke Mathematics James 

James Comp Sci Smith 

James Comp Sci Clark 

Evan Comp Sci Smith 

Evan Comp Sci Clark 

Baxter English Bronte 

(iv) 

ADVISOR into STUDENT— DEPARTMENTfAam^, Department) and 

DEPARTMENT_ADVISOR (Department, Advisor) is given in Figures Eii 
and Eiii. The join of these decomposed relations is given in Figure Eiv and 

contains tuples that did not exist in the original relation of part i. The de¬ 
composition is called lossy. ■ 
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The terms lossless and dependency preserving are defined below. 

Definition: A decomposition of a relation scheme R <S, F> into the relation schemes Rj 

(1 < i < n) is said to be a lossless join decomposition or simply lossless if for 

every relation R(R) that satisfies the FDs in F, the natural join of the projections 
of R gives the original relation R; i.e., 

R = itri(R) 1X1 ^lutR) XI ... IX ttRi)(R) 

If R C irR1(R) X ttr2(R) IX . . . XI ttRii(R) then the decomposition is 
called lossy.5 

The lossless join decomposition enables any relation to be recovered from its 

projections or decompositions by a series of natural joins. Such decomposed relations 

contain the same data as the original relation. Another property that the decomposi¬ 

tion of a relation into smaller relations must preserve is that the set of functional 

dependencies of the original relation must be implied by the dependencies in the 

decompositions. 

Definition: Given a relation scheme R<S, F> where F is the associated set of functional 

dependencies on the attributes in S, R is decomposed into the relation schemes 

^1) ^2) • • •) Rn with the functional dependencies Fj^ F2^ • • .9 FR. Then this 
decomposition of R is dependency-preserving if the closure of F' (where F' = 

Fj U F2 U . . . U F„) is the identical to F+ (i.e., F'+ = F + ). 

If we decompose a relation into relation schemes that do not preserve depend¬ 

encies, the enforcement of the original FDs can only be accomplished by joining the 

decomposed relation. This operation has to be done for each update for verifying 

consistency. Note that the dependencies in the decomposition are always implied by 

the original set of FDs. 
These observations are summarized in the following theorem; we will not give 

a formal proof of this theorem but illustrate it with examples. Formal proofs can be 

found in the references given in the bibliographic notes at the end of the chapter. 

Theorem 6.1: A decomposition of relation scheme R <(X, Y, Z), F> into R,<(X, Y), 

F,> and R2<(X, Z), F2 R2 < (X,Z), F2 > is: 

(a) dependency preserving if every functional dependency in R can be logically derived 

from the functional dependencies of R| and R2, i.e., (F, UF2)+ = F+, and 

(b) is lossless if the common attributes X of R, and R2 form a superkey of at least one 

of these, i.e., X —» Y or X —» Z. 

5R C ttr,(R) XI TTittfR) X ... X TTRn(R) is always true. 
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Example 6.19 illustrated a decomposition that is both lossy and doesn’t preserve 

the dependencies in the original relation. It is lossy because the common attribute 

Department is not a key of either of the resulting relations and consequently, the join 

of these projected relations produces tuples that are not in the original relation. The 

decomposition is not dependency-preserving because the FD Name —> Advisor is not 

implied by the FDs of the decomposed relation. 

Example 6.20 illustrates a lossless decomposition. 

Example 6.20 Let R(A, B, C) and F = {A —> B}. Then the decomposition of R into Rj(A, 

B) and R2(A, C) is lossless because the FD {A —» B} is contained in Ri and 

the common attribute A is a key of Rj. ■ 

A decomposition which is lossy is given below. 

Example 6.21 Let R(A, B, C) and F = {A —> B). Then the decomposition of R into Rj(A, 

B) and R2(fi, C) is not lossless because the common attribute B does not 

functionally determine either A or C, i.e. it is not a key of R, or R2 ■ 

A decomposition which is both lossless and dependence preserving is given in 
Example 6.22. 

Example 6.22 Given R(A, B, C, D) with the functional dependencies F = {A B, A —> 

C, C —> D}, consider the decomposition of R into Ri(A, B, C) with the 

function dependencies Fi = {A -> B, A C} and R2(C, D) with the func¬ 

tional dependencies F2 = {C —-> D}. In this decomposition all the original 

FDs can be logically derived from Fj and F2, hence the decomposition is 

dependency-preserving. Also, the common attribute C forms a key of R2. 
The decomposition of R into R, and R2 is lossless. ■ 

Example 6.23 gives a lossy decomposition which also is not dependency pre¬ 
serving. 

Example 6.23 Given R(A,B,C,D) with the functional dependencies F = {A —* B, A —> C, 

A -»• D), the decomposition of R into R,(A,flfD) with the functional de¬ 

pendencies F! = {A -> B, A -> D} and R2(fi,C) with the functional de¬ 

pendencies F2 = {} is lossy because the common attribute B is not a candi¬ 

date key of either Rj or R2. In addition, the FD A —> C is not implied by 

any FDs in Rj or R2. Thus, the decomposition is not dependency-preserv¬ 
ing. ■ 
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Now let us consider an example involving the decomposition of relations from 

the familiar university-related database. This decomposition, while lossless, is not 
dependency-preserving. 

Example 6.24 Consider the relation scheme CONCENTRATION {Student(S), Major_or_ 

Minor(Mm), Field-of-Study(Fs), Advisor{A)} with the functional dependen¬ 

cies F = {(S, Mm, Fs) —» A, A —» Fs}. Figure Fi illustrates some instances 

of tuples of a relations on this relation scheme. This relation can be decom¬ 

posed by projection into the relation schemes SMmA(S, Mm, A) and FSA(Fs, 

A). The decomposition of the relation of part i into these two relations is 

shown in parts ii and iii. This decomposition is lossless because the common 

attribute A determines Fs. However, the decomposition does not preserve 

the dependencies; the only nontrivial dependency in the decomposition is A 

—*• Fs, but it does not imply the dependency (S, Mm, Fs) —» A. This is an 

example of a decomposition that is lossless but not dependency-preserving. 

Figure F Example of a lossless decomposition that is not depen¬ 
dency preserving: (i) The CONCENTRATION relation; (ii) 
The SMmA relation; and (iii) The FSA relation. 

Student Major-or-Minor F ield-of-Study Advisor 

Jones Major Comp Sci Smith 

Jones Minor Mathematics Jamieson 

Ng Major Chemistry Turner 

Ng Minor Comp Sci Clark 

Ng Minor Physics Bosky 

Martin Major Physics Bosky 

Martin Minor Chemistry Turner 

James Major Physics Newton 

James Minor Comp Sci Clark 

(i) 

Field-ofStudy Advisor 

Comp Sci 

Mathematics 

Chemistry 

Comp Sci 

Physics 

Physics 

Smith 

Jamieson 

Turner 

Clark 

Bosky 

Newton 

Student Mm Advisor 

Jones Major Smith 

Jones Minor Jamieson 

Ng Major Turner 

Ng Minor Clark 

Ng Minor Bosky 

Martin Major Bosky 

Martin Minor Turner 

James Major Newton 

James Minor Clark 

(ii) 
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Note that the dependency (5, Mm, Fs) —» A can be recovered from the join 

of the projected relations. ■ 

6.5.4 Algorithms to Check if a Decomposition is Lossless and . 
Dependency-Preserving 

We are given a relation scheme R and a set of functional dependencies F. Suppose 

R is decomposed into the relations Rj, R2, . . ., R„ with the functional dependen¬ 

cies Fj, F2, . . ., Fn respectively. We want to ascertain (a) if the decomposition is 

lossless and (b) if it is dependency-preserving. The following algorithms can be used 

to check for these requirements. Algorithm 6.4 can determine if a decomposition is 

lossless; Algorithm 6.5 can determine if the decomposition is dependency-preserving. 

Note that if the decomposition is into only two relations, it would be easier to test 

for lossless decomposition using Theorem 6.1. However, if the decomposition is into 

a number of relations, Algorithm 6.4 could be used. A decomposition could have 

one of these properties without having the other. 

In Algorithm 6.4, we initialize the table element (i, j) with aAj if the attribute 

A, is included in the decomposed relation Rg otherwise we place the symbol piAj. 

The table is then used to verify if an arbitrary tuple with all as, which is in the join 

of the decomposed relation, is also in the relation R. If this is the case, the decom¬ 

position is lossless; otherwise it is lossy. See the bibliographic notes for a reference 
to the proof of this algorithm. 

We use algorithm 6.4 to verify that the decomposition in Example 6.25 is loss¬ 
less. 

Example 6.25 Given R(A,B,C,D) with the functional dependencies F {A —» B, A —» C, C 

—> D}, consider the dependency-preserving decomposition of R into 

Ri(A,i?,C) and R2(C,D). Let us verify whether it is lossless as well using 
Algorithm 6.4. 

A B c D 

<*A «B ac PlD 

<*c 

A B c D 

“A <*B ac «D 

P2A P2B OLc <*D 

We initialize the TABLE_LOSSY as shown on the left. Then we consider 

the FD C * D and find that the symbols in the C columns are the same. 

Because one of the symbols in the D column is an a, we make the other 

element (1, 4) in the D column the same. For the other FDs we are unable 

to find two rows with identical entries for the columns of the determinant, 

so there are no further changes and the final version of TABLE_LOSSY is 

as shown on the right. Finally we find a row in the table with as in all 

columns, indicating that the decomposition is lossless. Because the common 

attribute, C, is a key of one of the projection, we could have used Theorem 
6.1 to come to the same conclusion. ■ 
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Algorithm 

6.4 Algorithm to Check if a Decomposition is Lossless 

Input: A relation scheme R(A,, A2, A3, . . Ak), decomposed into the relation 
schemes R„ R2, R3, . . Rb . . Rn. 

Output: Whether the decomposition is lossless or lossy. 

(*A table, TABLE-LOSSY(l:n, l:k) is used to test for the type of 

decomposition. Row i is for relation scheme Rj of the decomposed relation 

and column j is for attribute A] in the original relation.*) 
for each decomposed relation R, do 

if an attribute A} is included in R,, 

then TABLE_LOSSY(i, j) : = aAj (*place a symbol aAj in row i, column j 

of *) 

else TABLE_LOSSY(i, j) := piAj (* place a symbol piAj *) 
change : = true 

while (change) do 

for each FD X -» Y in F do 

if rows i and j exist such that the same symbol appears in each column 

corresponding to the attributes of X 

then if one of the symbols in the Y column is ar 

then make the other ar 

else (/"the symbols are 3pm and (3qm 

then make both of them, say, f3pm; 

else change ; = false 

i := 1 

lossy : = true 

while (lossy and i < n) do 

for each row i of TABLE-LOSSY 

if all symbols are as 

then lossy : = false 

else i : = i + 1; 

Algorithm 6.4 is used in Example 6.26 to conclude that the given decomposition 

is lossy. 

Example 6.26 Given R(A, B, C, D, E) with the functional dependencies F {AB —» CD, A 

—» E, C —> D}, the decomposition of R into R^A.Zf.C), R2(5,C,D) and 

R3(C,D,E) is lossy. 
We initialize the TABLE-LOSSY as shown on the left. Now we con¬ 

sider the FDs AB —> CD, A —» E in turn but since we find that there are no 

two rows with identical entries in the A columns, we are unable to make 



322 Chapter 6 Relational Database Design 

A B c D E 

R. <*A <*B ac PlD Pie 

R2 P2A <*B ac “d Pie 

r3 P.3A p3B «c <*d “e 

>4 B c D E 

R, <*A OtB <*c a D Pie 

r2 P2A «B <*c «D Pie 

r3 P3A P3B <*c aD aE 

any changes to the table. When we consider the FD C —» D, we find that 

all rows of the column C, the determinant of the FD, are identical and this 

allows us to change the entries in the column D to aD. No further changes 

are possible and the final version of the table is the same as the table on the 

right. Finally we find no rows in the table with all as and conclude that the 

decomposition is lossy. ■ 

As we discussed earlier, a decomposition is dependency-preserving if the clo¬ 

sure of F' (where F' = F] U F2 U . . . U Fn) is identical to F + . However, the 

task of computing the closure is time consuming and we would like to avoid it. With 

this in mind, we provide below an alternate method of checking for the preservation 

of the dependencies. This method takes each functional dependency X —» Y in F and 

computes the closure X'+ of X with respect to F'. If Y C X' + , then F' f= X —> Y. 
If we can show that all functional dependencies in F are logically implied by F', we 

can conclude that the decomposition is dependency-preserving. Obviously, if even a 

single dependency in F is not covered by F', the decomposition is not dependency¬ 

preserving. Algorithm 6.5 checks if a decomposition is dependency-preserving. 

If the union of dependencies of the decomposed relations is the same as the 

original set of dependencies, then the decomposition is dependency-preserving. This 
is illustrated in the following example. 

Example 6.27 Consider R(A,B,C,D) with the functional dependencies F {A —» B, A —> C, 

C —> D} and its decomposition into Ri(A,B,C) with the functional depend¬ 

encies F2 = {A —» B, A —» C} and R2(C,D) with the functional dependencies 

F2 = {C —» D}. This decomposition is dependency-preserving because all 

the original FDs can be logically derived from F, and F2. (In this case each 
FD in F is included in F' (where F' = Fj U F2).) ■ 

The following example illustrates a decomposition which is not dependency¬ 
preserving. 
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Algorithm 

6.5 
Algorithm to Check if a Decomposition 
is Dependency Preserving 

Input: A relation scheme and a set F of functional dependencies; a projection (R,, 

R2, . . R„) of R with the functional dependencies (Fx, F2, . . Fn). 

Output: Whether the decomposition is dependency-preserving or not. 

F,+_ = _F+ := true; (*Assume F'+_ = _F+, used as a variable, is true *) 
F' := 4>; 

for i : = 1 to n do 

F' : = F' U Fi; 

for each FD X Y 6 F and while (F'+_ = _F+) do 

(* compute X' + , the closure of X under F', using Algorithm 6.1 )) 

if Y (£ X'+ then F'+_ = _F+ = false; (* i.e., the decomposition is not 

dependency-preserving *); 

Example 6.28 R(A,B,C,D) with the functional dependencies F {A —» B, A —» C, A —» D} 

is decomposed into RX(A,B,D) with the functional dependencies Fx = {A 

—» B, A —> D] and R2(5,C) with the functional dependencies F2 = {}. This 

is not dependency-preserving because the FD A —> C is not implied by any 

FDs in Rj or R2. H 

Now let us consider the decomposition of a relation from the university data¬ 

base. 

Example 6.29 Consider the relation STUDENT_ADVISOR(7Vam<?, Department, Advisor) 

of Figure Ei with the functional dependencies F = {Name —> Department, 

Name -> Advisor, Advisor —> Department}. Here, the decomposition of 
STUDENT-ADVISOR into STUDENT_PROFESSOR(7Vame, Advisor) with 

the functional dependency {Name —» Advisor}, and DEPARTMENT-AD- 

VISOR(Department, Advisor) with the functional dependency {Advisor -> 

Department is dependency-preserving, because the dependency Name —> 

Department is implied by (Name —> Advisor) U (Advisor —> Department); 

in addition, the decomposition is lossless. ■ 

On the other hand, the following decomposition is not dependency-preserving. 

Example 6.30 The decomposition of the relation CONCENTRATION of Figure F into the 

relations SMmA and FSA is not dependency-preserving because F' = A -> 

Fs and the FD SMmFs A is not implied by F'. II 
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6.5.5 Decomposition into Third Normal Form 

Let us start from a normalized relation scheme R<S, F>, where S is a set of attri¬ 

butes with atomic domains and F is a set of functional dependencies sjuch that R is 

not in the 3NF. Since R is normalized, we know that it is in the INF (note: here we 

do not insist that R be in the 2NF). The reason why R is not in the 3NF is that it 

has at least one FD Y -» A, where A is a nonprime attribute that violates the 3NF 

requirements. 
If Y —» A is a partial dependency (i.e., Y is a subset of a key of R), then R is 

not in the second normal form and these partial dependencies have to be removed by 

decomposition. To ensure that this decomposition is lossless and dependency¬ 

preserving, we decompose R into two relation schemes, say Rj<Si, Fj> and 

R2<S2, here Sj is S — A, Fi is (F — (Y —* A)), S2 is YA, and F2 is Y —» A. 
This decomposition is lossless because Y is the common attribute in Rj and R2 and 

it forms a key of R2; it is dependency-preserving because the union of Fj and F2 is 

equal to F. The decomposition process can be hastened by removing from R any 

other nonprime attribute A,, A2, . . . such that Y —» AA,A2A3 . . . Thus R could 

be decomposed into Ri<(S —AA,A2A3 . . .), {F — (Y —> AA,A2A3 . . .)}> and 

R2<(TAA/A2AJ . . .), Y —» AA,A2A3 . . .>. 

Now consider how we can handle the situation where Y —» A is a transitive 

dependency in R (if this type is the only offending form of dependency in the set F, 

then R is not only in the INF but it is also in the 2NF). If K is a key of R, then K 

C S. Now let Y C S with Y Ct K be a set of attributes so that for some nonprime 

attribute A 6 S the FD K —» Y —» A holds under F and Y is not a key of R. As 

before, the decomposition of R into R| and R2 is done by removing from R the 

attribute A and forming a new relation Ri<(S — A), {F — (Y —> A)}> and R2<YA, 
Y -» A>. 

The decomposition process, in the case of a transitive dependency, can be has¬ 

tened by removing from the set of attributes (R - KY) any other nonprime attribute, 

e.g., Ait such that Y —» A,-. These other attributes will also be transitively dependent 

on the key K of R. Such further attributes A, are also placed in the relation scheme 

R2 and removed from R. Thus we get the decomposition of R as R,<(S - AA,A2A3 

. . . Ak), {F — (Y —» AA,A2A3 . . . A*)}>, and R2<(YAA/A2Ai . . . A*), Y 

AA]A2A3 . . . Ak>. As before, this decomposition is lossless because Y is the com¬ 

mon attribute in Rj and R2 and it forms a key of R2. The decomposition is depen¬ 
dency-preserving because the union of F! and F2 is equal to F. 

If either Rt or R2 with the functional dependencies F! and F2 is not in 3NF, we 

can continue the decomposition process until we get a database scheme, say Rj<Sj, 
Fi>, Rj<Sj, Fj>, Rk<Sk, Fk>, . . . Rm<Sm, Fm>. 

Algorithm 6.6 below is the formal method to decompose a normalized relation 

scheme R<S, F> into a number of 3NF relation schemes. The decomposition is 

lossless and dependency-preserving. The algorithm uses the canonical cover of the 

set of FDs F (see Section 6.4.7). The algorithm preserves dependency by building a 

relation scheme for each FD in the set of the canonical cover of F. The lossless join 

decomposition is assured in the algorithm by including in the decomposition a rela¬ 

tion scheme that contains a candidate key of R. The algorithm also includes a relation 

scheme tha' contains all the attributes of R that are not involved in any FD in the 
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Algorithm 

6.6 
Lossless and Dependency-Preserving Third Normal 
Form Decomposition 

Input: A relation scheme R, a set of canonical (minimal) functional dependencies Fc, 

and K, a candidate key of R. 

Output: A collection of third normal form relation schemes (Rj, R2, . . Rn) that 

are dependency-preserving and lossless. 

i := 0 

Find all the attributes in R that are not involved in any FDs in Fc either on the 

left or right side. If any such attributes {A} are found then 

begin 

i := i+ I; 
form a relation R{A}; (involving attributes not in any FDs*) 

R : = R — {A}; (*remove the attributes {A} from R*) 

if there is a dependency X —» Y in Fc such that all the attributes that remain 

in R are included in it 

then 

begin 

i : = i+ 1; 

output R as Rj{X, Y}; 

end 

else 

begin 

for each FD X —> A in Fc do 

begin 

i := i + 1; 
form R!<{X, A}, F{X A}> 

end; 
combine all relation schemes corresponding to FDs with the same LHS 

(*i.e„ <(X, A), {X -> A}> and <(X,B), {X -» B}> 

could be replaced by <(X, AB), {X —» AB}>*) 

if none of left side of FD in 

Fj for 1 < j < i satisfies K C X 

then begin 

i : = i + 1; 
form Rj<{K}>; (*make sure that a relation contains 

the candidate key of R*) 

end; 

end; 
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canonical cover; this caters to any possible many-to-many association between these 

attributes. 

Algorithm for Lossless and Dependency-Preserving 
Third Normal Form Decomposition 

For this algorithm we assume that we have a canonical cover Fc for the set of FDs 

F for the relation scheme R and that K is a candidate key of R. Algorithm 6.6 
produces a decomposition of R into a collection of relation schemes Rt, R2, . . 
R„. Each relation scheme Rs is in third normal form with respect to the projection of 

Fc onto the scheme of R 
In Example 6.31 below, we give a decomposition into 3NF relation schemes 

which is both lossless and also dependency-preserving. 

Example 6.31 Find a lossless join and dependency-preserving decomposition of the follow¬ 

ing relation scheme with the given set of functional dependencies: 

SHIPPING (Ship, Capacity, Date, Cargo, Value) 

Ship —* Capacity, 

ShipDate —» Cargo, 

CargoCapacity —» Value 

First find the canonical cover of the given set of FDs. The FDs are simple 

since each has a single attribute on the right-hand side. There are no redun¬ 

dant FDs in the set and none of the FDs contains extraneous attributes on 

the left-hand side. Hence the given set of FDs is in canonical form. A can¬ 

didate key of the relation is ShipDate. 

Now use Algorithm 6.6 to find a lossless and dependency-preserving 

decomposition of SHIPPING. Since all attributes appear in the canonical 

cover we need not form a relation for attributes not appearing in any FD. 

There is no single FD in the canonical cover that contains all remaining 

attributes in SHIPPING, so we proceed to form a relation for each FD in 
the canonical cover. 

Ri (Ship, Capacity) with the FD Ship —> Capacity 

R2(Ship, Date, Cargo) with the FD ShipDate —> Cargo 

R3(Cargo, Capacity, Value) with the FD CargoCapacity —» Value 

As a candidate key is included in the determinant of the FD of the decom¬ 

posed relation scheme R2, we need not include another relation scheme with 

only a candidate key. The decomposition of SHIPPING into R„ R2, and 
R3 is both lossless and dependency-preserving. ■ 

In Example 6.32 we find a 3NF decomposition of a relation from the university 
database. 
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Example 6.32 Consider the relation scheme STUDENT_INFO(Srw(/enr(S), Major(M), Stu- 

dent-Department{Sd), Advisor(A), Course(C), Course-Department(Cd), 

Grade(G), Professor(P), Prof-Department(Pd), Room(R), Day(D), Time{T)) 

with the following functional dependencies: 

5 —> M 

S A 

M^Sd 
S^Sd 
A^Sd 
C-»Cd 

C-> P 

p->pd 
RTD -> C 

RTD -* P 

TPD R 

TSD -»> R 

TDC —*■ R 
TPD —> C 

7SD -> C 

SC —> G 

each student is in an unique major 

each student has an unique advisor 

each major is offered in an unique department 

each student is in one department 

each advisor is in an unique department 

each course is offered by a single department 

each course is taught by one professor 

each professor is in an unique department 

each room has on a given day and time only one course sched¬ 

uled in it 

each room has on a given day and time one professor teaching 

it it 

a given professor on a given day and time is in one room 

a given student on a given day and time is in one room 

a course can be in only one room on a given day and time 

on a given day and time a professor can be teaching only one 

course 

on a given day and time a student can be attending only one 

course 

each student in a given course has a unique grade 

A canonical cover of this set of functional dependencies will not contain the 

dependencies {S Sd, RTD -» P,TDC R, TPD -* C, TSD -> R}. The 

key of this relation scheme is TSD. The decomposition of this relation 

scheme into third normal form gives the following relation schemes: 

Ri(SMA) with the FD 5 —* MA 

R2(MSd) with the FD M —» Sd 

R3(A5rf) with the FD A —> Sd 

R4(CCdP) with the FD C —*■ CdP 

Rs(PPd) with the FD P -» Pd 
R6(RTDC) with the FD RTD C 

R7(TPDR) with the FD TPD -* R 

Rs(TSDR) with the FD TSD -* R 

R9(SCG) with the FD SC ^ G 

(Note: Since all the attributes in the original relation scheme are involved 

with some FD we do not have to create a relation scheme with attributes not 

so involved. Also, the relation scheme R8 includes a candidate key; conse¬ 

quently we don’t need to create an explicit relation scheme for the key.) 

Rt through R9 form a lossless and dependency-preserving decomposition of 

STUDENT_INFO ■ 

Derivation of other canonical covers of this set of FDs and the corresponding 

relational schemes in 3NF is left as an exercise. 
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6.5.6 Boyce Codd Norma! Form 

Consider a relation scheme in third normal form that has a number of overlapping 

composite candidate keys. In particular consider the relation GRADEfAame, Stu¬ 

dent#, Course, Grade) of Figure 6.15. Here the functional dependencies are {Name 

Course —> Grade, Student#Course —> Grade, Name —» Student#, Student# —> 

Name}. Thus, each student has a unique name and a unique student number. The 

relation has two candidate keys, {Name, Course) and {Student#, Course). Each of 

these keys is a composite key and contains a common attribute Course. The relation 

scheme satisfies the criterion of the third normal form relation, i.e., for all functional 

dependencies X —> A in GRADE, when A X, either X is a superkey or A is prime. 

However, this relation has a disadvantage in the form of repetition of data. The 

association between a name and the corresponding student number is repeated; any 

change in one of these (for example, the change in the name to a compound name 

because of marriage) has to be reflected in all tuples, otherwise there will be incon¬ 

sistency in the database. Furthermore, the student number cannot be associated with 

a student name unless the student has registered in a course, and this association is 
lost if the student drops all the courses he or she is registered in. 

The problem in the relation GRADE is that it had two overlapping candidate 

keys. In the Boyce Codd normal form (BCNF), which is stronger than the third 

normal form, the intent is to avoid the above anomalies. This is done by ensuring 

that for all nontrivial FDs implied by the relation, the determinants of the FDs in¬ 
volve a candidate key. 

Definition: A normalized relation scheme R<S, F> is in Boyce Codd normal form if for 

every nontrivial FD in F+ of the form X—> A where X C S and A £ S, X is a 
superkey of R. 

Figure 6.15 The GRADE relation. 

Name Student# Course Grade 

Jones 23714539 353 A 

Ng 42717390 329 A 
Jones 23714539 328 in prog 
Martin 38815183 456 C 
Dulles 37116259 293 B 
Duke 82317293 491 C 
Duke 82317293 353 in prog 
Jones 23714539 491 C 
Evan 11011978 353 A + 
Baxter 83910827 379 in prog 
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A database scheme is in BCNF if every relation scheme in the database scheme 

is in BCNF. In other words, for a relation scheme R<S, F> to be in BCNF, for 

every FD in F+ of the form X —> A where X C S and A £ S, at least one of the 

follbwing conditions hold: 

• X —> A is a trivial FD and hence A 6 X, or 

• X —» R, i.e., X is a superkey of R. 

The above definition of the BCNF relation indicates that a relation in BCNF is 

also in 3NF. The BCNF imposes a stronger constraint on the types of FDs allowed 

in a relation. The only nontrival FDs allowed in the BCNF are those FDs whose 

determinants are candidate superkeys of the relation. In other words, even if A is a 

prime attribute, X must be a superkey to attain BCNF. In 3NF, X does not have to 

be a superkey, but in this case A must be a prime attribute. Effectively, 3NF allows 

nontrivial FDs whose determinant is not a superkey if the right-hand side is contained 

in a candidate key. 

Example 6.33 The relation GRADE of Figure 6.15 is not in BCNF because the depend¬ 

encies Student# —» Name and Name —> Student# are nontrivial and their 

determinants are not superkeys of GRADE. ■ 

The following is an example of a BCNF relation. 

Example 6.34 Consider the relation scheme STUDENT('S/D, Name, Phone-No, Major), 

where SID is an unique student identification number and where Name, and 

Phone-No are assumed to be unique for this example. The functional de¬ 

pendencies satisfied on the STUDENT relation scheme are {5/D —> Major, 

Name —» Major, Phone-No —> Major, SID —> Name, SID —* Phone-No, 

Name —» SID, Name —> Phone-No, Phone-No —> SID, Phone-No —> 

Name}. The relation STUDENT is in BCNF since each FD involves a can¬ 

didate key as the determinant. ■ 

Lossless Join Decomposition into Boyce Codd Normal Form 

We now give an algorithm that decomposes a relation scheme into a number of 

relation schemes, each of which is in Boyce Codd normal form. In Algorithm 6.7, 

S is a set of relation schemes. It is initialized with the original relation scheme, which 

may not be in the BCNF. At the end of the algorithm, S will contain a number of 

BCNF relation schemes. We start by finding a nonredundant cover F' of F. Then we 

look at the relation schemes in S and find a scheme, let us say Rj, which is not in 

BCNF for a nontrivial FD X —> Y in F'. Since Rj is not in BCNF, the conditions 

XY C Rj and X -b Rj will hold. We decompose Rj into two relations XY and Rj - 

Y. The algorithm terminates with all relations in the set being in BCNF. 
The decomposition is lossless and the join of the resulting relations gives, the 

original relation. However, some of the dependencies in the original relation scheme 
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Algorithm 

6.7 
Lossless Boyce Codd Normal Form 

Decomposition Algorithm 

Input: A relation scheme R<U, F> not in BCNF where F is a set of FD. 

Output: Decomposition of R(U) into relation schemes Rj(Uj), 1 — i — n such that 

each Ri(Uj) is in BCNF and the decomposition is lossless. 

begin 

i := 0; 

S := {R(U)}; 
alLBCNF : = false; 
Find F' from F; (* here F' is a nonredundant cover of F *) 

while (-i alLBCNF) do 
if there exists a nontrivial FD (X —» Y) in F'+ such that 

XY C Rj and X -b Rj (* Rj? a relation scheme in S, is not in BCNF, 

i.e., X —> Rj is not in F'+ *) 

then 

begin 

i : = i + 1; 
form relation Rf{X, Y} with the FD X —> Y and add 

it to S 

Rj := Rj - Y; 
end; 
else alLBCNF := true; 

end; 

may be lost. Also, the relation schemes so produced are not unique. The resulting 

set of decomposed schemes depends on the order in which the functional dependen¬ 

cies in the original relation is used. 

We use Algorithm 6.7 to find BCNF decomposition of a number of relations in 
Examples 6.35 through 6.37. 

Example 6.35 Find a BCNF decomposition of the relation scheme SHIPPING with the 
following set of functional dependencies: 

SHIPPINGfiS/n/;, Capacity, Date, Cargo, Value) 
Ship —> Capacity 

ShipDate —» Cargo 

CargoCapacity —> Value 

First find the nonredundant cover of the given set of FDs. There are no 

redundant FDs in the set, hence the given set of FDs is a nonredundant 
cover. 
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Now use Algorithm 6.7 to find a lossless decomposition of SHIP¬ 

PING. Since there is an FD Ship —> Capacity and since Ship -/> SHIPPING 

we replace SHIPPING with the relation R| (Ship, Capacity) formed with 

the FD in question and R2(S/jip, Date, Cargo, Value). Consider the relation 

R2: the FD ShipDate —> Cargo is a nontrivial FD in the nonredundant cover. 

However, since ShipDate —> ShipDateCargoValue, the relation R2 is in 

BCNF and we have completed the decomposition. 

Ri(Ship, Capacity) with the FD Ship —» Capacity 

R i(Ship, Date, Cargo, Value) with the FD ShipDate —> Cargo 

The decomposition of SHIPPING into R, and R2 is lossless but not depen¬ 

dency preserving because the FD CargoCapacity —> Value is not implied by 

the set of FDs {Ship Capacity, ShipDate —> Cargo}. 

Another BCNF decomposition of SHIPPING is obtained when we con¬ 

sider the FD CargoCapacity —* Value first. This gives us the following 
decompositions: 

Ri (Cargo, Capacity, Value) with the FD CargoCapacity —> Value 

R2(Ship, Capacity) with the FD Ship —> Capacity 

R^(Ship, Date, Cargo) with the FD ShipDate —» Cargo 

This decomposition is also dependency-preserving. ■ 

An example of a BCNF decomposition which is not dependency preserving is 

given below. 

Example 6.36 Consider the relation scheme <(ABCD), [AB —> C, C —» A}>. None of the 

FDs are redundant, so the given set is a nonredundant cover. Using the FD 

AB —> C we decompose this into the relation schemes: <(ABC), {AB —> C, 

C —* A}> and <(ABD), { }>. The scheme <(ABC), {AB —> C, C —» A}> 

can be further decomposed into the schemes <(AC), {C —» A}> and <(BC), 

{ }>• ■ 

In Example 6.37, we demonstrate the non-uniqueness of the BCNF decomposi¬ 

tion. 

Example 6.37 Consider the relation scheme STUDENT_INFO{5, M, Sd, A, C, Cd, G, P, 

Pd, R, D, T} with the following functional dependencies (S —*■ MA, M —> 

Sd, A Sd, C —> CJ*, P —» Pd, RDT -> C, TPD -* R, TSD -> R, SC -> 

G). The key of this relation is TSD. The decomposition of this relation into 

a number of BCNF relation schemes using Algorithm 6.7 gives the decom¬ 

position tree shown in Figure G. The left tree is obtained by considering the 

FDs in the order S —» MA, S —* Sd, C —» Cd, C —» P, and RDT —> C. This 

order gives the following set of BCNF relation schemes: (SMA), (SSd), 

(CCd), (CP), (RDTC), and (SGPJiDT). The right decomposition is obtained 

by considering the FD SC G first. 



332 Chapter 6 Relational Database Design 

Figure G Two Different Decomposition Trees. 

(SMSdACCdGPPdRDT) 

S AM I 

(SMA), (SSdCCdGPP dRDT) 

S +sd 

(SSd), (SCCdGPPdRDT) 

c -*~cd 

r i 
(CCd), (SCGPPdRDT) 

C -►/> 

r n 
tCP), (SCCPdRDT) 

RDT -► C 

(RDTC), (SGP dRDT) 

RDT -► Pd 

r n 
(RDTPd), (SGRDT) 

(SMSdACCdGPPdRDT) 

SC G | ■ 

(SCG), (SMSdACCdPPdRDT) 

TSD -► R 

(TSDR), (SMSdACCdPPdDT) 

P + Pd_I 
(PPd), (SMSdACCdPDT) 

C -»►/>I 

(CP), (SMSdACCdDT) 

C -+cd 

(CCd), (SMSdACDT) 

A “► Sd 

(ASd), (SMACDT) 

S —► A 

I ~1 
(SA), (SMCDT) 

S -► M 

(SM), (SCDT) 

We see from the above example that for different orders of considering the FDs, 

we get different decomposition trees and hence different sets of resulting relation 

schemes. For Example 6.37, we illustrate in Figure G two different decomposition 

trees giving the following sets of relations: {(SMA), (SSd), (CCd), (CP), (RDTC), 

(PjRDT), (SGRDT)} and {(SCG), (TSDR), (PPd), (CP), (CCd), (ASd), (SA), (SM), 

(SCDT)}. 

One other point we notice is that some of the original dependencies are no 

longer preserved in the decompositions given above. For instance, in both sets of 

relation schemes, the FD M —> Sd is no longer represented. This means that we 

cannot ascertain, without one or more joins, that the corresponding fact is correctly 

represented in the database. At each step of the algorithm we are decomposing a 

relation into two relations, such that the common attribute is a key of one of these 

relations. Consequently, the decomposition algorithm produces a set of lossless 
BCNF relations. 
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We conclude with the observation that there are relation schemes R<S, F> 
such that no decomposition of R under F is dependency-preserving. This is a worse 

situation than one where some decompositions are dependency-preserving while oth¬ 
ers aire not. 

6.6 Concluding Remarks 

Let us return to the relation STUDENT_ADVISOR(7Vame, Department, Advisor) of 

Figure Ei with the functional dependencies F = {Name —> Department, Name —» 
Advisor, Advisor -» Department}. When we decomposed STUDENT-ADVISOR 

into STUDENT_DEPARTMENT(7Vame, Department), and DEPARTMENT-ADVI- 

SOR {Department, Advisor), giving the relations shown in Figures Eii and Eiii, we 

found that the decomposition was lossy. The common attribute. Department, is not 

a key of either of the decomposed relations. The join of these decomposed relations, 

given in Figure Eiv, contains tuples that did not exist in the original relation of Figure 

Ei. In addition the decomposition is not dependency-preserving. The FD Name —> 

Advisor is not implied by the FDs of the decomposed relation nor could it be derived 
from their join. 

We notice, however, that there are three independent relationships in the 

STUDENT_ADVISOR relation, and the only key is NameAdvisor. We can decom¬ 

pose it into three relations, ADVISOR_STUDENT(7Vtf/??e, Advisor). STUDENT-DE- 

P ARTMENT (Name, Department), and ADVISOR-DEPARTMENT (Advisor, De¬ 

partment). This decomposition is useful in storing the independent relationships 

autonomously. The original relation can be obtained by joining these decomposed 

relations. The decomposition is lossless since the common attribute in these relations 

is a key of one of them. Furthermore, the decomposition is dependency preserving 

since each of the FDs is preserved in one of the relations. 

Note that some of these independent relationships that are not involved with 

each other will be eliminated from the final result. For instance, a new student, 

Letitia, may join the Physics department without having an advisor. Similarly, a new 

professor, Jaffe, may join the Chemistry department and may not yet be advising 

students. The resulting relations are shown in parts a, b, and c of Figure 6.16. In the 

original relation, this data could only have been entered with null values for the 

unknown attribute. 

The join of these relations to obtain the STUDENT-ADVISOR relation gives 

us the tuples shown in Figure E. The new tuples added in the decomposed relation 

participate in one of the joins, as shown in Figure Ed. However, these and other 

extraneous tuples are eliminated when the second join is performed. The tuples (Le¬ 

titia, Physics) of STUDENT-DEPARTMENT and (Jaffe, Chemistry) of ADVISOR. 

DEPARTMENT are eliminated for this sequence of joins. Such tuples, which do not 

contribute to the result of the join operations, are called dangling tuples. 
When we refer to the attributes Name, Advisor, and Department in a database 

containing the above three relations, we need to distinguish the various applications 

of the same symbol. A simple method of doing this is by preceding the attribute with 

the name of the relation. Another approach would be to use unique identifiers for 

each role that the attribute plays in the model. 
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Figure 6.16 Join of the decomposition of STUDENT-ADVISOR: (a) ADVISOR-STUDENT; 
(b) STUDENT-DEPARTMENT; (c) ADVISOR-DEPARTMENT; and (d) X = STUDENT 
DEPARTMENT X ADVISOR-DEPARTMENT. Note: The marked tuples are elimi¬ 
nated when this result relation, X, is joined with ADVISOR-STUDENT, i.e., STUDENT 
ADVISOR = ADVISOR-STUDENT IX X. 

Name,Advisor. 

Name Advisor 

Jones Smith 

Ng Turner 

Martin Bosky 

Dulles Hall 

Duke James 

James Clark 

Evan Smith 

Baxter Bronte 

(a) 

Name Department 

Jones Comp Si 

Ng Chemistry 

Martin Physics 

Dulles Decision Sci 

Duke Mathematics 

James Comp Sci 

Evan Comp Sci 

Letitia Physics 

Baxter English 

(b) 

Advisor Department 

Smith Comp Sci 

Turner Chemistry 

Bosky Physics 

Hall Decision Sci 

James Mathematics 

Clark Comp Sci 

Bronte English 

Jaffe Chemistry 

(c) 

Name Department Advisor 

Jones Comp Sci Smith 

Jones Comp Sci Clark 

Ng Chemistry Turner 

Ng Chemistry Jaffe 

Martin Physics Bosky 

Dulles Decision Sci Hall 

Duke Mathematics James 

James Comp Sci Smith 

James Comp Sci Clark 

Evan Comp Sci Smith 

Evan Comp Sci Clark 

Letitia Physics Brosky 

Baxter English Bronte 

(d) 

The goal of database design is to ensure that the data is represented in such a 

way that there is no redundancy and no extraneous data is generated. This means 

that we would generate relations in as high an order as possible. Since we cannot 

always guarantee that the BCNF relations will be dependency preserving when both 

lossless and dependency-preserving relations are required, we have to settle for the 
third normal form. 
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Summary 

In this chapter we studied the issues involved in the design of a database application 

using the relational model. We discussed the importance of having a consistent da¬ 

tabase without repetition of data and pointed out the anomalies that could be intro¬ 

duced in a database with an undesirable design. The criteria to be addressed by the 

design process are redundancy, insertion anomalies, deletion anomalies, and update 
anomalies. 

A relation scheme R is a method of indicating the attribute names involved in a 

relation. In addition the relation scheme R has a number of constraints that have to 

be satisfied to reflect the real world being modeled by the relation. These constraints 

are in the form of FDs. The approach we have used is to replace R by a set of more 

desirable relation schemes. In this chapter we considered the decomposition ap¬ 

proach. The synthesis approach is discussed in Chapter 7. 

The decomposition approach starts with one relation (the universal relation) and 

the associated set of constraints in the form of functional dependencies. The relation 

has a certain number of undesirable properties (in the form of insertion, deletion, or 

update anomalies) and it is replaced by its projections. A number of desirable forms 

of projections have been identified. In this chapter we discussed the following normal 

forms: INF, 2NF, 3NF, BCNF. 

Any relation having constraints in the form of FDs only can be decomposed into 

relations in the third normal form; such a decomposition is lossless and preserves the 

dependencies. Any relation can also be decomposed losslessly into relations in the 

Boyce Codd normal form (and hence into the third normal form). However, such 

decomposition into the Boyce Codd normal form may not be dependency-preserving. 

The goal of the decomposition approach to the relational database design using FDs 

is to come up with a database scheme that is in BCNF, is lossless, and preserves the 

original set of FDs. If this goal is not possible, an alternate goal is to derive a 

database scheme that is in 3NF and is lossless and dependency-preserving. 

Key Terms 

decomposition 

universal relation 

universal relation assumption 

spurious tuple 

trivial functional dependency 

closure 

cover 

nonredundant cover 

simple 

canonical cover 

minimal 

full functional dependency 

prime attribute 

nonprime attribute 

partial dependency 

transitive dependency 

synthesis 

content preserving 

dependency-preserving 

interrelation join constraints 

unnormalized 

nonatomic value 

normalized 

first normal form (INF) 

second normal form (2NF) 

third normal form (3NF) 

lossless join decomposition 

lossless 

lossy 

Boyce Codd normal form 
(BCNF) 

dangling tuple 
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Exercises 

6.1 Given R{ABCDE} and F = {A -> B, BC -* D, D -» BC, DE -> <j>}- are there any redundant 

FDs in F? If so, remove them and decompose the relation R into 3NF relations. 

6.2 Given R{ABCDE} and the set of FDs on R given by F = {AS —» CD, ABC —>'e, C —> A}, 

what is X + , where X = {A8C}? What are the candidate keys of R? In what normal 

form is R? 

6.3 Given R{ABCDEF} and the set of FDs on R given by F = {ABC -*• DE, AB —> D, DE —» 

ABCF, E C}, in what normal form is R? If it is not in 3NF, decompose R and find a set 

of 3NF projections of R. Is this set lossless and dependency-preserving? 

6.4 Given the relation scheme R{Truck(T), Capacity (C), Date (Y), Cargo(G), Destination (D), 

Value(V)} with the following FDs {T —» C, TY —*■ G, TY —» D, CG —» V}, is the 

decomposition of R into Rl{rCD} and R2{TGDVY) dependency-preserving? Justify. Is this 

decomposition lossless? Justify. Find a lossless join and dependency-preserving 

decomposition of R into 3NF. If the 3NF decomposition is not in BCNF, find a BCNF 

decomposition of R. 

6.5 Consider a relation scheme R with the following set of attributes and FDs: {SID, Name, 

Date-of-Birth, Advisor, Department, Term, Year, Course, Grade}, {SID —> NameDate-of- 

BirthAdvisorDepartment, Advisor —> Department, SIDTermYearCourse —> Grade}. Find the 

candidate keys of R. Does a dependency-preserving and lossless join decomposition of R 

into a number of BCNF schemes exist? If so, find one such decomposition. Suppose R is 

decomposed into the relation schemes {SID, Name, Date-of-Birth}, {SID, Advisor, 

Department}, and {SID, Term, Year, Course, Grade}. Does this decomposition exhibit any 

redundancies or anomalies? 

6.6 Prove that every set of functional dependencies F is covered by a set of simple functional 

dependencies G, wherein each functional dependency has no more than one attribute on the 

right-hand side. 

6.7 Given the set of functional dependencies {A —» BCD, CD —> E, E —> CD, D -* AH, ABH 

BD, DH —> BC}, find a nonredundant cover. Is this the only nonredundant cover? 

6.8 Given R{ABCDEFGH} with the FDs {A -» BCDEFGH, BCD -* AEFGH, BCE 

ADEFGH, CE —> H, CD —>■ H}, find a BCNF decomposition of R. Is it dependency¬ 

preserving? 

6.9 Given R <{A, B, C, D, E, F, G, H, I, J, K}, {I -» K, AI -> BFG, IC -> ADE, BIG -» CJ, 

K —* HA}, find a canonical cover of this set of FDs. Find a dependency-preserving and 

lossless join 3NF decomposition of R. Is there a BCNF decomposition of R that is both 

dependency-preserving and also lossless? If so, find one such decomposition. 

6.10 Given the relation R {ABCDE} with the FDs {A -»■ BCDE, B —> ACDE, C -> ABDE}, give 

the lossless decomposition of R. 

©.11 Give an efficient algorithm to compute the closure of X under a set of FDs, using the scheme 

outlined in the text. 

6.12 Does another canonical cover of the set of FDs of Example 6.32 exist? If so, derive it and 

show the corresponding relation schemes. 

6.13 Given the relation R {ABCDEF} with the set H = {A -* CE, B -» D, C -» ADE, BD -> F}, 

find the closure of BCD. 
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6.14 Explain why there is renewed interest in unnormalized relations (called the non_lNF or 

NFNF). What are its advantages compared to normalized relations? 

6.15 Discuss the advantages and disadvantages of representing hierarchical structured data from 

the real world as an unnormalized relation. 

6.16 The Sky-High-Retums Mutual Fund (SMF) Corp. offers a number of different no-load 

mutual funds (F) for investment. It sells directly to the public through a number of branches 

(B). Each customer (C) is assigned to an agent (A) who is an employee of SMF and works 

out of only one branch. Any customer is allowed to buy any number of units (U) of any of 

the funds. Each fund is managed out of one of the branches and the portfolio (P) of the fund 

is directed by a board of managers (M). The board is made up of agents of SMF; however, 

agents from different branches may be involved in any number of boards at any branch. The 

unit value of each fund is decided at the end of the last business day of the month and all 

purchases and redemptions are done only after the unit price is determined at that time. The 

funds are charged a 5% per year management fee; the agents get 1% of this fee in addition to 

their regular salaries. Determine the entities and their attributes that have to be maintained if 

SMF is to design a database system to support its operations. What are the dependencies that 

have to be enforced? Make any additional assumptions that you may require. 

6.17 Consider the TEACHES relation. Assume that Room-Cap -A Enrol-Lmt. This means that 

two different courses allocated to the same room at different day and time could have 

different Enrol-Lmts. In what normal form is TEACHES under this modified assumption? If 

it is not in 3NF form, find a lossless and dependency-preserving decomposition. 

6.18 Consider the relation scheme R(ABCDE) and the FDs {A B, C —> D, A —> E). Is the 

decomposition of R into (ABC), (BCD), (CDE) lossless? 

6.19 Find a 3NF decomposition of the following relation scheme: (Faculty, Dean, Department, 

Chairperson, Professor, Rank, Student). The relation satisfies the following functional 

dependencies (and any others that are logically implied by these): 

Faculty —> Dean 

Dean —* Faculty 

Department —> Chairperson 

Professor —* RankChairperson 

Department —* Faculty 

Student —> DepartmentFacultyDean 

ProfessorRank —» DepartmentFaculty 

6.20 What are the design goals of a good relational database design? Is it always possible to 

achieve these goals? If some of these goals are not achievable, what alternate goals should 

you aim for and why? 

6.21 Use Algorithm 6.4 to determine if the decomposition of STUDENT_ADVISOR(Na/nc, 

Department, Advisor) with the functional dependencies F{Name —* Department, Name —* 

Advisor, Advisor —» Department} into ADVISOR_STUDENT((Vame, Advisor), STUDENT_ 

DEPARTMENT (Name, Department), and ADVISOR_DEPARTMENT(/WvAor, 

Department) is lossless. 

6.22 Consider the relation scheme R(A, B). With no information about the FDs involved, can you 

determine its normal form? Justify your answer. 

6.23 Consider the relation scheme R(A, B, C, D) where A is a candidate key. With no 

information about the FDs involved, can you determine its normal form? Justify your 

answer. 
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6.24 Prove that the Armstrong axioms FI through F3 are sound. (Hint: if X —> Y is derived from 

F using the Armstrong axioms, then the dependency X —> Y is satisfied in any relation that 

satisfies the dependencies in F.) 

6.25 Prove that Algorithm 6.1 correctly computes X + . 

6.26 Prove that X —» Y follows from the inference axioms FI through F3 if and only if Y C X + . 
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The first, second, third, and Boyce Codd normal forms and algorithms for converting 

a relation in first normal form into higher order normal forms were discussed in 

Chapter 6. In this chapter we continue our discussions of the issues involved in the 

design of a database application using the relational model. In Section 7.1, we ex¬ 

amine the problems in the decomposition approach and present the synthesis ap¬ 

proach to database design in Section 7.2. We then turn our attention to the higher 

order normal forms, examining the concept of multivalued dependency and axioms 

that involve both functional dependencies and multivalued dependencies. We discuss 

fourth normal form and a lossless decomposition algorithm for it. Next we introduce 

the concept of join dependency and a normal form for it. Finally, we introduce a 

scheme whereby all general constraints can be enforced via domain and key con¬ 

straints and the associated normal form, called domain key normal form. 

7.1 Problems in the Decomposition Approach 

Any relation can be decomposed into a number of relations that are in third normal 

form. Such a decomposition is lossless and preserves the dependencies. Any relation 

can also be decomposed losslessly into relations in Boyce Codd normal form (and 

hence in third normal form). However, decomposition into Boyce Codd normal form 

may not be dependency preserving. A case was illustrated in Example 6.37 in Chap¬ 

ter 6, where among others, the FD M -» Sd is no longer represented in any of the 

decomposed relation schemes. It is not always possible to find a BCNF decomposi¬ 

tion that is both lossless and dependency preserving. In addition, the decomposition 

into BCNF is not unique. Many different BCNF relation schemes exist, as illustrated 

in Example 6.37. 
The decomposition approach using the BCNF decomposition algorithm may pro¬ 

duce interrelational join constraints. This happens when the attributes XY corre¬ 

sponding to one of the functional dependencies X —» Y do not appear in any of the 

decomposed relation schemes. In the decomposed relation schemes of Example 6.37, 

to determine if the FD M —> Sd is satisfied, we have to join the relations (SMA), 

(SSd) for the left decomposition of Figure G in Example 6.37. In general, to find out 

if a functional dependency X —> Y is maintained in the decomposed schemes requires 

joining several of the decomposed relations. Since join operations are computation¬ 

ally expensive, interrelational join constraints are undesirable. 
However, a lossless and dependency preserving decomposition of a relation 

scheme into third normal form does not always give the minimum number of relation 

schemes. Furthermore, many different possible decompositions with the lossless and 

dependency preserving properties may be possible. 
The goal of the decomposition approach to relational database design using FDs 

is to come up with a database scheme that is in BCNF, is lossless, and preserves the 

original set of FDs. If this goal is not achieved the alternate goal is to derive a 

database scheme that is in 3NF and is lossless and dependency preserving. 
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7.2 Normalization through Synthesis 

In the decomposition approach to relational database design, we start with a relation 

(a universal relation) with undesirable properties and decompose it into a number of 

smaller relations to avoid these anomalies. Decomposition into third normal form 

using Algorithm 6.6 will be both lossless and dependency preserving. Decomposition 

into BCNF using Algorithm 6.7 will be lossless but may not be dependency preserv¬ 

ing. Furthermore, decomposition into BCNF form is not unique. 

The synthesis approach is an alternate approach to relational database design. 

Here we start with an universal relation scheme U that is not in third normal 

form and a set of functional dependencies F over U, and we create a database 

scheme R = {R1( R2, • . . , Rk}. The scheme R is dependency preserving, 

i.e., all the dependencies in F are preserved and, in particular, if there is functional 

dependency Fj € F, there is a relation Rj € R such that the determinant of the FD Fj 

is a key of Rj. Every relation Rj is in third normal form and there are no extraneous 

relations in the relation scheme R and hence no data duplications. In addition R is a 

lossless relation scheme if we ensure that at least one of the relations in R contains 
a key of U. 

7.2.1 Functional Dependencies and Semantics 

Functional dependencies are representations of the semantics of real world data in a 

model. We have to be careful that the semantics of the functional dependencies are 

preserved. We saw the importance of distinct names for attributes to indicate their 
semantic usage in the universal relation approach earlier. 

Consider the attribute price of the entity set PART. Each part could have two 

prices associated with it, the wholesale or cost price and the retail or sale price. 

These price attributes are defined on the same domain. However, the wholesale and 

retail prices are not synonymous and are distinguished by using distinct names such 
as Price-Wholesale and Price-Retail. 

Consider another example where different meanings are attached to an attribute 

defined on a given domain. The following example of functional dependencies in¬ 

volves the attribute Department defined on the domain consisting of all the depart¬ 

ments of a university. The attribute Department appears a number of times: Student 

Department, Course -+ Department, Professor —> Department. However, the 

semantics of the use of this domain for the attribute Department is to indicate the 

department to which the student, course, or professor belongs and this could be 

distinct. This distinction is carried into the model by giving distinct names, let us 

say S-Department, C-Department, and P-Department to these distinct meanings 
assigned to the attribute. We write the above mentioned FDs as follows: 

Student —» S-Department 

Course —> C-Department 
Professor —> P-Department 
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7.2.2 Semantics of Nonfunctional Relationships 

A nonfunctional relationship among attributes exists in a relation when some attri¬ 

butes are grouped together without any apparent dependencies existing between 

them. However, there is a relationship between these attributes that may become 

obvious if additional attributes are introduced. The FDs may not be apparent because 

the values for one set of attributes do not define unique values for another set of 

attributes. There may be no real functional dependency between these attributes but 

the database designer may want these attributes together. For example, the attributes 

Professor, Interest, and Course could be grouped together in the absence of apparent 

functional dependencies. However, this may be done to reflect the reality that a given 

professor has expertise and interest in a given area and that he or she can teach a 

given course requiring knowledge in that area. Such nonfunctional dependencies can 

be introduced by using the following scheme: 

Professor Interest Course —> 0 

Here 0 is a nonexistent attribute used only to show the nonfunctional relation¬ 

ship among the attributes of its determinant. To indicate additional nonfunctional 

relationships we can introduce additional nonexistent attributes 0t, 02, . . . , 0n. 

These nonexistent attributes can be used to define the nonfunctional relationship 

during the database design process. Once a satisfactory database scheme is obtained 

these attributes can be discarded. 

7.2.3 Synthesis Approach 

Because the FDs determine whether or not a relation scheme is in third normal form, 

it would be easy to obtain a relation scheme in 3NF if the FDs are used to design 

the scheme. The synthesis approach uses the assumption that there is at least one 

functional relationship between two sets of attributes. If no such relationship in fact 

exists, the synthesis design approach introduces appropriate nonfunctional relation¬ 

ships. In the synthesis approach, the starting point of the relational database design 

process is a set of attributes (universal relation) and the set of functional (and non¬ 

functional) dependencies that have to be enforced among the attributes of this uni¬ 

versal relation. The synthesis procedure then synthesizes a set of third normal form 

relation schemes, which preserves the required dependencies. 

If the set of FDs used in the synthesis design process is a nonredundant cover, 

the number of relations synthesized will be minimum. In fact, it has been shown that 

the synthesis approach will produce the same set of relations regardless of the mini¬ 

mal cover used. (Recall that for a given set of FDs, it is possible to derive a number 

of covers.) 

Consider the universal relation U(A, B, C, D, E, H) and the set of FDs 

F = {A -> BC, CD -> E, E -> C, D -» AEH, ABH -> BD, DH -» BC}. If 

a relation is synthesized for each FD in F, it will result in the following 

design: 

Example 7.1 
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Ri(ABC) with key A 
R2(CDE) with key CD 
R3(EC) with key E 
R4(DAEH) with key D 
R5(ABDH) with key ABH 
R6(DHBC) with key BC 

However, F contains redundant FDs CD —» E and DH —» BC. This means 

that the relations R2 and R6 are redundant and can be eliminated from the 

design. ■ 

If the FDs used in the synthesis approach are left reduced, i.e., there are no 

extraneous attributes on the left-hand side of the FDs, then we will not introduce any 

partial dependencies in the relations synthesized using such FDs. 

Example 7.2 Consider U{A,B,C,D} with the set of FDs F = {ABC —» D, A —> C}. The 

approach of using each FD in F to synthesize a relation gives the following 

relations: 

Ri(ABCD) with key ABC 
R2(AC) with key A. 

However, the relation Rj is not in 3NF since there is a partial depen¬ 

dency AB —» D. If the FD A —*■ C were used to left reduce ABC —> D, we 

replace the latter by AB —> D and hence obtain a synthesized design in the 
3NF. ■ 

If two or more FDs have determinants that are functionally dependent on each 

other they are said to be equivalent. For instance, if we have set of attributes X and 

Y and if X —» Y and Y —» X then X and Y are equivalent, written as X 4—» Y. In 

this case, instead of building two or more relations, one for each such FD, we can 

build only a single relation for each such group of FDs. Such a strategy produces an 
economic relational design. 

Example 7.3 Let us return to the universal relation U{A, B, C, D, E, H} and the set of 

FDs F = {A -> BC, CD -> E, E -> C, D -» AEH, ABH -» BD, DH -> 

BC}. We saw that the FDs CD —> E and DH -» BC are redundant and we 

can eliminate these. In addition, the FD ABH -> BD is not left reduced, the 

attribute B being extraneous. This gives us, after reduction, the FDs AH —> 

D. Now, since D —> AH, we get the one-to-one dependency AH <—» D. 
Thus, AH and D are equivalent. We can combine these equivalent keys into 
one relation to give the following synthesized relational design: 

Ri{AZ?C} with key A 
R2{£C} with key E 
Ri{ADEH) with keys AH, D 
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Having determined the equivalent groups of FDs, we should eliminate any 

transitive dependencies that may exist. This will ensure that the relations 
produced will be in 3NF. ■ 

7.2.4 Synthesis Algorithm 

The best known synthesis algorithm was proposed by Bernstein (Bern 76) and is 

sometimes called the Bernstein Synthesis algorithm. The algorithm starts with a uni¬ 

versal relation and the functional dependencies to be enforced on it and produces a 

third normal form database scheme that is lossless and dependency preserving. The 

algorithm is called a synthesis algorithm because it constructs relation schemes from 

the FDs rather than decomposing a relation scheme into simpler relation schemes. 

The synthesis algorithm uses a canonical cover of a set of (left-reduced) func¬ 

tional dependencies and groups the functional dependencies such that the determinant 

of the FDs in each group is the same. Recall that an FD is left reduced if the left- 

hand side does not contain any extraneous attributes. The algorithm then finds com¬ 

pound functional dependencies (X1?X2, . . . , Xk) —> Y by using the equivalent 

determinant Xj <■—> Xj for 1 < i < k and 1 < j < k. The characteristic of the 

compound functional dependency (X1? X2, . . . , Xk) —» Y is that Xj —» Xj and 

Xj—> Y for 1 < i < k and 1 < j < k. 

Let us illustrate the synthesis algorithm via the following example. 

Example 7.4 Consider the universal relation U(A, B, C, D, E, F, G) with the functional 

dependencies: 

BC —» A 
FG -> BC 
B —» D 
C -» E 
F —» A 
G —» A 
ABE G 
ACD F 

In step 1 we find that the canonical cover of F includes the above FDs. 

In step 2 we find that the groups contain one FD each. 

In step 3 we discover that BC —» FG and FG —> BC are in the 

cover, hence we can combine these two groups into a single group (BC, 

FG) —> A. 
G now becomes (BC —» A, B —> D, . . . ACD —> F). 
J is BC -» FG, FG -* BC. 
In step 4 we find that the minimum cover of G U J does not contain 

BC —» A. 

(BCFG) with keys (BC,FG) 
(BD) with key (B) 
(CE) with key (C) 
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(FA) with key (F) 
(GA) with key (G) 
(ABE) with key (ABE) 
(ACD) with key (ACD). 

Because the keys of U are BC or FG, contained in one of the relations 

above, the synthesis algorithm gives the final set of relations. ■ 

We now synthesize a set of 3NF relation for the STUDENT_INFO relation 

scheme discussed in Example 6.32. 

Example 7.5 Consider the set of attributes in the relation scheme STUDENT- 
INFOiSMSjACCdGPPJtDT} with the following functional dependencies: (5 

—» MA, M —» Sd, A Sd, C —> CdP, P -» Pd, RTD -+ C, TPD R, TSD 
—» R, SC —> G). The key of this relation is TSD. 

In step 1 we find that the given set of FDs is minimal, i.e., G is the 

given set of FDs. 

In step 2 the groups created are (S M, S —* A), (C —> Cd, C —» P), 
(M Sd), (A -+ Sd), (P Pd), (SC -> G), (RTD -* C), (TPD R), 
(TSD -> R). 

In step 3 we find that G + RTD <■—* TPD and hence we get J as being 

RTD —> TPD, TPD —» RTD. G reduces to (S —» M, S —» A), (C —> Cd, 
C -> P), (M -> Sd), (A -> So), (P PJ, (SC -* G), (RTD -> Cj, (PPD 
-»• <1>>, (PSD -> 

In step 4 we eliminate TPD —» 4> to obtain G, as being S —> M, S —> 

A, C -> C* C -> P, M -> Srf> A -> Srf> P -»• Pd, SC -> G, PPD -» C, PSD 
-> P. 

In step 5 we regroup (S M, S A), (C -> Cd, C -> P), (M SJ, 

(A -> SJ, (P -> PJ, (SC -* G), (RTD -> C, PPD TPD, TPD PPD), 
(PSD -> P). 

In step 6 we get the following relation schemes: 

Relation Key 

(SMA) (S) 
(CCdP) (C) 
(MSd) (M) 

(ASd) (A) 

(PPd) (P) 
(SCG) (SC) 

(RTD PC) (RTD, TPD) 

(TSDR) (TSD) 

Because the relation contains the key PSD the final relation scheme is as 

above. ■ 
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Algorithm 

7.1 Synthesis Algorithm for Third Normal Form 

Input: 

Output: 

A universal database scheme U, a key K of U, and a set of simple left- 
reduced FDs F. 

A third normal form database scheme {R,F'} 

1. (* Find a canonical cover *) 

Find a canonical cover G of F. (* Use Algorithm 6.3 to first compute the 

nonredundant cover *) 

Set F' to G. 

2. (* Form groups with same determinant *) 

Partition G into groups Hi, H2, . . . such that all functional dependencies in 
each group have the same determinant. 

3. (* Find and merge equivalent determinants *) 

J : — 4>; ;(* J will contain the FDs between equivalent keys *) 

Examine each pair of groups Hj, Hj with the determinant Xj and Xj. If Xj 
<—> Xj, i.e., if Xj—* Xj and Xj—» X; are in G + , then 

J : = J U {Xj -* Xj, Xj -> XJ; 
Hj : = H; - {Xj A | A € Xj}; 
Hj : = Hj - {Xj -» B | B € Xj}; 

merge Hs and Hj into a single group 

(* Remove those FDs in Hj, Hj that pertain to the FDs Xj —> Xj and 

Xj —* Xi, respectively; thus we modify G as follows: 

G : = G - (X,.—»Xj) - (Xj—* Xj); 

i.e., remove from G the FDs Xj-* Xj and/or Xj—> Xj if they are in G *) 

4. (* Eliminate transitive dependencies *) 

Find a minimum set of FDs Gj of G such that 

(G, U J)+ = (G U J) + 

Here G| Cl G. 

G2 : = Gj U J; 

5. Partition G2 into groups H,', H2', . . . where each group has the same or 

equivalent determinant (* here use J to find equivalent pairs Xj <—* Xj *). 

6. For each group Hj' with attributes (Xj, Xj, . . . , Y) corresponding to the 

FDs Xj —* Xj —* . . . —* Xj —* Y form a relation {XjXj . . . Y} with key 

(Xj or Xj or . . . ) and add it to the relation scheme R. 

7. (* Ensure that the relation scheme is lossless *) 

If K Xi; i.e., if a candidate key of U is not in one of the keys of the 

relations constructed, add the relation {X} to the relation scheme R. 
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If we compare the relation schemes obtained with this approach with the ones 

obtained in Example 6.32 using Algorithm 6.6 for the third normal form decompo¬ 

sition, we find that the synthesis approach gives one less scheme. Basically we have 

combined the FDs RTD -> C and TPD -* R into one relation scheme (RTDPC). This 

particular relation scheme is not in BCNF since for the FD C —» P in this relation, 

the determinant C of the FD is not a key of the relation. However, the relation 

(RTDPC) is in 3NF. 

7.3 Multivalued Dependency 

We discussed multivalued dependency (MVD) earlier with respect to the employee 

entity and the dependents, positions, and salary history of the employee. Figure 7.1 

is an unnormalized relation showing the relation EMPLOYEE {Employee-Name, De- 
pendent(Name, Relationship), Position(Title, Date), Home-City, Home-Phone#} 

and containing the information about employees. Each employee can have a number 

of dependents and would have occupied various positions in the organization. The 

relation has nonatomic values and hence, is not in normal form. We can normalize 

this relation as shown in in Figure 7.2. We see in Figure 7.2 that for a given value 

for Employee-Name, there are multiple values for the attributes (Dependent-Name, 
Dependent-Relationship) and (Position-Title, Position-Date). The set of values for 

the attributes of (Dependent-Name, Dependent-Relationship) is not connected in any 

way to the values of the attributes in {EMPLOYEE — Employee—Name — Depen- 

Figure 7.1 Unnormalized EMPLOYEE relation. 

Employee- 

Name 

Depe 

Name 

ndent 

Relationship 

Positic 

Title 

ms 

Date 

Home- 

City 

Home- 

Phone 

Jill Jones Bill Jones spouse J. Engineer 05/12/84 Lynn, MA 794-2356 

Engineer 10/06/86 

Bob Jones son J. Engineer 05/12/84 

Engineer 10/06/86 

Mark 

Smith 

Ann Briggs spouse Programmer 09/15/83 Revere, MA 452-4729 

Analyst 06/06/86 

Chloe daughter Programmer 09/15/83 

Smith- 

Briggs Analyst 09/06/86 

Mark son Programmer 09/15/83 
Bnggs- 

Smith 
Analyst 09/06/86 
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Figure 7.2 Normalized EMPLOYEE relation. 

Employee- 

Name 

Dependent- 

Name 

Dependent- 

Relationship 

Position- 

Title 

Position- 

Date 

Home- 

City 

Home- 

Phone# 

Jill Jones Bill Jones spouse J. Engineer 05/12/84 Lynn, MA 794-2356 
Jill Jones Bill Jones spouse Engineer 10/06/86 Lynn, MA 794-2356 
Jill Jones Bob Jones son J. Engineer 05/12/84 Lynn, MA 794-2356 
Jill Jones Bob Jones son Engineer 19/06/86 Lynn, MA 794-2356 
Mark Smith Ann Briggs spouse Programmer 09/15/83 Revere, MA 452-4729 
Mark Smith Ann Briggs spouse Analyst 06/06/86 Revere, MA 45204729 
Mark Smith Chloe Smith-Briggs daughter Programmer 09/15/83 Revere, MA 452-4729 
Mark Smith Chloe Smith-Briggs daughter Analyst 06/06/86 Revere, MA 452-4729 

Mark Smith Mark Briggs-Smith son Programmer 09/15/83 Revere, MA 452-4729 

Mark Smith Mark Briggs-Smith son Analyst 06/06/86 Revere, MA 452-4729 

dent}. Similarly, the set of values for the attributes of (Position-Title, Position-Date) 
is not connected in any way to the values of the attributes in {EMPLOYEE - Employee 
Name — Positions}. 

For a second example of an MVD, look at the SCHEDULE relation described 

in Chapter 6 and shown, with some slight modifications in Figure 7.3. Notice that a 

course is scheduled a number of times during the week, and on each such meeting 

the room in which it meets may be different (not a frequent occurrence but nonethe¬ 

less possible). Thus, the dependency between a course and a day is not simply func¬ 

tional but multivalued. Similarly, the dependency between a course and the room in 

which it meets is multivalued. 

These multivalued dependencies can be indicated as follows: 

Course —RoomDayTime 

Figure 7.3 The SCHEDULE relation. 

Prof Course Room Max-Enrollment Day Time 

Smith 353 A532 40 mon 1145 

Smith 353 A534 40 wed 1245 

Clark 355 H942 300 tue 115 

Clark 355 H940 300 thu 115 

Turner 456 B278 45 mon 845 

Turner 456 B279 45 wed 845 

Jamieson 459 Dill 45 tue 1015 

Jamieson 459 D110 45 thu 1015 
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However, a given course meets on a given day and time in but one room, i.e., 

there is a functional dependency: 

CourseDayTime —> Room 

Multivalued dependencies arise when a relation R having a nonatomic attribute 

is converted to a normalized form. For each X value in such a relation, there will be 

a set of Y values associated with it. This association between the X and Y values 

does not depend on the values of the other attributes in the relation. Suppose we have 

two tuples ti, t2 in relation R defined on relation scheme R with the same X value. 

We exchange the Y values of these tuples and call the tuples so obtained t3 and t4. 

Then tuples t3 and t4 must also be in R. 
In the SCHEDULE relation of Figure 7.3, there is a multivalued dependency 

between Course —*—> RoomDayTime. Thus, if we exchange the {Room, Day, Time} 
value in tuples tj and t2 with the same Course value (353) where 

t, = |Smith | 353 |A532 | 40 | mon | 1145 | 

t2 = |Smith j 353 |A534 j 40 | wed | 1245 | 

we get tuples t3 and t4 as follows: 

t3 = |Smith | 353 |A532 | 40 | mon | 1145 | 
t4 = jsmith | 353 |A534 | 40 j wed | 1245 | 

Tuples t3 and t4 are in the database. (In fact, in this example tuple t3 is the 

original tuple t, and tuple t4 is the original tuple t2!) 

The multivalued dependency Course —{Room, Day, Time} does not mean 

that the multivalued dependencies Course —»-> Room, Course —>—> Day, and Course 
—»-» Time will hold. Thus, corresponding to tuples t, and t2 above, if we exchange 

just the Room values we get t3' and t4' which are not in the database. 

t3' = |Smith | 353 |A534 | 40 | mon | 1145 | 

t4' - |Smith | 353 |A532 j 40 | wed | 1245 | 

Using Figure 7.2 we can verify that such an exchange of the Y values for a 

multivalued dependency X —»-»■ Y in two tuples t[ and t2 with the same X value will 

always give tuples t3 and t4 which are in the database, even if the relation has mul¬ 

tiple multivalued dependencies. However, tuples t3 and t4 need not be the original 

tuples ti and t2. Exchanging the values of the attributes {Dependent-Name, 
Dependent-Relationship} in any two tuples tj and t2 of Figure 7.2, gives us tuples t3 

and t4 as shown below. Tuples t3 and t4 are in the database, but these tuples are not 
the original ti and t2 tuples. 

t, = |J J|Bill J|spouse|J. Eng(05/12/841Lynn, MA|794-2356| 

t2 = |J j|Bob jjson |Eng 110/06/861Lynn, MA|794-2356| 

t3 = |J J|Bill J |spouse|Eng 110/06/861Lynn, MA|794-2356| 

t4 = |J J|Bob jjson jj. Eng jo5/12/84 j Lynn, MAj795-2356| 
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This property of multivalued dependency can be expressed formally by the def¬ 

inition given below. 

Definition: Given a relation scheme R, let X and Y be subsets of attributes of R (X and Y 

need not be distinct). Then the multivalued dependency X —»-»• Y holds in a 

relation R defined on R if given two tuples t, and t2 in R with t,(X) = t2(X); R 

contains two tuples t3 and t4 with the following characteristics: 

•t, t2, t3, t4 have the same X value, i.e., 

t,(X) = t2(X) = t3(X) = t4(X) 

•the Y values of tj and t3 are the same and the Y values of t2 and t4 are the 

same, i.e., 

t,(Y) = t3(Y) and t2(Y) = t4(Y) 

•the R — X — Y values of t, and t4 are the same and the R — X — Y values 

of t2 and t3 are the same, i.e., 

t,(R — X — Y) = t4(R - X - Y) 

t2(R - X - Y) = t3(R - X - Y) 

Let us examine the problems that are created as a result of multivalued depend¬ 

encies. Consider Figure 7.2 for the EMPLOYEE relation. It has two multivalued 

dependencies: 

Employee-Name Dependent-NameDependent-Relationship 

Employee—Name —» Position—TitlePosition—Date 

Suppose employee Jill Jones gets a promotion on 12/15/86 to the position of 

manager. This involves adding two tuples to the database, one for each of her two 

dependents, to correctly register her employment history. A change in the value of 

an FD in a relation involving an MVD requires the change to be reflected in all 

tuples corresponding to that entity. In the EMPLOYEE relation of Figure 7.2 a 

change of the home address of an employee would have to be reflected in all tuples 

pertaining to that employee. Thus, if Jill Jones moves to Boston and her home phone 

number changes to 368-4384, a change is required in not one tuple but six tuples 

(after the addition of the two tuples for an additional position). Deletion requires that 

more than one tuple be deleted. For example, in the SCHEDULE relation, if course 

355 is canceled, two tuples must be deleted from the table shown in Figure 7.3. 
Summarizing, note that in multivalued dependencies the requirement is that if 

there is a certain tuple in a relation, then for consistency the relation must have 

additional tuple(s) with similar values. Updates to the database affect these sets of 

tuples or entail the insertion of more than one tuple. Failure to perform these multiple 

updates leads to inconsistencies in the database. To avoid these multiple updates, it 

is preferable to replace a relation having undesirable MVDs with a number of more 

“desirable” relation schemes. We illustrate more desirable schemes in Figure 7.4 
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Figure 7.4 Replacing the EMPLOYEE relation with three relations. 

Employee-Name Dependent-Name Dependent-Relationship 

Jill Jones Bill Jones spouse 

Jill Jones Bob Jones son 

Mark Smith Ann Briggs spouse 

Mark Smith Chloe Smith-Briggs daughter 

Mark Smith Mark Briggs-Smith son 

Employee- 

Name 

Position- 

Title 

Position- 

Date 

Jill Jones J. Engineer 05/12/84 

Jill Jones Engineer 10/06/86 

Mark Smith Programmer 09/15/83 

Mark Smith Analyst 06/06/86 

Employee- 

Name 

Home- 

City 

Home- 

Phone# 

Jill Jones 

Mark Smith 

Lynn, MA 

Revere, MA 

794-2356 

452-4729 

for the EMPLOYEE relation of Figure 1.2.' Such a scheme avoids the necessity of 
multiple storage of the same information. 

7.3.1 MVD and Normalization 

In the normalization approach of a relation scheme with deletion, insertion, and up¬ 

date anomalies we have considered only functional dependencies so far. When the 

relation scheme to be normalized exhibits multivalued dependencies, we have to en¬ 

sure that the resulting relation schemes do not exhibit any of these undesirable dele¬ 

tion, insertion, and update anomalies. A normal form called fourth normal form has 

been defined for relation schemes that have FDs as well as MVDs. The fourth normal 

form imposes constraints on the type of multivalued dependencies allowed in the 
relation scheme and is more restrictive than the BCNF. 

The normalization of a relation scheme with MVDs requires, as in the case of 
normalization of relations with only FDs, that the decomposed relation schemes are 

both lossless and dependency preserving. The following property of the MVD will 
be used in the normalization approach. 

'Recall our discussions on separating a repeating group from the representation of an entity set and replacing each such ,roun 
by an .dent.fy.ng relationsh.p and a weak entity. These were then represented by a relation conta,nine the kL of thT^f 
entity along with the attributes of the weak entity (See Chapter 2). 8 k y th trong 
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Property of MVD 

The following theorem for multivalued dependency is from Fagin (Fagi 77). We 

simply state it here. For the proof, see the bibliographic notes at the end of the 

chapter for the reference. 

Theorem 7.1: If there is a multivalued dependency X —»-» Y in a relation R, it also has 

an MVD X —»-»R — XY and R can be decomposed losslessly into two relations R,(X,Y) 

and R2(X,Z) where Z = R — XY. 

As a consequence of the above, a relation scheme with an MVD must be able 

to be decomposed losslessly. Consider a relation scheme R. Let X, Y, Z be subsets 

of R, not necessarily disjoint, such that Z = R — XY. Let R be a relation on the 

relation scheme R. Relation R satisfies the MVD X —Y if and only if 

R = 1tR1(XY)(R) 1X1 'nR2(XZ)(R) 

In other words, R decomposes losslessly into the relation scheme Rj and R2. 

Definition: A trivial multivalued dependency is one that is satisfied by all relations R on a 

relation scheme R with XY C R. Thus, a MVD X —» Y is trivial if Y C X or 

XY = R. Obviously if Y = cj>, then the MVD X -»-> Y is trivial. 

Example 7.6 (a) In the normalized EMPLOYEE relation of Figure 7.2 with the following 

dependencies: 

Employee-Name —» Home-CityHome—Phone#, 

Employee-Name —>-» Dependent-NameDependent-Relationship, 

Employee-Name —»-» Position-TitlePosition-Date. 

the following MVDs are also satisfied: 

Employee-Name —»-»• Home-CityHome-Phone#Dependent-Name 

Dependent-Relationship, 

Employee-Name —>—> Home-CityHome-Phone# Position-Title 

Position-Date. 

(b) In Figure 7.4 the following MVDs are trivial: 

Employee-Name —>—» Dependent-NameDependent-Relationship 

Employee-Name —Position-TitlePosition-Date ■ 

7.3.2 Axioms for Functional and Multivalued Dependencies 

To design a relational database, given a relation scheme R with functional and mul¬ 

tivalued dependencies, we need a set of rules or axioms that will allow us to deter- 
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mine all the dependencies implied by a given set of known dependencies. We need 

these axioms to verify whether a given relation scheme is legal (from the point of 

view of being lossless and dependency preserving) under a set of functional and 

multivalued dependencies. The first three of these axioms are the same as those we 

discussed for functional dependencies. As before, W, X, Y, Z are subsets of R. 

FI: Reflexivity: X —> X. 

F2: Augmentation: (X —> Y and VCZ)(= (XZ Y and XZ VY) 

F4: Additivity: (X —»• Y and X -» Z) f= X-> YZ. 

Ml: Replication: X —*■ Y j= X —»-» Y, 

The replication axiom leads to the following versions of axioms FI through F3 

for multivalued dependencies: 

M2: Reflexivity: X —>-> X. 

M3: Augmentation: X -*-> Y f= XZ —Y. If (X -*-*■ Y and V C W) then 

WX -►* VY. 

M4: Additivity or Union: (X Y and X —»-* Z) (= X —»-*■ YZ. 

M5: Complementation: X —Y j= X —*-> ( R - X - Y). 

M6: Transitivity: (X -+-> Y and Y —»-* Z) (= X —»-»• (Z-Y). 

Note that unlike the transitivity rule for functional dependency, if X Y and 

Y ->-» Z, it does not always imply that X —>-» Z (i.e., X -*-+ Z could be false). 

M7: Coalescence: Given that W C Y and Y D Z = <j>, and if X —»-» Y and Z —> W, 

then X —► W. 

In addition to the above axioms, which have been shown to be sound and com¬ 

plete (refer to the bibliographic notes for reference to the formal proofs), the follow¬ 
ing rules are useful. 

M8: Decomposition or Projectivity for the MVD: If X Y and X Z, then 

x —»-» (Y n Z), X-*-> (Y-Z), and X —»-> (Z-Y). 

The decomposition rule for functional dependencies is much stronger than the 

corresponding one for the MVD; in the former, if X —» Y, then X -> A, for A, e Y. 

However, if X -»-> Y, we can only say that X -»-»• A, if we can find a Z such that 

X >Z and Y - Z = A or Z - Y = A or Y D Z = A. 

M9: Mixed (Pseudo)Transitivity: If X -»-> Y and XY Z then X -»-> (Z - Y). 

7.3.3 Closure under MVDs 

Given D, a set of FDs and MVDs, we can find a set of all functional and multivalued 

dependencies that can be derived from D. This set is the closure of D; to be consis¬ 

tent with the nomenclature for indicating the closure of a set of FDs it is indicated 

by D . Computing the closure of D, like computing the closure of a set of FDs is 

time consuming. However, instead of computing D + , we can use axioms Ml 
through M9 to ascertain if a given MVD is implied by a set of FDs and MVDs. 
With this goal in mind, we develop a method to determine if D (= X > > Y 
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The Dependency Basis 

Let T be a collection of sets closed under union, difference, and intersection. Given 

t] and t2 are in T and ti0t2 is also in T, then T is said to be closed (with respect to 

0). Here 0 is one of the union, difference, or intersection operations for sets. Each 

member of T is made up of a subcollection S of nonempty, pairwise disjoint sets. 
The collection S is called the basis of T. 

Given U a set of attributes X C U and a set of dependencies D, we want to find 

all subsets of U — X that are dependent on X by some MVD in D + . The comple¬ 

mentation rule (M5), the union rule (M4), and the decomposition rule (M8) for 

multivalued dependencies imply that if the left-hand side of a set of MVDs is the 

same, then right-hand side is closed under Boolean operation (i.e., for MVDs of the 

form X —Yj, 1 < i < n, the YjS are closed under Boolean operation). 

Algorithm 

7.2 Computing the Dependency Basis of X 

Input: U, a set of attributes; X C U and D, a set of FDs and MVDs. 

Output: The dependency basis {Yi, Y2, . . . Y„} of X under D. 

1. Convert each FD W —» A to an MVD W —»-* A using rule Ml. 

2. (* Initialize the set S to the null set *) S = <}>; 

3. (* Apply rules M3 and M5 *) 
For each MVD W —>-> Z in D such that WCX add Z — X and U — Z — 

X to the set S as per rules M3 and M5. 

4. (* Now apply the decomposition rule M8 to each pair of sets of attributes 

in set S such that they are not disjoint *) 

For each pair of sets of attributes Yj and Y2 in S such that Yi fl Y2 =£ <j>: 

replace Yj and Y2by the nonempty sets Yj fl Y2, Y2 - Y2, and Y2 - Yj 

(* i.e., discard the sets Yt - Y2 and Y2 - Yl if they are empty *). 

5. (* Now look for MVD W -»-» Z in D and Y in S such that Y fl W = <}> 

but Y fl Z =£ and Y — Z =£ <}> and for such an MVD replace Y by Y — Z 

and Y n Z *) 

For each MVD W —*-» Z € D and (Y € S) 
and (Y D W = 4>) 

and (Y fl Z =£ <J>) 

and (Y — Z =£ <J>) 

replace Y in S by Y Pi Z and Y — Z; 

6. (* S now contains the dependency basis of X *) 

Output S{Y,, Y2, . . . , Y„}, the dependency basis of X under D. 
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Thus, given X C U and a set D of dependencies, we can derive a set Yj, 

1 < i < n, such that 

• u - X = Y,Y2. . . Y„, 

• Yj,Y2, . . . Y„ are pairwise disjoint, i.e., Yj D Yj = <J> for i + j, and 

• For any MVD X —Z in D + , Z is the union of some of the YjS.' 

Definition: The set {Y,, Y2, . . . Y„}, with the properties given above is referred to as the 

dependency basis of X with respect to D and is indicated by the nomenclature 
DEP(X). 

An MVD X —Z is in D+ if and only if Z is a union of some of the sets 

from DEP(X), the dependency basis of X relative to the set D of FDs and MVDs. It 

follows that for each set Yj i DEP(X), X —Yj is in D + . 

The MVD X —»-» Yj where Yj € DEP(X) is called a simple MVD. 

We see that DEP(X), the dependency basis of X, serves a similar function in 

determining if any MVD X —»-»• Y is implied by a set D of FDs and MVDs, as X + 

was used to determine if any FD X —» Y was implied by a set of FDs F. 

Algorithm 7.2 computes the dependency basis of X. It simply converts each FD 

into an MVD and then applies the rules of the MVD to decompose the MVDs into 

simpler MVDs. Careful implementation of the algorithm can be shown to take time 

proportional to n3m to complete, where n is the number of attributes in U and m is 
the number of dependencies in D. 

The following example illustrates the use of Algorithm 7.2 

Example 7.7 Consider a database to store student information that contains the following 

attributes: students’ names (S), their majors (M), the department they are 

registered in (Sd), their advisers’ name (A), the courses they are taking (C), 

the departments responsible for the course (Cd), the final grades of the stu¬ 

dents in a course (G), the teacher of the course (P), the department of the 

teacher of the course (Pd), and the room, day, and time (RDT) where the 

course is taught. Assume that the students’ names and the advisers’ names 

are unique. The database must satisfy the following set H of functional and 
multivalued dependencies: 

S —» MA 

M Sd 

A -► Sd 

c -* CjP 

p -» pd 
RTD -> C 

TPD -» R 

TSD -* R 

SC —> G 

C RTD 

C -»-> SMG 
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We want to compute DEPfC) using Algorithm 7.2. The first step will con¬ 

vert all FDs into MVDs. 

Step 3 will give us the set S with the following sets of attributes: 

{<CdP}, {RTD}, {SMG}, {SMASjPJtTDG}, {SMASdPjG}, 

{ASjCjPPjRTD}. 

Step 4 will split the sets in S to give the following sets in S: 

{CdP}, {RTD}, {SMG}, {ASdPd}. 

Step 5 will complete the intersections and splitting to give S with the 

following sets, DEP(C), the dependency basis of C under the above set of 

FDs and MVDs: 

{CdP}, {RTD}, {SMG}, {5,}, {A}, {Pd} 

The dependency basis allows us to conclude that the MVDs C —»-»• 

SSjAMG, C PPdCd, etc., are in H + , since the right-hand side of each 

MVD is a union of sets from DEPfC). ■ 

7.3.4 Fourth Normal Form 

A generalization of the Boyce Codd normal form to relation schemes which includes 

the multivalued dependencies is called fourth normal form and is defined as follows: 

Definition: Given a relation scheme R such that the set D of FDs and MVDs are satisfied, 

consider a set of attributes X and Y where X C R, Y C R. The relation scheme 

R is in fourth normal form (4NF) if for all multivalued dependencies of the 

form X -»->Y € D+, either X Y is a trivial MVD or X is a superkey of R. 
A database scheme is in 4NF if all relation schemes included in the database 

scheme are in 4NF. 

If a relation scheme R with the set D of FDs and MVDs is in fourth normal 

form, it is also in BCNF. If this were not so, R would satisfy a functional depen¬ 

dency not involving the superkey as a determinant of the form X —» Y. However, by 

the rule Ml X -» Y \= X -*-»Y. Again X here is not a superkey, but this contradicts 

the assertion that R is in fourth normal form. 

7.3.5 Lossless Join Decomposition into Fourth Normal Form 

Given a relation scheme that is not in fourth normal form, we would like to decom¬ 

pose it into a set of relations that are in fourth normal form and at the same time we 

want to preserve all the dependencies. Furthermore, we want the decomposition to 

be lossless. The latter requirement in the decomposition can be obtained using the 
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property of a MVD given in Section 7.3.1 and restated in a different form in the next 

paragraph. However, the first requirement, that of dependency preservation, is not as 

simple to satisfy (as in the case of having only FDs) when we have both functional 

and multivalued dependencies. 
The following property of a MVD can be used to perform a lossless decompo¬ 

sition of a relation R with both functional and multivalued dependencies. We are 

given a relation scheme R where D is a set of FDs and MVDs on the attributes of 

R. If R is decomposed into R! and R2, the decomposition is a lossless join decom¬ 

position if and only if D+ contains one of the following MVDs: 

(Ri n R2) —>-> Ri or (R! R2) —»->• R2. 

Recall that the requirement of a lossless join decomposition, when only FDs are 

involved, was (R! n R2) —» Rt or (Rj H R2) —» R2. 
The similarity between the Boyce Codd normal form and the fourth normal form 

extends to the decomposition algorithm of a relation scheme not in fourth normal 

form into a set of relations that are in fourth normal form. The adaptation of the 

decomposition algorithm for relation schemes with MVDs is given in Algorithm 7.3 

Let us return to the normalized EMPLOYEE relation of Figure 7.2. It has the 

following set of FDs and MVDs: {Employee-Name —*-> Dependent-NameDependent 

Relationship, Employee-Name —»-»• Position-TitlePosition-Date, Employee-Name 

—» Home-CityHome-Phone}. Is this relation in fourth normal form? It will be if the 

attribute Employee-Name is a superkey of the EMPLOYEE relation. We have used 

relations where the name, for convenience, was taken as an unique identifier for a 

person, the relation about student and faculty members being other such examples. 

If Employee-Name were the key of the EMPLOYEE relation, then according to the 

Algorithm 

7.3 Lossless Join Decomposition into Fourth Normal Form 

Input: A relation scheme R not in 4NF and a set of FDs and MVDs D. 

Output: Decomposition of R into a set S of relation schemes Rj, R;C S for 1 < i < n 

such that each Rj is in 4NF and the decomposition is lossless. 

i : = 0; 
S : = Ro (* initialize S to R0 = R *) 

for each nontrivial MVD (X Y) that holds on some scheme Rj in S such 

that X is not a superkey of Rj (* i.e., X -> Rj is not in D+; we can further 
assume that X (1 Y = <{>*) do 

begin 

i : = i + 1; 

Rj : ~ Rj Y 
(* remove the attributes Y from Rj *) 

S : = S U Rj{X, Y}; 

(* form relation Rj{X, Y} and add it to S *) 
end 
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Figure 7.5 

definition of fourth normal form, the EMPLOYEE relation is in fourth normal form. 

However, recall the definitions for candidate key and superkey. A superkey of a 

relation R defined on a relation scheme R was defined as being a set of attributes X 

C R such that, for two tuples tj and t2 in R, t|(X) ± t2(X). Thus, the values of the 

set of attributes in X uniquely identify a tuple in R. A key is a set K such that no 

proper subset K' of K can uniquely identify a tuple of R, i.e., t,(K') may or may 

not be equal to t2(K'). 

With the above definitions of superkey and key we see that the attribute 

Employee-Name is not a superkey of the relation EMPLOYEE and hence the relation 

is not in fourth normal form. As a matter of fact the candidate key of the EM¬ 

PLOYEE relation is the entire relation! Note that even though Employee-Name is 

not a candidate key of the relation, it still uniquely identifies an instance of the entity 

EMPLOYEE. All characteristics of an instance of the entity are found by locating 

all tuples with this value for the Employee-Name attribute. 

We noted the disadvantage in the form of anomalies in insertions, deletions, and 

updates for the EMPLOYEE relation as given in Figure 7.2. We can use Algorithm 

7.3 to decompose the EMPLOYEE relation losslessly into a set of fourth normal 

form relations. The resulting relations are given in Figure 7.5. (Note that these rela- 

Decomposition of the EMPLOYEE relation. 

Employee-Name Dependent—Name Dependent-Relationship 

Jill Jones Bill Jones spouse 

Jill Jones Bob Jones son 

Mark Smith Ann Briggs spouse 

Mark Smith Chloe Smith-Briggs daughter 

Mark Smith Mark Briggs-Smith son 

(a) 

Employee-Name Position-Title Position-Date 

Jill Jones J. Engineer 05/12/84 

Jill Jones Engineer 10/06/86 

Mark Smith Programmer 09/15/86 

Mark Smith Analyst 06/06/86 

(b) 

Employee-Name Home-City Home-Phone# 

Jill Jones 

Mark Smith 

Lynn, MA 

Revere, MA 

794-2356 

452-4729 

(c) 
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tions are the same as the ones shown in Figure 7.4.) The relations of Figure 7.5a 

and b have the trivial multivalued dependency X —>-* Y with R = XY. In addition, 

they are all key relations. A nontrivial MVD can be said to exist only if the relation 

has at least one attribute in addition to the two sets of attributes involved in the 

MVD. 

7.3.6 Enforceability of Dependencies in the Fourth Normal Form 

The fourth normal form decomposition algorithm produces a lossless relation scheme; 

however, it may not preserve all the dependencies in the original non-4NF relation 

scheme. In Example 7.8, we use one MVD at a time to decompose a non-4NF 

relation scheme into two relation schemes. Then we determine if each of these 

schemes is in 4NF. The following properties are used to find the dependencies that 
apply to the decomposed schemes. 

Given R and the set of FDs and MVDs D, let Rj be a projection of R, i.e., 

Ri C R. The projection of D on Rj is derived as follows: 

For each FD X —» Y such that D (= X —» Y, and if X C Rt, then X^(Yfl 
Ri) holds in Rj. 

For each MVD X —Y such that D f= X —>->■ Y, and if X C Rj, then X -*-* 
(Y D Rx) holds in R^ 

Example 7.8 illustrates this method. 

Example 7.8 Consider R(A, B, C, D, E, F, G) with the set H of FDs and MVDs given 
by H{A -»-» B, B G, B -»-» EF, CD E}. 

R is not in 4NF since for the nontrivial MVD A ->-> B, A is not a 

superkey of R. We can take this MVD and decompose R into R,(A, B) and 

R(A, C, D, E, F, G). R! is in 4NF; however, the reduced relation R is not 
in 4NF. 

Now the MVDs A —»-» B and B ->-> G give by axiom M6 A 

G — B, which is equivalent to A > > G. Using this MVD, we decompose 

R into RjfA, G) and R(A, C, D, E, F). R2 is in 4NF; however, the reduced 
relation R is still not in 4NF. 

We now take the MVD CD —»-» E (after converting the FD into an 
MVD) and decompose R into R3(C, D, E) and R(A, C, D, F). 

The MVDs A —»-» B, B —»-» EF by axiom M6 give A —»->• EF — B, 

which reduces to A > > EF and when restricted to the current relation R 
gives A -»-» F. Decomposing R now gives R4(A, F) and R(A, C, D). 

R(A, C, D) is in 4NF since A —»-> B (= A ->-> CDEFG and its restric¬ 
tion to current relation R gives A —>-» CD. 

However, we notice that the dependency B ->-» G is not preserved. ■ 

Example 7.8 illustrates that the 4NF decomposition is not dependency preserv¬ 

ing. Thus if lossless as well as dependency preserving decomposition is required, we 

may have to settle for simple 3NF relation schemes, unless the BCNF decomposition 

is lossless as well as dependency preserving. An approach that could be used to 
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derive a dependency preserving decomposition is to eliminate each redundant depen¬ 

dency in D2. This process can be repeated until only nonredundant dependencies 

remain in D. However, the order in which the dependencies are checked for redun¬ 

dancy determines the resulting nonredundant cover of D. In this process, the MVDs 

should be eliminated before trying to eliminate FDs. The intuitive reason for this is 

that the FDs convey more semantics about the data than the MVDs. 

Dependency preserving decomposition involving D, a set of FDs and MVDs, 

requires the derivation of the so-called 4NF cover of D. No efficient algorithms exist 

to date to compute such a cover. The algorithm to decompose a relation into a loss¬ 

less and dependency-preserving 4NF relation is beyond the scope of this text. Inter¬ 

ested readers should consult the references in the bibliographic notes. Attempts have 

been made to find a synthesis algorithm to construct a relation scheme from a set of 

FDs and MVDs. Here again, no satisfactory algorithm has emerged. 

7.4 Normalization Using Join Dependency: Fifth 

Normal Form 

A criterion of good database design is to reduce the data redundancy as much as 

possible. One way of doing this in a relational database design is to decompose one 

relation into multiple relations. However, the decomposition should be lossless and 

should maintain the dependencies of the original scheme. A relational database de¬ 

sign is, as such, a compromise between the universal relation and a set of relations 

with desirable properties. The relational database design thus tries to find relations 

satisfying as high a normal form as possible. For instance, 3NF is preferable to 2NF, 

BCNF is preferable to 3NF, and so on. 

However, recent research in relational database design theory has discovered 

higher and higher, hence more desirable normal forms. Fifth normal form (5NF) is 

a case in point. It is related to join dependency, which is the term used to indicate 

the property of a relation scheme that cannot be decomposed losslessly into two 

simpler relation schemes, but can be decomposed losslessly into three or more sim¬ 

pler relation schemes. 
To understand join dependency, let us use the following dependencies from the 

database for an enterprise involved in developing computing products. It employs a 

number of workers and has a variety of projects. 

Project Expertise 

(i.e., expertise needed for a given project) 

Employee —Expertise 

(i.e., expertise of the employee) 

Employee —Project 
(i.e., preferences of the employees to match their expertise) 

Elimination of redundant dependencies doesn’t guarantee dependency-preserving decomposition, in general. However, with 
conflict-free MVDs, the lossless decomposition is also dependency preserving. Conflict-free MVD sets are equivalent to 

acyclic join dependencies (Lien 85, Scio 81). 



362 Chapter 7 Synthesis Approach and Higher Order Normal Form 

Figure 7.6 PROJECT_ASSIGNMENT relation. 

Employee Project Expertise 

Smith Query Systems Database Systems 

Smith File systems Operating Systems 

Lalonde Database Machine Computer Architecture 

Lalonde Database Machine VLSI Technology 

Evan Database Machine VLSI Technology 

Evan Database Machine Computer Architecture 

Drew SQL+ + Relational Calculus 

Drew QUEL++ Relational Calculus 

Shah SQL+ + Relational Calculus 

Shah QUEL + ; + Relational Calculus 

These dependencies are the translation of the enterprise’s need that the employ¬ 

ees involved in a given project must have certain expertise. Because of the expertise 

of employees, they want to be involved in a given set of projects whose requirements 

match their interests. Let us look at the relation scheme PROJECT_ASSIGN- 

MENT(Employee, Project, Expertise). A relation defined on this scheme is given in 

Figure 7.6. The relation scheme stores the employee’s assignments based on the 

needs of the project, as well as the qualifications and preferences of the employee 

who can contribute to the project. A project may demand more than one type of 

expertise, and an employee may be an expert in more than one area. The project 

Query Systems needs only the expertise of Database Systems, while a project Data¬ 

base Machine needs the expertise of VLSI Technology as well as Computer Archi¬ 

tecture. Further expertise of an employee, not needed for any project to which he or 

she is assigned, is not shown in this relation. Figure 7.6 illustrates the sample con¬ 

tents of a database defined on this relation scheme. Employees Lalonde and Evan are 

assigned to the project Database Machine; Employees Drew and Shah are assigned 

to projects SQL+ + and QUEL+ +. The relation exhibits the following nontrivial 

multivalued dependencies: Project Expertise and Project —Employee. Note 

that the MVD Employee —*->Project and, hence, Employee > Expertise are not 

exhibited in this relation. This can be verified by exchanging the Project value for 

Smith, whereby we find that the resulting tuples are not in the database. 

The relation PROJECT-ASS IGNMENTjLmp/oyec, Project, Expertise} having 

the MVD Project Expertise (and by axiom M5 Project —*-» Employee) can be 

decomposed losslessly into relations PROJECT_REQUIREMENT{Prq/ect, Exper¬ 

tise} and PROJECT_REFERENCE{£mp/oyce, Project}. Figure 7.7 shows the 

decomposition of the relation of Figure 7.6. The join of PROJECT-REQUIREMENT 

and PROJECT-PREFERENCE gives the same data as in Figure 7.6. 

Notice from Figure 7.7b that the relation PROJECT-PREFERENCE exhibits the 

(trivial) multivalued dependency Employee Project. Such a multivalued depen¬ 

dency that is not exhibited in a relation but becomes evident in a projection of the 

relation is called an embedded multivalued dependency. Unlike multivalued de¬ 

pendencies, functional dependencies are never embedded. A functional dependency 
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Figure 7.7 Lossless decomposition of relation of Figure 7.6: (a) PROJECT_REQUIREMENT and 
(b) PROJECT PREFERENCE. 

Project Expertise 

Query Systems 

File Systems 

Database Machine 

Database Machine 

SQL + + 

QUEL ++ 

Database Systems 

Operating Systems 

Computer Architecture 

VLSI Technology 

Relational Calculus 

Relational Calculus 

Employee Project 

Smith 

Smith 

Evan 

Lalonde 

Drew 

Shah 

Drew 

Shah 

Query Systems 

File systems 

Database Machine 

Database Machine 

SQL+ + 

QUEL + + 

SQL+ + 

QUEL++ 

(b) 

X —» Y that is evident in a projection of relation R is also evident in the relation R. 

Consider a relation scheme R and let X, Y, and Z be sets of attributes of R. 
Here X, Y, Z need not be disjoint. A relation R over the relation scheme R satisfies 

the embedded multivalued dependency X —^ Y|Z (i.e., R satisfies X —»-» Y and 

hence, by axiom M5, X —>~>Z), if the projection of the relation R over X, Y, Z 

(i.e., 7rXUYuz(R)) satisfies the MVDs X Y and X —»-»Z. 

Now consider the relation scheme NEW_PROJECT_ASSIGNMENT. Perhaps 

after some modifications in the enterprise involved, there has been a turnover in 

employees and the expertise of new employees requires some changes in the assign¬ 

ment of projects. Figure 7.8 gives a sample table for a relation defined on the scheme 

NEW_PROJECT_ASSIGNMENT. As the figure indicates, we are assigning more 

than one employee to a given project. Each employee is assigned a specific role in 

this project, requiring knowledge that lies within her or his field of expertise. Thus, 

project Work Station, which requires expertise in User Interface, Artificial Intelli¬ 

gence, VLSI Technology, and Operating Systems, can be carried out by Brent, 

Figure 7.8 NEW_PROJECT_ASSIGNMENT relation. 

Employee Project Expertise 

Brent Work Station User Interface 

Brent Work Station Artificial Intelligence 

Mann Work Station VLSI Technology 

Smith Work Station Operating Systems 

King SQL 2 Relational Calculus 

Ito SQL 2 Relational Algebra 

Ito QBE+ + Relational Calculus 

Smith Query Systems Database Systems 

Smith File Systems Operating Systems 
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Figure 7.9 Decomposition of relation of Figure 7.8. 

Project Expertise 

Work Station 

Work Station 

Work Station 

Work Station 

SQL 2 

SQL 2 

QBE + + 

Query Systems 

File Systems 

User interface 

Artificial Intelligence 

VLSI Technology 

Operating Systems 

Relational Calculus 

Relational Algebra 

Relational Calculus 

'Database Systems 

Operating Systems 

(a) 

Employee Project 

Brent Work Station 

Mann Work Station 

King SQL 2 

Ito SQL 2 

Ito QBE + + 

Smith File Systems 

Smith Query Systems 

Smith Work Station 

Employee Expertise 

Brent User Interface 

Brent Artificial Intelligence 

Mann VLSI Technology 

King Relational Calculus 

Ito Relational Algebra 

Ito Relational Calculus 

Smith Database Systems 

Smith Operating Systems 

(b) (c) 

Mann, and Smith combined. Brent is assigned the User Interface and Artificial Intel¬ 

ligence related role, Mann is assigned the VLSI Technology related role, and Smith 

is assigned the Operating Systems role. This flexibility was not exhibited in the data 

of Figure 7.6. 

The relation of Figure 7.8 does not show any functional or multivalued depend¬ 

encies; it is an all-key relation and therefore in fourth normal form. Unlike the rela¬ 

tion PROJECT-ASSIGNMENT, the relation NEW_PROJECT_ASSIGNMENT 
cannot be decomposed losslessly into two relations. However, it can be decomposed 

losslessly into three relations. This decomposition is shown in Figure 7.9. Two of 

these relations, when joined, create a relation that contains extraneous tuples; thus 

the corresponding decomposition is not lossless. These superfluous tuples are re¬ 

moved when the resulting relation is joined with the third relation. Note that the 

MVDs, similar to those exhibited in Figure 7.6, are embedded in this example. 

7.4.1 Join Dependencies 

So far we have focused on the decomposition of a relation scheme with undesirable 

properties into two relation schemes (at each step of a multistep process) such that 
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the decomposition is lossless. A join of these decomposed relation schemes will give 

the original scheme and, hence, the data. However, as we saw in the previous section, 

although it may not be possible to find a lossless decomposition of a relation scheme 

into two relation schemes, the same relation scheme can be decomposed losslessly 

into three relation schemes. This property is referred to as the join dependency (JD). 

Definition: Given a relation scheme R, consider the following set of its projections: {Ri, R2, 

. . . RJ. A relation R(R) satisfies the join dependency * *[Rj, R2, • • • R„L if 
and only if the join of the projection of R on Rh 1 < i < n, is equal to R. 

R = itr1(R) tX! ttr2(R) tX . . . tXirRn(R) 

In other words, join dependency is the assertion that the decomposition of R 

onto Ri( . . . , R„ is a lossless decomposition. A join dependency is trivial if 

one of the projections of R is R itself. 

A necessary condition for a relation scheme R to satisfy a join dependency *[Rj, 
R2, . . . Rn] is that R = R,UR2U. . .URn. 

The relation scheme PROJECT_ASSIGNMENT satisfies the join dependency 

*[PROJECT_REQUIREMENT, PROJECT_PREFERENCE], since the join of 

PROJECT_REQUIREMENT and PROJECT_PREFERENCE gives the relation 

PROJECT_ASSIGNMENT losslessly. However, the relation NEW_PROJECT_ 

ASSIGNMENT does not satisfy any of the following join dependencies: 

* [(Project,Expertise), (Employee, Expertise)] 
* [(Project,Expertise),(Employee, Project)] 
*[(Employee, Expertise),(Employee, Project)] 

Relation NEW_PROJECT_ASSIGNMENT, however, satisfies the join depen¬ 

dency: 

^((Project,Expertise), (Employee,Expertise), (Employee, Project)] 

Since the relation scheme NEW_PROJECT_ASSIGNMENT does not satisfy 

any nontrivial MVD, then by Fagin’s theorem (Theorem 7.1) it cannot be decom¬ 

posed losslessly into two relations. 
It is worthwhile pointing out that every MVD is equivalent to a join dependency; 

however, the converse is not true, i.e., there are join dependencies that are not equiv¬ 

alent to any nontrivial MVDs. The first part of this statement can be confirmed as 

follows: The relation R(R) satisfies the MVD X -»-> Y if and only if the decompo¬ 

sition of R into XY and R - Y is lossless. This is equivalent to saying that R(R) 
satisfies the JD *[XY, R - Y]. Conversely, R satisfies the JD *[R1? R2] if R, H 
R2^-* r,? or Rj n R2^-^ R2. However, not all JDs are equivalent to MVD, as 

seen in Figures 7.8 and 7.9. 
A join dependency on the relation scheme R, in addition to those for MVDs, 

could also be a result of key dependencies. This can occur when the decomposition 

of a relation involves a superkey and the relation can be reconstructed by joins, every 

join involving a superkey. Thus, if R(Xi, X2, . . . , Xm) and if XjS are the super¬ 

keys of R, then the join dependency *[Xj, X2, . . . , Xm], is due to the keys of R. 
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Join dependency expresses the fact that a set of relationships is independent, just 

as MVD indicates that a pair of relationships is independent. These independent 

relationships can be separated in different relations and their join will be lossless. 

The join dependency in a relation scheme gives rise to another normal form, 

project-join normal form, discussed in the following section. 

7.4.2 Project-Join Normal Form 

Consider a relation scheme R(U) and a set of FDs {Sj —»• U, S2 —»• U, . . . Sp —> 

U}. We name these FDs key dependencies or KDs since the determinant Sj in each 

FD is a superkey. The JD membership algorithm given below, determines if a JD is 

implied by a set of KDs. The algorithm terminates successfully if and only if the 

KDs JD. 
Example 7.9 determines the JDs implied by a given set of KDs. 

Example 7.9 Let R(ABCDE) with the FDs F = {A -* BCDE, C ABDE and D -* 

ABCE}. Let R satisfy the join dependencies *[ABE, CD, ABCD], The FDs 

are KDs and we see that for the superkey (key) A, A C ABE D ABCD. 

We replace the set {ABE, CD, ABCD} with the set {ABCDE, CD}. Again 

we find that for the superkey (key) C, C C ABCDE fl CD. We replace the 

set {ABCDE, CD} with the set {ABCDE}. Since this is the set of attributes 

in R we have shown that KD |= JD. Similarly, we can show the KD implies 
the following JD: *[ABC,BCD, CDE], ■ 

We can now define project-join normal form. 

Definition: Consider a relation scheme R and a set D of dependencies (functional, 

multivalued, and join). The relation R is in project-join normal form (PJ/NF) 
with respect to D if for every join dependency *[Rj, R2, . . . , R„] that is 

applicable to R and is implied by D, either of the following holds: the join 

dependency is trivial, or every Rj is a superkey of R. A database is in project- 

join normal form if all relation schemes are in project-join normal form. 

Project-join normal form is also referred to as fifth normal form (5NF) or as 
PJ/NF in the database literature. 

Every fifth normal form relation scheme is also in fourth normal form and, 
hence, in BCNF and consequently in 3NF. 

If a relation is in project-join normal form, then every functional dependency is 

determined by a key. Every multivalued dependency is also determined by a key. 

Furthermore, every JD is determined by one or more candidate keys. As a result, 

since all FDs, MVDs, and JDs are implied by keys, all that must be specified is the 

relation scheme and the set of keys. A database having all relations in PJ/NF and 
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Algorithm 

7.4 JD Membership Algorithm 

Input: JD[X„ X2, X3, . . . Xq] and 

KD{S, —> U, S2^ U, . . . Sp-^ U} 

Output: Success or failure. Success indicates KD |= JD. 

H = {Xj, X2, X3, . . . Xq} (* initialize set H to be the JD 

to be checked *) 

change : = true 

while (change or number of members q in H > 1 ) do 
begin 

if Si C Xj H Xk for 1 < i < p and Xj and Xk € H and j + k 

then begin 

delete Xj and Xk from H 
insert Xj U Xk into H 
decrease q by 1 

else change : = false 
end 

if U € H 
then KD f= JD is proven successfully 

else KD [= JD is not proven 

supporting the concept of key need no other consistency support mechanism, if there 

are no interrelational dependencies. However, when we convert a relation that is not 

in PJ/NF into a set of relations in PJ/NF, we could introduce interrelational depend¬ 

encies. 
Our example relation schemes PROJECT-ASSIGNMENT and NEW_ 

PROJECT-ASSIGNMENT were not in fifth normal form, since each of them had 

nontrivial join dependencies. Their decompositions (respectively into {PROJECT- 

REQUIREMENT, PROJECT-PREFERENCE, and {(Project, Expertise), (Em¬ 

ployee, Expertise), (Employee, Project)}) are in fifth normal form nonetheless. 
Let us return to the NEW_PROJECT_ASSIGNMENT relation scheme. Here, 

we have three independent relationships: 

Project —»-» Expertise 

Employee —*-»■ Expertise 

Employee -*-> Project 

There are other MVD relationships, for instance Project —>-»• Employee, that 

can be derived from the MVD Employee —»-*■ Project. 
It is not possible to insert, without null values, a project and the expertise 

needed for it unless we know the employees who could be assigned to the project. 

Similarly, it is not possible to record all types of expertise of an employee unless 
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each type is called for in a project where that employee is required to use such 

expertise. The decomposition of the relation into {(Project, Expertise), (Employee, 

Expertise), (Employee, Project)} allows these independent relationships to be sepa¬ 

rated. It is then possible to independently maintain each separate relation. However, 

in the relation NEW_PROJECT_ASSIGNMENT, it is necessary to insert additional 

tuples when a tuple is inserted and the deletion of a tuple requires the deletion of 

other tuples. 
Consider the relation STUDENT_INFO(7Va/ne, Address, Department, Phone#) 

with the FDs {Name —> Address, Name —> Department, Name —> Phone#). The 

decomposition of STUDENT_INFO into the following relation is lossless and depen¬ 

dency preserving: (Name, Address), (Name, Department), (Name, Phone#). The 

original relation is in PJ/NF. However, since the only key of the original relation is 

Name and if the remaining attributes could have null values assigned to them, there 

is no advantage to decomposing the relation. 

7.5 Domain Key NormaS Form 

Before discussing domain key normal form let us define two additional type of de¬ 

pendencies, domain constraints (DC) and key constraints (KC). 

Definition: Domain Constraint (DC): Each attribute A, of a relation scheme R(A,, A2, A„ 

. . . is assigned a domain constraint of the form IN(A„ SAl). This means that 

the attribute A, of relation R, defined on the relation scheme R, must have a 

value from the set SAi. 

We have implicitly used domain constraint as part of integrity constraints. 

Definition: Key Constraint (KC): For the relation scheme R(A1; A2, Ax, . . . ), the key 

constraint, KEY(K), where K is a subset of R, is the restriction that no two 

tuples of relation R defined on the relation scheme R have the same values for 

the attributes in K. 

We also define the concept of general constraints: 

Definition: General Constraints (GC): A general constraint is expressed as a simple 

statement or predicate and specifies some special requirement. Each tuple of a 

relation must satisfy this predicate for it to be a valid tuple. 

The domain key normal form (DK/NF), just like the previously discussed nor¬ 

mal forms, requires that relations do not exhibit insertion and deletion anomalies. 
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However, unlike the other normal forms, DK/NF is not defined in terms of FDs, 

MVDs, or JDs. The central requirements of DK/NF are the basic concepts of do¬ 

mains, keys, and general constraints. We elaborate on each of these requirements in 

the following discussions. A relation scheme is in DK/NF if every general constraint 

can be inferred from the knowledge of the attributes involved in the scheme, their 

underlying domains, and the sets of attributes that form the keys. An insertion anom¬ 

aly in the case of DK/NF occurs when a tuple is inserted in a relation and the result¬ 

ing relation violates one or more general constraints. Similarly, a deletion anomaly 

occurs when a tuple from a relation is deleted and the remaining relation violates one 

or more general constraints. We illustrate these dependencies and general constraints 

in Example 7.10 

Example 7.10 Consider the relation scheme TRANSCRIPT (Student#, Course, Grade). 

Suppose the attributes Student# and Course are numeric, 8 and 3 digits 

long, respectively. The attribute Grade is a letter grade and could be A, B, 

C, D, P, F. The general constraint is that for Courses numbered 900 through 

999, the Grade assigned is only P or F. For Courses 000 through 899, the 

Grade can only be A, B, C, D, F. The domain constraints for this relation 

are the following: Student# is required to be 8 digits long, Course is 3 

digits long, and Grade has to be from the set {A, B, C, D, P, F}. The key 

constraint for the relation is that no two tuples can exist with the same 

values for the key attributes, which are Student# and Course. Obviously, 

Student# Course —> Grade. Finally, the general constraint can be expressed 

by the following: 

if Course > 900 

then Grade € {P, F} 

else Grade 6 {A, B, C, D, F} 

The problem with this relation is that a tuple such as (12345678, 991, A), 

which satisfies all the DCs and KCs, can be inserted in the relation TRAN¬ 

SCRIPT of Figure A. However, since the tuple does not satisfy the general 

Figure A The TRANSCRIPT relation. 

Student# Course Grade 

23714539 353 A 

42717390 329 A 

23714539 928 P 

38815183 456 F 

37116259 293 B 

82317293 491 C 

82317293 953 F 

23714539 491 C 

11011978 353 A 

83910827 979 P 
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constraint, the relation TRANSCRIPT becomes illegal after the inser¬ 

tion. H 

We now give the formal definition of DK/NF. 

Definition: A normalized relation scheme R {S, T, <r}, where S is the set of attributes, T is 

the set of DCs and KCs, and a is the set of general constraints, is in domain 
key normal form (DK/NF) if f |= cr for every constraint in a. 

A normalized relation is in DK/NF if the DCs and KCs imply the general con¬ 

straints. The DK/NF is considered to be the highest form of normalization, since all 

insertion and deletion anomalies are eliminated and all general constraints can be 

verified by using only the DCs and KCs. For the TRANSCRIPT relation of Example 

7.10, we can use the following decomposition to get two relations in DK/NF. 

Example 7.11 The TRANSCRIPT relation of Example 7.10 can be decomposed into the 
following relations: 

TRANSCRIPTS_REGULAR(S/M</en/#, Course, Grade) with the domain 

constraints (Student# being 8 digit, Course being 3 digit in the range 000 

through 899, and Grade in the set {A, B, C, D, F}). The key as before is 
Student#Course. 

TRANSCRIPTS_SPECIAL(Sta(/e«/#, Course, Grade) with the domain 

constraints {Student# being 8 digit, Course being 3 digit in the range 900 

through 999, and Grade in the set {P, F}). The key as before is Student# 
Course. 91 

An MVD can be expressed as a general constraint. To examine the insertion 

and deletion anomalies in such a situation, let us look at Example 7.12 using a 
software company. 

Example 7.12 The work of the company is organized as projects and the employees are 

grouped as teams. A number of projects are assigned to each group and it 

is assumed that all employees in the group are involved with each project 

assigned to it. This is the general constraint for the relation TEAM- 

WORK/Growp, Employee, Project) as shown in Figure Bi. Assume that the 
domain of the attributes are a character string of length 20. The only key of 
the relation is the entire relation. 

The insertion of a legal tuple, (B, Su, FILE_MANAGER), causes the 

relation TEAMWORK to become invalid. This is because the general con¬ 

straint is no longer satisfied and requires the insertion of additional tuples. 
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Figure B The TEAMWORK relation and its DK/NF decompositions. 

Group Employee Project 

A Jones HEAP-SORT 

A Smith HEAP-SORT 

A Lalonde HEAP-SORT 

A Jones BINARY-SEARCH 

A Smith BINARY-SEARCH 

A Lalonde BINARY-SEARCH 

B Evan B+ + -TREE 

B Lalonde B + +-TREE 

B Smith B ++-TREE 

B Evan FILE-MANAGER 

B Lalonde FILE-MANAGER 

B Smith FILE-MANAGER 

(i) 

Group Employee 

A Jones 

A Smith 

A Lalonde 

B Evan 

B Lalonde 

B Smith 

Group Project 

A HEAP-SORT 

A BINARY-SEARCH 

B B ++-TREE 

B FILE-MANAGER 

(ii) 

Similarly, the deletion of the tuple (A, Lalonde, FILE-MANAGER) makes 

the relation TEAMWORK violate the general constraint and requires the 

deletion of additional tuples. 

In order to convert the relation into DK/NF, we can decompose it into 

the two relations TEAM/Grow/?, Employee) and WORK/Grow/?, Project). 

This is shown in Figure Bii. ■ 

It has been shown that a relation in DK/NF is also in PJ/NF and, therefore, in 

4NF and BCNF. The proof, found in (Fagi 81), is beyond the scope of this text. 

The advantage of DK/NF relations is that all constraints could be satisfied by 

ensuring that tuples of the relations satisfy the corresponding domain and key con¬ 

straints. Since this is easy to implement in a database system, relations in DK/NF 

are preferable. However, no simple algorithms exist to help in the design of DK/NF. 

Moreover, it appears unlikely that relation schemes with complex constraints could 

be converted to DK/NF. 

The theory for join dependency is well developed; unfortunately, the results are 

negative. It has been concluded that JDs don’t have a finite axiom system. Conse¬ 

quently, we have to be content with relations in 3NF or BCNF. Since we cannot 
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always guarantee that BCNF relations will be dependency preserving when both loss¬ 

less arid dependency-preserving relations are required, we have to settle for third 

normal form.5 

Summary 

The decomposition approach we examined in Chapter 6 starts with a relation and the 

associated set of constraints in the form of functional dependencies. The relation has 

a certain number of undesirable properties (in the form of insertion, deletion, or 

update anomalies) and it is replaced by its projections. A number of desirable forms 

of projections have been identified. In Chapter 6 we discussed the following normal 

forms: INF, 2NF, 3NF, BCNF. Any relation having constraints in the form of FDs 

only can be decomposed into relations in third normal form; such a decomposition is 

lossless and preserves the dependencies. Any relation can also be decomposed loss- 

lessly into relations in Boyce Codd normal form (and hence into third normal form). 

In this chapter we examined the synthesis approach to designing a 3NF database 
and the higher normal forms, 4NF, 5NF or PJ/NF, and DK/NF. 

In the synthesis approach, the starting point of the relational database design 

process is a universal relation and the set of functional (and nonfunctional) depend¬ 

encies that have to be enforced between the attributes of this universal relation. The 

synthesis procedure then synthesizes a set of third normal form relation schemes, 
which preserves the required dependencies. 

Multivalued dependencies arise when R, having a nonatomic attribute, is con¬ 
verted to a normalized form. Thus, for each X value in such a relation, there will be 

a set of Y values associated with it. This association between the X and Y values 

does not depend on the values of the other attributes in the relation. A normal form 

called fourth normal form has been defined for relations that have FDs as well as 

MVDs. We discussed an algorithm for decomposing a relation into 4NF; however, 

like the BCNF decomposition algorithm, this algorithm does not always produce 

relation schemes that are dependency preserving. If dependency-preserving schemes 
are essential, in general, we will have to settle for 3NF. 

The 5NF is related to what is called join dependency. This is the term used to 

indicate the property of a relation that can be decomposed losslessly into n simpler 

relations but cannot be decomposed losslessly into fewer relations. A relation in 
PJ/NF is also in 4NF. 

In a DK/NF relation scheme, it is possible to enforce all general constraints 

from knowledge of the domains of the attributes and the key constraints. This is the 

highest and most desirable normal form, although it is not always possible to gener¬ 

ate relation schemes in this form. Consequently, the database designer settles for a 
lower normal form that better meets the needs of the user community. 

5When MVDs are conflict free, a unique 4NF decomposition can be obtained. It has been observed that conflict-free MVDs 
are natural enough to cover the “real world” situation. 
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Key Terms 

equivalent 

multivalued dependency 
(MVD) 

trivial multivalued dependency 
basis 

pairwise disjoint 

dependency basis 

simple MVD 

fourth normal form (4NF) 

fifth normal form (5NF) 

join dependency (JD) 

embedded multivalued 
dependency 

key dependency (KD) 

project-joint normal form 
(PJ/NF) 

domain constraint (DC) 

key constraint (KC) 

general constraint (GC) 

domain key normal form 
(DK/NF) 

Exercises 

7.1 Given U{ABCDE} and F — {A —» B, BC —> D, D —> BC, DE —» cf>}, synthesize a set of 3NF 
relation schemes. 

7.2 Given U{ABCDEFGH} with the FDs given by {4 —> BCDEFGH, BCD —> AEFGH, BCE —*■ 

ADEFGH, CE —> H, CD -* H), synthesize a set of lossless join relation schemes. 

7.3 Given the relation R {ABCDE} with the FDs {A -> BCDE, B -> ACDE, C -* ABDE}, what 

are the join dependencies of R? Give the lossless decomposition of R. 

7.4 Given the relation R {ABCDEF} with the set H = {A -> CE, B -> D, C -> ADE, BD 

F}, find the dependency basis of BCD. 

7.5 Design a 3NF relation scheme for the database of Exercise 6.16 using the synthesis 

algorithm. Is the resulting database in BCNF? 

7.6 Is it possible to decompose the relation STUDENT_ADVISOR(/Vam<?, Department, Advisor) 

with the functional dependencies ¥{Name —> Department, Name -» Advisor, Advisor —» 

Department} illustrated in Figure E: of Example 6.19 into PJ/NF relation schemes? If so, 

give the projected relation schemes. 

7.7 What are the difficulties in generating a relational design wherein all relations are in DK/NF? 

7.8 Why is 4NF preferable to BCNF? 

7.9 Show that axiom M7 is sound. 
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The universal relation concept and associated problems were first discussed in (Kent 81). The 

algorithm for synthesizing relation schemes from a given set of attributes and FDs was pro¬ 
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theorem that states that a DK/NF is also in the PJ/NF, 4NF, and BCNF. Axiom systems for 

generalized and template constraints can be found in (Beer 84) and (Sadr 81). 

Textbook discussions of the relational database design are included in (Date 85), (Lien 

85), (Kort 86), and (Ullm 82). (Maie 83) gives a very detailed theoretical discussion of the 

relational database theory including relational database design. 
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The Database Task Group (DBTG), a special group within the Conference on Data 

Systems Languages (CODASYL), issued a final report in 1971. The report was the 

first standard specification for a database system. A number of commercial database 

management systems were based on this report. The discussion of the network model 

in this text is, for the most part, based on the original DBTG draft; reference is made 

to the revised proposal when required. 

8.1 The Network Data Model 

The network data model (NDM) represents data for an entity set by a logical record 

type. The data for an instance of the entity set is represented by a record occurrence 

of the record type. Consider the entity set CLIENT which is of relevance to a public 

library. It is modeled by its attributes, Client-No, Name, and Address. (We use the 

word client instead of member to avoid confusion with the use of the word member 

in the network data model. We will use the word record synonymously with logical 

record unless we need to be explicit.) 

CLIENT Client-No Name Address 

This record type can be defined as follows: 

type CLIENT = record 

Client-No: string; 

Name: string; 

Address: string; 

end 

Some occurrences of the record type CLIENT are shown in Figure 8.1a. The 

figure shows, for example, a client Smith with Client-No 234 and Address as Lynn. 

The data for the entity set BOOK may be represented by the record type BOOK, 

which consists of the fields Author, Title, Call-No: 

BOOK Author Title Call-No 

This record can be defined as: 

type BOOK = record 
Author: string; 

Title: string; 

Call-No: string; 

end 

Some occurrences of the record type BOOK are shown in Figure 8.1b. Note 

that in practice, a library maintains additional details about each title, including name 

of the publisher, place of publication, year of publication, size of the volume, date 

acquired, cost of acquisition, and so on. For simplicity we have ignored these details. 
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Figure 8.1 Occurrences of CLIENT and BOOK record types. 

234 Smith Lynn 

235 Klaf Revere 

236 Allard Salem 

(a) 

James Munich 1231 

Dickens Hard Times 1232 

Haley Roots 1233 

Hugo Les Miserables 1234 

(b) 

8.1.1 Expressing Relationship: The DBTG Set 

The relationship of a client borrowing a book from the library may be represented by 

the entity relationship diagram of Figure 8.2a. The corresponding data structure dia¬ 

gram is shown in Figure 8.2b. In part a, we have the entity set CLIENT, which is 

related to the entity set BOOK in a one-to-many relationship; a client may have 

borrowed several books. Later we look at the possibility of a many-to-many relation¬ 

ship, where we show that a client has borrowed several books, as shown in part b, 

and also that a book (or a copy of the book) may have been borrowed by many 
clients, as shown in part c. 

To express the relationship between the client and the borrowed book, the net¬ 

work model uses the set construct. The word set used here does not imply the math¬ 

ematical meaning but indicates that there is a relationship between two record types. 

A set type represents a one-to-many relationship from the E-R model. An instance 

of the relationship is expressed by an instance or occurrence of the set type. A set 

consists of an owner record type and one or more member record type(s). The DBTG 

proposal of ’971 did not allow a record type to be both an owner and a member 

within the same set type. However, in the 1978 version of the proposal this restric- 
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Figure 8.2 Relationship between CLIENT and BOOK. 

(a) 

tion was eliminated. In the revised version, the records participating in a set type 

may be of the same type or of different types (We examine this aspect of the set 

construct in Section 8.4.) An occurrence of a set type consists of one occurrence of 

the owner record type and zero or more occurrences of the member record type(s). 
The data structure diagram of Figure 8.2b represents the set BORROWED; the 

owner record type is CLIENT and the member record type is BOOK. The relation¬ 

ship between them is represented by the directed arc labeled with the name of the 

set; it is a functional link. The direction of the arc is from the owner to the member 

record type. The direction of the functionality is opposite to the direction of the arc. 

Each occurrence of the set BORROWED represents a relationship between a client 

and the books he or she borrows. If we want to represent the fact that a given book 

could have been borrowed by many clients, we must have, in addition to the set of 

Figure 8.2b, another set BORROWED^BY, as shown by the data structure diagram 

of Figure 8.2c. In the set BORROWED-BY, BOOK is the owner record type and 

CLIENT is the member record type. 
Even though we can show a many-to-many relationship between two entities by 

data structure diagrams as in Figure 8.2b and c, its direct implementation is not 

allowed in the NDM. (We examine the reasons for this in Section 8.3 and show how 

a many-to-many relationship is implemented in the NDM.) 

The set BORROWED can be defined as follows: 

set is BORROWED 

owner is CLIENT 

member is BOOK 

end 

Figure 8.3a gives some occurrences of the set type BORROWED. As we can 

see there is a one-to-many relationship expressed in this set; a CLIENT could borrow 

more than one book. If we allow the possibility that there could be more than one 

copy of the same book, then the relationship between CLIENT and BOOK becomes 

many-to-many; this is shown in Figure 8.3b. 
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Figure 8.3 Possible relationships between CLIENT and BOOK: (a) one-to-many relationship and 
(b) many-to-many relationship. 

CLIENT BOOK 

(a) 

CLIENT BOOK 

(b) 

8.1.2 Multiple Level Set Construct 

The set BORROWED, defined above, is an example of a single level set construct. 

The NDM does not impose any restrictions on the number of set types in which a 

given record type is involved as an owner or member. The only restriction is that a 

given occurrence of a record can participate in only one occurrence of a given set 

type. A multilevel set can be constructed as shown in the data structure diagram of 

Figure 8.4. Here we have the entity sets LIBRARY, BRANCH, DEPT_SECTION, 

and EMPLOYEE. The data for these entity sets can be represented by similarly 
named logical record types defined as follows: 

type LIBRARY = record 

Lib-Name: string; 

Address: string; 

Phone-No: string; 
end 

type BRANCH = record 

Br-Name: string; 

Address: string; 

Phone-No: string; 
end 
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Figure 8.4 Multilevel set construct. 

(b) 

type DEPT-SECTION = record 

Ds-Name: string; 

Room^No: string; 

Phone-No: string; 

end 

type EMPLOYEE = record 

Emp-Name: string; 
Home-Address: string; 

Phone-No: string; 

end 

The LIBRARY has a number of BRANCHes, each BRANCH has a number of 

DEPT_SECTIONs, and each DEPT_SECTION has a number of EMPLOYEES. 

There are therefore three levels in the data structure diagram shown in Figure 8.4b. 

The set HAS is owned by the LIBRARY record type and contains as members the 

record occurrences corresponding to all the BRANCHes of the library. On the next 

level we have the set type CONTAINS. An occurrence of the set type CONTAINS 

has as its owner an occurrence of the record type BRANCH, and the members are 
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the record occurrences corresponding to DEPT_SECTIONs of that BRANCH. On 

the next level we find the set type WORKS-IN; here the owner is the record type DEPT 

SECTION and the member is the record type EMPLOYEE. 
A simple database corresponding to the diagram of Figure 8.4 is shown in Fig¬ 

ure 8.5. Here an occurrence of the record type LIBRARY, the MUC Public Library 

System, is the owner of the set HAS. The members of this set occurrence are the two 

occurrences of the record type BRANCH, Lynn and Revere. The record occurrence 

Lynn of the record type BRANCH is the owner of one of the occurrences of the set 

type CONTAIN and this set has as its members the record occurrences Adult_Sec 

(adult section), Childm_Sec (children’s section), Acqstn_Dept (acquisition depart¬ 

ment), Crcln_Dept (circulation department), and Ref_Dept (reference department) of 

the record type DEPT_SECTION. The record occurrence AdulLSec, in its turn, is 

the owner in the set type WORKS-IN occurrence and has the record occurrence of 

the record type EMPLOYEE, for instance Barry, as its member. 

8.1.3 Complex Multilevel Set Construct 

Figure 8.6 is a portion of the library database example of Figure 8.4. However, here 

we have split the original record type DEPT_SECTION into two separate record 
types DEPT and SECTION. 

We illustrate in this example that the DBTG proposal allows a set to have more 

than one record type as its member record type. For instance, the set CONTAINS has 

two record types as its members. This is not the same as replacing the set CONTAINS 

with two sets, for example, CONT-SEC and CONT—DEPT. The data structure dia¬ 
gram for this modification is shown in Figure 8.7. 

At this point we might ask the following questions: 

• Can the EMPLOYEE record occurrence Carrie in Figure 8.5 be a member of 

the two occurrences of the type set WORKS-IN where the owner records are the 
occurrences AdulLSec and Childm_Sec? 

Figure 8.5 Sample database corresponding to Figure 8.4. 
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Figure 8.6 Complex multilevel set construct. 

• Can the EMPLOYEE record occurrence Jerry be a member of the set WORKS- 

IN where the owner records are the occurrences Childm_Sec of record type 

SECTION and Acqstn-Dept of record type DEPT? 

• Can the set type WORKS-IN have as its owner record a record from two 

different record types, SECTION and DEPT? 

From Figure 8.6 we also notice that the set type WORKS—IN, as it is shown, 

has two different record types as it owner record type. The DBTG proposal allows a 

given set type to include member records from more than one record type, but does 

not allow a set type to have the owner record coming from two different record types. 

Thus the set WORKS-IN, as indicated in Figure 8.6, is not allowed, The DBTG 

model requires that the intent of the design must be represented as two sets, for 

instance, WORKS-IN-DEPT and WORKS-IN-SECT. This modification is shown in 

the modified data structure diagram of Figure 8.7. 
The network data model as proposed in the DBTG proposal has certain restric¬ 

tions, which we discuss in the following section. These restrictions mean that the 

answer to each of the above questions is in the negative. 
The data structure diagrams of Figures 8.7 and 8.8 illustrate the difference be¬ 

tween a set type that can have records from two record types as its member record 

Figure 8.7 One record type owner of two set types. 
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Figure 8.8 Complex multilevel set construct. 

(in Figure 8.8 the set type CONTAINS) and a record from a given type as the owner 

of two or more set types (In Figure 8.7 the record type BRANCH is the owner in set 

types CONTAINS-DEPT and CONTAINS-SEC). Nevertheless, the restriction that a 

given record occurrence may be an owner or member of only one occurrence of a 
set type still must be observed in the DBTG proposal. 

An example of a portion of database corresponding to the data structure diagram 

of Figure 8.7 is given in Figure 8.5. From this figure, we note that the record types 

DEFT and SECTION are owner record types in the sets WORKS-IN-DEPT and 

WORKS—IN—SECTN respectively. The record type EMPLOYEE is a member record 

type in both these set types. The instance of the record type corresponding to the 

employee Carrie is still not allowed to be a member of two occurrences of the set 

type WORKS-IN-SECTN. However, an instance of the record type Jerry can be a 

member in one occurrence of the set type WORKS-IN_DEPT and a member in one 
occurrence of another set type WORKS-INSECTN. 

DBTG Set Construct and Restrictions 

The DBTG network data model is based on the set construct. The set construct, 

among other things, defines the owner record type and the member record type(s). 

The set construct allows a one-to-many relationship to be expressed. The example in 

the previous section uses the set WORKS-IN-DEPT to represent the relation between 
a department of a library and the employees assigned to that department. 

However, there are a number of restrictions in the DBTG proposals. We list 
these below: 

• A set type is named and must have one owner record type and one or more 
member record types. 

• A record occurrence of a given record type can be owner of only one 
occurrence of a set type where the record type is the owner. 
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• A record occurrence of a given record type can be a member of only one 

occurrence of a set type where the record is the member. 

• A set type can have only one type of record as owner; however, one or more 

record types can be members of the set. 

• A record type can be the owner record type in any number of set types. 

• A record type can be the member record type in any number of set types. 

• A given record type cannot be used as an owner and a member in the same set 

type. 

The last restriction in the original DBTG proposal has been eliminated from the 

revised proposal. Under the revised proposal, the same record type can participate as 

both owner and member in the same set type. A given occurrence of the record type 

can therefore be both owner and member in the same set occurrence, or the owner 

in one set occurrence and a member in a different set occurrence. We examine the 

ramification of this change in the set construct in Section 8.4. 

8.2.1 Implementation of the DBTG Set Construct 

The record is a basic unit to represent data in the DBTG network database model. 

The implementation of the one-to-many relationships of a set is represented by link¬ 

ing the members of a given occurrence of a set to the owner record occurrence. The 

actual method of linking the member record occurrence to the owner is immaterial 

to the user of the database; however, for our discussion, we can assume that the set 

is implemented using a linked list. The list starts at the owner record occurrence and 

links all the member record occurrences with the pointer in the last member record 

occurrence leading back to the owner record. Figure 8.9 shows the implementation 

of the set occurrence BORROWED where the owner record is Klaf and the member 

records are the instances Dickens and Hugo. Note that for simplicity we have shown 

only one of the record fields of each record. This method of implementation assigns 

one pointer (link) in each record for each set type in which the record participates 

and, therefore, allows a record occurrence to participate in only one occurrence of a 

given set type. Any other method of implementing the set construct in a database 

management system based on the DBTG proposal is, in effect, equivalent to the 

linked list method. 

Figure 8.9 Implementation of the DBTG SET. 
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8.3 Expressing an M:N Relationship in DBTG 

Let us now see how we can express the following relationship in the DBTG model. 

We would like to model a situation where an employee is able to help out in different 

departments depending on the workload. For example, during the evening, when 

there are more people in the library, it is common to increase the number of clerks 

at the circulation desk. An employee assigned to the acquisition department could 

also be designated to work in the circulation department. To allow for the possibility 

of an employee being assigned to work in more than one department, we need to 

express a many-to-many relationship. In this many-to-many relationship, a depart¬ 

ment has many employees and the employees are assigned to more than one depart¬ 

ment. This could be implemented indirectly by expressing two one-to-many relation¬ 

ships and using an intermediate record, the so-called intersection or common 

information-bearing record type. Such common information between the two original 
record types could, however, be null. 

In the DBTG model we can express this M:N relationship by two set types. In 

one set type, the DEPT is the owner record type and the members are the record 

occurrences of the EMPLOYEE record type. In the second set type, the owner is an 

EMPLOYEE record occurrence and the members are the DEPT record occurrences. 

These sets are shown by the data structure diagram of Figure 8.10. However, the 

DBTG set construct does not allow the implementation of these sets. Suppose we 

allow an employee to work in more than one department. Then the record occurrence 

for that employee will appear as a member record in more than one occurrence of 

the set WORKS-IN-DEPT. This violates the DBTG restriction that a record occur¬ 

rence can be a member of only one occurrence of a given set type. Similarly, for the 

set ASSIGNED-TO we find that since there are many EMPLOYEES in a given DEPT 

a given occurrence of a record for that DEPT will be a member of more than one 
occurrence of this set type. 

The above reasoning can be used to explain why we could not directly show 

the many-to-many relationship between a CLIENT and a BOOK as in Figures 8.2b 
and c. 

The method for resolving this problem in the DBTG model is to introduce an 

intermediate record type between the two entity sets involved in the many-to-many 

relationship. This intermediate record type is sometimes called the intersection rec¬ 

ord or the connection record. This new record holds data common to the many-to- 

many relationship of the original entities represented by their respective record types. 

Figure 8.10 Incorrect method of expression an M:N relationship in DBTG. 
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Therefore, to express the above M:N relationship we introduce the record type 

HOURS_ASSGND, which may be defined as follows: 

.■type HOURS_ASSGND = record 

Dept: string; 

Employee: string; 

Hours: integer; 

end 

A correct representation of the many-to-many relationship of Figure 8.10 is now 

expressed by introducing the sets EMP-ASSGND and DEPT-ASSGND with the 

record types DEPT and EMPLOYEE as owner and the intermediate record type 

HOURS_ASSGND as member in both the sets. A data structure diagram for this 

correct representation of the relationship is shown in Figure 8.11. 

Figure 8.12 shows a possible method of implementing the M:N relationship 

using the intermediate record containing .space for the common data and two pointers, 

one for each of the sets it is involved in. The common data here is the number of 

hours the employee is assigned to a given department. Sometimes the intermediate 

record contains duplicated information, e.g., department name and employee 

name, to facilitate the recovery and verification operations. The list of employees 

assigned to the Acqstn_Dept can be determined by the set EMP-ASSGND, where 

the owner is the record occurrence Acqstn_Dept (AD) and following the list contain¬ 

ing the intermediate records AD J 40 and AD J 30. The record AD J 40 is owned 

by Jerry and the record AD L 30 is owned by Larry in the set type DEPT-ASSGND, 

indicating that employees Jerry and Larry work in the Acqstn_Dept. Similarly, we 

can see that employee Larry'is assigned to the Acqstn_Dept for 30 hours and the 

CrclnJDept for 10 hours. Since Larry is assigned to two departments, there are two 

occurrences of the intermediate record type containing the intersection data pertaining 

to Larry. Similarly, the circulation department has three employees assigned to it 

and, hence, the set occurrence of the set type EMP-ASSGND with the circulation 

department as the owner has three member record occurrences of the intermediate 

record type HOURS_ASSGND. 
Suppose there is a need to express another M:N relationship, let us say between 

the employees and their participation in a number of activity clubs run by the library. 

This can be implemented by introducing another intermediate record type, let us say 

EMP_AFFILIATION, and two set types to establish this many-to-many relationship, 

as shown in Figure 8.13a. The corresponding sample database is shown in Figure 

8.13b. 

A correct representation of M:N relationship in DBTG. 
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Figure 8.12 Sample database showing an M:N relationship. 

HOURS_ASSGND EMPLOYEE 

To express the fact that some books in the library may have several copies, we 

introduce a new record type, BOOK-COPY. This record contains information about 

the copy number of a particular book and indicates the branch it is assigned to and 

its current status. We establish a relationship between the record BOOK and 

BOOK—COPY using a set COPY-STATUS. The data structure diagram for this rela¬ 

tionship is shown in Figure 8.14a. Figure 8.14b gives some examples. 

type BOOK-COPY = record 

Call-No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string; 

end 

set is COPY-STATUS 

owner is BOOK 

member is BOOK—COPY 

end 

We now return to the many-to-many relationship we mentioned earlier in the 

E-R diagram of Figure 8.2a and which we implemented erroneously in Figures 8.2b 

and c. Some occurrences of this many-to-many relationship between a client and the 

books he or she may borrow is given in Figure 8.3b. To correctly implement this 
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Figure 8.13 Another example of an M: N relationship. 

(a) 

EMPLOYEE EMP_AFFILIATION CLUB 

(b) 

relationship, we introduce in addition to the CLIENT and the BOOK_COPY record 

an intermediate connector record BOOK-DUE defined as follows: 

type BOOK-DUE = record 
Call-No: integer; 

Copy-No: integer; 

Client-No: string; 

Due-Date: string; 

end; 

We also introduce two sets BORROWED and BOOK-COPY-LENT defined as 

follows: 

set is BORROWED 
owner is CLIENT 

member is BOOK—DUE 

end 

set is BOOK-COPY-LENT 
owner is BOOK—COPY 

member is BOOK—DUE 

end 
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Figure 8.14 Multiple copies of BOOKs. 

BOOK 

COPYSTATUS 

*■ BOOK_COPY 

(a) 

(b) 

The many-to-many relationship of Figure 8.3b is expressed indirectly by using 

the one-to-many relationships between BOOK and BOOK_COPY, and CLIENT and 

BOOK_DUE; and a one-to-one relationship between BOOK_DUE and BOOK_ 

COPY. These sets are shown in Figure 8.15. Each book could have a number of 

copies, which is shown by the set COPY-STATUS with owner record type being 

BOOK and member record type being BOOK_COPY. The BOOK_COPY taken out 

by a CLIENT is shown by the set BORROWED. 

Figure 8.15 Many-to-many relationship of CLIENT and BOOKs. 
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8.4 Cycles in DBTG 

The original DBTG set construct prohibited the same type of record to be both an 

owner and a member in a given set type. However, relationships of this type, some¬ 

times called intrarecord relationships, are required to model, for example, the orga¬ 

nizational structure of an enterprise or the part explosion of a subassembly or an 

assembly, as shown in Figure 8.16. The DBTG set to express this relationship con¬ 

tains the same type of records as the owner and member record types: EMPLOYEES 

for the former relationship and PARTs for the latter. 

The 1978 modification of the DBTG proposal removed this restriction and al¬ 

lowed a set type to have the same record type as both a member and an owner. 

However, a given occurrence of a record could only be involved in one set occur¬ 

rence as an owner and in one set occurrence as a member. This modification to the 

original DBTG set construct allows for the presence of cycles in the database. 

A cycle is a path in a single-level or multilevel hierarchy of DBTG sets such 

that the path starting from a given record type leads back to the same record type 

while traversing the sets from an owner to a member. However, the return need not 

be to the same record occurrence. 
When the same record type is declared to be both the owner record type and the 

member record type in the same set type, a cycle called the single-level cycle occurs. 

We illustrate this type of cycle in Figure 8.16 and discuss it in Section 8.4.1. 

When a sequence of set types exists in the database such that the member record 

type in one set is the owner record type in the next set, a cycle called the multilevel 

cycle is said to be present. If we start with one record type, which is the owner 

record type in this sequence of set types, the final member record type reached as 

we go through this sequence of owner-member record types is the starting owner 

record type. (We illustrate the multilevel cycle in Figure 8.22 and focus on it in 

Section 8.4.2.) 

8.4.1 Set Involving Only One Type of Record 

Consider the set type TEAM (a work group or a play group) wherein the owner and 

member record types are EMPLOYEE. The owner of a set occurrence of this set 

Figure 8.16 Single-level cycles. 

PART 

i 

CONTAINS 

EMPLOYEE 

; k 

TEAM 
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Figure 8.17 

represents the team leader and the members of the set occurrence are the teammates. 

This set can be defined as follows: 

set is TEAM 
owner is EMPLOYEE 

member is EMPLOYEE 

end 

Similarly, the set CONTAINS, defined below, forms a cycle involving the same 

record type. 

set is CONTAINS 
owner is PART 

member is PART 

end 

Figure 8.17 shows the organizational structure of the work teams of a library 

branch. Barry is the team leader of one team. His TEAM consists of the EMPLOY¬ 

EES Carrie, Jerry, Larry, and Barry himself. We can modify the team organization 

of Figure 8.17 so that a team leader does not appear as a member of his or her own 

team. The modified database is shown in Figure 8.18. 

However, this modification allows for the presence of loops in the database, 

which not only involves the same record type but also the same record occurrence. 

A loop is a path that starts with a given record occurrence as, let us say, an owner 

record type in a set occurrence. The path then winds through a number of member 

record occurrences. When it reaches a given member record occurrence, it establishes 

that member as an owner of another set occurrence of the same set type. The path 

continues through its member record occurrences. This procedure is repeated a num¬ 

ber of times until the path returns to the starting record occurrence as a member 

record occurrence. Figure 8.19 shows a loop that starts with the EMPLOYEE record 

occurrence Barry and returns to the same record occurrence as a member in another 

occurrence of the set type TEAM. (Note: With the structure of TEAM as in Figure 

8.17, we have a loop within a single set occurrence!) 

Loops can be avoided in the NDM by the introduction of an intermediate record 

type to store the intersection or common data in the set involved. (It is likely that the 

intersection record type may be null, i.e., there are no data fields in this intermediate 

record type.) This intermediate record type can then be used to define two symmet¬ 

rical sets; it is the member in each of the sets, as shown in Figure 8.20. Furthermore, 

such an intermediate record gives the flexibility of a many-to-many relationship being 

Set with same type of record as owner and member. 
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Figure 8.18 Modified organizational chart. 

established between occurrences of records of the same record type, as discussed 
below. 

The assignment of an employee to more than one occurrence of the set type 

TEAM is handled by the introduction of an intermediate record type to express the 

many-to-many relationship. The data structure diagram to represent this relationship 

is given in Figure 8.20. The intermediate record type is a member of the two sets, 

both owned by the EMPLOYEE type record. Compare this with the M:N relation¬ 

ship of Figure 8.11, where the owners of the sets involving the intersection record 

were of different types. 

We can define the intersection record type as follows; 

type TEAM_ASSG = record 
Team-Leader: string; 
Team-Mate: string; 
Hours: integer; 
end 

Here the data items Team-Leader and Team-Mate, which are aliases for the 

data item Emp-Name in the record EMPLOYEE, are redundant and could have been 

introduced for verification and recovery as mentioned above. 

Figure 8.19 Loops in database. 
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Figure 8.20 One record type with intersection record. 
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The sets TEAM-EMP and EMP-TEAM can be defined as follows: 

sets TEAMJEMP 

owner is EMPLOYEE 

member is TEAM_ASSG 

end 

set is EMP-TEAM 

owner is EMPLOYEE 

member is TEAM_ASSG 

end 

A sample database involving this many-to-many relationship between occur¬ 

rences of the record type EMPLOYEE is given in Figure 8.21. Here the owner of 

the two set occurrences of the set type TEAM-EM P are the records Barry and Harry 

of the record type EMPLOYEE. The members in the sets are the record occurrences 

{Barry Jerry 10, Barry Larry 15}, and {Harry Jerry 30, Harry Larry 25, Harry Mary 

40} respectively. There are three occurrences of the set type EMP-ASSG with owners 

Jerry, Larry, and Mary. The corresponding members are the record occurrences 

{Barry Jerry 10, Harry Jerry 30}, {Barry Larry 15, Harry Larry 25}, and {Harry Mary 
40}, respectively. 

Figure 8.21 M:N relationship involving single record type. 
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Figure 8.22 A cycle involving different record types. 

MADE IN 

8.4.2 Sets Involving Different Record Types in a Cycle 

Figure 8.22 is an example of a data structure diagram showing a cycle involving 

different record types. In this figure we indicate that a plant assembles a number of 

products. Each product is made from a number of parts and these parts are made in 
some plants. 

With the automatic set insertion rule (described below in Section 8.5.4) it is 

obvious that no data can be inserted in a database with the above type of cycle. (See 
exercise 8.9.) 

The designer of the database, using the NDM, can decide whether to include 

cycles in the database, provided the DBMS software correctly handles such cycles. 

As in the case of loops, the cycle can be eliminated with the introduction of one or 
more intermediate record types. 

8.5 Data Description in the Network Model 

Our discussion of the data description facility of a network database model closely 

follows the CODASYL model. 

8.5.1 Record 

A DBTG record is made up of smaller units of data called data-items, vectors, and 

repeating groups. Records of one type or several types are related via a set, and 

provide the basic unit of access in the database. In previous discussions we have 

used a number of records, such as CLIENT, EMPLOYEE, and so on. 
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Data-Item 

Data-item is the DBTG term for field and is the smallest unit of named data. An 

occurrence of a data-item is a representation of a value. A data-item has a name and 

a type or format; the format could be arithmetic, string, or one specified by the 

implementer via a TYPE clause. In our discussions of the CLIENT record, we de¬ 

fined the data-item Client-No to be of integer type. 

Data Aggregates 

A record could also contain a named collection of data-items, called data aggre¬ 

gates. There are two kinds of data aggregates: vectors and repeating groups. 

Vectors 

The DBTG record is made up of basic units of data representation called data-items. 

It also allows a data-item to be repeated; this is called a vector in DBTG terminol¬ 

ogy. Suppose that the record type CLIENT contained an additional data-item for 

storing the phone number. However, two or more phone numbers, for instance, the 

home and business phone numbers, may be required to be stored for some clients. 

The phone number could then be described as a one-dimension array of data-items 

all of which have identical characteristics. Another example of using a vector can be 

in storing the positions in which an employee can work. For instance, in the logical 

record for the employee entity, we include a vector for position and each of its 

component contains the position in which he or she can work. 

Repeating Groups 

In the employee entity and the corresponding record illustrated in Figures 2.6 and 

2.15, we need to store in the record for each employee, a number of dependents and 

the kinship of the dependent to the employee. This is an example of a repeating 

group. The repeating group is a collection of two or more data items, vectors, or 

repeating groups that occurs more than once within a record; a repeating group, thus, 

is nested. A repeating group can be considered to be a vector of records. We can 

represent the books borrowed by a client using a repeating group that contains the 

data-item Call-No and Due-Date defined below. The CLIENT record containing 

both a vector and a repeating group is defined as follows and shown in Figure 8.23: 

type BKS-BRWD — record 

Call-No: string; 

Due-Date: string; 

end; 

type CLIENT = record 

Name: string; 

Phone-No: array [1..2] of integer; 

Rptg-Grpl: array [1..15] o/BKS_BRWD; 
end; 
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Figure 8.23 Example of vector and repeating group. 

VECTOR-1 i-REPEATING GROUP 
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In the above example, the vector Phone-No may be used to store two phone 

numbers, which could be the home and business phone numbers. An alternate 

method of representing the data of the vector is by explicitly defining two data-items, 

HomeJPhoneJNo and Bus-Phone-No. However, if the number of elements of the 

vectors is large, then this solution, even though more explicit as to the meaning of 

each component, is a bit awkward. Another method of representing the information 

contained in a repeating group is by means of a one-to-many set. For instance, the 

repeating group Rptg-Grpl can be replaced by a record and a set as follows. Note 

that in this case, the Rptg-Grpl is eliminated from the record type CLIENT. 

type BOOK—BRWD = record 

Call-No: string; 

Due-Date: string; 

end; 

set is BOOKS-BORROWED 

owner is CLIENT 

member is BOOK_BRWD 

end 

Keys 

The DBTG data description language allows keys to be declared in the declaration 

of a record type. A record key is a group of data-items or a single data-item used to 

identify a record or a group of records. A record type can have more than one record 

key declared for it. The record key can be used for direct retrieval of records by the 

database management system. A record key has an unique name associated with it. 

A record type could also be declared to be ordered sequentially, the ordering 

options being ASCENDING or DESCENDING with respect to a record order key. 

A record could have more than one record order key declared for it and could be 

logically sorted in two or more different orders. The order can be used for sequential 

retrieval of the record type. The record order key is also a record key. 

8.5.2 Set 

The DBTG set is a named relationship between records of the same or different 

types. Each set has one owner record type and one or more member record types. 

Any record type may be declared as the owner of one or more set types. Any record 
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type may be declared as a member of one or more set types. Therefore, a record type 

can be both an owner and a member in one or more set types. A record may be both 

owner and member in the same set type. However, a record cannot be a member or 

an owner of more than one occurrence of a given set type. If a record type is declared 

as the owner type as well as the member type in the declaration of the. set type, then 

the same record can be both an owner and a member in the same occurrence of a set 

type, or it can be the owner in one occurrence and a member in another. 

A set contains precisely one occurrence of the owner record and any number of 

occurrences of each of its member record types. A set containing only an occurrence 

of its owner record type is an empty set. This contradicts the definition of the math¬ 

ematical set which, when empty, does not contain any element. The DBTG set oc¬ 

currence always has an owner record occurrence even when empty. An empty DBTG 

set cannot exist without the owner record occurrence. 

8.5.3 Order of Members in a Set 

Each set type declared in the schema must have an ordering specified for it. This 

ordering indicates the logical ordering for the insertion of member records into the 

set. The ordering specified could be ascending or descending and is based on data 

items in each of the member record types. The ordering could also be given as the 

order of insertion, in the reverse order of insertion, or before or after a selected 
record. 

The DBTG allows the user to specify the insertion point where a member record 

will be connected into an occurrence of a set type. The possible order that could be 
defined is first, last, next, prior, system default, sorted. 

If we consider the set to be implemented via a doubly linked list, starting with 

the owner record occurrence, then the order can be explained as follows: 

• order first indicates that the member records are to be inserted immediately 

following the owner record, thus giving a reverse chronological order. The 

member record most recently inserted into a set occurrence will be the first 
member in the set. 

• order last indicates that the member records are to be inserted immediately 

before the owner record occurrence, thus giving a chronological order. The 

member record most recently inserted into the set will be the last member in 
the set. 

• order next and order prior indicates that the member records are to be inserted 

relative to the currency indicator (discussed in Section 8.7.2) of the run unit for 

the set type. If the currency indicator is pointing to the owner record, order next 

is equivalent to order first and order prior is equivalent to order last. 

• sorted indicates that the member records are to be maintained in a sorted 

sequence. If the sorting is based on the value of key items of the member 
record types, this is specified by the user. 

• system default indicates that the DBMS maintains the member records in an 
order most convenient to it. 
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8.5.4 Set Membership 

The set membership criteria consist of the insertion and retention status of a member 

record type with respect to a set. The insertion status indicates how the membership 

of a record occurrence, within a set occurrence of a set type of which it is a member, 

is established. If the status is automatic, the insertion of the record as a member in 

the appropriate occurrence of the set type is performed by the DBMS when a new 

occurrence of the record type is stored in the database. In the following example, we 

declare the set BORROWED to be owned by the record type CLIENT and to contain 

the record type BOOK_DUE as its member, the membership being defined as auto¬ 

matic. This ensures that the library will know exactly which client has borrowed a 
given volume. 

type CLIENT = record 

Client-No: string; 

Name: string; 

Address: string; 

end 

type BOOK_DUE = record 

Call-No: integer; 

Copy-No: integer; 

Client-No: string; 

Due-Date: string; 

end; 

set is BORROWED 

owner is CLIENT 

member is BOOK_DUE automatic 

end 

A manual membership status indicates that the membership is not automatic. In 

effect, with a manual membership, the selection of the appropriate occurrence of the 

set and the insertion of the record to become its member has to be done using appro¬ 

priate data manipulation facilities. In the following example, the set COLLECTION 

owned by the record type BRANCH is declared to have the record type BOOK_ 

COPY as member record, the membership being manual. Therefore, the application 

program is responsible for inserting an occurrence of the record type BOOK-COPY 

in the appropriate occurrence of the set type. 

type BRANCH = record 

Br-Name: string; 

Address: string; 

Phone-No: string; 

end 

type BOOK-COPY = record 

Call-No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string; 

end 
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set is COLLECTION 

owner is BRANCH 
member is BOOK_COPY manual 

end 

The retention or removal status of a record indicates the continuance of the 

relationship of a member record occurrence with the set type once it becomes a 

member of an occurrence of the set type. The retention status could be defined as 

fixed, mandatory, or optional. 
Fixed status indicates that once a record becomes a member of an occurrence 

of a set type, it will continue that relationship with that particular set occurrence until 

the record if deleted, (’til death do us part!) When the owner of the record in a set 

is deleted, if the membership retention status had been defined as fixed, all member 

record occurrences are deleted along with the owner. In the following example, the 

set CONTAINS owned by the BRANCH record type has DEPT and SECTION as 

member record types; the membership insertion status is manual and the retention 

status is declared to be fixed. Thus, once a department or section is assigned to a 

given branch, it remains in that branch and, if the branch is closed, the department 

and the branch is deleted as well. 

set is CONTAINS 
owner is BRANCH 

member is DEPT manual fixed 

member is SECTION manual fixed 

end 

Mandatory status indicates that once a record becomes a member of an occur¬ 

rence of a set type, it continues that relationship with an occurrence of that set type. 

The particular set occurrence of which the record occurrence is a member may 

change but the relationship in the set type must continue. When the membership 

status is defined as mandatory, an attempt to delete the owner record occurrence with 

a nonempty set will fail until all the members are moved to another set occurrence. 

In the following example, the set WORKS-IN^DEPT is owned by the record type 

dept and has as its members occurrences of the record type EMPLOYEE, the inser¬ 

tion and retention statuses being manual and mandatory, respectively. Thus, an oc¬ 

currence of the employee record type is to be inserted in the appropriate set occur¬ 

rence of the set type WORKS-IN-DEPT. Employees could, however, be moved from 

one department to another. Also, once a number of employees are assigned to a 

department, we cannot delete that department until we move all the employees to 
another department. 

set is WORKS-IN-DEPT 

owner is DEPT 

member is employee manual mandatory 
end 

Optional status allows a member record occurrence to discontinue a relationship 

in a set type. When the membership status is defined as optional, an attempt to delete 

the owner record occurrence will cause the members of the set occurrence owned by 

the owner record to be disconnected and the owner record occurrence to be deleted; 

the member record occurrence will continue to exist in the database. In the following 
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example, the set type COLLECTION is owned by the record type BRANCH; the 

member record type is BOOK_COPY and the membership criteria of this record type 

is manual insertion and optional retention. Therefore, an application program will 

haVe to insert an occurrence of the member record type in the appropriate set occur¬ 

rence. The retention is optional, which means that if a BRANCH type record occur¬ 

rence were to be deleted from the database, all member record occurrences in the set 

occurrence of the set type COLLECTION owned by the branch record occurrence 

will be removed from the set before the owner record occurrence is deleted. The 

member record occurrence continues to exist in the database. 

set is COLLECTION 

owner is BRANCH 

member is BOOK_COPY manual optional 
end 

Figure 8.24 shows the meaning of the combination of the two membership sta¬ 
tuses for a member record type in a set type. 

We can add the status information for insertion and retention of the member BOOK 
DUE in the set borrowed as follows: 

set is BORROWED 

owner is CLIENT 

member is BOOK_DUE automatic mandatory 
end 

The insertion status is specified as automatic because a BOOK being borrowed 

must become the responsibility of a client. The retention status is specified as man- 

Figure 8.24 Significance of membership status. 
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8.5.5 

datory because the library has to know which client has borrowed the book until it is 

returned. Also, the library does not allow clients to be deleted until they have re¬ 

turned the books they borrowed. 

Structural Constraint 

8.5.6 

The data definition of a set could include a requirement that the value of a data-item 

in the member record occurrence be equal to a data-item in the owner record occur¬ 

rence. An example of a member record type to allow such a constraint to be specified 

is shown in the declaration of the record type BOOK_DUE. BOOK_DUE partici¬ 

pates in sets involving record types CLIENT and BOOK_COPY. The structural con¬ 

straint that the value of the data-item BOOK-COPY. Client-No be equal to CLIENT. 

Client-No can be specified in the definition of the set BORROWED by the check 

statement as illustrated below. 

set is BORROWED 

owner is CLIENT 

member is BOOK-DUE automatic mandatory 

check CLIENT .Client-No = BOOK-DUE. Client-No 

end 

This requirement, called structural constraint, was added to the original 

DBTG proposal to provide a method of maintaining the integrity of data in the da¬ 
tabase. 

Set Selection 

For each set type specified in the database schema, the database contains several set 

occurrences. There must be a way to select the appropriate set occurrence when 

member record occurrences are to be added to or retrieved from a set. The set selec¬ 

tion clause specified in the definition of the set defines the rules to be used by the 

DBMS for the purpose of selecting the appropriate set occurrence for inserting or 

accessing a member record. A separate set selection clause is required for each mem¬ 

ber record type in the set type. Set selection could be by structural constraint, key, 

application program, a procedure to be invoked for the selection, or by the DBMS. 

We show below set selection by structural constraint, which incorporates the feature 

of the check statement given above. With the following definition of the set BOR¬ 

ROWED, the set occurrence to be selected will be the one where the Client-No of 

the owner record is equal to the Client-No in the record type BOOK-DUE. 

set is BORROWED 

owner is CLIENT 

member is BOOK-DUE automatic mandatory 

set selection is structural CLIENT .Client-No = 

BOOK- DUE. Client-No 
end 



8.6 Schema and Subschema 403 

8.5.7 

To simplify the discussions of the data manipulation facility of the network data 

model, we will use the application program to select the appropriate set occurrence. 

Singular Sets 

8.5.8 

The singular set is a special type of set with precisely one occurrence. The system 

is named as the owner of this type of set and is a convenient method of grouping 

together all occurrences of the member record type. For each such grouping of a 

record type we can declare a singular set. All clients to the public library, regardless 

of the branch they normally use, can be considered as being a member of the singular 
set ALL-CLIENTS. 

set is ALL-CLIENTS 

owner is SYSTEM 

member is CLIENT 

end 

Similarly, all employees and all books can be declared members of singular sets 

ALL-EMPLOYEES and ALL-BOOKS, respectively. 

Area 

8.6 

In the original DBTG proposal the subdivision of a database was called the area. 

This construct was deleted in the revised version of the proposal since the concept is 

associated with the physical organization of the data. It would be inappropriate to 

specify physical details in the schema, which is a logical organization corresponding 

to the conceptual level. 

Schema and Subschema 

The schema is the logical description of the entire database. It includes the names 

and descriptions of all record types including all the associated data-items and aggre¬ 

gates and all set types including the singular sets. A portion of the schema for the 

database for the public library is shown below. The data structure diagram for this 

schema is shown in Figure 8.25. The schema is expressed in a simplified Pascal-like 

language; some of the details required by the DBTG proposals and its revisions have 

been omitted for simplicity. 

Schema name is MUC_Pub!ic_Library 

type BRANCH = record 

Br-Name: string; 

Address: string; 

Phone-No: string; 

end 
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Figure 8.25 Data structure diagram for the library schema. 

type BOOK = record 

Author: string; 

Title; string; 

Call—No: integer; 

end 

type BOOK_COPY = record 

Call—No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string; 

end 

type CLIENT = record 

Client-No: string; 

Name: string; 

Address: string; 

end 

type BOOK_DUE = record 

Call-No: string; 

Copy-No: integer; 

Client-No: string; 

Due-Date: string; 

end; 

set is BORROWED 

owner is CLIENT 

member is BOOK_DUE automatic mandatory 
end 

set is BOOK-COPY-LENT 

owner is BOOK_COPY 

member is BOOK_DUE automatic optional 

end 
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set is COPY-STATUS 

owner is BOOKS 

member is BOOK_COPY optional manual 

end 

set is ALL-BOOKS 

owner is SYSTEM 

member is BOOK 

end 

set is COLLECTION 

owner is BRANCH 

member is BOOK_COPY manual optional 

end 

The subschema is a subset of the schema and corresponds to the ANSI/SPARC 

external schema. The subsetting of the schema is achieved by omitting from the 

subschema one or more data-items in a record, one or more record types, or one or 

more set types. In addition, aliases could be used for data-items, records, or sets. 

Furthermore, the data-items in the subschema may be given different data types from 

those defined for the corresponding data-items in the schema. 

8b7 DBTG Data Manipulation Facility 

The DBTG proposal included a data manipulation facility or language (DML). The 

facility included procedural statements, status and currency indicators, special regis¬ 

ters, and conditions. The intent was to provide a number of operations or commands 

that could be embedded in a host language; the proposed host language was COBOL. 

For discussion here, we use a Pascal-like language as the host language. Before 

giving the details of the commands we consider some of the concepts used in the 

DBTG proposals to facilitate the understanding of the operations performed by the 

DBMS. 

8.7.1 Run Unit 

Run unit is a DBTG term that refers to each process or task (a program in execution 

is a process) that is running under the control of the DBMS. The process may be a 
user’s application program containing DML commands or an interactive session with 

a user. Two or more users’ processes may be concurrently executing the same appli¬ 

cation program or may be in an interactive session via on online terminal under the 

control of a teleprocessing monitor. The DBMS maintains separate records of the 

environment of each such run unit. An area of storage is set aside to provide an 

independent work space for each run unit. This work space is called the user work 

area (UWA). The UWA contains the processing environment of the run unit; the 

program being executed may be shared. 
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8.7.2 Currency Indicators 

Each run unit must be allowed to access records that are part of the logical structure 

known to the run unit via its subschema. For each record type known to the run unit, 

the DBMS maintains a marker to indicate the current record position during the 

execution of the run unit. These record position markers or pointers are called cur¬ 

rency indicators. 
The DBMS maintains a number of currency indicators for each run unit. For 

each record type known to the run unit, there is a currency indicator called the 

current record of a record type. The currency indicator for a record type points to 

the record occurrence of the record type that was most recently referred by the most 

recent successfully executed DML command. For each set type known to a run unit 

there is an additional currency indicator called the current record of a set type. The 

currency indicator for the set type points to the record in the set type that was last 

referred by a successfully completed DML command. The currency indicator for the 

set type may be pointing to the owner record occurrence or member record occur¬ 

rence, depending on the operation last performed. In case of a singular set, the null 

currency indicator for the set implies that the system is the owner. The most recently 

referred record by the last DML command executed successfully is also indicated by 

the current of the run unit. 

The number of currency indicators associated with each run unit is, thus, one 

more than the number of record types and set types known to the run unit. The 

currency indicator for a particular set type or record type changes after a successful 

completion of the DML command that referred it, unless the command specified that 
one or more indicators remain unchanged. 

Any currency indicator may have a null value if no reference to the correspond¬ 
ing record type or set type has been made. 

8.7.3 Database Status Registers 

In addition to the currency indicators, the DBMS maintains, for each run unit, a 

number of status indicators for the user’s application program. The term used by the 

DBTG for these indicators is special registers; however, in reality these are not 

hardware registers. These status indicators, being part of the environment of the run 
unit, are maintained in the work area for the run unit (i.e., the UWA). 

• DB-Status: This is the special register used by the DBMS to store the 

appropriate database status indicator during the execution of any DML 

command that refers to the database. The user program can access the DB- 

Status, but only the DBMS can change it. For our purposes here, we will 

assume that the DBMS places the value 0 into this register after the successful 

completion of a DML command. Thus, when the end-of-data condition is 

encountered during the sequential retrieval of a record type, the value returned 
in the DB-Status register will be nonzero. 

• DB-Set-Name: When an error is detected during the execution of a DML 

command that refers to the database, the DBMS uses this register to store the 
name of the set type involved in the command. 
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• DB-Record-Name: This register is used by the DBMS to store the name of the 

current record type after the unsuccessful execution of a DML command that 

refers to the database. 

8.7.4 Record Templates 

The work area for a run unit, in addition to the above, contains storage space for 

each record type known to the run unit. Thus, for the record type CLIENT known 

to a run unit, a storage space is reserved in the work area; the name of this storage 

space is CLIENT. This storage for CLIENT is made up of the space for each data- 

item declared for the record type in the subschema used by the run unit. The names 

of the data-items in this space are the corresponding ones in the record type. The 

application program can use this space as a record template for data manipulation. 

8.7.5 DML Commands 

Here we give a list of DML commands and the operations performed by them. These 

commands, or a variation of them, are usually available in the DML of many DB¬ 

MSs based on the DBTG model. We examine the usage of these commands in Sec¬ 

tion 8.8. 

• Find: Locates the required occurrence of an existing record. 

• Get: Accesses a record occurrence specified by the currency indicator of the 

record and places it into the template area for the record type in the UWA of 

the run unit. 

• Modify: Changes or updates the value of one or more data-items in the current 

record of the run unit. 

• Store: Causes a record to be stored from the template into the database. 

• Erase: Destroys or removes one or more records from the database. 

• Connect: Causes the current record stored in the database to become a member 

of one or more sets, wherein the record type of the record is defined as a 

member in the subschema. 

• Disconnect: Removes the current record of the run unit from one or more sets, 

resulting in the discontinuance of one or more memberships. 

• Reconnect: Removes the current record of the specified type from its existing 

set occurrence of the specified set type and connects it to the current set type. 

8.8 Database Manipulation 

To illustrate these DML statements we will consider and application program for a 

clerk at a library circulation desk. He or she is involved in the day-to-day work with 

only a portion of the database. The application program contains a subschema for 
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Figure 8.26 Data structure diagram for the subschema. 

that portion of the database relevant to this user. We give the data structure diagram 

for this application in Figure 8.26 and the corresponding subschema below. 

Subschema name is Circulation 

type BOOK-COPY = record 

CallJSIo: string; 

Copy^No: integer; 

Branch-Id: string; 

Current-Status: string; 
end 

type CLIENT = record 

Client—No: string; 

Name: string; 

Address: string; 
end 

type BOOK_DUE = record 

Call—No: string; 

Copy-No: integer; 

Client-No: string; 

DueJDate: string; 
end; 

set is BORROWED 

owner is CLIENT 

member is BOOK-DUE automatic mandatory 
end 

set is BOOK-COPY-LENT 

owner is BOOK-COPY 

member is BOOK-DUE automatic optional 
end 

The DBTG proposal allows certain differences in the description of data be¬ 

tween the schema and subschema, the DBMS performing the required transforma¬ 
tion. For our purpose here, we used the same data descriptions as the schema 
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Figure 8.27 Database contents. 

234 Smith Lynn 

234 Klaf Revere 

236 Allard Salem 

CLIENT 

1234 1 234 DEC 1 

1237 1 234 DEC 1 

1235 1 236 DEC 8 

1236 1 236 DEC 11 

1234 2 236 DEC 11 

BOOK_COPY_LENT 

1234 1 Lynn LENT 

1234 2 Revere LENT 

1235 1 Salem LENT 

1236 1 Salem LENT 

1237 2 Lynn LENT 

1237 1 Salem LENT 

1238 1 Lynn IN 

1238 2 Revere IN 

1238 3 Salem IN 

BOOK_COPY 

The database contains the information for the records CLIENT, BOOK_COPY, 

and BOOK-DUE as shown in Figure 8.27 
The DBMS maintains a currency indicator for each of the record types and set 

types and one for the run unit. We give these indicators in the form of a table in 

Figure 8.28. The initial values of the currency indicators for a run unit that uses the 

subschema shown above is given in the table. In this case there is one currency 

indicator for each of the record types BOOK-COPY, CLIENT, and BOOK—DUE; a 

currency indicator for each of the set types BORROWED and BOOK-COPY-LENT; 

in addition, there is an indicator for the run unit. The null values indicate that the 

database has not been accessed. 

Figure 8.28 Initial values for the currency indicator for run unit using subscheme Circulation. 

Indicator Current Value 

Run unit null 

BOOK-COPY null 

CLIENT null 

BOOK-DUE null 

BORROWED null 

BOOK-COPY-LENT null 
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8.8.1 Operations on Records 

Locating a Record and Setting the Currency Indicators 

The find command is used to set the currency indicators and establish the specific 

occurrence of a record type for subsequent operations on the database. The DBTG 

proposal offered seven formats for specifying the record selection in the find com¬ 

mand; we will use only a few of these. When a find command is successfully exe¬ 

cuted, the currency indicators for the run unit, the record type of the record, and the 

set type in which the record is either an owner or a member are updated. Conse¬ 

quently, the execution of the following statements will change the currency indicators 

as shown in Figure 8.29. The first statement sets the Client-No field of the UWA 

record template to the value 234 and the second statement locates the record type 

CLIENT occurrence in the database such that the value of that record occurrence for 
the data field Client-No is 234. 

Client-No := 234; 

find any CLIENT using Client-No 

Retrieving a Record 

Once a record has been located with the find command it could be retrieved using 

the get command. Therefore, the find command sets the currency indicators; the get 

command retrieves the data from the database and moves it into the record template 

in the UWA. To retrieve the address of a client with a Client-No of 234, we first 

locate the record occurrence and then move the data for that record occurrence into 

the template area for the record type CLIENT by using the get command. The fol¬ 
lowing statements illustrate these operations: 

Figure 8.29 Find Client-No = 234. 

Indicator Current Value 

Run unit 234 Smith 

BOOK-COPY null 

CLIENT 234 Smith 

BOOK-DUE null 

BORROWED 234 Smith 

BOOK-COPY-LENT null 
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Client-No := 234; 

find any CLIENT using Client-No 

get CLIENT; (* move values into the scratch area for 

the record type CLIENT in UWA *) 

Locating and Retrieving Duplicate Records 

There could be many records having a given value in a specified data field. These 
could be located using another format or the find command as shown below.: 

find duplicate < record name> using < record data-item> 

The duplicate here indicates that the required record is to have the same value for 
the specified data-item as the current record of that type for the run unit. 

To retrieve all BOOK_COPY at the Lynn branch of the library we could use 

the following sequence of statements. Here we use the DB_Status register provided 

by the DBMS in the while loop. As long as the find duplicate command completes 

itself successfully we execute the statements in the while loop. 

BOOK_COPY.Branch-Id : = Lynn; 

find any BOOK_COPY using BOOK_COPY.Branch-Id; 
while DB_Status = 0 do 

begin 

get BOOK_COPY; 

(* process the record *) 

find duplicate BOOK-COPY using BOOK-COPY .Branch-Id; 
end; 

The order in which the records are retrieved in the above example depends on 
the order in which the records were stored in the database. 

Updating a Record 

The modify statement is used to update the value of one or more fields of a record. 

However, the record occurrence to be updated has to be located before the updating 

operation is performed. To update the value of a data-item in an existing database 

record, we first locate it using the find command with the clause for update to 

indicate to the DBMS that the record may be modified. It is not necessary to modify 

a record located with this clause. However, a record located without this clause may 

not be altered. Once the record occurrence is located, the new values for the fields 

to be modified are assigned to the corresponding fields in the record template. When 

this is done, the modify statement is executed to reflect the modification in the stored 

database. 

To extend the loan period of the book with Call-No = 1234 borrowed by Smith 

with a Client-No = 234 from 12/1 to 12/11, we could use the following statements: 

done : = false; 

Client-No : = 234; 

find for update any BOOK_DUE using Client-No 
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while DB_Status = 0 and not done do 

if Call-No = 1234 then 

begin 

Due-Date : = 12/12; 

modify BOOK_DUE; 

done : = true; 

end 

else find for update duplicate 
BOOK_DUE using CLIENT-No; 

Adding a Record Occurrence 

The store command is used to store a new occurrence of a record type in the data¬ 

base. The new occurrence is first created in the template space for the record type in 

the UWA and then we execute the command: 

store < record type> 

This method allows a single record occurrence to be created and stored at one 

time. The following statements add the new CLIENT Gold to the database: 

CLIENT.Client-No := 237; 

CLIENT.Name := ‘Gold’; 

CLIENT .Address : = ‘Lynn’; 

store CLIENT; 

If the new record occurrence belongs to a record type associated with a set type, 

there must be a mechanism to place the record occurrence in the appropriate set 
occurrence. We discuss this in Section 8.8.2. 

Deleting a Record Occurrence 

An existing record occurrence may be deleted from the data base by use of the erase 

command. However, before the record is deleted, we have to locate it using the find 

command with the for update clause. As before, this informs the DBMS that the 

record may be updated, which in this case means deletion. The following statements 
delete the CLIENT Gold added in the previous example: 

CLIENT.Client-No := 237; 

find for update any CLIENT using CLIENT. Client-No; 
if DB_Status = 0 then 

erase CLIENT 

else error_routine; 

In this example, we use the DB_Status register to verify that the find operation 
was successfully completed before executing the next statement. 

In the case where a record occurrence to be deleted is associated with one or 

more set occurrences (obviously of different types) as an owner, appropriate opera¬ 

tions must be carried out on the members of these sets before the record is deleted. 

One of the actions could be to move the member record occurrences to other set 
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occurrences of the same set types (if the membership retention status for the member 

record type is mandatory or optional), or to remove the member record occurrences 

(if retention status is optional). If these operations are not performed, the DBMS will 

delete the record and the members of the sets of which the record is an owner would 

also be deleted or removed from the sets before the actual deletion. The erase state¬ 

ment has options that can be included to indicate the extent of deletion to be per¬ 
formed by the DBMS. 

8.8.2 Operations on Sets 

The DBTG set construct allows related records to be stored as a set. This construct 

also allows records to be retrieved via their association in one or more set types. A 

format of the find command can be used to locate the members in a set once we have 

located the owner record occurrence. Conversely, another format of the find com¬ 

mand can be used to locate the owner record occurrence once the member record 

occurrence has been located. 

Locating Records via Sets 

To locate a member record occurrence of a member record type in a set, we first 

locate the appropriate set occurrence by locating the owner record occurrence. Once 

the owner record occurrence is located, we can locate the first member record occur¬ 

rence of a given member type by the following format of the find statement: 

find first <member record type> within <set type> 

The following statements locate the first BOOK_DUE by CLIENT 234 in the 

set occurrence of set type BORROWED owned by 234. The first find statement lo¬ 

cates the owner record occurrence and also sets the currency indicator for the set type 

BORROWED. The second find statement locates the first member occurrence of the 

record type BOOK_DUE. 

CLIENT. Client-No : = 234; 
find any CLIENT using CLIENT.Client-No; 

find first BOOK-DUE within BORROWED; 

To locate all the books borrowed by the CLIENT 234 we could use the follow¬ 

ing program segment: 

CLIENT.CLIENTJ\!o : = 234; 

find any CLIENT using CLIENT .Client-No; 

find first BOOK-DUE within BORROWED; 

while DB_Status = 0 do 

begin 

(* process the current member record *) 

find next BOOK-DUE within BORROWED; 

end 
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In this example we located the first member record occurrence by the find first 

within statement and the subsequent member record occurrences using the find next 

within statement. The order in which the members are located depends on the order 

specified for the insertion of the members in the set definition. 

The clerk at the circulation desk, in addition to checking out the books that have 

been borrowed by a client, can identify the branch from which a particular copy of 

a book was borrowed. The following program segment locates and retrieves the name 

of the branch from which client 234 borrowed the first book. 

CLIENT .Client-No := 234; 
find any CLIENT using CLIENT.Client-No; 

find first BOOK_DUE within BORROWED; 

find owner within BOOK-COPY-LENT; 

get BOOK_COPY; 
display (‘Branch_Id is’, BOOK-COPY .Branch-Id); 

In this example, we located the first BOOK_DUE, representing the first book 

borrowed by 234 as before. After locating this book we located its owner in the set 

BOOK-COPY-LENT. The latter owner is an occurrence of the record type BOOK_ 

COPY containing the branch information. 

The find first within and the find next within commands for locating members 

of a set could be used with a singular set in exactly the same manner. However, 

since there is only one occurrence of a singular set of a given set type and it is 

owned by the system, there is no need to locate the owner record occurrence before 

issuing the find first command. 

Set Manipulation 

The DBTG data manipulation facility proposed a number of operations for manipu¬ 

lating sets. For instance, if a member record type is defined to have manual optional 

membership in a set type, the user could place a record occurrence of the record 

record type in a set occurrence. The user could also remove it from a set occurrence 

and then place it, if required, in another set occurrence at some later time. 

For discussion purposes in this section, consider the subschema below, used by 

a clerk in the acquisition department of the library. The acquisition section of a 

library procures copies of new or existing books and assigns them to one or more 

branches; it may also transfer a copy of a book from one branch to another and 
remove a copy of a book from circulation. 

Subschema name is Acquisition 

type BOOK = record 

Author: string; 

Title: string; 

Call-No: integer; 

end 

type BOOK_COPY = record 

Call-No: integer; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string; 

end 



8.8 Database Manipulation 415 

set is COPY-STATUS 

owner is BOOK 

member is BOOK_COPY optional manual 
end 

type BRANCH = record 

Br-Name: string; 

Address: string; 

Phone-No: string; 
end 

set is COLLECTION 

owner is BRANCH 

member is BOOK_COPY manual optional 
end 

Manual Set Manipulation 

Let us see how to add a new title, Anne of Green Gables by Montgomery, to the 

collection. The steps involved are the following: 

1. Add a record occurrence for the new title to the record type BOOK. 

2. Add a record occurrence to the record type BOOK_COPY for every copy that 

is acquired. 

3. Insert the newly created occurrences of BOOK_COPY into the COPY-STATUS 

set occurrence, where the newly inserted occurrence of BOOK is the owner. 

The first step is performed using the following statements: 

BOOK.Author : = ‘Montgomery’; 

BOOK .Title := ‘Anne of Green Gables’; 

BOOK.Ca/LJVo : = 1238; 

store BOOK; 

Assuming that three copies are acquired and that one copy is to be assigned to 

each of the three branches of the library, the following statements perform this step. 

BOOK-COPY .Call-No : = 1238; 

for i : = 1 to 3 do 

begin 
BOOK_COPY.Copy-No := i; 

case i of 
l:BOOK_COPY.Branch-Id := ‘Lynn’; 

2:BOOK_COPY.Branch-Id := ‘Revere’; 

3:BOOK_COPY.Branch-Id \= ‘Salem’ 

end 
BOOK_COPY.Current-Status := ‘in transit’; 

store BOOK_COPY; 

end 

Note: In the above example, we have embedded the DML statements in an 

application program in a high level language. 
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At this point the database contains one record occurrence for the new book and 

three record occurrences, one for each copy of the book. Now we have to place each 

of these three occurrences of the record type BOOK-COPY in the set type COPY- 

STATUS wherein the owner is BOOK = 1238. The DBTG command to insert a new 

member into a set occurrence is the connect command, which specifies the record 

type that has to be inserted into the set type. The currency indicators have been 

appropriately initialized to point to the correct member record type occurrence and 

the correct owner record type occurrence. 
The following statements insert the members of the record type BOOK-COPY 

in the set occurrence of the set type COPY-STATUS wherein the owner is BOOK = 

1238: 

BOOK.Call-No : = 1238; 
find any BOOK using BOOK.Call-No; 

(* establish the pointer for the set type 
COPY-STATUS *) 

BOOK-COPY .Call-No := 1238; 

find any BOOK-COPY using BOOK-COPY.Callao 
retaining currency for COPY-STATUS; 

while DB_Status = 0 do 

begin 
connect BOOK-COPY to COPY-STATUS; 

find duplicate BOOK-COPY using 
BOOK-COPY .Call-No 

retaining currency for COPY-STATUS; 

end 

In the above program segment implementation we used the format of the find 

statement, which suppresses the updating of the currency indicator for the set type 

COPY-STATUS. Without the retaining currency clause, for example, the second 

find statement would have updated the currency indicator for the set type COPY- 

STATUS to point to the record occurrence of the record type BOOK-COPY. The 

reason for this is that the record type BOOK-COPY appears as a member of the set 
type BOOK-COPY-STATUS in the subschema. 

An alternate method of connecting the record occurrences of the record type, 
wherein we locate the owner for each insertion, is given below: 

BOOK.Call-No := 1238; 

BOOK-COPY .Call-No := 1238; 

find any BOOK-COPY using BOOK-COPY.Call-No; 

(* establish the currency indicator for the 

record type BOOK-COPY *) 
while DB-Status = 0 do 

begin 

find any BOOK using BOOK.Call-No; 

(* establish the currency indicator for the 

set type COPY-STATUS *) 

connect BOOK-COPY to COPY-STATUS; 

find duplicate BOOK-COPY using 

BOOK-COPY. Callao; 
end 
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The reason we do not use the retaining clause in this case is that the find state¬ 

ment for the record type BOOK will set the currency indicator of the record type 

BOOK as well as the set type COPY-STATUS and run unit. However, it will not 

update the currency indicator for the record type BOOK_COPY. 

We can combine the operation of storing the record occurrence for BOOK_ 

COPY with connecting the occurrence in the appropriate set occurrence in the set 

type COLLECTION, as illustrated by the following program segment: 

BOOK.Call-No : = 1238; 

BOOK_COPY.Call-No := 1238; 

for i : = 1 to 3 Jo 

begin 
BOOK_COPY.Copy-No : = i; 

case i of 

1 .BOOK-COPY.Branch-Id : = ‘Lynn’; 

2:BOOK_COPY.Branch_Id : = ‘Revere’; 

3:BOOK_COPY.Branch-Id \= ‘Salem’ 

end 
BOOK-COPY .Current-Status ‘in transit’; 

store BOOK_COPY; 

BRANCH.fir_JVame := BOOK_COPY.Branch-Id; 

find any BRANCH using BRANCH.Br-Name; 

(* establish the pointer for the set type 

COLLECTION *) 

connect BOOK_COPY to COLLECTION; 

end 

An occurrence of a record type declared in the set definition to be an optional 

member of a set could be removed using the disconnect statement. However, before 

this statement is issued the currency indicator for the record type must be updated to 

point to the specific occurrence of the record type that is to be removed from the set 

occurrence. The currency indicator of the set type must also be updated to point to 

the owner record occurrence of the set type wherein the record is a member. 

To remove the Copy—No — 3 of the book with Call—No = 1238 from the set 

occurrence of the set type COPY-STATUS, we could use the following statements: 

done : = false; 
BOOK .Call-No\= 1238; 
find for update any BOOK using BOOK .Call-No; 

(* establish the currency indicator for the set type 

COPY-STATUS *) 

find first BOOK_COPY within COPY-STATUS; 

(* now find its member until Copy-No = 3 is found then 

disconnect it *) 

while DB_Status = 0 and not done do 

if BOOK-COPY.Copy-No = 3 then 

begin 
disconnect BOOK_COPY from COPY-STATUS; 

done : = true; 

end 
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else 
find for update next BOOK_COPY within 

COPY-STATUS; 

The above program segment removes the record occurrence from the set occur¬ 

rence, although the record occurrence remains in the database. If we want to delete 

this record occurrence from the database, we have to issue the erase command after 

the record is disconnected from the set. 

The following example illustrates the disconnection of a record from one set 

occurrence, followed by its reconnection in another set occurrence; both set occur¬ 

rences are of the same set type. The program segment enables the acquisition clerk 

to transfer the Copy-No = 3 of the BOOK 1238 from the Salem to the Lynn branch. 

BOOK .Call-No\= 1238; 

find any BOOK using BOOK .Call-No; 
done : = false; 

find for update first BOOK_COPY within COPY-STATUS; 

while DB_Status = 0 and not done do 

if BOOK-COPY .Copy-No = 3 then 
begin 

done : = true; 

BOOK-COPY .Branch-Id : — ‘Lynn’; 
end 

else 

find for update next 

BOOK_COPY within COPY-STATUS; 
if done then 

begin 

BRANCH.Br-Name ‘Lynn’; 

find any BRANCH using BRANCH.fir Name; 
//DB_Status = 0 then 

reconnect BOOK_COPY to COLLECTION 
else 

error routine 1; 
end 

else 

error routine 2 

In this example, we first find the correct copy of the book via the set COPY- 

STATUS which has as its owner the occurrence of the record type BOOK with BOOK. 

Call-No = 1238. We locate the member of this set with the for update clause, since 

we will change the BOOK-COPY.BRANCH-Id. Once this member is located, we 

locate the appropriate owner in the set COLLECTION, which in this case is the 

record occurrence with BRANCH.Br_Name = ‘Lynn’. The successful find any 

BRANCH operation will set the currency indicators for the set type COLLECTION 

as well for the record type BRANCH to point to the BRANCH.fir-Name = ‘Lynn’. 

The reconnect operation then removes the BOOK_COPY occurrence from its current 

owner (Salem branch) and reconnects it to the Lynn branch. We illustrate the need 

for an error routine to handle the situation in which the DBMS could not locate the 

appropriate record occurrence, such error routines, when the appropriate data base 
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status registers are not set to their successful values, should be used in any applica¬ 

tion programs. For simplicity, we have omitted these tests in our discussion. 

Automatic Set Manipulations 

The sets BORROWED and BOOK-COPY-LENT have been defined in the schema 

and subschema with the automatic insertion clause. The retention clause is mandatory 

for the former set and fixed for the latter one. Thus, a new record occurrence of the 

record type BOOK—DUE is inserted automatically into the sets BORROWED and 

BOOK-COPY-LENT when the occurrence is created using the store operation. To 

ensure that the newly created record about to be stored is inserted in the correct 

occurrence(s) of the owner type record(s), the currency indicator(s) for the set type(s) 

must point to the appropriate owner record occurrence(s). 

Suppose CLIENT 234 wants to borrow the newly acquired copy of the book 

Anne of Green Gables. The circulation clerk application program will create a new 

occurrence of the record type BOOK_DUE in the UWA; locate the record occurrence 

for the CLIENT and the BOOK_COPY; and then issue the store operation, which 

will cause the DBMS to automatically connect the new record occurrence of type 

BOQK_DUE to the two sets. The portion of the application program that performs 

these operations is given below. Here we first locate the record occurrence of the 

record type CLIENT with a Client-No — 234. Subsequently, the record occurrence 

of the record type BOOK-COPY is located with the update clause. These two record 

occurrences will be the owner in the two set occurrences in which a new occurrence 

of BOOK—DUE will be inserted. We create this new occurrence of the BOOK—DUE 

in the corresponding record template (assume that DUE_DATE is a predefined func¬ 

tion that returns the due date). Finally, the new record is inserted in the database 

with the store statement, which also inserts it in the two sets indicated by the cur¬ 

rency indicators. 

CLIENT.Client-No : = 234; 

find any CLIENT using CLIENT.Client-No; 

BOOK_COPY.Ca/L2Vo : = 1238; 

BOOK-COPY.Branch-Id : = ‘Lynn’; 

find for update any BOOK—COPY using 

BOOK-COP Y.Ca//_/Vo, 

BOOK-COPY. Branch-Id; 

BOOK— COPY.Current-Status := ‘lent’; 

BOOK-DUE.Ca/LjVo : = BOOK-COPY.Call-No; 

BOOK—DUE.Co/?y_yVo := BOOK-COPY.Copy-No; 

BOOK— DUE.Client-No := CLIENT.Client-No; 

BOOK—DUE.Dare : = DUE-DATE; 

store BOOK-DUE; 

The mandatory retention clause for the sets BORROWED means that an occur¬ 

rence of the owner record type CLIENT for the set could not be deleted from the 

database when it owns a nonempty set occurrence. Translating this into our library 

example, it means that a client may not discontinue her or his borrowing arrangement 

(membership) from the library until after returning all the items that were borrowed. 
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The CLIENT 234 returning the BOOK 1237 would require the circulation clerk 

to delete the appropriate BOOK_DUE record. The deletion of the record would de¬ 

tach the record from the two set occurrences. In the following application program 

section, we illustrate the location of the member record occurrence of the record type 

BOOK_DUE via the set occurrence of the set type BORROWED owned by CLIENT 

234. We use this member record occurrence of BOOK_DUE in locating the owner 

record occurrence in the set BOOK-COPY-LENT and modify the data-item Cur¬ 

rent-Status of the record type BOOK-COPY. Before issuing the erase instruction 

we reestablish the currency indicator of the run unit to the record occurrence of 

BOOK_DUE by locating it as a member in BOOK-COPY—LENT. 

done : — false; 

CLIENT.Client-No : = 234; 

find any CLIENT using CLIENT.Client-No; 

find first BOOK-DUE within BORROWED; 

while DB Status = 0 and not done do 

if BOOK-DUE.Call-No = 1237 then 
done : = true 

else find next BOOK-DUE within BORROWED; 
if done then 

begin 

find for update owner within BOOK COPY LENT; 

BOOK-COPY. CURRENT-Status : = in; 

modify BOOK-COPY; 

find for update first BOOK-DUE within BOOK COPY TENT; 

disconnect BOOK-DUE from BOOK COPY LENT; 
erase BOOK—DUE; 
end 

else 

error routine 

Deletion of an Owner Record Occurrence 

The retention status for the sets BORROWED has been defined as mandatory. An 

attempt, as shown below, to delete the occurrence of the CLIENT 234, which is the 

owner of a nonempty set, will fail until all the members in the set are deleted. 

CLIENT.CLIENT-No : = 234; 

find for update any Client using CLIENT.Client-No; 
erase CLIENT; 

However, if the retention status for the member record type in the set BOOK- 

COPY—LENT had been defined as fixed, an attempt to delete the occurrence of the 

owner record type BOOK-COPY (i.e., the record 1237 2 Lynn LENT) would have 

been successful. When the owner record occurrence is deleted in a set having mem¬ 

ber record types with the fixed retention status, the member record occurrences will 

be deleted as well. Furthermore, if the member records are themselves owner of set 

types with membership retention status fixed, the deletion will be done recursively 

The deletion of the member records would have some very undesirable effects if the 



421 8.10 Summary 

member record occurrences were members of other set types. In such a case, the 

preferable action for the DBMS would be to disconnect these member records from 
the owner record being deleted. 

The retention status for the members of the set BOOK-COPY-LENT has been 

defined as optional. An attempt to delete a record occurrence of BOOK_COPY with 

a nonempty set would be successful. The member record occurrences in the set 

BOOK-COPY-LENT owned by the occurrence of BOOK_COPY are detached from 

the set occurrence prior to the deletion of the owner. These member record occur¬ 
rences would continue to exist in the database. 

8.9 Concluding Remarks 

The NDM as defined in the DBTG was the first formally defined database model and 

led to the implementation of a large number of DBMSs from commercial software 

houses. These systems were designed to run on mainframe and midsize computers. 

The advantage of the model is that the data structure diagrams give the user a 

clear pictorial means of understanding the database structure. The sets and the rela¬ 

tionships between record types involved in the sets are predefined. These predefined 

relationships are usually implemented at the physical level with the use of link struc¬ 

ture. This results in faster access to related records than is possible in the relational 

case using a simple join operation to navigate dynamically through the various rela¬ 

tions. 

The NDM builds indexes on user (DBA) specified key data-items for direct 

access to records or groups of records. Once one of the owner record occurrences is 

located by the use of a selection criterion based on a key, the record occurrences of 

the member record type(s) can be retrieved relatively quickly. 

On the minus side, the query language is procedural and requires the user to 

navigate through the database by specifying sets, owners, and members. This in tum 

means that the user has to be cognizant of the structure of the database. 

Notwithstanding the above, the model continues to be used extensively for cor¬ 

porate databases in many organizations. 

With the current interest in the relational approach, a large number of network- 

based DBMSs are redesigned to offer the user an optional relational interface, thus 

combining convenience for the user and at the same time avoiding some of the inef¬ 

ficiencies of the relational approach. 

Summary 

The network data model represents entities by records and expresses relationships 

between entities by means of sets implemented by the use of pointers or links. The 

model allows the representation of an arbitrary relationship. The DBTG proposal 

places a number of restrictions on the use of the links. 

The basic data definition structure of the DBTG proposal includes records and 

sets. Record types are representations of entity types and are made up of data-items, 

vectors, and repeating groups. 
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A set is a means of representing a one-to-many relationship between record 

types. A set is declared to have one record as the owner record type and one or more 

records as the member record type. One of the constraints imposed by the DBTG 

proposal, for ease of implementation, is that a given record occurrence could be an 

owner or a member in only one occurrence of a set type. This restriction means that 

a many-to-many relationship can only be represented by introducing an intermediate 

record type and representing the many-to-many relationships by two one-to-many 

relationships. 
A set type can have an arbitrary number of occurrences. The order of insertions 

of the members in a set occurrence can be specified. The method of insertion of 

members can be automatic or manual. The fate of the member record occurrences in 

the database, when the owner is being deleted, can be specified by the retention 

clause in the set definition as fixed, mandatory, or optional. 

The data manipulation facility of the DBTG proposal uses the concept of cur¬ 

rency indicators to keep track of the records involved in the operations. The basic 

method of initializing the currency indicators and identifying records and sets is by 

means of the find command. Having initialized the currency indicator, other opera¬ 

tions like connect, disconnect, erase, get, modify, reconnect, and store can be exe¬ 

cuted to manipulate the data. 

network data model (NDM) sorted current of the run unit 
intersection record system default special register 
connection record automatic record template 
cycle manual find 
single-level cycle fixed get 
multilevel cycle mandatory modify 
loop optional store 
data-item structural constraint erase 
data aggregate set selection connect 
vector singular set disconnect 
repeating group system reconnect 
DBTG set run unit duplicate 
order first user work area (UWA) for update 
order last currency indicator find first within 
order next current record of a record type find next within 
order prior current record of a set type retaining currency 

Exercises 

8.1 A school board or district has a number of schools under its jurisdiction. Each school has 

students and teachers. Teachers have certain qualifications and may have taught in other 

schools. Some teachers can teach in more than one school; however, a student attends only 

one school. Show how you would model the school system using the network model. 
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8.2 A school board has a number of committees. The members of the committees are the 

teachers and the parents of the students in the school system. Teachers are parents too, and 

their children attend school. Add parents and committees to the school system you modeled 

in Exercise 8.1. 

8.3 Could you have cycles in the network implementation of the school system discussed in 

Exercises 8.1 and 8.2? Give examples if there are any. 

8.4 Consider the ENROLLMENT relationship of Figure A between student and course, where 

grade is the grade of a student in a particular course. Model this relationship using the 

network model. 

Figure A A relationship between STUDENT and COURSE. 

8.5 Write the schema for the school system described in Exercise 8.1. 

8.6 Write the following queries for the school system of Exercise 8.1: 

(a) Find all the teachers who teach in Riverdale High School. 

(b) Find all schools where teacher Joe Doe teaches. 

8.7 Consider the relations defined below: 

SUPPLUiR(Supplier#,Company_Name,City) 

PARTS! Part#, Weight) 

SUPPLY_PARTS( Supplier# .Part#) 

PROJECTSfPro/'ec/#, Part#, Quantity) 

ORDERS! Part#, Supplier# ,Date^of-Delivery) 

Construct the corresponding network model and write the schema for the model. Use the 

schema description to write the following queries using the DML described in this chapter: 

(a) Find all parts supplied by supplier!. 

(b) Find the cities where supplier, is located. 

(c) Find another supplier who supplies at least one part supplied by supplier,. 

(d) Find all the projects for which supplier, might supply. 

(e) Find all suppliers who can supply part,. 

(f) Find all projects where part, is used. 

8.8 Which of the following statements are true for the network model? 

(a) A record type can be both an owner and member in the same set type. 

(b) A record type can be both an owner and member in the same set occurrence. 

(c) A record type cannot be an owner in more than one set type. 
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(d) A set occurrence is empty when it has no member record occurrences. 

(e) A set type can have only one record type as its member. 

(f) A set can represent only a certain relationship between entities; however, not all 

possible relationships between entities can be conveyed through a set. 

(g) Data independence and data integrity suffer due to the set concept-. 

8.9 Consider a network database with a schema corresponding to the data structure diagram of 

Figure 8.22, where all the sets have an automatic fixed membership status. Can data ever be 

inserted in such a database? Amplify your answer with adequate explanations. 

8.10 Draw the data structure diagram of the complete library database system discussed in this 

chapter and comment on the statement that it is a purely hierarchical structure. 

8.11 Consider the database for the UHL that we discussed in Chapter 2. Let us add to the 

database the requirement of keeping the statistics on the performance of the various lineups 

during a season. This extension is illustrated in Figure B. A lineup is the group of players 

from a franchise that plays together for certain shifts during a game. There can be a number 

of different lineups used during a game and lineups may change from game to game during a 

season. Here we have added the intersection record LINEUP and the sets P_L and Fr_L. 

Thus, the relationship between a player and lineup is one to many; similarly the relationship 

between a lineup and the franchise is also one to many. Give the modified schema for the 

database and write a pseudocode program to find the best lineup for each player. 

Figure B Extended network model for UHL database. 
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8.12 The following is an incomplete list of DBMSs marketed by various software houses. The 

names are registered trademarks of the respective companies. Choose one of these DBMSs 

and describe it in terms of the generalized features described in this chapter. 

DBMS Digital Equipment Coip 

DMS-11 Unisys 

DMS-90 Unisys 

DMS-1100 Unisys 

IDMS Cullinet 

IDS II Honeywell 

IMAGE Hewlett-Packard 

TOTAL Cincom 

Bibliographic Notes 

Several commercial database management systems based on what was to be the network ap¬ 

proach were implemented in the late 1960s. The DBTG proposal evolved from these systems. 

The system that had the most influence on the proposal was the Integrated Data Store (IDS) 

system at General Electric (Bach 64). The IDS was the result of Bachman’s early work and 

was developed under his supervision. Bachman is also credited with developing the data struc¬ 

ture diagram for representing records and links used in the network data model (Bach 69). The 

data structure diagram, like the more recent E-R diagram, is an aid in the logical design of a 

database system. 

The Database Task Group (DBTG) was set up as a special group within CODASYL. The 

DBTG group issued a final report in 1971 and this was the first standard specification for a 

database system. A number of commercial database management systems were based on this 

report. However, it has not been accepted as a standard by ANSI (American National Stan¬ 

dards Institute). The DBTG was reconstituted as the Data Description Language Committee 

(DDLC), which produced a revised version of the scheme data description language (DDL). 

The ANSI-X3H2 committee received this report, modified it to some extent, and issued the 

1981 DDL draft. This, too, has not been accepted to date because the draft lacks a data 

manipulation language to go with the DDL. In 1984, the X3H2 committee proposed NDL, a 

standard network database language based on the original DBTG specification. This too has 

yet to be standardized. 

The DBTG proposal is discussed in the CODASYL DBTG 1971 report (CODA 71) 

and by Olle (Olle 78). Modifications to the original proposal and the DDL are presented in 

(Coda 78). 

Since the DBTG proposal of 1971 there have been various modifications, not only by 

standards committees but also by software houses offering commercial DBMSs based on this 

model. Some examples are the DMS-1100 from Unisys (previously called Sperry Univac and 

which recently has merged with Burroughs) (Sper), TOTAL froni Cincom (Cine), and IDS II 

from Honeywell (Hone). Some of these systems are discussed in textbooks by Cardenas (Card 

85), Date (Date 86), Kroenke (Kroe 83), Tsichritzis and Lochovsky (Tsic 77), and Ullman 

(Ullm 82). 
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Like the network data model, the hierarchical data model uses records and pointers 

or links to represent entities and the relationships among them. However, unlike the 

network data model, the data structure used is a rooted tree with a strict parent-to- 

child ordering. We are not going to concentrate on any one of the commercially 

available DBMSs based on the hierarchical model, although the discussion is some¬ 

what oriented toward features included in IBM’s IMS database management system, 

the most prominent system of this type. 

9.1 The Tree Concept 

Trees in the form of a family tree or genealogical tree trace the ancestry of an indi¬ 

vidual and show the relationships among the parents, children, cousins, uncles, 

aunts, and siblings. A tree is thus a collection of nodes. One node is designated as 

the root node; the remaining nodes form trees or subtrees. 

An ordered tree is a tree in which the relative order of the subtrees is signifi¬ 

cant. This relative order not only signifies the vertical placement or level of the 

subtrees but also the left to right ordering. Figures 9.1a and b give two examples of 

ordered trees with R as the root node and A, B, and C as its children nodes. Each 

of the nodes A, B, and C, in turn, are root nodes of subtrees with children nodes 

(D, E), (F), and (G, H, J), respectively. The significance in the ordering of the 
subtrees in these diagrams is discussed below. 

Traversing an ordered tree can be done in a number of ways. The order of 

processing the nodes of the tree depends on whether or not one processes the node 

before the node’s subtree and the order of processing the subtrees (left to right or 

right to left). The usual practice is the so-called preorder traversal in which the 

node is processed first, followed by the leftmost subtree not yet processed, as shown 
below: 

Procedure Preorder (node); 

process node 

left_child : = leftmost child node not processed yet 
while left_child + null do 

begin 

Preorder (left_child) 

lefLchild : = leftmost child node not 

processed yet 
end 

end 

The preorder processing of the ordered tree of Figure 9.1a will process the nodes 
in the sequence R, A, D, E, B, F, C, G, H, J, 

The significance of the ordered tree becomes evident when we consider the 

sequence in which the nodes could be reached when using a given tree traversing 

strategy. For instance, the order in which the nodes of the hierarchical tree of Figure 

9.1b are processed using the preorder processing strategy is not the same as the order 

for Figure 9.1a, even though the tree of part b contains the same nodes as the tree 
of part a. 
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Figure 9.1 Ordered tree where (c) illustrates hierarchical pointers and (d) illustrates child/sibling 
pointers. 

R 

Child pointer 

Sibling 

pointer 

D- F 

(d) 

Root of tree 

► C 

f 
G- - >-H- J 

Two distinct methods can be used to implement the preorder sequence in the 

ordered tree. The first method, shown in Figure 9.1c uses hierarchical pointers to 

implement the ordered tree of part a. Here the pointer in each record points to the 

next record in the preorder sequence. The second method, shown in part d uses two 

types of pointers, the child and the sibling pointers. The child pointer is used to 

point to the leftmost child and the sibling pointer is used to point to the right sibling. 

The siblings are nodes that have the same parent and the right sibling of a node is 

the sibling that is immediately to the right of the node in question. 
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9.2 Hierarchical Data Model 

The hierarchical data model (HDM) uses the tree concept to represent data and the 

relationship among data. The nodes of the tree are the record types representing the 

entity sets and are connected by pointers or links. The relationship between the en¬ 

tities is represented by the structure of the resulting ordered tree. A pointer or link 

as in the network data model represents a relationship between exactly two records. 

However, in the hierarchical model this relationship, as in the genealogical tree, is 

that of a parent and child. Furthermore, the hierarchical data model restricts each 

record type to only one parent record type. A parent record type can have any num¬ 

ber of children record types. Two record types in a hierarchical tree can have at most 

one relationship between them and this relationship is that of one-to-one or one-to- 
many. 

The hierarchical data model has the following constraints: 

• Each hierarchical tree can have only one root record type and this record type 

does not have a parent record type. 

• The root can have any number of child record types, each of which can itself be 

a root of a hierarchical (sub-) tree. 

• Each child record type can have only one parent record type; thus a many-to- 

many relationship cannot be directly expressed between two record types. 

• Data in a parent record applies to all its children records. 

• Each occurrence of a record type can have any number of occurrences of each 
of its child record types. 

• A child record occurrence must have a parent record occurrence; deleting a 

parent record occurrence requires deleting all its children record occurrences. 

• A hierarchical tree can have any number of record occurrences for each record 
type at each level of the hierarchical tree. 

In the implementation of the hierarchical data model the pointers are normally 
from a parent record to a child record only. 

The hierarchical database can be represented using a structure similar to the data 

structure diagram used in the network data model. The records are represented by 

rectangular boxes and the relationships between records are represented by arcs point- 

ing from a root toward the leaf. The arcs are not labeled, since the relationship is 

always that of a parent and a child. Such structure diagrams are called tree structure 
diagrams, definition trees, or hierarchical definition trees. 

Figure 9.2 gives the E-R diagram of a part of the library example discussed 

earlier in Chapter 8. Figure 9.3 represents the hierarchical definition tree for the 

library database organized as a rooted tree with the root node being the record type 

LIBRARY. The relationship that can be represented by the tree is either one to one 

or one-to-many. In Figure 9.3 the parent record type BOOK of the hierarchical tree 

type BOOK-TREE has the child record type BOOK_COPY. The parent record type 

CLIENT of the hierarchical tree type CLIENT-TREE has BOOK_DUE as its child 

record type. The parent record type BRANCH of the hierarchical tree type 

BRANCH-TREE has the children record types DEPT_SECTION and EMPLOYEE. 
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Figure 9.2 E-R diagram for the library example. 

Figure 9.3 Library database using the hierarchical model. 
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The record types DEPT_SECTION and EMPLOYEE in turn are the parents of the 

record types EMPL-ASSGNMNT (employee assignment) and DS-ASSGND (depart¬ 

ment or section assigned to), respectively. (Some instances of these hierarchical trees 

are given in Figures 9.4, 9.5 and 9.6.) 
A many-to-many relationship can only be represented in the hierarchical data 

model by replication of the record concerned or by the use of virtual records. For 

instance, the many-to-many relationships between a BOOK and CLIENT or between 

DEPT_SECTION and EMPLOYEE, which were represented in the network model 

by introducing an intermediate record type and two sets, are represented in the hier¬ 

archical model by replication of the records or by the use of virtual records. Virtual 

records are basically pointers that point to the actual physical records in the database. 

We discuss virtual records in Section 9.2.1. 
In Figure 9.3, LIBRARY is a dummy parent that holds together the three hier¬ 

archical trees BOOK-TREE, CLIENT-TREE, and BRANCH-TREE. A DBMS on a 

given computer system belonging to a library is supporting that library system, so 

there is no need to actually store a single occurrence of the record type LIBRARY. 

However, these disjointed trees can be considered to be connected to a single occur¬ 

rence of the dummy LIBRARY node, and therefore the database contains a single 

hierarchical tree with this dummy LIBRARY node as the root node. Traversing this 

tree becomes equivalent to going through the entire database. 

If the DBMS were to support the data for more than one library system, the 

LIBRARY node would actually exist and would form the root node of the subtrees BOOK 

TREE, CLIENT-TREE, and BRANCH-TREE. In this case, we would have a forest 

of trees and for each library system supported by the DBMS, there would exist in 

the database a tree with the corresponding library node as the root node. 

Consider the following definitions for the record types BOOK and BOOK_ 

COPY for the records in the first hierarchical tree, BOOK-TREE: 

type BOOK = record 

Author: string; 

Title: string; 

Call-No: string; 
end 

type BOOK_COPY = record 

Call-No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string; 
end 

In Figure 9.4, we give some instances of the hierarchical trees for BOOK- 

TREE. One instance of the tree corresponds to the parent (James Munich 1231) of 

the record type BOOK; it has its child, the record type BOOK_COPY occurrence 

(1231 Copy 1 Lynn Lent). Another instance of this hierarchical tree consists of the 

parent record occurrence (Hugo Les Miserables 1234) and its two children record 
occurrences of the record type BOOK_COPY. 

The record types in the second hierarchy with the root node CLIENT can be 
defined as follows: 
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Figure 9.4 Occurrences of BOOK-TREE hierarchical tree. 

Dickens Hard Times 1232 

1232 Copy 2 Revere Lent 

type CLIENT = record 

Client-No: string; 

Name: string; 

Address: string; 

end 

type BOOK_DUE = record 

Call-No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string; 

Due-Date : string; 

end; 

Figure 9.5 gives two occurrences of this hierarchy. The first tree corresponds to 

the CLIENT Smith who has borrowed two BOOKs with Call-Nos 1231 and 1234 

with the DueJDates of 12/06 and 12/15, respectively. 

Figure 9.5 Occurrences of CLIENT-TREE hierarchical tree. 
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Consider the following definitions for the record types BRANCH, DEPT_ 

SECTION, and EMPLOYEE in the hierarchical definition tree having BRANCH as 

the parent record type: 

type BRANCH = record 

Br-Name: string; 

Address: string; 

Phone^No: string; 

end 

type DEPT-SECTION = record 

Ds-Name: string; 

Room-No: string; 

Phone-No: string; 

end 

type EMPLOYEE = record 

Emp-Name: string; 

Home—Address: string; 

Phone-No: string; 

end 

Some instances of this hierarchical tree are given in Figure 9.6. For example, 

the Lynn branch has the following departments and sections: (DEPT_SECTION) 

Adult Sec (Adult Section), Child Sec (Children’s Section), Acqstn Dept (Acquisition 

Figure 9.6 Occurrences of BRANCH_TREE hierarchical tree. 
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Department), Crcln Dept (Circulation Department), Ref Dept (Reference Depart¬ 

ment) and its employees (EMPLOYEE) are Barry, Harry, Jerry, Larry, and Mary. 

In Figure 9.6 we also show that the Lynn branch has Child Sec as one of its DEPT_ 

SECTION. The Employee Harry is the instance of the record type EMPL_ 

ASSGNMNT assigned to the Child_Sec. Similarly, employee Mary works in the 

Crcln Dept (CD) and Ref Dept (RD). We discuss the method of implementing the 

hierarchical subtrees DSJTREE and EMPLOYEE-TREE and the record types 
EMPL_ASSGNMNT and DS_ASSGND in Section 9.2.3. 

9.2.1 Replication vs. Virtual Record 

The hierarchical model, like the network model, cannot support a many-to-many 

relationship directly. In the network model the many-to-many relationship is imple¬ 

mented by introducing an intermediate record and two one-to-many relationships. 

The fact that a given employee may be assigned to more than one department during 

a work week is one instance of a many-to-many relationship in our library database. 

In the hierarchical model, the many-to-many relationship can be expressed using one 

of the following methods: replication or virtual record. When more than one em¬ 

ployee works in a given department, then for the hierarchical tree with EMPLOYEE 

as the root node we have to replicate the record for the department and have this 

replicated record attached as a child to the corresponding occurrence of the 

EMPLOYEE record type. For example, in Figure 9.6 the Non_print Sec, shown as 

NS, is replicated and each of the replicated record occurrences becomes a child of 

the EMPLOYEE record occurrence for employees Curt, Pat, and Pam working in 

that DEPT_SECTION of the Salem branch. Similarly, if employee Mary is assigned 

to work in the Circulation department as well as the Reference department of the 

Lynn branch, the replication method would require that the record occurrence for the 

employee Mary is duplicated and one of these duplicate copies is included in the 

hierarchical tree occurrence of each of the departments mentioned above. 
Replication of data would mean a waste of storage space and could lead to data 

inconsistencies when some copies of replicated data are not updated. The other 

method of representing the many-to-many relationship in the hierarchical data model 

is to use an indirect scheme similar to the network approach. In the hierarchical 

model the solution is to use the so-called virtual record. A virtual record is essentially 

a record containing a pointer to an occurrence of an actual physical record type. This 

physical record type is called the logical parent and the virtual record is the logical 

child. Each virtual record type has exactly one physical record type as its physical 

parent and one physical record type as its logical parent. In some cases, the virtual 

record is used to contain some information common to the relationship between the 

virtual record’s logical and physical parents. This information is called the intersec¬ 

tion data. The intersection data is concatenated with the information from the logical 

parent, which is an actual physical record indicated by the pointer in the virtual 

record. This concatenated information is made available to the user of the hierarchi¬ 

cal database system. The virtual record scheme provides the hierarchical model with 

limited network capabilities; however, the data retrieval operations are basically of a 

hierarchical nature. For retrieval operations the user or the application program treats 

the database as though the virtual records are actual replications of the relevant log¬ 

ical parents. 
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9.2.2 Expressing a Many-to-Many Relationship 

Let us consider the method that we can use to express the relationship between 

BOOK and CLIENT. As we discussed in Section 8.1.1 this is a many-to-many re¬ 

lationship because the library may have more than one copy (BOOK-COPY) of a 

given title. However, since only one client can borrow a given copy at a given time, 

the relationship between a CLIENT and a BOOK_COPY is one-to-one. 

In the network model we converted the many-to-many relationship between 

BOOK and CLIENT into a one-to-many set between BOOK and BOOK_COPY. We 

then introduced an intermediate record BOOK_DUE to hold the common data be¬ 

tween CLIENT and BOOK_COPY and the two one-to-one sets between CLIENT 

and BOOK-DUE and BOOK-COPY and BOOK-DUE. 

In the hierarchical model we can easily express the one-to-many relationship 

between BOOK and BOOK-COPY as a hierarchy that can be represented by a tree 
as follows: 

tree is BOOK-TREE 

BOOK is parent 

BOOK-COPY is child 

end 

Examples of this hierarchical tree are shown in Figure 9.4. 

Similarly, we can express the one-to-many relationship between a client and the 
items she or he borrows by a hierarchical tree CLIENT-TREE as follows: 

tree is CLIENT-TREE 

CLIENT is parent 

BOOK-DUE is child 

end 

Examples of this hierarchical tree are shown in Figure 9.5. 

Suppose the relationship between a BOOK-COPY and a CLIENT who borrows 
it is expressed by replication as shown in Figures 9.4 and 9.5. The data in BOOK- 

DUE, except for Due-Date, is a duplication of the corresponding data in BOOK- 

COPY. If a virtual record is used for BOOK-DUE, we could indicate this by the 
following definition: 

type BOOK—DUE = record 

{Call-No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string;} 

virtual of logical parent 

BOOK-COPY in BOOK-TREE; 

Due-Date: string; 

end 

This indicates that the data items enclosed in the brackets of the record BOOK_ 

DUE are virtual and are derived from the physical record BOOK-COPY, which is 

defined as the logical parent of the record BOOK-DUE, BOOK-DUE being its log¬ 

ical child. Ihe data item Due-Date in this case is the intersection data in the rela- 
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Figure 9.7 Using virtual records. 

tionship between CLIENT and BOOK-COPY. Note that in the above example, the 

virtual record type BOOK-DUE in the hierarchical tree CLIENT-TREE contains data 

that is derived from a separate physical hierarchical tree, namely BOOK-TREE. 

Similarly, to keep track of which CLIENT has borrowed a given BOOK- 

COPY, we can introduce a virtual record type VIR-CLIENT and a one-to-one rela¬ 

tionship BOOK-COPY-TREE between BOOK-COPY and VIR_CLIENT as follows: 

tree is BOOK-COPY-TREE 

BOOK-COPY is parent 

VIR_CLIENT is child 

end 

type VIR_CLIENT - record 

{ Client-No: string; 

Name: string; 

Address: string;} 

virtual of logical parent CLIENT in CLIENT-TREE; 

end 

Figure 9.7 now includes the modified section of the hierarchical structure dia¬ 

gram of Figure 9.3, showing the many-to-many relationship between BOOK and 

CLIENT. 
The problem with this hierarchy is that to determine the author and title, etc., 

of the volumes borrowed by client Smith, we have to go through the following in¬ 

efficient series of operations: 

• Go from the required occurrence of the record type CLIENT to the first 

occurrence of its child record type BOOK-DUE. 

• Follow the pointer to the logical parent of BOOK-DUE to an occurrence of BOOK 

COPY and note the Call-No. 

• Search the occurrences of BOOK with the same Call-No and retrieve the details 

pertaining to the Author, etc. 

• Repeat for each child occurrence of BOOK-DUE belonging to Smith. 

Such queries can be handled more efficiently if we add another dependent record 

to CLIENT-TREE, such as VIR-BOOK, defined to be virtual of the logical parent 

BOOK as follows on the next page. 
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tree is CLIENT-TREE 

CLIENT is parent 

BOOK_DUE is child 

VIR_BOOK is child 

end 

type VIR_BOOK = record 

{Author: string; 

Title: string; 

Call-No: string;} 

virtual of logical parent BOOK in BOOK-TREE 

end 

We thus establish a logical relationship directly to the BOOK physical record 

and the details about the volumes could be directly accessible from the logical parent 

occurrence of the record type. The final modified hierarchical structure diagram for 

the relationship between BOOK and CLIENT is shown in Figure 9.8 

9.2.3 Another Example of a Many-to-Many Relationship 

Consider the E-R diagram of Figure 9.9 which shows a many-to-many relationship 

between DEPT_SECTION and EMPLOYEE. Suppose that the database is required 

to respond efficiently to queries of the type: 

FIND ALL EMPLOYEES IN DEPARTMENT A. 

FIND ALL DEPARTMENTS WHERE EMPLOYEE X WORKS. 

To respond to symmetrical queries of the above type efficiently, we express the 

many-to-many relationship between DEPT_SECTION and EMPLOYEE in the hier¬ 

archical model using virtual records. The hierarchical structure diagram correspond¬ 

ing to the E-R diagram of Figure 9.9 is shown in Figure 9.10, where F.MPI. 

ASSGNMNT and DS-ASSGND are virtual records with logical parents EM¬ 
PLOYEE and DEPT_SECT10N respectively. 

The tree DSJTREE has as its root node the record type DEPT_SECTION 

and has as its child record a virtual record EMPL_ASSGNMNT. The virtual record 

Figure 9.8 Relationships between BOOK and CLIENT. 
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Figure 9.9 Relationship between DEPT_SECTION and EMPLOYEE. 

EMPL_ASSGNMNT is a logical child of the record type EMPLOYEE, which is its 

logical parent. This virtual record contains the intersection data Hours, which repre¬ 

sents the hours worked during a work week by the employee for a given DEPT_ 

SECTION. The tree DS-TREE and its parent and child record types are defined 
below. 

tree is DS-TREE 

DEPT_SECTION is parent 

EMPL_ASSGNMNT is child 

end 

type DEPT_SECTION = record 

Ds-Name: string 

Room-No: string: 

Phone-No: string 

end 

type EMPL_ASSGNMNT = record 

{Emp-Name: string; 

Phone-No: string;} 

virtual of logical parent 

EMPLOYEE in BRANCH-TREE 

Hours: integer; 

end 

The tree EMPLOYEE-TREE has as its root node the record type EMPLOYEE 

and has as its child record a virtual record DS-ASSGND. The virtual record DS_ 

Figure 9.10 Hierarchical structure diagram corresponding to Figure 9.9. 

DSTREE EMPLOYEE TREE 
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Figure 9.11 
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ASSGND is a logical child of the record type DEPT_SECTION. This virtual record 

contains the intersection data Hours, which represents the hours worked by the em¬ 

ployee during a work week for a given DEPT_SECTION. The intersection data is a 

replication of that in the virtual record EMPL-ASSGNMNT. Unlike the examples of 

the virtual record discussed in Section 9.2.2, the virtual records EMPL_ASSGNMNT 

and DS-ASSGND have as their logical parent a record in the same physical hierar¬ 

chical tree, namely, the BRANCH-TREE of Figure 9.3. 

tree is EMPLOYEE-TREE 
EMPLOYEE is parent 

DS-ASSGND is child 

end 

type EMPLOYEE = record 
Emp-Name: string; 

Home-Address: string; 

Phone-No: string; 

end 

type DS-ASSGND = record 

{Ds-Name: string; 

Room-No: string; 

Phone-No: string;} 

virtual of logical parent 
DEPT-SECTION in BRANCH-TREE 

Hours: integer; 

end 

Figure 9.11 gives some occurrences of the hierarchical trees DS-TREE and 

EMPLOYEE-TREE. The instance of DS-TREE rooted by the Acqstn Dept is shown 

Sample occurrences of DS-TREE AND EMPLOYEE-TREE. 
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to have two occurrences of the dependent record type EMPL_ASSGNMNT. One of 

these contains the intersection data corresponding to employee Jerry and the other is 

for employee Larry. A pointer in each of these records, point to the logical parent. 

The above example is an illustration of a paired bidirectional logical relation¬ 

ship of the hierarchical model. In such a relationship a many-to-many correspon¬ 

dence between two record types is resolved by introducing two virtual records with 

these record types as the logical parents. In the above example, the record types are 

DEPT_SECTION and EMPLOYEE. EMPL_ASSGNMNT is a virtual record that is 

a physical child of DEPT_SECTION and a logical child of EMPLOYEE; DS_ 

ASSGND is a physical child of EMPLOYEE and a logical child of DEPT_ 

SECTION. Each of these virtual record types contains appropriate pointers to the 

logical parents and the intersection data, Hours, may be replicated as we have done. 

The replicated data is stored in the two virtual record types and could lead to incon¬ 

sistencies. Since the DBMS is aware of this controlled redundancy it has the respon¬ 

sibility for ensuring that whenever one of the replicated values in the intersection 

data is changed, its twin value is also changed. 

9.3 Data Definition 

The hierarchical database consists of a collection of hierarchical trees (or set of span¬ 

ning trees) which are described using a database description facility. Figure 9.12 

gives part of the hierarchical definition tree for our library database example. The 

corresponding data definition is given below. The trees described could be actual 

physically stored trees or logical trees derived from the physically stored trees. In 

the latter case, the logical trees can be considered to be user or external views. The 

logical trees are also hierarchical and derived from one or more physical trees and 

could contain virtual records. Defining a new logical tree thus may involve imple¬ 

menting pointers for the virtual records and as such is a reorganization of the physical 

database. Such a reorganization is performed by the DBA. A virtual record in a 

hierarchical tree can be materialized from its logical parent record. The latter may or 

may not be in the same physical hierarchical tree. 

We used a Pascal-like convention to define the database, wherein we introduced 

the tree structure by listing the root of the tree and all its children record types. For 

the sake of clarity and simplicity, we avoided the introduction of implementation- 

related details such as specifying the number and types of pointers. In the commer¬ 

cially available database management products based on the hierarchical data model, 

the data definition requires the specification of these details. 

Figure 9.12 Logical database as viewed by circulation clerk. 
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The ordering of the tree is according to the hierarchical structure diagram. This 

order is represented in the data definition by giving the leftmost child record type 

first. 

Consider the logical database as viewed by the clerk at the circulation desk of 

the library. The hierarchical structure diagram of this view is given in.Figure 9.12. 

The logical database could be described using the description (subschema) given 

below. In this description the fact that some portions of information in the virtual 

record are derived from the logical parent record type is not really required because 

the schema descriptor contains the relevant information; however, we leave this in as 

comments in our descriptors. 

tree is BOOK-COPY-TREE 

BOOK_COPY is parent 

VIR_CLIENT is child 

end 

type BOOK_COPY = record 

Call-No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string; 

end 

type VIR_CLIENT = record 

{Client-No: string; 

Name: string; 

Address: string;} 

(* virtual of logical parent 

CLIENT in CLIENT-TREE;*) 
end 

tree is CLIENT-TREE 

CLIENT is parent 

BOOK_DUE is child 

VIR_BOOK is child 
end 

type CLIENT = record 

Client-No: string; 

Name: string; 

Address: string; 
end 

type BOOK_DUE = record 

[Call-No: string; 

Copy-No: integer; 

Branch-Id: string; 

Current-Status: string;} 

(*virtual of logical parent 

BOOK_COPY in BOOK-TREE;*) 
Due-Date: string; 
end 
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type VIR_BOOK = record 

{Author: string; 

Title: string; 

Call-No: string;} 

(* *virtual of logical parent 

BOOK in BOOK-COPY-TREE;*) 
end 

9.4 Data Manipulation 

To illustrate the data manipulation operations in the HDM, we use the logical data¬ 

base as viewed by the clerk at the circulation desk of the library. The hierarchical 

structure diagram of this view is given in Figure 9.12. The logical database is de¬ 
scribed in Section 9.3. 

9.4.1 User Work Area in the HDM 

For discussion of the data manipulation facility of the hierarchical data model, we 

assume that each user or application program (corresponding to the run unit of the 

DBTG proposal) has associated with it an area of memory. We refer to this area as 

the user work area (UWA). The UWA contains the processing environment of the 

run unit, which includes the following items: 

• Currency indicators: In the case of the HDM we assume that the DBMS will 

maintain, for each hierarchical tree known to the run unit, via its logical 

database description, a set of pointers that indicate the records that have been 

last accessed by the run unit. We further assume that there is an indicator or 

pointer that points to the current record accessed by the run unit. In addition, 

we assume that the database management system maintains the current parent 

record of the current record. We assume that the hierarchical tree is traversed 

using the left-to-right preorder strategy, the ordering of the tree being that in the 

hierarchical structure diagram. Thus, once a record has been selected, the 

subsequent sequential retrieval will use the preorder strategy. 

• Record template: For each record type known to the run unit, the UWA is 

assumed to contain the storage space that can be used as a template for data 

manipulation. 

• Status registers: These are a set of indicators used to store the status of the run 

unit after the execution of a database operation. The run unit can examine these 

registers to determine whether an operation was completed successfully or not. 

For our purposes, we assume that there is a register called DB-Status, which 

will contain at the end of a DBMS operation a value of 0 if the operation was 

completed successfully or an error code if the command was not successful. 
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9.4.2 Basic Data Manipulation 

The basic data retrieval command in the hierarchical data model is the get command, 

which unlike in the network data model need not be preceded by a find command. 

The command retrieves the appropriate occurrence of the record type, places it in the 

corresponding record type template in the UWA, and sets the currency indicators for 

the relevant hierarchical tree. In this instance, the currency indicators will be the 

current record of the run unit and the parent of the current record retrieved. The 

record occurrence to be retrieved is specified by indicating the condition to be met 

by the retrieved record. The hierarchical path to be used for the retrieval may also 

be given to retrieve a record. For instance, the condition specified in the get com¬ 

mand may involve the parent (or one of the grandparents) of the record being re¬ 
trieved. 

The first format of the get command that we will discuss is the get first. This 

format is sometimes called get unique or get leftmost. Note that the hierarchical 

tree is traversed using the preorder scheme. Consequently, the get first command will 

retrieve the first record that meets this condition. The syntax of this format of the get 
command is as follows: 

get first Crecord type> where <condition> 

The where <condition> clause is optional and if it is omitted, the first record 

of the specified record type is retrieved and placed in the corresponding record tem¬ 

plate within the UWA. Once the command is successfully executed, the DB-Status 

register contains a value of 0 and the currency indicators are set. If the command is 

not executed successfully, i.e., if no record exists in the database that satisfies the 
specified condition, the the DB-Status will contain an error code. 

For the sample database given in Figure 9.13b the following statements will 

locate the first record type BOOK_DUE for CLIENT Smith, and if the record is 

successfully located then the values for the data items Call-No and Due-Date are 
displayed: 

get first BOOK_DUE where CLIENT.Name = 'Smith'; 
if DB-Status = 0 then 

display (BOOK_DUE.Ca//_/Vo, BOOK-DUE.Due-Date); 

The above statements for the sample database will display 1231 12/06. 

9.4.3 Sequential Retrieval 

The get next statement is used in the hierarchical database to do sequential process¬ 

ing in preorder. Once the position for a run unit is established in the database with a 

get first statement, the get next statement performs the retrieval in the forward sense. 

If the database contains disjoint hierarchical trees, we assume that the DBMS pro¬ 

vides a dummy record and these disjoint trees are considered the children of the 

DBMS supplied unique dummy root record occurrence. The order of these disjoint 
hierarchical trees is their order in the data definition. For our example, we assume 

that there is a dummy record LIBRARY, which is the root of the hierarchical trees BOOK 
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Figure 9.13 (a) Sample database: BOOK-COPY-TREE; (b) sample database: CLIENT-TREE. 

(a) 

(b) 

TREE, CLIENTJTREE, and BRANCH-TREE. The format of the get next state¬ 

ment is: 

get next <record type> where <condition> 

As in the get first statement, the where clause is optional; the <record type> 

specification is also optional. In case the get first statement appears without any 

options, the retrieval is of the next record in the database in preorder. If the <record 

type> is specified, the retrieval is of the next record of the specified type in the 

preorder. If both the Crecord type> and the where <condition> are included, the 

retrieval is the next record of the specified type that satisfies the <condition>. 

Once we have located the first occurrence of the BOOK_DUE child of Smith, 

we can retrieve and display the subsequent occurrences using the following on the 

next page. 
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get first BOOK_DUE where CLIENT.Marne = 'Smith'; 

while DB-Status = 0 do 

begin 
display (BOOK_DUE.Call-No, BOOK-DUE.Dwe_Z)a/e); 

get next BOOK-DUE 

end; 

Repeated execution of the get next statement in the while loop retrieves all 

occurrence of the specified record type from the database in the forward preorder 

direction from the current location regardless of the ancestry of the record. These 

statements will display, for the sample database given in Figure 9.13b the following 

(note that the parent of BOOK_DUE.Ca//_M« 1232 and 1234 in the following list 

is the CLIENT Klaf): 

1231 12/06 

1234 12/15 

1232 12/17 

1234 12/27 

The record CLIENT in the logical database can be assumed to belong to a 

dummy root node LIBRARY as mentioned above. After retrieving the two record 

occurrences in the hierarchical tree for Smith, the search continues for the record 

type BOOK-DUE in the hierarchical tree belonging to Klaf, which is a sibling of 

Smith. 

9.4.4 Sequential Retrieval within a Hierarchy 

The get next statement performs sequential processing of the records of a database 

in the forward direction. However, if the retrieval is to be limited to a single occur¬ 

rence of a hierarchical tree we use the following format of the get statement: 

get next within parent <record type> where <condition> 

As in the get next statement the where clause and the <record type> specifi¬ 

cation are optional. In case the get next within parent statement appears without 

any options, the retrieval is of the next record in the hierarchical tree or subtree 

belonging to the current parent as indicated by the currency indicator. If the <record 

type> is specified, the retrieval is of the next record of the specified type in preorder 

within the current parent. If both the Crecord type> and the where <condition> 

are included, the retrieval is of the next record of the specified type that satisfies the 
<condition> within the current parent. 

Once we have located the root node of a hierarchical tree or subtree, we may 

need to retrieve all its dependent records. The following statements locate the hier¬ 

archical tree for the CLIENT Smith and then traverse it in preorder to retrieve the 
author and titles of all books borrowed by him: 

get first CLIENT where CLIENT.Name = 'Smith'; 
if DB-Status = 0 then 

get next within parent (VIR-BOOK); 
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while DB-Status = 0 do 

begin 

display (VIR_BOOK./iwr/i0/-, VIR_BOOK.77t/<?) 

get next within parent (VIR_BOOK); 

end; 

The above statements will display, for the sample database given in Figure 9.13, 
the following: 

James Munich 

Hugo Les Miserables 

9.5 Updates 

Update operations on a hierarchical database are done using commands to insert new 

records in the database, delete existing records, or change the values of certain fields 

in existing records. 

Before discussing these commands let us consider the view of the database as 

seen by a clerk in the acquisition department of the library. The logical portion of 

the database, as seen by this employee, is given in Figure 9.14 and the logical data¬ 

base definition is given below. The sample database contents are given in Figure 

9.15. Note that there are no virtual records in this logical view. 

tree is BOOK-TREE 

BOOK is parent 

BOOK_COPY is child 

end 

type BOOK = record 

Author: string; 

Title: string; 

Call-No: string; 

end 

type BOOK_COPY = record 

Call-No: string; 

CopyJNo: integer; 

Branch-Id: string; 

Current-Status: string; 

end 

Figure 9.14 Database view of acquisition clerk. 

BOOK 

BOOK _COPY 
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Figure 9.15 Sample database contents. 

9.5.1 Insert 

The format of the command to insert a new occurrence of a record type is given by: 

insert <record type> where <condition> 

When a new record is to be inserted in the database, the parentage of the record, 

unless it is at the root of a hierarchical tree, is specified with the where clause. 

Without the parentage information the DBMS will insert the record in the first pos¬ 

sible position where the specified record type appears in the data definition. When 

the new record to be inserted is a child record type, we assume that it will be inserted 

in the first position in the preorder traversal, which will be to the left of the current 

leftmost child. The record to be inserted is first created in the record template in the 
UWA before the insert statement is executed. 

The following statements create a new occurrence of the record type BOOK in 
the database: 

BOOK.Author : = 'Montgomery'; 

BOOK .Title : = 'Anne of Green Gables'; 
BOOK .Call-No : = 1235; 

insert (BOOK); 

Here we did not specify the parentage of the record type to be inserted because 
it is at the root of the hierarchical BOOK-TREE. 

The following statements insert a copy of this new title into the database tree 

occurrence, corresponding to the new root record occurrence just inserted in the 
database. The parent record is specified in the where clause. 

BOOK_COPY.Call-No : = 1235; 

BOOK_COPY. Copy-No : = 1; 
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BOOY^-COPY .Branch-Id : = 'Lynn'; 

BOOK-COPY.Statws : = 'transit'; 

insert (BOOK_COPY) 

where (BOOK.Call-No = 1235); 

Without the where <condition> clause, the record will be inserted in the data¬ 

base, but since a child record cannot exist in a hierarchical database without a parent 

record, it is connected to the first possible position where such a record could exist. 

For our sample database, assuming that Figure 9.15 is the preorder of the BOOK- 

TREE hierarchy, the new BOOK-COPY will be inserted in the tree with the (James 

Munich 1231) root node if the insert statement did not have the where clause. 

9.5.2 Modification and Deletion 

A record that is to be modified or deleted from the database must first be retrieved 

using a locking form of the get statement as follows: 

get hold first < record type> 

The need to hold the record arises when there are a number of concurrent run units 

using the database. A run unit issuing the get hold locks out the other programs from 

the record occurrence and thus avoids the anomalies associated with concurrent up¬ 

dates (see Chapter 12). 
The following statements modify the BOOK— COPY.Branch-Id of the second 

copy of the BOOK (James Munich 1231) from Lynn to Salem. 

get first (BOOK) 
where BOOK.Call-No = 1231; 

get hold first BOOK-COPY 

where BOOK-COPY.Copy-No = 2; 

BOOK^-COPY.Branch-Id : = 'Salem'; 

BOOK-COPY .Status : = 'transit'; 

replace; 

The first statement locates the root node of the hierarchical tree occurrence 

where the required BOOK is the parent. The next statement retrieves and locks the 

child record occurrence of BOOK—COPY where the BOOK—COPY.Copy—No is 2. 

The fields to be modified are changed in the next two statements within the record 

template. The last statement replaces the record occurrence of BOOK-COPY with 

the modified record. After execution of the replace statement, the lock on the record 

occurrence of BOOK—COPY is removed. 
The following statements delete the BOOK-COPY record occurrence of the 

second copy of the BOOK (Dickens Hard Times 1232). 

get first (BOOK) 
where BOOK.Call—No = 1232; 

get hold first BOOK—COPY 
where BOOK-COPY.Copy-No = 2; 

delete; 
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The first statement locates the root node of the hierarchy tree occurrence, where 

the required BOOK is the parent. The next statement retrieves and locks the child 

record occurrence of BOOK_COPY, where the BOOK-COPY.Copy-No is 2. The 

last statement deletes the record occurrence of BOOK_COPY. 

When a record to be deleted is a parent record occurrence of a hierarchical tree 

or subtree, all the children (and grand children) record occurrences are also deleted. 

This action is similar to the deletion of the owner record occurrence of a set in DBTG 

with fixed membership, wherein all occurrences of the member records are also de¬ 

leted. 

9.5.3 Updates of Virtual Records 

Let us return to the logical database as viewed by the clerk at the circulation desk, 

given in Figure 9.12. The logical database contains a number of virtual records. 

Some parts of these records (excluding the intersection data portion) are derived from 

their logical parent records, which are actual physical records. For the data retrieval 

operations, the logical database can be processed exactly as if the virtual record were 

really a physical one. In other words, the virtual records are materialized from their 

logical parent records. An update operation, however, could have an effect on the 

underlying physical records. Some of these operations are disallowed, while other 

operations could cause these logical parent records to be inserted, modified, or de¬ 

leted. The operations that are allowed and their effects are determined by the rules 

for the insert, delete, and replace operations on the record type related to a virtual 

record. IMS uses options and associated rules that could be called physical, logical, 

or virtual for each of these update operations. The effects of these are, in a way, 

similar to the effects of the DBTG membership insertion and retention options we 

discussed in Chapter 8. We summarize some of the possibilities below. Details of 

these rules can be found in the application manuals of the commercially available 
DBMs based on the hierarchical approach. 

Inserting a new occurrence of a CLIENT record is allowed because it is a phys¬ 

ical record in the logical view. The following statements create a new occurrence of 
the record type CLIENT in the database. 

CLIENT.C//em_jVo : = '237'; 
CLIENT.Name : = 'Cook'; 

CLIENT.Address : = 'Peabody'; 

insert (CLIENT); 

Here we need not specify the parentage of CLIENT because it is the root node 
of a hierarchical tree. 

Inserting an instance of BOOK_DUE for a nonexistent CLIENT will not be 

allowed, since in the hierarchical data model a child record cannot exist without the 
parent record and such operations will fail. 

Inserting an instance of BOOK_DUE for a nonexistent BOOK_COPY, depend¬ 

ing on the rule specified for the logical parent BOOK_COPY, would fail or succeed. 

It will fail if the insert rule for BOOK_COPY is specified as physical. However, if 

the insert rule for BOOK_COPY is logical or virtual, then on insertion of BOOK_ 
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DUE an occurrence of its logical parent is inserted in the physical database (assume 
that BOOK_COPY is a root node of a physical tree). 

Consider the following statements to insert in the database information to indi¬ 

cate that Cook has borrowed copy 3 of a book with Call-No 1235 (entitled Anne of 
Green Gables by Montgomery) from the Lynn branch: 

BOOK_DUE.Ca//_Afo - '123'; 

BOOK_DUE.Co/?v_/Vo = 3; 
BOOK_DUE .Branch-Id = 'Lynn'; 

BOOK—DUE.Stafws = 'Lent'; 

BOOK_DUE .Due-Date = 12/28; 
insert (BOOK_DUE) 

where (CLIENT.Client-No = '237'); 

The last statement will succeed if an occurrence of the BOOK_COPY exists, 

and in this case the BOOK_COPY.S/ar«5 is updated to lent. If no occurrence of the 

record BOOK_COPY exists, then depending on the rules specified for BOOK_ 

COPY, the operation will succeed or fail. In the former case, an occurrence for 

BOOK_COPY will be inserted in the database. The information for this occurrence 
is available in the record BOOK_DUE. 

Deleting a CLIENT may or may not succeed depending on the rules specified 

for CLIENT and whether there are any volumes outstanding with the CLIENT. If 

the rule specified for CLIENT is physical and if the client has a number of books on 

loan, the attempt to delete a client will fail. If the rule specified is either logical or 

virtual, the occurrence is made inaccessible as a CLIENT record occurrence. How¬ 
ever, it remains accessible via VIR_CLIENT. 

Finally, modification of certain fields in the records are not allowed. For exam¬ 

ple, the Call-No and the Client-No fields, which are used to establish the logical 
parent/child record occurrence association, cannot be modified. 

Replacement of the other fields of CLIENT can always be done. However, re¬ 

placement of a field of BOOK_DUE could affect the logical parent BOOK_COPY 

and would succeed if the option specified for BOOK_COPY is virtual. 

9.6 Implementation of the Hierarchical Database 

Each occurrence of a hierarchical tree can be stored as a variable length physical 

record, the nodes of the hierarchy being stored in preorder. In addition, the stored 

record contains a prefix field. This field contains control information including point¬ 

ers, flags, locks, and counters, which are used by the DBMS to allow concurrent 

usage and enforce data integrity. 

A number of methods could be used to store the hierarchical database system. 

The storage of the hierarchical trees in the physical medium affects not only the 

performance of the system but also the operations that can be performed on the 

database. For example, if each occurrence of the hierarchical tree is stored as a 

variable length record on a magnetic tape like device, the DBMS will allow only 

sequential retrieval and insertion or modification may be disallowed or performed 

only by recreating the entire database with the insertion and modification. Storage of 
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Figure 9.16 Hierarchical definition tree. 
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E 

the database on a direct access device allows an index structure to be supported for 

the root nodes and allows direct access to an occurrence of a hierarchical tree. 
The storage of one occurrence of the hierarchical definition tree of Figure 9.16 

using the variable length record approach is given in Figure 9.17. 
The hierarchy can also be represented using pointers of either preorder hierar¬ 

chical type or child/sibling type. In the hierarchical type of pointer, each record 

occurrence has a pointer that points to the next record in the preorder sequence. In 

the child/sibling scheme each record has two types of pointers. The sibling pointer 

points to its right sibling (or twin). The child pointer points to its leftmost child 

record occurrence. A record has one sibling pointer and as many child pointers as 

the number of child types associated with the node corresponding to the record. 

Figure 9.16 gives the hierarchical definition tree and the one occurrence of this hi¬ 

erarchical definition tree is given in Figures 9.18 and 9.19. In Figure 9.18 the preor¬ 

der hierarchical pointers are shown, whereas in Figure 9.19 we present the same 

database using the child/sibling pointers. 

Figure 9.17 Sequential storage of hierarchical database. 
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Figure 9.18 Preorder hierarchical pointers. 
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Figure 9.19 Child/sibling pointers. 
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9.7 Additional Features of the Hierarchical DML 

Consider the hierarchical definition tree of Figure 9.20. Access to a dependent record 

type is via a path beginning at the root node and after traversing through intermediate 

nodes, ending at the required record type. Such paths are called hierarchical paths. 

Access to record type E, in the hierarchical definition tree of Figure 9.20, requires a 

traversal through nodes A and B. 

In addition to the data manipulation statement discussed earlier, the hierarchical 

data manipulation language needs a number of functions for better control of navi¬ 

gating through the database. This saves both processing and program development 

time. 
One such feature is the use of control codes associated with the get statements. 

We will not give the exact syntax of these statements or describe them in detail, but 

we will highlight their usefulness. Control codes are associated with the get state¬ 

ment to perform additional functions. These include retrieving all records in a hier¬ 

archical path, locating first occurrence, locating last occurrence, and maintaining the 

currency indicators at a given level of the hierarchy or for the hierarchical path to 

this level. 

Figure 9.20 A sample hierarchical definition tree. 
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Figure 9.21 

The need to retrieve all records in a hierarchical path can be illustrated by the 

following example. Suppose we need to find an occurrence of a record type E and 

also list its parentage. Instead of successively retrieving the correct occurrence of 

record type A, then record type B, and subsequently record type E, we can combine 

these operations in one statement as given below: 

get next *D where A = A,, *D where B = Bn, where E = E|12 

Here the control code is specified by *D and it indicates that the corresponding 

occurrence of the record types in the hierarchical path are also to be retrieved and 

placed in the UWA in the appropriate record template. 

If we wanted the last occurrence of record type D in a hierarchical path, the 

following version of the get statement could be used. Here the last sibling in the D 

record type is indicated by the *L control code. 

get unique *L D within parent A = A, and B = Bu 

A similar command to back up to the first sibling in a record type, while per¬ 

forming a sequential retrieval using the get next within parent statement, is pro¬ 
vided by the *F command code. 

Another feature of the hierarchical DML is the possibility of maintaining and 

navigating through multiple dependent record types at each level of a hierarchical 

path. To understand this facility, consider the database shown in Figure 9.21. Sup¬ 

pose we want to list the dependent record types of BM in the order of Dni, Em, 

D| 12, E112, and so on. The following statements would cause a problem: 

get next where A = A), where B = Bn 

get next within parent D 

get next within parent E 

get next within parent D 

Data corresponding to the hierarchical definition tree of Figure 9.20. 
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This is so because the database uses hierarchical pointers and for the second get 

request for record type D, it would access either the record occurrence D12| or return 

an error condition indicating that there are no more record types. 

If we use multiple positioning, the position within the record type D would be 

maintained. Consequently, this would give us the correct occurrence, Dn2, of the 
record type D. 

9.8 Concluding Remarks 

In the hierarchical model, we have to select the order of entities involved in the 

application into a hierarchy. This involves choosing the root node at each level. The 

ordering of the nodes at each level is also significant. Because we are unaware, at 

database design time, of the users’ intent and range of needs, the number of different 

possible hierarchies with a sizable number of record types is enormous. Choosing 

among these hierarchies would be a formidable task. As a case in point, with two 

record types, the number of different hierarchies is two; with three record types, the 

number of different hierarchies is 12, and so on. Only some of these hierachies are 

suitable and the optimum for one application could turn out to be far from satisfac¬ 

tory for another application. 

We face another problem in converting cyclic relationships into hierarchies. A 

cycle of relationship, for example, 

BRANCH DEPT_SECTION EMPLOYEE BRANCH 

in the E-R diagram of Figure 9.2 cannot be expressed directly in the form of an 

ordered tree. However, we have resolved this cycle by the hierarchies: 

BRANCH DEPT_SECTION -* EMPLOYEE 

and 

BRANCH -> EMPLOYEE -> DEPT_SECTION. 

This resolution requires the use of replication or virtual records for the record types 

DEPT_SECTION and EMPLOYEE at the lowest level of the above hierarchies. In 

general, any set of relationships in E-R diagrams that forms a cycle can be converted 

to a number of rooted trees, using either replication or virtual records. 

The hierarchical model inherently requires that the data in the database be struc¬ 

tured in the form of a tree. However, some records in the database represent entities 

involved in more than one relationship. Furthermore, some of these relationships are 

of the many-to-many type. The implementation of these relationships using the hier¬ 

archical data model leads to a number of hierarchical trees that are unconnected 

except via a DBMS-supplied dummy root record. Such a collection of hierarchical 

trees is sometimes called a set of spanning trees. Hierarchical data manipulation 

facilities do not provide an easy means of accessing several hierarchical trees simul¬ 

taneously. The virtual record facility allows the hierarchical data manipulation lan¬ 

guage to access data belonging to separate hierarchical trees. The virtual record fa¬ 

cility also allow a record type to be included in several hierarchies without actual 

replication. 
The paired bidirectional logical relationship, with its associated symmetrical vir¬ 

tual records, is one way to implement a many-to-many relationship. The database 
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system is aware of the replication of the common data in such virtual records and 

the need to maintain consistency. 
However, the virtual record scheme, even without any intersection data fields, 

requires physical support in the form of related pointers to and from the logical 

parent. Virtual records cannot be defined dynamically but require some database re¬ 

organization to be defined and implemented in conjunction with the DBA. 

Performance considerations may require the hierarchical database to have an 

index not only on the key field of the root node of the hierarchical tree but also on 

other fields of the root node of a hierarchical tree or subtree. This type of index, 

called a secondary index, is particularly useful for logical parent records. 
The hierarchical model is considered to have a built-in bias that is physically 

implemented. This bias may not be good for all applications. Consequently, a logical 

structure using secondary indexes is useful. The use of virtual records avoids repli¬ 

cation, and provides a logical view of the database. Unfortunately, the implementa¬ 

tion of this is not as straight forward as a view in the relation data model. The virtual 

record facility requires support of the underlying physical database and hence pre¬ 

planning and involvement of the DBA at database design time. Consequently, new 

virtual records may not be defined. The update operations on the database and the 

records that are associated with a virtual record are much more complex than the 

operations on DBTG sets. 
The hierarchical model, through one of its major implementations in the IMS 

system from IBM, has the lion’s share of the current corporate databases. IMS has 

matured over the years and the applications have been tuned to an optimum level of 

performance. The results of attempts to move some of these applications to a rela¬ 

tional model have been mixed. However, a number of companies are marketing prod¬ 

ucts to provide a relational user front end, that interfaces with the existing hierarchi¬ 

cal DBMS. 

9.9 Summary 

The hierarchical data model consists of a set of record types. The relationship be¬ 

tween two record types is of the parent/child form, expressed using links or pointers. 

The records thus connected form an ordered tree, the so-called hierarchical definition 
tree. 

The hierarchical model provides a straightforward and natural method of imple¬ 

menting a one-to-many relationship. However, a many-to-many relationship between 

record types cannot be expressed directly in the hierarchical model. Such a relation¬ 

ship can be expressed by using data replication or virtual records. 

The disadvantages of data replication are waste of storage space and the problem 

of maintaining data consistencies. A virtual record is a mechanism to point to an 

occurrence of a physical record. Thus, instead of replicating a record occurrence, a 

single record occurrence is stored and a virtual record points to this record wherever 

the record is required. The virtual record can contain some data that is common to a 

relationship; such data is called the intersection data. The virtual record is the logical 

child of the physical record that it points to, which is its logical parent. 

The database using the hierarchical model results in a number of hierarchical 
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structure diagrams, each of which represents a hierarchical tree. These trees can be 

interrelated via the logical parent/child relationship to form a set of spanning trees. 

However, one can assume that the DBMS provides a single occurrence of a dummy 

record type and all the hierarchical trees can then be attached to this single dummy 

parent record. The roots of these trees can be treated as children of this dummy 
record. 

The data manipulation facility of the hierarchical model provides functions sim¬ 

ilar to the network approach; however, the navigation to be provided is based on the 

hierarchical model. The get command is used to retrieve an occurrence of a specified 

record type that satisfies the specified conditions. The get next command is used for 

sequential processing and the get next within parent is used for sequential processing 
within a preselected hierarchy. 

The database can be modified using the insert, replace, and delete operations. 

When records to be modified are virtual records, detailed rules have to be specified 

so that the modification, if allowed, leaves the database in a consistent state. 

ordered tree 

preorder traversal 

child pointer 

sibling pointer 

hierarchical data model (HDM) 

tree structure diagram 

definition tree 

hierarchical definition tree 

virtual record 

replication 

logical parent 

logical child 

intersection data 

paired bidirectional logical 
relationship 

DB-Status 

get 

get first 

get unique 

get leftmost 

where 

get next 

get next within parent 

insert 

get hold 

replace 

delete 

hierarchical path 

control codes 

secondary index 

9.1 Write an algorithm to convert a network diagram into a hierarchical diagram. 

9.2 Write an algorithm to convert a hierarchical diagram into a network diagram. 

9.3 Consider the record types BOOK and CLIENT. Implement the relationship to model the 

waiting list of clients waiting to borrow a given BOOK. 

9.4 Consider the record types BOOK_COPY and CLIENT. Implement the relationship to model 

the waiting list of clients waiting to borrow a given BOOK_COPY. 

9.5 Comment on the statement that the HDM has limited network capabilities. Give an example 

of a network that cannot be represented in an HDM. 

9.6 Why does the association between parent and child record type in the hierarchical data model 

not need the foreign key concept of the relational data model? 

9.7 Figure A represents a hierarchical tree structure diagram for the hospitals in a certain area. 

Write the data description statements to define the structure. 
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Figure A Hospital database. 

9.8 For the hierarchical data model of Figure A, write the data manipulation statements to 

perform the following operations: 

(a) Display all hospitals that have a hematology lab. 

(b) Display all wards that have a capacity in excess of 4. 

(c) For a given patient, display all the doctors that the patient has consulted. 

(d) Display all the doctors who have a specialty of pediatrics. 

(e) Display the number of doctors consulted by a given patient. 

(f) Add a doctor to the database belonging to a given hospital. 

9.9 What modifications to the hierarchical tree structure diagram of Figure A will enable the 

query of Exercise 9.8d above to be handled efficiently? 

9.10 What modification would you make to the diagram of Figure A if you were to allow a doctor 

to practice at more than one hospital? 

9.11 In the HDM a record type is limited to only one physical parent and one logical parent. 

Would it be possible to represent a number many-to-many relationships between three record 

types? For example, can the E-R diagrams given in Figure 2.23 or Figure B be 

implemented? 

Figure 8 E-R diagram for Exercise 9.11. 

9.12 Consider the record types in a hierarchical definition tree as being relations, with the data 

items (or fields) being their attributes. Are these relations so derived in INF, 2NF, or 3NF? 

Do these relations have any update anomalies? 
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In this chapter we focus on different aspects of converting a user’s query into a 

standard form and thence into a plan to be executed to generate a response. 

Introduction 

Query processing is the procedure of selecting the best plan or strategy to be used 

in responding to a database request. The plan is then executed to generate a response. 

The component of the DBMS responsible for generating this strategy is called a 
query processor. 

Query processing is also referred to in database literature as query optimiza¬ 

tion. However, bear in mind that optimization here is mostly in the form of improve¬ 

ment in light of the inexact knowledge of the status of the database. The optimization 

done in practical systems is not necessarily the best. The optimal strategy may be 

too difficult to evaluate and could require much more computing to improve on it, 

which on average may not be dramatically different from the one afforded through a 
heuristic strategy. 

Query processing is a stepwise process. The first step is to transform the query 

into a standard form. For instance, a query expressed in QBE is translated into SQL 

and subsequently into a relational algebraic expression. During this transformation 

process, the parser portion of the query processor checks the syntax and verifies if 

the relations and attributes used in the query are defined in the database. Having 

translated the query into a given form such as a relational algebraic expression, the 

optimization is performed by substituting equivalent expressions for those in the 

query. Such equivalent expressions, which we focus on in Section 10.4, are more 

efficiently evaluated than the ones in the transformed query. Substitution of such 

expressions also depends on factors such as the existence of certain database struc¬ 

tures, whether or not a given file is sorted, the presence of different indexes, and so 

on. In the next step a number of strategies called access plans are generated for 

evaluating the transformed query. The physical characteristics of the data and any 

supporting access methods are taken into account in generating the alternate access 

plans. The cost of each access plan is estimated and the optimal one is chosen and 

executed. 

We concentrate in this chapter on query processing for interactive usage on a 

relational database management system (RDBMS). A compiler would process data¬ 

base requests from batch programs. Techniques similar to the one to be discussed 

here could also be applied to compiled queries. The overhead involved in the query 

processing of an interactive query that is unlikely to be repeated should not be too 

high. Contrast this with the compilation of a batch query. A batch program is likely 

to be executed many times. Thus, a more intensive search for an optimal plan could 

be justified. However, the optimization of compiled queries is not guaranteed to 

remain optimal since the status of the database changes over time. 

In the hierarchical and network models, the user specifies navigation though the 

database by indicating the low-level path to be followed through records. This path, 

for instance, leads from the parents to the children record types in a hierarchical 

database, or from the owners to the members record types (or from the members to 

the owners) of sets in the network database. Since these paths are already indicated, 

the onus of optimization is on the user. Nonetheless, even in these systems some 
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form of query processing is possible. Such is the case when a query processor has 

information that the user does not have with respect to the current content of the 

database, the index present on various records, and the past statistics of the various 

operations. 
The user interacts with a DBMS by submitting queries or update requests. These 

requests are expressed by the user in a simple language. The query language usually 

allows the same query to be expressed in a number of different ways, some of which 

may be more efficient than others. Regardless of this difference, the user expects the 

system to generate the response to the query in a reasonable period of time. In rela¬ 

tional systems, for both types of requests, the required data for the response is de¬ 

scribed by their properties rather than their locations. The relational DBMS must 

select some optimal evaluation strategy and then execute it. This process of selecting 

an access plan (also known as a strategy) and executing it is query processing. In 

this chapter we shall see how query processing is handled in centralized database 

systems. We defer the discussion of query processing in distributed database systems 

until Chapter 15. 

In centralized DBMSs an efficient query processor would try to minimize the 

utilization of computing resources by the DBMS. These resources are the storage 

space and processor time. The storage space consists of secondary stage as well as 

main memory. The secondary storage used is not only for the primary data, but also 

for storing indexes. The primary storage is used for storing the data and provides 

space used by the buffers. The processor time used includes the time spent by the 

input/output processor as well as the CPU. In a distributed environment, the com¬ 

munication channel is another resource and the costs of communication delays, set¬ 
ups, and transmission have to be considered. 

Query processing strategies (see Figure 10.1), use general techniques for query 

modification. This includes expressing the query in an equivalent but more efficient 

form, substituting a query involving n-relations by a group of simpler queries (query 

decomposition), replacing a query involving views to one expressed on the base 

relations, or adding additional predicates to the query to enforce security. In addition, 

query processing strategies take into account the characteristics of the data and the 

expected sizes of both the intermediate and final results. Strategies are also included 

Figure 10.1 Query processing strategy. 
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to enhance the query response time or reduce the cost of evaluating the query. It is 

unlikely that details of the precise sizes of relations and the distribution of data values 

in each attribute of every relation can be economically maintained. However, the 

query processing procedures estimate these values and use them in preparing a strat¬ 

egy for optimizing the query evaluation. The estimation cannot be exact and the 

optimization of costs may be computationally infeasible. Therefore, it is usual to 

employ a heuristic selection of evaluation strategies. The following are examples of 

such heuristic strategies: to reduce the size of relations participating in a query as 

early as possible by selection and projection, to use indices whenever possible, and 

to sort the intermediate relations to improve the efficiency of subsequent operations. 
As we saw in Chapter 4, relational queries can be expressed in either relational 

algebra or calculus. It is possible to evaluate safe calculus expressions directly, al¬ 

though, under certain quantifiers, at high computational costs. The alternate approach 

involves translating the calculus expression into an equivalent relational algebraic 

expression. The algebraic expression can be executed directly. We first look at meth¬ 

ods for evaluating relational algebraic expressions. At the end of the chapter we 

discuss processing relational calculus queries. 

Another aspect of query processing is query modification. This is called for 

when the query is based on a view. Such queries have to be replaced by appropriate 

queries on the base relations. Examples of these were illustrated in Section 5.7.9. 

Additional modification may be necessary to impose restrictions enforcing data se¬ 

curity and confidentiality. Thus a manager who is allowed access to the salary attri¬ 

butes of employees in her department would have queries involving the EMPLOYEE 

relation modified by a selection as shown below: 

°DEPT = manager’ sdepartment(EMPLOYEE) 

10.2 An Example 

In the examples illustrated in this chapter, we consider part of a university database. 

We concentrate on that portion of the database consisting of the following four rela¬ 

tions: 

STUDENT (Std#, Std-Name) 

REGISTRATION (Std#, Course#) 

GRADE (Std#, Course#, Grade) 

COURSE (Course#, Course- 

Name, Instructor) 

student details 
courses the students are currently reg¬ 

istered in 
grade obtained in courses already com¬ 

pleted by a student 

course details 

We make the following assumptions regarding the size of the database. The 

STUDENT relation contains 40,000 tuples. The REGISTRATION relation represents 

the current courses in which a student is registered but has not completed. If we 

assume 10 courses per student for the academic year, we arrive at a total of 400,000 

tuples in this relation. The GRADE relation represents the grade obtained by the 

student in completed courses. Using an average of 15 completed courses per student 

gives the number of tuples for this relation to be 600,000. The relation COURSE 
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represents course offered and, ignoring the multiple sections of certain courses, rep¬ 

resents 5,000 courses. 

A given request can be expressed in a number of different ways in any language. 

Consider the query: “List the names of courses higher than COMP300 and all stu¬ 

dents registered in them.” 

The following are some different ways of stating this query in SQL and rela¬ 

tional algebra. In SQL: 

select Std-Name,Course-Name 

from STUDENT, REGISTRATION, COURSE 

where STUDENT.SW# = REGISTRATION.Std# and 

COURSE.Course# = REGISTRATION.Course# and 

REGISTRATION.Course# > COMP300 

or 

select Std—Name, cl .Course -Name 

from STUDENT, REGISTRATION, COURSE cl 

where STUDENT.Srd# = REGISTRATION.Srd# and 
REGISTRATION.Course# in 

(select Cl.Course# 

from COURSE c2 

where cl.Course# > COMP300 and 

cl .Course# = cl.Course# ) 

or 

select Std-Name,c\.Course-Name 

from STUDENT, COURSE cl 

where STUDENT.SrJ# in 

(select REGISTRATION. Std# 

from REGISTRATION 

where REGISTRATION.Course# in 

(select cl.Course# 

from COURSE c2 

where cl.Course# > COMP300 and 

cl.Course# = cl.Course# )) 

In relational algebra: 

^Std—Name.Course—Name((JCourse#>COMP300 (STUDENT [XI REGISTRATION 
Std# 

tx COURSE)) 
qj. Course# 

^a_Vame.C0«r,e^Vam,(STUDENT CX ((TCourse#>COMP300 (REGISTRATION 
Std# 

CX COURSE)) 
Course# 

or 

^Std—Name,Course—/Vame(STUDENT [X {vCourse#>COMP300 REGISTRATION) 
Std# 

[X 
Course# 

Course# >COMP300 COURSE) 
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Some of these illustrated forms may be better than others as far as the use of 

computing resources is concerned. The DBMS must perform a transformation to 

convert a query from an undesirable form into an equivalent one that uses less re¬ 
sources and is therefore deemed better. 

For the sample database, we get the following query processing costs for the 

different relational algebraic forms of the same query. Here, to simplify discussion, 

we compare costs in terms of the number of tuples processed. In an actual system, 

the cost would be given in terms of the processing cost and the I/O cost measured in 

terms of the number of block accesses required. This I/O cost depends, too, on the 

size of the relation and block. 

Let us examine the cost for the first relational algebraic expression tabulated in 

Figure 10.2a. It involves a join of the relation STUDENT, containing 40,000 tuples, 

with REGISTRATION, having 400,000 tuples. In this case, the referential integrity 

constraint indicates that a tuple in REGISTRATION cannot exist unless there is a 

tuple in STUDENT with the same Std#. Therefore, the result would be equal to the 

number of tuples in REGISTRATION. If we use the brute force method of compar¬ 

ing each tuple of STUDENT with each tuple of REGISTRATION, this join is ob¬ 

tained by processing 40,000 * 400,000 tuples. 

If the STUDENT and REGISTRATION relations are sorted on the joining at¬ 

tribute Std#, then the join can be obtained by processing 40,000 + 400,000 tuples. 

If indexes exist on the joining attribute, one per relation, then access to the tuples is 

not required unless the indexes indicate that there is a tuple in both relations with a 

common value for the joining attribute. We discuss these aspects in Section 9.8. 

The second join is between the result of the first join and the tuples of COURSE 

involving a processing of 5,000 * 400,000 tuples. The result of this, again, would 

be 400,000 tuples. This is followed by a selection for Course > COMP300. If we 

assume that there are 500 courses whose course number is higher than COMP300, 

the result would involve, let us say, 40,000 tuples. The final result of the query is 

obtained by projecting these tuples on the attributes Std-Name and Course-Name 

and involves processing 40,000 tuples. 
For the second relational algebraic form of the same query, the first join is 

between the relations REGISTRATION and COURSE. This entails the processing of 

5,000 * 400,000 tuples for unsorted relations. If both these relations were sorted the 

join would involve processing 5,000 + 400,000 tuples. The result of this join is 

400,000 tuples. We then select from the joined tuples those wherein the Course# is 

greater than COMP300, requiring the processing of 400,000 tuples to produce a 

result consisting of 40,000 tuples. This is subsequently joined with the tuples of the 

STUDENT relation, requiring processing 40,000 * 40,000 tuples or 40,000 + 

40,000 tuples for unsorted and sorted cases, respectively. The final projection oper¬ 

ation involves 40,000 tuples. These costs are tabulated in Figure 10.2b. 
Let us now consider the third form of the relational algebraic query. The selec¬ 

tion is done before each of the joins. The selection on COURSE entails the process¬ 

ing of 5,000 tuples to generate 500 tuples with Course# > COMP300. Similarly, 

the selection on REGISTRATION involves processing 400,000 tuples to select 

40,000 tuples. The join of the STUDENT with the selected tuples of REGISTRA¬ 

TION involves processing 40,000 * 40,000 tuples to arrive at 40,000 resulting tu¬ 

ples. This result is joined with 500 tuples selected from COURSE and entails a 

processing of 500 * 40,000 tuples. The result is, as before, 40,000 tuples. We notice, 

however, that the amount of processing is considerably reduced. These costs are 

tabulated in Figure 10.2c. 
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Figure 10.2 Evaluating relational algebraic expressions, (a) Cost for evaluating the query in the first 
relational algebraic form; (b) Cost for evaluating the query in the second relational 
algebraic form; (c) Cost for evaluating the query in the third relational algebraic form. 

^StiL-Name.Course-Name^^Course#>COMP300 (STUDENT IXI REGISTRATION tXI COURSE)) 
Std# Course# 

Operation Processing cost if relations Estimated size of 

not sorted sorted result 

Join of STUDENT and 40,000 * 40,000 + 400,000 tuples 

REGISTRATION 400,000 400,000 

Join of this result 5,000 * 5,000 + 400,000 tuples 

with COURSE 400,000 400,000 

Selection from result 

of Course# > COMP300 400,000 400,000 40,000 tuples 

Projection on 

Std-Name, Course-Name 40,000 40,000 40,000 tuples 

(a) 

^Std—Name,Courye_JVame(STUDENT IX] (OCourse#>COMP30o(REGISTRATION [X] COURSE))) 
Std# Course# 

Operation Processing cost if relations Estimated size of 

not sorted sorted result 

Join of REGISTRATION 5,000 * 5,000 + 400,000 tuples 

and COURSE 400,000 400,000 

Selection from result 

of COURSE# > COMP300 400,000 400,000 40,000 tuples 

Join of STUDENT and 40,000 * 40,000 + 40,000 tuples 

result above 40,000 40,000 

Projection on 

Std-Name, Course-Name 40,000 40,000 40,000 tuples 

(b) 

The above illustrates a considerable processing (and I/O cost) reduction when 

one form of the query is used as opposed to another equivalent one. This indicates 

that some form of query processing is necessary if the DBMS is to provide an ac¬ 

ceptable response. The intent of the query processor is to find a more efficient form 

of a user-supplied query expression. A query can be improved in a number of ways 

before its evaluation is performed. The improvements are basically concerned with 

minimizing, if not altogether removing, redundancy from expressions and results. 

This in turn involves simplifying and transforming the query, taking into account the 

characteristics of the data contained in the database. For example, relations may be 

supported by some access aid on certain attributes. Such access aids could be in the 

form of an index using a B + -tree, ISAM, or a hash. Furthermore, the tuples of the 
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Figure 10.2 Continued 

'ITS«UVamf.Courjf_^am<"(SJUDENT IXI (O’co«rs?#>COMP300 (REGISTRATION) XI {Vcourse#>COMP300 COURSE) 
S,d* Course# 

Operation Processing cost if relations Estimated size of 
not sorted sorted result 

Selection from COURSE 

Course# > COMP300 

Selection from 

5,000 5,000 500 tuples 

REGISTRATION 

Course# > COMP300 400,000 400,000 40,000 tuples 
Join of selected 

tuples from COURSE 

and REGISTRATION 

500 * 400,000 500 + 40,000 40,000 tuples 

Join of STUDENT with 40,000 * 40,000 + 40,000 tuples 
result above 40,000 40,000 

Projection on 

Std-Name, Course-Name 40,000 40,000 40,000 tuples 

(c) 

relation may be stored in some particular order to aid their retrieval. The system 

must exploit these access aids and storage schemes to come up with an optimal 
access plan. 

This system-performed optimization should be contrasted with the optimization 

performed by application programs. While the former is general, the latter is appli¬ 

cable only to certain queries known at application program implementation time. This 

chapter is concerned with some of the techniques adopted by the system in such 

optimizations. 

General Strategies for Query Processing 

10.3.1 Query Representation 

Queries posed by users, while suited to people, are not in a form convenient for 

internal system use. The query processor represents the user query, transforming it 

from some query language supported by the DBMS into a standard internal form that 

it can manipulate. This form would be relational calculus, relational algebra, object 

graph, operator graph, or tableau. 

The process of translating a query into internal form is similar to high-level 

programming language compilation. In compilation, the checking of variable decla¬ 

rations is done once at compile time, while in query processing of interactive queries, 
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the verification of the existence of a relation (or attribute) has to be performed at the 

time of the initial analysis of the query. For internal use, it is convenient to represent 

queries using a procedural format. This rules out relational calculus and algebra for 

internal representation, even though these formats have been used in a number of 

query processors. We use operator graphs for internal representation of queries in 

this text. 

Operator Graphs 

An operator graph depicts how a sequence of operations can be performed. In 

operator graphs, operations are represented by nodes and the flow of data is shown 

by directed edges. The graph visually represents the query and is easily understood. 

Consider the query: “List the names of students registered in the Database course.” 

One possible algebraic formulation is: 

'^Std-Namei®Course—Name = -Database'(STUDENT XI REGISTRATION DX COURSE) 

An operator graph for the above sample query is shown in Figure 10.3. 

Equivalence transformations such as the earlier application of the selection op¬ 

eration can be used to modify the graph. The graph clearly shows what the effect of 

such a transformation would be. For most simple queries, the graph resembles a tree. 

Later on we demonstrate how the graph can be used to discover redundancies in 
query expressions. 

Steps in Query Processing 

The steps involved in query processing are as follows: 

1. Convert to a standard starting point. We would use a relational algebraic 

form and the operator graph as the starting point. We would also assume that 

the query expression is in conjunctive normal form, that is, the query is of 

the form Pi V P2 V • • •> where each disjunct pi is a conjunction of terms 
t) 1 A t)2 A . . . . 

Figure 10.3 Example of an operator graph. 

^Sid Name 

®Course Name=Database 

tx 
Std# 

STUDENT N 
Course# 

REGISTRATION COURSE 
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2. Transform the query. The query is transformed by replacing expressions in 

the query with those that are likely to enhance performance. Note that the 

choice of an equivalent form may be influenced by the existence of an index or 
the fact that a relation is sorted. 

3. Simplify the query. The query is simplified by removing redundant and 

useless operations. We discuss query improvement in Section 10.7. 

4. Prepare alternate access plans. The alternate access plans indicates the order 

in which the various operations will be performed and the cost of each such 

plan. The cost depends on whether or not the relations are sorted and the 

presence or absence of indexes. The optimal access plan is chosen. 

Steps 2, 3, and 4 are usually done in conjunction with each other and use statis¬ 

tical information to derive the best possible form of the query and the associated 

access plan. The query transformations are carried out by applying standard process¬ 

ing strategies. We discuss some of these strategies for processing a query below and 

discuss some equivalent forms in Section 10.4. 

10.3.2 General Processing Strategies 

Recall Example 4.3, in which we illustrated the decrease in the size of join when a 

selection operation on one of the relations participating in the join was performed 

before the actual join. Since selection reduces the cardinality of a relation, the join 

would involve a relation with a smaller number of tuples and could be executed 

faster. There are a number of similar general strategies used in query processing to 

reduce the size of the intermediate and final results as well as processing costs. They 

are described below. 

1. Perform selection as early as possible. Selection reduces the cardinality of the 

relation and, as a result, reduces the subsequent processing time. 

2. Combine a number of unary operations. Consider the evaluation of 

itx(o-y(R)), where X, Y C R. Both the selection and projection operations can 

be done on the tuples of R simultaneously, requiring a single pass over these 

tuples and singular access to them. Similarly, 

(TCl(crC2(R)) = 0C1AC2(R)> TTx('ity(R)) = TTxnv(R) 

If X C Y, then ttx(tty(R)) = irx(R) 

3. Convert the cartesian product with a certain subsequent selection into a 

join. Consider the evaluation of aY(R * S), where Y is, let us say, A 0 B and 

A £ R, B 6 S. In this case, the cartesian product can be replaced by a theta 

join as follows: 

R tXI S 
AtiB 

4. Compute common expressions once. A common expression that appears more 

than once in a query may be computed once, stored, and then reused. This is 

advantageous only if the size of the relation resulting from the common 

expression is small enough to be either stored in main memory or accessed 

from secondary storage at a total cost less than that of recomputing it. Bear in 
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mind that when a number of operations are combined into a single one, as 

outlined above, common expressions could be masked. 

5. Preprocess the relations. Before performing an operation such as a join, we 

can preprocess the relations. The preprocessing includes sorting and index 

creation on the join attributes. This step is particularly useful when the number 

of tuples in the operand relations is large. 

Transformation into an Equivalent Expression 

Earlier in this chapter we gave an example of a single query being formulated in 

different ways. This illustrated that the query specified by the user may not be in the 

best possible form. We saw in the previous section that a selection may reduce the 

size of a relation, while the size of the resulting join depends on that of the two 

relations taking part in it and the distribution of the values of the attributes involved 

in the join. The effort of performing the join can be as high as the product of the 

cardinality of the participating relations. We also noted that a possible query im¬ 

provement strategy is to perform selections as early as possible. In this section we 

offer some of the possible equivalent transformations that could be applied in de¬ 

creasing the cost of evaluating a query. Two expressions are considered to be equiv¬ 

alent if they produce the same result. 

First, we consider the transformations that can be made without the benefit of 

any information on the relations and their schemes. They are based on the associative 

and commutative laws of relational algebra. We can use the commutative law in 

query transformation for a join, since the resulting relation has associated with it the 

names of the columns. Therefore, the order of columns in the resulting relation is 

insignificant. We state these general transformation rules below. R, S, T, . . .are 

relations on the relation schemes R, S, T, . . . and C, Cl, C2, ... are arbitrary 

conditions. Also, 0 is an empty relation, that is, a relation with cardinality of zero, 
defined on an appropriate relation scheme. 

RUS^SUR 
RflS = SnR 

R X R = R 

RUR^R 
R Cl R = R 

R - R = 0 
R U 0 = R 
R n 0 = 0 
R IX] 0 = 0 
R — 0 = R 

0 - R = 0 
RNS = SIX1R 

commutative law 

commutative law 

idempotent law 

idempotent law 

commutative law 

commutative law 

associative law 

associative law 

R * S = S * R 

R \X\ (S IXI T) = (R tX] S) IXI T 

R * (S * T) = (R * S) * T 

We incorporate the above equivalences in the form of rules and illustrate them 
in the examples given below. 

1. Combine a cascade of selections. 



10.4 Transformation into an Equivalent Expression 471 

crCl(<JC2 (e)) — crC2(crCl (e)) — <JClAC2 (e)) 

wherein e is an expression and Cl and C2 are predicates. If e is a single variable 

expression, then the conjunction of selection conditions can be evaluated at the same 

time. 

Example 10.1 Consider the query: “Get the full details of courses with course number 

COMP353 where the instructor is Smith.” This query can be expressed in 

relational algebra as: 

®Course# = COMP353(*^/ni/rucror= 'Smith'(COURSE)) 

or equivalently by: 

® Course# = COMP353 A lnstructor= ‘Smith’(^-'OUR.SE)) 

The latter expression can be evaluated by testing for the predicate 

Course# = COMP353 A Instructor = ‘Smith’ 

against each tuple of relation COURSE. B 

If e is a multivariable expression, say, of the form el [XI e2, then the conditions 

Cl and C2 may be more appropriately evaluated against the subexpressions el and 

e2 (rule 5 below). 

2. Combine a cascade of projection into a single projection. 

ttx^yW) — ttx(R) where X C Y 

Example 10.2 Consider the query: 

tt Course_Namei^Course—Name, Instructor (COURSE)) 

This query can be stated as: 

tt Co«r.se_Atomf (COURS E) B 

3. Commute selection and projection. 

ctc(itx(R)) = Trx(o-c(R)) 

and 

ttx(o-c(R)) = <Tc(TTx(R)) 

However, if C involves attributes Y l X, then when commuting projection with 

selection we have to use the following equivalence: 

Trx(oc(R)) = ^x(°'c(ttxuy(R)))1 

'From an implementation point of view, one wonders at the usefulness of this transformation. If projection and selection are 

done in separate steps, then the relation is accessed three times in the transformed version instead of twice. Admittedly, the 

selection operation deals with a smaller number of tuples, but its significance depends on the first projection. If projection and 

selection are combined in one access of the relation, the advantage of this transformation is doubtful. 
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4. Use associative and commutative rules for joins and cartesian products. 

RtXI S = S EX R 
R XI S tXI T = R XI (S 1X1 T) = (R IXI S) XI T = (T IXI S) X! R = 

R * S = S * R 
R*S*T = R*(S*T) = (R*S)*T = (R*T)*S = . . . 

The order of the join and product is very important as it can substantially affect 

the size of the intermediate relations and, therefore, the total cost of generating the 

result relation. 

Example 10.3 In Example 10.1, the expression 

<Tc„.„,#»comp3oo (STUDENT CXI REGISTRATION) CX COURSE) 
Std# Course# 

can be replaced by the more efficient expression: 

(STUDENT XI(aCoM„e#>coMP30oREGISTRATION) X 
Std# Course# 

(^Course#>COMP300 COURSE) 

The above expression is equivalent to the following: 

((<JCo«rjc#>COMP300 REGISTRATION) [XI (<X Course # > COMP300 COURSE) 
Course# 

[XI STUDENT) ■ 
Std# 

5. Perform selection before a join or cartesian product. Consider crc(R CXI 

S). If the attributes involved in the condition C are in the scheme of R and not in S, 

that is, attr(C) i R and attr(C) l S, then 

crc(R [XI S) = crc(R) X S 

If the attributes involved in the condition C are in the scheme of S but not in R, i.e., 

attr(C) £ S and attr(C), l R, then 

<rc(R X S) = R X o-c(S) 

If the attributes involved in the condition C are in the scheme of R and S, i.e., 

attr(C) i R and attr(C) £ S, then 

ctc(R X S) = <tc(R) X ac(S) 

If C = Cl A C2 and the attributes involved in the condition Cl are from R, i.e., 

attr(Cl) € R, and the attributes involved in the condition C2 are from S, i.e., 
attr(C2) i S, then 

ctc(R IXI S) = crCi(R) IXI crC2(S) 

If C = Cl A C2 A C3 and the attributes involved in the condition C2 are only in 

R, i.e., attr(C2) 6 R A attr(C2) l S, the attributes involved in the condition C3 are 

only in S, i.e., attr(C3) ( S A attr(C3), (. R, and the attributes involved in the 
condition Cl are in R and S, then 

<tc(R X S) = <TC,(aC2(R) X crC3(S)) 
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The above equivalences also apply when the cartesian product operation is substituted 
for the join. 

Example 10.4 Consider the expression: 

(JStd#> 1234567ACourse# = COMP153ACourse—Name = ‘Database’(GRADE XI COURSE) 

It is equivalent to: 

^Course# =COMP353((OSk/#>1234567(GRADE)) X] (<TCourse-Name = ‘Database’ 

(COURSE))) ■ 

It is possible to combine projections with a binary operation that precedes or 

follows it. Only the attribute values specified in the projection need to be retained. 

The remaining ones can be eliminated as we evaluate the binary operation. 

6. Perform a modified projection before a join. Note that when a projection 

operation is preceded by a join, it is possible to push the projection down before the 

join, but the projection acquires new attributes. This necessitates performing the orig¬ 

inal projection after the join. However, unless the cardinalites of intermediate rela¬ 

tions are reduced, which would reduce the cost of the join operation and the subse¬ 

quent size of the joined relation, the usefulness of pushing a projection before a join 

is questionable. 

TTX(R XI S) 3= 'TTxIlTR'IR) X 7TS<(S)) 

where R' = R fl (X U S) and S' = S Cl (X U R), and R, S represent the set of 

attributes in these relation schemes. When X = R U S — R fl S, there is no 

improvement because R' = R and S' = S. 

Example 10.5 Consider the relations GRADE (Std#, Course#, Grade) and COURSE 

(Course#, Course—Name, Instructor). The expression 

TTStd#,Course—NameiGRADE X] COURSE) 

is equivalent to: 

IT Std#. Course_Name^.^ Std# .Course #(GRADE) 1AA1 IT Course# .Course—Vame(GOURSE)) 

However, consider the relations STUDENT (Std#, Std—Name) and 

REGISTRATION (Std#,Course#). The expression 

^^m,.couw#(STUDENT XI REGISTRATION) 

is equivalent to: 

TTSid—Name,Course#^Std#,Std /Vamcf STUDENT) TI Std# .Course# 

(REGISTRATION)) 

which is equivalent to the original query: 

^a_jvam,,c0«^#(STUDENT X3 REGISTRATION)) ■ 

7. Commuting projection with a cartesian product. Consider the expression 

ttx(R * S). This expression can be replaced by the following equivalent one under 
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these conditions: XI is the set of attributes in X that is in the scheme of R, and X2 

is the set of attributes in X that is in the scheme of S. 

irx(R * S) = -ttxi(R) * itx2(S) 

Example 10.6 Consider the relations STUDENT (Std#, Std-Name) and REGISTRATION 

(Std#, Course#). The expression 

^cou™#.s,^m,(STUDENT * REGISTRATION) 

is equivalent to: 

'trs^USTUDENT) * ^^(REGISTRATION) ■ 

8. Commuting projection with a union. Consider the expression ttx(R U S). 

It can be substituted by the equivalent one given below provided the relations R and 

S are compatible. In other words, they are defined on similar relation schemes. Dis¬ 

similarities in the names of the attributes could be handled by appropriate renaming. 

ttx(R U S) = irx(R) U ttx(S) 

Example 10.7 Consider the relations STUDENT (Std#, Std-Name) and REGISTRATION 
(Std#, Course#). The expression 

tts^#(STUDENT U REGISTRATION) 

is equivalent to: 

tt^#(STUDENT) U TT5,rf#(REGISTRATION) ■ 

9. Commute selection with a union. Again, the relations R and S must be 

compatible and any difference in names of the attributes could be handled by appro¬ 
priate renaming. 

<xc(R U S) = orc(R) U CTC(S) 

10. Commute selection with a difference. As in rules 8 and 9 above, relations 

R and S must be compatible and renaming would resolve any differences in the 
names of the attributes. 

<xc(R - S) = <tc(R) - ctc(S) 

We could replace the relations R, S, etc. in each of the above rules by a rela¬ 
tional expression. Note that the difference operation is not commutative. 

In addition to the above rules, the semantics of the data may be used to generate a 

query that is more economical than the original query. We illustrate this in Example 10.8. 

Example 10.8 Consider the university database. Suppose we want to find the list of active 
students (only the Std#). This can be expressed by the query: 
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tWSTUDENT X REGISTRATION) 

However, knowing that Sid# is the foreign key corresponding to the pri¬ 

mary key of STUDENT, we can replace the above query by the following, 
without involving a join: 

ttSi ^REGISTRATION ■ 

Finally, the query processor can use the knowledge of the relation schemes and 

functional dependencies to find additional equivalent forms for a query expression. 
Example 10.9 illustrates this. 

Example 10.9 Given R(A,5,C) and S(C,D,E . . C —> D), the query a/4 = a)(R CXI S) 

can be replaced by (aA = a, R) XI S and the query ttcd(S) X ttde(S) is 

equivalent to ttCd£(S). ■ 

Having determined the rules for deriving different equivalence transformations, 

the question remains, “What can we do with the different equivalent forms of a 

query?” Also, which of these forms should the system choose to evaluate? These 

different forms could have varying sizes of intermediate and final results, which 

would affect input/output and processing costs and consequently response time. In 

the following section we discuss the methods used in estimating the size of the rela¬ 

tions in the response. 

10.5 Expected Size of Relations in the Response 

The aim in centralized databases is to minimize disk (or secondary storage device) 

accesses, while in distributed databases, the goal has been communication cost re¬ 

duction where long-haul communication links are used. Thus, the system would pre¬ 

fer the query form that meets the system’s optimization goals. 

In general, query processing involves the costs of processing, input/output, and 

communication in distributed systems. The goal could be to optimize one, a pair, or 

all of these costs. The costs are not known before the evaluation, but an estimate 

based on past statistics could be made to compare the different evaluations. 

If access is required to all tuples of relation R with tuple size szR, then the 

number of bytes accessed are |R| * szR, which can be used as a cost estimate. It is, 

however, normal to access data from secondary storage in blocks (or pages). Let the 

blocking factor, which indicates the number of logical records per block, be bfR. 

Then the number of blocks accessed to retrieve the tuples of relation R is given by 

number of block accesses = [jR|/bfRl blocks 

Communication cost is given in terms of setup cost and the number of bytes 

transmitted. Assuming that the setup cost is c0 and the per byte transmission cost is 

cl5 and these costs are the same for all communication links, then 

communication cost = c0 + C] * |R| * szR 
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In this chapter we restrict ourselves to centralized database systems, for which 

the communication cost would be zero. We return to distributed query processing in 

Chapter 15. 
Selection, projections, and joins affect the sizes of the resulting relations. The 

effect of projection is simple to calculate if the sizes of the attribute values are 

known. The effect of selections and joins is more involved. 

We are interested in the size of the result relation for several reasons. First, the 

result relations could be intermediate relations and their size would be required to 

determine the cost of the succeeding part of the query expression. Second, the result 

relation may be too large to be stored in primary memory and would have to be 

written to secondary storage. We may want to compare the cost of this access with 

alternate equivalent query expressions. 

Let us assume that the values of an attribute are uniformly distributed over its 

domain and that the distribution is independent of values in the other attributes. 

These assumptions are usually made for simplifying cost calculations, and it should 

be noted that these assumptions cannot be justified on any other grounds. In practice 

both uniform distribution and independence are unlikely to occur. In that case, the 

expressions become complicated and are beyond the scope of this text. 

10.5.1 Selection 

Let T = ac (R) represent the selection of relation R on condition C, and let C be a 

simple clause of the form R[A] = constant. Before we can estimate the size of the 

resultant relation we must possess some knowledge about the value distributions, that 

is, the number of times an attribute takes a particular value. We can simply assume 

that each value occurs with equal probability. Then the expected number of tuples in 
relation T is given by 

|T| = 
1 * |R| 

\m)\ 

where |R[/1]| is the number of distinct values for attribute A of relation R. The factor 

1/|R[A]| is known as the selectivity factor and is usually represented by the symbol 

p (rho). As illustrated in Example 10.10, the nature of the data may allow an esti¬ 
mation of some selectivity factors. 

Example 10.10 Recall that in the university database example, the assumption that each 

student is registered in 10 courses is a reasonable assumption. Therefore, 
we expect that 

°S,d#= 1234567(REGISTRATION) 

will have ten tuples and 

^Course# = COMP453(REGISTRATION) 

will have 80 tuples if there are 5000 courses. We recognize that in reality, 

there will be considerable variations on these values. However, we can use 
them as estimates. ■ 



10.5 Expected Size of Relations in the Response 477 

As discussed in Chapter 3, it is unfortunately not reasonable to assume uniform 

distribution of values in all cases. Uniform distribution assumption is widely used 

nonetheless for estimating costs in choosing a query processing strategy. We should 

therefore bear in mind that this is just an estimate. 

Having generated the relation T (consisting of the tuples of relation R, satisfying 

the predicate C, involving the attribute A), suppose we need to estimate the number 

of distinct values for the attribute B in T. Note that B + A and the number of distinct 

values for B in the relation T is given by |T[#]|. 

We assume that the occurrence of a value in attribute B is unaffected by the 

values in A. In other words, the distributions are independent. Under these assump¬ 

tions, it can be shown that this problem is equivalent to the so-called colored balls 

problem. In this problem we have n balls of m different colors. (Apart from color, 

all balls are identical.) Each color is represented by the same number of balls. We 

must determine the expected number of different colors represented by a random 

selection of t of these n balls. 

It can be shown that the expected number of colors in these t balls is given by 

the following expression: 

expected number of colors = m * 
^ n((m — l)/m - i -I- 1 

= i n — i -I- 1 

We can estimate |T[fi]|, the expected number of different values for the attribute 

B in T, by the following substitution in the above expression: n = |R|, m = |R[fi]|, 

and t = |T|. 
However, the computation involved in evaluating this expression is consider¬ 

able. As a result, a number of different approximations to the above expression have 

been proposed. We present below one of the more widely used approximations. This 

approximation is given by the following formula for different sizes of the relation T: 

|T[B]| = 

|T| if |T) < 
|R[B]| 

cm HRM>if«S|T|S2»|R[B|| 

|R(B]| if |T| > 2 * |R[B]| 

The size of each tuple in relation T is the same as in relation R. 

10.5.2 Projection 

The cardinality of the resulting relation could be affected by a projection because 

duplicates would be deleted; however, most commercial database systems only delete 

duplicates as a result of explicit commands. 

T = ttx (R) 

where X is a set of attributes, XCR, 
When X is a single attribute, or contains the key attribute of R, and we represent 

the single or key attribute by A, then 

|T| = |R[A]| 
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If A is a key attribute of R then |T| = |R|. 

When X is a set of attributes, then 

|T| = n |R[A,]| 
/IjeX 

In the above estimation of the result we are assuming that the relation is a 

cartesian product of the values of its attributes. Such an assumption is rarely justified. 

We can take this as the worse case estimate. The upper limit in the above expression 

is given as: 

|T| s |R| 

The size of the tuples of T is the sum of the size of the attributes in X. 

10.5.3 Join 

The join operation is very common in relational database systems. The size estima¬ 

tion for the result of a join is somewhat more complicated than that of selection 

because the cardinality of the result relation depends on the distribution of values in 

the joining attribute. Furthermore, the cost of evaluating a join is not reflected in the 

size of the result. The cost depends on the size of the relations being joined. We are, 

however, interested in estimating the size of the result, since it could be used in 

subsequent operations in evaluating a query. 

Since the size of the result depends on the values of the joining attributes and 

the distribution of these values, we shall consider a number of special cases. 
Let 

T = R tXI S 
R.A = SB 

Estimating the cardinality of T is complex because it is difficult to estimate 

correctly the number of tuples of each relation that join with tuples of the other 

relation. In the worse case the join is equivalent to a cartesian product; this occurs 

when the operand relations do not share attributes defined on common domains. In 
such cases, the cardinality of the result relation is given by: 

|T| < |R| * |S| 

This value of cardinality is much too large for most practical databases. We 

consider a number of special cases below, assuming a uniform distribution of values. 

1. Let {A} represent the set of values that the attribute A takes in the relation R. 

The number of distinct values for attribute A is given by |R[A]|. We assume uniform 

distribution of these values and further assume that these values will also be in rela¬ 

tion S. In this case, we could conclude that there are |S|/|R[A]| tuples in S for each 

value for attribute A. Therefore, each tuple in R joins with |S|/|R[A]| tuples in S and 
the number of tuples in T is given by: 

■ I = |R| * |S| 

|R[A]| 
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Let {B} represent the set of values that attribute B takes in relation S. The num¬ 

ber of distinct values for attribute B is given by |S[R]|. Again, using uniform distri¬ 

bution and further assuming that these values would also be in relation R, we could 

conclude that there are |R|/|S[fi]| tuples in R for each value for attribute B. This 

means that each tuple in S joins with |R|/|S[fl]| tuples in R, and it follows that the 
number of tuples in T is given by: 

,T| = |R| * |S| 
|S[B]| 

If {A} + {B}, then |R[A]| + |S[fl]| and the values for |T|, obtained by the 

expressions (|R| * |S|)/|R[A]| and (|R| * |S|)/|S[fl]|, would be different. This indicates 

that there are tuples in R and S that do not participate in the join. Such tuples are 
called dangling tuples. 

The greater, average, or the lesser of (|R| * |S|)/|R[A]| and (|R| * |S|)/|S[fi]| could 
be taken as the estimate of the size of T. 

2. If A is the key of R, then every tuple of S can only join with one tuple of 

R, i.e., the cardinality of the resultant relation cannot be greater than the cardinality 
of S: 

|T| s |S| 

3. Another possible derivation of an estimate, which takes into account the size 

of the domain and which estimates a much smaller value for the cardinality of the 

join, is as follows. The number of distinct values of A in R and B in S is |R[A]| and 

|S[fi]|, respectively. Assuming uniform distribution as before, each value of A in R 

(B in S) is associated with |R|/|R[A]| tuples (|S|/|S[fi]|). Thus, for each value of A (or 

B) in the join, we could derive the upper limit on the number of tuples in the join as 

given below: 

[R| * |S| , 

IR[A]| * |S[fl]| tUpeS 

The above will hold if the same set of values are in both R and S. Since the 

same set of values is unlikely to be in the two relations, the expected number of 

common domain values is much lower. This expected number depends on the prob¬ 

ability of any value appearing in both the relations. The expected number of distinct 

values of A in R (or B in S) that takes part in the join is given by: 

|R[A][ * |S[fl]| 

|D| 

where |D| is the cardinality of the domain of A and B. Therefore, the expected actual 

size of the join is given by: 

= |R[A]| * |S[fll| * |R| ♦ |S| 

1 1 |D| |R(A]| • |S(B]| 

|R| * |S[ 

|D| 

The size of tuples of T equals the sum of the sizes of tuples of R and S, minus 

the size of the joining attribute A (or B). 
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10.6 Statistics in Estimation 

In the above discussions, we have estimated the size of the result. The cost of each 

of these operations depends on the storage organization and the indexes that may be 

present in the database. Additional indexes may be created, or the relation may be 

sorted to perform one of the above operations. 
Estimation of the size of results could also be generated from statistics main¬ 

tained by the DBMS. These statistics include the cardinality of the relations, the 

number of distinct values for each attribute, and the cardinality of joins with different 

relations. Such statistics could be recorded once a query is executed. For instance, 

having decided on the basis of the above estimates that the join of R and S be made, 

the database system generates this join. It can then determine the cardinality of the 

result and store this as an estimate.2 Such an estimate will give a better indication of 

the costs and sizes than the estimate discussed in Section 10.5. However, if the 

database is modified in the interim, the result would be different than this recorded 

statistic. In such a case, the database could modify these statistics and record the 

amount of change in the statistics. The recording of such incremental changes would 

be useful in subsequent estimating to generate better results. 

The overhead involved in generating and modifying such statistics dictates that 

those statistics be generated only during low load on the computing systems or by 

execution of specific utility programs. Examples of such utilities are RUNSTATS in 
DB2 and UPDATE STATISTICS in SQL/DS. 

As a consequence of changes in the database, the result obtained by using out¬ 

dated statistics may not be accurate. However, since these are only estimates, they 

are still useful in selecting a better query processing strategy. 

10.7 Query Improvement 

A query can be improved in a number of ways before its evaluation is performed. 

The improvements are basically concerned with minimizing, if not altogether remov¬ 

ing, redundancy from expressions and results. Elimination of redundant expression 

is equivalent to pruning the query operator tree. The rules discussed in Section 10.4 

are used in finding equivalent query expressions and the cost of each expression is 

evaluated. We illustrate the application of a few of these rules in a number of ex¬ 
amples in this section. 

Let us first consider the general strategy of performing selections and projections 
as early as possible. 

Example 10.11 Consider the query: “List the names of students registered in the Database 

course.” The algebraic formulation of this query is given below and the 
corresponding query tree is given in Figure 10.3. 

2The argument against recording such an estimate after each query is the additional locking required to update the statistics 
and concommitant locking overhead. It would also cause the serialization of queries modifying independent relations in the 
database. 
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^Std_Name(®Course_Name = Database'(STU DENT tXI REGISTRATION 
[X COURSE)) 

Referring to Figure 10.3, we can see that if the operations were per¬ 

formed as stated, the selections and projections would be applied during the 

last stage of query evaluation. If the selection were to be applied to the 

COURSE relation, it would reduce the number of tuples of the COURSE 

relation that would take part in the joins. We therefore “push down the 

tree” any selection and projection operators. At the intermediate nodes, the 

operators are pushed into the appropriate branches. For example, if we push 

down the selection operator, because the relation STUDENT does not con¬ 

tain the Course-Name attribute, the selection is only applicable to the inter¬ 

mediate results from the other branch, as shown in Figure Ai. The selection 

can be pushed further down to the leaf nodes as shown in Figure Aii. 

Figure A Example of pushing down the selection in an operator graph. 

^Std Name 

STUDENT 
®Course Name=Database 

M 
Course# 

REGISTRATION COURSE 

(i) 

rrStd Name 

STUDENT 

N 
Std# 

M 
Course# 

REGISTRATION 6Course Name=Database 

COURSE 
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As we discussed under rule 6 in Section 10.4, a projection cannot be simply 

moved down. Given relations R and S defined on the relation schemes R(X,Y,Z) 

and S(X,Y,W), where W, X, Y, Z are sets of attributes, then 

7tx(R IX] S) = 'n,x(Trx,Y(R) XI ttx,y(S)) 
Y Y 

In other words, as the projection is pushed down, it acquires additional attri¬ 

butes. These additional attributes finally have to be eliminated by the original projec¬ 

tion. This is illustrated in the following example. 

Example 10.12 Consider the query: “Compile a list of instructors and the grades they as¬ 

sign.” The relational algebraic expression for this query is given below: 

^Instructor,GradedRADE X3 COURSE) 

The corresponding query tree is given in Figure Bi. To push the pro¬ 

jection down the tree, we would have to include the common attribute 

Course# of GRADE and COURSE in both branches of the join operation 
as indicated in Figure Bii. 

Figure B Pushing projection down the query tree. 

^Instructor, Grade 

- M - 
Course# 

grade course 

(i) 

^Instructor,Grade 

- M - 
Course# 

nCourse#,Grade (GRADE) ^Course#,Instructor (COURSE) 

(ii) 

Example 10.13 illustrates the effect of pushing the projection operation down the 
query tree. 

Example 10.13 Consider the query: “List the names of the students in the Database 

course. The relational algebraic expression for this query is given below: 

'nSr<L_A'ame(STUDENT tX TTSt(l# cw«#(REG ISTR ATION 
Sid# 

Course.—Name = ‘Database’(COURSE))) 
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This expression can be simplified by moving the second projection fur¬ 

ther to the right in the expression, before the join on Course#. In the case 

of the relation REGISTRATION the projection is the entire relation and for 

COURSE the projection is on the attribute Course#. The modified expres¬ 
sion is shown below: 

'Trs/aiJVam<?(STUDENT IX (REGISTRATION 
Std# 

^ X ^ HCourse#(®Course_Name — ‘Database’(COURSE))) 
Course# 

The effect of pushing the projection operation down the query tree is 

illustrated in Figures Ci and Cii. Since the projection on the attributes Std# 

and Course# of the relation REGISTRATION is the entire relation, the 

operation is redundant and dropped. Course# is the only attribute appearing 

Figure C Effect of pushing down projection operator. 

ftStd Name 

M 
Std# 

STUDENT ^ Std#,Course# 

M 
Course# 

REGISTRATION ® Course _Name=Database 

COURSE 

(i) 

ftStd_Name 

- x- 
Std# 

STUDENT M 
Course# 

REGISTRATION ft Course# 

®Course A/om^=Database 

(ii) 

COURSE 
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in the relation COURSE. Therefore in pushing the operation Ttstd#,course# 

down, we drop the attribute Std#. Note that the projection and selection 

operations on the relation COURSE could be combined during a single pass 

over its tuples. H 

The other form of query improvement is the transformation of a redundant 

expression into a nonredundant one. Redundant expressions may have been entered 

by the user or may result during query transformation, as illustrated in Example 
10.14. 

Example 10.14 Consider the query: “Compile a list of the names of students who have not 

obtained a grade of C or higher in the Database course.” A possible rela¬ 

tional algebraic query is given in Figure Di and the corresponding operator 
graph is shown in Figure Dii. 

The two subtrees of the difference operators are similar, the difference 

being that in the right subtree there is a selection on the GRADE relation. 

Moving the selection to be performed after the join on Std# (or just before 

the difference operation), we get the modified relational algebraic expression 
given below and the graph of Figure E. 

'KStd—Name(STUDENTIX(GRADEX(aCou„e_^ame = .Database.(COURSE))) - 

<W^STUDENT X (GRADE X (<I Course-Name = Database’(COURSE))))) 

Figure D (i) Relational algebraic query and (ii) corresponding query 
graph. 

Ks,d_Name (STUDENT M (GRADE M (oCourse Name=Datab!iSe (COURSE) ))- 

(STUDENT N (oGrade>C GRADE M (oCourseJJame=Dmabase (COURSE))))) 

(i) 

^Std Name 

N- 

STUDENT N 

N- 

STUDENT 

GRADE 

N 

aCourse_Name=Database °Giade>C aCourse Name-- Database 

COURSE GRADE COURSE 

(ii) 
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Figure E Graph showing two identical subtrees. 

^Sld Name 

■M 

STUDENT M 

GRADE 
®Course A,onif=Database 

COURSE 

°Grade>C 

M- 

STUDENT N 

GRADE OCourse Name=Database 

COURSE 

We can see that there are two identical subtress in the graph of Figure 

E, indicating a redundancy. We can remove the redundancy as shown in 

figure Fi and replace the difference operation by a selection. These changes 

are reflected in Figure Fii. Note that R - ac(R) = o\_,c(R), where —iC is 

the negation of the predicate C. 

Figure F Removing redundancy from the graph of Figure E. 

^Std Name 

°Grade>C 

^Std Name 

°Grade<C 

STUDENT XT 

■IX- 

STUDENT 

GRADE cCourse Name=Database 

M 

GRADE Of, 

COURSE 

(i) 

ourse Name—Database 

COURSE 

(ii) 
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Figure G Final optimization for Example 10.14. 

^StdName 

-M- 

STUDENT ns,d# 

-M- 

^•Course# ,Std# ^Course# 

®Grade<C ®Course Name=Database 

GRADE COURSE 

Finally, we can push down the selections and projections to give us the 

tree of Figure G. ■ 

10.8 Query Evaluation 

We have presented a sampling of the many different query improvement strategies. 

Having found the best equivalent form of a query, the next step is to evaluate it. We 

classify the query evaluation approaches according to the number of relations in¬ 

volved in the query expression. Thus, we distinguish between the approach to be 

used when the query expression involves one, two, or many relations. These are 

known as one-variable, two-variable, and N-variable expressions, respectively. The 

last stage of query processing deals with the execution of access plans. A number of 

different query evaluation strategies have been proposed. Here we look at some com¬ 
monly implemented techniques. 

10.8.1 One-Variable Expressions 

A one-variable expression involves the selection of tuples from a single relation. 
Let us consider the SQL query: 

select al, . . ., ak 
from R 

where p 

The simplest approach would involve reading in each tuple of the relation and 

testing it to ascertain if it satisfies the required predicates. This is illustrated below. 
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Sequential Access 

Use sequential access to read in every tuple of the relation. If the tuple satisfies the 

qualification conditions, include the projection of the tuple on the target list attributes 
in the result relation. The algorithm is given below: 

result : = 0 {empty} 

for every r in R do 

if satisfies (p, r) 

then result := result + <r.al . . . r.ak> 

where Cr.al . . . r.ak> represents the tuple obtained by concatenating the projec¬ 
tions of r onto the attributes in the target list. 

If the relation has n tuples that are blocked as b tuples/block, then for sequential 

access to the tuples, the number of block accesses is [n/b]. In dealing with large 

relations, this is an inefficient approach, as illustrated in Example 10.15. 

Example 10.15 Consider the REGISTRATION relation to evaluate the query: “Generate the 

list of students {Std# only) enrolled in COMP353.” The SQL version of 
this query is: 

select Std# 

from REGISTRATION 

where Course# = COMP353 

We use sequential access to the tuples of REGISTRATION. Suppose 

there are 400 tuples per block of secondary storage devices. Reading in all 

tuples of REGISTRATION would involve access to 400,000/400 = 1,000 

block accesses. ■ 

Access Aid 

The number of tuples needing to be accessed could be reduced if the relation is sorted 

with respect to one or more attributes. In such cases, if the predicates involve one or 

more attributes on which the relation is sorted, then only some of the tuples need be 

accessed. Use of indexes can provide faster access to the required tuples. 

Example 10.16 Let us reconsider the previous example of generating the list of students 

enrolled in COMP353. If the tuples of REGISTRATION are sorted in order 

based on Course# and the records are clustered with 400 tuples per block, 

we could do a binary search on these blocks. Locating the block containing 

the required course would limit access to about 10 blocks. This will be 

followed by access to at most one additional block. The last block accessed 

would be needed only if some 80 tuples with the required course number 

were not in the same block. This gives us a total of approximately 11 block 

accesses. ■ 
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If the relation has an index, it may be used to improve evaluation performance 

when access is required to a subset of the tuples. Such indices could be on one 

attribute or they may involve a combination of attributes. 

Example 10.17 Let us reconsider the previous example of generating the list of students 

enrolled in COMP353. If an index exists on the Course#, then access to 

the different levels of the index would involve (at most) two block accesses, 

followed by one to the appropriate tuples. If the tuples are clustered by 

Course#, then a maximum of two additional block accesses are required to 

generate the response. ■ 

10.8.2 Two-Variable Expressions 

A two-variable expression involves either two distinct tuples from the same relation 

or two distinct relations. Here we concentrate on the latter case. One of the most 

common (and expensive) binary operations is the join operation. In this section we 

consider how the join, for instance R CXI S, can be evaluated. 

Nested Loop Method 

The nested loop method is a simple method in which every pair of tuples from the 

participating relations are accessed and tested for the join condition. The algorithm 
in the form of pseudocode is sketched below. 

for i : = 1 to |R| do (* outer loop *) 
begin 

get ith tuple of R 

for j : = 1 to |S| do (* inner loop *) 
begin 

get jth tuple of S 

if join condition is satisfied then 

perform join of the ith tuple 

of R with the jth tuple of S 
end (* inner loop*) 

end (* outer loop *) 

It should be clear that every tuple of the outer relation is matched with all of 
those of the inner relation. 

The total number of secondary storage accesses required, assuming that each 

tuple requires an access, is given as |R| + |R| * |S|. The first term indicates the 

access to the tuple of the outer relation and for each such tuple, all the tuples of the 

inner relation must be accessed. It is preferable to have the smaller relation in the 
outer loop. We illustrate this in Example 10.18. 
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Example 10.18 Consider the problem of generating the class list, consisting of Std#, Std_ 

Name, Course#, in the university database. This involves joining the STU¬ 

DENT and REGISTRATION relations. The nested loop method would in¬ 

volve a total of 40,000 + 40,000 * 400,000 disk accesses, assuming a disk 

access for each tuple. Obviously, if the larger relation were in the outer 

loop, the number of disk accesses would have been 400,000 + 400,000 * 
40,000. ■ 

Even in the case of small relations, the value |R| + |R| * |S| is quite large. The 
order of the algorithm is 0(n2). 

We can substantially improve the performance of the nested loop method by 

considering physical device characteristics. Data is accessed from secondary storage 

in chunks called blocks or pages. So our first improvement to the algorithm would 

be to move away from comparing a single tuple of the outer relation with a single 

tuple of the inner, to comparing all tuples in a block of the outer relation with those 

from a block of the inner one. This strategy requires that there be space in the main 

memory for these blocks. The modified algorithm for a blocked nested loop is given 
below. 

for each B blocks of R do (* outer loop *) 

begin 

read B blocks of R 

for each block of S do (* inner loop *) 

begin 

read block of S 

for each tuple of the B blocks of R do 

for each tuple in the block of S do 

if join condition is satisfied 

then 

join the tuple of R with the tuple of S; 

end (* inner loop *) 

end (* outer loop *) 

Suppose we use blocked (or paged) accesses with the blocking factors of rela¬ 

tions R and S represented by bfR and bfs, respectively. B blocks of memory are 

available to store the blocks of relation R (the outer relation). Then the outer loop 

involves reading B blocks of R at a time. Each tuple in the block of the inner relation 

can be compared with tuples from these B blocks of the outer relation. This results 

in the total number of secondary memory accesses given by the following expression: 

||R|/bfRl + f(l/B) * [|R|/bfRH * r|S|/bfsl 

If one of the relations (let us say R, the smaller of the two) can be kept entirely 

in memory, then the number of disk accesses required is [|R|/bfRl + f|S|/bfsl. 

Example 10.19 Let us reconsider the problem of generating the class lists, consisting of 

Std#, Std-Name, Course#, in the university database. This involves join¬ 

ing the STUDENT and REGISTRATION relations. Let us suppose that the 
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number of tuples per block, bf$, for the STUDENT relation is 200, the bfR 

for REGISTRATION is 400, and up to 5 blocks of the STUDENT relation 

can be kept in main memory. The nested loop using block access with STU¬ 

DENT, the smaller relation in the outer loop, would involve a total of 

40,200 disk accesses. If the smaller relation in the outer loop could be kept 

entirely in memory, then the number of disk accesses would be 1200. Note 

that this method requires sorting the result relation on the attribute Course# 

to obtain class lists. H 

Sort and Merge Method 

Relations are assumed to be sorted in the sort and merge method. If they are not 

sorted, a preprocessing step in the query evaluation sorts them. These sorted relations 

can be scanned in ascending or descending order of the values of the join attributes. 

Tuples that satisfy the join predicate are merged. The process can be terminated as 

indicated in Algorithm 10.1 on page 491. 
In the algorithm, we join the relation R with relation S and the join predicate is 

R.A = S.B. We assume that the relations have been sorted in ascending order with 

respect to the attributes A and B and that sufficient space for an appropriate number 

of buffers in available. The tuples are placed in the buffers by the file manager and 

the algorithm reads the tuples from these buffers. R | and S \ are pointers that point 

to the corresponding tuples in the buffers. We assume that once the last tuple in a 

buffer has been read, the buffer is refilled. If the joining attributes are not the primary 

key of the relations, a many-to-many relationship could exist via the joining attri¬ 

butes. We use an array U where pointers to tuples of relation S that have the same 

attribute value as the current tuple of R are stored. These tuples join with the current 

tuple of the relation R and allow a single pass over the tuples of both the relations. 

A tuple whose pointer has been stored in this array locks the tuple so that the buffer 

containing it is not released. An attempt to read past the last tuple in the relation 

would raise the eof (end-of-file) condition. The algorithm could be easily modified 
to include cases where the join involves more than one attribute. 

The number of accesses for Algorithm 10.1 is given by: 

r|R|/bfRl + f|S|/bfsl + Rcs + Scs 

where Rcs and Scs are the costs of sorting the relations, assumed to be equal to the 

number of accesses required during the sorting of the relations R and S, respectively. 

The sort costs depend on memory availability and the number of runs produced in 

the initial sort stage. For example, if we have enough memory to perform a 

max(N,M)-way merge, where the number of runs produced for R and S are N and 

M, respectively, then the number of accesses required for the join is as follows: 

Initial read: [|R|/bfRl + [|S|/bfsl blocks 

Writes of the sorted runs: [|R|/bfRl + [|S|/bfsl blocks 

Read in merge phase: [|R|/bfRj + [|S|/bfsl blocks 

Writes of the join: f|T|/bfTj blocks 

Note that T is the result relation and bfT is the blocking factor for it. Similar 
calculations can be done for other memory sizes. 



10.8 Query Evaluation 491 

Algorithm 

10.1 Sort-Merge to Include a Many-to-Many Relationship 

Input: R, S, the two relations to be joined on attributes A and B, respectively. 

Output: T, the relation that is the join of R and S (concatenation of the attributes of R 
and S, including the attributes A and B). 

begin {sort-merge} 

T := empty 

sort R by A values and S by B values in ascending order 
read (R) 

read (S) 

while not (eo/(R) or eof(S)) do (* main while loop *) 
begin 

while not(eofiR) or eofS) or R f .A S f .B) do 

(* find a join value *) 

if R | -A < S f B 
then read(R) 

else read(S) 

if not (eof(R) or eofiS)) 

then 

begin (*join a R tuple with one or more S tuples*) 
n : = 0 

Rcurrent-^ • R { .A 
while S | .B = RCUrrent A and not (eof(S)) do 

begin 

n : = n+ 1 

U[n] := S| 

read (S) 

end 

while R t A = Rcurrem-A and not (eo/(R)) do 

begin 

for i = 1 to n do 

T := T + Rf || U[i] t 
read{R) (*does another tuple of R join with 

the tuples whose pointers are in 

array U?*) 

end 

end 

end (*main while loop*) 

end (*sort-merge*) 



492 Chapter 10 Query Processing 

If the relations are already sorted on the joining attributes, the merge-sort 

method is an efficient method for evaluating a join. 

Join Selectivity and Use of Indexes 

Consider the join: 

R N S 
R.A = S-B 

Join selectivity of a relation R in a natural join with a relation S denoted by 

pRS is the ratio of the distinct attribute values for attribute A participating in the join 

to the total number of distinct values for the same attribute in R, that is, |R[A]|. Sim¬ 

ilarly, pSR is the join selectivity of the relation S in a natural join with the relation R. 

Under the uniform distribution assumption, pRs*|R| tuples of R and Psr*|S| tuples 

of S would be involved in a natural join of relation R with S. The use of join selectivity 

statistics is an alternate and practical method of estimating the size of the join. 

If the relation S has an index on the join attribute and if we assume uniform 

distribution, then the number of accesses required is given by |R| + pSR*|S|, where 

pSR is the join selectivity. The method of performing the join is as follows. We read 

in the tuples of R and for each attribute value of R.A we consult the index for S to 

determine if any tuples from S are involved in the join. If so, these tuples of S are 

retrieved and joined with the corresponding tuples of R. The tuples of S required to 
be retrieved would be pSR*|S|. 

Should the records of relations R be blocked, the number of block accesses is 

given by |R|/bfR. If the records of relation S are stored in blocks, the number of 

block accesses required to access k records of S (where k = pSR*|S|) is given by a 

formula that is derived from the colored balls problem. The optimal number of block 

accesses required to access k records randomly distributed in a file of n records 

(n = |S|) and stored as m blocks (m = |S|/bfs) is given by the following expression: 

y(k,m,n) = m * 
k 

n 
i = I 

n — n/m — i -I- 1 

n - i + 1 

However, if indexes exist on the joining attributes for both relations, the use of 

these indexes provides a more efficient method of evaluating the join. In this case, 

we can determine if a given value that exists in one of the relations is also present 

in the other. If so, then the required tuples could be read and joined to produce the 
result tuples. 

Only those tuples that are involved in the join are required, and therefore only 

Prs*|R| tuples of R and pSR*|S| tuples of S are retrieved. The total cost of the join, 

however, includes the cost of retrieving the indexes. The use of hash and join indexes 
to implement the join operation is discussed below. 

Hash Method 

Since we are using the hash method for evaluating a natural join, we can assume 

that the same hash function is applied to the attributes R.A and S B. The buckets 

contain the pointers to the appropriate tuple of the relation. The pointers, sometimes 

called tuple identifiers (or TID), contain, in addition to a pointer indicating the 
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storage location of the tuple, an identifier for the relation. Therefore, the structure of 
the TID is: 

relation identifier || pointer to the tuple 

Let us represent the hash values generated for the attribute values Ax and Bs of 

the relations R and S by h(Ar) and h(Bs), respectively. Now, if Ax = Bs, then h(Ar) 

= h(fis). In other words, the hash function generates the same “bucket address’’ for 

the tuples of R and S that take part in the join. Ideally, if the hash function does not 

cause “collisions” we only need to take these tuples of R and S and generate a join. 

In reality collision would occur and we would need to compare the tuples before 

joining. We have, however, reduced the number of tuples that need to be compared. 

An alternate method of handling collision is to store the attribute value with the TIDs 

in the bucket. We assume this scheme in our discussions. 

In performing the join using such a hash index, we read into main memory those 

hash buckets containing the attribute values and corresponding TIDs for the relations 

R and S. The joining values of the attributes are those that have TIDs for both the 

relations. These tuples are retrieved and the resulting joined tuple generated. Exam¬ 

ple 10.20 illustrates this method. 

Example 10.20 Consider the problem of generating the list of courses (Course#) in which 

a student is currently registered. It involves joining the STUDENT relation 

with the REGISTRATION relation on the Std# attribute. Suppose the same 

hash function h(attribute) = attribute mod 97 is used to generate the bucket 

address for the common Std# attribute in these relations. The pointer values 

in the buckets in Figure H indicate the TIDs of the STUDENT and REG¬ 

ISTRATION relations. 

Figure H Hash index for use in join operations. 

STUDENT REGISTRATION 

TIDSTUdent Std# Std-Name TIDREGiST Std# Course# 

1000001 1234567 Jim 2000001 1234567 COMP353 

1000002 7654321 Jane 2000002 1234567 COMP443 

1000003 2345678 San 2000003 2345678 COMP201 

1000004 8765432 Ram 2000004 8765432 COMP353 

2000005 8765432 COMP441 

2000006 7654321 COMP441 

bucket 

24 ... 26 ... 48 

Attribute TID 

1234567 1000001 

1234567 2000001 

1234567 2000001 

7654318 2000006 

Attribute TID 

8765432 

8765432 

8765432 

1000004 

2000004 

2000005 

Attribute TID 

2345678 

2345678 

1000001 

2000003 
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To determine the courses in which student 1234567 is registered, we 

generate the bucket address using 1234567 as the argument for the hash 

function and derive the address 48. Consulting bucket 48, we find that the 

values of the TIDs in REGISTRATION for this student are 2000001 and 

2000002. Retrieving the tuples corresponding to these TIDs gives us the list 

of courses for the student as COMP353 and COMP443. H 

To determine the courses (Course# only) for all students necessitates a natural 

join of the STUDENT and REGISTRATION relations. This involves reading the 

hash buckets sequentially. For each attribute value, we read in the tuples participating 

in the join. For the attribute value 8765432, we need the tuples with the TIDS 

1000004, 2000004, and 2000005. The first one is from the STUDENT relation and 

the last two are from the REGISTRATION relation. 
The number of accesses to secondary storage required with such a hash index, 

with the relations being stored in blocks of size bfR and bfs, is given by yR + ys + 

cost of accessing the hash index. Here, yR and ys are given as follows: 

YR(kR>mR>nR) - 

kR 
nR — nR / mR — i + 1 

= mR * 1 - n 
i = nR - i + 1 

ys(ks,ms,ns) = 
kS 

nS — ns / ms — i + 1 
= ms * 1 - n 

i= 1 ns - i + 1 

where kR = - pRS*|R|, nR = R|. mR = r|R|/bfRl, and 

ks = Psr*|S|, ns = |S|, and ms = [|S|/bfsl 

The size of the hash index is approximately equal to (szA + szTID) *(|R| + |S|), 

where szA is the size in bytes of the attribute being joined and szXID is the size in 

bytes of the TID. The number of secondary storage accesses required to read in the 

hash index for a block size of szbl is f((szA + szTID) *(|R| + |S|))/sz5|j 

If a hash index does not exist, the use of this method requires that such an index 

be generated to determine the tuples that would be involved in the join. We then 

need only to access the tuples of R and S once and write out the result. If the memory 

is not sufficiently large, we would need to store the hashed values on secondary 

storage and would require additional accesses. 

Join Indexes 

To provide more efficient join operations, join indexes have been proposed. A join 

index is a relation of arity two and conceptually can be thought to be obtained as 

follows: The TIDs of the tuples of the relations participating in a join are concaten¬ 

ated with the tuples. These augmented relations are joined and the resulting relation 

is then projected on the TIDs. For instance, the join index for: 

R [XI S 
R.A = SB 

will only consist of tuples with the TID of R and S that participate in this natural 
join. 

A join index is useful for joins that have to be performed often. The number of 

tuples in the join index for R XI S is equal to the cardinality of the join, namely |R 

(XI S|. The size of the tuples in a join index depends on the size of the TIDs. 
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Example 10.21 We return to the problem of generating the list of courses in which students 

are registered. Generating such a list involves joining the STUDENT rela¬ 

tion with the REGISTRATION relation on the Std# attribute. Since this is 

assumed to be a frequently required operation, we can create a join index. 

We illustrate the join index on sample tuples in Figure I. 

To find all courses (Course#) in which student 1234567 is registered, 

we note that the TIDsxudenx for the tuple corresponding to this Std# has 

the value 100001. Now, consulting the join index STUDENT-REGISTRA¬ 

TION, we discover that the tuples with the TIDs 2000001 and 2000002 in 

the relation REGISTRATION will join with the tuple 100001. These TIDs 

lead us directly to the tuples in REGISTRATION involving student 1234567 

and we find that this student is registered in courses COMP353 and 
COMP443. 

Figure I Join index. 

Join Index: 

STUDENT STUDENT-REGISTRATION 

TIDstudent Std# Std-Name TIDstudent T1Dre0|ST 

1000001 1234567 Jim 1000001 2000001 

1000002 7654321 Jane 1000001 2000002 

1000003 2345678 San 1000002 2000006 

1000004 8765432 Ram 1000003 2000003 

1000004 2000004 

1000004 2000005 

REGISTRATION 

tidregist Std# Course# 

2000001 1234567 COMP353 

2000002 1234567 COMP443 

2000003 2345678 COMP20I 

2000004 8765432 COMP353 

2000005 8765432 COMP44I 

2000006 7654321 COMP44I 

The join index contains the TIDs for tuples of R and S that participate in the 

join and only these tuples have to be retrieved. If bfji is the blocking factor for the 

join index, the cost of accessing the join index is given by |R IX S|/bfjj. The cost 

of performing a join using join indexes is given by |R IX S|/bfn + yR + ys, where 

yR + ys are the optimal number of block accesses required to retrieve the tuples of 

R and S participating in the join. 
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10.8.3 N-Variable Expressions 

An n-variable expression involves more than two variables. The strategy used here 

is to try to avoid accessing the same data more than once. One method of imple¬ 

menting such expressions is to simultaneously evaluate all terms of the query. There¬ 

fore, if a number of terms in the query require unary operations on the data accessed, 

these could be done in parallel. If the data accessed participates in binary operations, 

these binary operations are partially evaluated. 

General n-variable queries can be reduced for evaluation by either tuple substi¬ 

tution or decomposition. 

Tuple Substitution 

In the tuple substitution method we substitute the tuples for one of the variables. 

Consequently, we reduce the query to K| * (n-1)-variable queries, where K) is the 

cardinality of the substituted variable. The process is repeated until we get a set of 

one-variable queries. This process is an extension of the nested loop approach and 

requires the processing of tuples equal to the cartesian product of all relations par¬ 
ticipating in the query. 

Example 10.22 Consider the query: “Compile a list giving the Std#s and Std_Names of 

students who, having failed the Database course, are taking it again.” Note 

that we assume that the GRADE relation contains the best grade a student 

received in a given course. For a student who failed a course and subse¬ 

quently passed it, the only tuple in the GRADE relation would be the one 
involving the second attempt! 

The SQL and relational algebraic forms of this query are: 

select Std#, Std-Name 

from STUDENT s, REGISTRATION r, GRADE g, COURSE c 
where s.Std# = r.Std# and 

c.Course-Name — ‘Database’ and 
g.Std# = s.Std# and 

g.Course# = c.Course# and 
g. Grade = F and 

r.Std# = g.Std# and 

r. Course# = c .Course# 

'n,Sft/#.SfcDvome(STUDENT IX ^^(REGISTRATION IX 

^ Std#,Course# (^Grade = FACourse-Name = Database’(GRADE IXI COURSE)))) 

This query can be evaluated by substituting the value of each tuple of the 

four relations involved in the query. The number of tuples to be processed 

is approximately equal to 40,000 * 400,000 * 600,000 * 1,000. ■ 

Even though the substitution method will always work, it should be avoided 

because of the exponential increase in the number of tuples to be processed. 
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Figure 10.4 Moving selection and projection down the query tree. 

^Sldtt,Sld Name 

M 

STUDENT 
KSid# 

De¬ 

registration ^Sld#, Course# 

Or.,: Grade = F Course_Name=Database 

j i_:_ 

^Srdtt, Course# 

-M 

^Course# 

GRADE COURSE 

Note that we could use the optimization strategies discussed earlier to reduce 

the cost. One such operation involves moving the selection operations, as indicated 

in the query tree of Figure 10.4. This optimization scheme leads us to modify the 

tuple substitution scheme. In this modified scheme, the cardinality of one or more of 

the participating relations is reduced by selection or projection. For instance, instead 

of substituting all tuples of GRADE and COURSE, these relations could be scanned 

once and their cardinality restricted to those tuples that satisfy the query predicates. 

Similar query modifications could be achieved in SQL or QUEL by a nested 

select statement or by using temporary relations, as illustrated below. 

Using nested select in SQL: 

select Std#, Std-Name 

from STUDENT s 

where s.Std# in 

(select r.Std# 
from REGISTRATION r 

where r. Course# = 

(select c. Course# 

from COURSE c 

where c.Course-Name = ‘Database’) and 

r.Std# = 

(select g.Std# 

from GRADE g 

where g. Grade — F and 

g.Course# = 
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(select cl .Course# 

from COURSE cl 
where c\.Course-Name = ‘Database’))) 

Using temporary relations in QUEL: 

range of c is COURSE 

retrieve into COURSE_TEMP (c.Course#) 

where c.Course-Name = ‘Database’ 

range of g is GRADE 

retrieve into GRADE-TEMPI (g.S/d#, g.Course#) 

where g. Grade = F 

range of gl is GRADE_TEMP1 

range of cl is COURSE_TEMP 
retrieve into GRADE_TEMP2(g.SW#, g.Course#) 

where gl .Course# = cl. Course# 

range of g2 is GRADE_TEMP2 

range of r is REGISTRATION 

retrieve into REGISTRATION_TEMP (x.Std#) 

where x.Std# = %2.Std# and 

x.Course# = g2.Course# 

range of rl is REGISTRATION-TEMP 

range of s is STUDENT 

retrieve s.Std#, s.Stud-Name 

where s.Std# = xl.Std# 

Decomposition 

Consider the SQL query: 

select Al, A2, . . . 

from X,, X2, X3, . . . Xm, Xm+I, . . . Xn 

where C,(X,, X2, . . . XJ and 

C2(Xm, Xm+1, . . . X„) 

Here C, and C2 are predicates that involve the relations X,, X2, X3, . . . Xm 

and Xm, Xm+1, . . . Xn, respectively. One method of evaluating this query is to 

evaluate a query with predicate C2 seperately and assign the result into a temporary 

relation TEMP with the same relation scheme as Xm. This query is shown below: 

insert into TEMP 

from Xm, Xm + I, . . . Xn 

where C2(Xm, Xm+1, . . . Xn) 

Now the original query can be evaluated using the relation TEMP instead of Xm 
as indicated below: 

select Al, A2, . . . 

from X,, X2, X3, . . TEMP 

where C,(X,, X2, . . ., TEMP) 



10.8 Query Evaluation 499 

This modified query is simpler than the original query and would involve a 
smaller relation TEMP instead of Xm. 

In the decomposition method, we can consider the following special cases: 

select Al, A2, . . . 

from X,, X2, X3, . . . Xm, Xm + I, . . . Xn 
where C,(X,, X2, . . . XJ and 

C2(Xm+1, . . . Xn) 

This is a case of a disjoint predicate, which can be separately evaluated as 
shown below: 

select * 

from Xm+I, . . . Xn 

where C2(Xm+1, . . . Xn) 

If the above query produces an empty relation, then the original query would 

also produce an empty relation as a response. If the above query produces a non¬ 

empty relation, then the following query would provide the required response: 

select Al, A2, . . . 

from X,, X2, X3, . . . Xm 

where C,(X,, X2, . . . XJ 

Now consider the query of the following form: 

select Al, A2, . . . 

from X,, X2, X3, . . . Xn 

where C|(X,, X2, . . . Xn) and 

C2(Xn) 

In such cases, we can detach a one-variable query from the original one. This 

one-variable query could be independently evaluated to give us a result containing, 

let us say, k tuples. Now the original n-variable query can be replaced by k (n— 1)- 

variable queries wherein the nth variable is replaced by its tuple values. 

Let the predicate C2(Xn) applied to the variable Xn produce a set of tuples {tnl, 

tn2, . . ., tnk}. The original n-variable query could then be replaced by k (n — 1 )- 
variable queries of the following form: 

select Al, A2, . . . 

from X,, X2, X3, . . . Xn_, 

where CJX,, X2, . . . Xn_,, tj 

This is the tuple substitution operation of decomposition. Since the number of 

tuples in the relation Xn is much larger than k, the processing cost does not grow 

exponentially. The optimization strategy in this case is to select the variable to be 

detached and the sequencing of such detachment. 

In the QUEL version of the query of Example 10.22, we have reduced the query 

into a number of single-variable subqueries, as shown in Figure 10.5. These subquer¬ 

ies could be evaluated independently or, if resources are available, in parallel. The 

results of the evaluation of these queries are the smaller relations GRAD_TEMP1 

and COURSE_TEMP. The queries involving GRADE_TEMP1 and COURSE- 

TEMP can then be evaluated to yield GRADE_TEMP2. This is followed by using 
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Figure 10.5 Decomposition of query of Example 10.22. 

Q 

REGISTRATION_TEMP STUDENT 

GRADE_TEMP2 REGISTRATION 

GRADE_TEMP1 COURSE_TEMP 

i I 
GRADE COURSE 

GRADE_TEMP2 and REGISTRATION to evaluate REGISTRATION_TEMP. The 

latter is used in the final stage of the query to compile the required list. In this 

decomposition, evaluation of GRADE_TEMP1 and COURSE_TEMP involves a 

one-variable query. GRADE_TEMP2 is a two-variable query, as are REGISTRATION 

TEMP and Q. Suppose there are 60,000 tuples in GRADE_TEMP1 with a grade of 

F (obtained after processing the 600,000 tuples of GRADE) and one tuple with the 

course name of Database (obtained after processing 5,000 tuples of COURSE). The 

number of tuples in GRADE_TEMP2 would be, let us say, 6. If only two of these 

students are reregistered, the tuple substitution at the point of evaluating Q involves 

finding only the names of these two students who have failed the Database course 

and are reregistered in the course. This tuple substitution results in the following: 

retrieve Std#, Stud-Name where Std# = 1234567 

retrieve Std#, Stud-Name where Std# = 7654321 

In the decomposition approach, an n-variable query is replaced by a sequence 

of single variable queries. If this is impossible or undesirable, the query is split into 

two subqueries with a single common variable between them. Such subqueries could 

be recursively decomposed until they become single variable queries or irreducible. 

A query is reducible if it can be separated into two subqueries with a common vari¬ 

able, each of the subqueries having at least two variables. An irreducible subquery 
cannot be reduced and must be evaluated. 

Some of the relations involved in the subqueries obtained by the reduction pro¬ 

cess can be reduced in cardinality by projection or selection. In this manner, the 

original query is replaced by a sequence of smaller queries. Figure 10.6 illustrates 
the decomposition of a query in the form of a tree. 

The decomposition algorithm (Wong 76) consists of four subalgorithms refered 

to as reduction, subquery sequencing, tuple substitution, and variable selection. In 

the reduction subalgorithm, the query is separated into irreducible components. These 

are evaluated in an order determined by the subsequency subalgorithm. Each 

subquery is evaluated in order and the result of the evaluation is used in tuple sub¬ 

stitution. Optimization is attempted by determining the sequence in which the 

subqueries are to be evaluated and selecting the variables for which the tuple substi- 
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Figure 10.6 Decomposition of a query in the form of a tree. 

Q 

Qi Q8 

Q2 Q7 Q9 Q10 

Q3 Q6 Qll Q12 

Q4 Q5 

tution is to be performed. The objective of the optimization is to minimize the esti¬ 
mated costs. 

Access Aids in N-Variable Expressions 

The presence of access aids and the commonality of attributes can be used to advan¬ 

tage in the evaluations of multiple variable queries. Let us consider, for instance, the 

three-variable query, U = R 1X3 S 1X3 T. We can create indexes on the joining 

attributes in the join R IX] S for R and S 1X3 T for T, if they do not already exist. 

If these indexes have to be created, access to the relations R and T is involved, plus 

the cost of writing the indexes to secondary storage if insufficient space exists in 

main memory. Subsequently, the tuples of S are accessed. For each tuple of S, the 

required tuples from R and T are determined by using the values of the joining 

attribute and the indexes for R and T. In this manner, the three-way join could be 
evaluated. 

The cost of this method is that of access to tuples of relation S and the required 

tuples of R and T, plus the cost of accessing the indexes. If the index must be 

created, the cost also entails the overhead of creating the indexes, plus access to each 

of the three relations followed by the selected tuples from the relations R and T. 

10.8.4 Access Plan 

Once the method of evaluating various operations is determined, the steps involved 

in combining the query components to deduce the final results have to be planned. 

Generating an optimal access plan is a stepwise process done in conjunction with the 

query transformation operation. In generating an access plan a decision has to be 

made regarding which indexes should be generated and which of the existing data 

structures should be used. 
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The database statistics also influence the selection of the sequence of operations 

to generate the intermediate and final result of the query and, hence, the optimal 

access plan. The optimal sequence of operations in evaluating the query minimizes 

access to secondary storage devices in the case of a centralized database system and 

minimizes communication costs in the case of a distributed system. 

10.9 Evaiuation of Calculus Expressions 

A relational calculus query is nonprocedural; the result is described by specifying its 

properties. Calculus expressions can be interpreted using nested loop procedures. 

This method, however, is inefficient, requiring the processing of a number of tuples 

equal to the cartesian product of the participating relations. 

The alternative is to first transform the relational calculus query into relational 

algebra and then evaluate the relational algebraic expression. The methods of evalu¬ 

ation discussed in the preceding sections can be applied to the transformed calculus 

queries. 

The nonprocedural relational calculus query can be considered to consist of two 

parts: a target list and a qualification. The qualification, as we saw in Chapter 4, is 

a first-order predicate expression, and the target list is some list of free variables 

occurring in the predicate. The target list also specifies the structure of the result 
relation. 

In this section we present a widely used method to translate a calculus query 

given in the disjunctive prenex normal form to an algebra query. A query is in 

prenex normal form if its qualification is of the form: 

V [or 3] r^R, . . . v [or 3] rneRn (P) 

where P is a quantifier-free predicate. Thus, in the prenex normal form, all the quan¬ 

tifiers are moved to the front of the expression. Note that either the universal or 

existential quantifier binds a variable in the above expression. A disjunctive prenex 
normal form query has the predicate P of the form: 

P :: = Pi V P2 V • • • V Pk 

where each disjunct Pj is a conjunction of terms: 

P .._ t a At 

where Ty are terms. 1 " 11 ' ’ im 

Let us consider the qualification clause of a query of the form: 

3 r,eR, . . . 3 rne Rn (P) 

This can be transformed into the relational algebraic query: 

ctp (R, tXl R2 tXI . . .1X1 Rn) 

preceded by a projection on the attributes specified in the target list of the query, 
plus the attribute required for the join. 

Having converted the query into the relational algebraic form, we can apply the 

different simplification and improvement procedures considered in the previous sec¬ 

tions. Example 10.23 illustrates the conversion of a tuple calculus query into a rela¬ 
tional algebraic form. 
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Example 10.23 Consider the query: “Compile a list containing the names of students who 

have obtained a grade lower than C in the Database course.” The tuple 

calculus expression for this query is given below: 

{t[Std-Name] | t e STUDENT A 3g,c(g e GRADE Ace COURSE 

A g[Std#] = t[Staf#] A g[Course#] = c[Course#} A 
c[Course—Name] = ‘Database’ A g[Grade] < C)} 

This could be converted into the following equivalent algebraic form query: 

^Std_Namei^ Course_Name = Database/\Grade<C/\Course_Name = ‘Database’! STUDENT L"A 
GRADE XI COURSE)) H 

10.10 View Processing 

In Section 10.1 we discussed the need for query modification when a query is ex¬ 

pressed on a view. Such queries have to be replaced by appropriate queries on base 

relations. In the discussion so far we have considered the processing of queries as¬ 

suming that the query is posed on base relations. In this section we briefly consider 

ways of transforming a query posed on views to an equivalent query on base rela¬ 

tions. 
Consider a SQL query based on a view, such as USERS_VIEW, as given be¬ 

low: 

select <target_list(Q)> 

from <from_list(Q)> 

where <where_clause(Q)> 

Here we have used <from_list(Q)>, <target_list(Q)>, and <where_ 

clause(Q)> to indicate the names of the tuple variables used in the query. Since a 

view is defined by a SQL query, the query defining the view USERS_VIEW can be 

written as: 

create view USERS-VIEW as 

select <target_list(V)> 

from <from_list(V)> 
where <where_clause(V)> 

Here we have used <target_list(V)>, <from_list(V)>, and <where_ 

clause(V)> to indicate the names of the attributes, tuple variables, and predicates 

used to generate the USERS_VIEW. 
To process the user’s query, we have to modify it to refer to the base relations. 

It is possible that the same tuple variable could be used in both the user’s query and 

the definition of the view. Such multiple use of variable names should be replaced to 

differentiate them. Thus if the user’s query and the view definition both use the tuple 

variable r, it is preferable to replace the tuple variable r in the view definition with a 

different tuple variable, for instance, r'. 
Algorithm 10.2 transforms a query that involves views as well as base relations 

into one involving only base relations (given on page 504). The use of this algorithm 

in transforming a query based on views is illustrated in Example 10.24. 

A relation V defined in the view need not be preserved in the modified user’s 
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Algorithm 

10.2 Transform a Query on a View to the Base Relations 

Input: Query on a view 

Output: > Query on the base relations 
Let X be the set of common tuple variable names 

<from_list (V)> and <from_list (Q)>. For all names r in X, replace r in <target 

list (V)>, <from_list (V)>, and <where_clause (V)> by r'. 

Delete V from <from_list (Q)> and append <from_list (V) to <from_list 

(Q)>. 
Replace each attribute V.A in Q by its corresponding entry from <target-list 

(V)>. 
Replace <where_clause (Q)> by <where_clause (Q)> and <where_clause 

(V)>, i.e., the new <where_clause> is a conjunction of the conditions of the 

view and query. 

query provided all the relations and tuple variables appearing in the <from_list(V)> 

of the create view statement are appended to the user’s query. The next stage in the 

query modification of the user’s query is step 2 of the algorithm. In the subsequent 

steps of the query, all references to attributes of such deleted relations are replaced 

by the corresponding base relation attributes. Finally, the predicate in the view defi¬ 
nition must be appended to the predicates in the user’s query. 

Example 10.24 Consider a database consisting of the following base relations: 

EMPLOYEE(Emp-Name, Salary, Dept, Position) 
PHONE#(Emp_Name, Extension#) 

Consider a view defined as follows: 

create view DEPT-EMP as 

select e.Emp_Name,e. Salary, e.Position 

from EMPLOYEE e EMPLOYEE el 

where e.Dept = el .Dept and 

el .EmpJSame = ‘Smith’ 

A query using this view is given below: 

select t.EmpJName, e.Salary, p.Extension# 

from DEPT-EMP e PHONE# p 

where e. Position = engineer and 

DEPT_EMP. Emp-Name = p .Emp_Name 

The user s query uses the tuple variable e, which is also used in the state¬ 

ments to define the view. Therefore, the view variable e would be changed 

to, let us say, e . We would also delete DEPT-EMP in the from clause of 
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the user’s query and append the from list from the view definition to the 

user’s query. Next, we would replace DEPT_EMP.£>n/?_Aarae by e'.£mp_ 

Name and e.Position by e'.Position. Finally, we would append the predi¬ 

cates from the definition of the view to the user’s query. The modified user’s 
query is given below: 

select z'.Emp-Name, e' .Salary, p.Extension# 

from PHONE# p EMPLOYEE e' EMPLOYEE el 

where .Position = engineer and 

e'.Emp-Name = p. Emp-Name and 

e' .Dept ~ t\.Dept and 

el.Emp-Name = ‘Smith’ 

This modified query can now be optimized and evaluated using the tech¬ 
niques discussed earlier in this chapter. ■ 

10.11 A Typical Query Processor 

We have presented a sampling of possible query optimization strategies. A query 

expression during the modification stage may be decomposed into several subqueries. 

Once the method of efficiently evaluating these components is determined, the steps 

involved in combining these components to deduce the final results have to be 

planned. An access plan, as represented in a query tree, describes the sequence of 

operations that are involved to generate the intermediate and final result of the query. 

It includes strategies such as determining what indexes should be generated and 

which of the existing data structures should be used. 

A query may be embedded within an application program that may be executed 

repetitively. Should such a query be compiled, i.e., should the access plans be bound 

to it? Interactive queries tend to be ad hoc and cannot be expected to be repeated. 

DB2, for instance, compiles all queries, including the interactive queries. For the 

latter, DB2 discards the access plan after execution of the query. 

Early binding (i.e., binding of the access plan at first invocation) is not rec¬ 

ommended for compiled queries because there can be a significant hiatus between 

the binding and the query’s eventual execution. During this hiatus, the original exe¬ 

cution strategy may have become inefficient because of changes to data organization. 

Binding at execution allows the latest information to be utilized in the optimization 

process. This process is, however, not cheap, and for frequently run queries it may 

be beneficial to bind early and avoid the optimization overhead for each execution. 

A trade-off is made wherein the access plan is bound at compile time with a provi¬ 

sion made to recompile such queries periodically and use the modified data struc¬ 

tures. 
An ad hoc query is submitted by a user using the direct interface (or monitor) 

to the DBMS. Queries can also be submitted by embedding them in high-level lan¬ 

guage programs. To facilitate this, it is usual to extend the high-level language or 

supplement it with additional features. For example, EQUEL is the version of QUEL 

that can be used in C programs on the INGRES relational database management 

system. 
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No matter how the query is entered into the system, a parser first converts the 

input stream of characters into tokens (internal code representation). The optimizer 

accepts this coded version of the query and performs query optimization. As we have 

seen in this chapter, this involves improving the query (removing redundancy) and 

generating a schedule or access plan. In the generation of the schedule, the optimizer 

would consider a large number of possible execution strategies based on available 

access aids and expected sizes of results. To assist in the selection of an appropriate 

strategy, some of the following statistical information is maintained in the data dic¬ 

tionary: 

For each relation: number of tuples, number of blocks used to store these tuples, percent 

of total number of relevant database blocks used by the relation. 

For each index: number of distinct data values and number of blocks used. 

The optimization uses some of the strategies discussed earlier. However, to keep 

the overhead within limits, some shortcuts are commonly used, such as not consid¬ 

ering a change in the order of evaluations of joins specified by the user’s query. Joins 

are evaluated using either nested loop or sort-merge techniques. The sort-merge is 

normally preferred for large relations while the nested loop method is reserved for 

the smallest relations. Academic INGRES, for instance, uses the query decomposi¬ 

tion strategy. It developes an access plan for one step, executes it, and uses the result 

of the execution to determine the subsequent access plans. Commercial INGRES, on 

the other hand, develops a complete access plan. 

The access plan is submitted to the data manager, which retrieves the data and 

manipulates it to derive the result. The structure of a typical query processor is shown 

in Figure 10.7. 

Figure 10.7 Structure of a query processor. 

Query 

Query 
processor 
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Summary 

Query processing is the procedure of converting a user’s query into an internal stan¬ 

dard representation. The query is subsequently modified to an equivalent but more 

efficient to evaluate form. An access plan for evaluating the query is determined and 

executed. Converting queries using views into queries on base relations is also a 

responsibility of query processing. 

The general strategy used in query modification is to try to execute the selection 

and projection operations as early as possible. Attempts are made to combine a num¬ 

ber of unary operations, thereby avoiding the necessity of accessing the same data 

more than once. Common subexpressions are detected and attempts are made to 

evaluate such subexpressions only once. When the query involves more than two 

variables, attempts are made to break it down into a number of simpler, connected 

queries. 

Joins, one of the most common operations used in relational databases, are eval¬ 

uated using either the nested loop method or the sort-merge technique. Using indexes 

and sorting the relations also improves the execution of these operations. In deriving 

an access plan, an attempt is made to use existing indexes. In the absence of an 

index or if the relations are unsorted, the overhead of creating indexes and/or sorting 

the relations may be justified. 
The query processor has access to the following statistical information main¬ 

tained in the data dictionary: number of tuples in the relations, number of blocks 

used to store relations, number of distinct data values. These statistics are used in 

estimating the cost of alternate access plans, the best of which is chosen. 

tuple identifier (TID) 

join index 

n-variable expression 

tuple substitution method 

decomposition method 

prenex normal form 

disjunctive prenex normal form 

binding 

selectivity factor 

one-variable expression 

sequential access 

two-variable expression 

nested loop method 

sort and merge method 

join selectivity 

hash method 

query processing 

query processor 

query optimization 

parser 

access plan 

query modification 

operator graph 

conjunctive normal form 

10.1 Consider each of following relational operators: projection, selection, join. Suppose it is 

required to implement them so that duplicate tuples are removed. Prepare a pseudocode 

program to implement these using (a) sort-merge, (b) hashing. 

10.2 Repeat Exercise 4.3 from Chapter 4, giving both an efficient relational algebra expression 

and the corresponding query tree. 

10.3 Repeat Exercise 4.4 from Chapter 4, presenting both an efficient relational algebra expression 

and the corresponding query tree. 
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10.4 Repeat Exercise 4.12 from Chapter 4, giving both an optimal relational algebra expression 

and the corresponding query tree. 

10.5 Consider the computation of the join R<A,B,C) and S(B,C,D,). Suppose R has 1,000 tuples 

stored 30 tuples per disk block and S has 10,000 tuples stored 40 tuples per disk block. 

There is space in the main memory for 3 buffers for relation R and 5 buffers for relation S. 

What is the number of disk accesses made if the relations are joined using the nested loop 

method? 

10.6 Indicate if each of the following equivalences are valid, without any knowledge about the 

relation schemes of R and S. If valid, how could they be used in query modification to 

improve its evaluation? 

(a) crP(R — S) = o>R - OpS 

(b) TTP(R —S) = = TTpR — TTpS 

10.7 Given R(A,B,C), S{B,C,D), and T(C,D,E), draw the query tree for each of the following 

queries and apply optimization procedures to it. 

(a) crfi = b(TWR CX S) D tWR X T)) 

(b) TTABC(as = b(TrABR) DX ttabS) - 'rrABC(<U> = d(R X T))) 

10.8 Consider the following query on the database discussed in this chapter: 

select S.Std#, S.Std-Name 

from STUDENT s,Grade g,Registration r,COURSE c,COURSE cl 

where s.Std# = g.Std# and 

g. Course# = c. Course# and 

c.Course-Name = ‘Database’ and 

g. Grade = A and 

S .Std# = r.Std# and 

cl.Course# = r.Course# and 

cl.Cowrsc-Name = ‘Database Design’ 

Assuming that the size of the relations are as indicated in the text, find the best strategy to 

evaluate this query. 

10.9 Generate an optimal query tree for each query of Exercise 5.10 of Chapter 5. 

10.10 Is it possible to use algebraic modification to convert the first relational algebraic version of 

the query in Section 10.2 to the third version? If so, depict a sequence of query trees 

showing each step of the modification process. 

10.11 Consider the different access strategies (indexing and hashing). State how the availability of 

such access aids influences query processing. 

10.12 Modify the algorithm for nested joins using block access wherein the join condition involves 

more than one attribute from each relation. 

Bibliographic Notes 

Wong and Youssefi (Wong 76) introduced the decomposition technique, Selinger et al. (Seli 

79) describe access path selection, and Kim (Kim 82) describes join evaluation strategies. 

Techniques for query improvement are presented in Hall (Hall 76). Some join minimization 

techniques are presented in the textbooks by Maier (Maie 83) and Ullman (UUm 82). Query 

evaluation algorithms are presented in Blasgen and Eswaren (Bias 77) and Yao (Yao 79). Join 

indexes for a two-variable join are presented in Valduriez (Vald 87). When two or more 
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relations are to be joined, the use of a composite B-tree-based index has been shown to be 

advantageous (Desa, in press, Desa 89). A survey of query processing techniques is given by 

Jarke and Kock (Jark 84). The distributed query processing survey by Yu and Chang (Yu 84) 

also considers techniques useful in centralized database systems. 
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A computer system is an electromechanical device subject to failures of various 

types. The reliability of the database system is linked to the reliability of the com¬ 

puter system on which it runs. In this chapter we discuss recovery of the data con¬ 

tained in a database system following failures of various types and present the differ¬ 

ent approaches to database recovery. The types of failures that the computer system 

is likely to be subjected to include failures of components or subsystems, software 

failures, power outages, accidents, unforeseen situations, and natural or man-made 

disasters. Database recovery techniques are methods of making the database fault 

tolerant. The aim of the recovery scheme is to allow database operations to be re¬ 

sumed after a failure with minimum loss of information at an economically justifiable 

cost. We concentrate on the recovery of centralized database systems in this chapter; 
recovery issues of a distributed system are presented in chapter 15. 

11.1 Reliability 

A system is considered reliable if it functions as per its specifications and produces 

a correct set of output values for a given set of input values. For a computer system, 

reliable operation is attained when all components of the system work according to 

specifications. The failure of a system occurs when the system does not function 

according to its specifications and fails to deliver the service for which it was in¬ 

tended. An error in the system occurs when a component of the system assumes a 

state that is not desirable; the fact that the state is undesirable is a subjective judg¬ 

ment. The component in question is said to be in an erroneous state and further use 

of the component will lead to a failure that cannot be attributed to any other factor. 

A fault is detected either when an error is propagated from one component to another 

or the failure of the component is observed. Sometimes it may not be possible to 

attribute a fault to a specific cause. Furthermore, errors such as logical errors in a 

program are latent as long as they do not manifest themselves as faults at some 

unspecified time. A fault is, in effect, the identified or assumed cause of an error. If 

an error is not propagated or perceived by another component of a system or by an 

user, it may not be considered as a failure. 

Consider a bank teller who requests the balance of an account from the database 

system. If there is an unrecoverable parity error in trying to read the specific infor¬ 

mation, the system returns the response that it was unable to retrieve the required 

information; furthermore, the system reports to a system error log that the error oc¬ 

curred and that it was a parity error. The cause of the parity error could be a fault in 

the disk drive or memory location containing the required information; or the prob¬ 

lem could be traced to poor interconnection or noise on the communication lines. We 

cannot rule out the fact that the parity checking unit itself may be defective. 
For a database system (or for that matter, any other system) to work correctly, 

we need correct data, correct algorithms to manipulate the data, correct programs 

that implement these algorithms, and of course a computer system that functions 

correctly. Any source of errors in each of these components has to be identified and 

a method of correcting and recovering from these errors has to be designed in the 

system. To ensure that data is correct, validation checks have to be incorporated for 

data entry functions. For example, if the age of an employee is entered as too low 
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or too high, the validation routine should ask for a confirmation of the data that was 

entered. 
Fault-detection schemes of appropriate types have to be built into a reliable 

system. In addition, a reliable system has built into it appropriate recovery schemes 

that will correct the errors that have been detected, or eliminate a portion of the 

permanently failed system. Such elimination, however, may mean that the system 

may not be available until it is repaired. 
A fault-tolerant system, in addition to the fault-detection scheme, has redun¬ 

dant components and subsystems built in. On detection of a fault, these redundant 

components are used to replace the faulty components. Such replacement makes it 

possible to keep the system available without any interruption of service, albeit, at a 

reduced level of performance and reliability. 
We will not consider the aspects of correct algorithms or correct implementation 

of these algorithms in this text. However, we stress their paramount importance in 

the correct functioning of any system, including a database system. 

Another aspect that has to be considered in database application is that of data 

consistency. Having correct data is important; however, the data must be consistent. 

This requires checks in the database system to ensure that any redundant data is 

consistent. For example, if the age of an employee is entered in the database, it must 

be consistent with the employee’s date of birth and the current date. 

Let us now try to informally define the concept of reliability of a system. Reli¬ 

ability is a measure used to indicate how successful a system is in providing the 

service it was intended for. Reliability is an important consideration in all systems 

designed for critical operations. It is considered during all stages of computer system 

design and implementation. To take into account the fact that physical devices have 

an inherent failure rate, these systems have built into them include various mecha¬ 

nisms to detect errors and correct many of them. A number of measures are used to 

define the reliability of a system. These include the mean time between failures 

(MTBF), the mean time to repair (MTTR), and the system availability, which is 

the fraction of time that a system performs according to its specifications. 

There are two basic methods of increasing the reliability of a system. The first 

method uses fault avoidance and the second method tolerates faults and corrects 

them. In the fault-avoidance method, reliability is achieved by using reliable com¬ 

ponents and careful assembling techniques with comprehensive testing at each stage 

of design and assembly to eliminate all sources of hardware and software errors. In 

the fault-tolerance approach, the system incorporates protective redundancies, which 

can cater to faults occurring within the system and its components. These redundan¬ 

cies allow the system to perform according to its specifications (or within an accept¬ 

able level of degradation from these specifications). However, the use of redundancy 

in components and subsystems to make a system fault tolerant increases the number 

of components. A greater number of components in a system decreases its reliability 

unless the components are modular and the redundant components do not get in the 

way of the operation of the system s normal components. Modular construction ef¬ 

fectively reduces the complexity of the system and the redundant components come 
into play only in case of an error. 

Memory systems can have a simple parity check bit that can detect a single bit 

error correctly, but multiple bit errors can go undetected (or be detected incorrectly 

as a single bit error). However, memory systems can be made fault tolerant by ad¬ 

ditional parity bits to detect and correct errors in one or more bits. The degree to 
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which such detection and correction schemes are used depends on the expected num¬ 

ber of errors and the costs that can be economically justified. 

Absolute reliability is hard to achieve at an economically acceptable cost (or at 

anycost), hence systems are designed with a level of reliability that is compatible 

with the use of the system and is economically justifiable. 

In database systems, reliability of the system is achieved by using redundancy 

of data, including control data. In addition, failures are tolerated by using additional 

redundant data that can be used in recovery operations to return the database to an 
usable state after a failure. 

11.1.1 Types of Failures 

Hardware Failure 

Failures that can occur in the hardware can be attributed to one of the following 

sources: design errors, inadequate quality control, overloading, and wearout. 

Design errors: These could include a design that did not meet the required 

specifications of performance and/or reliability; the use of components that are of 

poor quality or insufficient capacity; poor error detection and correction schemes; and 

failure to take into account the errors that can occur in the error detection and cor¬ 

rection subsystems. 

Poor quality control (during fabrication): This could include poor connections, 

defective subsystems, and electrical and mechanical misalignments. 

Overutilization and overloading: Using a component or subsystem beyond its 

capacity. This could be a design error or utilization error where mismatching sub¬ 

components may be used, or due to unforeseen circumstances a system is simply 

used beyond its capacity. 
Wearout: The system, especially its mechanical parts, tends to wear with usage 

causing it to divert from its design performance. Solid-state electrical parts do not 

wear out, but insulation on wire could undergo chemical changes with age and crack, 

leading to eventual failure. 

Software Failure 

The errors that can lead to a software failure are similar to those that lead to hardware 

failure, the only exception being wearout. 
Design errors: Not all possible situations can be accounted for in the design 

process. This is particularly so in software design where it is hard to foresee all 

possible modes of operation, including the combinations and the sequence of usage 

of various components of a software system. However, the design should allow for 

the most serious types of errors to be detected and appropriate corrective action to 

be incorporated. In situations that could result in loss of life or property, the design 

must be fail-safe. An alternate approach to design in such a situation is to assign 

multiple design teams for the same project and an independent verification team to 

validate the design. 
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Poor quality control: This could include undetected errors in entering the pro¬ 

gram code. Incompatibility of various modules and conflict of conventions between 

versions of the operating system are other possible causes of failure in software. 

Overutilization and overloading: A system designed to handle a certain load 

may be swamped when loading on it is exceeded. Buffers and stacks may overrun 

their boundaries or be shared erroneously. 
Wearout: There are no known errors caused by wearout of software: software 

does not wear out. However, the usefulness of a software system may become ob¬ 

solete due to the introduction of new versions with additional features. 

Storage Medium Failure 

Storage media can be classified as volatile, nonvolatile, and permanent or stable. 

Volatile storage: An example of this type of storage is the semiconductor mem¬ 

ory requiring an uninterruptable power source for correct operation. A volatile stor¬ 

age failure can occur due to the spontaneous shutdown of the computer system, 

sometimes referred to as a system crash. The cause of the shutdown could be a 

failure in the power supply unit or a loss of power. A system crash will result in the 

loss of the information stored in the volatile storage medium. One method of avoid¬ 

ing loss of data due to power outages is to provide for an uninterruptable power 

source (using batteries and/or standby electrical generators). Another source of data 

loss from volatile storage can be due to parity errors in more bits than could be 

corrected by the parity checking unit; such errors will cause partial loss of data. 
Nonvolatile storage: Examples of this type of storage are magnetic tape and 

magnetic disk systems. These types of storage devices do not require power for 

maintaining the stored information. A power failure or system shutdown will not 

result in the loss of information stored on such devices. However, nonvolatile storage 

devices such as magnetic disks can experience a mechanical failure in the form of a 

read/write head crash (i.e., the read/write head comes in contact with the recording 

surface instead of being a small distance from it), which could result in some loss of 

information. It is vital that failures that cause the loss of ordinary data should not 

also cause the loss of the redundant data that is to be used for recovery of the ordi¬ 

nary data. One method of avoiding this double loss is to store the recovery data on 

separate storage devices. To avoid the loss of recovery data (primary recovery data), 

one can provide for a further set of recovery data (secondary recovery data), and so 

on. However, this multiple level of redundancy can only be carried to an economi¬ 
cally justifiable level. 

Permanent or Stable storage: Permanency of storage, in view of the possibility 

of failure of the storage medium, is achieved by redundancy. Thus, instead of having 

a single copy of the data on a nonvolatile storage medium, multiple copies of the 

data are stored. Each such copy is made on a separate nonvolatile storage device. 

Since these independent storage devices have independent failure modes, it is as¬ 

sumed that at least one of these multiple copies will survive any failure and be 

usable. The amount and type of data stored in stable storage depends on the recovery 

scheme used in the particular DBMS. The status of the database at a given point in 

time is called the archive database and such archive data is usually stored in stable 

storage. Recovery data that would be used to recover from the loss of volatile as 

well as nonvolatile storage is also stored on stable storage. Failure of permanent 
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storage could be due to natural or man-made disasters. A manually assisted database 

regeneration is the only possible remedy to permanent storage failure. However, if 

multiple generations of archival database are kept, loss of the most recent generation, 

along with the loss of the nonvolatile storage, can be recovered from by reverting to 

the most recent previous generation and, if possible, manually regenerating the more 
recent data. 

Implementation of Stable Storage 

Stable storage is implemented by replicating the data on a number of separate non¬ 

volatile storage devices and using a careful writing scheme (described below). Errors 

and failures occurring during transfer of information and leading to inconsistencies 

in the copies of data on stable storage can be arbitrated. 

A write to the stable storage consists of writing the same block of data from 

volatile storage to distinct nonvolatile storage devices two or more times. If the writ¬ 

ing of the block is done successfully, all copies of data will be identical and there 

will be no problems. If one or more errors are introduced in one or more copies, the 

correct data is assumed to be the copy that has no errors. If two or more sets of 

copies are found to be error free but the contents do not agree, the correct data is 

assumed to be the set that has the largest number of error-free copies. If there are 

the same number of copies in two or more such identical sets, then one of these sets 

is arbitrarily assumed to contain the correct data. 

11.1.2 Types of Errors in Database Systems and 
Possible Detection Schemes 

Errors in the use of the database can be traced to one of the following causes: user 

error, consistency error, system error, hardware failure, or external environmental 

conditions. 

User error: This includes errors in application programs as well as errors made 

by online users of the database. One remedy is to allow online users limited access 

rights to the database, for example, read only. Any insertion or update operations 

require that appropriate validation check routines be built into the application pro¬ 

grams and that these routines perform appropriate checks on the data entered. The 

routines will flag any values that are not valid and prompt the user to correct these 

errors. 
Consistency error: The database system should include routines that check for 

consistency of data entered in the database. Due to oversight on the part of the DBA, 

some of the required consistency specifications may be left out, which could lead to 

inconsistency in the stored data. A simple distinction between validity and consis¬ 

tency errors should be made here. Validity establishes that the data is of the correct 

type and within the specified range; consistency establishes that it is reasonable with 

respect to itself or to the current values of other data-items in the database. 

System error: This encompasses errors in the database system or the operating 

system, including situations such as deadlocks (see Section 12.8). Such errors are 

fairly hard to detect and require reprogramming the erroneous components of the 
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system software or working with the DBMS vendor. Situations such as deadlocks are 

catered for in the DBMS by allowing appropriate locking facilities. Deadlocks are 

also catered to in the operating system by deadlock avoidance, prevention, or detec¬ 

tion schemes. 
Hardware failure: This refers to hardware malfunctions including storage sys¬ 

tem failures. 
External environmental failure: Power failure is one possible type. Others are 

fire, flood, and other natural disasters, or malicious acts. 
In addition to validity checks built into the application programs using a data¬ 

base, the database system usually contains a number of routines to recover from some 

of the above errors. These routines enforce consistency of the data entered in the 

database. The required consistencies that are to be enforced are indicated by the 

DBA. 

11.1.3 Audit Trails 

The concept of an audit trail is not new; recall the Greek myth about Theseus, who 

marked his trail into the labyrinth, where the monster Minotaur lived, with a ball of 

string. After killing Minotaur, Theseus used the trail marked by the string to find his 

way out of the labyrinth. The need for the reliability and relative permanency of such 

a trail is also illustrated in the children’s story of Hansel and Gretel. They left a trail 

marked by bread crumbs, which were eaten by birds, and the pair were unable to 

find their way back home! 
In accounting practice, each transaction is recorded in chronological order in a 

log called a journal before being entered to the appropriate accounts. Recording of 

the transactions is done in the form of double entry. For each transaction, there are 

debits to one or more accounts and credits to one or more accounts, and the sum of 

these debits and credits must be equal. Double entry helps in detecting errors and 

ensures the reliability of the accounting records. 

The DBMS also has routines that maintain an audit trail or a journal. An audit 

trail or a journal is a record of an update operation made on the database. The audit 

trail records who (user or the application program and a transaction number), when 

(time and date), (from) where (location of the user and/or the terminal), and what 

(identification of the data affected, as well as a before-and-after image of that portion 

of the database that was affected by the update operation). In addition, a DBMS 

contains routines that make a backup copy of the data that is modified. This is done 

by taking a “snapshot” of the before-and-after image of that portion of the database 

that is modified. For obvious reasons, the backups are produced on a separate storage 
medium. 

11.1.4 Recovery Schemes 

Recovery schemes can be classified as forward or backward recovery. Database sys¬ 
tems use the latter schemes to recover from errors. 
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Forward error recovery: In this scheme, when a particular error in the system 

is detected, the recovery system makes an accurate assessment of the state of the 

system and then makes appropriate adjustments based on the anticipated result had 

the system been error free. The adjustments obviously depend on the error, conse¬ 

quently the error types have to be anticipated by the designers of the recovery sys¬ 

tem. The aim of the adjustment is to restore the system so that the effects of the 

error are canceled and the system can continue to operate. This scheme is not appli¬ 
cable to unanticipated errors. 

Backward error recovery: In this scheme no attempt is made to extrapolate 

what the state of the system would have been had the error not occurred. Instead, 

the system is reset to some previous correct state that is known to be free of any 

errors. The backward error recovery is a simulated reversal of time and does not try 
to anticipate the possible future state of a system. 

11.2 Transactions 

A single DBMS operation as viewed by an user, for example, to update the grade of 

a student in the relation ENROL (Student-Name, Course, Grade), involves more 

than one task. Since the data resides on a secondary nonvolatile storage medium, it 

will have to be brought into the volatile primary memory for manipulation. This 

requires that the data be transferred between secondary storage and primary storage. 

The transfer is usually performed in blocks of the implementation-specified size. The 

transfer task consists of locating the block in the secondary storage device containing 

the required tuple (which may be preceded by searching an index), obtaining the 

necessary locks on the block or the tuple involved in the update, and reading in this 

block. This task is followed by making the update to the tuple in memory, which in 

turn is followed by another transfer task, writing the tuple back to secondary device, 

and releasing the locks. 
In order to reduce the number of accesses to disk, the blocks are read into blocks 

of main memory called buffers. We can thus assume that a program performs input/ 

output using, for example, the get and put operations, and the system transfers the 

required block from secondary memory to main memory using the read and write 

operations. The block read (write) tasks need not be performed in case the system 

uses buffered input (output) and the required data (space) is already in the primary 

memory buffer. In such a case the get (put) operation of the program can input 

(output) the required data from (to) the appropriate buffer. If the required data is not 

in the buffer, the buffer manager does a read operation and obtains the required data, 

after which the data is input from the buffer to the program executing the get state¬ 

ment. If there is no more space left in the buffer, the put operation causes the buffer 

to be written to the secondary storage (with a write) and then the put operation 

transfers the data from main memory to the space made available in the buffer. 

The above DBMS operation of changing the grade of a student in a given course 

initiated by a user and appearing to her or him as a single operation actually requires 

a number of distinct tasks or steps to be performed by the DBMS. This is illustrated 

by the skeleton program given on the next page. 



518 Chapter 11 Recovery 

Procedure Modify_Enrol (Student_Name, Course, New_Grade); 

define action update LNROL(Student—Name, Course, Grade)as 

{* action update ENROL is defined as the next two 

statements *} 

begin 

get for update ENROL where 
ENROL.Student-Name = Student_Name and 

ENROL. Course = Course; 

ENROL.Grade : = New_Grade; 

end 

if error 

then 

rollback action update ENROL;{* do not output ENROL *} 

else 
commit action update ENRQL;{* output ENROL *} 

end Modify_Enrol; 

In this program the comment indicates the definition of the action update EN¬ 

ROL of the record for a given student in a given course; this action is being refer¬ 

enced later with the keywords commit and rollback. The statements defined for the 

update operation are assumed to modify a temporary copy of the selected portion of 

the database (the main memory copy of the block of nonvolatile storage containing 

the tuple for the relation ENROL). Here we are using error to indicate whether there 

are any errors during the execution of the statements defined for the action update 

ENROL. If there were any errors, we want to undo any changes made to the database 

by the statements defined for the update action. This involves simply discarding the 

temporary copy of the affected portion of the database. The database itself is not 

changed if a temporary copy of the database is being used. If there were no errors, 

we want the changes made by the update operations to become permanent by being 

reflected in the actual database. 
Figure 11.1 shows the successive states of the database system at different 

points of the execution of this program, with the change of student Jones’s grade in 

course Comp353 from in progress to A, as shown in part d of the figure. In case 

there are any errors by the program, it ignores any modifications and the record for 

Jones remains unchanged as shown in part e. 

The program unit Modify_Enrol given above consists of a number of state¬ 

ments, each of which is executed one at a time (each of the statements is compiled 

into a number of machine instructions, which are executed one at a time, sequen¬ 

tially). Such sequential execution can be interrupted due to errors. (Interrupts to ex¬ 

ecute the statements of other concurrent programs can also occur, but we will ignore 

this type of interruption for the time being.) In case of errors, the program may be 

only partially executed. However, to preserve the consistency of the database we 

want to ensure that the program is executed as a single unit, the execution of which 

will not change the consistency of the database. Thus an interruption of a transaction 

following a system detected error will return the database to its state before the start 

of the transaction. Such a program unit, which operates on the database to perform 

a read operation or an update operation (which includes modification, insertion, and 
deletion), is called a transaction. 
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Figure 11.1 Database states for program of Section 11.2. 

Main memory 

Jones Comp 353 inprog 

Main memory 

Jones Comp 353 A 

Main memory 

Jones Comp 353 A 

Main memory 

Jones Comp 353 A 

Jones Comp 353 inprog 

Jones Comp 353 A 

Secondary storage 

Jones Comp 353 inprog 

(a) Initial state of the database before 
the execution of the Get Enrol statement 

(b) After the execution of the 
Get Enrol statement 

(c) The temporary copy is modified 

(d) After the commit statement the database 
is permanently changed 

(e) In case of errors the rollback restores 
the database to the original state by 
ignoring the temporary copy 

Main memory 
Secondary storage 



520 Chapter 11 Recovery 

Definition: A transaction is a program unit whose execution may change the contents of a 

database. If the database was in a consistent state before a transaction, then on 

the completion of the execution of the program unit corresponding to the 

transaction, the database will be in a consistent state. This requires that the 

transaction be considered atomic: it is executed successfully or in case of errors, 

the user can view the transaction as not having been executed at all. 

The relationship between an application program and a transaction is shown in 

Figure 11.2. The application program can be made up of a number of transactions, 

Tj, T2, . . . , Tn. Each such transaction Tj starts at the time Tistart. It commits (or 

rolls back) at time Ticommit (Tironback) and terminates at time Tiend. 

The commit and rollback operations included at the end of a transaction ensure 

that the user can view a transaction as an atomic operation, which preserves database 

consistency. The commit operation executed at the completion of the modifying 

phase of the transaction allows the modifications made on the temporary copy of the 

database items to be reflected in the permanent copy of the database (later in this 

chapter we present recovery-related operations which are executed prior to making 

changes in the permanent copy of the database). The rollback operation (which is 

also called the undo operation) is executed if there was an error of some type during 

the modification phase of the transaction. It indicates that any modifications made by 

the transaction are ignored; consequently, none of these modifications is allowed to 

change the contents of the database. If transaction Tj is rolled back, the logic of the 

application program is responsible for deciding whether or not to execute transaction 

Tj (for i < j < n). Once committed, a transaction cannot be rolled back. 

From the definition of a transaction, we see that the status of a transaction and 

the observation of its actions must not be visible from outside the transaction until 

the transaction terminates. Any notification of what a transaction is doing must not 

be communicated, for instance via a message to a terminal, until the transaction 

commits. Once a transaction terminates, the user may be notified of its success or 
failure. 

There could be other DBMS operations viewed by the user as a single action 
but involve multiple changes. Consider the operation of changing the name of a 

student from Jones to Smith-Jones. For consistency, the DBMS application program 

that interfaces with the user must change the name in the relations 

STUDENT_INFO(Stw<icnr_jVflmc, Phone-No, Major) corresponding to the student 

Figure 11.2 Application program and transactions. 
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Jones and all tuples pertaining to this student in the relation ENROL (Student-Name, 

Course, Grade). A skeleton program to support this is given below. 

Procedure Multiple_Modify Student_Name(Current_name, New_Name); 

define action update STUDENT_INFO(Current_Name, New_Name) as 

begin 

get STUDENT_INFO where StudentJSame = CurrenLname; 

STUDENT_INFO.St«Je/i/_vVa/ne : = New_Name; 
end; 

define action update ENROL(Current_Name, New_Name) as 
begin 

while no-more-tuples-in ENROL do; 

begin 

get ENROL where ENROL.Student-Name = Current_Name; 
ENROL.Student-Name : = New_Name; 
end; 

end; 

if error 

then 

rollback (update STUDENT_INFO, update ENROL); 
else 

commit (update STUDENT_INFO, update ENROL); 
end Multiple_Modify; 

We see from the above skeleton program that modifying the student name in¬ 

volves a number of database accesses and changes. Because these changes can only 

occur one at a time, there is a period of time between the start of execution of this 

program and its termination during which the database is in an inconsistent state. For 

example, after the appropriate tuple in STUDENT_INFO is changed, we do not have 

referential integrity, there being no tuple in STUDENT_INFO corresponding to the 

tuples in ENROL for the student Jones (whose name has just been modified in 

STUDENT_INFO). Similarly, between the start of the update for the relation EN¬ 

ROL and its completion, some tuples have Smith-Jones as the value for the Student- 

Name attribute and others have Jones. 

The point is that a database operation viewed by a user as a single operation in 

fact involves a number of database tasks, and there is no guarantee that the database 

is in a consistent state between these tasks. However, the user can view these tasks 

as a single operation (the so-called atomic operation), which will complete success¬ 

fully or not at all. In the former case the changes are made and in the latter case the 

database remains unchanged. In either case, after the completion of the transaction, 

the database is in a consistent state. 

11.2.1 States of a Transaction 

A transaction can be considered to be an atomic operation by the user; in reality, 

however, it goes through a number of states during its lifetime. Figure 11.3 gives 

these states of the transaction, as well as the cause of a transition between these 

states. 
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Figure 11.3 Transaction states. 
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A transaction can end in three possible ways. It can end after a commit opera¬ 

tion (a successful termination). It can detect an error during its processing and 

decide to abort itself by performing a rollback operation (a suicidal termination). 

The DBMS or the operating system can force it to be aborted for one reason or 

another (a murderous termination). 

We assume that the database is in a consistent state before a transaction starts. 

A transaction starts when the first statement of the transaction is executed; it becomes 

active and we assume that it is in the modify state, when it modifies the database. 

At the end of the modify state, there is a transition into one of the following states: 

start to commit, abort, or error. If the transaction completes the modification state 

satisfactorily, it enters the start-to-commit state where it instructs the DBMS to reflect 

the changes made by it into the database. Once all the changes made by the trans¬ 

action are propagated to the database, the transaction is said to be in the commit state 

and from there the transaction is terminated, the database once again being in a 

consistent state. In the interval of time between the start-to-commit state and the 

commit state, some of the data changed by the transaction in the buffers may or may 

not have been propagated to the database on the nonvolatile storage. 

There is a possibility that all the modifications made by the transaction cannot 

be propagated to the database due to conflicts or hardware failures. In this case the 

system forces the transaction to the abort state. The abort state could also be entered 

from the modify state if there are system errors, for example, division by zero or an 

unrecoverable parity error. In case the transaction detects an error while in the mod¬ 

ify state, it decides to terminate itself (suicide) and enters the error state and then, 

the rollback state. If the system aborts a transaction, it may have to initiate a rollback 

to undo partial changes made by the transaction. An aborted transaction that made 

no changes to the database is terminated without the need for a rollback, hence there 

are two paths in Figure 11.3 from the abort state to the end of the transaction. A 

transaction that, on the execution of its last statement, enters the start to commit state 

and from there the commit state is guaranteed that the modifications made by it are 
propagated to the database. 
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The transaction outcome can be either successful (if the transaction goes through 

the commit state), suicidal (if the transaction goes through the rollback state), or 

murdered (if the transaction goes through the abort state), as shown in Figure 11.3. 

In the last two cases, there is no trace of the transaction left in the database, and 

only the log indicates that the transaction was ever run. 

Any messages given to the user by the transaction must be delayed till the end 

of the transaction, at which point the user can be notified as to the success or failure 

of the transaction and in the latter case, the reasons for the failure. 

11.2.2 Properties of a Transaction 

From the definition of a transaction, we see that the status of a transaction and the 

observation of its actions is not visible from outside until the transaction terminates. 

Any notification of what a transaction is doing must not be communicated, for in¬ 

stance via a message to a terminal, until the transaction is terminated. Nor should 

any partial changes made by an active transaction be visible from outside the trans¬ 

action. Once a transaction ends, the user may be notified of its success or failure and 

the changes made by the transaction are accessible. In order for a transaction to 

achieve these characteristics, it should have the properties of atomicity, consistency, 

isolation, and durability. These properties, referred to as the ACID test, represent the 

transaction paradigm. 
The atomicity property of a transaction implies that it will run to completion as 

an indivisible unit, at the end of which either no changes have occurred to the data¬ 

base or the database has been changed in a consistent manner. At the end of a 

transaction the updates made by the transaction will be accessible to other trans¬ 

actions and the processes outside the transaction. 
The consistency property of a transaction implies that if the database was in a 

consistent state before the start of a transaction, then on termination of a transaction 

the database will also be in a consistent state. 
The isolation property of a transaction indicates that actions performed by a 

transaction will be isolated or hidden from outside the transaction until the transaction 

terminates. This property gives the transaction a measure of relative independence. 

The durability property of a transaction ensures that the commit action of a 

transaction, on its termination, will be reflected in the database. The permanence of 

the commit action of a transaction requires that any failures after the commit opera¬ 

tion will not cause loss of the updates made by the transaction. 

11.2.3 Failure Anticipation and Recovery 

In designing a reliable system we try to anticipate different types of failures and 

provide for the means to recover without loss of information. Some very rare failures 

may not be catered to for economic reasons. Recovery from failures that are not 

thought of, overlooked, or ignored may not be possible. In common practice, the 
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recovery system of a DBMS is designed to anticipate and recover from the following 

types of failure: 

Failures without loss of data: This type of failure is due to errors that the 

transaction discovers before it reaches the start to commit state. It can also be due to 

the action of the system, which resets its state to that which existed before the start 

of the transaction. No loss of data is involved in this type of failure, especially in 

the case where the transactions are run in a batch mode; these transactions can be 

rerun later in the same sequence. 
Failure with loss of volatile storage: Such a failure can occur as a result of 

software or hardware errors. The processing of an active transaction is terminated in 

an unpredictable manner before it reaches its commit or rollback state and the con¬ 

tents of the volatile memory are lost. 
Failure with loss of nonvolatile storage: This is the sort of failure that can 

occur after the failure of a nonvolatile storage system; for example, a head crash on 

a disk drive or errors in writing to a nonvolatile device. 
Failure with a loss of stable storage: This type involves loss of data stored on 

stable storage. The cause of the loss could be due to natural or man-made disasters. 

Recovery from this type of failure requires manual regeneration of the database. The 

probability of such a failure is reduced to a very small value by having multiple 

copies of data in stable storage, stored in physically secure environments in geo¬ 

graphically dispersed locations. 

11.3 Recovery in a Centralized DBMS 

The basic technique to implement the database transaction paradigm in the presence 

of failures of various kinds is by using data redundancy in the form of logs, check¬ 
points and archival copies of the database. 

11.3.1 Logs 

The log, which is usually written to stable storage, contains the redundant data re¬ 

quired to recover from volatile storage failures and also from errors discovered by 

the transaction or the database system. For each transaction the following data is 
recorded on the log: 

• A start-of-transaction marker. 

• The transaction identifier, which could include the who and where information 
referred to in Section 11.1.3. 

• The record identifiers, which include the identifiers for the record occurrences. 

• The operation(s) performed on the records (insert, delete, modify). 

• The previous value(s) of the modified data. This information is required for 

undoing the changes made by a partially completed transaction; it is called the 

undo log. Where the modification made by the transaction is the insertion of a 
new record, the previous values can be assumed to be null. 
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• The updated value(s) of the modified record(s). This information is required for 

making sure that the changes made by a committed transaction are in fact 

reflected in the database and can be used to redo these modifications. This 

information is called the redo part of the log. In case the modification made by 

the transaction is the deletion of a record, the updated values can be assumed to 
be null. 

• A commit transaction marker if the transaction is committed; otherwise an abort 
or rollback transaction marker. 

The log is written before any updates are made to the database. This is called 

the write-ahead log strategy. In this strategy a transaction is not allowed to modify 

the physical database until the undo portion of the log (i.e. the portion of the log that 

contains the previous value(s) of the modified data) is written to stable storage. Fur¬ 

thermore, the log write-ahead strategy requires that a transaction is allowed to com¬ 

mit only after the redo portion of the log and the commit transaction marker are 

written to the log. In effect, both the undo and redo portion of the log will be written 

to stable storage before a transaction commit. Using this strategy, the partial updates 

made by an uncommitted transaction can be undone using the undo portion of the 

log, and a failure occurring between the writing of the log and the completion of 

updating the database corresponding to the actions implied by the log can be redone. 

Let us see how the log information can be used in the case of a system crash 

with the loss of volatile information. Consider a number of transactions, as shown in 

Figure 11.4. The figure shows the system start-up at time to and a number of con¬ 

current transactions T0, T,, . . . , Ti + 6 are made on the database. Suppose a system 
crash occurs at time tx. 

We have stored the log information for transactions T0 through Ti + 2 on stable 

storage, and we assume that this will be available when the system comes up after 

Figure 11.4 DBMS operation to a system crash. 
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the crash. Furthermore, we assume that the database existing on the nonvolatile stor¬ 

age will also be available. It is clear that the transactions that were not committed at 

the time of the system crash will have to be undone. The changes made by these 

uncommitted transactions will have to be rolled back. The transactions that have not 

been committed can be found by examining the log, and those transactions that have 

a start of transaction marker but no commit or abort transaction marker are consid¬ 

ered to have been active at the time of the crash. These transactions have to be rolled 

back to restore the database to a consistent state. In Figure 11.4 the transactions Tj 

and Ti + 6 started before the crash, but they had not been committed and, hence, are 

undone. 
However, it is not clear from the log to what extent the changes made by com¬ 

mitted transactions have actually been propagated to the database on the nonvolatile 

storage. The reason for this uncertainty is the fact that buffers (implemented in vol¬ 

atile storage) are used by the system to hold the modified data. Some of the changed 

data in these buffers may or may not have been propagated to the database on the 

nonvolatile storage. In the absence of any method of finding out the extent of the 

loss, we will be forced to redo the effects of all committed transactions. For Figure 

11.4, this involves redoing the changes made by all transactions from time to- Under 

such a scenario, the longer the system operates without a crash, the longer it will 

take to recover from the crash. 
In the above, we have assumed that the log information is available up to the 

time of the system crash in nonvolatile storage. However, the log information is also 

collected in buffers. In case of a system crash with loss of volatile information, the 

log information collected in buffers will also be lost and transactions that had been 

completed for some period prior to the system crash may be missing their respective 

end-of-transaction markers in the log. Such transactions, if rolled back, will likely 

be partially undone. The write-ahead log strategy avoids this type of recovery prob¬ 

lem, since the log information is forced to be copied to stable storage before the 

transaction commits. 

These problems point to the conclusion that some means must be devised to 

propagate to stable storage at regular intervals all the log information, as well as 

modifications to the database existing at a given time. Then the recovery operation 

after a system crash will not have to reprocess all transactions from the time of start¬ 

up of the system. 

11.3.2 Checkpoints 

In an on-line database system, for example an airline reservation system, there could 

be hundreds of transactions handled per minute. The log for this type of database 

contains a very large volume of information. A scheme called checkpoint is used to 

limit the volume of log information that has to be handled and processed in the event 

of a system failure involving the loss of volatile information. The checkpoint scheme 

is an additional component of the logging scheme described above. 

In the case of a system crash, the log information being collected in buffers will 

be lost. A checkpoint operation, performed periodically, copies log information onto 

stable storage. The information and operations performed at each checkpoint consist 
of the following: 
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• A start-of-checkpoint record giving the identification that it is a checkpoint 

along with the time and date of the checkpoint is written to the log on a stable 
storage device. 

• All log information from the buffers in the volatile storage is copied to the log 

on stable storage. 

• All database updates from the buffers in the volatile storage are propagated to 

the physical database. 

• An end-of-checkpoint record is written and the address of the checkpoint record 

is saved on a file accessible to the recovery routine on start-up after a system 
crash. 

For all transactions active at checkpoint, their identifiers and their database mod¬ 

ification actions, which at that time are reflected only in the database buffers, will be 

propagated to the appropriate storage. 

The frequency of checkpointing is a design consideration of the recovery sys¬ 

tem. A checkpoint can be taken at fixed intervals of time (say, every 15 minutes). If 

this approach is used, a choice has to be made regarding what to do with the trans¬ 

actions that are active when the checkpoint signal is generated by a system timer. In 

one alternative, called transaction-consistent checkpoint, the transactions that are 

active when the system timer signals a checkpoint are allowed to complete, but no 

new transactions (requiring modifications to the database) are allowed to be started 

until the checkpoint is completed. This scheme, though attractive, makes the data¬ 

base unavailable at regular intervals and may not be acceptable for certain online 

applications. In addition, this approach is not appropriate for long transactions. In 

the second variation, called action consistent checkpoint, active transactions are 

allowed to complete the current step before the checkpoint and no new actions can 

be started on the database until the checkpoint is completed; during the checkpoint 

no actions are permitted on the database. Another alternative, called transaction- 

oriented checkpoint, is to take a checkpoint at the end of each transaction by forcing 

the log of the transaction onto stable storage. In effect, each commit transaction is a 

checkpoint. 
How does the checkpoint information help in recovery? To answer this question, 

reconsider the set of transactions of Figure 11.4, shown in Figure 11.5, with the 

addition of a checkpoint being taken at time tc. 
Suppose, as before, the crash occurs at time tx. Now the fact that a checkpoint 

was taken at time tc indicates that at that time all log and data buffers were propa¬ 

gated to storage. Transactions T0, . . . , Tj_ i as well as transactions Ti + 1 and Ti + 3 

were committed, and their modifications are reflected in the database. With the 

checkpoint scheme these transactions are not required to be redone during the recov¬ 

ery operation following a system crash occurring after time tc. A transaction such as 

Tj (which started before checkpoint time tc), as well as transaction Ti+6 (which 

started after checkpoint time tc), were not committed at the time of the crash and 

have to be rolled back. Transactions such as Ti+4 and Tj + 5 which started after check¬ 

point time tc and were committed before the system crash, have to be redone. Simi¬ 

larly, transactions such as Ti+2, which started before the checkpoint time and were 

committed before the system crash, will have to be redone. However, if the commit- 

transaction information is missing for any of the transactions Tj + 2, T1+4, orTi+5, 

then they have to be undone. 
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Figure 11.5 Checkpointing. 
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Let us now see how the system can perform a recovery at time tx. Suppose all 

transactions that started before the checkpoint time but were not committed at that 

time, as well as the transactions started after the checkpoint time, are placed in an 

undo list, which is a list of transactions to be undone. The undo list for the trans¬ 

actions of Figure 11.5 is given below: 

UNDO List: (T;, Ti+2, Tj+4, Ti+5, Ti + 6) 

Now the recovery system scans the log in a backward direction from the time tx 

of system crash. If it finds that a transaction in the undo list has committed, that 

transaction is removed from the undo list and placed in the redo list. The redo list 

contains all the transactions that have to be redone. The reduced undo list and the 

redo list for the transactions of Figure 11.5 are given below: 

REDO List: (Ti+4, T1+5, Ti + 2) 

UNDO List: (T„ Ti+6) 

Obviously, all transactions that were committed before the checkpoint time need 

not be considered for the recovery operation In this way the amount of work re¬ 

quired to be done for recovery from a system crash is reduced. Without the check¬ 

point scheme, the redo list will contain all transactions except Tj and Ti+6. A system 

crash occurring during the checkpoint operation, requires recovery to be done using 
the most recent previous checkpoint. 

The recovery scheme described above takes a pessimistic view about what has 

been propagated to the database at the time of a system crash with loss of volatile 

information. Such pessimism is adopted both for transactions committed after a 

checkpoint and transactions not committed since a checkpoint. It assumes that the 

transactions committed since the checkpoint have not been able to propagate their 

modifications to the database and the transactions still in progress have done so. 
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Note that in some systems, the term checkpoint is used to denote the correct 

state of system files recorded explicitly in a backup file and the term checkpointing 

is used to denote a mechanism used to restore the system files to a previous consistent 

state. However, in a system that uses the transaction paradigm, checkpoint is a strat¬ 

egy to minimize the search of the log and the amount of undo and redo required to 

recover from a system failure with loss of volatile storage. 

11.3.3 Archival Database and Implementation of the 
Storage Hierarchy of a Database System 

Figure 11.6 gives the different categories of data used in a database system. These 

storage types are sometimes called the storage hierarchy. It consists of the archival 

database, physical database, archival log, and current log. 

Physical database: This is the online copy of the database that is stored in 

nonvolatile storage and used by all active transactions. 

Current database: The current version of the database is made up of the phys¬ 

ical database plus modifications implied by buffers in the volatile storage. 

Figure 11.6 Database storage hierarchy. 
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Archival database in stable storage: This is the copy of the database at a given 

time, stored on stable storage. It contains the entire database in a quiescent mode 

(i.e., no transactions were active when the database was copied to the stable storage) 

and could have been made by simple dump routines to dump the physical database 

(which in quiescent state would be the same as the current or online database) onto 

stable storage. The purpose of the archival database is to recover from failures that 

involve loss of nonvolatile storage. The archiving process is a relatively time- 

consuming operation and during this period the database is not accessible. Conse¬ 

quently, archiving is done at infrequent intervals. The frequency of archiving is a 

trade-off between the cost of archiving and that of recovery with the probability of a 

loss of nonvolatile data being the arbitrator. All transactions that have been executed 

on the database from the time of archiving have to be redone in a global recovery 

operation. No undoing is required in the global recovery operation since the archival 

database is a copy of the database in a quiescent state, and only the committed 

transactions since the time of archiving are applied to this database. 
Current log: This contains the log information (including the checkpoint) re¬ 

quired for recovery from system failures involving loss of volatile information. 

Archival log: This log is used for failures involving loss of nonvolatile infor¬ 

mation. The log contains information on all transactions made on the database from 

the time of the archival copy. This log is written in chronological order. The recovery 

from loss of nonvolatile storage uses the archival copy of the database and the archi¬ 

val log to reconstruct the physical database to the time of the nonvolatile storage 

failure. 
With the above storage hierarchy of a database, we can use the following terms 

to denote different combinations of this hierarchy. 

The on-line or current database is made up of all the records (and the auxiliary 

structures such as indexes) that are accessible to the DBMS during its operation. The 

current database consists of the data stored in nonvolatile storage (physical database) 

as well as the data stored in buffers (in the volatile storage) and not yet propagated 

to the nonvolatile storage. 

The materialized database is that portion of the database that is still intact after 

a failure. All the data stored in the buffers would have been lost and some portion 

of the database would be in an inconsistent state. The log information is to be applied 

to the materialized database by the recovery system to restore the database to as close 

a state as possible to the online database prior to the crash. Obviously, it will not be 

possible in all cases to return to exactly the same state as the precrash online data¬ 

base. The intent is to limit the amount of lost data and the loss of completed trans¬ 
actions. 

11.3.4 Do, Undo, and Redo 

A transaction on the current database transforms it from the current state to a new 

state. This is the so-called do operation. The undo and redo operations are functions 

of the recovery subsystem of the database system used in the recovery process. The 

undo operation undoes or reverses the actions (possibly partially executed) of a trans¬ 

action and restores the database to the state that existed before the start of the trans¬ 

action. The redo operation redoes the action of a transaction and restores the database 
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to the state it would be in at the end of the transaction. The undo operation is also 

called into play when a transaction decides to terminate itself (suicidal termination). 

Figure 11.7 shows the transformation of the database as a result of a transaction do, 
redo, and undo. 

The undo and redo operations for a given transaction are required to be idem- 

potent; that is, for any transaction, performing one of these operations once is equiv¬ 
alent to performing it any number of times. Thus: 

undo(any action) = undo!undo! .. undo(any action) .. )) 

Redo(any action) = redo(redo( .. redo(any action) .. )) 

The reason for the requirement that undo and redo be idempotent is that the 

recovery process, while in the process of undoing or redoing the actions of a trans¬ 

action, may fail without a trace, and this type of failure can occur any number of 

times before the recovery is completed successfully. 

Transaction Undo 

A transaction that discovers an error while it is in progress and consequently needs 

to abort itself and roll back any changes made by it uses the transaction undo 

feature. A transaction also has to be undone when the DBMS forces the transaction 

to abort. A transaction undo removes all database changes, partial or otherwise, made 

by the transaction. 

Figure 11.7 Do, undo, and redo operations. 
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Transaction Redo 

Transaction redo involves performing the changes made by a transaction that com¬ 

mitted before a system crash. With the write-ahead log strategy, a committed trans¬ 

action implies that the log for the transaction would have been written to nonvolatile 

storage, but the physical database may or may not have been modified before the 

system failure. A transaction redo modifies the physical database to the new values 

for a committed transaction. Since the redo operation is idempotent, redoing the 

partial or complete modifications made by a transaction to the physical database will 

not pose a problem for recovery. 

Global Undo 

Transactions that are partially complete at the time of a system crash with loss of 

volatile storage need to be undone by undoing any changes made by the transaction. 

The global undo operation, initiated by the recovery system, involves undoing the 

partial or otherwise updates made by all uncommitted transactions at the time of a 

system failure. 

Global Redo 

The global redo operation is required for recovery from failures involving nonvola¬ 

tile storage loss. The archival copy of the database is used and all transactions com¬ 

mitted since the time of the archival copy are redone to obtain a database updated to 

a point as close as possible to the time of the nonvolatile storage loss. The effects of 

the transaction in progress at the time of the nonvolatile loss will not be reflected in 

the recovered database. The archival copy of the database could be anywhere from 

months to days old and the number of transactions that have to be redone could be 

large. The log for the committed transactions needed for performing a global redo 

operation has to be stored on stable storage so that they are not lost with the loss of 

nonvolatile storage containing the physical database. 

11a4 Reflecting Updates to the Database and 
Recovery 

Let us assume that the physical database at the start of a transaction is equivalent to 

the current database, i.e., all modifications have been reflected in the database on 

the nonvolatile storage. Under this assumption, whenever a transaction is run against 

a database, we have a number of options as to the strategy that will be followed in 

reflecting the modifications made by the transaction as it is executed. The strategies 
we will explore are the following: 

Update in place: In this approach the modifications appear in the database in 

the original locations and, in the case of a simple update, the new values will replace 
the old values. 
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Indirect update with careful replacement: In this approach the modifications 

are not made directly on the physical database. Two possibilities can be considered. 

The first scheme, called the shadow page scheme, makes the changes on a copy of 

that portion of the database being modified. The other scheme is called update via 

log. In this strategy of indirect update, the update operations of a transaction are 

logged and the log of a committed transaction is used to modify the physical data¬ 
base. 

In the following sections we examine these update schemes in greater detail. 

11.4.1 Update in Place 

In this scheme (see Figure 11.8) the transaction updates the physical database and 

the modified record replaces the old record in the database on nonvolatile storage. 

The write-ahead log strategy is used and the log information about the transaction 

modifications are written before the corresponding put(x) operation, initiated by the 

transaction, is performed. Recall that the write-ahead log strategy has the following 

requirements: 

1. Before a transaction is allowed to modify the database, at least the undo 

portion of the transaction log record is written to the stable storage. 

2. A transaction is committed only after both the undo and the redo portion of the 

log are written to stable storage. 

The sequence of operations for transaction T and the actions performed by the 

database are shown in Figure 11.9. The initiation of a transaction causes the start of 

the log of its activities; a start transaction along with the identification of the trans¬ 

action is written out to the log. During the execution of the transaction, any output 

(in the form of a put by the transaction) is preceded by a log output to indicate the 

modification being made to the database. This output to the log consists of the rec¬ 

ord^) being modified, old values of the data items in the case of an update, and the 

values of the data items. The old values will be used by the recovery system to undo 

the modifications made by a transaction in case a system crash occurs before the 

Figure 11.8 Update in place scheme. 
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Figure 11.9 Direct update (write-ahead log). 
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completion of the transaction. When a system crash occurs after a transaction com¬ 

mits, the new values will be used by the recovery system to redo the changes made 

by the transaction and thus ensure that the modifications made by a committed trans¬ 

action are correctly reflected in the database. 

The transaction shown in Figure 11.9 consists of reading in the value of some 

data item X and modifying it by a certain amount. The transaction then reads in the 

value of another data item Y and modifies it by an equal but opposite amount. The 

transaction may subtract, let us say, a quantity n from the inventory for part Px and 

add this amount to quantities of that item shipped to customer Cy. For consistency 

this transaction must be completed atomically. A system crash occurring at any time 

before time tg will require that the transaction be undone. A system crash occurring 

after t9, when the commit transaction marker is written to the log, requires that we 

redo the transaction to ensure that all of the changes made by this transaction are 
propagated to the physical database. 

According to the write-ahead log strategy, the redo portion of the log need not 

be written to the log until the commit transaction is issued by the program performing 

the transaction. However, to simplify the log, we are combining the undo and redo 

portions of each modification made by a transaction in one log entry. 

Consider another example where a program executes a number of transactions 

involving a number of distinct records. In this case, the transaction atomicity require¬ 

ment is critical. The example involves projects, parts used by the projects, and an 

inventory of the parts. Suppose we have a number of parts Part), Part2, . . and 

a number of projects Proj,, Proj2, .... Each project Projj uses parts {...., 

Partk, ...,}. Suppose the database contains the following relations: 
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PART('/’art#, Quantity-inStock) 

PROJECTf Project#, Part#, Quantities-tO-Date) 

Consider the execution of the program below which transfers 100 units of parts 

Part4 to project Proj5 and 10 units of parts Part, to project Proj2. Here, each such 

transfer is considered as a separate transaction. If the quantity in stock of a part is 

less than the required quantities to be transferred, an error condition is said to exist 

and such a transaction is aborted (a suicidal end). The transfer of x quantity of Parf 

from inventory to project Projj is considered to be a single atomic operation that 

either succeeds and performs the appropriate transfer or fails, in which case it does 

not leave a trace of partial execution (except in the log). 

Program: Transfer_parts(input,output); 

var (* declarations are not given but should include 

all variables as well as database records to be used and 

the corresponding local declarations *) 

Procedure many_transactions 

begin 

while not eof do 

error : = false; 

readlniprojno, partno, quant); 

start_transaction(modifymode) 

get PART where Part-Number — partno; 

Quantity-inStock: = Quantity -inStock — quant; 

if Quantity-inStock < 0 

then error : = true 

else begin 

put PART; 

get Project where Project-Number = projno 

and Part-Number = partno; 

Quantity-to-Date: — Quantity-to-Date + quant; 

put PROJECT; 

end; 

if error 
then abort_transaction 

else commit_transaction; 

end_transaction; 

end (* while *) 

end (* procedure *) 

end. 

With the update-in-place scheme, the new value of a record field overwrites the 

old value as shown in Figure 11.10 If a transaction involves multiple changes, a 

system crash causes the database to end up in an inconsistent state. 
The update-in-place method goes against the well-established accounting prac¬ 

tice of recording each and every transaction and never overwriting data. In account¬ 

ing practice, a compensating transaction is used to make corrections when an error 

is discovered, and the fact that an error was made is also recorded. 
Let us now see how the log information can be used in the recovery process if 

a system crash occurs before all the modifications made by a transaction are propa- 
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Figure 11.10 Modifications with update-in-place scheme. 

Proj2: Part4: 60 

Proj5: Part!: Mft200 

gated to the database. Suppose that before the program was run the inventory for 

parts Part! and Part4 were 400 and 600 respectively; the quantity used by project 

Proj5 of part Part! was 100 and the quantity used by project Proj2 of part Part4 was 

10. The program above was run to transfer 100 units of Part| from inventory for use 

in Proj5, followed by the transfer of 10 units of part Part4 from inventory to Proj2. 

The operations performed by the program are shown in Figure 11.11. The first op¬ 

eration is called transaction T0; the second operation, Tj. Quantity-inStock is ab¬ 

breviated as Q-inS and Quantity-toJDate as Q-tO-D. 

Now suppose that while the program above was executing, there was a system 

crash with loss of volatile storage. Let us consider the various possibilities as to the 

progress made by the program and the sequence of recovery operations required 

using the information from the write-ahead log. 

If the crash occurs just during or after step s4, the log would have the following 

information for the transaction T0: 

Start of T0 

record Part# = Parti, 

old value of Q-inS: 400 

new value of Q_inS: 300 

The recovery process, when it examines the log, finds that the commit trans¬ 

action marker for T0 is missing and, hence, will undo the partially completed trans¬ 

action T0. To do this it will use the old value for the modified field of the part record 

identified by Part, to restore the Quantity_in_Stock field of the part record for Parti 

to the value 400 and restore the database to the consistent state that existed before 
the crash and before transaction T0 was started. 

If the crash occurs after step s9 is completed, the recovery system will find an 

end-of-transaction marker for transaction T0 in the log. The log entry will be as given 
below: 

Start of T0 

record Part# = Parti, 

old value of Q^inS: 400 

new value of Q_inS: 300 

record Project# = Proj5 

old value of Q_to~D: 100, 

new value of Q-to_D: 200 

Commit T0 
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Figure 11.11 The steps for two transactions. 
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s 12 modify((2_m_S 

from 600 
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s13 put (Part4) Write(record Part# = Part4, 

old value of Q-inS: 600, 

new value of Q-inS: 590) 

s14 Write(Part4) 

S15 get( Proj2) Read(Proj2) 

s16 modify((2-to_D 

from 50 

to 60) 

S17 /?wr(Proj2) Write(record Project# = Proj2, 

old value of Q_toJD: 50, 

new value of Q-to-D: 60) 

s18 Write(Proj2) 

s19 Start Commit Write(Commit transaction T[); 

s20 End of T ] 



538 Chapter 11 Recovery 

However, since the log was written before the database, all modifications to the 

database may not have been propagated to the database. Thus to ensure that all 

modifications made by transaction T0 are propagated to the database, the recovery 

system will redo the committed transaction. To do this it uses the new values of the 

appropriate fields of the records identified by Part# = Part, and Project# = Proj5. 

This will restore the database to an up-to-date state, with the modifications of the 

committed transactions propagated to the database. 
It is obvious that if the system crash occurs after step S|0' but before step sl9, 

the recovery operation will require the undoing of modifications made by transaction 

T! and redoing those made by transaction T0. Similarly, a crash occurring any time 

after step s19 will require the redoing of the modifications made by both transactions 

T0 and T x. 
It is important to point out that the key to the recovery operation is the log, 

which is written to stable storage ahead of the update in place of the database; thus 

the log information survives any crash. However, the writing of the log may itself 

be interrupted by a system crash and log information may be incomplete. If the crash 

occurs sometime during step s9, the commit transaction marker for transaction T0 

may not be safely written to the log, and this implies that the recovery system will 

undo the transaction even if all the modifications made by transaction T0 have been 

propagated to the database. 

In the above example, we have assumed that the DBMS propagates the modifi¬ 

cations to the database as soon as the log entry for the modifications are written to 

stable storage. However, if the database system defers the propagations to the data¬ 

base until the commit step for the transaction, then in the event of a system crash the 

recovery tasks are modified slightly (see Exercise 11.17). If the transaction is rolled 

back by the user program, the rolling back operation involves writing a rollback 

marker to the log and inhibiting the propagation of the changes to the database. The 

propagation to the database will also be inhibited if the transaction is aborted by the 

system before it commits; the last log entry in that case would be an abort transaction 
marker. 

In either of the two possible choices of propagating the changes to the database, 

the consistency criterion of the database requires that that portion of the database 

being modified by a transaction be accessible exclusively to the transaction, for the 
duration of the transaction. 

11.4.2 Indirect Update and Careful Replacement 

In the indirect update and careful replacement scheme, the database is not directly 

modified, but a copy is made of that portion of the database to be modified and all 

modifications are made on this copy. Once the transaction commits, the modified 
copy replaces the original. 

In the most common scheme used, the indirect page allocation scheme, modi¬ 

fications to the database are directed to new blocks (pages) on nonvolatile storage 

(Figure 11.12). Each new block is a copy of the database block containing the rec¬ 

ords being modified. The old block of the database remains intact. When the trans¬ 

action commits, the new blocks can be used to replace the old blocks in an atomic 
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Figure 11.12 Indirect page allocation scheme. 

manner. In the case of a system crash, the old blocks are still available and the 

recovery operation is simplified. 

In another form of indirect update, no changes are made to the database during 

a transaction. However, the modified values are written to a log on stable storage 

(recall the journal concept of accounting). When the transaction commits, the log is 

used to write the modifications onto the database. In this case, the rollback of a 

transaction entails discarding the log entries for the transaction. The recovery opera¬ 

tion of a transaction is limited to redoing the modifications made by a transaction 

that are recorded in the log entry for that transaction. The undo recovery operation 

for the transaction does not need to undo any changes as far as the database on the 

nonvolatile storage is concerned since no changes were made for an uncommitted 

transaction. 

Reflecting Updates to the Database via Shadow Page Scheme and Recovery 

The shadow page scheme is one possible form of the indirect page allocation. Before 

we discuss this scheme, let us briefly review the paging scheme as used in the oper¬ 

ating system for virtual memory management. The memory that is addressed by a 

process (a program in execution is a process) is called virtual memory. It is divided 

into pages that are assumed to be of a certain size, let us say 1024 (IK) bytes or 

more commonly 4096 (or 4K) bytes. The virtual or logical pages are mapped onto 

physical memory blocks of the same size as the pages, and the mapping is provided 

by means of a table known as a page table. The page table, shown in Figure 11.13, 

contains one entry for each logical page of the process’s virtual address space. With 

this scheme, the consecutive logical pages need not be mapped onto consecutive 

physical blocks. 
In the shadow page scheme, the database is considered to be made up of logical 

units of storage called pages. The pages are mapped into physical blocks of storage 

(of the same size as the logical pages) by means of a page table, with one entry for 

each logical page of the database. This entry contains the block number of the phys¬ 

ical storage where this page is stored. 
The shadow page scheme shown in Figure 11.14 uses two page tables for a 

transaction that is going to modify the database. The original page table is called the 
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Figure 11.13 Paging scheme. 

shadow page table and the transaction addresses the database using another page 

table known as the current page table. Initially, both page tables point to the same 

blocks of physical storage. The current page table entries may change during the life 

of the transaction. The changes are made whenever the transaction modifies the da¬ 

tabase by means of a write operation. The pages that are affected by a transaction 

are copied to new blocks of physical storage and these blocks, along with the blocks 

not modified, are accessible to the transaction via the current page table, as shown 

in Figure 11.14. The old version of the changes pages remains unchanged and these 

pages continue to be accessible via the shadow page table. 
The shadow page table contains the entries that existed in the page table before 

the start of the transaction and points to blocks that were never changed by the 

transaction. The shadow page table remains unaltered by the transaction and is used 

for undoing the transaction. 

Now let us see how the transaction accesses data during the time it is active. 

The transaction uses the current page table to access the database blocks for retrieval. 

Any modification made by the transaction involves a write operation to the database. 

The shadow page scheme handles the first write operation to a given page as follows: 

Figure 11.14 Shadow page scheme. 
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• A free block of nonvolatile storage is located from the pool of free blocks 
accessible by the database system. 

• The block to be modified is copied onto this block. 

• The original entry in the current page table is changed to point to this new 
block. 

• The updates are propagated to the block pointed to by the current page table, 

which in this case would be the newly created block. 

Subsequent write operations to a page already duplicated are handled via the 

current page table. Any changes made to the database are propagated to the blocks 

pointed to by the current page table. Once a transaction commits, all modifications 

made by the transaction and still in buffers are propagated to the physical database 

(i.e., the changes are written to the blocks pointed to by the current page table). The 

propagation is confirmed by adopting the current page table as the table containing 

the consistent database. The current page table or the active portion of it could be in 

volatile storage. In this case a commit transaction causes the current page table to be 
written to nonvolatile storage. 

In the case of a system crash, before the transaction commits, the shadow page 

table and the corresponding blocks containing the old database, which was assumed 

to be in a consistent state, will continue to be accessible. 

To recover from system crashes during the life of a transaction, all we have to 

do is revert to the shadow page table so that the database remains accessible after 

the crash. The only precaution to be taken is to store the shadow page table on stable 

storage and have a pointer that points to the address where the shadow page table is 

stored and that is accessible to the database through any system crash. 

Committing a transaction in the shadow page scheme requires that all the mod¬ 

ifications made by the transaction be propagated to physical storage and the current 

page table be copied to stable storage. Then the shadow page scheme reduces the 

problem of propagating a set of modified blocks to the database to that of changing 

a single pointer value contained in the page table address from the shadow page table 

address to the current page table address. This can be done in an atomic manner and 

is not interrupted by a system crash. 
In the case of a system crash occurring any time between the start of a trans¬ 

action and the last atomic step of modifying a single pointer from the shadow page 

to the current page, the old consistent database is accessible via the shadow page 

table and there is no need to undo a transaction. A system crash occurring after the 

last atomic operation will have no effect on the propagation of the changes made by 

the transaction; these changes will be preserved and there is no need for a redo 

operation. 
The shadow blocks (i.e., the old version of the changed blocks) can be returned 

to the pool of available nonvolatile storage blocks to be used for further transactions. 

The undo operation in the shadow page scheme consists of discarding the cur¬ 

rent page table and returning the changed blocks to a pool of available blocks. 

The advantage of the shadow page scheme is that the recovery from system 

crash is relatively inexpensive and this is achieved without the overhead of logging. 

Before we go on to another method of indirect update it is worth mentioning 

some of the drawbacks of the shadow page scheme. One of the main disadvantages 

of the shadow scheme is the problem of scattering. This problem is critical in data- 
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base systems because over a period of time the database will be scattered over the 

physical memory and related records may require a very long access time. For ex¬ 

ample, two records that are required together and originally placed in blocks on the 

same cylinder of a disk may end up on the extreme cylinders on that same disk. 

Accessing these records together now involves moving the read/write head over the 

entire surface of the disk and, hence, a long access time. 
The other problem with the shadow page scheme was already mentioned. When 

a transaction commits, the original version of the changed blocks pointed to by the 

shadow page table have to be returned to the pool of free blocks, otherwise such 

pages will become inaccessible. If this is not done successfully, when a transaction 

commits (perhaps due to a system crash), such blocks become inaccessible. A gar¬ 

bage collection operation to be performed periodically must reclaim such lost blocks. 

Shadow paging for concurrent transactions requires additional bookkeeping and 

in such an environment some logging scheme is used as well. 

Reflecting Updates to the Database via Logs and Recovery 

In the update-via-log scheme, the transaction is generally not allowed to modify the 

database. All changes to the database are deferred until the transaction commits. 

However, as in the update-in-place scheme, all modifications made by the transaction 

are logged. Furthermore, since the database is not modified directly by the trans¬ 

action, the old values do not have to be saved in the log. Once the transaction 

commits, the log is used to propagate the modifications to the database. 
During the life of a transaction, all output operations to the database are inter¬ 

cepted, causing an entry to be made in the log for the transaction. This entry contains 

the identification of the items being updated along with the new values. When the 

transaction starts a commit operation, a commit transaction mark is written to the 

log. After this step, the log is used to modify the database. 

A system crash occurring during the time when a transaction is active does not 

require an undo operation since the database was not directly changed by the trans¬ 

action. A system crash occurring after the transaction commits can be recovered from 
the log maintained for the transaction. 

Let us return to the example of transferring a part from inventory to a project, 

given in the program in section 11.4.1 on page 535. Figure 11.15 gives the log for 

the transactions corresponding to the transfer of 100 units of part Part, from inventory 

to project Proj5, followed by a transaction corresponding to the transfer of 10 units 

of part Part4 from inventory to project Proj2. The log contains only redo information 

and the only operations performed during the life of a transaction on the physical 
database are reads. 

Now let us assume various scenarios for a system crash. First, consider a system 

crash that occurs any time before step s7; this step corresponds to the writing of the 

commit transactions Tq. This system crash will require the recovery system to undo 

the effect of transaction T0, which in this case involves discarding the log for trans¬ 

action T0, which lacks the commit transaction marker. The values for the record 
corresponding to Part, and Proj5 have not been propagated to the database. 

If the system crash occurs after the completion of step Sg, when the system is 

restarted the recovery system will find the commit transaction marker for transaction 

Tq- It will redo the transaction to ensure that the effects of transaction T0 are cor- 
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Figure 11.15 Entries for Indirect Update Log. 

Step Transaction 

Action Log Operation 
Database 

Operation 

So Start of T0 

Si get( Part,) 

S2 modify(<2_m_S 
from 400 

to 300) 

s3 put{ Part,) 

S4 g<?f(Proj5) 

s5 modify(g_to_D 

from 100 

to 200) 

s6 pwr(Proj5) 

S7 Start Commit 

S8 Commit/End of T0 
s9 Start of T! 

S10 ger(Part4) 

S11 modify((9_m_S 

from 600 

to 590) 

SI2 put (Part4) 

s13 get( Proj2) 
s14 modify (Q-to-D 

from 50 

to 60) 

s15 put( Proj2) 

s 16 Start Commit 

s17 Commit/End of T 

Write(start Transaction T0) 

Read(Parti) 

Write(record for Part# = Part,, 

new value of Q_in_S: 300) 

Read(Proj5) 

Write(record for Project# = Proj5, 

new value of Q_to_D: 200) 

Write(Commit transaction T0); 

Write(start Transaction T,) 
Write(Part!, Proj5); 

Read(Part4) 

Write(record Part# = Part4, 

new value of Q-inS: 590) 

Read(Proj2) 

Write(record Project# = Proj2, 

new value of Q_to_D: 60) 

Write (Commit transaction T|); 

Write(Part4, Proj2) 

rectly propagated to the database. The redo operation needs only the new values for 

the fields modified by the transaction in the records for Part) and Proj5. After the 

redo operation, the database is restored to the state existing at the end of the trans¬ 

action T0. 

A crash occurring during the recovery operation will not affect the subsequent 

recovery operation, since the redo operation is idempotent. 

A crash occurring after step s17 requires the recovery system to redo both trans¬ 

actions T0 and T,. 
The recovery system checks the log after a system crash. For those transactions 

that contain both a start transaction marker and an end transaction marker, it will 

initiate a redo transaction operation. A partially complete transaction in the system 
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log is indicated by a start transaction marker without a corresponding end transaction 

marker. Such partially complete transactions are ignored by the recovery system 

since they will not have modified the database. 
However, we must distinguish an update made by a partially complete trans¬ 

action from a partial update made from the log of a committed transaction in the 

deferred update from the log phase. A partially completed update (updated during 

the end of transaction processing after a commit transaction is executed by the pro¬ 

gram controlling the transaction) cannot be undone with the deferred update using 

the log scheme; it can only be completed or redone. The only way it can be undone 

is by a compensating transaction to undo its effects (as is the case in standard ac¬ 

counting practice). 

11.5 Buffer Management, Virtual Memory, and 
Recovery 

The input and output operations required by a program, including a DBMS applica¬ 

tion program, are usually performed by a component of the operating system. These 

operations normally use buffers (reserved blocks of primary memory) to match the 

speed of the processor and the relatively fast primary memories with the slower 

secondary memories and to minimize, whenever possible, the number of input and 

output operations between the secondary and primary memories. The assignment and 

management of memory blocks is called buffer management and the component of 

the operating system that performs this task is usually called the buffer manager. 

The goal of the buffer manager is to ensure that as many data requests made by 

programs as possible are satisfied from data copied from secondary storage devices 

into the buffers. In effect, a program performs an input or an output operation using 

get or put statements; the buffer manager will be called on to respond to these input 

or output requests. It will check to see if the request for the data can be satisfied by 

reading from or writing to the existing buffers. If so, the input or output operation 

occurs between the program work area and buffers. If an input request cannot be 

satisfied, the buffer manager will have to do a physical transfer between the second¬ 

ary memory and a free buffer and then make the data so placed in the buffer available 

to the program requesting the original input operation. A similar scenario will take 

place in the reverse order for an output. The buffer manager makes a new buffer 

available to the program performing a put operation. The buffer manager performs 

the physical transfer between the buffer and the secondary memory by means of read 

and write operations whenever there is an anticipated need for new buffers and none 

are available in a pool of free buffers for the current program. For sequential pro¬ 

cessing, the buffer manager can provide higher performance by prefetching the next 

block of data and by batching write operations into the commit phase of a trans¬ 
action. 

We have assumed so far that the buffer manager uses buffers in physical mem¬ 

ory. However, in a computer system that uses a virtual memory management 

scheme, the buffers are in effect virtual memory buffers, there being an additional 

mapping between a virtual memory buffer and the physical memory, as shown in 

Figure 11.16. Since the physical memory is managed by the memory management 

component of the operating system, a virtual buffer input by the buffer manager may 
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Figure 11.16 DBMS buffers in virtual memory. 

have been paged out by the memory manager in case there is insufficient space in 
the physical memory. 

In a virtual memory management scheme, the buffers containing pages of the 

database undergoing modification by a transaction could be written out to secondary 

storage. The timing of this premature writing back of a buffer is independent of the 

state of the transaction and will be decided by the replacement policy used by the 

memory manager, which again is a component of the operating system. Thus, the 

page replacement scheme is entirely independent of the database requirements; these 

requirements being that records undergoing modifications by a partially completed 

transaction not be written back and records for a committed transaction be rewritten, 

especially in the case of the update in place scheme. 

It has been found that the locality of reference property is applicable to database 

buffers. To decrease the number of buffer faults, the least recently used (LRU) 

algorithm is used for buffer replacement. However, the normal LRU algorithm is 

modified slightly and each transaction is allowed to maintain a certain number of 

pages in the buffer. 

The buffering scheme can be used in the recovery system, since it effectively 

provides a temporary copy of a database page to which modifications can be directed 

and the original page can remain unchanged in the nonvolatile storage medium. Both 

the log and the data pages will be written to the buffer pages in virtual memory. The 

commit transaction operation can be considered a two-phase operation called a two- 

phase commit. The first phase is when the log buffers are written out (write-ahead 

log) and the second phase is when the data buffers are written. In case the data page 

is being used by another transaction, the writing of that page can be delayed. This 

will not cause a problem because the log is always forced during the first phase of 

the commit. With this scheme the undo log is not required, since no uncommitted 

modifications are reflected in the database. 
In sequential processing of the database, the buffer manager prefetches the da¬ 

tabase pages. However, pages of data once used need not follow the locality prop¬ 

erty. A page once accessed is less likely to be accessed again. Hence, the buffer 
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manager can use a modified LRU replacement algorithm, using not one but two LRU 

lists. One is for randomly accessed pages and the second one is for sequentially 

accessed pages. Buffers needed for sequential processing are obtained from the se¬ 

quential LRU list (i.e., one of the sequential LRU pages is replaced to make room 

for the incoming page of data) if this list is longer than some established length; 

otherwise, the buffer is obtained from the LRU list. 
Take the example of the program given in section 11.4.1 on p. 535 for transfer¬ 

ring specified quantities of parts from inventory to projects. If the memory manager 

is using an LRU page replacement scheme, a committed transaction may not have 

its page written back long after it commits. The reason for this is that the program 

has many transactions, each needing different records, but these records may be 

clustered on the same physical block of secondary memory. A committing transaction 

may have used the same page as the page required by the next transaction. However, 

such a page will not be written back by the memory manager using the simple LRU 

page replacement scheme. This means that an update made by a committed trans¬ 

action would not be reflected in the physical database, which would create havoc in 

the recovery scheme. 
The write-ahead log protocol assumes that the undo log information for a 

transaction will be written to stable storage before the modifications made by a trans¬ 

action are reflected in the database, and the redo portion of the log is written before 

the transaction commits. Under the memory and buffer managers of the operating 

system, we cannot assume that the buffers containing the log information are written 

ahead of the changes made to the database. 
What this means is that the buffer manager, at least for those buffers used by 

the DBMS and its application programs, be under the control of the DBMS and the 

DBMS enforces the correct writing of the buffers assigned for the log and the data 

at an appropriate time. The terms steal and force are used to indicate the buffer 

control mechanism. Steal indicates that the modified pages of data in the buffers may 

be written to the database at any time (as in the case of the update-in-place scheme) 

and not steal means that the modified pages are kept in the buffer until the trans¬ 

action commits. In the case of the not steal buffer control (wherein no changes are 

propagated to the database during the life of a transaction), we have to decide what 

is to be done when a transaction starts to commit. If during this end of transaction 

processing all modifications are actually propagated to the database, we are assuming 

that the buffers are being forced. If no such forced writing of the buffers can be 

assumed during the end of transaction processing, the updates cannot be presumed 

to have been propagated to the database. This requires that with the no force strat¬ 

egy, committed transactions have to be redone in the case of a system crash. With 

forcing no redone is required for committed transactions; the modifications made by 

the committed transactions can be safely assumed to have been propagated to the 
database. 

11.6 Other Logging Schemes 

In our discussion so far we have assumed that the logging scheme writes the follow¬ 

ing details in the log: the identification of the records being modified, the modified 

values of each record, and in some cases the old values of each record modified. 

This is the record-level logging. However, schemes can be used as described below. 
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Record-level logging: Instead of recording the entire page whenever a modifi¬ 

cation is done anywhere on a page, the log is kept of the before and the after image 

of the record that undergoes modification. Insertion of a new record can be handled 

by using null values for the before image and deletion of an existing record is indi¬ 

cated by using null values for the after image. The advantage of this scheme is the 

obvious; the amount of space needed for the log is much less. 

Page-level logging: In this scheme the entire page is recorded in the log when¬ 

ever a record within the page is modified; for the undo operation, the entire page 

before any modification is written to the log; and for the redo operation, the entire 
page after the modification is written to the log. 

If a number of changes are made on the same page, a design decision has to be 

made regarding the number of page images that will be stored in the log. One choice 

is to have only one before image and one after image, the former being the image at 

the start of the transaction and the latter that at the end of the transaction. Another 

alternative is to have one before and one after image for each change, (if there are n 

changes made on a page, there will be 2n page images, the page image number 2i 

and 2i + 1, for 1 < i < n — 1, being the same! The order of i here is a chronological 
order.) 

In a modification of the page-level logging scheme, instead of writing the before 

image of the page and the after image of the page to the log, a difference of these 

two in the form of an exclusive or is written in a compressed form to the log. Since 

only a few bytes of a page will be changed as a result of an update transaction on a 

record contained on the page, the exclusive or of the before and after images of the 

page will give a large number of zeros, which can be compressed using an appropri¬ 
ate data compression method. 

Query language logging: In this approach the log entry of the data manipula¬ 

tion statements modifying the database, along with the parameters used by the state¬ 

ments, are recorded in the log. The parameters include the record identifiers and 

values of attributes of the record being modified. As in the case of record-level 

logging, appropriate null values can be used for the records being deleted. In case 

the update is made by a high level language program, these updates can be reduced 

to statements that operate on a single record; the latter would be recorded along with 

the parameters in the log. The redo recovery function requires reexecuting the logged 

data manipulation statements with their parameters. The undo recovery function re¬ 

quires generating reverse data manipulation statements corresponding to the logged 

statements and executing these reverse statements. To undo the effect of a delete 

statement requires the generation of an insert statement, and the parameter would be 

the identifier of the record to be inserted along with the before image of the record. 

1 1.7 Cost Comparison 

In this section we briefly compare the cost of the various recovery schemes we dis¬ 

cussed, namely the update in place, the deferred update with shadow page scheme, 

and the deferred update using a log. 

If an update-in-place scheme is used along with a buffer scheme where partially 

modified pages can be written at any time and all modified pages are written prior to 

a commit transaction, the cost of an undo operation is relatively high and the cost of 

a redo is very low. In this case each end of the transaction is a checkpoint because 
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all modifications are forced to be written to nonvolatile storage. However, if all the 

modified pages are not forced to be written during the end of transaction processing, 

the costs of an undo and a redo are relatively higher. Furthermore, the end of a 

transaction is not a checkpoint in this scheme. 
If an update-in-place scheme is used along with a not steal and force buffer 

scheme where partially modified pages are not allowed to be written at any time (the 

writing of such modified pages is delayed till the end of the transaction processing 

when all pages are written), then the costs of undo and redo are very low. Again 

each end of a transaction represents a checkpoint. 
With an indirect update scheme where the end of the transaction forces all mod¬ 

ified pages to be processed, the cost of the undo and redo are relatively lower. 
If the database system defers the propagation of changes to the database until 

the commit operation, then in case the transaction is rolled back by the program 

controlling it, the changes made by the transaction need not be rolled back. The 

rollback operation in this case consists of not propagating the modifications made by 

the transaction to the database. The same procedure will apply if the system aborts 

the transaction. 

11.8 Disaster Recovery 

Disaster refers to circumstances that result in the loss of the physical database stored 

on the nonvolatile storage medium. This implies that there will also be a loss of the 

volatile storage, and the only reliable data are the data stored in stable storage. The 

data stored in stable storage consist of the archival copy of the database and the 

archival log of the transactions on the database represented in the archival copy. 

The disaster recovery process requires a global redo. In a global redo the 

changes made by every transaction in the archival log are redone using the archival 

database as the initial version of the current database. The order of redoing the op¬ 

erations must be the same as the original order, hence the archival log must be 

chronologically ordered. 

Since the archival database should be consistent, it must be a copy of the current 

database in a quiescent stage (i.e., no transaction can be allowed to run during the 

archiving process). The quiescent requirement dictates that the frequency of archiving 

be very low. The time required to archive a large database and the remote probability 

of a loss of nonvolatile storage result in performing archiving at quarterly or monthly 

intervals. The low frequency of archiving the database means that the number of 

transactions in the archival log will be large and this in turn leads to a lengthy 

recovery operation (of the order of days). 

A method of reconciling the reluctance to archive and the heavy cost of infre¬ 

quent archiving is to archive more often in an incremental manner. In effect, the 

database is archived in a quiescent mode very infrequently, but what is archived at 

more regular intervals is that portion of the database that was modified since the last 

incremental archiving. The archived copy can then be updated to the time of the 

incremental archiving without disrupting the online access of the database. This up¬ 
dating can be performed on a different computer system. 

The recovery operation consists of redoing the changes made by committed 

transactions from the archive log on the archive database. A new consistent archive 

database copy can be generated during this recovery process. 
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Summary 

In this chapter we discussed the recovery of the data contained in a database system 

after failures of various types. The reliability problem of the database system is 

linked to the reliability of the computer system on which it runs. The types of failures 

that the computer system is likely to be subject to include that of components or 

subsystems, software failures, power outages, accidents, unforeseen situations, and 

natural or man-made disasters. Database recovery techniques are methods of making 

the database fault tolerant. The aim of the recovery scheme is to allow database 

operations to be resumed after a failure with a minimum loss of information and at 
an economically justifiable cost. 

In order for a database system to work correctly, we need correct data, correct 

algorithms to manipulate the data, correct programs that implement these algorithms, 

and of course a computer system that functions accurately. Any source of errors in 

each of these components has to be identified and a method of correcting and recov¬ 

ering from these errors has to be designed in the system. 

A transaction is a program unit whose execution may change the contents of the 

database. If the database was in a consistent state before a transaction, then on com¬ 

pletion of the execution of the program unit corresponding to the transaction the 

database will be in a consistent state. This requires that the transaction be considered 

atomic: it is executed successfully or, in case of errors, the user views the transaction 

as not having been executed at all. 

A database recovery system is designed to recover from the following types of 

failures: failure without loss of data; failure with loss of volatile storage; failure with 

loss of nonvolatile storage; and failure with a loss of stable storage. 

The basic technique to implement database recovery is by using data redundancy 

in the form of logs, checkpoints, and archival copies of the database. 

The log contains the redundant data required to recover from volatile storage 

failures and also from errors discovered by the transaction or database system. For 

each transaction the following data is recorded on the log: the start of transaction 

marker, transaction identifier, record identifiers, the previous value(s) of the modified 

data, the updated values; and if the transaction is committed, a commit transaction 

marker, otherwise an abort or rollback transaction marker. 
The checkpoint information is used to limit the amount of recovery operations 

to be done following a system crash resulting in the loss of volatile storage. 

The archival database is the copy of the database at a given time stored to stable 

storage. It contains the entire database in a quiescent mode and is made by simple 

dump routines to dump the physical database to stable storage. The purpose of the 

archival database is to recover from failures that involve loss of nonvolatile storage. 

The archive log is used for recovery from failures involving loss of nonvolatile in¬ 

formation. The log contains information on all transactions made on the database 

from the time of the archival copy, written in chronological order. Recovery from 

loss of nonvolatile storage uses the archival copy of the database and the archival log 

to reconstruct the physical database to the time of the nonvolatile storage failure. 

Whenever a transaction is run against a database, a number of options can be 

used in reflecting the modifications made by the transactions. The options we 

have examined are update in place and indirect update with careful replacement: 

the shadow page scheme and the update via log scheme are two versions of the 

latter. 
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In the update-in-place scheme, the transaction updates the physical database and 

the modified record replaces the old record in the database. The wnte-ahead log 

strategy is used. The log information about the transaction modifications is written 

before update operations initiated by the transactions are performed. 
The shadow page scheme uses two page tables for a transaction that is going to 

modify the database. The onginal page table is called the shadow page table; the 

transaction addresses the database using another table called the current page table. 

In the shadow page scheme, propagating a set of modified blocks to the data ase is 

achieved by changing a single pointer value contained in the page table address from 

the shadow page table address to the current page table address. This can be done in 

an atomic manner and is not interruptable by a system crash. 
In the update via log scheme, the transaction is not allowed to modify the da¬ 

tabase. All changes to the database are deferred until the transaction commits. As in 

the update-in-place scheme, all modifications made by the transaction are logged. 

Since the database is not modified directly by the transaction, the old values do not 

have to be saved in the log. Once the transaction commits, the log is used to propa¬ 

gate the modifications to the database. 
The recovery process from a failure resulting in the loss of nonvolatile storage 

requires a global redo, i.e., redoing the effect of every transaction in the archival 

log, the archival database being used as the initial version of the current database. 

The order of performing redo operations must be the same as the original order, 

hence the archival log file must be chronologically ordered. 

reliable system error undo 

failure validity redo 

error deadlock quiescent 

fault audit trail current database 

fault-tolerant system journal materialized database 

reliability forward error recovery do 

mean time between failures backward error recovery idempotent 

(MTBF) buffer transaction undo 

mean time to repair (MTTR) atomic operation transaction redo 

system availability successful termination global undo 

design error suicidal termination global redo 

poor quality control murderous termination update in place 

overutilization atomicity indirect update 

overloading consistency shadow page scheme 

wearout isolation update via log 

volatile storage durability indirect page allocation 

nonvolatile storage log page table 

system crash write-ahead log strategy shadow page table 

permanent or stable storage checkpoint current page table 

read/write head crash transaction-consistent buffer management 

archive database checkpoint buffer manager 

user error action-consistent checkpoint virtual memory 

consistency error transaction-oriented checkpoint memory manager 
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least recently used (LRU) 

two-phase commit 
steal 

not steal 

force 

no force 

record-level logging 

page-level logging 

query language logging 

disaster recovery 

11.1 

11.2 

11.3 

11.4 

11.5 

11.6 

11.7 

11.8 

11.9 

11.11 

11.11 

11.12 

What if anything can be done to recover the modifications made by partially completed 

transactions that are running at the time of a system crash? Can online transactions be 

recovered? 

In a database system that uses an update-in-place scheme, how can the recovery system 

recover from a system crash if the write ahead protocol is used for the log information? 

What modifications have to be made to a recovery scheme if the transactions are nested? (In 

a nested transaction one transaction is contained within another transaction.) 

In the recovery technique known as forward error recovery, on the detection of a particular 

error in a system, the recovery procedure consists of adjusting the state of the system to 

recover from the error (without suffering the loss that could have occurred because of the 

error). Can such a technique be used in a DBMS to recover from system crashes with the 

loss of volatile storage? 

Show how the backward error recovery technique is applied to a DBMS that uses the update- 

in-place scheme to recover from a system crash with a minimum loss of processing. 

If the checkpoint frequency is too low, a system crash will lead to the loss of a large number 

of transactions and a long recovery operation; if the checkpoint frequency is too high, the 

cost of checkpointing is very high. Can you suggest a method of reducing the frequency of 

checkpointing without incurring a heavy recovery operation and at the same time reducing 

the number of lost transactions? 

How can a recovery system deal with recovery of interactive transactions on online systems 

such as banking or airline reservations? Suggest a method to be used in such systems to 

restart active transactions after a system crash. 

For a logging scheme based on a DML, give the kind of log entry required and indicate the 

undo and the redo part of the log. 

If the write-ahead log scheme is being used, compare the strategy of writing the partial 

update made by a transaction to the database to the strategy of delaying all writes to the 

database till the commit. 

How is the checkpoint information used in the recovery operation following a system crash? 

Define the following terms: 

Write-ahead log strategy 

Transaction-consistent checkpoint 

Action-consistent checkpoint 

Transaction oriented checkpoint 

Two-phase commit 

From the point of view of recovery, compare the shadow page scheme with the update in 

place with forced and no steal buffering. 

11.1 

11.2 

11.3 

11.4 

11.5 

11.6 

11.7 

11.8 

11.9 

11.11 

11.11 

11.12 
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11.13 Explain why no undo operations need be done for recovery from loss of nonvolatile storage 

loss. 

11.14 What type of software errors can cause a failure with loss of volatile storage? 

11.15 What is the difference between transaction oriented checkpointing and the write-ahead log 

strategy? 

11.16 What are the advantages and disadvantages of each of the methods of logging discussed in 

Section 11.6? 

11.17 Consider the update-in-place scheme, where the database system defers the propagation of 

updates to the database until the transaction commits (see Section 11.4.1). Describe the 

recovery operations that have to be undertaken following a system crash with loss of volatile 

storage. 
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Concurrent execution of a number of transactions implies that the operations 

from these transactions may be interleaved. This is not the same as serial execution 

of the transactions where each transaction is run to completion before the next trans¬ 

action is started. Concurrent access to a database by a number of transactions requires 

some type of concurrency control to preserve the consistency of the database, to 

ensure that the modifications made by the transactions are not lost, and to guard 

against transactions reading data that is inconsistent. The serializability criterion is 

used to test whether or not an interleaved execution of the operations from a number 

of concurrent transactions is correct. The serializability test consists of generating a 

precedence graph from a interleaved execution schedule. If the precedence graph is 

acyclic, the schedule is serializable, which means that the database will have the 

same state at the end of the schedule as some serial execution of the transactions. In 

this chapter, we introduce a number of concurrency control schemes. 

12.1 Introduction 

Larger computer systems are typically used by many users in a multiprogramming 

mode; programs are executed concurrently. One reason for the use of multiprogram¬ 

ming is to exploit the different characteristics of the various programs to maximize 

the utilization of the equipment; thus, while one program awaits the completion of 

an input/output operation, the processor can be used to do the computation of another 

program. Another reason for choosing multiprogramming is the need to share a re¬ 

source by these different programs: a database is such a shared resource. The primary 

objective of the database system (at least on a large mainframe) is to allow many 

users and application programs to access data from the database in a concurrent 

manner. 
One such shared database that is used in an online manner is the database for 

an airline reservations system, which is used by many agents accessing the database 

from their terminals. A database could also be accessed in a batch mode, exclusively 

or concurrently with the online access. The database for an airline reservations sys¬ 

tem, in addition to providing online access, could also be used by batch application 

programs that gather statistics and perform accounting operations. 

The sharing of the database for read-only access does not cause any problem, 

but if one of the transactions running concurrently tries to modify some data-item, it 

could lead to inconsistencies. Furthermore, if more than one transaction is allowed 

to simultaneously modify a data-item in the database, it could lead to incorrect values 

for the data-item and an inconsistent database. Such would be the result even if each 

of the transactions were correct and a consistent database would remain so if each of 

these transactions were run one at a time. For example, suppose that two ticket 

agents access the airline reservations system simultaneously to see if a seat is avail¬ 

able on a given flight; if both agents make a reservation against the last available seat 

on that flight, overbooking of the flight would result. This potential problem of leav¬ 

ing the database in an inconsistent state with concurrent usage requires that some 

kind of mutual exclusion be enforced so that the concurrently running transactions 

would be able to access only disjoint data for modifications. 
We defined the concept of a transaction in the previous chapter as being a set 

of actions on the database that can be considered atomic from the point of view of 
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the user. One method of enforcing mutual exclusion is by some type ot locking 

mechanism that locks a shared resource (for example a data-item) used by a trans¬ 

action for the duration of its usage by the transaction. The locked data-item can only 

be used by the transaction that locked it. The other concurrent transactions are locked 

out and have to wait their turn at using the data-item. However, a locking scheme 

must be fair. This requires that the lock manager, which is the DBMS subsystem 

managing the locks, must not cause some concurrent transaction to be permanently 

blocked from using the shared resource. This is referred to as avoiding the starvation 

or livelock situation. The other danger to be avoided is that of deadlock, wherein a 

number of transactions are waiting in a circular chain, each waiting for the release 

of resources held by the next transaction in the chain. 
In other methods of concurrency control, some form of a priori ordering with a 

single or many versions of data is used. These methods are called timestamp ordering 

and multiversion schemes. The optimistic approach, on the other hand, assumes that 

the data-items used by concurrent transactions are most likely be disjoint. 

Concurrency and Possible Problems 

In the last chapter we stressed that a correct transaction, when completed, leaves the 

database in a consistent state provided that the database was in a consistent state at 

the start of the transaction. Nevertheless, during the life of a transaction, the database 

could be inconsistent, although if the inconsistencies are not accessible to other trans¬ 

actions, they would not cause a problem. 
In the case of concurrent operations, where a number of transactions are running 

and using the database, we cannot make any assumptions about the order in which 

the statements belonging to different transactions will be executed. The order in 

which these statements are executed is called a schedule. Consider the two trans¬ 

actions in Figure 12.1. Each transaction reads some data-item, performs some oper¬ 

ations on the data-item that could change its value, and then writes out the modified 

data-item. 
In Figure 12.1 and in subsequent examples in this chapter, we assume that the 

read operation reads in the database value of the named variable to a local variable 

with an identical name. Any modifications by a transaction are made on this local 

copy. The modifications made by the transactions are indicated by the operators/! 

and/2 in Figure 12.1. These modifications are not reflected in the database until the 

write operation is executed, at which point the modifications in the value of the 

Figure 12.1 Two concurrent transactions. 

Transaction T! 

ReadfA vgSacuity Salary) 

AvgSacultySalary : = 

f\(Avg-Faculty Salary) 

Writ e( AvgSacultySalary) 

Transaction T2 

Readf A vgStaffSalary) 

AvgStajfSalary : = 

f2(AvgS taffSalary) 

WritefA vgS taffSa lary) 
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Figure 12.2 Possible interleaving of concurrent transactions of Figure 12.1. 

Schedule 1 Schedule 2 

T 

i 

m 

e 

ReadfAvg-FacultySalary) 

Avg-FacultySalary : — 

f\(Avg-FacultySalary) T 

Writ e(Avg-FacultySalary) i 

Readf A vgStaffSalary) m 

AvgStaffSalary : = e 

h(A vg-S taffSalary) 

Writef AvgStaff Salary) 

ReadfA vgStaffSalary) 

Avg_Staff-Salary : = 

f2(AvgStaffSalary) 

Read (Avg-Faculty-Salary) 

Avg_Faculty_Salary : = 

/if A vg_FacultySalary) 

W ritef A vg_FacultySalaty) 

Writef A vgStaff-Salary) 

named variable are said to be committed. In effect the write operation is a signal for 

committing the modifications and reflecting the changes to the physical database. 

Figure 12.2 gives two possible schedules for executing the transactions of Figure 

12.1 in an interleaved manner. Since the transactions of Figure 12.1 are accessing 

and modifying distinct data-items, (Avg-Facuity-Salary, AvgStaff-Salary), there is 

no problem in executing these transactions concurrently. In other words, regardless 

of the order of interleaving of the statements of these transactions, we will get a 

consistent database on the termination of these transactions. 

12.1.1 Lost Update Problem 

Consider the transactions of Figure 12.3. These transactions are accessing the same 

data-item A. Each of the transactions modifies the data-item and writes it back. Again 

let us consider a number of possible interleavings of the execution of the statements 

of these transactions. These schedules are given in Figure 12.4. 

Starting with 200 as the initial value of A, let us see what the value of A would 

be if the transactions are run without any interleaving. In other words, the trans¬ 

actions are nan to completion, without any interruptions, one at a time in a serial 

manner. If transaction T3 is run first, then at the end of the transaction the value of 

A will have changed from 200 to 210. Running transaction T4 after the completion 

of T3 will change the value of A from 210 to 231. Running the transactions in the 

Figure 12.3 Two transactions modifying the same data-item. 

Transaction T3 

ReadfA) 

A : = A + 10 

Writef A) 

Transaction T4 

ReadfAj 

A := A * 1.1 

Writef A) 
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Figure 12.4 Two schedules for transactions of Figure 12.3. 

Schedule 1 Transaction T3 Transaction T4 Value of A 

ReadfA) ReadfA) ' 200 

T A := A * 1.1 A : = A * 1.1 

i ReadfA) ReadfA) 

m A : = A + 10 A := A + 10 

e WritefA) WritefA) 210 

r WritefA) 

(a) 

WritefA) 220 

Schedule 2 Transaction T3 Transaction T4 Value of A 

ReadfA) ReadfA) 200 

T A : = A + 10 A := A + 10 

i ReadfA) ReadfA) 

m A := A * 1.1 A := A * 1.1 

e WritefA) WritefA) 220 

r Write(A) WritefA) 210 

(b) 

order T4 followed by T3 result in a final value for A of 230. The result obtained with 

neither of the two interleaved execution schedules of Figure 12.4 agrees with either 

of the results of executing these same transactions serially. Obviously something is 

wrong! 
In each of the schedules given in Figure 12.4, we have lost the update made by 

one of the transactions. In schedule 1, the update made by transaction T3 is lost; in 

schedule 2, the update made by transaction T4 is lost. Each schedule exhibits an 

example of the so-called lost update problem of the concurrent execution of a num¬ 

ber of transactions. 

It is obvious that the reason for the lost update problem is that even though we 

have been able to enforce that the changes made by one concurrent transaction are 

not accessible by the other transactions until it commits, we have not enforced the 

atomicity requirement. This demands that only one transaction can modify a given 

data-item at a given time and other transactions should be locked out from even 

viewing the unmodified value (in the database) until the modifications (being made 

to a local copy of the data) are committed to the database. 

12.1.2 Inconsistent Read Problem 

The lost update problem was caused by concurrent modifications of the same data- 

item. However, concurrency can also cause problems when only one transaction 

modifies a given set of data while that set of data is being used by other transactions. 
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Figure 12.5 Two transactions; one modified while the other reads. 

Transaction T5 Transaction T( 

Read(A) Sum : = 0 
A := A — 100 Read(A) 
WritefA) Sum : = Sum 
Read(fi) Read (B) 
B := B + 100 Sum : = Sum 
Write(fi) Write(Sum) 

Consider the transactions of Figure 12.5. Suppose A and B represent some data- 

items containing integer valued data, for example, two accounts in a bank (or a 

quantity of some part X in two different locations, etc.). Let us assume that trans¬ 

action T5 transfers 100 units from A to B. Transaction T6 is concurrently running and 

it wants to find the total of the current values of data-items A and B (the sum of the 

balance in case A and B represent two accounts, or the total quantity of part X in the 
two different locations, etc.). 

Figure 12.6 gives a possible schedule for the concurrent execution of the trans¬ 

actions of Figure 12.5 with the initial value of A and B being 500 and 1000, respec¬ 

tively. We notice from the schedule that transaction T6 uses the value of A before 

the transfer was made, but it uses the modified value of B after the transfer. The 

result is that transaction T6 erroneously determines the total of A and B as being 1600 

instead of 1500. We can also come up with another schedule of the concurrent exe- 

Figure 12.6 Example of inconsistent reads. 

Schedule Transaction T5 Transaction T6 Value of Database items 

A B Sum 

Read(A) Read(A) 500 1100 — 

Sum : = 0 Sum : = 0 0 

T Read (A) Read (A) 

i A : = A - 100 A := A - 100 

m WritefA) WritefA) 400 

e Sum : = Sum + A Sum : = Sum + A 500 

Read(fi) Read(fi) 

B := B + 100 B := B + 100 

Write(fl) Write(fi) 1100 

Read(fl) Read(fl) 

Sum : = Sum + B Sum : = Sum -1- B 

r Write(Sum) Write( Sum) 1600 
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cution of these transactions that will give the total of A and B as 1400, and of course 

other schedules that will give the correct answer. 
The reason we got an incorrect answer in the schedule of Figure 12.6 was be¬ 

cause that transaction T6 was using values of data-items A and B while they were 

being modified by transaction Ts. Locking out transaction T6 from these data-items 

individually would not have solved the problem of this inconsistent read. The prob¬ 

lem would have been resolved in this example only if transaction T5 had not released 

the exclusive usage of the data-item A after locking data-item B. We discuss this 

scheme, called two-phase locking, in Section 12.4.1 

12.1.3 The Phantom Phenomenon 

The previous examples were deliberately simple to illustrate the points of the lost 

update and the inconsistent read problems. To illustrate the phantom phenomenon let 

us consider an organization where parts are purchased and kept in stock. The parts 

are withdrawn from stock and used by a number of projects. To check the extent of 

loss, for example due to pilferage, we want to see if the current quantity of some 

part purchased and received is equal to the current sum of the quantity of that part 

in stock, plus the current quantities in use by various projects. Let us assume that 

we have record types (relations in the case of a relational database system) called 

INVENTORY, RECEIVED, and USAGE. The fields of these records are as shown 

below. The record type INVENTORY keeps track of the quantity of a given part in 

stock at a given point in time. The record type RECEIVED contains, for a given 

part, the total units of that part that has been received to date. The record USAGE 

keeps track of the project for which a given part was used. 

INVENTORY(Part#, Quantity-inStock) 

RECEIVED(Part#, Quantity—Received-tO-Date) 

USAGE (Project-No, Part#, Quantity-Used-tO-Date) 

Consider transaction T7 that will perform this auditing operation. It will, for 

example, proceed by locking each item in an exclusive mode before each step, as 

follows: 

1. Lock the records of INVENTORY and for Part# = Part) find the Quantity-in. 

Stock. 

2. Lock all existing records of USAGE and add the Quantity-Used-to-Date for 

Part, in any project that uses this part to Quantity-in-Stock found in step 1. 

3. Lock the RECEIVED records and compare the value of the sum found with the 
Received-toJDate value for Part,. 

4. Release all locks. 

Problems will be encountered if there is another transaction, T8, which is run to 

reflect the receipt of additional quantities of Part,. Transaction T8 adds this quantity 

to the record corresponding to Part, of the record type RECEIVED and assigns these 

parts directly to a new project for which a new record of the record type USAGE is 

created. If transaction T8 is scheduled to run between steps 2 and 3 above, then 

transaction T7 will come up with an incorrect result (T7 will show the loss in Part,). 
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Here we see that the locking of records did not prevent the creation of a new 

record, which was created after the existing records had been locked. This new rec¬ 

ord for USAGE created by transaction T8 is a phantom as far as transaction T7 is 

concerned. It did not exist when transaction T7 locked the records of USAGE. 

However, the problem could be prevented if the locking of a set of records also 

prevents the addition of such phantom records. The locking of a record belonging to 

a record type must guarantee that no new record occurrences of the record type can 

be added until the lock is released. The other necessary precaution for the schedule 

above is to lock the record RECEIVED before releasing the lock on USAGE. 

12.1.4 Semantics of Concurrent Transactions 

In concurrent operations, where a number of transactions are running and modifying 

parts of the database, we not only have to hide the changes made by a transaction 

from other transactions, but we also have to make sure that only one transaction has 

exclusive access to these data-items for at least the duration of the original trans¬ 

action’s usage of the data-items. This requires that an appropriate locking mechanism 

be used to allow exclusive access of these data-items to the transaction requiring 

them. In the case of the transactions of Figure 12.3, no such locking was used with 

the consequence that the result is not the same as the result we would have obtained 
had these transactions run consequently. 

Now let us see why the results obtained when we run two transactions, one after 

the other, need not be the same for different orderings. The modification operations 

performed by two transactions are not necessarily commutative. The operations 

A : = (A + 10) + 20 give the same result as A : = (A -I- 20) + 10 for the same 

initial value for A (which is assumed to be an integer valued data-item); this is so 

because the addition operation is commutative. Similarly, (A * 10) * 20 = (A * 20) 
* 10. 

However, commuting the order of operations, as illustrated by the following 

expressions, does not always give the same result: 

Salary : = (Salary -I- 1000) * 1.1 

Salary : = (Salary * 1.1) + 1000 

In the above example we have two transformations. In the first the Salary is 

initially modified by adding 1000 to it and then the result is augmented by 10% to 

give the revised Salary. In the second the Salary is first augmented by 10% and then 

1000 is added to the result, which becomes the revised Salary. The reasonable ap¬ 

proach, to make sure that the intended result is obtained in all cases (i.e. to make 

sure that transaction Tj is completed before transaction Tj is run), would be to code 

the operations in a single transaction and not to divide the operations into two or 

more transactions. Thus, if the above set of operations on Salary were written as two 

transactions as given below, we cannot be sure which of the above two results would 

be obtained with their concurrent execution. 

Transaction T, Transaction Tj 

Read Salary Read Salary 

Salary : = Salary *1.1 Salary : = Salary + 1000 

Write Salary Write Salary 
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In effect, the division of a transaction into interdependent transactions run seri¬ 

ally in the wrong order would give erroneous results. Furthermore, these interdepen¬ 

dent transactions must not be run concurrently, otherwise the concurrent execution 

will lead to results that could be incorrect again and not agree with the result obtained 

by any serial execution of the same transactions. It is a logical error to divide a 

single set of operations into two or more transactions. We assume hereafter that 

transactions are semantically correct. 

12m2 Serializability 

Let us reconsider the transactions of Figure 12.3. We assume that these transactions 

are independent. An execution schedule of these transactions as shown in Figure 12.7 

is called a serial execution. In a serial execution, each transaction runs to completion 

before any statements from any other transaction are executed. In Schedule A given 

in Figure 12.7a, transaction T3 is run to completion before transaction T4 is executed. 

In Schedule B, transaction T4 is run to completion before transaction T3 is started. If 

the initial value of A in the database were 200, Schedule A would result in the value 

of A being changed to 231. Similarly, Schedule B with the same initial value of A 

would give a result of 230. 
This may seem odd, but in a shared environment, the result obtained by inde¬ 

pendent transactions that modify the same data-item always depends on the order in 

which these transactions are run; and any of these results is considered to be correct. 

Figure 12.7 Two serial schedules. 

Schedule A Transaction T3 Transaction T4 

ReadfA) ReadfA) 

T A := A + 10 A := A + 10 

i WritefA) WritefA) 

m ReadfA) ReadfA) 

e A := A * 1.1 A ;= A * 1.1 

r WritefA) 

(a) 

WritefA) 

Schedule B Transaction T3 Transaction T4 

ReadfA) ReadfA) 
T A := A * 1.1 A \ — A * 1.1 
i WritefA) WritefA) 

m ReadfA) ReadfA) 

e A := A + 10 A := A + 10 

r WritefA) WritefA) 

(b) 
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If there are two transactions and if they refer to and use distinct data-items, the 

result obtained by the interleaved execution of the statements of these transactions 

would be the same regardless of the order in which these statements are executed 

(provided there are no other concurrent transactions that refer to any of these data- 

items). In this chapter, we assume that the concurrent transactions share some data- 

items, hence we are interested in a correct ordering of execution of the statements of 
these transactions. 

A nonserial schedule wherein the operations from a set of concurrent trans¬ 

actions are interleaved is considered to be serializable if the execution of the opera¬ 

tions in the schedule leaves the database in the same state as some serial execution 

of these transactions. With two transactions, we can have at most two distinct serial 

schedules, and starting with the same state of the database, each of these serial sched¬ 

ules could give a different final state of the database. Starting with an initial value of 

200 for A, the serial schedule illustrated in Figure 12.7a would give the final value 

of A as 231, and for the serial schedule illustrated in part b the final value of A would 

be 230. If we have n concurrent transactions, it is possible to have n!, where n! = 

n*(n— 1) * (n — 2) * . . .*3*2*1 distinct serial schedules, and possibly that 

many distinct resulting modifications to the database. For a serializable schedule, all 

we require is that the schedule gives a result that is the same as any one of these 

possibly distinct results. 

When n transactions are run concurrently and in an interleaved manner, the 

number of possible schedules is much larger than n!. We would like to find out if a 

given interleaved schedule produces the same result as one of the serial schedules. If 

the answer is positive, then the given interleaved schedule is said to be serializable. 

Definition: Serializable Schedule: 

Given an interleaved execution of a set of n transactions; the following 

conditions hold for each transaction in the set: 

• All transactions are correct in the sense that if any one of the transactions is 

executed by itself on a consistent database, the resulting database will be 

consistent. 
• Any serial execution of the transactions is also correct and preserves the 

consistency of the database; the results obtained are correct. (This implies that 

the transactions are logically correct and that no two transactions are 

interdependent). 

The given interleaved execution of these transactions is said to be serializable if 

it produces the same result as some serial execution of the transactions. 

Since a serializable schedule gives the same result as some serial schedule and 

since that serial schedule is correct, then the serializable schedule is also correct. 

Thus, given any schedule, we can say it is correct if we can show that it is serializ¬ 

able. 
Algorithm 12.1 given in Section 12.2.2 establishes the serializability of an ar¬ 

bitrarily interleaved execution of a set of transactions on a database. The algorithm 

does not consider the nature of the computations performed by a transaction nor the 
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exact effect of each such computational operation on the database. In effect, the 

algorithm ignores the semantics of the operations performed by the transactions in¬ 

cluding the commuting property of algebraic or logical computations of the trans¬ 

actions. We may conclude from the algorithm that a given schedule is not serializa¬ 

ble, when in effect it is, if some of the semantics and the algebraic commutability 

were not ignored. However, the algorithm will never lead us to conclude that a 

schedule is serializable, when it does not produce the same result as some serial 

schedule. The computation involved in analyzing each transaction and seeing if its 

operations could be safely interleaved with those of other concurrent transactions is 

not justified by the greater degree of concurrency of the resulting “better” serializa¬ 

ble schedule. 
In Algorithm 12.1 (p. 566) we make the following assumptions: 

• Each transaction is a modifying transaction, i.e., it would change the value of 

at least one database item. 

• For each such item A that a transaction modifies, it would first read the value a 

of the item from the database (this is the read-before-write protocol). 

• Having read the value it would transform a to /(a), where /is some transaction- 

dependent computation or transformation. 

• It would then write this new value to the database. 

Before presenting the algorithm we present the notion of a precedence graph. 

Figure 12.8 (a) A schedule and (b) an acyclic precedence graph. 

Schedule Transaction T9 Transaction T10 Transaction Tu 

ReadfA) ReadfA) 

A : = f\(A) A:=/,(A) 
T WritefA) WritefA) 

i ReadfA) 

m A:=f2(A) 
e Write(A) 

ReadfA) 

A : = fi(A) 
WritefA) 

Readffi) 

B:=ffB) 

Writeffi) 

Readffi) 

A :=/3ffl) 
Writeffi) 

Read(fi) 

A :=MB) 

Readffi) 

B —MB) 
Write(fi) + Writeffi) 

(a) 

(b) 
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12.2.1 Precedence Graph 

Precedence graph G(V, E) consists of a set of nodes or vertices V and a set of 

directed arcs or edges E. Figure 12.8 gives an example of a schedule and the corre¬ 

sponding precedence graph. The schedule is for three transactions T9, T,0 and Tn 

and the corresponding precedence graph has the vertices T9, T,0 and Tu. There is an 

edge from T9 to T,0 and another edge from T10 to T,,. If T9, T,0 and T11 represent 

three transactions, the precedence graph represents the serial execution of these trans¬ 
actions. 

In a precedence graph, a directed edge from a node Tj to a node Tr i + j, 

indicates one of the following conditions regarding the read and write operations in 

transactions Tj and Tj with respect to some database item A: 

• Tj performs the operation ReadfA) to read the value written by T; performing 
the operation Write(A). 

• Tj performs the operation WritefA,) after Tj performs the operation ReadfAj. 

If we limit ourselves to the read-before-write protocol only, we have to look for 
an edge corresponding to these conditions only. 

In Figure 12.8a, all the statements in transaction T9 are executed before trans¬ 

action T|0 is started. Similarly, all the operations of T|0 are completed before starting 

Tu. The precedence graph corresponding to the schedule of part a is given in part b. 

Figure 12.9a gives a schedule and Figure 12.9b gives the precedence graph for 

Figure 12.9 (a) A schedule and (b) a cyclic precedence graph. 

Schedule Transaction T]2 Transaction 

ReadfAj ReadfAJ 

^ :=f\(A) A :=f\(A) 
T ReadfA) ReadfAj 
i A : = f2(A) A : = f2(A) 

m WritefA) WritefAj 

e ^ r WritefA) WritefA) 

(a) 

(b) 
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transactions T12 and T13. In the precedence graph there is an edge from T12 to T13 as 

well as an edge from T13 to T12. The edge T13 to Tl2 is included because T12 executes 

a write operation after T13 executes a write operation for the same database item A. 

The edge T)2 to Tl3 is included because T)3 executes a write operation after T,2 

executes a read operation for the same database item A. We see that the precedence 

graph has a cycle, since we can start from one of the nodes of the graph and, follow¬ 

ing the directed edges, return to the starting node. 
A precedence graph is said to be acyclic if there are no cycles in the graph. The 

graph of Figure 12.8b has no cycles. The graph of Figure 12.9b is cyclic, since it 

has a cycle. 
The precedence graph for serializable schedule S must be acyclic, hence it can 

be converted to a serial schedule. To test for the serializability of the arbitrary sched¬ 

ule S for transactions Tj, . . . , Tk we convert the schedule into a precedence graph 

and then test the precedence graph for cycles. If no cycles are detected, the schedule 

is serializable; otherwise it is not. If there are n nodes in the graph for schedule S, 

the number of operations required to check if there is a cycle in the graph is propor¬ 

tional to n2. 

Algorithm 

12.1 Serializibity Test 

Input: Schedule S for the concurrent execution of transactions T), . . . , Tk. 

Output: A serial schedule for S if one exists. 

Step 1: Create precedence graph G as follows. Transactions Tj, . . . , Tk are 

the nodes and each edge of the graph is inserted as follows: For a database 

item X used in the schedule find an operation Write(X) for some transaction 

T^ if there is a subsequent (earliest) operation Read(X) in transaction Tj, 

i + j, insert an edge from Tj to Tj in the precedence graph, since Tj must be 

executed before Tj. For a database item X, if T, executes a Write(X) after T,, 

i i= j, executes a Read(X) or a Write(X) operation, insert an edge from Tj to 

Tj in the precedence graph. 

Step 2: If the graph G has a cycle (see Exercise 12.6), schedule S is 

nonserializable. If G is acyclic, then find, using the topological sort given 

below, a linear ordering of the transactions so that if there is an arc from Tj to 
Tj in G, Tj precedes Tj. Find a serial schedule as follows: 

(a) Initialize the serial schedule as empty. 

(b) Find a transaction Ts, such that there are no arcs entering Tj. Tj is the 
next transaction in the serial schedule. 

(c) Remove Tj and all edges emitting from Tj: If the remaining set is 

nonempty, return to (b), otherwise the serial schedule is complete. 
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12.2.2 Serializability Algorithm: Read-before-Write Protocol 

In the read-before-write protocol we assume that a transaction will read the data- 

item before it modifies it and after modifications, the modified value is written back 

to the database. In Algorithm 12.1, we give the method of testing whether a schedule 

is serializable. We create a precedence graph and test for a cycle in the graph. If we 

find a cycle, the schedule is nonserializable; otherwise we find a linear ordering of 
the transactions. 

In Examples 12.1 and 12.2 we illustrate the application of this algorithm. 

Example 12.1 Consider the schedule of Figure A. The precedence graph for this schedule 

is given in Figure B. The graph has three nodes corresponding to the three 

transactions T14, T15, and T16. There is an arc from T]4 to T|5 because T,4 

writes data-item A before T15 reads it. Similarly, there is an arc from Tl5 to 

Ti6 because T15 writes data-item B before T16 reads it. Finally, there is an 

arc from T16 to T14 because T)6 writes data-item C before T14 reads it. The 

precedence graph of Figure B has a cycle formed by the directed edges from 

T|4 to T|5, from Tl5 to T16 and from T,6 back to T)4. Hence, the schedule 

of Figure A is not serializable. We cannot execute the three transactions 

serially to get the same result as the given schedule. 

Figure A An execution schedule involving three transactions. 
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Figure B A precedence graph with a cycle. 

Example 12.2 presents a serializable schedule. 

Example 12.2 Consider the schedule given in Figure C. The execution schedule of the 

figure is serializable because the precedence graph for this schedule given in 

Figure D, does not contain any cycles. The serial schedule is T17, followed 

by T|g, followed by Tl9. 

Figure C An execution schedule involving three transactions. 
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Figure D Precedence graph for schedule of Figure C. 

12.2.3 Serializability Algorithm: Read-Only and Write-Only Protocols 

Algorithm 12.1 is for a set of transactions that follow the read-before-write protocol. 

Some transactions, in addition to having a set of data-items that are read before 

rewritten, have another set of data-items that are only read and a further set of data- 

items that are only written. In such a case some additional edges must be added to 

the graph. We will not treat this generalization in this text; refer to the bibliographic 

notes for further reading. 

12.3 

If all schedules in a concurrent environment are restricted to serializable schedules, 

the result obtained will be consistent with some serial execution of the transactions 

and will be considered correct. However, using only serial schedules unnecessarily 

limits the degree of concurrency. Furthermore, testing for serializability of a schedule 

is not only computationally expensive but it is an after-the-fact technique and im¬ 

practical. Thus, one of the following concurrency control schemes is applied in a 

concurrent database environment to ensure that the schedules produced by concurrent 

transactions are serializable. The schemes we discuss are locking, timestamp-based 

order, optimistic scheduling, and the multi version technique. 

The intent of locking is to ensure serializability by ensuring mutual exclusion in 

accessing data-items. In the timestamp-based ordering scheme, the order of execution 

of the transactions is selected a priori by assigning each transaction an unique value. 

This value, usually based on the system clock, is called a timestamp. The values of 

the timestamp of the transactions determine the sequence in which transactions con¬ 

testing for a given data-item will be executed. Conflicts in the timestamp scheme are 

resolved by abort and rollback. In the optimistic scheme it is recognized that the 

conflict between transactions, though possible, is in reality very rare, and it avoids 

all forms of locking. The price paid in the optimistic scheme is in verifying the 

validity of the assumptions that data used by a transaction has not changed and the 

abort and restart of a transaction for which it is ascertained that the data-items have 

Concurrency Control 
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changed between the time of reading and of writing. In the multiversion technique, 

a data-item is never written over; each write operation creates a new version of a 

data-item. Many versions of a data-item exist and these represent the historical evo¬ 

lution of the data-item. A transaction sees the data-item of its own epoch. Conflicts 

are resolved by rollback of a transaction that is too late to write out all values from 

its epoch. We examine each of these concurrency control schemes in the following 

sections. The problem of deadlock, which is possible in some of these schemes and/ 

or their modifications, is discussed in Section 12.8. 

12.4 
From the point of view of locking, a database can be considered as being made up 

of a set of data-items. A lock is a variable associated with each such data-item. 

Manipulating the value of a lock is called locking. The value of a lock variable is 

used in the locking scheme to control the concurrent access and manipulation of the 

associated data-item. Locking the items being used by a transaction can prevent other 

concurrently running transactions from using these locked items. The locking is done 

by a subsystem of the database management system usually called the lock manager. 
So that concurrency is not restricted unnecessarily, at least two types of locks 

are defined: exclusive lock and shared lock. 
Exclusive lock: The exclusive lock is also called an update or a write lock. The 

intention of this mode of locking is to provide exclusive use of the data-item to one 

transaction. If a transaction T locks a data-item Q in an exclusive mode, no other 

transaction can access Q, not even to read Q, until the lock is released by trans¬ 

action T. 

Shared lock: The shared lock is also called a read lock. The intention of this 

mode of locking is to ensure that the data-item does not undergo any modifications 

while it is locked in this mode. Any number of transactions can concurrently lock 

and access a data-item in the shared mode, but none of these transactions can modify 

the data-item. A data-item locked in a shared mode cannot be locked in the exclusive 

mode until the shared lock is released by all transactions holding the lock. A data- 

item locked in the exclusive mode cannot be locked in the shared mode until the 
exclusive lock on the data-item is released. 

The protocol of sharing is as follows. Each transaction, before accessing a data- 

item, requests that the data-item be locked in the appropriate mode. If the data-item 

is not locked, the lock request is honored by the lock manager. If the data-item is 

already locked, the request may or may not be granted, depending on the mode of 

locking requested and the current mode in which the data-item is locked. If the mode 

of locking requested is shared and if the data-item is already locked in the shared 

mode, the lock request can be granted. If the data-item is locked in an exclusive 

mode, then the lock request cannot be granted, regardless of the mode of the request. 

In this case the requesting transaction has to wait till the lock is released. 

The compatibility of a lock request for a data-item with respect to its current 

state of locking is given in Figure 12.10. Here we are assuming that the request for 

locking is made by a transaction not already holding a lock on the data-item. 

If transaction Tx makes a request to lock data item A in the shared mode and if 

A is not locked or if it is already locked in the shared mode, the lock request is 

granted. This means that a subsequent request from another transaction, Ty, to lock 

Locking Scheme 
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Figure 12.10 Compatibility of locking. 

Current state of locking of data-item 

Lock mode of 
request 

Unlocked Shared Exclusive 

Unlock - yes yes 

Shared yes yes no 

Exclusive yes no no 

data-item A in the exclusive mode would not be granted and transaction Ty will have 

to wait until A is unlocked. While A is locked in the shared mode, if transaction Tz 

makes a request to lock it in the shared mode, this request can be granted. Both Tx 
and Tz can concurrently use data-item A. 

If transaction Tx makes a request to lock data-item A in the shared mode and if 

A is locked in the exclusive mode, the request made by transaction Tx cannot be 

granted. Similarly, a request by transaction Tz to lock A in the exclusive mode while 

it is already locked in the exclusive mode would also result in the request not being 

granted, and Tz would have to wait until the lock on A is released. 

From the above we see that any lock request for a data-item can only be granted 

if it is compatible with the current mode of locking of the data-item. If the request 

is not compatible, the requesting transaction has to wait until the mode becomes 

compatible. 

The releasing of a lock on a data-item changes its lock status. If the data-item 

was locked in an exclusive mode, the release of lock request by the transaction 

holding the exclusive lock on the data-item would result in the data-item being un¬ 

locked. Any transaction waiting for a release of the exclusive lock would have a 

chance of being granted its request for locking the data-item. If more than one trans¬ 

action is waiting, it is assumed that the lock manager would use some fair scheduling 

technique to choose one of these waiting transactions. 

If the data-item was locked in a shared mode, the release of lock request by the 

transaction holding the shared lock on the data-item may not result in the data-item 

being unlocked. This is because more than one transaction may be holding a shared 

lock on the data-item. Only when the transaction releasing the lock is the only trans¬ 

action having the shared lock does the data-item become unlocked. The lock manager 

may keep a count of the number of transactions holding a shared lock on a data- 

item. It would increase this value by one when an additional transaction is granted a 

shared lock and decrease the value by one when a transaction holding a shared lock 

releases the lock. The data-item would then become unlocked when the number of 

transactions holding a shared lock on it becomes zero. This count could be stored in 

an appropriate data structure along with the data-item but it would be accessible only 

to the lock manager. 
The lock manager must have a priority scheme whereby it decides whether to 

allow additional transactions to lock a data-item in the share-mode in the following 

situation: 

• The data-item is already locked in the shared mode. 

• There is at least one transaction waiting to lock the data-item in the exclusive 

mode. 
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Allowing a higher priority to share lock requests could result in possible star¬ 

vation of the transactions waiting for an exclusive lock. Similarly, the lock manager 

has to deal with a situation where a data-item is locked in an exclusive mode and 

there are transactions waiting to lock the data-item in the shared mode and the exclu¬ 

sive mode. 
In the following discussions we assume that a transaction makes a request to 

lock data-item A by executing the statement LocksfA) or Lockx(A). The former is 

for requesting a shared lock; the latter, an exclusive lock. A lock is released by 

simply executing an UnlockfA) statement. We assume that the transactions are cor¬ 

rect. In other words, a transaction would not request a lock on a data-item for which 

it already holds a lock, nor would a transaction unlock a data-item if it does not hold 

a lock for it. 
A transaction may have to hold onto the lock on a data-item beyond the point 

when it last needs it to preserve consistency and avoid the inconsistent read problems 

discussed in Section 12.1.2. We illustrate this point by reworking the example of 

Figure 12.5. Here each transaction request locks for the data-items A and B: trans¬ 

action T5 in exclusive mode and transaction T6 in shared mode. The transactions with 

the lock requests are given in Figure 12.11. As shown there, the transactions attempt 

to release the locks on the data-items as soon as possible. 
Now consider Figure 12.12, which gives a possible schedule of execution of the 

transactions of Figure 12.11. The locking scheme did not resolve the inconsistent 

read problem; the reason is that transactions T5 and T6 are performing an operation 

made up of many steps and all these have to be executed in an atomic manner. The 

database is in an inconsistent state after transaction T5 has taken 100 units from A 
but not added it to B. Allowing transaction T6 to read the values of A and B before 

transaction T5 is complete leads to the inconsistent read problem. 

A possible solution to the inconsistent read problem is shown in Figure 12.13. 

Here transactions T5 and T6 are rewritten as transactions T20 and T2i . The possible 

schedules of concurrent executions of these transactions are shown in Figures 12.14 

and 12.15. Both of these solutions extend the period of time for which they keep 

Figure 12.11 Two transactions of Figure 12.5 with lock requests. 
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Figure 12.12 A possible schedule causing an inconsistent read. 
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Figure 12.13 Transactions locking all items before unlocking. 
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Figure 12.14 A possible solution to the inconsistent read problem. 
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some data-items locked even though the transactions no longer need these items. This 

extended locking forces a serialization of the two transactions and gives correct re¬ 

sults. 

12.4.1 Two-Phase Locking 

The correctness of the schedules of Figures 12.14 and 12.15 and of the transactions 

in Figure 12.13 lead us to the observation that both these solutions involve trans¬ 

actions whose locking and unlocking operations are monotonic, in the sense that all 

locks are first acquired before any of the locks are released. Once a lock is released, 

no additional locks are requested. In other words, the release of the locks is delayed 

until all locks on all data-items required by the transaction have been acquired. 

This method of locking is called two-phase locking. It has two phases, a grow¬ 

ing phase wherein the number of locks increase from zero to the maximum for the 

transaction, and a contracting phase wherein the number of locks held decreases 

from the maximum to zero. Both of these phases are monotonic; the number of locks 

are only increasing in the first phase and decreasing in the second phase. Once a 
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Figure 12.15 Another solution to the inconsistent read problem. 
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transaction starts releasing locks, it is not allowed to request any further locks. In 
this way a transaction is obliged to request all locks it may need during its life before 

it releases any. This leads to a possible lower degree of concurrency. 

The two-phase locking protocol ensures that the schedules involving transactions 

using this protocol will always be serializable. For instance, if S is a schedule con¬ 

taining the interleaved operations from a number of transactions, Tj, T2, . . . , Tk 

and all the transactions are using the two-phase locking protocol, schedule S is seri¬ 

alizable. This is because if the schedule is not serializable, the precedence graph for 

S will have a cycle made up of a subset of {T,, T2, . . . , Tk}. Assume the cycle 

consists of Ta —> Tb —> Tc —> . . . Tx —> Ta. This means that a lock operation by Tb 

is followed by an unlock operation by Ta; a lock operation by Tc is followed by an 

unlock operation by Tb, . . . , and finally a lock operation by Ta is followed by an 

unlock operation by Tx. However, this is a contradiction of the assertion that Ta is 

using the two phase protocol. Thus the assumption that there was a cycle in the 

precedence graph is incorrect and hence S is serializable. 

The transactions of Figure 12.13 use the two-phase locking protocol, and the 

schedules derived from the concurrent execution of these transactions given in Fig¬ 

ures 12.14 and 12.15 are serializable. However, the transactions of Figure 12.11 do 

not follow the two-phase locking protocol and the schedule of Figure 12.12 is not 

serializable. 
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The observant reader will notice that the danger of deadlock exists in the two- 

phase locking protocol. We examine this problem in greater detail in Section 12.8. 

12.4.2 Granularity of Locking 

So far we have assumed that a data-item can be locked. However, we have not 

defined explicitly what the data-item is. If the size or granularity of the data-item is 

very large, for instance the entire database, then of course the overhead of locking is 

very small. The lock manager manages only one item. The drawback here is obvious. 

The concurrency is very low since only one transaction can run in an exclusive mode 

at a given time, even though it may need a very small portion of the database. On 

the other hand, if the granularity of the data-item is very small (for example, a data- 

item could be the field of a record), then the degree of concurrency can be fairly 

high, although the overhead of locking in this case can be considerable. A transaction 

that needs many records and fields will have to request many locks, all of which 

have to be managed by the lock manager. For the highest degree of flexibility, the 

locking scheme should allow multiple granularity of locking from a data field to the 

entire database. 
When the data-item that is locked is, for example, a record type, then to avoid 

the phantom read problem, locking a record type requires not only that the existing 

record occurrences be locked but also implies that nonexisting records are also 

locked. In this manner it is possible to preclude the insertion of phantom records by 

other concurrent transactions. 
To avoid locking too early and in situations where the transaction itself has to 

determine which data-items to lock, locks are requested dynamically by the trans¬ 

actions. This creates an additional overhead for the lock manager, which in addition 

to the locking overhead has to determine if there is a situation of deadlock. The 

methods of handling deadlocks are discussed in Section 12.8. 

12.4.3 Hierarchy of Locks and Intention-Mode Locking 

Some data structures used in the database are structured in the form of a tree. For 

example, the nodes of a B-tree index are hierarchically structured. A transaction may 

need to lock the entire B-tree or only a portion of it, i.e., a proper subtree. Similarly, 

the database may be considered to be a hierarchy consisting of the following nodes: 

• the entire database 

• some designated portion of the database 

• a record type (or in the case of the relational database, a relation) 

• an occurrence of a record (a tuple) 

• a field of the record (an attribute) 

The nodes of the hierarchy could depend on the data model being used by the 

DBMS. In the case of the hierarchical model, the hierarchies represent a tree and 

each node of the tree can be locked. In the case of the network model, locking could 



12.4 Locking Scheme 577 

be based on sets. In the hierarchy shown in Figure 12.16, we generalize the nodes 

to be independent of the data model. The usual practice is to limit the locking gran¬ 

ularity to the record occurrence level. 

Having structured the database objects in a hierarchy, the corresponding locking 

scheme becomes a hierarchy; the lock manager allows each node of the hierarchy to 

be locked. A hierarchy of locks provides greater flexibility and efficiency in locking. 

Such a scheme allows multiple granularity of locking from a data field to the entire 

database. The descendants of a locked node are implicitly locked in the same mode 

(shared or exclusive) as the node. However, if a subtree is locked, the ancestor of 

the subtree is not allowed to be locked; this is because locking an ancestor of the 

subtree implicitly locks the subtree. An implicit lock on a node signifies that no other 

transaction is allowed to lock that node (either implicitly or explicitly) in an exclusive 

mode (and implicitly, any of the descendants). 

Hierarchical organization of the database, however, increases the overhead in 

determining whether or not a request for a lock from a transaction can be accepted. 

Consider a portion of the database that is under the hierarchy specified by the node 

N. Suppose the transaction T0 needs a share lock on this portion of the database. 

How can the lock manager know efficiently if any other transaction has locked some 

portion of the database rooted by node N, and if so, whether the mode is compatible 

with the request of transaction T0? Checking each data-item under N is inefficient. 
In the case of hierarchical structured locking, a new mode of locking, the inten¬ 

tion mode is introduced. A transaction can lock a hierarchically structured data-item 

in the intention mode. This implies that the transaction intends to explicitly lock a 

lower portion of the hierarchy. In effect, intention locks are placed on all ancestors 

of a node until the node that is to be locked explicitly is reached. 

To allow a higher degree of concurrency, the intention mode of locking is re¬ 

fined to intention share and intention exclusive modes. The intention mode simply 

indicates that the transaction intends to lock the lower level in some mode. If trans¬ 

action Ta intends to lock the lower level in the share mode, the ancestor is locked in 

Figure 12.16 Hierarchical structure of the database. 
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the intention share mode to indicate that the lower level is being locked in a share 

mode. Other transactions can access the node and all its lower levels, including the 

subtree being accessed by Ta; no transaction, however, can modify any portion of 

the database rooted at the node that was locked by Ta in the intention share mode. If 

transaction Ta intends to lock the lower level in the exclusive or share mode, then 

the ancestor is locked in the intention exclusive mode to indicate that the lower 

level is being locked in an exclusive or share mode. Another concurrent transaction, 

say Tb, needing to access any portion of this hierarchy in the exclusive or share mode 

can also lock this node in the intention exclusive mode. If Tb needs exclusive or 

share access to that portion of the subtree not being used by transaction Ta, it will 

place appropriate locks on it and can run concurrently with Ta. However, if Tb needs 

access to any portion of the subtree locked in the exclusive mode by Ta, then the 

explicit exclusive locks on these nodes will cause Tb to wait until Ta releases these 

explicit exclusive locks. 

The intention lock locks a node to indicate that the lower level nodes are being 

locked either in the share or the exclusive mode, but it does no implicit locking of 

lower levels. Each lower level has to be locked explicitly in whichever mode required 

by the transaction. This adds a fairly large overhead if a transaction needs to access 

a subtree of the database and modify only a small portion of the subtree rooted at the 

intentionally locked node. The share and intention exclusive mode of locking is 

thus introduced. The share and intention exclusive mode differs from the other form 

of intention locking in so far as it implicitly locks all lower level nodes as well as 

the node in question. This mode allows access by other transactions to share that 

portion of the subtree not exclusively locked and gives higher concurrency than 

achievable with a simple exclusive lock. This avoids the overhead of locking the root 

node and all nodes in the path leading to the subtree to be modified in the intention 

exclusive mode, followed by locking the subtree to be modified in the exclusive 

mode. It is replaced by locking the root node in the share and intention exclusive 

mode (which will lock all descendants implicitly in the same mode), followed by 

locking the root node of the subtree to be modified in the exclusive mode. 

We summarize below the possible modes in which a node of the database hier¬ 

archy could be locked and the effect of the locking on the descendants of the node. 

Figure 12.17 gives the relative privilege of these modes of locking. The exclusive 

mode has the highest privilege and the intention share mode has the lowest privilege. 

S or shared lock: The node in question and implicitly all its descendants are 

locked in the share mode; all these nodes, locked explicitly or implicitly, are acces¬ 

sible for read-only access. No transaction can update the node or any of its descen¬ 
dants when the node is locked in the shared mode. 

X or exclusive lock: The node in question and implicitly all its descendants are 

exclusively locked by a single transaction. No other transaction can concurrently 
access these nodes. 

IS or intention share: The node is locked in the intention share mode, which 

means that it or its descendants cannot be exclusively locked. The descendant of the 

node may be individually locked in a shared or intention shared mode. The descen¬ 
dants of the node that is locked in the IS mode are not locked implicitly. 

IX or intention exclusive: The node is locked in an intention exclusive mode. 

This means that the node itself cannot be exclusively locked; however, any of the 

descendants, if not already locked, can be locked in any of the locking modes. The 

descendants of the node that is locked in the IX mode are not locked implicitly. 
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Figure 12.17 Relative privilege of the locking modes. 

SIX or shared and intention exclusive: The node is locked in the shared and 

intention exclusive mode and all the descendants are implicitly locked in the shared 

mode. However, any of the descendants can be explicitly locked in the exclusive, 

intention exclusive, or shared and intention exclusive modes. 

Relative Privilege of the Various Locking Modes 

Figure 12.17 gives the relative privilege of the various modes of locking. The exclu¬ 

sive mode has the highest privilege: it locks out all other transactions from the por¬ 

tion of the database that is rooted at the node locked in the exclusive mode. All 

descendants of the node are implicitly locked in the exclusive mode. The intention 

share mode has the lowest privilege. The share mode is not comparable with the 

intention exclusive mode. 

The advantage of the intention mode locking is that the lock manager knows 

that the lower level nodes of a node that is intentionally locked are or are being 

locked without having to examine all the lower level nodes. Furthermore, using the 

compatibility matrix shown in Figure 12.18 and discussed below, the lock manager 

can ascertain if a request for a lock can be granted. 

Compatibility Matrix 

Considering all the modes of locking described above, the compatibility between the 

current mode of locking for a node and the request of another transaction for locking 

the node in a given mode are given in Figure 12.18. The entry yes indicates that the 

request will be granted and the transaction can continue. The entry no indicates that 

the request cannot be granted and the requesting transaction will have to wait. 



580 Chapter 12 Concurrency Management 

Figure 12.18 Access mode compatibility. 

Request 
for 
locking 

Current state of lock of the node 

IS IX s SIX X unlocked 

IS yes yes yes yes no yes 

IX yes yes no no no yes 

s yes no yes no no yes 

SIX yes no no no no yes 

X no no no no no yes 

UNLOCK yes yes yes yes yes yes 

Locking Principle 

With the above locking modes, the procedure to be followed in locking can be sum¬ 

marized as follows: 

• A transaction is not allowed to request additional locks if it has released a lock 

(this is the two-phase locking protocol requirement). 

• The access mode compatibility matrix determines if a lock request can be 

granted or if the requesting transaction has to wait. 

• A transaction is required to request a lock in a root-to-leaf direction and to 

release locks in the leaf-to-root direction. Consequently, a transaction cannot 

unlock a node if it currently holds a lock on one of the descendants of the node. 

Similarly, a transaction cannot lock a node unless it already has a compatible 
lock on the ancestor of the node. 

• A transaction can lock a node in the IS or S modes only if the transaction has 

successfully locked the ancestors of the node in the IX or IS modes. 

• A transaction can lock a node in the IX, SIX, or X modes only if the 

transaction has successfully locked the ancestors of the node in the IX or SIX 
modes. 

• The lock manager can lock a larger portion of the database than requested by a 

transaction and the duration of this lock could be for a period longer than 
needed by the transaction. 

The above locking protocol ensures serializability. Let us consider a few exam¬ 

ples to illustrate the locking procedures to be followed on a database stored in a 
hierarchical structure, as shown in Figure 12.19. 

Example 12.3 To lock record occurrence R13 of Record Type, for retrieval only, the se¬ 

quence of locking is as follows: (1) lock database in the IS mode, (2) lock 

Partition, in the IS mode, (3) lock Record Type, in the IS mode, (4) lock 
record R,3 in the S mode. ■ 
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Figure 12.19 Sample database storage structure. 

Exclusive locking can proceed as illustrated below. 

Example 12.4 To lock the record occurrence R22 of Record Type2, in the exclusive mode, 

the sequence of locking is as follows: (1) lock database in the IX mode, (2) 

lock Partition, in the IX mode, (3) lock Record Type2 in the IX mode, (4) 
lock record R22 in the X mode. ■ 

Note that if two transactions are accessing records Rik and Rn, for k + 1, in the 

share and exclusive modes respectively, then both these transactions can be executed 

concurrently if the sequence of locking for the first transaction is IS, IS, IS, and S 

and for the second transaction IX, IX, IX, and X. 

12.4.4 Tree-Locking Protocol 

Let us assume that the storage structure of the database is in the form of a tree of 

data-items, as shown in Figure 12.19 Then a locking protocol called a tree locking 

protocol can be defined as follows: 

• All locks are exclusive locks. 

• Locking a node does not automatically lock any descendant of the locked node. 

• The first item locked by a transaction can be any data-item including the root 

node. 

• Except for the first data-item locked by a transaction, a node cannot be locked 

by a transaction unless the transaction has already successfully locked its parent. 

• No items are locked twice by a transaction; thus, releasing a lock on a data-item 

implies that the transaction will not attempt another lock on the data-item. 

A schedule for a set of transactions such that each transaction in the set uses the 

tree locking protocol can be shown to be serializable. Note that the transactions need 
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not be two phase and they are allowed to unlock an item before locking another item. 

The only requirement is that the transaction must have a lock on the parent of the 

node being locked and that the item was not previously locked by the transaction. 
Consider the database of Figure 12.19. A transaction, for instance Ta, can start 

off by locking the entire database. Then it proceeds to lock Portion,„ Record Type, 

and Record Type2. At this point it unlocks the database and then locks record occur¬ 

rences R,, and R2„ followed by unlocking Portion,, and Record Type2. Another 

transaction, Tb, can then proceed by first locking Record Type2 followed by locking 

record occurrences R22. The first transaction can now lock record occurrence R12. 

The advantage of the tree-locking protocol over the two-phase locking protocol 

is that a data-item can be released earlier by a transaction if the data-item (and of 

course, any of its yet unlocked descendants in the subtree rooted at the data-item) is 

not required by the transaction. In this way a greater amount of concurrency is fea¬ 

sible. However, since a descendant is not locked by the lock on a parent, the number 

of locks and associated locking overhead, including the resulting waits, is increased. 

1 2.4.5 DAG Database Storage Structure 

The use of indexes to obtain direct access to the records of the database causes the 

hierarchical storage structure to be converted into a directed acyclic graph (DAG) 

as shown in Figure 12.20. The locking protocol can be extended to a DAG structure; 

the only additional rule is that to lock a node in the IX, SIX, or X modes, all the 

parents of the node have to be locked in a compatible mode that is at least an IX 

mode. Thus, no other transaction can get a lock to any of the parents in the S, SIX, 

or X modes. This is illustrated in Example 12.5. 

Example 12.5 To add a record occurrence to the Record Type,, which uses an index, for 

direct access to the records, the sequence of locking is as follows; (1) lock 

the database in the IX mode, (2) lock Portion, in the IX mode, (3) lock 

Record Type, and index, in the X mode. With this method of locking, the 

phantom phenomenon is avoided at the expense of lower concurrency. ■ 

Figure 12.20 Sample DAG database storage structure. 
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As in the case of two-phase locking, deadlock is possible in the locking scheme 

using hierarchical granularity of locking. Additional details regarding references 

to techniques to reduce and eliminate such deadlock are cited in the bibliographic 
notes: 

12.5 Timestamp-Based Order 

In the timestamp-based method, a serial order is created among the concurrent trans¬ 

action by assigning to each transaction a unique nondecreasing number. The usual 

value assigned to each transaction is the system clock value at the start of the trans¬ 

action, hence the name timestamp ordering. A variation of this scheme that is used 

in a distributed environment includes the site of a transaction appended to the system- 

wide clock value. This value can then be used in deciding the order in which the 

conflict between two transactions is resolved. A transaction with a smaller timestamp 

value is considered to be an “older” transaction than another transaction with a 
larger timestamp value. 

The serializability that the system enforces is the chronological order of the 

timestamps of the concurrent transactions. If two transaction Tj and Tj with the time 

stamp values tj and tj respectively, such that tj < tj, are to run concurrently, then the 

schedule produced by the system is equivalent to running the older transaction Tj 

first, followed by the younger one, Tj. 

The contention problem between two transactions in the timestamp ordering sys¬ 

tem is resolved by rolling back one of the conflicting transactions. A conflict is said 

to occur when an older transaction tries to read a value that is written by a younger 

transaction or when an older transaction tries to modify a value already read or writ- \ 

ten by a younger transaction. Both of these attempts signify that the older transaction 

was “too late” in performing the required read/write operations and it could be using 

values from different “generations” for different data-items. 

In order for the system to determine if an older transaction is processing a value 

already read by or written by a younger transaction, each data-item has, in addition 

to the value of the item, two timestamps: a write timestamp and a read timestamp. 

Data-item X is thus represented by a triple X: {x, Wx, Rj where each component of 

the triple is interpreted as given below: 

x, the value of the data-item X 

Wx, the write timestamp value, the largest timestamp value of any transaction that was 

allowed to write a value of X. 

Rx, the read timestamp value, the largest timestamp value of any transaction that was 

allowed to read the current value X. 

Now let us see how these timestamp values find their way into the data structure 

of a data-item and how all these values are modified. A transaction Ta with the 

timesteamp value of ta issues a read operation for the data-item X with the values 

{x, Wx, Rx}. 

• This request will succeed if ta > Wx, since transaction Ta is younger than the 

transaction that last wrote (or modified) the value of X. Transaction Ta is 
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allowed to read the value x of X and if the value ta is larger than Rx, then ta 

becomes the new value of Rx. 

• This request will fail if ta < Wx, i.e., transaction Ta is an older transaction than 

the last transaction that wrote the value of X. 

The failure of the read request is due to the fact that the older transaction was 

trying to read a value that had been overwritten by a younger transaction. Transaction 

T is too late to read the previous outdated value and any other values it has acquired 

are likely to be inconsistent with the updated value of X. It is thus safe to abort and 

roll back Ta. Ta is assigned a new timestamp and restarted. 
A transaction Ta with the timestamp value of ta issues a write operation for the 

data-item X with the values {x, Wx, Rj. 

• If ta > Wx and ta > Rx, i.e. both the last transaction that updated the value of 

X and the last transaction that read the value of X are older than transaction Ta, 

then Ta is allowed to write the value of X and ta becomes the current value of 

Wx, the write timestamp. 

• If ta < Rx, it means that a younger transaction is already using the current value 

of X and it would be an error to update the value of X. Transaction Ta is not 

allowed to modify the value of X. Ta is rolled back and its timestamp is reset to 

the current system-generated timestamp value and restarted. 

• If Rx < ta < Wx, this means that a younger transaction has already updated the 

value of X, and the value that Ta is writing must be based on an obsolete value 

of X and is obsolete. Transaction Ta is not allowed to modify the value of X; 

its write operation is ignored. 

The reason for ignoring the write operation in the last alternative is as follows. 

In the serial order of transaction processing, transaction Ta with the timestamp of ta 

wrote the value for the data-item X. This was followed by another write operation to 

the same data-item by a younger transaction with a timestamp of Wx. No transaction 

read the data-item between the writing by Ta and the time Wx. Hence, ignoring the 

Transactions for Examples 12.6, 12.7, 12.9. 

Transaction T22 Transaction T23 

Sum : = 0 

Read(A) 

Sum : = Sum + A 

Read (B) 

Sum : = Sum + B 

Show (Sum) 

Sum : = 0 

Read(A) 

A := A - 100 

Write(A) 

Sum : = Sum + A 

Read (B) 

B := B + 100 

Write!#) 

Sum : = Sum + B 

Show( Sum) 
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writing by Ta indicates that the value written by Ta was immediately overwritten by 
a younger transaction at time Wx. 

Let us illustrate the timestamp ordering by considering transactions T22 and T23 

given below in Figure 12.21. Each of these transactions has a local variable Sum and 

the intent is to show a user the sum of two data-items A and B. However, transaction 

T23 not only reads these values, it also transfers 100 units from A to B and writes the 

modified values to the database. Now let us suppose that t23 > t22. This means that 

transaction T23 is younger than transaction T22. Also, let the data-items A and B be 

stored as follows (here the Wj’s and R;’s have some values assumed to be less than 
t22 and t23): 

A: 400, Wa, Ra B: 500, Wb, Rb 

Example 12.6 Consider the transactions of Figure 12.21. In the schedule given in Figure 

E transactions T22 (t22) and T23 (t23) run concurrently and produce the correct 

result. A similar serializable schedule could have been obtained using the 

two phase locking protocol. (See Exercise 12.5.) 

Serializable schedule based on timestamp scheme. 

Step Schedule Transaction T22 Transaction T23 

1 Sum : = 0 Sum : = 0 

2 ReadfA) Read(A) 
3 Sum : = Sum + A Sum : = Sum -1- A 

4 Sum : = 0 Sum : — 0 

5 Read(A) ReadfA) 

6 A := A - 100 A : = A - 100 

7 Write(A) Write(A).^ 

8 Read (B) Read(fi) 
9 Sum : = Sum + B Sum : = Sum + B 

10 Show (Sum) Show( Sum) 

11 Sum : = Sum + A Sum : = Sum + A 

12 Read(5) Read (B) 

13 B : = B + 100 B := B + 100 

14 Write(fi) Write(fi) 

15 Sum : = Sum -1- B Sum : = Sum + B 

16 Show (Sum) Show (Sum) 

The steps of the schedule of Figure E cause the following modifications 

to the triple for A and B: 

B: 500, Wb, Rb 

B: 500, Wb, Rb 

Initially 

After step 2 

A- 400, W„ Ra 

A.' 400, Wa, t22 
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After step 5 

After step 7 

After step 8 

After step 10 

After step 12 

After step 14 

A: 400, W„ t23 B: 500, Wb, Rb 

A: 300, t23, t23 B: 500, Wb, Rb 

A: 300, t23, t23 B: 500, Wb, t22 

the value displayed will be 900 

A: 300, t23, t23 B: 500, Wb, t23 

A: 300, t23, t23 ^ B. 600, t23, t23 

After step 14 the value displayed will be 900 

In the following example we illustrate a schedule where the older transaction is 

rolled back. 

Example 12.7 Figure F Serializable schedule produced after a rollback. 

Step Schedule Transaction T22 Transaction T23 

1 Sum : — 0 Sum : = 0 

2 Sum : = 0 Sum : = 0 

3 ReadfA) ReadfA) 

4 A := A - 100 A : = A — 100 

5 WritefA) WritefA) 

6 ReadfA) ReadfA)* causes a rollback of T22 

7 Sum : = Sum + A Sum : = Sum + A 

8 ReadfB) Readf5) 

9 B := B + 100 B := B + 100 

10 WritefR) WritefS) 

11 Sum : = Sum + B Sum : = Sum + B 

12 Show (Sum) Show (Sum) 

13 Sum : — 0 Sum := 0 with a timestamp t22'(> t23) 

14 ReadfA) ReadfA) 

15 Sum : = Sum + A Sum : = Sum + A 

16 Readffi) Readffi) 

17 Sum : = Sum + B Sum : = Sum + B 

18 ShowfSnm) Show (Sum) 

Consider the schedule shown in Figure F. Transaction T22 is rolled back and 

rerun after step 6. When it is rolled back, a new timestamp value t22' which 

would be greater than t23, is assigned to it. The sequence of changes is given 
below: 

Initially A: 400, Wa, Ra B: 500,Wb,Rb 

After step 3 A: 400, Wa, t23 B: 500,Wb,Rb 

After step 5 A: 300, t23, t23 B: 500,Wb,Rb 

After step 6 A: 300, t23, t23 B: 500, Wb,Rb* 

(*causes a rollback of T22 which would be reassigned a new 

timestamp (t22\ > t23) and would be reexecuted) 
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After step 8 A: 300, t23, t23 B: 500,Wb,t23 

After step 10 A: 300, t23, t23 B: 600, t23, t23 

After step 12 the value displayed will be 900 

After step 14 A: 300, t23, t22' B: 600,t23. t23 

After step 16 A: 300, t23, t22' B: 600,t23. t22' 

After step 18 the value displayed will bq 900 /'■ 

Example 12.8 below illustrates a case where the write operation of a transaction 
could be ignored. 

Example 12.8 In the example illustrated in Figure G, we have three transactions. T24. T23, 

and T26 with timestamp values of t24, t25, and t26 respectively (t24 < t2? < 

t26). Note that transactions T24 and T26 are write-only with respect to data- 
item B. 

Figure G Another serializable schedule. 

Step Schedule Transaction T24 Transaction T25 Transaction T 

1 ReadfAJ ReadfAJ 
2 A : = A + 1 A := A + 1 
3 WritefAj WritefAj 
4 ReadfCj ReadfO 
5 C := C * 3 C := C * 3 
6 Readf C) ReadfCj 
7 WritefCJ WritefO* causes a rollback 

8 C := C * 2 
of transaction T23 

C := C * 2 

9 WritefCj Writ e(C) 

10 B := 100 B := 100 
11 WriteffiJ Writeffij 
12 B := 150 B := 150 

Q © Write(fi) Writeffij** causes the write operation to 

14 ReadfCJ 

be ignored 

ReadfCJ 

15 C := C * 3 C := C * 3 

16 WritefCj WritefCJ 

Initially 

After step 1 

After step 3 

After step 4 

After step 5 

A: 10. Wa, Ra 

A: 10, Wa, t24 

A: 11, t24, t24 

A: 11, t24, t24 

A: 11, t24, t24 

B: 50, W„. Rh 

B: 50, Wb, Rb 

B: 50, Wb, Rb 

B: 50, Wb, Rb 

B: 50, Wb, Rb 

C: 5, Wc, R> 

C. 5, W~RC 

C: 5, Wc, Rc 

C: 5, Wc, t25 

C. 5, Wc, t25 
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After step 6 A: 11, t24, t24 B: 50, Wb, Rb C. 5, Wc, t26 

At step 7 transaction T25 with a timestamp value of t25 attempts to write 

the value of C; however, since the read timestamp value of C is t26, which 

is greater than t25, transaction T25 would be rolled back; the trans¬ 

action would be reassigned a timestamp value of, say, t25'(> t26)-and rerun 

at step 14. 

After step 9 A: 11, t24, t24 B: 50, Wb, Rb C: 10, t26, t26 

After step 11 A: 11, t24, t24 /i.(^100j)t26, Rb C: 10, t26, t26 

At step 13, the attempt by transaction T24 to write a value of B is ignored 

since t24, the timestamp of T24, is less than the write timestamp (t26) of B, 

and greater than the read timestamp value (Rb) of B. 

After step 14 A: 11, t24, t24 B: 100, t26, Rb C: 10, t26, t25' 

After step 16 A: 11, t24, t24 B: 100, t26, Rb C: 30, t25', t25' ■ 

It is obvious from the above examples that the timestamping scheme ensures 

serializability without waiting but causes transactions to be rolled back. Since there 

is no waiting there is no possibility of a deadlock. However, when transactions are 

rolled back, a cascading rollback may be needed. For instance, if transaction T22 

had written a value for a data-item Q before it was rolled back, this data-item value 

must be restored to its old value. If another transaction, T', had used the modified 

value of the data-item Q, transaction T' has to be rolled back as well. 
The cascading rollback could be avoided by disallowing the values modified by 

a transaction until the transaction commits. This adds additional overhead and re¬ 

quires waiting as in the case of the locking scheme. Furthermore, the waiting can 

cause a deadlock! 

12.6 Optimistic Scheduling 

In the locking scheme, a transaction does a two-pass operation. In the first pass it 

locks all the data-items it requires and if all locks are successfully acquired, it goes 

through the second pass of accessing and modifying the required data-items. In the 

optimistic scheduling scheme, the philosophy is to assume that all data-items can 

be successfully updated at the end of a transaction and to read in the values for data- 

items without any locking. Reading is done when required and if any data-item is 

found to be inconsistent (with respect to the value read in) at the end of a transaction, 

then the transaction is rolled back. Since a DBMS normally has a built-in rollback 

facility for recovery operations, the optimistic approach does not require any addi¬ 

tional components. For most transactions, which access the database for read-only 

operations and modify disjoint sets of data-items, the optimistic scheduling scheme 
performs better than the two-pass locking approach. 

In the optimistic approach, each transaction is made up of three phases: the read 

phase, the validation phase, and the write phase. The read phase is not constrained 

but the write phase is severely constrained; any conflicts could cause a transaction to 

be aborted and rolled back. Note that displaying a value of a data-item or a derived 

value of a set of data-items to a user is equivalent to a write operation (even though 
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no items are modified). The optimistic technique uses a timestamp method to assign 

an unique identifier to each transaction, as well as for the end of the validation and 
write phases. The three phases are described below. 

Read phase: This phase starts with the activation of a transaction and is consid¬ 

ered to last until the commit. All data-items are read into local variables and any 
modifications that are made are only to these local copies. 

Validation phase: For data-items that were read, the DBMS will verify that the 

values read are still the current values of the corresponding data-items. For data- 

items that are modified (a deletion and an insertion can be considered as modifica¬ 

tions), the DBMS verifies that the modifications will not cause the database to be¬ 

come inconsistent. Any change in the value of data-items read or any possibility of 

inconsistencies due to modifications causes the transaction to be rolled back. 

Write phase: If a transaction has passed the validation phase, the modifications 
made by the transaction are committed. 

The three timestamps associated with the transactions are the following: 

• tSi: The start timestamp for transaction Tj. We assume that a transaction starts 
its read phase when it starts. 

• tvi: The timestamp for transaction Tj when it finishes its read phase and starts its 

validation phase. This will occur when the transaction completes. All writes 

prior to the start of the validation phase will be to local copies of database items 

and these local copies will not be accessible to other concurrent transactions. 

• twi: The timestamp for transaction Tj when it completes its write phase. The 

write phase will only start if the transaction completes the validation phase 

successfully. After the write phase, all modifications are reflected in the 
database. 

A transaction such as Tj can complete its validation phase successfully if at least 

one of the following conditions is satisfied: 

• For all transactions T; such that tsi < tsj, the condition tWj < tSj holds. This 

condition ensures that all older transactions must have completed their write 

phases before the requesting transaction began. 

• For all transactions Ts such that tsi < ^j, i.e., for an older transactions, the data- 

items modified by Tj must be disjoint from the data-items read by transactions 

Tj. Furthermore, all older transactions must complete their write phase before 

time tVj. Here tVJ is the time at which transaction Tj finishes its read phase and 

starts its validation phase. This ensures that a younger transaction’s writes are 

not overwritten by an older transition’s writes. 

• For all transactions Tj such that tsi < tsj, i.e., for all older transactions, the data- 
items modified must be disjoint from the data-items read or modified by 

transactions Tj. Furthermore, tiv < tjV, which ensures that the older transaction, 

Tj, completes its read phase before Tj completes its read phase. In this way the 

older transaction cannot influence the read or write phase of Tr 

Consider a schedule for a set of concurrent transactions. If each transaction in 

this set can complete its validation phase successfully with at least one of the above 

conditions, then the given schedule is serializable. Example 12.9 illustrates 

optimistic scheduling. 
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Example 12.9 Consider transactions T22 and T23 of Figure 12.21 and the schedule of Figure 

H. The initial value; of A and B are as follows: 

A: 400 B: 500 

The progress of the concurrent execution of transactions T22 and T23 

causes the following actions: 
At steps 7 and 14, the write is only local and the actual write to the 

database would be delayed until all reads are completed. 
As step 10, before the value of Sum is displayed, the validation phase 

for transaction T22 would find that there are no outstanding writes from older 

transactions and its validation will be successful; the value of Sum would be 

displayed. 
At step 16, before the value of Sum is displayed, the validation phase 

for transaction T23 would find that there are no outstanding writes from older 

transactions and its validation would be successful. Consequently the writes 

to A and B as well as the display of Sum would be completed. 

Figure H Example of optimistic scheduling. 

Step Schedule Transaction T22 Transaction T23 

1 Sum : = 0 Sum : = 0 

2 Sum : = 0 Sum : = 0 

3 ReadfA) Readf A) 

4 'ii i ©
 

o
 o

 
o

 1 II 

5 ReadfA) Read(A) 
6 Sum : = Sum + A Sum : = Sum + A 

, 7 WritefAj WritefAj 

8 Readf5^ Readf B) 
9 Sum : = Sum + B Sum : = Sum + B 

10 Show(Swm) Sho w (Sum) 

11 Sum : = Sum + A Sum : = Sum + A 

12 Readfflj Read (B) 
13 B := B + 100 B := B + 100 
14 WritefflJ WritefBj 
15 Sum : = Sum + B Sum : = Sum + B 
16 Show (Sum) Show (Sum) 

As the optimistic scheme does not use locks, it is deadlock free even though 

starvation can still occur. This is because a popular item, for instance an index, can 

be used by many transactions and each transaction could cause it to be modified as a 

result of insertions or deletions. An older transaction can thus fail its validation phase 

continuously. The method of solving this problem involves resorting to some form 
of locking. 
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Multiversion Techniques 

In the concurrency control schemes discussed so far, the arbitration that produced 

serializable schedules was required when one or more of the concurrent transactions 

using a part of the database needed to modify the data-item. Any modifications to 

data required that the transaction have exclusive use of the data, and other trans¬ 

actions would be locked out or aborted until the lock on the data-item was released. 

In a database system that uses the multiversion concurrency scheme, each write 

of a data-item, e.g., X, is achieved by making a new copy or version (hence the 

name multiversion) of data-item X. The multi version scheme, which is also called a 

time domain addressing scheme, follows the accounting principle of never over¬ 

writing a transaction. Any changes are achieved by entering compensating trans¬ 

actions. In this way, a history of the evolution of the value of a data-item is recorded 

in the database. As far as the users are concerned, their transaction running on a 

system with multiversions will work in an identical manner as a single version 
system. 

For data-item X the database could keep the multiversion in the form of a set of 

triples consisting of the value, the time entered, and the time modified as shown 
below: 

Variable: {{value, time entered, time modified}, { . . . }, . . . } 

X: {{x0, to, t,}, {xj, t,, t2}, . . . , {xn, tn, tp}} 

Here the value of the data-item X is initially x0 and this value is entered in the 

database at time to- At time t,, the value is modified to x,. The value xn entered at 

time tn is the last update made to data-item X. Having many versions of a data-item, 

it is easy to know that the value of X from time to to t| was x0 and so on. 

When a transaction needs to read a data-item such as X for which multiple 

versions exist, the DBMS selects one of the versions of the data-item. The value read 

by a transaction must be consistent with some serial execution of the transaction with 

a single version of the database. Thus, the concurrency control problem is transferred 

into the selection of the correct version from the multiple versions of a data-item. 

With the multiversion technique, write operations can occur concurrently, since 

they do not overwrite each other. Furthermore, the read operation can read any ver¬ 

sion. This results in greater flexibility in scheduling concurrent transactions. Many 

schemes have been proposed for controlling concurrency using the multiversion ap¬ 

proach. We discuss one such scheme based on timestamping below. Concurrency 

control ensures, among other things, that no new version of a data-item is created 

such that it is based on a version that already may have been used to create yet 

another version. In this way the phenomenon of lost update could be avoided. 

In order to choose the correct version of data to be read by a given transaction, 

the multiversion timestamping scheme uses the timestamp ordering of the concurrent 

transactions and the time parameters associated with each version of the data-items 

to be used by a transaction. The timestamping of transactions was discussed earlier 

in Section 11.5. As mentioned above, there are two time values associated with each 

version of a data-item X. These are the write timestamp, Wx, and the read time- 

stamp, Rx. 
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The write timestamp of a version of a data-item is the timestamp value of the 

transaction that wrote the version of the data-item. In other words, a value of the 

data-item X with the write timestamp value Wx was written by a transaction with a 

timestamp value of Wx. Note, that here we are ignoring the time lapse from the start 

of the transaction to the generation of the new version. The timestamps are in reality 

pseudotimes and a nondecreasing counter can be used instead of a timestamp with 

similar results. 
The read timestamp of a version of a data-item is the timestamp value of the 

most recent transaction that successfully read the version of the data-item. A version 

of the data-item with the read timestamp of Rx was read by a transaction with a 

timestamp value of Rx. The read timestamp value is the same as the time of modifi¬ 

cation of the value of the data-item, if another version of the data-item exists; oth¬ 

erwise it remains the most recent version of the data-item. This is because a new 

version usually will not be created without first reading the current most recent ver¬ 

sion. 
If a transaction Tj with a time stamp value of writes a value Xj for the kth 

version of a data-item X, then the kth version of X will have the value Xj. Wxk, the 

write timestamp value, and Rxk, the read timestamp value of Xk will both be initial¬ 

ized to tj. 
A transaction needing to read the value of data-item X is directed to read that 

version of X that was the most recent version, with respect to the timestamp ordering 

of the transaction. We call this version the relative-most-recent version. Thus, if a 

transaction Ta with the timestamp value of ta needs to read the value of data-item X, 

it will read the version Xj such that Wxj is the largest write timestamp value of all 

versions of X that is less than or equal to ta. The read timestamp value of version Xj 

of X, read by transaction Ta, is updated to ta if ta > RXJ. 

A transaction Ta, wanting to modify a data-item value will first read the relative- 

most-recent version Xj of data-item X. When it tries to write a new value of X, one 

of the following actions will be performed: 

• A new version of X, e.g., version Xj', is created and stored with the value Xj' 

and with the timestamp values of Wxj' = Rxj' = ta, if the current value of 

RXj < ta. This ensures that transaction Ta was the most recent transaction to 

read the value of version Xj, and no other transaction has read the value that 

was the basis of updating by Ta. 

• Transaction Ta is aborted and rolled back if the current value of RXJ > ta. The 

reason is that another younger transaction has read the value of version Xj and 

may have used it and/or modified it. Transaction Ta was too late and it should 

try to rerun to obtain the current most recent version of the value of X. 

It is easy to see that the value of the write timestamp is the same as the time of 

generation of a new version of the value of a data-item, and the read timestamp value 

is the same as the time of modification of the value of the data-item. 

A transaction Ta with a timestamp value of ta, writing a new version of a data- 

item X without first reading, creates a new version of X with the write timestamp 
and read timestamp values of ta. 

It can be shown that any schedule generated according to the above requirements 

is serializable, and the result obtained by a set of concurrent transactions is the same 

as that obtained by some serial execution of the set with a single version of the data- 
items. 
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Example 12.10 Consider the schedule given in Figure I for two concurrent transactions T22 

and T23 of Figure 12.21. Suppose the multiversion technique is used for 

concurrency control. Assume initially that a single version exists for data- 
items A and B with their initial values being: 

A: {{ 400, Wa, RJ} and B: {{ 500, Wb, Rb}} 

Transaction T22 has a timestamp value of t22; transaction T23 has a times¬ 
tamp value of t23. 

t22 < t23, Wa < t22, Ra < t22, Wb < t22, Rb < t22 

The modifications after the following steps are: 

After step 3 

After step 5 

After step 6 

After step 8 

After step 10 

After step 12 

After step 14 

After step 16 

A: {{400, Wa, t23}} 

B: {{500, Wb, Rb}} 

A: {{400, Wa, t23}, {300, t23, t23}} 

B: {{500, Wb, Rb}} 

A: {{400, Wa, t23}, {300, t23, t23}} 

B: {{ 500, Wb, Rb}} 

A: {{400, Wa, t23}, {300, t23, t23}} 

B: {{500, Wb, t22}} 

the value shown by T22 is 900 

21: {{400, Wa, t23}, {300, t23, t23}} 

B: {{500, Wb, t23}} 

A: {{400, Wa, t23}, {300, t23, t23}} 

B: {{ 500, Wb, t23}, {600, t23, t23}} 

the value shown by T23 is 900 

Figure I Schedule for the multiversion technique. 

Step Schedule Transaction T22 Transaction T23 

1 Sum : = 0 Sum : = 0 

2 Sum : = 0 Sum : = 0 

3 Read(A) ReadfA) 

4 A := A - 100 A := A - 100 

5 WritefA) Write(A) 

6 ReadfA) ReadfAJ 

7 Sum : = Sum + A Sum : = Sum + A 

8 Read(fl) Read (B) 

9 Sum : = Sum + B Sum : = Sum + B 

10 Show (Sum) Show (Sum) 

11 Sum : = Sum + A Sum : = Sum + 

12 Readffij Read(B{ 

13 B := B + 100 B := B + 100 

14 Writer WriteffiJ 

15 Sum : = Sum + B Sum : = Sum + 

16 Show (Sum) Show(Sum) 
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12.8 

Note: If the value of timestamp t22 were larger than the value of timestamp t23 (i.e., 

transaction T22 was younger than transaction T23), then at step 5 transaction T23 will 

be aborted and rolled back. (See Exercise 12.7.) 
The multiversion scheme never causes a read operation to be delayed however, 

the overhead of the read operation is a search for the correct version of the value of 

the data-item and an update of the read timestamp of the version of the value read. 

This is advantageous if the majority of database operations are reads and only one 

version is likely to exist for most of the data-items. The locking overhead is traded 

for the overhead of updating the read timestamp. But this gets expensive when an 

entire file is to be processed and thousands of records are read, requiring the writing 

of the read timestamp for many records! 
Another drawback of the multiversion scheme is that instead of forcing trans¬ 

actions that modify data-items to wait, it allows them to proceed with the caveat that 

any transaction could be rolled back if a younger transaction reads the same value as 

an older transaction and the older transaction is too late in modifying the value. 

Serializability is achieved by rollback, which could result in cascading and hence be 

quite expensive. 
The deadlock problem is not possible in the timestamp-based multiversion 

scheme, though cascading rollback is possible. This problem can be avoided by not 

allowing other transactions to use the versions created by uncommitted transactions. 

Deadlock and its Resolution 

12.8.1 

In the concurrent mode of operation each concurrently running transaction may be 

allowed to exclusively claim one or more of a set of resources. Some of the problems 

with this mode of operations are that of deadlock and starvation, which we illustrate 

with the following examples. Here Ta, Tb, Tc, . . . , Tn are a set of concurrent 

transactions and ra, rb, rc, . . . , rm are a set of shared data-items (resources). Each 

transaction can claim any number of these data-items exclusively. 

Suppose we have a situation where transaction Ta has claimed data-item ra and 

is waiting for data-item rb. Data-item rb, however, has been claimed by transaction 

Tb, which in turn is waiting for data-item rc. This chain of transactions holding some 

data-items and waiting for additional data-items continues until we come to trans¬ 

action T„ which has claimed data-item r, and is waiting for data-item ra. We know 

that data-item ra is held by transaction Ta! If none of these transactions is willing to 

release the data-items they are holding, none of these transactions can proceed. This 
is deadlock. 

The situation of starvation can occur if there is a transaction waiting for data- 

item r;. However, the resource allocation method used by the system, along with the 

mix of transactions, is such that every time resource r,, becomes available, it is 

assigned to some other transaction. This results in transaction Tj having to continue 
to wait. (Not unlike waiting for Godot.) 

Deadlock Detection and Recovery 

In the deadlock detection and recovery approach, the philosophy is to do nothing to 

avoid a deadlock. However, the system monitors the advance of the concurrent trans- 
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actions and detects the symptoms of deadlock, namely, a chain of transactions all 

waiting for a resource that the next transaction in the chain has obtained in an exclu¬ 
sive mode. 

The reason for this philosophy is that if deadlocks are rare, then the overhead 

of ensuring that there is no deadlock is very high, and the occasional deadlock and 

recovery from it is a small price to pay for doing nothing until a deadlock actually 

develops. In addition, deadlock avoidance schemes avoid all potential deadlocks, 
even those that do not translate into an actual deadlock. 

In order for the system to detect a deadlock, it must have the following infor¬ 
mation: 

• the current set of transactions 

• the current allocations of data-items to each of the transactions 

• the current set of data-items for which each of the transactions is waiting. 

The system uses this information and applies an algorithm to determine if some 

proper subset of these transactions are in a deadlock state. If the system finds this to 

be the case, it attempts to recover from the deadlock by breaking the cyclic chain of 
waiting transactions. 

We present below an algorithm for deadlock detection and a method of re¬ 
covery. 

Deadlock Detection 

A deadlock is said to occur when there is a circular chain of transactions, each 

waiting for the release of a data-item held by the next transaction in the chain. The 

algorithm to detect a deadlock is based on the detection of such a circular chain in 

the current system wait-for graph. The wait-for graph is a directed graph and con¬ 

tains nodes and directed arcs; the nodes of the graph are active transactions. An arc 

of the graph is inserted between two nodes if there is a data-item required by the 

node at the tail of the arc, which is being held by the node at the head of the arc. If 

there is a transaction, such as T;, waiting for a data-item that is currently allocated 

and held by transaction Tp then there is a directed arc from the node for transaction 

Tp to the node for transaction Tj. 

Figure 12.22 gives examples of the wait-for graph. In part a we have the follow¬ 

ing situation: 

• Transaction T27 is waiting for data-items locked by transactions T28 and T31. 

• Transaction T28 is waiting for data-items locked by transactions T29 and T30. 

• Transaction T29 is waiting for data-items locked by transactions T31 and T32. 

• Transaction T30 is waiting for data-items locked by transaction T3I. 

• Transaction T32 is waiting for data-items locked by transaction T33. 

• Transaction T33 is waiting for data-items locked by transaction T3I. 

In the wait-for graph of Figure 12.22a there are no cycles, hence the correspond¬ 

ing set of transactions is free from deadlock. 
Figure 12.22b represents the state of the system after a certain period of time, 

when transaction T3I makes a request for a data-item held by transaction T28. This 

request, assuming no previous requests depicted in the wait-for graph of part a have 
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Figure 12.22 Wait-for graph showing (a) no cycle and hence no deadlock; (b) a cycle and hence a 

deadlock. _ 

been satisfied, adds the arc from the node for transaction T3| to the node for trans¬ 

action T28. The addition of this arc causes the wait-for graph to have a number of 

cycles. One of these cycles is indicated by the arc from transaction T28 to transaction 

T30, then, from transaction T30 to T3), and finally from T31 back to T28. Consequently 

part b represents a situation where a number of sets of transactions are deadlocked. 

Since a cycle in the wait-for graph is a necessary and sufficient condition for 

deadlock to exist, the deadlock detection algorithm generates the wait-for graph at 

regular intervals and examines it for a chain. If the interval chosen is very small, 

deadlock detection will add considerable overhead; if the interval chosen is very 

large, there is a possibility that a deadlock will not be detected for a long period. 

The choice of interval depends on the frequency of deadlocks and the cost of not 

detecting the deadlocks for the chosen interval. The overhead of keeping the wait- 

for graph continuously, adding arcs as requests are blocked and removing them as 

locks are given up, would be very high. 

The deadlock detection algorithm is given on page 598. In this algorithm we 

use a table called Wait_for table. It contains columns for each of the following: 

transaction IDs; the data-items for which they have acquired a lock; and the data- 

items they are waiting for (these wait-for items are currently locked in an incompat¬ 

ible mode by other transactions). The algorithm starts with the assumption that there 

is no deadlock. It locates a transaction, Ts, which is waiting for a data-item. If the 

data-item is currently locked by transaction Tr, the latter is in the wait-for graph. If 
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Tr in turn is waiting for a data item currently locked by transaction Tp, this trans¬ 

action is also in the wait-for graph. In this way the algorithm finds all other trans¬ 

actions involved in a wait-for graph starting with transaction Ts. If the algorithm 

finally finds that there is a transaction Tq waiting for a data-item currently locked by 

Ts, the wait-for graph leads back to the starting transaction. Consequently the algo¬ 

rithm concludes that a cycle exists in the wait-for graph and there is a potential 
deadlock situation. 

Example 12.11 Consider the wait-for table of Figure J. The wait-for graph for the trans¬ 

actions in this chain is given by Figure 12.22a. It has no cycles and hence 

there are no deadlocks. However, if transaction T3[ makes a request for 

data-item C, the wait-for graph is converted into the one given in Figure 

12.22b. This graph has a cycle that starts at transaction T28, goes through 

transactions T30, T3); and back to T28, and Algorithm 12.2 detects it. There 
are other cycles as well. 

Figure J Wait-for table for Example 12.11. 

Transaction_Id Data_items_locked Data_items_waiting_for 

T 27 B C,A 

T28 C,M H,G 

t29 H D, E 

T30 G A 

T31 A, E (C) 

T32 D, 1 F 

t33 F E 

An adaptive system may initially choose a fairly infrequent interval to run the 

deadlock detection algorithm. Every time a deadlock is detected, the deadlock detec¬ 

tion frequency could be increased, for example, to twice the previous frequency and 

every time no deadlock is detected, the frequency could be reduced, for example, to 

half the previous frequency. Of course an upper and lower limit to the frequency 

would have to be established. 

Recovery from Deadlock 

To recover from deadlock, the cycles in the wait-for graph must be broken. The 

common method of doing this is to roll back one or more transactions in the cycles 
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Algorithm 

12.2 Deadlock Detection 

Input and 

Data 

Structure 

Used: 

Output 

A table called Wait_for_Table that contains: transaction IDs, the data-items 

they have acquired a lock on, and the data-items they are waiting for (these 

wait-for items are currently locked in an incompatible mode by other trans¬ 

actions). A Boolean variable Deadlock-situation. A first-in, first-out stack, 

Transaction—stack, to hold transaction IDs: this stack will contain the trans¬ 

actions in a deadlocked chain if a deadlock is detected. 

Whether the system is deadlocked and if so, the transactions in the cycle. 

Initialize Deadlock-Situation to false; 

Initialize Transaction-stack to empty; 
for next transaction in table while not Deadlock-Situation 

begin 

Push next Transaction ID into Transaction-stack ; 

for next Data_item_waiting_for of 

transaction on top of Transaction-stack and 

while not Deadlock-Situation 

and not Transaction-Stack empty 

begin 

D_next : = next Data_item_waiting_for 

find Tran_ID of transaction which has locked D_next 

i/'Tran_ID is in stack 

then Deadlock-Situation : = true 

else Push Tran_ID to Transaction-Stack 

end 

Pop Transaction-stack 

end 

until the system exhibits no further deadlock situation. The selection of the trans¬ 
actions to be rolled back is based on the following considerations: 

• The progress of the transaction and the number of data-items it has used and 

modified. It is preferable to roll back a transaction that has just started or has 

not modified any data-item, rather than one that has run for a considerable time 
and/or has modified many data-items. 

• The amount of computing remaining for the transaction and the number of data- 

items that have yet to be accessed by the transaction. It is preferable not to roll 

back a transaction if it has almost run to completion and/or it needs very few 
additional data-items before its termination. 

• The relative cost of rolling back a transaction. Notwithstanding the above 

considerations, it is preferable to roll back a less important or noncritical 
transaction. 
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Once the selection of the transaction to be rolled back is made, the simplest 

scenario consists of rolling back the transaction to the start of the transaction, i.e., 

abort the transaction and restart it, de nouveau. If, however, additional logging is 

done by the system to maintain the state of all active transactions, the rollback need 

not be total, merely far enough to break the cycle indicating the deadlock situation. 

Nonetheless, this overhead may be excessive for many applications. 

The process of deadlock recovery must also ensure that a given transaction is 

not continuously the one selected for rollback. If this is not avoided, the transaction 

will never (or at least for a period that looks like never) complete. This is starving a 
transaction! 

12.8.2 Deadlock Avoidance 

In the deadlock avoidance scheme, care is taken to ensure that a circular chain of 

processes holding some resources and waiting for additional ones held by other trans¬ 

actions in the chain never occurs. The two-phase locking protocol ensures serializa- 

bility, but does not ensure a deadlock-free situation. This is illustrated in Example 

12.12. 

Example 12.12 Consider transactions T34 and T35 given in Figure K and the schedule of 

Figure L. These are two-phase transactions; however, a deadlock situation 

exists in Figure L, as transaction T34 waits for a data-item held by trans¬ 

action T35; later on, transaction T35 itself waits for a data-item held by T34, 

which is already blocked from further progress. 

Figure K Two-phase transactions. 

Transaction T34 Transaction T35 

Sum : = 0 Sum : = 0 

Locks (A) LockxfZ?) 

ReadfA) Read(Zl) 

Sum : = Sum -1- A B : = B + 100 

Locks(fl) Write(fi) 

Read(fi) Sum : = Sum + B 

Sum : = Sum + B LockxfA) 

Show (Sum) UnlockfZ?) 

Unlock(A) Read(A) 

Unlockffij A := A — 100 

WritefA) 

UnlockfA) 

Sum : = Sum + A 

Show (Sum) 
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Figure L Schedule leading to deadlock with two-phase transactions. 

Schedule Transaction T34 Transaction T35 

Sum : = 0 Sum := 0 « 

LocksfAj LocksfA) 

ReadfA) ReadfAj 

Sum : = Sum + A Sum : = Sum + A 

T Sum : = 0 Sum : = 0 

i Lockxffij Lockx(5) 

m Readffij Readffij 

e B := B + 100 B := B + 100 

Write(fl) Write(5j 

Sum : = Sum + B Sum : = Sum + B 

Locks (B) Locksffij* transaction T34 will wait 

r Lockx(A) Lockx(A)* T35 will 

One of the simplest methods of avoiding a deadlock situation is to lock all data- 

items at the beginning of a transaction. This has to be done in an atomic manner, 

otherwise there could be a deadlock situation again. The main disadvantage of this 

scheme is that the degree of concurrency is lowered considerably. A transaction typ¬ 

ically needs a given data-item for a very short interval. Locking all data-items for 

the entire duration of a transaction makes these data-items inaccessible to other con¬ 

current transactions. This could be the case even though the transaction holding a 

lock on these data-items may not need them for a long time after it acquires a lock 

on them. 

Another approach used in avoiding deadlock is assigning an order to the data- 

items and requiring the transactions to request locks in a given order, such as only 

ascending order. Thus, data-items may be ordered as having rank 1, 2, 3, and so on. 

A transaction T requiring data-items A (with a rank of i) and B (with a rank of j with 

j > i) must first request a lock for the data-item with the lowest rank, namely A. 

When it succeeds in getting the lock for A, only then can it request a lock for data- 

item B. All transactions follow such a protocol, even though within the body of the 

transaction the data-items are not required in the same order as the ranking of the 

data-items for lock requests. This scheme reduces the concurrency, but not to 
the same extent as the first scheme. 

Another set of approaches to deadlock avoidance is to decide whether to wait or 

abort and roll back a transaction, if a transaction finds that the data-item it requests 

is locked in an incompatible mode by another transaction. The decision is controlled 

by timestamp values. Aborted and rolled back transactions retain their timestamp 

values and hence their “seniority.” So, in subsequent situations, they would even¬ 

tually get a “higher priority.” We examine below two such approaches called wait- 
die and wound-wait. 
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Figure 12.23 Example of wait-die deadlock prevention scheme. 

Wait-Die 

One solution in a case of contention for a data-item is as follows: 

• If the requesting transaction is older than the transaction that holds the lock on 

the requested data-item, the requesting transaction is allowed to wait. 

• If the requesting transaction is younger than the transaction that holds the lock 

on the requested data-item, the requesting transaction is aborted and rolled 
back. 

This is called the wait-die scheme of deadlock prevention. 

If concurrent transactions T36, T37, and T38 (having timestamp values of t36, t37, 

and t38, respectively, with t36 < t37 < t38) have at some instance a wait-for graph, as 

shown in Figure 12.23, then transaction T36 would be allowed to wait, but trans¬ 
action T38 would be aborted and rolled back. 

Wound-Wait 

An opposite approach to the wait-die scheme is called the wound-wait scheme. Here 

the decision whether to wait or abort is as follows: 

• If a younger transaction holds a data-item requested by an older one, the 

younger transaction is the one that would be aborted and rolled back (the 

younger transaction is wounded by the older transaction and dies!). 

• If a younger transaction requests a data-item held by an older transaction, the 

younger transaction is allowed to wait. 

For the request shown in Figure 12.24, where transaction T39 has a smaller 

timestamp value than transaction T^, the younger transaction T40 would be aborted 

and rolled back, thus freeing the data-item locked by it to be used by transaction T39. 

For the request shown in Figure 12.25, where transaction T41 has a smaller 

timestamp value than transaction T42, the younger transaction T42 is allowed to wait 

for the completion of the older transaction T41. 

We observe that in neither the wait-die scheme nor the wound-wait scheme is it 

required to abort and roll back an older transaction. In this way the older transaction 

Figure 12.24 Example of wounding request. 
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Figure 12.25 Example of waiting request. 

would eventually get all the data-items it needs and would run to completion. This 

implies that this scheme minimizes problem of starvation. However, the waiting that 

may be required by an older transaction could be significantly higher in the wait-die 

scheme. This because the older transaction has to wait for younger transactions to 

finish using popular data-items. On the other hand, in the wound-wait scheme, the 

older a transaction gets, the greater its probability of acquiring a data-item. An older 

transaction would force the abortion of any younger transaction that holds data-items 

it needs, but would only be aborted by a transaction older than itself. However, as a 

transaction gets older, the number of more senior transactions would decrease! 

In the wait-die and the wound-wait schemes the first word of the scheme name 

indicates what the older transaction does when there is contention for a data-item. In 

the first scheme the older transaction waits for the younger transaction to finish; in 

the second scheme, the older transaction wounds the younger transaction, which re¬ 

leases the data-item for the older transaction. The second component indicates what 

a younger transaction does when there is a contention with an older transaction. In 

the first scheme the younger transaction is aborted and in the second, the younger 

transaction waits. 
The number of aborts and rollbacks tend to be higher in the wait-die scheme 

than in the wound-wait scheme. This because, when a younger transaction such as 

Ty makes a requests for a data-item held by an older transaction, the younger trans¬ 

action is aborted and rolled back. However, it is reinitiated with the original time- 

stamp, which it retains. The reinitiated transaction Ty will make the same requests 

as in its last life, and it is likely that some of the data-items may still be held by 

older transactions. So transaction Ty dies again, to be bom again, and so on. On the 

other hand, in the wound-wait scheme the younger transaction Ty is aborted by an 

older transaction because the younger transaction holds a data-item needed by the 

older transaction. When transaction Ty is reinitiated, it will request the same data- 

items as in its last life. However, these data-items may still be held by the older 
transaction, hence the younger transaction merely waits. 

In addition to deadlock, the problem of starvation (where one or more trans¬ 

actions are forced to wait indefinitely) is also possible. For example, the situation 

can develop where, among the data-items required by some transaction, at least one 
of them is found to be locked by another concurrent transaction. 

In conclusion, we note that the disadvantage of requesting all data-items at the 

beginning of a transaction, and the ordered data-item request method for deadlock 

avoidance, is the potential lower degree of concurrency. The advantage of these 

schemes is that there is no deadlock detection overhead. The disadvantage of the 

wait-die or wound-wait deadlock avoidance schemes is that the request for a data- 

item held by another transaction does not necessarily imply a deadlock. Hence, the 
abort required in either of these schemes may be unnecessary. 
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1 2.9 Atomicity, Concurrency, and Recovery 

The atomic property of a transaction has to be preserved under concurrent execution. 

The atomicity requirement is an additional constraint to the serializability require¬ 

ment, which we discussed earlier. Nevertheless, concurrency and failure of a trans¬ 

action are both responsible for not preserving the atomicity requirements. These two 

requirements force the situation known as cascading rollback, described earlier. Con¬ 

sider a case where a write operation modifies the database, as in the update in place 

scheme (see Chapter 11). Following such write operations by a transaction and the 

subsequent unlocking of the data-items, the updated values are accessible to other 

concurrent transactions. However, the first transaction may have to be aborted and 

rolled back. This implies that all transactions that used any data-item written by a 

rolled-back transaction or any other data-item derived from such a data-item also 

have to be undone, resulting in cascading rollback. 

The method of avoiding a cascading rollback is to prevent transactions from 

reading a data-item modified by an uncommitted transaction. One way of doing this 

is to extend all locks to the point of committing a transaction, though this reduces 

concurrency. Another approach requires that all writes to the database are to a log 

and considered as tentative. A transaction commits after it has done all its write 

operations. At the time of the commit, all tentative values are reflected in the data¬ 

base. Any transaction that needs a tentatively written data-item has to wait for the 

transaction to commit. Alternatively, if a transaction is allowed to use a tentative 

data value, it is marked for rollback in case the transaction that wrote the value is 

aborted. 

The locking scheme of concurrency control can be considered to require the 

following steps: lock, read and/or write, unlock, commit. The timestamp scheme 

requires three steps, as follows: read, write, and commit. Optimistic scheduling also 

has three steps: read, validate, and write. The two latter schemes are preferable if 

the expected number of contentions and the resulting number of rollbacks is relatively 

low. 

Summary 

Concurrent access to a database by a number of transactions requires some type of 

control to preserve the consistency of the database; to ensure that the modifications 

made by the transactions are not lost; and to guard against transactions reading data 

that are inconsistent. A number of concurrency control schemes were discussed in 

this chapter. 

Concurrent execution of transactions implies that the operations from these 

transactions may be interleaved. This is not the same as serial execution of the trans¬ 

actions, where each transaction is run to completion before the next transaction is 

started. The serializability criterion is used to test whether or not an interleaved ex¬ 

ecution of the operations from a number of concurrent transactions is correct. The 

serializability test consists of generating a precedence graph from a interleaved exe- 
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cution schedule. If the precedence graph is acyclic, the schedule is serializable, 

which means that the database will have the same state at the end of the schedule as 

some serial execution of the transactions. 
The concurrency control scheme ensures that the schedule that can be produced 

by a set of concurrent transactions will be serializable. One of two approaches is 

usually used to ensure serializability: delaying one or more contending transactions, 

or aborting and restarting one or more of the contending transactions. The locking 

protocol uses the former approach. Timestamp-based ordering, optimistic scheduling, 

and the multiversion technique of concurrency control use the latter. 

In the locking protocol, before a transaction can access a data-item, it is required 

to lock the data-item in an appropriate mode. It releases the lock on the data-item 

once it no longer needs it. In the locking scheme, the two-phase locking protocol is 

usually used. The principle characteristic of the two-phase locking protocol is that all 

locks are acquired before a transaction starts releasing any locks. This ensures seri¬ 

alizability; however, deadlock is possible. 

With hierarchically structured storage of the database and its data-items, a dif¬ 

ferent granularity of locking is implied. Thus, locking an item may imply locking all 

items that are its descendants. To enhance the performance of a system with hierar¬ 

chically structured data, additional modes of locking are introduced. Thus, in addi¬ 

tion to read and write locks, intention locks are required. The locking protocol is 

modified to require a root-to-leaf direction of lock requests and the reverse direction 
of lock releases. 

In timestamp-based ordering, each transaction is assigned an unique identifier, 

which is usually based on the system clock. This identifier is called a timestamp and 

the value of the time-stamp is used to schedule contending transactions. The rule is 

to ensure that a transaction with a smaller timestamp (older) is effectively executed 

before a larger (younger) transaction. Any variation from this rule is corrected by 

aborting a transaction, rolling back any modifications made by it, and starting it 
again. 

In optimistic scheduling, the philosophy is that a contention between trans¬ 

actions will be very unlikely and any data-item used by a transaction is not likely to 

be used for modification by any other transaction. This assumption is valid for trans¬ 

actions that only read the data-item. If this assumption is found to be invalid for a 
given transaction, the transaction is aborted and rolled back. 

In the multiversion technique, data is never written over; rather, whenever the 

value of a data-item is modified, a new version of the data-item is created. The result 

is that the history of the evolution of a data-item is maintained. A transaction is 

assigned an unique timestamp and is directed to read the appropriate version of a 

data-item. The write operation of a transaction, such as T, could cause a new version 

of the data-item to be generated. However, in case another transaction has already 

produced a new version of the data-item based on the version used by transaction T, 

an attempt to write a modified value for the data-item by transaction T causes trans¬ 

action T to be aborted, rolled back, and restarted as a new and younger transaction. 
Deadlock is a situation that arises when data-items are locked in different order 

by different transactions. A deadlock situation exists when there is a circular chain 

of transactions, each transaction in the chain waiting for a data-item already locked 

by the next transaction in the chain. Deadlock situations can be either avoided or 

detected and recovered from. One method of avoiding deadlock is to ask for all data- 

items at one time. An alternative is to assign a rank to each data-item and request 
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locks for data-items in a given order. A third technique depends on selectively abort¬ 

ing some transactions and allowing others to wait. The selection is based on the 

timestamp of the contending transactions, and the decision as to which transactions 

to abort and which to allow to wait is determined according to the preemptive pro¬ 

tocol being used. The wait-die and the wound-wait are two such preemptive proto¬ 
cols. 

Deadlock detection depends on detecting the existence of a circular chain of 

transactions and then aborting or rolling back one transaction at a time until no fur¬ 

ther deadlocks are present. The wait-for graph is generated periodically by the system 
to enable it to detect a deadlock. 
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12.1 Consider two transactions as follows: 

Transaction 1: FacSalary, : = 1.1 * FacSalary, + 1025.00 
N 

Transaction 2: AverageSacSalary : = ^ FacSalary,!N 
i = i 

What precaution, if any, would you suggest if these were to run concurrently? Write a 

pseudocode program for these transactions using an appropriate scheme to avoid undesirable 

results. 

12.2 Consider that the adjustment of salary of the faculty members is done as follows, where Fac_ 

Salaryj represents the salary of the ith faculty member: 

Transaction 1: FacSalaryj := FacSalary, + 1025 

Transaction 2: FacSalary, : = FacSalary, *1.1 

What precaution, if any, would you suggest if these were to run concurrently? Write a 

pseudocode program for these transactions using an appropriate scheme to avoid undesirable 

results. 
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12.3 Consider the schedule of Figure 12.8a. What is the value of A and B, if f\(A) is A + 10, 

f2(B) is B * 1.2,f3(B) is B = 20, and f4(A) is A * 1.2? Assume that the initial values of A 

and B are 1000 and 200, respectively. 

12.4 Repeat Exercise 12.3 for the schedule of Figure 12.9a. 

12.5 Consider the transactions of Figure 12.21. Rewrite the transactions using the two-phase 

protocol and produce a schedule that is serializable. 

12.6 Write an algorithm to find a cycle in a precedence graph. (Hint: Use an approach similar to 

that of algorithm 12.1) 

12.7 Consider the transactions of Figure 12.21 and the schedule of Figure I. What would happen 

at step 5 if t22 > t23? Complete the schedule after step 5 and give the values for A and B 

after each step. Assume that the initial values are A: {400, Wa, Rj and B: {500, Wb, Rb}. 

12.8 Given the following schedule of Figure M, in a system where timestamp ordering is used, 

suppose transactions T22 and T23 had been assigned timestamps t22 and t23 respectively and 

Sum is a local variable. Any value read in from the database is copied into local variables 

with the same names as the corresponding database items. The database items are only 

changed with a write statement. If initially A: {400, Wa, Rj and B: {500, Wb, Rb}, indicate 

their values after steps 3, 5, 7, 8, 12 and 14. 

Figure M Schedule for Exercise 12.8. 

Step Schedule Transaction T22 Transaction T23 

1 Sum : = 0 Sum : = 0 
2 Sum : — 0 Sum : = 0 
3 ReadfA) Read(A{ 
4 A : = A — 100 A := A - 100 
5 ReadfAJ Read(A) 
6 Sum : = Sum + A Sum : = Sum + A 
7 Write(A) Write(A) 
8 Read(fi) Read (B) 
9 Sum : = Sum + B Sum : = Sum + B 

10 Show (Sum) ShowfiSum) 
11 Sum : = Sum + A Sum : = Sum + A 
12 Read (B) Read(fi) 
13 B := B + 100 B := B + 100 
14 Write(Zl) WritefZ?) 
15 Sum : = Sum + B Sum : = Sum + B 
16 Show (Sum) Show (Sum) 

12.9 We have three transactions, T24, T25, and T26, with timestamp values of t24, t25, and ri6, 

respectively (t24 < t25 < t26). The schedule for the concurrent execution of these transactions 

is given in Figure N. Assuming that initially A: a, Wa, Ra and B: b, Wb, Rb and C: c, Wc, 

Rc, show these values after each step if the timestamp-ordering scheme for concurrency 
control is used. 



12.10 Summary 607 

Figure N Schedule for Exercise 12.9. 

Step Schedule Transaction T24 Transaction T25 Transaction 

1 Read(A) ReadfA) 
2 ^ :=A(A) A : = fi(A) 
3 Read(5) Read(fi) 
4 Write(A) Write(A) 
5 Read(C) Read(C) 
6 C: = f2(C) C:=MC) 
7 Read(C) Read(C) 
8 Write(C) Write(C) 
9 Read(fi) Read(fl) 

10 B : = h(B) B : = MB) 
11 Write(fl) Writ e(B) 
12 B := MB) B := MB) 
13 Write(fi) Writ e(B) 

12.10 Suppose we want to add a record occurrence to record type R,, (Figure 12.19) which uses 

indexes In and 1,2 for direct access to the records. Give the sequence of locking to perform 

this operation. 

12.11 Algorithm 12.2 is inefficient because some transactions are processed many times. Give a 

modification to the algorithm to avoid this inefficiency. 

12.12 In an adaptive deadlock detection scheme, why is it necessary to choose an upper and lower 

limit for the frequency of running the deadlock detection algorithm? 

12.13 In the concurrency control scheme based on timestamp ordering, we have assumed that the 

timestamp value is based on a systemwide clock. Instead of using such a timestamp to 

determine the ordering, suppose a pseudorandom number generator was used. Show how you 

would modify the concept of older and younger transactions with this modification and give 

the modified wait-die and wound-wait protocols. 
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611 13.1 Introduction 

Security in a database involves both policies and mechanisms to protect the data and 

ensure that it is not accessed, altered, or deleted without proper authorization. Integ¬ 

rity implies that any properly authorized access, alteration, or deletion of the data in 

the database does not change the validity of the data. Security and integrity concepts, 

though distinct, are related. Implementation of both security and integrity requires 

that certain controls in the form of constraints must be built into the system. The 

DBA, in consultation with the security administrators, specifies these controls. The 

system enforces the controls by monitoring the actions of the users and limiting their 
actions within the constraints specified for them. 

13.1 Introduction 

It is generally recognized that access to up-to-date information is of vital importance 

to an organization. With the increasing amount of information under the control of 

DBMSs and the consequent dependence of organizations on databases, it is manda¬ 

tory that these databases be secured from unauthorized access or manipulations. Data 

has to be protected in the database. There is a similar need for protection in a non¬ 

database environment, however, the database system must have features to enhance 

these manual confidentiality mechanisms. The database environment contains data 

from the most mundane to the most vital and this data is concurrently shared by a 

multitude of oneline users. Furthermore, modifications in a database mean that old 

values are no longer accessible; the fact that there was an old value for a given data 

item is not even evident unless steps are taken in processing to save the old value. 

Coupled with the trust and reliability with which users tend to treat the data in the 

database, the mechanisms of security and integrity are significant. The DBMS must 

have mechanisms to restrict users to only those pieces of data that are required for 

the functions they perform. In addition, the DBMS must restrict the type of actions 

that these users can perform on data that is accessible to them. 

There are two dimensions for the protection of data in the database. First, a 

certain class of data is available only to those persons who are authorized to access 

it. This ensures that the confidentiality of the data is maintained. For example, the 

medical records of patients in a hospital are accessible only to health care officials. 
Second, the data must be protected from accidental or intentional (malicious) 

corruption or destruction. For example, tampering with prescriptions could endanger 

lives. Data on national defense is vital to the security of a state. Manufacturing 

processes and techniques are vital to the competitive edge of a corporation. Disclo¬ 

sure of data regarding manufacturing processes or techniques would compromise the 

economical success of an enterprise. Destroying the customer mailing list of a retail 

sales organization could lead to the disruption of its operations. 

In addition to the economic or strategic reasons for protecting data from unau¬ 

thorized access, corruption, or destruction, there is a privacy dimension for data 

security and integrity. Tampering with the personal records of individuals is recog¬ 

nized in many countries as violating the privacy of the individual. Additionally, there 

are legal restrictions that data can only be used for the purpose for which it is col¬ 

lected. 
Below are some informal definitions of the terms used in this chapter: 

• Privacy: The ethical and legal rights that individuals have with regard to 

control over the dissemination and use of their personal information. 
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• Database security: Protection of the information contained in the database 

against unauthorized access, modification, or destruction. 

• Database integrity: The mechanism that is applied to ensure that the data in 

the database is correct and consistent. The term semantic integrity is 

sometimes used to refer to the need for maintaining database consistency in the 

presence of user modifications. Semantic integrity is maintained either implicitly 

by the data model, or is specified explicitly by appropriate constraints on the 

data that can be entered by the user, and this data is checked by the DBMS. 

Entity and referential integrity constraints are implicit in the relational data 

model. Set insertion and retention rules are implicit in the network model. A 

record occurrence in the network model is restricted to be a member in only one 

occurrence of a set type. The requirement that an instance of a child type record 

cannot exist without the parent record occurrence is implicit in the hierarchical 

model. We discuss integrity issues further in Section 13.4. 

• Authorization: The culmination of the administrative policies of the 

organization, expressed as a set of rules that can be used to determine which 

user has what type of access to which portion of the database. Persons who are 

in charge of specifying the authorization of different portions of the database are 

usually called security administrators or authorizers. 

13.2 Security and Integrity Threats 

Some types of threats can only be addressed using social, behavioral, and control 

mechanisms such as ethical training, expected conduct by the employees of an or¬ 

ganization, and appropriate legislation. These threats include actions on the part of 

authorized users to perform actions such as deliberately adding unauthorized users, 

giving some users more access than required for their normal operations, divulging 

passwords, and threatening bribery and blackmail. However, in spite of the most 

stringent legislation and penalties for transgressions, there will always be lapses in 

any system, computerized or not. The intention of the DBMS is to make it unprofit¬ 

able, economically or otherwise, for casual users to breach the security mechanism. 

In addition to features required in the DBMS for security and integrity, addi¬ 

tional requirements have to be supported by the operating system and the protocol 
for physical access to the computing system itself. 

The operating system must ensure that files belonging to the database are not 

used directly without proper authorization. This authorization can consist of the user 

providing the proper passwords for the file. The operating system must also ensure 

that illegal users using public communication facilities are not allowed access to the 

system. Users must be required to use adequate identification and passwords (pass¬ 

words must be sufficiently long and must be changed frequently to thwart intruders 
and hackers). 

Access to the computing facility and the storage medium must be restricted to 

authorized persons only. There must be adequate physical protection, as in the case 

of any valuable asset. Disposal of old storage devices must be done in a proper 

manner. Any sensitive data resident on storage devices to be disposed of must be 
destroyed. 
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In a telecommunications environment, data may be accessed by eavesdroppers, 

wiretappers, and other illegal users. To prevent this type of threat, data transmitted 

over public communication channels should be in a ciphered form. 

We can classify security and integrity threats in the categories of accidental, or 
intentional or malicious. 

Accidental Security and Integrity Threats 

• A user can get access to a portion of the database not normally accessible to 

that user due to a system error or an error on the part of another user. For 

example, if an application programmer accidentally omits appropriate 

verification routines, the resulting programs would compromise the database. 

• Failures of various forms during normal operation, for example, transaction 

processing or storage media loss. Proper recovery procedures are normally 

used to recover from failures occurring during transaction processing. Lack of 

such procedures could lead to inconsistencies in the database as discussed in 

Chapter 11. 

• Concurrent usage anomalies. Proper synchronization mechanisms are used to 

avoid data inconsistencies due to concurrent usage. We discussed these 

problems in Chapter 12. 

• System error. A dial-in user may be assigned the identity of another dial-in user 

who was disconnected accidentally or who hung up without going through a 

log-off procedure. 

• Improper authorization. The authorizer can accidentally give improper 

authorization to a user, which could lead to database security and/or integrity 

violations. 

• Hardware failures. For example, memory protection hardware that fails could 

lead to software errors and culminate in database security and/or integrity 

violations. 

Malicious or Intentional Security and Integrity Threats 

• A computer system operator or system programmer can intentionally bypass the 

normal security and integrity mechanisms, alter or destroy the data in the 

database, or make unauthorized copies of sensitive data. 

• An unauthorized user can get access to a secure terminal or to the password of 

an authorized user and compromise the database. Such users could also destroy 

the database files. 

• Authorized users could pass on sensitive information under duress or for 

personal gain. 

• System and application programmers could bypass normal security in their 

programs by directly accessing database files and making changes and copies 

for illegal use. 

• An unauthorized person could get access to the computer system, physically or 

by using a communications channel, and compromise the database. 
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13.3 Defense Mechanisms 

Four levels of defense are generally recognized for database security: human factors, 

physical security, administrative controls, and the security and integrity mechanisms 

built into the operating system and the DBMS. 

Human Factors 

At the outermost level are the human factors, which encompass the ethical, legal, 

and societal environments. An organization depends on these to provide a certain 

degree of protection. Thus, it is unethical for a person to obtain something by stealth, 

and it is illegal to forcibly enter the premises of an organization and hence the com¬ 

puting facility containing the database. Many countries have enacted legislation that 

makes it a crime to obtain unauthorized dial-in access into the computing system of 

an organization. Privacy laws also make it illegal to use information for purposes 

other than that for which it was collected. 

An organization usually performs some type of clearance procedure for person¬ 

nel who are going to be dealing with sensitive information, including that contained 

in a database. This clearance procedure can be a very informal one, in the form of 

the reliability and trust that an employee has earned in the eyes of management; or 

the clearance procedure could be a formal one. 

The authorizer is responsible for granting proper database access authorization 

to the user community. Inadvertent assignment of authorization to a wrong class of 
users can result in possible security violations. 

Physical Security 

Physical security mechanisms include appropriate locks and keys and entry logs to 
computing facility and terminals. 

Security of the physical storage devices (magnetic tapes, disk packs, etc.) within 

the organization and when being transmitted from one location to another must be 

maintained. Access to the computing facility must be guarded, since an unauthorized 

person can make copies of files by bypassing the normal security mechanism built 
into the DBMS and the operating system. 

Authorized terminals from which database access is allowed have to be physi¬ 

cally secure, otherwise unauthorized person may be able to glean information from 
the database using these terminals. 

User identification and passwords have to be kept confidential, otherwise unau¬ 

thorized users can borrow the identification and password of a more privileged 
user and compromise the database. 

Administrative Controls 

Administrative controls are the security and access control policies that determine 

what information will be accessible to what class of users, and the type of access 
that will be allowed to this class. We discuss this topic in Section 13.3.1. 
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DBMS and OS Security Mechanisms 

The database depends on some of the protection features of the OS for security. 
Among the OS features required are: 

• The proper mechanisms for the identification and verification of users. Each 

user is assigned an account number and a password. The OS ensures that access 

to the system is denied unless the number and password are valid. In addition, 

the DBMS could also require a number and password before allowing the user 

to perform any database operations. 

• The protection of data and programs, both in primary and secondary memories. 

This is usually done by the OS to avoid direct access to the data in primary 

memory or to online files. 

The DBMS has the following features for providing security and integrity: 

mechanisms to support concurrency; transaction management; audit and recovery 

data logging. In addition, the DBMS provides mechanisms for defining the authori¬ 

zations for the user community and specifying semantic integrity constraints and 

checking. 

13.3.1 Security Policies 

To prevent the dissemination of sensitive information from the database to unauthor¬ 

ized users and thence to outside competitive or hostile agents, an organization must 

establish effective security policies. Database security policies are guidelines for 

present and future decisions regarding the maintenance of the database security. Da¬ 

tabase security mechanisms are the functions used to enforce database security poli¬ 

cies. These functions could be implemented by a combination of one or more of the 

following: administrative control procedures, hardware functions, software functions, 

firmware functions. 
The administrative control procedures are the implementation of security poli¬ 

cies to provide protection, external to the database, operating systems, and computer 

hardware. An example of such administrative control procedures is to have applica¬ 

tion programs written by one team and validated by a separate team. Another admin¬ 

istrative rule would require that passwords be a random string of alphanumeric char¬ 

acters, at least eight in length, and be changed regularly. 
One of the first lower level decisions that has to be made is to choose the 

security features provided by the DBMS to adequately implement the security poli¬ 

cies. The relative importance and sensitiveness of various parts of the database has 

to be determined. This will help determine the extent of protective features that can 

be economically justifiable for those parts of the database. As mentioned earlier, the 

intention is to make it economically unprofitable for the prospective data pirate. 

The other policy decision that has to be made is whether the focus of security 

administration is integrated with the database administrator (DBA) and whether the 

security administration is centralized or decentralized. In the case of a decentralized 

security administration, the choice has to be made as to whether or not the owner of 

the data should also be the security administrator. In the case of shared data, the 

question of ownership of the database has to be settled by an administrative decision 
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and the structure of the data has to be determined by the DBA (who could also be 

designated as owner). Procedures for modifications to the security control mechanism 

must also be enacted. 

Access Control Policies 

In addition to the administrative procedures, the lower level access control policies 

have to be determined in light of the security features provided by the DBMS and 

OS. Access control policies can be classified as follows: 

• Open vs. closed system: In an open system, a user is allowed access to 

everything unless access is explicitly denied. In a closed system, a user is not 

allowed to access anything unless access is explicitly granted. A closed system 

enforces the least privilege or the need-to-know policy; an open system 
maximizes sharing of information and minimizes the portion that is not to be 

known. 

• Content-independent access control: This policy is also called name- 

dependent access control. Access is allowed to those data objects whose 

names are known to the user. A data object can be a relation name and some of 

the associated attributes in the case of a relational database. In the case of a 

network database, it could be a set with the owner and member record types, 

with some of the associated data fields. Thus, access is independent of the 

contents of the data object. Consider the relation of Figure 13.1. All the 

employees in an organization may have content-independent access to the data 

object EMPLOYEE (Employee-Name, Department, Room, Phone-No). The 

manager of the Personnel department, however, has content-independent access 

to the entire data object EMPLOYEE (Employee-Name, Department, Room, 

Phone-No, Position, Salary). 

• Content-dependent access control: In this policy the concept of least privilege 

can be extended to take into account the contents of the database and result in 

finer granularity of access control. The chairperson of a department can have 

content-independent access to EMPLOYEE (Employee-Name, Department, 

Room, Phone-No) and content-dependent access to EMPLOYEE (Employee- 

Figure 13.1 The EMPLOYEE relation. 

Employee-Name Department Room Phone-No Position Salary 

Smith Comp Sci A632 848-3876 Asst Prof 44500 

Clark Comp Sci A651 848-3874 Asso Prof 49750 

Turner Chemistry C643 848-2981 Professor 63050 

Jamieson Mathematics M728 848-3829 Professor 61430 

Bosky Physics P388 848-1286 Asso Prof 52800 

Newton Physics P391 848-1291 Asst Prof 42750 

Mann Elect Eng 
_ 

E389 848-8628 Asst Prof 44750 
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Figure 13.2 The HEAD relation. 

Chairperson Secretary Department 

Smith 

Jamieson 

Bosky 

Turner 

Mann 

Rolland 

Evans 

Fuhr 

Horngren 

Messer 

Comp Sci 

Mathematics 

Physics 

Chemistry 

Elect Eng 

Name, Department, Room, Phone-No, Position, Salary), such that the 

EMPLOYEE.Department is the department where she is the chairperson. This 
can be implemented by a query modification as shown below: 

select (Employee-Name, Salary) 

from EMPLOYEE 

where Department = Comp Sci 

The above query can be modified as shown below, assuming that there is a 

relation HEAD with attributes (Chairperson, Secretary department) as shown in Fig¬ 
ure 13.2. 

select (Employee-Name, Salary) 

from EMPLOYEE 

where Department = (select (Department) 

from HEAD 

where Chairperson = user’s name) 

Access Operation Type Control Policies 

Greater control over the use of data is obtained when the security policy distinguishes 

the type of access that is allowed to a data object. The classification of access to a 

data object known to the user can be as follows: read, update, insert, delete. Thus, 

everyone in an organization may be allowed access to the data object EMPLOYEE 

(Employee-Name, Department, Room, Phone-No) with the access type being read. 

The departmental secretary may be assigned update access to the EMPLOYEE.Room 

and EMPLOYEE.Phone-No data items, and this update access may be content de¬ 

pendent only to occurrences of the secretary’s department. This can be implemented 

by a query modification as follows: 

update EMPLOYEE 

Room = new room 

Phone-No = new phone number 

where Employee-Name = somename 

The above query may be modified as follows to ensure that the departmental 

secretary modifies only the tuples for his own department’s employees: 
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update EMPLOYEE 

Room = new room 

Phone-No = new phone number 

where Employee-Name = somename 

and where Department = (select (Department) 

from HEAD 
where Secretary = user’s name) 

The departmental chairperson may also be given update access to the EM¬ 

PLOYEE. Salary. The personnel manager has read, update, insert, and delete access 

to the entire EMPLOYEE data object. 
In addition to the above access type control, access control can be refined to 

include control over the context of access and the sequence of accesses as described 

below. 

• Access context control: This type of access control is used to allow maximum 

access to statistical-type data without compromising confidentiality. Suppose the 

database contains a relation MED_HISTORY(Employee-Name, Department, Visit 

Date, Diagnosis) to record diagnoses for the employees who visit the 

company’s health center (see Figure 13.3). A personnel manager may be 

allowed to access the attribute Diagnosis of this relation without simultaneous 

access to any other attributes. This enables the manager to determine the type of 

visits made to the health center and take appropriate actions to correct, say, 

some environmental problems. The personnel manager may also be allowed 

access to the attributes Employee-Name, Department, Visit-Date without 

simultaneous access to the attribute Diagnosis to verify whether an employee 

did in fact visit the health center and the number of visits made by a given 

employee or department, or on a given date. 

• Access control based on history of accesses: To guard the confidentiality of 

information, it is not sufficient to depend solely on access context control, since 

a user can use a sequence of queries satisfying the access context control rules 

and yet be able to trace sensitive information to a single entity. We discuss the 

need for access control based on the history of accesses made by a user with 
respect to a statistical database in Section 13.5. 

Figure 13.3 MED_HISTORY relation. 

Employee-Name Department Visit-Date Diagnosis 

Smith Comp Sci 12/03/86 bronchitis 
Clark Comp Sci 11/22/86 conjunctivitis 
Fuhr Physics 12/05/86 bronchitis 
Roland Comp Sci 12/15/86 psittacosis 
Mann Elect Eng 11/22/86 psittacosis 
Homgren Chemistry 12/05/86 shingles 
Bosky Physics 12/15/86 pleurisy 
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Information Flow Policies 

Policies must be set up to prevent a flow of information from a secure program to an 

insecure program. One method of controlling the flow of information is to consider 

the programs to be running at different levels. A program assigned to run at a lower 

level of security is not allowed to access data produced by a program running at a 
higher level of security. 

13.3.2 Authorization 

As mentioned earlier, authorization is the culmination of the administrative policies 

of the organization, expressed as a set of rules that can be used to determine which 

user has what type of access of which portion of the database. The person who is in 

charge of specifying the authorization is usually called the authorizer. The authorizer 

can be distinct from the DBA and usually is the person who owns the data. 

The authorization is usually maintained in the form of a table called an access 

matrix. Figure 13.4 gives an example of an access matrix. The access matrix con- 

Figure 13.4 Access matrix 

OBJECTS 

SUBJECTS EMPLOYEE HEAD MED_HISTORY 

Faculty read except 

Salary 

read read1 

Secretaries read except 

Salary 

update, 'Room 

update, 'Phone-No 

read read1 

Chairpersons read except read2 Employee-Name, Date 

Salary read1 

read2 

Physicians read except read read 

Salary write 

control 

Director of read read read Employee-Name, Date 

Personnel write write or read Diagnosis 

update update but not together 

control control read1 

'query modification where EMPLOYEE.Department = select (Department) from HEAD 

where Secretary = user’s_name) 

2query modification where EMPLOYEE.Department = select (Department) from HEAD 

where Chairperson = user’s_name) 

3query modification where MED_HISTORY.Employee—Name = user’s_name 
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tains rows called subjects and columns termed objects. The entry in the matrix at 

the position corresponding to the intersection of a row and column indicate the type 

of access that the subject has with respect to the object. 

Objects 

An object is something that needs protection and one of the first steps in the author¬ 

ization process is to select the objects to be used for security enforcement. A typical 

object in a database environment could be a unit of data that needs to be protected. 

However, the unit of data could be at some convenient size or granularity. Thus, a 

data field, a record, or a file could be considered an object. Another type of object 

that can be protected is a view or subscheme. Using views as objects and hence as 

units of protection automatically limits the amount of the database that can be ac¬ 

cessed by a user. 

The objects in the access matrix represent content-independent access control. 

However, to enforce content-dependent access control, some structure for conditions 

or access predicates are incorporated in the access matrix. Some examples of access 

predicates, expressed as query modifications, are shown in Figure 13.4. 

Views as Objects 

In addition to providing different ways of looking at the data in the database, views 

or subschemes can be used to enforce security. A user is allowed access to only that 

portion of the database defined by the user’s view. A number of users may share a 

view. However, the user may create new views based on the views allowed. The 

advantage of this approach is that the number of objects accessible to a class of users 

and the entry for it in the authorization matrix is reduced to one per view. This 

reduces the size of the authorization matrix. The disadvantage is that the entire class 
of users have the same access rights. 

Granularity 

The usual practice is to choose the granularity of security enforcement. This could 

be a file, a record (relation), or a data item (attribute). The smaller the protected 

object, the finer the degree of specifying protection. However,, the finer granularity 

increases the size of the authorization matrix and the overhead in enforcing database 
security. 

Subject 

A subject is an active element in the security mechanism; it operates on objects. A 

subject is a user who is given some rights to access a data object. We can also treat 

a class of users or an application program as a subject. A user who belongs to or 

joins a class of users gets the access rights of that class of users. If a user belongs to 

more than one class of users, then the access rights for a given access made by the 

user depends on the class of user that is being used by that user for the access. 
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Access Types 

The access allowed to a user could be for data manipulation or control. The manip¬ 

ulation operations are read, insert, delete, update. The control operations are add, 

drop, alter, and propagate access control. We define these operations below: 

• Read: Allows reading only of the object. 

• Insert: Allows inserting new occurrences of the object type, for example, a 

tuple in a relation. Insert access type requires that the subject has a read access 

as well. However, an insert access may not allow modification of existing data. 

• Delete: Allows deleting an existing occurrence of the object type. 

• Update: Allows the subject to change the value of the occurrence of the object. 

Some data-items in a record, such as the primary key attributes, however, may 

not be modified. For reasons discussed in Section 5.4.1, update through a view 

may or may not be allowed. An update authorization may not include a delete 

authorization as well. 

• Add: Allows the subject to add new object types such as new relations (in 

relational systems), record and set types (in network systems), or record types 

and hierarchies (in hierarchical systems). 

• Drop: Allows the subject to drop or delete existing object types from the 

database. Here we are referring to the deletion of a type and not of an 

occurrence. 

• Alter: Allows the subject to add new data-items or attributes to an existing 

record type or relation; also allows the subject to drop existing data-items or 

attributes from existing record types or relations. 

• Propagate access control: This is an additional right that determines if this 

subject is allowed to propagate the right over the object to other subjects. Thus, 

a subject S may be assigned an access right R over an object O, and in addition 

the right to grant this access right (or part of it) to another subject. 

In the access matrix of Figure 13.4, we have indicated both content-independent 

access rights and content-dependent access rights; the latter have been indicated with 

query modification clauses. 
In addition to the above access rights, a subject may have the privilege to create 

additional indexes for a record type or relation, execute certain application programs 

(another type of object), and so on. 

Authorization Grant Tree 

Consider a user subject. When the user has the propagate access control right over 

an object, he or she can pass all or part of her or his right to another subject, for 

instance another user. In a organization that uses the centralized security administra¬ 

tion policy, the authorizer has all the access rights including the propagate access 

control right over the database. When the authorizer grants a user some rights this 

may be granted with the propagate access control as well. This leads to an authori¬ 

zation grant tree, as shown in Figure 13.5. 
To properly revoke access rights, all paths in the access grant tree must start 

from the authorizer, otherwise the revocation cannot be guarded from unscrupulous 
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usage. With this proviso, revocation of the access rights of subject S3 in Figure 13.5 

means that subject S7 also loses all rights. Subject S6 retains those rights granted by 

S5 and S5 loses rights granted by S6. We illustrate this pruned access grant tree in 

Figure 13.6. 
Further revocation of access right of subject S5 by S) causes S6 to lose all access 

rights as well; this is illustrated in Figure 13.7. 
Without the requirement that a direct path exists from the authorizes the reader 

can verify that S5, S6, and S7 would retain their access rights when the authorizer 

revokes the access right of subject S3, as illustrated in Figure 13.8. 

Figure 13.6 Authorization grant tree after revocation of access rights from S3; S6 retains the access 
right granted by S5. 

e 
r 

S3 

S7 
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Figure 13.7 Authorization grant tree after revocation of access rights from S5; S6 also loses access 
rights. 

Authorization Facilities 

The facility available to the authorizer (and to the users who can propagate access 

rights) to assign access rights could be in the form of a separate language or could 

be integrated with the data definition or the data manipulation language. 

In the network model the access rights specifications are integrated with the data 

definition language. The subschema can be used to grant access to a subset of the 

database to an user. However, it does not provide a facility to indicate the operations 

that a user can perform on the portion of the database accessible to the user. 

Figure 13.8 Authorization grant tree with access rights that cannot be properly revoked. 
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Another method of specifying the access privilege of a user is by means of a 

user profile. The profile for a user contains the objects and the associated access 

types allowed to that user as well as the application programs that the user can 

execute (i.e., types of transactions allowed to the user). The user profile is equiva¬ 

lent, in a sense, to a row of the access matrix. However, no null entries need be 

maintained in the user profile. 
In a rule-based system, the access profile is given in the form of rules. For 

instance, to indicate that a user can have read access to the object EMPLOYEE could 

be specified by the following rule: 

user ‘Fuhr’ can read EMPLOYEE 

The data manipulation language can incorporate statements to grant and revoke 

access rights. This is the approach used in SQL to limit the operations a user can 

perform on the portion of a database defined by the user’s view. The grant statement 

is used to grant access privileges and the revoke statement is used to revoke privi¬ 

leges. In the following example, the departmental secretaries are granted the access 

privilege of reading and updating a limited number of attributes from the EM¬ 

PLOYEE relation. The tuples accessible to a given secretary are those belonging to 

his or her department. 

grant select (Employee-Name, Room, Phone-No) 

update (Room, Phone-No) on table EMPLOYEE to 

‘user_name’ where EMPLOYEE .Department = 

select (Department) from HEAD where 

Secretary = ‘user_name’) 

The following statements could be used to grant the personnel manager access 

rights to read, insert, update, or delete any tuple from the EMPLOYEE relation: 

grant select, insert, update, delete on table EMPLOYEE to 

‘ personneLmanager’ 

The following form of grant allows the personnel manager to propagate the 
granted access rights or any subset of it to another user. 

grant select, insert, update, delete on table EMPLOYEE to 

‘personnel-manager’ with grant option 

The personnel manager can now propagate some of these access rights to the 
chairperson of the department by the following statement: 

grant select, update on table EMPLOYEE to 

‘chairperson_name’ where EMPLOYEE .Department = 

select (Department) from HEAD where 

Chairperson = ‘chairperson_name’) 

A limited number of attributes of the relation MED-HISTORY may be made 

accessible to the personnal manager by means of the following grant statement: 

grant select (Date, Diagnosis) on table MED_HISTORY to 

‘ personnel-manager’ 

The limited access rights granted a secretary could be revoked by the following 
revoke statement: 
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revoke select update (Room, Phone_No) on table EMPLOYEE 
from ‘user_name’ 

QUEL uses the define permit statement to grant access authorization to a user. 

It specifies the operations allowed on specified attributes of a relation. The statement 

has provisions to optionally specify the terminal from which access is allowed and 

the time and day of the access. The syntax of the define permit statement is as 
follows: 

define permit operations 

on relation (attributes) 
to user 

at terminaLid 

from timel to time2 

on dayl to day2 

where predicates 

A user may be allowed to create a new relation by means of the following access 
right: 

grant createtab to ‘user_name’ 

A user who can create a new relation is allowed all access rights to the relation 
including propagating any subset of these rights. 

13.3.3 Identification and Authentication 

The authorization mechanism prepares the user profile for a user and indicates the 

portion of the database accessible to that user and the mode of access allowed. The 

enforcement of the security policies in the database system requires that the system 

knows the identity of the user making the requests. This in turn requires that before 

making any request, the user has to identify herself or himself to the system and 

authenticate the identification to conform that the user is in fact the correct person. 

A number of methods can be used in this authentication: by something known only 

by the user, by something that only the user possesses, or by some physi¬ 

cal/physiological characteristic of the user. 

Something Known Only by the User 

The simplest and most common authentication scheme used is a password to authen¬ 

ticate the user. The user enters the user name or number and then authenticates 

herself (himself) by the password. Typically, these identification/authentication steps 

are used once for the initial sign-on to the system. However, for sensitive data, this 

step could be repeated for each operation. The passwords themselves have to be 

guarded and a secure way of doing this is by storing only the encrypted form of the 

password. The encryption algorithm will not be of any use in deciphering the pass¬ 

words. Thus, even if the file containing the enciphered passwords is stolen, it, along 

with the encryption algorithm, will not be useful. Application programs could also 
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be designed to require the user to provide a password before allowing a sensitive 

operation. 
Instead of a simple password, the system may ask the user one or more ques¬ 

tions from a set of questions; only the user can correctly answer these questions. One 

such scheme involves generating a pseudorandom number X and prompting the user 

to respond with T(X), where T is a prearranged simple transformation function. Since 

only the user and the system know what this prearranged transformation T is, anyone 

eavesdropping will only see X and T(X) and cannot easily discern T. Each authorized 

user in this method of authentication is supplied with unique transformation function. 

Something in the User’s Possession 

In this scheme, each user could be given an appropriately encoded badge, card, or 

key to be used for identification purposes. A password or question-answering scheme 

as before can be used for the authentication purpose. 

Some Characteristic of the User 

In this scheme, the identification and authentication procedures are combined in one 

step, but require the use of special hardware and software to identify some physical 

or physiological characteristic of the user. These characteristics are known to be 

unique or have a very low probability of duplication in a population of a given size, 

and hence cannot be easily faked. Examples of such characteristics are fingerprints 

or the relative lengths of the fingers of a hand. Another scheme that has been pro¬ 

posed is the use of voiceprint; however, a simple technique like using a tape record¬ 

ing of the authorized user’s voice can be used to impersonate the user. 

13.3.4 Views/Subschemes in Security Enforcement 

The content of the database is described by the conceptual scheme and the users’ 

views are defined by the subschemes. The subscheme can be used in the name- 

dependent security enforcement policy to limit the portion of the database known to 

and hence accessible by a user. The network model as proposed in the DBTG uses 

the subschema as the major security enforcement mechanism. A user is not allowed 
access to anything that is not included in that user’s subschema. 

The following example illustrate creating a view for use by the departmental 

secretary consisting of the attributes Employee-Name, Room, and Phone-No. The 

tuples accessible are limited to the employees in the secretary’s department. 

create view EMP_ADDRESS (Name,Room-No, Phone) as 
(select (e.Employee-Name,e.Room, e.Phone-No) 
from EMPLOYEE e 

where e.Department = (select (Department) 

from HEAD 

where Secretary = ‘secretary_name’)) 
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Having created this view, the secretary is granted appropriate access rights to 

any tuple of this relation and is allowed to update Room-No, Phone by means of the 
following grant statement: 

grant select update (Room-No, Phone) on table EMP_ADDRESS to 

‘secretary_name’ 

13.3.5 Distributed Systems 

Security enforcement in distributed systems can be enhanced by distribution. Sensi¬ 

tive information can be fragmented and stored at dispersed sites. The leakage of some 

portion of the fragmented data may be not as disastrous as the leakage of unfrag¬ 

mented data. Also, with distribution, different sites can have different levels of se¬ 

curity. However, in this case, the more secure sites have to take into account the 

existence of less secure sites in transmitting data over the network. Since data will 

be transmitted over a communication channel, appropriate encryption schemes (dis¬ 
cussed in Section 13.3.6) should be used. 

The authorization functions in a distributed system have to be decentralized and 

a decision has to be made as to where to store the access matrix or access rules. One 

possible choice is to fragment the access matrix and store the appropriate fragments 
at the sites of the data fragments. 

13.3.6 Cryptography and Encryption 

Consider the secure transmission of this message: 

“Mr. Watson, can you please come here.” 

One method of transmitting this message is to substitute a different character of 

the alphabet for each character in the message. If we ignore the space between words 

and the punctuation, and if the substitution is made by shifting each character by a 

different random amount, then the above message can be transformed into, e.g., the 

following string of characters: 

‘ ‘ xhlkunsikevoabondwinh woajahf. ’ ’ 

Cryptography has been practiced since the days of the Roman Empire. With the 

increasing use of public communication facilities to transmit data, there is an in¬ 

creased need to make such transmissions secure. In a distributed environment, trans¬ 

mitting highly confidential information between geographically dispersed sites, in 

spite of the most stringent local security enforcement, could lead to leakage from 

eavesdropping and wiretapping. 

This points to the need for the data to be encrypted before it is transmitted. At 

the receiving end, the received data is deciphered before it is used. The sender must 

know how to encrypt the data and the receiver must know how to decipher the coded 

message. Since the computers at both ends can be used to cipher and decipher the 

data, the code used for ciphering can be quite complex. 
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The simple enciphering method discussed at the beginning of this section turns 

out to be the most secure. This type of code has been used since the time of Julius 

Caesar and is called Caesar code. The one-time code is a Caesar code used only 

once, which makes it difficult for the interceptor of the coded message to break the 

code since he or she does not have an opportunity to intercept more than one sample 

of the coded message, apply the distribution characteristics of the language, and 

break the code. The other advantage of the one-time code is that breaking the code 

of a single transmission is not very helpful in deciphering subsequent coded mes¬ 

sages, since each message will use a different code for encryption. However, the 

drawback is that there must be an initial transmittal of the code that is to be used to 

the recipient, and for absolute unbreakability, the code has to be as long as the 

message that is transmitted. 
A enciphering scheme developed by the U.S. National Bureau of Standards 

(NBS) is called the Data Encryption Standard (DES). The NBS-DES scheme is 

based on the substitution of characters and rearrangement of their order and assumes 

the existence of secure encryption keys. This scheme, which has been implemented 

in hardware, is a relatively easy means to both encipher and decipher data. The 

algorithm is well known and publicized but the encryption key is kept secret, which 

makes it very difficult for anyone who does not know the key to decipher the mes¬ 

sage. However, the drawback in this scheme is that the encryption key has to be 

transmitted to the recipient before a message can be transmitted. 
This difficulty has led to the search for encryption techniques called one-way or 

trapdoor functions having the following characteristics: 

• It can change any message X into a message Y. 

• It has an inverse function that changes Y back into X. 

• Efficient algorithms can be devised to change X into Y and Y back into X. 

• If the function and the algorithm to convert from X to Y is known, it is 

computationally infeasible to discover the inverse function; hence, the same 

enciphering and deciphering functions can be used over and over again. 

The last property gives the function its name: the trapdoor function, easy to 

drop through but hard to get out of! The knowledge of an appropriate trapdoor func¬ 

tion allows the use of a public key encryption scheme where both the encryption key 

and the encryption algorithm are public and readily available. This allows anyone to 

send a message in a coded form; however, the decryption key is secret and only the 
rightful recipient can decipher the coded message. 

One of the best known trapdoor functions is the one proposed by Rivest et al. 

(Rive 78). Their encryption scheme, which is a form of a public key scheme, works 

as follows. Each member of a group wanting to securely communicate devises her 

or his own trapdoor function with its forward and reverse transformation algorithm. 

Thus, given a message N in a numeric form, D (E (N)) = N, where E is the forward 
algorithm for encryption and D is the inverse algorithm for deciphering. 

A directory containing the forward encoding algorithm of each member of this 

group is published in a publicly accessible directory. The reverse algorithms are kept 

secret. Since the forward algorithms are public, anyone can consult the directory and 

using the published forward algorithm of a member of this group, encipher a message 

and send the enciphered message to the member. Only the intended recipient knows 

the reverse algorithm and will be able to decipher the coded message. The method 

of sending the message to a member P with forward algorithm Ep is as follows: 
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1. Convert the message M into numeric form N. 

2. Compute Y = Ep(N) and transmit Y to P over a public communication 
channel. 

3. On receipt P will apply the secret reverse algorithm Dp on the message Y to 
compute N and thence M. 

A method to sign the message can be incorporated if the functions D and E have 
the following additional property: 

E (D(N)) = N 

In order to “sign” a message, the sender R (who is required to be a member of 

the group listed in the published directory) uses his or her own secret inverse function 

Dr on the numeric form N of the message M, and then uses P’s public key Ep and 

transmits the resulting message T over a public communication channel. Thus, the 
transmitted message T will be Ep (Dr(N)). 

P, on receipt of T, first applies her or his own (secret) inverse function Dp and 

then the published forward function Er of the sender to retrieve a “signed” message 

from R. Thus, P will decipher the message as being Er (Dp(T)). 

P now has a signed message from R. R cannot deny having sent P this message, 

since no one else could have created Dr(N), because the function Dr is secret and 

Er(Dr(N)) is N, which is the numeric form of the message M. P cannot modify the 

message to M' and thence to N', since P doesn’t know the secret function Dr. 

See (Rive 78) for their version of the trapdoor function, which is based on two 
prime factors of a large nonprime number. 

13.4 Integrity 

Security constraints guard against accidental or malicious tampering with data, 

whereas integrity constraints ensure that any properly authorized access, alteration, 

deletion, or insertion of the data in the database does not change the consistency and 

validity of the data. This requires that there is a need for guarding against invalid 

database operations. An operation here is used to indicate any action performed on 

behalf of a user or application program that modifies the state of the database. Such 

operations are the result of actions such as update, insert, or delete. In short, invalid 

changes have to be guarded against by the integrity subsystem, whereas illegal up¬ 

dates must be guarded against by the security subsystem. 
Database integrity involves the correctness of data; this correctness has to be 

preserved in the presence of concurrent operations, errors in the user’s operations and 

application programs, and failures in hardware and software. Two facets of maintain¬ 

ing the integrity of data in the presence of concurrent operations and failures of 

various types were discussed in Chapters 11 and 12. For example, the concurrency 

control mechanism ensures that two concurrent transactions are serializable. How¬ 

ever, the integrity constraints must be applied to both these concurrent operations and 

these constraints ensure that each of these transactions, when run to completion, 

concurrently or in isolation, will not cause the database to become invalid. The re¬ 

covery subsystem ensures that failures of various types, which may cause the loss of 

some of the actions of one or more transactions, will not cause the database to be¬ 

come inconsistent. 
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In this section we consider some types of constraints that the database has to 

enforce to maintain the consistency and validity of data. One aspect that has to be 

dealt with by the integrity subsystem is to ensure that only valid values can be as¬ 

signed to each data-item. This is referred to as domain integrity. Another set of 

integrity constraints are the so-called structural and semantic constraints. Some of 

these types of constraints are addressed by the data models used and others are ad¬ 

dressed in the design of the database by combining appropriate functional depend¬ 

encies in different records. Some if not most of the functional dependencies can be 

expressed if the DBMS allows each record type or relation to have an associated 

primary key. We discuss these aspects below. 
In traditional systems, application programs were responsible for the validation 

of data and maintaining the consistency of the data used by the programs. However, 

in a DBMS environment, depending on the application programs to perform these 

checks has the following drawbacks: 

• Each application program must have correct validation and consistency check 

routines; a failure in one program could lead to database inconsistencies. 

• Each application program must be aware of the semantics of the complete 

database to enforce the correct consistency checks; this is not always the case 

and unnecessarily burdens the application program writers. 

• There will be considerable duplication of efforts. 

• Integrity constraints are hard to understand when they are buried in the code of 

application programs. 

• No consistency or validity checks are possible for direct database manipulation 

using a query language. 

Centralizing the integrity checking directly under the DBMS reduces duplication 

and ensures the consistency and validity of the database. The centralized integrity 

constraints can be maintained in a system catalog (data dictionary) and can be acces¬ 

sible to the database users via the query language. This does not rule out an appli¬ 

cation program performing some specific checking, including input validation. 

13.4.1 Domain or Data-ltem Value Integrity Rules 

One of the most common integrity constraints that is specified and validated is to 

define the domain for each attribute, or in the case of network or hierarchical models, 

to define the value set for each data-item. Domain integrity rules are simply the 

definition of the domains of the attributes or the value set for the data-items. The 

value that each attribute or data-item can be assigned is expressed as being one or 

more of the following forms: a data type, e.g., alphanumeric string or numeric; a 

range of values; or a value from a specified set. For instance, in the relation EM¬ 

PLOYEE of Figure 13.1, the domain of the attribute Salary may be given as being 

between $12,000 and $300,000. The final Grade assigned to a student in a course 
can only be one of, say, A, B, C, D, or F. 

A domain can be composite; for instance, the Date attribute in the relation 

MED_HISTORY is restricted to the form mm/dd/year, where mm is the month and 

is restricted to the range 01 through 12; dd is the date and is restricted to the range 
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01 through 31; and year is, say, 1986 through 2000. We can make the range of dd 
more precise by taking into account both the month and year. 

Since online data entry is a common operation, validation of the entered values 

has to be performed to maintain the integrity of data. Traditionally the validation was 

performed by application programs. However, this approach has two drawbacks: 

first, it depends on the application programmer to include all validity checks, and 

second, each application program is duplicating some of these checks. Hence, it is 

preferable to centralize these operations and let the DBMS perform the validity 

checks. Note that some types of errors cannot be detected. For instance, a professor 

may incorrectly assign a grade of F instead of D to a student (an accidental error 

perhaps, because the keys for D and F are next to each other on the QWERTY 

keyboard). The validation procedure cannot detect this as an error, since F is a valid 

grade. Thus, integrity mechanisms can only ensure that the data is in the specified 

domain. Incorrect choices, as long as they do not violate any integrity constraints, 
are not considered to be errors. 

Some domain constraints could be conditional. For example, the salary con¬ 

straint in the EMPLOYEE relation, instead of being restricted to a given range could 
be restricted conditionally as follows: 

if Position is Asst. Prof Salary must be between 35,000 and 45,000 

if Position is Asso. Prof Salary must be between 42,000 and 55,000 

if Position is Professor Salary must be between 53,000 and 200,000 

The domain values supplied for an operation are validated against the domain 

constraints. Any violation of a domain integrity rule typically results in the operation 

being rejected with an appropriate message returned to the user for the correct value. 

Other possible choices of action to be undertaken by the DBMS on the detection of 

a domain constraint violation are: correct the value to a valid value; replace the value 

with a sentinel value that will be detected at audit time; roll back the transaction that 

issued the invalid value. 

The validation procedure typically runs after each attempted modification; how¬ 

ever, some integrity constraints may be validated only after the completion of a 

transaction. Consider the total quantities of some part in a plant. This value must not 

change unless there is a shipment or receipt of that part. If a transaction transfers 

100 units of the part from inventory to a project in the plant, the total units of that 

part will be incorrect after the first operation of the transaction, which subtracts 100 

units from the quantity on hand in inventory, and before the end of the second op¬ 

eration of the transaction, which adds 100 units to a project. The database is in an 

inconsistent state if the total for the part being transferred were to be computed after 

the first operation was completed. 

In specifying the domain constraints, null values may or may not be allowed. 

Thus, it is usual not to allow null values for any attribute that forms part of a primary 

key of a relation. 

The definition of the EMPLOYEE relation of Figure 13.1 can be given as shown 

below, where some of the domain constraints are included. The attribute Employee- 

Name is declared as a primary key that must not be null. 

type EMPLOYEE = relation 
Employee-Name alphabetic string length 25 unique null not allowed 

Department alphabetic string length 15 values (CompSci, Chemistry, Elec¬ 

trical Engineering, Mathematics, Physics, . . .) 
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Room string alphanumeric length 4 

Position alphabetic string length 15 
Salary decimal of length 6 digits value range (10000 — 200000) 

end 

13.4.2 Implicit and Data Dependency Constraints 

The simplest example of an implicit integrity constraint is that each record type must 

conform to the record declaration for that type. The data model used by the DBMS 

implicitly builds in certain integrity constraints, such as the one-to-many relationship 

between a parent record type and the children record types in the hierarchical model. 

The hierarchical model requires that the parent record type must exist for the child 

record type to be inserted in the database; the parent-to-child data structure is the 

implicit implementation of a one-to-many relationship. The insertion and the reten¬ 

tion rules for set membership are examples of implicit structural integrity rules in the 

network model. A many-to-many relationship in the network model between record 

types A and B implicitly assumes the existence of two set types owned by the record 
types A and B with a common member record type. 

These are structural constraints between the values of different data-items or 

fields and are the reflection of the functional and multivalued dependencies between 

the attributes of the entity being modeled in the database. Many functional depend¬ 

encies can be implicitly represented in a database that allows the declaration of some 

attributes as a primary key. Having declared that a given set of attributes form a 

primary key of a relation, the update and insertion operations for that relation can be 

validated. For instance, duplicate tuples and update to attributes in the primary keys 
are disallowed. 

Any general constraint that involves multiple relations is expensive in compu¬ 

tation time. The conditional constraint of the valid range of Salary which was depen¬ 
dent on the Position of the employee involves a single relation. 

Consider the relations STUDENT(StudentJName, Major), COURSE(Co«rse_ 

No, Department) and ENROLLMENT) StudentNJame, Course-No, Year, Term, 

Grade). A many-to-many relationship between students and courses is implemented 

in the relational model by the ENROLLMENT relation. However, a constraint that a 

student is not allowed to enroll in a course unless the course is scheduled and the 

student is a registered student at the university, involves multiple relations. Thus, the 

ENROLLMENT relation that represents a relationship between a course and a student 

requires that, for a given tuple in ENROLLMENT, the referenced tuples must exist 

in the relations STUDENT and COURSE; and a tuple in the relation STUDENT must 

have the same value for the attribute Student-Name as the given tuple in the relation 

ENROLLMENT; furthermore, the tuple in the relation COURSE must have the same 
value for the attribute Course as the given tuple in the relation ENROLLMENT. This 
is referred to as referential integrity. 

There are similar integrity rules for other data models. In the network data 

model, a many-to-many relationship between record types A and B requires the pres¬ 

ence of an intermediate record type, which is a member in two set types owned by 

record types A and B. Furthermore, a relationship can only exist between existing 

occurrences of each of these record types. Another example of referential integrity 
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Figure 13.9 Referential integrity in network model. 

ENROLLMENT 

in the network model is that a member record type cannot exist without the presence 

of the owner record type in a set where the membership is automatic fixed. Consider 

a record type that is a member in one or more set types wherein the membership is 

specified to be automatic fixed. Inserting into the database a new occurrence of such 

a member record type requires that each of the owner record occurrences must exist 

and the appropriate set currency indicators point to these occurrences. 

Let us see how the network model represents the relationship between students 

and courses. The many-to-many relationship between the record types student and 

course is represented in the network model by the sets STUDENT-ENROLLMENT 

and COURSE-ENROLLMENT as shown in Figure 13.9; ENROLLMENT is the com¬ 

mon member record type in these sets. To maintain the integrity of the database, the 

deletion of a STUDENT (or COURSE) record occurrence should not be allowed if 

the set STUDENT-ENROLLMENT (or COURSE-ENROLLMENT) is not empty. 

Conversely, an occurrence of the set STUDENT-ENROLLMENT cannot exist without 

the existence of the record occurrence of its owner, i.e., STUDENT. An occurrence 

of the set COURSE-ENROLLMENT cannot exist without the existence of the record 

occurrence of its owner COURSE. An ENROLLMENT record cannot exist without 

the existence of both a STUDENT and a COURSE record occurrence. 

The many-to-many relationship between students and courses can be represented 

in the hierarchical model by a hierarchical structure as shown in Figure 13.10. In a 

hierarchical model, the dependent record type does not exist independently of the 

parent record type. Also, if a data-item of some field of a record is declared to be an 

unique value, the insertion of another record with the same value in that field is not 

allowed at the same position in an occurrence of the hierarchical tree. 

Figure 13.10 Referential integrity in hierarchical model. 

ENROLLMENT (physical) ENROLLMENT (virtual) 
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13.4.3 Violation of Integrity Constraints and Corrective Action 

As mentioned earlier, the validation of the database can be done right after the com¬ 

pletion of a single request to the database; at some point within a transaction, includ¬ 

ing at the end of a transaction; or at some time specified by the DBA or a database 

auditor (the latter may be called the audit time). 
If the validation is done after each request to the database, a message can be 

returned to the user or application program indicating the problem, and the request 

will fail. If the validation checks are performed at some point within a transaction 

(including just before it is committed), there is a requirement to perform a mainte¬ 

nance operation in case of integrity violation. This would involve terminating the 

transaction and undoing any changes made by the transaction. 

If the validation checks are done at audit time, it becomes difficult to assign the 

integrity violation to a single database request or a single transaction. An audit trail 

could be helpful in pinpointing the culprit; however, corrective actions have to be 

performed on transactions that were processed from the time of the integrity viola¬ 
tion. 

13.4.4 A General Model of Integrity 

A general integrity constraint can be specified using a model that gives the following 
parameter for each constraint: 

• D: The data object(s) to which the constraint applies. 

• O: The database operation for which the constraint will be tested. 

• A: The assertion or semantic constraint that must be satisfied by the occurrence 
of the data object(s). 

• C: Predicates to be applied to the data object. The predicates select those 

occurrences of the data object to which the assertion A will be applied. If 

the condition holds for a given occurrence of D, it is a candidate for the con¬ 
straint A. 

• P: The procedure (sometimes called an auxiliary procedure) that will be 

triggered for execution when an integrity violation is found to be true (if the 

condition A is not true). The auxiliary procedure must take corrective action to 
maintain integrity. 

Using this model, each constraint can be expressed as a five-tuple: (D, O, A, C, P). 

The auxiliary procedure P in the above model is said to be triggered when a 

modification to the database causes an integrity violation, i.e., the constraint A does 

not hold. The procedure is responsible for taking corrective actions. 

One type of operation that the auxiliary procedure can be called to take is to 

check some complex integrity requirements that cannot be specified by assertions. A 

method of triggering such a procedure would be by setting the assertion A to false 

and the condition C to true in the constraint rule. In addition, such an auxiliary 
procedure could be called to prepare appropriate audit trails, and so forth. 
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It has been proposed that an integrity mechanism called trigger be included in 

the new standard for SQL. A trigger is defined as follows: 

define trigger trigger_name 

on relation names 

predicate(s) 

action auxiliary procedure 

We give below an example of trigger definition where the salary of employees 

is checked on insertion or update: 

define trigger salary_validation 

on relation EMPLOYEE 

EMPLOYEE.Salary > 10000 and Employee.Sa/ary < 200000 

action Notify_Personnel_Manager 

13.4.5 Expressing Integrity Constraints 

Most DBMSs have some form of language constructs for expressing domain and key 

constraints. These constructs could be part of the data definition language, the data 

manipulation language, or a special language. However, the constructs for expressing 

complex constraints are only in the evolution stage. We gave a form for checking a 

general constraint in Section 13.4.4 and the define trigger statement proposed for 

SQL. 

Since the DBMS is representing a given data model, it is aware of some of the 

integrity constraints implicitly built into the data model. It is informed of the record 

structure and other implicit integrity constraints by the declaration in the data defini¬ 

tion language. For instance, in a hierarchical system the declaration of a record type 

gives its structure; in addition, some data fields may be declared as unique to specify 

a primary key of the record type. The hierarchies with the parent and dependent 

record type gives the relationship between record types. Additional rules, as men¬ 

tioned in Chapter 9, may be specified which could result in the creation of logical or 

virtual parents and enforce appropriate referential integrity constraints and semantic 

consistencies. 
The network data definition facility allows the definition of a primary key (by 

not allowing duplicates). The check clause in the data definition can be associated 

with each data-item that specifies the valid values or data type. The insertion and 

retention rules for sets define the semantics and referential integrity of the indepen¬ 

dent existence of the member record type occurrence vis-a-vis the owner record oc¬ 

currence. The check clause is also used to specify other arbitrary constraints, and it 

may be formulated to enforce constraints between distinct record types, stipulating 

operations that will trigger the execution of an associated auxiliary procedure. 

Relational data definition language also provides statements to allow specifica¬ 

tion of constraints. The assert statement is one such statement. The assert indicates 

that a constraint is specified involving relations in the on clause. The assertion to be 

enforced is given by predicates following the list of relations. However, current re¬ 

lational languages and DBMSs support such a statement only partially. 
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An assert statement can be used to specify referential integrity. The following 

assert statement ensures that only registered students are enrolled in existing courses: 

assert Enrollment_Constraint on ENROLLMENT e STUDENT s COURSE c 

Student-Name = s.Student-Name and e.Course = c.Course 

13.5 Statistical Databases 

A statistical database contains confidential information about individuals (or orga¬ 

nizations), which is used to answer statistical queries concerning totals, averages, 

numbers with certain characteristics. Since the data is confidential, involving, say, 

the medical history or income of individuals, responses to queries should only in¬ 

volve nontrivial size subsets of the database. 

In a statistical database the objective is to maximize the sharing of statistical 

information, yet preserve the privacy of individuals. The challenge is to make it 

difficult if not impossible for anyone to extract information about particular individ¬ 

uals from the answers to a set of queries that involve a large number of records. This 

security problem cannot be solved by normal access control strategy, since the aim 

of the database is to maximize sharing and allow all users full access to the data in 
the database. 

To illustrate how individual values can be traced by a series of queries, let us 

look at the data of Figure 13.11. If this were a statistical database, the need for the 

unique identifier, such as Employee-Name in this database, would be to verify the 

correctness of the information. However, such unique identifiers will not be accessi¬ 

ble to the users. (We assume that the persons who entered these unique identifiers 

and the rest of the information are reliable, or else the unique identifiers are in a 

coded form.) It is not possible to get a response from the database to a query that 
asks for the salary of one individual. 

A query similar to the following, though of a statistical nature, would compro¬ 

mise the database since the response involves only one record in the database: 

find average Salary for all EMP_SALARY 

where Department = Comp Sci. 

and Position = Asst Prof response 44500 

Figure 13.11 The EMP_SALARY relation. 

Employee-Name Department Position Salary 

Smith Comp Sci Asst Prof 44500 
Clark Comp Sci Asso Prof 49750 
Turner Chemistry Professor 63050 
Jamieson Mathematics Professor 61430 
Bosky Physics Asso Prof 52800 
Newton Physics Asst Prof 42750 
Mann Elect Eng Asst Prof 44750 



13.5 Statistical Databases 637 

This points out the constraint that the statistical database must not respond to a 

query if the number of records involved in arriving at the response for the query is 

very small, i.e., less than s. Notwithstanding the above condition, it is still possible 

for someone who has some knowledge about certain records in the database to com¬ 

promise the database. For example, Clark, knowing her or his own salary and know¬ 

ing that there are only two employees in the Computer Science department, can find 

Smith’s salary using the following queries: 

find average Salary for all EMP_SALARY 

where Department - Comp Sci: response 47125 

Thus Smith’s salary = 47125 * 2 — 49750 = 44500 

If we limit queries so that only those queries that involve a large number of 

records are fielded by the database, Clark may use the following set of queries to 

compromise the database: 

find average Salary for all EMP_SALARY: response 51290 

find total number of EMP_SALARY: response 7 

find average Salary for EMP-SALARY not in Comp Sci: response 52956 

Thus knowing the details about Clark and the above responses. Smith’s salary 

is computed as being: 

51290 * 7 - 52956 * 5 - 49750 = 44500 

In the above sequence of queries, each query by itself involved a large number 

of records. The database was compromised because the number of common records 

in the various queries in the above sequence was large. This leads us to the conclu¬ 

sion that if queries involve a very large set of records, e.g., greater than N - s, 

the response should be withheld (here N is the total number of records in the data¬ 

base). 

Even if we restrict the DBMS to respond to only those queries such that the 

response involves records between s and N — s, it is still possible to compromise 

the database if the user has access to information pertaining to some specific records, 

as illustrated by the following sequence of queries. Here, we are assuming s is 2 and 

N — s is 5. This case of compromising the database involves the following set of 

queries: 

find sum Salary 
where Position = Asst Prof and Department = Comp Sci 

or Position = Asso Prof and Department = Comp Sci 

or Position = Professor: response 218730 

find sum Salary 
where Position = Asso Prof and Department = Comp Sci 

or Position = Professor: response 174230 

Thus Smith’s salary is computed as being 218730 — 174230 = 44500. 

As shown above, it is possible for an unscrupulous user to extract information 

about individual records; however, the following techniques make this task difficult. 

One or more of the following strategies are usually used. 
The first strategy is to reject queries that involve a very small number of records 

in the statistical database. Thus, if the response to the query involves only a few 

records, the use can infer the values for one individual using other generally available 
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information of further queries. The method to thwart such attempts at breaching pri¬ 

vacy is to reject queries unless the response involves a minimum number of records. 

Similarly, queries that involve a very large subset of the records in the database are 

also rejected. 
However, as we saw rejecting queries, where the number of records involved in 

the response is either a very small subset(s) or a very large subset (N — s) is not 

sufficient when more than one query is used. 
Thus, if the number of records involved in two queries q, and q2 is n + 1, 

where s < n + 1 < N - s, and if the number of common records (intersection 

records) in these two queries is, n, then the number of different records in the two 

queries is only 1. If the user has knowledge about one of these two nonintersecting 

records, information on the other record can be inferred, as shown in Figure 13.12. 

Additional outside information can lead to a compromise of the database when the 

intersecting number of records is less than n or greater than 1. 

The method to prevent this type of inference is to reject queries if the number 

of intersection records with previous queries made by the user is very large. To 

implement this strategy the system must maintain a history of all records that were 

used in a query by a given user over a reasonable period of time. The amount of 

storage required to maintain this information will become very large and strain the 

capacity of the computing system. If this information is retained on only a few past 

queries, the system may be compromised and answer queries that it shouldn’t. An¬ 

other method of bypassing such precautions by the system is for the user to be in a 
pact with other users. 

A third precaution is random falsification. In this approach, a small random 

amount of data is falsified. This falsification is statistically insignificant so that nor¬ 
mal users will not suffer from erroneous statistics. 

Another strategy that can be used in a large statistical database like a census 

database is to select a random sample of the database that will be used to answer any 

query. The random sample would be representative of the entire database. The user 

would get the correct statistical information without the possibility of the database 
being compromised. 

A final strategy is to produce an audit trail of activities on the database. This 

trail will maintain the identity of the users and their interaction with the database. It 

can be used to find out after the fact if any user was trying to or had actually com¬ 

promised the database. The very fact that this can be done would discourage such 
actions. 

Figure 13.12 Statistical database compromise with response set intersection size being too large. 
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1 3.6 Auditing and Control 

Auditing is a standard practice used in most organizations. It consists of an exami¬ 

nation of the accounting and recordkeeping practices and other evidence to establish 

the soundness and validity of the underlying operations. The audit is done by an 

independent outside body called an auditor so as to be unbiased and objective. How¬ 

ever, an appropriate continuous internal audit is required in any organization to en¬ 

sure its health and continued existence. 

The auditing process is relevant in the database environment to verify that the 

automated operations are properly implemented and executed. Since data entry and 

maintenance is done online, the history of the evolution of a piece of data is no 

longer available in the database, which will contain the latest values only. Contrast 

this with a traditional system where the evolution of a data object is preserved in the 

form of a trail of records on paper. Furthermore, the computing system, with its 

quiet and humanly invisible toil, can be used by crafty fraud artists to permanently 

destroy the evidence of their mischievous deeds. The maintenance of a secure audit 

trail becomes all the more necessary in the database environment. 

In addition to the above, functions that were previously separated and controlled 

by distinct parts of an organization (for example, initiation of a transaction and re¬ 

cording the financial and operational part of the transaction) are integrated into the 

database environment. This integration of operations, while reducing redundancy, 

causes the loss of independent scrutiny and corrections. Furthermore, in an online 

system where a number of transactions are executed concurrently, it is very difficult 

to reproduce the same sequence of processing. All these factors point to a need for 

an audit trail in the database environment. 
On the positive side, the computing system, with all its computing and record¬ 

keeping power, also provides a great opportunity for improving the audit procedure. 

The auditing can now look into the complete database and, with minimum effort, 

perform a greater number of checking and cross-checking operations than was feasi¬ 

ble with a manual system. 
The audit trail to be maintained for audit purposes has some similarity with the 

data collected for recovery operations. Thus for each update operation, the before 

and after image of the data objects undergoing modification are recorded. All log¬ 

ons, read operations, and suspect or illegal operations are recorded. This information 

can be used to analyze the practice of the users of the database, detect any attempted 

violations, help correct errors in design or execution, and improve the control pro¬ 

cedure. 
The control of the database starts with the design of the database and the appli¬ 

cation programs that will be using the data. One of the first control principles is that 

of separating the responsibilities. This can be practiced by assigning separate teams 

for the design and implementation of the program and for its validation and installa¬ 

tion. Any changes to the specifications or the actual program should be made and 

reviewed by different teams. 
The integrity control mechanisms should be integrated in the database and the 

data entry function should be validated by the application programs. Careful design 

of the user interface could reduce the chances of data entry errors. The semantic 
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integrity constraints should be enforced for all update operations. Finally, appropriate 

audit trails should be generated. 

Summary 

Security and integrity concepts are crucial since modifications in a database require 

the replacement of the old values, but the fact that there was an old value for a given 

data item is not evident. The DBMS security mechanism restricts users to only those 

pieces of data that are required for the functions they perform. Security mechanisms 

restrict the type of actions that these users can perform on the data that is accessible 

to them. The data must be protected from accidental or intentional (malicious) cor¬ 

ruption or destruction. In addition there is a privacy dimension to data security and 

integrity. 
Four levels of defense are generally recognized for database security: human 

factors, administrative controls, physical security, and the security and integrity 

mechanisms built into the operating system and the DBMS. Access control policies 

are classified as open vs. closed systems, content-independent access control, con¬ 

tent-dependent access control, access operation type control, access context control, 

access control based on history of accesses, and information flow policies. The da¬ 

tabase depends on protection mechanisms such as user identification and validation 

as well as the memory and file protection features of the OS. 
Authorization is the outcome of the administrative policies and is expressed as 

a set of rules that can be used to determine which user has what type of access to 

which portion of the database. The person who is in charge of specifying the author¬ 

ization is called the authorizer. The authorization is usually maintained in the form 

of an access matrix, containing rows called the subjects and columns called the ob¬ 

jects. An object is something that needs protection. The entry in the matrix at the 

position corresponding to the intersection of a row and column indicate the type of 

access that the subject has with respect to the object. Views or subschemes can be 

used to enforce security. A user is allowed access only to that portion of the database 

that is defined by the user’s view. A user may be granted some rights with the 

propagate access control, which leads to the existence of an authorization grant tree. 

To revoke access rights, all paths in the grant tree must start from the authorizer, 

otherwise the revocation cannot be guarded against unscrupulous usage. 

The facility available to the authorizer (and to the users who can propagate 

access rights) to assign access rights could be in the form of a separate language or 

could be integrated with the data definition or data manipulation language. 

The user has to identify herself/himself to the system and authenticate the iden¬ 

tification. Security enforcement in distributed systems can be enhanced by distribu¬ 

tion; thus, sensitive information can be fragmented and stored at dispersed sites. 

With the increasing use of public communication facilities to transmit informa¬ 

tion, there is a need for the data to be encrypted before it is transmitted and this 

requires that, at the receiving end, the received data be deciphered. A public key 

encryption scheme can be used. In this scheme both the encryption key and the 

encryption algorithm are public and readily available. However, the decryption key 
is secret; only the rightful recipient can decipher the coded message. 

Security constraints guard against accidental or malicious tampering with data; 
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integrity constraints ensure that any properly authorized access, alteration, deletion, 

or insertion of the data in the database does not change the consistency and validity 

of the data. Database integrity involves the correctness of data and this correctness 

has to be preserved in the presence of concurrent operations, errors in the user’s 

operations and application programs, and failures in hardware and software. One 

aspect to be dealt with by the integrity subsystem is to ensure that only valid values 

can be assigned to each data-item; this is referred to as domain integrity. Another set 

of integrity constraints are the so-called structural and semantic constraints. Some of 

these types of constraints are addressed by the data models and others are addressed 

in the design of the database by combining appropriate functional dependencies in 

different records. Many functional dependencies can be implicitly represented in a 

database that allows the declaration of some attributes as a primary key. Most DBMS 

have some form of language constructs for expressing integrity constraints. 

In a statistical database the objective is to maximize sharing statistical informa¬ 

tion and yet preserve privacy of individual records. This security problem cannot be 

solved by normal access control strategy, since the aim of the database is to allow 

all users full access to the data. The means to prevent compromising a statistical 

database is to reject queries if the number of intersection records with previous quer¬ 

ies made by the user is very large (or very small). If random falsification is used to 

protect confidentiality, it is statistically insignificant, so that normal users will not 

suffer from erroneous statistics. The maintenance of audit trails could discourage 

unscrupulous snooping. 
The auditing process is also relevant in nonstatistical databases to verify if the 

automated operations are properly implemented and executed. 
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13.1 Consider a case of computer-related fraud you are familiar with (or consult one of the 

references cited in the bibliographic notes). List the security and integrity constraints that 
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should have been implemented. Could appropriate audit and control procedure have 

prevented the fraud? 

13.2 Define two views for the MED_HISTORY database for the use of the personnel manager and 

the chairperson of the department so as not to compromise the confidentiality of the data 

contained in the relation. 

13.3 Given that a view or a subschema can be used to enforce security, would it be possible in all 

cases to allow updates to be performed on a relation in a view (or records in a subscheme)? 

List cases where updates cannot be allowed and indicate what type of constraints could be 

violated if they were allowed. 

13.4 Since it is possible to compromise the security of a statistical database by a sequence of 

queries, some form of access control based on the history of accesses is required. Is it 

possible to implement an access control mechanism that would prevent a number of users 

conspiring to compromise the database? 

13.5 Can a user who has access both to the Diagnosis attribute and the rest of the attributes of the 

MED_HISTORY relation of Figure 13.3, but not simultaneously, compromise the 

confidential information? If so, give the queries used. 

13.6 Consider the relations STUDENTfSmt/ent-JVame, Major), CO\JRSE(Course-No, 

Department), PREREQUISITEfCoMrse-JVo, Prerequisite-Course-No) and 

ENROLLMENT(.S'/w<?<’«/_A,<ame, Course-No, Year, Term, Grade). Suppose it is required that 

students be registered in only those courses for which they have passed all the prerequisite 

courses. Indicate how this could be implemented using the trigger mechanism. 

13.7 Consider the MED_HISTORY relation of Figure 13.3. Suppose the personnel manager is 

allowed to access to the attributes Employee-Name, Department, and Visit-Date. He or she 

is also allowed access to the Diagnosis attribute, but not simultaneously with the other 

attributes. Is it possible for the personnel manager to compromise the confidentiality of the 

data in the relation? If so, what corrective actions are indicated? 

Bibliographic Notes 

(Hoff 69) provides an early discussion of the danger of the privacy problem and presents some 

early proposals for the safeguard. (Hoff 77) and (Mart 73) discuss the general problem of 

security in computer systems. Textbook discussions of database security and integrity problems 

are presented in (Date 83), (Fern 81), and (Mart 73). 

The original proposal of the authorization mechanism for System R was presented in (Grif 

76) and (Fagi 78). The paper by Fagin gives the proof of an algorithm for authorization grant 

tress. (Zloo 78) presents the security and integrity features in Query-by-Example. The ap¬ 

proach used in INGRES to implement security was by query modification; this was presented 

in (Ston 74). 

The concept of public key encryption was presented in (Diff 76). (Rive 78) presents a 

method to derive computationally secure trapdoor functions, public key encryption and de¬ 

cryption keys, and the associated algorithms. (Lemp 79) gives an excellent survey article on 

cryptology. 

(Hoff 70) poses the earliest problem of compromising a statistical database. Several re¬ 

searchers, (Kam 77), (Dobk 79), and (Reis 79), have looked at the mathematical analysis of 

queries required to compromise a statistical database. (Denn 79) presents other methods of 
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compromising a statistical database where minimum set size constraints are imposed on re¬ 

sponse sets. 

An audit trail model is given in (Bjor 75). (Mair 78) is a textbook on electronic data 

processing auditing. 
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14.2 Phase I: Definition of the Problem 645 

Database design is an iterative process. A number of design methodologies have been 

developed.This chapter offers an informal discussion of the steps involved in design¬ 
ing a database. 

14.1 The Organization and Its Information System 

The information system of an organization consists of a number of subsystems in¬ 

volved in the collection, dissemination, and management of information. Some of 

these subsystems are manual, others are automated. A database system consisting of 

the data, DBMS software, hardware, and personnel is a component of such an infor¬ 
mation system. 

Deciding to use a database system requires studying the organization and its 

needs. In the case of a small organization with few users, where the volume of data 

is small and there is no need for online query or update, a database system may not 

be necessary. In an organization with a large volume of data that changes rapidly, 

where there is a need for interactive queries and modifications, with a large number 

of users, and where decision making is distributed, the need for concurrent access to 

shared data is addressed by a database system. 

In an organization where a large number of users and applications exist, the 

database system provides data independence, insulating these users and applications 

from changes. For the database to meets its objectives, its design must be complete 

and consistent. All the significant inputs should be used in the design process, in¬ 

cluding the inputs of the users. The external schema allows multiple views of the 

data contained in the database. Designing a database system requires gathering details 

about the applications and transactions that are to be supported and the classes of 
users that will use the system. 

Figure 14.1 gives the system cycle for the design of a database system. It starts 

off with the definition of the problem and goes through a number of steps, culminat¬ 

ing in the installation and operation of the system. In the following sections we 

examine the activities performed in each phase of this cycle. 

14.2 Phase I: Definition of the Problem 

The first step in the system cycle is the rough outline and scope of the project. 

Alternatives are examined and one of the alternatives is targeted for a feasibility 

study. Estimates of the costs, including initial setup and operational costs, and the 

risks versus the benefits are examined. The initial cost consists of acquiring the soft¬ 

ware and the hardware, converting from a manual or file-based system, and training 

the personnel. Time scales for the various stages of the development cycle are esti¬ 

mated. Approval of top management for a go-ahead is required. 

Once it is decided that the organization wants to pursue the database solution 

for its information needs, the design of the database system begins. 
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Figure 14.1 Information system cycle. 
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Phase II: Analysis of Existing System and 
Procedures 

The second phase of the cycle is to perform a feasibility study of the proposed solu¬ 

tion. An analysis of the existing system and procedures and the impact of the pro¬ 

posed system on the operations of the organization must be considered at this stage. 

The study of the existing system and procedures is a very important phase of 

the design process. This study is in the form of observation of the existing system, 
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existing procedures and practices, current communication channels (both formal and 

informal), and interviewing and/or surveying the users. The survey could be in the 

form of questionnaires. A detailed study of the system may reveal inefficiencies, 

duplications, and desired changes in procedures, as well as the effect of the database 

system on the existing system and procedures. The consideration of how these could 

be improved and/or replaced by more efficient or effective automated procedures is 
also essential. 

Some design tools such as data flow diagrams may be used to graphically depict 

the data needs of the processes and how processes are interconnected. Information 

required to generate these diagrams can be gathered via interviews with users and 
existing procedural documentations. 

Requirements that the system is to fulfil must be defined. These requirements 

refer to the functions of the system, activities that will be supported by it, and the 

data that will be required for these activities. 

Factors that are considered in collecting and analyzing the requirements are the 

following: levels of management to be supported, the nature of functions to be 

served, and types of activities to be performed. A representative from each group of 

users is chosen for participation in collecting and verifying the requirements. The 

requirements could then be classed into two groups: information requirements and 
processing requirements. 

Information requirements specify the information under the control of the pro¬ 

posed database system. These include the entities, their attributes, and relationships 
among them. 

Processing requirements define the data-manipulation capabilities of the sys¬ 

tem and include their expected frequencies and required turnaround or response. Each 

process is listed along with its data requirements and its data manipulation opera¬ 

tions. The processing requirements must be semantically correct and consistent, so 

that the processing does not violate any constraints imposed by the information re¬ 

quirements. 

Integrity constraints are defined from the above two requirements. These re¬ 

quirements are generated from interaction with the targeted users of the database 

system. The conceptual schema would be generated from these requirements, speci¬ 

fying the entities and their relationships and including their attributes. For example, 

the payroll preparation function would require information about employees’ salaries, 

pay rates, hours worked, and tax status (number of dependents, other valid deduc¬ 

tions for tax computation). The payroll has to be prepared weekly, bimonthly, or 

monthly. The turnaround time is in hours. 
The information and processing requirements form the entries in the data dictio¬ 

nary. The latter contains an entry for each data item used in the system. The entry 

defines each data item, provides any synonyms, and gives the characteristics of the 

data item and its domain. 
Formal requirement specification methods have been developed and are men¬ 

tioned in the bibliographic notes. These methods use hierarchical graphs and/or flow 

charts for gathering and documenting the requirements. 
To summarize we list below the steps of this phase of the database design pro¬ 

cess: 

• Study of existing system and procedures: This involves examining the current 

methods for recording and processing data. 
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• Meetings with user groups: One or more key users from each user group is 

invited to provide input in determining the data and processing needs for the 

group. A formal interview may be supplemented by a questionnaire. 

• Analysis of the procedures and information flow: The information gathered is 

analyzed for consistency and problem areas are targeted for further study. 

• Modifications to improve efficiency: Modification in the current procedures 

that could improve efficiency may be discovered. Such modifications have to be 

discussed with the groups concerned to elicit their cooperation. 

• Preparing the initial proposal and requirement specifications: The initial 

proposal is prepared and may be discussed with the user group for any 

omissions and corrections made to the proposed requirements. 

The output of this phase is: 

• Data requirements 

• Properties and interrelationships of the data 

• Operation requirements 

• Significant events and the operations and conditions causing transitions 

• Constraints 

The application programs and transactions are designed at this stage of the de¬ 

sign process. The structure of the programs, their functions, and data needs (read 

and write sets) are determined, and the user interface is defined. 

14.4 Phase III: Preliminary Design 

A preliminary design of the proposed system is derived in the next step. This design 

is evaluated against the initial requirements. The users are consulted and required 

changes are made to the design. 

The cycle of the steps consisting of the definition of the problem, procedure 

analysis, and preliminary design is repeated until a satisfactory design is obtained. 

The design of the conceptual schema is initially DBMS independent and allows 

a better understanding of the information requirements and their interrelationships. It 

describes the contents of the database without reference to its implementation. It can 

be understood by the nonspecialist and can be used in documenting the proposed 

database. A data model such as the E-R model may be used for its graphical nature, 
simplicity, and expressiveness. 

The requirement specifications would have established the entities and the rela¬ 
tionships among them, as well as their attributes. The primary key of the entities, 

the cardinality of the relationship, and constraints are to be specified in the concep¬ 
tual schema design. 

Structure constraints such as normal forms for relations have to be enforced by 

the design. Two approaches to the design of the conceptual schema may be taken: 

centralized schema design or a view-integration approach. In the former, the re¬ 

quirement specifications for each class of users are merged into a single set of spec¬ 

ifications. The conceptual schema is designed from this single set. Any conflicts that 

may exis* in the individual requirement specifications are to be arbitrated by the 
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DBA. After designing the conceptual schema, the views of the user classes are de¬ 
fined. 

In the view-integration approach, the requirement specifications for each class 

of users form the basis for designing their views. These views are then integrated 

into the conceptual schema for the database. Conflicts such as synonyms and hom¬ 

onyms are easy to resolve. Conflicts that cannot be resolved by a conceptual schema 

to view mapping have to be arbitrated. An instance of such a conflict is where one 

application uses a locally generated sequential employee number and another may 

use the social security number, conflict in which one application views an attribute 

such as Length as meters and another interprets it as yards may be easier to resolve. 

Once such conflicts are resolved the views are appropriately integrated. The 

integration could be stepwise, where we start by integrating two similar views. Sub¬ 

sequently, at each step, an additional view is merged into the integrated conceptual 

schema. After the conceptual schema is defined, the individual views are defined. 

In the top-down approach to conceptual schema design we start with the major 

entities of interest, their attributes, and their relationships for the database applica¬ 

tion. We add other attributes and may decide to split up the entities into a number of 

specialized entities and add the relationships among these specialized entities. 

In the bottom-up approach, we start with a set of attributes. We group these 

attributes into entities and relationships among them. We also attempt to find higher 

level entities to generalize these entities and locate relationships at this higher level. 

The processing requirements in the form of applications and transactions are 

designed and their response requirements are estimated. To determine the perfor¬ 

mance requirements, the data items to be read and written out (read and write sets) 

for each operation in the transaction or application have to be determined. This is 

used to derive the number and size of input/output for each transaction and applica¬ 

tion. The performance requirements for the system will influence the distribution of 

files on physical devices, the physical file structure, and the need for indexes. 

14.5 Phase IV: Computing System Decision 

This decision may be based on the existing environment. If the database is to be 

implemented on an existing computer system, the choice is limited to that for the 

DBMS. The existing system must be able to meet the storage and processing needs 

of the proposed DBMS. DBMSs are usually chosen from one of the commercial 

systems because of the cost of developing an in-house system. Features provided by 

different systems are also important. Some that should be considered are report gen¬ 

eration facilities, utilities such as menu and form-based user interface, features to 

support distribution of the database, communication facilities, and the like. Other 

considerations such as the expertise of the personnel and their preferences also come 

into play. 
The structure of the data dictates the data model of the database. If the data is 

mainly hierarchical, the hierararchical model and a hierarchical DBMS may be ap¬ 

propriate. If the data exhibits a large number of interrelationships, the network or 

relational model would be preferable. Deciding on a model also narrows the choice 

of commercial DBMSs. Other factors that can influence the choice of a DBMS are 
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the experience of the personnel, reputation of the vendor, and the availability of 

services from the vendor. Selecting the DBMS also dictates the data model. 

New applications are increasingly implemented on relational DBMSs and non¬ 

relational DBMSs are retrofitted with a relational interface. The current trend for the 

same DBMS being able to run on different CPUs under different OSs allows some 

degree of independence between the choice of a DBMS and that 'of a computer 

system. 
If the database is to be implemented on an existing system, it must be able to 

meet the processing requirements for the foreseeable features. 

Factors that have to be considered in the choice of the computing system are 

capital costs, conversion and initial training costs, operating costs including those for 

personnel, and maintenance of the hardware and software. 

14.6 Phase V: Final Desigh 

The preliminary design of the database in Phase III is in database-independent 

form, for instance, using the E-R model. Once the DBMS is chosen, the (DBMS- 

independent) conceptual scheme is translated into the DBMS specific conceptual 

scheme and the views of the applications are derived from it as external views. The 

schemes are generated as programs in the DDL of the target DBMS. 

The first step is to convert the conceptual and external schemes in the model of 

the database. We discussed the method of converting a design from the E-R model 

to one of the relational, network, or hierarchical models in Section 2.9. These con¬ 
versions rules are summarized in Figure 14.2. 

14.6.1 Designing the Conceptual Database—Relational DBMS 

It is apparent from Figure 14.2 that converting the preliminary design in the E-R 

model to a relational model is a trivial task. An entity type is represented as a rela¬ 

tion. A weak entity type is represented as a relation that includes the key of the 

identifying strong entity. A relationship is also represented as a relation and includes 

the primary keys of the entities involved in the relationship. In the case of a 1:N 

relationship, if it does not involve any attributes and if the entity on the “N side” 

does not participate in any other relationships, the 1:N relationship can be repre¬ 

sented by appending the primary key of the ”1 side” to the relation for the ”N 

side. It is also possible to merge these two relations into one if performance require¬ 
ments are not compromised. 

An IS_A relationship representing a generalization-specialization hierarchy (su¬ 
perclass/subclass relationship) in the E-R diagram may be represented as a set of 

relations. Here a relation is created for the superclass entity and its key is used as a 

foreign key in each of the relations corresponding to the subclass entities. Another 

option is to have the subclass entities inherit the attributes of the superclass entity 

(These options were illustrated in Figures 2.28 and 2.30, respectively.) In a third 

option, a single relation is created that includes the attributes of the entities at all 

levels of die generalization-specialization hierarchy. In this case null values are used 
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Figure 14.2 Conversion of E-R diagram to relational, network, and hierarchical models. 
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for attributes that do not apply to a given instance of the entity. An additional attrib¬ 

ute to indicate the type of the tuple could be used in case the generalization-special¬ 

ization is disjoint. For an overlapping generalization-specialization, a Boolean attrib¬ 

ute for each possible type may be included. In this way, the nonrelevant attributes 

may be ignored. 
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14.6.2 

If care is taken in the preliminary design to normalize the records, the database 

will satisfy structural constraints. To meet the performance requirements, a number 

of indexes will have to be generated for each relation. The attributes used in gener¬ 

ating the indexes depend on the types of access required. 

Designing the Conceptual Database—Network DBMS 

14.6.3 

In the network model, the entity is represented as a record type. A weak entity is 

represented as a set type where the strong entity is the owner record type. Alterna¬ 

tively, the weak entity type may be represented as a repeating group within the record 

type for the strong entity. A 1 :N relationship is represented as a set type where the 

record type corresponding to the “1 side” is the owner record type. The attribute of 

the relationship is combined with the attributes of the member record type. However, 

if the member record type participates in more than one set, the representation of the 

relationship requires the introduction of a record type to hold the attributes of the 

relationship. This newly introduced record type now becomes the common member 

in two sets. One is a 1 :N set involving the original owner record type as owner and 

the new record type as member. The other is a 1:1 set involving the original member 

record type as an owner and the new record type as member. An N: M relationship 

is represented by two set types involving an intermediate record type as the member. 

The intermediate record type represents the attributes of the relationship. 

The IS-A relationship representing a generalization-specialization hierarchy of 

the E-R diagram is represented by a 1:1 set type where set membership is manda¬ 

tory. The fact that a set can have only one member occurrence is enforced by the 

application program. 

Designing the Conceptual Database—Hierarchical DBMS 

14.6.4 

In the hierarchical model, each entity type is represented by a record type. A 1:1 or 

a 1 :N relationship is represented as a hierarchy with the record type for the ”1 side” 

being the parent. Optionally the child record type is represented as a part of the 

parent record type. A weak entity is represented as a child record type in a hierarchy 

where the record type for the strong entity is the parent or as a repeating group in 

the strong entity record type. An N:M relationship is represented by duplications or 
by use of virtual records. 

The IS-A relationship representing a generalization-specialization hierarchy of 
the E-R diagram is represented by a 1:1 hierarchy, the constraint that there can be 

only one child record type occurrence being enforced by the application program. 

Designing the Physical Database 

The primary keys of the records included in the database are chosen during the 

preliminary logical database design. The physical design includes decisions regarding 
the following aspects of the physical database: 
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• The choice of clustering of records 

• The choice of the file organization 

• The choice of supporting indexes 

• The provision of links between records 

Here the intent is to choose appropriate storage structures and access aids for 

optimum performance of the database system. Direct access is required where the 

file has a high rate of insertions and deletions and indexed-sequential access is suit¬ 
able for a stable file. 

Performance is measured in response time for online queries such as airline 

reservations or banking applications, or turnaround time for application programs 

such as payroll preparation. Performance depends on the size of records, the amount 

of data and its distribution on a number of storage devices, the presence of various 

indexes or direct access mechanisms. 

For a given system the file structures that may be used are usually dictated by 

the DBMS. The expected types and frequencies of data manipulation operations are 

used to determine access aids that would be effective. If an attribute such as address 

is normally used for retrieval in an online system, a direct access path based on this 

attribute may be implemented. 

Special care is taken to define indexes in a relational system for attributes par¬ 

ticipating in join operations. The storage structure and indexes may have to be mod¬ 

ified during the fine tuning of the system, once it becomes operational and supports 

day-to-day operations. 

Physical storage strategy includes decisions regarding the partitioning of a rec¬ 

ord into vertical, horizontal, or mixed fragments. Vertical fragmentation is appro¬ 

priate if some of the record’s fields are accessed more frequently than others. By 

removing the less frequently used fields along with the primary key into a separate 

record on a different physical file, the volume of data transfer is reduced. This would 

also be applicable if the vertical fragments were rarely used simultaneously. Hori¬ 

zontal fragmentation is appropriate if some occurrences of a record are more fre¬ 

quently used than others. 

A strategy used in a relational system is to store the join of two relations, or at 

least those attributes of the joined relations that are frequently required. However, 

this strategy requires that all update operations must maintain the consistency of the 

database by updating such duplicated attributes. 
In a relational database, a number of indexes are created for each record. The 

records themselves may be stored in a serial manner. The attributes used for creating 

secondary indexes are determined from the processing requirements of the database. 

Alternately, performance requirements may dictate that if a relation is retrieved using 

its primary key, which is also used for join operations, the relation may be stored 

using direct file structure. If the relation is to be stored as a sequential file, the 

ordering is on the attribute that is used frequently in retrieving tuples from the rela¬ 

tion or for performing join operations. If more than one such attribute is needed, the 

relation may be stored in a serial file and secondary indexes created for each such 

attribute. The advantages of a serial file are ease of growth and shrinkage of the file 

size. 
In a network system, access to member record types can be improved by storing 

the members close to the owner record type. However, if a record type participates 

as a member in more than one set type, this scheme is possible for only one set. 
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which has to be chosen judiciously. The remaining sets would be implemented with 

pointers and/or linked lists. Using pointers is the most common method of imple¬ 

menting a set construct of the network model. However, many network DBMSs 

allow the specification of the subsequent as well as the prior member and a pointer 

to the owner record from each member record. The owner record may be located 

efficiently using one or more indexes. 
Performance in a network DBMS can be improved by the following strategies: 

• Replicating attributes of the owner record in the member record. This avoids the 

necessity of locating the owner record to access the replicated attributes. Such 

replication requires that update operations modify these replicated attributes to 

maintain database consistency. 

® Using direct access. This is specified by the calc option for an attribute of the 

record. The records are then stored in a direct access file and could be retrieved 

randomly using the value of the field. 

• Assessing member records only through the owner record, specified by the via 

set option. 

• Storing records in sequential order by specifying the field(s) to be used for the 

ordering. 

In the hierarchical database, the storage structure allows efficient access via the 

root record type. The choice of the root record type will determine the performance 

of the system. Virtual parent-child hierarchies are implemented by pointers. A hier¬ 

archy can be partitioned and the root of each subtree can have direct access imple¬ 

mented for it. In this way it is possible to improve performance in the hierarchical 

system. 

The physical database design is also an iterative process. Following the initial 

design, the performance of the system for a suitable mix of transactions is estimated. 

If the performance is not near the expected value, changes are made in the physical 

design. Possible problem areas could be the result of an improper choice of file 

organization for online transactions, storage of records required simultaneously on 

the same physical drive, improper type of storage unit, too many records in the 

overflow area of an indexed-sequential file, inappropriate bucket size for a direct 

access file, and so on. A number of strategies could be used to improve performance. 

This includes dividing a record into two or more records (e.g., relegating the little 

used fields into a separate record), combining two or more records into one (e.g., 

storing the join of two relations), or duplicating a file. These factors are considered 

and corrected until the performance requirements are achieved. The validity of the 
final design is confirmed in the next phase of the design process. 

14.7 Phase VI: Implementation and Testing 

In this phase the design is implemented and tested. Implementation consists of writ¬ 

ing and compiling the code for the conceptual and external schemes in the DDL of 

the DBMS. The physical database is created and loaded with test data. The applica¬ 

tion programs and transactions are written using appropriate high-level languages 
with embedded DML statements or query language. 
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Once implemented, the system is put through a number of tests to verify its 

functioning. In a system where a large number of concurrent accesses and updates 

are made, errors are very difficult to locate. The test data and test pattern must be 

carefully planned to facilitate the location of the cause of errors. 

Documentation of the system is also prepared. Documentation records proce¬ 

dures to be followed for regular operations and steps to be taken in the event of 

errors or failures. Procedures for backing up and restarting after failure of various 
types are outlined. 

Once the system is found to be satisfactory, it is installed for use in day-to-day 

operations. Users are trained on the new system. It is usually given a dry run, which 

consists of using the new system along with the existing system. The operation of 
the system is monitored. 

14.8 Phase VII: Operation and Tuning 

In this phase of the design cycle, the design is completed and is ready for day-to-day 

operation. The users have been trained and the bugs have been removed. The system 

has been tried and the actual performance can now be measured. If the performance 

is not satisfactory, fine tuning is called for. This would entail using one or more of 

the following options: increasing the number of buffers, defining additional in¬ 

dexes, partitioning records, and/or clustering records that are likely to be accessed to¬ 
gether. 

Summary 

In this chapter we informally examined the steps involved in the design of a database 

system. It begins with the identification of a problem area in the information handling 

capability of an organization. The feasibility of using a database system to resolve 

these problems is studied and where it is found that such an approach is warranted 

the design process starts. Once the information and processing requirements for the 

database system and the applications it supports are gathered, the preliminary design 

is undertaken. The preliminary database design is independent of any DBMS or its 

data model. These phases of the design problem are cyclic and may require going 

back to the initial step to resolve ambiguities in requirements or conflicts. The deci¬ 

sion of which computing system and DBMS system to use can be made upon the 

completion of the preliminary design and the identification of the processing, storage, 

and performance needs. Once a decision is made on these aspects, the final design 

begins. It consists of mapping the preliminary design into the model of the selected 

DBMS and implementing the various schemes in the DDL of the DBMS. The phys¬ 

ical database design is completed and the internal schema is defined. The application 

programs and the transactions are coded and the system is integrated and evaluated. 

At the end of the evaluation phase the system is made available for productive use 

and its performance is monitored. 
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information requirements 

processing requirements 

integrity constraints 

centralized scheme design 
view-integration approach 

top-down approach 

bottom-up approach 
vertical fragmentation 

horizontal fragmentation 

14.1 Videobec is the leading corporation in the growing video rental business. It has the largest 

number of stores and prides itself on having the most comprehensive list of video movies and 

games. It also rents VCRs and video cameras to its members. As a convenience, it repairs 

video equipment, the actual work being contracted out to a number of repair shops who reap 

80% of the repair charge. Each of Videobec’s stores is run by a manager and assistant 

manager who are full-time employees. In addition, each store hires its own part-time help 

who are paid on a hourly basis. 

The membership privilege is extended to customers for a period of one year and is 

renewable, unless a member has been habitually tardy in returning items borrowed. A 

member is allowed to rent up to 12 movie titles, 6 video games, 1 VCR, and 1 video-camera 

simultaneously. Movies and games can be returned to any store, but a VCR or video camera 

has to be returned to the store from which it was borrowed. Members have access to the 

online catalogue of titles and may reserve titles. A reserved title has to be picked up before 6 

p.m., after which time the reservation is automatically canceled. Items are charged per day 

and borrowed items have to be returned before noon. Any late return bears a charge of one 

additional day. A discount of 20% is awarded on weekdays for all items rented. A total 

discount of 33% is also given on movie rentals on weekdays when more than three titles are 

borrowed at one time. 

Movies are held by Videobec in both VHS and Beta format. The catalogue of movies 

contains the title of the movie, the studio or producer, the director, two leading actors, the 

category of the movie, number of cassettes per copy, and charge per day. The video grames 

catalogue contains the name of the game, the game system, and the charge per day. 

Videobec carries multiple copies of the same title, and a store could have been assigned any 

number of copies of each title. A store that has more copies of a given title than assigned to 

it will return these at the end of each week to Videobec’s head office, which redistributes 

them to appropriate stores. 

You are required to design and implement the database for Videobec’s operational data 

using an appropriate DBMS package. Prepare a report documenting your design, including 

an E-R model of the database. The implementation of the database is to be made using the 

chosen DBMS on an appropriate computer system. 

Your database implementation should allow the following types of queries to be made: 

• Add new titles, equipment, stores, members, employees, part-time employees, repair 

shops. 

• Remove titles, equipment stores, members, employees, part-time employees, repair 

shops. 

• Update appropriate attributes of titles, equipment, stores, members, employees, part- 

time employees, repair shops. 

• Show status of a member, including titles borrowed and amount outstanding for 

items rented. 
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• Show status of movies, games, and equipment. 

• Show payment to employees for the week. 

• Show payment to repair shops for the month. 

• Show income of a given store for the month. 

• Reserve titles by members. 

• Note return of items by members and additional charges outstanding (e.g., $1.00 per 

cassette not rewound). 

• Show rental of items and initial charge for the first day of the rental. 

Start with the E-R model of your system and note the attributes of each entity and 

relationship. Choose the DBMS and the computer system. Convert the E-R model to that of 

your DBMS. Implement the applications indicated above and design a set of tests for your 

system. 

Many ambiguities in this case study will have to be resolved. This should be done via 

observation of an actual video store and discussions with its management. You may make 

appropriate assumptions but you must be able to defend them. 

14.2 Do Drive is a small driving school that is growing and feels the need for a database system. 

The school offers driving lessons on three different vehicles—cars, trucks, and buses. To get 

a driving certificate from the school, which is a prerequisite for getting a driver’s licenses, 

each student should score more than 75% in five theoretical courses (Defensive Driving, 

Automobile Mechanics, Highway Code, Safe Driving, and Maintenance) and more than 85% 

in practical driving. After 10 hours of practical driving, a student’s performance is assessed. 

If the student fails, he or she will be asked to take two hours of additional driving. If the 

student fails one of the theoretical courses, he or she will be asked to appear for a 

supplementary test in that course. 

The fee for the driving course is $300.00 for car, $700.00 for bus, and $1,000.00 for 

trucks. The fee for one supplementary test or one hour of extra driving, 10% of the course 

fee. Students can pay their fees in installments; however, the certificate is withheld while the 

student owes money to the school. 

The school employs three types of employees: salaried employees for administration, 

teachers who offer theoretical courses, and instructors who give practical lessons. The 

salaried employees are paid a monthly salary. Each teacher is paid $300.00 per course 

section and each instructor is paid $100.00 per student. 

You may make the following assumptions: 

• A teacher can offer one or more courses. A teacher can also offer more than one 

section of the same course. 

• An instructor can offer practical lessons to several students. 

• An instructor can offer practical lesson on more than one type of vehicle. 

• The school owns more than one vehicle of each type. 

Once a student gets a certificate, the details pertaining to the student can be removed 

from the online database. 

Typical operations to be supported by the database are listed below: 

• Add new students, teachers, instructors, salaried employees, and vehicles. 

• Remove existing students, teachers, instructors, salaried employees, and vehicles. 

• Compute various types of statistics for the student population. 

• Compute the payments for employees. 

• Prepare the schedules for the courses and driving lessons. 

• Keep track of payments made by students and amounts outstanding. 
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Design an E-R model for this database. Convert the model to a relation model listing 

the relational scheme, primary keys, and functional dependencies. Ensure that all relations 

are in at least the third normal form. Implement the relational model on a relational DBMS. 

If the DBMS does not support the concept of domain, your application programs and 

transactions must be able to support data validation. 

14.3 You are hired to design a database system for Hotel Plein Air. The hotel owns a personal 

computer system and the database must be implemented on this system. The hotel has 100 

guest rooms, a restaurant, a coffee shop, and a convention center/ballroom which may be 

divided into as many as four seminar rooms. 

Each of the guest rooms has a description indicating its room number, type of beds, and 

its rate. Records are maintained for the regular guests of the hotel. The restaurant and the 

coffee shop have a certain seating capacity, and each has a number of menus. Registered 

guests may charge their restaurant bills to their room account. Registered guests’ bills are 

updated every day and all charges made by these guests are entered on their room bill. 

The hotel has a number of employees (assistant managers, chefs, waiters, maitre d’, 

bus-persons, maids, janitors, host/hostess, cashier, dishwashers, clerks, and a manager). All 

employees except the manager are paid on the basis of the number of hours worked. Each 

work position requires a minimum level of skill. Employees are assigned these positions for 

a given date and shift. 

Design a database system for managing reservations, accounts, employee work 

assignments, and payroll preparation for the hotel. The system must have a friendly user 

interface, since the hotel is unwilling to train its employees extensively. 

Bibliographic Notes 

In this text, we did not discuss automated database design tools. However, a number of design 

tools for the more computationally intensive and time-consuming aspects of design are ap¬ 

pearing on the market. Requirement analysis can be made manually using a graphical design 

tool such as data flow diagram (Gane 79) or hierarchical input process output (HIPO) (Jone 

76), (Katz 79). Other commercial techniques such as structured analysis and design technique 

(SADT) (Ross 77a), (Ross 77b), developed by SofTech Inc., may also be used in establishing 

the requirements. 

Scheme integration is surveyed in (Bati 87). In (Schk 78) the physical database design 

methodology is surveyed. (Marc 77) gives methods for segmenting records and deciding the 

blocking factor for the physical design. The following textbooks have extensive coverage 

of database design: (Atre 80), (Ceri 83), (Flem 89), (Furt 86), (Hawr 84), (Weid 83), and 

(Yao 82). 

The projects given in the Exercises at the end of this chapter were used at Concordia 

University and were conceived by Profs. B. C. Desai, P. Goyal, T. Narayanan, and F. Sadri. 
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In this chapter we discuss some of the issues involved in the case of a distributed 

database. The components of such a database are located at a number of sites inter¬ 

connected by means of a communications network. Each node consists of an inde¬ 

pendent computer system and its software. Advantages of distributing the database 

are the increased availability, reliability and the possibility of incremental growth. 

However, the costs and complexity of the system are higher. The partitioning of the 

database can be non-disjoint and some portions of the database could be replicated. 

Data distribution is covered in Section 15.3. 

A query in a distributed database may need data from more than one node which 

entails communication costs. Distributed query processing is the topic of Section 

15.5 wherein we introduce the semijoin operation. This operation is used to reduce 

the amount of data transmission. Consistency requirements are stressed in Section 

15.6. Concurrency control in the case of a distributed database requires special treat¬ 

ment. A number of concurrency control alternatives are presented in Section 15.7. 

Section 15.8 introduces the failures peculiar to a distributed system and presents 

schemes for recovery from such failures. Distributed deadlock detection and preven¬ 

tion are covered in Section 15.9. Issues of security are the topic of Section 15.10. 

Examples of distributed systems are the subject of Section 15.11. 

15.1 Introduction 

Independent or decentralized systems were the norm in the earlier days of informa¬ 

tion management, the 1950s and early 1960s. There was duplication of hardware and 

facilities. Incompatible procedures and lack of management control were the conse¬ 

quences of the evolving nature of the field. The latter may also have been partly due 

to the lack of understanding of the computer as a tool. In the late 1960s and early 

1970s, the trend was toward the use of large general-purpose computers, heralded by 

the introduction of the IBM System/360. The same facility served a multitude of 

users with differing needs, leading to conflict and lack of responsiveness. A central¬ 

ized database system is one such shared facility. 

In a centralized database system, the DBMS and the data reside at a single 

location, and control and processing is limited to this location. However, many or¬ 

ganizations have geographically dispersed operations. A case in point is the MUC 

Library system discussed in Chapters 8 and 9. For such organizations, accessing data 

from a centralized database creates problems. Data of concern to a particular loca¬ 

tion, such as the Lynn branch, has to be obtained from the central site. The reliability 

of the system is compromised since loss of messages between sites or failure of the 

communication links may occur. The excessive load on the system at the central site 

would likely cause all accesses to be delayed. Furthermore, the single central site 

would exhibit a sizable load of transactions, requiring a very large computing system. 

An organization located in a single building with quasi-independent operational 

divisions, each with its own information processing needs and using a centralized 

database on a local network, would have similar problems. 
The current trend is toward a distributed system. This is a central system con¬ 

nected to intelligent remote devices, each of which can itself be a computer or inter¬ 

connected, possibly heterogeneous, computers. The distribution of processing power 

creates a feasible environment for data distribution. All distributed data must still be 
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accessible from each site. Thus, distributed database can be defined as consisting 

of a collection of data with different parts under the control of separate DBMSs, 

running on independent computer systems. All the computers are interconnected and 

each system has autonomous processing capability, serving local applications. Each 

system participates, as well, in the execution of one or more global applications. 

Such applications require data from more than one site. 
We have to distinguish between a global or systemwide item and a local item in 

the distributed database system. The global item is the item as it would appear if the 

database were not distributed, corresponding to a conceptual data item. A local data 

item is a component or a copy of a global database item. We also distinguish between 

global and local transactions. A global transaction may involve the generation of a 

number of subtransactions, each of which may be executed at a different site. A 

transaction requiring data from its “home” site is a local transaction. 

Example 15.1 Consider data item A for which two copies, A| and A2, exist at sites S| and 

S2. The operation of updating the value of A involves generating two sub¬ 

transactions, TS| and TS2, each of which will perform the required operation 

at sites Si and S2. S3 

Teleprocessing techniques permit users to retrieve data from a remote central 

database. A straightforward extension permits retrieval from multiple remote data¬ 

bases. The implicit requirement is user knowledge of data availability and distribu¬ 

tion. If a user desires access to some data that is moved around to different sites, the 

user needs to keep track of the data movement. In a general environment where each 

of the remote databases could have differing underlying models and be implemented 

on different database systems, the user would require knowledge of the properties of 

each of the accessed databases. Give the complexity of individual systems, this pre¬ 

cludes effective routine access to multiple databases by most users. A distributed 

database hides the complexity of the underlying differences and allows such routine 
accesses. 

Distributed database systems are capable of handling both local and global trans¬ 

actions. The system resolves all local database requests, access to data at other sites, 

and any requests it may receive from other sites. The system masks differences in 

the various local systems by providing a common networkwide view of the data. 

Through appropriate translation mechanisms, requests expressed on the common 

view can be translated to the local system view being accessed. 

In addition to network and data distribution characteristics, the major issues in 

a distributed database management system (DDBMS) are query processing (in¬ 

cluding transaction processing), concurrency control, and recovery. We have consid¬ 

ered these topics with respect to centralized DBMSs in earlier chapters. In this chap¬ 
ter we shall see how data and control distribution affect these issues. 

1 5.1.1 Advantages and Disadvantages of the DDBMS 

Distributed databases, like other distributed systems, offer advantages in: 

• Sharing: Users at a given site are able to access data stored at other sites and at 
the same time retain control over the data at their own site. 
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• Availability and reliability: Even when a portion of a system (i.e., a local site) 

is down, the system remains available. With replicated data, the failure of one 

site still allows access to the replicated copy of the data from another site. The 

remaining sites continue to function. The greater accessibility enhances the 
reliability of the system. 

• Incremental growth: As the organization grows, new sites can be added with 

little or no upheaval. Compare this to the situation in a centralized system, 

where growth entails upgrading with changes in hardware and software that 
affect the entire database. 

• Parallel evaluation: A query involving data from several sites can be 

subdivided into subqueries and the parts evaluated in parallel. 

Data distribution in DDBMs with redundant copies can be used to increase sys¬ 

tem availability and reliability. If data can be obtained from a site other than the one 

that has failed, then availability improves, and as the system can still run, reliability 

does too. Data distribution can, also, be used to decrease communication costs. If 

most of the data used at a given site is available locally, the communication cost 

compared with that of a remote centralized system is obviously reduced. These fac¬ 

tors are also affected by the choice of network topology. While the nature of the 

network should be inconsequential to the database user, in reality this is not the case. 

Network characteristics have important effects on reliability, availability, and the cost 

and speed of response. In the next section we briefly look at some common network 

topologies. 
The disadvantages of the distributed approach are its cost and complexity. A 

distributed system, which hides its distributed nature from the end user, is more 

complex than the centralized DBMS. Increased complexity means that the acquisition 

and maintenance costs of the system are higher than those for a centralized DBMS. 

The parallel nature of the system means that errors are harder to avoid and those in 

the applications are difficult to pinpoint. In addition, the distributed system, by its 

very nature, entails a large communication overhead in coordinating messages be¬ 

tween sites. These messages not only clutter up the network, but degrade the sys¬ 

tem’s performance as well. Out-of-sequence delivery or nondelivery of messages 

creates problems such as phantom deadlocks and blocked transactions. We examine 

these problems later in this chapter. 

15.2 Networks 

A network consisting of a number of dispersed sites interconnected over a large 

geographical area is referred to as wide area or long haul network. Wide area 

networks generally use shared telephone lines, microwaves, or satellites and are most 

likely relatively slow. Over a small geographical area, with a maximum distance of 

approximately 10 km, the interconnecting is referred to as a local area network 

(LAN). A LAN is likely to use dedicated lines in the form of a twisted pair, coaxial 

cable, or fiber optics and is likely to have a relatively higher transmission speed. 

The sites participating in a distributed database system must be connected. Net¬ 

work design issues involve the choice of network topology, control and access meth¬ 

ods, and transmission technology. The possible options for each of these aspects of 

networking are shown in Figure 15.1. 
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Figure 15.1 Network design issues. 
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Network topology defines the structure of the network, as illustrated in Figure 

15.2. In the star topology, all sites or nodes are connected to a central node, which 

is responsible for transmitting messages between the nodes. A star topology can be 

considered tree-based, if we consider the central node as the root node. In the mesh 

connection, the interconnecting could be variable or fully interconnected, where each 

node is connected directly to all other nodes. The nodes are connected by taps to a 

linear cable in the bus network. In ring topology each node is connected to the next 

by a point-to-point cable with the nodes forming a closed circuit. 

A fully connected network (or mesh), in which every site is connected to all 

other sites, is very reliable, although expensive. Even when a link is down, a number 

of alternate paths exist. In practice, partially connected networks are more likely to 

occur. Based on traffic load and networking considerations, certain nodes are inter¬ 

connected and this still allows some alternate paths between sites. In a partially con¬ 

nected network there may be links whose failures could partition the network. 

The star network has a central node to which other nodes are connected. Some 

of these peripheral nodes may act as concentrators for nodes connected to them in a 

treelike fashion. The reliability of the system is critically dependent on the central 

node. Star networks or derivatives occur frequently in communication networks. 

In ring topology, the nodes are connected to each other and form a closed loop. 

Data is transmitted in packets that circulate through the ring. The packets are inserted 
into the ring one at a time. 
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Figure 15.2 Network topologies. 

(a) Star 

(b) Mesh, 
fully connected 

(c) Mesh, 

partially (d) Bus 
connected 

(e) Ring 

The control and access method defines how the nodes on the system get control 

of and utilize the transmission media. In the dedicated approach, the communication 

media is shared in a dedicated fashion, based on time or frequency. In synchronous 

time-division multiplexing (SDM), the different sites connected to a shared channel 
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are assigned a time slot during which they take turns using the entire bandwidth of 

the channel. If a node does not have to transmit during its allocated time slot, the 

channel remains idle. In time-division multiplexing (TDM) the time slots are des¬ 

ignated in a dynamic manner, avoiding idle periods on the channel. In frequency 

division multiplexing (FDM), the frequency spectrum of the communication channel 

is divided, as in radio and TV broadcasts. Each site communicates over a designated 

frequency. 
Control can be either by polling or reservation in the controlled access scheme. 

In the polling scheme, the sites are usually polled by a central site, though distributed 

polling is also possible. A site requiring the use of the channel acknowledges when 

its address is polled and thereby gains control of the channel. In the token passing 

scheme, a token (a special bit stream) is passed from one node to another. A token- 

based scheme is a form of distributed polling and is used extensively in ring topol¬ 

ogy, although it could be used in others. The site requiring use of the channel waits 

until it receives the token. Once this happens, the site assumes control of the channel 

by retaining the token for as long as required. In the reservation scheme, a site gains 

control of the channel by requesting it and once the request is granted it has exclusive 

use of the channel. 
The approach taken in the statistical access control scheme is to use the channel 

whenever a node has to transmit data and to detect collisions. A collision occurs 

when more than one node use the channel simultaneously. In the ALOHA scheme 

the senders detect the occurrence of a collision during transmission. The senders 

retransmit the data after a random delay. The carrier sense multiple access with 

collision detection scheme, better known by its acronym CSMA/CD, requires that 

all nodes listen before and during transmission to detect collision of simultaneous 

transmissions by more than one site. It is possible that more than one node will find 

that the channel is free and began to transmit. This would cause a collision, which 

would be detected since the nodes are listening during transmission. Detection of a 

collision causes the nodes to abort their transmission and delay retransmitting for a 

random time period, to prevent reoccurring collisions. In CSMA/CD, the time delay 

is also influenced by traffic on the channel, length of the transmission, and size of 

the network. 
Transmission technology imposes physical constraints such as effective band¬ 

width and possible transmission speeds. The database system insulates the user from 

details of both topology and communication media characteristics, except in terms of 

response time. 

Two topologies, bus and ring, have become popular in local area networks. 

Among bus-based systems, the Ethernet system has become the de facto standard. 

In Ethernet, the nodes are connected to a coaxial cable via transceiver taps as shown 

in Figure 15.3a. The access method used is CSMA/CD, which can be described as 

“listen before and while transmitting.” The “listen before transmitting” is to deter¬ 

mine if the bus is available; if it is being used, the node waits. Two nodes could 

simultaneously or within a short time find the bus to be quiet and start transmitting. 

“Listening while transmitting” allows for the discovery of collisions. In the event of 

a collision, the nodes involved abort transmission and reattempt after waiting a ran¬ 

dom period of time. The maximum speed of transmission on Ethernet is 10 Mbps 

(million bits per second) and the effective utilization is around 40%. Ethernet perfor¬ 

mance, shown in Figure 15.3b, is quite sensitive to utilization load. An increase in 
the number of collisions degrades performance. 
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Figure 15.3 Ethernet system: (a) Typical Ethernet configuration; (b) Throughput. 

(a) 

Slotted and token broadcast (or token passing) access methods are the more 

usual access methods employed on rings. In the token-based method, the node with 

the token has control of the ring. On finishing the task, the token is passed to the 

next node or broadcast on the ring for capture by another node. 

Because the ring is susceptible to site or link failure, an alternate scheme called 

the star ring, using “wiring concentrators,” has been devised. This scheme, illus¬ 

trated in Figure 15.4, ensures that the wiring lengths from operating nodes is con¬ 

stant. It allows for detecting and easily bypassing failed sites. Data from multiple 

rings can be selectively routed by use of a bridge, as shown in the figure. A ring 

can also contain a gateway to connect to external networks that might be using 

different communication protocols. The use of twisted pairs of wires allow speeds of 

up to 4 Mbps. Coaxial cables allow for speeds of up to 10 Mbps, while with fiber 

optics, speeds greater than 100 Mbps can be achieved. 
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Figure 15.4 Use of wiring concentrator in ring networks. 

15.2.1 Failures and Distributed Databases 

Distributed databases are designed to be operational even when certain failures occur 

in the system. Failure is said to have occurred when a site does not receive messages 

on a particular link, or when it receives garbled messages. Three kinds of failures 

can easily be identified: node failure, loss of message, or communication link failure. 

A simple decentralized scheme to detect these failures could be based on peri¬ 

odic message exchanges between terminal nodes of the links with each site maintain¬ 

ing a table of “up” and “down” sites. A site that detects the failure of another site 

or of the link between the sites informs all other sites (including the failed site). This 

eventually forces a recovery procedure to start at the failed site. A site that is recov¬ 

ering from failure (has been down and is now ready to be up) requires that the system 

initiate special procedures to allow it to be reintegrated into the system. These pro¬ 

cedures allow the site database state to become consistent with the rest of the data¬ 
base. 

Communication link or node failures, in certain cases, can result in the database 

system becoming partitioned, i.e., become two or more independent systems. Ex¬ 
ample 15.2 illustrates such network partitioning. 

Example 15.2 Consider the partially connected mesh structured communication network of 

Figure A. A failure in the link between nodes B and D will not cause any 

disruption in communication, since an alternate path exists. A failure of the 

link between A and D will divide the network into two partitions. A failure 
of node D will divide the network in three partitions. 
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Figure A Failures and network partitioning. 

Each of the partitioned systems could operate by marking the sites in the other 

partitions as being down. A moment’s thought should tell us that there is a consid¬ 

erable overhead in recovering from such a partitioning. Alternatively, the complete 

system has to be restarted from a consistent checkpoint before the partitioning oc¬ 

curred. 

15.3 Data Distribution 

One of the aims of a distributed database system is to maintain better control of the 

organization’s data. The data is distributed at different sites and the distribution is 

based on the access patterns and costs. A comparison of the costs for different data 

placement options allows a selection of the best option. If a particular data item dx 

stored at site S) is also accessed from site S2, some possible options and correspond¬ 

ing cost considerations are: 

1. The cost of accessing dx at S| from S2 and other sites. 

2. The cost of storing dx at S2 instead of S| and the cost of accessing it from St 

and other sites. 

3. The cost of storing a copy of dx at S2 in addition to S, and the cost of 

accessing these from other sites. This is known as replication, with the copies 

at S| and S2 being replicates. 

Replication allows for increased local data availability. The advantages of local 

data availability are: 

1. Access of a nonupdate type is cheaper. 

2. Even if access to a remote site is not possible, access to local data is still 

available. 
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The major disadvantage of data replication is that the cost and complexity of 

updates increases, because all copies are required to be consistent with one another. 

However, local availability or unavailability are not issues that concern the user. One 

of the principal characteristics of distributed databases is location transparency, 

i.e., the insulation of the user from data location details. 
It is likely that instead of access to a complete data relation, different sites need 

access to only portions of it. The relation can thus be divided into fragments. The 

Figure 15.5 Data fragmentation: (a) A typical relation; (b) Horizontal fragmentation; (c) Vertical frag¬ 
mentation; and (d) Horizontal-cum-vertical fragmentation. 

(a) 
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partitioning of relations is formally known as fragmentation. However, in the data¬ 

base literature, the term disjoint fragmentation is used to denote partitioning, and 

the term fragmentation refers to either disjoint or nondisjoint fragmentation. 

A distributed database system insulates the user from knowledge of data frag¬ 

mentation. This characteristic of distributed database systems is called fragmenta¬ 

tion transparency. However, from our discussions on networks and data distribu¬ 

tion, we realize that it may not always be possible to access all the data when 

communication link and node failures occur. The user may sense that some data is 

unavailable and consequently realize that data is partitioned. 

To achieve locality of reference and reduced communication and redundancy 

costs, data is often fragmented. Fragmentation allows a subset of the relation’s attri¬ 

butes or the subset of the relation’s tuples to be defined at a given site to satisfy local 

applications. The idea of data fragmentation is displayed in Figure 15.5 and examples 

are given in Examples 15.3 and 15.7 and Figure E. 

Example 15.3 Consider the MUC library system shown in Figure B. It has a number of 

branches and maintains a central acquisition, cataloging, and distribution 

center. A central catalog contains the title and a detailed description of each 

item. However, each branch maintains a local catalog and has access to the 

central catalog, as well as catalogs at other branches. In a manual system, 

the index card for items are duplicated at the central site and sent to each 

branch where they are stored in their local catalogs. Access to the central 

catalog or the catalog of another branch can only be had by calling on these 

locations. An alternate solution to this problem would be to include in each 

index card a list of all the branches at which a copy is maintained, and have 

a copy of the entire catalog stored at all branches. In a computerized distrib¬ 

uted database system, the catalog is fragmented and maintained in a data¬ 

base at each branch. 

Figure B The MUC library system. 
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15.3.1 Fragmentation 

A relation R defined on the scheme R can be broken down into the fragments Rlt 

R2, . . Rn defined on the schemes R,, R2, . . ., R„ such that it is always possible 

to obtain R from the fragments R,, R2, . . Rn. The fragmentation could be verti¬ 

cal, horizontal, or mixed, as described below. 

Vertical Fragmentation 

Vertical fragmentation is the projection of the original relation on different sets of 

attributes. Relations may be fragmented by decomposing the scheme of R, such that 

R = U Rj 
i = I 

and 

R, = ttr. (R), for i = 1,2,. . ., n 

The original relation R can be reconstructed by a join of the fragments: 

R = R, XI R2 1X1 . . . CXI Rn 

It should be clear that for the original relation to be reconstructible, either: 

1. For all fragments Rj (i = 1,2,. . ., n), there must exist another fragment Rj 

(i ^ j> j = F2,. . ., n), such that if we represent Rj D Rj by X, then X is 
either a key of Rj or of R- or 

2. System-generated TIDs (tuple identifiers) of the original relation must be 
duplicated in all fragments. 

Examples 15.4 and 15.5 illustrate these methods of deriving the original relation 
from its fragments. 

Example 15.4 Consider the relation EMPLOYEEfEmployee#, Name, Department, De¬ 

gree, Phone#, Salary_Rate, StartDDate). This relation can be partitioned 

into the vertical fragments EMPLOYEE_QUALIFICATION(£mp/oyee# 

Name, Degree, Phone#) and EMPLOYEE_PAY(Employee#, Name, Salary 

Rate, Start-Date). The fragments are not disjoint because the Employee# 

and Name attributes are common in the fragments. If Employee# is a pri¬ 

mary key of the original relation, we can derive the original relation by a 

natural join of these fragments, followed by the elimination of the duplicate 
Name attribute. ■ 

Example 15.5 Consider the relation MODULE_USE given in Figure C. Two vertical frag¬ 

ments of this relation, MODULE and USES, include the system-supplied 
attribute TIDs and could be joined to derive the original relation. 
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Figure C TIDs in vertical fragmentation. 
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TIDs may be used by the DDBMS as a physical pointer and are not visible to 

users. If the TIDs are visible, a user may use them in some manner and this con¬ 

strains the DDBMS from changing the TIDs, for instance, when the data is reorga¬ 

nized. As a result, data independence, a goal of database systems, is compromised. 

Note that with fragmentation, duplicate tuples may in reality be part of distinct 

tuples of the unfragmented relation. Such duplicate tuples should not be deleted from 

a fragment or, alternatively, the TIDs of the deleted tuples should somehow be main¬ 

tained to reconstruct the original tuples. For example, consider the relation and its 

fragments given in Figure C. It is obvious that if one of the tuples in the fragment 

USES is deleted, say the tuple with TID t2, a join with the fragment MODULE will 

not result in the original relation. The reconstructed relation would lack the fact that 

the SORT module is also used by the user interface module. If we include the TIDs 

in the fragmented relation, there is no possibility of duplicate tuples. The original 

relation can be obtained using a join on the TIDs. 

Horizontal Fragmentation 

In horizontal fragmentation the tuples of a relation are assigned to different frag¬ 

ments, such that 

n 

R = U Ri 
i= 1 

where each Rj = aCi (R) each Q is some selection condition, and R = Ri = R2 = 

Example 15.6 In Figure D we graphically show a relation that is fragmented into a number 

of disjoint horizontal fragments, which are replicated and stored at a number 

of sites. The original relation could be obtained by a union operation. 
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Figure D Replications of disjoint horizontal fragments. 
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Figure 15.6 Data fragmentation tree. 
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Mixed Fragmentation 

Horizontal (or vertical) fragmentation of a relation, followed by further vertical (or 

horizontal) fragmentation of some of the fragments, is called mixed fragmentation. 

The original relation is obtained by a combination of join and union operations. 

Figure 15.6 illustrates a data fragmentation tree for a mixed fragmentation. 

Example 15.7 The BOOK relation in the library database can be made up of the following 

attributes. Book#, Call#, Copy#, First-Author-Name, Title, Volume, 

Publisher, Place-of-Publication, Date, Binding, Size, Number_of.Pages, 

Date-Acquired, Branch, and Cost. Note that the attribute Book# is unique 
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Figure E Mixed fragmentation. 
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and forms a primary key of the relation. The attributes Call# and Copy# 

also form a key of the relation. The portion of this relation of interest to the 

general public is limited to Call#, Copy#, First-Author-Name, Title, and 

Branch; it forms a vertical fragment of the BOOK relation. The collection 

at a given branch forms the horizontal subset of this vertical fragment. This 

is illustrated graphically in Figure E. ■ 

Disjoint Fragmentation 

In disjoint vertical fragmentation there are either no common attributes between 

any two vertical fragments or one fragment contains all the attributes of another, i.e., 

Ri (1 Rj = 0 or Rj for all i and j. In disjoint horizontal fragmentation there are 

either no common tuples in any two fragments or one fragment contains all the tuples 

contained in another fragment, i.e., Rj D Rj = { } or R( for all i and j. 

There is no partial overlap between the fragments. Replicates of a complete 

fragment are allowed in disjoint fragmentation. We point out that in disjoint vertical 

fragmentation with Rj D Rj = 0, it is not possible to reconstruct the original rela¬ 

tion unless each fragment contains the system generated TID. 

Nondisjoint Fragmentation 

In nondisjoint horizontal fragmentation, a tuple may be assigned to more than one 

fragment. With nondisjoint vertical fragmentation, an attribute may be assigned to 

more than one fragment. This differs from replication. Replicate fragments are exact 
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copies of each other, while in nondisjoint fragmentation only portions of the frag¬ 

ments may be identical. It can be argued that all vertical fragmentation is nondisjoint 

because of the duplication of TIDs. 
We conclude this discussion of fragmentation by stating that a user sees logical 

relations, while the database contains stored relations that could be fragments of 

logical relations. In this case, the logical relations are obtained, as discussed in Sec¬ 

tion 15.5.4, by some predefined sequence of join and union operations on the stored 

relations. 

15.3.2 Replication 

A database is said to be: 

1. strictly partitioned when no replicates of the fragments are allowed 

2. fully redundant when complete database copies are distributed at all sites 

3. partially redundant when only certain fragments are replicated 

For any reasonable set of applications, choice 1 for data replication would lead 

to relatively expensive query evaluation due to the unavailability of the data locally 

or at some nearby site. Choice 2 is very expensive in terms of storage space and the 

overhead to maintain consistency. It is meaningless to replicate data at nodes where 

it is unlikely to be accessed. Choice 3 is reasonable, allowing for reduced access 

time for frequently read local data or that from a nearby site. The choice allows for 

higher reliability and availability during site crashes. However, because of replica¬ 
tion, updates are expensive. 

Updates require access to all copies of the data item. Because the copies are 

distributed over different sites of the network, the sites must reach a consensus on 

the possibility of an update. Failed sites may not participate in the agreement, and 

sites may fail after the process has started. These issues are dealt with later in this 
chapter in sections on concurrency and recovery. 

Although a major aim of database systems is to reduce if not eliminate redun¬ 

dancy, planned data redundancy can improve distributed database performance. For 

example, if a number of copies of a data item are available, a read operation can be 

directed to any one of these copies. A write operation, however, must update all 

copies, otherwise we would have inconsistent data. The system is required to ensure 

that any update operation is done on all replicates. This results in increased over¬ 
head—a price to be paid in distributed databases. 

To summarize, replication improves the performance of simple read operations 

in a distributed system and improves its reliability. However, updates incur greater 

overhead and the requirement that all replicates of data be updated and consistent 

adds complexity to a distributed database system. This is especially true in the case 
of concurrent updates. 

15.3.3 T ransparency 

In the preceding sections we discussed data distribution, fragmentation, and replica¬ 

tion. Since it is possible for data to change, the number of copies could vary and 

these copies could migrate from one site to another. It is unreasonable to expect the 



15.3 Data Distribution 677 

user to know on which site the requested data resides, or the fragmentation criterion. 

This being so, the DDBMS is required to hide all such details from the user and 
provide: 

• Location transparency: User does not need to know the location of the data. 

• Fragmentation transparency: User need not be aware of the data 
fragmentation. 

• Replication transparency: User is unaware of data replication. 

In light of the above, a user accesses the database more or less as if it were 
completely local. 

Example 15.8 Consider the fragmentation of the catalog information in the library database 

given in Example 15.7. A user who consults the database to find all the 

titles of books by Haley could pose the following query: “List all titles 

where first author is Haley.” The response would return all titles by Haley, 

regardless of the branch to which a book is assigned. ■ 

In addition to providing a transparency to the user for reading, a DDBMS is 

required to provide an update transparency. This entails that all copies of the data 

item being updated, in all fragments that contain it, be modified. This involves con¬ 

currency control to ensure consistency and serializability. Failures of different types 

require rollback or recovery. We consider the problems of concurrency and recovery 

in Sections 15.7 and 15.8, respectively. 

15.3.4 System Catalogs 

System catalogs, or dictionaries, maintain metadata on database relations. In a dis¬ 

tributed database system, information on locations, fragmentations, and replications 

is also added to the catalogs. The catalogs themselves, just like the database, may 

be distributed in any of the above three ways. That is, a catalog could be: (1) strictly 

partitioned, (2) fully redundant, or (3) partially redundant. Now let us consider the 

ramifications of each of these replication options. 

During the transformation of a query from the user-specified form to an internal 

access plan, system catalogs are consulted at all stages. Choice 1 for catalog distri¬ 

bution would therefore be a poor strategy, requiring considerable communication 

between sites. Catalog maintenance is, however, very simple and the scheme allows 

for maximum site autonomy. Choice 2 would allow fast access for query resolution, 

but the catalogs would be costly to maintain. Choice 3 is a reasonable alternative, 

particularly when the complete catalog is available at a number of sites. For query 

resolution the user site accesses the nearest site with the complete catalog, or the one 

with the required catalog fragments. An advantage of schemes 2 and 3 is that there 

are always some sites on the system containing the catalog, allowing the system to 

function even when other sites have failed. The choice between 2 and 3 depends on 

retrieval and catalog update frequencies. 

Catalog updates usually occur at the time of creation or deletion of relations and 
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modification of attributes. In distributed databases, certain statistics pertaining to the 

characteristics of the data play an important role in determining access and query 

evaluation plans. These statistics, maintained in the system catalog, are likely to 

change regularly, entailing catalog updates. Some typical approaches to catalog dis¬ 

tribution and maintenance problems are discussed below. 
The R* system uses a distributed catalog. Local catalogs keep information on 

locally stored objects, including any fragments and replicates. The catalog at the 

birth_site of an object (site at which the object was first created) maintains the 

current storage sites of that object. Object movement causes this information to be 

updated. This scheme maintains complete site autonomy and is a type 1 scheme. 

Distributed INGRES differentiates between local and global relations. Only 

global relations are accessible from all sites. A catalog of all global relations, the so- 

called global catalog, is maintained at all sites. The creation of a global relation 

requires its name and location to be broadcast to all sites. This is a type 2 scheme. 

In the SDD-1 system, the catalog is a single relation that can be fragmented and 

replicated, allowing the entries to be distributed at data module sites. It is possible 

for local objects to have their catalog entries at a remote site. Consequently data 

definition operations may be nonlocal. This is a type 3 scheme. However, a fully 

replicated locator catalog is required at each site to keep track of the database cata¬ 

log. A locator catalog contains information on the global scheme and details con¬ 
cerning fragmentation and replication. 

Catalog details such as local-to-global name mappings, physical details concern¬ 

ing file organization and access methods, general and integrity constraint details, and 

database statistics could be stored locally. A site needing remote catalog information 

requests such information and stores it for later use. This scheme is called caching 

the remote catalog. It is not a replication of the remote catalog insofar as no attempt 

is made to maintain the consistency between the cached catalog and the remote one. 

The two are identical at the time of caching and this is indicated by both having 

identical version numbers. However, over time the remote catalog could be modified 

and its version number could change. This inconsistency is revealed when a query 

processed with a cached catalog is executed. At that time it is discovered that an out- 

of-date catalog has been used. This causes the query plan to be abandoned and the 

updated catalog to be transmitted to and cached at the site in question. The query is 

then reprocessed with the up-do-date remote catalog. SSD-1 and Distributed INGRES 
use this scheme of remote catalog caching. 

15.4 Object Naming 

In a distributed database system, we want to share data but we don’t want too many 

restrictions on the user s choice of names. The system can adopt a global naming 

scheme such that all names are unique throughout the system. Two sites or users 

cannot use the same name for different data objects. This requirement for unique 

names can cause problems when a new site with an existing database is being inte¬ 

grated into the DDBMS. A unique name criterion would entail renaming objects in 

the database to be integrated as well as in the application programs that access them. 

A drawback of the global name requirement is the loss of local autonomy, which al¬ 

lows users to choose appropriate local names even for global data items. Another deter¬ 

rent is the bottleneck that would be created with the use of a single global name server 
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which has to be consulted for each name that is to be introduced in the database. The 

reliability of the system would also be compromised, since the entire system would 

be dependent on a single name server site for resolving naming conflicts. 

For these reasons we stay away from a global naming scheme or the requirement 

that users choose systemwide unique names. Lifting such restrictions make it possible 

for different names to be used for the same data object, or the same name for differ¬ 

ent data objects. Although objects may not have unique names in the database, the 
DDBMS is required to differentiate between the objects. 

Names used in queries or application programs are chosen by the end-users. To 

keep programming and query specification simple and invariant, regardless of the site 

from which they are executed, the network details must be transparent to the user. 

For instance, user A can enter the same query at site 1 or site 2 and anticipate the 

same results. Names selected by users have to be converted into system-unique 

names. This is done by consulting the local and/or the remote site catalog. 

System R* maps end-user names (called print names) to internal systemwide 
names (SWNs). An SWN has the form: 

creator@creator_site.object_name@birth_site 

The birth—site is the site at which the object was first created, and because site 

names are chosen to be unique, an SWN is unique. An object X that was created in 
Washington by user John will have the SWN of: 

John@Washington.X@Washington. 

The same user could create, from Washington, an object named X at Montreal and 

this would receive the SWN of: 

John@ Washington. X@Montreal. 

Note that the second data item is distinct from the first one. Also note that the 

user name is local; John@Washington is distinct from John@Montreal. In addition 

the name of an object includes its birthusite but this need not be its actual location. 

The data item could be moved to another site and be replicated at a number of sites. 

To allow users to use print names, which are names of their choice for global 

data items, System R* creates these print names as synonyms for the corresponding 

SWNs. The synonyms are stored in the local catalog. The synonym-mapping scheme 

allows different print names for the same object and different objects having the same 

print names. The local catalog entry for an object includes its SWN, among other 

things. To find the catalog entry for an object, search the local catalog, followed by 

the birth_site catalog, then the site indicated by the birth_site catalog as currently 

holding the object. 
Internal names can also be used to differentiate between fragments and replicates. 

If each fragment and replicate is assigned a number, these numbers can be concatenated 

with the name@birth_site to distinguish the different fragments or copies. 

15.5 Distributed Query Processing 

A query in a DDBMS may require data from more than one site. The transmission 

of this data entails communication costs. If some of the query operations can be 

executed at the site of the data, they may be performed in parallel. Section 15.5.1 
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elaborates on this aspect of distributed query processing. The semijoin operation, 

introduced in Section 15.5.2, is used to reduce the size of a relation that needs to be 

transmitted and hence the communication costs. 
Consider a user at site S| that poses a query that requires data from another site, 

S2, as well as its own. The response to the query can be built by one of the following: 

1. Sending data from S2 to S|. 

2. Resolving the query at S2. 

3. Resolving the query at another site, S3. 

The first choice is obvious. Option 2 requires that the query and relevant data 

be transmitted from S| to S2, while option 3 requires that the relevant data from both 

S, and S2 be sent to some other site, S3 (strange as it may sound, in some circum¬ 

stances this choice can be better than the other two). The optimal choice depends on 

the sizes of the relations and results; the communication costs between S] and S2, S, 

and S3, S2 and S1; S2 and S3; and the site where the result will be utilized. Here we 

concern ourselves only with communication cost. It is common to calculate commu¬ 

nication cost in terms of the number and size of messages, i.e., 

communication cost = c0 + c, * size 

where c0 is the setup constant, Cj the cost per byte of transmitting data, and size the 

number of bytes of data transmitted. When the same message is broadcast to n sites, 

the factor c, can be replaced by cn, where for point-to-point transmissions: 

cn = n * c, 

and for broadcast transmissions: 

cn = c, 

It becomes clear that if we want to optimize communication cost alone, we should 

consider both the total number of messages and the number of bytes transmitted. 

The other point to be considered is data distribution. Access for read operations 

can be localized as far as possible. Consequently, communication costs can be in¬ 
curred for update operations. 

We consider the communication cost reduction techniques for one of the most 
common relational algebra operations, the join. The join is also one of the most 

expensive operations to perform. In the following join we ignore the joining attri¬ 
butes for convenience. 

T = R\X\S 

If these relations are stored at different sites, the join can be performed by 

transmitting tuples of one of the relations, on demand, to the site of the other rela¬ 

tion; or one of the relations, in its entirety, to the site of the other relation; or both 

relations to a third site. The number of messages in the first choice is at least equal 

to the number of tuples in the relation. In the second, it is one and only one of the 

relations needs to be transmitted. In the third case the number of messages is two, 

and the size of each message transmitted is equal to the size of the corresponding 
relation. 

Let us discuss the first method in more detail. If we have to transmit tuples on 

demand, why not ask for tuples that match some tuple in the other relation? For 
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example, if we are to join the relations R and S, we can send a tuple of S and ask 

for all tuples of R that match this tuple of S. In this instance the number of messages 

is 2 * |S|. The size of each response depends on the number of tuples that match a 

given S tuple. If we assume that the number of tuples of R that join with a tuple of 

S is 8|R|, where 8 is some factor in the range [0,1], then the communication cost is 
given by: 

|S| * (c0 + cj * Ssz) + |S| * (c0 + c, * 8|R| * Rsz) 

Here Rsz and Ssz are the tuple sizes of relations R and S, respectively. The first 

factor is due to the tuples of S transmitted to the site of R. The second factor is due 
to the tuples of R returned in response to each tuple of S. 

In the first and second methods of performing the join of R and S, having the 

choice of which relation to transmit doubles the number of possibilities to evaluate 
before a satisfactory determination of optimal costs can be made. 

1 5.5.1 Parallelism in Distributed Query Processing 

Consider the evaluation of a query involving a number of joins, as follows: 

RMSMTNU 

Suppose the relations R, S, T, U are stored at sites S,, S2, S3, and S4. Ignoring 

the differing costs due to the different sizes of these relations, the query can be 

evaluated in parallel by the following scheme. Relation S could be shipped to site S, 

where the first join R XI S is evaluated. Relation U is shipped to site S3 where the 

join T CXI U can be evaluated in parallel. In a bus-structured network, the transmis¬ 

sion of these relations can be done in sequence, whereas in a mesh-structured net¬ 

work the transmission can occur in parallel. 

At the conclusion of the first join, the result is transmitted to site S3, where the 

final join of (R [XI S) with (T IX U) is performed to evaluate R [X S IX T CXI 

U. Alternatively, the tuples of the first join can be transmitted to S3 as they are 

produced at site Sj. Another alternative, where the result of the join is needed at site 

S, is to transmit to site S the tuples of the join R X S from S, and the tuples of the 

join T CX U from S3 as they are produced. This enables site S to concurrently 

compute the final join operation. 
If the site where one of the relations involved in the join is also the site where 

the result of the join is required, that site should be used to evaluate one of the first 

joins and the final join. This scheme avoids retransmitting the result of the first of 

these joins. 

15.5.2 Semijoin 

Let us examine Example 15.9, which requires the join of two relations stored at 

different sites. 

Example 15.9 Consider the two relations shown in Figure F. STUDENT is at site 1 and 

REGISTRATION is at site 2. Suppose a class list of each course is to be 
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Figure F Obtaining a join using a semijoin. 

STUDENT 

Std# Std—Name 

1234567 Jim 
7654321 Jane 
2345678 San 
8765432 Ram 
3920137 John 
4729435 Ron 
3927942 Aron 
1934681 Rodney 
8520183 Maria 

Site 1 

REGISTRATION 

Std# Course# 

1234567 COMP353 

1234567 COMP443 

2345678 COMP201 

8765432 COMP353 

8765432 COMP441 

7654321 COMP441 

Site 2 

X ~ As/rf# 

(REGISTRA¬ 

TION) 

Std# 

1234567 

2345678 

8765432 

7654321 

Y = STUDENT EX 

REGISTRATION 

= STUDENT IX X 

Std# Std-Name 

1234567 Jim 
7654321 Jane 
2345678 San 
8765432 Ram 

STUDENT CXI REGISTRATION = 

Y tX REGISTRATION 

Std# Course# Std-Name 

1234567 COMP353 Jim 
1234567 COMP443 Jim 
2345678 COMP201 San 
8765432 COMP353 Ram 
8765432 COMP441 Ram 
7654321 COMP441 Jane 

prepared, which involved joining the two relations. The join could be per¬ 

formed by first projecting REGISTRATION on Std# and transmitting the 

result, itstd# (REGISTRATION), to site 1. At site 1, we select those tuples 

of STUDENT that have the same value for the attribute Std# as a tuple in 

17std# (REGISTRATION) by a join. The entire operation of first projecting 
the REGISTRATION and then performing this join is called a semijoin and 

denoted by CX. However, we do not obtain the desired result after the CX 

operation. The semijoin operation reduces the number of tuples of STU¬ 

DENT that have to be transmitted to site 2. The final result is obtained by a 

join of the reduced STUDENT relation and REGISTRATION. These steps 

are illustrated in Figure F. The class list can be obtained by sorting the 
resulting relation on Course#. 

Note: It may be worthwhile to compute Y = STUDENT tX REGISTRA 

TION and Z = REGISTRATION IX STUDENT and then obtain the final 
result by X 1X1 Z. ffl 
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To reduce the communication cost in performing a join, the semijoin (tX) op¬ 

erator has been introduced. Let P be the result of the semijoin: 

P = R tX S 

Then P represents the set of tuples of R that join with some tuple(s) in S. P does not 

contain tuples of R that do not join with any tuple in S, thus P represents the reduced 

R that can be transmitted to a site of S for a join with it. If the join of R and S is 

highly selective, the size of P would only be a small proportion of the size of R. To 

get the join of R and S, we now join P with S, i.e., 

T = ?\X\S 
= (R tX S) IX S 
= (S (X R) XI R 

= (R tX S) 1X1 (S IX R) 

The semijoin is a reduction operator; R IX S can be read as R semijoin S or 

the reduction of R by S. Note that the semijoin operation is not associative. In Ex¬ 

ample 15.9, STUDENT [X REGISTRATION is not the same as REGISTRATION 

IX STUDENT. The former produces a reduction in the number of tuples of STU¬ 

DENT; however, the latter is the same relation as REGISTRATION! 

In distributed query processing, communication cost reduction is one of the ob¬ 

jectives. The semijoin operation can be introduced to reduce the cardinality of large 

relations that are to be transmitted. Reduction in the number of tuples reduces the 

number and total size of the transmission and the total cost of communication. 

It is wrong to assume that if |R| > |S|, then R should be reduced, as we shall 

see below. 

To compute the join of R and S, we first compute the semijoin and then the join 

of one of the reduced relations with the other. The evaluation of the semijoin R tX 

S requires that we transmit TrRns(S) to the site of R. We do not need to transmit the 

whole of S. Let us refer to this projection of S and S' and the size of the projected 

S as s'. 
We use S' to reduce R by computing R IX S'. Let us refer to the reduced R as 

R' and the size of reduced R as r'. R' is then transmitted to the site of S to compute 

the join (R'lXl S). The communication cost incurred is: 

2 * c0 + Ci * (s' + r') 

Without the semijoin, we would have sent the whole of R to the site of S and 

the cost would have been: 

c0 + G * |R| * Rsz 

Therefore, the benefit of using the semijoin is: 

c, * (|R| * Rsz - s' - r') - c0 

If the benefit is greater than zero, we prefer the semijoin over the traditional 

join. 
The decision as to whether to reduce R or S can only be made after comparing 

the benefit of reducing R with that of reducing S. (We can also choose to reduce 

both.) We have already calculated the cost of reducing R; now let us do the same 

for S. As before, let us represent the size of 7rRns(R) as r" and the size of the reduced 
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S, after performing the semijoin S IX iTRns(R)> as s"- Then l^e tota* communicati°n 

cost incurred is: 

2 * c0 + C| * (s" + r") 

Therefore, the optimal communication cost in evaluating R IXI S using the 

semijoin technique is: 

2 * c0 + ct * min (s' + r\ s" + r") 

The optimal cost of performing R tXI S without the semijoin is: 

c0 + C| * min (|R| * Rsz, |S| * Ssz) 

The semijoin technique is beneficial when: 

Cq + C| * min (r' + s', r" + s") < C| * min (|R| * Rsz. |S| * Ssz) 

Example 15.10 illustrates a numerical example to determine when the semijoin 

will be advantageous. 

Example 15.10 Let us reconsider the join operation in Example 15.9. Suppose the result is 

required at site 2. Let us compare the communication costs of the semijoin 

with those of a simple join. Assume that the size of attributes are as follows: 

Std# = 7, Std-Name = 20. 

The first semijoin incurs a communication cost of c0 + c, * 28 and the 

transmission of the semijoin result incurs a communication cost of c0 + C| 

* 108, for a total of 2 * c0 + ct * 136. For the joint operation the com¬ 

munication cost of transferring STUDENT to site 2 would be c0 + c, * 

243. The difference in cost is C| * 107 — c0. If c0 < c,/107, then the 

semijoin operation is better from the point of view of communication 

costs. ■ 

In the above analysis, we have ignored the fact that the result of the join will 

be available at a different site when we reduce R rather than S. The same is true for 

the join operation (without using the semijoin) when we transmit S rather than R. In 

a complete analysis, the cost of transmitting the join result to the required site has to 
be taken into consideration. 

The semijoin operation reduces the communication cost but not the I/O and 
processing costs. In fact, the latter two costs may increase. 

1 5.5.3 Semijoin and Reduction of Relations 

As we have seen, the semijoin operation reduces the size of the relations and this 
characteristic can be profitably utilized in query evaluation. 
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Definition: Full Reduction of Relation: 

A relation that appears in the qualification clause of a query is said to be fully 

reduced if all of its tuples that do not satisfy the qualification have been 
eliminated. 

In query evaluation, we can process the fully reduced relations instead of the 

original relations. The problem now becomes identifying all tuples that do not satisfy 

the qualification. A semijoin reduces a relation by eliminating tuples that will not 

take part in the join. Thus, we can use semijoin programs to reduce the participating 

relations. We cannot, however, claim that the relations are fully reduced. 

Consider the qualification part of a query, 

(R.A = S.B) A (R.C = T.D) A (R.C = U.F) A (S.G = V.H) A (S J = W.K) 

where the attributes A and B are defined on the same domain. Similarly, each of 

(C,D), (E,F), (G, H) and (J,K) are defined on the same domains. We can rename 

the attributes and rewrite the qualification part of the query as: 

(R.A = S.A) A (R.C = T.C) A (R.C = U.C) A (S.G = V.G) A (S.J = W./) 

Each term of this expression can be evaluated by a join. A pictorial method of 

showing the order of evaluation of the joins involved is given in Figure 15.7a and is 

known as a query graph. The relations involved in the expression appear as nodes 

of the query graph. There is an edge in this graph between nodes R and S with the 

label A, if the clause (R.A = S.A) is in the expression. It has been shown (please 

see the bibliographic notes for reference) that the relations in a query whose qualifi¬ 

cation is either a tree or the equivalent of a tree graph can be fully reduced. 

A query whose qualification part cannot be converted to a query graph in the 

form of a tree is called a cyclic query. (R.A = S.A) A (S.J = W.J) A (R.C = 

Figure 15.7 Query graph: (a) tree query; (b) cyclic query. 

(a) 
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W.C) is an example of a cyclic query expression. The query graph for this query is 

given in Figure 15.7b. In the case of cyclic queries, it may not be possible to fully 

reduce all relations by semijoins. 

15.5.4 Concluding Remarks 

We have only considered the communication cost to date because it was not present 

in query processing in a centralized DBMS. The other two costs, I/O and processing 

costs, are similar to the centralized case. The other reason for focusing on commu¬ 

nication costs is because of the traditional use of slow speed lines for connecting 

geographically dispersed sites. With slow speed lines, the communication cost dom¬ 

inates all other costs. On faster networks, which are more common for local area 

networks, communication and I/O costs are comparable and any optimization should 

attempt to optimize total costs. 
In an earlier chapter on centralized database query processing, we considered 

ways of reducing the number of I/O pages accessed in processing a query. A com¬ 

mon technique is the use of secondary access structures. In distributed systems, such 

access structures are sometimes inappropriate. We need to keep these indexes cur¬ 

rent. The processing of a query at multiple sites in parallel can reduce overall eval¬ 

uation costs. Even when data is transmitted between sites, any possible local reduc¬ 

tion, for example, due to selection or projection, is first made. After local reduction, 

the resultant relation or fragment becomes incompatible with the index. It has been 

shown that in some cases it may be advantageous to create a temporary index for 

query optimization. Such temporary indexes are discarded at the end of the query 
evaluation process. 

Distributed query processing is also complicated by the presence of fragments. 

As we saw in the section on data distribution, some fragments are stored relations. 

The users see logical relations. A logical relation can be considered a query on stored 

relations. Such a query is composed of some sequence of joins and union operations 

on the stored fragments. The user query can thus be transformed into an expression 

containing operations on stored relations. For example, let R be some logical relation 

such that R = R| IXI R2. Let the user query be CTpTTqCR). We can replace the user 

query with ctpttq(R| tXl R2) and subsequently apply query optimization operations 
to this modified one. 

15.6 Consistency 

In a distributed system, a transaction T, requiring data items from a remote site Sj 

spawns a subtransaction (also called a transaction agent) T;j at this remote site (Figure 

15.8). Such subtransactions are executed independently at the respective sites. The 

site of the transaction can be considered the coordinator site and the sites where the 
spawned subtransactions run are called participating sites. The transaction Tt is re¬ 

ferred to as the coordinator. In addition each site, as in a centralized database, con¬ 

tains a transaction manager that arbitrates resource requests from transactions run¬ 

ning at the site. A request for a remote resource results in the spawning of a 
subtransaction at the remote site. 
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Figure 15.8 Query processing in the DDBMS. 

Coordinator site Participating site 

Site i Site j 

One such need for a subtransaction is when a transaction has to modify a data 

item and several copies of the data item exist at a number of different sites. Each 

data item could be modified by a subtransaction spawned at these remote sites, as 

indicated in Example 15.1. 

All data in a database system must be consistent and must always satisfy certain 

a priori constraints. The DDBMS (DBMS, in a centralized system) must guarantee 

that these constraints are never violated. In practice, as we saw in Chapter 12, there 

are times when such constraints are violated; however, since the values of the data 

items not satisfying these constraints are not accessible during these times, the con¬ 

straints never appear to be violated. Constraints of this type are also referred to as 

invariants. The system state is not only consistent, but it arrives at this consistent 

state from another consistent state as a result of external stimuli. Such is the case 

when a system in some consistent state is required to perform an action. Then the 

resultant state is not only consistent but also reflects the result of only that action. A 

system is required to be consistent with respect to its invariants and the externally 

applied stimuli. 
We can say that an action F will change the state of the database: 

state' : = F(state) 

by changing the values of some entities in the write set of F (denoted Fw) depending 

on the values in the read set of F (denoted Fr). Thus, the action F needs only to read 

the referenced values in Fr and write the values in Fw. 
While performing an action, the system state might be temporarily inconsistent. 

If the state is visible, our requirement for a consistent state is violated. An action, 

however trivial, will take some finite amount of time and during that time the state 

may be inconsistent (we use the word maybe because if the write set of the action is 

empty, it cannot leave the system in an inconsistent state). If we can make the tran¬ 

sition from the old state to the new state instantaneously or not allow another action 

during the transition period, then we can guarantee that the visible state is always 

consistent. 
An action F is atomic if all the writes are completed without making the data¬ 

base inconsistent, or none of the writes take place. When all the writes are success¬ 

fully completed an action is said to have committed, otherwise it is said to have 

aborted. 
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As we discussed in Chapter 12, transactions are said to possess certain proper¬ 

ties: 

• Consistency: A transaction transforms a consistent database state into another 

consistent database state. 

• Atomicity: All operations of the transaction are performed or none are 

performed. 

• Serializability: If several transactions are executed concurrently, the result must 

be the same as if they were executed serially in some order. 

• Durability: Once a transaction has been committed the results are guaranteed 

not to be lost. 

• Isolation: An incomplete transaction cannot reveal its results. 

These properties of a transaction are assured by using certain concurrency con¬ 

trol and recovery techniques. Chapters 11 and 12 covered such techniques for cen¬ 

tralized DBMSs. In the next two sections we briefly cover some techniques used in 

distributed DBMSs. 

15.7 Concurrency Control 

Concurrency control in a DDBMS has to take into account the existence of fragmen¬ 

tation and replication of data. Variations of the schemes used in centralized DBMSs 

are used in distributed concurrency control. A number of such schemes based on the 

locking and timestamp approaches are presented in this section. 

Locking is the simplest concurrency control method. Locking enforces serial 

access to data. In centralized DBMSs, the lock requests go to a single lock manager, 

which can arbitrate any conflicts. In distributed systems, a centralized lock manager 

is not desirable due to the bottlenecks created at the central site. A centralized lock 

manager at a single site, furthermore, is vulnerable to failure, leading to the disrup¬ 
tion of the entire system. 

The locking scheme must be well formed. In other words, no transactions can 
access (read or write) a data item that it has not locked. 

15.7.1 Distributed Locking 

As discussed in Chapter 12, the different locking types can be applied to distributed 

locking. A centralized lock manager at a single site is relatively simple to implement. 

Here a transaction sends a message to the lock manager site requesting appropriate 

locks on specific data items. If the request for the locks could be granted immedi¬ 

ately, the lock manager replies granting the request. If the request is incompatible 

with the current state of locking of the requested data items, the request is delayed. 

In the case of a read lock request, the data item from any site containing a copy of 

it, is locked in the share mode and then read. In the case of a write, all copies of the 

data items have to be modified and are locked in the exclusive mode. With a cen¬ 

tralized lock manager, the detection of deadlock is straightforward, requiring the 
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generation of a global wait-for graph (GWFG). The disadvantage of this scheme, in 

addition to the bottlenecks it creates, is the disruption of the entire system in case of 
the failure of the centralized lock manager site. 

In the distributed method each lock manager is responsible for locking certain 

data items. The problem this scheme creates, however, is that of detection of dead¬ 

locks. Since lock requests are directed to a number of different sites, the nonexist¬ 

ence of a cycle in the local wait-for graph at each lock manager is not sufficient to 

conclude the absence of a deadlock. It is still necessary to generate a global wait- 
for graph to detect a deadlock. 

Example 15.11 illustrates the type of locking required in a distributed system 
where data is fragmented as well as replicated. 

Example 15.11 Consider transactions T, and T2 of Figure G. Suppose the data is replicated 

and three copies of A are stored at sites S,, S2, and S3. To execute these 

transactions, each spawns three local subtransactions, T1S!, T|S2, T)S3, and 

T2Si, T2S2, T2S3 to be executed at sites S], S2, and S3, respectively. A pos¬ 

sible execution schedule for these transactions is given in Figure H. As we 

see from Figure H, the final result obtained is incorrect because the schedule 

is not serializable. If each subtransaction of T! had run to completion before 

those of transaction T2, the values in each replicate of A would have been 

200. If each subtransaction of T2 had run to completion before those of 

Figure G Two modifying transactions. 

Transaction T| 

Lockx(A) 

A := 100 

Write(A) 

Unlock(A) 

Transaction T2 

Lockx(A) 

A := 200 

WTite(A) 

Unlock(A) 

Figure H A schedule for the transactions in Figure G. 

site Si 

Trans¬ Trans¬ Trans¬ 

action action action 

Time Tisi T2S1 TlS2 

ti Lockx(A) 

0 A := 100 

t3 Write(A) 

I4 Unlock(A) 

t5 Lockx(A) Lockx(A) 

t* A := 100 A : = 200 

h Write(A) Write(A) 

^8 Unlock(A) Unlock(A) 

site S2 site S3 

Trans¬ Trans¬ Trans¬ 

action action action 

T2S2 TlS3 T2S3 

Lockx(A) Lockx(A) 
A := 200 A := 100 
Write(A) Write(A) 
Unlock(A) Unlock(A) 

Lockx(A) 
A := 100 
Write(A) 
Unlock(A) 
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transaction T)5 each replicate of A would have the value 100. Consistency 

requires that transactions T, and T2 be serializable and one of them be run 

to completion before the other. ■ 

Example 15.11 illustrates that allowing more than one transaction,to write lock 

some subset of the replicates of a data item leads to inconsistency in the database. 

To achieve consistency, the write lock (exclusive mode locking) must be extended 

to all replicates of a data item. Reading can be achieved by locking a single replicate. 

A read lock can only be obtained if no transaction has locked the data item in the 

write mode. 
Implementation of the locking mechanism can be effected as follows. A trans¬ 

action T executing at site S does not know the total number of replicates of a data 

item nor the addresses of these sites. T, requiring a write lock on data item A, sends 

a message to all sites requesting the write lock. With n sites this involves n messages, 

unless a broadcast mode can be assumed. The sites having a replicate of the data 

item reply in the affirmative if the lock can be granted. The other sites indicate that 

they do not have a copy of the data item. Thus, up to 2n messages are involved 

before the transaction can proceed. Once the transaction decides to update the value 

of A, it would send up to n messages containing the updated value. Again, if a 

broadcast mode could be assumed, a single message could be used. If a transaction 

requires a read lock on a data item, say B, it could request the read lock from some 

known site that has a copy of B. If the site is not known, control messages have to 

be sent to a number of sites until one replies in the affirmative. The broadcast mode 

reduces the number of such control messages to one. In the latter case, the closest 

site having a copy of B would reply. The closeness criterion has to be determined a 
priori in the network. 

Majority Locking 

We can relax the requirement that all copies of a data item to be updated must be 

exclusively locked to the requirement that a majority of these copies must be locked 

for both the share (read) and exclusive (write) modes. This approach is called the 

majority locking strategy. Since a read lock is shareable, any number of transactions 

can simultaneously hold a read lock on a majority of the replicates of a data item. 

However, only one transaction can hold a write lock on a majority of these replicates. 

No transaction can majority lock a data item in the share mode if it is already major¬ 
ity locked in the exclusive mode. 

To lock a data item in the read or write mode, a transaction must send out at 

least f(n + l)/2] messages and wait until it receives at least f(n + l)/2j affirmative 

replies. If the data item is to be updated, the transaction would have to send n 
messages with the updated value of the data item. 

The number of messages required for an update in the majority approach is 

smaller than those required for locking all replicates. Compared to the approach re¬ 

quiring an exclusive lock on all replicates, the number of deadlocks and subsequent 

recoveries is smaller. In the lock-all approach, if two competing transactions obtain 

a write lock on at least one site, neither of them succeeds. In the majority approach, 

at least one transaction is able to obtain a write lock on a majority of sites. Note that 

in an update, all replicates have to be updated. A transaction, having obtained a write 

lock on a majority of replicates, locks out all other transactions and can subsequently 
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succeed in locking all replicates for the update. The disadvantage of this scheme is 

that a majority of locks have to be acquired for reads. 

Primary Site Locking 

In the primary site locking approach, a single site is designated as the primary site 

for a given data item, regardless of the number of copies existing for that data item. 

All lock requests for the data item must be directed to this site, which will decide 

whether or not to grant the request. In the centralized approach, only one site is 

chosen as a primary site for all data items; in the distributed approach, different sites 

are chosen for different data items. The disadvantage of using a single site as the 

centralized coordinator for all locking is the bottleneck created by having to process 

all lock requests at a single site and the vulnerability of the entire system when the 

site fails. The distributed approach overcomes these problems. The choice of which 

site to choose as the primary site is flexible and the site that is chosen for managing 

the lock of a data item need not have a copy of that data item. A transaction T 

requiring a lock on a data item A sends the lock request to the primary site. The 

primary site will grant the request and could indicate in the grant message the address 

of the site of the replicate to be used by the transaction. If the primary site fails, the 

portion of the database controlled by the failed site is not available, in spite of the 

fact that the actual data may be stored at a site that has not failed. 

Distributed Two-Phase Locking 

Concurrent transactions in a distributed system must be serializable, in addition to 

obtaining appropriate locks. This requires, as in the case of the centralized system, 

distributed two-phase locking. A schedule in the case of a distributed system is 

serializable if it is equivalent to a schedule wherein all actions of one transaction 

precede those of another. Example 15.12 illustrates the need for two-phase locking 

to be generalized to a distributed database. 

Example 15.12 Consider transactions T, and T2 of Figure I. Suppose the data is distributed 

and A is stored at site S, and B at site S2. To execute these transactions, 

each transaction spawns two local subtransaction, T1S1, T!S2 and T2S1, T2S2, 

Figure I Two modifying transactions. 

Transaction T, 

Lockx(A) 

A : = 100 

Write(A) 

Unlock(A) 

Lockx(B) 

B := 1000 

Write(B) 

Unlock(B) 

Transaction T2 

Lockx(A) 

A := 200 

Write(A) 

Unlock(A) 

Lockx(B) 

B : = 2000 

Write(B) 

Unlock(B) 
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Figure J A schedule for the transactions of Figure I. 

site S| 

Transaction Transaction 

Time Tisi T2si 

ti Lockx(A) 

I2 A : = 100 

L Write(A) 

*4 Unlock(A) 

t5 Lockx(A) 

A := 200 

Write(A) 

*8 Unlock(A) 

site S2 

Transaction 

TlS2 

Lockx(B) 

B : = 1000 

Write(B) 

Unlock(B) 

Transaction 

T2S2 

Lockx(B) 

B : = 2000 

Write(B) 

Unlock(B) 

respectively, to be executed at sites Si and S2. A possible execution sched¬ 

ule for these transactions is given in Figure J. As we see from Figure J, the 

final result obtained is incorrect since the schedule is not serializable. If 

transaction T] had run to completion before transaction T2, the values of A 

and B would have been 200 and 2000, respectively. Had transaction T2 run 

to completion before transaction Tl? A and B would have the values 100 

and 1000, respectively. ■ 

As in centralized two-phase locking, serializability requires that the locking in 

the distributed system also be two-phase. Recall that the two-phase locking scheme 

is required to have growing and shrinking phases. All lock requests made by a trans¬ 

action or any of its subtransactions should be made in the growing phase and released 

in the shrinking phrase. Whenever a transaction issues an unlock instruction the 

shrinking phase starts indicating that all required locks are obtained. Where data is 

replicated, all subtransactions of a transaction that would modify the replicated data 

item would have to observe the two-phase locking protocol. Therefore, we cannot 

have one subtransaction release a lock and subsequently have another subtransaction 

request another lock. This requires that each subtransaction of a transaction notify all 

other subtransactions that it has acquired all its locks. The shrinking phase can start 

once all subtransactions have acquired all their locks. 
In establishing the fact that all subtransactions have finished their growing 

phase, the number of messages involved is high. The possibility of failure in nodes 

and communication links and that of a rollback of some subtransactions in case of 

failure of others to complete normally indicates that the unlocking operations should 

be delayed until the distributed commit point of all subtransactions. 

The distributed commit requires the exchange of a number of messages between 

the sites of subtransactions. It is done using a two-phase commit protocol discussed 
in Section 15.8. 

1 5.7.2 Timestamp-Based Concurrency Control 

Locking schemes suffer from two serious disadvantages: deadlock and low level of 

concurrency. Timestamp methods have been advocated as an alternative to locking. 
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The timestamp methods discussed in Chapter 12 can be extended to the distributed 

case. As in the case of the centralized timestamp methods, each copy of a data item 

in the distributed approach contains two timestamp values: the read timestamp and 

the write timestamp. Also, each transaction in the system is assigned a timestamp 

value that determines its serializability order. A transaction T with a timestamp value 

of t ensures that it does not read a value from the future (that is, the write timestamp 

of the data item must not be greater than value t) nor write a value that was already 

read by a younger transaction (i.e., the read timestamp of the data item must not be 

greater than value t). If the write timestamp of the data item to be read is greater 

than value t (written by a younger transaction) or if the read timestamp of the data 

item to be written is greater than value t (read by a younger transaction), transaction 

T must be aborted and restarted. If transaction T attempts to write a data item but 

finds that the read timestamp of the data item is less than t (an older transaction had 

read the value) and the write timestamp of the data item is greater than t (a younger 

transaction had already written a new value), transaction T is not required to be 

aborted. However, it does not update the data item (it was too slow to change the 

value of the data item). When more than one copy of a data item exists, a new value 

must be written in all of its copies. In this case, the two-phase commit protocol 

discussed in Section 15.8 must be used to make the new value permanent. 
As in the centralized database system, a number of different timestamp-based 

schemes can be used. In these schemes a timestamp is used to associate some value 

with a transaction and give it an order in the set of all transactions being executed. 

In the serial execution of transactions, time plays an important role and timestamping 

seems to be the natural solution to the serializability problem. 

If a system assigns a unique timestamp to a transaction, the timestamp identifies 

the transaction. The generation of timestamps in a centralized system requires the 

use of some monotonically increasing numbers. In distributed systems, each site gen¬ 

erates a local timestamp and concatenates it with the site identifier. If the local 

timestamp is unique, its concatenation with the unique site identifier would make the 

(global) timestamp unique across the network. The site identifier must be the least 

significant digits of the timestamp so that the events can be ordered according to their 

occurrence and not their location, as illustrated in Example 15.13. 

Example 15.13 Let two events be assigned the timestamps 200100 and 100200, where the 

first three digits of the timestamp identify the site and the last three digits 

the time at which the event occurred. Now even though the event with ti¬ 

mestamp 100200 occurred later than the event with timestamp 200100, the 

timestamp comparison states otherwise. ■ 

The local timestamp can be generated by some local clock or counter. In the 

event a counter is used, a relatively busy site would rapidly outrun slower sites. The 

local clocks at different sites can also get out of step. These local timestamp-gener¬ 

ating schemes can be kept fairly well synchronized by including the timestamp in the 

messages sent between sites. On receiving a message, a site compares its clock or 

counter with the timestamp contained in the message. If it finds its clock or counter 

to be slower, it sets it to some value greater than the message timestamp. In this 

way, an inactive site’s counter or a slower clock will become synchronized with the 

others at the first message interaction with another site. 
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On the one hand, the number of messages required to be transmitted in the 

timestamp approach is smaller than in the locking approach. On the other hand, the 

number of transactions that are aborted to be restarted is relatively larger. This occurs 

in cases where more than one transaction attempts, simultaneously, to access the 

same data item. (If we can delay one of the conflicting operations, we can reduce 

the number of transactions that have to be aborted.) 

15.8 Distributed Commitment and Recovery 

In addition to the types of failures encountered in the centralized DBMSs, the recov¬ 

ery subsystem in a DDBMS has to contend with the loss of messages and failure of 

communication links and nodes. A distributed commit protocol known as two-phase 

commit is used to ensure data consistency. The recovery subsystem is used to restore 

the database to a consistent state on the restoration of the failed nodes or communi¬ 

cation links. 
In our discussion of transaction properties, we stated that not only should the 

transaction be serializable but that it should be atomic. This in tum implies that either 

all or none of the writes should be performed. In a distributed system, when the 

write requests have been issued there must be some way of ascertaining that all of 

them have indeed been performed. Where a site (or link) may have failed, recovery 

operations must be performed when the site or link is reconnected to the network. 

The recovery operations must guarantee that for committed (sub)transactions, the 

write operations are in fact correctly reflected in the database before the site comes 

online. If for some reason a subtransaction at a site cannot terminate normally, then 

all the other subtransactions spawned by its parent should be aborted. 

In order for the atomic transactions to be recoverable, 

• Updated data items should not become permanent until recovery data is 
transferred to stable storage. 

• The original state of all updated data items should be available, at least until the 
updated data becomes permanent. 

If there are no failures or abnormal conditions, such as denial of locks or dead¬ 

locks requiring the abortion of any of the subtransactions, the distributed commit 

protocol is relatively straightforward. Each subtransaction Ty of transaction T; sends 

a ready to commit or abort message to the coordinator. If the coordinator receives 

the ready to commit message from all subtransactions, it sends a commit message to 

all subtransactions. Once the commit message is received all subtransactions perform 

the appropriate commit action, which involves writing the recovery log including a 

commit (sub)transaction marker, and then making the updates to the data items per¬ 

manent. If the coordinator receives an abort message from any subtransaction, it need 

not wait for any further messages and issues an abort message to all subtransactions. 

On receipt of an abort message, all subtransactions abort, after making appropriate 
entries in the recovery log. 

Failures in a distributed system, in addition to the types of failure in a central¬ 

ized system, include the following: lost message, node failure, and communication 

link failure. The latter two types may partition the network into two or more parts. 

These network failures create problems in the above simple method used in commit- 
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ting a transaction. One of the problems is that of blocking a subtransaction. A sub¬ 

transaction is said to be blocked when it does not know what to do next. It cannot 

safely commit or abort, since it is cut off from the rest of the network. If it unilat¬ 

erally decides to either commit or abort, there is a possibility that the system would 

be in an inconsistent state. This is illustrated in Example 15.14. 

Example 15.14 Consider the subtransactions Tn, T12, and T13 spawned at sites Si, S2, and 

S3 of transaction Tj at site S. Each of these subtransactions has been created 

to update the value of a replicated data item, A. If the communication links 

to site S) break down after T|S, has sent a ready to commit message at step 

s4 (Figure K), then it would not receive the commit message back from the 

coordinator. If TIS1 decides to abort, the value of A would be unchanged at 

site S|. If the other two subtransactions had also indicated that they were 

ready to commit, the coordinator would have sent a commit message and 

the value of A at sites S2 and S3 would be updated. This means the database 

is inconsistent and T1SI must not abort. If TISI decides to commit, the value 

of A would be changed at site S,. However, if one of the other subtransac¬ 

tions had indicated that it was aborting, the coordinator would have issued 

an abort message. This would mean that the value of A in the copies at sites 

S2 and S3 would be unchanged. Thus, T1SI must not commit. As a result of 

the possibility of inconsistency, regardless of what T(S1 does, it cannot pro¬ 

ceed beyond step s4. In other words, the subtransaction is blocked. 

Figure K Blocked transaction 

site S| site S2 site S3 

Transaction Transaction Transaction 

Step Tisi TlS2 T" 1 S3 

Sl Lockx(A) Lockx(A) Lockx(A) 

S2 Read(A) Read(A) Read(A) 

s3 A : = A + 100 A : = A + 100 A : = A + 

S4 ready ^to-commit 
failure of link to S( 

Protocol for the two-phase commit, which allows recoverability of distributed 

transactions, is presented in the following section. 

15.8.1 Two-Phase Commit 

The voting phase and the decision phase are the two phases of the two-phase commit 

protocol. In the voting phase, the subtransactions are requested to vote on their 
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readiness to commit or abort. In the decision phase, the decision as to whether all 

subtransactions should commit or abort is made and carried out. The transactions at 

a site interact with the transaction manager of the site, cooperating in the exchange 

of messages. 

It is more convenient to use the process concept rather than the transaction 

concept in discussing the two-phase commit and deadlocks. Just like a transaction, a 

process is capable of requesting data items and releasing them. However, they have 

a better knowledge of their environment, including knowledge about the identity of 

the processes that are blocking them. The pseudocode for the processes at the partic¬ 

ipant and coordinator sites is given below. Note that part of the code belongs to the 

transaction manager (TM) and the remaining to the subtransactions or the coordi¬ 
nator. 

The coordinator process starts by spawning a number, n, of subtransactions. 

Some of these would be at remote sites and others could be at the same site as the 

coordinator. The only difference is that a subtransaction at the same site does not 

have to communicate via the network. These subtransactions are run along with the 

respective TM as participant processes at a number of sites. 

Participant Process 

begin 

acquire locks and make local changes 
if normal end 

then status : = okay to commit 

else status : = should abort; 
set timeout; 

while (not request from coordinator for voting or not timeout) 
do {nothing}; 

if timeout 

then write recovery log, release all locks, and abort 
if request from coordinator for voting 

then if status : = should abort 

then begin 

send abort to coordinator 

write status on recovery log, release all locks, and abort 
end; 

else begin {status : = okay to commit} 

send ready to commit, write status on recovery log 
set timeout 

while (not second_signal from coordinator or not 
timeout) 

do nothing; 

if receive commit from coordinator 

then write recovery log, commit, 

release all locks, and send 

acknowledge to coordinator 
if receive abort from coordinator 

then write recovery log, release all locks, 

abort, and send acknowledge to coordinator 
if timeout {blocked} 

then begin 
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send SOS_second_signal and wait for response 
activate recovery 
end 

end 

end 

Coordinator Process 

begin 

spawn n subtransactions 

write into recovery log request for voting, send to all 

subtransactions request for voting 
messages := 0; 

abortall : = false; 

set timeout; 

while (messages =£ n or not timeout or not abortall) 
do begin 

if receive ready to commit 

then messages : = messages + 1; 
//receive abort 

then abortall : = true; 

end; 

if timeout or abortall 

then begin 

seconcLsignal : = abort 

write global abort in log 

end 

else begin 

second-signal : - commit 

write global commit in log 

end; 

send second-signal to all subtransactions; 

set timeout; 

acknowledge : = 0; 

while (acknowledge ^ n or not timeout) 

do begin 

if receive acknowledge from participant 

then acknowledge : = acknowledge + 1; 

end; 

if timeout and acknowledge =£ n 

then spawn SOS (second-signal) response process 

else write transaction complete in log 

end; 

When the participant processes execute, they know whether the tasks assigned 

to them were completed successfully or not. If successful, they are willing to com¬ 

mit, otherwise they have to abort. Recall that the assigned database update is done 

only on a copy of the data items in each process’s own workspace. These participant 

processes wait for a voting request from the coordinator process. If such a request is 

not received by a participant process, after a predetermined time period (timeout) it 

aborts after writing an appropriate recovery log. No changes are made to any data 
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items in the database. If a request for voting is received before timeout, the partici¬ 

pant process sends the appropriate status signal (okay to commit or should abort) to 

the coordinator process. On receipt of okay to commit signals from all the participant 

processes, the coordinator process sends a second signal to the participants to com¬ 

mit. On receipt of this commit signal, the participant process writes appropriate re¬ 

covery log and commit markers onto stable storage at its site. Following this, it 

makes the changes permanent in the database. 
If a participant process does not receive the second signal within a predeter¬ 

mined time period, it is said to be blocked. This could happen if the site goes down 

and then the recovery operation restores it and finds that the second signal was not 

received before the crash. A blocked participant process sends out an SOS signal, 

which is responded to by an SOS process. Such an SOS process could have been 

spawned by the coordinator process to help in the recovery of any site that failed 

after the vote was taken to commit or abort, but before the site could actually commit 

or abort. The SOS signal would also be emitted by a participant process if it did not 

receive the second signal (to commit or abort) from the coordinator, the signal being 

lost in the network. 
A participant process that does not receive a request from the coordinator pro¬ 

cess for voting within a predefined time period will timeout. Timeouts result in the 

participant process having to write the recovery log, release all locks, and abort. In 

case the request for a voting message from the coordinator was lost, the coordinator 

would not receive any signal from such aborted participant processes. The coordina¬ 

tor process timeouts and therefore aborts all the other participant processes. 

1 5.8.2 Recovery with Two-Phase Commit 

The recovery log, in addition to the type of information indicated in the centralized 

case, includes the log of the messages transmitted between sites. Such a record would 

enable the recovery system to decide, when the site is reconnected to the network, 

on the extent of the site’s interaction with the rest of the system. The recovery system 

would also be able to determine the fate of the subtransactions running at the site. It 

can then determine which subtransactions were committed, aborted, or blocked. Re¬ 

garding the committed subtransactions, the recovery system would ensure that the 

changes are reflected in the database at the site. In the case of aborted transactions, 

any partial updates would be undone. As for the transactions that were blocked, an 

SOS signal would be sent to determine whether it should be committed or aborted. 

Communication link failures in certain cases can result in the database system 

becoming partitioned. Each of the partitioned systems could operate by marking the 

sites in the other partitions as being down. A moment’s thought should tell us that 

there may be no possibility of a smooth recovery from such a partitioning. In this 

case, the complete system has to be restarted from the period before the partitioning 

occurred with a manual assist to recover subsequent database modifications. 

Site Recovery 

When a failed site resumes operation, it consults the recovery log to find the trans¬ 

actions that were active at the time of the failure. For strictly local transactions, 
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recovery actions similar to a centralized database requiring a simple undo or redo 

would be called for. Global transactions would be of two types: coordinator or par¬ 
ticipant. 

Regarding all participant type transactions, if the log indicated that it had not 

sent the status message to the coordinator, then the latter would have aborted all 

subtransactions. The recovery operation would ensure that such participant trans¬ 

actions be aborted and no changes be reflected by such transactions in the database. 

Suppose the log for a participant type transaction indicates that it send an okay to 

commit status to the coordinator. This means that the global transaction could have 

been either committed or aborted. The recovery operation would ensure that the par¬ 

ticipant transaction, on restart, would send a SOS message to learn its fate from the 

SOS process. Once it receives the signal either to commit or abort, the recovery 

process performs a redo or undo operation. In the case of a participant for which the 

log indicates the receipt of a second signal from the coordinator (to commit or abort), 

the recovery process can take appropriate action and ensure that an acknowledge 

signal be sent to the coordinator. 
For a coordinating transaction at the failed site, the recovery process examines 

the log to determine its status. If no request for a voting message was sent before the 

site failure, all participants would have aborted, whereupon the coordinating trans¬ 

action can be aborted as well. If the coordinator sent a request for voting before the 

crash, the recovery process must retransmit this request for voting. Even though the 

pseudocode of the participant processes given above does not indicate this, they 

should treat the second request for voting as the first and proceed as if this were the 

first request for voting. The global transaction can then be completed as if nothing 

had happened. If the site failed after the coordinator sent the second signal for com¬ 

mit or abort, the recovery process would entail resending this signal. Participant sites 

that received this signal and acted accordingly would treat this as a repeat message, 

ensure that appropriate actions were taken (from their recovery logs), and send the 

required acknowledge signal. Participants that did not receive this second signal 

would be blocked and attempt to recover via SOS. The coordinator would not 

receive acknowledgement from these participants and therefore would spawn the 

SOS process, which would respond to these SOS signals and conclude the global 

transaction. 
If the site failed after the coordinator wrote a complete transaction marker in the 

log, no further actions would be called for. 

Lost Message 

The type of recovery operation to be performed depends on the message that was 

lost. If the request to vote from the coordinator is lost, the participant would abort, 

which would eventually lead to the abortion of the global transaction. If the status 

message from any one of the participants is lost, the coordinator would timeout and 

abort the global transaction, including all the participant transactions. Should the 

second signal be lost, a participant would timeout and attempt a recovery via the 

SOS message. In the event that one of the acknowledge messages is lost, the coor¬ 

dinator would spawn the SOS response process. The coordinator would not know if 

the transaction is complete. An alternative approach is to have the coordinator send 

a request to the participants to retransmit the acknowledgements. 
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Communication Link Failure 

Suppose the failure of the communication link occurs in such a way that a subset of 

the participant sites are partitioned without a coordinator. In this case, as far as the 

coordinator is concerned, this is equivalent to the failure of a number of participant 

sites. If the failure occurs before the partitioned participants were sent the voting 

message, the coordinator would have aborted the global transaction, including all 

nonpartitioned subtransactions. The partitioned participants would also abort after a 

timeout. If the failure occurs after the participants have reported their status, the 

coordinator would have decided either to commit or abort. The partitioned sites could 

recover, on reconnection, by sending an SOS. 

t 5.9 Deadlocks in Distributed Systems 

As in the case of a centralized system, deadlocks can occur in a distributed system, 

as illustrated in Example 15.15. 

Example 15.15 Consider the transactions of Figure L, where data item A is resident at site 

S, and data item B is resident at site S2. The schedule for the execution of 

the transactions is given in Figure M. The transactions are using two-phase 

Figure L Two modifying transactions. 

Transaction T| Transaction T2 

Lockx(A) Lockx(B) 
Read(A) Read(B) 
A := A - 100 B : = B * 1.1 
Write(A) Write(B) 
Lockx(B) Lockx(A) 
Read(B) Read(A) 
B : = B + 100 A := A * 1.1 
Write(B) Write(A) 
Unlock(A) Unlock(B) 
Unlock(B) Unlock(A) 

Figure M A schedule for the transactions in Figure L. 

site S, site S2 

Transaction Transaction Transaction 
Step Tisi T2si T2S2 

Sl Lockx(A) Lockx(B) 
S2 Read(A) Read(B) 
s3 A : = A — 100 B : = B * 1.1 
S4 Write(A) Write(B) 
S5 

Transaction 

TlS2 

Lockx(A) Lockx(B) 
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Figure N A global wait-for graph. 

SiteS, SiteS2 

locking protocol and the schedule shows that the transactions will be dead¬ 

locked. The global wait-for graph for the situation at step s5 of the schedule 

is shown in Figure N. ■ 

One simple method of recovering from a potential deadlock situation is to allow 

a transaction to wait for a finite amount of time for an incompatibly locked data item. 

If at the end of that time the resource is still locked, the transaction is aborted. The 

period of time should not be too short or too long. An unduly short period would 

likely cause the transaction to be aborted, since the resource may not be released. 

An unnecessarily long period would mean that these transactions would hold the 

resources already acquired, causing further transactions to deadlock. With this 

scheme, only transactions that are blocked are aborted. 

The deadlock detection scheme allows deadlock to occur, but makes provision 

to detect the existence of a deadlock by the presence of a chain of transactions, each 

waiting for data items locked by the next transaction in the chain. The detection of 

deadlock in a distributed system requires the generation of not only a local wait-for 

graph (LWFG) for each site, but also a global wait-for graph (GWFG) for the entire 

system. Note that here we are assuming that a transaction can request one or more 

data items at a time and become blocked if it has at least one outstanding request for 

a data item. Under this assumption, a cycle in the global wait-for graph indicates a 

deadlock situation. Figure N shows the GWFG for the execution schedule of Fig¬ 

ure M. 
We see from Figure N that even though there are no cycles in the LWFG at 

each of two sites, there is a cycle in the GWFG and this indicates the existence of a 

deadlock. The disadvantage of the GWFG is the overhead required in generating such 

graphs. Furthermore, a deadlock detection site has to be chosen where the GWFG is 

created. This site becomes the location for detecting deadlocks and selecting the 

transactions that have to be aborted to recover from deadlock. One of the problems 

with such an approach is that if the messages indicating which transactions are wait¬ 

ing for which resources and the release of the resources by transactions are received 

out of order, then the deadlock detection site may conclude that there is a deadlock. 

However in reality no such deadlock exists. The erroneous deadlock that was de¬ 

tected is called a phantom deadlock. Example 15.16 shows how a phantom dead¬ 

lock could result. 

Example 15.16 Consider the GWFG of Figure O. Suppose the graph is maintained at site 

S. Suppose there is a request from T8 for a data item locked by T9 at about 
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Figure O A global wait-for graph. 

Site S2 Site S3 

the same time as T4 releases the data item it locked. The release of the data 

item allows T6 to proceed and causes a removal of the edge (T6,T4). If the 

fact that the edge (T6,T4) is removed reaches site S after it learns of the 

addition of the edge (T8,T9), then a phantom deadlock would be detected. 

The cycles (T1,T3,T8,T9,T6,T4,T|) and (T1,T2,T3,T8,T9,T6,T4,T1) do not, in 

fact, exist. ■ 

Instead of using a central site for deadlock detection, it is possible to use a 

distributed deadlock detection scheme. In one such approach, the LWFGs are broad¬ 

cast to all sites. Each such site generates the portion of the GWFG that is of concern 

to it. If one of the site detects a deadlock, it tries to resolve it by aborting one or 

more of its transactions. The disadvantage of this approach is that the deadlock may 

not be detected for some time, and since the broadcast of the LWFGs is asynchron¬ 

ous, a phantom deadlock could be detected and lead to unnecessary transaction 
aborts. 

Below we give another scheme, known as a probe computation algorithm, for 

distributed deadlock detection. It is from a class of algorithms called the edge¬ 

chasing algorithms. For other deadlock detection algorithms, refer to the biblio¬ 
graphic notes. 

15.9.1 Deadlock Detection by Probe Computation 

In the edge-chasing algorithms, the cycle in the GWFG is detected not by actually 

creating the graph but by sending messages along the edges of the graph. Such mes¬ 

sages, called probes, are different from the other messages discussed above, and 
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Figure 15.9 

also distinct from resource requests and grant messages. As before, instead of refer¬ 

ring to transactions, let us use the process concept, which encompasses the interac¬ 

tion between a transaction at a site with the TM at the site. Figure 15.9 shows an 

example of a number of such processes in a GWFG in a deadlock situation. Let us 

examine how probe computation is used to detect the deadlock. 

An edge from a process in one site to a process in a distinct site is called an 

intercontroller edge. An outgoing edge for a process is an intercontroller edge that 

can be reached from the process by following edges in the local part of the GWFG. 

The probe is initiated by a blocked process and it is referred to as the initiator of the 

probe. A probe is made up of a three-tuple (i, j, k) and indicates that it is a probe 

for process T; and the probe has been sent along the outgoing edge (Tj, Tk). Here 

process T, is blocked by process Tk and Tj is blocked, directly or via a chain of 

intermediate processes, by Tj. If the initiator of the probe receives a matching probe, 

we can conclude that the blocked process is in a cycle in the GWFG. Thus, if process 

Tj, the initiator of a probe, receives a probe (i, x, i), it is in a cycle. An active 

process simply discards the probes. A blocked process propagates the probe along all 

its outgoing edges. This blocked process will send a probe (i, j, k) to the process at 

node k, along outgoing edge (Tj, Tk), under the following conditions: (a) the process 

T| is blocked, (b) Tj is waiting for the process Tk, (c) Tj is blocked by Tr Note 

that a site that has several blocked processes may initiate several probes. Similarly, 

several probes may be initiated in sequence by a blocked process if it has sever¬ 

al outstanding requests. Each such probe is distinctly identifiable by the ini¬ 

tiator. 

Detection of deadlock using probe computation. 

Site 1 Site 2 
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A blocked process, Tk, accepts only meaningful probes; others are discarded on 

receipt. A probe (i,j ,k) is said to be meaningful under the following conditions: (a) 

the process Tk is blocked, and (b) it was unaware that Tj was dependent on it (that 

Tk is in a chain with Tj). Condition (b) ensures that nonmeaningful probes are sup¬ 

pressed and, consequently, only one probe per cycle is propagated. Receipt of a 

meaningful probe leads to the deduction that Tj is dependent on Tk and'further probes 

(i,j,k) will be discarded (they will not longer be meaningful). On receipt of a mean¬ 

ingful probe, Tk sends, probes (i,p,q) on all its outgoing edges (Tp, Tq). 
If a blocked process, Tj, receives a probe (i,j,i), we can deduce that it is dead¬ 

locked. The probe computation algorithms are given below and Example 15.17 

illustrates its use in the detection of a distributed deadlock. 

Algorithm 

15.1 A Blocked Process Initiates Probe Computation 

if process T, is blocked and the deadlock is not local, 

then for each distinct outgoing edge Tj, Tk 
transmit a probe (i,j,k) 

Algorithm 

15.2 A Blocked Process Response to Probes Received 

for each probe (x,y,z) received by Tj 

//probe is meaningful 

then if x = z (both x and z also being equal to i for 

some blocked process TO 

then T; is in a deadlock: initiate deadlock 

resolution 

else for each distinct outgoing edge Tp, Tq 

transmit a probe (x,p,q) 

Example 15.17 Consider the situation depicted in the GWFG of Figure 15.9. We have pro¬ 

cesses Tj, Tj, Tk, Tq, Tr, Tj in a deadlock situation. The probe is initiated, 

say, by Tj. It sends a probe (i,j,k) along its outgoing edge (j,k) to process 

Tk at site 2. When Tk receives this probe it finds it meaningful since it was 

unaware that Tj was blocked by it. It knows that Tj is blocked by it since it 

has not released the data item requested by Tj. Tk, in turn, sends a probe 

(i,q,r) along its outgoing edge (Tq,Tr) to Tr at site 3. Tr finds this probe 
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meaningful and, in turn, learns that Ts is dependent on it. Tr sends the probe 

(i,r,i) along its outgoing edge (r, i) to T,. On receipt of this probe Tj learns 

that it is in a closed cycle in the GWFG. Note that a probe (i,s,p) along the 

Outgoing edge (Ts,Tp) will be eventually ignored by process Tn and will not 
reach Tj. ■ 

15.9.2 Deadlock Prevention 

The deadlock prevention method can be used in a distributed system. For instance, 

the timestamp method could be applied to prevent deadlock from occurring by abort¬ 

ing the transactions that could potentially cause deadlock. The wait-die scheme and 

the wound-wait scheme could be used to abort appropriate transactions as in the 

centralized system. The aborted transactions are reinitiated with the original time- 

stamp to allow them to eventually run to completion. The timestamp method does 

not require that any messages be transmitted over the network; however being a 

deadlock prevention scheme it causes unnecessary transaction aborts. 

15.10 Security and Protection 

Security and protection problems are similar to those in the centralized database with 

remote access. However, the problem is exacerbated by the fact that there is in¬ 

creased communication, including site-to-site transfer of large amounts of data. This 

calls for appropriate identification and authentication of the user and the site. To 

prevent eavesdropping on the communication lines by intruders, these lines must be 

secure and the message should be encrypted. 

The fact that data is replicated in the database means that a user can access any 

one of these replicated copies. Security dictates that the authorization rules for access 

and update of certain parts of this data be verified before user action is allowed. If 

the authorization rules are centralized, the authorization validation will generate 

traffic and the central site would become the bottleneck. Another approach is to 

replicate the authorization rules. Full replication allows local validation of user action 

at the time of compilation or execution of the user query. However, full replication 

adds unnecessary update overheads. Still another approach involves replicating, at a 

given site, only those authorization rules that pertain to the data items at the site. 

The maintenance problem is improved but validation of a user’s action for a remote 

site can only be done at the remote site during an advance compilation or execution 

stage of the user’s query. Considerable computing efforts are wasted, since a query 

is aborted on discovery that the query lacks authorization for particular data items. 

15.11 Homogeneous and Heterogeneous Systems 

In general, a distributed database system may be either homogeneous (i.e., all local 

database systems have the same underlying data model) or heterogeneous (i.e., local 
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Figure 15.10 Homogeneous and heterogeneous database systems. 
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database systems at different sites may have different underlying data models). In 

fact, even with the same underlying data model there are substantial differences in 

individual DBMS implementations. A truly homogeneous database system is imple¬ 

mented with the same local DBMS at all sites. Figure 15.10 shows examples of 
homogeneous and heterogeneous systems. 

We can differentiate between local and global schemas.1 All data items that are 

visible at other nodes are specified in a global schema. This schema is specified using 

a common global model; translators between the local and global models and lan¬ 

guages are provided. A distributed system with n different local systems and without 

the use of a global model would require n * (n—1) translators. Using a global model, 

we require only n translators to map between the global and local models (and vice- 
versa). 

With the proliferation of microcomputers and microcomputer-based database 

systems and the growing networking of these systems, the existence of heterogeneous 
systems is bound to increase. 

In the next section, we briefly consider some common DDBMSs. Note that 

these are mostly experimental systems. First we look at the homogeneous DDBMSs, 
followed by an example of a heterogeneous DDBMS. 

The term network schema is sometimes used to refer to the global schema. We prefer to use the term global schema to avoid 
confusion with the term applicable to the DBTG model. 
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1 5.11.1 The Homogeneous DDBMS 

SDD-1: A System for Distributed Databases 

The SDD-1, a prototype DDBMS, was developed by Computer Corporation of 

America in the late 1970s. SDD-1 supports the relational model. SDD-1 is a collec¬ 

tion of three different types of virtual machines: transaction and data modules inter¬ 

connected by the reliable network (Figure 15.11). The actual system runs on a num¬ 

ber of DEC PDP-lOs and PDP-20s using Arpanet. The Datacomputer database, a 

relational DBMS, is used at each site. Fragmentation is obtained in SDD-1 by first 

taking horizontal fragmentation and subsequently vertical fragmentation. The system 

catalog is also treated as ordinary data and can be fragmented and replicated. To 

allow any site to determine the locations of the catalog fragments, a higher level 

catalog known as a directory locater is fully replicated at each site. 
Users interact with a given transaction module, which plans and controls the 

execution of the users’ transactions. The transaction module is responsible for query 

translation, control of execution, and concurrency control. The transaction module 

converts a transaction into a parallel program that can be executed cooperatively at 

several data modules. 
A data module manages all local data at a site. It provides data handling capa¬ 

bilities for transaction execution (e.g., move data from database to workspace, etc.). 

Data modules and transaction modules are interconnected by the reliable net¬ 

work. All messages are guaranteed to be delivered by the network. It monitors sites 

and provides a global clock. The reliable network also ensures transaction atomicity 

by committing transactions at all sites or aborting at all sites. 
In the SDD-1 system, the catalog is a single relation that can be fragmented 

and replicated, allowing the catalog entries to be distributed at data module sites. It 

Figure 15.11 SDD-1 architecture. 
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is therefore possible for local objects to have their catalog entries at a remote site. 

Consequently data definition operations may be nonlocal. 
SDD-1 uses a centralized control scheme and a given transaction is supervised 

by a single transaction module. The transaction execution is in three phases, read, 

execute, and write. All reads for a transaction are performed at the beginning of the 

transaction; all writes are done at the end. 
The read-set, the set of fragments to be read by the transaction, are determined 

by the TM. SDD-1 provides fragmentation transparencies and the set of fragments 

to be accessed for the read-set of the transaction are determined by it. This operation 

is called materialization. The TM then coordinates the data modules at various sites 

to transfer the required data into the workspace used by the transaction. 

SDD-1 uses the conservative timestamp method for concurrency control. We 

briefly describe the conservative timestamp scheme here. The basic timestamp 

method, discussed in Chapter 12, suffers from costly restarts. 

A pessimistic approach is taken by the conservative timestamp method, which 

causes possible delays until no conflict with a transaction can possibly happen. This 

is done by buffering younger transactions until all possible older transactions have 

been executed. At some point the system must decide that no older transaction is 

likely to be received. A simple implementation of the idea requires that a site send 

all requests to another site in timestamp order and that the network deliver messages 

in the order that they were sent. In this manner, if site j receives a message from site 

i with a timestamp tik, site j knows that it will not receive messages from site i with 
timestamps less than tik. 

At site j, instead of keeping the timestamps of the last read or write operation 

on data item X, we now keep the oldest timestamp for the buffered read and write 

operations for data item X, say XRMIN and XWMin, respectively. Site j, having re¬ 

ceived messages from all other sites, can proceed to execute an operation. The 
method is implemented as follows: 

while not at least one request from each site wait. 
READ 

if Xrmin < XWmin 
then the read is older than any of the write re¬ 

quests on X, i.e., all older transactions that 

could update X have been executed and thus the 

read operation can be executed and XRMIN updated. 

else there is at least one older update request 
and the read is buffered. 

WRITE 

*/XWM1N < XRMtN 

then all read requests for the current data value 

have been executed and the write operation can be 
executed; the value of XWMIN is updated. 

else there is at least one older transaction that has 

still to read the current value and thus the write 
remains buffered. 

This simple method suffers from the fact that at least one request must be re¬ 

ceived from each site. So that the system will not remain blocked, each active site 



15.11 Homogeneous and Heterogeneous systems 709 

that lacks an action request sends a null request message. In this manner, the buffer 

from each site would at least have a request, albeit null. 

Major disadvantages of the conservative timestamp method are the long waiting 

periods and consequent low concurrency. The improvements suggested to overcome 

these shortcomings include the use of transaction classes and conflict analysis 

graphs. 

All transactions are categorized into classes. Those transactions that are likely 

to conflict belong to the same class. A transaction’s read requests can be termed its 

read-set and the write requests, its write-set. Two transactions conflict if the intersec¬ 

tion of their write-sets or the read-set of one and the write-set of the other is non¬ 

empty. For instance, let the read and write sets of transaction Ti be RS, and WS,, re¬ 

spectively, and those for T2 be RS2 and WS2. Then transactions T, and T2 conflict if 

RS, n WS2 + 0, or 

WS, n RS, * 0, or 

ws, n ws2 * 0 

Transaction requests waiting in buffers need only be compared with requests 

from conflicting transactions. Two requests from nonconflicting transactions can pro¬ 

ceed concurrently, thus improving concurrency. 

Whether or not transactions conflict can be decided using conflict graph analysis 

techniques in which arcs can be labeled to define the type of conflict (read-write or 

write-write). 

The execute phase is performed by a compile-and-go approach. The access plan 

generated is executed and the supervision is by the TM at the site of the query. 

Program compilation uses semijoins extensively in optimization. The write phase 

begins by the distribution of the updated fragments to all data modules containing a 

replicate of an updated fragment. The updated fragments are made permanent by a 

write command issued by the coordinating TM. 

Transaction atomicity is provided in SDD-1 by a four-phase commit protocol, 

which includes selection of backup coordinators to supervise the commit protocol in 

case of coordinator failure. 

R* (see Figure 15.12) is an experimental adaptation of the System R relational 

DBMS to the distributed environment. The architecture of R* is based on System R 

architecture. It is claimed that major modifications were made to the relation data 

storage (RSS*) and transaction manager (TM*) systems. A distributed communica¬ 

tions (DC*) component was added. 
R* runs under IBM’s Customer Information Control System (CICS). CICS is 

responsible for handling online users and could entail running application programs 

or provide support for interactive queries. CICS is also responsible for intersite mes¬ 

sage communications and interfaces with another CICS at a remote site. 
All requests are made at a single site, which becomes the master site. In com¬ 

mon with System R, queries are compiled rather than interpreted. A distributed com¬ 

pilation scheme is used wherein the master site coordinates the global aspects of 

query compilation. The local decisions, including local data structure selections, are 
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Figure 15.12 R* architecture. 

R* 

delegated to all the participating sites, called slave or apprentice sites. The master 

site produces a global plan that is broadcast to the apprentice sites along with the 

original SQL statement and catalog information used. 

R* uses a distributed catalog. Local catalogs keep information on locally stored 

objects, including any fragments and replicates. The catalog at the birth—site (site at 

which the object was first created) of an object maintains the current storage sites of 

that object. Object movement causes this information to be updated. This scheme 

maintains complete site autonomy. 

Each apprentice site takes the portions of the plan relevant to it and compiles it 

to produce an optimal local access plan. The sequence of actions is shown in Figure 

15.13. Note that the master site can also be an apprentice site. 

Transaction management, two-phase commit protocol, recovery, global and lo¬ 

cal deadlock detection and resolution are supported by the transaction manager. It 

also assigns unique names to the transactions. The run-time manager of RSS* exe¬ 

cutes calls to TM* and DC* (when data movement between sites is required). 

R* uses the process concept wherein transactions are organized as processes, 

sharing common code and data structures, including lock tables. A master process is 

created for a single user or application program and all database requests are made 

through this process. In this scheme, creation and deletion of a process for each 

database manipulation is avoided. Similarly, for a remote database request, a process 

is created at the remote site. In this way, a hierarchy of processes can exist at a 

number of sites. The root of such a hierarchical tree is the process created at the 
master site. 

15.11.2 The Heterogeneous DDBMS 

The major problems in heterogeneous DDBMSs are concerned with the translation 

between different data manipulation languages, different data models, and the variety 

in data usage and definition. We can include in our definition of heterogeneous sys- 
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Figure 15.13 Distributed query compilation in R * 

SQL statement 

Apprentice site 

terns DBMSs which, while employing the same generic data model (relational, hier¬ 

archical, or network), are in essence different systems. 

Earlier we mentioned possible conflicting situations that may arise in systems in 

which we aggregate preexisting systems. The possible conflicts are: 

• Name: Same name used to describe different facts, or different names used for 

the same fact. 

• Structure: Same fact described in two different schemes using different 

elements of a data model. 

• Abstraction: Different levels of details. 

• Scale: Different units of measurement for the same data item. 

In addition to the above conflicts, others arise, such as disagreements in the data 

representing the same fact in separate databases due to measurement or entry errors. 

The conflicts cannot be resolved by force or mediation if the definitions in the com¬ 

ponent DBMSs are to remain unaltered—an important local autonomy consideration. 

The problem of mapping between different data models and DMLs is solved by 

utilizing a common data model and DML. A DDBMS consists of k different 

DBMSs. Then, if we do not utilize a common data model we would need k * (k-1) 

translators—each system would need a translator to the remaining (k-1) systems. 

Using a common global data model, we need only 2 * k translators, one from each 

system to the common model and vice-versa. The characteristics that the common 

data model and its accompanying DML should possess include simple translation 

rules between it and the data models and DMLs of constituent DBMSs; and suitabil¬ 

ity to represent data and processing requirements of the DDBMS (e.g., fragmenta¬ 

tion, replication, etc.). 
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Figure 15.14 MULTIBASE scheme architecture (adapted from [Land 82]). 

Site 1 Site n 

In a heterogeneous system, the level of performance of the various host DBMSs 

may differ considerably. For instance, the same operation on the same data may be 

done at varying costs under different DBMSs. This factor would be a consideration 

in allocating subtransactions, just as the nearness criteria is used when considering 

communication costs. In some cases, a particular host DBMS may not even be able 

to perform a specific operation. The above issues are addressed below in the section 

on MULTIBASE. If the DDBMS provides a single interface to external users, as is 

the common practice, then the network DML should be easy to learn and sufficiently 
powerful to satisfy all needs. 

A few heterogeneous DDBMS prototypes have been built. Here we consider 
only one of them, a derivative of SDD-1. 

Multibase 

The MULTIBASE DDBMS,2 3 developed by Computer Corporation of America, pro¬ 

vides an integrated interface for retrieving data from preexisting, heterogeneous, dis¬ 

tributed databases. Its aim is to present an integrated uniform interface. This is 

achieved by defining an integrated global schema and by utilizing a single global 

query language. Besides being read-only, MULTIBASE does not implement controls 

to ensure that when reading data from one site, other required data at another site is 

not being updated—because most systems do not make concurrency control services 

available to an external process. The global query language DAPLEX is based on 

the functional data model/ This model consists of entity sets and functions between 

them, and models object types of concern and their characteristics. The schema ar¬ 
chitecture is shown in Figure 15.14. 

Resolving data and naming inconsistencies and any other incompatibilities in the 

preexisting databases are functions of the MULTIBASE system. For this reason an 

2The discussion here is based on (Land 82). 

3See (Ship 81) for details on DAPLEX and the functional data model. 
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Figure 15.15 

integration schema called the auxiliary schema is specified. The auxiliary schema 

describes a DAPLEX auxiliary database that is maintained by an internal DBMS, 

which is part of MULTIBASE. It contains data unavailable in any of the host 

DBMSs, or data needed to solve incompatibilities. Examples of such data are the 

following: statistics to determine which data values should be used in case of conflict; 

conversion tables for performing data transformations that can’t be done via simple 

arithmetic manipulations. Furthermore, if two sites have, say, EMPLOYEE data but 

only one site has an EMPLOYEE.Phone-No, the missing phone number data can be 

added to the auxiliary database. This is in addition to the global and local schema 

(both specified using DAPLEX) and a local host schema. The local host schema is 
the schema description in the local DBMS language. 

Besides the language and schema definition systems, MULTIBASE also pro¬ 

vides a query processing system. The query processing system incorporates the local 

data interface and local DBMS. At the global level are the query translator and query 

processor subsystems. The query translator transforms the global query into subquer¬ 

ies over the local and auxiliary schema. The global query processor chooses appro¬ 

priate query optimization criteria and coordinates the local query executions. The 

optimization plan includes data movement between sites and the integration of the 
results from the sites. 

Local queries are sent to the local sites and are subjected to local query optimi¬ 

zation. These locally optimized queries are then translated into queries over the local 

host schema of the host DBMS. 

Each of these tasks is performed at different levels. Figure 15.15 displays the 

MULTIBASE architecture, which shows the two major components, the global data 

manager (GDM) and local database interface (LDI). The user submits queries to 

the global data manager, which is responsible for global query translation and opti¬ 

mization. It receives results from the local sites and performs any processing neces¬ 

sary to output the result. At each local site is a local database interface module that 

MULTIBASE architecture (adapted from [Land 82]). 
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Figure 15.16 

is responsible for DML translation and local query optimization, as well as reformat¬ 

ting local results to global format and returning them to the global data manager. 

The local database interface isolates the global data manager from the local site's 

DBMS and could be designed to augment the processing capability of the host 

DBMS. 
The GDM is made up of the following subsystems, as shown in Figure 15.16: 

transformer, optimizer, decomposer, filter and monitor. We briefly describe the ma¬ 

jor tasks of each of these subsystems. 

• Transformer: The transformer converts users’ queries, expressed in DAPLEX 

on the global schema, into a DAPLEX query on local and auxiliary schemas. In 

this way the original query is modified to include mapping and conflict 

resolution information. 

• Optimizer, decomposer, filter: These subsystems work in a cyclic fashion to 

define an overall strategy (optimizer), create DAPLEX single site queries 

(decomposer), and determine single site queries that can’t be processed at the 

sites indicated by the overall strategy (filter). Output of the filter is resubmitted 

to the optimizer because if enough single site queries are unable to be executed 

at the planned sites, it may be worthwhile reevaluating the overall strategy. This 

cyclic processing caters to the DBMS difference that would not occur in a 
homogeneous DBMS. 

Components of GDM (adapted from [Land 82]). 
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• Monitor: The monitor, as its name indicates, monitors the execution of the plan 

developed by the optimizer/decomposer/filter and communicated to the monitor 

by the optimizer. The monitor sends the single site DAPLEX queries to the 

corresponding LDIs. It also sends an internal query that may include reference 

to the auxiliary database and operations to compensate for operations for local 

database limitations. The monitor oversees the combination of local results and 

formats the output as requested by the user. (This is response integration, called 

internal DBMS in Multibase.) 

The above components, plus the internal DBMS, are part of the GDM. There 

may be as few as one GDM for the entire system. 

As described above, MULTIBASE provides a uniform interface and access lan¬ 

guage to the user of the heterogeneous databases. The local schema are integrated 

into a global schema and users see only this global schema. The system provides 
global as well as local query optimization. 

Summary 

A distributed database system consists of a collection of data in which separate parts 

of the collection are under the control of a separate DBMS running on an independent 

computer system. These independent computer systems are interconnected in a net¬ 

work. Each system is aware of the existence of the other systems and they commu¬ 

nicate with each other via the network. Data can be replicated in a distributed system, 

increasing its accessibility and reliability. Since a query can be evaluated in parallel 

at different sites, the response can be faster in such a system. 

The major issues involved in the DDBMS are that of data distribution, query 

processing, concurrency control, and deadlock detection and recovery. 

Network design issues involved in the interconnecting of the different sites of 

the distributed system concern the choice of network topology, access method, and 

transmission technology. 
In a distributed system, the data is distributed at a number of sites. The distri¬ 

bution is based on the expected access pattern and costs. The data can be partitioned. 

Such partitioning could be horizontal, vertical or both. Different DDBMSs allow 

different types of fragmentation. The DDBMS usually provides one or more of the 

following forms of transparencies, so that users need not concern themselves about 

them: location, fragmentation, and replication. The system catalog could be treated 

in a manner similar to ordinary data. 

A query in a distributed system involves data from more than one site. An 

optimal query evaluation strategy involves determining the sites at which intermedi¬ 

ate and final responses will be generated. The semijoin operation has been used to 

reduce communication costs. 
The consistency and atomicity of a transaction requires the implementation of 

concurrency control and recovery techniques. Such techniques must take into account 

failures not only at local sites, but failures in the communication network. Consis¬ 

tency requirements dictate that all copies of a data item be modified. Usually a two- 

phase commit protocol is used. 
Concurrency control schemes used in a centralized DBMS can be applied to 

control the concurrent execution of transactions in the DDBMS environment, with 
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appropriate modifications. Detection of deadlock requires the generation of global 

wait-for graphs, either directly or indirectly. The deadlock prevention method based 

on schemes for a centralized system may be used. The problems of security and 

protection are similar to those of a centralized system. 
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15.1 Explain why the query processing techniques discussed in this chapter would need to be 

modified for a distributed system running on a local area network. In your opinion, which of 

the three costs, communication, I/O, or CPU, are likely to dominate in a local area network 

environment? Justify your answer. 
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15.2 What are the advantages of horizontal fragmentation? How is query evaluation complicated 

or simplified by horizontal fragmentation? Design an algorithm to perform the join of two 

relations, R and S, both of which are horizontally fragmented. Account for the network to be 

either wide area or local area. Create some arbitrary data for the relations and their 

fragments. Distribute the fragments over a number of sites. Test your algorithm. 

15.3 For exercise 2, modify your algorithm to use the semijoin technique. 

15.4 Under what conditions is R \X S = S IX R? 

15.5 How can the optimistic method presented in Chapter 12 be applied to concurrency control in 

a DDBMS? Discuss the relative advantages and disadvantages of the conservative timestamp 

and optimistic methods. 

15.6 The validation phase of the optimistic method of a transaction may be checked against 

already committed transactions—the “committed validation technique,” or the currently 

active (but not committed) transactions—the “active validation technique.” Discuss the 

relative merits of these validation techniques for the optimistic concurrency control scheme 

for a DDBMS. 

15.7 Using the library example discussed in Chapters 8 and 9, create a suitable distributed 

database. Indicate how the queries in those chapters would be handled. 

15.8 Suppose a single copy of data items A and B is stored at sites S, and S2, respectively. 

Consider the schedule for transactions T, and T2 given in Figure P. Why is the schedule 

serializable, even though two-phase locking is not used? 

Figure P Schedule for Exercise 15.8. 

site S( site S2 

Time Transaction Transaction Transaction Transaction 

t, Tisi T2S1 T|S2 T2S2 

*2 Lockx(A) Lockx(B) 
Read(A) Read(B) 

u A := A -100 B := B - 

t5 Write(A) Write(B) 

^6 Unlock(A) Unlock! B) 
Lockx(A) Lockx(B) 

*8 Read(A) Read(B) 
A : = A + 200 B := B + 100 

t,o Write(A) Write(B) 

til Unlock(A) Unlock(B) 

15.9 Consider a token approach to locking. Any number of read tokens can exist for a data item, 

but only one write token can exist, and that only if no read tokens are present. A transaction 

manager (TM) at a site can grant a read or write lock to a transaction at that site if the TM 

has a read or write token for the data item. Indicate the sequence of messages required 

between sites to allow transaction T running at site S to obtain a write lock on data item A. 

15.10 Consider the following scheme to detect deadlock in a distributed database system. Each site 

maintains an LWFG with the addition of a node called Tex (see Figure Q). Tex is to depict 



718 Chapter 15 Distributed Databases 

Figure Q LWFG at site Sj. 

the situation in which a transaction at the site is waiting for a data item already locked by a 

transaction at a remote site. On detection of a cycle in the LWFG involving Tex, site Si sends 

its LWFG to, say, site Sr containing the transaction that has locked the data item required 

by transaction T| at site Sj. The site uses this information to extend its LWFG to detect a 

global deadlock involving T3 at site Sj. If deadlock is found, appropriate corrective action is 

taken. However, if Sj finds that there is a cycle involving a transaction in Sj but also 

involving its own special node Tex with some site Sk, then Sj sends the extended wait-for 

graph to Sk for detection of a global deadlock. Comment on the feasibility of this scheme to 

detect global deadlocks. If the scheme does detect global deadlock, verify that such 

deadlocks are not phantoms. 
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books devoted exclusively to concurrency control are Bernstein, Hadzilacos and Goodman 

(Bern 87), and Papadimitriou (Papa 86). 

Distributed query processing continues to be an extensive area of research. The papers by 

Wong (Wong 77), Hevener and Yao (Heve 79), Apers et al. (Aper 83), Bernstein and Chiu 

(Bern 81a) and Epstein and Stonebraker (Epst 80) set the direction of research. Bernstein and 

Chiu (Bern 81a) present an analysis of semijoins and show how tree form queries can be fully 

reduced using the semijoin, but semijoins are not adequate to fully reduce a cyclic query. Yu 

and Chang (Yu 84) present a survey of distributed query processing, while Ceri and Pelgatti 

(Ceri 84) give textbook coverage. 
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Data distribution and its effects on query processing is the subject of study in a number 

of the works cited above. Specific problems with data distribution are studied by Ceri et al. 

(Ceri 82, Ceri 83) and Navathe et al. (Nava 84). 

Distributed deadlock detection is another area of active research. The survey papers by 

Knapp (Knap 87) and Elmagarmid (Elma 86) show the pitfalls in a number of published 

algorithms and give an excellent introduction to the subject. The proof of the edge-chasing 

algorithm given in this chapter is found in (Chan 82). 

Bibliography 

(Abad 89) A. El Abaddi & Sam Toueng, “Maintaining Availability in Partitioned Replicated Databases,” ACM 
Trans, on Database Systems, 14(2), June 1989, pp. 264-290. 

(Agra 89) D. Agrawal and S. Sengupta, “Modular Synchronization in Multiversion Databases: Version Control 
and Concurrency Control,” SIGMOD Record 18(2), June 1989, pp. 408-417. 

(Aper 83) P. Apers, A. Hevner, & S. B. Yao, “Optimization Algorithms for Distributed Queries,” IEEE 

Transactions on Software Engineering SE-9(1), January 1983, pp. 57-68. 

(Bagr 89) R. Bagrodia, “Process Synchronization: Design and Performance Evaluation of Distributed 
Algorithms,” IEEE Trans, on Software Engineering, 15(9), September 1989, pp. 1053- 
1065. 

(Bern 79) P. A. Bernstein, D. W. Shipman, & W. S. Wong, “Formal Aspects of Serializability in Database 
Concurrency Control,” IEEE Transactions on Software Engineering SE-5(3), 1979, pp. 
203-216. 

(Bern 80) P. A. Bernstein, D. W. Shipman, & J. B.' Rothnie, “Concurrency Control in a System for Distributed 
Databases (SDD-1),” ACM Transactions on Database Systems 5(1), January 1980, pp. 18- 

51. 

(Bern 81a) P. A. Bernstein & D. W. Chiu, “Using Semijoins to Solve Relational Queries,” JACM 28(1), 

January 1981, pp. 25-40. 

(Bern 81b) P. A. Bernstein & N. Goodman, “Concurrency Control in Distributed Database Systems,” ACM 

Computing Surveys 13, 1981, pp. 185-221. 

(Bern 82) P. A. Bernstein & N. Goodman, “A Sophisticate’s Introduction to Distributed Database Concurrency 
Control,” Proceedings of the Eighth International Conference on Very Large Data Bases, 

1982, pp. 62-76. 

(Bern 87) P. A. Bernstein, V. Hadzilacos, & N. Goodman, Concurrency Control and Recovery in Database 

Systems, Reading, MA: Addison-Wesley, 1987. 

(Ceri 82) S. Ceri, M. Negri, & G. Pelgatti, “Horizontal Data Partitioning in Database Design,” Proceedings of 
the ACM SIGMOD International Conference on Management of Data, Orlando, FL, 1982, 

pp. 128-136. 

(Ceri 83) S. Ceri, S. Navathe, & G. Widerhold, “Distribution Design of Logical Database Schemas,” IEEE 

Transactions on Software Engineering SE-9(4), 1983, pp. 487-504. 

(Ceri 84) S. Ceri & G. Pelgatti, Distributed Databases—Principles and Systems. New York: McGraw-Hill, 

1984. 

(Chan 82) K. M. Chandy & J. Misra, “A Distributed Algorithm for Detecting Resource Deadlocks in 
Distributed Systems,” Proc. of the ACM Symposium on Principles of Distributed 

Computing, Ottawa, Canada, 1982, pp. 157-164. 

(Date 83) C. J. Date, An Introduction to Database Systems, vol. 2. Reading, MA: Addison-Wesley, 1983. 

(Elma 86) A. K. Elmagarmid, “A Survey of Distributed Deadlock Detection Algorithms,” ACM SIGMOD 

Record 15(3), September 1986, pp. 37-45. 

(Epst 80) R. Epstein & M. R. Stonebraker, “Analysis of Distributed Database Processing Strategies,” Proc. of 
the International Conf. on VLDB, 1980, pp. 92-100. 



720 Chapter 15 Distributed Databases 

(Eswa 76) K. P. Eswaran, J. N. Gray, R. A. Lorie, & I. L. Traiger, “The Notions of Consistency and 
Predicate Locks in a Database System,” Communications of the ACM 19(11), November 

1976, pp. 624-633. 

(Gray 75) J. N. Gray, R. A. Lorie, G. R. Putzula, & I. L. Traiger, “Granularity of Locks and Degrees of 
Consistency in a Shared Database,” IBM Research Report RJ1654, 1975. 

(Gray 81) J. N. Gray, “The Transaction Concept: Virtues and Limitations,” Proceedings of the Seventh 
International Conference on Very Large Databases, 1981, pp. 144-154. 

(Heve 79) A. R. Hevener & S. B. Yao, “Query Processing in a Distributed Database System,” IEEE 

Transactions on Software Engineering SE-5(3), May 1979, pp. 177-187. 

(Knap 87) E. Knapp, “Deadlock Detection in Distributed Databases,” Computing Surveys 19(4), December 
1987, pp. 303-328. 

(Land 82) T. Landers & R. L. Rosenberg, “An Overview of Multibase,” in H. J. Schneider, ed. Distributed 

Data Bases. New York, North Holland, 1982, pp. 153-188. 

(Nava 84) S. Navathe, S. Ceri, G. Widerhold, & J. Dou, “Vertical Partitioning Algorithms for Database 
Design,” ACM Transactions on Database Systems 9(4), December 1984, pp. 680-710. 

(Papa 85) C. H. Papadimitriou & M. Yannakakis, “The Complexity of Reliable Concurrency Control,” 
Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on the Principles of 
Database Systems, 1985, pp. 230-233. 

(Papa 86) C. H. Papadimitriou, The Theory of Concurrency Control. Rockville, MD: Computer Science Press, 
1986. 

(Roth 80) J. B. Rothnie, P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers, C. Reeve, D. W. 
Shipman, & E. Wong, “Introduction to a System for Distributed Databases (SDD-1),” 
ACM Transactions on Database Systems 5, January 1980, pp. 1-17. 

(Ship 81) D. W. Shipman, “The Functional Data Model and the Data Language DAPLEX,” ACM Transactions 

on Database Systems 6(1), March 1981, pp. 140-173. 

(Smit 81) J. M. Smith, P. Bernstein, U. Dayal, N. Goodman, T. Landers, K. W. T. Lin, & E. Wong, 
“Multibase-Integrating Heterogeneous Distributed Database Systems,” NCC Conf. Proc. 50, 
May 1981, pp. 487-499. 

(Stal 87) W. Stalling, Local Networks, An Introduction, 2nd ed. New York: Macmillan, 1987. 

(Ston 77) M. Stonebraker & E. Neuhold, “A Distributed Database Version of INGRES,” 1977 Berkeley 
Workshop on Distributed Data Management and Computer Networks, University of 
California, Berkeley, 1977, pp. 19-36. 

(Will 81) R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Obermarck, P. Selinger, A. 
Walker, P. Wilms, & R. Yost, “R*: An Overview of the Architecture,” IBM Technical 
Report, RJ 3325, San Jose, CA, 1981. 

(Wong 77) E. Wong, “Retrieving Dispersed Data from SDD-1: A System for Distributed Databases.” Proc. of 
the 2nd Berkeley Workshop on Distributed Data Management and Computer Networks, 
Berkeley, CA, 1977, pp. 217-235. 

(Yu 84) C. T. Yu & C. C. Chang, “Distributed Query Processing,” ACM Computing Surveys 16(4), December 
1984, pp. 399-433. 



Contents 

16.1 

16.2 

16.3 

16.4 

16.5 

16.6 

What Is a Knowledge Base System? 

Knowledge Base and Database Systems: A 
Comparison 

Chapter 

Knowledge and Its Representation 

16.3.1 Semantic Networks 

16.3.2 First-Order Logic (Predicate Logic) 

16.3.3 Frames 

16.3.4 Rule-Based Systems (Production Systems) 

16.3.5 Procedural Representation 

Deductive Databases 

Expert Systems 

Expert Database Systems: Integration off 
Expert Systems in Database Applications 

16.7 Object Approach 

Object-Oriented Systems 

16.7.1 Concept of the Object 

16.7.2 Names and Identity 

16.7.3 Database and Identity 

16.7.4 Implementation of Object Identifiers 

16.7.5 Object Class and Instantiation 

16.7.6 Inheritance 

Current 
Topics in 
Database 
Research 

16.8 Object Databases 

Extensions to Existing Systems 

OODBMS Approach 

16.8.1 Pros and Cons of the Object Approach in Databases 

721 



722 Chapter 16 Current Topics in Database Research 

In this chapter we present some highlights of the recent advances in database sys¬ 

tems. We discuss knowledge base systems, deductive or logic databases, expert sys¬ 

tems, and the object-oriented approach. 

What Is a Knowledge Base System? 

Knowledge is an abstract entity that can be characterized according to its use. We 

consider knowledge to be a justifiable belief and we use the pragmatic rather than 

the philosophical approach in a knowledge base system. 
Using the analogy of a DBMS, we can define a knowledge base management 

system (KBMS) as a computer system used to manage and manipulate shared knowl¬ 

edge. A knowledge base system’s manipulation facility includes a reasoning1 facil¬ 

ity, usually including aspects of one or more of the following forms of reasoning: 

deductive, inductive, or abductive. Deductive reasoning implies that a new fact can 

be inferred from a given set of facts or knowledge using known rules of inference. 

For instance, a given proposition can be found to be true or false in light of existing 

knowledge in the form of other propositions believed to be either true or false. In¬ 

ductive reasoning is used to prove something by first proving a base fact and then 

the increment step; having proved these, we can prove a generalized fact. Abductive 

reasoning is used in generating a hypothesis to explain observations. Like deductive 

reasoning, it points to possible inferences from related concepts; however, unlike 

deductive reasoning, the number of inferences could be more than one. The likeli¬ 

hood of knowing which of these inferences corresponds to the current state of the 

system can be gleaned from the explanations generated by the system. These expla¬ 

nations can facilitate choosing among these alternatives and arriving at the final con¬ 
clusion. 

In addition to the reasoning facility, a knowledge base system may incorporate 

an explanation facility so that the user can verify whether the reasoning used by the 

system is consistent and complete. The reasoning facility also offers a form of tutor¬ 

ing to the uninitiated user. The so-called expert systems and the associated expert 

system generation facilities are one form of knowledge base systems that have 

emerged from research labs and are being marketed commercially. Since a KBMS 

includes reasoning capacity, there is a clear benefit in incorporating this reasoning 

power in database application programs in languages such as COBOL and Pascal. 

Most knowledge base systems are still in the research stage. The first generation 

of commercial KBMSs are just beginning to emerge and integration of a KBMS with 

a DBMS is a current research problem. However, some headway has been made in 
the integration of expert systems in day-to-day database applications. 

'We can define reasoning informally as the extraction of new knowledge from existing knowledge 
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16.2 Knowledge Base and Database Systems: 
A Comparison 

There is no consensus on the difference between a knowledge base system and a 

database system. In a DBMS, the starting point is a data model to represent the data 

and the interrelationships between them; similarly, the starting point of a KBMS is a 

knowledge representation scheme. The requirements for any knowledge represen¬ 

tation scheme are adequacy, completeness, consistency, soundness, and validity. The 

scheme should provide some mechanism to organize knowledge in appropriate hier¬ 

archies or categories, thus allowing easy access to associated concepts. In addition, 

since knowledge can be expressed as rules and exceptions to rules, exception-han¬ 

dling features must be present in the knowledge representation scheme. Further¬ 

more, the scheme should have some means of ensuring knowledge independence. 

Here, independence signifies that the knowledge stored in the system must be insu¬ 

lated from changes in usage in its physical or logical structure. This concept is sim¬ 

ilar to the data independence concept used in a DBMS. To date, little headway has 

been made in this aspect of a KBMS. 

A KBMS is developed to solve problem for a finite domain or portion of the 

real world. In developing such a system, the designer selects significant objects and 

relationships among these objects. In addition to this domain-specific knowledge, 

general knowledge such as concepts of up, down, far, near, cold, hot, on top of, 

and besides must be incorporated in the KBMS. Another type of knowledge, which 

we call common sense, has yet to be successfully incorporated in the KBMS. 

The DBMS and KBMS have similar architectures; both contain a component to 

model the information being managed by the system and have a subsystem to respond 

to queries. Both systems are used to model or represent a portion of the real world 

of interest to the application. A database system, in addition to storing facts in the 

form of data, has limited capability of establishing associations between these data. 

These associations could be preestablished as in the case of the network and hierar¬ 

chical models, or established using common values of shared domains as in the re¬ 

lational model. A knowledge base system exhibits similar associative capability. 

However, this capability of establishing associations between data and thus a means 

of interpreting the information contained is at a much higher level in a knowledge 

base system, ideally at the level of a knowledgeable human agent.2 

One difference between the DBMS and KBMS that has been proposed is that 

the knowledge base system handles a rather small amount of knowledge, whereas a 

DBMS efficiently (as measured by response performance) handles large amounts of 

shared data. However, this distinction is fallacious since the amount of knowledge 

has no known boundaries and what this says is that existing knowledge base systems 

handle a very small amount of knowledge. This does not mean that at some future 

date we couldn’t develop knowledge base systems to efficiently handle much larger 

amounts of shared knowledge. 

2The classical Turing test measures the performance of an intelligent system against a human being, the latter being the only 

measure we have for intelligent behavior. 
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In a knowledge base system, the emphasis is placed on a robust knowledge 

representation scheme and extensive reasoning capability. Robust signifies that the 

scheme is rich in expressive power and at the same time it is efficient. In a DBMS, 

emphasis is on efficient access and management of the data that model a portion of 

the real world. A knowledge base system is concerned with the meaning of infor¬ 

mation, whereas a DBMS is interested in the information contained in the data. 

However, these distinctions are not absolute. 
For our purposes, we can adopt the following informal definition of a KBMS. 

The important point in this definition is that we are concerned with what the system 

does rather than how it is done. 

Definition: A knowledge base management system is a computer system that manages the 

knowledge in a given domain or field of interest and exhibits reasoning power to 

the level of a human expert in this domain. 

A KBMS, in addition, provides the user with an integrated language, which 

serves the purpose of the traditional DML of the existing DBMS and has the power 

of a high-level application language. A database can be viewed as a very basic 

knowledge base system insofar as it manages facts. It has been recognized that there 

should be an integration of the DBMS technology with the reasoning aspect in the 

development of shared knowledge bases. Database technology has already addressed 

the problems of improving system performance, concurrent access, distribution, and 

friendly interface; these features are equally pertinent in a KBMS. There will be a 

continuing need for current DBMSs and their functionalities coexisting with an inte¬ 

grated KBMS. However, the reasoning power of a KBMS can improve the ease of 
retrieval of pertinent information from a DBMS. 

Knowledge and Its Representation 

To solve a problem (i.e., carry out an intelligent activity) we need three compo¬ 
nents:3 

• A model or a symbolic representation of the concepts of the domain of interest. 

• A set of basic operations on this symbolic representation to generate one or 
more solutions to the problem. 

• An evaluation method to select a solution from the set of possible candidates. 

The representation scheme must be able to register the significant characteristics 

of the problem domain. These features of the problem domain must be easily acces¬ 
sible for appropriate manipulations. 

3A. Newell & H. A. Simon, “Computer Science as Empirical Inquiry: Symbols and Search,” ACM 10th Turing Lecture- 
1975, CACM 19(3), March 1976, pp. 113-126. 
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A natural language is an example of a symbolic representation scheme. Using 

this scheme, knowledge has been represented in folklore and more recently using the 

written word and recorded speech and image. These forms of representing knowledge 

have been developed over thousands of years. Natural language has very high ex¬ 

pressive power. However, this form of representation, though suitable for humans, 

is either inappropriate or requires an enormous amount of resources for use in a 

computer-based system. 

A knowledge base system contains knowledge about a particular domain. In 

addition, it contains a certain amount of general knowledge. The latter includes the 

pertinent world knowledge applicable to the domain and some degree of so-called 

commonsense knowledge. For instance, a knowledge base system containing infor¬ 

mation about diseases and diagnoses must have knowledge of the different units of 

measurements of mass, length, temperature, concepts of nearness, normal, higher, 

lower, faster, slower, and so on. 

Just as beauty is in the eye of the beholder, meaning is not contained in the 

message, but is constructed around it by the recipient. For example, if we are pre¬ 

sented with the statement “Jumbo is an elephant,” we conjure up a picture of an 

elephant; we know that it is large, with a trunk and tusks and huge flapping ears. In 

order to make this addition to the simple statement, we recalled this common knowl¬ 

edge that we acquired during our life. If we are then presented with the statement 

“Jumbo lives in a teacup,” we will think either (a) the statements are from a fairy 

tale or (b) the statements are inconsistent with what we know about elephants and 

cups in the real world. We know from experience that elephants are large animals, a 

normal teacup is too small to hold an elephant, and normally we don’t put elephants 

in teacups! 
One of the requirements of any knowledge representation scheme is that it must 

allow the associated knowledge about a concept or statement to be easily retrieved 

and employed to enable the knowledge base system to understand and reason. The 

concept of using association in retrieving information is a very old one; it can be 

traced back to the time of Aristotle. The use of association in database applications 

in the form of associative or intelligent memories has also been investigated. How¬ 

ever, the use of associative memory4 to model human memories for intelligent com¬ 

puter systems is more recent. The efficient access to associated knowledge in a par¬ 

ticular situation need not be in a form similar to human memory; nevertheless, the 

result should be useful so that related concepts, associated both explicitly and implic¬ 

itly, can be employed in inferences. 
We not only know something, we know that we know it and have developed a 

certain degree of confidence in using the knowledge correctly (expertise). Our ability 

to read a map, our sense of orientation, and knowledge of these abilities give us the 

confidence to drive to an unknown city and find an address. Similarly, the knowledge 

base system must have knowledge about the knowledge representation scheme being 

used and how it can be manipulated in the reasoning process. Such knowledge, called 

metaknowledge, can be compared to the metadata used in a database system. 

The knowledge base system must be able to deal with incomplete knowledge, 

4An associative memory system has logic associated with each word or each bit of every word. This logic is used to simulta 

neously examine the contents of the entire memory and matching words are flagged. 
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as well as dynamically acquire new knowledge. These points are also applicable to 

DBMSs. 
A knowledge representation scheme consists of two parts: data structures to 

represent the domain of the problem, and procedures to interpret the information 

contained therein to enable a knowledge base system to exhibit the behavior of a 

knowledgeable human expert. The knowledge to be maintained can be one of the 

following: objects, events, know-how, precedence and cause-and-effect relationships, 

and metaknowledge. Knowledge about objects can be considered factual knowledge 

such as: an elephant is a mammal, an elephant has a trunk and tusks, a bird has 

wings, a car has a steering wheel and pedals. Examples of knowledge about events 

are: John gave a book to Mary, Canada geese come back in spring. Know-how 

knowledge consists of the knowledge involved in doing something. For instance, 

driving a car involves using the accelerator pedal to activate the choke; turning the 

ignition key to engage the starter to start the engine; using the transmission and 

pedals to put the car in motion; and using the steering wheel to control the trajectory 

of this motion. Precedence knowledge in this case involves the correct ordering of 

the various operations. Animals, including humans, use know-how knowledge to 

perform repetitive operations. Walking, running, flying, or riding a bike require a 

considerable amount of computing; however, having learned these actions, animals 

do them without effort. Imparting the know-how knowledge in a knowledge base, 

and to robots, is not a trivial task. Metaknowledge, as discussed above, is knowledge 

about knowledge. 
In the following sections we look at these knowledge representation schemes: 

semantic networks, first-order logic (predicate logic), frames, rule-based systems 

(production systems), and procedural representation. 

16.3.1 Semantic Networks 

The idea of a semantic network was introduced in the late 1960s to represent the 

semantics of English words and phrases as perceived by humans. The term semantic 

network refers not to one concept but a set of related concepts, extensions, and 

modifications. All these networks share a node-based data structure, the nodes being 

connected by arcs. Each arc denotes a relationship between the nodes and has a 

semantic or meaning associated with it, the common relationships being IS—A, HAS, 

A-KIND-OF (AKO), and so on. The IS-A relationship denotes a member-to-class 

relationship (Jumbo is a elephant); the AKO relationship denotes a class-to-superclass 

relationship (an elephant is a kind of mammal). An associated set of inference pro¬ 
cedures uses these structures in the reasoning process. 

A semantic network (see Figure 16.1) can thus be classified as a system wherein 

concepts or objects are hierarchically classified either as trees, lattices, or graphs. In 

a tree hierarchy, each node has a single immediate parent node. A hierarchy with 

multiple higher order nodes can be represented by a lattice. The nodes of this net¬ 

work are the objects and the arcs represent the relationships between these objects. 

One such relationship is to provide inheritance of properties from one object to an¬ 

other. Such a relationship is usually called an IS-A link. Concepts such as John is a 

male, Jumbo is an elephant. Rags is a dog, a dog is a kind of mammal, a mammal 

is a kind of living organism, are examples of IS^\ and AKO relationships. Here the 
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Figure 16.1 A semantic network. 

AKO link is used to describe a generalization relation between the concepts mammal 

and living organism, mammal being a subconcept of living organism. The 7S_A link 

is used to identify an instance of a class. The /S_A and AKO links also represent a 

specialization relationship or a classification relationship in the reverse direction. 

The AKO and /S_A links are associated with the property inheritance mecha¬ 

nism. Any property of a higher level node is inherited by all nodes connected to it 

by such a link. The property that all living organisms propagate is inherited by mam¬ 

mals, other animals, and plants. However, we may need to distinguish the properties 

of Indian elephants from those of African elephants; among Indian elephants, only 

the males have tusks. One method of showing these distinctions is illustrated in 

Figure 16.2. Furthermore, to represent exceptions, some mechanism must be used to 

allow cancellation of such inheritances. Thus, if Jumbo has lost one of its tusks, then 

it is an elephant with only one tusk. This is represented by canceling the inheritance 

of the general elephant properties for the node Jumbo and assigning its specific prop¬ 

erties. Figure 16.2 also shows a mechanism for overriding inherited properties: 

Jumbo is an Asiatic male elephant with a trunk, four legs, and one tusk; the inherited 

property, two tusks, is canceled and explicitly overridden by a specific property, 

namely, one tusk. 

The inheritance mechanism allows a more compact knowledge base since com¬ 

mon properties are stored only once. The exception-handling features allow us to 

override some of these inherited properties. 
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Figure 16.2 Inheriting and overriding properties. 

The AKO link can also be used to provide specialization or a classification or 

taxonomy in the reverse direction. In Figure 16.1 the AKO link provides a relation¬ 

ship between two generic nodes and the IS—A link provides it between a generic and 

an individual node. Thus, the generic nodes, human and mammal, are connected by 

an AKO arc to show the relationship that the human is a type of mammal. The 

relationship between a node representing an individual, Jumbo, and the generic node, 

elephant, is provided by an IS-A arc. In Figure 16.2, the node Jumbo inherits the 

properties of the elephant, Indian, and male nodes. 

The semantics of an action, for instance, “John gave Mary a book yesterday,” 

can be represented as shown in Figure 16.3. 

In addition to assigning the meaning to the arcs in the network, the use of a 

semantic network for knowledge representation requires that procedures using the 

semantic network correctly interpret the meaning of these arcs. The assigning of 

meaning to the arcs is ad hoc and a wide variation of network-based schemes have 

been proposed, along with procedures to interpret them. In spite of a lack of stan- 

Figure 16.3 Assigning a meaning to an arc. 
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dardization, semantic networks are popular knowledge representation schemes. Their 

structure resembles the association perceived to be used by humans. 

1 6.3.2 First-Order Logic (Predicate Logic) 

A proposition is a declarative (or assertive) sentence, e.g., “It is snowing,” “Rags 

is a dog.” Declarative sentences are distinguished from interrogative and imperative 

sentences. An interrogative sentence asks a question; an imperative sentence is a 
directive or command. 

Propositional logic is concerned with establishing the validity of a proposition 

in light of a given set of propositions. It establishes whether the proposition is true 

or false, relative to the given set. (The propositions in the set could be either true or 

false. It is, however, not in the realm of logic to establish the truthfulness of each 

statement in the given set of propositions.) Simple propositions can be combined 

using the sentential connectives and, or, not, implies, equivalent, and so on. An 

example of a combined proposition, which is always true, is the following: “If ele¬ 

phants are mammals, and if Jumbo is an elephant, then Jumbo is a mammal.” 

Propositional calculus is, in effect, computing with propositions. Given a set 

of propositions or axioms known to be true (or false), propositional calculus uses 

rules of inference to determine whether a given proposition is true or false. Let us 

use X, Y, Z, etc. to denote propositions; for instance, X may be the proposition 

“Jumbo is an elephant.” The first rule of inference, called modus ponens, allows 

us to infer that proposition Y, “Jumbo is a mammal,” is true under the condition 

that proposition X is true, and hence X logically implies Y (written as X —» Y). 

Thus, given that “Jumbo is an elephant” (X) is true, and “Jumbo is an elephant” 

implies “Jumbo is a mammal,” which is also true, then “Jumbo is a mammal” is 

true. That is, if X and X —> Y are both true, Y is also true. In the above example Y 

is the proposition “Jumbo is a mammal”. 

The second rule of inference is the chain rule, which allows us to infer a new 

implication from known implications; thus, if X —» Y and Y —» Z, then X —> Z. 

Mathematical logic, just like any other formal science, uses a language to ex¬ 

press statements or formulas. The semantics of these statements are well defined. 

Mathematical logic also uses a theory of proofs so that statements can be proved to 

be correct or false. One method of proving the truthfulness or falsity of a proposition 

is called reductio ad absurdum. In this method the known propositions or axioms 

are appended with the negation of the proposition to be proved. If the resulting set 

is inconsistent, the proposition cannot be false. A major problem with this approach 

is that as the number of propositions increases, the number of combinations to be 

investigated increases in an exponential manner and the computation time becomes 

astronomical. 
Propositions that specify a property consist of an expression that names an in¬ 

dividual object and an expression, called the predicate, that stands for the property 

that the individual object possesses. We use the lowercase symbols from the end of 

the alphabet to denote variables, those from the beginning of the alphabet to denote 

constants, and uppercase letters to denote predicates. Thus P(x), where x is the ar¬ 

gument, is a one-place or monadic predicate. DBMS(x) and COMPANY(y) are ex- 



730 Chapter 16 Current Topics in Database Research 

amples of monadic predicates; the variables x and y are replaceable by constants (or 

names of individual objects), like DBMS(ISS). 
A predicate is a statement about an object or a relationship between two or more 

objects. Thus, in the propositions “Jumbo is an elephant,” “an elephant is a mam¬ 

mal,” “an elephant is bigger than a dog,” “is an elephant,” “is a mammal,” “is 

bigger than” are predicates. The last predicate is applied to two arguments, whereas 

the first two have a single argument. 
A one-place predicate, when applied to an object, gives a statement that is either 

true or false and thus divides or sorts the object into two disjoint sets or sorts. The 

predicate “is an elephant,” when applied to the object Jumbo, forms a true state¬ 

ment: “Jumbo is an elephant.” However, when it is applied to Robin, a bird, it 

forms “Robin is an elephant,” a false statement. 
Predicates can be combined using the operators A (and), V (or), “1 (negation), 

—» (implication), or = (equivalence). Other interesting formulas are formed with the 

use of quantifiers: universal (or for all; denoted by the symbol V) and existential (or 

some; denoted by the symbol 3). To express the term “for all objects” a certain 

property holds, we use the quantifier V- T° express the term “there exists some 

object” with a certain property we use the quantifier 3. Thus, (\/*)P(x) and (3x)P(x) 

are used to specify that “for all x, x is P” (or simply that “everything is P”) and 

“for some x, x is P” (or simply that “something is P”). Quantifiers are used to 

limit the range of values of a variable inside a predicate. The symbol V is used to 

denote all values of the variable for which the predicate is valid. The symbol 3 

denotes the existence of some value of the variable for which the predicate is true. 

Well-formed formulas combine predicates with these operators. Parentheses can be 

used to resolve operation precedence ambiguities. 

The only other primitive that we need to define is a function. A function, like 

a predicate, takes arguments and specifies some object; for example, the monadic 

function mother_of(x) specifies the individual who is the mother of the individual x. 

A function has a concept, similar to the one used in programming languages; i.e., a 

function has a number of arguments and returns a value that could be true, false, or 

have some other value related to the arguments. Note the difference between a pred¬ 

icate and a function. A function specifies an object that has some specified relation¬ 

ship (or property) to the argument objects, while a predicate specifies a property that 
the argument objects possess. 

First-order logic can be used as a programming language. It consists of con¬ 

stants, variables, predicates, function symbols, logical connectives, and quantifiers. 

Traditionally, lowercase letters from the beginning of the alphabets are used to de¬ 

note constants and lowercase letters from the end of the alphabets are used to denote 

variables. In first-order logic, we do not allow predicates to be used as variables. 

The concept of equality is defined as follows: two objects X and Y are considered 
equal, i.e., X = Y, if for all predicates P, P(X) = P(Y). 

Predicate calculus is obtained by applying the rules of propositional calculus 

to predicates, using quantification, and adding to these the inference rules for quan¬ 

tifiers. If we further add the concepts of functions and equality, the result is a version 
of first-order logic or first-order predicate calculus. 

A function is defined by a function symbol followed by its arguments: f(a), 

gcm(a,b), lcd(12,16), dad(Roy) fraction (7,8). The function lcd(12,16) is equal to 4, 

the function dad(Roy) has the value Frank, Roy’s dad, and the function fraction(7,8) 
has the value 7/8. 
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A relation name can also be denoted by a predicate symbol. The relation PAR- 

ENT(X,Y) is a two-place predicate symbol and indicates that Y is a parent of X. 

Some tuples from this relation are shown in Figure 16.4. Note that the relation PAR- 

ENT(X,Y) is a form of a rule that states that Y is the parent of X. 

First-order logic is complete since every true statement can be proven; in addi¬ 

tion it is sound, since no false statement can be proven. The response to a query in 

a system using logic can be reduced to that of theorem proving. Some examples of 
wff in first-order logic are given in Example 16.1. 

Example 16.1 The following are wffs: 

brotherfRoy, Jerry) 

brother(Myma,Roy) 

brotherf Jerry,Roy) 

parent(y,x) A parent(z,x) 

Vx(Vy (parent(x,y) A female(y) —» mother(x,y)) ■ 

The last example above indicates logic to state a rule. The rule is that for all 

(individuals) x and for all (individuals) y, if y is a parent of x and if y is a female, 

than y is a mother of x. The term “for all and for all y” can be abbreviated as “for 

all x and y.” 

A Horn clause is a wff of the form: 

A V —'B| V —iB2 V “>53 V • • ■ V ~lBn 

which can be written as: 

B, A B2 A B3 A . . . A Bn-» A 

where A and BjS are nonnegated atomic formulas. 

Figure 16.4 PARENT relation. 

PARENT 

X Y 

Roy Frank 

Jerry Frank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Frank 

Frank George 
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In a Horn clause there is only one conclusion. PROLOG (PROgramming in 

LOGic) is a programming language based on the Horn clause. The human reasoning 

process is generally considered to be similar to the scheme used in logic. Logic 

results in a precise and flexible knowledge representation scheme that is easy to 

formulate and understand. The disadvantages of using logic are the lack of indexing 

or associative capability, the handling of dynamic and incomplete knowledge, and 

the intractability of computations involved in logic-based deductive inferences. In a 

logic-based knowledge representation, the processing is separated from the knowl¬ 

edge representation. The processing part, which determines the utility of the system, 

is usually implemented by theorem-proving techniques; however, this approach may 

not be useful for all applications. Another drawback of logic-based representation 

schemes is that heuristic or rule-of-thumb type knowledge may not be expressed in 

logic. In addition, the following assumptions have to be made in this processing (Gall 

84), (Reit 84): 

• Closed world assumption (CWA), which states that facts not known to be true 

are false. 

• Unique name assumption (UNA), which states that objects are uniquely 

identified. 

• Domain closure assumption (DCA), which states that no other objects or 

instances of objects other than the known ones exist. 

16.3.3 Frames 

The frame is another knowledge representation scheme used to represent the knowl¬ 

edge from a limited domain of stereotyped concepts or events. The concept of frames 

evolved from observations gleaned by psychologists as to the method humans use to 

interpret new situations. When confronted with an unknown object from a category 

of objects already experienced, we expect certain similarities and accept certain dif¬ 

ferences. We know how to handle these differences. We know what to expect and 

what to do if these expectations don’t materialize. Thus, when we drive to a new 

city, we expect to see parks, buildings, streets, street signs. We know the usual 

locations of street signs and the correspondence between a street and a sign when a 

number of signs are posted on the same signposts. We also know what to do if a 
sign is missing at an intersection. 

A frame (see Figure 16.5), is a data structure representing the collection of the 

expected and/or predicted description of a stereotype object, action, or event. Each 

important feature of the object is held in a slot. An optional procedure can be at¬ 

tached to a slot to introduce procedural information or specify consistency con¬ 

straints. The frame also contains the object’s relationship to other objects, these being 

represented by frames as well. The latter feature gives a frame a semantic network¬ 

like property. The description of the object includes a number of important features 
of the object and the relationships between other descriptors. 

In addition to the predicted description of the various features of the object being 

represented, the frame may contain information such as the level of confidence as¬ 

signed to the descriptor, the default values, alternate values (or their range) for de¬ 

scriptors, anci variations in the descriptors that can be associated with the frame. The 

descriptors or slots can allow the inheritance of properties from a related frame. In 
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Figure 16.5 Frames 
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Figure 16.6, the frame Bungalow is a specialization of the frame Building and inher¬ 

its from Building descriptors such as walls, doors, windows, roof. The slot or de¬ 

scriptor itself can be a frame. Thus, the descriptor window can have descriptors of 

its own, for example, size and type. 
In addition, descriptors could have appropriate reasoning or inferencing proce¬ 

dures attached. These procedures are triggered or executed whenever the descriptors 

are filled in, modified, or matched to glean precompiled knowledge. 

Frames have been used extensively to represent visual knowledge and knowl¬ 

edge about natural languages. 

16.3.4 Rule-Based Systems (Production Systems) 

The basic idea in production systems is the coupling of a condition with an appro¬ 

priate action. Each such condition-action pair is called a rule, production rule, or 

simply a production. An example of a production is given below: 

If condition then action 

The condition part of a production expresses the conditions under which the rule 

is valid; the appropriate action to be taken is given by the action part. The action 

part of the rule changes the state of the system and can introduce new facts. The 

condition part of the rule is known as an antecedent and the action part, the conse¬ 

quent. An example of a production rule for the game of hockey, involving a team 

trailing by one goal in the ultimate minute of the game, can be expressed as a pro¬ 

duction rule as follows: 

If trailing by one goal and 

remaining time-to-play in game is less than one minute and 

play is in opponent’s zone 

then replace goalie by forward. 
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Figure 16.6 Frame representation of different types of buildings. 

Building 

Slot 1 
type 

Slot 2 
# floors 

Slot 3 
wall type 

Slot 4 
roof type 

Slot 5 
window type 

Slot 6 
door type 

t 
IS A 

Highrise Mall Bungalow 

Slot 1 
office tower 

Slot 2 
55 floors 

Slot 1 
shopping mall 

Slot 2 
2 floors 

. 

Slot 1 
cape cod 

Slot 2 
1 1/2 floors 

Slot 3 
glass wall 

Slot 3 
cement block 

Slot 3 
brick veneer 

Slot 4 
flat roof 

Slot 4 
flat roof 

Slot 4 
shingle roof 

Slot 5 
glass wall 

Slot 5 
central atrium 

Slot 5 
double-clad 

Slot 6 
revolving 

Slot 6 
100 stores 

Slot 6 
cedar door 

A production-based system consists of a set of production rules, a data structure 

that models the system s current state, and a control subsystem or interpreter that 

interprets the current state and controls its activity by initiating appropriate action. A 

rule is said to be enabled or triggered when the condition part of the rule is satisfied 

by the current state of the system. An enabled rule is said to be fired if the action 

part of a rule is executed. If the system status is such that more than one rule is 

triggered, the interpreter may be required to fire one or more of these simultaneously 

enabled rules; this is referred to as a conflict resolution. The conflict resolution can 

be enacted using its own set of productions. It uses criteria such as priority or rank¬ 

ing, prior selection, arbitrary or random choice, or doing all actions in parallel. The 

order in which the conditions are examined can be determined a priori or could be 

adjusted dynamically. The action part can be a single action or a set of procedures 

that will change the status of the system. The latter change can include disabling a 
subset of die existing productions and enabling other productions. 
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An example of a rule-based system is given below. This system examines the 

causes and the corrective actions to be performed after failing to start a car. The 

execution of each action will modify the state of the starting system under consider¬ 

ation and if there is more than one problem, all the corrective actions will have to 
be taken. 

if starter cranks the engine very slowly 

then problem may one or more of: extreme cold 

temperature, battery, cables, connections, voltage 

regulator, alternator; use jumper cable to start 

if starter does not crank but solenoid operates 

then check cables and tighten and clean terminals and 

check battery voltage 

if problem is low battery voltage 

then problem may be battery: check specific gravity and 

replace if not acceptable; 

problem may be loose, worn, or broken alternator 

belt: do a visual inspection and if belt is okay, 

tighten belt, otherwise replace it; 

problem may be cables: visual inspection, clean 

and tighten connections, and replace broken 

connectors or cables; 

problem may be voltage regulator: check and 

replace; 

problem may be alternator: check and repair or 

replace alternator; 

problem may be shorts in electrical system: locate 

and correct 

if problem loose or worn alternator belt 

then tighten or replace alternator belt 

if problem is battery 

then check specific gravity and if acceptable charge 

otherwise replace battery 

if problem is voltage regulator 

then replace voltage regulator 

if problem is alternator 

then repair or replace alternator 

if battery, cables, and connections are good, solenoid 

operates, but starter does not crank or cranks 

slowly 

then replace the starter 

if battery, cables, and connections are good but solenoid 

does not click 
then check ignition switch to solenoid circuit and 

correct malfunctions 

//battery, cables, connections, and ignition switch to 

solenoid circuit are good but solenoid does not 

click 

then replace solenoid 
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if starter spins but does not crank the engine 

then replace starter 
if starter cranks the engine, smell of gas in the exhaust, 

but the engine does not fire 
then check and dry ignition circuit and replace faulty 

parts 

if starter cranks the engine but engine does not fire and no 

smell of gas 
then check and correct problems with fuel lines, fuel 

pump, fuel filter, carburetor, fill tank 

Since the action part of a rule can modify the state of the system, additional 

rules may have to be fired. There are two methods of matching rules to the current 

state of a system: forward chaining and backward chaining. In forward chaining, 

the initial set of facts are used to determine the rules that apply. If more than one 

rule applies, one of these is chosen. The search proceeds by firing this rule and 

arriving at a new set of facts. This procedure is repeated until a solution is reached. 

In backward chaining, all rules that have to be fired are first determined for the 

desired solution. These rules are then fired sequentially in the forward direction. We 
discuss this further in Section 16.5. 

In a larger system, the production rules limit the interaction between rules and 

lead to inefficiencies. These inefficiencies become evident when a number of produc¬ 

tion rules have to be fired, but can only be executed one at a time. Each such firing 

is preceded by an interpretation of the current state of the system against the produc¬ 

tion rules. On average, half of these production rules have to be tested before each 
firing. 

One approach used in a system with a very large set of production rules is to 

organize the condition part of the rules in a partitioned hierarchy or structured tax¬ 

onomy. Here, taxonomy implies that the condition can be partitioned into disjoint 

sets and the condition in each such disjoint set can be organized hierarchically. Fig¬ 

ure 16.7 represents the rules corresponding to the car starter system above, structured 

in a disjoint hierarchy. However, it may not be possible to do this in all applications. 

A production system is a natural way of imparting some forms of expert knowl¬ 

edge in a modular and uniform way. Each production rule represents an independent 

slice of knowledge and how to use it. A rule can be added, changed, or deleted 
without affecting other production rules. 

16.3.5 Procedural Representation 

In the procedural representation method, the interpretation of so-called declarative 

knowledge is encapsulated in specialized procedures. Each such procedure processes 

a data structure representing certain semantics in the declarative data. The rationale 

is that what humans know can best be described as know-how knowledge. Such 

know-how knowledge is difficult to express in descriptive form. For example, knowl¬ 

edge that the engine is struggling or turning very slowly when being started is relative 

to what we already know as being its normal turning speed during starting. The 

heuristics as to what to do when confronted with such a situation can be built into 



16.4 Deductive Databases 737 

Figure 16.7 Hierarchically structured rules. 

rules but could be expressed elegantly when built into procedures. The emphasis is 

on combining the data structures in these procedures along with the know-how of 

using the knowledge represented in these data structures. Instead of using irrelevant 

knowledge in the form of superfluous rules, the procedural representation uses spe¬ 

cific knowledge for the problem at hand. 

This approach, though not necessarily sound or complete, is pragmatic. It uses 

specialized procedures to limit the amount of processing involved in answering a 

query. The procedures, being ad hoc, have built-in heuristics to allow them to suit¬ 

ably direct the reasoning process. The disadvantage here is the complexity of the 

procedures and their interactions. Furthermore, there is an inherent difficulty in un¬ 

derstanding, modifying, or augmenting the knowledge represented by these proce¬ 

dures. 

16.4 Deductive Databases 

There is a growing interest in the use of logic as a conceptual framework for database 

concepts. Mathematical logic can be used not only to formalize database concepts, 

but also to deduce facts implied by the facts stored in the database. 
A deductive database is a marriage of a relational database system and logic 

programming. The term deductive highlights the fact that the system is able to make 

deductions from facts stored in the database using rules stored in the database. The 

two parts of the system are the extensional database (EDB), the set of facts in the 

form of the relations in the database, and the intensional database (IDB), the data¬ 

base derived by the set of rules imparting the deductive capability to the overall 

system. The relation gives explicit information; the rules elicit implicit information 

from this explicit information. 
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Deductive databases are also referred to as logic databases, deductive relational 

databases, and virtual relational databases. A relational database is a subset of a 

deductive database. 
Up to now we have defined a relation as a set of tuples, i.e., by its extension. 

The set of tuples can be called the elementary facts, and the relation a base predicate. 

These sets of facts, which we have referred to as a database, are essentially an 

extensional database. In the extensional database we define the set of tuples that 

satisfy a relation. We can also define a relation intensionally by specifying some set 

of rules. These rules, defining the intensional database, are expressed as well-formed 

formulas in first-order logic. We can thus consider a database as consisting of a set 

of rules (or laws) and a set of tuples. The intensional database supplements the ex¬ 

tensional one with rules that allow other facts to be derived from those explicitly 

stored in the extensional database.5 

Example 16.2 Let the extensional database consist of a parent relation, i.e., a tuple (or 

fact) of the parent relation tells us the name of the parent of some person. 

If we also need grandparent names, we can either store the name of the 

grandparents or—from our knowledge of who the grandparents are—write a 

derivation rule: The grandparent of X is the person Y in that Z is the parent 

of X and Y is the parent of Z. ■ 

If we wanted to find the ancestors or cousins of a person we can specify these 

as rules. Obviously we save considerably on storage, but more importantly we in¬ 
crease the usability of our database. 

Consider the relation PARENT(X,Y) given in Figure 16.4. It represents the fact 

that Y is a parent of X and is in the extensional database. To find the descendants of 

an individual, we have to specify a number of rules. The descendants can be speci¬ 
fied as follows: 

X is a descendant of Y if Y is a parent of X 

X is a descendant of Y can be represented as DESC(X,Y), which can be inter¬ 

preted as a relation DESC having two attributes X and Y. We can write this rule as 
an implication: 

PARENT(X,Y) -> DESC(X,Y) 

We can go even further and consider a database as not having an extension but as consisting entirely of axioms The exten¬ 
sion counterpart could be a set of particularization axioms (to specify the CWA, UNA, and DCA) (Gall 84), (Reit 84). 

Databases have been characterized by two basic approaches, the model-theoretic view (MTV) and the proof-theoretic view 
(PTV). In the MTV, the database is a model of a first-order theory and queries and integrity constraints are formulas to be 
evaluated on the model using the semantics of truth. Model here is in terms of some set of axioms (in the form of integrity 
constraints) and an interpretation that makes these axioms true. Queries are evaluated in the MTV under the CWA UNA and 
DCA. In the PTV, the database is a first-order theory (i.e., we try to spell everything out with formulas) and integrity con¬ 
straints and queries are theorems to be proved. One difference between the MTV and the PTV is that with the former we can 
add data (a tuple) to the database and still have a model of the same theory (i.e., the model does not have to be changed) 
while with the latter a different theory would result. 6 

DBM?L^LeUatkTaIiZati0n ^ ^ °f ^ deduCt‘Ve database aad not intended to be directly used as the basis of a 
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The above rule gives us the immediate descendants. However, we can find other 

descendants using a recursive rule: 

If Z is a parent of X and a descendant of Y, then X is a descendant of Y 

This rule can be expressed as: 

PARENT(X,Z) A DESC(Z,Y) DESC(X,Y) 

The PARENT relation and the two rules can be used to derive the DESC relation 

and answer queries such as finding all the descendants of an individual. 

Example 16.3 Consider the PARENT relation of Figure 16.4. We can find all the descen¬ 

dants using the above two rules. Initially the DESC relation is empty. We 

apply the first rule, PARENT(X,Y) —* DESC (X,Y), and get the DESC 

relation (Figure A), which is the same as the PARENT relation. 

Figure A DESC relation after the application of the first rule. 

DESC 

X Y 

Roy Lrank 

Jerry Lrank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Lrank 

Lrank George 

Now we apply the second rule. This involves the natural join of PAR¬ 

ENT (X,Y) and DESC(Y,Z) followed by a projection on the attributes XZ. 

The new tuples, shown in Figure B, are generated for the DESC relations 

as a result of the join. (Note: we are renaming the variables in the figure.) 

We repeat this step of applying the second rule until no new tuples are 

added to DESC. The new tuples generated after each application are shown 

in Figures C and D. No new tuples are generated after the third application 

of the second rule, so the resulting DESC relation gives all the descendants 

of a person. 
To answer a query such as “Find all the descendants of George,” we 

do a selection on the DESC(X,Y), relation with the following query: 

^x(^Y = George^ESC) 
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Figure B After one application of the second rule. 

PARENT 

X Y 

Roy Frank 

Jerry Frank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Frank 

Frank George 

DESC 

Y Z 

Roy Frank 

Jerry Frank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Frank 

Frank George 

new tuples for DESC 

X Z 

Roy George 

Jerry George 

Lynn Ruth 

Lynn Frank 

Justin Roy 

Justin Rachel 

Janet Ruth 

Drew Frank 

Pavan Frank 

Sheila George 

Figure C After a second application of the second rule. 

PARENT DESC new tuples for DESC 

X Y 

Roy Frank 

Jerry Frank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Frank 

Frank George 

Y Z 

Roy Frank 

Jerry Frank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Frank 

Frank George 

Roy George 

Jerry George 

Lynn Ruth 

Lynn Frank 

Justin Roy 

Justin Rachel 

Janet Ruth 

Drew Frank 

Pavan Frank 

Sheila George 

X Z 

Justin 

Justin 

Drew 

Pavan 

Lynn 

Ruth 

Frank 

George 

George 

George 
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Figure D After a third application of the second rule. 

PARENT DESC new tuples for DESC 

X Y 

Roy Frank 

Jerry Frank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Frank 

Frank George 

Y Z 

Roy Frank 

Jerry Frank 

Myma Ruth 

Roy Ruth 

Lynn Roy 

Lynn Rachel 

Justin Lynn 

Janet Myma 

Drew Sheila 

Pavan Sheila 

Sheila Frank 

Frank George 

Roy George 

Jerry George 

Lynn Ruth 

Lynn Frank 

Justin Roy 

Justin Rachel 

Janet Ruth 

Drew Frank 

Pavan Frank 

Sheila George 

Justin Ruth 

Justin Frank 

Drew George 

Pavan George 

Lynn George 

X Z 

Justin George 

For our sample PARENT relation, the result of this query is: Drew, 

Pavan, Lynn, Justin, Frank, Roy, Jerry, Sheila. ■ 

In Example 16.4 we use the database relation PRODUCT to find all constituents 

of a product. 

Example 16.4 Consider the relation PRODUCT (Prod-No, Sub-Prod-No). In this relation 

each subproduct is also a product. For each product, the relation gives all 

of its subproducts. If S is a subproduct of a product P, then S is its constit¬ 

uent. We can express this rule as follows: 

PRODUCT (P,S) CONSTITUENT (P,S) 
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To find all products and their constituent products (at the lowest level), 

we require the following additional rule. This rule is recursive: 

PRODUCT (P,C) A CONSTITUENT (C,S) -*• CONSTITUENT (P,S) 

Here we are defining the rule that an object S is a constituent of an object 

P if it is a subproduct of P, or it is a constitutent of an object C, which is a 

subproduct of P. ■ 

Employees who work together can be derived as follows: 

Example 16.5 Consider the relation ASSIGNED_TO (Prod#,Emp#), which gives the 

employees assigned to a given project. We can find all employees who have 

worked together on a project by using the following rule: 

ASSIGNED_TO (P,E,) A ASSIGNED_TO (P,E2) -»> 

TOGETHER(E,,E2) ■ 

We can see that the above rules in the form of logic expressions allow us to 

express recursive queries. This adds to the power of database querying as well as 

specifying the intensional database. 

If Pi, . . ., Pn and Q are atoms, then —iP, V ... V >Pn V Q (with a maxi¬ 
mum of one unnegated atom) is a Horn clause. The Horn clause with one positive 

atom is said to contain one conclusion. The conclusion is also known as the head. 

The atoms Plt . . ., Pn, specify the conditions to be satisfied and are known as the 

body of the clause. A Horn clause with no positive atom has no conclusions. A Horn 

clause with no head may be thought of as integrity constraints, i.e.,P]A. . .A 

Pn —» • can be interpreted as: (P| and P2 and . . . Pn) is a violation of an integrity 

constraint. For example, no individual can be both a father and a mother nor a 

brother and sister of another individual. This integrity constraint may be specified as: 

brother (x,y) A sister(x,y) —» • 

Horn clauses can be expressed easily in PROLOG. If the conditions P,, . . ., 

Pn, imply more than one conclusion, i.e., Q is of the form Q, V • • • V Qm, we 
write these as m Horn clauses. 

In this section we have introduced a powerful extension to the relational data¬ 

base model. Coverage in greater depth is beyond the scope of this text. We give 
references to relevant literature in the bibliographic notes. 

Expert Systems 

Expert systems, also called knowledge base systems, are computer systems designed 

to implement the knowledge and reasoning used by experts in a particular domain to 

solve problems in that domain. Knowledge in these systems is obtained from inter¬ 

views with human experts and represents known procedures, usual practice, heuris- 
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Figure 16.8 

tics, and rules of thumb. This knowledge is usually implemented as a set of rules, 

similar to those given in the car-starting example. These computer systems, as do 

the human experts, use logical inference procedures and compiled production rules 

(rules of thumb). The explicit domain knowledge, the so-called institutional mem¬ 

ory, is accessible by the expert system and along with some form of reasoning gives 

it artificial intelligence. Unlike a human expert, this codified knowledge is of a more 
permanent nature. 

The structure of an expert system, which is built around an appropriate repre¬ 
sentation of the domain knowledge of an expert, is shown in Figure 16.8. Many 

expert systems use productions or rules to represent the domain knowledge. The 

inference system uses the knowledge and applies inference procedures to infer facts 

not explicitly represented in the knowledge base to solve problems posed by the user. 

The inference system, in addition, provides the user with the steps used in the rea¬ 

soning procedure to arrive at a solution to the problem. The user interface is respon¬ 

sible for presenting the user with an easy-to-use interface, and generates responses 
and understandable explanations to the queries posed by the user. 

Abductive reasoning is used in expert systems for applications in areas such as 

medical or fault diagnostics. Medical diagnostics determines the likely cause for a 

patient’s symptoms. The diagnosis may be multiple, there being a certain level of 

confidence associated with each possible diagnostic and each level having associated 

with it a subset of symptoms. Human judgment, along with suggested additional 

tests, may be required to confirm or rule out some of these multiple diagnoses. For 

instance, when a starting problem is encountered with the starter cranking the engine 

very slowly, the diagnosis is that there is a problem with one or more of the follow¬ 

ing components: extremely cold temperatures, alternator, battery, belt, cables, con¬ 

nections, fuse link, or regulator. Further tests in the form of visual inspection, spe¬ 

cific gravity tests, battery voltage, voltage across the battery while the engine is 

running, or output current from the alternator are required to make a final diagnosis 

of the problem. In a rule-based expert system, the current known status of the system 

is matched with the rules and the actions corresponding to one or more of the 

matched rules are executed, i.e., the rules are fired. As a result of the firing, the 
state of the system changes. 

However, not all expert systems deal with multiple answers or uncertainty. Pro¬ 

duction or rule-based systems can be deductive systems. Such is the case when the 

An expert system. 

User interface 

mm r : Inference jf||| > 

Domain 
knowledge 

base 
Mk? 

System . 
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if part of the rules refer to one or more known facts (within the domain for which 

the expert system is being used) and the then part of the rules specify new facts that 

can be deduced from the known facts. The if part of the rule is the antecedent and 

the then part is the consequent. 
An expert system can use the rules in a forward or backward direction. The 

former is called forward chaining; the latter, backward chaining. Consider the rules 

being used as follows: 

antecedent —> consequent 

Here we interpret the rule as follows: if the antecedent is true, then the conse¬ 

quent is also true. In forward chaining, each rule is fired when the rule is enabled by 

having its antecedent satisfied. As a result of the firing of a rule, the state of the 

system would change; the facts corresponding to the consequent of the fired rule 

would be added to the set of known facts. This in turn would enable and fire other 

rules. The direction of action is from the left-hand side of the rule to the right-hand 

side. 
Consider a system containing the following rules: 

a^b, a-^f, bAc^d, e A f -» j, dAg^h 

Here the rule e A f —» j can be interpreted as: if currently e and f are true, then 

we can deduce that j is true as well. 
Suppose it is currently known that (a, c, e, g) are true. We want to know 

whether h is true. 

In this system the first rule, a —> b, will indicate that b is true, since a is known 

to be true. Augmenting this with the current known facts, we get the new known 

facts about the system as being (a, b, c, e, g). The second rule, a —> f, which can 

be fired simultaneously with the first rule, will augment the known facts by f. The 

next rule to be fired, bAc^d, augments the known facts by d; and the subsequent 

rule, e A f —» j, augments the known facts by j. Finally the last rule, d A g —> h, 

establishes the fact h. We see from this example that the firing of the rules a —» f 

and e A f —» j were superfluous in proving h. The sequence of these steps is given 

in Figure 16.9. The rules being triggered and fired at each step are enclosed in 

parentheses. 

In the backward chaining scheme, we hypothesize consequent n; then we try to 

verify this hypothesis by establishing the validity of a rule wherein n is a consequent. 

In other words, we prove a fact by showing that the antecedents corresponding to a 

rule where the hypothesized consequent appears on the right-hand sides are true. If 

the system contains a rule antecedent) —> consequent), then consequent) can be im¬ 

plied if antecedent) can be established to be a fact. If the state of the system is such 

that antecedent) is true, then we have shown consequent). Otherwise proving conse¬ 
quent; requires that we prove antecedent). 

Now, if antecedent;_) A antecedent)_2 —> antecedent), then proving consequent) 

requires proving both antecedent,_, and antecedent)_2. If antecedent, _, A antece¬ 

dent) _2 A ... A antecedent) _j —> antecedent), then proving consequent) requires 
proving all of antecedent,, . . ., antecedent)_j. 

Thus, the inference starts with what is required to be shown and the system 

finds what is needed for this to be established in a backward direction. This scheme 

is called backward chaining because the search is against the direction of the arrows 
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Figure 16.9 Forward chaining. 
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of the rules from the right-hand side to the left-hand side. Only rules that are perti¬ 

nent to establishing the required facts are examined in a backward direction. 
Let us take the previous example and try to establish the fact h using backward 

chaining. We hypothesize h and use the rule d A g —* h to establish that we need 

the facts d and g. Since g is already known, we have to establish d. To prove d, we 

use the rule bAc->d and find that we need the facts b and c. Since c is known, 

we need to establish b, which requires by rule a —> b that we need a. Since a is 

already known, we have proved h. The sequence of these steps is given in Figure 

16.10. 

This example illustrates that in backward chaining, only rules that are pertinent 

to establishing the required hypothesis or facts are examined; hence, the scheme is 

more efficient than the forward chaining scheme. When deciding whether to use 

forward or backward chaining, remember that for the given initial state and the de¬ 

sired goal, the chaining scheme that fans in will be more efficient than the one that 

fans out. 

Production or rule-based systems can explain the reasoning process used to 

come to a given conclusion. The explanations entail showing the rules used in com¬ 

ing to the conclusion. Antecedent matching can be used to show why a given rule 

was used, and the consequent part can be used to show the conclusions reached and 

the subsequent actions taken. 
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Figure 16.10 Backward chaining. 
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16.6 Expert Database Systems: Integration of Expert 
Systems in Database Applications 

Expert systems have been developed as stand-alone systems. A stand-alone expert 

system may be required to access data from a database as an ordinary application 

program. With an integrated approach, the expert system is integrated with the 

DBMS, as shown in Figure 16.11. In addition to traditional data, the system handles 

textual and graphical data as well as knowledge. (It must be pointed out that no such 

integrated system exists to date.) Such an integrated system will be called upon to 

perform the traditional DBMS functions and use the inference system in aspects of 

abductive, inductive, and deductive reasoning. The integrated system needs distri¬ 

bution and concurrent access, and at the same time provides enhanced integrity, 
security, and reliability. 

There are obvious advantages in bringing rule-based knowledge representation 

and reasoning capability to database applications and traditional data processing 

tasks. The database can be used to store the known facts about objects and events as 

well as the rules required by the expert system. An ordinary database query not 

requiring any inference system service could be handled more efficiently by the tra¬ 

ditional DML and database manager component of the multimedia database and 
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Figure 16.11 Integrated expert database system. 

knowledge base system; the user interface can forward such queries directly to this 
subsystem. 

The expert system component of such an integrated expert database system can 

be used to provide a means for interpreting the responses to queries, including re¬ 

sponses that contain, for instance, null values. It can be used with appropriate knowl¬ 

edge to enhance the enforcement of integrity and security of the entire system. 

16.7 Object Approach 

In the object approach physical entities or abstract concepts of the real world are 

represented by objects. Objects are distinguished by identifiers and they encapsulate 

the characteristics or properties of the real world objects as well as their valid oper¬ 

ations. The main difference between objects used in object-oriented programming 

and those in object-database is the persistence. Objects in object-oriented program¬ 

ming persist only for the duration of the program while those in object-database are 

of a more permanent nature. 

It has been predicted that object-oriented programming will be the accepted soft¬ 

ware development approach of the ’90s just as structured programming was the style 

used in the ’70s. One of the results of the evolution of structured programming was 

the strongly typed requirement made popular by Pascal and the top-down modular 

approach. 

Everyone has a different conception of object-oriented programming (OOP) 

and the object model (OM). One yardstick (meterstick!) used by almost everyone is 
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that the OOP approach leads to software reusability. However, OOP by itself is not 

a panacea of reusability. Program components developed using OOP must have been 

designed for reusability, and reuse may require extension of the program module. 

We use the following terms in discussing OOP: 

• Reusability: The ability of a system to be used in an entirely new context from 

the one in which it was originally designed. This is the so-called black box 

approach. A black box (Figure 16.12) is anything that accepts certain inputs 

and produces certain outputs. It can be used as a building block in a more 

complex system wherein the same set or combination of inputs is required to 

produce the same set or combination of outputs. 

• Extendability: The ability of easily modifying a system to accommodate 

additional requirements. However, the original requirements may not be 

changed; for the original set of inputs, the system would deliver the original set 

of outputs. The extendability characteristic allows the system to be used for the 
original needs, while accommodating the new requirements. 

• Compatibility: The ability of the system to be easily combined with other 
systems. 

Traditionally software has been developed using functional methods wherein the 

application is expressed by a set of algorithms, each of which may be implemented 

by a separate procedure. This scheme does not provide the following features: 

• effective data abstraction facility 

• scheme for information hiding 

• concurrency and distribution 

• easy means of adapting to changes 

In a database environment, the data is separated from the programs that use it. 

The database provides a basic set of operations common to all objects in the database 

and additional operations, including the exact meaning of the data, are in the pro¬ 

grams. The database is not aware of the existence of these programs. 

Object-Oriented Systems 

The simulation programming language SIMULA (Dahl 66) is considered to be the 

immediate ancestor of OOP. The Smalltalk programming system (Gold 83) devel¬ 
oped this concept and coined the phrase object-oriented approach (OOA). 

Figure 16.12 A black box with its inputs and outputs. 
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An object has a private memory and can manipulate the contents of this private 

memory as a result of the messages it accepts. The operations performed on the 

private memory are the methods of the object. Objects that respond to the same 

messages in the same way are grouped together; such a group is called a class. An 

object in Smalltalk is an instance of a class. A class could also be refined by adding 
further methods to create a subclass. 

A message in Smalltalk is equivalent to a procedure call. It contains the name 

of the object to receive the message, the name of the message, and keyword argu¬ 
ments. 

16.7.1 Concept of the Object 

The first characteristic of the object-oriented approach is to change our point of view 

from inside the object that we are studying to outside. This change of perspective 

allows us to concentrate not on what the inner workings of an object are, but rather 

on what the object does. This is the so-called first principle of object approach, 

namely, to look at objects from the outside and determine what inputs they accept 
and what responses they provide for these inputs. 

An object can be characterized as follows: 

• It has a state that is recorded in private memory. 

• It is characterized by the messages that it recognizes and the methods 

(procedures) used as a consequence of the message. 

• It is denoted by a name. 

Consider the university database example. Here we are interested in objects such 

as courses, students, enrollment, faculty, and so on. We could represent the enroll¬ 

ment by a relation, ENROLLMENT. The grades that students receive in the course 

in which they are enrolled could be assigned by using an application program with 

embedded query language. The application program could be used many times but it 

is considered separate from the database and stored and maintained separately. In an 

object-oriented approach, each of the above objects could be encapsulated with all 

possible operations that we may need to perform on the data of the object. These 

operations could be similar to the ones performed by the application programs. The 

data structures and the operations on these structures could be treated as objects. The 

data part of the object for ENROLLMENT would be similar to the corresponding 
relation. 

An object can be considered a uniform abstraction or representation of the two 

capabilities of a computing system: storing and manipulating information. They are 

encapsulated in the object and everything can then be considered an object. However, 

for objects to be useful, they must be able to interact with other objects. This inter¬ 

action is provided by message communication. The set of operations performed by 

an object is determined by the message to which it responds. This set of operations 

is sometimes called the object’s message interface or message protocol. 

Each object is cognizant of the messages it can understand. For each such mes¬ 

sage, it will carry out certain operations. These operations for each message make 

up a procedure or method and determine the response generated by the object to the 

accepted message. 
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Figure 16.13 Similarity of a black box and an object. 
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The messages that an object understands depends on the nature of the object. 

Objects for numbers understand a message that requests computation and reporting 

the result. An object representing a thesaurus would understand a message to provide 

the synonyms, antonyms, or homonyms for an entry in the thesaurus object. 

The private memory of an object, which records the value of the data associated 

with an object, is made available to other objects via the response generated by the 

object. There is no way to open up an object and look inside it unless the object, via 

its behavior to messages accepted by it, allows such persual. 

Objects are uniform in the method used for communicating, which is by mes¬ 

sage passing, and because no object is given special status. There is no distinction 

between objects supplied by the system and those created by a user. 

The basic problem in OOP is to determine the kinds of objects that should be 

implemented. In addition, for each object, we have to determine the messages it will 

accept and the response provided by such messages. The choice of object depends 

on the application and use of the system. Sending a message in OOP is equivalent 

to calling a procedure in procedural language or providing inputs to a black box (see 

Figure 16.13). 

16.7.2 Names and Identity 

What’s in a name?6 

Identity is such a simple and fundamental idea that it is hard to explain otherwise than 

through mere synonyms. To say that X and Y are identical is to say that they are the 

6William Shakespeare, Romeo and Juliet, Act II scene 2. 
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same thing. Everything is identical with itself and with nothing else. But despite its 

simplicity, identity invites confusion. E.g. it may be asked: Of what use is the notion of 

identity if identifying an object with itself is trivial and identifying with anything else is 

false?7 

Having defined objects still leaves open the question of the ability to distinguish 

objects from each other. This ability must be distinct from the state of the object or 

its location and at the same time allow different objects to be shared. When talking 

of identifying something, we do not necessarily mean locating a name, but the object 
associated with the name. 

Addressability is a scheme of locating an object or providing access to an ob¬ 

ject and is dependent on the environment. Consider Professor Smith. Her students 

address her in a way that is different from the way her children do, which in turn is 

different from the way her friends and acquaintances address her. However, Profes¬ 
sor Smith is the same person and she knows it! 

Addressability is external to an object. Consider the method used in FORTRAN 

to access a file. A file number is mapped into a logical file name, which is mapped 

into a physical file name and a physical file. The file has an identity of its own, 

which is compared to the physical file name to ensure that the correct file is accessed. 

This highlights the concept that identity is internal to the object. 

Programming languages use variable names to distinguish objects, which last 

for the duration of the execution of the program or portion thereof. Such variable 

names are defined by users to represent the identity of an object. An object required 

by more than one program module is made global among these modules. The binding 

of an object, which in this case is a storage location in real or virtual memory, is 

done either at compilation time or run time. If the same program is rerun the same 

variable is used over again for the same purpose; this fact keeps us from realizing 

that these objects are only temporary. The addressing of an object is thus merged 

with the identity of the corresponding object. Objects that persist over different exe¬ 

cutions of a program or that are passed from one program to another use a file 

system. 

The use of variable names without some built-in representation of identity and 

operator to test and manipulate this abstraction can cause problems. This is the case 

when the same transient objects are referred to by different variable names and ac¬ 

cessed in different ways. The concept of COMMON in FORTRAN is used to share 

objects among different program units and could refer to the same object, such as 

storage location in real or virtual memory, using different variable names with pos¬ 

sibly different data types. This creates a great number of errors that are hard to 

detect. The concept of EQUIVALENCE allows objects to be shared among variables 

of the same program module. Without a test for establishing the identity of the ob¬ 

ject, a problem is created. Pascal addressed this problem by introducing the variant 

record type. Smalltalk provides a simple identity test expression of the form X = = 

Y, where two variables, X and Y, are tested to determine if their identity is the 

same. 

7W. V. Quine, Methods of Logic, 4th ed. Cambridge: Harvard University Press, 1982. 
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16.7.3 Database and Identity 

Databases emerged to resolve the storage problem and facilitate the sharing of per¬ 

sistent objects. This required the support of the identity of an object not only in terms 

of its representation but also over time. 

Every object is unique. However, we cannot, for example, distinguish between 

two 2d nails, nor do we bother to try. What is important for most applications is that 

they are 2d nails as opposed to 3d nails. In modeling a definite object for a particular 

application, we do not model all of its characteristics but only a subset of interest to 

the application. This subset may not be sufficient to bring out the uniqueness of the 

object. (For example, the 2d nails could have some characteristics that may identify 

one nail uniquely from another.) We also use some means to characterize abstract 

objects. It may also happen that the uniqueness of the object can only be established 

as a result of the object’s relationship with another object. 

Database systems use the concept of key attributes to distinguish individual rec¬ 

ords or tuples (persistent objects). The data values of the key attributes are thus 

mixed with the identity of the objects. This dictates that the value of the key attri¬ 

butes cannot be modified, even though they are descriptive data or artificially intro¬ 

duced data. The name of a department, for instance, is used as a key of the depart¬ 

ment and also used as a foreign key in the employee relation (object) to establish the 

relationship that an employee is assigned to a given department. Suppose the name 

of a department changes as a result of reorganization or modernization, say, from 

Quantitative Methods to Decision Science or from Personnel to Human Resources. 

This causes the problem of updating in the department object and all others referring 
to that object. 

A change could be required in the choice of an identifier. Such a situation occurs 

when preexisting databases having similar classes of objects with different identifiers 

must be integrated. Two different divisions of a company, for instance, may use 

different identifiers for identifying employees. One division may use a locally gen¬ 

erated sequential employee number; the other may choose the Social Security num¬ 

ber. Another problem with this approach is that the individual attributes or any subset 
of attributes of a relation lack an identity. 

In the object-oriented approach, a separate consistent mechanism is used to iden¬ 
tify an object regardless of the actual method used in modeling the object or the 

attributes associated with the object (i.e., the descriptive data). An object system can 

then be defined to be made up of objects. In a consistent object system no two 

distinct objects have the same object identifiers, and for each existing object identifier 

there is a corresponding object. Two objects, O, and 02, are identical if the identi¬ 
fiers for the objects are identical. 

16.7.4 Implementation of Object Identifiers 

The object identifier is best implemented using a system-generated surrogate. Such 

object identifiers, provided operations on them are allowed, need not be accessible 

to a user. The question as to what to do with an object identifier when the corre¬ 

sponding object ceases to exist is simply answered if the object is considered to be 
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totally annihilated and no memory of such an object remains in some other object. If 

such a memory remains in the system, we have a problem of dangling pointers, 

which should not be allowed. The identifier of an object that ceases to exist may be 
reassigned depending on the implementation. 

Object identifiers are useful for implementation and allow users to perform tests 

on the identity of an object. Nevertheless, they should not play a role in the model. 

16.7.5 Object Class and Instantiation 

As in traditional programming language, the notion of type is used to describe an 

object. It consists of two parts: the data and operation parts and their implementa¬ 

tions, and the interface to the object that is visible from the outside. The data and 

the implementation of the operations on this data are private to the object. The op¬ 

erations that are implemented cater to the specified interface of the object. 

Traditional programming language provides a number of data types such as in¬ 

tegers, character strings, bit strings, floating point numbers, and so forth. These can 

be used as required by associating a name with an instance of this type. The instan¬ 

tiation can be static at compile time or dynamic at run time depending on the features 
provided by the language. 

Similarly, in OOP, objects may be instantiated either statically at compile time 

or dynamically at run time. There could exist more than one object that recognizes 

and responds similarly to the same set of messages. These objects of the same object 

types are grouped together into a class of objects or simply as a class. Such objects 

have the same type of private memory, which is referred to by their methods using 

the same set of names. Each class has a name and is itself considered as an object 

belonging to a special system-defined class. 

The collection of a group of identical objects into a class allows the sharing of 

common methods. The concept class thus groups together a set of externally visible 

operations, a set of corresponding hidden methods, and a set of. private variables 

belonging to instances of the objects of the class. A new instance of an object in a 

class has its own private memory and shares the operations and the methods of the 

class. 

16.7.6 Inheritance 

In OOP, inheritance is used to allow different objects to share attributes and methods. 

One advantage of inheritance is lower development time due to program reusability. 

In our university database (see Figure 16.14), The objects FACULTY and STU¬ 

DENT are both specializations of the object PERSON and share some common traits. 

They both have a Birthdate, an Address, a Home-Phone-Number, Next-of-Kin, and 

so on. A number of operations could be performed on these items. For instance, one 

of these items could be updated. The program to implement these operations could 

be shared. Similarly, each of the objects STUDENT and FACULTY has certain 

special attributes, i.e., Set-of-Grades for STUDENT and Salary for FACULTY. 
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Figure 16.14 Objects in the university database. 

Class inheritance provides a method whereby a new class can be defined as a 

subclass of an existing class. It inherits not only the operations of the parent class 

but also its data structure (instance variable). It could be possible to add further data 

structures and operations on these structures in the subclass. 

In multiple inheritance a subclass is considered to have not one parent class 

but multiple parent classes (Figure 16.15). Many of the OOP languages provide only 

single (or simple) inheritance. In the case of multiple inheritance, there would be the 

need to override one or more inherited methods and a method of resolving conflict 

in names of operations or instance variables. Conflict resolution would be by explicit 

disambuguation, default rules, or prefixing the name with that of the parent class. 

If a class has to be modified in the presence of existing instances of objects of 

the class and its subclasses, there is a need for some form of object independence. 

In partial inheritance the subclass inherits only a subset of the data structures 

and operations from the parent class and suppresses the remaining. 

Class inheritance is a static mechanism. In dynamic inheritance, an object 

changes its response to a message when it accepts new parts from other objects or 

when it changes its environment. The latter concept is similar to a programming 

language where the environment can be changed dynamically, as in PL/1. Similarly, 

a given text changes its fonts when a new style sheet is attached to the document. 

The direction of research and the very concept of an object depend on the roots 

of the researcher. Researchers are discovering new ways to use the old concepts. 

Figure 16.15 Example of multiple inheritance. 
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They are looking at five major areas: programming languages; concurrency control; 

object-based management; software management; and user interface and environ¬ 
ment. 

Object Databases 

In databases, we concern ourselves with the management and sharing of a large 

amount of reliable and persistent data. The relational system is suitable for an ad hoc 

query expressed in a query language such as SQL. However, such query languages 

are not suitable for application development. The application development language 

must be suitably integrated with the relational query language and should have a 

similar model of the computation being performed. Unfortunately whereas relational 

query languages are set oriented, application languages tend to be record oriented. 

Object orientation, with the ability to treat everything as objects, including programs 
and data, is therefore a promising avenue of research. 

The object model and the object approach have not been defined formally; con¬ 

sequently a large number of systems can rightly claim to be using the object model. 

The justification of the use of this approach in programming language is to provide 

an increased degree of abstraction. In the area of OS there is a constant need to 

reduce complexity in allowing concurrent tasks to share resources in an orderly man¬ 

ner and to communicate with each other. In the DBMS, there is a need to model 

complex entities such as CAD/CAM design data, office documents, and coauthored 
articles. 

Along with the lack of a clear, well-defined and accepted object model, there is 

a lack of uniformity in the concept of an object-oriented database system. In a 

DBMS, the relationship between two record types may be statically established or 

based on the content. Relationships exist between classes due to the hierarchical 

structure and inheritance between subclass and superclass. In the object model, rela¬ 

tionships may exist at object level via objects that know about each other and com¬ 

municate via messages. However, content relationships between objects may not be 

allowed if the object paradigm is to be preserved. In a database system, all record 

instances share the same set of operations, which are implemented in the DBMS. In 

the object model, each object has its own set of operations and can be tailored to the 

object. However, to achieve efficiency, we use multiple inheritance, which creates 

its own set of problems. Database record instances are accessed based on the con¬ 

tents. In the object model, the contents of the object are encapsulated and not acces¬ 

sible; therefore, the identifiers are the only means of externally identifying an object 

instance. 

Research projects in object databases can be classed as either an extension to 

existing systems or as an object-oriented DBMS (OODBMS). In the latter, the data 

model supports the object approach. 

Extension to Existing Systems 

POSTGRES (Ston 86a) (Ston 86b), designed by Stonebraker and his colleagues, 

extends the relational model by supporting abstract data types and procedures. The 

latter can be used to simulate objects. 

16.8 
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Procedures in POSTGRES are global and unlike methods are not local to an 

object and thus are not able to provide encapsulation. 

DAPLEX (Ship 81) is a query language used on a functional data model. 

PROBE (Mano 86) is a knowledge-oriented DBMS that uses an enhanced version of 

DAPLEX. PDM is the data model used in PROBE, which uses entities and functions 

in modeling. Entities are models of real objects and relationships among entities are 

represented by functions. In addition, the properties of entities and operations on 

them are also represented by functions. 

Entities could be subtypes of other entities. They inherit their corresponding 

properties and operations. Values could be stored or computed by procedures. 

OODBMS Approach 

GEMSTONE (Cope 84) is an OODBMS that integrates concepts from programming 

languages and DBMSs. Objects in GEMSTONE are persistent without the concept 

of file in the system. In addition, objects have a unique and immutable identity. 

ORION is the prototype of an object-oriented DBMS. It supports the shared 

objects and allows dynamic evolution of the schema. It addresses the problems in 

the creation and deletion of classes, the alteration of the class/subclass relationship, 

and those of addition and deletion of instance variables and methods. A set of rules 

for these alterations is discussed in (Bane 87). 

IRIS (Fish 88) is an object-oriented research DBMS under development at Hew¬ 

lett-Packard and is intended for integrating the needs of knowledge base systems. 

The IRIS object manager supports the object model, nonnormalized data, version 

control, user-defined functions, as well as abstractions such as aggregation, classifi¬ 

cation, generalization, and specialization. The IRIS storage manager currently sup¬ 

ports the conventional relational database. The interaction with the system is via 

embedded languages such as C and LISP enriched with an object paradigm (see 

Figure 16.16). Interactive support is with Object SQL, which is conventional SQL 

with object-oriented features. 

A class is called type in IRIS and represents a collection of objects that share 

common properties. A method is called a function in IRIS and objects belonging to 

the same type share common functions. Objects respond only to their functions. 

Objects are organized in a hierarchy and inherit properties and functions. 

To define an object class Person we use the following declaration: 

create type Person 

(name char required, 

address char, 

department char, 

phone# char) 

To instantiate two instances of this object type: 

create Person(*) 

instance A1 (‘Albert Smith’, ‘10 Main’, ‘Comp Sci’, 

‘345-1234’), 

Joe(‘Joseph Birke’, ‘35 Pine’, ‘Comp Sci’, ‘529-3856’) 
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Figure 16.16 Structure of the IRIS system (adapted from [Fish 87]). 
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create type Student subtype of Person 

(year integer, 

major char) 

Now an instant of the object type Student is created and values to the attribute 

name (inherited from Person), year, and major are assigned as follows: 

create Student (name, year, major) (‘Peter Watson’, 2, ‘Information Sys¬ 
tems”) 

16.8.1 Pros and Cons of the Object Approach in Databases 

The following are the advantages of the OODBMS: 

• The object approach allows modifications that are localized to a given level of 

an object hierarchy. 

• The messages to which an object responds are encapsulated along with the 

properties of the object. This allows constraints of various complex forms to be 
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easily enforced. Since the operations allowed on an object are encapsulated, its 

interactions with other objects are known and hence predictable. This allows 

ease in extension of the system. 

• The inheritance mechanism allows compact codes and the overriding features 

allow localization of changes. 

On the negative side are the following drawbacks of the OODBMS: 

• Unlike the relational approach, which started out with a formal theory and a 

framework for a query language, there is no formal or accepted framework of 

OODBMS. This lack of a formal framework and query system means that the 

development of OODBMS will most likely be Darwinian, with the most popular 

becoming the de facto standard. 

• Since each object is a self-contained unit, there is no means of showing 

relationships among a number of objects. Interobject reference is used to show 

such an association indirectly. 

• Performance will likely be a problem. Techniques such as associative access 

and architecture features such as tagged architecture have to be investigated. 

• In traditional database systems the user must know what the schema contains, 

such as names of relations and attributes, and pose queries and design programs 

using this knowledge. In an OODBMS the user must know what each object 

class is, as well as its methods, messages, and responses. This is not a light 

requirement8 and may be the biggest stumbling block in the use of the object 

approach unless an intelligent user interface is provided with the database. 

Summary 

In this chapter we defined a knowledge base system as a computer system used for 

the management and manipulation of shared knowledge. We compared a knowledge 

base system with a DBMS and pointed out the similarities and differences. We con¬ 

sidered the different schemes used to represent knowledge: the semantic network, 

first-order logic, rule-based system, frames, and procedural representation. 

Expert systems are knowledge base systems wherein the knowledge of experts 

in a limited domain of application is stored; this knowledge can be used by appro¬ 

priate inference procedures to solve problems in the domain. The knowledge in ex¬ 

pert systems is usually stored as rules. The expert system also generates explanations, 

which can be employed to illustrate the rules used to answer a user query. Expert 

systems use forward chaining or backward chaining in their inference procedures. 

SIMULA, a programming language for computer simulation, introduced the 

concept of object class. Class in SIMULA is an abstract data type mechanism and 

the object-oriented programming language is based on this concept (Gold 83). Ob¬ 

jects can be considered uniform abstractions or representations of the storage and 

manipulation capabilities of a computing system. The set of operations performed by 

SA case in point is the UNIX operating system. It started off with a lean and utilitarian system with very attractive features but 
it has become a dinosaur. The online help facility is of no use to a novice and the manuals are too large and badly organized. 



16.9 Summary 759 

an object is determined by the message to which it responds; this set of operations is 

called the object’s message protocol. Such a set of operations for each message is 

called a method and determines the response generated by the object. The collection 

of a group of identical objects into a class allows the sharing of common methods. 

In the object approach, inheritance is used to allow different objects to share attri¬ 

butes and methods. 

Along with the lack of a clear, well-defined and accepted object model there is 

a lack of uniformity in the concept of an object-oriented database system. Object 

database can be classed as either an extension to an existing system or as an object- 

oriented DBMS (OODBMS) wherein the data model supports the object approach. 

knowledge base management first-order predicate calculus institutional memory 
system (KBMS) Horn clause object-oriented programming 

reasoning facility closed world assumption (OOP) 

deductive reasoning (CWA) object model (OM) 

inductive reasoning unique name assumption reusability 

abductive reasoning (UNA) black box approach 

explanation facility domain closure assumption extendability 

knowledge representation (DCA) compatibility 
scheme frame object-oriented approach 

exception-handling features production system (OOA) 

knowledge independence rule object 

robust production rule message 

metaknowledge production method 

semantic network antecedent class 

property inheritance mechanism consequent instance 

override enable subclass 

proposition trigger message interface 

propositional logic fire message protocol 

propositional calculus conflict resolution addressability 

modus ponens forward chaining identity 

chain rule backward chaining object identifier 

reductio ad absurdum procedural representation class inheritance 

predicate 
method multiple inheritance 

sorts 
deductive database object independence 

function 
extensional database (EDB) partial inheritance 

first-order logic 

predicate calculus 

intensional database (1DB) 

expert system 
dynamic inheritance 

16.1 Write the production rules for an expert system to help in advising a client of a bank as to 

the type of account or accounts he or she should open. 

Using the production rules of Figure E, show the order in which the rules will be fired in 16.2 
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Figure E Production rules for Exercises 16.2 and 16.3 

a —> b 

b A c —> d, m 

b A e —> c, f 

bAf-»s 

d A g —> n, r 

dAv->x 

h A m —» g 

s A r —* b 

m A n —*■ v 

forward chaining to ascertain whether the fact x can be established under the assumption that 

(a, e, h) are true. 

16.3 Using the production rules of Figure E, show the order in which the rules will be fired in 

backward chaining to establish if the fact x can be established under the assumption that (a, 

e, h) are true. 

16.4 A smart pressing iron (see Figure F) consists of the following components: a heating 

element; a thermostat to control the heat setting; a motion-sensing probe to indicate if the 

iron is being used and a controller to turn the iron off if it has not been used in the last ten 

minutes; a manual reset button to reset the iron if it is turned off by the controller; a supply 

cord and a plug for connecting the iron to a standard 110 volt electric wall outlet. The iron 

resets automatically if it is unplugged. Write the production rules to indicate the likely cause 

of a problem if the iron heats intermittently. 

Figure F Smart pressing iron for Exercise 16.4. 
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16.5 Design the knowledge base for an academic advisor expert system for advising new students 

who join your department. 

16.6 Given the relation parent (x,y), where y is a parent of x, specify the rules to get 

a. siblings (brothers or sisters) 

b. ancestors (you may treat a person p as having an ancestor p) 

What other facts would need to be recorded if we want to distinguish between brothers and 

sisters? How would you formulate the rules? 
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Bibliographic Notes 

(Brod 86b) discusses the differences and similarities between a KBMS and a DBMS. (Brae 

86) views a database from a knowledge level. (Find 79) is a collection of some later papers 

on the use of semantic networks in knowledge representation. (Korf 66) and (Quin 51) are 

introductory textbooks in mathematical logic. First-order logic is discussed in (Kowa 79). 

Frames are discussed in (Kuip 75) and (Mins 75). The relative merits of procedural represen¬ 

tation and frames, wherein the procedures associated with the slots can incorporate aspects of 

know-how knowledge, are discussed in (Wino 75). 

(Brod 86a) discusses the integration of AI techniques in databases. Logical databases are 

the subject of recent papers (Gall 84, Reit 84, and references given therein). A collection of 

papers also appears in (Gall 78). (Gray 84, Ullm 88) give a textbook-level introduction to the 

subject. (Smit 86) presents the architecture and functionality of an expert database system, 

which is an integration of an expert system with a DBMS. (Wate 86) contains an excellent 

textbook-level introduction to knowledge bases used for expert systems. (Wins 84) is an intro¬ 

ductory text and (Barr 81) has emerged as a classical reference in AI. (Wate 86) and (Kers 

86) contain bibliographies of existing expert systems. 

POSTGRES is presented in (Ston 86a) and (Ston 86b). The description of the data model 

of PROBE is presented in (Mano 86). This data model is an extension of the DAPLEX (Ship 

81) functional data model. VBASE (Andr 87) is a commercial OODBMS. Some of these 

systems are also claimed to be KBMSs. 
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In this chapter we discuss a number of approaches used to relieve the main computer 

system of the burden of running the database management system and to handle the 

superfluous data not required for deriving the response to a user’s query. 

17.1 Introduction 

In the traditional approach to database systems (see Figure 17.1), the data is stored 

on secondary storage devices and the ability to perform any logical or arithmetic 

computing operations is limited to the central processor. Data has to be moved from 

the secondary storage devices to the main memory attached to the central processor. 

Once the data is transferred to the main memory, the processor can access it and 

determine if the data is useful. Thus it is likely that a large quantity of superfluous 

data will also be retrieved and processed. It has been estimated that on the average, 

only 10% of the retrieved data is found to be pertinent. The utilization of indexes is 

one approach used to reduce this wasteful movement and processing of data. How¬ 

ever, the indexes themselves take up considerable storage space and generate sub¬ 

stantial traffic on the input/output channels as well as a heavy processing load on the 

processor. 

17.2 Database Machine Taxonomy 

The approach taken in database machines is to offload the database management 

functions onto a special processor and optionally add some level of computing ca¬ 

pability closer to the data. The special processor relieves the main computer system 

of the task of managing the database; the extra level of computing capability makes 

it feasible to decide whether a given set of data will be useful in the evaluation of a 

query without having to transfer the data to a central processing unit. 

A number of approaches to moving the computing power closer to the data have 

been proposed, and experimental systems for some of these proposals have been 

Figure 17.1 Conventional approach. 
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/ 

attempted. The references to some of these systems are given in the bibliographic 

notes. These approaches can be classified as one of the following: backend software 

approach; processor associated with memory or intelligent memory approach; special 

hardware approach. We briefly describe these approaches in the following sections. 

1 7.2.1 Backend Software Approach 

In the backend software approach, sometimes called the backend computer ap¬ 

proach, the host computer where the applications are located is attached to a dedi¬ 

cated general-purpose computer and a conventional database management system 

runs on this backend computer. This dedicated backend computer is responsible for 

carrying out the database functions of locating and retrieving the required data as 

well as ensuring security, enforcing consistency criteria, and providing for recovery 

operations. This releases the host computer from database management functions. 

Superior performance can be achieved by parallel processing of the application pro¬ 

grams and the database operations in distinct processors. A single backend computer 

can be attached to a single host or a number of hosts, not necessarily identical, can 

share a single backend computer. 

A database request from an application program in the host computer is inter¬ 

cepted by special interface software, which sends the request to the dedicated back¬ 

end database machine. The backend machine performs the required data access and 

processing operations to derive the response for the request and this response is sent 

back to the host. 
The backend machine can be a conventional computer dedicated to running a 

conventional database management system. It can also be a system consisting of one 

or more specialized processors using traditional secondary storage devices or associa¬ 

tive memories of one or more types. Associative memory has logic associated with 

each word or each bit of the memory. The logic is used to simultaneously examine 

the contents of the entire memory. Matching words are flagged and could be rapidly 

located for subsequent processing. 

Regardless of the nature of the backend system, it is dedicated to performing 

the database functions in an optimal manner to achieve cost-effective performance. 

Higher performance is achieved by the parallelism inherent in such a system. 

There are certain advantages and disadvantages in dedicating a separate system 

for the database functions. We already mentioned the higher performance attainable 

with such a system as a consequence of parallelism and specialization. The perfor¬ 

mance here is measured in terms of the overall system throughput and not necessarily 

the response for a single query. The response to a query in a backend approach 

involves an overhead in the form of communication between the host and the back¬ 

end computers. As a result, the response time for a query is likely to be worse in the 

backend approach compared to the conventional approach where communication be¬ 
tween computers is not required. 

In the backend approach, since the data is under the control of a dedicated 

system, data security is enhanced. This is because no user has direct access to the 

backend system, all requests being handled through the host interface. Also, since 

no application programs run on the dedicated system, the reliability of the database 

system is improved; there is freedom from crashes that occur due to incorrect appli- 
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Figure 17.2 

cation programs. However, since the overall system has more components than a 

conventional system, the likelihood of failure is increased. 

A dedicated database machine can be used to support the database operations 

for a number of host computers and/or workstations, as shown in Figure 17.2. Such 

an approach, where a number of hosts share one or more backend computers, permits 

cost-effective sharing of both the data and the database management functions. How¬ 

ever, unless the dedicated database machine has the required capacity to handle this 

load, it will create a bottleneck. Furthermore, failure of this dedicated system would 

bring the operations of these hosts to a halt. 

An alternative solution to relieve the bottleneck and to increase the reliability of 

the backend system is to incorporate multiple dedicated database machines in the 

database management functions, as shown in Figure 17.3. In this variation of the 

backend approach, a number of backend computers can be used to handle a very 

large database, the latter being distributed to optimize performance by allowing par¬ 

allel retrieval and processing of data required simultaneously. However, with this 

scheme, the problems encountered are the following: the need to determine the dis- 

Backend database computer approach. 

Host Host 

Disk 
controller 
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Figure 17.3 Multiple backend computers serving multiple hosts. 

Host Host 

tribution of data on the multiple backend computers; the maintenance of the directory 

containing this information about the data distribution; if such a directory is not 

maintained, then the overhead for determining the location of required data; consis¬ 
tency enforcement if data is replicated. 

17.2.2 Processor Associated with Memory or Intelligent Memory Approach 

In the intelligent memory approach (see Figure 17.4), sufficient processing logic is 

associated with the secondary memory so that data can be processed before being 

transmitted to the host processor. The host runs the database management system. If 

sufficient processing capability is associated with the secondary storage device con¬ 

troller, it can intercept data from the secondary storage device to determine its use¬ 

fulness. There is no need to move superfluous data to the host system running the 

database management system. The host could be a conventional system as in Figure 
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Figure 17.4 Associative memory approach. 
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17.1, running the application as well as the DBMS, or it could be a dedicated back¬ 
end computer. 

The processing capability associated with the secondary memory is provided by 

VLSI-based microprocessors and hence is cost effective. The storage device could 

be electromechanical in the form of rotating disks or drums, or it could be nonme¬ 

chanical, e.g., magnetic bubble memories or charge-coupled devices. (In the follow¬ 

ing discussions, we assume that the storage devices are electromechanical; however, 

the same concepts can be applied to the nonmechanical devices.) The processing 

capability may be associated with a storage device in one of the following manners: 

processor per track of a fixed-head type storage device; processor per surface of a 

moving-head type storage device; processor per storage device; or multiprocessor and 
cache approach. 

In the processor-per-track approach, a processor is associated with each track 

of the secondary storage device, the latter being a fixed-head disk or drum or other 

such device (Figure 17.5). This type of structure is also called a cellular logic de¬ 

vice, since logic is associated with each cell of memory. Data from the track is 

processed by the associated processor and data from all tracks can be processed 

simultaneously. Thus, the entire contents of the storage device can be processed in 

one pass, which in the case of a rotating storage device is a single revolution. Since 
all data can be processed in a single pass, indexes are not needed. 

The disadvantage of the processor-per-track scheme is that the data from all 

tracks of a single device is not necessarily required and the concurrent processing of 

the irrelevant data is unproductive. The cost of this type of storage device is high. 

However, with the ultralarge-scale integration (ULSI) of logic components, the cost 
is expected to decrease. 

The processor-per-surface method is an attempt to associate processing power 

with each read/write head of a moving-head type secondary storage device (Figure 

17.6). The amount of data that can be processed per pass by each processor is the 

same as in the processor-per-track approach; however, to process all the data from 

the storage device would take m passes or revolutions, where m is the number of 

tracks per surface. In the case of mechanical devices such as disks and drums, the 

movement of the head from track to track takes a finite amount of time and this will 

have to be accounted for in the total time required to process the data from the 

device. If the storage device is nonmechanical, the switching of the cells to be pro¬ 

cessed can be done at much faster electronic rates. To reduce the number of passes, 

indexes are necessary for these storage devices. 
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Figure 17.5 Fixed-head disk with read/write head and processor per track. 

The processor-per-device approach is an attempt to further reduce the number 

of processing elements associated with the storage, and hence the cost. In this 

scheme there is a single processor associated with each storage device. The processor 

acts as a filter between the host computer and the device. Indexes are required to 

reduce the number of passes and the amount of data actually processed by this filter 

processor. 

The multiprocessor and cache scheme (Figure 17.7) is an attempt to optimize 

the cost-performance factor by allowing the filter processors to be assigned to process 

the data from any one of a number of storage devices, or from a number of different 

tracks or cells of a single device. The data to be processed is placed in one of the n 

high-speed memory caches, there being m filter processors. The interconnection net¬ 

work is used to connect any one of the m processors to any of the n caches. Up to 

m caches can be processed simultaneously; the data in these caches could be from 

distinct devices or from the same device. With n > m, some of the empty caches 

could be filled while m caches are being processed and buffer the difference between 

the processing rate and the device access rate. 

17.2.3 Special Hardware Approach 

In the special hardware approach, instead of using a conventional computer as the 

engine in the backend for running the database management system, a specially de- 
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Figure 17.6 Moving head disk with a single read/write head and processor per surface. 
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signed computer, usually called a database computer or database machine, is used to 

perform the database functions in hardware, firmware, and software. Since the data¬ 

base functions are performed by dedicated hardware components, the j»rformance ot 

the system is enhanced. A number of designs for database machmes have been pro- 

posed; these are mentioned in the bibliographic notes. 

1 Ta3 DBC/1012 Overview and Features 

In this section we describe the design of one current database computer, the 

DBC/1012 from Teradata Corporation. It is a self-contained database management 

system that interfaces directly to the input/output channel of the host computer. It 

can also be used as a local area network database server, servicing intelligent work- 

Statl°The DBC/1012 (Figure 17.8) is an integrated system wherein the relational da¬ 

tabase management system is implemented in software, firmware, and hardware. It 

Figure 17.8 Teradata DBC/1012 database computer (adapted from [Tera a]). 
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is a dedicated system and interfaces with one or more host computers as well as 

intelligent workstations connected to a LAN. It can be expanded modularly and con¬ 

sists of multiple microprocessors and direct-access storage devices; the database ma¬ 

nipulation and control functions are implemented in the software and firmware. The 

interface and overall control function of the DBC/1012 is resident in one or more 

interface processors and/or communication processors. The system is made up of the 

following components: host system communication interface (HSCI); interface pro¬ 

cessors (IFP); processor interconnection network (Ynet); access module processor 

(AMP); disk storage unit (DSU); system console and printer; communication proces¬ 
sor (COP). These components are described below. 

Host System Communication Interface 

The HSCI software, resident in the host computer, is responsible for supporting the 

database requests of the users and applications on the host system. The HSCI allows 

the users and applications to manipulate the database in the DBC/1012. It consists of 
the following components: 

• A library of runtime service routines called call-level interface (CLI) routines. 

• The Teradata director program (TDP), which manages the interaction of 

application programs and interactive users on the host system with the 

DBC/1012. The TDP is also responsible for input and output from the 
DBC/1012 via an IFP, as well as recovery and security. 

• A set of routines called user-to-TDP communication (UTC), routines that 

manage the communication between applications and the TDP. 

The CLI routines present a uniform protocol for converting requests from inter¬ 

active users or programs into a form that can be communicated to the TDP via the 

UTC. The CLI routines are also responsible for handling the responses to these re¬ 

quests from the DBC/1012 and forwarding it to the user or application program. 

Ynet 

Processors interconnect in the DBC/1012 through the Ynet bus. This is an intelligent 

bus that implements the multiprocessor management, as well as interprocessor mes¬ 

sage routing and sorting functions in hardware. To provide reliable, fail-safe opera¬ 

tions, the interconnection network consists of dual Ynet buses. The Ynet allows 

messages to be transmitted between the processors connected to it (IFPs, AMPs, and 

COP). The node module of the basic Ynet configuration, shown in Figure 17.9, is a 

three-level binary tree consisting of seven internal nodes and eight leaf nodes, the 

processor modules being connected at the leaf level. Only one of the dual Ynets is 

shown; the other network is identical. Each processor is connected to each of these 

Ynets. The data traveling up and down the network contains control information 

pertaining to the nature of the block of data and its destination. This control infor¬ 

mation enables the Ynet to route the block to the correct destination. The intercon¬ 

nection network is used as follows: A request from a user arrives at one of the IFP 

processors. The IFP processor determines the nature of the request and generates a 
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Figure 17.9 Basic configuration of the Ynet (adapted from [Tera a]). 

number of work steps to respond to this request. These work steps are encoded into 

data blocks that travel up the hierarchy from the IFP processor level to the node at 

level 3, and then down to one or more AMPs. The downward transmission uses a 

broadcast mode; the upward transmission is controlled by control information asso¬ 

ciated with the data block. Data retrieved by the AMPs travels up the network. 

Contention logic in the network is used to sort the data moving up from the AMPs. 

The control information in the data block is also used to sequence the arrival of 

blocks from AMPs to a given IFP in a certain order and achieve merge/sorting of the 

relevant data. 
The following types of communication are provided by the Ynet: between any 

two processors; from one processor to a group of processors; from a group of pro¬ 

cessors to a single processor; or between processors to synchronize their operations 

on data. A Ynet can be expanded to support up to 968 processors. 

IFP 

The IFP (Figure 17.10) interfaces both with the host and the Ynets and manages the 

traffic between the two. The number of IFPs depends on this traffic and can be 

adjusted to match it. Each IFP is connected to both Ynets. The functions imple¬ 

mented in the IFPs are the following: host interface, session control, parser, dis¬ 

patcher, and Ynet interface. These functions are implemented in hardware or soft¬ 

ware and are briefly described below. 
The Ynet interface in the IFP controls the transmission of messages to and the 

receipt of responses from the AMPS. A message may be transmitted to a single AMP 

or to a group of them. 
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Figure 17.10 Interface processor (adapted from [Tera a]). 
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Session control involves processing the logon and logoff requests from the host. 

The messages to and from the TDP in the host are under the control of the host 
interface. 

A DBC/SQL request from the host is semantically interpreted by the parser. 

This interpretation may need a reference to the system information stored in the data 

dictionary/directory to resolve symbolic references and determine integrity con¬ 

straints. The parser generates a number of work steps required to process the request 

and sends these to the dispatcher. 

The dispatcher controls the execution of work steps and also performs the as¬ 

sembly of the response to be sent to the host via a response control subsystem. The 

dispatcher schedules the execution of these work steps and passes them to the Ynet 

interface, which in turn sends them over the Ynet to one or more AMPs. The dis¬ 

patcher is also responsible for monitoring the status of the work steps in the AMPS 

and interacting with the response control. The response control is responsible for the 

assembly and transmission of the response for a request from the host. 

/ 
AMPs and DSUs 

The access module processor (Figure 17.11) is very similar to the IFP and uses some 

of the same components. The AMPs receive requests for database access over the 

Ynet and respond by sending the required information back to the requesting IFP or 

COP over the Ynet. Each AMP is connected to both Ynets and could have a maxi¬ 

mum of two data storage units. The database manager (DBM) subsystem is resident 

on each AMP in the DBC/1012 and is responsible for executing the functions of 
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Figure 17.11 Access module processor (adapted from [Tera a]). 
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selecting, retrieving, or storing data onto the attached disk storage units (DSUs). The 

DSUs store the data in the system; the data is distributed and replicated over the 

DSUs to achieve both concurrency in access and reliability in case of the failure of 

a single DSU. The components of the AMPs are the Ynet interface, the database 

manager, and the disk interface. The Ynet interface is responsible for accepting re¬ 

quests from the IFPs or COPs via the Ynet and replying to them. The Ynet interface 

is also responsible for synchronizing the operation of the AMP with other AMPs and 

this allows data to be merge/sorted at the receiving IFP or COP. 

The disk interface is responsible for controlling the i/O operations of the at¬ 

tached DSUs and communicates with them. Each disk contains space for use by the 

system in addition to the database; the latter could be either primary data or optional 

recovery data. The system area contains system software and system information 

such as tables and indexes. For each table created in the database, the DBA can 

specify if a second copy of the table is to be maintained for backup and recovery 

purposes. If a second copy is required, this data is maintained in another disk at¬ 

tached to a different AMP from that containing the primary copy. With this scheme, 

in the event the primary copy is inaccessible, the second copy can be used. The 

primary data and the secondary data are distributed. This distribution balances the 

load on the AMPs and allows concurrent access and processing of related data. This 

distribution is an imaginative method of achieving the efficiency of the multiproces¬ 
sor and cache system. 
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The database manager is responsible for the definition, maintenance, and manip¬ 

ulation of the tables under control of the AMP, as well as participating in the recov¬ 

ery operations. The DBM receives the work steps from the dispatcher and processes 

them by appropriate selection, retrieval, insertion, deletion, or modification of data 

on the DSUs attached to the AMP. The DBM is also responsible for managing locks 

for concurrent requests and manages consistency by sending update messages to 

AMPs containing the secondary copy of data being modified. The database manager 

is also responsible for sending the response to the dispatcher in the IFPs or COPs. 

To facilitate data retrieval, the DBM uses two-level indexes (master index and cyl¬ 
inder index), processed using binary search. 

Additional AMPs and DSUs can be modularly attached to the system to increase 

both capacity and performance. When additional AMPs and their DSUs are attached 

to the DBC/1012, the database is reconfigured by redistributing the existing tables 
from the existing AMPs onto the new AMPs. 

COP and MTPD 

When a host computer or intelligent workstation communicates with the DBC/1012 

over a local area network (LAN), the communication processor (COP) is used to 

perform functions similar to those implemented in the IFP. The request to the 

DBC/1012 is via messages over the network. The COP is a special-purpose IFP; 

each COP is connected to both Ynets. The software resident in the host includes, in 

addition to the CLI routines and BTEQ (a batch facility to submit a job containing 

DBC/SQL statements as well as control statements for session control and output 

formatting), the Micro Teradata Director Program (MTDP) and the Micro Operating 

System Interface (MOSI). The MOSI is collection of routines for interfacing with the 

host operating system and the communication protocol routines used by the host. 

The COP, like the IFP, contains the session control, parser, and dispatcher sub¬ 

systems. These subsystems perform analogous tasks as in the IFP. 

System Console and Printer 

The system console, which is an IBM or compatible personal computer, is used for 

operator communication to monitor the status of the system, including its current 

configuration and performance. The console is also used in controlling the system 

and in diagnostic operations. The printer can be used to obtain a hard copy record of 

the operations of the console. 

Data Dictionary/Directory 

The data dictionary/directory (DD/D) contains information about the relations as well 

as views on these relations and the appropriate control information. The relation 

scheme consist of its attributes, the domains of these attributes, identification of the 
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owner and creator of these relations, indexes to be maintained, a list of authorized 

users and their access rights. The scheme is maintained in the DD/D. 

1 7.3.1 Operation of the DBC/1012 

The database system in the DBC/1012 consists of the following components: session 

control, dispatcher, and database manager. Each IFP and COP is responsible for the 

first two components and in addition these processors interface with the host systems. 

The database manager is implemented on each AMP and is responsible for providing 

the transformation from the logical database organization to the physical level; the 

data is stored on the DSUs. The access aid used by the DBM is a two-level index 

consisting of a master index and a cylinder index; binary search is used on these 

indexes. 
The user defines and manipulates the database using the following facilities: 

• In DBC/SQL, the Teradata query language. This is the facility used to define 

and manipulate the database. Thus, the user can define relations or views on 

existing relations as well modify them using statements in DBC/SQL. 

Statements in DBC/SQL allow the user to control access to the database by 

establishing users and their access profiles. 

• Interactively, by statements in the Interactive TEradata Query (ITEQ) language. 

This includes functions for retrieving metadata about the database; entering, 

editing, and executing DBC/SQL statements; and specifying the format of the 
output. 

• In a batch mode, using a facility provided by the Batch TEradata Query 

(BTEQ) language, wherein a number of DBC/SQL statements along with BTEQ 
batch commands can be executed. 

• By DBC/SQL statements included in application programs in a high-level 

language. These statements are converted by a language preprocessor into calls 

to CLI routines. After the compilation of the source program, these CLI 

routines are link-edited with the object code to generate a load module ready for 

execution. It is also possible to dynamically load the CLI routines at run time. 

At execution time, the CLI service routines generate a query request, which is 
communicated by a UTC routine to the TDP. 

• In a natural query language such as INTELLECT or a fourth-generation 
language such as NOMAD. 

• By using calls to CLI routines in a high-level language. 

• By using a data directory/dictionary facility to access the meta information 
regarding the database objects. 

The user’s query requests are communicated to the TDP via UTC routines by 

the CLI service routines. The TDP is responsible for managing the communication 

between the application program or the user and the DBC/1012. On receiving a query 

request, the TDP creates a message for the IFP, which is communicated via the host 

to DBC/1012 interface. The CLI routines are also responsible for receiving the re¬ 

sponse to the DBC/SQL statements from the DBC, via the TDP, and forwarding it 
to the application program or user that originated the request. 
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1 7.3.2 System Facilities of the DBC/1012 

The DBC/1012 provides a number of system facilities for database security, integrity, 
and concurrency control. 

Security is implemented by means of a session protocol. A user is required to 

log on to the DBC/1012 to establish a session. The logon procedure identifies the 

user (or application program) and provides an account number and a password. A 

session is established once the logon parameters are accepted. A session ends when 

the user logs off. Unauthorized access or an attempt to access outside a session is 
denied and appropriately reported. 

Concurrency is implemented by locking. The locking granularity could be the 

entire database, a relation, or a tuple. There are four modes of locking provided by 

DBC/1012: exclusive, write, read, and access. The access lock can be used by users 

who are not concerned with data consistency. The degree of concurrency is increased 

since the access lock allows read operations to be executed simultaneously against a 
data item locked in the write mode. 

Recovery is implemented by the use of transient and permanent journals. The 

transient journal is a log of updates to the database. The log entry consist of the 

transaction identification and the before image or the modified data items. The tran¬ 
sient journal is used to undo a single transaction error. 

The permanent journal is an optional second method of recovery implemented 

in the DBC/1012. The DBA decides to log either the before image or the after image 

of data items in the log of the permanent journal. The log could be single or double; 

in the latter case redundancy in the log is provided by recording two copies of the 
before or after image. 

Archiving (dump) is performed by making copies of the database and permanent 

journal at regular intervals. Checkpoint facility is part of the permanent journaling 
feature. 

Recovery from failures is achieved by rollback or roll forward optionally to a 
specified checkpoint. 

Summary 

In the traditional approach to database systems, the DBMS runs on the same com¬ 

puter as the user programs. The data in this approach is stored on conventional ro¬ 

tating memories. It is necessary to move the data to the central processing unit for 

processing and to determine what portion of it is needed to respond to a user’s query. 

We discussed a number of approaches that have been used to place some of the 

database management load on a separate system. In some of these approaches, some 

form of computing capability is provided near the data, which avoids moving super¬ 

fluous data to the main processing unit. The processor per track or cellular logic, the 

processor per surface, the processor per device, and the multiprocessors and cache 

are attempts to provide processing close to the data. We also described one instance 

of a commercially available special-purpose computer that handles the database man¬ 

agement functions. 



782 Chapter 17 Database Machines 

database machines 

backend software 

backend computer 

associative memory 

intelligent memory 

processor per track 

cellular logic device 

processor per surface 

processor per device 

multiprocessor and cache 

special hardware 

Bibliographic Notes 

With the development of database management systems, the load placed on the system of 

second and third generation computers far exceeded their capabilities, which led to the concept 

of database computers. One of the first reports of a prototype development of backend database 

computers was the XDMS project of Bell Labs (Cana 74). Earlier, Slotnick (Slot 70) had 

proposed a logic-per-track storage device. The cellular logic device is a generalization of 

Slotnick’s logic-per-track concept. Examples of this approach are the CASSM (Su 79), the 

RAP (Schu 78), and the RARES (Lin 76) projects. The processor-per-surface approach was 

used in the DBC project (Bane 78). DBC/1012 (Tera a) is an example of the processor-per- 

surface approach which, with the distribution of data on different AMPs, achieves the effi¬ 

ciency of the MPC approach. The DIRECT project (Dewi 81) is another example of the MPC 

approach. More recent systems are described in (Hsia 83), (MDBS); (Fish 84), (Jasmin); (Kits 

85), (Grace); and (Dewi 86), (GAMMA). 

(Mary 80) presents a tutorial on the software backend computer approach. With the in¬ 

creasing use of the relational model, there was an increase in emphasis on developing systems 

to improve the performance of the relational model in hardware (Babb 79), (Bane 78), (Dewi 

81), (Lin 76), (Smit 79). The use of content-addressable memories is not cost effective and 

they remain controversial (Hawt 81). Commercial database machines continue to use conven¬ 

tional rotating memories. 

Textbook-oriented discussions of database computers are presented in (Hsia 83) and 

(Su 88). 
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Appendix 

3.1 
•. ,-i.. . "'r'<. 

Sequence 

Let s be some sequence of elements. The kth element of the sequence is specified as 

s(k), the number of elements in the sequence as #s. To specify that e is an element 
of s, or not an element we write e € s, or e l s, respectively. 

To determine whether or not, e, is an element of sequence s, we have the 
program: 

i := 1 

while (i < #s) and (s(i) + e) 

i := i + 1 
end while 

if i > #s then return (false) 

else return (true) 

This program sequentially accesses every element. Thus, if the element access re¬ 

quests are uniformly and randomly distributed, the average number of elements ac¬ 
cessed for each find is #s/2. 

We can insert an element in the sequence s 

s' : = s + e 

where s' represent the sequence after the insertion operation denoted by +, #s' = 

#s+ 1 and s'(#s') = e. The intersection is always made at the end of the sequence. 
Thus, the insert program would be: 

while i < #s do { while not end of sequence do } 
s'(i) : = s(i) { copy s into s' } 

i : = i + 1 

end while 

s'(i) := e { insert element into s' } 
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The deletion of an element e from s is: 

s' : = s - e 

where — indicates the deletion operation and s' is the new sequence after the deletion 

such that: 

#s' = #s 1, and 

if s(i) = e then 
s'(j) = s(j) for j =1,2, . . 
s'(j) = s(j + 1) for j =i,i+l, • 

i-1 
., #s 1 

That is to say, one occurrence of e in the sequence is removed and the sequence 

rearranged, so that no gaps exist. 
The last operation we define is replace (or modify): 

s' : = s * e%e' 

which should be read as, “modify an occurrence of e in s to become e'”, and where 

#s' = #s, and 
if s(i) = e then T~ s'(j) = s(j), forj + i 

L s'(j) - e', for j — i 

So far, we have only considered unordered sequences. In an ordered sequence 

the elements satisfy some given order, viz. 

s(i) 0 s(j), if i > j 

where 0 € [>,<] defines the ordering. Thus, for non-decreasing (or ascending) order 

we have : 

s(i) 2= s(j), if i>j 

and for non-increasing (or descending) order, we have: 

s(i) < s(j), if i > j. 

The operations on ordered sequences would need to be, suitably, modified. As 

such, the program for the find operation would be changed, as the if condition now 

becomes "s(i)¥=e or i>#s. The element insert operation, now, has to maintain the 

order and the program becomes : 

i := 1 

while (s(i)0e and i < #s) do 

s'(i) = s(i) 
i : = i + 1 

end while 

if i < #s then 

s'(i) := e 
for j : = i to #s do s'(j + 1) : = s(j) 

else s'(#s+ 1) : = e 

So far, we have been considering only atomic elements, these being the ele¬ 

ments that cannot be further subdivided. The ordering could, thus, be simply speci¬ 
fied on the elements. 
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For both ordered and unordered sequences, we may specify that every element 

of the sequence is distinguishable from all other elements in the sequence as each is 

unique. This requires some changes to the operations. An element, e is, only, in¬ 

serted m s, if e i s. Deletion requires that e l s', and that the relational operator 0 
^ l"» ^ J • 

Lastly, we wish to consider the sequences of elements of which they themselves 

are a collection (elements or sequence). Consider a sequence s and s(i) is an element 

of s. However, s(i) is also a sequence, and thus, s(i)(j) represents the jth element of 
the ith element of s; we shall write this in the more convenient form s(i,j). It is 

simple to modify our operations to handle this situation. In ordered sequences, we 

have to decide which components of our elements would be chosen for the orderings. 
Earlier in our example on birth dates, we had considered ordering by date. What 

should one do if two persons have the same date of birth? Thus, in some ordered 
sequences a compound order may have to be defined : 

s(i,k,) 0, s(j,k,) A s(i,k2) 02 s(j,k2) A . . . ., 

where 0j $ {>,<} (for unique elements, we have 0j £ {>,<}. 





Average 
Seek Distance 
Computation 

Let the file consist of N consecutive cylinders. For a given seek request, let i repre¬ 

sent the current (or starting) cylinder, and j the destination cylinder. 

The seek distance is |i— j| cylinders, and the average seek distance is, therefore, 

given by: 

| N N 

average seek distance = -3 2 2 |i~j| 
N~ i =1j =1 

If we take the distance from the center, the above expression can be rewritten and 

simplified as follows: 

j N ' 

average seek distance = —2 2 2 ^ (i —j) 
N“ i= 1 j = 1 

= 7*72 S2 (i — 1 + i —2 + . . . + i-1) 
IN i= 1 • 

Jp&O1-' -2. . . -i) 
IN i = 1 

= 772 §2(i2-(l + i)i/2) 

= ^S2(i* (i — l)/2) 
IN i = I 

1 N 

= N5,?, (i2“° 
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= ~2 (N*(N ■(■ 1)*(2N + l)/6 - N*(N + 1 )/2) 

_ N2 - 1 

3N 

For N >> 1, the average seek distance can be approximated by N/3. 
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‘-•A »V>:- 

Rotational 
Delay 
(Latency) 

The circular track on a disk is divided into a number of sectors. Sectors may be hard 

or soft. Hard sectors are physically fixed and a physical gap exists between such 

sectors. Soft sectors are defined by the software system. The rotational delay is the 

time needed to position the read/write head on the correct sector. 

Let the disk be rotating at s revolutions per minute. The time taken for the disk 

to rotate half a revolution is given by rt where r, is given by: 

60 * 103 

ft ” 2s mS 

In the case of a hard sector type device, the sectors are physically implemented 

and the disk controller is able to detect the start of each sector. It takes, on the 

average, half a revolution before the correct sector is under the read/write head, and, 

hence, the average rotational delay, rth, for this type of device is the same as rt. 

For the soft sector type device, let us assume that there are b sectors per track, 

and the start of a track is implemented physically on the disk. On the average, it 

would take k sectors to move past the head, before the start of track appears under 

the head; k being given by: 

k = (b — l)/2 

The average time needed before the start of track is detected is given by 2*k*r,/ 

b, and the average rotational latency, rts, is given by: 

r,s = rt* (2- 1/b) 
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3.4 
Probabilities 

Let us consider the probability of accessing records in a block. Let n be the number 

of records per block and p be the probability that a block will be accessed (block hit 

ratio). We are assuming that the probability of accessing the blocks is uniform. 

If we assume uniform access probabilities, then the probability of hitting a rec¬ 

ord in the block is p/n. 

Thus, the probability that a given record in the block will not be accessed is (1 - 

p/n), and the probability that no record in the block will be accessed is (1 - p/n)n. 

The probability of accessing at least one record in a block is thus given by 1 — 

(1 — p/n)n. 

As n increases, the probability that no record in the block will be accessed 

approaches e-p, and the probability of accessing at least one record in a block ap¬ 

proaches (1 — e p). 
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4.1 
Formal 

Definitions 

of Some 

Relational 

Algebraic 
Operations 

Cartesian Product 

We defined the extended cartesian product of two relations as the concatenation of 

tuples belonging to the two relations. Formally we can define a cartesian product of 

two relations P(Tp,ANp,np,mp) and Q(TQ,ANQ,nQ,mQ) as follows: 

R = P x Q where 

t 6 Tr where t = t, || t2 for all t, £ TP and t2 £ TQ, 

ANr = ANP U ANq, assuming unique attribute names in 

ANP and ANq, 

R = P II Q 
nR = nP + nQ, and 

mR = mp * mQ. 
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Projection 

We define first the projection of a relation P(Tp,ANP,np,mP) on a single attribute 

name, A£ ANP. This is defined in terms of the extraction of a value for each tuple in 

P corresponding to the attribute A. The projection of tuple t ( TP over A, denoted 

by t[A] or iTA(t), is the value v corresponding to the attribute A. The projection of P 

over A, denoted by P[A] or tta(P), is a single attribute relation R(Tr,A, 1, mR), 

where mR < mP and t ( TR = TT^(tp) for all tP £ TP. The cardinality of R(i.e., mR), 

may be less than the cardinality of P(i.e., mP), as duplicate values of attribute A 

would be deleted. 

We can then define the projection of a relation on a set of attributes, X, as a 

concatenation of extracted values for each attribute in X, for every tuple in the rela¬ 
tion. 

R = '"xfP) 

such that 

t £ Tr where t = irA,(tp) || irA2(tP) || . . . || TrAk(tP) for all tP £ TP 

where {AM A2, . . . ,Ak} = X and X C ANP 

Thus, ttx(P) the projection of a relation P on the set of attribute names X C 

ANP, is the projection of each tuple tP (: TP on the set of attribute names X. The 
result is a relation R(TR,X.nR,mR) such that: 

R = ttx(P) 

tR € Tr where tR = Trx(tP) for all tP 6 Tp 

nR < nP and mR < mP 

If |X| = |ANP|, i.e., the projection is over all attributes, however, the order of 

these could be rearranged, then the projection operation would rearrange the attri¬ 
butes of P. 

Selection 

Given a relation, P(TP, ANP, nP, mP), and a predicate expression, B, the selection 

operation which gives a result relation, R(Tr, ANr, nR, mR), is given below: 

R = crB(P) 

where t € TR <h> t £ TP A B(t) 

nR = nP> 

ANr = ANP, and 

mR < nip 

Join A Formal Definition 

The join of two relations P(TP,ANp,nP,mp) and Q(TQ,ANQ,nQ,mg) giving a result 
relation R(TK,X,nR,mR) is defined, formally, as: 
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R = PNQ 

t € Tr where t = t, || t2 A t, ( TP A t2 ( TQ A (ir^t,) 0j irBi(t2)) 

where 0j is some comparison operator (0j C {= , + ,<,<,>,>}) and (Ai £ ANP, 

Bj 6 ANq, (dom(Ai) = dom(Bj))) for i= 1,2, . . ., k 

0 < mR < mp*mQ 

nR = nP + nQ 

Q = ANP U ANq 

In general, ANP fl ANq may be null and this guarantees uniqueness of attribute 

names in the result relation. Two common variants of the join are the equi-join and 

natural-join. 

In the equi-join, the comparison operators 0s(i = 1,2, . .,n) are always the 

equality operator (=). 

In the natural join the comparison operators 0 are always the equality operators 

and ANP D ANQ + 4>. Thus, |ANP fl ANQ| = k join attributes are common in the 

relations P and Q and, consequently, only one set of the join attributes needs to be 

preserved in the result relation (nR = np + nQ — k where k is the number of join attri¬ 

butes). Therefore, in natural join X = (ANP U ANQ) — (ANP fl ANQ). 

Division 

Formally, we can define the division operation on two relations P(TP,ANP,nP,mP) 

and Q(TQ,ANQ,nQ,mQ), where ANP C ANq. We assume that the attributes which 

are common to P and Q are named A, for i = 1,2, . . ., |ANq|. 

R = P h- Q 

where 

t € TR = t € TT( ANP — ANq)(P) 

(Such that for all tq £ TQ, there exists tP £ Tp = tq || t.) 

The division can also be expressed as: 

R = P + Q such that t € TR = ir(ANp _ AnQ)(^b(P))» 

where the predicate expression B is given as a conjunction C| A C2 A . . . A Q A 
. . . where each Q is of the following form: 

(TTAj(tP € Tp) = iTA.(tP € Tq)) where A; € ANQ. 





Figure A.4.1 

Recursive 

Queries: 

Transitive 
Closure 

Consider the relation: EMPLOYEE (Emp#, Name Manager). Here the attribute 

Emp# is a key of the EMPLOYEE relation. Every employee has a manager, and as 

managers are also employees, we may represent managers by their employee num¬ 

bers. Figure A.4.1 illustrates an example of such an employee relation. The Manager 

attribute represents the employee number of the manager. Manager is a foreign key 

which is referring, in this case, to the primary key of the same relation. An employee 

can only have a manager who is also an employee. 

EMPLOYEE Relation. 

Emp# Name Manager 

101 Jones @ 

103 Smith 110 

104 Lalonde 107 

107 Evan 110 

110 Drew 112 

112 Smith 112 
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The attribute Manager is a foreign key which establishes a relationship between 

one employee and another where one employee is the manager and the other is the 

managed. As a manager is an employee a given employee such as 112, may directly 

manage another employee such as 110, or indirectly manage an employee such as 

103. Effectively, the relationship between employees is recursive. 

We could use relational algebra to find all employees managed directly by a 

given employee. However, in finding all employees who are managed directly or 

indirectly by a given employee requires the implementation of some form of loop. 

This operation is called computing the transitive closure of the management hierar¬ 

chy. Formally the transitive closure of a relation R is the smallest relation S that 

includes R and is transitive. This means that if S(a,b) and S(b,c) implies S(a,c). 

This type of query cannot be implemented directly in relational algebra or the 

two forms of relational calculus. 



Syntax 
of SQL 

The following is the syntax of the portion of SQL described in the text. 

create table <relation> (<attribute list>) 

where the <attribute list> is specified as: 

<attribute list> ::= <attribute name> (<data type>) [not null] [,<attribute 

list>] 

<data type> ::= <interger>|<smallint>|<char(n)>|<varchar(n)>| 

<float>|<decimal(p[,q]> 

alter table existing-table-name 

add column-name data-type [, . . .] 

create [unique] index name-of-index 

on existing-table-name 

(column-name [asc or desc] 

[,column-name[order] . . .]) 

[cluster] 

drop table existing-table-name; 

drop index existing-index-name; 

select [distinct] Ctarget list> 

from Crelation list> 

[where <predicate>] 
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• the distinct option is used in the select statement to eliminate duplicate tuples 

in the result. Without the distinct option duplicates tuples appear in the result, 

• the <target list> is a method of specifying a projection operation of the result 

relation and it takes the form: 

Ctarget list> <attribute name> [,<target list>] 

• the from clause specifies the relations to be used in the evaluation of the 

statement and includes a relation list 

<relation list> ::= Crelation name> [tuple variable] (,<relation list>] 

• the where clause is used to specify the predicates involving the attributes of the 

relation appearing in the from clause. 

update <relation> set <target_value_list> [where <predicate>] 

where the Ctarget value list> is of the form: 

<target value list> ::= <attribute name> = C value expression> 

Retarget value list>] 

delete <relation> [where <predicate>] 

insert into <relation> 

values<<value list>> 

where the <value list> takes the form: 

<value list> :: = <value expression> [,<value list>] 

insert into <relation> (Ctarget list>) 

values<<value list>> 

and the Ctarget list> takes the form: 

Ctarget list> :: = Cattribute name> [,Ctarget list>] 

The value clause can be replaced by a select statement, which is evaluated, and 

the result is inserted into the relation, specified in the insert statement. 

SQL also provides the following set of built-in functions: count, sum, avg, 

min, max. The operand of each of these functions is a column of an existing rela¬ 

tion. DISTINCT may be specified with the argument to eliminate redundant dupli¬ 

cates. 

SQL provides a number of set operators. These are the any, in, all, exists, not 

exist, union, minus, intersect, and contains operators. 

create view Cview name> as Cquery expression> 

drop view Cview name> 



fih. 

Syntax 
of QUEL 

The following is the syntax of the portion of QUEL used in the text. 

create Crelation name> (<attribute list>) 

where <attribute list> is defined as: 

<attribute list> :: = <attribute name > = <format>[,<attribute list>] 

range of <tuple variable> is <relation name> 

index on <relation name> is index_name 

(attribute_name [,attribute_name . .]) 

destroy <name[,name,. . .]> 

modify relation_name to storage-structure [on attribute] [order ascend- 

ing|descending] [, . .]] 

retrieve [unique] (Ctarget list>) 

[where <condition>] 

QUEL provides a number of aggregation operators to be used in expressions. 

The aggregation operators supported are any, avg, min, max, count, and sum. 

aggregation operator (<expression>) 

retrieve into <new-relation> (Ctarget list>) 

[where <condition>] 

append to Crelation name> (Cvalue listc) 

[where Ccondition>] 
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are the value list takes the form 

<value list> ::= <attribute name> = <value expression> [,<value list>] 

replace <tuple variable> (<value list>) 

[where <condition>] 

delete <tuple variable> 

define view VIEW_NAME <target_list> 

[where <predicates>] 

destroy VIEW_NAME 
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Numbers in italics indicate an 

illustration. 

Abductive reasoning, defined, 722 

Abstraction, defined, 53. See also 

Aggregation; Generalization 

Access, types of, 621. See also specific 

headings 

Access aids, uses of, 27 

Access context control, uses of, 618 

Access files, secondary keys and, 114- 

15 

Access mappings, uses of, 90 

Access matrixes, 619 

uses of, 619-20 

Access module processors (AMP), 

777-78, 779 

Access plans 

query processing and, 469-70 

uses of, 461, 505, 507 

Access time, defined, 80, 82 

Access type control, 617-18 

Action-consistent checkpoints, defined, 

527 

Acyclic, defined, 566 

Addressability, defined, 751 

Aggregate functions, uses of, 253 

Aggregation, 56. See also Abstraction 

defined, 56 

Query-By-Example and, 275-76 

Query Language and, 250-55, 265 

Structured Query Language and, 

220-21, 233-34, 242 

uses of, 56-51 

Algorithms 

for Boyce Codd normal form, 330 

for B + -trees, 128 

for closure, 299 

for deadlocks, 598 

for decomposition, 321, 323, 325, 

330 

for deletions, 109 

for dependency preserving, 323, 325 

for fourth normal form, 358 

for hashing, 109 

for index-sequential searches, 96 

for insertions, 109 

for join dependencies, 367 

for lossless join decomposition, 321, 

325, 358 

for many-to-many relationships, 491 

for membership, 301 

for nonredundant covers, 302 

for probe computation, 704 

for queries, 504 

for records 

getting of, 85 

insertion of, 86 

for searches, 109 

for serializability, 566-69 

for sort and merge method, 491 

for synthesis, 345-48 

for third normal form, 325, 347 

for views, 504 

All, uses of, 228-29 

ALOHA, 666 

Alternate keys, defined, 6 

Alter statements 

syntax of, 214 

uses of, 213 

American National Standards Institute 

(ANSI), 33 

ANSI/SPARC model, architecture of, 

14-19 

Antecedents, defined, 733 

Any, uses of, 225-26, 251 

Append 

format of, 256 

uses of, 256-57, 258 

Application-dependent domains, 

defined, 154 

Application-independent domains, 

defined, 154 

Application programmers, defined, 21 

Application programs, transactions and, 

520 

Apprentice sites, defined, 710 

Archival databases in stable storage 

defined, 530, 549 

uses of, 549 

Archival logs, uses of, 530, 549 

Archive databases, defined, 514 

Area, defined, 403 

Arity. See Degree 

Armstrong, W. W., 297 

Armstrong axioms, 297 

Ash, W. L., 74 

Assert, uses of, 635 

Associations 

attributes and, 155 

defined, 36 

relationships and, 44-45 

types of, 35, 36, 37-40 

Associative memory 

characteristics of, 768 

defined, 725n.4 

Associative relations, defined, 160 

Atomic domains, defined, 154 

Atomic formulas, defined, 185 

Atomicity 

concurrency management and, 603 

defined, 523 

Atomic operations, uses of, 521 

Atoms, representation of, 189 
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Attribute associations 

defined, 36 

relationships and, 47-48 

Attributes. See also Keys 

associations and, 155 

characteristics of, 154 

defined, 2, 3-4, 36, 60, 153, 396 

domains and, 5-6 

masking and, 11, 72 

relational data models and, 153-55 

representation of, 84 

storage of, 8-9 

uses of, 83, 88 

values and, 4, 5, 8-9 

Attribute values, defined, 8 

Auditing, uses of, 639, 641 

Audit time, defined, 634 

Audit trails, defined, 516 

Authorization 

defined, 611, 619, 640 

uses of, 625 

Authorization grant trees, uses of, 621 — 

23 

Authorizes, defined, 612 

Automatic 

defined, 399 

set manipulation and, 419-20 

Auxiliary procedures, defined, 634 

Avg, 220 

uses of, 251, 275-76 

Bachman, C. W., 64, 74, 425 

Backend computers, 768 

Backend software, 769 

characteristics of, 768 

database machines and, 768-70 

Backend software approach, 768 

Backward chaining, 746 

defined, 736, 744 

Backward error recovery, uses of, 517 

Base relations, defined, 237 

Basis, defined, 355 

Bernstein Synthesis algorithm, 345 

Binary relationships, 49 

defined, 41, 49 

N-ary relationships and, 74 

Binding, defined, 505 

Birth_sites, defined, 678, 679, 710 

Black box approach, 748, 750 

defined, 748 

Blocking, defined, 695 

Blocks, defined, 27, 95. See also 

Buckets 

Bottom-up approach, uses of, 649 

Bound, defined, 186, 189 

Boyce Codd normal form (BCNF). See 

also Fourth normal form 

advantages of, 328 

algorithm for, 330 

defined, 328 

lossless join decomposition and, 

329-33 

Bridges, 668 

uses of, 667 

B-trees, 132 

B +-trees, 127 

advantages of, 132, 135 

algorithm for searching, 128 

capacity of, 132, 133 

characteristics of, 125-26, 137 

deletions and, 127, 130-32 

insertions and, 127, 128-iO, 132 

operations and, 127-32 

searches and, 127, 128 

Bucket address tables (BAT), 110, III 

Buckets. See also Blocks 

defined, 95 

hashing and, 106, 107, 108, 110 

Buffer management 

defined, 544 

recovery and, 544-46 

Buffer managers 

defined, 544 

uses of, 544, 546 

Buffers, 545 

defined, 517, 544 

Bus networks, 665 

By clauses, uses of, 253, 254 

Bytes 

organization of, 86 

uses of, 84 

Caching the remote catalog, defined, 

678 

Caesar code, defined, 628 

Candidate keys, defined, 6, 41 

Canonical covers, defined, 302 

Cardinality, defined, 147 

Carrier sense multiple access with 

collision detection (CSMA/CD), 

666 

Cartesian products, 169. See also 

Relational algebra 

defined, 152, 168 

uses of, 176 

Cascading deletions, defined, 164 

Cascading rollbacks 

defined, 603 

uses of, 588 

Cells, 123 

contents of, 79 

defined, 123 

organization of, 101 

uses of, 103 

Cellular lists 

defined, 123 

organization of, 123, 136, 137 

secondary keys and, 122-23 

Cellular logic devices. See Processor- 

per-track 

Centralized database management 

systems 

characteristics of, 661 

locking and, 668 

recovery and, 524-32 

Centralized databases, uses of, 475 

Centralized schema design, uses of, 

648-49 

Chain rules, defined, 729 

Checkpoints. See also specific 

checkpoints 

recovery and, 526-29 

uses of, 526-29, 549 

Child pointers, 429, 453 

uses of, 429, 452 

Classes, defined, 749 

Class inheritance, uses of, 754 

Closed, defined, 187 

Closed systems, defined, 616 

Closed world assumptions (CWA), 

defined, 732 

Closure 

algorithm for computing, 299 

defined, 297, 298 

functional dependencies and, 297- 

300 

multivalued dependencies and, 354- 

57 

Cluster options, 214 

Codd, E. F., 74 

Collisions 

defined, 106 

direct files and, 106, 137 

hashing and, 137 

Commitment, distributed database 

management systems and, 694- 

700 

Committee on Computers and 

Information Processing (ANSI/ 

X3), 33 
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Communication control programs, uses 

of, 26 

Communication processors (COP), 779 

Compatibility, defined, 748 

Complex multilevel sets, 383, 384 

network data models and, 382-84 

Composite domains, contents of, 154 

Conceptual databases, defined, 15 

Conceptual levels, 15, 18 

mapping and, 17, 19 

uses of, 14-15 

Conceptual records, 12 

defined, 11 

Conceptual schemas 

contents of, 14-15 

defined, 14 

Conceptual views, 13 

characteristics of, 16 

defined, 13, 14 

mapping and, 15-16, 17 

Concurrency, DBC/1012 and, 781 

Concurrency control. See also Locking; 

Multiversion; Optimistic 

scheduling; Timestamp ordering 

concurrency management and, 569- 

70, 603 

distributed database management 

systems and, 688-94, 715 

uses of, 569-94 

Concurrency management 

atomicity and, 603 

concurrency control and, 569-70, 

603 

deadlocks and, 594-602 

locking and, 569, 570-83 

multiversion and, 570, 591-94 

optimistic scheduling and, 569-70, 

588-90 

problems with, 556-61 

recovery and, 603 

semantics and, 561-62 

serializability and, 562-69, 603 

timestamp ordering and, 569, 583- 

88 

uses of, 555, 603 

Conflict analysis graphs, 709 

Conflict resolution, defined, 734 

Conjunctive, defined, 269 

Conjunctive normal form, defined, 468 

Conjunctive predicates, 273 

Conjunctive queries, defined, 120 

Connect, uses of, 407 

Connection records. See Intersection 

records 

Consequents, defined, 733 

Conservative timestamps, uses of, 708 

Consistency 

defined, 523 

distributed database management 

systems and, 686-88, 715 

Consistency errors, 515 

Constants, uses of, 185 

Contains, uses of, 227-28 

Content-dependent access control, 

defined, 616 

Content-independent access control, 

defined, 616 

Content preserving, defined, 306 

Contracting phases, defined, 574 

Control, uses of, 639 

Control codes, 453 

Control intervals 

defined, 105 

virtual storage access method and, 

104, 105 

Coordinator sites, defined, 686 

Count, 220 

uses of, 251,275-76 

Covers 

defined, 300 

functional dependencies and, 300- 

303 

Create index statements, syntax of, 214 

Create statements 

format of, 213 

syntax of, 243 

uses of, 212-13, 243 

Create view, uses of, 237-39 

Cryptography, uses of, 627-29 

Currency indicators 

defined, 406 

setting of, 410 

uses of, 443 

Current databases 

contents of, 530 

defined, 529 

Current logs, contents of, 530 

Current of the run unit, defined, 406 

Current page tables, uses of, 540, 541 

Current records of record types, 

defined, 406 

Current records of set types, defined, 

406 

Customer Information Control System 

(CICS), 709 

Cycles. See also specific cycles 

defined, 391 

network data models and, 391-95 

Cyclic, defined, 566 

Cyclic queries, uses of, 685-86 

Cylinder indexes, uses of, 103 

Cylinders. See Cells 

Dangling tuples, defined, 333 

DAPLEX 

background of, 712 

contents of, 713 

uses of, 714, 715, 756 

Data, defined, 30 

Data aggregates, defined, 396 

Database administrators (DBA) 

defined, 10, 21 

duties of, 27-29, 31, 200, 611, 

615-16 

Database control, uses of, 639 

Database control systems. See Data 

managers 

Database design 

computing system decisions and, 

649-50, 655 

final design and, 650-54, 655 

information systems and, 645 , 646 

operation of, 655 

preliminary design and, 648-49, 

650, 655 

problem definition and, 645, 655 

steps for, 645-55 

system analysis and, 646-48, 655 

testing of, 654-55 

tuning of, 655 

uses of, 654-55 

Database integrity 

defenses for, 629-36, 640-41 

defined, 611, 612, 629 

threats to, 612-13, 629, 634 

uses of, 639 

Database machines 

backend software and, 768-70 

characteristics of, 767 

intelligent memory and, 770-72 

special hardware and, 772-74 

Database management systems 

(DBMS). See also specific 

headings 

advantages of, 27-29, 30 

characteristics of, 723-24 

contents of, 21-23 

defined, 2, 20 

design of, 645-55 

disadvantages of, 29-30 

knowledge base management systems 

and, 723-24 
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logical records and, 13 

masking and, 12 

models and, 2-7 

nondatabase operating environments 

and, 13 

organization of, 23-27 

shared data and, 10-/7, 12, 28 

users of, 20-21 

uses of, 2, 9, 22, 30-31, 200-201 

Databases, defined, 2 

Database security 

DBC/1012 and, 781 

defenses for, 614-29, 640 

defined, 611, 612, 629 

distributed database management 

systems and, 705 

granularity and, 620 

threats to, 612-13, 640 

Database systems, defined, 2, 30 

Database Task Group (DBTG) data 

models. See Network data models 

Database Task Group (DBTG) records, 

contents of, 395 

Database Task Group (DBTG) sets 

area and, 403 

contents of, 397-98 

defined, 378, 397, 422 

manipulation of, 414-20 

members of, 398-402 

network data models and, 378-80, 

384-85 

operations and, 413-21 

restrictions on, 384-85 

selection and, 402-3 

singular sets and, 403 

structural constraints and, 402 

uses of, 384, 385 

Database Task Group of the Conference 

on Data System Languages 

(DBTG/CODASYL), 63, 74, 

377, 425 

Data definition facilities, defined, 22 

Data definition language (DDL) 

compilers, defined, 23 

Data definition languages (DDL), 

defined, 22 

Data Description Language Committee 

(DDLC), 425 

Data description languages (DDL), 

background of, 425 

Data dictionaries 

defined, 22 

uses of, 26, 677-78 

Data dictionaries/directories (DD/D), 

779-80 

Data elements. See Attributes 

Data Encryption Standard (DES), 628 

Data fields. See Attributes 

Data files 

contents of, 26 

defined, 93 

Data integrity, defined, 28 

Data items. See Attributes 

Data managers 

access and, 27 

defined, 23, 31 

uses of, 23, 27, 31 

Data manipulation facilities. See Data 

manipulation languages 

Data manipulation languages (DML). 

See also Query-By-Example; 

Query Language; Structured 

Query Language 

characteristics of, 23 

commands and, 407 

contents of, 405-7 

defined, 22 

host languages and, 260-62 

uses of, 22, 405 

Data models. See also specific data 

models 

background of, 72 

defined, 35 

types of, 45 

uses of, 35 

Data storage definition languages, 

defined, 22 

Data structure diagrams 

background of, 425 

uses of, 64, 74 

Data transfer time, defined, 

82 

DBC/1012, 774 

characteristics of, 774-75 

concurrency and, 781 

contents of, 775-81 

database security and, 781 

operation of, 780 

recovery and, 781 

DB-Status, contents of, 443 

Deadlocks 

algorithm for detection of, 598 

avoidance of, 599-602, 604-5 

causes of, 595 

concurrency management and, 594- 

602 

defined, 556, 594, 604 

detection of, 595-97, 598, 605, 

702-5, 715 

distributed database management 

systems and, 700-705,-716 

locking and, 583, 604 

multiversion and, 594 

optimistic scheduling and, 590 

prevention of, 516, 705 

recovery and, 595-96, 597-99 

timestamp ordering and, 588 

two-phase locking and, 576 

Decision phases, 696 

Decomposers, uses of, 714 

Decomposition 

algorithms for, 321, 323, 325, 330 

characteristics of, 306, 372 

defined, 289 

disadvantages of, 341, 342, 372 

effects of, 341 

normalization and, 313-15 

relational databases and, 313-28, 

329-34, 335, 341, 342, 357-60, 

361, 372 

relation schemas and, 289, 290 

third normal form and, 324-26 

uses of, 335, 341, 361 

Decomposition method, uses of, 499- 

501 

Deductive databases 

contents of, 737 

defined, 737 

uses of, 738-42 

Deductive reasoning, defined, 722 

Define view 

syntax of, 259 

uses of, 259-60 

Definition trees. See Hierarchical 

definition trees 

Degree 

defined, 147 

relationships and, 158, 170 

Delete 

format of, 256 

syntax of, 216 

uses of, 216, 236, 256, 257, 449 

De Morgan’s law, 186 

Dependency basis, defined, 356 

Dependency preserving 

algorithms for checking, 323, 325 

defined, 306-7 

Design. See Database design 

Design errors, causes of, 513 
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Destroy statements 

syntax of, 245 

uses of, 245, 260 

Determinants, defined, 41 

Difference. See also Relational algebra 

characteristics of, 169 

defined, 152, 167 

uses of, 182-83, 258-59 

Directed acyclic graphs (DAG), locking 

and, 582-83 

Direct files 

collisions and, 106, 137 

defined, 90 

deletions and, 108 

extendable hashing and, 110-73, 137 

hashing and, 706-8, 110 

insertions and, 108 

mapping and, 105-6, 137 

overflows and, 106, 108 

retrievals and, 108 

Directories. See Data dictionaries 

Disaster recovery, uses of, 548 

Disasters, defined, 548 

Disconnect, uses of, 407 

Discriminators, defined, 48 

Disjoint fragmentation, defined, 671 

Disjoint horizontal fragmentation, 

defined, 675 

Disjoint vertical fragmentation, defined, 

675 

Disjunctive, defined, 269 

Disjunctive predicates, 273 

Disjunctive prenex normal form, 

defined, 502 

Disjunctive queries, defined, 120 

Disk accesses, number of, 103-4 

Disk managers 

access and, 27 

defined, 24 

uses of, 24 

Disk packs, 79 

Disks, 81 

tracks and, 79, 98 

uses of, 79-80 

Disk storage units (DSU), 778, 

779 

Distinct options, uses of, 215 

Distributed commit, 694 

Distributed database management 

systems (DDBMS) 

advantages of, 661, 662-63 

characteristics of, 662, 676 

commitment and, 694-700 

concurrency control and, 688-94, 

715 

consistency and, 686-88, 715 

contents of, 715 

database security and, 705 

data distribution in, 669-78, 715 

deadlocks and, 700-705, 716 

defined, 661 

disadvantages of, 661, 663 

failures and, 668, 669, 694-95 

heterogeneous systems and, 705-6, 

710-15 

homogeneous systems and, 705-10 

locking and, 688-92 

networks and, 663-69 

object naming and, 678-79 

query processing and, 679-86, 687, 

715 

recovery and, 694-700 

timestamp ordering and, 692-94 

uses of, 662 

Distributed databases 

defined, 662 

uses of, 475 

Distributed systems, uses of, 627 

Distributed two-phase locking, 691 

Division, 177, 194. See also Relational 

algebra 

characteristics of, 170, 176-79 

uses of, 182, 183 

Do, 531 

defined, 530 

Domain calculus, 161-62. See also 

Relational calculus 

characteristics of, 201 

formulas in, 193-98 

negation and, 197 

queries and, 184, 194-95, 196-98 

Query-By-Example and, 209, 269, 

281 

Domain closure assumptions (DCA), 

defined, 732 

Domain constraints (DC), defined, 368 

Domain integrity 

defined, 630 

rules for, 630-32 

Domain key normal form (DK/NF) 

advantages of, 371 

defined, 369, 370 

disadvantages of, 371 

Domains 

attributes and, 5-6 

characteristics of, 154 

contents of, 201 

defined, 5, 60, 147, 153, 154, 198, 

244 

relational data models and, 153-55 

Domino deletions, defined, 164 

DO_NoT_Access_a Gain (DONTAG) 

lists, 120-22 

Drop SQL statements, 215 

Drop view, uses of, 238 

Duplicates, defined, 411 

Durability, defined, 523 

Dynamic inheritance, 754 

Edge-chasing algorithms, 702 

Elementary items. See Attributes 

Embedded multivalued dependencies, 

defined, 362 

Embedded Query Language (EQUEL), 

262 

Enable, defined, 635, 734 

Encryption, uses of, 627-29 

Entities 

characteristics of, 47 

defined, 3, 36, 47 

relationships and, \41-48, 160-61 

representation of, 51-52 

Entity integrity, 162-63 

Entity-relationship (E-R) data diagrams, 

46, 49, 52, 59, 161 

characteristics of, 69 

hierarchical data models and, 70 

network data models and, 69-70 

Entity-relationship (E-R) data models 

background of, 74 

characteristics of, 46 

hierarchical data models and, 651 

network data models and, 651 

relational data models and, 651 

uses of, 46, 72 

Entity sets, 5, 55 

defined, 3, 30, 47 

Entity types. See Entity sets 

Equi-joins, characteristics of, 174, 176 

Equivalent, defined, 344, 470 

Erase, uses of, 407, 412, 413 

Errors 

defined, 511 

reliability and, 515-16 

types of, 515-16 

Ethernet, 667 

characteristics of, 666 

Example elements, defined, 270 

Exception-handling features, 723 
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Exclusive locks, uses of, 570, 578 

Existing relations, defined, 237 

Exists, uses of, 229-30 

Expert database systems, 747 

characteristics of, 746 

uses of, 746 

Expert systems 

defined, 742, 758 

organization of, 743 

uses of, 743-46 

Explanation facilities, uses of, 722 

Explicit indexes, 94 

Extendability, defined, 748 

Extendable hashing, 110, 113 

defined, 110 

deletions and, 112 

direct files and, 110-/3, 137 

insertions and, 110-// 

Extensional databases (EDB), defined, 

737 

Extensions, defined, 151 

External levels, 14, 15 

uses of, 14 

External schemas, defined, 14 

External views, 13, 18 

characteristics of, 16 

defined, 13, 14, 15 

mapping and, 15-16 

uses of, 15 

Failure nodes, defined, 132 

Failures 

anticipation of, 523-24 

defined, 511 

distributed database management 

systems and, 668, 669, 694-95 

of hardware, 513, 516 

reliability and, 513-15 

of software, 513-14 

of storage media, 514-15, 524 

types of, 513-15, 524, 549 

Faults, detection of, 511 

Fault-tolerant systems, 512 

Fields, defined, 153. See also Attribute 

values 

Fifth normal form (5NF), 361. See also 

Project-join normal form 

File-based systems, defined, 45 

File managers (FM) 

access and, 27 

initialization and, 85 

overflow blocks and, 86 

uses of, 24, 82 

Files. See also specific files 

contents of, 82-83 

defined, 8, 30, 78, 83, 84, 136 

format of, 84-86 

importance of, 82 

labeling of, 78-79 

operations on, 86-90 

organization of, 78 

primary keys and, 90 

representation of, 83 

secondary keys and, 113-24 

storage and, 84-86 

Filters, uses of, 714 

Find, uses of, 407, 410, 411,413, 422 

Find first within, uses of, 413 

Find next within, uses of, 414 

Fire, defined, 734 

First normal form (INF) 

defined, 309 

disadvantages of, 309-10 

First-order logic, uses of, 730 

First-order predicate calculus, defined, 

730 

Fixed, defined, 400 

Fixed head drives 

defined, 79 

read/write heads and, 80 

Force, uses of, 546 

Foreign keys 

defined, 160 

integrity rules and, 163-65 

Forests, defined, 68 

Formulas 

in domain calculus, 193-98 

in relational calculus, 201 

in tuple calculus, 189-93 

For updates, uses of, 411 

Forward chaining, 745 

defined, 736, 744 

Forward error recovery, uses of, 517 

Fourth normal form (4NF). See also 

Boyce Codd normal form 

algorithm for, 358 

defined, 357 

dependencies and, 360-61 

lossless join decomposition and, 

357-60 

uses of, 352 

Fragmentation, 670 

defined, 200, 670-71 

uses of, 200 

Fragmentation transparency 

characteristics of, 677 

defined, 671 

Frames, 733, 734 

defined, 732 

knowledge base management systems 

and, 732-33 

uses of, 732-33 

Free, defined, 186, 189 

Frequency division multiplexing 

(FDM), 666 

From clauses, uses of, 215, 242 

Full functional dependencies, defined, 

304 

Functional dependencies (FD) 

axioms for, 353-54 

causes of, 293 

closure and, 297-300 

covers and, 300-303 

defined, 41, 287/1.1 

keys and, 303-6 

logical implications of, 295-97 

relational databases and, 293-306, 

313-15 

semantics and, 342 

Functions, defined, 730 

Garbage collection, uses of, 542 

Gateways, 668 

uses of, 667 

GEMSTONE, 756 

General constraints (GC), defined, 368 

Generalization, 54 

defined, 53 

organization of, 54, 55 

uses of, 54 

Get, uses of, 407, 410, 444, 457 

Get first, 444 

Get hold, 449 

Get leftmost, 444 

Get next, uses of, 444, 457 

Get next within parent, uses of, 446, 

457 

Get unique, 444 

Global catalogs, defined, 678 

Global data managers (GDM), 713 

contents of, 714 

uses of, 713 

Global naming 

characteristics of, 678 

disadvantages of, 678-79 

Global redo, uses of, 532, 548, 550 

Global schemas, characteristics of, 706 

Global transactions, characteristics of, 

662 

Global undo, uses of, 532 
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Global views. See Conceptual views 

Global wait-for graphs (GWFG) 

disadvantages of, 689 

generation of, 688-89 

uses of, 701, 702 

Granularity 

database security and, 620 

defined, 576 

locking and, 576, 604 

Group by function, uses of, 234-35 

Growing phases, defined, 574 

Hardware, failures of, 513, 516 

Hashing 

algorithm for, 109 

buckets and, 106, 107, 108, 110 

collisions and, 137 

defined, 106, 137 

direct files and, 106-8, 110 

methods of, 107-8 

uses of, 135, 492 

Having options, 234 

Heterogeneous systems, 706 

defined, 705-6 

disadvantages of, 710 

distributed database management 

systems and, 705-6, 710-15 

Hiding. See Masking 

Hierarchical data models (HDM) 

advantages of, 456 

background of, 45, 72 

bias of, 456 

characteristics of, 68, 71, 428, 652, 

654 

constraints and, 430 

contents of, 441, 450, 456 

control codes and, 453 

data definition in, 441-43 

data manipulation in, 443-47 

disadvantages of, 456 

entity-relationship (E-R) data 

diagrams and, 70 

entity-relationship (E-R) data models 

and, 651 

many-to-many relationships and, 

436-41, 456 

paths and, 453 

redundancies and, 68, 69 

replication and, 435, 456 

selection and, 71 

trees and, 430-35, 455, 456 

updates and, 447-51 

uses of, 68—69, 74, 451-53, 456 

virtual records and, 435, 456 

Hierarchical definition trees, 431, 433, 

434, 439, 452 

defined, 430 

Hierarchical paths, defined, 453 

Hierarchies, characteristics of, 67 

High-level languages (HLL), uses of, 

25-26. See also Host languages 

“Holes”, 93 

defined, 93 

Homogeneous records, defined, 83 

Homogeneous systems, 706 

defined, 705 

distributed database management 

systems and, 705-10 

Horizontal fragmentation 

defined, 673 

uses of, 653 

Horn clauses, defined, 731 

Host languages 

data manipulation languages and, 

260-62 

defined, 260 

Query Language and, 260 

Structured Query Language and, 260 

Host programs, defined, 260 

Host System Communication Interface 

(HSCI), 775 

Idempotent, defined, 531 

Identifying relationships, defined, 48 

Identity 

characteristics of, 751 

databases and, 752 

Implicit constraints, 632 

Implicit indexes, 94 

In, uses of, 226-27 

Inconsistent reads, 559 

defined, 560 

Indexes 

defined, 93 

join selectivity and, 492 

organization of, 99 

uses of, 93 

Index files, defined, 93 

Index-sequential files. See also Limit 

indexing 

advantages of, 98 

contents of, 93, 100-104 

defined, 90, 93 

disadvantages of, 98, 100, 104, 125, 

135 

mapping and, 105 

organization of, 102, 135 

overflows and, 100, 125, 137 

retrievals and, 103 

types of, 94-99 

updates and, 103, 104 

uses of, 93 

virtual storage access method and, 

104-5 

Index-sequential searches, 96 

Index statements 

syntax of, 245 

uses of, 244 

Indirect page allocations, 539 

uses of, 538-39 

Indirect updates 

costs of, 548 

defined, 533 

uses of, 538-44 

Inductive reasoning, defined, 722 

Inference axioms, 295-97 

Information Management System 

(IMS), 456. See also Hierarchical 

data models 

Information requirements, uses of, 647 

Information systems 

contents of, 645 

database design and, 645, 646 

INGRES (Interactive Graphics and 

Retrieval System) 

contents of, 260 

Query Language and, 242 

structures supported in, 245 

uses of, 243, 262 

Inheritance, object-oriented 

programming and, 753-55 

Initialization, file managers and, 85 

Insert 

format of, 216, 448 

uses of, 216, 235-36 

Instances, defined, 749 

Institutional memory, defined, 743 

Integrated Data Store (IDS), 425 

Integrated systems, defined, 26 

Integrity, defined, 28. See also 

Database integrity 

Integrity constraints, uses of, 647 

Integrity rules 

defined, 162 

foreign keys and, 163-65 

primary keys and, 162-63, 165 

relational data models and, 146, 

162-65 

Intelligent memory, 771 

characteristics of, 770 

database machines and, 770-72 
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Intensional databases (IDB), defined, 

737 

Intensions, defined, 151 

Intention exclusive modes, uses of, 578 

Intention modes 

advantages of, 579 

uses of, 577 

Intention share modes, uses of, 577-78 

Interblock gaps (IBG), defined, 80 

Intercontroller edges, defined, 703 

Interface processors (IFP), 776-77 

Intermediate record types, defined, 70 

Internal levels, 15, 19 

mapping and, 17, 19 

Internal schemas, defined, 15 

Internal views, 13 

defined, 13-14, 15 

mapping and, 16, 17 

Interrelation join constraints, defined, 

307 

Intersect, uses of, 233, 242 

Intersection data, defined, 435 

Intersection records, 394 

defined, 386 

uses of, 386 

Intersections. See also Relational 

algebra 

characteristics of, 169 

defined, 152, 167 

representation of, 168 

Invariants, defined, 687 

Inverted index files, 116, 117 

advantages of, 116 

contents of, 115-16, 137 

deletions and, 117 

disadvantages of, 117 

insertions and, 117 

maintenance of, 117 

organization of, 123 

secondary keys and, 115-18 

uses of, 116, 118 

IRIS, 756 

Isolation, defined, 523 

Items. See Attributes 

Join dependencies (JD) 

algorithm for, 367 

causes of, 365 

defined, 361, 365 

key dependencies and, 365 

multivalued dependencies and, 365 

normalization and, 361-68 

relational databases and, 361-68 

Join indexes 

contents of, 495 

defined, 494 

uses of, 494-95 

Joins. See also Relational algebra 

characteristics of, 170, 173-74 

defined, 172, 173 

disadvantages of, 71 

Query-By-Example and, 273-74 

Query Language and, 250 

query processing and, 478-79, 506, 

507 

relational data models and, 71 

relationships and, 148-50, 181 

Structured Query Language and, 

221-25 

uses of, 150, 165, 183, 242 

Join selectivity 

defined, 492 

indexes and, 492 

uses of, 492-94 

Journals, defined, 516 

Key constraints (KC), defined, 368 

Key dependencies (KD) 

defined, 366 

join dependencies and, 365 

Keys. See also Attributes; specific keys 

defined, 6, 303 

functional dependencies and, 303-6 

relational data models and, 159-60 

Knowledge base management systems 

(KBMS) 

characteristics of, 723-24, 725-26 

contents of, 722, 725, 726 

database management systems and, 

723-24 

defined, 722, 724, 758 

frames and, 732-33 

logic and, 729-32 

procedural representation and, 736- 

37 

production systems and, 733-36 

semantic networks and, 726-29 

uses of, 723 

Knowledge base systems. See Expert 

systems 

Knowledge independence, 723 

Knowledge representation schemas, 723 

Latency time, defined, 80 

Leaf nodes 

contents of, 124-25 

defined, 124 

Least privilege, 616 

Least recently used (LRU), uses of, 

545-46 

Levien, R. E., 74 

Limit indexing, 95. See also Index- 

sequential files 

comparisons and, 96-98 

defined, 94 

Livelock. See Starvation 

Local area networks (LAN), defined, 

663 

Local database interfaces (LDI), 713 

uses of, 713-14 

Local schemas, characteristics of, 706 

Local transactions, defined, 662 

Local wait-for graphs (LWFG), uses 

of, 701, 702 

Location transparency 

characteristics of, 677 

defined, 670 

Locator catalogs, contents of, 678 

Locking. See also Concurrency control 

centralized database management 

systems and, 668 

compatibility of, 570-77, 579-80 

concurrency management and, 569, 

570-83 

deadlocks and, 583, 604 

defined, 570 

directed acyclic graphs and, 582-83 

disadvantages of, 692 

distributed database management 

systems and, 688-92 

granularity and, 576, 604 

organization of, 576-79 

relative privilege of, 579 

serializability and, 604 

steps for, 580, 603 

types of, 574-76, 581-82, 604 

uses of, 569, 572-74, 604 

Lock managers, uses of, 570, 571-72 

Locks, defined, 570 

Logic, knowledge base management 

systems and, 729-32 

Logical access order, 78, 87 

Logical children, defined, 435 

Logical data independence 

advantages of, 29 

characteristics of, 29, 31 

defined, 17 

Logical file organizations, uses of, 90 

Logical parents, defined, 435 
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Logical records 

database management systems and, 

13 

defined, 11, 64 

nondatabase operating environments 

and, 13 

Logs 

contents of, 524-25, 549 

recovery and, 524-26, 546-47 

uses of, 524, 525-26 

Long haul networks, defined, 663 

Loops, defined, 392 

Lossless join decomposition 

algorithms for, 321, 325, 358 

Boyce Codd normal form and, 329- 

33 

defined, 317 

fourth normal form and, 357-60 

Lossy, defined, 316. See also 

Decomposition 

Lost updates, defined, 558 

M:N relationships, 387, 388, 389, 394 

network data models and, 386-90 

Magnetic tapes, 81 

uses of, 79, 80 

Majority locking 

defined, 690 

disadvantages of, 691 

Mandatory, defined, 400 

Manual 

defined, 399 

set manipulation and, 415-19 

Many-to-many associations, 38 

Many-to-many relationships, 42, 43 

algorithm for, 491 

hierarchical data models and, 436- 

41, 456 

Mapping 

conceptual levels and, 17, 19 

conceptual views and, 15-16, 17 

defined, 11 

direct files and, 105-6, 137 

external views and, 15-16 

index-sequential files and, 105 

internal levels and, 17, 19 

internal views and, 16, 17 

Structured Query Language and, 217 

Maron, M. E., 74 

Masking 

attributes and, 11, 72 

database management systems and, 

12 

Master sites, 709 

Materialization, defined, 708 

Materialized databases, defined, 530 

Max, 220 

uses of, 251, 275-76 

Maximize sharing, 616 

Mean time between failures (MTBF), 

512 

Mean time to repair (MTTR), 512 

Member record types, 63, 64 

Members, defined, 151 

Membership, algorithm for, 301 

Memory managers, uses of, 545 

Mesh connections, 665 

characteristics of, 664 

Message interfaces, defined, 749 

Message protocols, defined, 749 

Messages, defined, 749 

Metadata, defined, 9 

Metaknowledge, defined, 725 

Methods, defined, 749 

Micro Operating System Interface 

(MOSI), 779 

Micro Teradata Director Program 

(MTDP), 779 

Min, 220 

uses of, 251,275-76 

Minimal covers, defined, 302 

Minus, uses of, 233, 242 

Mixed fragmentation, defined, 674 

Models. See also Data models 

database management systems and, 

2-7 

defined, 35 

Model-theoretic views (MTV), 738n.5 

Modify 

syntax of, 245 

uses of, 245, 407, 411 

Modus ponens, defined, 729 

Monadic predicates, defined, 185 

Monitors, uses of, 715 

M-order trees, characteristics of, 125 

Moving head drives, defined, 79 

MULTIBASE 

architecture of, 713 

uses of, 712-15 

Multilevel cycles, 395 

defined, 391 

Multilevel indexes, 99. See also Index- 

sequential files 

Multilevel index files, uses of, 124-25 

Multilevel sets, 381 

network data models and, 380-82 

Multilist files, 119 

advantages of, 120 

contents of, 118, 137 

creation of, 119-20 

deletions and, 122 

maintenance of, 120, 122 

organization of, 123, 136 

records in, 118-19 

searches and, 120-22 

secondary keys and, 118-22 

Multiple inheritance, 754 

Multiprocessors and caches, 772 

characteristics of, 772 

Multivalued dependencies (MVD) 

axioms for, 353-54 

causes of, 372 

characteristics of, 353, 362 

closure and, 354-57 

defined, 351, 353 

disadvantages of, 351-52 

join dependencies and, 365 

normalization and, 352-53 

relational databases and, 348-61 

Multi version. See also Concurrency 

control 

characteristics of, 591-92, 604 

concurrency management and, 570, 

591-94 

deadlocks and, 594 

defined, 556 

disadvantages of, 594 

serializability and, 592, 594, 604 

uses of, 570, 591, 593-94 

Murderous terminations, defined, 522 

Naive users, defined, 20 

Name-dependent access control, 

defined, 616 

Names, uses of, 751 

N-ary relationships 

binary relationships and, 74 

defined, 49 

Natural joins, characteristics of, 174, 

176 

Navigation, defined, 71 

Need-to-know, 616 

Negation 

domain calculus and, 197 

tuple calculus and, 191-92 

Nested loop method, uses of, 488-90, 

506 

Network database language (NDL), 425 
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Network data models (NDM) 

advantages of, 421 

background of, 45, 63, 72 

characteristics of, 71, 74, 652, 653- 

54 

complex multilevel sets and, 382-84 

contents of, 425 

cycles and, 391-95 

Database Task Group (DBTG) sets 

and, 378-80, 384-85 

data description in, 395-403 

data manipulation in, 405-21, 422 

data structures in, 63-65 

defined, 377 

disadvantages of, 421 

entity-relationship (E-R) data 

diagrams and, 69-70 

entity-relationship (E-R) data models 

and, 651 

M:N relationships and, 386-90 

multilevel sets and, 380-82 

schemas and, 403-5 

selection and, 71 

sets and, 123-24 

subschemas and, 405 

uses of, 65-67, 421 

Network partitioning, defined, 668 

Networks, 664, 665 

distributed database management 

systems and, 663-69 

types of, 663 

New master files, defined, 92-93 

Nodes, contents of, 125 

No force, uses of, 546 

Nonatomic values, defined, 308 

Nondatabase operating environments, 

10 

database management systems and, 

13 

logical records and, 13 

shared data and, 9-10 

Nondisjoint horizontal fragmentation, 

defined, 675 

Nondisjoint vertical fragmentation, 

defined, 675 

Nonfunctional relationships, defined, 

343 

Nonkeyed sequential files. See Serial 

files 

Nonprimary keys. See Secondary 

keys 

Nonprime attributes, defined, 304 

Nonredundancy, defined, 159 

Nonredundant covers 

algorithm for, 302 

defined, 301 

Nonvolatile storage, failures and, 514, 

524 

Normal forms 

types of, 309-15, 326-33 

uses of, 307 

Normalization 

decomposition and, 313-15 

join dependencies and, 361-68 

multivalued dependencies and, 352- 

53 

relational databases and, 307-15, 

324-34, 342-49, 352, 361-72 

synthesis and, 342-48 

Normalized, defined, 308 

Not contains, uses of, 229 

Not exists, uses of, 230-32 

Not in, uses of, 229 

Not steal, defined, 546 

N-tuples, defined, 155 

N-variable expressions 

contents of, 501 

defined, 496 

Object databases, types of, 755-57 

Object identifiers, uses of, 752-53 

Object independence, 754 

Object models (OM), 747 

Object-oriented approach (OOA), 

characteristics of, 749, 752 

Object-oriented database management 

systems (OODBMS), 755, 756 

advantages of, 757-58 

disadvantages of, 758 

Object-oriented programming (OOP) 

advantages of, 747-48 

characteristics of, 748, 753 

inheritance and, 753-55 

Object properties. See Attributes 

Objects, 750 

characteristics of, 749-50, 753 

defined, 620, 640, 747, 749 

naming of, 678-79 

types of, 753 

views as, 620 

Old master files, defined, 92 

On clauses, 635 

uses of, 245 

One-place predicates, defined, 185 

One-time codes, defined, 628 

One-to-many associations, 37, 44 

One-to-many relationships, 42, 43, 44- 

45 

One-to-one relationships, 41 -42 

One-variable expressions, uses of, 486 

On-line databases. See Current 

databases 

On-line users, defined, 20 

Open, defined, 187 

Open systems, defined, 616 

Operations. See specific operations 

Operator graphs, 468 

uses of, 468 

Optimistic scheduling, 590. See also 

Concurrency control 

concurrency management and, 569- 

70, 588-90 

deadlocks and, 590 

serializability and, 604 

starvation and, 590 

steps for, 589, 603 

uses of, 569-70, 588-90, 604 

Optimizers, uses of, 714 

Optional, defined, 400 

Ordered trees, 429 

defined, 67, 428 

traversing of, 428 

Order first, defined, 398 

Order last, defined, 398 

Order next, defined, 398 

Order prior, defined, 398 

Organizations, 2 

ORION, 756 

Orthogonal, defined, 263 

Outgoing edges, defined, 703 

Overflow areas 

defined, 93 

uses of, 103 

Overflow blocks, defined, 86 

Overflows 

defined, 128 

direct files and, 106, 108 

index-sequential files and, 100, 125, 

137 

virtual storage access method and, 

105 

Overloading 

causes of, 513, 514 

defined, 513 

Overriding, 727, 728 

Overutilization 

causes of, 513, 514 

defined, 513 

Owner record types, 63, 64 
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Page-level logging, uses of, 547 

Page tables, 540 

uses of, 539 

Paired bidirectional logical 

relationships, defined, 441 

Pairwise disjoint, 355 

Parsers, uses of, 461 

Partial dependencies, 305 

defined, 305 

Partial inheritance, 754 

Participating sites, defined, 686 

Passwords, uses of, 625-26 

Paths, hierarchical data models and, 453 

PDM, 756 

Permanent storage 

failures and, 514, 524 

uses of, 514-15 

Phantom deadlocks, defined, 701 

Phantom phenomena, defined, 561 

Physical access order, 78, 87 

Physical databases, defined, 16, 529 

Physical data independence 

advantages of, 29 

characteristics of, 19, 29, 31 

defined, 17 

Physical file organizations, uses of, 90 

Pointers, uses of, 133-34 

Polling, 666 

Poor quality control, causes of, 513, 514 

Positional notation, defined, 83 

POSTGRES, 755-56 

Precedence graphs, 564, 568, 569 

uses of, 565-66 

Predicate calculus 

characteristics of, 184-87 

defined, 184, 185, 730 

propositions and, 184 

relational calculus and, 184-87 

symbols in, 185-86 

Predicates, defined, 184, 729, 730 

Prenex normal form, defined, 502 

Preorder traversals, defined, 428 

Preprocessor statements, 23 

Primary blocks, defined, 86 

Primary keys 

defined, 6 

files and, 90 

integrity rules and, 162-63, 165 

uses of, 30, 41, 88 

values of, 162 

Primary site locking, defined, 691 

Prime attributes, defined, 159, 304 

Primitive models, defined, 45 

Print command, uses of, 270 

Printers, 779 

Print names, defined, 679 

Privacy 

defined, 611 

statistical databases and, 636-38 

PROBE, 756 

Probe computation, algorithms for, 704 

Probes 

characteristics of, 702-3 

defined, 702 

Procedural representation, 736-37 

Procedure calls, 23 

Processing requirements, uses of, 647 

Processor-per-device, 772 

Processor-per-surface, 773 

characteristics of, 771 

Processor-per-track, 772 

characteristics of, 771 

Production rules, 733 

Productions, 733 

Production systems 

contents of, 734 

defined, 733 

knowledge base management systems 

and, 733-36 

Projecting, defined, 150 

Projections. See also Relational algebra 

characteristics of, 170 

defined, 156, 170-71 

query processing and, 477-78, 480- 

84, 486, 497 

relationships and, 170-11 

uses of, 165, 242 

Project-join normal form (PJ/NF), 

defined, 366. 

See also Fifth normal form 

Proof-theoretic views (PTV), 738n.5 

Propagate access control, uses of, 621 

Property inheritance mechanisms, 

defined, 727 

Propositional calculus, defined, 729 

Propositional logic, defined, 729 

Propositions 

contents of, 184 

defined, 729 

predicate calculus and, 184 

Public keys, defined, 628 

Qualification clauses, defined, 88 

Queries 

algorithms for transforming, 504 

contents of, 502 

defined, 22 

domain calculus and, 184, 194-95, 

196-98 

evaluation of, 486-502 

format of, 502 

improvement of, 480-86 

Query-By-Example and, 269, 271— 

72, 281 

Query Language and, 248-50 

relational algebra and, 179-84 

relational calculus and, 184, 201 

representation of, 467-69 

Structured Query Language and, 

221-25, 280 

tuple calculus and, 184, 187-88, 

190-93 

Query-By-Example (QBE) 

advantages of, 199 

aggregation and, 275-76 

background of, 269 

categorization and, 276 

data manipulation in, 273-14 

domain calculus and, 209, 269, 281 

joins and, 273-74 

queries and, 269, 271-72, 281 

retrievals and, 270-75 

syntax of, 269 

updates and, 277-80 

Query graphs, 685 

uses of, 685 

Query Language (QUEL) 

advantages of, 199, 263, 264 

aggregation and, 250-55, 265 

arithmetic operations in, 247-48 

condition specification in, 246-47 

data definition in, 243-45 

data manipulation in, 246-60 

disadvantages of, 263, 265, 266, 

268, 269 

Embedded Query Language and, 262 

host languages and, 260 

INGRES and, 242 

joins and, 250 

queries and, 248-50 

renaming and, 247 

retrievals and, 243, 255-56 

set operations and, 250, 281 

tuple calculus and, 209, 212, 281 

tuple variables and, 243-44, 246, 

251, 254, 265 

updates and, 256-59 

uses of, 247 

views and, 259-60 
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Query language logging, uses of, 547 

Query languages, defined, 22. See also 

specific query languages 

Query Management Facility (QMF), 

269 

Query modification, uses of, 463 

Query optimization, defined, 461 

Query processing, 462 

access plans and, 469-70 

costs of, 469-70, 475, 480, 506, 

507 

defined, 461, 507 

distributed database management 

systems and, 679-86, 687, 715 

equivalent expressions and, 470-75 

joins and, 478-79, 506, 507 

projections and, 477-78, 480-84, 

486, 497 

query representation and, 467-69 

redundancies and, 484-85 

relational algebra and, 502-3 

relational calculus and, 502-3 

relational database management 

systems and, 461 

relationship size and, 469-70, 475- 

79, 480 

selection and, 476-77, 480-82, 486, 

497 

statistics and, 480, 502 

steps for, 461, 468-69, 501 

uses of, 462-67 

views and, 503-5 

Query processors 

characteristics of, 505-6 

contents of, 461, 506 

defined, 461 

uses of, 25, 507 

Query types, 114 

Quiescent, defined, 530 

R*, 709-10 

Range statements, uses of, 243-44 

Read-before-write-protocols, defined, 

567 

Read locks, uses of, 570, 578 

Read phases, uses of, 589 

Read timestamps, 583 

defined, 592 

Read/write head crashes, defined, 514 

Read/write heads 

disk packs and, 79 

fixed head drives and, 80 

Reasoning facilities, 722 

Reconnect, uses of, 407 

Record keys, defined, 397 

Record-level logging, uses of, 547 

Record occurrences, defined, 7 

Record order keys, 397 

Records. See also specific headings 

algorithms for, 85, 86 

defined, 83, 84 

placement of, 134-35 

representation of, 44, 83 

Record templates 

defined, 407 

uses of, 443 

Record types, 7/ 

contents of, 63 

defined, 7, 30 

storage of, 8 

uses of, 63 

Recovery 

buffer management and, 544-46 

centralized database management 

systems and, 524-32 

checkpoints and, 526-29 

concurrency management and, 603 

costs of, 547-48 

DBC/1012 and, 781 

deadlocks and, 595-96, 597-99 

disasters and, 548 

distributed database management 

systems and, 694-700 

failure anticipation and, 523-24 

logs and, 524-26, 546-47 

storage and, 529-30 

transactions and, 517-24 

two-phase commits and, 698-700 

types of, 516-17 

updates and, 532-44 

uses of, 549 

virtual memory and, 545, 546 

Redistribution, contents of, 128 

Redo, 531 

characteristics of, 530 

contents of, 528 

uses of, 530-31 

Reductio ad absurdum, defined, 729 

Reduction of relations, defined, 685 

Referential integrity, 163-65 

defined, 632 

uses of, 632-33 

Relational algebra, 161, 162. See also 

Joins; Relational data models 

basic operations of, 165-69, 201 

characteristics of, 199, 201 

defined, 165 

queries and, 179-84 

query processing and, 502-3 

relational calculus and, 198-99 

relational-oriented operations of, 

170-79, 201 

Structured Query Language and, 

209, 212, 242, 281 

uses of, 198, 201 

Relational calculus, 161, 162. See also 

Domain calculus; Relational data 

models; Tuple calculus 

defined, 184 

formulas in, 201 

predicate calculus and, 184-87 

queries and, 184, 201 

query processing and, 502-3 

relational algebra and, 198-99 

Structured Query Language and, 209 

Relational database management 

systems (RDBMS), query 

processing and, 461 

Relational databases 

contents of, 286 

decomposition and, 313-28, 329- 

34, 335, 341, 342, 357-60, 361, 

372 

design of, 306-35 

functional dependencies and, 293- 

306, 313-15 

join dependencies and, 361-68 

multivalued dependencies and, 348- 

61 

normalization and, 307-15, 324-34, 

342-49, 352, 361-72 

synthesis and, 342-48 

universal relation and, 290-93 

Relational data files. 74 

Relational data management systems, 

types of, 74 

Relational data models (RDM). See 

also Relational algebra; 

Relational calculus; Set theory 

advantages of, 59, 146 

attributes and, 153-55 

background of, 45, 72, 74, 146 

characteristics of, 60, 71, 650, 653 

contents of, 146-51, 153-58, 161 — 

65 

defined, 74 

disadvantages of, 74 

domains and, 153-55 

entity-relationship (E-R) data models 

and, 651 

integrity rules and, 146, 162-65 

joins and, 71 
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keys and, 159-60 

operations and, 161-62 

relation schemas and, 157-58 

representation of, 158-59 

tuples and, 155-56 

users and, 59-60 

uses of, 59, 74 

Relation schemas 

contents of, 286, 307 

decomposition and, 289, 290 

defined, 61, 286, 335 

design of, 286-87 

disadvantages of, 287-90 

relational data models and, 157-58 

relationships and, 286 

Relationships. See also specific 

relationships 

associations and, 44—45 

attribute associations and, 41-48 

characteristics of, 50 

contents of, 157 

defined, 3, 36, 49, 157, 738 

degree of, 158, 170 

entities and, \41-48, 160-67 

identification of, 50-51 

joins and, 148-50, 181 

projections and, 170-11 

relation schemas and, 286 

representation of, 9, 60, 67, 158-59, 

201 

size of, 469-70, 475-79, 480 

types of, 41^44 

uses of, 41 

Relationship sets, 7 

defined, 7, 49, 50 

representation of, 52 

Relative-most-recent versions, defined, 

592 

Reliability 

causes of, 511-13, 549 

defined, 512 

errors and, 515-16 

failures and, 513-15 

measurement of, 512 

Reliable, defined, 511 

Renaming, Query Language and, 

247 

Repeating groups, 397 

defined, 44, 396 

Replace 

format of, 256 

uses of, 256, 257, 449 

Replication. See also Updates 

advantages of, 676 

defined, 669, 675-76 

disadvantages of, 456, 676 

hierarchical data models and, 435, 

456 

uses of, 435 

Replication transparency, 677 

Reservations, 666 

Response time, characteristics of, 82 

Retaining currency, uses of, 416 

Retrieve 

format of, 255 

uses of, 243, 246 

Retrieve unique commands, uses of, 

246 

Reusability, defined, 748 

Ring files 

characteristics of, 123, 137 

secondary keys and, 123-24 

Ring topologies, 665 

characteristics of, 664 

Robust, defined, 724 

Rollback. See Undo 

Roots, defined, 67 

Rules, 733 

Run units, defined, 405 

Safe, defined, 198, 201 

Schedules, defined, 556 

Schemas, 404 

contents of, 403 

defined, 14, 403 

network data models and, 403-5 

SDD-1, 707 

characteristics of, 707-8 

uses of, 708 

Searches 

algorithm for, 109 

B-(--trees and, 127, 128 

multilist files and, 120-22 

tree structured files and, 127 

Secondary indexes, defined, 456 

Secondary keys 

access files and, 114-/5 

cellular lists and, 122-23 

defined, 6, 78 

files and, 113-24 

inverted index files and, 115-18 

multilist files and, 118-22 

query types and, 114 

retrievals and, 113-24, 136, 137 

ring files and, 123-24 

update types and, 114 

uses of, 6-7, 88, 114 

Second normal form (2NF) 

defined, 310 

disadvantages of, 310-12 

Security. See Database security 

Security administrators, defined, 612 

Seek time, defined, 79 

Selection, 772. See also Relational 

algebra; specific headings 

characteristics of, 170 

defined, 171 

uses of, 165 

Selectivity factors, defined, 476 

Select statements 

syntax of, 215 

uses of, 214, 215, 242 

Semantic data models, uses of, 45-46 

Semantic integrity 

defined, 612 

uses of, 639-40 

Semantic networks, 727 

defined, 726 

knowledge base management systems 

and, 726-29 

Semijoins, uses of, 680, 681-86 

Sequential access, uses of, 487-88 

Sequential files 

advantages of, 92, 93 

characteristics of, 90, 91, 92 

defined, 90 

deletions and, 92 

disadvantages of, 92, 93 

insertions and, 92 

organization of, 92, 136 

updates and, 92 

Sequential index keys, defined, 95 

Serial executions, 562 

defined, 562 

Serial files, 97 

characteristics of, 91, 136 

defined, 90 

deletions and, 91, 136 

generation of, 91, 136 

uses of, 91-92 

Serializability 

algorithm for, 566-69 

concurrency management and, 562- 

69, 603 

locking and, 604 

multiversion and, 592, 594, 604 

optimistic scheduling and, 604 

test for, 603-4 

timestamp ordering and, 583, 604 

Serializable schedules, defined, 563 

Set clauses, uses of, 215 
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Set operations. See also All; Any; 

Contains; Exists; In; Intersect; 

Minus; Not exists; Union 

Query Language and, 250, 281 

Structured Query Language and, 

225-33, 242 

uses of, 225 

Sets 

defined, 151 

network data models and, 123-24 

Set selection, defined, 402 

Set-theoretic unions, defined, 166 

Set theory, 151-53. See also Relational 

data models 

Set types, 64 

characteristics of, 63 

uses of, 63 

Shadow page schemas, 540 

advantages of, 541 

characteristics of, 533, 539 

disadvantages of, 541-42 

uses of, 540-41, 550 

Shadow page tables, defined, 539-40 

Share and intention exclusive modes, 

uses of, 578, 579 

Shared data 

database management systems and, 

10-/7, 12, 28 

nondatabase operating environments 

and, 9-10 

Shared locks, uses of, 570, 578 

Sibley, E. H., 74 

Sibling pointers, 429, 453 

uses of, 429, 452 

Simple, defined, 301 

Simple multivalued dependencies, 

defined, 356 

SIMULA, 748, 758 

Single-level cycles, 391, 392 

defined, 391 

Singular sets, defined, 403 

Skeleton tables, 270 

defined, 269 

obtaining of, 269-70 

Skip-sequential processing, defined, 

103 

Slave sites, defined, 710 

Smalltalk programming system, 748 

Software 

failures of, 513-14 

modification of, 148-50 

Sort and merge method 

algorithm for, 491 

uses of, 490-92, 506 

Sorted, defined, 398 

Sorts, defined, 730 

Spanning trees, defined, 68 

Special hardware, 772-74 

Specialization, 54 

defined, 53 

Special registers, defined, 406 

Spurious tuples, defined, 292 

Stable storage. See Permanent storage 

Standards Planning and Requirements 

Committee (SPARC), 33 

Star rings, 668 

uses of, 667 

Star topologies, 665 

characteristics of, 664 

Starvation 

causes of, 602 

defined, 556, 594 

optimistic scheduling and, 590 

Statistical databases 

contents of, 636 

privacy and, 636-38 

Status registers, uses of, 443 

Steal, uses of, 546 

Storage media, failures of, 514-15, 

524 

Store, uses of, 407, 412 

Stored fields, defined, 8 

Store mappings, uses of, 90 

Strategies. See Access plans 

Strong entities, 47 

defined, 47 

Structural constraints (SC), defined, 

402 

Structured domains, contents of, 154 

Structured Query Language (SQL) 

advantages of, 198-99, 263, 268, 

281 

aggregation and, 220-21, 233-34, 

242 

arithmetic operations in, 219-20 

background of, 212 

categorization and, 233-35 

condition specification in, 218-19 

data definition in, 212-14 

data manipulation in, 214-36, 242, 

281 

disadvantages of, 263-64, 265, 269 

host languages and, 260 

joins and, 221-25 

mapping and, 217 

queries and, 221-25, 280 

relational algebra and, 209, 212, 

242, 281 

relational calculus and, 209 

retrievals and, 217-18 

set operations and, 225-33, 242 

tuple calculus and, 212, 281 

tuple variables and, 222 

updates and, 235-36, 239-42 

views and, 237-42, 281 

Study Group on Database Management 

Systems, 33 

Subclasses, defined, 749 

Subjects, defined, 620 

Subschemas 

defined, 405 

network data models and, 405 

uses of, 626-27 

Subtransactions, 662 

Successful terminations, defined, 522 

Suicidal terminations, defined, 522 

Sum, 220 

uses of, 251, 275-76 

Superkeys, defined, 6 

Synchronous time-division multiplexing 

(SDM), 665-66 

Synthesis 

algorithm for, 345-48 

characteristics of, 306, 372 

normalization and, 342-48 

relational databases and, 342-48 

uses of, 343-45 

Synthesis approach, defined, 40-41 

System availability, defined, 512 

System catalogs. See Data dictionaries 

System consoles, 779 

System crashes, defined, 514 

System defaults, defined, 398 

System errors 

defined, 515 

prevention of, 515-16 

System R project, 212 

Systems, defined, 403 

Systemwide names (SWN), format of, 

679 

Tapes. See Magnetic tapes 

Telecommunication systems, uses of, 

26 

Ternary relationships, 50 

defined, 49 

Theta joins 

characteristics of, 176 

defined, 174 

Third normal form (3NF) 

algorithms for, 325, 347 
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decomposition and, 324-26 

defined, 312 

disadvantages of, 312 

Time-division multiplexing (TDM), 666 

Time domain addressing. See 

Multiversion 

Timestamp ordering. See also 

Concurrency control 

concurrency management and, 569, 

583-88 

deadlocks and, 588 

defined, 556, 569 

distributed database management 

systems and, 692-94 

serializability and, 583, 604 

steps for, 603 

uses of, 569, 583-88, 604 

Tokens, defined, 666 

Top-down approach, uses of, 649 

Track indexes, 101 

contents of, 100-101 

uses of, 103 

Tracks 

defined, 79 

disks and, 79, 98 

Traditional data models, types of, 45. 

See also Hierarchical data 

models; Network data models; 

Relational data models 

TRAMP system, 74 

Transaction classes, 709 

Transaction-consistent checkpoints, 

defined, 527 

Transaction files, defined, 92 

Transaction managers, defined, 686 

Transaction-oriented checkpoints, 

defined, 527 

Transaction redo, uses of, 532 

Transactions 

application programs and, 520 

characteristics of, 523 

defined, 518, 519, 549, 555-56 

recovery and, 517-24 

states of, 521-23 

Transaction undo, uses of, 531 

Transformers, uses of, 714 

Transitive dependencies, 305 

defined, 305 

Trapdoor functions, 628 

Tree locking protocols, uses of, 581 — 

82 

Trees 

contents of, 428 

defined, 67 

hierarchical data models and, 430- 

35, 455, 456 

Tree structured files. See also specific 

files 

capacity of, 132, 133 

characteristics of, 124-25 

deletions and, 127, 130-32 

insertions and, 127, 128-30 

operations and, 127-32 

searches and, 127 

types of, 124-27 

uses of, 137 

Tree structure diagrams. See 

Hierarchical definition trees 

Triggers, defined, 635, 734 

Trivial functional dependencies, 

defined, 296 

Tuple calculus. See also Relational 

calculus 

characteristics of, 198, 201 

formulas in, 189-93 

negation and, 191-92 

queries and, 184, 187-88, 190-93 

Query Language and, 209, 212, 281 

Structured Query Language and, 

212, 281 

Tuple identifiers (TID) 

contents of, 492-93 

defined, 200 

Tuples, 210, 211. See also specific 

tuples 

defined, 60, 156, 225 

relational data models and, 155-56 

uses of, 156, 201 

Tuple substitution method 

defined, 496 

disadvantages of, 496 

uses of, 497-98 

Tuple variables 

Query Language and, 243-44 , 246, 

251, 254, 265 

Structured Query Language and, 222 

uses of, 244, 265-66 

Turing test, 723n.2 

Two-phase commits 

characteristics of, 545 

contents of, 695-96 

recovery and, 698-700 

Two-phase locking 

characteristics of, 604 

deadlocks and, 576 

defined, 574 

uses of, 574-75 

Two-place predicates, defined, 185 

Two-variable expressions, uses of, 

488-90 

Undo, 531 

characteristics of, 530 

defined, 528 

uses of, 520, 522, 530, 531 

Union. See also Relational algebra 

characteristics of, 169 

defined, 152, 166 

uses of, 232, 242 

Union compatible, defined, 165-66 

Unique identification, defined, 159 

Unique name assumptions (UNA), 

defined, 732 

Unique options, 214 

Universal relation 

advantages of, 293 

defined, 290 

disadvantages of, 291-92 

obtaining of, 293 

relational databases and, 290-93 

validity of, 293 

Universal relation assumption, defined, 

290 

Unnormalized, defined, 308 

Update in place, 533, 536 

characteristics of, 533 

costs of, 547-48 

defined, 532 

uses of, 533-38, 550 

Update locks, uses of, 570, 578 

Updates. See also Delete; Insert; 

Replication 

defined, 89 

exceptions to, 89-90 

hierarchical data models and, 447-51 

index-sequential files and, 103, 104 

multilevel indexes and, 99 

Query-By-Example and, 277-80 

Query Language and, 256-59 

recovery and, 532-44 

sequential files and, 92 

Structured Query Language and, 

235-36, 239-42 

syntax of, 216 

uses of, 215, 236 

views and, 239-42 

virtual records and, 450-51 

Updates via log 

characteristics of, 533 

uses of, 550 

Update transparency, defined, 677 

Update types, 114 
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User errors, 515 

User views. See External views 

User work areas (UWA), defined, 405, 

443 

Validation phases, uses of, 589 

Validity, defined, 515 

Values 

attributes and, 4, 5, 8-9 

storage of, 8-9 

Variables, uses of, 185 

Vectors, 397 

defined, 396 

Vertical fragmentation 

defined, 672 

uses of, 653 

View-integration approach, uses of, 

649 

Views 

algorithms for transforming queries 

on, 504 

defined, 10, 237 

as objects, 620 

Query Language and, 259-60 

query processing and, 503-5 

representation of, I! 

Structured Query Language and, 

237-42, 281 

updates and, 239-42 

uses of, 626-27 

Virtual fields, defined, 19 

Virtual memory 

defined, 539 

recovery and, 545, 546 

Virtual records 

defined, 432, 435, 456 

hierarchical data models and, 435, 

456 

updates and, 450-51 

uses of, 432, 437, 438, 455-56 

Virtual storage access method (VSAM) 

advantages of, 104-5, 137 

contents of, 105 

control intervals and, 104, 105 

index-sequential files and, 104-5 

overflows and, 105 

Volatile storage, failures and, 514, 524 

Voting phases, 695-96 

Wait-die, 601 

defined, 601 

Wait-for graphs, 596 

contents of, 595 

defined, 595 

uses of, 605 

Weak entities, defined, 48 

Wearout, causes of, 513, 514 

Well-formed formulas <wffs) 

characteristics of, 187 

defined, 186 

rules about, 195 

Where clauses, uses of, 215, 242, 243, 

444 

Wide area networks, defined, 663 

Wound-wait, 601-2 

defined, 601 

Write-ahead log strategies 

characteristics of, 525, 533 

defined, 525 

uses of, 525 

Write locks, uses of, 570, 578 

Write phases, uses of, 589 

Write timestamps, 583 

defined, 592 
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