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Abstract

Title: Pricing and hedging financial derivatives with reinforcement learning
methods

Alexandre Carbonneau, Ph.D.

Concordia University, 2021

This thesis studies the problem of pricing and hedging financial derivatives with reinforcement

learning. Throughout all four papers, the underlying global hedging problems are solved

using the deep hedging algorithm with the representation of global hedging policies as

neural networks. The first paper, “Equal Risk Pricing of Derivatives with Deep Hedging”,

shows how the deep hedging algorithm can be applied to solve the two underlying global

hedging problems of the equal risk pricing framework for the valuation of European financial

derivatives. The second paper, “Deep Hedging of Long-Term Financial Derivatives”, studies

the problem of global hedging very long-term financial derivatives which are analogous, under

some assumptions, to options embedded in guarantees of variable annuities. The third paper,

“Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments”, studies

derivative prices generated by the equal risk pricing framework for long-term options when

shorter-term options are used as hedging instruments. The fourth paper, “Deep equal risk

pricing of financial derivatives with non-translation invariant risk measures”, investigates the

use of non-translation invariant risk measures within the equal risk pricing framework.

Keywords: Deep hedging, Equal risk pricing, Convex risk measure, Reinforcement learn-

ing, Deep learning, Neural networks, Global hedging, Risk management, Variable annuity,

Lookback option, Jump risk, Volatility risk, Non-translation invariant risk measure.
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des Sciences Mathématiques as well as Frédéric Godin for their financial support throughout

my thesis.

Finally, and most importantly, I am extremely thankful to my soon-to-be wife, Iunia Seni, to

my family and to my friends. This thesis could not have been achieved without your love,

your support and your infinite patience.

IV



Contribution of Authors

This manuscript-based thesis is separated into four papers organized as four main chapters.

Chapter 2: Alexandre Carbonneau wrote the manuscript and conducted all numerical

experiments. Frédéric Godin contributed with the draft manuscript preparation. The results

were published in an article entitled “Equal Risk Pricing of Derivatives with Deep Hedging”.

Chapter 3: Alexandre Carbonneau wrote the manuscript and conducted all numerical

experiments. The results were published in an article entitled “Deep Hedging of Long-Term

Financial Derivatives”.

Chapter 4: Alexandre Carbonneau wrote the manuscript and conducted all numerical

experiments. Frédéric Godin contributed with the draft manuscript preparation. The preprint

version presenting the results is entitled “Deep Equal Risk Pricing of Financial Derivatives

with Multiple Hedging Instruments”.

Chapter 5: Alexandre Carbonneau wrote the manuscript and conducted all numerical

experiments. Frédéric Godin contributed with the draft manuscript preparation. The preprint

version presenting the results is entitled “Deep equal risk pricing of financial derivatives with

non-translation invariant risk measures”.

All authors reviewed the final manuscript and approved of the contents.

V



Contents

List of Tables XII

Introduction 1

Chapter 2 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Equal risk pricing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Market setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Convex risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Optimal hedging problem . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Option pricing and ε-completeness measure . . . . . . . . . . . . . . . 13

2.3 Tractable solution to equal risk pricing . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Equal risk pricing with two neural networks . . . . . . . . . . . . . . 20

2.3.3 Optimization of feedforward neural networks . . . . . . . . . . . . . . 23

2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1.1 Regime-switching model . . . . . . . . . . . . . . . . . . . . 27

2.4.1.2 Neural network structure . . . . . . . . . . . . . . . . . . . 28

2.4.2 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Model induced incompleteness . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3.1 Discrete BSM . . . . . . . . . . . . . . . . . . . . . . . . . . 31

VI



2.4.3.2 Discrete Merton jump-diffusion (MJD) model . . . . . . . . 31

2.4.3.3 GARCH model . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Exotic contingent claims . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Risk-neutral dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2.1 Regime-switching . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.2.2 Discrete BSM . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2.3 Discrete MJD . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2.4 GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.3 Maximum likelihood estimates results . . . . . . . . . . . . . . . . . . 43

Chapter 3 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Hedging long-term contingent claims . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Market setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Optimal hedging problem . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 LSTM neural networks representing global policies . . . . . . . . . . 60

3.3.2 Training of neural networks . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Market setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1.1 Global hedging penalties . . . . . . . . . . . . . . . . . . . . 66

VII



3.4.1.2 LSTM training . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1.3 Local risk minimization . . . . . . . . . . . . . . . . . . . . 68

3.4.1.4 Hedging metrics . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Dynamics of financial market . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2.1 BSM under P . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.2.2 MJD under P . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2.3 BSM under Q . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2.4 MJD under Q . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.3 Benchmarking of hedging policies . . . . . . . . . . . . . . . . . . . . 73

3.4.3.1 QDH and local risk minimization benchmark . . . . . . . . 73

3.4.3.2 QDH and SQDH benchmark . . . . . . . . . . . . . . . . . 74

3.4.4 Qualitative characteristics of global policies . . . . . . . . . . . . . . 78

3.4.4.1 Average exposure results . . . . . . . . . . . . . . . . . . . . 79

3.4.4.2 Analysis of SQDH bullishness . . . . . . . . . . . . . . . . . 81

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Pseudo-code deep hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 4 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Equal risk pricing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Specification of the financial market . . . . . . . . . . . . . . . . . . . 93

4.2.2 Equal risk pricing framework . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Deep equal risk pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Neural networks representing trading policies . . . . . . . . . . . . . . 100

4.3.2 Equal risk pricing with neural networks . . . . . . . . . . . . . . . . . 103

VIII



4.3.3 Training neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.1 Market setup and asset dynamics models . . . . . . . . . . . . . . . . 107

4.4.1.1 Asset price dynamics . . . . . . . . . . . . . . . . . . . . . . 108

4.4.1.2 Discrete-time Merton-Jump diffusion model (Merton, 1976) 109

4.4.1.3 GJR-GARCH(1,1) model (Glosten et al., 1993) . . . . . . . 110

4.4.1.4 Implied volatility dynamics . . . . . . . . . . . . . . . . . . 111

4.4.1.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.2 Sensitivity of equal risk pricing to jump risk . . . . . . . . . . . . . . 113

4.4.2.1 Benchmarking results in the presence of jump risk . . . . . . 114

4.4.3 Sensitivity of equal risk pricing to volatility risk . . . . . . . . . . . . 118

4.4.3.1 Benchmarking results with volatility risk . . . . . . . . . . . 119

4.4.4 Sensitivity analyses to the confidence level of CVaRα . . . . . . . . . 122

4.4.5 Benchmarking of equal risk prices to variance-optimal premiums . . . 124

4.4.5.1 Benchmarking results . . . . . . . . . . . . . . . . . . . . . 125

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6.1 Variance-optimal hedging . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6.2 Pseudo-code deep hedging . . . . . . . . . . . . . . . . . . . . . . . . 131

4.6.3 Additional numerical experiments . . . . . . . . . . . . . . . . . . . . 133

Chapter 5 138

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Financial market setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

IX



5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.1 Neural network approximation of the optimal solution . . . . . . . . . 149

5.4.2 Calibration of neural networks through reinforcement learning . . . . 151

5.4.2.1 Fixed and given V0 case . . . . . . . . . . . . . . . . . . . . 151

5.4.2.2 Non-translation invariant risk measures case . . . . . . . . . 153

5.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5.1 Experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5.2 Sensitivity analysis to risk measures . . . . . . . . . . . . . . . . . . . 157

5.5.2.1 Regime-switching model . . . . . . . . . . . . . . . . . . . . 158

5.5.2.2 Numerical results sensitivity analysis to objective function . 160

5.5.2.3 Hedging performance benchmarking . . . . . . . . . . . . . 162

5.5.3 Sensitivity analysis to dynamics of risky assets . . . . . . . . . . . . . 164

5.5.3.1 Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . 164

5.5.3.2 GJR-GARCH model . . . . . . . . . . . . . . . . . . . . . . 165

5.5.3.3 Merton jump-diffusion model . . . . . . . . . . . . . . . . . 165

5.5.3.4 Numerical results sensitivity analysis to dynamics . . . . . . 166

5.5.4 Long-term maturity ERP with option hedges . . . . . . . . . . . . . . 168

5.5.4.1 Numerical results with option hedges . . . . . . . . . . . . . 171

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.7 Pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.8 Validation of modified training algorithm . . . . . . . . . . . . . . . . . . . . 176

5.9 Maximum likelihood estimates results . . . . . . . . . . . . . . . . . . . . . . 177

5.10 Risk-neutral dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.10.1 Regime-switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

X



5.10.2 BSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.10.3 GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.10.4 Merton jump-diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Conclusion 182

Appendix 185

7.1 Attainable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2 Existence of optimal trading strategy . . . . . . . . . . . . . . . . . . . . . . 186

Bibliography 188

XI



List of Tables

2.1 Sensitivity analysis of equal risk prices C
(?,NN )
0 and residual hedging risk

ε(?,NN ) for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options

of maturity T = 60/260. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Equal risk prices C
(?,NN )
0 and residual hedging risk ε(?,NN ) for OTM (K = 90),

ATM (K = 100) and ITM (K = 110) put options of maturity T = 60/260

under different dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Equal risk and risk-neutral prices for OTM (K = 90), ATM (K = 100) and

ITM (K = 110) put options of maturity T = 60/260. . . . . . . . . . . . . . 33

2.4 Equal risk prices C
(?,NN )
0 and residual hedging risk ε(?,NN ) for OTM (K = 90),

ATM (K = 100) and ITM (K = 110) vanilla put, Asian average price put and

lookback put options of maturity T = 60/260. . . . . . . . . . . . . . . . . . 35

2.5 Equal risk and risk-neutral prices for OTM (K = 90), ATM (K = 100) and

ITM (K = 110) vanilla put, Asian average price put and lookback put options

of maturity T = 60/260. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Maximum likelihood parameter estimates of the Black-Scholes model. . . . . 44

2.7 Maximum likelihood parameter estimates of the GJR-GARCH(1,1) model. . 44

2.8 Maximum likelihood parameter estimates of the regime-switching model. . . 44

2.9 Maximum likelihood parameter estimates of the Merton jump-diffusion model. 44

3.1 Parameters of the Black-Scholes model. . . . . . . . . . . . . . . . . . . . . . 72

3.2 Parameters of the Merton jump-diffusion model. . . . . . . . . . . . . . . . . 72

3.3 Benchmarking of quadratic deep hedging (QDH) and local risk minimization

to hedge the lookback option of T = 10 years under the BSM. . . . . . . . . 74

3.4 Benchmarking of quadratic deep hedging (QDH) and local risk minimization

to hedge the lookback option of T = 10 years under the MJD model. . . . . 75

3.5 Benchmarking of quadratic deep hedging (QDH) and semi-quadratic deep

hedging (SQDH) to hedge the lookback option of T = 10 years under the BSM. 76

XII



3.6 Benchmarking of quadratic deep hedging (QDH) and semi-quadratic deep

hedging (SQDH) to hedge the lookback option of T = 10 years under the MJD

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Average equity exposures with quadratic deep hedging (QDH) and semi-

quadratic deep hedging (SQDH) for the lookback option of T = 10 years under

the BSM and MJD model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Parameters of the Merton jump-diffusion model for the three scenarios. . . . 114

4.2 Parameters of the log-AR(1) model for the evolution of implied volatilities. . 114

4.3 Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? to jump

risk for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of

maturity T = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Parameters of the GJR-GARCH model for 10%, 15% and 20% stationary yearly

volatilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? to

volatility risk for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put

options of maturity T = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? for

OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity

T = 1 under the MJD dynamics with jump risk scenario 2. . . . . . . . . . . 124

4.7 Equal risk prices C?
0 and variance-optimal (VO) prices C

(V O)
0 with jump risk

for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of

maturity T = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8 Sensitivity analysis of equal risk prices C?
0 with CVaR0.90,CVaR0.95 and CVaR0.99

measures to variance-optimal (VO) prices C
(V O)
0 under jump risk for OTM

(K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.128

XIII



4.9 Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? to

implied volatility (IV) risk for OTM (K = 90), ATM (K = 100) and ITM

(K = 110) put options of maturity T = 1. . . . . . . . . . . . . . . . . . . . . 133

4.10 Equal risk prices C?
0 and residual hedging risk ε? under the Black-Scholes

model for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options

of maturity T = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.11 Equal risk prices C?
0 and variance-optimal (VO) prices C

(V O)
0 under the Black-

Scholes model for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put

options of maturity T = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.12 Equal risk prices C?
0 and variance-optimal (VO) prices C

(V O)
0 with volatility

risk for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of

maturity T = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.13 Sensitivity analysis of equal risk prices C?
0 with CVaR0.90,CVaR0.95 and CVaR0.99

measures to variance-optimal (VO) prices C
(V O)
0 under volatility risk for OTM

(K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.137

5.1 Sensitivity analysis of equal risk prices C?
0 for OTM (K = 90), ATM (K = 100)

and ITM (K = 110) put options of maturity T = 60/260 under the regime-

switching model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2 Hedging statistics for short position ATM put option of maturity T = 60/260

under the regime-switching model. . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3 Sensitivity analysis of equal risk prices for OTM put options of maturity

T = 60/260 under the BSM, MJD and GJR-GARCH models. . . . . . . . . . 166

5.4 Parameters of the 1-year Merton jump-diffusion model. . . . . . . . . . . . . 170

5.5 Parameters of the log-AR(1) model for the evolution of implied volatilities. . 171

5.6 Sensitivity analysis of equal risk prices to jump risk for OTM (K = 90), ATM

(K = 100) and ITM (K = 110) put options of maturity T = 1. . . . . . . . . 171

XIV



5.7 Semi-mean-square-error (SMSE) statistics of the modified training algorithm

for ATM (K = 100) put options of maturity T = 60/260 under the regime-

switching model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.8 Maximum likelihood parameter estimates of the Black-Scholes model. . . . . 178

5.9 Maximum likelihood parameter estimates of the GJR-GARCH model. . . . . 178

5.10 Maximum likelihood parameter estimates of the regime-switching model. . . 178

5.11 Maximum likelihood parameter estimates of the Merton jump-diffusion model. 178

XV



Introduction

The celebrated Black and Scholes (1973) and Merton (1973) model constitutes the pillar of

option pricing theory. One of the most important paradigms of their work is that in the so-

called Black-Scholes world, every contingent claim can be perfectly replicated by continuously

rebalancing a portfolio composed of a risky asset and a risk-free asset. The Black-Scholes

market is complete, and derivatives are redundant financial assets. Consequently, the two

problems of pricing and hedging a contingent claim are both solved by finding the replicating

trading strategy which completely eliminates hedging risk, and by setting the value of the

contingent claim to the unique arbitrage-free price being the initial value of the replication

portfolio.

Fortunately for the field of mathematical finance, in practice, financial markets are typically

incomplete, and contingent claims cannot be perfectly replicated. Indeed, various stylized

features of financial markets violate several assumptions imposed by the Black-Scholes model.

For instance, the presence of salient equity risk factors such as jump and volatility risks

which cannot be completely hedged away, trades occurring in discrete time as well as market

impact stemming from the presence of trading costs and imperfect liquidity. Thus, in this

context, perfect replication is impossible, and the problem of pricing and optimally hedging

contingent claims is highly relevant.

The main theme of this thesis is the use of deep reinforcement learning methods for pricing

and hedging financial derivatives in incomplete markets. More precisely, all four papers of this

thesis study the problem of global hedging contingent claims from the standpoint of either

pricing derivatives consistently with optimal hedges, or from the standpoint of mitigating the

risk exposure of derivative positions. For the former, the pricing mechanism studied in this

thesis is the equal risk pricing framework introduced by Guo and Zhu (2017). This derivative

valuation approach is consistent with non-quadratic global hedging procedures by pricing

a contingent claim as the value such that the residual global hedging risk of the long and
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short positions is equal under optimal hedges. Furthermore, this thesis also examines the

performance of non-quadratic global hedging strategies for mitigating the risk exposure of

long-term financial derivatives. Throughout this thesis, the numerical scheme considered to

solve global hedging problems is from the class of deep hedging algorithms introduced by

Buehler et al. (2019b). This approach is based on a parametric approximation of the trading

policy with a neural network trained using reinforcement learning. One of the most important

benefits of the deep hedging approach over typical procedures such as traditional dynamics

programming is to overcome the curse of dimensionality when considering high-dimensional

state and action spaces.

The thesis is separated into four papers organized as four main chapters. Chapter 2 introduces

the deep reinforcement learning approach based on deep hedging to implement the equal risk

pricing framework with convex risk measures under general conditions. Chapter 3 studies the

application of the deep hedging algorithm in the context of global hedging very long-term

financial derivatives. Chapter 4 examines the impact of including short-term options as

hedging instruments for pricing longer-term financial derivatives with the equal risk pricing

framework under convex risk measures. Chapter 5 investigates the use of non-translation

invariant risk measures within the equal risk pricing framework for pricing and hedging

financial derivatives. Chapter 6 summarizes the contributions of this thesis. The bibliography

for all papers is presented at the end of the thesis.
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Chapter 2

Equal Risk Pricing of Derivatives with Deep Hedging

Abstract

This article provides a universal and tractable methodology based on deep reinforce-

ment learning to implement the equal risk pricing framework for financial derivatives

pricing under very general conditions. The equal risk pricing framework entails solving

for a derivative price which equates the optimally hedged residual risk exposure associ-

ated respectively with the long and short positions in the option. The solution to the

hedging optimization problem considered, which is inspired from the Marzban et al.

(2020) framework relying on convex risk measures, is obtained through the use of the

deep hedging algorithm of Buehler et al. (2019b). Consequently, the current paper’s

approach allows for the pricing and the hedging of a very large number of contingent

claims (e.g. vanilla options, exotic options, options with multiple underlying assets)

with multiple liquid hedging instruments under a wide variety of market dynamics (e.g.

regime-switching, stochastic volatility, jumps). A novel ε-completeness measure allowing

for the quantification of the residual hedging risk associated with a derivative is also

proposed. The latter measure generalizes the one presented in Bertsimas et al. (2001)

based on the quadratic penalty. Monte Carlo simulations are performed under a large

variety of market dynamics to demonstrate the practicability of our approach, to perform

benchmarking with respect to traditional methods and to conduct sensitivity analyses.

Numerical results show, among others, that equal risk prices of out-of-the-money options

are significantly higher than risk-neutral prices stemming from conventional changes of

measure across all dynamics considered. This finding is shown to be shared by different

option categories which include vanilla and exotic options.

Keywords: Reinforcement learning, Deep learning, Option pricing, Hedging, Convex

risk measures.

JEL classification: C45, G13.
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2.1 Introduction

Under the complete market paradigm, for instance as in Black and Scholes (1973) and Merton

(1973), all contingent claims can be perfectly replicated with some dynamic hedging strategy.

In such circumstances, the unique arbitrage-free price of an option must be the initial value of

the replicating portfolio. However, in reality, markets are incomplete and perfect replication

is typically impossible for non-linear derivatives. Indeed, there are many sources of market

incompleteness observed in practice such as discrete-time rebalancing, liquidity constraints,

stochastic volatility, jumps, etc. In an incomplete market, it is often impracticable for a

hedger to select a trading strategy that entirely removes risk as it would typically entail

unreasonable costs. For instance, Eberlein and Jacod (1997) show that the super-replication

price of a European call option under a large variety of underlying asset dynamics is the

initial underlying asset price. Thus, in practice, a hedger must accept the presence of residual

hedging risk that is intrinsic to the contingent claim being hedged. The determination of

option prices and hedging policies therefore depend on subjective assumptions regarding risk

preferences of market participants.

An incomplete market derivatives pricing approach that is extensively studied in the literature

consists in the selection of a suitable equivalent martingale measure (EMM). As shown in

the seminal work of Harrison and Pliska (1981), if a market is incomplete and arbitrage-free,

there exists an infinite set of EMMs each of which can be used to price derivatives through a

risk-neutral valuation. Some popular examples of EMMs in the literature include the Esscher

transform by Gerber and Shiu (1994) and the minimal-entropy martingale measure by Frittelli

(2000). Option pricing functions induced by the latter risk-neutral measures can then be

used to calculate Greek letters associated with the option, which leads to the specification

of hedging policies, e.g. delta-hedging. However, in that case, hedging policies are not an

input of the pricing procedure, but rather a by-product. Thus, hedging policies obtained

from many popular EMMs are typically not optimal, and corresponding option prices are
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not designed in a way that is consistent with optimal hedging strategies. Another strand

of literature derives martingale measures that are designed to be consistent with optimal

hedging approaches such as the minimal martingale measure by Föllmer and Schweizer (1991),

the variance-optimal martingale measure by Schweizer (1995) and the Extended Girsanov

Principle of Elliott and Madan (1998). However, an undesirable feature of the three previous

methods is their reliance on quadratic objective functions which penalize hedging gains. The

identification of a pricing procedure consistent with a non-quadratic global optimization of

hedging errors, i.e. a joint optimization over hedging decisions for all time periods until the

maturity of the derivative, would be desirable.

In that direction, another approach studied in the literature considers the determination of

derivatives prices directly from global optimal hedging strategies without having to specify

an EMM. A first example of approach among these schemes is utility indifference pricing

in which a trader with a specific utility function prices a contingent claim as the value such

that the utility of his portfolio remains unchanged by the inclusion of the contingent claim.

For instance, Hodges and Neuberger (1989) study hedging and indifference pricing under the

negative exponential utility function with transaction costs under the Black-Scholes model

(BSM). Closely related is the risk indifference pricing in which a risk measure is used to

characterize the risk aversion of the trader instead of a utility function. For example, Xu

(2006) studies the indifference pricing and hedging in an incomplete market using convex risk

measures as defined in Föllmer and Schied (2002). One notable feature of utility and risk

indifference pricing is that the resulting price depends on the position (long or short) of the

hedger in the contingent claim. This highlights the need to identify hedging-based pricing

schemes producing a unique price that is invariant to being long or short.

Recently, Guo and Zhu (2017) introduced the concept of equal risk pricing. In their framework,

the option price is set as the value such that the global risk exposure of the long and

short positions is equal under optimal hedging strategies. Contrarily to utility and risk

indifference pricing, equal risk pricing provides a unique transactional price. The latter
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paper focuses mainly on theoretical features of the equal risk pricing framework and does not

provide a general approach to compute the solution of the hedging problem embedded in

the methodology. Thus, equal risk prices are only provided for a limited number of specific

cases. Following the work of Guo and Zhu (2017), Marzban et al. (2020) adapted the equal

risk pricing framework to the case where convex risk measures are used to quantify the

risk exposures of the long and short positions under optimal hedging strategies. By further

imposing that the risk measures can be decomposed in a way that satisfies a Markovian

property, they provide dynamic programming equations that can be used to solve the hedging

problems for both European and American options.

To enhance the tractability of the equal risk approach, the current paper also considers the use

of convex risk measures to quantify the global risk exposures of the long and short positions

under optimal hedging strategies. Hedging under a convex risk measure has been extensively

studied in the literature: Alexander et al. (2003) minimize the Conditional Value-at-Risk

(CVaR, Rockafellar and Uryasev (2002)) in the context of static hedging with multiple assets,

Xu (2006) studies the indifference pricing and hedging under a convex risk measure in an

incomplete market and Godin (2016) develops a global hedging strategy using CVaR as the

cost function in the presence of transaction costs. Recently, Buehler et al. (2019b) introduced

an algorithm called deep hedging to hedge a portfolio of over-the-counter derivatives in the

presence of market frictions under a convex risk measure using deep reinforcement learning

(deep RL). The general framework of RL is for an agent to learn over many iterations of an

environment how to select sequences of actions in order to optimize a cost function. Hedging

with RL has received some attention; Kolm and Ritter (2019) demonstrate that SARSA can

be used to learn the hedging strategy if the objective function is a mean-variance criteria and

Halperin (2020) shows that Q-learning can be used to learn the option pricing and hedging

strategy under the BSM. In the novel deep hedging algorithm of Buehler et al. (2019b),

an agent is trained to learn how to optimize the hedging strategy produced by a neural

network through many simulations of a synthetic market. Their deep RL approach to the
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hedging problem helps to counter the well-known curse of dimensionality that arises when

the state space gets too large. As argued by François et al. (2014), when applying traditional

dynamic programming algorithms to compute hedging strategies, the curse of dimensionality

can prevent the use of a large number of features to model the different components of the

financial market.

The contribution of the current study is threefold. The first contribution consists in providing

a universal and tractable methodology to implement the equal risk pricing framework under

very general conditions. The approach based on deep RL as in Buehler et al. (2019b) can price

and optimally hedge a very large number of contingent claims (e.g. vanilla options, exotic

options, options with multiple underlying assets) with multiple liquid hedging instruments

under a wide variety of market dynamics (e.g. regime-switching, stochastic volatility, jumps,

etc.). Results presented in this paper, which rely on Buehler et al. (2019b), demonstrate that

our methodological approach to equal risk pricing can approximate arbitrarily well the true

equal risk price.

The second contribution of the current study consists in performing several numerical

experiments studying the behavior of equal risk prices in various contexts. Such experiments

showcase the wide applicability of our proposed framework. The behavior of the equal

risk pricing approach is analyzed among others through benchmarking against expected

risk-neutral pricing and by conducting sensitivity analyzes determining the impact on option

prices of the confidence level associated with the risk measure and of the underlying asset

model choice. The conduction of such numerical experiments crucially relies on the deep RL

scheme outlined in the current study. Using the latter framework allows presenting numerical

examples for equal risk pricing that are more extensive, realistic and varied than in previous

studies; such results would most likely have been previously inaccessible when relying on more

traditional computation methods (e.g. finite difference dynamic programming). Numerical

results show, among others, that equal risk prices of out-of-the-money (OTM) options are

significantly higher than risk-neutral prices across all dynamics considered. This finding is
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shown to be shared by different option categories which include vanilla and exotic options.

Thus, by using the usual risk-neutral valuation instead of the equal risk pricing framework, a

risk averse participant trading OTM options might significantly underprice these contracts.

The last contribution is the introduction of an asymmetric ε-completeness measure based on

hedging strategies embedded in the equal risk pricing approach. The purpose of the metric

is to quantify the magnitude of unhedgeable risk associated with a position in a contingent

claim. The ε-completeness measure can therefore be used to quantify the level of market

incompleteness inherent to a given market model. Our contribution complements the work of

Bertsimas et al. (2001); their proposed measure of market incompleteness is based on the

mean-squared-error cost function, while ours has the advantage of allowing to characterize the

risk aversion of the hedger with any convex risk measure. Furthermore, the current paper’s

proposed measure is asymmetric in the sense that the risk for the long and short positions in

the derivative are quantified by two different hedging strategies, unlike in Bertsimas et al.

(2001) where the single variance-optimal hedging strategy is considered.

The paper is structured as follows. Section 2.2 details and adapts the equal risk pricing

framework proposed in Marzban et al. (2020) and introduces the ε-completeness measure.

Section 2.3 describes the deep RL numerical solution to equal risk pricing. Section 2.4 presents

various numerical experiments including, among others, sensitivity and benchmarking analyses.

Section 2.5 concludes. All proofs are provided in Section 2.6.1.

2.2 Equal risk pricing framework

This section details the theoretical option pricing setup considered in the current study.

2.2.1 Market setup

Let (Ω,F ,P) be the probability space where P is the physical measure. The financial

market is in discrete time with a finite time horizon of T years and known fixed trading

dates T := {0 = t0 < t1 < . . . < tN = T}. Consider D + 1 liquid and tradable assets
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on the market with D risky assets and one risk-free asset. Risky assets can include for

instance stocks and options. Let {Sn}Nn=0 be the non-negative price process of the D risky

assets where Sn := [S
(1)
n , . . . , S

(D)
n ] are the prices at time tn ∈ T . Also, let {Bn}Nn=0 be

the price process of the risk-free asset with Bn := exp(rtn) where r ∈ R is the annualized

continuously compounded risk-free rate. For convenience, assume that all assets are not

paying any cash flows during the trading dates except possibly at time T . Define the

market filtration F := {Fn}Nn=0 where Fn := σ(Su|u = 0, . . . , n), n = 0, . . . , N . Moreover,

assume that F = FN . Throughout this paper, suppose that a European-type contingent

claim paying off Φ(SN , ZN) ≥ 0 at the maturity date T must be priced, where {Zn}Nn=0

is an F-adapted process with Zn being a K-dimensional random vector of relevant state

variables and Φ : [0,∞)D × RK → R. {Zn}Nn=0 can include drivers of risky asset dynamics

or information relevant to price the derivative Φ. For the rest of the paper, all assets and

contingent claims prices are assumed to be well-behaved and integrable enough. Specific

conditions are out-of-scope.

Our option pricing approach requires solving the two distinct problems of dynamic optimal

hedging, respectively one for a long and one for a short position in the contingent claim.

Let δ := {δn}Nn=0 be a trading strategy used by the hedger to minimize his risk exposure to

the derivative, where for n = 1, . . . , N , δn := [δ
(0)
n , δ

(1)
n , . . . , δ

(D)
n ] is a vector containing the

number of shares held in each asset during the period (tn−1, tn] in the hedging portfolio. δ
(0)
n

and δ
(1:D)
n := [δ

(1)
n , . . . , δ

(D)
n ] are respectively the positions in the risk-free asset and in the D

risky assets. Furthermore, the initial portfolio (at time 0 before the first trade) is strictly

invested in the risk-free asset. For the rest of the paper, assume the absence of market impact

from transactions, i.e. trading in the risky assets does not affect their prices. Here are some

well-known definitions in the mathematical finance literature (see for instance Lamberton

and Lapeyre (2011) for more details).

Definition 2.1. (Discounted gain process) Let {Gδ
n}Nn=0 be the discounted gain process

associated with the strategy δ where Gδ
n is the discounted gain at time tn prior to the rebalancing.
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Gδ
0 := 0 and

Gδ
n :=

n∑
k=1

δ
(1:D)
k

• (B−1
k Sk −B−1

k−1Sk−1), n = 1, 2, . . . , N, (2.1)

where • is the scalar product operator, i.e. for two n-dimensional vectors X and Y , X • Y :=∑n
i=1XiYi.

Definition 2.2. (Self-financing) The process δ is said to be a self-financing trading strategy

if δ is F-predictable, i.e. δ
(j)
0 ∈ F0 and δ

(j)
n+1 ∈ Fn for j = 0, . . . , D and for n = 0, . . . , N − 1,

and if

δ
(1:D)
n+1

• Sn + δ
(0)
n+1Bn = δ(1:D)

n
• Sn + δ(0)

n Bn, n = 0, 1, . . . , N − 1. (2.2)

A self-financing strategy δ implies the absence of cash infusions into or withdrawals from the

portfolio except possibly at time 0.

Definition 2.3. (Hedging portfolio value) Define {V δ
n }Nn=0 as the hedging portfolio value

process associated with the strategy δ, where the time-tn portfolio value is given by V δ
n :=

δ
(1:D)
n • Sn + δ

(0)
n Bn, n = 0, . . . , N .

Remark 2.1. It can be shown, see for instance Lamberton and Lapeyre (2011), that δ is

self-financing if and only if V δ
n = Bn(V0 +Gδ

n) for n = 0, 1, . . . , N.

Definition 2.4. (Admissible trading strategies) Let Π be the convex set of admissible trading

strategies which consists of all sufficiently well-behaved self-financing trading strategies.

2.2.2 Convex risk measures

In an incomplete market, perfect replication is impossible and the hedger must accept that

some risks cannot be fully hedged. As such, an optimal hedging strategy (also referred to as

a global hedging strategy) is defined as one that minimizes a criterion based on the closeness

between the hedging portfolio value and the payoff of the contingent claim at maturity (the

difference between two such quantities is referred to as the hedging error). Many different
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measures of distance can be used to represent the risk aversion of the hedger. In this paper,

convex risk measures as defined in Föllmer and Schied (2002) are considered. As discussed in

Marzban et al. (2020) and shown in the current section, the use of a convex risk measure to

characterize the risk aversion of the hedger enhances the tractability of the equal risk pricing

framework.

Definition 2.5. (Convex risk measure) Let X be a set of random variables representing

liabilities and X1, X2 ∈ X . As defined in Föllmer and Schied (2002), ρ : X → R is a convex

risk measure if it satisfies the following properties:

(i) Monotonicity: X1 ≤ X2 ⇒ ρ(X1) ≤ ρ(X2). A larger liability is riskier.

(ii) Translation invariance: For a ∈ R, ρ(X + a) = ρ(X) + a. This implies that the hedger

is indifferent between an empty portfolio and a portfolio with a liability X and a cash

amount of ρ(X):

ρ(X − ρ(X)) = ρ(X)− ρ(X) = 0.

(iii) Convexity: For 0 ≤ λ ≤ 1, ρ(λX1 +(1−λ)X2) ≤ λρ(X1)+(1−λ)ρ(X2). Diversification

does not increase risk.

2.2.3 Optimal hedging problem

For the rest of the paper, let ρ be the convex risk measure used to characterize the risk

aversion of the hedger for both the long and short positions in the usual contingent claim.

Also, assume without loss of generality (w.l.o.g.) that the position in the hedging portfolio is

long for both the long and short positions in the derivative.

Definition 2.6. (Long and short sided risk) Define ε(L)(V0) and ε(S)(V0) respectively as the

measured risk exposure of a long and short position in the derivative under the optimal hedge
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if the value of the initial hedging portfolio is V0 :

ε(L)(V0) := min
δ∈Π

ρ
(
−Φ(SN , ZN)−BN(V0 +Gδ

N)
)
, (2.3)

ε(S)(V0) := min
δ∈Π

ρ
(
Φ(SN , ZN)−BN(V0 +Gδ

N)
)
. (2.4)

It is worth highlighting that the measured risk exposure of the long (resp. short) position in

the derivative decreases (resp. increases) with the payoff value Φ. Furthermore, since the

long (resp. short) position is assumed to buy (sell) the option at time 0, the initial portfolio

value V0 of the long (resp. short) position will be negative (resp. positive).

Remark 2.2. An assumption implicit to Definition 2.6 is that the minimum in (2.3) or

(2.4) is indeed attained by some trading strategy, i.e. that the infimum is in fact a minimum.

Although the identification of sufficient conditions leading to the existence of an optimal policy

is left out-of-scope, such conditions were investigated in other literature works (see Section 7.2

for additional information).

We emphasize that the optimal risk exposures of the long and short position as defined in

(2.3) and (2.4) are reached through two distinct hedging strategies. Furthermore, due to the

translation invariance property of ρ, the long and short measured risk exposures have also

the following representation:

ε(L)(V0) = ε(L)(0)−BNV0, ε(S)(V0) = ε(S)(0)−BNV0. (2.5)

Definition 2.7. (Optimal hedging) Let δ(L) and δ(S) be respectively the optimal hedging

strategies for the long and short positions in the derivative:

δ(L) := arg min
δ∈Π

ρ
(
−Φ(SN , ZN)−BN(V0 +Gδ

N)
)
, (2.6)

δ(S) := arg min
δ∈Π

ρ
(
Φ(SN , ZN)−BN(V0 +Gδ

N)
)
. (2.7)

12



The translation invariance property of ρ also implies that the optimal hedging strategies δ(L)

and δ(S) do not depend on the initial portfolio value as shown below for δ(L):

δ(L) = arg min
δ∈Π

ρ
(
−Φ(SN , ZN)−BN(V0 +Gδ

N)
)

= arg min
δ∈Π

{
ρ
(
−Φ(SN , ZN)−BNG

δ
N

)
−BNV0

}
= arg min

δ∈Π
ρ
(
−Φ(SN , ZN)−BNG

δ
N

)
.

Similar steps show that:

δ(S) = arg min
δ∈Π

ρ
(
Φ(SN , ZN)−BNG

δ
N

)
.

2.2.4 Option pricing and ε-completeness measure

The current section outlines the equal risk pricing criterion to determine the price of a

derivative. It entails finding a price for which the risk exposure to both the long position and

short position hedgers are equal. One important concept in the valuation of contingent claims

is the absence of arbitrage. In this paper, the notions of super-replication and sub-replication

are used to define arbitrage-free pricing.

Definition 2.8 (Super-replication and sub-replication strategies). A super-replication strategy

for a contingent claim Φ is defined as a pair (v, δ) such that v ∈ R, and δ is an admissible

hedging strategy for which V δ
0 = v and V δ

N = BN(v + Gδ
N) ≥ Φ(SN , ZN) P-a.s. Super-

replication is a conservative approach to hedging which can be used by a seller of Φ to remove

all residual hedging risk. Let v̄ be the greatest lower bound of the set of initial portfolio values

for which a super-replication strategy exists:

v̄ := inf
{
v : ∃δ ∈ Π such that P

[
BN(v +Gδ

N) ≥ Φ(SN , ZN)
]

= 1
}
. (2.8)

v̄ is called the super-replication price of Φ and it represents an upper bound of the set of
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arbitrage-free prices for Φ. Similarly, a sub-replication strategy is a pair (v, δ) that completely

removes the hedging risk exposure associated with a long position in Φ, i.e. for which

BN(v + Gδ
N) ≤ Φ(SN , ZN) P-a.s. The least upper bound of the set of portfolio values such

that a sub-replication strategy exists is called the sub-replication price of Φ and is a lower

bound of the set of arbitrage-free prices for Φ:

v := sup
{
v : ∃δ ∈ Π such that P

[
BN(v +Gδ

N) ≤ Φ(SN , ZN)
]

= 1
}
. (2.9)

The following defines the concept of arbitrage-free pricing considered in this study.

Definition 2.9 (Arbitrage-free pricing). Assume that both super-replication and sub-replication

strategies for Φ exist. Then, the price of Φ is said to be arbitrage-free if it falls within the

interval [v, v̄] as defined in (2.8) and (2.9).

The problem of evaluating the boundaries of the arbitrage-free interval of prices, i.e. v and v̄,

is out-of-scope of the current paper. The reader is referred to El Karoui and Quenez (1995)

for a formulation of the latter problem as a stochastic control problem which can be solved

for instance with dynamic programming. The price of a contingent claim under the equal

risk pricing framework can now be defined.

Definition 2.10 (Equal risk price for European-type claims). The equal risk price C?
0 of the

contingent claim Φ is defined as the initial portfolio value such that the optimally hedged

measured risk exposure of both the long and short positions in the derivative are equal, i.e.

C?
0 := C0 such that:

ε(L)(−C0) = ε(S)(C0). (2.10)

Remark 2.3. Contrarily to Guo and Zhu (2017), in the current paper, the optimal hedging

strategy minimizes risk under the physical measure instead of under some risk-neutral measure.

Two main reasons led to this modification of the original approach found in Guo and Zhu (2017).
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First, under incomplete markets, the choice of the risk-neutral measure is arbitrary, whereas

the physical measure can be more objectively determined using econometrics techniques. Having

the price being determined under the physical measure removes the subjectivity associated with

the choice of the martingale measure. Secondly, under a risk-neutral measure Q, the price

is already characterized by the discounted expected payoff EQ
[
e−rTΦ(SN , ZN)

]
, which makes

interpretation of the risk-neutral equal risk price questionable.

Before introducing results showing that equal risk option prices are arbitrage-free, a technical

assumption on which the proofs rely is outlined.

Assumption 2.1. As in Xu (2006) and Marzban et al. (2020), assume that the risk

associated to hedging losses is bounded below across all admissible trading strategies, i.e.

min
δ∈Π

ρ(−BNG
δ
N) > −∞.

The next theorem provides a characterization of equal risk prices. It also indicates that equal

risk prices of contingent claims with a finite super-replication price are arbitrage-free. The

representation of C?
0 in (2.11) is analogous to results found in Marzban et al. (2020) who

considers a similar setup with convex risk measures. Although the arbitrage-free result is

also stated in Marzban et al. (2020), a formal proof was not given.

Theorem 2.1 (Absence of arbitrage). Assume that there exist a super-replication and sub-

replication strategy for Φ with a finite super-replication price. Assume also that if δ, δ̃ ∈ Π,

then −δ,−δ̃ ∈ Π and δ + δ̃ ∈ Π. Then, under Assumption 2.1, the equal risk price C?
0 from

Definition 2.10 exists, is unique, is arbitrage-free and can be expressed as

C?
0 =

ε(S)(0)− ε(L)(0)

2BN

. (2.11)

Remark 2.4. The representation of C?
0 in (2.11) is analogous to results found in Marzban

et al. (2020), but their work considers two different convex risk measures to assess the global

risk exposures of the long and short positions, respectively. In their Lemma 2.2, they obtain

necessary conditions guaranteeing that the equal risk price is arbitrage-free, but one of such
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conditions is the existence of what they refer to as a fair price interval. However, sufficient

conditions guaranteeing the existence of such an interval are not provided; therefore their

Lemma 2.2 is essentially a conditional result. Using the same risk measure for both the long

and short positions as in the current work allows obtaining an unconditional result as the fair

price interval is guaranteed to exist in that case, see the inequality ζ(L) ≤ ζ(S) in the proof of

Theorem 2.1 from the current paper. Showing this result is a novel contribution of the current

paper. Thus, the choice of considering identical risk measures for both the long and short

positions in the current work stems from theoretical considerations.

We now propose measures to quantify the residual risk faced by hedgers of the contingent

claim. Such measures are analogous to but more general than the one proposed in Bertsimas

et al. (2001) who study the case of variance-optimal hedging.

Definition 2.11 (ε market completeness measure). Define ε? as the level of residual risk

faced by the hedger of any of the short or long position in the contingent claim if its price is

the equal risk price and optimal hedging strategies are used for both positions:

ε? := ε(L)(−C?
0) = ε(S)(C?

0). (2.12)

ε? and ε?/C?
0 are referred to as respectively the measured residual risk exposure per derivative

contract and per dollar invested.

As shown below using (2.5) and (2.11), ε? is the average of the measured risk exposure of

both long and short optimally hedged positions in Φ assuming that the initial value of the
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portfolio is zero:

ε? = ε(L)(−C?
0)

= ε(L)(0) +BNC
?
0

= ε(L)(0) +BN

(
ε(S)(0)− ε(L)(0)

2BN

)
=
ε(L)(0) + ε(S)(0)

2
. (2.13)

Remark 2.5. Bertsimas et al. (2001) proposed instead the following measure of market

incompleteness:

ε? = min
V0,δ

E[(Φ(SN , ZN)−BN(V0 +Gδ
N))2],

where the expectation is taken with respect to the physical measure. Our measure ε? has

the advantage of characterizing the risk aversion of the hedger with a convex risk measure,

contrarily to Bertsimas et al. (2001) who are restricted to the use of a quadratic penalty.

Using the latter penalty entails that hedging gains are penalized during the optimization of the

hedging strategy, which is clearly undesirable. The ability to rely on convex measures in the

current scheme for risk quantification allows for an asymmetric treatment of hedging gains

and losses which is more consistent of actual objectives of the hedging agents.

As argued by Bertsimas et al. (2001), market incompleteness is often described in the literature

as a binary concept whereas in practice, it is much more natural to consider different degrees

of incompleteness implying different levels of residual hedging risk. The measure ε? allows

determining where is any contingent claim situated within the spectrum of incompleteness

and whether it is easily hedgeable or not. As discussed in Bertsimas et al. (2001), a single

metric such as ε? might not be sufficient for a complete depiction of the level of market

incompleteness associated with a contingent claim. For instance, it does not depict the entire

hedging error distribution, nor does it directly indicate which scenarios are the main drivers

of hedging residual risk. Nevertheless, ε? is still a good indication of the efficiency of the
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optimal hedging procedure for a given derivative. Moreover, sensitivity analyses over ε? with

respect to various model dynamics can be done to assess the impact of the different sources of

market incompleteness. Numerical experiments in Section 2.4 will attempt to provide some

insight on drivers of ε?.

2.3 Tractable solution to equal risk pricing

In the current section, a tractable solution is proposed to implement the equal risk pricing

framework. The approach uses the recent deep hedging algorithm of Buehler et al. (2019b)

to train two distinct neural networks which are used to approximate the optimal hedging

strategy respectively for the long and the short position in the derivative.

2.3.1 Feedforward neural network

For convenience, a very similar notation for neural networks as the one introduced by Buehler

et al. (2019b) is used (see Section 4 of their paper). The reader is referred to Goodfellow

et al. (2016) for a general description of neural networks.

Definition 2.12 (Feedforward neural network). Let X ∈ Rdin×1 be a feature vector of

dimensions din ∈ N and L, d1, . . . , dL−1, dout ∈ N with L ≥ 2. Define a feedforward neural

network (FFNN) as the mapping Fθ : Rdin → Rdout with trainable parameters θ:

Fθ(X) := AL ◦ FL−1 ◦ . . . ◦ F1, (2.14)

Fl := σ ◦ Al, l = 1, . . . , L− 1,

where ◦ denotes the function composition operator, and for any l = 1, . . . , L, the function Al

is defined through Al(Y ) := W (l)Y + b(l) with

• W (1) ∈ Rd1×din, b(1) ∈ Rd1×1 and Y ∈ Rdin×1 if l = 1,

• W (l) ∈ Rdl×dl−1, b(l) ∈ Rdl×1 and Y ∈ Rdl−1×1 if l = 2, . . . , L− 1 and L ≥ 3,

• W (L) ∈ Rdout×dL−1, b(L) ∈ Rdout×1 and Y ∈ RdL−1×1 if l = L.
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The activation function σ : R→ R is applied element-wise to outputs of the pre-activation

functions Al. Moreover,

θ := {W (1), . . . ,W (L), b(1), . . . , b(L)} (2.15)

is the set of trainable parameters of the FFNN.

The following definition of sets of FFNN will be used throughout the rest of the section to

define, for instance, the two neural networks used for hedging the long and short position in

the derivative, the tractable solution to the equal risk pricing framework and the optimization

procedure of neural networks.

Definition 2.13 (Sets of FFNN ). Let NN σ
∞,din,dout be the set of all FFNN mapping from

Rdin → Rdout as in Definition 2.12 with a fixed activation function σ and an arbitrary number

of layers and neurons per layer. Since a unique activation function is considered in the

numerical section, let NN∞,din,dout := NN σ
∞,din,dout. Moreover, for all M ∈ N and RM ∈ N

that depends on M , let ΘM,din,dout ⊆ RRM . Define NNM,din,dout as the set of neural networks

Fθ as in (2.14) with θ ∈ ΘM,din,dout:

NNM,din,dout := {Fθ|θ ∈ ΘM,din,dout}. (2.16)

The sequence of sets {NNM,din,dout}M∈N is assumed to have the following properties:

• For any M ∈ N: NNM,din,dout ⊂ NNM+1,din,dout where ⊂ denotes strict inclusion,

•
⋃
M∈NNNM,din,dout = NN∞,din,dout.

This definition of sets of FFNN introduced by Buehler et al. (2019b) is very convenient as

the sets {NNM,din,dout}N∈N can be used to describe two cases of interest in deep learning.

Here are two different possible definitions for NNM,din,dout .

(A) Let {L(M)}M∈N, {d(M)
1 }M∈N, {d(M)

2 }M∈N, . . . be non-decreasing integer sequences. Then,

NNM,din,dout is defined as the set of all FFNN mapping from Rdin → Rdout with a

19



fixed structure of L(M) layers and of d
(M)
1 , . . . , d

(M)

L(M)−1
, dout neurons per layer. This

case is useful for the problem of fitting the trainable parameters θ with a fixed set of

hyperparameters.

(B) Let NNM,din,dout be the set of all FFNN mapping from Rdin → Rdout for an arbitrary

number of layers and number of neurons per layer with at most M non-zero trainable

parameters. This case is useful to describe the complete optimization problem of neural

networks which include the selection of hyperparameters, often called hyperparameters

tuning.

Unless specified otherwise, one can assume w.l.o.g. either definition for {NNM,din,dout}M∈N.

2.3.2 Equal risk pricing with two neural networks

To formulate how two distinct neural networks can approximate arbitrarily well the optimal

hedging of the long and short position in a derivative, the following assumption is applied for

the rest of the paper.

Assumption 2.2. For each position (long and short) in the derivative, there exists a function

f : RD̃ → RD (distinct for the long and short position) such that at each rebalancing date,

the optimal hedge is of the form δ
(1:D)
n+1 = f(Sn, Vn, In, T − tn) where D̃ := D + 2 + dim(In)

with In being some random vector encompassing relevant necessary information to compute

the optimal hedging strategy, which depends on the market setup considered.

Note that Assumption 2.2 typically holds for low-dimension processes {In}Nn=0 when some

form of Markov dynamics common in the hedging literature is assumed. See, for example,

François et al. (2014) for the case of regime-switching models.

In what follows, L and S used both as subscripts and superscripts denote respectively the

long and short position hedges.

Definition 2.14 (Hedging with two neural networks). Let Xn := (Sn, Vn, In, T − tn) ∈ RD̃

be the feature vector for each trading time tn ∈ {t0, . . . , tN−1}. For some ML ∈ N, let
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FLθ ∈ NNML,D̃,D
be a FFNN. Given Xn as an input, FLθ outputs a D-dimensional vector

of the number of shares of each of the D risky assets held in the hedging portfolio of the

long position during the period (tn, tn+1], i.e. δ
(1:D)
n+1 = FLθ (Xn). Similarly, for some MS ∈ N,

F Sθ ∈ NNMS ,D̃,D
is a distinct FFNN which computes the position in the D risky assets to

hedge the short position in the option at each time step. These two FFNN are referred to as

the long-NN and short-NN .

Remark 2.6. In the current paper’s approach, the two neural networks are trained separately

to minimize different cost functions. As such, FLθ and F Sθ will possibly have a different

structure, e.g. different number of layers and number of neurons per layer, and different

values of trainable parameters.

The problem of evaluating the measured risk exposure of the long and short positions under

optimal hedging can now be formulated as a classical deep learning optimization problem.

Since the input and output of FLθ and F Sθ are always respectively of dimensions D̃ and D, let

ΘML := ΘML,D̃,D
and ΘMS := ΘMS,D̃,D

be the sets of trainable parameters values as in (2.16)

for respectively the long-NN and short-NN .

Definition 2.15 (Long and short sided risk with two neural networks). For ML,MS ∈ N,

define ε(ML)(V0) and ε(MS)(V0) as the measured risk exposure of the long and short position in

the derivative if FLθ and F Sθ are used to compute the hedging strategies and the initial hedging

portfolio value is V0:

ε(ML)(V0) := min
θ∈ΘML

ρ
(
−Φ(SN , ZN)−BN(V0 +Gδ(L,θ)

N )
)
, (2.17)

ε(MS)(V0) := min
θ∈ΘMS

ρ
(

Φ(SN , ZN)−BN(V0 +Gδ(S,θ)

N )
)
, (2.18)

where δ(L,θ) and δ(S,θ) in (2.17) and (2.18) are to be understood respectively as the trading

strategies obtained through FLθ and F Sθ .

Remark 2.7. Suppose Assumption 2.2 is satisfied. Using the universal function approxima-

tion theorem of Hornik (1991) which essentially states that a FFNN approximates multivariate
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functions arbitrarily well, Buehler et al. (2019b) show that for any well-behaved and integrable

enough asset prices dynamics and contingent claims (see Proposition 4.3 of their paper1):

lim
MS→∞

ε(MS)(0) = ε(S)(0), lim
ML→∞

ε(ML)(0) = ε(L)(0). (2.19)

Thus, this result shows that for both the long and short positions, there exists a large FFNN

which can approximate arbitrarily well the optimal hedging strategy.

The equal risk pricing approach and the measure of market incompleteness described in

Section 2.2 can now be restated with the use of the long-NN and short-NN . Let C
(?,NN )
0

and ε(?,NN ) be respectively the equal risk price as in Definition 2.10 and the measure of

market incompleteness as in Definition 2.11 if the risk exposure of the long and short position

in Φ are measured with ε(ML) and ε(MS). Similar steps as in the proof of Theorem 2.1 and

(2.13) leads to the following representation for C
(?,NN )
0 and ε(?,NN ):

C
(?,NN )
0 =

ε(MS)(0)− ε(ML)(0)

2BN

, ε(?,NN ) =
ε(ML)(0) + ε(MS)(0)

2
. (2.20)

Moreover, a direct consequence of Remark 2.7 applied to C
(?,NN )
0 and ε(?,NN ) as stated in

(2.20) is that the current paper’s approach can approximate arbitrarily well the true equal

risk price and measure of incompleteness, i.e.:

lim
MS ,ML→∞

C
(?,NN )
0 = C?

0 , lim
MS ,ML→∞

ε(?,NN ) = ε?.

1 Buehler et al. (2019b) consider a more general market with a filtration generated by a process {Ik}
where Ik ∈ Rd contains any new market information at time tk. They use a distinct neural network at each
trading date which can be a function of (I0, . . . , Ik, δk) at time tk. From remarks 5 and 6 of Buehler et al.
(2019b), the convergence result (2.19) holds under Assumption 2.2 by using instead a single FFNN for both
the long and short position for all time steps as in Definition 2.14 of the current paper.
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2.3.3 Optimization of feedforward neural networks

The training procedure of the long-NN and short-NN consists in searching for their optimal

parameters θ(L) ∈ ΘML and θ(S) ∈ ΘMS to minimize the measured risk exposures as in (2.17)

and (2.18). The approach utilized in this paper is based on the deep hedging algorithm of

Buehler et al. (2019b). The training procedure of the short-NN with (minibatch) stochastic

gradient descent (SGD), a very popular algorithm in deep learning, is presented. It is

straightforward to adapt the latter to the long-NN with a simple modification to the cost

function (2.21) that follows. Let J(θ) be the cost function to be minimized for the short

derivative position hedge2:

J(θ) := ρ
(

Φ(SN , ZN)−BNG
δ(S,θ)

N

)
, θ ∈ ΘMS . (2.21)

Denote θ0 ∈ ΘMS as the initial3 parameter values of F Sθ . The classical SGD algorithm consists

in updating iteratively the trainable parameters as follows:

θj+1 = θj − ηj∇θJ(θj), (2.22)

where∇θ denotes the gradient operator with respect to θ and ηj is a small positive deterministic

value which is typically progressively reduced through iterations, i.e. as j increases. Recall

that in the current framework, a synthetic market is considered where paths of the hedging

instruments can be simulated. Let Nbatch ∈ N be the size of a simulated minibatch Bj :=

2Recall from (2.18) that the relation between J(θ) and the measured risk exposure of the short position is

ε(MS)(0) = min
θ∈ΘMS

J(θ).

3 In this paper, the initialization of θ is always done with the Glorot uniform initialization from Glorot
and Bengio (2010).
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{πi,j}Nbatch
i=1 with πi,j being the ith hedging error if the trainable parameters are θ = θj:

πi,j := Φ(SN,i, ZN,i)−BNG
δ(S,θj)

N,i . (2.23)

Moreover, let ρ̂(Bj) be the empirical estimator of ρ(πi,j). The gradient of the cost function

∇θJ(θj) is estimated with ∇θρ̂(Bj) evaluated at θ = θj.

In the numerical section, the convex risk measure is assumed to be the Conditional Value-

at-Risk (CVaR) as defined in Rockafellar and Uryasev (2002). For α ∈ (0, 1), such a risk

measure can be formally defined as

VaRα(X) := min
x
{x|P(X ≤ x) ≥ α} , CVaRα(X) :=

1

1− α

∫ 1

α

VaRγ(X)dγ

where VaRα(X) is the Value-at-Risk (VaR) of confidence level α. For an absolutely continuous

integrable random variable4, the CVaR has the following representation

CVaRα(X) := E[X|X ≥ VaRα(X)], α ∈ (0, 1). (2.24)

The CVaR has been extensively used in the risk management literature as it considers tail

risk by averaging all losses larger than the VaR. For a simulated minibatch of hedging errors

Bj, let {π[i],j}Nbatch
i=1 be the corresponding ordered sequence and Ñ := dαNbatche where dxe

is the ceiling function (i.e. the smallest integer greater or equal to x). Following the work

of Hong et al. (2014) (see Section 2 of their paper), let VaR
∧

α(Bj) and CVaR
∧

α(Bj) be the

estimators of the VaR and CVaR of the short hedging error at confidence level α:

VaR
∧

α(Bj) := π[Ñ ],j,

4 In Section 2.4, the only dynamics considered for the risky assets produce integrable and absolutely
continuous hedging errors.
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CVaR
∧

α(Bj) := VaR
∧

α(Bj) +
1

(1− α)Nbatch

Nbatch∑
i=1

max(πi,j − VaR
∧

α(Bj), 0).

Note that CVaR
∧

α(Bj) depends of every trainable parameters in θj as the πi,j are functions

of the trading strategy produced by the output of the short-NN . Furthermore, since the

gain process and the trading strategy are linearly dependent, CVaR
∧

α(Bj) is also linearly

dependent of the trading strategy. The latter implies that ∇θCVaR
∧

α(Bj) can be computed

exactly as the gradient of the output of a FFNN with respect to the trainable parameters

can be computed exactly (see e.g. Goodfellow et al. (2016)). Moreover, a very popular

algorithm in deep learning to compute the gradient of a cost function with respect to the

parameters is backpropagation (Rumelhart et al., 1986), often called backprop. Backprop

leverages efficiently the structure of neural networks and the chain rule of calculus to obtain

such gradient. In practice, deep learning libraries such as Tensorflow (Abadi et al., 2016)

are often used to implement backprop. Moreover, sophisticated SGD algorithms such as

Adam (Kingma and Ba, 2014) which dynamically adapt the ηj in (2.22) over time have been

shown to improve the training of neural networks. For all of the numerical experiments in

Section 2.4, Tensorflow and Adam were used.

Remark 2.8. It can be shown that CVaR
∧

α(Bj) is biased in finite sample size, but is a

consistent and asymptotically normal estimator of the CVaR (see e.g. Theorem 2 of Trindade

et al. (2007)). The specific impacts of this bias on the optimization procedure presented in this

paper are out-of-scope. Multiple considerations are typically used to determine the minibatch

size. It is often treated as an additional hyperparameter (see e.g. Chapter 8.1.3 of Goodfellow

et al. (2016) for additional details). Numerical results presented in Section 2.4 of the current

paper are robust to different minibatch sizes, i.e. no significant difference was observed under

different minibatch sizes.

Remark 2.9. As mentioned in Remark 2.4, identical risk measures for both the long and

short positions are considered in the current work. However, had different risk measures been

considered for the long and short positions, as in Marzban et al. (2020) for instance, the
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numerical algorithm described in the current section would have been essentially identical.

Indeed, the training of the short-NN and long-NN is always done separately even with

a unique convex risk measure for both positions, as the two neural networks minimize two

different cost functions. Thus, one could consider two different convex risk measures in the

hedging problem with no modifications to the numerical algorithm.

2.4 Numerical results

This section illustrates the implementation of the equal risk pricing framework under different

market setups. Our analysis starts off in Section 2.4.2 with a sensitivity analyses of equal

risk prices and residual hedging risk in relation with the choice of convex risk measure.

The assessment of the impact of different empirical properties of assets returns on the

equal risk pricing framework is performed in Section 2.4.3. A comparison with benchmarks

consisting in risk-neutral expected prices under commonly used EMMs is also presented.

Section 2.4.4 shows that the current paper’s approach is very general and is able to price

exotic derivatives and assess their associated residual hedging risk. The setup for the latter

numerical experiments is detailed in Section 2.4.1.

2.4.1 Numerical procedure

A single risky asset (i.e. D = 1) of initial price S0 = 100 is considered. It can be assumed for

convenience to be a non-dividend paying stock.5 The annualized continuous risk-free rate is

r = 0.02. Daily rebalancing with 260 business days per year is applied, i.e. ti − ti−1 = 1/260

for i = 1, . . . , N . The contingent claim to be priced is a vanilla European put option on the

risky asset with maturity T = 60/260. Different levels of moneyness are considered: K = 90

for OTM, K = 100 for at-the-money (ATM) and K = 110 for in-the-money (ITM). The

convex risk measure used by the hedger is assumed to be the CVaR risk measure.

5 The case of considering a stock with dividend payments is a trivial extension. Indeed, the numerical
algorithm of Section 2.3 would have been essentially identical with the incorporation of dividend payments
through the modifications of the dynamics of each model for the underlying stock prices and by modifying
gain processes accordingly.
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2.4.1.1 Regime-switching model

For n = 1, . . . , N , the daily log-returns yn := log(Sn/Sn−1) are assumed, unless stated

otherwise, to follow a Gaussian regime-switching (RS) model. RS models have the ability

to reproduce broadly accepted stylized facts of asset returns such as heteroskedasticity,

autocorrelation in absolute returns, leverage effect and fat tails, see, for instance Ang and

Timmermann (2012). Under RS models, log-returns depend on an unobservable discrete-time

process. Let h = {hn}Nn=0 be a finite state Markov chain taking values in {1, . . . , H} for a

positive integer H, where hn is the regime or state of the market during the period [tn, tn+1).

Let {γi,j}H,Hi=1,j=1 be the homogeneous transition probabilities of the Markov chain, where for

n = 0, . . . , N − 1 :

P(hn+1 = j|Fn, hn, . . . , h0) = γhn,j, j = 1, . . . , H, (2.25)

with the distribution of h0 assumed to be the stationary distribution of the Markov chain.

Let ∆ := 1/260. The daily log-returns are assumed to have the following dynamics:

yn+1 = µhn∆ + σhn
√

∆εn+1, n = 0, . . . , N − 1, (2.26)

where {εn}Nn=1 are independent standard normal random variables and {µi, σi}Hi=1 are the

yearly model parameters with µi ∈ R and σi > 0. Following the work of Godin et al. (2019),

define ξ := {ξn}Nn=0 as the predictive probability process with ξn := [ξn,1, . . . , ξn,H ] and ξn,j as

the probability that the Markov chain is in the jth regime during [tn, tn+1) conditional on the

investor’s filtration, i.e.:

ξn,j := P(hn = j|Fn), j = 1, . . . , H. (2.27)

François et al. (2014) show that the optimal hedging portfolio composition at time tn is

strictly a function of {Sn, Vn, ξn}. Thus, in Assumption 2.2, the feature vector considered
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for both the long-NN and short-NN is Xn = [Sn, Vn, ξn, T − tn]. François et al. (2014) also

provide a recursion to compute the predictive probabilities processes ξ. For k = 1, . . . , H,

define the function φk as the Gaussian pdf with mean µk and standard deviation σk:

φk(x) :=
1

σk
√

2π
exp

(
−(x− µk)2

2σ2
k

)
.

Setting ξ0 as the stationary distribution of the Markov chain, the ξn,i can be recursively

computed for n = 1, . . . , N as follows:

ξn,i =

∑H
j=1 γj,iφj(yn)ξn−1,j∑H
j=1 φj(yn)ξn−1,j

, i = 1, . . . , H.

In Section 2.4.3, different dynamics for the underlying will be considered. Each model is

estimated with maximum likelihood on the same time series of daily log-returns on the

S&P 500 price index for the period 1986-12-31 to 2010-04-01 (5863 observations). Resulting

parameters are in Section 2.6.3.

2.4.1.2 Neural network structure

The training of the long-NN and short-NN is done as described in Section 2.3.3 with

100 epochs6, a minibatch size of 1,000 on a training set (in-sample) of 400,000 independent

simulated paths and a learning rate of 0.0005 with the Adam algorithm. Numerical results

presented are obtained from a test set (out-of-sample) of 100,000 independent paths. The

structure of every neural network is 3 layers with 56 neurons per layer and the activation

function is the rectified linear unit (ReLU) where ReLU : R→ [0,∞) is defined as ReLU(x) :=

max(0, x).

6 An epoch is defined as one complete iteration of SGD over the training set. For a training set of 400,000
paths and a batch size of 1,000, one epoch is equivalent to 400 iterations of SGD.
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2.4.2 Sensitivity analyses

In this section, we perform sensitivity analyses of equal risk prices and residual hedging

risk with respect to the confidence level of the CVaR. Three different confidence levels are

considered: CVaRα at levels 0.90, 0.95 and 0.99. Optimizing risk exposure using a higher level

α corresponds to agents with a higher risk aversion as the latter puts more relative weight

on losses of larger magnitude. Thus, the choice of the confidence level is motivated by the

objective of assessing the impact of the level of risk aversion of hedging agents on equal risk

pricing. Table 2.1 presents the equal risk option prices and residual hedging risk exposures

under the three confidence levels. Our numerical results show that under the equal risk

Table 2.1: Sensitivity analysis of equal risk prices C
(?,NN )
0 and residual hedging risk ε(?,NN )

for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 60/260.

C
(?,NN )
0 ε(?,NN ) ε(?,NN )/C

(?,NN )
0

Moneyness OTM ATM ITM OTM ATM ITM OTM ATM ITM

CVaR0.90 1.40 4.19 11.14 1.36 2.61 1.68 0.97 0.62 0.15

CVaR0.95 32% 4% 2% 35% 11% 14% 2% 7% 12%

CVaR0.99 91% 42% 14% 99% 79% 98% 4% 26% 74%

Notes: These results are computed based on 100,000 independent paths generated from the
regime-switching model under P (see Section 2.4.1.1 for model definition and Section 2.6.3 for
model parameters). The training of neural networks is done as described in Section 2.4.1.2.
Values for the CVaR0.95 and CVaR0.99 risk measures are expressed relative to CVaR0.90 (%
increase).

pricing framework, an increase in the risk aversion of hedging agents leads to increased put

option prices. Indeed, under the use of the CVaR0.99 risk measure, option prices significantly

increase across all moneynesses with relative increases of respectively 91%, 42% and 14% for

OTM, ATM and ITM contracts with respect to prices obtained with the CVaR0.90. By using

the CVaR0.95 instead of CVaR0.90, only OTM equal risk prices are significantly impacted

with an increase of 32%, while for ATM and ITM, the increase seems marginal. The positive

association between put option prices and the confidence level of hedgers can be explained by

the fact that a put option payoff is bounded below by zero. Therefore, the hedging error of
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the short position has a much heavier right tail than for the long position. Thus, an increase

in α often implies a larger increase for the risk exposure of the short position than for the

long position. This results in a higher equal risk price to compensate the heavier increase in

risk exposure of the short position.

As expected, the risk exposure per option contract (ε(?,NN )) also increases with the level

of risk aversion across all moneynesses. This is a direct consequence of (2.13) and the

monotonicity property of CVaRα with respect to α. Also, the risk exposure per dollar

invested (ε(?,NN )/C
(?,NN )
0 ) for ITM and ATM contracts exhibits high sensitivity to the

confidence level α, while for OTM the value of α seems much less important. This observation

for OTM contracts is due to a similar relative increase in prices and residual risk exposures

obtained when α is increased. From these results, we can conclude that in practice, the choice

of the confidence level (or more generally of the risk measure itself) needs to be carefully

analyzed as it can have a material impact on equal risk option prices.

2.4.3 Model induced incompleteness

In this section, we consider four different dynamics for the underlying: the BSM, a GARCH

process, a regime-switching process and a jump-diffusion. This is motivated by the objective

of assessing the impact of different empirical properties of asset returns on the equal risk

pricing framework. Indeed, Monte Carlo simulations from these models enable quantifying the

impact of time-varying volatility, regime risk and jump risk on equal risk prices and residual

hedging risk. Moreover, risk-neutral expected prices are used as benchmarks to equal risk

prices under common EMMs found in the literature. The physical dynamics of each model is

described below and the associated risk-neutral dynamics are provided in Section 2.6.2.
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2.4.3.1 Discrete BSM

Under the discrete Black-Scholes model, log-returns are assumed to be i.i.d. normal random

variables with daily mean and variance of respectively (µ− σ2

2
)∆ and σ2∆:

yn =

(
µ− σ2

2

)
∆ + σ

√
∆εn, n = 1, . . . , N, (2.28)

where µ ∈ R and σ > 0 are the yearly model parameters, and {εn}Nn=1 are independent

standard normal random variables. The feature vector of the neural network is Xn =

[Sn, Vn, T − tn].

2.4.3.2 Discrete Merton jump-diffusion (MJD) model

The jump-diffusion model of Merton (1976) generalizes the BSM by incorporating random

jumps within paths. Let {εn}Nn=1 be independent standard normal random variables, {Nn}Nn=0

be values of a homogeneous Poisson process of intensity λ at t0, . . . , tN and {χj}∞j=1 be i.i.d.

normal random variables of mean γ ∈ R and variance ϑ2. {Nn}Nn=0, {εn}Nn=1 and {χj}∞j=1 are

assumed independent. For n = 1, . . . , N :

yn =

(
α− λ

(
eγ+ϑ2/2 − 1

)
− σ2

2

)
∆ + σ

√
∆εn +

Nn∑
j=Nn−1+1

χ
j, (2.29)

where {α, γ, ϑ, λ, σ} are the model parameters with {α, λ, σ} being on a yearly scale, α ∈ R

and σ > 0. The feature vector of the neural network is Xn = [Sn, Vn, T − tn].

2.4.3.3 GARCH model

In constrast to the BSM or MJD model, GARCH models allow for the volatility of asset

returns to be time-varying. The GJR-GARCH(1,1) model of Glosten et al. (1993) assumes

that the conditional variance of log-returns is stochastic and captures important features of
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asset returns such as the leverage effect and volatility clustering. For n = 1, . . . , N :

yn = µ+ σnεn, (2.30)

σ2
n+1 = ω + ασ2

n(|εn| − γεn)2 + βσ2
n,

where the model parameters {ω, α, β} are positive real values, µ ∈ R, γ ∈ R and {εn}Nn=1 is

a sequence of independent standard normal random variables. Given the initial value σ2
1,

{σ2
n}Nn=1 is predictable with respect to F. A common assumption which is used in this paper

is to set σ2
1 as the stationary variance: σ2

1 = ω
1−α(1+γ2)−β . The feature vector of the neural

network is Xn = [Sn, Vn, σn+1, T − tn].

2.4.3.4 Results

Table 2.2 presents the equal risk prices and residual hedging risk exposures for the four

dynamics considered based on the CVaR0.95 risk measure. Values observed for C
(?,NN )
0

Table 2.2: Equal risk prices C
(?,NN )
0 and residual hedging risk ε(?,NN ) for OTM (K = 90),

ATM (K = 100) and ITM (K = 110) put options of maturity T = 60/260 under different

dynamics.

C
(?,NN )
0 ε(?,NN ) ε(?,NN )/C

(?,NN )
0

Moneyness OTM ATM ITM OTM ATM ITM OTM ATM ITM

BSM 0.58 3.53 10.39 0.35 0.74 0.59 0.60 0.21 0.06

MJD 5% −2% 0% 50% 62% 41% 42% 65% 41%

GJR-GARCH 68% −4% −1% 165% 115% 28% 57% 124% 30%

Regime-switching 217% 23% 9% 428% 291% 223% 67% 218% 196%

Notes: These results are computed based on 100,000 independent paths generated from each
of the four different models for the underlying under P (see Section 2.4.1.1 and Section 2.4.3
for model definitions and Section 2.6.3 for model parameters). For each model, the training
of neural networks is done as described in Section 2.4.1.2. The confidence level of the CVaR
risk measure is α = 0.95. Results are expressed relative to the BSM (% increase).

indicate that the sensitivity of equal risk prices with respect to the dynamics of the underlying

highly depends on the moneyness. Indeed, OTM prices are significantly impacted by the
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choice of dynamics; choosing the GJR-GARCH or RS models instead of the BSM leads to

a price increase respectively of 68% or 217%. For ATM and ITM contracts, only the RS

model seems to materially alter equal risk prices in comparison to BSM prices with respective

increases of 23% and 9%. Moreover, the numerical results confirm that the increase in hedging

residual risk generated by time-varying volatility, regime risk and jump risk is far from being

marginal and is highly sensitive to the moneyness of the option. Values obtained for the

metric ε(?,NN )/C
(?,NN )
0 show that regime risk has the most impact with an increase of the risk

exposure per dollar invested of 67%, 218% and 196% respectively for the OTM, ATM and ITM

contracts in comparison to the BSM. When compared to jump risk, time-varying volatility

seems to have a higher impact on residual hedging risk for OTM and ATM options, while

jump risk has a higher impact on ITM contracts. It is interesting to note that Augustyniak

et al. (2017) evaluate the impact of the dynamics of the underlying on the risk exposure

and on the price of contingent claims under a quadratic penalty. Their numerical results

show that the risk exposure is highly sensitive to the dynamics, but not the price. This is in

contrast to numerical results of the current study which show that under a non-quadratic

penalty, prices can also vary significantly with the dynamics of the underlying.

Table 2.3: Equal risk and risk-neutral prices for OTM (K = 90), ATM (K = 100) and ITM

(K = 110) put options of maturity T = 60/260.

Risk-neutral prices Equal risk prices

Moneyness OTM ATM ITM OTM ATM ITM

BSM 0.53 3.51 10.36 10% 1% 0%

MJD 0.46 3.32 10.24 34% 4% 2%

GJR-GARCH 0.57 2.98 9.84 71% 14% 4%

Regime-switching 0.56 3.10 10.33 231% 40% 10%

Notes: Results for equal risk prices are computed based on 100,000 independent paths
generated from each of the four different models for the underlying under P (see Section 2.4.1.1
and Section 2.4.3 for model definitions and Section 2.6.3 for model parameters). For each
model, the training of neural networks is done as described in Section 2.4.1.2. The confidence
level of the CVaR risk measure is α = 0.95. Results for risk-neutral prices are computed
under the associated risk-neutral dynamics described in Section 2.6.2. Equal risk prices are
expressed relative to risk-neutral prices (% increase).
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Table 2.3 compares equal risk prices to risk-neutral prices for each dynamics. These results

show that except for a few cases, equal risk prices are significantly higher than risk-neutral

prices across all dynamics and moneynesses. This is especially true for OTM contracts: the

lowest and highest relative price increases are 10% and 231% when going from the BSM to

the regime-switching model. This significant increase in option prices can be attributed to

the different treatment of market scenarios by each approach. Expected risk-neutral prices

consider averages of all scenarios, while equal risk prices with the CVaR risk measure coupled

with a high confidence level α only consider extreme scenarios.

The latter observation has important implications for financial participants in the option

market. Indeed, by using the risk-neutral valuation approach instead of the equal risk pricing

framework, a risk averse participant acting as a provider of options, e.g. a market maker,

might significantly underprice OTM put options. From the perspective of the equal risk

pricing framework, risk-neutral prices imply more residual risk for the short position of OTM

put contracts than for the long position. It is important to note that the risk-neutral dynamics

considered in this paper assume that jump and regime risk are not priced in the market.

Additional analyses comparing equal risk prices to risk-neutral prices under alternative EMMs

embedding other forms of risk premia (see for instance Bates (1996) for jump risk premium

and Godin et al. (2019) for regime risk premium) may prove worthwhile in further work.

2.4.4 Exotic contingent claims

In this section, two exotic contingent claims are considered for the equal risk pricing framework,

namely an Asian average price put and lookback put with fixed strike. For Zn = 1
n+1

∑n
i=0 Si,

n = 0, . . . , N , the Asian option’s payoff is:

Φ(SN , ZN) = max(0, K − ZN).
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For Zn = min
i=0,...,n

Si, n = 0, . . . , N , the lookback option’s payoff is:

Φ(SN , ZN) = max(0, K − ZN).

The same assumptions as in Section 2.4.3 are imposed, and only the regime-switching model

is considered. The maturity is still T = 60/260. The feature vector for both exotic contingent

claims is Xn = [Sn, Zn, Vn, ξn, T − tn]. Table 2.4 presents the prices and residual hedging

risk for the three contingent claims (including the vanilla put option studied in previous

sections) and Table 2.5 compares the equal risk prices to risk-neutral prices. From Table 2.4,

we observe that the residual hedging risk exposure (ε(?,NN )) is the highest for the lookback

option, followed by the vanilla put and then the Asian option. Although this was expected,

our approach has the benefit of quantifying how risk varies across different option categories.

Table 2.5 shows that equal risk prices under the RS model are significantly higher than

risk-neutral prices across all contingent claims considered. The difference is most important

for OTM contracts with respective increases of 231%, 465% and 220% for the put, Asian

and lookback options. The finding that equal risk prices tend to be higher than risk-neutral

prices is therefore shared by multiple option categories.

Table 2.4: Equal risk prices C
(?,NN )
0 and residual hedging risk ε(?,NN ) for OTM (K = 90),

ATM (K = 100) and ITM (K = 110) vanilla put, Asian average price put and lookback put

options of maturity T = 60/260.

C
(?,NN )
0 ε(?,NN ) ε(?,NN )/C

(?,NN )
0

Moneyness OTM ATM ITM OTM ATM ITM OTM ATM ITM

Put 1.84 4.34 11.33 1.84 2.90 1.91 1.00 0.67 0.17

Asian −66% −36% −7% −65% −32% −55% 1% 6% −52%

Lookback 64% 80% 64% 64% 70% 205% 0% −5% 86%

Notes: These results are computed based on 100,000 independent paths generated from the
regime-switching model under P (see Section 2.4.1.1 for model definition and Section 2.6.3 for
model parameters). The training of neural networks is done as described in Section 2.4.1.2.
The confidence level of the CVaR risk measure is α = 0.95. Results are expressed relative to
the put option (% increase).
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Table 2.5: Equal risk and risk-neutral prices for OTM (K = 90), ATM (K = 100) and

ITM (K = 110) vanilla put, Asian average price put and lookback put options of maturity

T = 60/260.

Risk-neutral prices Equal risk prices

Moneyness OTM ATM ITM OTM ATM ITM

Put 0.56 3.10 10.33 231% 40% 10%

Asian 0.11 1.77 9.91 465% 56% 6%

Lookback 0.94 5.61 15.57 220% 39% 19%

Notes: Results for equal risk prices are computed with 100,000 independent paths generated
from the regime-switching model under P (see Section 2.4.1.1 for model definition and
Section 2.6.3 for model parameters). The training of neural networks is done as described
in Section 2.4.1.2. The confidence level of the CVaR risk measure is α = 0.95. Results for
risk-neutral prices are computed under the associated risk-neutral dynamics described in
Section 2.6.2. Equal risk prices are expressed relative to risk-neutral prices (% increase).

2.5 Conclusion

This paper presents a deep reinforcement learning approach to price and hedge financial

derivatives under the equal risk pricing framework. This framework introduced by Guo and

Zhu (2017) sets option prices such that the optimally hedged residual risk exposure of the

long and short positions in the contingent claim is equal. Adaptations to the latter scheme

are used as proposed in Marzban et al. (2020) by considering convex risk measures under the

physical measure to evaluate residual risk exposures. A rigorous proof that equal risk prices

under these modifications are arbitrage-free in general market settings which can include an

arbitrary number of hedging instruments is given in the current paper.

Moreover, a universal and tractable solution based on the deep hedging algorithm of Buehler

et al. (2019b) to implement the equal risk pricing framework under very general conditions is

described. Results presented in this paper, which rely on Buehler et al. (2019b), demonstrate

that our methodological approach to equal risk pricing can approximate arbitrarily well the

true equal risk price. This study also introduces asymmetric ε-completeness measures to

quantify the level of unhedgeable risk associated with a position in a contingent claim. These
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measures complement the work of Bertsimas et al. (2001) who proposed market incompleteness

measures under the quadratic penalty, while ours has the advantage of characterizing the risk

aversion of the hedger with any convex risk measure. Additionally, the measures introduced

in this paper are asymmetric in the sense that the risk for the long and short positions in the

derivative are quantified by two different hedging strategies, unlike in Bertsimas et al. (2001)

where the single variance-optimal hedging strategy is considered.

Furthermore, Monte Carlo simulations were performed to study the equal risk pricing

framework under a large variety of market dynamics. The behavior of equal risk pricing

is analyzed through the choice of the underlying asset model and of the confidence level

associated with the risk measure, and is benchmarked against expected risk-neutral pricing.

The conduction of these numerical experiments crucially relied on the deep RL algorithm

presented in this study. Numerical results showed that except for a few cases, equal risk

prices are significantly higher than risk-neutral prices across all dynamics and moneynesses

considered. This finding is shown to be most important for OTM contracts and shared by

multiple option categories. Furthermore, for a fixed model for the underlying, sensitivity

analyzes show that the choice of confidence level under the CVaR risk measure has a material

impact on equal risk prices. Numerical experiments also provided insight on drivers of the

ε-completeness measures introduced in the current paper. The numerical study confirms

that for vanilla put options, the increase in hedging residual risk generated by time-varying

volatility, regime risk and jump risk is far from being marginal and is highly sensitive to the

moneyness of the option.

Future research on equal risk pricing could prove worthwhile. First, a question which remains

is whether the consistence of equal risk pricing approach with risk-neutral valuations can be

made explicit. Moreover, additional analyses comparing equal risk prices to risk-neutral prices

under alternative EMMs embedding other forms of risk premia may also prove worthwhile.

Furthermore, a numerical study of the equal risk pricing framework under other convex

measures than the CVaR could be of interest. We note that Marzban et al. (2020) provide
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numerical results of equal risk pricing under the worst-case risk measure in the context of

robust optimization. Lastly, the financial market could be extended by including different

market frictions such as transaction costs and trading constraints. The latter inclusions would

require examining if equal risk prices are guaranteed to remain arbitrage-free in this context.

2.6 Appendix

2.6.1 Proof of Theorem 2.1

Using the representation (2.5) of long and short measured risk exposures:

ε(L)(−C?
0) = ε(S)(C?

0)⇐⇒ ε(L)(0) +BNC
?
0 = ε(S)(0)−BNC

?
0 ⇐⇒ C?

0 =
ε(S)(0)− ε(L)(0)

2BN

.

(2.31)

This shows that C?
0 exists, is unique and is given by (2.11). Next, we show that the equal risk

price is arbitrage-free. Some parts of the proof are inspired by the work of Xu (2006). Let (v̄, δ̄)

be a super-replication strategy of Φ, see Definition 2.8, where v̄ is the super-replication price

as in (2.8) and let δ̃ := arg min
δ∈Π

ρ
(
−BNG

δ
N

)
. Note7 that for any δ̆, δ́ ∈ Π, Gδ̆+δ́

n = Gδ̆
n +Gδ́

n.

Using the translation invariance and monotonicity properties of ρ:

ε(S)(0) = min
δ∈Π

ρ
(
Φ(SN , ZN)−BNG

δ
N

)
≤ ρ

(
Φ(SN , ZN)−BN(Gδ̄+δ̃

N )
)

= ρ
(

Φ(SN , ZN)−BN(Gδ̄
N +Gδ̃

N)
)

= ρ
(

Φ(SN , ZN)−BN(v̄ +Gδ̄
N)−BNG

δ̃
N

)
+BN v̄

≤ ρ(−BNG
δ̃
N) +BN v̄, (2.32)

7 Gδ̆+δ́0 = Gδ̆0 +Gδ́0 = 0 by definition and for n = 1, . . . , N :

Gδ̆+δ́n =

n∑
k=1

(δ̆
(1:D)
k + δ́

(1:D)
k ) • (B−1

k Sk −B−1
k−1Sk−1) = Gδ̆n +Gδ́n.
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where for (2.32), the monotonicity property is applied to Φ(SN , ZN )−BN (v̄+Gδ̄
N ) ≤ 0 P-a.s.

This implies

ζ(S) :=
ε(S)(0)− ρ(−BNG

δ̃
N)

BN

≤ v̄. (2.33)

Similarly, let (v, δ) be a sub-replication strategy where v is the sub-replication price. Note8

that for any δ ∈ Π, Gδ
n = −G−δn . Using the translation invariance and monotonicity properties

of ρ:

ε(L)(0) = min
δ∈Π

ρ
(
−Φ(SN , ZN)−BNG

δ
N

)
≤ ρ

(
−Φ(SN , ZN)−BNG

δ̃−δ
N

)
= ρ

(
BNG

δ
N − Φ(SN , ZN)−BNG

δ̃
N

)
= ρ

(
BN(v +Gδ

N)− Φ(SN , ZN)−BNG
δ̃
N

)
−BNv

≤ ρ(−BNG
δ̃
N)−BNv, (2.34)

where for (2.34), the monotonicity property is applied to BN (v+Gδ
N )−Φ(SN , ZN ) ≤ 0 P-a.s.

This implies

v ≤ ζ(L) :=
ρ(−BNG

δ̃
N)− ε(L)(0)

BN

. (2.35)

Using (2.31), C?
0 has the representation C?

0 = 0.5(ζ(L) + ζ(S)). The last step of the proof

entails showing that ζ(L) ≤ ζ(S), which implies that the derivative price C?
0 ∈ [v, v̄] and is

8 For n = 0, the result is direct since Gδ0 = 0 for any δ ∈ Π. For n = 1, . . . , N :

Gδn =

n∑
k=1

δ
(1:D)
k

• (B−1
k Sk −B−1

k−1Sk−1) = −
n∑
k=1

(−δ(1:D)
k ) • (B−1

k Sk −B−1
k−1Sk−1) = −G−δn .
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arbitrage-free in the sense of Definition 2.9. Define the risk measure % as

%(X) := min
δ∈Π

ρ
(
X −BNG

δ
N

)
. (2.36)

Buehler et al. (2019b) show that since ρ is a convex risk measure and Π is a convex set, % is

a convex risk measure (see Proposition 3.1 of their paper). Note that ε(S)(0) = %(Φ(SN , ZN ))

and ε(L)(0) = %(−Φ(SN , ZN)) by definition. With the translation invariance and convexity

properties of %, we obtain that

min
δ∈Π

ρ
(
−BNG

δ
N

)
= %(0) = %

(
1

2
Φ(SN , ZN)− 1

2
Φ(SN , ZN)

)
≤ 1

2
%(Φ(SN , ZN)) +

1

2
%(−Φ(SN , ZN))

=
1

2
ε(S)(0) +

1

2
ε(L)(0)

=⇒
min
δ∈Π

ρ
(
−BNG

δ
N

)
− ε(L)(0)

BN

≤
ε(S)(0)−min

δ∈Π
ρ
(
−BNG

δ
N

)
BN

=⇒ ζ(L) ≤ ζ(S). �

2.6.2 Risk-neutral dynamics

Since the market is arbitrage-free under the models assumed for the underlying, the first

fundamental theorem of asset pricing implies that their exist a probability measure Q such

that {Sne−rtn}Nn=0 is an (F,Q)-martingale (see, for instance, Delbaen and Schachermayer

(1994)). For the rest of Section 2.6.2, let {εQn}Nn=1 be independent standard normal random

variables under Q and denote P0,T as the price at time 0 of a contingent claim of payoff

Φ(SN , ZN) at maturity T :

P0,T := e−rTEQ [Φ(SN , ZN)
∣∣ F0

]
. (2.37)

Here are the risk-neutral dynamics for each model considered.
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2.6.2.1 Regime-switching

The change of measure considered is the so-called regime-switching mean-correcting transform,

a popular choice under RS models (see, e.g. Hardy (2001) and Bollen (1998)). This change

of measure preserves the model dynamics of regime-switching except for a shift to the drift

in each respective regime. More precisely, during the passage from P to Q, the transition

probabilities of the Markov chain and the volatilities are left unchanged, but the drifts µi∆ are

shifted to (r − σ2
i /2)∆ for regimes i = 1, . . . , H. The resulting dynamics for the log-returns

under Q is

yn+1 =

(
r −

σ2
hn

2

)
∆ + σhn

√
∆εQn+1, n = 0, . . . , N − 1. (2.38)

Let H := {Hn}Nn=0 be the filtration generated by the markov chain h:

Hn := σ(hu
∣∣ u = 0, . . . , n), n = 0, . . . , N. (2.39)

Following the work of Godin et al. (2019), option prices can be developed as follow. Let

G := {Gn}Nn=0 be the filtration which contains all latent factors as well as information available

to market participants, i.e. G = F∨H. Thus, the process {(Sn, hn)} is Markov under Q with

respect to G. With the law of iterated expectations, the time-0 price of a derivative P0,T can

be written as follows:

P0,T = e−rTEQ [Φ(SN , ZN)
∣∣ F0

]
= e−rTEQ [EQ [Φ(SN , ZN)

∣∣ G0

] ∣∣ F0

]
= e−rT

H∑
j=1

ξQ0,jEQ [Φ(SN , ZN)
∣∣ S0, h0 = j

]
, (2.40)

where ξQ0 is assumed to be the stationary distribution of the Markov chain under P. The

computation of P0,T can be done through Monte Carlo simulations for all contingent claims
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(i.e. vanilla and exotic).

2.6.2.2 Discrete BSM

By a discrete-time version of the Girsanov theorem, there exists a market price of risk process

{λ̃n}Nn=1 such that εQn = εn + λ̃n, for n = 1, . . . , N . Setting λ̃n :=
√

∆
(
µ−r
σ

)
and replacing

εn = εQn − λ̃n into (2.28), it is straightforward to obtain the Q-dynamics of the log-returns:

yn =

(
r − σ2

2

)
∆ + σ

√
∆εQn , n = 1, . . . , N. (2.41)

The computation of P0,T can be done with the well-known closed-form solution for vanilla

put options (i.e. the Black-Scholes equation) and through Monte Carlo simulations for exotic

contingent claims.

2.6.2.3 Discrete MJD

The change of measure used assumes no risk premia for jumps as in Merton (1976) and simply

shifts the drift in (2.29) from α to r. The Q-dynamics is thus

yn =

(
r − λ

(
eγ+δ2/2 − 1

)
− σ2

2

)
∆ + σ

√
∆εQn +

Nn∑
j=Nn−1+1

χ
j,

where {χj}∞j=1 and {Nn}Nn=0 have the same distribution than under P. The computation of

P0,T for vanilla put options can be quickly performed with the fast Fourier transform (see,

e.g. Carr and Madan (1999)). The pricing of exotic contingent claims can be done through

Monte Carlo simulations.

2.6.2.4 GARCH

The risk-neutral measure considered is often used in the GARCH option pricing literature

under which the one-period ahead conditional log-return mean is shifted, but the one-period
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ahead conditional variance is left untouched (see e.g. Duan (1995)). For n = 1, . . . , N ,

let ϕn ∈ Fn−1 and define εQn := εn + ϕn. Replacing εn = εQn − ϕn into (2.30), we obtain

yn = µ− σnϕn + σnε
Q
n for n = 1, . . . , N . To ensure that {Sne−rtn}Nn=0 is an (F,Q)-martingale,

the one-period conditional expected return under Q must be equal to the daily risk-free rate,

i.e.:

EQ[eyn
∣∣ Fn−1] = eµ−σnϕn+σ2

n/2 = er∆ ⇐⇒ ϕn :=
µ− r∆ + σ2

n/2

σn
, n = 1, . . . , N.

Thus, the Q-dynamics of the GJR-GARCH(1,1) model is:

yn = r∆− σ2
n/2 + σnε

Q
n ,

σ2
n+1 = ω + ασ2

n(|εQn − ϕn| − γ(εQn − ϕn))2 + βσ2
n.

The computation of P0,T can be done through Monte Carlo simulations for all contingent

claims.

2.6.3 Maximum likelihood estimates results

This section presents estimated parameters for the various underlying asset models considered

in numerical experiments from Section 2.4.
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Table 2.6: Maximum likelihood parameter estimates of the Black-Scholes model.

µ σ

0.0892 0.1952

Notes: Parameters were estimated on a time series of daily log-returns on the S&P 500 index
for the period 1986-12-31 to 2010-04-01 (5863 log-returns). Both µ and σ are on an annual
basis.

Table 2.7: Maximum likelihood parameter estimates of the GJR-GARCH(1,1) model.

µ ω α γ β

2.871e-04 1.795e-06 0.0540 0.6028 0.9105

Notes: Parameters were estimated on a time series of daily log-returns on the S&P 500 index
for the period 1986-12-31 to 2010-04-01 (5863 log-returns).

Table 2.8: Maximum likelihood parameter estimates of the regime-switching model.

Regime
Parameter 1 2 3

µ 0.2040 0.0337 −0.6168
σ 0.0971 0.1865 0.5070
ν 0.4755 0.4561 0.0684

0.9870 0.0127 0.0003
γ 0.0139 0.9807 0.0053

0.0000 0.0380 0.9620

Notes: Parameters were estimated with the EM algorithm of Dempster et al. (1977) on a
time series of daily log-returns on the S&P 500 index for the period 1986-12-31 to 2010-04-01
(5863 log-returns). ν represent probabilities associated with the stationary distribution of the
Markov chain. γ is the transition matrix as in (2.25). µ and σ are on an annual basis.

Table 2.9: Maximum likelihood parameter estimates of the Merton jump-diffusion model.

α σ λ γ ϑ

0.0875 0.1036 92.3862 −0.0015 0.0160

Notes: Parameters were estimated on a time series of daily log-returns on the S&P 500 index
for the period 1986-12-31 to 2010-04-01 (5863 log-returns). α, σ and λ are on an annual basis.
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Chapter 3

Deep Hedging of Long-Term Financial Derivatives

Abstract

This study presents a deep reinforcement learning approach for global hedging of

long-term financial derivatives. A similar setup as in Coleman et al. (2007) is considered

with the risk management of lookback options embedded in guarantees of variable

annuities with ratchet features. The deep hedging algorithm of Buehler et al. (2019b)

is applied to optimize neural networks representing global hedging policies with both

quadratic and non-quadratic penalties. To the best of the author’s knowledge, this

is the first paper that presents an extensive benchmarking of global policies for long-

term contingent claims with the use of various hedging instruments (e.g. underlying

and standard options) and with the presence of jump risk for equity. Monte Carlo

experiments demonstrate the vast superiority of non-quadratic global hedging as it

results simultaneously in downside risk metrics two to three times smaller than best

benchmarks and in significant hedging gains. Analyses show that the neural networks

are able to effectively adapt their hedging decisions to different penalties and stylized

facts of risky asset dynamics only by experiencing simulations of the financial market

exhibiting these features. Numerical results also indicate that non-quadratic global

policies are significantly more geared towards being long equity risk which entails

earning the equity risk premium.

Keywords: Reinforcement learning; Global hedging; Variable annuity; Lookback

option; Jump risk.

JEL Classification: C45, C61, G32.
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3.1 Introduction

Variable annuities (VAs), also known as segregated funds and equity-linked insurance, are

financial products that enable investors to gain exposure to the market through cashflows

that depend on equity performance. These products often include financial guarantees to

protect investors against downside equity risk with benefits that can be expressed as the

payoff of derivatives. For instance, a guaranteed minimum maturity benefit (GMMB) with

ratchet feature is analogous to a lookback put option by providing a minimum monetary

amount at the maturity of the contract equal to the maximum account value on specific

dates (e.g. anniversary dates of the policy). The valuation of VAs guarantees is typically

done with classical option pricing theory by computing the expected risk-neutral discounted

cashflows of embedded options under an appropriate equivalent martingale measure; see, for

instance, Brennan and Schwartz (1976), Boyle and Schwartz (1977), Pelsser (2003), Bauer

et al. (2008) and Ng and Li (2011). A comprehensive review of pricing segregated funds

guarantees literature can be found in Gan (2013).

During the subprime mortgage financial crisis, many insurers incurred large losses in segregated

fund portfolios due in part to poor risk management with some insurers even stopping writing

VAs guarantees in certain markets (Zhang (2010)). Two categories of risk management

approaches are typically used in practice: the actuarial method and the financial engineering

method (Boyle and Hardy (1997)). The former consists in providing stochastic models for the

risk factors and setting a reserve held in risk-free assets to cover liabilities associated to VAs

guarantees with a certain probability (e.g. the Value-at-Risk at 99%). The second approach,

commonly known as dynamic hedging, entails solving for a self-funded sequence of positions in

securities to mitigate the risk exposure of embedded options. Dynamic hedging is a popular

risk management approach among insurance companies and is studied in this current paper;

the reader is referred to Hardy (2003) for a detailed description of the actuarial method.

Financial markets are said to be complete if every contingent claim can be perfectly replicated
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with some dynamic hedging strategy. In practice, segregated funds embedded options are typ-

ically not attainable as a consequence of their many interrelated risks which are very complex

to manage such as equity risk, interest rate risk, mortality risk and basis risk. For insurance

companies selling VAs with guarantees, market incompleteness entails that some level of

residual risk must be accepted as being intrinsic to the embedded options; the identification

of optimal hedging policies in such context is thus highly relevant. Nevertheless, the attention

of the actuarial literature has predominantly been on the valuation of segregated funds, not

on the design of optimal hedging policies. Indeed, the hedging strategies considered are most

often suboptimal and not necessarily in line with financial objectives of insurance companies.

One popular hedging approach is the greek-based policy where assets positions depend on

the sensitivities of the option value (i.e. the value of the guarantee) to different risk factors.

Boyle and Hardy (1997) and Hardy (2000) delta-hedge GMMBs under market completeness

for mortality risk and Augustyniak and Boudreault (2017) delta-rho hedge GMMBs and

guaranteed minimum death benefits (GMDBs) in the presence of model uncertainty for both

equity and interest rate. An important pitfall of greek-based policies in incomplete markets

is their suboptimality by design: they are a by-product of the choice of pricing kernel (i.e. of

the equivalent martingale measure) for option valuation, not of an optimization procedure

over hedging decisions to minimize residual risk. Furthermore, as shown in the seminal work

of Harrison and Pliska (1981), in incomplete markets, there exist an infinite set of equivalent

martingale measures each of which is consistent with arbitrage-free pricing and can thus be

used to compute positions in hedging instruments (i.e. the greeks).

Another strand of literature optimizes hedging policies with local and global criterions. Local

risk minimization (Föllmer and Schweizer (1988) and Schweizer (1991)) consists in choosing

assets positions to minimize the periodic risk associated with the hedging portfolio. On the

other hand, global risk minimization procedures jointly optimize all hedging decisions with the

objective of minimizing the expected value of a loss function applied to the terminal hedging

error. In spite of their myopic view of the hedging problem by not necessarily minimizing
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the risk associated with hedging shortfalls, local risk minimization procedures are attractive

for the risk mitigation of VAs guarantees as they are simple to implement and they have

outperformed greek-based hedging in several studies. Coleman et al. (2006) and Coleman

et al. (2007) apply local risk minimization procedures for risk mitigation of GMDBs using

standard options with the foremost considering the presence of both interest rate and jump

risk and the latter the presence of volatility and jump risk. Kélani and Quittard-Pinon (2017)

extends the work of Coleman et al. (2007) in a general Lévy market with the inclusion of

mortality risk and transaction costs, and Trottier et al. (2018b) and Trottier et al. (2018a)

propose a local risk minimization scheme for guarantees in the presence of basis risk.

Within the realm of total risk minimization, global quadratic hedging pioneered by the seminal

work of Schweizer (1995) aims at jointly optimizing all hedging decisions with a quadratic

penalty for hedging shortfalls. The latter paper provides a theoretical solution to the optimal

policy with a single risky asset (see Rémillard and Rubenthaler (2013) for the multidimensional

asset case) and Bertsimas et al. (2001) develops a tractable solution to the optimal policy

relying on stochastic dynamic programming. A major drawback of global quadratic hedging

is in penalizing equally gains and losses, which is naturally not in line with the financial

objectives of insurance companies. Alternatively, non-quadratic global hedging applies an

asymmetric treatment to hedging errors by overly (and most often strictly) penalizing hedging

losses. In contrast to global quadratic hedging, there is usually no closed-form solution to the

optimal policy, but numerical implementations have been proposed in the literature: François

et al. (2014) develops a methodology with stochastic dynamic programming algorithms for

global hedging with any desired penalty function, Godin (2016) adapts the latter numerical

implementation under the Conditional Value-at-Risk measure in the presence of transaction

costs and Dupuis et al. (2016) studies global hedging procedures under the semi-mean-

square error penalty in the context of short-term hedging for an electricity retailer. The

aforementioned studies demonstrated the vast superiority of non-quadratic global hedging

over popular alternative hedging schemes (e.g. greek-based policies, local risk minimization

48



and global quadratic hedging). Yet, to the best of the author’s knowledge, both quadratic

and non-quadratic global hedging has seldom been applied for risk mitigation of segregated

funds guarantees, or more generally, of long-term contingent claims.1 Furthermore, numerical

schemes for global hedging are computationally intensive and often rely on solving Bellman’s

equations, which is known to be prone to the curse of dimensionality (Powell, 2009). In the

context of dynamically hedging segregated funds guarantees, the latter is a major drawback as

it restrains the number of risk factors to consider for the financial market as well as prevents

the use of multiple assets in the design of hedging policies. A feasible implementation of

global hedging for the risk mitigation of VAs guarantees which is flexible to the choice of

market features, to the hedging instruments and to the penalty for hedging errors would be

desirable.

Recently, Buehler et al. (2019b) introduced a deep reinforcement learning (deep RL) algorithm

called deep hedging to hedge a portfolio of over-the-counter derivatives in the presence of

market frictions. The general framework of RL is for an agent to learn over many iterations

of an environment how to select sequences of actions to optimize a cost function. RL has

been applied successfully in many areas of quantitative finance such as algorithmic trading

(e.g. Moody and Saffell (2001) and Deng et al. (2016)), portfolio optimization (e.g. Jiang

et al. (2017) and Almahdi and Yang (2017)) and option pricing (e.g. Li et al. (2009), Becker

et al. (2019) and Carbonneau and Godin (2021b)). Hedging has also received substantial

attention: Halperin (2020) and Kolm and Ritter (2019) propose TD-learning approaches to

the hedging problem and Cao et al. (2020) and Carbonneau and Godin (2021b) deep hedge

European options under respectively the quadratic penalty and the Conditional Value-at-Risk

measure. The deep hedging algorithm trains an agent to learn how to approximate optimal

hedging decisions by neural networks through many simulations of a synthetic market. This

approach is related to the deep learning method of Han and E (2016) by directly optimizing

1 An exception is the work of Ankirchner et al. (2014) which considers a minimal-variance hedging strategy
for VAs guarantees in continuous-time in the presence of basis risk.
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policies for stochastic control problems with Monte Carlo simulations. Arguably, the most

important benefit of using neural networks to approximate optimal policies is to overcome

the curse of dimensionality which arises when the state and action space gets too large.

The contribution of this paper is threefold. First, this study presents a deep reinforcement

learning procedure for global hedging long-term financial derivatives which are analogous under

assumptions made in this study to embedded options of segregated funds. The methodological

approach, which relies on the deep hedging algorithm, can be applied for the risk mitigation of

any long-term European-type contingent claims (e.g. vanilla, path-dependent) with multiple

hedging instruments (e.g. standard options and underlying) under any desired penalty (e.g.

quadratic and non-quadratic) and in the presence of different risky assets stylized features

(e.g. jump, volatility and regime risk). The second contribution consists in conducting broad

numerical experiments of hedging long-term contingent claims with the optimized global

policies. A similar setup as in the work of Coleman et al. (2007) is considered with the

risk mitigation of ratchet GMMBs strictly for financial risks in the presence of jumps for

equity. To the best of the author’s knowledge, this is the first paper that presents such

an extensive benchmarking of quadratic and non-quadratic global policies for long-term

options with the use of various hedging instruments and by considering different risky assets

dynamics. The use of neural networks to solve global hedging problems enables us to provide

novel qualitative insights into long-term global hedging. Such benchmarking would have

been hardly attainable when relying on more traditional optimization procedures for global

hedging such as stochastic dynamic programming due to the high-dimensional continuous

state and action spaces considered in this study. Numerical experiments demonstrate the

vast superiority of non-quadratic global hedging as it results simultaneously in downside risk

metrics two to three times smaller than best benchmarks and in significant hedging gains.

Our results clearly demonstrate that non-quadratic global hedging should be prioritized over

other popular dynamic hedging procedures found in the literature as it is tailor-made to

match the financial objectives of the hedger by always significantly reducing the downside
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risk as well as earning large expected positive returns. The third contribution is in providing

important insights into specific characteristics of the optimized global policies. Monte Carlo

experiments indicate that on average, non-quadratic global policies are significantly more

bullish than their quadratic counterpart by holding a larger average equity risk exposure

which entails earning the equity risk premium. The conduction of these experiments, and

thus of the finding of these novel qualitative observations into long-term global hedging

policies, heavily relies on the neural-based hedging scheme considered in this paper. Key

factors which contribute to this specific characteristic of non-quadratic global policies are

identified. Furthermore, analyses of numerical results show that the training algorithm is able

to effectively adapt hedging policies (i.e. neural networks parameters) to different stylized

features of risky asset dynamics only by experiencing simulations of the financial market

exhibiting these features.

The paper is structured as follows. Section 3.2 introduces the notation and the optimal

hedging problem. Section 3.3 describes the numerical scheme based on deep RL to optimize

global hedging policies. Section 3.4 presents benchmarking of the risk mitigation of GMMBs

under various market settings. Section 3.5 concludes.

3.2 Hedging long-term contingent claims

This section details the financial market setup and the hedging problem considered in this

paper.

3.2.1 Market setup

The financial market is in discrete-time with a finite time horizon of T ∈ N years and

N + 1 known observation dates T := {ti : ti = i∆N , i = 0, . . . , N} with ∆N := T/N . The

probability space (Ω,FT ,P) with P as the physical measure is equipped with the filtration

F := {Ftn}Nn=0 that defines all available information of the financial market to investors. A

total of D+ 2 liquid assets are accessible to financial participants with D+ 1 risky assets and
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one risk-free asset. Let {Btn}Nn=0 be the price process of the risk-free asset where Btn := ertn

with r ∈ R as the annualized continuously compounded risk-free rate. The risky assets

include a non-dividend paying stock and D liquid vanilla European-type options such as

calls and puts on the stock which expire on observation dates in T . In this context, the

specification of two distinct price processes, one at the beginning and one at the end of

each trading period, is required. Let {S̄(b)
tn }Nn=0 be the beginning-of-period risky price process,

where S̄
(b)
tn := [S

(0,b)
tn , . . . , S

(D,b)
tn ] are the prices at the beginning of [tn, tn+1) with S

(0,b)
tn and

S
(j,b)
tn respectively as the price of the underlying and of the jth option. Similarly, let {S̄(e)

tn }
N−1
n=0

be the end-of-period risky price process, where S̄
(e)
tn := [S

(0,e)
tn , . . . , S

(D,e)
tn ] are the prices at

the end of [tn, tn+1) before the next rebalancing at tn+1. For the tradable options, if the jth

option matures at tn+1, then S
(j,e)
tn is the payoff of the derivative and S

(j,b)
tn+1

is the price of a

new contract with the same characteristics (i.e. same payoff function and time-to-maturity).

For the underlying, the equality S
(0,b)
tn+1

= S
(0,e)
tn holds P-a.s. for n = 0, . . . , N − 1.

This paper studies the problem of hedging long-term contingent claims embedded in segregated

funds guarantees by means of dynamic hedging. A similar setup as in the work of Coleman

et al. (2007) is considered. While the latter paper examines the presence of both jump risk

and volatility risk for the equity, the current work strictly assesses the impact of jump risk on

the risk management of long-term contingent claims. Note that the methodological approach

presented in Section 3.3 for optimizing global policies can easily be adapted to the presence

of additional risk factors for equity (e.g. volatility risk and regime risk). For the rest of

the paper, assume that mortality risk can be completely diversified away and let T be the

known maturity in years of the embedded guarantee to be hedged. This assumption can

be motivated by the fact that in practice, insurance companies can significantly reduce the

impact of mortality risk on their segregated funds portfolios by insuring additional policies.

Furthermore, all VAs are assumed to be held until expiration (i.e. lapse risk is not considered)

and their values are linked to a liquid index such as the S&P500, which implies no basis risk.

In this study, the option embedded in VAs is a GMMB with an annual ratchet feature that
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provides a payoff at time T of the maximum anniversary account value. The anniversary

dates of the equity-linked insurance account are assumed to form a subset of the observation

dates, i.e. {0, 1, . . . , T} ⊆ T . For b·c : R → R denoting the floor function, i.e. bxc is the

largest integer smaller or equal to x, let {Ztn}Nn=0 be the running maximum anniversary value

process of the equity-linked account :

Ztn =


max(S

(0,b)
0 , . . . , S

(0,b)
m ), if btnc = m and m ∈ {0, . . . , T − 1},

max(S
(0,b)
0 , . . . , S

(0,b)
T−1), if tn = T.

The payoff of the GMMB with annual ratchet can be expressed as the account value at time

T plus a lookback put option payoff

max(S
(0,b)
0 , . . . , S

(0,b)
T ) = max(max(S

(0,b)
0 , . . . , S

(0,b)
T−1), S

(0,b)
T )

= max(ZT − S(0,b)
T , 0) + S

(0,b)
T . (3.1)

Thus, the assumptions of market completeness with respect to mortality risk and lapse risk

considered in this paper entail that the risk exposure of the insurer selling a GMMB2 is

equivalent to holding short position in a long-term lookback option of fixed maturity T and

of payoff function Φ : R× RT → [0,∞):

Φ(S
(0,b)
T , ZT ) := max(ZT − S(0,b)

T , 0). (3.2)

The notation for trading strategies considered in this study for the mitigation of the risk

exposure associated to a short position in Φ is now outlined. Let δ := {δtn}Nn=0 be a trading

strategy used by the hedger to minimize his risk exposure to Φ, where for n = 1, . . . , N ,

2 Coleman et al. (2007) consider the problem of hedging a ratchet GMDB with a fixed and known maturity
T . The use of a fixed maturity in the latter paper is motivated by assuming market completeness under
mortality risk and hedging the expected loss of the guarantee. While the current paper considers the risk
mitigation of a GMMB instead of a GMDB, assumptions made in both papers (i.e. no mortality risk and
lapse risk) entail that the benefits of the two guarantees are equivalent and result in the same lookback put
option to hedge as in (3.2).
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δtn := (δ
(0)
tn , . . . , δ

(D)
tn , δ

(B)
tn ) is a vector containing the number of shares held in each asset

during the period (tn−1, tn] with δ
(0:D)
tn := (δ

(0)
tn , . . . , δ

(D)
tn ) and δ

(B)
tn respectively as the positions

in the D + 1 risky assets and in the risk-free asset. The initial portfolio (at time 0 before

the first trade) is invested strictly in the risk-free asset (i.e. δ
(1:D)
0 := [0, . . . , 0]). Also, for

convenience, all options used as hedging instruments have one period maturity, i.e. they are

traded once and held until expiration. Here is an additional assumption considered for the

rest of the paper.

Assumption 3.1. The market is liquid and trading in risky assets does not affect their

prices.

Before formally describing the global hedging optimization problem associated to a short

position in Φ, some well-known concepts in the mathematical finance literature must be

described. The reader is referred to Lamberton and Lapeyre (2011) for additional details.

Let {Gδ
tn}

N
n=0 be the discounted gain process associated with the strategy δ where Gδ

tn is the

discounted gain at time tn prior to rebalancing. Gδ
0 := 0 and

Gδ
tn :=

n∑
k=1

δ
(0:D)
tk

• (B−1
tk
S̄

(e)
tk−1
−B−1

tk−1
S̄

(b)
tk−1

), n = 1, 2, . . . , N, (3.3)

where • is the scalar product operator, i.e. for two n-dimensional vectors X and Y , X • Y :=∑n
i=1XiYi. Also, let {V δ

tn}
N
n=0 be the hedging portfolio values for a trading strategy δ where

V δ
tn is the value prior to rebalancing at time tn:

V δ
tn := δ

(0:D)
tn

• S̄
(e)
tn−1

+ δ
(B)
tn Btn , n = 1, . . . , N, (3.4)

and V δ
0 := δ

(B)
0 since the initial capital amount is assumed to be strictly invested in the

risk-free asset. Moreover, in this paper, trading strategies considered require no cash infusion

nor withdrawal except at the initialization of the contract (i.e. at time 0). Furthermore,

trading strategies considered are F-predictable, i.e. δ
(j)
0 ∈ F0 and δ

(j)
n+1 ∈ Fn for j = 0, . . . , D.

Such strategies are called self-financing. More precisely, the hedging strategy δ is said to be
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self-financing if it is F-predictable and if

δ
(0:D)
tn+1

• S̄
(b)
tn + δ

(B)
tn+1

Btn = V δ
tn , n = 0, 1, . . . , N − 1. (3.5)

Lastly, let Π be the set of admissible trading strategies for the hedger which consists of all

sufficiently well-behaved self-financing strategies.

Remark 3.1. It can be shown that δ is self-financing if and only if V δ
tn = Btn(V δ

0 +Gδ
tn) for

n = 0, 1, . . . , N. See for instance Lamberton and Lapeyre (2011).

3.2.2 Optimal hedging problem

The optimization problem of hedging the risk exposure associated to a short position in the

long-term lookback option is now formally defined. For the hedger, the problem consists in

the design of a trading policy which minimizes a penalty, also referred to as a loss function,

of the difference between the payoff of the lookback option and the hedging portfolio value at

maturity (i.e. the hedging error or hedging shortfall). Strategies embedded in such policies

are called global hedging strategies as they are jointly optimized over all hedging decisions

until the maturity of the lookback option. Let L : R→ R be a loss function for the hedging

error. For the rest of the paper, assume without loss of generality that the position in the

hedging portfolio is long, and that all assets and penalties are well-behaved and integrable

enough. Specific conditions are beyond the scope of this study.

Definition 3.1. (Global risk exposure) Define ε(V0) as the global risk exposure of the short

position in Φ under optimal hedge if the value of the initial hedging portfolio is V0 ∈ R:

ε(V0) := min
δ∈Π

E
[
L
(

Φ(S
(0,b)
T , ZT )− V δ

T

)]
, (3.6)

where the expectation is taken with respect to the physical measure.

The author wants to emphasize that the global hedging problem (3.6) is very complex to solve

due to trading policies allowing for the use multiple hedging instruments, to the generality of
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the loss function and to the joint optimization over all trading decisions until the expiration

date of the contingent claim being hedged. Numerical schemes proposed in the literature to

solve this global hedging problem often rely on dynamics programming procedures (see, for

instance, François et al. (2014)). However, one important contribution of this current paper

is in conducting various numerical experiments studying the performance of long-term global

policies and identifying important characteristics of these policies. The extensive empirical

analysis of long-term global hedging carried out in Section 3.4 would be hardly reachable by

traditional numerical procedures and heavily relies on the neural network hedging scheme

described in the following section. One example of penalty which has been extensively studied

in the global hedging literature is the mean-square error (MSE): L(x) = x2. This penalty

entails that hedging gains and losses are treated equally, which as argued in Bertsimas et al.

(2001), could be desirable for a financial participant who has to provide a price quote on

a security prior to knowing his position (long or short). In a realistic setting, the choice

of loss function should reflect the financial objectives and the risk aversion of the hedger.

In the context of this paper where the position in Φ is always short, penalizing hedging

gains is clearly undesirable for the hedger. The corresponding loss function to the MSE

that penalizes exclusively hedging losses, not gains, is the semi-mean-square error (SMSE):

L(x) = x21{x>0}.

The author wants to emphasize that different penalties will often result in different optimal

hedging strategies. An extensive numerical study of the impact of optimizing trading

policies under the MSE or SMSE loss function for the risk management of lookback options

is performed in Section 3.4. Note that the methodological procedure for global hedging

presented in Section 3.3 is flexible to any well-behaved penalties (see e.g. Carbonneau and

Godin (2021b) for an implementation with the Conditional Value-at-Risk measure). Moreover,

while this paper studies a specific example of long-term option to hedge, namely the lookback

option of payoff Φ, the numerical scheme to approximate optimal hedging strategies can

be applied with any European-type derivative of well-behaved payoff function, which can
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naturally include other VAs guarantees with payoffs analogous to financial derivatives.

Remark 3.2. The terminology used in this paper to describe the global hedging problem and

financial market setup is the one usually found in the mathematical finance literature. Note

that the setup could also be formulated using terminology from the reinforcement learning

literature, for instance by following the one from Sutton and Barto (2018) with the concepts

of states to represent financial market observations, actions to represent the number of shares

traded in hedging instruments and risk-adjusted cost functions to represent the expected

hedging shortfall objective. For an example of a description of the global hedging setup with a

reinforcement learning terminology, the reader is referred to the problem formulation presented

in Buehler et al. (2019a).

3.3 Methodology

This section describes the reinforcement learning procedure used to optimize global policies.

The approach relies on the deep hedging algorithm of Buehler et al. (2019b) who showed

that a feedforward neural network (FFNN) can be used to approximate arbitrarily well

optimal hedging strategies in very general financial market conditions. At its core, a FFNN

is a parameterized composite function which maps input to output vectors through the

composition of a sequence of functions called hidden layers. Each hidden layer applies an

affine and a nonlinear transformation to input vectors. For L, d0, . . . , dL, d̃ ∈ N, a FFNN

Fθ : Rd0 → Rd̃ with L hidden layers has the following representation:

Fθ(X) := o ◦ hL ◦ . . . ◦ h1,

hl(X) := g(WlX + bl), l = 1, . . . , L,

where ◦ denotes the function composition operator, Wl ∈ Rdl×dl−1 and bl ∈ Rdl×1 are

respectively known as the weight matrix and bias vector of the lth hidden layer hl, g is a

nonlinear function applied to each scalar given as input and finally, o : RdL → Rd̃ is the output
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function which applies an affine transformation to the output vector of the last hidden layer

hL as well as possibly a nonlinear transformation. Furthermore, the trainable parameters θ

is the set of all weight matrices and bias vectors which are learned (i.e. fitted in statistical

terms) by minimizing a specified cost function.

In the current study, the type of neural network considered for functions representing hedging

policies is from the family of recurrent neural networks (RNNs, Rumelhart et al. (1986)).

In contrast to FFNNs which maps input vectors to output vectors, RNNs is a class of

neural networks mapping input sequences to output sequences. The architecture of RNNs

is similar to FFNNs by applying successive affine and nonlinear transformations to inputs

through hidden layers, but differs by having self-connections. Indeed, the RNN hidden

layer is a function of both an input vector from the current time-step and an output vector

from the hidden layer of the previous time-step, hence the name recurrent. In contrast to

FFNNs, feedback loops in hidden layers entail that each output is dependent of past inputs,

which makes RNNs more appropriate for time-series modeling. The type of RNN considered

for dynamic hedging in this study is the long short-term memory (LSTM) introduced by

Hochreiter and Schmidhuber (1997). This choice of neural network is motivated by recent

results of Buehler et al. (2019a) who showed that LSTMs hedging policies are more effective

for the risk mitigation of path-dependent contingent claims than FFNNs policies. Additional

remarks are made in subsequent sections to motivate the choice of an LSTM for the specific

setup considered in the current paper. For more general information about RNNs, the reader

is referred to Chapter 10 of Goodfellow et al. (2016) and the many references therein.

The LSTM architecture is now formally defined. The application of LSTMs as functions

representing global hedging policies is described in Section 3.3.1. In what follows, the

time-steps are the same as the observation dates of the financial market.

Definition 3.2. (LSTM) Let Fθ : RN×din → RN×dout be an LSTM which maps the sequence

of feature vectors {Xtn}N−1
n=0 to output vectors {Ytn}N−1

n=0 , where Xtn and Ytn are respectively

two vectors of dimensions din, dout ∈ N. Let sigm(·) and tanh(·) be the sigmoid and hyperbolic
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tangent functions applied element-wise to each scalar given as input.3 For H ∈ N, the time-tn

computation of Fθ consists in H LSTM cells, each of which outputs a vector of dj neurons

denoted as h
(j)
tn ∈ Rdj×1 for dj ∈ N and j = 1, . . . , H. More precisely, the computation done

by the jth LSTM cell at time tn is as follows4:

i
(j)
tn = sigm(W

(j)
i [h

(j)
tn−1

, h
(j−1)
tn ] + b

(j)
i ),

f
(j)
tn = sigm(W

(j)
f [h

(j)
tn−1

, h
(j−1)
tn ] + b

(j)
f ),

o
(j)
tn = sigm(W (j)

o [h
(j)
tn−1

, h
(j−1)
tn ] + b(j)

o ),

c
(j)
tn = f

(j)
tn � c

(j)
tn−1

+ i
(j)
tn � tanh(W (j)

c [h
(j)
tn−1

, h
(j−1)
tn ] + b(j)

c ),

h
(j)
tn = o

(j)
tn � tanh(c

(j)
tn ), (3.7)

where [· , ·] and � denote respectively the concatenation of two vectors and the Hadamard

product (i.e. the element-wise product) and

• W (1)
i ,W

(1)
f ,W

(1)
o ,W

(1)
c ∈ Rd1×(d1+din) and b

(1)
i , b

(1)
f , b

(1)
o , b

(1)
c ∈ Rd1×1.

• If H ≥ 2: W
(j)
i ,W

(j)
f ,W

(j)
o ,W

(j)
c ∈ Rdj×(dj+dj−1) and b

(j)
i , b

(j)
f , b

(j)
o , b

(j)
c ∈ Rdj×1 for

j = 2, . . . , H.

At each time-step, the input of the first LSTM cell is the feature vector (i.e. h
(0)
tn := Xtn) and

the final output is an affine transformation of the output of the last LSTM cell:

Ytn = Wyh
(H)
tn + by, n = 0, . . . , N − 1, (3.8)

where Wy ∈ Rdout×dH and by ∈ Rdout×1. Lastly, the set of trainable parameters denoted as θ

3 For X := [X1, . . . , XK ], sigm(X) :=
[

1
1+e−X1

, . . . , 1
1+e−XK

]
and tanh(X) :=

[
eX1−e−X1

eX1+e−X1
, . . . , e

XK−e−XK

eXK +e−XK

]
.

4 At time 0 (i.e. n = 0), the computation of the H LSTM cells is the same as in (3.7) with h
(j)
t−1

and c
(j)
t−1

as vectors of zeros of dimensions dj for j = 1, . . . ,H.

59



consists of all weight matrices and bias vectors:

θ :=
{
{W (j)

i ,W
(j)
f ,W (j)

o ,W (j)
c , b

(j)
i , b

(j)
f , b(j)

o , b(j)
c }Hj=1,Wy, by

}
. (3.9)

Remark 3.3. In the deep learning literature, the i
(j)
tn , f

(j)
tn and o

(j)
tn are known as input gates,

forget gates and output gates. Their architectures have shown to help to alleviate the issue

of learning long-term dependencies of time series with classical RNNs as they control the

information passed through the LSTM cells. The reader is referred to Bengio et al. (1994) for

more information about this latter pitfall of RNNs and to Chapter 10.10 of Goodfellow et al.

(2016) and the many references therein for more general information about LSTMs.

3.3.1 LSTM neural networks representing global policies

In the context of dynamic hedging, an LSTM maps a sequence of feature vectors consisting

of relevant financial market observations to the sequence of positions in each asset for all

time-steps. The set of trainable parameters θ is optimized to minimize the expected value

of a loss function applied to the terminal hedging error obtained as a result of the trading

decisions made by the LSTM. The following definition describes more formally how the

LSTM computes the hedging strategy. Note that in numerical experiments presented in

Section 3.4, the hedging instruments used for the risk minimization of Φ are either exclusively

the underlying stock, or only standard options (i.e. vanilla calls and puts). The case of using

both the stock and options is not considered because of its redundancy: option positions can

always replicate investments in the underlying stock with calls and puts.

Definition 3.3. (Hedging with an LSTM) Let Fθ be an LSTM as in Definition 3.2 which

maps the sequence of feature vectors {Xtn}N−1
n=0 to the output vectors {Ytn}N−1

n=0 . The choice

of hedging instruments (i.e. the underlying or standard options) implies differences for the
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feature vectors and output vectors5:

1) Hedging only with the underlying: the feature vector at each time-step is6

Xtn := [log(S
(0,b)
tn ), log(Ztn), V δ

tn/V
δ

0 ], n = 0, . . . , N − 1,

and Fθ outputs at each rebalancing date the position in the underlying: δ
(0)
tn = Ytn−1.

2) Hedging only with options: the feature vector at each time-step includes option prices

as well as the price of the underlying:

Xtn := [log(S̄
(b)
tn ), log(Ztn), V δ

tn/V
δ

0 ], n = 0, . . . , N − 1,

and Fθ outputs at each rebalancing date the position in the D options: [δ
(1)
tn , . . . , δ

(D)
tn ] =

Ytn−1.

It is important to note that the choice of dynamics for the financial market could imply

that relevant necessary information to compute the time-tn trading strategy should be added

to feature vectors. For instance, Carbonneau and Godin (2021b) apply the deep hedging

algorithm with GARCH models, which entails adding the volatility process to feature vectors.

In the current paper, the models considered for the underlying imply that {S(0,b)
tn }Nn=0 is a

5 When δ is self-financing, the computation of V δtn for n = 1, . . . , N can be done recursively as in (3.10)
below given V δ0 :

V δtn = Btn(V δ0 +Gδtn)

= Btn(V δ0 +Gδtn−1
+ δ

(0:D)
tn

• (B−1
tn S̄

(e)
tn−1
−B−1

tn−1
S̄

(b)
tn−1

))

=
Btn
Btn−1

V δtn−1
+ δ

(0:D)
tn

• (S̄
(e)
tn−1
− Btn
Btn−1

S̄
(b)
tn−1

)

= er∆NV δtn−1
+ δ

(0:D)
tn

• (S̄
(e)
tn−1
− er∆N S̄

(b)
tn−1

). (3.10)

6 Using the transformations {log(S
(0,b)
tn ), log(Ztn), V δtn/V

δ
0 } instead of {S(0,b)

tn , Ztn , V
δ
tn} in feature vectors

for the numerical experiments of Section 3.4 was found to significantly improve the training of neural networks.
The log transformation could not be applied for the hedging portfolio values since V δtn can theoretically take
values on the real line. Note that Buehler et al. (2019b) and Buehler et al. (2019a) also represented risky
asset prices in terms of their logarithms in feature vectors.
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Markov process under P and thus that no additional variables must be added to feature

vectors. The author emphasizes that the methodological approach considered for optimizing

global policies with the use of LSTMs can easily be adapted to dynamics requiring the

inclusion of additional state variables.

Remark 3.4. Buehler et al. (2019a) deep hedge exotic derivatives with an LSTM with feature

vectors that does not include a path-dependent state variable such as {Ztn}N−1
n=0 . One can

observe that adding {Ztn}N−1
n=0 to feature vectors as per Definition 3.3 significantly improved

the performance of the optimized hedging policies when the number of trading period is large

(i.e. for large values of N), while for less frequent trading, the gain is marginal.

Remark 3.5. Theoretical results from Buehler et al. (2019b) show that a FFNN could have

been used to approximate arbitrarily well the optimal hedging policy in the setup considered in

this study (see Proposition 4.3 of their paper). However, simulations showed that hedging with

an LSTM was significantly more effective than with a FFNN for the numerical experiments

conducted in Section 3.4 in terms of both computational time (i.e. faster learning with

LSTMs) and hedging effectiveness, which motivated the use of LSTMs as trading policies.

The justifications of the superiority of LSTMs over FFNNs in the context of this paper are

out-of-scope and are left out as interesting potential future work.

For the rest of the paper, a single set of hyperparameters for the LSTM is considered in terms

of the number of LSTM cells and neurons per cell.7 The optimization problem thus consists

in searching for the optimal values of trainable parameters for this specific architecture of

LSTM. The hyperparameter tuning step is not considered in this paper; the reader is referred

to Carbonneau and Godin (2021b) for a complete description of the optimal hedging problem

with FFNNs which includes hyperparameter tuning. The following defines formally the

alternative optimization problem considered, where the optimization boils down to solving

7 Note that as per Definition 3.3, the dimensions of the input and output of the LSTM at each time-step,
i.e. din and dout, are dependent of the choice of hedging instruments. Thus, while the number of neurons
d1, . . . , dH and the number of LSTM cells H is fixed for the numerical experiments of Section 3.4, the total
number of trainable parameters will vary with respect to the choice of hedging instruments.
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for the trainable parameters of the LSTM trading policy.

Definition 3.4. (Global risk exposure with an LSTM) Define ε̃(V0) as the global risk exposure

of the short position in Φ under optimal hedge if the hedging strategy is given by Fθ and if the

value of the initial hedging portfolio is V0 ∈ R:

ε̃(V0) := min
θ∈Rq

E
[
L
(

Φ(S
(0,b)
T , ZT )− V δθ

T

)]
, (3.11)

where δθ is to be understood as the output vectors of Fθ and q ∈ N is the total number of

trainable parameters.

3.3.2 Training of neural networks

The numerical scheme to optimize the set of trainable parameters θ is now described. For

convenience, a similar notation as in the work of Carbonneau and Godin (2021b) is used. For

a given loss function and an initial portfolio value, the objective is to find θ such that the risk

exposure of a short position in Φ is minimized (i.e. as in (3.11)). The training procedure was

originally proposed in Buehler et al. (2019b) and relies on (mini-batch) stochastic gradient

descent (SGD), a very popular algorithm in the deep learning literature to train neural

networks. Denote J : Rq → R as the cost function to minimize:

J(θ) := E
[
L
(

Φ(S
(0,b)
T , ZT )− V δθ

T

)]
, θ ∈ Rq.

Let θ0 be the initial values for the trainable parameters.8 The optimization procedure consists

in updating iteratively the trainable parameters as follows:

θj+1 = θj − ηj∇θJ(θj), (3.12)

8 In this paper, the initial values of θ are always set as the Glorot uniform initialization of Glorot and
Bengio (2010).
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where ∇θ is the gradient operator with respect to θ and {ηj}j≥0 is a sequence of small positive

real values. In the context of this paper, ∇θJ(θ) is unknown analytically and is estimated

with Monte Carlo sampling. Let Bj := {πi,j}Nbatch
i=1 be a mini-batch of simulated hedging

errors of size Nbatch ∈ N with πi,j as the ith hedging error if θ = θj:

πi,j := Φ(S
(0,b)
T,i , ZT,i)− V

δθj
T,i ,

where S
(0,b)
T,i , ZT,i and V δθj

T,i are to be understood as the values of the ith simulated path.

Moreover, denote Ĵ : RNbatch → R as the empirical estimator of J(θj) evaluated with the

mini-batch Bj. Mini-batch stochastic gradient descent consists in approximating ∇θJ(θj) in

the update rule (3.12) with ∇θĴ(Bj). In Section 3.4, the MSE and SMSE penalties, defined

respectively as LMSE(x) := x2 and LSMSE(x) := x21{x>0}, are considered for the numerical

experiments conducted. The empirical estimator of the cost function under each penalty can

be stated as follows:

ĴMSE(Bj) :=
1

Nbatch

Nbatch∑
i=1

π2
i,j,

ĴSMSE(Bj) :=
1

Nbatch

Nbatch∑
i=1

π2
i,j1{πi,j>0}.

One essential property of the architecture of neural networks is that the gradient of empirical

cost functions (i.e. ∇θĴ(Bj) for both penalties) can be computed exactly. Indeed, note that

hedging errors are linearly dependent of the trading strategies produced as the outputs of

the LSTM. Furthermore, the gradient of the outputs of an LSTM with respect to trainable

parameters can be computed exactly (see e.g. Chapter 10 of Goodfellow et al. (2016)).

Remark 3.6. The algorithm backpropagation through time (BPTT) is often used to compute

exactly the gradient of a cost function with respect to the trainable parameters for recurrent

type of neural networks such as an LSTM. BPTT leverages the structure of LSTMs (e.g.

parameters sharing at each time-step) as well as the chain rule of calculus to obtain such
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gradients. In practice, efficient deep learning libraries such as Tensorflow (Abadi et al., 2016)

are often used to implement BPTT. Moreover, algorithms such as Adam (Kingma and Ba,

2014) which dynamically adapt the terms {ηj}j≥0 in (3.12) have been shown to significantly

improve the training of neural networks. For the rest of the paper, Tensorflow and Adam are

used to train every neural network. Pseudo-code of the algorithm for training neural networks

is presented in Section 3.6.

3.4 Numerical study

This section presents an extensive numerical study of the neural-based global hedging scheme

for the mitigation of the risk exposure associated to a short position in the long-term lookback

option. Section 3.4.3 examines the hedging effectiveness of both quadratic and non-quadratic

global hedging strategies as well as the local risk minimization scheme of Coleman et al. (2007)

with different hedging instruments and different dynamics for the financial market. The

conduction of such thorough benchmarking experiments heavily relies on the methodological

approach considered in this paper, namely the use of neural networks to represent long-

term global trading policies with the deep hedging algorithm. The performance of these

extensive numerical experiments enables us to provide novel qualitative insights into specific

characteristics of the optimized long-term global hedging policies in Section 3.4.4 which have

yet to be studied in the literature. The setup considered for all numerical experiments is

described in Section 3.4.1 and Section 3.4.2.

3.4.1 Market setup

The market setup considered in this paper is very similar to the work of Coleman et al.

(2007). The contingent claim to hedge is a lookback option of payoff Φ as in (3.2) with a

time-to-maturity of 10 years (i.e. T = 10). The annualized continuously compounded risk-free

rate is set at 3% (i.e. r = 0.03) and S
(0,b)
0 = 100. In the design of hedging policies, the trading

instruments considered are either exclusively the underlying stock, two options or six options.
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All options have a time-to-maturity of 1 year, are traded once and are held until expiration.

For the case of two options, the hedging instruments available at the beginning of each year

consist of at-the-money (ATM) calls and puts. With six options, three calls of moneynesses

K ∈ {S(0,b)
tn , 1.1S

(0,b)
tn , 1.2S

(0,b)
tn } and three puts of moneynesses K ∈ {S(0,b)

tn , 0.9S
(0,b)
tn , 0.8S

(0,b)
tn }

are available at the beginning of each year tn. As for the underlying, both monthly and

yearly rebalancing are considered in numerical experiments. Yearly time-steps are used for

all hedging instruments (i.e. N = 10) except when hedging is done with the underlying on a

monthly basis (i.e. N = 120).

Remark 3.7. The methodological approach of Section 3.3 is in no way dependent on this

choice of hedging instruments.

3.4.1.1 Global hedging penalties

The penalties studied for global hedging are the MSE and SMSE, and the respective opti-

mization procedures are referred to as quadratic deep hedging (QDH) and semi-quadratic

deep hedging (SQDH). While the MSE penalizes equally hedging gains and losses, the SMSE

is more in line with the actual objectives of the hedger as it corresponds to an agent who

strictly penalizes hedging losses proportionally to their squared values. It is important to

note that the computational cost of the deep hedging algorithm is closed to invariant to

the choice of loss function. The motivation for assessing the effectiveness of QDH is the

popularity of the quadratic penalty in the global hedging literature.

3.4.1.2 LSTM training

The training procedure for neural networks is done as described in Section 3.2 with a

training set of 350,000 paths with 150 epochs9 and a mini-batch size of 1,000. More precisely,

mini-batches used for the SGD procedure are sampled exclusively from this training set.

9 One epoch is defined as a complete iteration of SGD on the training set. For a training set and mini-batch
size of respectively 350,000 and 1,000, one epoch consists of a total of 350 updates of parameters as in (3.12).
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Furthermore, a validation set of 75,000 additional independent paths is used to find the

optimal set of trainable parameters out of the 150 epochs. Indeed, at the end of each epoch,

the hedging statistic associated to the penalty being optimized (i.e. MSE for QDH and SMSE

for SQDH) is evaluated on the validation set at the current values of the trainable parameters.

Following the training methodology commonly considered in the literature (see, for instance,

Goodfellow et al. (2016)), the optimal set of trainable parameters is approximated by the

one that minimizes the empirical cost function on the validation set out of 150 epochs. The

author wants to highlight that the validation set is used exclusively for selecting the trainable

parameters out of the 150 epochs, not to perform the SGD procedure with the latter using

only the training set.

All hedging statistics values reported in subsequent sections with QDH or SQDH procedures

are from a test set (out-of-sample) of 75,000 paths. The structure of the LSTM is as in

Definition 3.2 with two LSTM cells (i.e. H = 2) and 24 neurons per cell (i.e. d1 = d2 = 24).

The Adam optimizer (Kingma and Ba (2014)) is used for all examples with a learning rate

hyperparameter of 0.01 for QDH and 0.01
6

for SQDH since a smaller learning rate was found

to improve the training under the SMSE penalty.

Remark 3.8. The training procedure considered in this paper could also be used for selecting

hyperparameters with the validation set, for instance the number of LSTM cells or neurons

per cell. The interested reader is referred to Chapter 11.4 of Goodfellow et al. (2016) for

examples of well-known procedures for selecting hyperparameters. However, additional results

not presented in this paper show that the use of an LSTM with more capacity (additional

LSTM cell) or with less capacity (less neurons per cell) does not impact significantly the

hedging performance of the neural networks. Consequently, qualitative conclusions presented

in this section are robust to different sets of hyperparameters for the neural network, and a

single architecture for LSTMs is considered throughout the rest of the paper.
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3.4.1.3 Local risk minimization

Define {Cδ
tn}

N
n=0 as the discounted cumulative cost process associated to a trading strategy δ:

Cδ
tn := B−1

tn V
δ
tn −G

δ
tn , n = 0, . . . , N.

Contrarily to global hedging procedures, local risk minimization schemes result in hedging

strategies that are not necessarily self-financing. Indeed, the optimization of hedging strategies

under this framework imposes the constraint that the terminal portfolio value exactly matches

the payoff of the contingent claim, i.e. V δ
T = Φ(S

(0,b)
T , ZT ) P-a.s., which can always be

respected by the injection or withdrawal of capital at time T . Under this constraint, local risk

minimization optimizes at each time-step starting backward from time T positions in the assets

which minimize the expected squared incremental cost. More precisely, for n = N − 1, . . . , 0,

the optimization aims at finding (δ
(0:D)
tn+1

, δ
(B)
tn+1

) that minimize E[(Cδ
tn+1
− Cδ

tn)2|Ftn ] at time

tn with the constraint that V δ
T = Φ(S

(0,b)
T , ZT ). The optimal initial capital amount to invest,

denoted as V ?
0 hereafter, is also obtained as a result of this scheme. Once the trading strategy

δ is optimized with the local risk minimization procedure, a self-financing strategy can be

constructed by setting the initial portfolio value as V δ
0 = V ?

0 , by following the optimized

trading strategy strictly for the risky assets (i.e. δ
(0:D)
tn for n = 1, . . . , N) and by adjusting

positions in the risk-free asset such that the trading strategy is self-financing (i.e. respecting

(3.5)). Hedging statistics reported in the numerical experiments of this section with local

risk minimization are self-financing as per the latter description and are from the work of

Coleman et al. (2007). For examples of numerical schemes to implement local risk procedures,

the reader is referred to Coleman et al. (2006) or Augustyniak et al. (2017).

The motivation for benchmarking global hedging policies to local risk minimization is twofold.

First, local risk procedures are popular for the risk mitigation of VAs guarantees in the

literature due to their tractability in high-dimensional setups (e.g. Coleman et al. (2006),

Coleman et al. (2007), Kélani and Quittard-Pinon (2017), Trottier et al. (2018b) and Trottier
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et al. (2018a)). Second, in the context of hedging European vanilla options of maturity one

to three years, Augustyniak et al. (2017) showed that global quadratic hedging procedures

trading exclusively the underlying stock improve upon the downside risk reduction over local

risk minimization schemes. The question remains if the latter holds for longer maturities and

when liquid options are used as hedging instruments.

3.4.1.4 Hedging metrics

The hedging metrics considered for the benchmarking of the different trading policies include

the root-mean-square error (RMSE) and the semi-RMSE (i.e. the root of the SMSE statistic).

Tail risk metrics are also studied with the Value-at-Risk (VaR) and the Conditional Value-

at-Risk (CVaR, Rockafellar and Uryasev (2002)). For an absolutely continuous integrable

random variable10, the CVaR at confidence level α has the following representation:

CVaRα(X) := E[X|X ≥ VaRα(X)], α ∈ (0, 1), (3.13)

where VaRα(X) := min
x
{x : P(X ≤ x) ≥ α} is the VaR at confidence level α. The CVaRα

represents tail risk by averaging all hedging errors larger than the αth percentile of the

distribution of hedging errors (i.e. the VaRα metric). Recall that all hedging statistics

presented in subsequent sections with neural networks are estimated with conventional

empirical estimators on the test set. These hedging statistics are thus obtained in an

out-of-sample fashion.

3.4.2 Dynamics of financial market

In this paper, the choice of risky assets dynamics is motivated by the objective of studying

the optimized global policies under different stylized features of the financial market. It is

important to recall that deep hedging is a model-free reinforcement learning approach: the

10 All dynamics assumed for the underlying in Section 3.4 imply that hedging errors are absolutely
continuous integrable random variables.

69



LSTM is never explicitly told the dynamics of the financial market during its training phase.

Instead, the neural network must learn through many simulations of a market generator how

to dynamically adapt its embedded policy, i.e. its trainable parameters, with the objective

of minimizing the expected loss function of the resulting hedging errors. The current work

studies the impact of the presence of jump risk on optimized global policies by considering the

Merton jump-diffusion model (MJD, Merton (1976)) as well as the Black-Scholes model (BSM,

Black and Scholes (1973)). Note that parameters values for the BSM and MJD dynamics

are the same as in the ones from Coleman et al. (2007) and are presented respectively in

Table 3.1 and Table 3.2. It is worth noting that while the model parameters imply somewhat

similar periodic means and standard deviations for log-returns, the MJD dynamics entails

large and volatile negative jumps occurring on average once over the lifetime of the lookback

option to be hedged.

Moreover, both stochastic dynamics for risky assets considered in this paper imply that the

market is arbitrage-free. By the first fundamental theorem of asset pricing, there exist a

probability measure Q equivalent to P such that {e−rtnS(b,0)
tn }Nn=0 is an (F,Q)-martingale (see,

for instance, Delbaen and Schachermayer (1994)). Let ytn := log(S
(0,b)
tn /S

(0,b)
tn−1

) be the periodic

log-return of the underlying, and {εPtn}
N
n=1 and {εQtn}Nn=1 be sequences of independent standard

normal random variables under respectively P and Q. The dynamics of both models are now

formally defined.

3.4.2.1 BSM under P

The discrete BSM assumes that log-returns are i.i.d. normal random variables of periodic

mean and variance of respectively (µ− σ2

2
)∆N and σ2∆N :

ytn =

(
µ− σ2

2

)
∆N + σ

√
∆Nε

P
tn , n = 1, . . . , N, (3.14)

where µ ∈ R and σ > 0 are the yearly model parameters.

70



3.4.2.2 MJD under P

The MJD model extends upon the idealized Black-Scholes dynamics with the presence of

random jumps to the underlying stock price. More precisely, let {ζPk }∞k=1 be independent

normal random variables of mean µJ and variance σ2
J , and {NP

tn}
N
n=0 be values of a Poisson

process of intensity λ > 0 where {ζPk }∞k=1, {NP
tn}

N
n=0 and {εPtn}

N
n=1 are independent. Periodic

log-returns under this model can be stated as follows11:

ytn =

(
α− λ

(
eµJ+σ2

J/2 − 1
)
− σ2

2

)
∆N + σ

√
∆Nε

P
tn +

NP
tn∑

k=NP
tn−1

+1

ζPk , (3.15)

where {α, µJ , σJ , λ, σ} are the model parameters with {α, λ, σ} being on a yearly scale, α ∈ R

and σ > 0.

3.4.2.3 BSM under Q

By a discrete-time version of the Girsanov theorem, there exist an F-adapted market price of

risk process {ϕtn}Nn=1 such that

εQtn = εPtn − ϕtn , n = 1, . . . , N. (3.16)

For n = 1, . . . , N , let ϕtn := −
√

∆N

(
µ−r
σ

)
. By replacing εPtn = εQtn + ϕtn into (3.14), it is

straightforward to obtain the Q-dynamics of log-returns:

ytn =

(
r − σ2

2

)
∆N + σ

√
∆Nε

Q
tn , n = 1, . . . , N. (3.17)

11 We adopt the convention that if NP
tn = NP

tn−1
, then:

NP
tn∑

k=NP
tn−1

+1

ζPk = 0.
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The pricing of European calls and puts used as hedging instruments under this model is done

with the well-known Black-Scholes closed-form solutions.

3.4.2.4 MJD under Q

The change of measure considered under the MJD dynamics is the same as the one from

Coleman et al. (2007). Let {ζQk }∞k=1 be independent normal random variables under Q of

mean µ̃J and variance σ̃2
J , and {NQ

tn}Nn=0 be values of a Poisson process of intensity λ̃ > 0

where {ζQk }∞k=1, {NQ
tn}Nn=0 and {εQtn}Nn=1 are independent. The Q-dynamics of log-returns can

be stated as follows:

ytn =

(
r − λ̃

(
eµ̃J+σ̃2

J/2 − 1
)
− σ2

2

)
∆N + σ

√
∆Nε

Q
tn +

NQ
tn∑

k=NQ
tn−1

+1

ζQk ,

where σ̃J := σJ , µ̃J := µJ − (1 − γ)σ2
J , λ̃ := λe−(1−γ)(µJ− 1

2
(1−γ)σ2

J ) with γ ≤ 1 as the risk

aversion parameter which is set for all experiments as γ = −1.5. Note that the value of the

risk aversion parameter implies more frequent and more negative jumps on average under

Q than under P by increasing λ̃ and decreasing µ̃J . The pricing of European calls and puts

used as hedging instruments under the MJD model is done with the well-known closed-form

solutions.

Table 3.1: Parameters of the Black-Scholes model.

µ σ

0.10 0.15

Notes: Both µ and σ are on an annual basis.

Table 3.2: Parameters of the Merton jump-diffusion model.

α σ λ µJ σJ γ

0.10 0.15 0.10 −0.20 0.15 −1.5

Notes: α, σ and λ are on an annual basis.
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3.4.3 Benchmarking of hedging policies

In this section, the hedging effectiveness of QDH, SQDH and local risk minimization is

assessed under various market settings. The analysis starts off in Section 3.4.3.1 by comparing

QDH and local risk minimization performance as both approaches are optimized with a

quadratic criterion; the benchmarking of global hedging policies embedded in QDH and

SQDH procedures is done afterwards in Section 3.4.3.2.

3.4.3.1 QDH and local risk minimization benchmark

Table 3.3 and Table 3.4 present hedging statistics of QDH and local risk minimization under

respectively the BSM and MJD model.12 For comparative purposes, the initial capital

investment is set to the optimized value obtained as a result of the local risk minimization

procedure of Coleman et al. (2007) for all examples. Note that this choice naturally puts

QDH procedures at a disadvantage. Also, since QDH procedures optimize the MSE penalty,

this global procedure is expected to outperform local risk minimization on the RMSE metric.

The question remains if QDH also improves upon the downside risk captured by the VaR0.95

and CVaR0.95 statistics.

Numerical results under both dynamics demonstrate that QDH outperforms local risk

minimization across all downside risk metrics and all hedging instruments. Indeed, the risk

reduction obtained with QDH over local risk minimization is most impressive with six options:

the percentage decrease for respectively the RMSE, VaR0.95 and CVaR0.95 statistics are of

33%, 52% and 36% under the BSM and of 27%, 38% and 30% under the MJD model. As for

hedging exclusively with the underlying stock on a monthly and yearly basis or when trading

only two options, the improvement of QDH over local risk minimization for the three hedging

statistics ranges between 5% to 13% under the BSM and 8% to 20% under the MJD model,

except for the VaR0.95 metric with the stock on a monthly basis under the MJD dynamics

12 The choice of hedging statistics presented in Table 3.3 and Table 3.4 are the ones considered in Coleman
et al. (2007). Additional hedging statistics for QDH are presented in Section 3.4.3.2.
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Table 3.3: Benchmarking of quadratic deep hedging (QDH) and local risk minimization to

hedge the lookback option of T = 10 years under the BSM.

Local risk minimization QDH

Statistics V δ
0 Mean RMSE VaR0.95 CVaR0.95 Mean RMSE VaR0.95 CVaR0.95

Stock (year) 13.9 0.3 15.9 28.5 43.2 −0.2 14.8 25.5 41.2

Stock (month) 17.3 0.1 5.5 8.9 13.0 0.0 4.9 7.7 12.2

Two options 17.4 −0.1 4.6 7.0 11.9 −0.1 4.2 6.1 11.2

Six options 17.7 0.0 1.6 2.4 3.8 −0.2 1.1 1.2 2.4

Notes: Hedging statistics under the BSM with µ = 0.1, σ = 0.15, r = 0.03 and S
(0,b)
0 = 100

(see Section 3.4.2.1 for model description under P and Section 3.4.2.3 for the risk-neutral
dynamics used for option pricing). Hedging instruments: monthly and yearly underlying,
yearly ATM call and put options (two options) or three yearly calls and puts of strikes

K = {S(0,b)
tn , 1.1S

(0,b)
tn , 1.2S

(0,b)
tn } and K = {S(0,b)

tn , 0.9S
(0,b)
tn , 0.8S

(0,b)
tn } (six options). Results for

local risk minimization and initial portfolio values V δ
0 are from Table 3 of Coleman et al.

(2007). Results for QDH are computed based on 75,000 independent paths generated from
the BSM under P. Training of the neural networks is done as described in Section 3.4.1.2.

which achieves 30% reduction. These results clearly demonstrate that in the risk management

of the lookback option, the use of global procedures rather than local procedures leads to

significantly better trading strategies. The conclusion that global procedures outperform

local procedures for long-term contingent claims when trading exclusively the underlying or

multiple shorter-term options for the setting considered in this study is a novel qualitative

contribution of this paper and motivates the use of neural networks to represent global

hedging policies for the risk mitigation of long-term options.

3.4.3.2 QDH and SQDH benchmark

Having shown the outperformance of QDH over local risk minimization in the previous

section, the benchmarking of QDH and SQDH policies is now examined. The exact same

setup as in the previous section is considered, except for the initial capital investment of

trading strategies which is set as the risk-neutral price of the lookback option under both
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Table 3.4: Benchmarking of quadratic deep hedging (QDH) and local risk minimization to

hedge the lookback option of T = 10 years under the MJD model.

Local risk minimization QDH

Statistics V δ
0 Mean RMSE VaR0.95 CVaR0.95 Mean RMSE VaR0.95 CVaR0.95

Stock (year) 19.5 0.4 21.4 38.4 60.5 0.1 19.5 33.1 55.8

Stock (month) 22.8 0.1 13.0 23.5 38.4 0.2 11.0 16.3 33.5

Two options 24.6 −0.1 6.0 8.4 15.2 0.1 5.2 6.7 12.9

Six options 25.2 0.0 1.9 2.8 4.6 0.2 1.3 1.7 3.2

Notes: Hedging statistics under the MJD model with α = 0.1, σ = 0.15, λ = 0.1, µJ =
−0.2, σJ = 0.15, γ = −1.5, r = 0.03 and S

(0,b)
0 = 100 (see Section 3.4.2.2 for model de-

scription under P and Section 3.4.2.4 for the risk-neutral dynamics used for option pricing).
Hedging instruments: monthly and yearly underlying, yearly ATM call and put options
(two options) or three yearly calls and puts of strikes K = {S(0,b)

tn , 1.1S
(0,b)
tn , 1.2S

(0,b)
tn } and

K = {S(0,b)
tn , 0.9S

(0,b)
tn , 0.8S

(0,b)
tn } (six options). Results for local risk minimization and initial

portfolio values V δ
0 are from Table 4 of Coleman et al. (2007). Results for QDH are computed

based on 75,000 independent paths generated from the MJD model under P. Training of the
neural networks is done as described in Section 3.4.1.2.

dynamics for all hedging instruments: 17.7$ for BSM and 25.3$ for MJD.13 This choice is

motivated by the objective of comparing on common grounds the results obtained across the

different hedging instruments for both global hedging approaches. Table 3.5 and Table 3.6

present descriptive statistics of the hedging shortfall obtained with QDH and SQDH under

respectively the BSM and MJD model.

Numerical results indicate that as compared to QDH, SQDH policies result in downside risk

metrics two to three times smaller for almost all examples and earn significant gains (i.e.

negative mean hedging errors) across all hedging instruments. While QDH minimizes the

RMSE statistic, the downside risk captured by the semi-RMSE, VaRα and CVaRα statistics

for α equal to 0.95 and 0.99 are always significantly reduced with SQDH policies as compared

to QDH policies. Indeed, the downside risk reduction with SQDH over QDH in the latter

hedging statistics ranges between 51% to 85% under the BSM and 45% to 76% under the

MJD model. These impressive gains in risk reduction can be attributed to the fact that

13 Risk-neutral prices of the lookback option were estimated with simulations for both dynamics.
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Table 3.5: Benchmarking of quadratic deep hedging (QDH) and semi-quadratic deep hedging

(SQDH) to hedge the lookback option of T = 10 years under the BSM.

Statistics Mean RMSE semi-RMSE VaR0.95 VaR0.99 CVaR0.95 CVaR0.99 Skew

QDH

Stock (year) −0.5 14.8 12.0 25.8 49.8 41.4 69.9 1.9

Stock (month) 0.2 4.9 3.6 7.9 14.5 12.1 19.4 0.4

Two options 0.0 4.2 3.2 6.5 14.0 11.5 20.9 1.9

Six options 0.0 1.1 0.8 1.2 2.8 2.4 5.1 9.9

SQDH

Stock (year) −32.1 43.8 4.4 6.4 21.1 16.0 32.7 −1.0

Stock (month) −10.1 15.0 1.5 2.5 6.1 4.9 9.4 −1.5

Two options −5.4 10.0 1.6 1.3 5.5 4.1 9.8 −2.3

Six options −0.9 2.2 0.4 0.2 1.0 0.8 2.0 −5.0

Notes: Hedging statistics under the BSM with µ = 0.1, σ = 0.15, r = 0.03, S
(0,b)
0 = 100

and V δ
0 = 17.7 for all examples (see Section 3.4.2.1 for model description under P and

Section 3.4.2.3 for the risk-neutral dynamics used for option pricing). Hedging instruments :
monthly and yearly underlying, yearly ATM call and put options (two options) or three yearly

calls and puts of strikes K = {S(0,b)
tn , 1.1S

(0,b)
tn , 1.2S

(0,b)
tn } and K = {S(0,b)

tn , 0.9S
(0,b)
tn , 0.8S

(0,b)
tn }

(six options). Results for each penalty are computed based on 75,000 independent paths
generated from the BSM under P. Training of the neural networks is done as described in
Section 3.4.1.2.

QDH schemes penalize equally upside and downside risk, whereas SQDH procedures strictly

penalize hedging losses proportionally to their squared values. Furthermore, hedging statistics

also indicate that SQDH policies achieve significant gains under both models and across

all hedging instruments with a lesser extend for six options. Hedging with the underlying

stock on a yearly basis results in the most expected gains, followed by the stock on a

monthly basis, two options and six options. All of these results clearly demonstrate that

SQDH policies should be prioritized over QDH policies as they are tailor-made to match

the financial objectives of the hedger by always significantly reducing the downside risk as

well as earning positive returns on average. Section 3.4.4 that follows will shed some light

on specific characteristics of the SQDH policies which result in these large average hedging
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Table 3.6: Benchmarking of quadratic deep hedging (QDH) and semi-quadratic deep hedging

(SQDH) to hedge the lookback option of T = 10 years under the MJD model.

Statistics Mean RMSE semi-RMSE VaR0.95 VaR0.99 CVaR0.95 CVaR0.99 Skew

QDH

Stock (year) −1.6 19.8 15.6 32.3 66.4 54.5 95.4 2.1

Stock (month) 0.2 11.2 9.4 15.7 42.8 32.6 64.6 3.2

Two options 0.0 5.2 3.8 6.7 15.4 12.7 25.1 1.6

Six options −0.1 1.3 0.9 1.4 3.6 2.9 6.2 2.3

SQDH

Stock (year) −35.2 49.7 6.7 11.4 31.7 24.6 47.7 −0.8

Stock (month) −22.8 33.8 4.2 6.5 18.3 14.3 29.6 −1.1

Two options −5.9 11.2 1.7 2.2 7.1 5.5 12.2 −2.5

Six options −1.3 3.1 0.5 0.3 1.4 1.1 2.9 −4.8

Notes: Hedging statistics under the MJD model with α = 0.1, σ = 0.15, λ = 0.1, µJ =
−0.2, σJ = 0.15, γ = −1.5, r = 0.03, S

(0,b)
0 = 100 and V δ

0 = 25.3 for all examples (see
Section 3.4.2.2 for model description under P and Section 3.4.2.4 for the risk-neutral dynamics
used for option pricing). Hedging instruments: monthly and yearly underlying, yearly
ATM call and put options (two options) or three yearly calls and puts of strikes K =

{S(0,b)
tn , 1.1S

(0,b)
tn , 1.2S

(0,b)
tn } and K = {S(0,b)

tn , 0.9S
(0,b)
tn , 0.8S

(0,b)
tn } (six options). Results for each

penalty are computed based on 75,000 independent paths generated from the MJD model.
Training of the neural networks is done as described in Section 3.4.1.2.

gains and downside risk reduction. Moreover, it is also interesting to note that the distinct

treatment of hedging shortfalls by each penalty has a direct implication on the skewness

statistic. Indeed, by strictly optimizing squared hedging losses, SQDH effectively minimize

the right tail of hedging errors, which entails negative skewness. As for QDH, the positive

skewness for all examples can be explained by the fact that the payoff of the lookback option

is highly positively asymmetric, since it is bounded below at zero and has no upper bound.

Lastly, Coleman et al. (2007) observed with local risk minimization that while hedging with

six options always results in more effective trading strategies, the relative performance of

using yearly ATM call and put options (i.e. two options) or the underlying on a monthly

basis depends on the dynamics of the risky asset. The same conclusions can be made from
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the benchmarking results obtained with both global hedging procedures presented in this

study. Indeed, hedging statistics of both QDH and SQDH policies under the Black-Scholes

dynamics in Table 3.5 show that downside risk metrics are for the most part only slightly

better when trading two options as compared to hedging with the underlying stock on a

monthly basis. On the other hand, values from Table 3.6 indicate that hedging with two

options under the MJD model result in downside risk metrics at least two times smaller than

with the stock on a monthly basis for both QDH and SQDH. This observation stems from

the fact that hedging jump risk with options is significantly more effective than with the

underlying. Thus, hedging statistics reported in this paper show that the observation made

by Coleman et al. (2007) with respect to the significant improvement in hedging effectiveness

of local risk minimization with options in the presence of jump risk also holds for both QDH

and SQDH policies.

3.4.4 Qualitative characteristics of global policies

While the previous section examined the hedging performance of QDH and SQDH with

various hedging instruments and different market scenarios, the current section provides novel

insights into specific characteristics of the optimized global policies. The analysis starts off by

comparing the average equity risk exposure of QDH and SQDH policies, also called average

exposure for convenience, with the same dynamics for the underlying as in previous sections

(i.e. BSM and MJD model). The motivation of the latter is to assess if either the MSE or

SMSE penalty result in hedging policies more geared towards being long equity risk and are

thus earning the equity risk premium. In this paper, the equity risk exposure is measured as

the average portfolio delta over one complete path of the financial market. More formally, for

(δ
(0:D)
tn+1

, δ
(B)
tn+1

) given and fixed, the portfolio delta at the beginning of year tn denoted as ∆̃
(pf)
tn

78



is defined as

∆̃
(pf)
tn :=

∂V δ
tn

∂S
(0,b)
tn

=
∂

∂S
(0,b)
tn

(
δ

(0:D)
tn+1

• S̄
(b)
tn + δ

(B)
tn+1

Btn

)
= δ

(0)
tn+1

+
D∑
j=1

δ
(j)
tn+1

∆̃(j),

where ∆̃(j) is the jth option delta (i.e. ∆̃(j) =
∂S

(j,b)
tn

∂S
(0,b)
tn

for j = 1, . . . , D). Note that ∆̃(j) is time-

independent since the calls and puts used for hedging are always of the same characteristics

at each trading date (i.e. same moneyness and maturity) and both risky asset models

are homoskedastic, which entails that the underlying returns have the same conditional

distribution for all time-steps. The ∆̃(j) can be computed with the well-known closed form

solutions under both models. Average exposure values reported hereafter are computed as

the average portfolio delta over Ñ simulated paths:

∆̄(pf) :=
1

ÑN

Ñ∑
k=1

N−1∑
n=0

∆̃
(pf)
tn,k

,

where ∆̃
(pf)
tn,k

is the time-tn portfolio delta of the kth simulated path. Note that all average

exposure results presented below are from a test set of Ñ = 75,000 paths.

3.4.4.1 Average exposure results

Table 3.7 presents average exposures of QDH and SQDH policies with the same market setup

as in previous sections with respect to hedging instruments, model parameters and lookback

option to hedge. The initial capital investments are again set as the risk-neutral price of the

lookback option under each dynamics (i.e. 17.7$ and 25.3$ respectively for BSM and MJD).

Numerical results indicate that on average, SQDH policies are significantly more bullish than

QDH policies under both dynamics and for all hedging instruments with a lesser extend
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Table 3.7: Average equity exposures with quadratic deep hedging (QDH) and semi-quadratic

deep hedging (SQDH) for the lookback option of T = 10 years under the BSM and MJD

model.

BSM MJD

QDH SQDH QDH SQDH

Stock (year) −0.10 0.18 −0.14 0.17

Stock (month) −0.10 −0.01 −0.15 0.07

Two options −0.12 −0.06 −0.10 −0.04

Six options −0.12 −0.11 −0.10 −0.08

Notes: Average equity exposures under the BSM and MJD model with S
(0,b)
0 = 100 and

r = 0.03. Both models dynamics under P and Q are described in Section 3.4.2 (see Table 3.1
and Table 3.2 for parameters values). Initial capital investments are respectively of 17.7$
and 25.3$ under BSM and MJD. Hedging instruments: monthly and yearly underlying,
yearly ATM call and put options (two options) or three yearly calls and puts of strikes

K = {S(0,b)
tn , 1.1S

(0,b)
tn , 1.2S

(0,b)
tn } and K = {S(0,b)

tn , 0.9S
(0,b)
tn , 0.8S

(0,b)
tn } (six options). Results

for QDH and SQDH are computed based on 75,000 independent paths generated from the
BSM and MJD model under P. Training of the neural networks is done as described in
Section 3.4.1.2.

when trading six options. This characteristic of SQDH policies to be more geared towards

being long equity risk through a larger average exposure is most important when trading the

underlying stock on a yearly basis, followed by hedges with the stock on a monthly basis,

with two options and with six options. The observation that the average exposure of SQDH

policies is only slightly larger than the average exposure of QDH policies when hedging with

six options is consistent with benchmarking results presented in previous sections. Indeed,

values from Table 3.5 and Table 3.6 show that the absolute difference between the hedging

statistics obtained with QDH and SQDH policies is by far the smallest with six options. The

latter naturally implies that the hedging positions of both global hedging procedures are on

average more similar with six options than with the other hedging instruments, which thus

results in relatively closer average equity exposure.

One direct implication of the larger average exposure of SQDH policies as compared to QDH

policies is that in the risk management of the lookback option, SQDH should result in positive
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expected gains. This was in fact observed in the benchmarking of global policies presented in

Table 3.5 and Table 3.6, where SQDH resulted in negative mean hedging error statistics (i.e.

mean hedging gains) under both risky assets dynamics. It is worth noting that the work of

Trottier et al. (2018a) proposed local risk minimization strategies for long-term options which

also exhibited positive average returns and important downside risk reduction as compared

to delta-hedging strategies through larger equity risk exposures.

3.4.4.2 Analysis of SQDH bullishness

The distinctive feature of SQDH policies to hold a larger average equity exposure than with

QDH can firstly be explained by the impact of hedging gains and losses on the optimized

policies as measured by each penalty. On the one hand, by minimizing the MSE statistic in a

market with positive expected log-returns for the underlying stock as implied by both models

parameters values, QDH policies have to be less bullish whenever the hedging portfolio value

at maturity is expected to be larger than the lookback option payoff. On the other hand,

SQDH policies are strictly penalized for hedging losses proportionally to their squared values,

not for hedging gains. The latter entails that SQDH policies are not constrained to reduce

their equity risk exposure when the hedging portfolio value is expected to be larger than the

lookback option payoff. The second important factor which contributes to SQDH bullishness

specifically when hedging is done with the stock is the capacity of deep agents to learn to

benefit from time diversification of risk. In the context of this study, time diversification of

risk refers to the fact that investing in stocks over a long-term horizon reduces the risk of

observing large losses as compared to short-term investments. Average exposure values in

Table 3.7 indicate that deep agents hedging with the underlying and penalized with the SMSE

have learned to hold a larger equity risk exposure than under the MSE penalty to benefit

simultaneously from the positive expected returns of the underlying and from the downside

risk reduction with time diversification of risk. This observation is most important when

trading the underlying stock with yearly rebalancing, where SQDH policies obtained average

81



exposures of 0.18 and 0.17 under respectively the Black-Scholes and the MJD dynamics as

compared to −0.10 and −0.14 with QDH.

Moreover, it is very interesting to note that the deep agents rely more on time diversification

of risk in the presence of jump risk, i.e. with the MJD dynamics. Indeed, the average exposure

difference between SQDH and QDH policies when trading the stock is significantly larger

under the MJD dynamics with a difference of 0.31 and 0.22 for yearly and monthly trading as

compared to 0.28 and 0.09 under the BSM.14 The latter observations can be explained by the

fact that as shown in Section 3.4.3.2, hedging exclusively with the underlying in the presence

of jump risk is inefficient as compared to trading options. Thus, in the presence of jump risk,

SQDH agents learn to rely more on time diversification of risk by having on average larger

positions in the underlying as compared to SQDH agents trained on a Black-Scholes dynamics.

These findings thus provide additional evidence that the deep hedging algorithm is in fact

model-free in the sense that the neural networks are able to effectively adapt their trading

policies to different stylized facts of risky asset dynamics only by experiencing simulations of

the financial market exhibiting these features.

3.5 Conclusion

This paper studies global hedging strategies of long-term financial derivatives with a rein-

forcement learning approach. A similar financial market setup to the work of Coleman et al.

(2007) is considered by studying the impact of equity jump risk on the hedging effectiveness

of global procedures for segregated funds GMMBs. In the context of this paper, the latter

guarantee is equivalent to holding a short position in a long-term lookback option of fixed

maturity. The deep hedging algorithm of Buehler et al. (2019b) is applied to optimize long

short-term memory networks representing global hedging policies with the mean-square error

(MSE) and semi-mean-square error (SMSE) penalties and with various hedging instruments

14 For instance, the average exposure difference between SQDH and QDH with the underlying on a yearly
basis under the MJD model is 0.17− (−0.14) = 0.31.
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(e.g. standard options and the underlying). Monte Carlo simulations are performed under

the Black-Scholes model (BSM) and the Merton jump-diffusion (MJD) model to compare

the hedging effectiveness of quadratic deep hedging (QDH) and semi-quadratic deep hedging

(SQDH).

Numerical results demonstrate that under both dynamics and across all trading instruments,

SQDH results in hedging policies which simultaneously reduce downside risk and increase

expected returns as compared to QDH procedures. The downside risk reduction achieved

with SQDH over QDH ranges between 51% to 85% under the BSM and 45% to 76% under

the MJD model. Numerical experiments also indicate that QDH outperforms the local risk

minimization scheme of Coleman et al. (2007) across all downside risk metrics and all hedging

instruments. These results clearly show that SQDH policies should be prioritized over other

dynamic hedging schemes (e.g. QDH, local risk minimization and greek-based hedging) as

they are tailor-made to match the financial objectives of the hedger by significantly reducing

downside risk as well as resulting in large expected positive returns.

Monte Carlo experiments are also done to provide novel qualitative insights into specific

characteristics of the optimized long-term global policies. Numerical results show that on

average, SQDH policies are significantly more bullish than QDH policies for every example

considered. Analysis presented in this paper indicate that the bullishness of SQDH policies

stems from the impact of hedging gains and losses on the optimized policies as measured

by each penalty. Furthermore, an additional factor which contributes to the larger average

equity exposure of SQDH policies when hedging exclusively with the underlying stock is the

capacity of deep agents to learn to benefit from time diversification of risk. The latter is

shown to be most important in the presence of equity jump risk, where deep agents penalized

with the SMSE learned by experiencing many simulations of the financial market to rely

more on time diversification risk through larger positions in the underlying as compared to

training on the Black-Scholes dynamics due to the lesser efficiency of hedging with the stock

in the presence of jumps.
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Further research in the area of global hedging for long-term contingent claims with the deep

hedging algorithm would prove worthwhile. The analysis of the impact of additional equity

risk factors (e.g. volatility risk and regime risk) on the optimized policies would be of interest.

The same methodological approach presented in this paper could be applied with the addition

of the latter equity risk factors with closed to no modification to the algorithm. Moreover,

robustness analysis of the optimized policies when dynamics experienced slightly differ from

the ones used to train the neural networks would prove worthwhile. Also, the impact of the

inclusion of realistic transaction costs for trading hedging instruments could be examined by

following the methodology of the original work of Buehler et al. (2019b).

3.6 Pseudo-code deep hedging

Algorithm 3.1 presents pseudo-code of the training procedure for neural networks formally

introduced in Section 3.3.2. More precisely, this pseudo-code presents the procedure for a

one-step update of the set of trainable parameters, i.e. from θj to θj+1. For convenience, the

approach presented is for the case of trading exclusively the underlying, but it is trivial to

generalize for the case of trading shorter-term options. Note that the pseudo-code is applicable

under both the BSM and MJD dynamics (see step 6 below). Also, subscript i represents

the ith simulated path among the mini-batch of size Nbatch. Lastly, recall that a GitHub

repository with samples of codes in Python for the training procedure of neural networks is

available online: github.com/alexandrecarbonneau. The implementation replicates Table 3.5

and Table 3.7 under the BSM, and can easily be adapted to reproduce all results presented

in Section 3.4.
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Algorithm 3.1 Pseudo-code deep hedging when trading underlying stock
Input: θj
Output: θj+1

1: for i = 1, . . . , Nbatch do . Loop over each path of mini-batch
2: Xt0,i = [log(S

(0,b)
0,i ), log(Z0,i), V

δ
0,i/V

δ
0,i] . Time-0 feature vector of Fθ

3: for n = 0, . . . , N − 1 do
4: Ytn,i ← time-tn output of LSTM Fθ with θ = θj
5: δ

(0)
tn+1,i

= Ytn,i
6: ytn+1,i

∼ (3.14) or (3.15) . Sample next log-return

7: S
(0,b)
tn+1,i

= S
(0,b)
tn,i

eytn+1,i

8: if btn+1c = m and m ∈ {0, . . . , T − 1} then

9: Ztn+1,i = max(S
(0,b)
0,i , . . . , S

(0,b)
m,i )

10: else if tn+1 = T then

11: Ztn+1,i = max(S
(0,b)
0,i , . . . , S

(0,b)
T−1,i)

12: end if
13: V δ

tn+1,i
= er∆NV δ

tn,i + δ
(0)
tn+1,i

(S
(0,b)
tn+1,i

− er∆NS
(0,b)
tn,i

) . See (3.10) for details

14: Xtn+1,i = [log(S
(0,b)
tn+1,i

), log(Ztn+1,i), V
δ
tn+1,i

/V δ
0 ] . Time-tn+1 feature vector of Fθ

15: end for
16: Φ(S

(0,b)
T,i , ZT,i) = max(ZT,i − S(0,b)

T,i , 0)

17: πi,j = Φ(S
(0,b)
T,i , ZT,i)− V δ

T,i

18: end for
19: if L is MSE then
20: Ĵ = 1

Nbatch

∑Nbatch

i=1 π2
i,j

21: else if L is SMSE then
22: Ĵ = 1

Nbatch

∑Nbatch

i=1 π2
i,j1{πi,j>0}

23: end if
24: ηj ← Adam algorithm

25: θj+1 = θj − ηj∇θĴ . ∇θĴ computed with Tensorflow

Notes: Subscript i represents the ith simulated path among the mini-batch of size Nbatch.
Also, the time-0 feature vector is fixed for all paths, i.e. S

(0,b)
0,i = S

(0,b)
0 , Z

(0,b)
0,i = Z

(0,b)
0 and

V δ
0,i = V δ

0 .
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Chapter 4

Deep Equal Risk Pricing of Financial Derivatives with

Multiple Hedging Instruments

Abstract

This paper studies the equal risk pricing (ERP) framework for the valuation of

European financial derivatives. This option pricing approach is consistent with global

trading strategies by setting the premium as the value such that the residual hedging risk

of the long and short positions in the option are equal under optimal hedging. The ERP

setup of Marzban et al. (2020) is considered where residual hedging risk is quantified with

convex risk measures. The main objective of this paper is to assess through extensive

numerical experiments the impact of including options as hedging instruments within

the ERP framework. The reinforcement learning procedure developed in Carbonneau

and Godin (2021b), which relies on the deep hedging algorithm of Buehler et al. (2019b),

is applied to numerically solve the global hedging problems by representing trading

policies with neural networks. Among other findings, numerical results indicate that in

the presence of jump risk, hedging long-term puts with shorter-term options entails a

significant decrease of both equal risk prices and market incompleteness as compared

to trading only the stock. Monte Carlo experiments demonstrate the potential of ERP

as a fair valuation approach providing prices consistent with observable market prices.

Analyses exhibit the ability of ERP to span a large interval of prices through the choice

of convex risk measures which is close to encompass the variance-optimal premium.

Keywords: Equal risk pricing, Deep hedging, Convex risk measure, Reinforcement

learning.
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4.1 Introduction

In the famous setup of Black and Scholes (1973) and Merton (1973), every contingent claim

can be perfectly replicated through continuous trading in the underlying stock and a risk-free

asset. These markets are said to be complete, and derivatives are redundant securities with a

unique arbitrage-free price equal to the initial value of the replicating portfolio. However,

the gigantic size of the derivatives market demonstrates unequivalently that options are

non-redundant and provide additional value above the exclusive trading of the underlying

asset from the standpoint of speculation, risk management and arbitraging (Hull, 2003).

Such value-added of derivatives in the real world stems from market incompleteness which

arises from several stylized features of market dynamics such as discrete-time trading, equity

risk (e.g. jump and volatility risks) and market impact (e.g. trading costs and imperfect

liquidity). In contrast to the complete market paradigm, in incomplete markets, the price of

a derivative cannot be uniquely specified by a no-arbitrage argument since perfect replication

is not always possible.

The problem of determining the value of a derivative is intrinsically intertwined with its

corresponding hedging strategy. On the spectrum of derivative valuation procedures in

incomplete markets, one extreme possibility is the so-called super-hedging strategy, where

the derivative premium is set as the value such that the residual hedging risk of the seller

is nullified. However, the super-hedging premium is in general very large and is thus most

often deemed impractical (Gushchin and Mordecki, 2002). On the other hand, a more

reasonable and practical derivative premium entails that some level of risk cannot be hedged

away and is thus intrinsic to the contingent claim. An additional layer of complexity to the

hedging problem in incomplete markets is in selecting not only the sequence of investments

in trading instruments, but also the category of hedging instruments in the design of optimal

hedges. Indeed, some categories of instruments are more effective to mitigate certain risk

factors than others. For instance, it is well-known that in the presence of random jumps,
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option hedges are much more effective than trading exclusively the underlying stock due

to the convex property of derivatives prices (see, for instance, Coleman et al. (2007) and

Carbonneau (2021)). More generally, the use of option hedges dampens tail risk stemming

from different risk factors (e.g. jump and volatility risks). The focus of this paper lies

precisely on studying a derivative valuation approach called equal risk pricing (ERP) for

pricing European derivatives consistently with optimal hedging strategies trading in various

categories of hedging instruments (e.g. vanilla calls and puts as well as the underlying stock).

The ERP framework introduced by Guo and Zhu (2017) determines the equal risk price (i.e.

the premium) of a financial derivative as the value such that the long and short positions in

the contingent claim have the same residual hedging risk under optimal trading strategies.

An important application of ERP in the latter paper is for pricing derivatives in the presence

of short-selling restrictions for the underlying stock. Various studies have since extended this

approach: Ma et al. (2019) provide Hamilton-Jacobi-Bellman equations for the optimization

problem and establish additional analytical pricing formulas for equal risk prices, He and

Zhu (2020) generalize the problem of pricing derivatives with short-selling restriction for

the underlying by allowing for short trades in a correlated asset and Alfeus et al. (2019)

perform an empirical study of equal risk prices when short selling is banned. One crucial

pitfall of the Guo and Zhu (2017) framework considered in all of the aforementioned papers is

that the optimization problem required to be solved for the computation of equal risk prices

is very complex. Consequently, closed-form solutions are restricted to very specific setups

(e.g. Black-Scholes market) and no numerical scheme has been proposed to account for more

realistic market assumptions.

Marzban et al. (2020) recently extended the ERP framework by considering the use of convex

risk measures under the physical measure to quantify residual hedging risk. A major benefit of

the ERP setup of the latter paper is that it does not require the specification of an equivalent

martingale measure (EMM), which is arbitrary in incomplete markets since there is an infinite

set of EMMs (Harrison and Pliska, 1981). Also, using convex measures to quantify residual
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risk is shown in Marzban et al. (2020) to significantly reduce the complexity of computing

equal risk prices; the optimization problem essentially boils down to solving two distinct

non-quadratic global hedging problems, one for the long and one for the short position in

the option. Dynamic programming equations are provided in Marzban et al. (2020) for the

aforementioned global hedging problems. However, it is well-known that traditional dynamics

programming procedures are prone to the curse of dimensionality when the state and action

spaces gets too large (Powell, 2009). The main objective of this current paper consists in

studying the impact of trading different and possibly multiple hedging instruments on the

ERP framework, which thus necessitates large action spaces. Furthermore, a specific focus

of this study is on assessing the interplay between different equity risk factors (e.g. jump

and volatility risks) and the use of options as hedging instruments. Consequently, large state

spaces are also required to model the dynamics of the underlying stock and to characterize the

physical measure dynamics of the implied volatility of options used as hedging instruments. A

feasible numerical procedure in high-dimensional state and action spaces is therefore essential

to this paper.

Carbonneau and Godin (2021b) expanded upon the work of Marzban et al. (2020) by

developing a tractable solution with reinforcement learning to compute equal risk prices in

high-dimensional state and action spaces. The approach of the foremost study relies on the

deep hedging algorithm of Buehler et al. (2019b) to represent the long and short optimal

trading policy with two distinct neural networks. One of the most important benefits of

parameterizing trading policies as neural networks is that the computational complexity

increases marginally with the dimension of the state and action spaces. Carbonneau and

Godin (2021b) also introduce novel ε-completeness metrics to quantify the level of market

incompleteness which will be used throughout this current study. Several papers have studied

different aspects of the class of deep hedging algorithms: Buehler et al. (2019a) extend

upon the work of Buehler et al. (2019b) by hedging path-dependent contingent claims with

neural networks, Carbonneau (2021) presents an extensive benchmarking of global policies
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parameterized with neural networks to mitigate the risk exposure of very long-term contingent

claims, Cao et al. (2020) show that the deep hedging algorithm provides good approximations

of optimal initial capital investments for variance-optimal hedging problems and Horvath

et al. (2021) deep hedge in a non-Markovian framework with rough volatility models for risky

assets.

The main objective of this paper consist in the assessment of the impact of using multiple

hedging instruments on the ERP framework through exhaustive numerical experiments. To

the best of the authors’ knowledge, this is the first study within the ERP literature that

considers trades involving options in the design of optimal hedges. The performance of

these numerical experiments heavily relies on the use of reinforcement learning procedures

to train neural networks representing trading policies and would be hardly reachable with

other numerical methods. The first key contribution of this paper consists in providing a

broad analysis of the impact of jump and volatility risks on equal risk prices and on our

ε-completeness metrics. These assessments expand upon the work of Carbonneau and Godin

(2021b) in two ways. First, the latter paper conducted sensitivity analyses of the ERP

framework under different risky assets dynamics by trading exclusively with the underlying

stock, not with options. However, the use of options as hedging instruments in the presence

of such risk factors allows for the mitigation of some portion of unattainable residual risk

when trading exclusively with the stock. Second, this current paper examines the sensitivity

of equal risk prices and residual hedging risk to different levels of jump and volatility risks

through a range of empirically plausible model parameters for asset prices dynamics (e.g.

frequent small jumps and rare extreme jumps). The motivation is to provide new qualitative

insights into the interrelation of different stylized features of jump and volatility risks on the

ERP framework that are more extensive than in previous work studies. The main conclusions

of these experiments of pricing 1-year European puts are summarized below.

1) In the presence of downward jump risk, numerical values indicate that hedging with

options entails significant reduction of both equal risk prices and on the level of
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market incompleteness as compared to hedging solely with the underlying stock. The

latter stems from the fact that while the residual hedging risk of both the long and

short positions in 1-year puts decreases when short-term option trades are used for

mitigating the presence of jump risk, a larger decrease is observed for the short position

due to jump risk dynamics entailing predominantly negative jumps. These results

further demonstrate that options are non-redundant securities as it is the case in the

Black-Scholes world.

2) In the presence of volatility risk, numerical experiments demonstrate that while the use

of options as hedging instruments can entail smaller derivative premiums, the impact

can also be marginal and is highly sensitive to the moneyness level of the put option

being priced as well as to the maturity of the traded options. This observation stems

from the fact that contrarily to jump risk, volatility risk impacts both upside and

downside risk. Thus, the use of option hedges does not necessarily benefit more the

short position with a larger decrease of residual hedging risk as observed in the presence

of jump risk.

3) The average price level of short-term options (i.e. average implied volatility level) used

as hedging instruments is effectively reflected into the equal risk price of longer-term

options. This demonstrates the potential of the ERP framework as a fair valuation

approach consistent with observable market prices, which could be used, for instance,

to price over-the-counter or long-term less liquid derivatives with short-term highly

liquid options.

The last contribution of this paper is in benchmarking equal risk prices to derivative premiums

obtained with variance-optimal hedging (Schweizer, 1995). Variance-optimal hedging proce-

dures solve jointly for the initial capital investment and a self-financing strategy minimizing

the expected squared hedging error. The optimized initial capital investment can be viewed as

the production cost of the derivative, since the resulting dynamic trading strategy replicates
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the derivative’s payoff as closely as possible in a quadratic sense.1 The main motivation for

these experiments is the popularity of variance-optimal hedging procedures in the literature

for pricing derivatives. Furthermore, while these two derivative valuation procedures are

both consistent with optimal trading criteria, the underlying global hedging problem of each

approach treats hedging shortfall through a radically different scope. Indeed, equal risk prices

obtained under the Conditional Value-at-Risk measure with large confidence level values,

as considered in this paper, are the result of joint optimizations over hedging decisions to

minimize tail risk of hedging shortfalls which penalize mainly (and most often exclusively)

hedging losses, not gains. Conversely, variance-optimal procedures penalize equally hedging

gains and losses, not solely losses. This benchmarking of equal risk prices to variance-optimal

premiums highlights the flexibility of ERP procedures for derivatives valuation through the

choice of convex risk measure. Indeed, numerical values show that the range of equal risk

prices obtained with several convex measures can be very large and is close to encompass the

variance-optimal premium.

The rest of the paper is as follows. Section 4.2 details the equal risk pricing framework

considered in this study. Section 4.3 presents the numerical scheme to solve the optimization

problem with the use of neural networks. Section 4.4 performs extensive numerical experiments

studying the equal risk pricing framework. Section 4.5 concludes.

4.2 Equal risk pricing framework

This section details the equal risk pricing (ERP) framework considered in this paper, which

is an extension of the derivative valuation scheme introduced in Marzban et al. (2020) with

the addition of multiple hedging instruments.

1 Note that derivatives premiums prescribed by variance-optimal procedures coincide with the risk-neutral
price obtained under the so-called variance-optimal martingale measure (Schweizer, 1996).
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4.2.1 Specification of the financial market

The financial market is in discrete-time with a finite time horizon of T years and N + 1

observation dates characterized by the set T := {tn : tn = n∆N , n = 0, . . . , N} where ∆N :=

T/N . The probability space (Ω,P,F) is equipped with the filtration F := {Fn}Nn=0 satisfying

the usual conditions, where Fn contains all information available to market participants at

time tn. Assume F = FN . P is referred to as the physical probability measure. On each

observation date, a total of D + 2 financial securities can be traded on the market, which

includes a risk-free asset, a non-dividend paying stock and D standard European calls and

puts on the latter stock whose maturity dates fall within T . Let {Bn}Nn=0 be the price process

of the risk-free asset, where Bn := ertn for n = 0, . . . , N with r ∈ R being the annualized

continuously compounded risk-free rate. The definition of the price process for the risky

securities is now outlined. Since some of the tradable options can mature before the final time

horizon T , the set of options that can be traded at the beginning of two different observation

periods could differ. To reflect this modeling feature and properly represent gains of trading

strategies, two different stochastic processes are defined, namely the price of tradable assets

at the beginning and at the end of each period. First, let {S̄(b)
n }Nn=0 be the beginning-of-period

risky price process whose element S̄
(b)
n contains the time-tn price of all risky assets traded

at time tn. More precisely, S̄
(b)
n := [S

(0,b)
n , . . . , S

(D,b)
n ] with S

(0,b)
n and S

(j,b)
n respectively being

the time-tn price of the underlying stock and of the jth option that can be traded at time

tn for j = 1, . . . , D. Similarly, let {S̄(e)
n }N−1

n=0 be the end-of-period risky price process where

S̄
(e)
n := [S

(0,e)
n , . . . , S

(D,e)
n ] with S

(0,e)
n and S

(j,e)
n respectively being the time tn+1 price of the

underlying stock and jth option that can be traded at time tn. Since the underlying asset is

denoted as the risky asset with index 0, S
(0,e)
n = S

(0,b)
n+1 for n = 0, . . . , N − 1. Also, if the jth

option that can be traded at tn matures at time tn+1, then S
(j,e)
n is the payoff of that option.

In that case, S
(j,b)
n+1 is the price of a new contract with the same characteristics in terms of

payoff function, moneyness level and time-to-maturity. Otherwise, S
(j,b)
n+1 = S

(j,e)
n holds for

all time steps and all risky assets (i.e. for j = 0, . . . , D and n = 0, . . . , N − 1). An implicit
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assumption stemming from the latter equality is that trading in risky assets does not impact

their prices. Moreover, for convenience, it is assumed throughout the current work that only

options with a single-period time-to-maturity are traded, i.e. options are traded once and

held until expiry.2

This paper studies the problem of pricing a simple European-type derivative providing a time-

T payoff denoted by Φ(S
(0,b)
N ) ≥ 0.3 For such purposes, the equal risk pricing scheme (Guo

and Zhu, 2017) is considered, which entails optimizing two distinct self-financing dynamic

trading strategies separately for both the long and short positions on the derivative, and then

determining the premium which equates the residual hedging risk of the two hedged positions.

The mathematical formalism used for trading strategies in the current study is now outlined.

A trading strategy {δn}Nn=0 is an F-predictable process4 where δn := [δ
(0)
n , . . . , δ

(D)
n , δ

(B)
n ] with

δ
(B)
n and δ

(j)
n , j = 0, . . . , D, respectively denoting the number of shares of the risk-free asset

and the jth risky asset traded at time tn−1 held in the hedging portfolio throughout the

period (tn−1, tn], except for the case n = 0 which represents the hedging portfolio composition

exactly at time t0. The notation δ
(0:D)
n := [δ

(0)
n , . . . , δ

(D)
n ] is used to define the vector containing

exclusively positions in the risky assets. Furthermore, the initial capital investment of the

trading strategy is always assumed to be completely invested in the risk-free asset, i.e. δ
(B)
0 is

the initial investment amount and δ
(0:D)
0 := [0, . . . , 0].

In this work, the trading strategies considered to hedge Φ are obtained through a joint

optimization over all trading decisions to minimize global risk exposure. Before formally

describing the optimization problem, some well-known prerequisites from the mathematical

finance literature are now provided; the reader is referred to Lamberton and Lapeyre (2011)

2 Note that the optimization procedure for global policies described in Section 4.3 can naturally be
generalized for the case of rebalancing multiple times option contracts prior to their expiry.

3 The derivative valuation approach presented in this paper can easily be adapted for European options

whose payoff is of the form Φ(S
(0,b)
N , ZN ) ≥ 0 with {Zn}Nn=0 as some F-adapted potentially multidimensional

random process encompassing the path-dependence property of the payoff function. For examples of such
exotic derivatives, the reader is referred to Carbonneau and Godin (2021b).

4 A process X = {Xn}Nn=0 is said to be F-predictable if X0 is F0-measurable and Xn is Fn−1-measurable
for n = 1, . . . , N .
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for additional details. Let {V δ
n }Nn=0 be the hedging portfolio value process associated with

the trading strategy δ, where V δ
n is the time-tn portfolio value prior to rebalancing with

V δ
0 := δ

(B)
0 and

V δ
n := δ(0:D)

n
• S̄

(e)
n−1 + δ(B)

n Bn, n = 1, . . . , N, (4.1)

where • is the scalar product operator, i.e. for two n-dimensional vectors X and Y , X • Y :=∑n
i=1XiYi. Furthermore, denote as {Gδ

n}Nn=0 the discounted gain process associated with δ

where Gδ
n is the time-tn discounted gain prior to rebalancing with Gδ

0 := 0 and

Gδ
n :=

n∑
k=1

δ
(0:D)
k

• (B−1
k S̄

(e)
k−1 −B

−1
k−1S̄

(b)
k−1), n = 1, . . . , N. (4.2)

The trading strategies considered in this paper are always self-financing : they require no

cash infusion nor withdrawal at intermediate times except possibly at the initialization of the

strategy. More formally, a trading strategy is said to be self-financing if it is predictable and

if the following equality holds P-a.s. for n = 0, . . . , N − 1:

δ
(0:D)
n+1

• S̄(b)
n + δ

(B)
n+1Bn = V δ

n . (4.3)

Lastly, denote Π as the set of accessible trading strategies, which includes all trading strategies

that are self-financing and sufficiently well-behaved.

Remark 4.1. It can be shown that δ ∈ Π is self-financing if and only if V δ
n = Bn(V δ

0 +Gδ
n)

holds P-a.s. for n = 0, . . . , N ; see for instance Lamberton and Lapeyre (2011). The latter

representation of portfolio values implies the following useful recursive equation (4.4) to
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compute V δ
n for n = 1, . . . , N given V δ

0 :

V δ
n = Bn(V δ

0 +Gδ
n)

= Bn(V δ
0 +Gδ

n−1 + δ(0:D)
n

• (B−1
n S̄

(e)
n−1 −B−1

n−1S̄
(b)
n−1))

=
Bn

Bn−1

V δ
n−1 + δ(0:D)

n
• (S̄

(e)
n−1 −

Bn

Bn−1

S̄
(b)
n−1)

= er∆NV δ
n−1 + δ(0:D)

n
• (S̄

(e)
n−1 − er∆N S̄

(b)
n−1). (4.4)

4.2.2 Equal risk pricing framework

The financial market setting considered in this paper implies incompleteness stemming from

discrete-time trading and equity risk factors (e.g. jump risk and volatility risk). For the

hedger, these many sources of incompleteness entail that most contingent claims are not

attainable through dynamic hedging. Following the work of Marzban et al. (2020) and

Carbonneau and Godin (2021b), this study quantifies the level of residual hedging risk with

convex risk measures as defined in Föllmer and Schied (2002).

Definition 4.1. (Convex risk measure) For a set of random variables X representing liabilities

and X1, X2 ∈ X , ρ : X → R is a convex risk measure if it satisfies the following properties:

1) Monotonicity: X1 ≤ X2 =⇒ ρ(X1) ≤ ρ(X2) (larger liability is riskier).

2) Translation invariance: for c ∈ R and X ∈ X , ρ(X + c) = ρ(X) + c (borrowing amount

c increases the risk by that amount).

3) Convexity: for c ∈ [0, 1], ρ(cX1 + (1− c)X2) ≤ cρ(X1) + (1− c)ρ(X2) (diversification

does not increase risk).

The hedging problem underlying the ERP framework is now formally defined.

Definition 4.2. (Long- and short-sided risk) For a given convex risk measure ρ, define

ε(L)(V0) and ε(S)(V0) respectively as the measured risk exposure of a long and short position
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in Φ under the optimal hedge if the value of the initial hedging portfolio is V0 ∈ R:

ε(L)(V0) := min
δ∈Π

ρ
(
−Φ(S

(0,b)
N )−BN(V0 +Gδ

N)
)
, (4.5)

ε(S)(V0) := min
δ∈Π

ρ
(

Φ(S
(0,b)
N )−BN(V0 +Gδ

N)
)
. (4.6)

Note that the same risk measure ρ is used for both the long and short positions global hedging

problems. The rationale for this choice is threefold. First, considering the same convex risk

measure for long and short positions is in line with the trading activities of some market

participants that both buy and sell options with no directional view of the market. One

example of such participant is a market maker of derivatives which typically expects to make

a profit on bid-ask spreads, not by speculating (Basak and Chabakauri, 2012). Another

motivation for using the same convex measure is for cases where a price quote must be given

prior to knowing if the derivative is being purchased or sold. For instance, a client asks his

broker to provide a quote for a derivative without revealing his intention of buying or selling

the option. A similar argument is made in Bertsimas et al. (2001) to motivate the use of a

quadratic loss function for hedging shortfalls, which entails the same derivative price for the

long and short position. Lastly, as shown in Carbonneau and Godin (2021b), using the same

risk measure for both positions guarantees, under some specific conditions, that the ERP

derivative premium is arbitrage-free.5

It is interesting to note that the translation invariance property of ρ entails that the optimal

strategies solving (4.5)-(4.6), denoted respectively by δ(L) and δ(S), are invariant to the

initial capital investment amount V0. The latter significantly enhances the tractability of the

solution:

5 Nevertheless, the authors want to emphasize that the numerical scheme developed in Section 4.3 for the
global hedging problems (4.5) and (4.6) could easily be extended to include two distinct convex measures
respectively for the long and short position hedges (see Remark 3.4 of Carbonneau and Godin (2021b) for
additional details).
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δ(L) := arg min
δ∈Π

ρ
(
−Φ(S

(0,b)
N )−BN(V0 +Gδ

N)
)

= arg min
δ∈Π

ρ
(
−Φ(S

(0,b)
N )−BNG

δ
N

)
, (4.7)

δ(S) := arg min
δ∈Π

ρ
(

Φ(S
(0,b)
N )−BN(V0 +Gδ

N)
)

= arg min
δ∈Π

ρ
(

Φ(S
(0,b)
N )−BNG

δ
N

)
. (4.8)

Based on the aforementioned global hedging problems, the equal risk price of a derivative is

defined as the initial hedging portfolio value equating the measured risk exposures for both

the long and short positions.

Definition 4.3. (Equal risk price) The equal risk price C?
0 of Φ is defined as the real number

C0 such that

ε(L)(−C0) = ε(S)(C0). (4.9)

As shown for instance in Marzban et al. (2020), equal risk prices have the following represen-

tation which is used throughout the rest of the paper:

C?
0 =

ε(S)(0)− ε(L)(0)

2BN

. (4.10)

Carbonneau and Godin (2021b) introduced the market incompleteness metric ε? defined as

the level of residual risk faced by the hedgers of Φ if the hedged derivative price is set to C?
0

and optimal trading strategies are used by both the long and short position hedgers:6

ε? := ε(L)(−C?
0) = ε(S)(C?

0) =
ε(L)(0) + ε(S)(0)

2
. (4.11)

Consistently with the terminology of Carbonneau and Godin (2021b), ε? and ε?/C?
0 are

referred respectively as the measured residual risk exposure per derivative contract and

6 The last equality of (4.11) can easily be obtained with the translation invariance property of ρ, see
equation (8) of Carbonneau and Godin (2021b) for the details.
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per dollar invested. These ε?-metrics will be extensively studied in numerical experiments

conducted in Section 4.4 to assess, for instance, the impact of the use of options as hedging

instruments on the level of market incompleteness.

4.3 Deep equal risk pricing

The problem of solving the ERP framework, that is evaluating equal risk prices and ε-

completeness measures, boils down to the computation of the measured risk exposures

ε(S)(0) and ε(L)(0). This section presents a reinforcement learning method to compute such

quantities. The approach was first proposed in Carbonneau and Godin (2021b) and relies

on approximating optimal trading strategies with the deep hedging algorithm of Buehler

et al. (2019b) through the representation of the long and short global trading policy with two

distinct neural networks. In its essence, neural networks are a class of composite functions

mapping feature vectors (i.e. input vectors) to output vectors through multiple hidden layers,

with the latter being functions applying successive affine and nonlinear transformations to

input vectors. In this paper, the type of neural network considered to represent global hedging

policies is the long short-term memory (LSTM, Hochreiter and Schmidhuber (1997)). LSTMs

belong to the class of recurrent neural networks (RNNs, Rumelhart et al. (1986)), which have

self-connections in hidden layers: the output of the time-tn hidden layer is a function of both

the time-tn feature vector as well as the output of the time-tn−1 hidden layer. The periodic

computation of long short-term memory neural networks is done with so-called LSTM cells,

which are similar to but more complex than the typical hidden layer of RNNs. LSTMs have

recently been applied with success to approximate global hedging policies in several studies:

Buehler et al. (2019a), Cao et al. (2020) and Carbonneau (2021). Additional remarks are

made in subsequent sections to motivate this choice of neural networks for the specific setup

of this paper.
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4.3.1 Neural networks representing trading policies

The following formally defines the architecture of long-short term memory neural networks.

For convenience, a very similar notation for neural networks as the one of Carbonneau (2021)

is used. Note that the time steps of the feature and output vectors coincide with the set

of financial market trading dates T . For additional general information about LSTMs, the

reader is referred to Chapter 10.10 of Goodfellow et al. (2016) and the many references

therein.

Definition 4.4. (LSTM) For H, d0, . . . , dH+1 ∈ N, let Fθ : RN×d0 → RN×dH+1 be an

LSTM which maps the sequence of feature vectors {Xn}N−1
n=0 to output vectors {Yn}N−1

n=0 where

Xn ∈ Rd0 and Yn ∈ RdH+1 for n = 0, . . . , N − 1. The computation of Yn, the subset of

outputs of Fθ associated with time tn, is achieved through H LSTM cells, each of which

outputs a vector of dj neurons denoted as h
(j)
n ∈ Rdj×1 for j = 1, . . . , H. More precisely, the

computation applied by the jth LSTM cell for the time-tn output is as follows:7

i(j)n = sigm(U
(j)
i h(j−1)

n +W
(j)
i h

(j)
n−1 + b

(j)
i ),

f (j)
n = sigm(U

(j)
f h(j−1)

n +W
(j)
f h

(j)
n−1 + b

(j)
f ),

o(j)
n = sigm(U (j)

o h(j−1)
n +W (j)

o h
(j)
n−1 + b(j)

o ),

c(j)
n = f (j)

n � c
(j)
n−1 + i(j)n � tanh(U (j)

c h(j−1)
n +W (j)

c h
(j)
n−1 + b(j)

c ),

h(j)
n = o(j)

n � tanh(c(j)
n ), (4.12)

where � denotes the Hadamard product (the element-wise product), sigm(·) and tanh(·) are

the sigmoid and hyperbolic tangent functions applied element-wise to each scalar given as

input8 and

• U (j)
i , U

(j)
f , U

(j)
o , U

(j)
c ∈ Rdj×dj−1, W

(j)
i ,W

(j)
f ,W

(j)
o ,W

(j)
c ∈ Rdj×dj and b

(j)
i , b

(j)
f , b

(j)
o , b

(j)
c ∈

7 At time 0 (i.e. n = 0), the computation of the LSTM cells is the same as in (4.12) with h
(j)
−1 and c

(j)
−1

defined as vectors of zeros of dimension dj for j = 1, . . . ,H.
8 For X := [X1, . . . , XK ], sigm(X) :=

[
1

1+e−X1
, . . . , 1

1+e−XK

]
and tanh(X) :=

[
eX1−e−X1

eX1+e−X1
, . . . , e

XK−e−XK

eXK +e−XK

]
.
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Rdj×1 for j = 1, . . . , H.

At each time-step, the input of the first LSTM cell is the feature vector (i.e. h
(0)
n := Xn) and

the final output is an affine transformation of the output of the last LSTM cell:

Yn = Wyh
(H)
n + by, n = 0, . . . , N − 1, (4.13)

where Wy ∈ RdH+1×dH and by ∈ RdH+1×1. Lastly, the set of trainable parameters denoted as θ

consists of all weight matrices and bias vectors:

θ :=
{
{U (j)

i , U
(j)
f , U (j)

o , U (j)
c ,W

(j)
i ,W

(j)
f ,W (j)

o ,W (j)
c , b

(j)
i , b

(j)
f , b(j)

o , b(j)
c }Hj=1,Wy, by

}
. (4.14)

In this study, the computation of hedging positions is done through the mapping of a sequence

of relevant financial market observations into the periodic number of shares held in each

hedging instrument with an LSTM. One of the main objectives of this paper is to analyze

the impact of including vanilla options as hedging instruments on the ERP framework. For

the numerical experiments conducted in the subsequent Section 4.4, the hedging instruments

consist of either only the underlying asset (without options) or exclusively options (without

the underlying asset). The case of using both the stock and options is not considered since

the options can always replicate positions in the underlying asset with calls and puts by

relying on the put-call parity. In what follows, let {Xn}N−1
n=0 and {Yn}N−1

n=0 be respectively

the sequence of feature vectors and output vectors of an LSTM as in Definition 4.4. When

hedging only with the underlying, the time-tn feature vector considered is9

Xn = [log(S(0,b)
n /K), V δ

n , ϕn], n = 0, . . . , N − 1, (4.15)

9 The use of log(S
(0,b)
n /K) instead of S

(0,b)
n in feature vectors was found to improve the learning speed of

the neural networks (i.e. time taken to find a good set of trainable parameters). Note that log transformation
for risky asset prices was also considered in Carbonneau (2021), Buehler et al. (2019b) and Buehler et al.
(2019a).
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where K is the strike price of Φ and {ϕn}N−1
n=0 is a sequence of additional relevant state

variables associated with the dynamics of asset prices. For instance, if the underlying log-

returns are modeled with a GARCH process, it is well-known that the bivariate process of the

underlying price and the GARCH volatility has the Markov property under P with respect

to the market filtration F. The time-tn volatility of the GARCH process is thus added to the

feature vectors through ϕn. Furthermore, in that same case where the underlying stock is

considered as the only hedging instrument, the output vectors of the LSTM consist of the

number of underlying asset shares to be held in the portfolio for all time steps, i.e. Yn = δ
(0)
n+1

for n = 0, . . . , N − 1.

Conversely, when hedging is performed with options as hedging instruments, the implied

volatilities (IVs) of such options denoted as {IVn}N−1
n=0 are added to feature vectors with IVn

encompassing every implied volatilities needed to price the D options used for hedging:10

Xn = [log(S(0,b)
n /K), V δ

n , ϕn, IVn], n = 0, . . . , N − 1. (4.16)

In that case, the output vectors are the number of option contracts held in the portfolio for

the various time steps: Yn = [δ
(1)
n+1, . . . , δ

(D)
n+1] for n = 0, . . . , N − 1. Recall that when options

are used as hedging instruments, δ
(0)
n+1 = 0 for n = 0, . . . , N − 1.

Remark 4.2. Although the portfolio value V δ
n is in theory a redundant feature in the context

of LSTMs since it can be retrieved as a function of previous times inputs and outputs of

the neural network (see (4.4)), incorporating it to feature vectors was found to significantly

improve upon the hedging effectiveness of the LSTMs in the numerical experiments conducted

in Section 4.4.

10 Note that the bijection relation between implied volatilities and option prices entails that either values
could theoretically be used in feature vectors as one is simply a nonlinear transformation of the other.
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4.3.2 Equal risk pricing with neural networks

To numerically solve the underlying global hedging problems of the ERP framework, Carbon-

neau and Godin (2021b) propose to use two distinct neural networks denoted as F
(L)
θ and

F
(S)
θ to approximate the global trading policies of respectively the long and short positions in

Φ. This is the approach considered in the current paper. As illustrated below, the procedure

consists in solving the alternative problems of optimizing the neural networks trainable

parameters so as to minimize the corresponding hedging shortfall:

ε(L)(V0) ≈ min
θ∈Rq

ρ
(
−Φ(S

(0,b)
N )−BN(V0 +Gδ(L,θ)

N )
)
, (4.17)

ε(S)(V0) ≈ min
θ∈Rq

ρ
(

Φ(S
(0,b)
N )−BN(V0 +Gδ(S,θ)

N )
)
, (4.18)

where δ(L,θ) and δ(S,θ) are to be understood respectively as the output sequences of F
(L)
θ

and F
(S)
θ , and q ∈ N is the total number of trainable parameters of F

(L)
θ and F

(S)
θ . The

approximated measured risk exposures obtained through (4.17) and (4.18) are subsequently

used to compute equal risk prices and ε-completeness measures with (4.10) and (4.11). One

implicit assumption associated with (4.17) and (4.18) is that the architecture of all neural

networks in terms of the number of LSTM cells and neurons per cell is always fixed; the

hyperparameter tuning step of the optimization problem is not considered in this paper.

Section 4.3.3 that follows presents the procedure considered in this study to optimize the

trainable parameters of the LSTMs.

Remark 4.3. Carbonneau and Godin (2021b) show that when relying on feedforward neural

networks (FFNNs11) instead of LSTMs, the alternative problems (4.17)-(4.18) allow for

arbitrarily precise approximations of the measured risk exposures (4.5)-(4.6) due to results

from Buehler et al. (2019b). Despite this theoretical ability of FFNNs to approximate

arbitrarily well global hedging policies in such context, the authors of the current paper found

11FFNNs are another class of neural networks which map input vectors into output vectors, in contrast to
LSTMs which map input vector sequences to output vector sequences.
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that LSTMs are able to learn significantly better trading policies than FFNNs in the numerical

experiments carried out in Section 4.4, which motivates their use over FFNNs. The theoretical

justifications for the outperformance of LSTMs over FFNNs in the financial market settings

of this paper are out-of-scope and are left-out as interesting potential future research.

4.3.3 Training neural networks

The numerical scheme to optimize the trainable parameters of neural networks as entailed

by the global hedging optimization problems (4.17)-(4.18) is now described. The procedure

first proposed in Buehler et al. (2019b) uses minibatch stochastic gradient descent (SGD) to

approximate the gradient of the cost function with Monte Carlo sampling. For convenience,

the notation used for the optimization procedure is similar to the one from Carbonneau and

Godin (2021b). Without loss of generality, the numerical procedure is only presented for the

short measured risk exposure; the corresponding procedure for the long position is simply

obtained through modifying the objective function (4.19) that follows. Let J : Rq → R be

the cost function to be minimized for the short position in Φ, where θ is the set of trainable

parameters of F
(S)
θ :12

J(θ) := ρ
(

Φ(S
(0,b)
N )−BNG

δ(S,θ)

N

)
, θ ∈ Rq. (4.19)

A typical stochastic gradient descent procedure entails adapting the trainable parameters

iteratively and incrementally in the opposite direction of the cost function gradient with

respect to θ:

θj+1 = θj − ηj∇θJ(θj), (4.20)

12 Minimizing J with respect to θ corresponds to the alternative problem (4.18) with zero initial capital.
Recall that ε(L)(0) and ε(S)(0) are required for the computation of C?0 and ε?. Consequently, hedging portfolio
values used in LSTM feature vectors are equal to hedging gains, i.e. V δn = BnG

δ
n.
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where θ0 is the initial values for the trainable parameters, ηj is a small deterministic positive

real value commonly called the learning rate and ∇θ denotes the gradient operator. In the

current study, the Glorot uniform initialization of Glorot and Bengio (2010) is always used

to select initial parameters in θ0. Since closed-form solutions for the gradient of the cost

function with respect to the trainable parameters are unavailable in the general market setting

considered in this work, the approach relies instead on Monte Carlo sampling to provide

an estimate. Thus, let Bj := {πi,j}Nbatch
i=1 be a minibatch of simulated hedging errors of size

Nbatch ∈ N where πi,j is the ith simulated hedging error when θ = θj:

πi,j := Φ(S
(0,b)
N,i )−BNG

δ(S,θj)

N,i , (4.21)

where S
(0,b)
N,i and Gδ(S,θj)

N,i are the ith random realization among the minibatch of the terminal

underlying asset price and discounted hedging portfolio gains, respectively. Furthermore,

denote ρ̂ : RNbatch → R as the empirical estimator of ρ(Φ(S
(0,b)
N )−BNG

δ(S,θ)
N ) evaluated with

minibatches of hedging errors. Minibatch SGD consists in approximating the gradient of the

cost function ∇θJ(θj) with ∇θρ̂(Bj) in the update rule for trainable parameters:

θj+1 = θj − ηj∇θρ̂(Bj). (4.22)

For the numerical experiments conducted in Section 4.4, the convex risk measure considered

is the Conditional Value-at-Risk (CVaR, Rockafellar and Uryasev (2002)). For α ∈ (0, 1),

this risk measure can be formally defined as

VaRα(X) := min
x
{x|P(X ≤ x) ≥ α} , CVaRα(X) :=

1

1− α

∫ 1

α

VaRγ(X)dγ

where VaRα(X) is the Value-at-Risk (VaR) of confidence level α. Furthermore, for an
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absolutely continuous integrable random variable13, the CVaR has the representation

CVaRα(X) := E[X|X ≥ VaRα(X)], α ∈ (0, 1). (4.23)

Let {π[i],j}Nbatch
i=1 be the order statistics (i.e. values sorted by increasing order) of Bj. For

Ñ := dαNbatche where dxe is the ceiling function (i.e. the smallest integer greater or equal to

x), the empirical estimator of the CVaR used in this study is from the work of Hong et al.

(2014) and has the representation

VaR
∧

α(Bj) := π[Ñ ],j,

CVaR
∧

α(Bj) := VaR
∧

α(Bj) +
1

(1− α)Nbatch

Nbatch∑
i=1

max(πi,j − VaR
∧

α(Bj), 0).

The gradient of the empirical estimator of the Conditional Value-at-Risk with respect to the

trainable parameters (i.e. ∇θCVaR
∧

α(Bj)) required for the update rule (4.22) can be computed

exactly without discretization or other numerical approximations. Such computations can be

implemented with modern deep learning libraries such as Tensorflow (Abadi et al., 2016).

Furthermore, algorithms which dynamically adapt the learning rate ηj in (4.22) such as

Adam (Kingma and Ba, 2014) have been shown to improve upon the effectiveness of SGD

procedures for neural networks. For all numerical experiments conducted in Section 4.4, an

implementation of Tensorflow with the Adam algorithm is used to optimize neural networks;

the reader is referred to the online Github repository for samples of codes in Python.14 Also,

Section 4.6.2 presents a pseudo-code of the training procedure for F
(S)
θ .

13 In Section 4.4, the only dynamics considered for the risky assets produce integrable and absolutely
continuous hedging errors.

14 github.com/alexandrecarbonneau.
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4.4 Numerical experiments

This section performs various numerical experimentations of the ERP approach for derivatives

valuation. The main goal is to study the impact of including options as hedging instruments

on equal risk prices and on the level of market incompleteness. A special case assessed

throughout this section is the trading of short-term vanilla options for the pricing and hedging

of longer-term derivatives. The conduction of these experiments heavily relies on the neural

network scheme described in Section 4.3 to solve the underlying global hedging problems of

the ERP framework. Such exhaustive numerical study would have been hardly accessible

with traditional methods (e.g. conventional dynamic programming algorithms) due to the

high-dimensional continuous state and action spaces of the hedging problem stemming from

the use of multiple short-term options as hedging instruments and from the asset price

dynamics considered. As a result, the use of neural networks enables us to provide novel

qualitative insights into the ERP framework.

The analysis begins in Section 4.4.2 and Section 4.4.3 with the assessment of the sensitivity

of equal risk prices and residual hedging risk to the presence of two salient equity stylized

features: jump and volatility risks. The impact of the choice of convex risk measure on

the ERP framework when trading exclusively options is examined in Section 4.4.4. Lastly,

Section 4.4.5 presents the benchmarking of equal risk prices to derivative premiums obtained

with variance-optimal hedging. The specific financial market setup and asset dynamics models

considered for all numerical experiments are described in Section 4.4.1 that follows.

4.4.1 Market setup and asset dynamics models

For the rest of the paper, the derivative to price is a European vanilla put option of payoff

function Φ(S
(0,b)
N ) = max(K − S(0,b)

N , 0) with K = 90, 100 and 110 corresponding respectively

to an out-of-the-money (OTM), an at-the-money (ATM) and an in-the-money (ITM) option.

The maturity of the derivative is set to 1 year (i.e. T = 1) with 252 days. The annualized

continuously compounded risk-free rate is r = 0.03. In addition to the risk-free asset, the
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hedging instruments consist of either only the underlying stock, or exclusively shorter-term

ATM European calls and puts. When hedging is performed with the underlying stock, daily

and monthly rebalancing are considered, corresponding to respectively N = 252 and N = 12

trading periods per year. When hedging with options, all options are assumed to have a

single-period time-to-maturity, i.e. they are traded once and held until expiration. We

consider either 1-month or 3-months maturities ATM calls and puts as hedging instruments,

which respectively entails N = 12 or N = 4. Less frequent rebalancing when hedging with

options rather than only with the underlying stock is consistent with market practices; such

hedging instruments are commonly embedded in semi-static type of trading strategies, see for

instance Carr and Wu (2014). Lastly, note that daily variations for the underlying log-returns

and implied volatilities are always considered throughout the rest of the paper, even with

non-daily rebalancing periods (i.e. when hedging with the underlying stock on a monthly

basis or with 1-month and 3-months maturities options) by aggregating daily variations over

the rebalancing period.

4.4.1.1 Asset price dynamics

The asset price dynamics models considered in stochastic simulations are now introduced. To

characterize jump risk, the Merton jump-diffusion model (MJD, Merton (1976)) is considered.

Furthermore, the impact of volatility risk is assessed with the GJR-GARCH model of Glosten

et al. (1993). Several sets of parameters are tested for each model to conduct a sensitivity

analysis and highlight the impact of various model features on both equal risk prices and

residual hedging risk.

Denote yn := log(S
(0,b)
n /S

(0,b)
n−1 ) as the periodic underlying stock log-return between the trading

periods tn−1 and tn. Since our modeling framework assumes daily variations for asset prices

and possibly non-daily rebalancing, let {ỹj,n}Mj=1 be the M daily stock log-returns in the time
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interval [tn−1, tn] such that15

yn =
M∑
j=1

ỹj,n, n = 1, . . . , N, N ×M = 252, (4.24)

where N corresponds to the number of trading dates to hedge the 1 year maturity derivative

Φ and M to the number of days between two trading dates. Thus, daily stock hedges

corresponds to the case of N = 252 and M = 1, monthly stock and 1-month option hedges

to N = 12 and M = 21, and 3-months option hedges to N = 4 and M = 63.

The asset price dynamics are now formally defined for the daily log-returns. For the rest of

the section, let {εj,n}M,N
j=1,n=1 be a sequence of independent standardized Gaussian random

variables where the subsequence {εj,n}Mj=1 will be used to model the M daily innovations of

log-returns in the time interval [tn−1, tn].

4.4.1.2 Discrete-time Merton-Jump diffusion model (Merton, 1976)

The Merton-jump diffusion dynamics expands upon the ideal market conditions of the Black-

Scholes model by incorporating random Gaussian jumps along stock paths. Let {Nj,n}M,N
j=0,n=1

be a discrete-time sampling from a Poisson process of intensity parameter λ > 0 where

the subsequence {Nj,n}Mj=0 corresponds to the M + 1 daily values of the Poisson process

occurring during the time interval [tn−1, tn]. N0,1 := 0 is the initial value of the process and

N0,n+1 := NM,n for n = 1, . . . , N − 1. Furthermore, denote {ξk}∞k=1 as a sequence of random

Gaussian variables corresponding to the jumps of mean µJ and variance σ2
J . {Nj,n}M,N

j=0,n=1,

{ξk}∞k=1 and {εj,n}N,Mn=1,j=1 are independent. For n = 1, . . . , N and j = 1, . . . ,M , the daily

15 For completeness, let {S̃(0,b)
j,n }

M,N
j=0,n=1 be the daily underlying stock prices where {S̃(0,b)

j,n }Mj=0 corresponds

to the M + 1 daily prices during the period [tn−1, tn]. Also, let G := {Gj,n}M,N
j=0,n=1 be a filtration satisfying

the usual conditions with Gj,n containing all information available to market participants at the jth day of
the time period [tn−1, tn]. The filtration used to optimize trading strategies F with time steps t0, t1, . . . , tN is
a subset of G by construction. However, since the risky asset dynamics considered in this paper have the
Markov property, optimizing trading strategies with the filtration F or G results in the same trading policy.
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log-return dynamics can be specified as16

ỹj,n =
1

252

(
ν − λ

(
eµJ+σ2

J/2 − 1
)
− σ2

2

)
+ σ

√
1

252
εj,n +

Nj,n∑
k=Nj−1,n+1

ξk, (4.25)

where {ν, µJ , σJ , λ, σ} are the model parameters with {ν, λ, σ} being on a yearly scale, ν ∈ R

and σ > 0. Furthermore, since {S(0,b)
n }Nn=0 has the Markov property with respect to the

filtration F generated by the trading dates observations, no additional state associated to the

risky asset dynamics is required to be added to the feature vectors of neural networks (i.e.

ϕn = 0 for all time steps n in (4.15) and (4.16)).

4.4.1.3 GJR-GARCH(1,1) model (Glosten et al., 1993)

GARCH processes also expand upon the Black-Scholes ideal framework by exhibiting well-

known empirical features of risky assets such as time-varying volatility, volatility clustering

and the leverage effect (i.e. negative correlation between underlying returns and its volatility).

Daily log-returns modeled with a GJR-GARCH(1,1) dynamics have the representation

ỹj,n = µ+ σ̃j,nεj,n,

σ̃2
j+1,n = ω + υσ̃2

j,n(|εj,n| − γεj,n)2 + βσ̃2
j,n, (4.26)

where {σ̃2
j,n}

M+1,N
j=1,n=1 are the daily conditional variances of log-returns. More precisely,

{σ̃2
j,n}M+1

j=1 are the M + 1 daily conditional variances in the time interval [tn−1, tn]. Also,

σ̃2
1,n+1 := σ̃2

M+1,n for n = 1, . . . , N − 1. Model parameters consist of {µ, ω, υ, γ, β} with

{ω, υ, β} being positive real values and γ, µ ∈ R. Note that if the starting value of the GARCH

process σ̃2
1,1 is deterministic, then {σ̃2

j,n}
M+1,N
j=1,n=1 can be computed recursively with the observed

16 This paper adopts the convention that if Nj,n = Nj−1,n, i.e. that no jumps occurred on that day, then:

Nj,n∑
k=Nj−1,n+1

ξk = 0.
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daily log-returns. In this paper, σ̃2
1,1 is set as the stationary variance: σ̃2

1,1 := ω
1−υ(1+γ2)−β .

Also, contrarily to the MJD model, the GJR-GARCH(1,1) requires adding at each trading

time tn the current stochastic volatility value to the feature vectors of the neural networks,

i.e. ϕn = σ̃1,n+1 for n = 0, . . . , N − 1.

4.4.1.4 Implied volatility dynamics

This work proposes to model the daily variations of the logarithm of ATM implied volatilities

with 1-month and 3-months maturities as a discrete-time version of the Ornstein-Uhlenbeck

(OU) process.17 The choice of an OU type of dynamics for IVs is motivated by the work of

Cont and Da Fonseca (2002) which shows that for S&P 500 index options, the first principal

component of the daily variations of the logarithm of the IV surface accounts for the majority

of its variance and can be interpreted as a level effect. Also, this first principal component can

be well represented by a low-order autoregressive (AR) model. The OU dynamics considered

in this study therefore has the representation of an AR model of order 1.

The dynamics for the daily evolution of IVs is now formally defined. For convenience, this

paper assumes that 1-month and 3-months IVs are the same.18 Using a similar notation as

for daily log-returns, let {ĨV j,n}M,N
j=0,n=1 be the daily ATM IV process for both 1-month and 3-

months maturities where {ĨV j,n}Mj=0 are the M + 1 daily observations during the time interval

[tn−1, tn] with ĨV 0,n+1 := ĨV M,n for n = 1, . . . , N − 1. Furthermore, let {Zj,n}M,N
j=1,n=1 be an

additional sequence of independent standardized Gaussian random variables characterizing

shocks in the IV dynamics. In order to incorporate the stylized feature of strong negative

correlation between implied volatilities and asset returns (Cont and Da Fonseca (2002)), the

modeling framework assumes that the daily innovations of log-returns and IVs are correlated

with parameter % := corr(εj,n, Zj,n) set at −0.6 for all time steps. The dynamics for the

17 It is important to note that implied volatilities are used strictly for pricing options used as hedging
instruments. They are not used to price the derivative Φ.

18 It is worth highlighting that since trading strategies allow for the use of either 1-month or 3-months
maturities ATM calls and puts, but not both maturities within the same strategy, 1-month and 3-months IVs
are never used at the same time.
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evolution of the logarithm of IVs, which is referred from now on as the log-AR(1) model, has

the following representation for n = 1, . . . , N and j = 0, . . . ,M − 1:

log ĨV j+1,n = log ĨV j,n + κ(ϑ− log ĨV j,n) + σIVZj+1,n, (4.27)

where {κ, ϑ, σIV } are the model parameters with κ, ϑ ∈ R and σIV > 0. The initial value of

the process is set as log ĨV 0,1 = ϑ. Also, recall that when trading options, their corresponding

implied volatilities at each trading date are added to the feature vectors of neural networks,

i.e. IVn−1 = ĨV 0,n in (4.16) for n = 1, . . . , N .

The pricing of calls and puts used as hedging instruments is done with the well-known Black-

Scholes formula hereby stated with the annual volatility term set at the implied volatility

value. For the underlying price S, implied volatility IV , strike price K and time-to-maturity

∆T , the Black-Scholes pricing formulas for calls and puts are respectively

C(S, IV,∆T,K) := SN (d1)− e−r∆TKN (d2), (4.28)

P (S, IV,∆T,K) := e−r∆TKN (−d2)− SN (−d1), (4.29)

where N (·) denotes the standard normal cumulative distribution function and

d1 :=
log( S

K
) + (r + IV 2

2
)∆T

IV
√

∆T
, d2 := d1 − IV

√
∆T .

4.4.1.5 Hyperparameters

The set of hyperparameters for the LSTMs are two LSTM cells (i.e. H = 2) and 24 neurons

per cell (i.e. dj = 24 for j = 1, 2). A training set of 400,000 paths is used to optimize

the trainable parameters with a total of 50 epochs and a minibatch size of 1,000 sampled
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exclusively from the training set.19 The deep learning library Tensorflow (Abadi et al., 2016)

is used to implement the stochastic gradient descent procedure with the Adam optimizer of

Kingma and Ba (2014) with a learning rate hyperparameter value of 0.01/6. All numerical

results presented throughout this section are computed based on a test set (i.e. out-of-sample

dataset) of 100,000 paths. Lastly, unless specified otherwise, the convex risk measure chosen

for all experiments is the CVaR with confidence level α = 0.95. Sensitivity analyses of equal

risk prices and residual hedging risk with respect to the confidence level parameter of the

CVaR measure are performed in Section 4.4.4 and Section 4.4.5.

4.4.2 Sensitivity of equal risk pricing to jump risk

This section examines the sensitivity of the ERP solution to equity jump risk. The analysis

is carried out by considering three different sets of parameters for the MJD dynamics which

induce different levels of jump frequency and severity. While maintaining empirical plausibility,

this is done by modifying the intensity parameter λ controlling the expected frequency of

jumps as well as parameters µJ and σJ controlling the severity component of jumps. In order

to better isolate the impact of different stylized features of jump risk on the ERP framework,

the diffusion parameter20 is fixed for all three sets of parameters. Also, the parameters

{λ, µJ , σJ , ν} are chosen such that the yearly expected value and standard deviation of

log-returns are respectively 10% and 15% for all three cases. To facilitate the analysis, the

three sets of parameters are referred to as scenario 1, scenario 2 and scenario 3 for jump

risk. Model parameter values for the three scenarios are presented in Table 4.1. Scenario 1

represents relatively smaller but more frequent jumps with on average one jump per year

of mean −5% and standard deviation 5%. Scenario 2 entails more severe, but less frequent

jumps with on average one jump every four years of mean −10% and standard deviation 10%.

Lastly, scenario 3 depicts the most extreme case with rare but very severe jumps with on

19 One epoch consists of a complete iteration of SGD on the training set. For a training set of 400,000 paths
and a minibatch of size 1,000, a total of 400 updates of the trainable parameters as in (4.22) is performed
within an epoch.

20 The parameter σ in (4.25) corresponds to the diffusion parameter of the MJD dynamics.
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Table 4.1: Parameters of the Merton jump-diffusion model for the three scenarios.

ν σ λ µJ σJ

Scenario 1 0.1112 0.1323 1 −0.05 0.05
Scenario 2 0.1111 0.1323 0.25 −0.10 0.10
Scenario 3 0.1110 0.1323 0.08 −0.20 0.15

Notes: ν, σ and λ are on an annual basis.

average one jump every twelve and a half years of mean −20% and standard deviation 15%.

Moreover, parameter values for the log-AR(1) implied volatility model are kept fixed for all

three scenarios and are presented in Table 4.2. Note that the long-run parameter ϑ is set at

the logarithm of the yearly standard deviation of log-returns with ϑ = log 0.15, and other

parameters are chosen in an ad hoc fashion so as to produce reasonable values for implied

volatilities.

Table 4.2: Parameters of the log-AR(1) model for the evolution of implied volatilities.

κ ϑ σIV %

0.15 log(0.15) 0.06 −0.6

4.4.2.1 Benchmarking results in the presence of jump risk

Table 4.3 presents equal risk prices C?
0 and residual hedging risk ε? across the three scenarios

of jump parameters and different trading instruments. Numerical values indicate that in the

presence of jump risk, hedging with options entails significant reduction of both equal risk

prices and market incompleteness as compared to hedging solely with the underlying stock

across all moneyness levels and jump risk scenarios. The reduction in hedging residual risk by

trading options is obtained despite less frequent rebalancing than when only the stock is used.

These results add additional evidence that options are indeed non-redundant as prescribed by

the Black-Scholes world: the equal risk pricing framework dictates that hedging with options

in the presence of jump risk can significantly impact both derivative premiums and hedging

risk as quantified by our incompleteness metrics.
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Table 4.3: Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? to jump

risk for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.

OTM ATM ITM

Jump Scenario (1) (2) (3) (1) (2) (3) (1) (2) (3)

C?
0

Daily stock 1.89 2.58 3.36 5.21 6.01 6.81 10.81 11.68 12.13

Monthly stock 1.97 2.60 3.31 5.04 5.77 6.38 10.73 11.44 11.86

1-month options 1.82 2.24 2.55 4.99 5.36 5.60 10.48 10.86 10.83

3-months options 1.74 2.08 2.39 4.87 5.12 5.28 10.43 10.51 10.57

ε?

Daily stock 1.09 1.98 2.67 1.76 2.74 3.54 1.82 2.78 3.27

Monthly stock 1.82 2.52 3.26 3.00 3.88 4.57 3.07 3.91 4.37

1-month options 0.76 1.18 1.52 1.14 1.53 1.78 1.17 1.56 1.54

3-months options 1.03 1.37 1.68 1.59 1.82 2.02 1.70 1.79 1.88

ε?/C?
0

Daily stock 0.58 0.77 0.79 0.34 0.46 0.52 0.17 0.24 0.27

Monthly stock 0.92 0.97 0.99 0.60 0.67 0.72 0.29 0.34 0.37

1-month options 0.42 0.53 0.60 0.23 0.28 0.32 0.11 0.14 0.14

3-months options 0.59 0.66 0.70 0.33 0.36 0.38 0.16 0.17 0.18

Notes: Results are computed based on 100,000 independent paths generated from the
Merton Jump-Diffusion model for the underlying (see Section 4.4.1.2 for model description).
Three different sets of parameters values are considered with λ = {1, 0.25, 0.08}, µJ =
{−0.05,−0.10,−0.20} and σJ = {0.05, 0.10, 0.15} respectively for jump scenario 1, 2, and 3
(see Table 4.1 for all parameters values). Hedging instruments : daily or monthly rebalancing
with the underlying stock and 1-month or 3-months options with ATM calls and puts. Options
used as hedging instruments are priced with implied volatility modeled with a log-AR(1)
dynamics (see Section 4.4.1.4 for model description and Table 4.2 for parameters values).
The training of neural networks is done as described in Section 4.4.1.5. The confidence level
of the CVaR measure is α = 0.95.
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The relative reduction achieved in C?
0 with 1-month and 3-months options as compared to

hedging with the stock is most important for OTM puts, followed by ATM and ITM contracts.

For instance, the relative reduction obtained with 3-months options hedging over daily stock

hedging ranges across the three jump risk scenarios between 8% to 29% for OTM, 6% to

22% for ATM and 4% to 13% for ITM puts.21 This reduction in C?
0 when using options

as hedging instruments can be explained by the following observations. As pointed out in

Carbonneau and Godin (2021b), the fact that a put option payoff is bounded below at zero

entails that the short position hedging error has a thicker right tail than the long position

hedging error. Also, it is widely documented in the literature that hedging jump risk with

options significantly dampens tail risk as compared to using only the underlying stock (see

for instance Coleman et al. (2007) and Carbonneau (2021)).22 Consequently, the choice of

trading options to mitigate jump risk reduces the measured risk exposure of both the long and

short positions, but the thicker right tail for the short position hedging error entails a larger

decrease for the latter than for the long position. In such situations, the ERP framework

dictates that the long position should be compensated with a lower derivative premium C?
0

to equalize residual hedging risk of both positions.

Moreover, values for both ε?-metrics indicate that in the presence of jump risk, the use of

options contributes significantly to the reduction of market incompleteness as both the long

and short position hedges achieve risk reduction when compared to trading only with the

stock. The latter conclusion is in itself not novel, and is widely documented in the literature

(see, for instance, Cont and Tankov (2003) and the many references therein). Indeed, this is

a consequence of the well-known convex property of put option prices, which implies that

21 If C?0 (daily stock) and C?0 (3-months options) are equal risk prices obtained respectively by hedging
with the stock on a daily basis and with 3-months options, the relative reduction is computed as 1 −
C?

0 (3-months options)
C?

0 (daily stock) for all examples.

22 Horvath et al. (2021) deep hedge derivatives under a rough Bergomi volatility model by trading the
underlying stock and a variance swap. The latter paper shows that this dynamics exhibits jump-like behaviour
when discretized. As results presented in this current paper highlights the fact that global hedging jump risk
with option hedges is very effective, deep hedging with options could also potentially be effective under such
rough volatility models.
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hedging random jumps solely with the underlying stock is ineffective. Our ε?-metrics have

the advantage of allowing for a precise quantification of such reduction in residual hedging

risk achieved through the use of options as hedging instruments.

The sensitivity of equal risk prices and residual hedging risk across the three jump risk

scenarios for each set of hedging instruments is now examined. Numerical results presented

in Table 4.3 indicate that for a fixed set of hedging instruments, both the equal risk price and

the level of incompleteness increases with the severity of jumps across all moneyness levels.

Indeed, the relative increase of equal risk prices observed under scenario 3 as compared to

scenario 1 respectively for OTM, ATM and ITM puts is 78%, 31% and 12% with the daily

stock, 68%, 27% and 11% with the monthly stock, 40%, 12% and 3% with 1-month options

and 38%, 8% and 1% with 3-months options.23 Similar observations can be made for both

incompleteness metrics: increases in jump severity leads to larger ε? and ε?/C?
0 . This positive

association between both equal risk prices and the level of market incompleteness to jump

severity can be explained by the following observations. For a fixed hedging instrument and

moneyness level, the long measured risk exposure is closed to invariant to jump severity (i.e.

similar values across the three jump risk scenarios). The latter stems from the fact that

jump dynamics considered in this paper predominantly entail negative jumps, which result in

a thicker left tail for the long position hedging error (i.e. hedging gains) as jump severity

increases, but in close to no impact on the right tail of the long position hedging error. In

contrast, since the right tail weight of the short position hedging error increases with the

expected (negative) magnitude and volatility of jumps, the short measured risk exposure

always increases going from scenario 1 to scenario 3, which consequently increases both the

equal risk price and the level of market incompleteness.

23 For a fixed hedging instrument and moneyness level, if C?0 (scenario 1) and C?0 (scenario 3) are respectively
the equal risk price obtained under jump risk scenario 1 and 3, the relative increase is computed as
C?

0 (scenario 3)
C?

0 (scenario 1) − 1.
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4.4.3 Sensitivity of equal risk pricing to volatility risk

Having examined the impact of jump risk on the ERP framework, the impact of volatility

risk is now studied. In the same spirit as analyses done for jump risk, three different sets

of parameters are considered for the GARCH dynamics which imply annualized stationary

(expected) volatilities of 10%, 15% and 20%.24 The three sets of parameters are presented

in Table 4.4. Note that every parameter is fixed for all three sets, except for the level

parameter ω, which is adjusted to attain the wanted stationary volatility. The value of the

drift parameter µ is set such that the yearly expected value of log-returns is 10%. Also,

values for {υ, γ, β} are inspired from parameters estimated with maximum likelihood on a

time series of daily log-returns on the S&P 500 index for the period 1986-12-31 to 2010-04-01

used in Carbonneau and Godin (2021b). The same setup is considered as in Section 4.4.2 in

terms of the derivative to be priced (1-year maturity European puts) and for the choice of

hedging instruments (underlying stock traded on a daily or monthly basis and 1-month or

3-months maturities ATM calls and puts). The same parameters as in the study of jump

risk conducted in Section 4.4.2 are used for {κ, σIV, %} of the log-AR(1) dynamics for the

evolution of 1-month and 3-months ATM IVs (i.e. κ = 0.15, σIV = 0.06 and % = −0.6),

except for the long-run parameter ϑ, which is set to be in line with the underlying GARCH

process as log(0.10), log(0.15) and log(0.20) when the stationary volatility is 10%, 15% and

20%, respectively. It is worth highlighting that the choice of modeling implied volatilities for

short-term options with higher and smaller average levels enables us to assess the impact

of larger and smaller average costs for trading options on the equal risk price and residual

hedging risk of longer-term options.

24 The annualized stationary volatility with 252 days per year is computed as√
252ω

1− υ(1 + γ2)− β
.
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Table 4.4: Parameters of the GJR-GARCH model for 10%, 15% and 20% stationary yearly

volatilities.

Stationary volatility µ ω υ γ β

10% 3.968e-04 8.730e-07 0.05 0.6 0.91
15% 3.968e-04 1.964e-06 0.05 0.6 0.91
20% 3.968e-04 3.492e-06 0.05 0.6 0.91

4.4.3.1 Benchmarking results with volatility risk

Table 4.5 presents equal risk prices C?
0 and ε?-metrics for put options of 1 year maturity

across the three sets of volatility risk parameters and hedging instruments. Numerical results

indicate that in the presence of volatility risk, the use of options as hedging instruments can

reduce C?
0 as compared to daily stock hedging. However, this impact on C?

0 when trading

options can be marginal and is highly sensitive to the moneyness level of the put option

being priced as well as to the maturity of the traded options. Furthermore, the impact on C?
0

of the use of options within hedges tends to diminish when traded options are more costly

(i.e. as the average level of implied and GARCH volatility increases). Indeed, the relative

reduction in equal risk prices achieved with 1-month options hedging as compared to daily

stock hedging with 10%, 15% and 20% stationary volatility is respectively 44%, 26% and 15%

for OTM puts, 12%, 9% and 5% for ATM and 1%, 2% and 1% for ITM options.25 However,

the relative reduction in C?
0 with 3-months option hedges as compared to using the stock on

a daily basis is overall much more marginal, with the notable exceptions of OTM and ATM

puts with 10% stationary volatility which achieve respectively 25% and 7% reduction as well

as for the OTM moneyness under 15% stationary volatility with a 12% reduction. Also, as

expected, values presented in Table 4.5 confirm that the level of market incompleteness as

measured by the ε? metric has a positive relationship with the average level of stationary

volatility for all hedging instruments.

25 If C?0 (daily stock) and C?0 (1-month options) are respectively the equal risk price obtained by hedging with

the stock on a daily basis and with 1-month options, the relative reduction is computed as 1− C?
0 (1-month options)
C?

0 (daily stock)

for all examples.
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Table 4.5: Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? to volatility

risk for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.

OTM ATM ITM

Stationary volatility 10% 15% 20% 10% 15% 20% 10% 15% 20%

C?
0

Daily stock 1.01 2.35 3.85 3.23 5.36 7.24 8.56 10.55 12.51

Monthly stock 1.17 2.65 4.23 3.37 5.44 7.58 8.85 10.82 12.88

1-month options 0.56 1.74 3.27 2.86 4.87 6.89 8.46 10.32 12.35

3-months options 0.76 2.07 3.65 3.01 5.08 7.16 8.51 10.38 12.44

ε?

Daily stock 0.77 1.51 2.21 1.28 2.12 2.67 1.12 1.98 2.65

Monthly stock 1.15 2.44 3.67 2.15 3.41 4.62 1.92 3.29 4.56

1-month options 0.26 0.65 1.06 0.59 1.00 1.36 0.62 1.03 1.39

3-months options 0.59 1.32 2.02 1.10 1.77 2.41 1.04 1.68 2.31

ε?/C?
0

Daily stock 0.77 0.64 0.57 0.40 0.40 0.37 0.13 0.19 0.21

Monthly stock 0.99 0.92 0.87 0.64 0.63 0.61 0.22 0.30 0.35

1-month options 0.45 0.37 0.32 0.21 0.20 0.20 0.07 0.10 0.11

3-months options 0.77 0.64 0.55 0.36 0.35 0.34 0.12 0.16 0.19

Notes: Results are computed based on 100,000 independent paths generated from the GJR-
GARCH(1,1) model for the underlying with three sets of parameters implying stationary
yearly volatilities of 10%, 15% and 20% (see Section 4.4.1.3 for model description and
Table 4.4 for parameters values). Hedging instruments : daily or monthly rebalancing with the
underlying stock and 1-month or 3-months options with ATM calls and puts. Options used as
hedging instruments are priced with implied volatility modeled as a log-AR(1) dynamics with
κ = 0.15, σIV = 0.06 and % = −0.6 for all cases, and ϑ set to log(0.10), log(0.15) and log(0.20)
when the GARCH stationary volatility is 10%, 15% and 20%, respectively (see Section 4.4.1.4
for the log-AR(1) model description). The training of neural networks is done as described in
Section 4.4.1.5. The confidence level of the CVaR measure is α = 0.95.
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The previously described observations about the impact of option hedges on both equal

risk prices and residual hedging risk all stem from the realized reduction in measured risk

exposure by the long and short positions. However, contrarily to results obtained with jump

risk, the reduction in measured risk exposure when hedging volatility risk with options can

be very similar for both the long and short positions, whereas with jump risk, the reduction

is asymmetric by always favoring the short position with a larger reduction. The latter can

be explained by the fact that volatility risk impacts both upside and downside risk, while

the impact of jump risk dynamics considered in this paper is very asymmetric by entailing

significantly more weight on the right (resp. left) tail of the short (resp. long) hedging error

with predominantly negative jumps. Values presented in Table 4.5 confirm this analysis of the

interrelation between volatility risk and the choice of hedging instruments. For instance, for

ITM puts, the measured risk exposure of the long and short positions decreases by a similar

amount when trading 1-month or 3-months options as compared to daily stock hedges, which

explains the significant decrease in ε?, but also the insensitivity of C?
0 to the choice of hedging

instruments and rebalancing frequency. On the other hand, for OTM puts, 1-month and

3-months option hedges results in larger decreases of measured risk exposure for the short

position than for the long position, which explains the reduction in C?
0 and ε? as compared

to daily stock hedges.

Lastly, it is very interesting to observe that the average price level of short-term options used

as hedging instruments is effectively reflected into the equal risk price of longer-term options.

Indeed, numerical results for C?
0 presented in Table 4.5 highlight the fact that higher hedging

options implied volatilities for 1-month and 3-months ATM calls and puts leads to higher equal

risk prices for 1-year maturity puts. Furthermore, to isolate the idiosyncratic contribution of

the variations of option prices used as hedging instruments on the equal risk price from the

impact of the stationarity volatility of the GARCH process, the authors also tested fixing the

stationarity volatility of the GARCH process to 15% and setting the long-run parameter of the

IV process to 14% and 16%. These results presented in Section 4.6.3, Table 4.9, confirm that
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higher implied volatilities for options used as hedging instruments leads to higher equal risk

prices. All of these benchmarking results demonstrate the potential of the ERP framework

as a fair valuation approach consistent with observable market prices. For instance, the ERP

framework could be used to price and optimally hedge over-the-counter derivatives with

vanilla options. An additional potential application is the marking-to-market of less liquid

long-term derivatives (e.g. Long-Term Equity AnticiPation Securities (LEAPS)) consistently

with highly liquid shorter-term option hedges. The ERP framework could also be used for

the fair valuation of segregated funds guarantees, which are equivalent to very long-term

(up to 40 years) derivatives sold by insurers.26 Indeed, International Financial Reporting

Standards 17 (IFRS 17, IASB (2017)) mandates a market consistent valuation of options

embedded in segregated funds guarantees with readily available observable market prices at

the measurement date. The ERP framework could potentially be applied to price such very

long-term options consistently with shorter-term implied volatility surface dynamics, with

the latter being much less challenging to calibrate due to the higher liquidity of short-term

options.27

4.4.4 Sensitivity analyses to the confidence level of CVaRα

This section conducts sensitivity analyses with respect to the choice of convex risk measure on

the ERP framework when trading exclusively options. Similarly to the work of Carbonneau

and Godin (2021b), values for equal risk prices and ε?-metrics are examined across the

confidence levels 0.90, 0.95 and 0.99 for the CVaRα measure. As argued in the latter paper,

higher confidence levels corresponds to more risk averse agents by concentrating more relative

26 Note that Carbonneau (2021) demonstrates the potential of the deep hedging algorithm for global hedging
long-term lookback options embedded in segregated funds guarantees with multiple hedging instruments.
It is also worth highlighting that Barigou et al. (2020) developed a pricing scheme consistent with local
non-quadratic hedging procedures for insurance liabilities which relies on neural networks.

27 In the context of segregated funds, the short position of the embedded option is assumed to be held by
an insurance company who has to provide a quote and mitigate its risk exposure. The long position is held
by an unsophisticated investor who will not be hedging his risk exposure. Nevertheless, as IFRS 17 mandates
the use of a fair valuation approach for embedded options consistent with observable market prices, the ERP
framework could potentially be used in this context.
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weight on losses of larger magnitude. The main finding of the sensitivity analysis conducted in

Carbonneau and Godin (2021b) is that when trading exclusively the underlying stock, higher

confidence levels leads to larger values for C?
0 and ε? metrics. The objective of this section

is to assess if this finding is robust to the use of short-term option hedges instead of the

underlying stock. For each confidence level, the authors of the current paper computed both

equal risk prices and residual hedging risk obtained by trading 3-months ATM calls and puts

with the same setup as in Section 4.4.2 and Section 4.4.3, i.e. for all three jump and volatility

scenarios of parameters.28 Overall, the main conclusions are found to be qualitatively similar

for all of the different setups. Thus, to save space, values for equal risk prices and residual

hedging risk are only reported under the MJD dynamics with jump risk scenario 2 by trading

3-months options; these results are presented in Table 4.6.

Numerical values reported in Table 4.6 indicate that with option hedges, an increase in

the confidence level parameter of the CVaRα measure leads to larger equal risk prices C?
0

and residual hedging risk ε? across all examples. These results confirm that the finding of

Carbonneau and Godin (2021b) with respect to the sensitivity of C?
0 and ε? to the risk aversion

of the hedger is robust to using exclusively options as hedging instruments. Furthermore,

values for equal risk prices C?
0 show a largest increase when using CVaR0.95 and CVaR0.99 as

compared to CVaR0.90 for OTM puts, followed by ATM and ITM moneyness levels; the same

conclusion was observed in Carbonneau and Godin (2021b) when trading the underlying

stock. The increase in C?
0 with the risk aversion level of the hedger stems from the thicker

right tail of the short position hedging error than for the long position hedging error. The

latter observation is consistent with previous analyses: while option hedges are more effective

28 Unreported tests performed by the authors show that values lower than 0.90 for the confidence level of
CVaRα with 1-month and 3-months option hedges lead to trading policies with significantly larger tail risk in
a way which would deem such policies as inadmissible by hedgers. Using the CVaR0.90 measure with 1-month
options also resulted in trading policies with significantly larger tail risk. However, this large increase in tail
risk was not observed with the CVaR0.95 and CVaR0.99 measures when trading 1-month options, nor with
CVaR0.90, CVaR0.95 and CVaR0.99 when trading 3-months options. These observations motivated the choice
of performing sensitivity analysis for CVaRα with α = 0.90, 0.95 and 0.99 exclusively when trading 3-months
options.
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Table 4.6: Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? for OTM

(K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1 under the

MJD dynamics with jump risk scenario 2.

C?
0 ε? ε?/C?

0

Moneyness OTM ATM ITM OTM ATM ITM OTM ATM ITM

CVaR0.90 1.86 4.93 10.40 0.99 1.43 1.50 0.53 0.29 0.14

CVaR0.95 12% 4% 1% 39% 28% 20% 24% 23% 18%

CVaR0.99 40% 10% 4% 116% 76% 65% 54% 60% 59%

Notes: Results are computed based on 100,000 independent paths generated from the Merton
Jump-Diffusion model for the underlying (see Section 4.4.1.2 for model description) with
parameters ν = 0.1111, σ = 0.1323, λ = 0.25, µJ = −0.10 and σJ = 0.10 corresponding to
jump risk scenario 2 of Table 4.1. Hedging instruments consist of 3-months ATM calls and
puts priced with implied volatility modeled with a log-AR(1) dynamics (see Section 4.4.1.4
for model description and Table 4.2 for parameters values). The training of neural networks
is done as described in Section 4.4.1.5. Values for the CVaR0.95 and CVaR0.99 measures are
expressed relative to CVaR0.90 (% increase).

than stock hedges in the presence of equity jump risk as demonstrated in Section 4.4.2, their

inclusion within hedging portfolios does not fully mitigate the asymmetry in tail risk of the

residual hedging error.

4.4.5 Benchmarking of equal risk prices to variance-optimal premiums

This section presents the benchmarking of equal risk prices to derivative premiums obtained

with variance-optimal hedging procedures (VO, Schweizer (1995)), also commonly called global

quadratic hedging. Variance-optimal hedging solves jointly for the initial capital investment

and a self-financing strategy minimizing the expected value of the squared hedging error:

min
δ∈Π,V0∈R

E
[(

Φ(S
(0,b)
N )−BN(V0 +Gδ

N)
)2
]
. (4.30)

The optimized initial capital investment denoted hereafter as C
(V O)
0 can be viewed as the

production cost of Φ, since the resulting dynamic trading strategy replicates the derivative’s

payoff as closely as possible in a quadratic sense. The optimization problem (4.30) can also
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be solved in a similar fashion as the non-quadratic global hedging problems embedded in the

ERP framework, but with two distinctions: the initial capital investment is treated as an

additional trainable parameter and a single neural network is considered since the optimal

trading strategy is the same for the long and short position due to the quadratic penalty.29

The reader is referred to Section 4.6.1 for a complete description of the numerical scheme for

variance-optimal hedging implemented in this study.

The setup considered for the examination of this benchmarking is the same as in Section 4.4.2

with the MJD dynamics under the three jump risk scenarios, with the exception of the

confidence level of the CVaRα measure, which is studied at first with α = 0.95 fixed as

in Section 4.4.2 and Section 4.4.3, and subsequently across α = 0.90, 0.95 and 0.99 as in

Section 4.4.4. Note that the authors also conducted the same experiments under the setup

of Section 4.4.3 with volatility risk, and found that the main qualitative conclusions are

very similar. The reader is referred to Table 4.12 and Table 4.13 of Section 4.6.3 for the

benchmarking of ERP to VO procedures in the presence of volatility risk.

4.4.5.1 Benchmarking results

Table 4.7 presents benchmarking results of equal risk prices C?
0 to variance-optimal prices

C
(V O)
0 under the MJD dynamics with the CVaR0.95 measure. Numerical experiments show

that C?
0 is at least larger than C

(V O)
0 for all examples, but the relative increase is always

smaller and less sensitive to jump severity when trading options. Furthermore, the relative

increase in derivative premiums observed with the ERP framework over VO hedging is the

largest for OTM puts, followed by ATM and ITM options across all jump risk scenarios and

hedging instruments. For instance, the relative increase in C?
0 as compared to C

(V O)
0 when

trading the daily stock ranges from jump scenario 1 to scenario 3 between 17% to 75% for

29 Cao et al. (2020) showed that the deep hedging algorithm for variance-optimal hedging problems provides
good approximations of optimal initial capital investments by comparing the optimized values to known
formulas.

125



Table 4.7: Equal risk prices C?
0 and variance-optimal (VO) prices C

(V O)
0 with jump risk for

OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.

OTM ATM ITM

Jump Scenario (1) (2) (3) (1) (2) (3) (1) (2) (3)

C
(V O)
0

Daily stock 1.62 1.77 1.92 4.71 4.79 4.80 10.20 10.18 10.12

Monthly stock 1.55 1.73 1.86 4.62 4.72 4.72 10.14 10.11 10.05

1-month options 1.71 2.04 2.38 4.82 5.11 5.31 10.27 10.45 10.52

3-months options 1.58 1.83 2.08 4.64 4.82 4.97 10.11 10.15 10.21

C?
0

Daily stock 17% 45% 75% 11% 25% 42% 6% 15% 20%

Monthly stock 27% 51% 78% 9% 22% 35% 6% 13% 18%

1-month options 6% 10% 7% 3% 5% 6% 2% 4% 3%

3-months options 10% 14% 15% 5% 6% 6% 3% 4% 4%

Notes: Results are computed based on 100,000 independent paths generated from the
Merton Jump-Diffusion model for the underlying (see Section 4.4.1.2 for model description).
Three different sets of parameters values are considered with λ = {1, 0.25, 0.08}, µJ =
{−0.05,−0.10,−0.20} and σJ = {0.05, 0.10, 0.15} respectively for the jump scenario 1, 2,
and 3 (see Table 4.1 for all parameters values). Hedging instruments: daily or monthly
rebalancing with the underlying stock and 1-month or 3-months options with ATM calls and
puts. Options used as hedging instruments are priced with implied volatility modeled with a
log-AR(1) dynamics (see Section 4.4.1.4 for model description and Table 4.2 for parameters
values). The training of neural networks for ERP and VO hedging is done as described in
Section 4.4.1.5 and Section 4.6.1, respectively. The confidence level of the CVaR measure is
α = 0.95. C?

0 are expressed relative to C
(V O)
0 (% increase).

OTM puts, 11% to 42% for ATM and 6% to 20% for ITM options.30 On the other hand, the

relative increase in C?
0 as compared to C

(V O)
0 is much less sensitive to jump severity when

trading 1-month options by ranging from scenario 1 to scenario 3 between 6% to 10% for

OTM puts, 3% to 6% for ATM and 2% to 4% for ITM. Based on these results, we can assert

that although both derivative valuation schemes are consistent with optimal trading criteria,

the choice of hedging instrument and pricing procedure (hence implicitly of the treatment of

hedging gains and losses) has a material impact on resulting derivative premiums and must

30 The relative increase is computed as
C?

0

C
(V O)
0

− 1 for all examples.
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thus be carefully chosen.

This smaller disparity between equal risk and variance-optimal prices with option hedges

is in line with previous analyses: in the presence of jump or volatility risk, hedging with

options entails significant reduction of the level market incompleteness as compared to trading

solely the underlying stock. In such cases, premiums obtained with both derivative valuation

approaches should be closer with the limiting case of being the same in a complete market.31

These observations expand upon the work of Carbonneau and Godin (2021b), which shows

that equal risk prices of puts obtained by hedging solely with the underlying stock are

always larger than risk-neutral prices computed under convential change of measures. Indeed,

benchmarking results presented in this current paper provide important novel insights into

this price inflation phenomenon observed with the ERP framework: the disparity between

equal risk and variance-optimal prices is always significantly smaller and less sensitive to

stylized features of risky assets (e.g. jump or volatility risk) when option hedges are considered

instead of trading exclusively the underlying stock.

Moreover, Table 4.8 presents benchmarking results of C?
0 to C

(V O)
0 with CVaR0.90,CVaR0.95

and CVaR0.99 measures with 3-months option hedges. Values presented in this benchmarking

demonstrate the ability of ERP, through the choice of convex risk measures, to span a large

interval of prices which is close to encompass the variance-optimal premium. Indeed, under

the CVaR0.90 measure, we observe that C?
0 values are very close to C

(V O)
0 where the relative

difference ranges between 0% and 3% across all moneynesses and jump risk scenarios. On

the other hand, optimizing trading policies with more risk averse agents, i.e. with CVaR0.95

or CVaR0.99, provides a very wide range of derivative premiums with the ERP framework,

especially for the OTM moneyness level. It is very interesting to note that this added flexibility

31 To further illustrate this phenomenon, the authors also performed the same benchmarking with the
Black-Scholes dynamics under which market incompleteness solely stems from discrete-time trading. The
latter results are presented in the Section 4.6.3. Numerical values show that under the Black-Scholes dynamics,
trading the underlying stock on a daily basis leads for most combinations of moneyness level and yearly
volatility to the closest derivative premiums between ERP and VO procedures as compared to the other
hedging instruments (see Table 4.11). Also, as expected under the Black-Scholes dynamics, daily stock hedging
entails the smallest level of residual hedging risk across the different hedging instruments (see Table 4.10).
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Table 4.8: Sensitivity analysis of equal risk prices C?
0 with CVaR0.90,CVaR0.95 and CVaR0.99

measures to variance-optimal (VO) prices C
(V O)
0 under jump risk for OTM (K = 90), ATM

(K = 100) and ITM (K = 110) put options of maturity T = 1.

OTM ATM ITM

Jump Scenario (1) (2) (3) (1) (2) (3) (1) (2) (3)

C
(V O)
0 1.58 1.83 2.08 4.64 4.82 4.97 10.11 10.15 10.21

C?
0(CVaR0.90) 3% 2% 0% 2% 2% 2% 2% 2% 2%

C?
0(CVaR0.95) 10% 14% 15% 5% 6% 6% 3% 4% 4%

C?
0(CVaR0.99) 32% 43% 55% 10% 12% 16% 6% 6% 8%

Notes: Results are computed based on 100,000 independent paths generated from the
Merton Jump-Diffusion model for the underlying (see Section 4.4.1.2 for model description).
Three different sets of parameters values are considered with λ = {1, 0.25, 0.08}, µJ =
{−0.05,−0.10,−0.20} and σJ = {0.05, 0.10, 0.15} respectively for jump scenario 1, 2, and 3
(see Table 4.1 for all parameters values). Hedging instruments consist of 3-months ATM calls
and puts priced with implied volatility modeled as a log-AR(1) dynamics (see Section 4.4.1.4
for model description and Table 4.2 for parameters values). The training of neural networks
for ERP and VO hedging is done as described in Section 4.4.1.5 and Section 4.6.1, respectively.
C?

0 with CVaR0.90,CVaR0.95 and CVaR0.99 are expressed relative to C
(V O)
0 (% increase).

of ERP procedures for pricing derivatives does not come at the expense of less effective

hedging policies. Indeed, a major drawback of variance-optimal hedging lies in penalizing

equally gains and losses through a quadratic penalty for hedging shortfalls. Conversely, the

long and short trading policies solving the non-quadratic global hedging problems of the ERP

framework are optimized to minimize a loss function which is possibly more in line with the

financial objectives of the hedger by mainly (and most often exclusively) penalizing hedging

losses, not gains.

4.5 Conclusion

This paper studies the equal risk pricing (ERP) framework for pricing and hedging European

derivatives in discrete-time with multiple hedging instruments. The ERP approach sets

derivative prices as the value such that the optimally hedged residual risk of the long and

short positions in the contingent claim are equal. The ERP setup of Marzban et al. (2020)

is considered where residual hedging risk is quantified through convex measures. The main
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objective of this current paper is in assessing the impact of including options within hedges on

the equal risk price C?
0 and on the level of market incompleteness quantified by our ε?-metrics.

A specific focus is on the examination of the interplay between different stylized features of

equity jump and volatility risks and the use of options as hedging instruments within the

ERP framework. The numerical scheme of Carbonneau and Godin (2021b), which relies on

the deep hedging algorithm of Buehler et al. (2019b), is used to solve the embedded global

hedging problems of the ERP framework through the representation of the long and short

trading policies with two distinct long-short term memory (LSTM) neural networks.

Sensitivity analyses with Monte Carlo simulations are performed under several empirically

plausible sets of parameters for the jump and volatility risk models in order to highlight the

impact of different stylized features of the models on C?
0 and ε?. Numerical values indicate

that in the presence of jump risk, hedging with options entails a significant reduction of

both equal risk prices and market incompleteness as compared to hedging solely with the

underlying stock. The latter stems from the fact that using options as hedging instruments

rather than only the underlying stock shrinks the asymmetry of tail risk, which tends to both

shrink option prices and reduce market incompleteness. On the other hand, in the presence of

volatility risk, while option hedges can reduce equal risk prices as compared to stock hedges,

the impact can be marginal and is highly sensitive to the moneyness level of the put option

being priced as well as to the maturity of traded options. This can be explained by the

fact that while the impact of jump risk dynamics considered in this paper is asymmetric

by entailing significantly more weight on the right (resp. left) tail of the short (resp. long)

hedging error through predominantly negative jumps, volatility risk impacts both upside and

downside risk. Furthermore, additional experiments conducted show that the average price

level of short-term options used as hedging instruments is effectively reflected into the equal

risk price of longer-term options. The latter highlights the potential of the ERP framework

as a fair valuation approach providing prices consistent with observable market prices. Thus,

ERP could be applied for instance in the context of pricing over-the-counter derivatives
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with vanilla calls and puts hedges or pricing less liquid long-term derivatives (e.g. LEAPS

contracts) with shorter-term liquid options.

Moreover, the benchmarking of equal risk prices to variance-optimal derivative premiums

C
(V O)
0 is performed. The deep hedging algorithm is also used as the numerical scheme

to solve the variance-optimal hedging problems. Numerical results show that while C?
0

tends to be larger than C
(V O)
0 , trading options entails much smaller disparity between equal

risk and variance-optimal prices as compared to trading only the underlying stock in the

presence of jump or volatility risk. The latter is due to the market incompleteness being

significantly smaller when option hedges are used to mitigate jump and volatility risks.

Furthermore, additional experiments conducted demonstrate the ability of ERP to span a

large interval of prices through the choice of convex risk measures, which is close to encompass

the variance-optimal premium.

4.6 Appendix

4.6.1 Variance-optimal hedging

Denote J (V O) : Rq × R → R as the cost function to be minimized for variance-optimal

procedures:

J (V O)(θ, V0) := E
[(

Φ(S
(0,b)
N )−BN(V0 +Gδθ

N )
)2
]
, (θ, V0) ∈ Rq × R, (4.31)

where θ is the set of trainable parameters of the LSTM Fθ, V0 is the initial capital investment

and δθ is to be understood as the output sequence of Fθ. Let θ̃ := {θ, V0} be the augmented

set of trainable parameters which includes the initial portfolio value. Minibatch SGD with

Monte Carlo sampling can naturally also be used to minimize (4.31) jointly for the trainable

parameters and the initial capital investment by updating iteratively the augmented set θ̃:

θ̃j+1 = θ̃j − ηj∇θ̃Ĵ
(V O)(Bj, V0,j), (4.32)

130



where θ̃0 := {θ0, V0,0} is the initial set32 and Ĵ (V O)(Bj, V0,j) is the empirical estimator of

J (V O)(θ, V0) evaluated with the minibatch of hedging errors Bj = {Φ(S
(0,b)
N,i ) − BN(V0,j +

Gδθj
N,i)}

Nbatch
i=1 when θ̃ = θ̃j (i.e. θ = θj and V0 = V0,j):

Ĵ (V O)(Bj, V0,j) :=
1

Nbatch

Nbatch∑
i=1

(
Φ(S

(0,b)
N,i )−BN(V0,j +Gδθj

N,i)
)2

. (4.33)

4.6.2 Pseudo-code deep hedging

Algorithm 4.1 presents the pseudo-code to perform a one-step update of the trainable

parameters as in (4.22) for the global hedging problems of the ERP framework, i.e. updating

θj to θj+1. For convenience, the pseudo-code is presented for the case of trading exclusively

the underlying stock and for the short position trading policy, but it is trivial to generalize

to the case of trading other hedging instruments (e.g. short-term options) and for the long

position trading policy. Note that the pseudo-code is described for the MJD dynamics, but

it can be generalized to the GARCH dynamics by sampling log-returns from (4.26) in line

(6), and adding the stochastic volatilities to feature vectors as described in Section 4.4.1.3.

Furthermore, the pseudo-code can also easily be extended to variance-optimal hedging by

updating the augmented set θ̃j to θ̃j+1 with (4.32) instead of θj to θj+1 in line (17) and by

adapting the empirical cost function in line (15) to (4.33). Lastly, recall that a GitHub

repository with samples of codes in Python for the training procedure of neural networks is

available online: github.com/alexandrecarbonneau. The implementation replicates results

of Table 4.3 with jump risk scenario 2, and can easily be adapted to reproduce all results

presented in Section 4.4.

32 As described in Section 4.4.1.4, an implied volatility dynamics is considered to price options used as
hedging instruments. In numerical experiments of Section 4.4, V0,0 is set at the price obtained with the time-0
implied volatility. The authors also tested the naive initialization scheme V0,0 = 0 as a robustness test, and
found that the resulting variance-optimal premiums were marginally affected by this choice. Also, the Glorot
uniform initialization of Glorot and Bengio (2010) is used to select θ0.
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Algorithm 4.1 Pseudo-code short trading policy with stock hedges under the MJD model
Input: θj
Output: θj+1

1: for i = 1, . . . , Nbatch do . Loop over each path of minibatch
2: X0,i = [log(S

(0,b)
0,i /K), V δ

0,i] . Time-0 feature vector of F
(S)
θ with V δ

0,i = 0
3: for n = 0, . . . , N − 1 do
4: Yn,i ← time-tn output of LSTM F

(S)
θ with θ = θj

5: δ
(0)
n+1,i = Yn,i

6: yn+1,i ∼ (4.25) . Sample next log-return

7: S
(0,b)
n+1,i = S

(0,b)
n,i e

yn+1,i

8: V δ
n+1,i = er∆NV δ

n,i + δ
(0)
n+1,i(S

(0,b)
n+1,i − er∆NS

(0,b)
n,i ) . See (4.4) for details

9: Xn+1,i = [log(S
(0,b)
n+1,i/K), V δ

n+1,i] . Time-tn+1 feature vector for F
(S)
θ

10: end for
11: Φ(S

(0,b)
N,i ) = max(K − S(0,b)

N,i , 0)

12: πi,j = Φ(S
(0,b)
N,i )− V δ

N,i

13: end for
14: VaR
∧

α = π[Ñ ],j . Ñ th ordered hedging error with Ñ := dαNbatche
15: CVaR
∧

α = VaR
∧

α + 1
(1−α)Nbatch

∑Nbatch

i=1 max(πi,j − VaR
∧

α, 0)
16: ηj ← Adam algorithm

17: θj+1 = θj − ηj∇θCVaR
∧

α . ∇θCVaR
∧

α computed with Tensorflow

Notes: Subscript i represents the ith simulated path among the minibatch of size Nbatch. Also,
the time-0 feature vector is fixed for all paths, i.e. S

(0,b)
0,i = S

(0,b)
0 and V δ

0,i = V δ
0 = 0.
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4.6.3 Additional numerical experiments

This section contains supplementary material of the paper with additional numerical experi-

ments of the ERP framework presented in Table 4.9 to Table 4.13.

Table 4.9: Sensitivity analysis of equal risk prices C?
0 and residual hedging risk ε? to implied

volatility (IV) risk for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of

maturity T = 1.

OTM ATM ITM

Long-run IV 14% 15% 16% 14% 15% 16% 14% 15% 16%

C?
0

1-month options 1.52 1.74 1.98 4.52 4.87 5.20 10.01 10.32 10.66

3-months options 1.86 2.07 2.28 4.75 5.08 5.39 10.08 10.38 10.66

ε?

1-month options 0.61 0.65 0.66 0.96 1.00 0.96 0.99 1.03 1.01

3-months options 1.28 1.32 1.36 1.72 1.77 1.78 1.63 1.68 1.72

ε?/C?
0

1-month options 0.40 0.37 0.34 0.21 0.20 0.18 0.10 0.10 0.09

3-months options 0.69 0.64 0.60 0.36 0.35 0.33 0.16 0.16 0.16

Notes: Results are computed based on 100,000 independent paths generated from the GJR-
GARCH(1,1) model for the underlying with µ = 3.968e-04, ω = 1.964e-06, υ = 0.05, γ = 0.6
and β = 0.91 which entails stationary yearly volatility of 15% (see Section 4.4.1.3 for model
description). Hedging instruments consist of 1-month or 3-months options with ATM calls and
puts. The latter options are priced with implied volatility modeled as a log-AR(1) dynamics
with κ = 0.15, σIV = 0.06 and % = −0.6 for all cases, and the long-run parameter ϑ set to
log(0.14), log(0.15) or log(0.16) (see Section 4.4.1.4 for the log-AR(1) model description).
The training of neural networks is done as described in Section 4.4.1.5. The confidence level
of the CVaR measure is α = 0.95.
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Table 4.10: Equal risk prices C?
0 and residual hedging risk ε? under the Black-Scholes model

for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.

OTM ATM ITM

Annual volatility (σ) 10% 15% 20% 10% 15% 20% 10% 15% 20%

C?
0

Daily stock 0.43 1.48 2.83 2.65 4.60 6.68 8.37 10.19 12.08

Monthly stock 0.49 1.67 3.15 2.71 4.70 6.72 8.56 10.42 12.39

1-month options 0.44 1.56 3.00 2.74 4.70 6.71 8.48 10.30 12.27

3-months options 0.44 1.59 3.08 2.81 4.80 6.82 8.58 10.47 12.51

ε?

Daily stock 0.19 0.41 0.65 0.38 0.64 1.00 0.39 0.67 0.88

Monthly stock 0.50 1.52 2.59 1.54 2.53 3.48 1.51 2.59 3.60

1-month options 0.19 0.57 0.94 0.57 0.91 1.30 0.64 1.01 1.37

3-months options 0.29 0.93 1.55 0.96 1.55 2.11 1.09 1.76 2.35

ε?/C?
0

Daily stock 0.44 0.28 0.23 0.14 0.14 0.15 0.05 0.07 0.07

Monthly stock 1.01 0.91 0.82 0.57 0.54 0.52 0.18 0.25 0.29

1-month options 0.44 0.37 0.31 0.21 0.19 0.19 0.07 0.10 0.11

3-months options 0.67 0.59 0.50 0.34 0.32 0.31 0.13 0.17 0.19

Notes: Results are computed based on 100,000 independent paths generated from the Black-
Scholes model for the underlying with yearly parameters µ = 0.1 and σ = 0.1, 0.15 and 0.20.
Hedging instruments : daily or monthly rebalancing with the underlying stock and 1-month
or 3-months options with ATM calls and puts. Options used as hedging instruments are
priced with implied volatility modeled as a log-AR(1) dynamics with κ = 0.15, σIV = 0.06
and % = −0.6 for all cases, and ϑ set to log(0.10), log(0.15) and log(0.20) when σ = 0.10, 0.15
and 0.20, respectively (see Section 4.4.1.4 for log-AR(1) model description). The training of
neural networks is done as described in Section 4.4.1.5. The confidence level of the CVaR
measure is α = 0.95.
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Table 4.11: Equal risk prices C?
0 and variance-optimal (VO) prices C

(V O)
0 under the Black-

Scholes model for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of

maturity T = 1.

OTM ATM ITM

Annual volatility (σ) 10% 15% 20% 10% 15% 20% 10% 15% 20%

C
(V O)
0

Daily stock 0.38 1.39 2.77 2.62 4.53 6.46 8.34 10.12 12.04

Monthly stock 0.35 1.36 2.73 2.55 4.47 6.39 8.27 10.07 11.98

1-month options 0.42 1.47 2.84 2.67 4.58 6.52 8.35 10.13 12.06

3-months options 0.39 1.44 2.84 2.65 4.56 6.50 8.32 10.12 12.04

C?
0

Daily stock 12% 6% 2% 1% 2% 3% 0% 1% 0%

Monthly stock 40% 23% 15% 6% 5% 5% 3% 4% 3%

1-month options 5% 6% 6% 3% 3% 3% 2% 2% 2%

3-months options 11% 10% 9% 6% 5% 5% 3% 3% 4%

Notes: Results are computed based on 100,000 independent paths generated from the Black-
Scholes model for the underlying with yearly parameters µ = 0.1 and σ = 0.1, 0.15 and 0.20.
Hedging instruments : daily or monthly rebalancing with the underlying stock and 1-month
or 3-months options with ATM calls and puts. Options used as hedging instruments are
priced with implied volatility modeled as a log-AR(1) dynamics with κ = 0.15, σIV = 0.06
and % = −0.6 for all cases, and ϑ set to log(0.10), log(0.15) and log(0.20) when σ = 0.10, 0.15
and 0.20, respectively (see Section 4.4.1.4 for log-AR(1) model description). The training
of neural networks for ERP and VO hedging is done as described in Section 4.4.1.5 and
Section 4.6.1, respectively. The confidence level of the CVaR measure is α = 0.95. C?

0 are

expressed relative to C
(V O)
0 (% increase).
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Table 4.12: Equal risk prices C?
0 and variance-optimal (VO) prices C

(V O)
0 with volatility

risk for OTM (K = 90), ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.

OTM ATM ITM

Stationary volatility 10% 15% 20% 10% 15% 20% 10% 15% 20%

C
(V O)
0

Daily stock 0.78 1.88 3.24 2.94 4.75 6.60 8.29 9.98 11.81

Monthly stock 0.81 1.91 3.27 2.97 4.80 6.62 8.30 10.01 11.83

1-month options 0.50 1.60 3.01 2.75 4.66 6.60 8.32 10.10 12.04

3-months options 0.61 1.74 3.19 2.79 4.72 6.68 8.23 10.05 11.99

C?
0

Daily stock 29% 25% 19% 10% 13% 10% 3% 6% 6%

Monthly stock 45% 39% 30% 13% 13% 14% 7% 8% 9%

1-month options 12% 9% 9% 4% 4% 4% 2% 2% 3%

3-months options 24% 19% 14% 8% 8% 7% 3% 3% 4%

Notes: Results are computed based on 100,000 independent paths generated from the GJR-
GARCH(1,1) model for the underlying with three sets of parameters implying stationary
yearly volatilities of 10%, 15% and 20% (see Section 4.1.3 for model description and Table
4 for parameters values). Hedging instruments: daily or monthly rebalancing with the
underlying stock and 1-month or 3-months options with ATM calls and puts. Options used as
hedging instruments are priced with implied volatility modeled as a log-AR(1) dynamics with
κ = 0.15, σIV = 0.06 and % = −0.6 for all cases, and ϑ set to log(0.10), log(0.15) and log(0.20)
when the GARCH stationary volatility is 10%, 15% and 20%, respectively (see Section 4.1.4
for log-AR(1) model description). The training of neural networks for ERP and VO hedging
is done as described in Section 4.1.5 and Appendix A, respectively. The confidence level of
the CVaR measure is α = 0.95. C?

0 are expressed relative to C
(V O)
0 (% increase).
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Table 4.13: Sensitivity analysis of equal risk prices C?
0 with CVaR0.90,CVaR0.95 and CVaR0.99

measures to variance-optimal (VO) prices C
(V O)
0 under volatility risk for OTM (K = 90),

ATM (K = 100) and ITM (K = 110) put options of maturity T = 1.

OTM ATM ITM

Stationary volatility 10% 15% 20% 10% 15% 20% 10% 15% 20%

C
(V O)
0 0.61 1.74 3.19 2.79 4.72 6.68 8.23 10.05 11.99

C?
0(CVaR0.90) 6% 8% 6% 4% 4% 4% 2% 2% 2%

C?
0(CVaR0.95) 24% 19% 14% 8% 8% 7% 3% 3% 4%

C?
0(CVaR0.99) 81% 49% 37% 17% 16% 15% 6% 6% 7%

Notes: Results are computed based on 100,000 independent paths generated from the GJR-
GARCH(1,1) model for the underlying with three sets of parameters implying stationary
yearly volatilities of 10%, 15% and 20% (see Section 4.1.3 for model description and Table
4 for parameters values). Hedging instruments consist of 3-months ATM calls and puts
priced with implied volatility modeled as a log-AR(1) dynamics with κ = 0.15, σIV = 0.06
and % = −0.6 for all cases, and ϑ set to log(0.10), log(0.15) and log(0.20) when the GARCH
stationary volatility is 10%, 15% and 20%, respectively (see Section 4.1.4 for log-AR(1) model
description). The training of neural networks for ERP and VO hedging is done as described
in Section 4.1.5 and Appendix A, respectively. C?

0 with CVaR0.90,CVaR0.95 and CVaR0.99

are expressed relative to C
(V O)
0 (% increase).
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Chapter 5

Deep equal risk pricing of financial derivatives with

non-translation invariant risk measures

Abstract

The use of non-translation invariant risk measures within the equal risk pricing

(ERP) methodology for the valuation of financial derivatives is investigated. The ability

to move beyond the class of convex risk measures considered in several prior studies

provides more flexibility within the pricing scheme. In particular, suitable choices for

the risk measure embedded in the ERP framework such as the semi-mean-square-error

(SMSE) are shown herein to alleviate the price inflation phenomenon under Tail Value-

at-Risk based ERP as documented for instance in Carbonneau and Godin (2021b). The

numerical implementation of non-translation invariant ERP is performed through deep

reinforcement learning, where a slight modification is applied to the conventional deep

hedging training algorithm (see Buehler et al., 2019b) so as to enable obtaining a price

through a single training run for the two neural networks associated with the long and

short hedging strategies. The accuracy of the neural network training procedure is

shown in simulation experiments not to be materially impacted by such modification of

the training algorithm.

Keywords: Option pricing, Optimal hedging, Reinforcement learning, Deep learning.

138



5.1 Introduction

The equal risk pricing (ERP) methodology for derivatives valuation, which was initially

proposed by Guo and Zhu (2017), entails setting the price of a contingent claim as the initial

hedging portfolio value which leads to equal residual hedging risk for both the long and

short positions under optimal hedges. This pricing procedure is associated with numerous

advantageous properties, such as the production of prices that are arbitrage-free under some

technical conditions (see Guo and Zhu, 2017; Marzban et al., 2020; Carbonneau and Godin,

2021b), consistency with non-myopic global dynamic optimal hedging strategies, invariance

of the price with respect to the position considered (i.e. long versus short), and the ability

to consider general risk measures1 for the objective function of the hedging optimization

problem.

To further improve the ERP framework, several subsequent studies proposed some modifica-

tions to the original scheme. For instance, Marzban et al. (2020) and Carbonneau and Godin

(2021b) use the physical probability measure rather than the risk-neutral one to perform

hedging optimization; this has the advantage of improved interpretability of resulting prices

on top of removing the subjectivity associated with the choice of the risk-neutral measure in

an incomplete market setting. Furthermore, to enhance the computational tractability of the

ERP approach, these two studies also considered the set of convex risk measures to represent

the risk exposure of hedged transaction for both long and short parties.2 Indeed, when convex

measures are used, the translation invariance property leads to a useful characterization of

equal risk prices which removes the need to perform a joint optimization over all possible

values of the initial hedging portfolio.

The most natural convex risk measure to consider within the ERP approach is arguably

1For instance, the ability to depart from the quadratic penalty considered in the celebrated variance-optimal
approach of Schweizer (1995) enables avoiding adverse behavior associated with the penalization of hedging
gains.

2The original work from Guo and Zhu (2017) considers expected penalties as risk measures, which do
not possess all properties of convex risk measures (e.g. most lack the translation invariance property). For
instance, the Tail-Value-at-Risk (TVaR) is not a particular case of an expected penalty.
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the Conditional Value-at-Risk (CVaR), which is equivalent to the Expected Shortfall (ES)

or Tail-Value-at-Risk under the assumption that underlying loss variables are absolutely

continuous. See Rockafellar and Uryasev (2002) for a formal definition of the CVaR and

a description of its properties. The CVaRα can be interpreted as the operator computing

a probability weighted average of worst-case risks occurring within an event of probability

below or exactly 1− α, which is very intuitive. Moreover, it is a coherent risk measure in the

sense of Artzner et al. (1999), which implies favorable properties from a risk measurement

standpoint.3 Furthermore, the CVaR measure is used extensively in practice by the financial

sector to quantify capital requirements, see for instance BCBS (2016).

Due to its favorable properties, several studies used the CVaR within the ERP framework: see

Carbonneau and Godin (2021b) and Carbonneau and Godin (2021a). It was observed in the

foremost that when only the underlying asset is used to hedge put options and conventional

risk-neutral measures are used to determine the initial capital for hedging, the tail risk is much

more pronounced for the short position than for the long one, especially for out-of-the-money

puts. This leads to equal risk prices that are substantially higher than their risk-neutral

counterparts when the confidence level α of the CVaRα is high, to an extent that sheds doubts

on the applicability of the method in practice. An avenue that was explored to remedy this

drawback is to reduce the confidence level as prices were shown numerically to be positively

related to the latter. Unfortunately, as shown in this current paper, reducing the confidence

level to obtain smaller option prices becomes quickly impractical since the resulting hedging

strategies exhibit poor risk mitigation performance with speculative behavior magnifying tail

losses for very high quantiles above the CVaR confidence level. This approach should therefore

not be pursued in practice. A second possible solution to the inflated ERP prices issue

which is explored in Carbonneau and Godin (2021a) consists in incorporating other hedging

instruments (e.g. short-term options) within dynamic hedging schemes. That approach is

3The class of coherent risk measures is a subset of the class of convex risk measure which assumes for
instance the subadditivity and positive homogeneity properties; the latter are more stringent than the
convexity property satisfied by all convex risk measures.
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shown therein to produce prices that are often still higher than the traditional risk-neutral

ones, but much closer to them. This avenue was thus deemed successful when applicable.

However, it requires a more sophisticated model to represent the price dynamics of hedging

instruments, which complicates its implementation in practice. Furthermore, hedges relying

on option trades might not be feasible or desirable under some circumstances (e.g. lack of

liquidity).

The aforementioned simulation-based results on ERP prices highlight the need to identify an

ERP approach which can strictly rely on the underlying asset for hedging transactions and,

at the same time, which can alleviate the price inflation in comparison to prices obtained

from conventional pricing approaches. A straightforward route to explore so as to attempt

obtaining a satisfactory ERP method respecting the above constraints is to modify the risk

measure acting as the objective function in the optimal hedging problems underlying the

ERP framework. For instance, risk measures putting less relative weight on tail risk and

more on more moderate risk scenarios should produce lesser option prices. However, such

risk measures (e.g. the semi-variance, semi-root-mean-square-error (SRMSE), etc.) do not

necessarily satisfy properties of convex risk measures, in particular the translation invariance

property. Equal risk prices stemming from such risk measure choices therefore do not have

the convenient characterization associated with convex risk measures, which highlights the

need of tailor-made numerical procedures handling this additional complexity.

The main contribution of this manuscript is twofold. The first is to propose a modification

of the deep reinforcement learning approach illustrated in Carbonneau and Godin (2021b)

and Carbonneau and Godin (2021a) to handle non-translation invariant risk measures within

ERP naturally and without excessive additional computational burden. This modification

essentially consists in feeding varying initial hedging portfolio values to simulated underlying

asset paths to the deep hedging algorithm from Buehler et al. (2019b), and then coupling the

trained neural network output with a bisection search to seek the initial hedging portfolio

value equating risks for both the long and short positions. The latter bisection method search
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has previously been suggested in a similar context for instance in Marzban et al. (2020).

The training algorithm modification is shown in the current work not to lead to a material

deterioration in the hedging performance of the neural network underlying the numerical

approach. The second contribution consists in exploring equal risk prices of options generated

when using typical non-translation invariant risk measures. It is seen that the use of the class

of semi-Lp risk measures of the form L(x) = xp1{x>0} for p > 0 is able to reduce ERP prices

to more natural levels better in line with these of existing methodologies while simultaneously

resulting in effective trading policies. Indeed, numerical results indicate that equal risk prices

generated by the class of semi-Lp risk measures can span much more than the interval of

prices obtained under the CVaRα risk measures with conventional confidence α level values.

The latter observation is shown to hold across all moneyness levels for puts, and is robust

to all risky asset dynamics considered. Furthermore, the benchmarking of neural networks

trading policies hedging performance demonstrates that optimized policies under the semi-Lp

objective functions are effective for mitigating hedging risk across all values of p considered,

where p is shown to control the relative weight associated to extreme hedging losses. This is in

contrast with the CVaRα objective function where hedging policies optimized with relatively

small confidence level α exhibit poor risk mitigation for quantile losses larger than α. Lastly,

our results show that the use of the semi-L2 objective function to price long-term European

puts with trades involving exclusively the underlying stock is almost as successful to reduce

equal risk price values as compared to values obtained by trading shorter-term options with

the CVaRα risk measure. All of these results clearly demonstrate the benefit of using the

class of semi-Lp risk measures within the ERP framework by simultaneously alleviating the

price inflation phenomenon observed under the class of CVaR measures as well as resulting

in effective trading policies for risk management.

This paper is divided as follows. Section 5.2 provides a literature review about incomplete

market derivatives pricing, hedging methods and reinforcement learning in finance. The

theoretical setting used for the ERP approach in the current work is presented in Section 5.3.
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Section 5.4 explains the reinforcement learning methodology for neural networks embedded in

the ERP approach with the modified training algorithm proposed in this paper. Section 5.5

displays results of numerical experiments associated with ERP based semi-Lp risk measures.

Section 5.6 concludes.

5.2 Literature review

Financial derivatives pricing in incomplete markets has received an extensive amount of

attention in the literature. Numerous papers approach this problem through the selection

of a suitable risk-neutral measure based on various considerations such as shifting of the

drift to achieve risk-neutrality and model invariance, see Hardy (2001) and Christoffersen

et al. (2010), consistency with equilibrium models, see Gerber and Shiu (1994) and Duan

(1995), or minimum entropy distance between the physical and risk-neutral measures, see

Frittelli (2000). Another strand of literature considers pricing methods consistent with

optimal hedging strategies. At first, quadratic hedging methods were considered in Föllmer

and Schweizer (1988), Schweizer (1995), Elliott and Madan (1998) and Bertsimas et al. (2001)

due to their tractability. However, as a consequence of the limitations associated to the

quadratic penalty (e.g. penalizing equally gains and losses), other objective functions were

considered in alternative dynamic hedging schemes such as quantile hedging (Föllmer and

Leukert, 1999), expected penalty minimization (Föllmer and Leukert, 2000) or VaR and

CVaR optimization as in Melnikov and Smirnov (2012) and Godin (2016). Some pricing

schemes were also developed to enable consistency with non-quadratic hedging methods, for

instance utility indifference (Hodges and Neuberger, 1989) or risk indifference (Xu, 2006). An

issue with the latter approaches is that different prices are obtained depending on if a long or

short position is considered in the derivative. The ERP approach developed by Guo and Zhu

(2017) identifying the derivative price equating hedged risk exposure of both long and short

positions remedies this drawback by providing a unique price invariant to the direction (i.e.

long versus short) of the position. Several additional papers have used or expanded on the
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initial ERP methodology. One problem often considered by that methodology is the tackling

of market incompleteness arising from short-selling bans on the underlying asset: Alfeus et al.

(2019), Ma et al. (2019) and He and Zhu (2020). Marzban et al. (2020) propose to substitute

the risk-neutral measure for the physical measure during the determination of the equal risk

price and to replace expected loss functions by convex risk measures within the objective

function. Carbonneau and Godin (2021b) provide a tractable methodology based on deep

reinforcement learning to implement the ERP framework with convex risk measures under

very general conditions. Carbonneau and Godin (2021a) examine the impact of introducing

options as hedging instruments within the ERP framework under convex risk measures.

The computation of equal risk prices for derivatives is a highly non-trivial endeavor requiring

advanced numerical schemes in most cases. Marzban et al. (2020) propose to use dynamic

programming which they apply on a robust optimization setting. Conversely, Carbonneau

and Godin (2021b) and Carbonneau and Godin (2021a) use the deep reinforcement learning

approach of Buehler et al. (2019b) coined as deep hedging. Other papers have relied on

the deep hedging methodology for the hedging of financial derivatives: Cao et al. (2020),

Carbonneau (2021) and Horvath et al. (2021). Deep reinforcement learning is a very favorable

technique for multistage optimization and decision-making in financial contexts: it allows

tackling high-dimensional settings with multiple state variables, underlying asset dynamics

and trading instruments. For this reason, it was used in multiple other works on derivatives

pricing and hedging. Various techniques were considered such as Q-learning in Halperin

(2020) and Cao et al. (2021), least squares policy iteration and fitted Q-iteration for American

option pricing in Li et al. (2009), or batch policy gradient in Buehler et al. (2019b). Moreover,

various other financial problems were tackled through reinforcement learning procedures in

the literature, for instance portfolio management as in Moody and Wu (1997), Jiang et al.

(2017), Pendharkar and Cusatis (2018), Garćıa-Galicia et al. (2019), Wang and Zhou (2020),

Ye et al. (2020) and Betancourt and Chen (2021), optimal liquidation, see Bao and Liu (2019),

or trading optimization as in Hendricks and Wilcox (2014), Lu (2017) and Ning et al. (2018).
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5.3 Financial market setup

This section details the mathematical framework for the financial market considered along

with the theoretical setup for the ERP approach for derivatives valuation.

A discrete set of equally spaced time points spanning a horizon of T years T ≡ {0 = t0 <

t1 < . . . < tN = T} with tn ≡ n∆, n = 0, . . . , N is considered. ∆ corresponds to the

length of a time period in years. Unless specified otherwise, the current study uses either

∆ = 1/260 or ∆ = 1/12 corresponding to daily or monthly periods. Moreover, consider

the probability space (Ω,FN ,P) endowed with a filtration F ≡ {Fn}Nn=0 satisfying the usual

conditions, with Fn being the sigma-algebra characterizing the information available to the

investor at time tn. Multiple traded assets are introduced in the financial market. First, a

risk-free asset grows at a constant periodic risk-free rate r ∈ R: its time tn price is given

by Bn ≡ ertn . The D + 1 other non-dividend paying risky asset prices are characterized by

the vectorial stochastic processes {S(b)
n }Nn=0 and {S(e)

n }N−1
n=0 where S

(b)
n ≡

[
S

(0,b)
n , . . . , S

(D,b)
n

]
and S

(e)
n ≡

[
S

(0,e)
n , . . . , S

(D,e)
n

]
respectively represent the beginning-of-period and end-of-

period prices of risky assets 0, . . . , D available for trading at time tn. This implies S
(b)
n

is Fn-measurable (i.e. observable at time tn) whereas S
(e)
n is Fn+1-measurable. Due to

traded instruments changing on every time period (for example, some traded options mature

contracts need to be rolled-over), it is possible to have S
(j,e)
n 6= S

(j,b)
n+1 , j = 1, . . . , D. However,

the risky asset j = 0 is assumed to be an underlying asset with no maturity such as a stock,

thus available for trading on all periods. Hence, S
(0,e)
n = S

(0,b)
n+1 . For simplicity, an absence

of market frictions is assumed throughout the paper. Correspondingly, it is assumed all

positions in a given portfolio are liquidated at the end of any period, and are repurchased at

the beginning of the next if needed.

A European-type derivative of time tN payoff Φ
(
S

(0,b)
N

)
is considered. A suitable price for

that contract and corresponding hedging strategies must be determined. We define a trading

strategy δ ≡ {δn}Nn=0 as an F-predictable process, i.e. δ0 is F0-measurable and δn is Fn−1-
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measurable for n = 1, . . . , N , where δn ≡
[
δ

(0)
n , . . . , δ

(D)
n , δ

(B)
n

]
. The latter comprises δ

(0:D)
n ≡[

δ
(0)
n , . . . , δ

(D)
n

]
which contains the positions in all respective risky assets 0, . . . , D within the

portfolio between time tn−1 and time tn, and δ
(B)
n which contains the portfolio investment in

the risk-free asset for the same period. For a trading strategy δ, the corresponding time tn

portfolio value is defined as

V δ
n ≡


δ

(0:D)
0

• S
(b)
0 + δ

(B)
0 B0, n = 0,

δ
(0:D)
n • S

(e)
n−1 + δ

(B)
n Bn, n = 1, . . . , N,

where • is the conventional scalar product, i.e. for two n-dimensional vectors X and Y ,

X • Y :=
∑n

i=1XiYi. Also, a trading strategy δ is said to be self-financing if

δ
(0:D)
n+1

• S(b)
n + δ

(B)
n+1Bn = V δ

n , n = 0, . . . , N − 1.

Denote by Π the set of all self-financing trading strategies that are sufficiently well-behaved

mathematically.4 It turns out that the portfolio value process of self-financing trading

strategies can be expressed conveniently in terms of so-called discounted gains. For a trading

strategy δ ∈ Π, the latter is defined as

Gδ
0 ≡ 0, Gδ

n ≡
n∑
j=1

δ
(0:D)
j

•

(
B−1
j S

(e)
j−1 −B−1

j−1S
(b)
j−1

)
, n = 1, . . . , N.

Using standard arguments outlined for instance in Lamberton and Lapeyre (2011), for any

self-financing trading strategy δ ∈ Π,

V δ
n = Bn

(
V δ

0 +Gδ
n

)
.

Such representation is convenient as it allows avoiding calculating δ
(B)
n for n = 0, . . . , N

4Details characterizing well-behavedness in the context of the current study are omitted to avoid lengthy
discussions straying us away from the main research objectives of the current work.
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explicitly when calculating the portfolio value.

Aforementioned definitions allow posing the main optimization problems underlying the ERP

methodology, which consist in finding the best self-financing trading strategies leading to

optimal hedges in terms of penalized hedging errors at the maturity of the derivative. Such

problems are referred to as global hedging procedures due to their measurement of hedging

efficiency in terms of risk at maturity rather than on a period by period basis. Consider

a given risk measure ρ characterizing the risk aversion of the hedger. A risk measure is a

mapping taking a random variable representing a random loss as input, and return a real

number representing its perceived risk as an output. Specific examples of risk measures

considered in this study are formally defined subsequently. For a given value of V0 ∈ R,

define mappings ε(L) : R → R and ε(S) : R → R representing optimal residual hedging risk

respectively for a long or short position in the derivative when the initial portfolio value is

V δ
0 = V0 as

ε(L)(V0) ≡ min
δ∈Π

ρ
(
−Φ(S

(0,b)
N )− V δ

N

)
, ε(S)(V0) ≡ min

δ∈Π
ρ
(

Φ(S
(0,b)
N )− V δ

N

)
. (5.1)

Optimal hedging strategies are the minimizing arguments of such optimization problems:

δ(L)(V0) ≡ arg min
δ∈Π

ρ
(
−Φ(S

(0,b)
N )− V δ

N

)
, δ(S)(V0) ≡ arg min

δ∈Π
ρ
(

Φ(S
(0,b)
N )− V δ

N

)
.

This leads to the definition of the equal risk price C∗0 of the derivative Φ as the initial portfolio

value V0 such that the optimal residual hedging risk is equal for both the long and short

positions, i.e.

ε(L)(−C∗0) = ε(S)(C∗0). (5.2)

Such optimal residual risk exposure when the initial portfolio value is the equal risk price,

i.e. V0 = C∗0 , is referred to as the measured residual risk exposure and denoted as ε∗ ≡

ε(L)(−C∗0) = ε(S)(C∗0). Conditions on ρ have to be imposed to guarantee the existence and
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uniqueness of the equal risk price (e.g. monotonicity of ρ). Under the assumption that ρ is a

convex risk measure, Carbonneau and Godin (2021b) provide sufficient conditions to obtain

existence and uniqueness of the solution to (5.2), see Theorem 2.1 of the latter paper.

Remark 5.1. Under a convex measure ρ, Marzban et al. (2020) and Carbonneau and Godin

(2021b) also obtain the following characterization of the equal risk price

C∗0 = 0.5BN

(
ε(S)(0)− ε(L)(0)

)
. (5.3)

Representation (5.3) is very convenient as it requires to only obtain the optimal residual risk

exposure when the initial portfolio is null instead of having to iteratively try multiple initial

portfolio values. However, when ρ is not translation invariant, such representation does not

hold anymore, and a tailor-made numerical scheme must thus be developed to solve for the

root-finding problem (5.2).

The current work aims among others at examining a class of non-translation invariant risk

measures. The main class of risk measures under study in the current paper will be referred

to as the semi-Lp risk measures, which are defined as

ρ(X) ≡ E
[
Xp1{X>0}

]
, p > 0. (5.4)

The latter risk measure is clearly monotonous (i.e. X ≥ Y almost surely implies ρ(X) ≥ ρ(Y )),

but lacks the translation invariance property. Furthermore, the parameter p acts as a risk

aversion barometer as higher values of p put more relative weight on higher losses.

The CVaR measure is also considered in some experiments of the current paper for bench-

marking purposes as it is used in Carbonneau and Godin (2021b) and Carbonneau and Godin

(2021a). Such a risk measure can be formally defined as

VaRα(X) ≡ inf{x : P[X ≤ x] ≥ α}, CVaRα(X) ≡ 1

1− α

∫ 1

α

VaRγ(X)dγ
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for a confidence level α in (0, 1). Whenever X is an absolutely continuous random variable,

the CVaR admits the intuitive representation CVaRα(X) = E [X|X ≥ VaRα(X)].

5.4 Methodology

The current section details the reinforcement learning approach followed to solve the opti-

mization problems underlying the ERP methodology. The approach consists in applying the

deep hedging algorithm of Buehler et al. (2019b) by representing hedging policies with neural

networks. A slight modification to the latter paper’s training methodology is required to

solve the ERP global hedging problems when the risk measure is not translation invariant.

An accuracy assessment is performed for the modified training algorithm.

5.4.1 Neural network approximation of the optimal solution

The approach followed to obtain a numerical solution to the optimization problems (5.1) is

based on a parametric approximation of the trading policy with a neural network trained

using reinforcement learning. The general idea is as follows. In multiple setups, especially

those involving Markovian dynamics, the optimal trading strategies δ(S)(V0) and δ(L)(V0)

often admit the following functional representation for some functions δ̃(L) and δ̃(S)

δ
(L)
n+1(V0) = δ̃(L)

(
T − tn, S(b)

n , Vn, In
)
, δ

(S)
n+1(V0) = δ̃(S)

(
T − tn, S(b)

n , Vn, In
)
, n = 0, . . . , N−1,

(5.5)

where δ
(L)
n+1(V0) and δ

(S)
n+1(V0) are to be understood as the optimal time tn hedge for the long

and short position with time 0 capital investment V0 and In is a Fn-measurable random

vector containing a set of additional state variables summarizing all necessary information

to make the optimal portfolio rebalancing decision. For instance, In can contain underlying

asset volatilities if the latter has a GARCH dynamics (see Augustyniak et al., 2017), current

probabilities of being in the various respective regimes when in a regime-switching setup (see

François et al., 2014), implied volatilities when options are used as hedging instruments (see

Carbonneau and Godin, 2021a), current assets positions when in the presence of transaction
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costs (see Breton and Godin, 2017), and so on.

The functional representation (5.5) enables the approximation of the optimal policies as

parameterized functions. The class of functions considered in this paper is the classical

feedforward neural network (FFNN) class, which is formally defined subsequently. Indeed,

two distinct FFNNs are used to approximate the optimal trading policy of the long and short

parties by mapping inputs {T − tn, S(b)
n , Vn, In} into the respective (long or short) portfolio

positions of risky assets δ
(0:D)
n+1 for any n = 1, . . . , N − 1.5 More precisely, denote by F

(L)
θ and

F
(S)
θ the neural network mappings for respectively the long and short trading positions where

θ ∈ Rq is the q-dimensional set of parameters of the FFNNs.6 For a given parameter set θ,

the associated trading strategies are given by

δ
(L,θ)
n+1 (V0) ≡ F

(L)
θ

(
T − tn, S(b)

n , Vn, In
)
, δ

(S,θ)
n+1 (V0) ≡ F

(S)
θ

(
T − tn, S(b)

n , Vn, In
)
, n = 0, . . . , N−1.

The optimization of trading strategy in problem (5.1) is thus replaced by the optimization of

neural network parameters θ according to

ε̃(L)(V0) ≡ min
θ∈Rq

ρ
(
−Φ(S

(0,b)
N )− V δ(L,θ)

N

)
, ε̃(S)(V0) ≡ min

θ∈Rq
ρ
(

Φ(S
(0,b)
N )− V δ(S,θ)

N

)
. (5.6)

Note that the set of optimal parameters θ will be different for the long and the short trading

strategies. Furthermore, problems (5.6) only lead to an approximate solution to the initial

problems (5.1) since the FFNNs are approximations of the true functional representation δ̃(L)

and δ̃(S). Nevertheless, by relying on the universal approximation property of FFNNs (see

for instance Hornik, 1991), Buehler et al. (2019b) show that there exist neural networks such

that the solution ε̃(L), ε̃(S) from (5.6) can be made arbitrarily close to the solution ε(L), ε(S)

5Recall that since the trading strategy is self-financing, δ
(B)
n+1 is characterized by δ

(0:D)
n+1 and Vn.

6 It is worth highlighting that while the neural network architecture of F
(L)
θ and F

(S)
θ considered in this

paper is the same for both neural networks in terms of the number of hidden layers and neurons per hidden
layer, and thus the total number of parameters to fit q is the same for both neural networks, one could also

consider two different architectures for F
(L)
θ and F

(S)
θ with no additional complexity.
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from (5.1).

The mathematical definition of FFNNs architecture is now provided. For L, d0, . . . , dL+1 ∈ N,

let Fθ : Rd0 → RdL+1 be a FFNN:

Fθ(X) ≡ o ◦ hL ◦ . . . ◦ h1,

hl(X) ≡ g(WlX + bl), l = 1, . . . , L,

o(X) ≡ WL+1X + bL+1,

where ◦ denotes the function composition operator. Thus, Fθ is a composite function of

h1, . . . , hL commonly known as hidden layers which each apply successively an affine and a

nonlinear transformation to input vectors, and also of the output function o applying an affine

transformation to the last hidden layer. The set of parameters θ to be optimized consists of

all weight matrices Wl ∈ Rdl×dl−1 and bias vectors bl ∈ Rdl for l = 1, . . . , L+ 1.

5.4.2 Calibration of neural networks through reinforcement learning

As in Buehler et al. (2019b), the training of neural networks in this paper relies on a stochastic

policy gradient algorithm, also known as actor-based reinforcement learning. This class of

procedures optimizes directly the policy (i.e. the actor) parameterized as a neural network

with minibatch stochastic gradient descent (SGD) so as to minimize a cost function as in (5.6).

Without loss of generality, the training algorithm is only provided for the neural network

F
(S)
θ associated with the short position, as steps for the long position are entirely analogous.

5.4.2.1 Fixed and given V0 case

The training procedure to calibrate θ is first described for a fixed and given initial capital

investment V0 as originally considered in Buehler et al. (2019b). A slight modification to

the algorithm will subsequently be presented in Section 5.4.2.2 to tackle the non-translation

invariant risk measure case studied in this paper. Let J : Rq × R→ R be the cost function
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for the short position hedge:

J(θ, V0) ≡ ρ
(

Φ(S
(0,b)
N )− V δ(S,θ)

N

)
, θ ∈ Rq, V0 ∈ R. (5.7)

The parameters set θ is sequentially refined to produce a sequence of estimates {θj}j≥1

minimizing the cost function J over time. This iterative procedure is as follows. First,

parameters of the neural network are initialized with the Glorot uniform initialization of

Glorot and Bengio (2010), which gives the initial value of the sequence θ0. Then, to start

refining the parameters, a set of M = 400,000 paths containing traded asset values and other

exogenous variables associated with the assets dynamics is generated with a Monte-Carlo

simulation. The set of such paths is referred to as a training set. On each iteration of SGD,

i.e. on each update of θj to θj+1, a minibatch consisting in a subset of size Nbatch = 1,000 of

paths from the training set is used to estimate the cost function in (5.7). More precisely, for

θ = θj, F
(S)
θ is used to compute the assets positions at each rebalancing date and for each

path within the minibatch. Let Bj ≡ {πi,j}Nbatch
i=1 be the resulting set of hedging errors from

this minibatch, where πi,j is the ith hedging error when θ = θj. Then, for ρ̂ : RNbatch → R

the empirical estimator of ρ(π) evaluated with Bj, the update rule for θj to θj+1 is

θj+1 = θj − ηj∇θρ̂(Bj),

where {ηj}j≥1 are small positive real values and ∇θ denotes the gradient operator with respect

to θ. For instance, under the semi-Lp class of risk measures which is extensively studied in

the numerical section, the empirical estimator has the representation

ρ̂ (Bj) ≡
1

Nbatch

Nbatch∑
i=1

πpi,j1{πi,j>0}.

Lastly, the computation of the gradient of the empirical cost function with respect to θ can

be done explicitly with modern deep learning libraries such as Tensorflow (Abadi et al., 2016)
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and with the Adam optimizer (Kingma and Ba, 2014) which dynamically update the ηj

values. The following section presents the modification to the training algorithm proposed in

this paper to compute equal risk prices under non-translation invariant risk measures.

5.4.2.2 Non-translation invariant risk measures case

The main objective of this paper is to study the valuation of financial derivatives with the

ERP framework under non-translation invariant risk measures. This requires solving the

root-finding problem of the initial portfolio value V0 that equates ε̃(L)(−V0) and ε̃(S)(V0); this

study considers a bisection scheme for such a purpose. However, one important drawback of

the bisection algorithm in the context of this paper is the requirement to obtain multiple

evaluations of ε̃(L)(−V0) and ε̃(S)(V0) for different values of V0, which can be very costly from

a computational standpoint. One naive approach to implement the bisection algorithm is to

proceed as follows:

1) For a given value of V0, train the long and short neural networks F
(S)
θ and F

(L)
θ on the

training set.

2) Evaluate the optimal residual hedging risk ε̃(S)(V0) and ε̃(L)(−V0) with F
(S)
θ and F

(L)
θ

on a test set of 100,000 additional independent simulated paths.

3) If ∆(V0) ≡ ε̃(S)(V0)− ε̃(L)(−V0) ≈ 0 according to some closeness criterion, then C?
0 = V0

is the equal risk price. Otherwise, update V0 with the bisection algorithm and go back

to step 1).

The important drawback of this naive approach lies in the necessity to retrain F
(S)
θ and F

(L)
θ

for each iteration of the bisection algorithm in step 1. To circumvent the latter pitfall, this

study proposes to slightly modify the training algorithm such that the neural networks learn

the optimal mappings not only for a unique fixed initial capital investment, but rather for an

interval of values for V0. This provides the important benefit of only having to train once

F
(S)
θ and F

(L)
θ , which thus circumvent the previously described computational burden.
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The slight modification made to the training algorithm described in Section 5.4.2.1 is now

described. At the beginning of each SGD step, on top of sampling a minibatch of paths of

risky assets, the value of V0 is also sampled within the initial interval of values used for the

bisection algorithm. For instance, in numerical experiments conducted in Section 5.5, the

initial interval considered for the bisection algorithm is [0.75CQ
0 , 1.50CQ

0 ] where CQ
0 is the

risk-neutral price of Φ under a chosen conventional equivalent martingale measure Q.7 This

modification is simple to implement as it naturally leverages the fact that portfolio values are

already used within input vectors of the neural networks. However, it should be noted that

learning the optimal hedge for various initial capital investments is more complex, and thus a

more challenging task for neural networks as compared to learning the optimal trading policy

for a fixed V0. Nevertheless, Monte Carlo experiments provided in Section 5.8 show that

incorporating this slight modification to the training algorithm does not materially impact

the optimized neural networks performance.

Note that pseudo-codes of the training and bisection procedures are presented respectively

in Algorithm 5.1 and Algorithm 5.2 of Section 5.7. An implementation in Python and

Tensorflow to replicate numerical experiments presented in Section 5.5 can also be found

online at github.com/alexandrecarbonneau.

Remark 5.2. In numerical experiments of Section 5.5, the benchmarking of equal risk prices

generated under the class of semi-Lp risk measures to the ones obtained with a class of convex

risk measures, namely the CVaR, is performed. The numerical scheme used to obtain equal

risk prices under the CVaRα risk measure follows the methodology of Carbonneau and Godin

(2021b) by evaluating C?
0 with (5.3) where ε̃(L)(0) and ε̃(S)(0) are computed with the steps of

7 If the equal risk price is outside the initial search interval [0.75CQ
0 , 1.50CQ

0 ], the bisection algorithm must

be applied once again with a new initial search interval, and the neural networks F
(S)
θ and F

(L)
θ must be

trained once again on this new interval.
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Section 5.4.2.1 with V0 = 0 and with the empirical estimator of ρ(π) as

ρ̂(Bj) = V̂aRα(Bj) +
1

(1− α)Nbatch

Nbatch∑
i=1

max(πi,j − V̂aRα(Bj), 0),

where V̂aRα(Bj) is the usual empirical estimator of the Value-at-Risk statistic with the sample

Bj at level α.

Lastly, it is worth highlighting an additional advantage from a computational standpoint of

the class of semi-Lp objective functions described in this paper over the CVaRα measures

as considered for instance in Carbonneau and Godin (2021b) and Carbonneau and Godin

(2021a) when relying on the neural network-based hedging scheme. Indeed, under the CVaRα

objective function, the use of minibatch stochastic gradient descent procedures to train neural

networks restrain the use of extremely large quantiles for the CVaRα (for instance, larger

values than 0.99). The latter stems from the following observations. From a statistical

standpoint, the estimation variance of CVaRα increases with α. Furthermore, the empirical

estimator of CVaRα is biased in finite sample size, whereas the empirical estimator of the

semi-Lp risk measure is unbiased for any sample size. However, while larger minibatches

would provide a more accurate estimate of the gradient, i.e. reduce the variance and the

bias of the CVaR estimator, this is not necessarily a favorable avenue for training neural

networks. Indeed, as noted in Goodfellow et al. (2016), the amount of memory required by

hardware setups can be a limiting factor to increasing minibatches size. Furthermore, most

SGD algorithms converge faster in terms of total computation when allowed to approximate

gradients faster (i.e. with smaller samples and more SGD steps). The interested reader is

referred to Chapter 8.1.3 of Goodfellow et al. (2016) for additional information about the

implications of the minibatch sizes on SGD procedures. This computational pitfall of pairing

stochastic gradient descent with extreme values of α under the CVaRα measure is not present

under the semi-Lp, which further motivates its use in the context of equal risk pricing as well

as in the context of hedging.
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5.5 Numerical experiments

This section presents several numerical experiments conducted to investigate prices produced

by the ERP methodology under different setups. The common theme of all experiments is

to examine option prices generated by the ERP framework under the class of semi-Lp risk

measures. The analysis starts in Section 5.5.2 with a sensitivity analysis of equal risk prices

with respect to the choice of objective function. This is carried out by comparing C?
0 generated

with the CVaRα and semi-Lp across different values of α and p controlling the risk aversion of

the hedger. The hedging performance of embedded neural networks hedging policies obtained

under these objective functions is also assessed. Moreover, a sensitivity analysis with respect

to the choice of underlying asset price dynamics is carried out in Section 5.5.3 so as to test

the impact of the inclusion of jump or volatility risk. Lastly, Section 5.5.4 presents the

benchmarking of equal risk prices for long maturity options obtained with the semi-Lp risk

measures with trades involving exclusively the underlying stock against these generated with

option hedges under the CVaRα objective function.

5.5.1 Experiments setup

Unless specified otherwise, the option to price and hedge is a European put with payoff

Φ(S
(0,b)
N ) ≡ max(K − S(0,b)

N , 0) of maturity of T = 60/260 and strike price K. Daily hedges

with the underlying stock are used (i.e. N = 60). The use of option hedges and different

maturities for Φ is considered exclusively is Section 5.5.4. Furthermore, the stock has an initial

price of S
(0,b)
0 = 100 and the annualized continuous risk-free rate is set at r = 0.03. Different

moneyness levels are considered with K = 90, 100 and 110 for respectively out-of-the-money

(OTM), at-the-money (ATM), and in-the-money (ITM) puts.

Moreover, as described in Section 5.4, two distinct feedforward neural networks are considered

as the functional representation of the long and short hedging policies. The architecture

of every neural networks is a FFNN of two hidden layers (L = 2) with 56 neurons per

layer (d1 = d2 = 56). The activation function considered is the well-known rectified linear
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activation function (ReLU) with g(x) ≡ max(x, 0). For the training procedure, a training set

of 400,000 paths is simulated with the P-dynamics of the underlying stock. A total of 200

epochs8 is used with a minibatch size of 1,000 sampled exclusively from the training set. The

Adam optimizer with a learning rate hyperparameter of 0.0005 is used with Tensorflow for

the implementation of the stochastic gradient descent procedure. Also, all numerical results

presented in subsequent sections are obtained in an out-of-sample fashion by using exclusively

a test set of 100,000 additional simulated paths.

5.5.2 Sensitivity analysis to risk measures

This section studies equal risk price values obtained under the semi-Lp and CVaRα risk

measures across different levels of risk aversion, i.e. different values for p and α. The main

motivation is the following. Carbonneau and Godin (2021b) observed that when hedging

exclusively with the underlying stock, ERP under the CVaRα measure produces option

prices which are systematically inflated in comparison to those obtained under conventional

risk-neutral measures, especially for OTM puts. This inflation phenomenon is significantly

magnified with fat tails dynamics such as with a regime-switching (RS) model to an extend

that can cast doubt on the applicability of ERP in practice. Furthermore, while the latter

paper observed a positive relation between the risk aversion level α and equal risk prices

C?
0 , as shown in subsequent sections of this current paper, using smaller values for α leads

to trading policies exhibiting poor risk mitigation performance with speculative behavior

magnifying tail risk. Consequently, the main motivation of this current section is to assess if

the use of the semi-Lp class of risk measures helps to alleviate this price inflation phenomenon

through its choice of risk measure while simultaneously resulting in optimized trading policies

providing effective risk mitigation. Thus, a critical aspect of the sensitivity analysis performed

in this section is the benchmarking of not only equal risk prices generated under different

8 An epoch is defined as a complete iteration of the training set with stochastic gradient descent. For
example, for a training set of 400,000 paths and a minibatch size of 1,000, one epoch consists of 400 updates
of the set of trainable parameters θ.
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objective functions, but also the assessment of the effectiveness of the resulting global trading

policies.

5.5.2.1 Regime-switching model

The conduction of a sensitivity analysis with respect to the objective function within the

ERP framework necessitates the selection of a suitable dynamics for the underlying stock.

Indeed, the model should incorporate salient stylized features of financial markets with a

specific importance on exhibiting fat tails due to the assessment of the impact of objective

functions within the ERP framework allowing more or less weights on extreme scenarios

through their respective risk aversion parameter (i.e α and p respectively for the CVaRα

and semi-Lp measures). Unless specified otherwise, this study considers a RS model for the

risky asset dynamics. This class of model introduced in finance by Hamilton (1989) exhibits,

among others, fat tails, the leverage effect (i.e. negative correlation between assets returns

and volatility) and heteroscedasticity. The examination of the impact of the presence of jump

and volatility risk on C?
0 values generated with the semi-Lp objective functions is done in

subsequent sections. Furthermore, unless specified otherwise, model parameters for the RS

model (as well as for other dynamics considered subsequently) are estimated with maximum

likelihood procedures on the same time series of daily log-returns on the S&P 500 price index

for the period 1986-12-31 to 2010-04-01 (5863 observations).

The description of the regime-switching model for the underlying stock is now formally

defined. For n = 1, . . . , N , let yn ≡ log(S
(0,b)
n /S

(0,b)
n−1 ) be the time tn log-return and {εn}Nn=1

be a sequence of independent and identically distributed (iid) standardized Gaussian random

variables. The RS model assumes that the dynamics of the underlying stock changes between

different regimes representing different economical states of the financial market. These

regime changes are abrupt and they drastically impact the behavior of the dynamics of

financial markets for a significant time period, i.e. these regimes are persistent (Ang and

Timmermann, 2012). For instance, a two regime RS model as considered in this study usually
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has a more bullish regime with positive expected returns and relatively small volatility, and a

more bearish regime with negative expected returns and relatively large volatility. Prevalent

examples of such regime changes are financial crises and important economical reforms.

From a mathematical standpoint, the class of RS models characterizes regimes by an unob-

servable discrete-time Markov chain with a finite number of states, and models the conditional

distribution of log-returns given the current regime as a Gaussian distribution with known

parameters. More formally, denote the regimes as {hn}Nn=0 where hn ∈ {1, . . . , H} is the

regime in-force during the time interval [tn, tn+1). The model specification for the transition

probabilities of the Markov Chain can be stated as

P(hn+1 = j|Fn, hn, . . . , h0) = γhn,j, j = 1, . . . , H, (5.8)

where Γ ≡ {γi,j}H,Hi=1,j=1 is the transition matrix with γi,j being the time-independent probability

of moving from regime i to regime j. Furthermore, the dynamics of log-returns have the

representation

yn+1 = µhn∆ + σhn
√

∆εn+1, n = 0, . . . , N − 1,

where {µi, σi}Hi=1 are model parameters representing the means and volatilities on a yearly

basis of each regime. The use of a RS model entails that additional state variables related

to the regimes must be added to feature vectors of neural networks through the vectors In.

Indeed, while regimes are unobservable, useful information can be filtered from the observed

stock path prices. Let {ξn}Nn=0 be the predictive probability process where ξn ≡ [ξn,1, . . . , ξn,H ]

and ξn,j ≡ P(hn = j|Fn). Under the RS model, In = ξn for n = 0, . . . , N − 1. Following the

work of François et al. (2014), the predictive probabilities can be computed recursively for
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n = 0, . . . , N − 1 as

ξn+1,j =

∑H
i=1 γi,jφi(yn+1)ξn,i∑H
i=1 φi(yn+1)ξn,i

, j = 1, . . . , H,

where φi is the probability density function of the Gaussian distribution with mean µi

and volatility σi. For all numerical experiments, the time 0 regime h0 is sampled from

the stationary distribution of the Markov Chain. Lastly, the benchmarking of equal risk

prices to option prices obtained under conventional risk-neutral measures is also presented.

Risk-neutral dynamics as well as the numerical scheme used to evaluate the risk-neutral price

(including for alternative dynamics introduced subsequently) are presented in Section 5.10.

5.5.2.2 Numerical results sensitivity analysis to objective function

Table 5.1 presents equal risk prices obtained under the CVaRα with α = 0.90, 0.95, 0.99 as

well as under the class of semi-Lp risk measures with p = 2, 4, 6, 8, 10. All equal risk prices

are expressed relative to risk-neutral prices CQ
0 . Also, hedging statistics obtained across the

different objective functions are analyzed subsequently in Section 5.5.2.3.

Table 5.1: Sensitivity analysis of equal risk prices C?
0 for OTM (K = 90), ATM (K = 100)

and ITM (K = 110) put options of maturity T = 60/260 under the regime-switching model.

C?
0 under CVaRα C?

0 under semi-Lp

Moneyness CQ
0 CVaR0.90 CVaR0.95 CVaR0.99 L2 L4 L6 L8 L10

OTM 0.56 91% 119% 161% 50% 86% 116% 147% 184%

ATM 3.27 18% 24% 29% 10% 17% 22% 27% 32%

ITM 10.36 5% 7% 9% 2% 4% 6% 9% 11%

Notes: C?
0 results are computed based on 100,000 independent paths generated from the

regime-switching model under P (see Section 5.5.2.1 for model definition and Section 5.9 for
model parameters). Risk-neutral prices CQ

0 are computed under Q-dynamics described in
Section 5.10. The training of neural networks is performed as described in Section 5.4.2 with
hyperparameters presented in Section 5.5.1. C?

0 are expressed relative to CQ
0 (% increase).

Values from Table 5.1 indicate that equal risk prices generated by the class of semi-Lp risk
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measures can span much more than the interval of prices obtained under the CVaRα risk

measures with the selected confidence level α values. The latter results holds across all

moneyness levels for puts. For instance, the relative increase in the equal risk price C?
0 as

compared to the risk-neutral price CQ
0 for OTM puts is 91%, 119% and 161% under CVaR0.90,

CVaR0.95 and CVaR0.99, and ranges between 50% to 184% from the semi-L2 to the semi-L10.

Similar observations can be made for ATM and ITM moneyness levels. Furthermore, it is very

interesting to observe that the use of the semi-L2 risk measure entails a significant reduction

of C?
0 as compared to the price obtained under the CVaR0.90. Indeed, the relative increase

in the equal risk price C?
0 with p = 2 as compared to the risk-neutral price CQ

0 for OTM,

ATM and ITM moneyness levels is respectively 50%, 10% and 2%, which is significantly

smaller than the corresponding relative increase of 91%, 18% and 5% under the CVaR0.90

measure. Moreover, as expected, equal risk prices C?
0 generated with the class of semi-Lp risk

measures show a positive relation with the risk aversion parameter p. This observation can

be explained by an analogous analysis provided in Carbonneau and Godin (2021b) under the

CVaRα measures: since the put option’s payoff is bounded below at zero, the short position

hedging error has a thicker right tail than the corresponding right tail of the long position

hedging error. Consequently, an increase in the risk aversion parameter p entails more weights

on extreme hedging losses, which result in a larger increase of perceived residual risk exposure

for the short position than for the long position. The latter entails that C?
0 must be increased

to equalize the residual hedging risk of both parties. In conclusion, all these results clearly

demonstrate the benefit of using the class of semi-Lp risk measures from the standpoint of

pricing derivatives by not only spanning wider ranges of prices than these generated by the

CVaR with conventional confidence levels, but by also significantly alleviating the inflated

option prices phenomenon observed under the CVaRα. However, the question about whether

or not the optimized global policies under the semi-Lp risk measures are effective from the

standpoint of risk mitigation remains. This is examined in the following section.
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5.5.2.3 Hedging performance benchmarking

This section conducts the benchmarking of the neural networks trading policies hedging

performance under the CVaRα and semi-Lp objective functions. For the sake of brevity,

hedging metrics values considered to compare the different policies are only presented for the

short position hedge of the ATM put with the usual market setup, i.e. time-to-maturity of

T = 60/260 under the regime-switching model with daily stock hedges. Table 5.2 presents

hedging statistics of the global hedging policies obtained with the CVaRα and semi-Lp risk

measures with the objective functions used to generate the C?
0 values in the previous section

(i.e. α = 0.90, 0.95, 0.99 and p = 2, 4, 6, 8, 10). To compare the trading policies on common

grounds, the initial portfolio value is set as the risk-neutral price with V0 = 3.27 for all

examples.9 Furthermore, hedging metrics used for the benchmarking consists of the VaRα

and CVaRα statistics over various α’s, the mean hedging error, the SMSE (i.e. semi-L2

metric) and the mean-squared-error (MSE). Note that all hedging statistics are estimated in

an out-of-sample fashion on the test set of 100,000 independent additional simulated paths.

Hedging metrics values show that while the trading policy optimized with the CVaR0.90

objective function entails the smallest values for CVaR0.90, VaR0.90 and VaR0.95 statistics, it

exhibits poor mitigation of tail risk as compared to the other policies. For instance, the relative

reduction of the CVaR0.99 statistic across all other penalties than the CVaR0.90 ranges between

29.8% and 44.5% as compared to the CVaR0.90 trading policy. Similar observations can be

made for the CVaR0.999 and VaR0.999 statistics capturing extreme scenarios. Consequently,

these results cast doubt on the practical effectiveness of the CVaR0.90 hedging policy from a

risk mitigation standpoint, and thus also of trading policies optimized with lower values for

α, due to their poor mitigation of risk for quantiles above the CVaR confidence level. The

latter conclusion has important implications in the context of the ERP framework. Indeed,

9 Recall that optimal policies under the CVaRα risk measures are independent of V0 due to the translation
invariance property. Furthermore, the optimal policies obtained under the semi-Lp risk measures can be used
not only with a specific value for V0, but with an interval of initial capital investments due to the proposed
modified training algorithm in this paper.
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Table 5.2: Hedging statistics for short position ATM put option of maturity T = 60/260

under the regime-switching model.

CVaRα semi-Lp

Penalty CVaR0.90 CVaR0.95 CVaR0.99 L2 L4 L6 L8 L10

Statistics

Mean 0.11 0.13 0.14 −0.03 0.04 0.08 0.10 0.14

CVaR0.90 2.64 5.3% 22.6% 6.3% 6.4% 7.6% 11.2% 13.4%

CVaR0.95 3.41 −8.4% 1.6% 0.5% −6.2% −6.1% −4.5% −2.6%

CVaR0.99 6.86 −31.7% −44.5% −29.8% −41.0% −42.6% −43.4% −42.9%

CVaR0.999 19.99 −48.5% −76.1% −65.4% −73.2% −74.4% −75.6% −76.3%

VaR0.90 1.75 34.7% 59.9% 9.3% 26.9% 30.5% 37.3% 40.9%

VaR0.95 2.08 21.9% 54.6% 22.3% 28.0% 30.4% 36.7% 39.5%

VaR0.99 3.67 −9.6% −2.9% 8.1% −4.2% −5.1% −4.6% −2.6%

VaR0.999 11.00 −43.3% −62.5% −47.2% −57.3% −59.2% −60.0% −60.4%

SMSE 1.83 −7.0% 6.8% −34.5% −28.1% −24.0% −17.6% −11.2%

MSE 2.93 −1.8% 12.2% −27.7% −20.9% −18.0% −11.5 −6.2%

Notes: Hedging statistics are computed based on 100,000 independent paths generated from
the regime-switching model under P (see Section 5.5.2.1 for model definition and Section 5.9 for
model parameters). The training of neural networks is performed as described in Section 5.4.2
with hyperparameters presented in Section 5.5.1. All hedging statistics except the mean
hedging error are expressed relative to values obtained under the CVaR0.90 penalty. Bold
values are the lowest across all penalties.

as shown in Carbonneau and Godin (2021b), the equal risk price C?
0 has a positive relation

to the risk aversion parameter α. Thus, the inflated equal risk price phenomenon observed

under the class of CVaRα measures cannot be effectively alleviated through the reduction

of α as the resulting trading policies quickly exhibit poor hedging performance. On the

other hand, hedging statistics obtained with the class of semi-Lp risk measures indicate

that across all levels of risk aversion considered, optimized trading policies are effective for

mitigating hedging risk with the parameter p controlling the relative weight associated to

extreme hedging losses. From the combination of these hedging statistics values as well as

equal risk price values presented in Table 5.1, we can conclude that the class of semi-Lp risk

measures can simultaneously generate lower equal risk prices with trading policies exhibiting
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effective hedging risk mitigation.

5.5.3 Sensitivity analysis to dynamics of risky assets

This section performs a sensitivity analysis of equal risk prices across different dynamics for

the financial market. The motivation is to assess if the conclusion that the class of semi-Lp

risk measures can dampen the inflated equal risk prices phenomenon as well as span wider

price intervals than these obtained under the CVaRα measures is robust to the presence of

different equity risk features. For such a purpose, this paper considers the presence of jump

risk with the Merton jump-diffusion model (MJD, Merton (1976)) and of volatility risk with

the GJR-GARCH model (Glosten et al., 1993). The Black and Scholes (1973) and Merton

(1973) (BSM) model is also considered due to its popularity and the fact that contrarily to

the other dynamics, the BSM model does not exhibit fat tails. The assessment of the impact

of the choice of risk measure controlling the weight associated to extreme scenarios is thus

also of interest under the BSM dynamics since the optimal hedging strategies, and thus equal

risk prices, should be less sensitive to the risk aversion parameter under a dynamics without

fat tails.

The dynamics of all three models is now formally presented. All model parameters are

estimated with the same time series of daily log-returns on the S&P 500 index for the period

1986-12-31 to 2010-04-01 (5863 log-returns).

5.5.3.1 Black-Scholes model

The Black-Scholes model assumes that log-returns are iid Gaussian random variables of yearly

mean µ− σ2/2 and yearly volatility σ:

yn =

(
µ− σ2

2

)
∆ + σ

√
∆εn, n = 1, . . . , N.
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Stock prices have the Markov property under P with respect to the market filtration F. The

latter entails that no additional information should be added to the state variables of the

neural networks, i.e. In = 0 for all n.

5.5.3.2 GJR-GARCH model

The GJR-GARCH model relaxes the constant volatility assumption of the BSM model

by assuming the presence of stochastic volatility which incorporates the leverage effect.

Log-returns under this model have the representation

yn = µ+ σnεn,

σ2
n+1 = ω + υσ2

n(|εn| − γεn)2 + βσ2
n,

where {σ2
n}N+1

n=1 are the daily variances of log-returns, {µ, ω, υ, γ, β} are the model parameters

with {ω, υ, β} being positive real values and {µ, γ} real values. Note that given σ2
1, the

sequence of variances σ2
2, . . . , σ

2
N+1 can be computed recursively with the observed path

of log-returns. In this paper, the initial value σ2
1 is set as the stationary variance of the

process: σ2
1 ≡ E[σ2

n] = ω
1−υ(1+γ2)−β . Furthermore, it can be shown that {S(0,b)

n , σn+1}Nn=0 is an

(F,P)-Markov bivariate process. Consequently, the periodic volatility is added to the states

variables of the neural networks at each time step: In = σn+1 for n = 0, . . . , N − 1.

5.5.3.3 Merton jump-diffusion model

Contrarily to the GJR-GARCH model, the MJD dynamics assumes constant volatility, but

deviates from the BSM assumptions by incorporating random Gaussian jumps to stock

returns. Let {Nn}Nn=0 be realizations of a Poisson process of parameter λ > 0, where Nn

represents the cumulative number of jumps of the stock price from time 0 to time tn. The

Merton (1976) model assumes that jumps, denoted by {ζj}∞j=1, are iid Gaussian random
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variables of mean µJ and variance σ2
J :10

yn =

(
ν − λ(eµJ+σ2

J/2 − 1)− σ2

2

)
∆ + σ

√
∆εn +

Nn∑
j=Nn−1+1

ζj,

where {εn}Nn=1, {Nn}Nn=0 and {ζj}∞j=1 are independent. Model parameters consist of {ν, λ, σ, µJ , σJ}

where ν ∈ R is the drift parameter and σ > 0 is the constant volatility term. Since stock

prices are iid, this dynamics does not necessitate the addition of other state variables to the

feature vectors, i.e. In = 0 for all n.

5.5.3.4 Numerical results sensitivity analysis to dynamics

Table 5.3 presents the sensitivity analysis of equal risk prices with the same setup as in

previous sections, i.e. for put options of maturity T = 60/260 with daily stock hedges, for

the BSM, MJD and GJR-GARCH models. To save space, results are only presented for the

OTM moneyness as the main conclusions are shared for both ATM and ITM moneyness

levels. Furthermore, both the CVaRα and semi-Lp classes of risk measures are considered

with α = 0.90, 0.95, 0.99 and p = 2, 4, 6, 8, 10.

Table 5.3: Sensitivity analysis of equal risk prices for OTM put options of maturity

T = 60/260 under the BSM, MJD and GJR-GARCH models.

C?
0 under CVaRα C?

0 under semi-Lp

Dynamics CQ
0 CVaR0.90 CVaR0.95 CVaR0.99 L2 L4 L6 L8 L10

BSM 0.53 5% 10% 17% 3% 13% 22% 31% 45%

MJD 0.46 23% 34% 129% 15% 43% 69% 95% 125%

GJR-GARCH 0.57 52% 71% 139% 27% 121% 155% 208% 237%

Notes: Equal risk prices C?
0 results are computed based on 100,000 independent paths

generated from the BSM, MJD and GJR-GARCH model under P (see Section 5.5.3 for
models definitions under P and Section 5.9 for model parameters). Risk-neutral prices CQ

0

are computed under Q-dynamics described in Section 5.10. The training of feedforward
neural networks is performed as described in Section 5.4.2 with hyperparameters presented
in Section 5.5.1. C?

0 are expressed relative to CQ
0 (% increase).

10 The convention that
∑Nn

j=Nn−1+1 ζj = 0 if Nn−1 = Nn is adopted.
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These results clearly demonstrate that the conclusion that equal risk prices generated by the

class of semi-Lp risk measures can alleviate the price inflation phenomenon observed under

the CVaRα measures is robust to different dynamics. Indeed, values show that by using

the semi-L2 risk measure, OTM equal risk prices C?
0 values exhibit a relative increase over

risk-neutral prices CQ
0 of respectively of 3%, 15% and 27% under the BSM, MJD and GARCH

models as compared to 5%, 23% and 52% under the CVaR0.90 cost function. Furthermore,

values presented in Table 5.3 demonstrate that the observation made in the previous section

under the RS model with respect to the fact that equal risk prices generated by the class of

semi-Lp risk measures can span a large interval of prices which encompasses values obtained

with the CVaRα measures is robust to different dynamics of the financial markets. Lastly, it

is interesting to observe that the length of the price intervals generated by both classes of risk

measures varies significantly with the dynamics of the financial market. Indeed, under the

BSM model, the relative increase of C?
0 as compared to CQ

0 ranges between 5% to 17% under

the CVaRα and 3% to 45% under the semi-Lp. On the other hand, with the GJR-GARCH

dynamics, the relative increase in C?
0 under the CVaRα ranges between 52% to 139%, while

under the semi-Lp, it ranges between 27% to 237%. Similar observations can be made under

the MJD dynamics. This can be explained by the fact that contrarily to the other models,

the BSM dynamics does not exhibits fat tails as the market incompleteness solely stems from

discrete-time trading. Consequently, the trading policies are much less sensitive to the choice

of risk aversion parameter p or α under the BSM model, which entails equal risk prices that

are less sensitive to risk aversion parameters. From these results, we can conclude that the

choice of both the risky asset dynamics and of the risk measure among the classes of CVaRα

and semi-Lp measures has a material impact on equal risk prices, and this impact becomes

more important as the dynamics exhibits fatter tails for risky assets returns.
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5.5.4 Long-term maturity ERP with option hedges

This section examines the use of semi-Lp risk measures within the ERP framework for pricing

long-term options with trades involving exclusively the underlying stock as compared to

equal risk prices generated under the CVaRα with trades involving shorter-term options. The

motivation for this experiment is the following. The main finding of Carbonneau and Godin

(2021a) is that under the CVaRα measure, hedging long-term puts with shorter-term options

in the presence of jump or volatility risks significantly reduces equal risk prices as compared

to trading exclusively the underlying stock. However, the expected trading cost of setting

up a trading strategy based solely on option hedges can be impractical in some cases in the

face of highly illiquid options. In such context, the hedger could potentially be restricted

to trading strategy relying exclusively on the underlying stock, which as shown in previous

sections, can inflate equal risk prices under the CVaRα measure. The objective of this last

section is thus to assess if the use of the semi-Lp risk measure can achieve similar equal risk

prices reduction when trading the underlying stock to the reduction obtained when trading

options with the CVaRα objective function. The setup to perform this experiment is the

same as the one considered in Carbonneau and Godin (2021a), and numerical values for equal

risk prices generated with trades involving exclusively options under the CVaRα are taken

directly from the latter work. This setup is now recalled below.

The derivative to price and hedge is a 1-year put with 252 days per year of moneyness

levels OTM, ATM and ITM with strike prices of 90, 100 and 110, respectively. As noted in

Carbonneau and Godin (2021a), option trading strategies optimized with the confidence level

α smaller than 0.95 when using the CVaR as the objective function often leads to hedging

strategies exhibiting poor tail risk mitigation. Thus, the convex risk measure considered as

the benchmark in the current study is the CVaR0.95 measure with trades involving either

exclusively the underlying stock on a daily or monthly basis (i.e. N = 252 or N = 12,

respectively), or by trading solely with ATM 1-month and 3-months calls and puts (i.e.

N = 12 or N = 4, respectively). Following the work of Carbonneau and Godin (2021a), the
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pricing of options used as hedging instruments is done through the modeling of the daily

variations of the ATM logarithm implied volatility dynamics under P as an autoregressive

(AR) model of order 1, named log-AR(1) hereafter. Furthermore, the model assumes for

conveneice that the ATM 1-month and 3-months implied volatilities are the same.11 It is

worth highlighting that the implied volatility model is used exclusively for pricing options

used as hedging instruments, not for the 1-year put Φ to be priced. Also, note that while the

rebalancing frequency is either daily, monthly or quarterly, IV variations are always generated

on a daily basis.

The log-AR(1) model is now formally defined. Denote by {IVn}252
n=0 the daily implied volatilities

for the ATM 1-month and 3-months maturities which are used as hedging instruments.

Also, let {Zn}252
n=1 be an additional sequence of iid standardized Gaussian random variables

representing the random innovations of the log-IV dynamics. To capture the well-known

leverage effect between asset returns and implied volatility variations (see for instance Cont

and Da Fonseca (2002)), a correlation factor % ≡ corr(εn, Zn) set at −0.6 is assumed where

{εn}252
n=1 are the daily random innovations associated to stock returns. The log-AR(1) model

has the represensation

log IVn+1 = log IVn + κ(ϑ− log IVn) + σIVZn+1, n = 0, . . . , 251,

where {κ, ϑ, σIV } are the model parameters with κ and ϑ as real values and σIV > 0. The

initial value of the process is set at the long-term parameter with log IV0 ≡ ϑ. Moreover, the

pricing of the calls and puts used as hedging instruments is performed with the well-known

Black-Scholes formula with the annualized volatility set at the current implied volatility value.

More precisely, denote by C(IV,∆T, S,K) and P (IV,∆T, S,K) the price of a call and put

option respectively if the current implied volatility is IV , the time-to-maturity is ∆T , the

11 Note that traded options with different maturities are never used simultaneously in the same hedging
simulation.
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underlying stock price is S and the strike price is K:

C(IV,∆T, S,K) ≡ SN (d1)− e−r∆TKN (d2),

P (IV,∆T, S,K) ≡ e−r∆TKN (−d2)− SN (−d1),

where N (·) denotes the cumulative distribution function of a standardized Gaussian random

variable with

d1 ≡
log( S

K
) + (r + IV 2

2
)∆T

IV
√

∆T
, d2 ≡ d1 − IV

√
∆T .

Also, note that when option hedges are considered, the current implied volatility is added

to the feature vectors of the neural networks. For instance, with 1-month calls and puts

hedges, the nth trade at time tn = n/12 uses as input vectors for the neural networks

Xn = [S
(0,b)
21×n, IV21×n, T − tn, I21×n] for n = 0, 1, . . . , 11.12

Moreover, the dynamics of the underlying asset returns considered for this last section is

once again the MJD dynamics, but with different parameters than in previous sections since

the ones considered in Carbonneau and Godin (2021a) are used for comparability purposes.

The MJD as well as the log-AR(1) model parameters values are presented in Table 5.4

and Table 5.5, respectively, and are the same as in Carbonneau and Godin (2021a). These

parameters were chosen in an ad hoc fashion so as to produce reasonable values for the

dynamics of the financial market.

Table 5.4: Parameters of the 1-year Merton jump-diffusion model.

ν σ λ µJ σJ

0.1111 0.1323 0.25 −0.10 0.10

Notes: ν, σ and λ are on an annual basis.

12 Note that with option hedges, the implied volatility of the options used as hedging instruments is added
to feature vectors, not the price of each asset. This has the benefit of necessitating one less state variable
with the implied volatility instead of adding two state variables with the price of the call and put used for
hedging. Furthermore, this is a reasonable choice from a theoretical standpoint as implied volatilities are
simply a nonlinear transformation of options prices due to the bijection relation between the two values.
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Table 5.5: Parameters of the log-AR(1) model for the evolution of implied volatilities.

κ ϑ σIV %

0.15 log(0.15) 0.06 −0.6

5.5.4.1 Numerical results with option hedges

Table 5.6 presents equal risk prices C?
0 under CVaR0.95 measure with daily or monthly stock

trades as well as with 1-month or 3-months ATM calls and puts. Note that the latter values

are taken directly from Table 3 of Carbonneau and Godin (2021a).13 Furthermore, C?
0 values

under the semi-L2 values with daily and monthly stock hedges are also presented.

Table 5.6: Sensitivity analysis of equal risk prices to jump risk for OTM (K = 90), ATM

(K = 100) and ITM (K = 110) put options of maturity T = 1.

C?
0 under CVaR0.95 C?

0 under semi-L2

Moneyness Daily stock Monthly stock 1-month opts 3-months opts Daily stock Monthly stock

OTM 2.58 2.60 2.24 2.08 2.18 2.23

ATM 6.01 5.77 5.36 5.12 5.38 5.22

ITM 11.68 11.44 10.86 10.51 10.42 10.54

Notes: These results are computed based on 100,000 independent paths generated from
the MJD model under P (see Section 5.5.3.3 for model definition and Table 5.4 for model
parameters). Options used as hedging instruments are priced with implied volatility modeled
with a log-AR(1) dynamics (see Section 5.5.4 for model description and Table 5.5 for
parameters values). Values for C?

0 under CVaR0.95 are from Table 3 of Carbonneau and Godin
(2021a). Values for C?

0 under semi-L2 are obtained with the training algorithm described in
Section 5.4.2.2.

Numerical results indicate that the use of the semi-L2 objective function is successful at

reducing significantly equal risk prices when relying on trades involving exclusively the

underlying stock. Indeed, the relative reduction in C?
0 obtained by using the semi-L2 risk

measure as compared to the CVaR0.95 for OTM, ATM and ITM moneyness levels is respectively

13 The type of neural networks considered in Carbonneau and Godin (2021a) is the long-short term memory
(LSTM). The current paper found that FFNN trading policies performed significantly better for the numerical
experiments conducted under the semi-Lp risk measure which motivated their use over LSTMs. The reader is
referred to Section 3 of Carbonneau and Godin (2021a) for the formal description of the LSTM architecture.
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15%, 11% and 11% with daily stock and 14%, 10% and 8% with monthly stock rebalancing.14

Furthermore, equal risk price values under the semi-L2 risk measure with daily or monthly

stock hedges are relatively close to those obtained with 1-month or 3-months option hedges

under the CVaR0.95. These results have important implications for ERP procedures. Indeed,

this demonstrates that in the face of highly illiquid options, the use of the semi-Lp class

of risk measures with stock hedges can effectively reduce equal risk prices to similar levels

as the ones obtained with option hedges with the CVaRα measures. This avenue is thus

successful to alleviate the price inflation phenomenon of ERP procedures for the pricing

of long-term options. It is worth highlighting that in the presence of jump risk, the use of

options as hedging instruments is much more effective for risk mitigation as compared to

hedging strategies involving exclusively the underlying stock (see for instance Coleman et al.

(2007) and Carbonneau (2021)). Nevertheless, C?
0 values presented in Table 5.6 indicate that

when setting up trading strategies with options is impractical due to high expected trading

costs, the use of stock hedges coupled with semi-Lp risk measures can effectively reduce

option prices.

5.6 Conclusion

This paper studies the class of semi-Lp risk measures in the context of equal risk pricing (ERP)

for the valuation of European financial derivatives. The ERP framework prices contingent

claims as the initial hedging portfolio value which equates the residual hedging risk of the

long and short positions under optimal hedging strategies. Despite lacking the translation

invariance property which complexify the numerical evaluation of equal risk prices, the

use of semi-Lp risk measures as the objective function measuring residual hedging risk is

shown to have several preferable properties over the CVaRα which is explored for instance

in Carbonneau and Godin (2021b) and Carbonneau and Godin (2021a) in the context of

ERP. The optimal hedging problems underlying the ERP framework are solved with deep

14 For instance, if C?0 (CVaR0.95) and C?0 (L2) are respectively equal risk prices under the CVaR0.95 and

semi-L2 objective functions, the relative reduction is computed as 1− C0(L2)
C?

0 (CVaR0.95) .
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reinforcement learning procedures by representing trading policies with neural networks as

proposed in the work of Buehler et al. (2019b). A modification to the training algorithm

for neural networks is presented in this current paper to tackle the additional complexity

of using the semi-Lp risk measures with the ERP framework. This modification consists in

training the neural networks to learn the optimal mappings for an interval of initial capital

investments instead of a unique fixed value. The latter is shown not to lead to material

deterioration in the hedging accuracy of the neural networks trading policies.

Several numerical experiments are performed to examine option prices generated by the ERP

framework under the class of semi-Lp risk measures. First, a sensitivity analysis of equal risk

price values with respect to the choice of objective function is conducted by comparing prices

obtained with the CVaRα and semi-Lp objectives across different values of α and p controlling

the risk aversion of the hedger. Numerical results demonstrate that equal risk prices under the

semi-Lp risk measures are spanning a larger interval of values than the one obtained with the

CVaRα by alleviating the price inflation phenomenon observed under the CVaRα documented

in previous studies. Furthermore, the trading policies parameterized as neural networks are

shown to be highly effective for risk mitigation under the semi-Lp objective functions across

all values of p considered, with the risk aversion parameter controlling the relative weight

associated with extreme scenarios. Moreover, additional numerical experiments show that the

use of the semi-L2 objective function for the pricing of long-term puts with hedges exclusively

relying on the underlying asset is successful at reducing equal risk prices roughly to the

level of prices produced with option hedges under the CVaRα objective function. The latter

conclusion is highly important in the context of ERP as it demonstrates that in the case

where options are not or cannot be used within the hedging strategy, the ERP methodology

used in conjunction with the semi-Lp class of risk measures can produce reasonable option

prices.
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5.7 Pseudo-code

This section presents the pseudo-codes for the training of neural networks and of the bisection

method. Algorithm 5.1 describes the pseudo-code to carry out a single SGD step, i.e. given

θj and the initial portfolio value V0, the steps to perform an update of the set of parameters

to θj+1 are presented. Without loss of generality, the training pseudo-code is presented

only for the short neural network F
(S)
θ and for trades involving only the underlying stock.

Note that for all numerical experiments under the semi-Lp risk measure conducted in this

paper, a preprocessing of the feature vectors is used with {T − tn, log(S
(b)
n /K), Vn/Ṽ , In}

instead of {T − tn, S
(b)
n , Vn, In} for Ṽ defined as the midpoint value of the initial search

interval of the bisection algorithm [VA, VB], i.e. Ṽ ≡ 0.5(VA + VB). Note that Buehler

et al. (2019b), Carbonneau and Godin (2021b) and Carbonneau and Godin (2021a) consider

similar preprocessing for risky asset prices, while Carbonneau (2021) considers a similar

preprocessing of portfolio values. Furthermore, under the CVaRα objective function, the

same preprocessing for risky asset prices is used, but portfolio values are not preprocessed

as the bisection algorithm is not required to be used in this case, i.e. Vn is used in feature

vectors. Moreover, the update rule for portfolio values in step (6) of Algorithm 5.1 can be

obtained directly from the self-financing representation of V δ
n as shown below

V δ
n = Bn(V δ

0 +Gδ
n)

= Bn

(
V δ

0 +Gδ
n−1 + δ(0:D)

n
• (B−1

n S
(e)
n−1 −B−1

n−1S
(b)
n−1)

)
=

Bn

Bn−1

V δ
n−1 + δ(0:D)

n
• (S

(e)
n−1 −

Bn

Bn−1

S
(b)
n−1)

= er∆V δ
n−1 + δ(0:D)

n
• (S

(e)
n−1 − er∆S

(b)
n−1). (5.9)

Algorithm 5.2 presents the pseudo-code for the bisection algorithm taking as inputs the two

trained neural networks F
(L)
θ and F

(S)
θ , the test set of 100,000 paths as well as the initial

search range [VA, VB] so as to output the equal risk price.
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Algorithm 5.1 Pseudo-code training neural networks F
(S)
θ with underlying stock hedges

Input: θj, V
δ

0

Output: θj+1

1: for i = 1, . . . , Nbatch do . Loop over each path of minibatch
2: X0,i = [T, log(S

(0,b)
0,i /K), V δ

0,i/Ṽ , I0,i] . Time 0 feature vector of F
(S)
θ

3: for n = 0, . . . , N − 1 do
4: δ

(0)
n+1,i ← time tn output of FFNN F

(S)
θ with θ = θj

5: S
(0,b)
n+1,i = S

(0,b)
n,i e

yn+1,i . Sample next stock price

6: V δ
n+1,i = er∆V δ

n,i + δ
(0)
n+1,i(S

(0,b)
n+1,i − er∆S

(0,b)
n,i ) . See (5.9) for details

7: In+1,i ← update additional state variables

8: Xn+1,i = [T − tn, log(S
(0,b)
n+1,i/K), V δ

n+1,i/Ṽ , In+1,i] . Time tn+1 feature vector of

F
(S)
θ

9: end for
10: Φ(S

(0,b)
N,i ) = max(K − S(0,b)

N,i , 0)

11: πi,j = Φ(S
(0,b)
N,i )− V δ

N,i

12: end for
13: Ĵ = 1

Nbatch

∑Nbatch

i=1 πpi,j1{πi,j>0}
14: ηj ← Adam algorithm

15: θj+1 = θj − ηj∇θĴ . ∇θĴ computed with Tensorflow

Notes: Subscript i represents the ith simulated path among the minibatch of size Nbatch. Also,
the time 0 feature vector is fixed for all paths, i.e. S

(0,b)
0,i = S

(0,b)
0 , V δ

0,i = V δ
0 and I0,i = I0.

Algorithm 5.2 Pseudo-code bisection algorithm
Input: F

(L)
θ and F

(S)
θ trained neural networks, initial search range [VA, VB] and test set paths

Output: C?
0

1: nbs iter = 0, ∆(V ) =∞
2: while |∆(V )| > ζ and nbs iter < max iter do
3: V = 0.5(VA + VB)

4: Compute ε̃(L)(−V ) and ε̃(S)(V ) on the test set with F
(L)
θ and F

(S)
θ

5: ∆(V ) = ε̃(S)(V )− ε̃(L)(−V )
6: if ∆(V ) > 0 then
7: VA ← V
8: else
9: VB ← V

10: end if
11: nbs iter ← nbs iter + 1
12: end while
13: C?

0 = V .

Notes: ζ and max iter represent respectively the admissible level of pricing error and the
maximum number of iterations for the bisection algorithm. For all numerical experiments
conducted in Section 5.5, ζ is set to 0.01 and max iter to 100.
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5.8 Validation of modified training algorithm

The goal of this section is to demonstrate that the proposed modification to the training

algorithm described in Section 5.4.2.2 to tackle the non-translation invariant risk measures

case of the ERP framework does not materially impact the optimized neural networks

hedging performance. Denote by Fθ the neural network trained with the additional step of

sampling V0 ∈ [VA, VB] on top of the minibatch of paths at the beginning of each stochastic

gradient descent step. One conclusive test to validate that the proposed modification does

not deteriorate the neural networks accuracy is to compare the hedging performance of Fθ

assuming V0 = V ? to another neural network denoted as F fixed
θ trained exclusively with a

fixed initial capital investment set at V ?. If Fθ exhibits similar hedging performance to F fixed
θ

over multiple iterations of V ?, this demonstrates that Fθ learned the optimal trading policy

over a range of possible initial capital investments.

The experiment conducted to perform the latter test is now formally presented. The setup

considered is similar to the one presented in Section 5.5.1 with the hedging of an ATM put

option of maturity T = 60/260 with daily stock hedges under the regime-switching model.

The objective function is the semi-Lp for p ∈ {2, 4, 6, 8}:

1) Train Fθ with the procedure described Section 5.4.2.2 where V0 is sampled in the interval

[0.75CQ
0 , 1.50CQ

0 ] at the beginning of each SGD step with CQ
0 being the risk-neutral

price. A total of 200 epochs is used on the train set.

2) For a fixed randomly sampled value V ∗ ∈ [0.75CQ
0 , 1.50CQ

0 ], set V0 = V ∗ and train

F fixed
θ with the methodology described in Section 5.4.2.1. A total of three iterations of

this step is performed.

3) For the three values of V ? sampled, compute the SMSE (i.e. semi-L2) statistics on the

test set with Fθ and F fixed
θ .

4) Repeat steps 1) - 3) for p ∈ {2, 4, 6, 8}.
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Table 5.7 presents the SMSE statistics for the three values of V0 = V ? across the semi-Lp

objective functions with p = 2, 4, 6, 8. These results clearly demonstrate that the modified

Table 5.7: Semi-mean-square-error (SMSE) statistics of the modified training algorithm for

ATM (K = 100) put options of maturity T = 60/260 under the regime-switching model.

L2 L4 L6 L8

Iteration V0 Fθ F fixed
θ Fθ F fixed

θ Fθ F fixed
θ Fθ F fixed

θ

1 4.343 0.3899 0.3835 0.4017 0.4107 0.4442 0.4543 0.4637 0.4755

2 2.503 2.3892 2.3470 2.6245 2.4532 2.7520 2.6084 2.8259 2.7272

3 4.005 0.5770 0.5750 0.6101 0.6157 0.6666 0.6728 0.6920 0.7239

Notes: SMSE statistics results are computed based on 100,000 independent paths generated
with the regime-switching model under P (see Section 5.5.2.1 for model definition and
Section 5.9 for model parameters). Fθ is the neural network trained with the modified
algorithm described in Section 5.4.2.2. F fixed

θ is the neural network trained with fixed initial
capital investment of V0 as described in Section 5.4.2.1.

training algorithm does not materially impact the accuracy of the neural network as the

difference in SMSE statistics between the FFNNs Fθ and F fixed
θ is most often marginal.

5.9 Maximum likelihood estimates results

This section presents maximum likelihood model parameters estimates for the different risky

asset dynamics considered in numerical experiments of Section 5.5.2 and Section 5.5.3. All

parameters are estimated with the same time-series of daily log-returns on the S&P 500 index

for the period 1986-12-31 to 2010-04-01 (5863 log-returns).
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Table 5.8: Maximum likelihood parameter estimates of the Black-Scholes model.

µ σ

0.0892 0.1952

Notes: Both µ and σ are on an annual basis.

Table 5.9: Maximum likelihood parameter estimates of the GJR-GARCH model.

µ ω υ γ β

2.871e-04 1.795e-06 0.0540 0.6028 0.9105

Table 5.10: Maximum likelihood parameter estimates of the regime-switching model.

Regime
Parameter 1 2

µ 0.1804 −0.2682
σ 0.1193 0.3328
ν 0.7543 0.2457
Γ 0.9886 0.0114

0.0355 0.9645

Notes: Parameters were estimated with the EM algorithm of Dempster et al. (1977). µ and
σ are on an annual basis.

Table 5.11: Maximum likelihood parameter estimates of the Merton jump-diffusion model.

ν σ λ µJ σJ

0.0875 0.1036 92.3862 −0.0015 0.0160

Notes: ν, σ and λ are on an annual basis.
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5.10 Risk-neutral dynamics

This section presents the risk-neutral dynamics for the RS, BSM, GARCH and MJD models.

The absence of arbitrage opportunities implied by each model entails by the first fundamental

theorem of asset pricing that there exist a probability measure Q such that {S(0,b)
n e−rtn}Nn=0 is

an (F,Q)-martingale (Delbaen and Schachermayer, 1994). Denote by {εQn}Nn=1 a sequence of

iid standardized Gaussian random variables under Q. Hereby are the Q-dynamics for the four

models described in Section 5.5.2.1 and Section 5.5.3 as well as the corresponding method to

compute the risk-neutral price CQ
0 of European puts.

5.10.1 Regime-switching

The change of measure used in this study is the popular choice of shifting the periodic drift to

obtain risk-neutrality and model invariance as considered for instance in Hardy (2001). Under

this change of measure Q, the drift of each regime µi∆ is shifted to (r − σ2
i /2)∆, and the

transition probabilities are left unchanged. The risk-neutral dynamics has the representation

yn+1 =

(
r −

σ2
hn

2

)
∆ + σhn

√
∆εQn+1, n = 0, . . . , N − 1.

To compute the risk-neutral price of Φ, the approach used follows the work of Godin et al.

(2019) (see Section 5.3 of the latter paper). Let H ≡ {Hn}Nn=0 be the filtration generated by

the regimes and G be the filtration containing all latent factors and all market information

available to financial participants, i.e. G ≡ F ∨G. Using the law of iterative expectations,

the risk-neutral price of Φ allows for the representation

CQ
0 ≡ e−rTEQ[Φ(S

(0,b)
N )|F0]

= e−rTEQ
[
EQ[Φ(S

(0,b)
N )|G0]|F0

]
= e−rT

H∑
i=1

ξQ0,iEQ[Φ(S
(0,b)
N )|h0 = i, S

(0,b)
0 ], (5.10)
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where ξQ0,i is assumed to be equal to ξP0,i for all regimes, i.e. to the stationary distribution of

the Markov chain under P. The computation of the conditional expectations in (5.10) can be

done for instance with Monte Carlo simulations or with the closed-form solution of Hardy

(2001) when H = 2.

5.10.2 BSM

The change of measure from P to Q under the BSM dynamics is the one obtained with the

discrete-time version of the Girsanov theorem: there exists a market price of risk process

denoted as ψ ≡ {ψn}Nn=1 such that εQn = εn + ψn. By setting ψn ≡
√

∆(µ−r
σ

), it is easy to

show that {S(0,b)
n e−rtn}Nn=0 is an (F,Q)-martingale and that the Q-dynamics of log-returns is

yn =

(
r − σ2

2

)
∆ + σ

√
∆εQn .

Risk-neutral put option prices presented in this paper are computed with the well-known

Black-Scholes closed-form solution.

5.10.3 GARCH

The change of measure from P to Q considered is the one from Duan (1995) where the

one-period conditional expected log-return is shifted, but the one-period conditional variance

is unchanged when going from the physical to the risk-neutral measure. More precisely, let

εQn = εn + ψn where ψ ≡ {ψn}Nn=1 is predictable with respect to the filtration F. In order to

respect the condition of invariance of the one-period conditional variance from P to Q, the

one-period expected conditional return under Q must be equal to the periodic risk-free rate

for n = 1, . . . , N :

EQ[eyn|Fn−1] = EQ[eµ−ψnσn+σnε
Q
n |Fn−1] = eµ−ψnσn+σ2

n/2 = er∆.
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Thus, ψn has the representation

ψn ≡
µ− r∆ + σ2

n/2

σn
, n = 1, . . . , N. (5.11)

With (5.11), the GARCH risky asset dynamics under Q is

yn = r∆− σ2
n/2 + σnε

Q
n ,

σ2
n+1 = ω + υσ2

n(|εQn − ψn| − γ(εQn − ψn))2 + βσ2
n.

The computation of the risk-neutral price CQ
0 can be performed with Monte-Carlo simulations.

5.10.4 Merton jump-diffusion

For this model, the change of measure used is the one originally proposed in Merton (1976)

which assumes no risk premia for jump risk: parameters {µJ , σJ , λ, σ} are left unchanged,

and the drift parameter υ is shifted to the annualized continuously compounded risk-free

rate r. The Q-dynamics is

yn =

(
r − λ(eµJ+σ2

J/2 − 1)− σ2

2

)
∆ + σ

√
∆εQn +

NQ
n∑

j=NQ
n−1+1

ζQj ,

where {NQ
n }Nn=0 and {ζQj }j≥1 have the same distributions under Q than under P. The

risk-neutral price of put options CQ
0 can be computed with the well-known closed-form

solution.
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Conclusion

This thesis studies the use of deep reinforcement learning methods for pricing and hedging

financial derivatives in incomplete markets. Throughout all four papers, global hedging

problems are solved by using the deep hedging algorithm of Buehler et al. (2019b). This

approach is based on a parametric approximation of trading policies with neural networks

trained with reinforcement learning.

The first paper presents a universal and tractable methodology based on deep reinforcement

learning for implementing the equal risk pricing framework of Marzban et al. (2020) under

convex risk measures. The methodology consists in representing the long and short global

trading policies with two distinct neural networks. This paper also has theoretical contribu-

tions by providing a rigorous proof that equal risk prices under the setup considered in the

paper are arbitrage-free. Furthermore, this paper introduces ε-completeness metrics based on

non-quadratic risk measures quantifying the level of market incompleteness.

The second paper studies the problem of global hedging long-term financial derivatives. The

setup considered is similar to the work of Coleman et al. (2007) with the risk management of

long-term lookback options embedded in variable annuities guarantees with ratchet features.

The main contribution of this paper is in conducting extensive benchmarking of global policies

under different penalties (quadratic and non-quadratic) with the use of multiple hedging

instruments (standard options and underlying stock) in the presence of different dynamics for

the financial market (presence of jump risk). These experiments demonstrate the significant

benefit of using the neural network-based hedging scheme with non-quadratic penalties by

successfully reducing downside risk as compared to typical hedging schemes (global quadratic

hedging, local risk minimization and greek-based hedging) as well as earning significant

positive average returns.

The main theme of the third paper is the examination of the impact of including short-term

options as hedging instruments for pricing longer-term derivatives with the equal risk pricing
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framework. Broad analysis of the interrelation between different stylized features of jump

and volatility risks and the choice of hedging instruments (short-term options or underlying

stock) on the equal risk pricing framework are provided.

The fourth paper of the thesis investigates the use of non-translation invariant risk measures

within the equal risk pricing framework. A modification to the conventional deep hedging

training algorithm is proposed to tackle the additional difficulty of using non-translation

invariant risk measures. The use of the class of semi-Lp objective functions within the

equal risk pricing framework is shown to be highly effective from the standpoint of pricing

derivatives by spanning larger interval of prices than under CVaR measures considered in

previous papers as well as from a risk mitigation standpoint with global trading policies

exhibiting highly effective hedging risk mitigation.

Future research on deep hedging methods for pricing and hedging derivatives would prove

worthwhile. Robustness analysis of the empirical performance of the neural network trading

policies in the presence of model uncertainty when dynamics differ from the ones used for

training would be of interest. For instance, an assessment of the hedging performance of

the neural networks in extreme market scenarios (e.g. financial crisis) could be of interest.

Furthermore, in the same vein, a comprehensive empirical study of the equal risk pricing

framework with methods developed in this thesis would prove worthwhile.

Moreover, in the context of mitigating the risk exposure associated with options embedded

in guarantees of variable annuities with deep hedging methods, the inclusion of additional

risk factors to have a more realistic depiction of the hedging problem such as stochastic

interest rate, mortality risk, basis risk and lapse risk would be of interest. Another potential

avenue to explore to improve the effectiveness of deep hedging methods is the development

of more realistic financial market simulators to train the neural networks. Some studies are

considering the use of deep learning methods such as Generative Adversarial Networks and

Variational Autoencoders for model-free market simulation: Wiese et al. (2019), Buehler et al.
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(2020) and Wiese et al. (2020).

184



Appendix

The objective of this appendix is twofold. First, Section 7.1 presents the proof that if Φ is

attainable, than the equal risk price under convex risk measures coincides with the initial

capital investment of the replicating strategy. Some parts of the proof are inspired by the

proof of Lemma 3.2 of Buehler et al. (2019b). Second, Section 7.2 presents several papers

which identified sufficient conditions for the existence of optimal trading strategies for global

hedging problems under similar setups than the ones studied in this thesis.

7.1 Attainable case

Suppose that a European-type contingent claim Φ(SN) is attainable, i.e. there exist δ̂ ∈ Π

and C0 ∈ R such that −Φ(SN) + BN(C0 + Gδ̂
N) = 0. Furthermore, let ρ be a convex risk

measure. For any δ ∈ Π, we have

ρ(Φ(SN)−BNG
δ
N) = ρ(Φ(SN) +BNC0 −BNC0 +BNG

δ̂
N −BNG

δ̂
N −BNG

δ
N)

= BNC0 + ρ(−BNG
δ−δ̂
N ) (7.1)

where (7.1) stems from the translation invariance property of ρ and from the fact that

Φ(SN)−BN(C0 +Gδ̂
N) = 0. Taking the minimum over all admissible trading strategies, we

obtain

ε(S)(0) = min
δ∈Π

ρ
(
Φ(SN)−BNG

δ
N

)
= BNC0 + min

δ∈Π
ρ(−BNG

δ−δ̂
N ). (7.2)

Similarly, for any δ ∈ Π, we have

ρ(−Φ(SN)−BNG
δ
N) = ρ(−Φ(SN) +BNC0 −BNC0 +BNG

δ̂
N −BNG

δ̂
N −BNG

δ
N)

= −BNC0 + ρ(−BNG
δ+δ̂
N ) (7.3)
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where (7.3) stems from the translation invariance property of ρ and from the fact that

−Φ(SN ) +BN (C0 +Gδ̂
N ) = 0. Taking the minimum over all admissible trading strategies, we

obtain

ε(L)(0) = min
δ∈Π

ρ
(
−Φ(SN)−BNG

δ
N

)
= −BNC0 + min

δ∈Π
ρ(−BNG

δ+δ̂
N ). (7.4)

Lastly, using the characterization (2.11) of equal risk prices under convex risk measures, we

have

C?
0 =

ε(S)(0)− ε(L)(0)

2BN

=
BNC0 + min

δ∈Π
ρ(−BNG

δ−δ̂
N ) +BNC0 −min

δ∈Π
ρ(−BNG

δ+δ̂
N )

2BN

= C0.

(7.5)

This concludes the demonstration that if a European-type contingent claim Φ(SN ) is attainable,

than the equal risk price under convex risk measures coincides with the initial capital

investment of the replicating portfolio.

7.2 Existence of optimal trading strategy

Throughout the thesis, for each example of global hedging problems considered, the iden-

tification of sufficient conditions leading to the existence of an optimal trading strategy is

left out-of-scope. Such conditions were investigated in other literature works. Here are some

papers providing sufficient conditions for the existence of optimal global trading strategy for

optimization problems that are related to the ones considered in this thesis.

• Schweizer (1995) considers the case of a quadratic penalty in a discrete-time frictionless

market with a single traded asset being the underlying stock. The latter work also

considers the case where both the trading strategy as well as the initial capital investment

are jointly optimized. The optimization problems (3.6) with L(x) = x2 and (4.30) are

both related to the global hedging problems considered by Schweizer (1995). Theorem

2.2 of the latter paper demonstrates the existence of an admissible hedging strategy
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under the assumption of a so-called nondegeneracy condition for the stock price process.

• François et al. (2014) considers the case of expected penalties as risk measures in

a discrete-time frictionless market with trades involving the underlying stock. The

optimization problem (3.6) with L(x) = x21{x>0} as well as the global hedging problem

(5.1) with the objective function (5.4) are both related to the global hedging problem

considered in François et al. (2014). Theorem 3.3 of the latter paper provides sufficient

conditions for the existence of an optimal admissible hedging strategy in such context.

• Godin (2016) considers the case of the CVaR risk measure in discrete-time in the

presence of transaction costs for trades in the underlying stock. Throughout this thesis,

the CVaR risk measure is extensively studied in various numerical experimentations of

the ERP framework. Lemma 2.1 of Godin (2016) provides sufficient conditions for an

optimal admissible hedging strategy to exist under the CVaR objective function.

• Xu (2006) considers the case of convex risk measures as the objective function in

continuous-time. Theorem 2.6 of the latter paper provides sufficient conditions for an

optimal admissible hedging strategy to exist in this setup.
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