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Abstract

Towards Semantic-Empowered Communication

Shirin Rezasoltani

The issues of timeliness and accuracy are becoming increasingly important with the advent of

heterogeneous applications/networks and standardization of new services in areas of Cyber-Physical

systems where the popular performance measures such as the throughput, error rate and packet loss

lose their intuitive interpretation and new formal metrics must be defined on which the intuition will

be built. To solve this problem, Semantic of Information has been recently introduced: the purpose

and the final utility of the delivered data should be considered, and the performance is to be related

to the semantics.

In this thesis, we explore two major issues in the area of semantic communications. First, we

investigate the issue of wireless sensing in non-real time systems when the time delivery constraints

are not restricted to be in real domain and the system tolerates delay in accessing the measurement

results. To illustrate the application of this principle, we use the Markovian Gaussian models,

and assuming the information semantic, we study the optimal estimation methods to non-causally

reconstruct the source signal. We derive the explicit expressions and optimal buffer management

policies for the proposed information accuracy metric.

Second, we evaluate the impact of the erroneous wireless control feedback channel using the

Age of Information, one particular metric for semantic communications to capture the freshness and

timeliness of information in real-time applications. To mitigate the impact of the imperfect feedback

channel on the system performance, we adopt a Binary Asymmetric Channel model to control the

detection accuracy of the control signals. We then compute the explicit expressions for the average

Age of Information. Further, we show the optimum parameter design for the control channel model

in order to minimize the average Age of Information.
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Chapter 1

Introduction

1.1 Overview and Motivation

In recent years, researchers have altered their visions toward 6G and networks beyond 5G to

support the development of new applications and communication systems. The tremendous growth

and advances in the area of intelligent control systems and its various fields, including smart trans-

portation and manufacturing facilities, intelligent traffic control, etc., have all exposed limitations in

the applicability of the traditional sensing and communication techniques [1–3]. In such systems,

“timely access" to “accurate information" from the environment plays a major role in guaranteeing

the performance and efficiency of these intelligent systems.

Typically, a traditional remote estimation system contains different blocks including sensing

(data acquisition from the environment), communication (data delivery to the destination) and ap-

plication (data estimation to monitor or control). Conventionally, the overall system design is in-

dependent of the ultimate usage of the individual information packet at the application level. More

precisely, the traditional architecture treats the same with all the generated packets at the sensing

layer, and thus the communication part targets to deliver reliably every arrived packet to the des-

tination. In this regard, different performance metrics such as throughput, delay and packet loss

have been widely applied to design the system in the past decades. For instance, 4G applications

demand for high throughput while Ultra Reliable Low Latency (URLLC) systems require high reli-

able throughput with low latency.
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As we noticed, the architecture of these systems are oblivious to the importance, meaning and

final utility of the data packets at the receiver since the whole set of generated packets are important

to be delivered reliably to the receiver. Every packet that either lost or delivered late will impose a

reduction in the system performance and reduce the overall Quality of Service (QoS). Due to this

behavior, the current communication systems are content-blind [4]. The fact that elements such as

time, space and application may affect and change the importance and meaning of the data packet

is completely abandoned in the current and traditional system designs. However, a class of new

emerging applications require a content-based communication system in which the packets transfer

according to their final usage in the system. The service quality of new emerging applications in the

area of Internet of Things (IoT) mainly depends on timely generation and delivery of meaningful,

accurate and valid information packets.

In new content-based applications [4], applying the traditional architecture of the communica-

tion systems will lead to QoS dissatisfaction as well as to network bottlenecks. First off, not all

packets delivered at the destination are useful in the application layer. Precisely, trying to deliver all

generated packets and increasing throughput or reliability of the system will cause to transmission

of out-dated and useless information to the destination. Besides, reducing the delay of the transmis-

sion process of the whole set of generated information will not guarantee the on-time delivery of

the set of meaningful and valid information in the destination. Second, since the destination only

requires the set of meaningful, accurate and fresh data packets, a system defined with traditional per-

formance criteria, such as throughput will only yield to network bottlenecks. Given the tremendous

growth of number of connected devices in IoT networks, we can anticipate huge network traffic.

Clearly, an optimal and structural system design based on the final application demand can reduce

the traffic and avoid bottlenecks in network.

Recently, the Semantic Communications [4, 5] has been introduced to remove the boundaries

of the traditional communication systems and to redesign the existing practical architectures and

infrastructures. Very fundamental consideration for these networks is the tight connection between

the entire three processes of sampling, transmission and reconstruction which must be performed

with regard to the perfectly formulated performance metrics, see Fig. 1.1. In this way, the traffic

load of the uninformative information packets will be eliminated and resources would be occupied
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Figure 1.1: Architecture of Semantic Communication

more efficient.

While undoubtedly, the “performance" and “efficiency" of the discussed emerging applications

depend on the “timely" access to “accurate" information obtained from the source, the very con-

cepts of timeliness and accuracy become intertwined and thus defining the performance criteria for

evaluation and/or design may be difficult. To address this problem, the purpose and the final usage

of the delivered data should be considered, and the performance is to be related to the ultimate usage

of the transmitted information, e.g., [4]. During the recent years, different performance criteria have

been introduced in the literature to model the performance of these new systems and measure the

semantics. Accordingly, we may name these metrics Semantic of Information (SoI) [5]. We can

categorize the SoI metrics in three levels as presented in the following.

At the first level of approximation, the semantics may be defined through a distortion of the

sensed signal contained in the transmitted messages and reconstructed at the monitor. This ap-

proach was adopted in [6], and while this perspective does not capture the ultimate utility of the

information (e.g., for control or for decision making), it already allows us to go beyond the limita-

tions of the conventional approach, which only focused on delivering reliably the messages without

questioning their contents. Important to note is that, to evaluate the distortion, we have to make as-

sumptions regarding the model of the signal. In addition, considering the distortion function as the

performance criteria will result into a co-design of all the three process of sampling, transmission

and reconstruction.

Secondly, to tackle the semantics without specifying the model of the signal, we may look at

certain parameters of the transmission which are deemed as important. In particular, the recent years

witnessed the explosion of interest in the Age of Information (AoI). Defined at time t as ∆t = t− t−,
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where t− is the time-stamp of the most recent sample available at the time t, the AoI has an appealing

simplicity and the intuitive interpretation of “timeliness” or “freshness” of information.

In addition to the capability of AoI in modeling data freshness, this metric can be interpreted as

the level of dissatisfaction for having a stale data at the destination. Depending on the application

demand, a various class of AoI based metrics have been defined and analysed in some recent works

which are basically the non-linear transformations of AoI [7], [8], [9]. Ideally, if the status of the

sensor node could be delivered at the remote monitor at every time slot without delay, the AoI will

stay at its minimum level, and the information available at the destination is always fresh. However,

the wireless networks inherently suffer from the random delays in the wireless channel as well as the

sampling process. Therefore, it is necessary to design optimally the whole communication system

with regard to the AoI metric to keep the monitor at the desired level of information freshness.

At last, a multi-variable function of timeliness and estimation accuracy has been studied in

some recent works [4]. Some other transformation functions of timeliness and accuracy are defined

in [10, 11]. Basically, the amount of time that the estimation error is violating a pre-defined level is

questioned in these works.

The research on the Semantic of Information and Communication Semantics is still in its very

early stages and different questions and problems are still needed to be discovered and addressed.

1.2 Problem Statement

In this thesis, we focus our efforts on defining two major issues and proposing frameworks to

study and analyse them.

The first chapter of the work challenge the assumption of limiting the semantic applications to

only real-time scenarios. Fundamental for all the previous works on the semantics is the assumption

of real-time applications being served, where the delay is intuitively the critical criterion. However,

given that the entire discussion about the semantics of information is carried out in the context of

heterogeneity of applications, it is entirely natural to question this real-time requirements, as also

noted in [4, Sec. II.B]. Of course, the requirements in the case of non-real time applications will be

different from the real-time case, but we still need to quantify/estimate these requirements.
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In the previous chapter, we assume an erroneous wireless forward channel and an error free

wireless feedback channel. However, we know that a practical wireless system suffers from the

errors in both forward and backward channels. In the second chapter of the thesis, we address the

aforementioned issue of unreliability in both forward and backward wireless channels in a semantic

communication system in which the semantics are measured and quantified through the recently

introduced metric AoI. In the recent works studying the effect of different re-transmission strategies

on the performance of AoI, e.g., [12, 13], one major assumption is the existence of a noiseless

feedback channel so that the decoding success or failure will be perfectly known at the sensor. Such

assumption may not fully capture the behaviour of the system in real practical settings since the

wireless feedback may, as well, be unreliable and noisy. Most importantly, industrial controlling

applications are prone to errors in the control feedback link, which is a direct result of the power

limitations and interference introduced from a dense network of users.

In traditional telecommunication as well as wireless networks [14], however, errors in the feed-

back channel can lead to miss-detection and hence erroneous decoding result. Therefore, packet

re-transmission decisions at the sensor side may yield an inefficient performance which lowers the

system throughput and increases the delay in packet delivery procedure. Clearly, assuming a perfect

error-free feedback channel is not practical and the results obtain from such analysis may mislead

to a wrong real-time system design. Consequently, we study the system performance in terms of

AoI metric, in addition, an optimal system design are presented to mitigate the impact of error in

wireless channels.

1.3 Related Works

Recently, the authors of [4, 5] introduced the notion of information semantic as a new concept

which can meaningfully construct the basis for the architectural design of emerging communication

systems. Considering that in a sensor communication network, information value can change with

the provided level of accuracy within time [4], we can classify the recent literature on information

semantics mainly into three folds.

The first venue addresses directly the issues of the source model, of the estimation strategy,
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as well as of defining the distortion metric. It should be seen as a generalization of the approach

underlying the definition of the AoI (where the signal is modeled as a Wiener process, the estimation

is done by a causal zero-order linear interpolation, and the distortion is defined by variance of the

estimation error). In particular, [7] and [15] studied the auto-correlation and mutual information

functions between the current time estimation and the actual state of the source to characterize the

real time estimation of the signal. The discrete model of the source was analyzed in [16]. The

authors in [17] considered the source to be a Poisson counting process and defined the related

distortion function. The same methodology is applied for OU process in [18] which should be seen

as application of the principle of the causal estimation [19] to the colored Gaussian noise model.

In the second cluster of work, the performance criteria is modified and the combination of time-

based and error-based metrics to evaluate the information semantic are formulated. Some recent

works in this venue introduced new metrics such as Value of Information [20], Age of Incorrect

Information [10] and Urgency of Information [11]. Similarly, the non-linear transformations of the

AoI were proposed in [21, 22].

The last venue borrows the definition of AoI to analyse how the timeliness depends on the

sampling methods [19], transmission schemes and channel models [12,23–25], buffer management

strategies [26,27]. Some other works focus on a statistical analysis of the AoI random process itself

by finding the metrics which go beyond the long term average. In particular, the distribution of the

AoI was found in [26], while the distribution of the AoI peak was studied in [28].

Since the introduction of real time systems and AoI metric, much work has been conducted to

study the effect of diverse aspects of system elements on the AoI. Some prior work focused on the

sensor buffer capacities and studied the queuing of update packets [19]. While other works analysed

different queue management policies to deliver updates in minimum AAoI, i.e., [29–31].

Some other recent works, e.g., [12, 13, 32], focused their efforts to take into account more prac-

tical and real assumptions about the communication channel between the sensor and the monitor.

The authors of [12] and [13] used predefined functions to determine the decoding errors; while they

qualitatively describe the actual HARQ decoding, they rely on neither the model of the channel nor

the decoding principles. To gain insights into the behaviour of AoI in wireless HARQ the canonical

models of wireless communications are used in [23], where the block fading channel was used to
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analyze AoI for different re-transmission schemes.

The impact of noisy feedback channel on the packet transmissions has been studied before in

some previous works [33–35]. The performance criteria assumed in this class of works was mostly

the long-term throughput [36] and the system reliability in terms of packet loss rate [37]. The

truncated versions of re-transmission schemes has been studied in papers such as [38] and [39].

Authors in some other works studied the noisy feedback channel for more specific communication

system setups like LTE communication systems in [40] or CDMA systems in [41].

1.4 Outline and Contributions

This dissertation includes two chapters. In the first part of the work, We discuss the concept of

SoI in terms of distortion function for the non-real time application. We argue, that in the wireless

transmission with simple transmitters, e.g., in wireless sensor networks, the quality of signal recon-

struction at the transmitter is affected by the channel and the adopted transmission strategies even if

the reconstruction is carried out non-causally. Using the ideas applied previously in the context of

real-time application, we define the non-causal distortion function for Markovian Gaussian models

at the source. Moreover, we derive the formulas for the long-term average of newly defined metric

for two buffer management strategies and we show the results of optimal buffer management ob-

tained from the Markov Decision Process (MDP) formulation. Numerical examples based on the

above formulas and results are shown to illustrate the fact that the transmission strategies derived

for real-time application lose their optimally when the non-causal reconstruction at the monitor is

considered.

The second part of the work designs a practical communication system by assuming a model for

the feedback control channel. Precisely, We employ a Binary Asymmetric Channel (BAC) model

in the sensor side to detect the received signal and classify it as either ACK or NACK message.

Since ACK and NACK error detection each may play different roles in the ultimate AoI value, such

a BAC setup can properly control the destructive effects the wrong detection may cause on the age

function. Then, we derive the closed-form expressions of AAoI for preemptive and non-preemptive

queue policies with respect to the error models of forward and feedback channels. The theoretical
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results are general that can be quickly applied for any binary classification method, including BAC

model, that is used to detect the errors in the feedback channel. Moreover, we explore the optimum

parameter setups in BAC model design to minimize the destructive impact of ACK/NACK unreli-

ability on the AoI performance and to achieve the minimum average AoI value. Further analysis

reveals that the conclusions about the usefulness of a particular re-transmission scheme may change

depending on the reliability of the acknowledgment detection at the sensor and the reliability of

the forward channel. Results also unveil that the optimal BAC model for preemptive queue tends

to re-transmit packets blindly in order to mitigate the destructive effect of the erroneous feedback

messages on the AoI. However, the cost of blind re-transmission is increasing the unnecessary uti-

lization of the channel resources. To show such a trade-off between the AoI performance and the

occupied resources, we introduce and compute the average resource utilization in both ARQ and

HARQ schemes. Moreover, we show how the optimum BAC design for a non-preemptive queue is

affected by the status arrival process.

The remainder of this dissertation is organized as follows: In chapter 2, we introduce the SoI

metric along with the long term average metrics for a non-real time system. Then, we derive the

explicit equations for fixed queue policies as well as the optimal queue policies considering two

types of packet re-transmission schemes. In chapter 3, we formulate a wireless communication

system with noisy forward and feedback channels, and present a general framework to analyse the

impact of erroneous channels on the metric AoI as well as the channel occupancy. In chapter 3, we

present all the conclusions and possible future research works.
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Chapter 2

Semantic Communications for Non-Real

Time Applications

This chapter investigates the semantic communications [5,42] in wireless sensing systems, par-

ticularly those used by non-real time applications.

To define the performance criteria, we turn again to the concept of semantics, where the main

difference with the real-time applications is that we may use non-causal reconstruction strategy. In

fact, from the modelling perspective, this is the only difference and, depending on whether we want

to use explicitly the model of the source or not, we will obtain different definitions of semantic

of information proper to the context of non-real time applications. This is a simple approach to

generalize the concepts used previously solely in the real-time context.

Similarly to the real-time applications, non-real time systems still suffer from the random delay,

the packet loss and all others impairments of the communication systems. We might argue, of

course, that non-real time applications may benefit from the retransmissions so that, ultimately, no

packet loss is incurred. However, such an argument, valid in general, ignores the fact that the remote

sensing will (possibly) use simple sensors which cannot backlog the information. Thus, while we

can tolerate the delay to gather all the required information to begin the reconstruction, we are still

required to design efficiently every part of the communication system including the buffer controller,

the transmission strategy as well as the estimation methods at the monitor.
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We apply the introduced framework over the Markovian Gaussian models and, assuming the

noisy wireless channel, we study the optimal estimation methods to non-causally reconstruct the

source signals at the destination. Further, we derive the explicit expressions and optimal buffer

management policies for the information accuracy defined as the distortion function. Lastly, we

analyze the impact of the non-causal approach in the case of sub-optimal estimation method, a

case which is practically relevant as well, because the parameter of the signal model is, in general,

unknown at the monitor.

This chapter is organized as follows: In Sec. 2.1 we explain the system model. In Sec. 2.2 we

define the distortion function for non-causal reconstruction. The packet management under fixed

and optimum policies are studied in 2.3 and 2.4. Section 2.5 provides the analysis and illustrates it

with numerical examples; conclusions are drawn in Sec. 2.6.

2.1 System model

We consider a problem where a sensor communicates measurements to a monitor through a

wireless channel and receives the acknowledgments through an error-free feedback channel. We

deal with discrete time slots of unit length where time slot t = 0,1,2, ... corresponds to the time

duration [t, t +1).

Measurement signal: We must express our idea about the dynamics of the physical process

being sensed, as well as define the sampling policy. Here, we assume the process follows either

Wiener process or Ornstein-Uhlenbeck (OU) model:

• Wiener signal:

xt = xt−1 +ut , (2.1)

• Ornstein-Uhlenbeck (OU) signal:

xt = κxt−1 +
√

1−κ2ut , (2.2)

where xt is the signal value at time t and ut is a zero-mean, unit variance white Gaussian noise
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and |κ| < 1 has the meaning of the auto-correlation. The fundamental difference with the

Wiener process is that the OU process is stationary (in particular, it has a finite variance) and

thus may better model the the real-world signals.

We assume that the sampling of xt is done independently in each time slot with probability λ ,

i.e., is Bernoulli distributed [12]. The inter-arrival time (the number of time frames between two

updates at the sensor), R, follows then a geometric distribution1

R∼ Geom(λ ). (2.3)

Once the signal is sampled, it is embedded into a message that is passed to the sender.

Transmission channel: The message is encoded into a packet which is transmitted wirelessly.

We adopt the canonical Rayleigh block fading model, i.e., the signal-to-noise ratio (SNR) in each

slots, φ , varies randomly from slot-to-slot and is drawn from exponential distribution

p(φ) =
1
snr

exp
(
− φ

snr

)
, (2.4)

where snr is the average SNR. We assume that the instantaneous SNR, φ , is unknown at the sensor

(transmitter). Thus, the adaptation of modulation, coding or power is infeasible and the transmis-

sion is carried with the nominal rate ρ and unitary power. Consequently, the decoding errors are

unavoidable and dealt with via retransmissions controlled by the feedback channel carrying the pos-

itive acknowledgment (ACK) or negative acknowledgment (NACK) messages. After receiving a

NACK message in the round k, the event denoted by NACKk, the sensor transmits again the same

packet. The transmission stops after an ACK is received. For simplicity, the ACK and NACK

messages are assumed to be delivered without errors and we consider the infinite HARQ.2

We consider two types of HARQ. The simplest case is ARQ, where in the k-th round, the

monitor decodes the signal using the latest transmission outcome yk. In this case, we assume that

the decoding error, NACKk, occurs at round k, if the SNR, φk is below the decoding threshold define

1It should be interpreted as follows : if R∼ Geom(λ ) then Pr{R = k}= (1−λ )k−1λ ,k ≥ 1.
2In truncated HARQ, the number of rounds is limited but the analytical approach is simplified without such a con-

straint.
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as follows

{I(φk)< ρ} =⇒ NACKk, (2.5)

where I(φ) = log2(1+ φ), that is we assume that the Shannon limit for the encoding-decoding

scheme is attainable. This idealization is often used to analyze HARQ in block fading channel

[43, 44] and then, the decoding errors are attributed to the random variation of the SNR.

If, on the other hand, the receiver is able to decode the information using all received signals

y1, . . . ,yk, we deal with repetition-redundancy HARQ and then the packet combining produces the

effect of SNR accumulation. Therefore, the decoding error condition is defined as [43, 44]

{
I
( k

∑
l=1

φl
)
< ρ

}
=⇒ NACKk; (2.6)

we will simply refer to it as HARQ.

The models in (2.5) and (2.6) affect the distribution of the service time, S, defined as the number

of time frames required to deliver the packet, i.e., the number of frames necessary to receive the

ACK. Knowing that Pr{S = k} = Pr{ACKk} = Pr{NACKk−1}−Pr{NACKk}, we need to find the

Pr{NACKk} to define the service time distributions. From the exponential distribution of SNR and

(2.5) and (2.6), we obtain the Pr{NACKk} for ARQ and HARQ as the following

Pr{NACKk}=


εk ARQ

γ(θ ,k) HARQ,

(2.7)

where ε = 1− e−θ , θ = (2ρ−1)
snr and γ(θ ,k) =

∫
∞

k xθ e−xdx is the lower incomplete gamma function.

Finally, we obtain the following distribution for S,3

S∼


Geom(1− ε) ARQ

Pois(θ) HARQ,

(2.8)

3The distribution-based notation should be interpreted as follows : if S∼Geom(ε) then Pr{S = k}= (1−ε)k−1ε,k≥
1; and S∼ Pois(θ) means Pr{S = k}= θ (k−1)

(k−1)! e−θ ,k ≥ 1.
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with

E[S] =


1

1−ε
ARQ

1+θ HARQ.

(2.9)

Buffer management We will assume a single-packet buffer at the sensor where only two poli-

cies are possible: the preemptive one, where the packet under the service is dropped upon arrival

of a new packet, and the blocking policy which drops the new packet if the transmission of the the

previous one is not finished.

Estimation at the monitor After receiving the messages, the monitor must find the estimate x̂t

of the process being monitored. This is where the core problem lies because the estimation relies

on the model of the process. We deal with this issue separately, in Sec. 2.2.

2.2 Semantic of information for non-real time applications

The semantic of information currently considered in the literature uses the AoI, [19] or its non-

linear transformation, [45].

The most intuitive interpretation of the AoI as the “timelinesss” is well understood in the causal

reconstruction context because the AoI actually measures the difference between the current time

and the moment the most recent sample available at the monitor was generated at the sensor.

In this timeliness interpretation of the AoI little is presupposed about the signal. Nevertheless,

we still tacitly assume that by measuring the lag from the most recent sample provides a sufficient

insight into the estimation uncertainty. In other words, we suppose that knowing the last sample, we

are not affected by its past. This Markovian model thus implicitly underlies the use of the AoI as a

timeliness metrics.

Another interpretation is that of the estimation accuracy because the AoI is proportional to the

variance of the estimation error under assumption of the source signal being a Wiener process [19]

as in (2.1). In this sense, the Wiener process is a canonical model of the sensed signal.

On the other hand, by using non-linear transformations of the AoI we recognize that this canon-

ical model may be insufficient. In particular, the causal estimation of xt defined by the OU model
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shown in Eq. (2.2), produces estimation errors whose variance is an interval-wise, monotonically

growing exponential function of the AoI [9, Sec. II.D].

Although non-linear operations on the AoI, yielding new performance criteria may have also

heuristic origins, see [8], we may say that these heuristics are approximations or the implicit at-

tempts to go beyond the simple Markovian Gaussian model from (2.1) and (2.2).

Both the timeliness and the accuracy interpretations of the AoI are (potentially) useful for the

design or control of the communication systems. However, the attempts to combine both, e.g., [42,

Sec. II.A.2], are not yet based on any formal principle, so here, we rather present an extension of

these metrics to the case of non-causal estimation and leave open the issue of their simultaneous

usage.

2.2.1 Distortion function

The distortion quantifies the estimation error of the signal reconstructed at the monitor, x̂t which

is affected by the transmission delay. The receiver estimates the measurement signal using the

received samples gathered in set

X = {xτ1 ,xτ2 , . . . ,xτN} (2.10)

where the sampling instants τn are gathered in

T = {τ1,τ2, . . . ,τN}. (2.11)

If the signal xt is Gaussian, the maximum likelihood estimate x̂t is given by a linear combination

of the samples gathered in X [46, Section 1.4]

x̂t = µt +
N

∑
i=1

N

∑
j=1

Kt,τiK
−1
τi,τ j

(xτ j −mτ j), (2.12)

and the distortion function which is defined as the variance of the estimation error is given by

σ̂
2
t = E

[
(x̂t − xt)

2]= Kt,t

N

∑
i=1

N

∑
j=1

Kt,τiK
−1
τi,τ j

Kτ j,t , (2.13)
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where µt = E[xt ] and Kt1,t2 = E[(xt1 −µt1)(xt2 −µt2)] are the mean and the covariance of the signal

xt .

Since the (Wiener and colored Gaussian noise) models we adopted are Markovian, the estimate

x̂t will depend only on xt− and xt+ , where

t− = t−(t) = max
τ∈T
{τ : τ ≤ t}, (2.14)

t+ = t+(t) = min
τ∈T
{τ : τ ≥ t} (2.15)

are the sampling instants closest to t before- and after the time t; their dependence on t will be

omitted for sake of clarity. We have now the choice to use the causal estimation, based solely on

xt− or the non-causal one, which may use both xt− and xt+ . Using (2.12) the causal and non-causal

estimations are given by:

x̂c
t = µt +

Kt,t− [xt−−µt− ]

Kt−,t−
, (2.16)

x̂nc
t = µt +[xt−−µt− ]

Kt,t−Kt+,t+−Kt,t+Kt−,t+

Kt−,t−Kt+,t+−K2
t−,t+

+[xt+−µt+ ]
Kt,t+Kt−,t−−Kt−,t+Kt,t−

Kt−,t−Kt+,t+−K2
t−,t+

. (2.17)

The corresponding estimation error variances for the causal estimation is given by

∆t = Kt,t −
K2

t,t−

Kt−,t−
(2.18)

and for the non-causal estimation, by

δt = Kt,t −
K2

t,t−Kt+,t+ +K2
t,t+Kt−,t−

Kt−,t−Kt+,t+−K2
t−,t+

−
2Kt,t−Kt,t+Kt−,t+

Kt−,t−Kt+,t+−K2
t−,t+

. (2.19)

These general estimation rules can be now connected to the problem of estimation when the

packets must be transmitted from the sensor to the monitor. The fact that the samples are transmitted

with a random delay (due to non-perfect transmission channel) affect the formulas.

Let Bm and Dm be respectively the sampling time (generation at the sensor) and the arrival time
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(at the monitor) of the m-th successfully decoded packet. Moreover, let m̂(t) denote the index of the

most recent packet available at time t at the monitor, i.e.,

m̂(t) = argmaxm{Bm : Dm ≤ t} (2.20)

The causal estimation at time t will thus rely on one sample obtained at the time

tc
−(t) = Bm̂(t), (2.21)

that is, on the most recent packet that already arrived at the monitor.

On the other hand, for the non-causal estimation we will use

tnc
− (t) = Bm̌(t), (2.22)

tnc
+ (t) = Bm̌(t)+1; (2.23)

where

m̌(t) = argmaxm{Bm : Bm ≤ t} (2.24)

is the index of the most recent packet which can be used for the estimation at time t and thus

m̌(t)+1 is the closest future packet. Clearly, the arrival time becomes irrelevant in the calculation.

Thus, the causality not only alters the estimation formulas, it also changes the reference samples:

compare (2.21) and (2.22) to see that tc
−(t) is not the same as tnc

− (t); for example, from Fig. 2.1, for

t ∈ (B2,D2), we have m̂(t) = 1 and m̌(t) = 2, thus tc
−(t) = B1 and tnc

− (t) = B2.

2.2.2 Wiener signal

Using (2.1) we obtain µt = 0 and Kt1,t2 = min{t1, t2}, which applied in (2.16) and (2.17) yield

x̂c
t = xtc

− , (2.25)

x̂nc
t = xtnc

−

tnc
+ − t

tnc
+ − tnc

−
+ xtnc

+

t− tnc
−

tnc
+ − tnc

−
. (2.26)
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Figure 2.1: Example of the evolution of the distortion function (under the same pattern of packet
generation/arrival instants, Bm and Dm), when applying a causal estimation (∆t) and non-causal
estimation (δt), for a) Wiener signal and b) colored Gaussian noise (with α = 0.1). The area Q2 =
Q(X2,Y2) used in (2.38) is shown in gray.

And the corresponding variances of the distortion function are given by

∆t = t− tc
−, (2.27)

δt = [t− tnc
− ]
[
1−

t− tnc
−

tnc
+ − tnc

−

]
. (2.28)

We recognize the error variance of causal estimation (2.27) to be the well-known definition of

the AoI, [19, Eq. (11)], extensively used in the literature.

We emphasize again that the difference of non-causal distortion with regard to the causal (AoI)

is not merely in using additional sample: unlike in the causal, the estimation is not done in real-time;

the estimate of the signal x̂t can be calculated only if the packet m with Bm > t is received at the

monitor.

The forms of the causal distortion , ∆t , and the non-causal distortion, δt , are shown in Fig. 2.1,

where the piece-wise linear form of the causal distortion is well known, e.g., [25, Fig. 1], while the

parabolic shape of δt is a consequence of non-causal estimation.
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2.2.3 OU Signal

Assuming the steady-state of the model in (2.2), the signal has the mean µt = 0 and the covari-

ance:

Kt1,t2 = e−α|t2−t1|, whereα =− logκ. (2.29)

Following equations (2.18) and (2.19), the estimation results are given by

x̂c
t = e−α(t−tc

−)xtc
− (2.30)

x̂nc
t =

xtnc
− [e
−α(t−tnc

− )− e−α(2tnc
+ −t−tnc

− )]

1− e−2α(tnc
+ −tnc

− )
+

xtnc
+
[e−α(tnc

+ −t)− e−α(tnc
+ +t−2tnc

− )]

1− e−2α(tnc
+ −tnc

− )
, (2.31)

and the variances of the estimation errors by

∆t = 1− e−2α(t−tc
−), (2.32)

δt = 1− e−2α(t−tnc
− )+ e−2α(tnc

+ −t)−2e−2α(tnc
+ −tnc

− )

1− e−2α(tnc
+ −tnc

− )
. (2.33)

We also show the form of ∆t and δt in Fig. 2.1, where we see the non-linear interval-wise

monotonic behaviour of ∆t . This illustrates well that the rationale for using the non-linear function

of the age may be sought in the model of the measurement signal.

2.2.4 Model mismatch

In the previous section, we applied the maximum likelihood estimate of the signal where the

expression for x̂t in (2.12) is the optimum linear function resulting into the minimum estimation

error in (2.13). Here, with the goal of assessing the impact of the mismatch between assumed and

actual model of the signal, we will use the linear interpolation adopted in the Wiener model, i.e.,

(2.27) and (2.28), to estimate the OU signal as follows:

x̃t =
N

∑
i=1

βixτi (2.34)
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and the subsequent estimation error is then given by [46, Section 1.4]

L̃t = E[(xt − x̃t)
2] = Kt,t +

N

∑
i=1

βi

N

∑
j=1

Kτi,τ j β j−2
N

∑
i=1

βiKt,τi . (2.35)

From the linear equations in (2.27) and (2.28), we find immediately βi and xτi , which used in

(2.35) yield both, the causal mismatch estimation errors

∆̃t = 2(1− e−α(t−tc
−)), (2.36)

and the non-causal mismatch estimation error

δ̃ (t) = 1−2
(t+− t)e−α(t−t−)+(t− t−)e−α(t+−t)

t+− t−

+
(t+− t)2 +(t− t−)2 +2e−α(t+−t−)(t− t−)(t+− t)

(t+− t−)2 . (2.37)

2.2.5 Comparison metrics

In order to compare the transmission strategies and the criteria themselves we have to define

the statistical measure of the causal or non-causal distortion functions and here, we opt for their

long-term averages defined as

∆ = lim
T→∞

1
T

∫ T

0
∆tdt (2.38)

δ = lim
T→∞

1
T

∫ T

0
δtdt. (2.39)

The case of fixed buffer management strategies will be explained in Sec. 2.3 while the adaptive

policies will be dealt with in Sec. 2.4.

2.3 Buffer management: fixed policies

To calculate the average causal and non-causal distortion, we take advantage of the fact that

both ∆t and δt are renewal processes with random renewal X , i.e., the time between the generation

19



instants of two subsequent packets that were successfully received at the monitor; it has realizations

Xm = Bm−Bm−1. Therefore,

∆ =
EX ,Y

[
Q(X ,Y )

]
EX [X ]

(2.40)

where Q(X ,Y ) is the shadowed area in Fig. 2.1 and (2.38) is obtained through the renewal-reward

theorem [47, Section 2]; Y is the random delivery time, with realization Ym = Dm−Bm.

Similarly we calculate the long-term average non-causal distortion:

δ =
EX

[∫
X δtdt

]
EX [X ]

. (2.41)

Quite obviously these metrics depend on the distribution of the random variable X and Y which

will change with the sampling strategy, the buffer management policy, or the transmission model.

The main difficulty here is to calculate the expected value of the integral in the numerator of (2.38)

and (2.39).

Wiener process:

In the case of the Wiener signal at the source and causal estimation, the age (2.27) is a piece-wise

linear function of time as also illustrated in Fig. 2.1.

The integral in the numerator of (2.38) may be calculated for an arbitrarily chosen packet m as

Q(Xm,Ym) =
∫ Dm

Bm−1

(t−Bm−1)dt−
∫ Dm

Bm

(t−Bm)dt =
1
2
(Xm +Ym)

2− 1
2

Y 2
m. (2.42)

Applying expectation to (2.42) and from independence of Xm and Ym, we obtain the well known

formula for the average AoI (2.40) [29, Sec. 3-4, (3-25)]

∆ =
EX [X2]

2EX [X ]
+EY [Y ]. (2.43)

Similar calculation for the non-causal distortion requires calculation of the integral in (2.39)

∫ Bm

Bm−1

δtdt =
∫ Bm

Bm−1

(t−Bm−1)
(

1− t−Bm−1

Xm

)
dt =

1
6

X2
m (2.44)
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which yields the average non-causal distortion

δ =
EX [X2]

6EX [X ]
. (2.45)

OU process:

Repeating the above analysis we calculate the integral for ∆t (2.32)

Q(Xm,Ym) = Xm +
∫ Dm

Bm

e−2α(t−Bm)dt−
∫ Dm

Bm−1

e−2α(t−Bm−1)dt

= Xm +
1

2α
(e−2α(Xm+Ym)− e−2αYm), (2.46)

which, after straightforward algebra, and using (2.38) yields

∆ = 1+
E[e−2α(X+Y )]−E[e−2αY ]

2α E[X ]
. (2.47)

A similar calculation for non-causal distortion related to the OU process yields

∫ Bm

Bm−1

δtdt =Xm +
2Xme−2αXm

1− e−2αXm
−
∫ Bm

Bm−1
e−2α(t−Bm−1)dt

1− e−2αXm
−
∫ Bm

Bm−1
e−2α(Bm−t)dt

1− e−2αXm

= Xm +
2Xme−2αXm

1− e−2αXm
− 1

α
, (2.48)

from which the average non-causal distortion is obtained

δ = 1− 1
α E[X ]

+
2E[ Xe−2αX

1−e−2αX ]

E[X ]
. (2.49)

Model mismatch:

Following the same integration as in (2.46) and (2.48), we can calculate the long term average

of the mismatched causal and non-causal distortion, respectively:

∆̃ = 2

(
1+

E[e−α(X+Y )]−E[e−αY ]

α E[X ]

)
(2.50)
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δ̃ =
5
3
+

E[Xe−αX ]

3E[X ]
+

4E[ 1
X ]

α2E[X ]
−

4E[ e−αX

X ]

α2E[X ]
− 4

α E[X ]
. (2.51)

Now, to calculate the average causal and non-causal distortion for the particular model and

chosen estimation (optimal Wiener and OU estimation, or the mismatched model estimation) we

have to calculate the moments of X and the expectation of exponential functions of X which are

required in (2.43), (2.45), (2.47), (2.49), (2.50), and (2.51).

The focus of the following sections is to find the expectations analytically. We note, however,

that even if it cannot be done, these quantities depend only on the sampling strategy and transmission

method so they may be obtained by simulations which are much more straightforward to carry out

that those necessary to implement (2.38) or (2.39).

2.3.1 Preemption Policy

Under this policy, a packet in service is removed from the buffer if a new packet is generated at

the sensor. Thus, we decompose the inter-renewal time, X , into three consecutive terms

X = I +F +Y, (2.52)

where I is the waiting time to receive a new sample in the sensor buffer once a packet under service

is decoded successfully in the monitor. F is the time when the server is busy with transmission of

preempted packets in between two consecutive successfully decoded ones.

First, we calculate the distribution of I. Since the packet arrival process is geometric and hence

memoryless, the waiting time will be geometric with the parameter λ and the following probability

generating function

GI(z) = E[ezI] =
λ

1− (1−λ )z
. (2.53)

Calculating the second term of the inter-renewal, F , we need to quantify the time duration spent

serving the preempted packets in-between two consecutive successfully decoded packets.
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Proposition 2.3.1. The probability generating function of F under ARQ and HARQ is given by:

GF(z) =


(1−ε)(1−z(1−λ )ε)
(1−ε(1−λ ))(1−zε) ARQ

e−θλ (1−(1−λ )z)
1−z(1−λe−θ(1−(1−λ )z))

HARQ
(2.54)

Proof. See Appendix A.

To find the expectation of Y (needed in (2.43)), we start with the distribution Pr{Y = k} =

Pr{S = k|R≥ k},

Y ∼


Geom

(
1− ε(1−λ )

)
ARQ

Pois
(
θ(1−λ )

)
HARQ

(2.55)

and then, obtaining the PGF and moment as

GY (z) =


z(1−ε(1−λ ))
1−zε(1−λ ) ARQ

ze−θ(1−λ )(1−z) HARQ
(2.56)

E[Y ] =


1

1−ε(1−λ ) ARQ

1+θ(1−λ ) HARQ
(2.57)

and replacing z by e−2αY in (2.56)

E[e−2αY ] =


e−2α (1−ε(1−λ ))
1−e−2α ε(1−λ )

ARQ

e−θ(1−λ )(1−e−2α )−2α HARQ
. (2.58)

From the independence of the random variablesI, F and Y in (2.52), the PGF of X will be

GX(z) = GI(z)GF(z)GY (z) =


(z(1−ε)λ )

(1−zε)(1−z(1−λ )) ARQ

λ ze−θ(1−(1−λ )z)

1−z(1−λe−θ(1−(1−λ )z))
HARQ

(2.59)
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and the n-th moment of X can be obtained by placing z = 1 in the n-th derivative of GX(z). Conse-

quently, the first and second moments of X are

E[X ] =


1−ε(1−λ )

λ (1−ε) ARQ

1
pλ

HARQ
(2.60)

E[X2] =


2ελ 2+(1−ε(1−λ ))(2−λ )(1−ε)

(1−ε)2λ 2 ARQ

2−pλ−2pθλ (1−λ )
λ 2 p2 HARQ

(2.61)

p is obtained from (A.1) in Appendix A. Then, the expectation of function e−2αX will be

E[e−2αX ] = E[e−2αI]E[e−2αB]E[e−2αY ] =


(e−2α (1−ε)λ )

(1−e−2α ε)(1−e−2α (1−λ ))
ARQ

λe−θ(1−(1−λ )e−2α )−2α

1−e−2α (1−λe−θ(1−(1−λ )e−2α ))
HARQ

(2.62)

Finally, using (2.60), (2.61) and (2.57) in (2.43) yields the average causal distortion:

∆
preemption
Wiener =


2(1−ε)+λ (1+ε)

2λ (1−ε) ARQ

λ+2eθλ

2λ
HARQ

(2.63)

∆
preemption
OU =


1− λ (1−ε)e−2α (1−e−2α )

2α(1−εe−2α )(1−(1−λ )e−2α )
ARQ

1− λe−θ(1−Q)−2α (1−e−2α )

2α(1−(1−λe−θ(1−Q))e−2α )
HARQ

, (2.64)

where Q = (1−λ )e−2α .

The expectation of Xe−2αX

1−e−2αX may be calculated from

E[
Xe−2αX

1− e−2αX ] = E[X
∞

∑
n=1

e−2αXn] =
∞

∑
n=1

E[Xe−2nαX ] (2.65)

where the expectation of function Xe−2nαX is given in the following.
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Proposition 2.3.2.

E[Xe−2nαX ] =


λ (1−ε)e−2nα (1−ε(1−λ )e−4nα )
(1−(1−λ )e−2nα )2(1−εe−2nα )2 ARQ

λQne−θ(1+λ )U
(1−λ )(1−Qn)

HARQ
(2.66)

in which U and Qn are given by (B.7) and (B.5) in Appendix B.

Proof. See Appendix B.

The average non-causal distortion is given by

δ
preemption
Wiener =


(3−ε−(1−λ )(1+ε))(1−ε(1−λ ))−2λ (1−ε)

6λ (1−ε)(1−ε(1−λ )) ARQ

2−λe−θλ (1+2θ(1−λ ))

6λe−θλ
HARQ

(2.67)

and by

δ
preemption
OU =


1− λ (1−ε)(1−2α ∑

∞
n=1 E[Xe−2nαX ])

α(1−ε(1−λ )) ARQ

1− λe−θλ (1−2α ∑
∞
n=1 E[Xe−2nαX ])
α

HARQ
(2.68)

2.3.2 Blocking Policy

The blocking policy ignores any new arrival when there is an ongoing transmission in the sys-

tem. Because of the memoryless property of the interarrival process, we thus have

X = S+ I, (2.69)

where S follows the definition in (2.8) and I is defined by (2.53). Following the same procedure as

in the previous section, the PGF of X may be derived as

GX(z) =


zλ (1−ε)

(1−zε)(1−z(1−λ )) ARQ

ze−θ(1−z)λ
1−(1−λ )z HARQ

, (2.70)
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from which we obtain the following:

E[X ] =


1−ε(1−λ )

λ (1−ε) ARQ

1+θλ

λ
HARQ

(2.71)

E[X2] =


2ελ 2+(1−ε(1−λ ))(2−λ )(1−ε)

(1−ε)2λ 2 ARQ

θ(3+θ)+ 1+(1−λ )(1+2θλ )
λ 2 HARQ

(2.72)

E[e−2αX ] =


λ (1−ε)e−2α

(1−e−2α ε)(1−e−2α (1−λ ))
ARQ

e−2α−θ(1−e−2α ) λ

1−(1−λ )e−2α HARQ
(2.73)

Thus, using (2.71) and (2.72) in (2.43) and (2.32), we obtain the following:

∆
blocking
Wiener =


(1−ε)2(1−λ )(2−λ )−λ 2(1−3ε)+2λ (2−2ε+ελ )

2λ (1−ε)(1−ε(1−λ )) ARQ

λ (1+θ)(2+3θλ )−λ (1−2θ)+2
2λ (1+θλ ) HARQ

(2.74)

∆
blocking
OU =


1− λ (1−ε)2e−2α (1−e−2α )(1−ε(1−λ )e−2α )

2α(1−εe−2α )2(1−ε(1−λ ))(1−(1−λ )e−2α )
ARQ

1− λe−θ(1−e−2α )−2α (1−e−2α (1−λ (1−e−θ(1−e−2α ))))
2α(1+θλ )(1−(1−λ )e−2α )

HARQ
(2.75)

E[ Xe−2αX

1−e−2αX ] is calculated as in (2.65) and to compute E[Xe−2nαX ] we use the following:

Proposition 2.3.3.

E[Xe−2nαX ] =


λ (1−ε)e−2nα (1−ε(1−λ )e−4nα )
(1−(1−λ )e−2nα )2(1−εe−2nα )2 ARQ

λe−θ(1−e−2nα )−2nα (1+(1−Qn)θe−2nα )
(1−(1−λ )e−2nα )2 HARQ

(2.76)

where Qn is provided in (B.5) in Appendix B.

Proof. See Appendix C.
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The non-causal distortion is calculated for the Wiener process as

δ
blocking
wiener =


(3−ε−(1−λ )(1+ε))(1−ε(1−λ ))−2λ (1−ε)

6λ (1−ε)(1−ε(1−λ )) ARQ

λ (1+θ)(2+3θλ )−λ (1−2θ)+2−2λ (1+θ)(1+θλ )
6λ (1+θλ ) HARQ

, (2.77)

and for the OU process as

δ
blocking
OU =


1− λ (1−ε)(1−2α ∑

∞
n=1 E[Xe−2nαX ])

α(1−ε(1−λ )) ARQ

1− λ (1−2α ∑
∞
n=1 E[Xe−2nαX ])

α(1+θλ ) HARQ
. (2.78)

2.4 Buffer management: optimal controller

Instead of fixing the buffer management policy to block or to preempt, we may decide which

action should be taken at each given time slot t. This is the problem of finding the optimal decision

and recognizing the Markovian nature of the process, the problem of finding the optimal actions

will be formulated here using the framework of the MDP.

Our objective will be defined as the minimization of the average (causal or non-causal) estima-

tion errors and it has to be formulated via the cost function attributed to a particular transition from

the state at time t to the state at time t +1.

2.4.1 MDP Formulation

The infinite-horizon MDP problem can be described by the following elements:

• The state space S , where the state at time t is defined by the tuple st = (∆t ,dt ,rt), where ∆t

is the causal distortion at the beginning of the time slot t, i.e., time since the generation of a

last successfully delivered packet as defined in (2.27).

The time elapsed since the generation of the packet currently under service is denoted by dt ;

if there is no packet in the buffer we set dt = 0.

The generation of a new packet at the sensor is indicated by rt = 1, otherwise rt = 0.

• The action, at , depends on the state, i.e., at = π[st ] with π[·] being the policy. We use at = 0
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Pa(s,s′) =



Pr(r′)g(d) if a = 0,∆′ = ∆+1,d′ = d +1, ∀r;
Pr(r′)(1−g(d)) if a = 0,∆′ = d +1,d′ = 0, ∀r;
Pr(r′)g(0) if a = 1,∆′ = ∆+1,d′ = 1, r = 1;
Pr(r′)(1−g(0)) if a = 1,∆′ = 1,d′ = 0, r = 1;
Pr(r′) if a = 0,∆′ = ∆+1,d′ = 0, r = 0;
Pr(r′) if ∆′ = 1,∆ = ∆max,d′ = 0;
0 otherwise.

(2.80)

to denote the blocking of the newly generated packet, and at = 1 denotes preemption.

Now, we have to determine the policy π[·] for all states when the packet is under service

and a new packet is generated at the sensor (i.e., when rt = 1 and dt > 0). The actions are

predefined as i) π[(∆,0,1)] = 1, i.e., always accept the new packet when the buffer is empty,

ii) π[(∆,d,0)] = 0, i.e., continue transmission in the absence of a new packet.

• The state-transition probability Pa(s,s′)= Pr{st+1 = s′|st = s,at = a} is shown in (2.80) where

we take into account two independent random events: the packet generation at the sensor and

the transmission error. The conditional probability of the latter is obtained from (2.7) (shown

in (2.79)) and depends on the round number d when HARQ is used, while for ARQ the

retransmission errors are independent, see (2.8).

g(d) = Pr{NACKd |NACKd−1}=


ε ARQ

γ(θ ,d+1)
γ(θ ,d) HARQ

, (2.79)

• The function C(s,s′) is the cost associated with the transition from the state s (at time t) to the

state s′ (at time t+1); in our case, the transition cost is independent from the action at = π[st ].

In both causal and non-causal estimations we adopt the perspective similar to the one we

already used when analyzing the fixed policies in Sec. 2.3: the non-zero cost is incurred only

at the renewal, i.e., after the ACK message is received

C(s,s′) = q(s,s′)J(s,s′) (2.81)
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where q(s,s′) = (1d>0 +1d=01r=1)1d′=0 is the indicator of the decoding feedback received

at the beginning of the state s′ (informing the sensor at time t +1 that the packet sent at time

slot t was correctly received); 1z = 1 if z is true, and 1z = 0 otherwise.

As for the cost value J(s,s′), we identify the service time as Ym̌ = ∆′ and Xm̌ +Ym̌ = ∆+ 1;

here m̌ denotes the index of the packet as defined in (2.24). So reusing (2.42) and (2.46) in

case of the causal estimation we obtain

J(s,s′) =


1
2((∆+1)2−∆′2) Wiener

X ′+ 1
2α
(e−2α(∆+1)− e−2α∆′) OU

, (2.82)

while, using (2.44) and (2.48) in case of non-causal estimation yields

J(s,s′) =


X2

m̌
6 Wiener

Xm̌ + 2e−2αXm̌

1−e−2αXm̌
− 1

α
OU

. (2.83)

We emphasize that the cost (2.82) and (2.83) need to be calculated only at the packet arrival,

i.e., when q(s,s′) = 1.

Given an observed system state st ∈S the transmitter (at the sensor) must determine the buffer

management action at = π[st ]; i.e., it has to find a state-dependent policy π[·].

The long-term average variance of the estimation error in the monitor is given by

Vπ = lim
T→+∞

1
T +1

T

∑
t=0

C(st ,st+1), (2.84)

which depends on the policy π[·] via the state-transition probability Pπ[st ](st ,st+1).

2.4.2 MDP Optimal Policies

Considering the problem and the designed MDP formulation, we can anticipate the optimal

policies as stated in the following.

Proposition 2.4.1. In ARQ scheme and causal estimation, the optimal policy is π[st ] = 1. That is,

to minimize ∆, the preemption should be always use with Wiener and OU signals.
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Proof. See Appendix D.

From Propositions 2.4.1, we do no need do analyze the policy for ARQ in case of causal esti-

mation. To optimize (2.84) in all other scenarios the following value iteration is adjusted

vk+1(s) = min
a∈{0,1}∑

s′
Pa(s,s′)[C(s,s′)+ηvk(s′)] (2.85)

which, starting from an initial v0(s) ∀s with a discount factor η (we used η = 0.98), iterates over k

till ∀s, |vk+1(s)− vk(s)|< ω (we used ω = 10−4); the optimal action for the state s is the argument

a which minimizes the right-hand-side of (2.85).

The value iteration can be applied only on the finite state space S and this condition does not

materialize because there is no intrinsic limit on the values of ∆t and dt in our problem. Thus, the

solution can be obtained only approximately by truncating the state space to S = {s ∈ S : ∆ ≤

∆max,d < ∆max}; since d ≤ ∆ the truncation of d is not restrictive.

Since there cannot be any absorbing state, once ∆ = ∆max we force the transition to state s′ =

(1,0,r); this is shown in (2.80). We also assume that this transition was provoked by the ACK

message ant thus we set q(s,s′) = 1 so the results we obtain is an upper bound on the average cost

Vπ but the effect of truncation is negligible for large ∆max = 50 that we used here.

2.5 Numerical Results

Given that the delivery time depends on the transmission errors, non-trivial results are obtained

in low SNR, or equivalently at high error channel. For high SNR, most of the packets are delivered

in one time slot so ARQ and HARQ are de facto equivalent, and the buffer management block-

ing/preemption policies do not affect the results. The value of low SNR is snr = −3dB (in which

case ε = 0.7) and high SNR is snr = +3dB (ε = 0.3). The examples shown here will be based

on the analytical formulas (lines), which will be shown together with the Monte-Carlo simulation

(markers).
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2.5.1 Wiener Signal

Causal Estimation

With the equations at hand, we can compare preemption and blocking strategies under ARQ and

HARQ protocols, whose results are distinguished via sub-indices (·)ARQ and (·)HARQ. We make the

following observations

• For any λ < 1

lim
ε→1

∆
preemption
ARQ

∆
preemption
HARQ

= ∞, (2.86)

that is, in low SNR, the preemption exploits the benefit of HARQ.

• For λ ≈ 1, we quantify the advantage of preemption over blocking in low SNR for ARQ

∆
blocking
ARQ

∆
preemption
ARQ

≈ 3+ ε

3− ε
> 1. (2.87)

We note that the same qualitative conclusion was drawn in [25]. Although this can be con-

cluded directly from Proposition 2.4.1, the advantage is that we can quantify the gain and see

it is bound by 2 (when ε = 1).

• Observe that ∆ is monotonically decreasing with λ in all cases but for HARQ with pre-

emption, where by deriving (2.63) with respect to λ we find the minimum of ∆
preemption
HARQ for

λ̂ = min{ 1
θ
,1}. Thus, there may exist a non-trivial λ̂ < 1 which minimizes ∆ if preemption

is used, e.g., λ̂ ≈ 0.7 in Fig. 2.2.

• The case of HARQ is described by

∆
blocking
HARQ

∆
preemption
HARQ

=
(1+3θλ )[1+λ (1+θ)]+1

(1+θλ )(λ +2eθλ )
(2.88)
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Figure 2.2: a) ∆ vs λ and b) δ vs λ , for Wiener process with snr=−3dB and snr=+3dB; Monte-
Carlo simulations (markers) and analytical results (lines).

and, noting that the denominator grows with θ exponentially and the denominator – quadrat-

ically, we find that

∀λ ∃ ˆsnr, snr < ˆsnr ⇐⇒
∆

blocking
HARQ

∆
preemption
HARQ

< 1. (2.89)

Thus, the advantage of blocking/preemption depends on the SNR being below/above a thresh-

old ˆsnr: see Fig. 2.2 for case of low SNR (snr < ˆsnr) and high SNR (snr > ˆsnr); ˆsnr must be

found numerically equating (2.88) to one; e.g., for λ = 1, ˆsnr = −1.5dB. Here, unlike [12]

where blocking was preferred over preemption, we are able to identify the condition (in terms

of the SNR) under which one buffer management strategy outperforms the other.

Non-Causal Estimation

By analysing the derived equations, we can conclude that:

• From (2.67) and (2.77), we observe δ
blocking
ARQ = δ

preemption
ARQ .
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• By comparing (2.67) and (2.77) we find that

δ
blocking
HARQ

δ
preemption
HARQ

< 1 ∀snr,λ (2.90)

which indicates that using HARQ, the (fixed) blocking policy should be always preferred to

the (fixed) preemption; this is clear in Fig. 2.2.

• By deriving (2.78) with respect to λ , δ
blocking
HARQ is shown to decrease monotonically with λ .

Now, by deriving (2.67) we find that the minimum of δ
preemption
HARQ is obtained for λ̂ ≤ 1: e.g.,

λ̂ ≈ 0.5 for snr =−3dB, see Fig. 2.2. As the SNR increases (snr =+3dB), we have λ̂ = 1.

• Comparing (2.43) and (2.45) we note that

∆ = 3δ +E[Y ] (2.91)

and, since E[Y ] is always larger in blocking (then we have Y = S, so we can compare (2.9)

with (2.57)), the average causal distortion, ∆ is affected by blocking. This may be seen in

Fig. 2.2 for snr = 3dB: even if δ
blocking
HARQ < δ

preemption
HARQ , we have ∆

blocking
HARQ > ∆

preemption
HARQ .

On the other hand, with sufficiently low value of δ
blocking
HARQ , the advantage of blocking over

preemption may be preserved even in causal estimation. This can be observed in Fig. 2.2 for

snr =−3dB.

Optimal policies

The results based on optimal policies obtained by solving the MDP are also shown in Fig. 2.2.

Under the optimal policy π[·], the average ∆ and δ decrease with respect to the fixed policies,

hence, π[·] must consist of a mixture of preemption and blocking which, indeed, we found it by

inspecting π[·].

Nevertheless, in non-causal estimation, the overall tendency in HARQ is towards blocking.

The reason for this behaviour is intuitively clear: under blocking, HARQ increases significantly

the probability of successful packet decoding (i.e., shortens X) which, quadraticaly decreases the

33



variance of the error. Mathematically, this can be seen comparing E[X ] under preemption, (2.60),

and blocking, (2.71), where the latter is smaller.

2.5.2 OU Signal: the optimal and mismatch models

When analyzing the colored Gaussian noise (OU), the most obvious observation is that, hav-

ing the unitary variance, the estimation error is always bounded applying any linear function for

reconstruction. When using the maximum likelihood estimation, the boundary is

∆,δ ≤ 1, (2.92)

which is different from the estimation error for the Wiener signal which can be unbounded.

Causal and Non-causal Estimation

We do not show here the results for the ARQ because they are qualitatively similar as in those

obtained for the Wiener signal (blocking is inferior to preemption):

∆
blocking
ARQ

∆
preemption
ARQ

∝
(1− ε(1−λ ))(1− εe−2α)

(1− ε)(1− ε(1−λ )e−2α)
> 1,∀λ ,snr. (2.93)

We also obtain

∆
blocking
HARQ

∆
preemption
HARQ

∝
eθe−2α

(1− e−2α−θ(1−e−2α ))(1− e−2α(1− e−θ ))

(1+θ)(1− e−2α)
,

which, after the analysis similar to the one shown in (2.89) indicates that the blocking may be

preferred over preemption in some system setups of α , λ and snr.

In particular:

∃α̂,∀α > α̂
∆

blocking
HARQ

∆
preemption
HARQ

> 1, (2.94)

i.e., for sufficiently large α , the preemption policy should be preferred over blocking. This is be-

cause the correlation between the received samples, decreases with α and then, the fresh packets
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Figure 2.3: a) ∆ vs λ and b) δ vs λ , for OU process with snr = −3dB and α = 0.1 for ARQ and
α = 0.05,0.1,0.2 for HARQ; Monte-Carlo simulations (markers) and analytical results (lines).

decrease the estimation error. This phenomenon is illustrated in Fig. 2.3 where we show the results

for different values of α .

For completeness, we also show the results of the non-causal distortion in Fig. 2.3. The results

are qualitatively similar to those obtained for the average causal distortion. In particular, for HARQ,

the relationship (2.90) holds as can be found from (2.62) and (C.4). We can also appreciate that δ

is much smaller than ∆.

Optimal Policies

The MDP solution is also shown in Fig. 2.3 for snr=−3dB and for α = 0.1. From the figure, it

is clear that the optimal policy must be a mixture of preemption and blocking actions in both causal

and non-causal estimations. Further, we plot Fig. 2.4 to show how the optimal actions in non-

causal and causal estimations are different for a system under HARQ scheme. This figure shows

the optimal policies for each state (∆,d,1) in a causal and non-causal estimations under the same

setup of λ = 0.4, α = 0.1 and snr =−3dB. We can observe that the optimal policy follows mostly

blocking in non-causal while it follows preemption in causal strategy. Moreover, the behaviour of

non-causal distortion in OU is similar to the Wiener model, independently of the α value setup,
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Figure 2.4: The optimal policies for minimizing a) δ and b) ∆ under HARQ with λ = 0.4, snr =
−3dB and α = 0.1; stars represent preemption, and circles represent blocking.

always blocking is better than preemption.

Effect of Mismatch Model

We will analyze the impact of the model mismatch on the estimation error. Namely, the causal

and non-causal estimation strategy based on the Wiener model will be applied when the source

signal is a colored Gaussian noise; we will be able to elucidate the impact of the mismatch by

varying the correlation κ = e−α .

This effect will be evaluated through the simulation by using the relative excess average error

defined for the causal distortion as well as for the non-causal distortion, respectively:

Ξ =
∆̃−∆

∆
, (2.95)

ξ =
δ̃ −δ

δ
. (2.96)

We will focus on the particular case of low SNR (−3dB), where the differences between the
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estimation methods and buffer management policies are the most notorious and we conclude, see

Fig. 2.5 :

• The relative increase of the average causal distortion, Ξ, is significantly more important than

the corresponding increase of ξ . The non-causal estimation is thus more robust towards the

model mismatch.

• With the increased correlation (low α) the model mismatch is much less important and the

linear interpolation strategies based on the Wiener model may provide satisfactory solution.

This is particularly notable for the non-causal estimation where, despite the mismatch, the

value of ξ is measured in fractions of one percent.

2.6 Conclusion

In this chapter we formulated the concept of information semantic for non-real time sensor net-

works. We presented the study on how to formulate and define the evaluation of the quality of

available information in the monitor. We assumed that the variance of the estimation error is a
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meaningful evaluation criterion, which is indeed the case when dealing with the Markovian Gaus-

sian process. Then we looked into the role of the signal model at the sensor, the importance of

the optimal estimation strategy at the monitor, as well as the impact of the sub-optimal estimation

incurred by the model mismatch.

In particular:

• We showed that with the Markovian Gaussian process model, the alternative estimation strat-

egy at the monitor may be non-causal and the corresponding criterion changes significantly

comparing to the causal estimation.

• The non-causal estimation, should be considered as a viable approach in the monitoring appli-

cation when the real-time estimation is not required. When compared to the causal estimation,

the main advantage of non-causal approach, is that it produces significantly lower variance

of the error and is much less sensitive to the model mismatch. The latter may be particularly

important as the knowledge of the model or its estimation may be very hard in the real-world

applications.

• We have shown that in the simple case of the ARQ it is possible to draw clear-cut conclusions

about the optimal buffer management strategies. Other cases are much more complex and we

show that notable improvement may be obtained by adaptive policies (obtained by the MDP

optimization).

Last, we indicate that while the approach we adopted and which takes into account the model of

the measurement signal at the source goes beyond the limitation of the conventional communication-

theoretic analysis, it has its own limitations. In particular, we considered the simplest random sam-

pling strategy at the sensor; removing this simplification requires more involved analysis. Similarly,

the possibility of optimal estimation at the monitor hinges on the knowledge of the source model,

thus the estimation of the model’s parameters from the randomly arriving samples is another chal-

lenge. While we (partially) addressed this issue considering the mismatched-model estimation (via

linear interpolation), there is clearly room for further improvement and analysis.
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Chapter 3

Real Time Status Updates in Wireless

HARQ with Imperfect Feedback

Channel

This chapter investigate the impact of a noisy environment on the performance of the semantic

communication system. To evaluate this impact, we use the recently introduced metric, AoI. AoI

metric can quantify the timely access of the controller (monitor) to the sensed data in the user side.

Thus, the contribution of all the system elements affecting the delivery time is captured in a single

metric, the AoI.

In a real practical communication, a wireless channel is erroneous and data packets are at risk of

being lost before being decoded fully at the receiver. In order to provide a balance between the delay

and the reliability, both affecting the transmission timeliness that may be captured by the AoI, re-

transmission techniques are widely applied over data packet transmissions [48]. Conventionally, re-

transmission schemes including ARQ and HARQ are used to ensure the reliable transmission over

error-prone channels by allowing multiple transmission rounds of the same data [43]. It presumes

that the feedback between the communicating parties is established allowing them to decide whether

the re-transmission is necessary or not based on the received acknowledgment which is either ACK

or NACK. In a way, it trade-offs the delay and reliability according to the predefined constraints on
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one or another.

To model and analyse this problem, We consider a point-to-point communication setup employ-

ing packet combining strategies to transmit status update packets over an erroneous wireless data

channel. The sender receives the ACK or NACK of packet reception over an error-prone wireless

feedback channel. To detect and control the errors in the feedback channel, we assume a BAC model

in the sensor side. Then, we compute the explicit expressions for the Average Age of Information

(AAoI) under two fixed policies called preemptive and non-preemptive. Moreover, we show the

long term performance of AoI under optimum parameter design of the control channel model.

The remainder of the paper is organized as follows. The buffer management policy, the proposed

data forward channel and control feedback channel models, and the formal definition of the AoI are

presented in details in Sec. 3.1. Sec. 3.2 computes the closed form expressions for AAoI under

preemptive queue with ARQ and HARQ transmission schemes. The same transmission strategies

are studied under non-preemptive queue policy in Sec. 3.3. Finally, Sec. 3.4 shows the numerical

examples and that the theoretical results match the numerical simulations. Conclusions are provided

in Sec. 3.5.

3.1 System Model

We consider a sensor communicating its status to a monitor through an erroneous wireless

forward channel and receiving its acknowledgment through a noisy wireless control channel. Time

is organized in equal-length frames covering the round trip time which includes the transmission of

data symbols and reception of the ACK or NACK feedback messages carried in the feedback control

channel. After receiving a NACK, the sensor transmits another copy of the packet in the next round

until an ACK message receive. Re-transmissions can take infinite numbers due to implementing

the infinite HARQ protocol scheme. In the following subsections the forward data channel and

feedback control channel models will be discussed.

The inter-departure time of the status update packet process in the sensor side assumes to follow

a geometric distribution; that is, at the beginning of every time slot, a new update packet may be

produced with probability λ . Thus, the probability of having a new generated packet in the buffer r
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time slots after the last arrived packet in the buffer is

pR(r) = (1−λ )r−1
λ , r = 1,2, . . . (3.1)

Moreover, the sensor maintains a buffer of one packet capacity which leads the sensor to either drop

the current packet under service according to a preemptive policy or drop the new generated status

packet at each time slot in case of non-preemptive queue management.

3.1.1 Forward Transmission Channel Model

Applying re-transmission schemes, each status packet will be transmitted in infinite number of

rounds until a positive acknowledgement is detected at the sensor. Then, the signal y(k)d received at

the monitor in round k is modelled as [43, 44]

y(k)d =

√
φ
(k)
d xd + z(k)d , k = 1,2, . . . , (3.2)

where xd is the input symbols drawn from unit-variance, zero-mean constellation, z(k)d denotes (the

sequence of) the Gaussian noise modeled with zd ∼N (0, 1) . The variable φ
(k)
d is the data channel

SNR experienced by the monitor in round k which is assumed to be completely known at the receiver

while unknown at the transmitter. Considering the block-fading Rayleigh model, the realization of

random variable φd follows an exponential distribution

pSNR(φd) =
1
snr d

exp
(
− φd

snrd

)
, (3.3)

where snrd is the average SNR in the forward channel. We further assume that the SNR variable at

each slot is is independent and identical from other slots.

As for the re-transmission scheme, two different methods to deal with the received signal at the

monitor are considered; namely, ARQ and HARQ. In ARQ, the monitor simply decodes the latest

transmission in each round k. While in HARQ the set of all previously received signals must be

used to decode the signal at each round. Consequently, we can define the packet decoding error by
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conditioning on the value of the mutual information function of the SNR [43, 44]

NACKk ,


{I(φ (k)

d )< ρ} ARQ{
I
(

∑
k
l=1 φ

(l)
d

)
< ρ

}
HARQ,

(3.4)

where ρ is the nominal transmission rate and I(a) = log2(1+a), that is, we assume that the Shannon

limit for the encoding-decoding scheme is attainable. Since the decoding errors are attributed to the

random variation of the SNR as modeled in (3.3), we can write the distribution of the probability of

packet decoding error at k-th transmission round, pF(k), Pr{NACKk},as follows

pF(k) =


εk ARQ

γ(θ ,k+1) HARQ,

(3.5)

Where ε = 1−e−θ and θ = (2ρ−1)/snrd . Moreover, γ(θ ,k) denotes the regularized lower incom-

plete gamma function defined as γ(a,b) = 1
(b−1)!

∫ a
0 xb−1e−x dx.

The probability of successful decoding a packet in the kth re-transmission round can be further

computed via pS(k) = pF(k− 1)− pF(k), where pS(k) , Pr{ACKk}. Then, from (3.5), we can

calculate the probability distribution of the required number of frames to completely decode a status

packet at the receiver by

pS(k) =


(1− ε)k−1ε ARQ

θ (k−1)

(k−1)! e
−θ HARQ,

(3.6)

which are Geometric and Poisson distributions with parameters (1− ε) and (θ).

3.1.2 Feedback Transmission Channel Model

The message conveyed by the feedback signal updates the sensor about the success or failure in

decoding the last received packet in the monitor. We assume that the feedback and froward channels

are independent and adopt the same channel model as in the forward link to model the output signal
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D=NACK D̂=NACK

Figure 3.1: BAC model for the acknowledgement detection in the feedback channel

from the control channel at the sensor side

y(k)c =

√
φ
(k)
c xc + z(k)c , k = 1,2, . . . (3.7)

where xc is a one bit data packet encoded using a BPSK modulation to carry the ACK/NACK result

which is xc =+1 in case ACK is raised and xc =−1 otherwise. Besides, the distribution of SNR is

assumed to follow exponential form of a Rayleigh fading model provided in (3.3) with the known

average SNR of snrc.

From the normal distribution of variable z(k)c , we can show the probability distribution of the

received signal at the sensor side as:

p(yc|a) =
1√
2π

e−
(yc−a)2

2 (3.8)

where a =+
√

φc if an ACK is raised and a =−
√

φc otherwise.

Considering the one bit acknowledgement which is carried in the ACK/NACK feedback proce-

dure (Dk ∈ {A,N}), we can model the feedback channel with a BAC model as shown in Fig. 3.1.

Knowing that the feedback messages are independent at each round, a binary detection procedure

must be applied to detect the ACK/NACK response upon reception of the acknowledgement packet

at the sensor. Accordingly, at each time, the received signal from (3.7) will be compared with a

pre-defined threshold, Θ, to detect an ACK if yk > Θ and a NACK otherwise. Hence, the detection

outcome D̂k ∈ {A,N} is defined as:

D̂k =


N⇔ yk ≤Θ

A⇔ yk > Θ

(3.9)
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From the conditional Gaussian distribution in (3.8) and the detection strategy provided in (3.9),

one can show that the probability of undetected ACK message at each round is equal to:

εA = p(D̂ = N|D = A) = ESNR[Q(
√

φc−Θ)] (3.10)

and the probability of a NACK miss-classification as an ACK is

εN = p(D̂ = A|D = N) = ESNR[Q(
√

φc +Θ)] (3.11)

where Q(.) denotes the Q-function. Clearly, from the aforementioned ACK and NACK detection

method, positive values of Θ will assign ACK signals higher probability of being detected correctly

compared to the NACK signals (εN > εA).

3.1.3 Definition of Average AoI

AoI is a discrete random process defined by the number of time frames elapsed since the last

successfully decoded packet was generated. Let Λ(τ) and Ω(τ) be respectively the arrival time (at

the monitor) and the generation time (at the sensor) of the τ-th successfully decoded packet. Then,

the AoI at time frame t is calculated as [29]

∆(t), t−Ω
(
τ̂(t)

)
t = 1,2, . . . (3.12)

where τ̂(t) is the index of the most recent successfully decoded packet before time t, τ̂(t) = max{τ :

Λ(τ)≤ t}.

To capture the quality of the information the monitor obtains from the sensor, the long-term

AAoI is used [29, Sec. 3-4, (3-25)]

∆ =
EX [X2]

2EX [X ]
+EY [Y ]−

1
2
, (3.13)

where Y is the effective transmission time of a successfully decoded packet in the monitor which

is defined as the required number of time slots to accomplish the transmission of a status update
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Figure 3.2: Evolution of AoI

packet. Besides, X represents the inter-departure time of the successfully decoded packets at the

monitor. A sample path of AoI is plotted in 3.2. The time duration of X and Y are shown for the

first renewal period.

3.1.4 Definition of Average Channel Utilization

The channel utilization, (η), denotes the fraction of time a sensor is busy (in transmission) until

a successful transmission occurs. To calculate the expected of η , we define discrete-time renewal

chain where the channel occupancy is a binary variable taking value of one when the transmission

is taking place, and zero when the sensor is not transmitting. The average channel utilization, (η),

is then calculated directly as

η = lim
N→∞

(C1 +O1)+ ...+(CN +ON)

X1 + ...+XN
=

E[C]+E[O]

E[X ]
, (3.14)

where C and O are the time the sensor is busy with transmission of successfully and unsuccessfully

decoded packets between two successive successfully decoded packets in the monitor.

In what follows, each section presents in detail the derivations to describe the AAoI and the
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channel utilization for the introduced buffer management policies including preemptive and non-

preemptive queue.

3.2 AAoI analysis under preemptive queue

In this section, we assume a preemptive management policy in which any new generated packet

truncates the transmission of the packet under service and start its transmission immediately. In what

follows, we present the arguments to calculate the AAoI equation. To evaluate the AAoI in (3.13),

we need first to compute the inter-departure time of the successfully decoded status packets, X . We

note that only the set of completely decoded packets can provide new information and thus reduce

the age value. In other words, the status packets which fail to deliver at the monitor will impact

the renewal period and therefore will affect X duration. In order to derive the exact distribution and

moments of X , we need to decompose the inter-departure time to the possible events may happen

during this time period.

According to the introduced system setup, we know that a packet under service may leave the

buffer before completing its transmission either if a new status packet preempts its service or if a

NACK miss-detection occurs during its re-transmission rounds. therefore, between two decoded

packets at the monitor, a set of packets (N) might be preempted each taking a random duration of A

time slots and a second set of packets (M) might be dropped due to the NACK miss-classification

each taking B time slots. Consequently, X can be decomposed as

X = Y + I +
N

∑
i=0

Ai +
M

∑
j=0

(B j + I j) (3.15)

where the variable I in the summations is the waiting time to receive a new update packet once a

packet under service departs the system. Since the arrival process is geometric and hence memory-

less, we deduce that the waiting time I is geometric distributed with parameter (λ ). Therefore, the

probability of the system to be idle for k time slots is given by

Ik = λ (1−λ )k, k = 0,1, ... (3.16)
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From the decomposition in (3.15) and the independence of the decomposed elements, we can

write the first moment of X as follows

E[X ] = E[Y ]+ (E[M]+1)E[I]+E[N]E[A]+E[M]E[B] (3.17)

and the second moment of X can be expressed as

E[X2] = E[Y 2]+E[I2]+E[A]2E[N2]+2E[Y ]E[I]

+E[N](Var[A]+2E[A]E[Y ]+2E[A]E[I])

+E[M](Var[B]+Var[I]+2(E[Y ]+E[I])(E[B]+E[I]))

+(E[B]+E[I])(E[M2](E[B]+E[I])+4E[N]E[M]E[A]) (3.18)

At this stage, we need to evaluate the moments of the elements in the decomposition to be able

to determine the AAoI under the preemption policy. First, we start by evaluating the probability

distribution of A and B.

Lemma 3.2.1. The probability distribution function of variables A and B are given by:

pA(k) = pB(k) =


(1− ε(1− εN)(1−λ ))(ε(1− εN)(1−λ ))k−1 ARQ

1−(1−εN)(1−λ )

1−e−θ(1−(1−λ )(1−εN ) γ(θ ,k)((1− εN)(1−λ ))k−1 HARQ
(3.19)

Proof. See Appendix E.

Using the derived probability distribution in (3.19), we have the first two moments of A and B:

E[A] = E[B] =


1

1−ε(1−εN)(1−λ ) ARQ

1−e−θ(1−ϕ)(1+θϕ(1−ϕ))

(1−ϕ)(1−e−θ(1−ϕ))
HARQ

(3.20)

E[A2] = E[B2] =


1+ε(1−εN)(1−λ )

(1−ε(1−εN)(1−λ ))2 ARQ

θϕ(1−ϕ+θϕ(1−ϕ)+2)
(1−ϕ)(1−eθ(1−ϕ))

+ 1+ϕ

(1−ϕ)2 HARQ
(3.21)
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where ϕ = (1− λ )(1− εN). Furthermore, we can derive the variance of A and B by substituting

(3.20) and (3.21) into the relation of Var[A] = E[A2]−E[A]2.

Now, we need to compute the number of packet failures due to the preemption (N) and NACK

miss-detection (M). Let PΨ denotes the probability of packet failure due to the preemption event and

Pϒ due to the NACK miss-classification. therefore, the total number of dropped packets shown by L

in every renewal will be geometric distributed with parameter (1−(PΨ+Pϒ)). Then, the probability

distribution of the N number of dropped packets out of the total of L dropped ones is

pN(k) = (
PΨ

1−Pϒ

)k 1− (PΨ +Pϒ)

1−Pϒ

(3.22)

and similarly the distribution of M can be written as

pM(k) = (
Pϒ

1−PΨ

)k 1− (PΨ +Pϒ)

1−PΨ

(3.23)

We further need to describe and calculate the probabilities of PΨ and Pϒ. Let D̂1:k = [D̂1, ..., D̂k]

contains the sequence of detection outcomes on the feedback channel up to round k. Then, from the

independence of the status packet generation process (R) in (3.1), packet transmission completion

time (S) in (3.6) and the detection of the feedback value in (3.9), the probability of PΨ can be

obtained:

PΨ = Pr{(S > R),(D̂1:R = N|D1:R = N)}

=
∞

∑
k=1

pR(k)
(
Pr{S > k}Pr{D̂1:k = N|D1:k = N}

)
=

∞

∑
k=1

pR(k)
∞

∑
j=k

pS( j)
k

∏
i=1

p(D̂i = N|Di = N)

=


λ (1−εN)ε

1−(1−λ )(1−εN)ε
ARQ

λ (1−εN)
1−ϕ

(1− e−θ(1−ϕ)) HARQ,

(3.24)

where the probability term p(D̂1:k = N|D1:k = N) assures that the NACK messages are correctly

detected so that the old packet will stay under service until a new status update arrives at the buffer
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and preempt its service process, which is reflected in the probability term Pr{S > R}. Note that, the

last term in (3.24) is obtained by exploiting (3.1), (3.6) and (3.11).

Similarly, we can quantify the packet transmission failure probability due to the event of NACK

miss-classification denoted by Pϒ. Independence of status update packet arrival process, packet

completion time in (3.5) and the feedback signal detection provides that

Pϒ = Pr{(R≥ F),(D̂1:F−1 = N, D̂F = A|D1:F = N)}

=
∞

∑
k=1

pF(k)
(
Pr{R≥ k}Pr{D̂1:k−1 = N, D̂k = A|D1:k = N}

)
=

∞

∑
k=1

pF(k)
∞

∑
j=k

pR( j)p(D̂k = A|Dk = N)
k−1

∏
i=1

p(D̂i = N|Di = N)

=


εεN

1−ε(1−εN)(1−λ ) ARQ

εN
1−(1−λ )(1−εN)

(1− e−θ(1−(1−λ )(1−εN)) HARQ,

(3.25)

where the term Pr{D̂1:k−1 = N, D̂k = A|D1:k = N} represents that the packet under service truncates

its re-transmission rounds once the NACK message is miss-detected as an ACK. Moreover, the

relation Pr{R ≥ F} guarantees that no new packet preempts the re-transmissions before a miss-

detection happens.

Then, substituting (3.24)-(3.25) into the (3.22)-(3.23), it is readily to evaluate the expected value

of the random number of N as in the following

E[N] =


λε(1−εN)

1−ε
ARQ

λ (1−εN)(eθ(1−ϕ)−1)
1−ϕ

HARQ,

(3.26)

and the expected value of variable M as

E[M] =


εεN
1−ε

ARQ

εN(eθ(1−ϕ)−1)
1−ϕ

HARQ,

(3.27)

further, the second moments will be obtained from E[N2] = 2E2[N]+E[N] and E[M2] = 2E2[M]+
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E[M].

Lastly, we need to derive the probability distribution function of the effective service time of the

successfully delivered packets (Y ). A packet entered the system can fulfil its service provided that

it is not preempted by the next generated status packet and not truncates its re-transmissions due to

the erroneously detected NACK messages as ACK. Hence,

pY (k) = Pr{S = k|(R > S),(D̂1:S−1 = N|D1:S−1 = N)} (3.28)

From the independence of status packet arrivals and feedback message detection process, we find

that the distribution of Y follows the same distributions as in (3.6) with new parameters of ε(1−

λ )(1− εN) in ARQ and θ(1−λ )(1− εN) in HARQ. Therefore the first two moments are given by

E[Y ] =


1

1−ε(1−εN)(1−λ ) ARQ

1+θ(1− εN)(1−λ ) HARQ
(3.29)

and,

E[Y 2] =


1+ε(1−εN)(1−λ )

(1−ε(1−εN)(1−λ ))2 ARQ

1+3(θϕ)+(θϕ)2 HARQ
(3.30)

We can now express the closed-form expressions of (3.17) and (3.18) by using the moment

terms derived above. By substituting the obtained relations in (3.20), (3.26), (3.27) and (3.29) into

(3.17), and after some simplifications, we get

E[X ] =


1−ε(1−εN)(1−λ )

λ (1−ε) ARQ

eθ(1−ϕ)

λ
HARQ,

(3.31)

Further, the expression of the second moment of X can be derived for ARQ as

EARQ[X2] =
1+ ε

(1− ε)2 +
2λ (1−λ )εεN

(1− ε)2λ
+

(1−λ )(1− ε(1− εN))

(1− ε)2λ 2
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+(λ (1− ε)+2(1− ε(1− εN)(1−λ ))) (3.32)

and for the case of HARQ, we have

EHARQ[X2] = (eθ(1−ϕ)−1)E[A2]+ (1+θϕ)2 +θϕ

+2E[A](eθ(1−ϕ)−1)(
λ −ϕe−θ(1−ϕ)+(1−λ )(e−θ(1−ϕ)(1− εN)+2εN)

e−θ(1−ϕ)(1−ϕ)λ
)

+
1−λ

λ
(1+

εN(eθ(1−ϕ)−1)
1−ϕ

)(
2−λ

λ
+2(1+θϕ +

εN(1−λ )(eθ(1−ϕ)−1)
λ (1−ϕ)

)) (3.33)

Having obtained the closed-form relations for the moments of inter-renewal time (X) and the

expected value of Y , we can write the final AAoI expression

∆ =


(1−ε(1−εN)(1−λ ))

λ (1−ε) ARQ

eθ(1−ϕ)

λ
HARQ

(3.34)

Remark 3.2.1. The achievable average AoI with preemption in the case that the feedback channel

is error-free, i.e., snrc→ ∞, can be expressed as

∆∞ =


2(1−ε)+λ (1+ε)

2λ (1−ε) − 1
2 ARQ

eθλ

λ
HARQ

(3.35)

The attained ∆∞ in (3.35) is the optimum average AoI for the preemption policy since it can be

shown that it performs as a lower bound for the ∆ equation in (3.34). The condition of snrc can be

modeled by pushing the detection threshold Θ to the positive infinite region that can provide εN = 0

and εA ≤ 1. Such a detection channel is formally called a Z-Channel since all NACK messages can

be detected correctly and miss-classification errors only exist for ACK messages.

At last, we evaluate the resource utilization under preemptive policy. To this end, we need to

derive the probability distributions of variable C and O. From (3.15), we know that the overall
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transmission time of failed packets in every renewal episode is equal to

O =
N

∑
i=0

Ai +
M

∑
j=0

B j (3.36)

Therefore, the expected value of O in preemption can be calculated from (3.20), (3.26) and

(3.27) as follows:

E[O] =


ε(λ (1−εN)+εN)

(1−εN)2+ε(1−ε)(λ (1−εN)+εN)
ARQ

(1−eθ(1−ϕ))(λ (1−εN)
(εN+λ (1−εN))2 HARQ

(3.37)

To calculate the time duration a successfully decoded packet spends in the system since its

arrival time into the buffer until its departure time is given by

C = Y + Iz (3.38)

where Iz is the required time to detect correctly the carried ACK message in the acknowledgment

packet as provided in

P(Iz = k) = pR(k)εk+1
A + ε

k
A(1− εA)Pr{R≥ k}= (εA(1−λ ))k(1− εA(1−λ )) (3.39)

with the expected value as

E[Iz] =
εA(1−λ )

1− εA(1−λ )
(3.40)

From E[Y ] in (3.29) and E[Iz] in (3.40), we can calculate the moment of C as E[C] =E[Y ]+E[Iz].

Using the obtained expected value of C and O in (3.37), we can write the average of η as presented

in (3.41).

η =


εAλ (1−λ )(1−ε)

(1−εA(1−λ ))(1−ε(1−εN)(1−λ )) +
λ

1−ε(1−εN)(1−λ ) ARQ

e−θ(1−ϕ)λ (1+θϕ + εA(1−λ )
1−εA(1−λ ))+

λ (1−e−θ(1−ϕ)(1+θϕ(1−ϕ)))
1−ϕ

HARQ
(3.41)
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3.3 AAoI analysis under non-preemptive queue

In this section, we derive the expression for the AAoI in the case that non-preemptive policy

manages the queue. Recall that under this policy, a newly arriving packet will be discarded if it

finds the system busy. Besides, a packet under service can depart the system only if an ACK is

detected at the sensor. Since a NACK may be miss-classified as an ACK, a set of packets may

be discarded before completing their transmissions. The inter-departure time, X , will be affected

by the aforementioned set of failed packets in between two successive successfully decoded ones.

Let L denotes the random number of packet loss in every renewal episode and W represents the

random number of time slots every failed status packet occupies. Then, we can decompose the

inter-departure time X under non-preemptive policy as follows:

X =V + I +
L

∑
i=0

(Wi + Ii) (3.42)

where, V represents the time duration which is required to accomplish a successful packet reception

at the monitor and I shows the system idle time to receive a new packet once a packet under service

leaves the buffer. Since the status packet generation process is memory-less, the distribution of

variable I follows the same relation as provided in (3.16).

From (3.42), the first moment is equal to

E[X ] = E[V ]+E[L]E[W ]+E[I](E[L]+1) (3.43)

and the second moment of X will be

E[X2] = E[V 2]+E[W ]2(E[L2]−E[L])+2E[V ](E[I]+E[L](E[I]+E[W ]))

+(E[L2]+E[L])(2E[W ]E[I]+E[I]2)+E[L](E[W 2]+E[I2])+E[I2] (3.44)

Therefore, we need to compute the moments of the number of failed packets, L, and time duration

each successful and failed packet spent in the system, V and W to be able to find the final expression

of AAoI under non-preemptive queue.
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First, we start by characterizing the random variable L. Since L represents the number of packet

failures before each successful packet transmission, its distribution follows a geometric probability

distribution with parameter (1−Pw), where Pw is the probability that a packet under service truncates

its re-transmission rounds before completion of its demand service time.

pL(k) = (1−Pw)(Pw)
k ;k = 0,1, ... (3.45)

To calculate the packet loss probability, Pw, let Q denote the random number of correct NACK

detection before the first miss-detection happens. Simply, we can write this event as a Geometric

distribution with the success probability of εN derived in (3.11)

pQ(k) = Pr{D̂1:k−1 = N, D̂k = A|D1:k = N}= (1− εN)
k−1

εN (3.46)

From the definition of probability Pw, one can show that Pw equals to the event of Pr{S > Q} which

shows the packet completion time from (3.6) takes longer time than the first NACK miss-detection

happens in (3.46)

Pw = Pr{S > Q}=
∞

∑
k=1

pQ(k)
∞

∑
i=k+1

pS(i) =


εεN

1−ε(1−εN)
ARQ

1− e−θεN HARQ,

(3.47)

By simply replacing (3.47) in (3.45), the moment values of variable L can be fully characterized

as follows

E[L] =


εεN
1−ε

ARQ

eθεN (1− e−θεN ) HARQ
(3.48)

and

E[L2] =


εεN(1−ε(1−2εN))

(1−ε)2 ARQ

e2θεN (1− e−θεN )(1+ εN(1− e−θεN )) HARQ
(3.49)
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Next, we need to define the distribution of V , the random number of time slots each successfully

delivered packet stays in the system until completing its re-transmissions and detecting its ACK at

the monitor. Let U be the probability distribution of number of ACK miss-detection until detecting

it correctly. Since the detection results are independent at each round, the distribution of U will

follow a geometric with parameter (1− εA) as:

pU(k) = ε
k−1
A (1− εA) ;k = 1, ... (3.50)

Then, the number of frames required to truncate the transmission of a successfully decoded status

packet will be V = Y +U . Variable Y is the effective transmission time of a successfully decoded

packet term in (3.13). With the blocking policy, the effective packet transmission time is simply

pY (k) = Pr{S = k|S≤Q}, which is the conditional service time given that no NACK miss-detection

occurs during the packet service completion time provided in (3.6). Therefore, the distribution of Y

follows the same distribution of S with new parameters as:

Y ∼


Geom(1− ε(1− εN)) ARQ

Pois(θ(1− εN)) HARQ,

(3.51)

with the following first moment

E[Y ] =


1

1−ε(1−εN)
ARQ

θ(1− εN)+1 HARQ
(3.52)

Now, due to the independence of Y in (3.51) and U in (3.50), we can apply the convolution in

discrete domain and

pV (k) = Pr{Y +U = k}=
k

∑
i=1

pY (i)pU(k− i)

=


(1−εA)(1−ε(1−εN))

ε(1−εN)−εA
((ε(1− εN))

v− εv
A) ARQ

e−θ(1−εN)ε
v−1
A (1− εA)tv−1(

θ(1−εN)
εA

) HARQ,

(3.53)
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Further, we can derive the first moment of the process V with regard to its obtained distribution

function in (3.53)

E[V ] =


(1−εA)(1−ε(1−εN))

ε(1−εN)−εA
( ε(1−εN)
(1−ε(1−εN))2 − εA

(1−εA)2 ) ARQ

1+θ(1−εA)(1−εN)
1−εA

HARQ
(3.54)

and its second moment as given by

E[V 2] =


(1−εA)(1−ε(1−εN))

ε(1−εN)−εA
( ε(1−εN)(1+ε(1−εN))

(1−ε(1−εN))3 − εA(1+εA)
(1−εA)3 ) ARQ

e−θεN

(1−εA)2 (1+ εA +θ(1− εN)(1− εA)(3− εA +θ(1− εN)(1− εA))) HARQ
(3.55)

Last, we need to derive the probability distribution function of the failed packet transmission

time shown by W . We know that a packet under service fails under the condition that a NACK

miss-detection happens before completion time in (3.6)

pW (k) = Pr{Q = k|S > k}= 1
Pw

pQ(k)
∞

∑
i=k+1

pS(i)

=


(1− ε(1− εN))(ε(1− εN))

k−1 ARQ

εN
(1−e−θεN )

γ(θ ,w)(1− εN)
w−1 HARQ,

(3.56)

with the resulting expected value of:

E[W ] =


1

1−ε(1−εN)
ARQ

1
εN(1−e−θεN )

(1− e−θεN (1+ εN(1− εN)θ)) HARQ
(3.57)

and the second moment of:

E[W 2] =


1+ε(1−εN)

(1−ε(1−εN))2 ARQ

2−εN
ε2

N
+ θ(1−εN)(2+εN(1+θ(1−εN)))

εN(1−eθεN )
HARQ

(3.58)
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Now, with the relations at hand, we are able to write the expected value of X :

E[X ] =


1−λεεA−(1−λ )(εA+ε(1−εN)(1−εA))

λ (1−ε)(1−εA)
ARQ

eθεN λ+εN(1−λ )
εNλ

− 1−(εN+εA)
εN

HARQ
(3.59)

Finally, by placing (3.54)-(3.55) and (3.57)-(3.58) in (3.44), we can evaluate the final equation

of E[X2] as in

EARQ[X2] =
εεN(1+ ε)

(1− ε)2(1− ε(1− εN))2 +E[V 2]+2E[V ]
(1−λ )(1− ε(1− εN))

2 +λεεN

λ (1− ε)(1− ε(1− εN))

+
1−λ

λ 2(1− ε)2 (2εεNλ (1+ ε− εN)+(1− ε(1− εN))(1− ε(1−2εN))) (3.60)

EHARQ[X2] = E[V 2]+E[W ]2(1− eθεN )2(1+ εN)+2E[V ]eθεN (
1−λ

λ
+E[W ](1− e−θεN ))

+
1−λ

λ
(eθεN −1)(2+(1+ εN)(eθεN −1))(2E[W ]+

1−λ

λ
)

+E[W 2](eθεN −1)+
(1−λ )(2−λ )

λ 2 eθεN (3.61)

From the obtained moment values, the AAoI under non-preemptive policy can be calculated

from (3.59)-(3.61) as

∆ =


E[X2]
2E[X ] +

1
1−ε(1−εN)

− 1
2 ARQ

E[X2]
2E[X ] +θ(1− εN)+

1
2 HARQ

(3.62)

Remark 3.3.1. On the case that there is no error in the feedback channel, i.e., snrc → ∞, the

expression for the AAoI can be simplified to

∆∞ =


(1−ε)2(1−λ )(2−λ )−λ 2(1−3ε)+2λ (2−2ε+ελ )

2λ (1−ε)(1−ε(1−λ )) − 1
2 ARQ

λ (1+θ)(2+3θλ )−λ (1−2θ)+2
2λ (1+θλ ) − 1

2 HARQ
(3.63)

We then derive the expression of η for non-preemptive queue. For the term C, we have the

equality that C = Y since no packet can interrupt the service of an old packet. Next, we have the
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distribution of the time server is busy with transmission of the failed packets in every renewal from

(3.42) as O = ∑
L
i=0(Wi). From the derived relations in (3.57) and (3.48), the expected value of O is

thus given by

E[O] =


εεN

(1−ε)(1−ε(1−εN))
ARQ

eθεN

εN
(1− e−θεN (1+ εN(1− εN)θ)) HARQ

(3.64)

Using the above computed relations for the terms C and O and the expression of E[X ] in (3.59),

the long term channel utilization, (η), under non-preemptive policy can be expressed as

η =


λ (1−εA)

1−λεεA−(1−λ )(εA+ε(1−εN)(1−εA))
ARQ

λ (1−e−θεN (1−εN))

λ+εN(1−λ )−e−θεN λ (1−(εN+εN))
HARQ

(3.65)

3.4 Analytical and Simulation Results

In this section, we present the AAoI analysis using both numerical and simulation results of the

introduced system and compare the performance of the two queue management policies: preemptive

and non-preemptive. We assume the value of ρ = 0.75 in (3.4) for both ARQ and HARQ protocols.

First, we show the impact of the SNR levels of the carried signal in the feedback channel on

the average age performance in Fig. 3.3. Here, the performance of both ARQ and HARQ protocols

are under study for an unreliable forward channel with SNr level of snrd = −4dB. We note first

that the simulation results coincide with the numerical expressions attained in the previous sections

for AAoI. First, at low load (λ = 0.2), the two preemptive and non-preemptive policies perform

similarly and as the feedback channel quality improves (higher SNR), the average age, as expected,

reduces. This is due to the fact that the feedback channel at higher SNR delivers more reliably

the control messages (ACK/NACK), which allows for new samples to be transmitted and hence

delivered to the monitor, ultimately decreasing the age. Now at a higher load (0.85), the performance

is slightly different. For example, we first observe that for ARQ and under non-preemption, the age

rather increases as we enhance the control channel quality. This is explained as follows. First, at a
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Figure 3.3: ∆ versus SNR in the feedback channel for a Symmetric Binary Channel model (Θ = 0)
and snrd =−4dB; Monte-Carlo simulations (markers) and analytical results (lines).

low SNR, the error probability on the control channel is higher, and hence the likelihood of miss-

classification is higher. Given the low SNR on the forward channel, data packets will more likely

be corrupted, and hence the monitor will be sending more often NACKs. If the feedback channel

miss-classify these packets (which occur at a low snrc), then chances of a NACK to be decoded as

ACK is higher, and such ACK will admit a new sample to the sensor’s buffer. Such new samples

will remove old packets from the system, and hence yield the delivery of fresher samples which help

in reducing the AAoI. On the other hand, at a higher snrc, error in classification is getting lower and

hence NACKs will be decoded more accurately. Such NACKs will block new samples from being

admitted and the sensor spends more time transmitting the same packet in service. This results

in increased age performance. However, the system under HARQ non-preemptive queue does not

behave similarly, since re-transmissions enable HARQ in better delivering packets in service. Also,

it should be noted that in the preemption policy, we do not have the same observation. Rather, since

we are in the high load regime, newer samples are always admitted to remove old packets from the

system and accordingly, the impact of the error in the feedback channel is negligible.

Next, we study the performance of the average AoI under different detection threshold (Θ)
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Figure 3.4: ∆ vs Θ levels and different packet generation rates (λ ) for snrc = 0dB and snrd =
−4,+4dB.

values in Fig. 3.4. This Figure shows the behavior of AAoI for high and low level of SNR values

in forward channel (snrd =+4,−4dB) with a moderate SNR level in the feedback channel (snrc =

0dB). The analysis for the preemptive and non-preemptive policies are provided as follows.

(1) preemptive policy: Figs. (3.4(a)) and (3.4(c)) show the average age for both ARQ and HARQ

under a preemption policy, by varying the rate of arrival of samples at the sensor and Θ. First,

we observe that both ARQ and HARQ behave in a similar manner. Recall, that Θ serves

as a classifier for the received messages at the sensor based on their signal strengths. When

Θ is high, it becomes difficult to classify a received message as ACK, and irrespective of

the outcome of decoding the signal at the monitor, more often the sensor is interpreting the

received signals as NACKs, triggering the sensor to carry out re-transmissions. Now, when
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the value of λ is low, the inter-arrival time of samples is high and therefore the sensor will be

re-transmitting the same packet from its queue. This results in more frequent transmissions

and hence reduce the average age at the monitor, as shown in Fig. (3.4(a)) (low λ and high

Θ regime). However when Θ is low, the average AoI attain a higher value at low loads, since

in this case, the sensor is more frequently classifying the received messages as ACKs and

accordingly removing the packet under service from its buffer; however due to the large inter-

arrival time, the buffer will be empty for sometime and the sensor transmission activity will

be delayed, causing the large age increase at the monitor, as depicted by the Figure. On the

other hand, when the load (λ ) increases, a packet in service is continuously being preempted

by the arriving samples at the sensor and therefore, the feedback channel does not play any

major role since the delivery of either ACK or NACK becomes of no value to the sensor. This

is evident from the figures where the value of Θ plays no meaningful role in the performance

of the age metric.

(2) non-preemptive policy: Next, we present and analyse the results of the non-preemptive pol-

icy. We observe from Fig. (3.4(b)) and (3.4(d)) that both ARQ and HARQ behave similarly.

However, the behavior of this non-preemptive policy differs than that of preemption. First,

when the forward link experiences high loss rate (e.g., snrd =−4dB), more often the packets

in service will arrive in errors at the monitor and as a result, NACK messages will be sent back

on the backward channel. In the regime of (λ low/high and Θ high), ACK/NACK messages

are often classified as NACKs, and that will trigger more re-transmissions of an old packet,

blocking any new arriving packets from replacing the packet in service. This results in the

large increase of AAoI in this regime. As a matter of fact, it should be noted that the arrival

rate λ does not play any role, since even at a high rate of arrival, the new samples are blocked

from being admitted into the sensor’s buffer. Now, in the regime of (low λ and low Θ), most

packets on the feedback channel are classified as ACKs (many incorrectly), after which the

sensor removes the packet from its buffer until it receives a new packet to transmit (at low λ ,

inter-arrival is high, and hence the increase in age). As Θ slightly increases, we see a more ro-

bust classification which allows NACKs to be decoded correctly, triggering re-transmissions
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Figure 3.5: Optimum Θ for levels of SNR experienced in the feedback channel in a non-preemptive
queue

by the sensor, after which the monitor successfully receives the packet. This manifests in the

reduction of the AAoI in this regime. Finally, in the regime of (λ high, Θ low), we observe a

lower attainable AAoI; in this regime, the classifier yields more ACKs than NACKs. An ACK

message allows any new sample to be admitted and replace the packet in the queue. Particu-

larly, at high λ , inter-arrival times of samples is low and thus the gain in the age performance.

Last, when the quality of the forward channel is good (snrc =+4dB), the regime of (λ low, Θ

low) results in lower age performance. In this case, messages transmitted by the sensor have

high likelihood of being delivered successfully, and the monitor sends back more ACKs than

NACKs. When Θ is low, the classification of ACK is done correctly, and hence emptying the

sensor’s buffer for a new arrival instead of blocking it. Indeed, reducing Θ indefinitely will

cause the miss-classification of NACKs as ACKs, preventing the sensor from re-transmitting

the packet in service. An increase in the age can be observed in this regime.

Optimal BAC model setup: As shown earlier, the performance of the average age is affected by the

selected value of Θ, and hence for each configuration, an optimal value (Θ∗) which yields optimal

system performance (lowest age) can be used to configure the system. In the case of a preemption,
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it is clear that the higher the value of Θ, the lower the average age is, Remark 3.2.1 along with

(3.35) provides the optimal average age for infinitely large Θ value. On the other hand, for the non-

preemptive policy, neither a small nor a large value of Θ provides optimal system performance. In

this policy, Θ∗ is obtained through a linear search procedure. The optimal operational Θ is plotted

vs. the feedback channel for some different traffic loads in Fig. 3.5. What is evident from the figure

is that in general, the value of Θ∗ remains constant for different system setups, however there is also

a clear indication that in some channel realization (e.g., ARQ system with λ=0.8 or 0.4), the value

of the Θ threshold that results in minimal age performance should change as the SNR of the control

channel changes. The reason being that with lower Θ, the classifier at the sensor classifies messages

more often as ACKs, this implies that (since the policy is non-preemptive), new packets are more

often admitted to the system and they themselves help attain lower age performance. The reason

this behavior is not shown for the load λ = 1, is because the system is already operating at a low

enough value of Θ.

Fig. 3.6 shows the minimum achievable average AoI (using the obtained Θ∗ ) for different snr

regimes in the feedback channel and packet generation rates (λ ). It is trivial that the optimal Θ∗ in

the case of preemption can be attained for a positive infinite Θ. In Fig. 3.6, the value of Θ∗ is set

to 3, which shows to provide a worst case distance of 10−4 for the average age from the optimal
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average AoI value (from (3.35)) which is attained under the shown system setup. In the case of

non-preemptive, the optimum value of Θ is calculated through a search method and some examples

of it are shown in Fig. 3.5. In the figure, we show the behaviour of the management policies for

ARQ and HARQ in case of an error-free feedback channel. First, it can be observed that the trend

of changes under the optimal setup is the same of an error-free feedback channel and:

• In ARQ policy, preemption always performs better than non-preemptive queue: in case of

ARQ scheme, since transmission of a new packet finds the same probability of success de-

coding as re-transmitting an old packet, preempting the service of the current packet and

sending the new generated will lower the age more. Therefore, the optimum Θ value always

tends to detect more reliably the ACK messages to avoid unnecessary re-transmissions that

result in increasing the age due to missing the chance of transmitting more new and fresh

packets. Therefore, we can observe in the figure that in any arrival rate λ < 1, the average

age decreases with snrc since not only the ACK miss-detection probability will be lower, but

also the NACK miss-detection error can be set to a low value at the same time.

• In HARQ, non-preemptive policy can outperform the preemption if we have a more frequent

packet arrival at the sensor. In higher packet arrival rates (higher value of λ ), more status up-

date packets are available in the buffer which can provide the chance for non-preemptive pol-

icy to lower its waiting time for accepting a new packet once emptying its buffer. Therefore,

the average AoI will decrease monotonically under non-preemptive management. However,

in preemptive queue, packets observe a lower chance to complete their re-transmissions due

to the more events of preemption. Thus, the average AoI increases in this case. As a result,

the non-preemptive might be a better approach for a system with a high rate of generating the

status updates.

Importantly, we can observe that the minimum average age in case of non-preemptive poli-

cies can reach a lower level in comparison with an error-free feedback channel. Here, the miss-

classification of NACK messages can provide a chance for newer packets to enter the system and

be delivered to the monitor. Therefore, the age can decrease more since fresher packets are ad-

mitted. By controlling the value of Θ, we can lower the age by providing more chances for such

64



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η
ARQ

HARQ

snr
c
= -1 dB

snr
c
= 4 dB

snr
c
= 11 dB

Figure 3.7: η versus λ (for Θ∗) for a system under a preemptive queue management.

newer packets to be served. Consequently, we can expect that the average optimum age under ARQ

non-preemption performs the same as in preemption since the ACK messages can be detected more

reliably than the NACK messages and hence more preemption will occur and the age reaches the

same value in preemption ARQ.

Age/Channel Utilization trade-off: Our earlier study shows that under a preemptive policy, a

blind re-transmission by the sensor without feedback messages can provide the same performance

as in an error-free control channel model. However the cost of blind re-transmission manifests

itself in conducting unnecessary re-transmission of status packets and utilizing fully the channel

resources. To obtain a better insight into the effect of optimum design of control channel on the

channel occupancy, we determine the lowest Θ value guaranteeing a certainty distance of 10−4

from the optimal average age value and we plot the channel utilization by varying arrival rate (λ )

in Fig. 3.7. We can observe that with a poor control channel, the wireless channel is fully utilized

under different λ values. However, with a strong control channel, a more reliable ACK/NACK

detection can be designed through Θ∗ which can reduce the utilization of the channel resources

while maintaining the optimum average age (∆∗).

Moreover, in the case of a non-preemptive policy, recall from Figs. (3.4(b)) and (3.4(d)) that at
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lower arrival rates (λ ), the average age plot is parabolic where we can attain the same average age

value with two different setups of Θ levels. From the performance of AAoI, the two values of Θ are

the same however from the channel resource utilization, indeed the lower Θ value might be preferred

which can lower more the utilization of resources, as shown in Fig.3.8. Here, ACK messages are

detected more reliably, and hence sensor will terminate the status packet re-transmissions faster

which result in lowering the channel resource utilization than higher Θ values.

3.5 Conclusion

This chapter analyzed the performance of re-transmission protocols in terms of AAoI under

a real practical noisy environment where the data and control wireless channels are prone to er-

rors. Using the well-known model of packet combining schemes and binary detection strategy, we

bridged the gap between the communication-theoretic error-prone control channel and the analysis

of AAoI shown in the literature.

We derived the closed-form expressions of the average AoI for a real-time update system with

preemptive and non-preemptive queue policies. We have shown that a noisy feedback channel
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increases the average AoI significantly in the absence of a proper ACK/NACK detection model.

Throughout this study, we have seen that minimizing the average AoI requires designing the opti-

mal parameter of the employed BAC model that takes into account the condition of both forward

and feedback channels, the packet arrival process and the specific queue management policy. Sim-

ulations validated the theoretical analysis and showed that the preemptive queue is more sensitive

to reliable NACK messages compared to the ACK signals, specially in high noisy feedback chan-

nel. Alternatively, the optimal parameter design of the control channel for non-preemptive queue

revealed that the reliability in ACK/NACK signal detection may change with the packet arrival rate

in the buffer, and hence the optimum design of feedback signalling is of most importance for this

policy.

Further, our analysis revealed that the relationship between the non-preemptive and preemptive

policies depends on the operational SNR and the parameter of detection channel model. In particu-

lar, for low SNR, where decoding errors are frequent and the value of using HARQ most significant,

the non-preemptive is preferable over the preemption under the optimum detection parameter setup.

While we address the issue of AoI in imperfect wireless channel setup with fixed preemptive and

non-preemptive policies, there still remain rooms for further analysis of deploying a controller on

the sensor to make dynamic packet transmissions to enhance the AoI performance.
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Chapter 4

Conclusion and Future Work

In this thesis, we investigated two issues in the semantic communication systems. In the first

part, we argued that semantic communication is not limited to the real-time applications, and ac-

cordingly we proposed the semantic communication for non-real time systems. Further, we studied

the systems under re-transmission schemes to mitigate the impact of unreliability imposed in the

wireless channel in practice. The analysis showed that the optimal policies of a causal system can

not be optimal in a non-causal system. In particular, we showed that a system operating under

a powerful packet combining strategy such as HARQ will always perform better under the fixed

blocking policy in terms of information accuracy. However, in a more simple packet combining

strategy such as ARQ, both fixed preemption and blocking policies provide the same performance

in terms of information accuracy. Moreover, we indicated that the non-causal estimation is more

robust in presence of the model mismatch, and thus might be preferred in applications with less

stringer constraints on the delivery time.

Formulating the concept of timeliness as a measurement of Information Semantic still remains

as an open issue to solve. The timeliness must be reformulated and revisited considering the user

service demand as proposed in the Semantic of Information. In this direction, a possible future

work might be to formulate the concept of timeliness in non-real time systems. Moreover, we

assumed Gaussian Markov processes in this work which can be further generalized to more complex

processes. To enable more intelligent networks, the source model can be assumed as an unknown

source and the Semantics can be further designed by implementing Machine Learning techniques.
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The second part of the work investigated the issue of the feedback unreliability in real-time

sensor networks. It was shown that the assumption of error-free feedback channel can significantly

reduce the performance of the Age of Information in a practical environment. Accordingly, we

applied a Binary Asymmetric Channel in the control channel to discover the errors in the feedback

signal. The numerical results and analysis provided detailed perspectives on the optimal BAC setup

minimizing the average AoI and the possible trade-off between AoI and resource utilization. Gener-

ally, the analysis for a preemption setting illustrated that a better protection for the NACK messages

compared to the ACK messages can preserve the minimum AoI performance. Specially, under a

high noisy feedback channel setup, we showed that the viable solution minimizing the average AoI

is a blind transmission mechanism at the cost of increasing unnecessary utilization of the channel

resources. Moreover, the analysis for a non-preemptive queue revealed the dependence of the op-

timal BAC design on the status packet generation rate at the sensor. Such a dependency makes

the BAC model to provide a more reliable ACK detection compared to NACK messages under the

condition of more frequent packet arrival, whereas the opposite holds under the condition of less

frequent packet arrival.

In future works, we can implement more intelligent feedback signal detection and correction

by adopting Machine Learning techniques. Also, other types of re-transmission schemes such as

Incremental Redundancy Hybrid Automatic Repeat Request which is widely used in 5G systems

can be implemented in real-time systems and the impact of errors with this scheme can be studied.

Moreover, we assumed a single user scenario in this dissertation which can be further extended to

the multi-user scenarios with multi-casting or broad-casting packet communication.
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Appendix A

Denoting by L the random number of preempted packets, the time the sensor is busy with their

transmission is given by F = ∑
L
i=0 Ai, where Ai are independent, identically distributed (i.i.d.) and

model the transmission time of the i-th preempted packet.

To find F , we need to calculate the distribution of L and Ai. First, starting with calculation of

probability distribution for L quantifying the number of preempted packets. Considering p as the

probability that a packet under service is not preempted, we will have

p = Pr{S≤ R}=


1−ε

1−ε(1−λ ) ARQ

exp(−θλ ) HARQ
(A.1)

Since each packet is preempted independently with probability 1− p, and L is their total number,

we have L∼ Geom(p), which immediately yields its PGF GL(z) =
p

1−(1−p)z .

As for A = Ai, which is the inter-arrival time between two consecutive packets conditioned on

the first being preempted, we find its distribution as1

Pr{A = k}= Pr{R = k|S > R}= Pr{R = k∧S≤ k}
Pr{S≤ R}

=


(1−λ )k−1λεk

1−p ARQ

(1−λ )k−1λe−θ rk(θ)
1−p HARQ

(A.3)

1All calculations are done by the explicit summations over the arguments of the distribution. For example, to calculate
(A.1) we plug (2.8) and (2.3) in

Pr{S≤ R}=
∞

∑
s=1

∞

∑
r=s

Pr{S = s}Pr{R = r}; (A.2)

changing the order of summations simplifies the algebra and yields (A.1).
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where, rk(θ) = eθ −∑
k
t=0

θ t

t! , and then its probability generating function

GA(z) = E[zA] =
∞

∑
k=1

zkPr{A = k}=


z(1−ε(1−λ ))
1−z(1−λ )ε ARQ

λ z(1−e−θ(1−(1−λ )z))
(1−p)(1−(1−λ )z) HARQ

(A.4)

Now, we compute the PGF of F via Wald’s equality [49, Theorem 3.3.2]

GF(z) = GL(GA(z)) =


(1−ε)(1−z(1−λ )ε)
(1−ε(1−λ ))(1−zε) ARQ

e−θλ (1−(1−λ )z)
1−z(1−λe−θ(1−(1−λ )z))

HARQ
(A.5)
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Appendix B

To calculate E[Xe−2nαX ], we need to take into account the definition of X through (2.52). The

defined relation in expectation by considering the independence between I, F and Y can be formu-

lated as the following

E[Xe−2nαX ] =E[Ie−2nαI]E[e−2nαF ]E[e−2nαY ]+E[Fe−2nαF ]E[e−2nαI]E[e−2nαY ]

+E[Y e−2nαY ]E[e−2nαI]E[e−2nαF ]

(B.1)

From (2.53), we can find the expectation of Ie−2nαI

E[Ie−2nαI] =
λe−2nα

(1− (1−λ )e−2nα)2 (B.2)

Next, for calculating the expectation of Fe−2nαF , we can apply the Wald’s equality

E[Fe−2nαF ] =
∞

∑
l=0

lE[e−2Anα ]l−1E[Ae−2Anα ]PL(l) =
p(1− p)E[Ae−2nαA]

(1− (1− p)E[e−2nαA])2

=


ελ (1−ε)e−2nα

(1−ε(1−λ ))(1−εe−2nα )2 ARQ

Qnλe−θ(1+λ )(eθ−eQnθ (1+Qn(1−Qn)θ))

(1−λ )(1−Qn−λe−2nα (1−e−θ(1−Qn)))2 HARQ
. (B.3)

In which the expectation of Ae−2nαA can be calculated from (A.4)

E[Ae−2nαA] =


(1−ε(1−λ ))e−2αn

(1−ε(1−λ )e−2αn)2 ARQ

Qnλe−θ (eθ−eQθ (1+Qnθ(1−Qn)))

(1−e−θλ )(1−λ )(1−Qn)2 HARQ
, (B.4)
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where

Qn = (1−λ )e−2nα (B.5)

From the above equations and (2.54), (2.58), (2.53), after some simplifications, we obtain

E[Xe−2nαX ] =


λ (1−ε)e−2nα (1−ε(1−λ )e−4nα )
(1−(1−λ )e−2nα )2(1−εe−2nα )2 ARQ

λQne−θ(1+λ )U
(1−λ )(1−Qn)

HARQ
, (B.6)

where

U =
λe−θ(1−λ )(1−e−2nα )−2nα(eθ − (1+Qn(1−Qn)θeQnθ ))

(1−Qn−λe−2α(1− e−θ(1−Qn)))2 +
eθ(Qn+λ )(1+θQn(1−Qn))

(1− e−2nα(1−λe−θ(1−Qn)))
(B.7)
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Appendix C

We compute E[Xe−2nαX ] from the following relation by considering the equation in (3.42)

E[Xe−2nαX ] = E[Ie−2nαI]E[e−2nαS]+E[Se−2nαS]E[e−2nαI] (C.1)

From (2.8), we have:

E[e−2αS] =


e−2α (1−ε)
1−εe−2α ARQ

e−θ(1−e−2α )−2α HARQ,

(C.2)

E[Se−2αS] =


e−2α (1−ε)
(1−εe−2α )2 ARQ

e−θ(1−e−2α )−2α(1+θe−2α) HARQ
. (C.3)

From the above equations and (B.2), we can obtain

E[Xe−2nαX ] =


λ (1−ε)e−2α (1−ε(1−λ )e−4α )
(1−(1−λ )e−2α )2(1−εe−2α )2 ARQ

λe−θ(1−e−2α )−2α (2+(1−Qn)(1+θe−2α ))
(1−(1−λ )e−2α )2 HARQ

, (C.4)

where Qn is given by (B.5).
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Appendix D

With our formulation of the MDP process, the action at we take has the potential of affecting

the cost at future renewals, that is, at the arrival of the packet currently being serviced which we

index with m̌ so the corresponding cost is obtained from (2.42) as

Cm̌ =
1
2
((Xm̌ +Ym̌)

2−Y 2
m̌). (D.1)

Similarly, the cost of the next renewal is given by

Cm̌+1 =
1
2
((Xm̌+1 +Ym̌+1)

2−Y 2
m̌+1). (D.2)

We need to find the action prior to the renewal, that is at , t < Dm̌, which minimizes the sum

Cm̌ +Cm̌+1 so we need to determine which elements of (D.1) and (D.2) are affected by at ; to this

end we make the following observations:

• In ARQ, the probability of successfully delivering a packet at each time slot is equal to (1−ε),

see (2.79); it is thus independent of the action at , t < Dm̌. Consequently, Dm̌ is not affected by

at and neither is (Xm̌ +Ym̌).

• The value of Ym̌+1 is only affected by the decisions made at renewal m̌+1 and not by at , t <

Dm̌.

• Setting Xm̌+1 = Ym̌ +Zm̌+1, where Zm̌+1 = Bm̌+1−Dm̌, we note that Zm̌+1 is not affected by

at .
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• The decision at , t < Dm̌ affects the value of Ym̌: it is decreased by the preemption, at = 1, and

increased by the blocking, at = 0.

We can thus write

Cm̌ +Cm̌+1 = Const.+Ym̌(Zm̌+1 +Ym̌+1), (D.3)

where Const. contains all the terms independent of the action at . Since Zm̌+1 and Ym̌+1 are indepen-

dent of at and Ym̌ is minimized by at = 1, the preemption minimizes the cost.
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Appendix E

Recall from the policy in a preemptive queue that a packet under service may be preempted

by another packet and leave the system before completing its transmissions. Therefore, the time a

packet consumes from the system until a preemption event terminated its service will be equal to

the inter-generation time of two successive packets provided that the first stays in the service once a

new one arrives the queue. Hence, from the independence of status packet generation and feedback

events, we can have the following relation for time duration A

PA(k) = Pr{R = k|{S > R},{D̂1:R = N|D1:R = N}}

=
1

PΨ

PR(k)
∞

∑
j=k

PS( j)
k

∏
i=1

P(D̂i = N|Di = N) (E.1)

Next, we compute the duration of dropped packets due to NACK detection errors, defined by B. B

indicates the number of time slots elapsed to detect a NACK feedback as ACK for the first time, as

long as no new update packet interrupts its transmissions. Therefore, the probability distribution of

variable B is:

PB(k) = Pr{F = k|{R≥ F},{D̂1:F−1 = N, D̂F = A|D1:F = N}}

=
1
Pϒ

PF(k){P(R≥ k)P(D̂1:k−1 = N, D̂k = A|D1:k = N)} (E.2)

Due to the relation of PF(k) = ∑
∞
i=k+1PS(i) in both ARQ and HARQ re-transmission schemes,

we can show the equality of the probability distributions of A and B. Further, the distribution can be
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evaluated as

PA(k) = PB(k) =


(1− ε(1− εN)(1−λ ))(ε(1− εN)(1−λ ))k−1 ARQ

1−(1−εN)(1−λ )

1−e−θ(1−(1−λ )(1−εN ) γ(θ ,w)((1− εN)(1−λ ))w−1 HARQ
(E.3)
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