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Abstract 

Design and Implementation of a Drone-based Forest Fire Monitoring System 

Including an Exclusive Hardware-in-the-Loop Simulator 

Hossein Jamshidi 

The purpose of this study is to design a fire detection drone system with a unique hardware-

in-the-loop (HIL) simulation architecture, mainly focusing on the search and localization 

algorithms and simulating thermal cameras to test computer vision-based detection algorithms. 

The autopilot hardware has been designed exclusively for this research work. The basic flight 

algorithm has been implemented in the autopilot firmware. To communicate and configure the 

autopilot, a ground control station (GCS) is developed. The GCS exchanges data with autopilot 

hardware using a serial port for both telemetry and HIL data links. A game engine (Unity3D) is 

used for implementing the simulator’s 3D graphics. To solve the rigid-body equations, the 

Unity3D built-in Nvidia PhysX system is utilized. The simulator exchanges data with the GCS 

using a UDP port. The GCS acts as a bridge between autopilot and simulator. To achieve real-time 

simulation performance, in most of the simulation systems and the GCS, multitasking is 

implemented. Furthermore, a simulated thermal camera with a raw image provider (similar to the 

actual hardware output) and a fire-making system in a forest-like environment has been developed 

to set fire to the simulated forest either at a specific location or randomly. The system consistency 

has been tested by performing some simulation tests and furthermore by testing the system in a 

real flying platform and testing the drone outdoor. Finally, the outcome of the system exhibited a 

good agreement with the autopilot as well as the guidance and navigation system in terms of the 

fire detection and positioning algorithms. 
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Chapter 1 

 

Introduction 

1.1 Motivations and the goals 

At the outset, the latest scientific researches show that climate change has already had 

apparent negative effects on the environment [1]. For example, glaciers have shrunk dramatically, 

ice on rivers and lakes is breaking up sooner, plant and animal habitats have shifted significantly, 

and trees are flowering sooner strangely. Phenomena such as loss of sea ice, accelerated sea-level 

rise, more droughts, and massive heatwaves are the effects that scientists had predicted in the past 

and are happening now. Furthermore, scientists have high confidence that global temperatures will 

continue to rise for decades to come, primarily due to greenhouse gases produced by human 

activities [2]. 

Secondly, the planet earth is an isolated system with a vast but limited atmosphere. Earth's 

atmosphere has a layered arrangement [3]. From the ground to the sky, the layers are the 

troposphere, stratosphere, mesosphere, thermosphere, and exosphere. A tiny layer of this 

atmosphere is the troposphere. Nearly all weather develops in the troposphere. Even though the 

atmosphere has a layered structure, they are closely coupled together [4]. An event can trigger a 

chain reaction that one event can lead to another one; events link climate change can be considered 

as a chain reaction that even a tiny change in the system can lead to a huge phenomenon. If you 

consider these facts, it is unavoidable that human behavior can affect this isolated system either 

negatively or positively. Our focus is to find a solution to affect the climate or reduce the adverse 

effects positively [5]. 
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Moreover, forest fires are one of the most dramatic side effects of climate change. Not even 

the fire releases a vast amount of greenhouse gases into the atmosphere but also it diminish our 

precious forests that reduce purify our air. On top of that, it forces humans and animals to migrate 

their habitat and lead to food shortages (the chain reaction) [6] [7]. Finding a solution for detecting 

forest fire is the main motivation of this thesis.  

Finally, the negative effect of climate change is indisputable; thus, we have to take some 

serious measures immediately. Therefore, detecting forest fires as one of the most destructive 

phenomena is the main focus of this research to help to take necessary measures before the fire 

gets outrageous. 

1.2 The solution 

Firstly, detecting fire in a forest needs sensors. Fire flames radiate different wavelengths, 

including visible light and infrared. Visible light is more susceptible to getting untraceable when 

there is enormous smoke, which is usually the case for forest fires. Smoke detection is not a viable 

approach since it may not work in a low-light situation (at night) because smoke doesn't have any 

natural emission that a normal camera could detect. Unlike video cameras, thermal sensors can 

detect fire heat day and night [8][9]; thus, they are a better choice for our goals. 

 

Figure 1.1: Fire and smoke at Lake Winnipeg, Manitoba, May 18, 2021 [10] 

The solution should not harm nature, while the main goal is to protect it! The process of 

using the heat sensors in the forest must not include installing towers or modifying the wildlife 



 

3 
 

whatsoever. Given those requirements, make one of the options is very defensible, and that option 

is to use drones. 

Drones can fly above the forest and cover a vast area while searching for any possible 

thermal anomaly. It is easy to deploy and, unlike maned airplanes, does not need any sophisticated 

infrastructure. So, using drones is an excellent approach. 

1.3 Thesis objective 

The main objective of this study is to design a drone capable of performing the task that is 

needed for fire detection, including autonomous flight and heat signature detection of the fire. 

Therefore, it is needed to design a flight controller, corresponding control software or the ground 

control station, a simulation environment to test the flight controller algorithms, and finally, test it 

in an outdoor environment and do the real-world experiments. 

The designed system can be used for any other drones, such as fixed-wing or rotary-wing 

or any other robotic systems, but in order to test the system consistency, a quadcopter drone is 

modeled to perform the required simulation tests in the same way a quadcopter has been designed 

and manufactured to perform the real-world tests. 

In the end, the outcome of this research is inspected be the result of both simulation 

(hardware-in-the-loop) and outdoor tests. 

1.4 Thesis contribution 

The final outcome of this research is three different products that can be used in other 

research too: 

1.  Design and manufacturing the operational autopilot hardware with all the requirements 

for the firmware and related software such as the ground control station. Besides, it could 

help other researchers to design their control boards to fit their projects. 

2. A unique hardware-in-the-loop simulation, which is exclusively designed for forest fire 

monitoring purposes, is another research outcome. The challenges that have been 
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addressed during this section of research (especially for interfacing) could help other 

researchers that intend to do the same. The thermal camera simulation was part of this 

challenging section. 

3. A simple algorithm is implemented to detect the fire location based on the 2D image 

coordination. This equation can be used for other applications. 

4. Most of the academic contributions of this research, like the unique C++ objective PID 

controller, are closely coupled with the computer science field, and considering the 

software development contribution of the research is as crucial as its mechanical aspects. 
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Chapter 2 
 

Autopilot 
 

2.1 The first milestone, the autopilot 

To design the autopilot, the mastermind of the flight, the final playground of our algorithm, 

was one of the trickiest steps of our approach. We had two options: to use an out-of-shelf autopilot 

and try to stitch our requirement to it or design from scratch. There some well-known open-source 

autopilot projects with an excellent online community that we could use; among them, Pixhawk 

(Figure 2.1) and Ardupilot (Figure 2.2) are the most dominant [11][12].  

 

Figure 2.1: Pixhawk autopilot board 

 

Figure 2.2: Ardupilot board 

Even though they show good potentials, specially Pixhawk with a more powerful 

microcontroller, we decided to design our own Autopilot hardware and software from scratch. 

There are two main reasons behind this decision.  
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The first reason is to have more flexibility. When we design the hardware and the firmware 

ourselves, we are not limited by somebody else's design requirements, and we do not need to search 

among hundreds of thousands of lines of codes (that most of them are not helpful for us at all) to 

debug an issue. We can modify any software and hardware pieces to suit our approach that is 

essential at the research and development stage.  

Besides, I have one visionary goal: designing the entire system to make it an industrial 

product and even mass-produce it that forces us to create everything from scratch and not use any 

particular library or anybody else's design.  To use an out-of-shelf autopilot does not suit any of 

our goals at all.  

One of the significant downsides of designing it myself is that it takes so much effort and 

experience. You have to read all the parts (such as sensors, microcontroller, power regulator, etc.) 

datasheets and application notes and apply the manufacturer's recommendation in the hardware 

design to avoid any elements having any interference on each other. After that, it comes to manual 

routing and designs the PCB tracks that need time, patience, and dedication. 

If you have not had any PCB or electronic hardware design background, I do not 

recommend it to you and even encourage you to use one of those two options and focus on the 

software aspects of your approach.  

The autopilot is called as AutopilotOne or APOne. The new design, APOne v1.7, is based 

on one of the author's older designs, APOne v1.1 (Figure 2.4 and Figure 2.3), but with a more 

recent and more powerful microcontroller.  
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Figure 2.3: APOne v1.1 PCB layout 

 

 
 

Figure 2.4: APOne v1.1 board and the PCB layout 

The new autopilot has some requirements: 

Based on our approach, we need to design a multipurpose autopilot that could control 

different platforms, including fixed-wing and rotary-wing drones. It needs to have at least 8 PWM 

or actuator control output. Having a three-axis accelerometer, three-axis rate gyroscope, three-axis 

magnetometer alongside a barometric pressure sensor. The accelerometer, gyroscope, and 

magnetometer are used to estimate roll, pitch, and yaw states (that we elaborate the methods); 
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therefore, it should be able to estimate it at least 1000 times a second; in other words, the sensor 

refresh rate should be greater than 1000Hz. It must have a serial port for GPS, another one for RF 

modem.  Since designing and integrating a hardware-in-the-loop (HIL) simulation is part of our 

approach, we need to consider a dedicated serial port for the HIL interface alongside a powerful 

debug port. 

2.2 Selecting microcontroller 

After defining the criteria and requirements of the system, the second step of designing an 

autopilot is selecting the microcontroller. APOne v1.1 uses an STM32F103CBT6 microcontroller. 

This microcontroller has a Cortex M3 core [13]. Even though the processing power is acceptable, 

the new microcontrollers such as Cortex M4 and M7 have a significant superiority: Floating Point 

Unit (FPU). FPU handles all mathematical calculations involving floating-point variables such as 

float (single-precision floating-point format) and doubles (double-precision floating-point format). 

Most of our controller and state estimator calculations involve some double-precision floating-

point variables; thus, it will significantly improve accuracy and speed if we use a microcontroller 

with FPU. Since Cortex M7 (STM32F7 and STM32H7 series) is a newer design, I decided to use 

a STM32F722RET6 as the microcontroller (Figure 2.5). The microcontroller has a 216MHz core 

clock, 512KB flash memory, 256KB of RAM, 8 Serial ports, 5 SPI ports, 3 I2C ports, 24 channels 

of 12-bit analog to digital (ADC), and numerous Timers (For PWM or DShot), which provides us 

a solid performance [14][15].  

 

Figure 2.5: STM32F722RET6 Microcontroller 
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2.3 Selecting sensors 

We should determine our platform attitude, heading, altitude (from sea level), and location. 

Thus we need to choose proper sensors for our flight controller. 

2.3.1 Attitude, heading 

To estimate the attitude and heading of the platform, we need to have a three-axis 

accelerometer, a three-axis gyroscope, and a three-axis magnetometer. The sensor that has been 

chosen at this stage is a TDK-Invensense MPU-9250 (Figure 2.6 and Figure 2.7). It has all the 

above sensors in a small package. It can calculate up to ±16g acceleration in XYZ direction, ±2000 

°/sec of angular rate in the three directions, and ±4800µT of the magnetic field around the sensor 

in three directions [16]. We have to keep in mind that those are the absolute maximum of our 

system; if we go more than that, it will saturate our sensors, and our data will be inaccurate. With 

this sensor and a decent algorithm, we can estimate the attitude and heading more than 1000Hz. 

The interface could be both I2C or SPI. SPI is suitable for our design since it is faster and more 

reliable since it uses a separate data line for TX and RX (full-duplex mode) [17].  

 

Figure 2.6: Axis of the Accelerometer and Gyroscope 

 

Figure 2.7: MPU-9250 Magnetometer Axis 
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2.3.2 Altitude 

To detect absolute altitude from the mean sea level, we need barometric pressure and the 

temperature. After reviewing numerous available sensors in the market, I decided to choose Bosch 

Sensortech BMP280 (Figure 2.8). It can sense from 300hPa to 1100hPa (the equivalent of -500m 

to +9000m above sea level) and has an internal temperature sensor with 0.01°C resolution. The 

relative accuracy of the sensor is ±1 meter. The measurement rate of BMP280 is up to 157Hz [18]. 

The interface could be either I2C or SPI. SPI is a better choice, just like the previous sensor. 

 

Figure 2.8: BMP280 

2.3.3 GPS 

The U-Blox SAM-M8Q GNSS receiver has been chosen for this platform (Figure 2.9). The 

module can provide concurrent reception of up to three GNSS systems, including GPS, Galileo, 

and GLONASS. The horizontal position accuracy of SAM-M8Q is 2.5meter and can offer up to 

18Hz [19]. Because we are at a historical time that the L5 GPS signal will be available for public 

usage soon, I recommend a newer module that receives L5 signals for the new design. The L5 

signal offers 0.3meter accuracy and more robustness and reliability. At the time of writing this 

thesis, the L5 signals are considered pre-operational [20]. 

 

Figure 2.9: SAM-M8Q GNSS module 
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2.4 Designing the PCB board 

2.4.1 Schematic design 

To finalize the autopilot hardware design, we need to design the printed circuit board 

(PCB). The first step is to design the schematics. The schematics are about the connection and 

relation of each element to the other components. For example, how the power system elements 

are connected to each other and how it will power up the microcontroller and the sensors (Figure 

2.10) or allocate our microcontroller pins (Figure 2.11). 

 

Figure 2.10: The APOne 1.7 power system 
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Figure 2.11: APOne v1.7 Microcontroller Pin Allocation 

On top of that, we have the microcontroller, which is the most sophisticated part of our 

hardware. Microcontroller schematic design takes a comprehensive study of the manufacturer 

datasheet, reference manual, and application note [15] for that specific model. To talk about the 

details are out of the scope of this thesis.  

2.4.2 PCB design 

After designing the schematics, we need to convert them to a physical entity. We must first 

define our board perimeters and size and then juxtapose each element regarding their functionality 

and relations. After this step, the board will be something similar to Figure 2.12. To finalize the 

board, we must draw the physical tracks (Figure 2.13). We must consider every single track's 

maximum current, voltage, frequency (if it is a signal), clearance, and board impedance.  
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Figure 2.12: APOne v1.7 PCB before connecting the 

components 

 

Figure 2.13: APOne v1.7 complete PCB 

2.4.3 Manufacturing and assembly 

After finalizing the PCB board and reviewing it carefully, we sent the file to be printed 

(Figure 2.14). The next step is to assemble the parts on the PCB (Figure 2.15). This step takes a 

lot of soldering has to be done by professionals. It is possible to use surface-mount technology 

(SMT) machines to assemble it, but it will be too expensive for this project. Therefore, all 

assemblies were done by the author of the thesis manually (Figure 2.16). 
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Figure 2.14: APOne v1.7 Printed board before 

assembly 

 

Figure 2.15: Final board 

 

Figure 2.16: APOne v1.7 

Board under a microscope 

2.5 Summary 

In this chapter, the procedure of designing and manufacturing the autopilot hardware is 

described. First, we define the criteria and then selected the microcontroller, sensors, and other 

parts. We design the system schematics base on each part's characteristics and behaviors. The next 

step was designing the PCB. After designing the PCB, we sent it to be fabricated and then 

assembled. This process was briefly explained, and some of the details about the board design and 

the electronic aspects were left out to make it easier to read. This autopilot design was based on an 

old design and the result of several years of research, development, and industrial experience of 

the author in the electronic field. We do not recommend going through this step if it is you do not 

have related experience. 
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Chapter 3 
 

Ground Control Station 
 

3.1 The definition of the ground control station 

A ground control station or a GCS is software that communicates with the autopilot using a 

wireless data link. It sends and receives configurations, commands, and the system status. Our 

GCS is a windows application that has been written in C# using Microsoft visual studio.  

The design criteria and desired functionality are as follows:  

1. It must have a serial port interface to connect to the RF modem. 

2. Sending the configurations such as mission waypoints, PID controller coefficients, the 

Output channels trim, etc.  

3. It visualizes data, for example, a speed indicator or an artificial horizon.  

4. It most records the sensors' data for further analysis in a proper format.  

Besides that, in our implementation, the GCS also controls the HIL simulation that we will 

elaborate on in the HIL chapter.  

3.2 Serial communication 

A serial port is a digital communication interface that transfers the data bidirectionally in 

full-duplex mode (simultaneously send and receive) sequentially, one bit at a time. Many devices 

are using UART (universal asynchronous receiver-transmitter) to implement serial 
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communication. In contrast with most of the serial communication interfaces like SPI or I2C, 

UART does not have a master clock source; It just has a TX line and an RX line. As their name 

suggests, TX sends the data, and RX receives the other side TX data (Figure 3.1) [21].  

 

Figure 3.1:UART port connection schematic 

Before starting the communication, both sides should know their baud rate to encode and 

decode the data properly. Baud rate is the number of bits that the UART port sends in a second. 

For example, 9,600bps (bit per second) or 115,200bps. A higher baud rate means higher 

communication speed. On the other hand, serial port communication with a higher baud rate is 

more susceptible to external noise and interference. In our case, we set the baud rate in the autopilot 

as 57,600bps(or 7,200 bytes per second); thus, we can simplify the serial port configuration in the 

GCS and only need to select the COM port number (Figure 3.2). 

 

Figure 3.2: GCS Serial port connection setting 

Since new computers and laptops do not have a physical serial port anymore(at least for 

regular laptops), a USB UART converter is used that works as a regular serial port. 

 

Figure 3.3: A USB UART converter 
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3.3 Configs 

An exclusive tab is implemented for the setting section to send the user configuration (Figure 

3.4). It sends the user configs and can read the existing config from the autopilot to verify the sent 

and saved configs. The autopilot saves the config data into the EEPROM memory to keep them 

permanently. For example, you can read the PID controller coefficients in the middle of a flight, 

change them, and check the system behavior and if the autopilot gets reset, it will read the saved 

config from EEPROM as soon as it starts, and the operator does not need to resend the config data. 

 

Figure 3.4: GCS Autopilot configs 

3.4 Visualization 

3.4.1 Indicators 

Flight instruments and indicators are components design to show some flight 

characteristics to the users in the most intuitive way [22]. For example, altimeter, airspeed 

indicator, vertical speed indicator, heading indicator, turn indicator, attitude indicator, etc. (Figure 

3.5 to Figure 3.10) 
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Figure 3.5: Altimeter 

 

Figure 3.6: Airspeed indicator 

 

Figure 3.7: Vertical speed 

 

Figure 3.8: Heading indicator 

 

Figure 3.9: Turn indicator 

 

Figure 3.10: Attitude 

Some of them are not necessary for our implementation, and some of them need to be 

changed to serve our purposes.  For example, instead of showing the platform altitude as a simple 

gauge, for this particular purpose, it is better to show a chart of altitude that gives the user a good 

intuition of altitude change and its history for a short period of time (20 seconds) (Figure 3.12). 

 

Figure 3.11: The GCS heading 

instrument 

 

Figure 3.12: The GCS Attitude 

indicator 

 

Figure 3.13: Altitude chart 

The implementation of the instruments was done using C# drawing 2D that contains some 

advanced two-dimensional and vector graphics methods [23]. For example, you can use methods 

like DrawLine, DrawRectangle, DrawString, DrawArc, DrawImage, FillPolygon, etc., to directly 

draw your shapes into your graphical object. 
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The GCS attitude indicator is a sophisticated combination of trigonometric function and 

calculations that were developed through the course of several other projects, and to explain it is 

out of the scope of this thesis, but the heading instrument has a more straightforward structure, and 

it is helpful to describe its implementation here.  

3.4.1.1 An instrument design case 

To design a heading indicator, two simple images need to be created: a heading wheel and 

a needle. The heading wheel has to be something similar to Figure 3.14. The heading needle could 

be just a vertical line, or if you want to give it some style, you can add an aircraft silhouette too 

(Figure 3.15). Both images have to have a proper alpha channel and transparency.  

 

Figure 3.14: Heading wheel 

 

Figure 3.15: Heading needle 

The method that draws the heading indicator is implemented in C# as: 

public void drawHeading(double heading, ref PictureBox headingPicture) 

{ 

    grHeading.Clear(Color.Transparent); 

    grHeading.DrawImage(hedingWeelImage, new Point(0, 0)); 

 

    rotationAnchorX = headingPicture.Width/2; 

    rotationAnchorY = headingPicture.Height/2; 

    beta = Atan(rotationAnchorY / rotationAnchorX); 

    d = Sqrt((rotationAnchorX * rotationAnchorX) + (rotationAnchorY * rotationAnchorY)); 

    deltaX = d * (Cos(heading - beta) - Cos(heading) * Cos(heading + beta) - Sin(heading) * 

Sin(heading + beta)); 

    deltaY = d * (Sin(beta - heading) + Sin(heading) * Cos(heading + beta) - Cos(heading) * 

Sin(heading + beta)); 

    grHeading.RotateTransform(heading); 

    grHeading.DrawImage(needleImage, deltaX, deltaY, needleImage.Width, needleImage.Height); 

    grHeading.RotateTransform(-heading); 
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    headingPicture.Image = grHeadingImage; 

} 

 

The first line of the method clears the graphic object and replaces it with a transparent 

pallet. The second line uses the DrawImage method to draw the heading wheel image (Figure 

3.14). The rest of the code uses trigonometric techniques to calculate the corresponding variables 

for rotating and the needle image and draw it back to the center of the image. For example, the 

result for a 45° rotation is depicted in Figure 3.16. 

 

Figure 3.16: The heading indication with a 45 degree heading. 

3.4.2 Map and mission planner 

Maps are a standard section of any GCS project. The GCS uses an interactive map to show 

the drone's location and setting the mission waypoints (Figure 3.17).  

 

Figure 3.17: GCS Indicators and the Map 

 It uses some well-known map provider images like Google maps, Bing maps, MapBox, 

etc., to provide the map image. It also can use a still image from other satellites or aerial imaging 

systems. There are two critical challenges here that need to be addressed:  Map calibration and 

data cache. 
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3.4.2.1 Map calibration 

The GCS needs to get the vehicle coordination to the corresponding location on the map 

and vice versa. If the GCS Map is not accurate enough, it may show the drone location wrongly 

and cause some confusion, but this is not the worst side. The worst side effect of an inaccurate 

GCS map comes into equations when you use that inaccurate map to send waypoints to the 

autopilot.  

The map could be calibrated using other maps and compare with the GCS map and 

calculate the calibration data if needed. The other method is to do it yourself and use an accurate 

GPS (possibly several different receivers) and determine several clear feature locations like trees 

or a crossroad location and calculate the calibration data. A combination of both techniques is 

more desirable overall. 

3.4.2.2 Map data cache for offline usage 

The test sites for aerial vehicles usually are outside of urban are, in some cases in remote 

are; therefore, the chance of having internet access or even cellular network access is meager. The 

GCS or all other parts of the system should be internet-independent and must be functional without 

internet access. The GCS map implementation should cache the map data on the hard drive. For 

example, it could read the map tiles while online and save them into a database as a blob and then 

retrieve them when the system is not online. Some map providers have restricted policies about 

usage and specifically about caching that all of them must be applied. For example, Google says:" 

Customer will not cache Google Maps Content except as expressly permitted under the Maps 

Service Specific Terms." [24].  

3.5 Muti-threading 

Multithreading is a means of doing different jobs simultaneously. Adding multithreading 

allows the software to run smoothly and efficiently. When the system is time-critical, and the real-

time capability is in the design criteria, considering multithreading is one of the solutions [25]. 

Imagin this function: 
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private void serialThread() 

{ 

    int serAval = 0; 

    byte[] tmpb = new byte[1024]; 

    exitSerial = false; 

    if (COMPort.IsOpen) 

    { 

        while (!exitSerial) 

        { 

            SAval = COMPort.BytesToRead; 

            if (SAval > 0) 

            {  

                COMPort.Read(tmpb, 0, SAval); 

                for (int i = 0; i < SAval; i++) 

                { 

                    // process the received data 

                } 

            } 

        } 

    } 

} 

It checks if the serial port is open then starts a loop to check if any data is available to read. 

If there was some available data, it will read the entire data buffer and sends it to the parser. If this 

method gets called in a regular single-thread system routine, it will freeze the entire software. To 

prevent it from happening, the method must be called on a separate thread. To run this method on 

a dedicated threat to the system, this part of the code is used: 

Thread mThread; 

mThread = new Thread(SerialThread); 

mThread.Priority = ThreadPriority.Normal; 

mThread.IsBackground = true; 

mThread.Start(); 

Furthermore, it has to run separate threads for each UDP server [26] (Simulator to GCS), 

UART (GCS to Autopilot), and the user interface (Drawing indicators, etc.) and exchange data 

between each thread simultaneously (Figure 3.18). One of the standard methods to implement 

inter-thread communication is queue buffer. Simply it is a first-in-first-out data buffer that the 

provider thread writes fils the data, and the consumer threads can read the data. To talk about lock 

mechanism and other concurrency issues are out of the scope of this article.  
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To implement such complex software with a single thread solution was simply impossible 

or showed inferior performance, and we achieve this acceptable real-time performance by 

considering the parallel tasks. To test the overall performance, we designed a test to calculate the 

maximum data refresh rate and control loop frequency. It sends dummy data from the simulator to 

GCS and then to the autopilot, and it sends it all the way back to the simulator itself; this is the 

actual data flow of the HIL simulation. The results are shown in Figure 5.1. 

GCS

Main Thread
Autopilot 

Communication  
(Serial Port) Thread

Simulator Communication 
(UDP) Thread

UI Thread

 

Figure 3.18: GCS threads 

Table 3.1: Tasking and communication performance 

Method Delay(Average) Refresh and control loop frequency 

Single-thread 94ms ~10Hz 

Multithread(shared mem) 1.6ms ~600Hz 

Multithread(UDP local) 2ms ~500HZ 

Multithread(UDP over 

ethernet) 

17ms 58.8HZ 

As it is shown in Table 3.1, While the single-thread performance is off the chart, the 

multithread implementation and shared memory as the bridge between the simulator and the GCS 

show superior performance. The UDP port shows a performance still in an acceptable range. We 

have still chosen to use a UDP port to run the simulation over a network using multiple computers 

for future development. Given the existing simple UDP performance, it shows promising capacity. 
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The rest of the GCS features, such as the data interface and the hardware-in-the-loop capability, is 

elaborated in their dedicated chapters. 

3.6 Recording data 

The GCS records the data that it receives from the autopilot. Since the data rate for different 

types is not equal, it makes a file for each data type. For example, the roll, pitch, and yaw are sent 

50 times per second or 50Hz while it sends the GPS and altitude just 10Hz; thus, it opens a file for 

50Hz data and another one for the 10 Hz data. Since it is hard to match and analyze the data in 

different files, it adds a timestamp to each data record. The GCS recording data format is CSV that 

can be read by Microsoft Excel. 

3.7 Summary 

In this chapter, the implementation of the ground control station is discussed. The design 

criteria have been described, and then described the serial port, the means of communication with 

the autopilot, explained baud rate, and the physical ports. The GCS sends the autopilot config that 

is explained how. After that, one of the sophisticated parts of the GCS, instruments, is elaborated 

briefly. Map and the corresponding challenges are the next topics. The benefit of multithreading 

was explained in the next section. The final section talks about how GCS records the data. 
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Chapter 4 
 

 

4 Hardware in the loop 

4.1 Hardware in the loop definition 

Hardware-in-the-loop (HIL) simulation is a practice that is used to develop and test complex 

real-time embedded systems. HIL simulation offers a test base for the system by adding the 

difficulty of the plant under control to the test system. The complication of the plant under control 

is involved in the tests and developments by adding a mathematical model of all related dynamic 

systems. These mathematical representations are referred to as the "plant simulation" [27]. 

The embedded system interacts with this plant simulation to perform the tests that are hards 

to perform in real circumstances. For example, a flight controller test base is an aircraft; The 

aircraft needs to fly and perform maneuvers that are not viable nor economic by a not-yet-

confirmed flight controller. HIL simulation reduces the development cost, duration, safety, and 

feasibility. The other benefit of using HIL simulation is to enhance the excellence of the testing by 

increasing the number and range of the testing. In short, In the hardware-in-the-loop test, only the 

plant and the feedback are simulated, and the rest of the system remains as similar as the real 

system. 
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Figure 4.1 HIL simulation diagram 

4.2 Plant simulation 

The plant is the system and its surroundings and their reactions to each other. For example, 

if the system is a space heater in a room, the heater is the object. The room and every other object 

in the room (possibly the other heat sources) are the environments; the heater voltage is the input, 

and the room temperature is the output. The object and the environment are coupled together and 

have influences on each other. The plant that is simulated for the purpose of this thesis is a drone 

flying in a forest-like area with a fire in the area. For simulating the plant, a mathematical model 

of the object is needed. In this case (a flying object), it is called flight dynamic model. Furthermore, 

to make it interactive, a method is needed to visualize the environment and the plant. Sometimes 

it is simple; for example, in the case of the space heater, it could just show the room temperature 

(a simple text). But when the system is too complex, it needs some sophisticated approaches. To 

visualize the system behavior of a flying object, a 3D environment must be designed alongside a 

flight dynamic model that estimates the drone behaviors. 

4.2.1 3D environment 

Having an excellent real-time visual interface gives the user better insight into system 

behaviors. A 3D interface that shows the system behaviors in a forest-like environment in real-

time is needed for this system. Such a 3D environment with this sophisticated visual aspects as 

forest and fire (shown in Figure 4.3) needs a complete 3D engine or a Game engine. A game engine 

handles all the low-level tasks, including the 3D rendering, loading the 3D models, the physics 
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engine, networking, memory management, threading, etc. For the purpose of this research,  the 

Unity game engine has been chosen to implement the 3D environment because of the ease of use 

(especially for prototyping), more resources on the internet (3D models like trees or plants), better 

online community [28]. The other game engine that could have been used is The Unreal Engine 

that follows the same principles. The Unreal Engine takes more disk space and ram besides a long 

time to start; on the other hand, it has a better graphical rendering capability. Considering the pros 

and the cons, we decided to use The Unity engine as the workhorse behind the 3D environment. 

Like the designed GCS, the Unity engine uses C# as the intermediate language that helps to 

improve the consistency of the implementation and the codebase. Since the system is too 

complicated, it is better to consider a simpler environment to test the system behavior. The first 

stage of the 3d environment was just a simple plane with a platform for taking off and landings 

(Figure 4.2). A simpler environment helps to eliminate other components and parameter effects. 

 

Figure 4.2: First stage of the 3D environment implementation 
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Figure 4.3: Fire and forest-like environment 

4.2.2 FDM 

We presume our drones as rigid-body, and to predict our system behaviors and fulfill our 

flight dynamic model, we need a rigid-body solver. There are many well-known implementations 

of flight dynamic models, especially for quadcopters [29]. In the course of this thesis, it is decided 

not to reinvent the rigid body solver and use a confirmed out-of-the-shelf solver in order to 

emphasize the efforts on the other aspects such as interfaces and real-time capability. Therefore, 

the generic rigid-body dynamic solver built in the Unity engine is used [30]. The Unity physics 

engine is an integration of the Nvidia PhysX engine. Nvidia PhysX is the leading physics engine 

under the hood of most of the video games in the industry and shows an astonishing performance 

[31]. The object definition is straightforward, the rigid-body object's physical characteristics such 

as weight, mass, and inertia have been defined, and then the corresponding forces and moments 

are applied according to the drone's nature (quadcopter, hexacopter, or even a rover) afterward the 

6DOF solver estimates the object's motion and state. Figure 4.4 shows how the drone's rigid body 

design has been assumed. The green outlines show the actual rigid-body weight distribution. 

Figure 4.5 shows the corresponding force and moments regarding the actuators on the quadcopter 

we used as a test case. Each motor makes a lift force and a moment. In our approach, like other 
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popular designs, The moments have the same direction on each axis and oppose the other side to 

compensate for each other's momentum.  

 

Figure 4.4: Drone rigid body design and weight distribution 

 

Figure 4.5: Force and moments 

Besides estimating the 6DOF dynamics, our simulator can handle the object collision [32], 

whether it is the behavior of the ground colliders (landing gears) or the reactions between the flying 

objects (mid-air collisions), which is one of the key benefits of our implementation. In the other 

word, unlike most of the regular flight dynamic models that simulate each of flying objects in an 
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isolated space and therefore have no mid-air collision estimation capability, in this 

implementation, not even it can estimate multiple objects dynamic simultaneously, but also it is 

possible to simulate their collision and impact reactions. Therefore, we can simulate every aspect 

of a cooperative flight mission in the future. For example, Figure 4.6 shows two drones colliding 

with each other while landing on the platform (ground colliders). 

 

Figure 4.6: An example of two drones colliding with each other 

4.3 Sensor simulation 

The plant outputs the system state that is not necessarily similar to the desired feedback. For 

example, if the autopilot anticipates the system position in the spherical coordinate system using 

latitude, longitude, and elevation (like what it gets from the actual GPS module) and at the same 

time, the plant calculates it in earth-centered-earth-fixed (ECEF) Cartesian coordinates in 3-space 

[33]; it has to be converted in order to close the loop properly. A group of functions is needed to 

convert them to the system feedback. Besides the output format, the sensor refresh rates need to 

be the same. For example, the actual GPS sensors refresh rate is 10 Hz, while the simulator can 

calculate it more than 1000 Hz. A refresh rate adapter needs to be implemented because there is 

less or no limitation on the simulation rate (just limited by the hardware capacity). The refresh rate 

adapter just drops the data till the next time slot for the sensor output. For example, if it is intended 

to drop a 1000Hz data rate to a 10Hz, it drops 99 data frames for every single data that it sends. 
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4.3.1 Fire, thermal camera, and computer vision simulation 

To simulate a fire detection system, you need to implement fire in your simulation 

environment. Since we do not want to research or investigate the fire behavior itself, it is chosen 

to simulate as much as needed to reduce processing power. If we tried to simulate the fire behavior 

ultimately, it requires much bigger processing power, and most of the CPU and GPU usage would 

have been occupied by that task and not the HIL simulation. Given that any algorithm needs to be 

run in real-time and any other non-real-time algorithms (even the accurate ones) are not viable 

solutions for HIL simulation, any possible yet decent form of implementation may seem 

acceptable. Therefore, the fire system is modeled as an animation captured from a real fire. This 

fire system is provided by Unity as part of their particle system [34]. We have total control over 

the fire behaviors; namely, the fire position can be random or programmed, it can grow or diminish, 

and it emits smoke or not. A random fire position helps us to find any possible corner or edge cases 

in our algorithms. Now we needed something to detect the fire and distinguish over forest 

environment.  

Since one of the goals is to test our actual computer vision algorithms, the simulated camera 

output has to be kept similar to the original format of the real camera on the platform. The image 

data structure and the pixel format are similar to a greyscale image. There are several different 

image formats for thermal cameras (Shown in Table 4.1). We have chosen the White Hot format 

because it was easier to process and has a smaller image size. It displays the warmer objects 

brighter and cooler zones darker. In our case, it has an 8-bit format (a 0-255 integer for each pixel). 

In this image format, the absolute black is 0, and the absolute white is 255.  To test some basic 

computer vision algorithms such as threshold or the object centroids and detect the fire 

coordinations according to the corresponding pixels extracted from the thermal camera, we send 

the simulated camera image to the flight controller to check if the image processing algorithms run 

efficiently enough on the autopilot microcontroller and do not obstruct its critical tasks such as 

stabilizing and navigation. The result and the implementation of this function are described in the 

case study section of this thesis. 
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Figure 4.7: The thermal camera view of drone 

 

Figure 4.8: Simulated thermal camera image 
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Table 4.1: Thermal image formats 

Format Color pallet Image sample 

White Hot 

 

  

Arctic 

  

Iron Bow 

  

4.3.2 Adding noise and induced fault 

To challenge the system controller and make it more realistic, we can add white noise to the 

data before sending it to the autopilot. The noise model that we used is a white Gaussian noise 

implanted as a part of the GCS HIL interface and controlled by the user in real-time. Besides, the 

function that sends the data can make faulty data too. For example, you can cut a sensor data stream 

as if it was damaged. This particular part helps us to design and implement fault-tolerant control 

algorithms for the subjected system. Also, there is a normally disabled ballast weight on each drone 

that could be enabled in order to make the drone weight distribution slightly unbalanced in order 

to test the controller behavior. 
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4.4 Summary 

In this chapter, the implementation of the simulator is elaborated. In the beginning, the basic 

idea behind this type of simulation is discussed, and the reasons why it is needed are also described. 

Second, the different part of the simulation is introduced. In the next section, the designed 3D 

environment is discussed, and the reason why Unity Engine was selected to perform the low-level 

graphical tasks is elaborated. The next section describes the flight dynamic model that is used for 

the simulation and talks about the 6DOF and collision solver. The last section is about the sensors' 

simulation principles. The methods used for the visualisation of the fire is elaborated. Furthermore, 

the method for simulating a thermal camera image is discussed. In the end, the system disturbances 

such as noise and sensor failure are discussed. 
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Chapter 5 

Interfaces 

5.1 The interface explanation 

This unmanned system has three separate components: the autopilot, GCS, and the 

simulator. Unlike the autopilot that is a physically separate device, the GCS and the simulator are 

software running on the same computer. These three components should exchange data bi-

directional instantly. Time delay is a critical matter here. Any measure that leads to eliminating 

communication delay has to be taken into account and investigated. Compressing the data and 

making them as shorter as possible alongside multi-threading implementations are our main focus 

and most viable solutions to reduce the communication delay time between components. 

As the relation of the components has been depicted in Figure 5.1, the GCS uses the user 

datagram protocol (UDP) [26] port to exchange data with the simulator. On the other side, the 

GCS utilizes a high-speed serial port to the autopilot hardware and also another serial port with 

regular speed to transfer data during flight using the RF modem. In the following sections, both 

types of communication are discussed. 
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Figure 5.1: The components' connection diagram 

5.2 Simulator to GCS interface 

The simulator and the GCS are both windows applications running under the same computer 

at the same time. These two applications need to communicate and transfer data bi-directionally 

(Figure 5.2). There are several well-known and confirmed methods for communication technics to 

serve the purpose in this circumstance: UDP port and shared memory.  

 

Figure 5.2: GCS to Simulator interfacing 

5.2.1 UDP Port 

In computer networking, the UDP is one of the main members of the Internet protocol (or 

IP) suite. With UDP, computer applications, whether in the same device or over a network, can 

transfer data, in this case, referred to as datagrams, to other applications on the same network 

address or IP. Unlike some other means of network communication, Prior communications are not 

necessary for setting up the communication. 
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UDP uses a simple connectionless communication model with a minimum of protocol 

mechanisms that keep the interface fast and eliminate unnecessary latencies. UDP provides 

checksums for data integrity to keep the data reliable, especially for critical purposes at the lower 

level.  

It also uses port numbers for addressing different functions at the source and destination of 

the datagram. For example, the user can set up different pip lines of data to the same address with 

the different port numbers that could be anything from 0-65536 (if it was not occupied already), 

and there would be no data conflict. 

Like any other method that has its own pros and cons, UDP has its own downside too.  It 

has no handshaking dialogues, thus exposes the user's program to any unreliability of the network 

layer. For example, if a data packet fails, there is no retry mechanism at the lower level or any 

notification; it is just like the serial port; it sends and forgets the data. If the data transfer system 

needs more reliability, the protection mechanism has to be implemented at a higher level by the 

user or consider a TCP/IP communication that has more delivery protection. However, the TCP/IP 

is not suitable for this purpose since it has a much higher latency than the UPD port. 

Table 5.1: UDP datagram header 

Offsets  Octet  0  1  2  3  

Octet  Bit   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  

0   0  Source port Destination port  

4  32  Length Checksum  

Table 5.1 shows the UDP datagram header structure. A UDP datagram has a datagram 

header (4 Bytes) and a data section that is the user data. The UDP datagram header consists of 4 

fields, each of which is 16 bits (2 bytes). The user application data follows the header. 

Source port number shows the sender's port, and it is possible to use it if the other side 

waits for an answer. It is possible to leave it zero if not applicable. The destination port number 

contains the receiver's port, and it is necessary; it tells the destination address. Imagine a letter or 

a parcel; if it does not have the sender's address, it would be a dead end. The length determines the 

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
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length of both the UDP header and UDP data. The checksum field that its principals and basics are 

described in its section could be used for the error protection mechanism of the data. 

5.2.1.1 UDP cummincation implementation in C# 

Since both the simulator and the GCS are written in C#, we describe a simple UDP 

communication in C#. The communication structure contains a listener and a sender. The listener 

is called the server, and the sender is called the client. In the example, the server listens on the 

2021 port, and if it gets any data on the port, it sends a packet with a constant string containing 

"received" work as the acknowledgment. It stores the data in RecvBuffer for further process or 

parsing. 

UdpClient udpServer = new UdpClient(2021); 

IPEndPoint remoteAddress = new IPEndPoint(IPAddress.Any, 2021);  

Byte[] ByteReply = ASCII.GetBytes("Received!"); 

while (true) 

{ 

    Byte[] RecvBuffer = udpServer.Receive(ref remoteAddress); 

    Console.Write("The data is receive from " + remoteAddress.ToString()); 

    udpServer.Send(ByteReply, ByteReply.Length, remoteAddress); // reply back 

} 

 Now a sender is needed on the other side to communicate with the server. Since both 

applications (GCS and simulator) are running under the same computer, the server’s address 

should be 127.0.0.1, which is the current localhost's address. 

Byte[] ByteToSend = ASCII.GetBytes("Data from the client!"); 

UdpClient udpSender = new UdpClient(); 

IPEndPoint serverAddress = new IPEndPoint(IPAddress.Parse("127.0.0.1"), 2021); 

// 127.0.0.1 is the server ip address. 

client.Connect(serverAddress); 

client.Send(ByteToSend, ByteToSend.Length); 

Byte[] receivedData = client.Receive(ref serverAddress);  

// receivedData has to be equal to "Received!" if everythings goes well. 
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Console.Write("reply data from server " + serverAddress.ToString()); 

This snippet code sends sample data to the server and waits for the replay. When the data 

is ready to be transferred, it has to be translated into a data packet using a convention called the 

protocol. The protocol is elaborated in the protocol section. 

5.2.2 Shared memory 

Shared memory is another method for inter-process data transferring. In computer science, 

shared memory is a memory that may be concurrently used by multiple applications to provide 

data communication among them. Shared memory is one of the most efficient methods to pass 

data between independent processes. In windows, shared memory uses a method called Memory-

Mapped Files. A Memory-Mapped Files maps the contents of a file to the memory. There two 

types of Memory-Mapped Files: Persisted and non- Persisted. Persisted Memory-Mapped Files 

make a memory-mapped object from an actual file on the physical disk; the file is readable by the 

user and has an accessible address. On the other hand, the non- persisted method does not create 

any file on disk thus is more desirable for the purpose of this research.  

5.2.2.1 Shared memory implementation in C# 

In this section, the method is briefly explained using a simple example. Imagine there is a 

program called DataWriter that writes the data to the shared memory and another program caller 

ProgramReader; the implementation could be similar to this part of the code: 

The ProgramWriter: 

using system;   

using System.IO.MemoryMappedFiles;   

 

class DataWriter 

{   

    static void Main()   

    {    

        MemoryMappedFile mmfObj =  

MemoryMappedFile.CreateNew("ThesisTest", 1000);  // 1000 is the 

size of the object 

        MemoryMappedViewAccessor accessorObj = mmfObj.CreateViewAccessor(); 

        for (int i =0;i<100;i++){ 
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            accessorObj.Write(i, 0x41); // 0x41 = 65 = A 

        } 

        Console.ReadLine(); // Wait for a keyboard input. 

        accessorObj.Dispose();   

        mmfObj.Dispose();   

    }   

}  

This program creates a non-persisted shared memory object and writes the ASCII character 

"A" or binary value of  0x41 to the memory and repeats the same thing 100 times for 100 

consecutive addresses. Now we need another process to read the data. 

The ProgramReader: 

using System;   

using System.IO.MemoryMappedFiles;   

class ProgramReader  

{   

    static void Main()   

    {   

        MemoryMappedFile mmfObj =  

  MemoryMappedFile.OpenExisting("ThesisTest");   

        MemoryMappedViewAccessor accessorObj = mmfObj.CreateViewAccessor(); 

        int tmp =0; 

        for (int i =0;i<100;i++){ 

            tmp = accessorObj.ReadByte(i); 

            Console.WriteLine("The value in {0} is {1}",i, value);  

        } 

        accessorObj.Dispose();   

        mmfObj.Dispose();   

    }   

}   

This program accesses a non-persisted shared memory and reads the ASCII character in 

the memory, and prints it in the console window. If everything goes well, it should read the same 

100 "A" characters. 
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These examples were simplified for describing the method. A decent implementation has 

to use a lock mechanism to prevent processes from interfering with each other. The lock 

mechanism technique is out of the scope of this thesis [35]. 

In the section 3, the two methods were compared, and the reason for choosing UDP over 

shared memory was explained. Also, in section 3, multi-threading was briefly elaborated, and its 

necessity for this research was discussed. 

5.3 GCS to autopilot interface 

 

Figure 5.3: GCS to Autopilot interfacing in HIL mode 

In section 3, the method for communicating with autopilot at the physical layer was briefly 

explained. In this section, the concepts and the principles are elaborated. There are two serial ports 

linking autopilot to the GCS: The telemetry link and the HIL link.  

5.3.1 The telemetry link 

The telemetry link is the ordinary serial port with a medium baud rate (57,600bps). This 

serial port could be coupled with an RF modem (Figure 5.4). For RF modems, when the Air baud 

rate increases, the link quality decreases. In other words, higher data rates cause more data loss, 

and the maximum range of the wireless link gets decreased; thus, a trade-off between range and 

data rate has to be chosen. 
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Figure 5.4: Wireless data module 

To optimize the telemetry data rate, an optimized refresh rate must be considered. For 

example, the GPS module sends 10Hz of positioning data to the flight controller; even though it is 

necessary for the navigation controller, only 1Hz of that data is needed on the ground since it just 

has monitoring purposes. For another instance, the flight controller estimates the roll, pitch, and 

yaw 1,000 times per second (while it is even impossible to send this big data size via a wireless 

link) for the ground control operator, even 10Hz of attitude data is enough. 

5.3.1.1 Half-duplex radio link  

Another important aspect of wireless telemetry is that almost all inexpensive data modules 

have a half-duplex interface. Unlike the cable data transfer that is full-duplex, a half-duplex 

interface can only send or receive at a time. In other words, while it sends data, it couldn't receive 

any data and vice versa. 

The strategy to tackle these issues is to send and receive data in an ask and response fashion. 

One of the sides – GCS here – must be chosen as the master or the moderator. The moderator asks 

the other side for data and waits for the answer. The slave does not send any data unless was ask. 

For example, if the autopilot wants to send attitude data to the GCS and the GCS decides to send 

config data simultaneously, one of them would be lost; the solution is to let the GCS ask for attitude 

data if needed and do not ask for it when it needs to send data to the autopilot. In other words, the 

GCS decides when autopilot sends data to make sure it does not lose any data. 
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5.3.2 HIL link  

The GCS has another serial port connected to the flight controller, the HIL link. The HIL 

link is only used during HIL simulation and has no usage during a normal flight. Since the HIL 

serial port, unlike the telemetry link, uses a cable and also HIL simulation would be done under a 

controlled lab situation, it is less likely to get interference from surroundings; thus, it is possible 

to use higher baud rates (even up to 921,600 bps). Because it is a full-duplex communication does 

not need to ask-and-response schema and can send and receive simultaneously.  

The data packet rate between FDM and the GCS is 500Hz using a data frame that contains 

all the data we need to for the HIL. We have to keep in mind that the effect of the data refresh rate 

is significant, too; it has to be closer to the actual situation. If the data or control loop of the 

simulation and real-world situation has a significant difference, the result might be useless. For 

example, for the positioning data from the GPS module, we have a 10Hz-18Hz maximum of that 

data; if we send 500Hz of positioning data to the autopilot in the simulation, our simulation result 

won't be accurate at all and may show some false good results. To address this requirement, we 

send a 500Hz chunk of data, including simulated sensor data such as roll, pitch, and heading, plus 

a 10Hz of other data such as latitude, longitude, altitude, speeds, etc. that is closer to our actual 

sensors.  

5.3.3 Data compression 

One of the other methods to reduce latency is to keep the data frames as shorter as possible. 

But sometimes, the data frame has to be bigger than a certain size. For example, if the autopilot 

should send a floating-point number like [-145.264862060546875], it takes 20 characters/bytes; if 

any of those numbers get truncated, the accuracy decreases. To reduce the size without losing the 

accuracy, a lossless compression method must be used. To use a binary protocol to compressed 

the data frame as much as possible is one of the simplest yet efficient techniques. The binary 

protocol uses the same format that the compiler uses to store the data. For example, if you want to 

send a floating-point number like the latitude and longitude in the uncompressed format, it takes 

20 bytes in an average case for each, while the same data in binary form only needs 4 bytes in all 

cases (Table 5.2). 



 

44 
 

 

Table 5.2: Text and binary format comparison 

Format Data Lenght 

Text -145.264862060546875 20 bytes (average cases) 

Binary 0x[C3 11 43 CE] 4 bytes (all cases) 

5.3.4 Protocols 

The protocols are our convention of data exchange. It determines the data structures. Unlike 

packet or payload base communications, the serial port does not have any built-in frame structure; 

the smallest unit in the serial port is a byte. The serial port works as a data stream. It sends the data 

frame byte by byte. A method is needed to determine the beginning of each frame. The 

implemented protocol has preambles, receiver ID, message ID, Data payload, and the checksum 

(Table 5.3). 

Table 5.3: GCS to Autopilot data transfer protocol 

 Preamble* Receiver ID Message ID Data length Data Checksum 

Lenght 3 Bytes 1 Byte 1 Byte 1 Byte = Data length 1 Byte 

*Preamble is always 0x7096AC  

5.3.4.1 Preamble 

 For this thesis research, a three bytes preamble method is used. Each frame of data has the 

same preamble; here, it is 0x70, 0x96, and 0xAC. A safe preamble has three different bytes. The 

listener reads the streams until it gets the three bytes in the right order. After that, it starts to deal 

with the rest of the data as the message body. In some cases that the protocol length is not constant 

and does not have any length indicator, a closure is needed too. Closure works the same as 

preamble but is at the end of transmission and must be different from the preamble. 

5.3.4.2 Receiver ID 

The next byte after the preamble is the receiver ID. Receiver ID is an 8-bit (0-255) indicator 

that determines whether the data belongs to the current receiver or not. To have multiple aerial 

systems or, in general, multiple agents, a receiver ID has to be explicitly assigned to all components 

since all the system members are getting the data on the same wireless link on the same frequency 

simultaneously. The master system, the GCS, always has zero receiver ID. For example, if a system 
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has one GCS and three aerial systems, the GCS ID is zero, and the rest are 1, 2, and 3; if GCS 

wants to send data to the #3, it sends the data frame with the receiver id equal to 3. As mentioned 

earlier, all the other receivers get the message, but #1 and #2 drop it. The #3 runs it and sends the 

result (or the acknowledge message) to the GCS with a receiver ID of zero that all other units 

ignore. 

5.3.4.3 Message ID 

The next byte after the receiver ID is the message ID. Each data frame has an 8-bit message 

ID. The message ID determines the frame data structure. For example, the message ID of 0x1D 

belongs to attitude data. After parsing the message ID, A state machine decides how to decode and 

verify the data. The data frame format is shown in Table 5.3. 

5.3.4.4 Data payload 

The data payload contains a series of bytes (the data body) and a length indicator. Since 

each frame has its length and is not constant, a length indicator is needed. The length indicator is 

an 8-bit integer (0-255) that determines the data body length and comes at the beginning of the 

data payload. For example, if the data body contains n bytes, the data payload is: 

Table 5.4 Data Payload 

 Length indicator 1 2 …. n-1 n 

Data Payload n 𝐷0 𝐷1 …. 𝐷𝑛−2 𝐷𝑛−1 

Keep in mind, n can't be more significant than 255; thus, the data body length must be less than 

255. 

5.3.4.5 Checksum 

  A critical part of the implementation is to verify the data on each side. A ubiquitous method 

to fulfill this requirement is to add a checksum, a small attached data calculated from the sending 

data before sending. When a unit (GCS or Autopilot) receives the message, it re-calculates the 

checksum from the received data and compares it with the received checksum; if it was the same, 

it releases the data for parsing in the data refiner; otherwise, it drops it. For example, if the 

checksum operator is summing all the data and the data frame contains six bytes of some sample 

data, in that case, it  has: (Table 5.5)  
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Table 5.5: checksum calculation 

 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 Checksum 

Data 10 11 12 13 14 15 10+11+12+13+14+15 = 75 

Now let say it got a defective data frame due to a bad data link (𝐷3 should have been 12, 

but it got zero) 

Table 5.6: Wrong checksum sample 

 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 Received checksum Calculated Checksum 

Data 10 11 0 13 14 15 75 10+11+0+13+14+15 = 63 ≠ 75 

Since the received checksum (75) is not the same as the calculated checksum (63), it drops 

the frame. 

In a real case, the checksum operators are sophisticated algorithms like CRC32, CRC16, 

or Fletcher-32. The most common algorithms are 32bits (4 Bytes), but since we needed the shorter 

data length and calculation speed, we have to sacrifice performance over speed. Our checksum 

operator is to XOR all of the bytes in the data frame. XOR shows a significant performance while 

compering with its easiness. It is just  8-bit. While XOR operator is enough for our hardware-in-

the-loop simulation purposes, for a real-world application, it's better to implement something more 

reliable like CRC32 or even CRC64, or if it is supercritical or has a long data frame, consider 

SHA256 algorithm. 

5.3.4.6 Encryption 

While using a wireless connection, the data signals do not go just to a receiver; it transmits 

to space omnidirectionally. It opens a loophole in the system that allows other unauthorized 

stations to access the data, read the telemetry data or, in a more harmful way, get control of the 

platform from the operator by hacking the protocols. Encryption is a method to keep the system 

data safe and secure. It can make the data unreadable for unauthorized receivers. For example,  

256-bit AES is one of the widely used techniques. The Advanced Encryption Standard (AES) is a 

standard for encrypting electronic data announced by the U.S. National Institute of Standards and 

Technology (NIST) in 2001 [36]. The implementation of 256-bit AES is part of the future work of 

this thesis since all the research phases have been done in a controlled area but are part of future 

implementation. 
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5.4 Summary 

In this chapter, the interfacing between the simulator and the GCS and GCS to autopilot 

hardware was elaborated. Different inter-application and inter-process communication methods 

were discussed, and the implementations were briefly described. The performance of the methods 

was compared, and the reason why the UDP port was chosen is explained. Furthermore, the 

wireless telemetry link characteristics were described. RF modem half-duplexing issues were 

explained, and the solution was discussed. To fullfile this chapter, the data protocols were 

explained. The methods used for sending the payload data, identifying the receiver, verifying the 

correctness, and encrypt the data were discussed. 
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Chapter 6 

 

Autopilot Firmware 

 

6.1 Firmware definition 

In computer science, firmware is a specific type of computer software that performs the low-

level regulation for a device's specific hardware. Imagine the firmware as software that runs on 

embedded hardware and does not need a desktop PC or any other desktop-level frameworks. 

Firmware (such as the microcontroller of a robot, washing machines, or a smart fridge) may 

contain only essential functions of a device and may only deliver services to higher-level software; 

in this case, an autopilot has to have a highly sophisticated structure. It performs the control 

algorithm, communication tasks, data acquisition functions (reading sensors), state estimation, and 

etc. [37][38]. 

To design the firmware, especially for such a critical application, the documents from the 

manufacturer must be studied carefully. Usually, some data about the registers and peripherals 

have a very high level of granularity and need a considerable background knowledge of the topic. 

Elaborating on the full implementation of the firmware is out of the scope of this thesis and may 

include more computer science material that is not the goal of this thesis; therefore, it is elaborated 

in the three most important levels: choosing the right integrated development environment (IDE) 

and the debugger, implementation of the communication tasks, implementation of the controller, 

and data acquisition. 
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6.2 IDE and debugger 

The first thing you need to write your firmware is the correct IDE and debugger. Usually, 

the chip manufacturer provides the options, and you have to choose among them. In this case that 

a STM32F7 series MCU is used, there are several major options for the IDE, including MDK 

ARM, IAR Embedded Workbench, Arduino Pro IDE, and the STM32CubeIDE. The cost of each 

IDE is described in Table 6.1. 

Table 6.1: The avalibale IDEs for STM32s 

IDE name Supplier Cost 

Keil MDK Arm Keil 4200 CAD/Year 

IAR Embedded Workbench IAR 5995 CAD 

Arduino Pro IDE Arduino Free 

STM32CubeIDE ST Free 

Even though the Arm Keil MDK and IAR Embedded Workbench have astonishing 

performance and debugging toolsets, their licensing cost is not affordable for this research. 

Therefore the next two options seem more rational. Arduino Pro IDE is a lightweight software and 

has a good online community; however, it does not support the professional debugging capabilities 

that the STM32CubeIDE provides; thus, STM32CubeIDE has been chosen for the purpose of this 

research.  

The next thing that needed to be chosen is the debugger. The debugger is hardware that 

connects and flashes the microcontroller. The debugger is a bridge between IDE software and the 

microcontroller. It helps to see the microcontroller's behavior in real-time; It helps you to monitor 

the registers and variables. STMicroelectronics, the MCU manufacturer, recommends to use ST-

link series debuggers that have a good performance and is very affordable; it costs 45CAD. Figure 

6.1 shows the ST-Link V2 Debugger. 
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Figure 6.1: ST-Link V2 

There are several ways to connect and debug the microcontroller. For the purpose of this 

research, the serial wire debugging (SWD) port is used because it needs less wiring comparing 

with JTAG or other debugging methods. It just needs a three-wire connection. Figure 6.2 shows the 

SWD port schematics that have been designed into APOne v1.7 hardware. 

 

Figure 6.2: SWD connection 

6.3 Communication 

For communicating with the GCS and HIL two UART port is used as it was described in 

Chapter 5, one for GCS wireless link and another one dedicated to HIL simulation. In this section, 

the protocol implementation is elaborated and used as a sample to fulfill the task. Using the UART 

port on the MCU at the peripheral and register level has a high degree of complexity that is skipped 

in order to emphasize the more important aspects. 

The programming language the is used for the firmware is C++. One of the important 

behavior of C++ that needs to be discussed before describing the data conversions is bitwise 

mathematics and bitshift operators. 
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6.4.1 Handling bitwise operators in C++ 

There are 6 different bitwise operators in C++: AND, OR, XOR, Left Shift, Right Shift, 

NOT show the symbols. 

Table 6.2: Bitwise operators 

Operator Description Example 

& Bitwise AND: The result of AND is 1 only if both bits are 1 a&b gives 1 

| Bitwise OR: The result of OR is 1 if any of the two bits is 1 a|b gives  13 

^ Bitwise XOR: The result of XOR is 1 if the two bits are different a^b gives  12 

<< 
Left shift: In C or C++ takes two numbers; left shifts the bits of the first 

operand, the second operand decides the number of places to shift. b<<1 gives  18 

>> 
Right shift: In C or C++ takes two numbers; right shifts the bits of the first 

operand, the second operand decides the number of places to shift. b>>1 gives  4 

~ Bitwise NOT:  Takes one number and inverts all bits of it ~a gives  250 

 In all the examples, a is 5 and b is 9 

6.4.2 Data handling 

The output of the autopilot data parser is a byte array. A byte array is a series of bytes that 

needs to be converted to meaningful data. To convert the byte array, two methods can be used: the 

bitshift method and the memcpy method. 

6.4.2.1 Bitshift approach 

The bitshift technic contains some manual data handling. An example of bitshift technique 

to construct a 32-bit integer from a 4-byte array is presented below: 

a  = (bytesIn[0] & 0xFFFFFFFF); // No shift 

a |= (bytesIn[1] & 0xFFFFFFFF) << 8 ; 

a |= (bytesIn[2] & 0xFFFFFFFF) << 16 ; 

a |= (bytesIn[3] & 0xFFFFFFFF) << 24 ; 

It may seem simple, but it gets too complicated and error-prone when the structure gets more 

sophisticated. 
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6.4.2.2 Memcpy approach 

In this approach, it uses memcpy function to cast the data to the variable. No knowledge of 

data type is needed. The data and the destination type have to be the same. It is simple and fast. 

An example of memcpy technique to construct a 32-bit integer from a 4-byte array is presented 

below: 

int a =0; 

memcpy (bytesIn, &a, sizeof(a)); 

A simple usage of this method is to convert the transferred HIL data to flight data of the 

autopilot. Imagine the flight data as a C++ struct defined as follow: 

typedef struct _flightdata 

{ 

    float roll; 

    float pitch; 

    float heading; 

    float Lat; 

    float Lon; 

    float Baro_Alt; 

    float GPS_Alt; 

    float GSpeed; 

    float ASpeed; 

    float SidS; 

    float AoA; 

    float ax; 

    float ay; 

    float az; 

    float p; 

    float q; 

    float r; 

    int WPIndex; 

    int WPtotal; 

}FlightData; 

To convert it using the bitwise operators takes too much effort and may produce some errors. 

But with the memcpy technique, it will be easy and error-proof as far as the data format is correct. 

A simplified converter would be something like this: 

FlightData fdata; 

 

void calcHIL(uint8_t bytesIn[],uint8_t frmlenght) 

{ 

    if (frmlenght<sizeof(fdata)){ 

        return; 
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    } 

    memcpy(bytesIn, &fdata, sizeof(fdata)); 

} 

Both these approaches are useful and have to be used with caution. None of the above 

approaches are reliable unless a complete unit test verifies them. Finally, a good data set for the 

tests need to be prepared and be used to verify the method implementations. 

6.5 C++ controller implementation 

The controller that is implemented in the autopilot is a PID controller. The PID controller 

contains three controllers: P or proportionate, I or Integrator, D or derivative. Each part has its own 

gain, too; the gains are named Kp, Ki, and Kd. The structure of a simple PID controller is depicted 

in Figure 6.3. 

 

Figure 6.3 PID controller 

In order to use it in the real embedded system, this concept needs to be converted to a 

digital version in C++. In the span of this research, a new implementation of PID controller is 

designed to suit the application. Therefore, the implementation was the sole PID controller used 

during the simulation and the real-world test, which is confirmed via experiments. The test results 

are discussed in Chapter 7. The PID controller is designed into a class object to keep the 

implementation portability and follow the C++ objective design patterns. The full implementation 

source code is attached in Appendix A. Here, the usage is briefly discussed. The first thing that is 

needed to use a class object is to declare the object. The class name is PID; therefore, the definition 

of the object will be something similar to this part of the code: 
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PID rollControl; 

"rollControl" is our controller object. Now, it needs to be initialized. Initializing a PID controller 

includes the gain assignment and setting the range. For example: 

rollControl.reset(); 

rollControl.setK(3.00f, 0.5f, 0.2f); // setting the gains(Kp, Ki, Kd) 

rollControl.set_ITerm_Limits(-50f, 50f); // Clamping the Iterm (Min,Max) 

rollControl.set_output_Limits(-500, +500); // Clamping the output (Min,Max) 

Now, it can be used in the control loop by calling the "updatePID" method. This method 

has two arguments; the first one is the sensor reading, and the second one is the desired set-point. 

For example: 

rollOutput = rollControl.updatePID(roll, desiredRoll); 

This implementation can be expanded and used for any type of controller; For example, it 

can be used for pitch angle, heading, navigation, or altitude. This controller is the smallest cell of 

the control system. The more important point that needs to spend more time on it is the controller 

structure. The controller structure means the order of controllers. For example, imagine a fixed-

wing airplane; if a controller is designed to control the pitch angle of the platform, another 

controller needs to be designed in order to set the proper pitch angle to achieve the desired height; 

and also another one needs to airspeed in order to prevent the platform from stalling. In section 

7.2, the controller structure of the platform used for the case study is elaborated. 

6.6 Data acquisition 

The process of gathering data from the environment is called data acquisition. For a control 

system like an autopilot, the data comes from sensors. Sensors could include accelerometers, 

gyroscopes, laser altimeter, battery voltage, etc. Each sensor has its own method of data 

acquisition. Some of the common methods for communicating with modern digital sensors include 

SPI, I2C, CAN. CAN bus is more used in automotive industries; thus is out of the scope of this 

research [39]. The SPI or Serial Peripheral Interface is a synchronous serial communication 

interface used for short-distance communication, mainly in embedded systems. SPI devices 

transfer the data in full-duplex mode using a master-slave arrangement with one side as the master 

and the others as slaves. The master device creates the data frame for reading and writing. Multiple 

slave devices are supported through a selection of an individual slave select pin (SS) or chip select 

(CS) lines. Figure 6.4 depicts the SPI bus diagram for one master and multiple slaves [17]. 
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SPI S LAVE 2 
Figure 6.4 SPI BUS Block diagram 

On the other hand, I2C (Inter-Integrated Circuit) is a synchronous, multi-master, multi-

slave, packet-switched, single-ended, serial communication bus. It is widely used for attaching 

lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board 

communication [40]. 

 

Figure 6.5 I2C bus diagram 

Unlick the SPI bus that selects slaves using CS pin, the I2C bus organize the slave by their 

addresses. Each I2C slave device has a unique 7-bit (0-127) address that the master device uses to 

invoke the specific slave device. There are several I2C implementations for an ARM Cortex based 

MCU (the MCU that is used for this research). A straight forward implementation has been chosen 

for the firmware. The Reader function is as follows: 

uint8_t I2C_Read(I2C_HandleTypeDef* Handle, uint8_t device_address, uint8_t 

register_address, uint8_t* data) { 

    if (HAL_I2C_Master_Transmit(Handle, (uint16_t)device_address, 

&register_address, 1, 100) != HAL_OK) { 

        if (HAL_I2C_GetError(Handle) != HAL_I2C_ERROR_AF) { 

        } 
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        // Return error 

        return 0; 

    } 

    // Receive bytes 

    if (HAL_I2C_Master_Receive(Handle, device_address, data, 1, 100) != 

HAL_OK) { 

        // Return error 

        return 0; 

    } 

    // Return OK 

    return 1; 

} 

For example, to read the register at 0x75 of the MPU-9250 device (address is set as 0xD0 

by the manufacturer): 

uint8_t MPU9250_WHOAMI(I2C_HandleTypeDef* Handle) { 

    uint8_t read=0; 

    if (HJ_I2C_Read(Handle, 0xD0, 0x75, &read) != 1) { 

        /* Return error */ 

        return 0; // Should return 0x71 

    } 

    return read; 

} 

6.7 Summary 

In this section, the system firmware was defined and characterized. In the next part, 

different IDEs for developing the firmware were discussed, and the reason why STM32CubeIDE 

has been chosen was elaborated. The debugger was expanded, and its characteristics were pointed 

out. The next part was dedicated to autopilot communications; mainly, the different methods for 

the protocol parsers were compared and clarified. In the end, the system data acquisition was 

discussed, and main methods such as SPI and I2C were elaborate; a code snippet is used to clarify 

the methods. 
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Chapter 7 

 

7 Case Study 

7.1 Test definition 

To confirm our methods, a simple test is designed to test the complete system's consistency 

and functionality. It starts with a takeoff and then moving toward the fire and using an algorithm 

to detect and report the fire coordination. Even though the main goal for this case study does not 

include any sophisticated search algorithm test, and it is meant to emphasize the system 

performance, it is a good starting point for the further development of advanced searching and 

scanning algorithms. 

7.2 Controller design 

To perform the search mission, the first step is to make the platform stabilized and 

controllable. The stabilization task is the most time-critical part of the loop since it has the highest 

running frequency. The method that is used for stabilizing the platform is a well-tuned PID 

controller [41][42]. We tried to keep it platform-independent to be able to use it on embedded and 

non-embedded applications. PID gains are tuned manually by observing the system's behavior. 

Because the goal for this task was to test the system consistency and make the platform fly-worthy, 

it didn't emphasize PID tuning technics (such as an adaptive controller or MPC), and it was decided 

to manually adjust the controller coefficients.  

Furthermore, the process started with some reasonable guesses for the value of Kp, Ki, and 

Kd and then tried to find an acceptable combination step by step. The procedure for tuning the roll 

and yaw axis is as follows (Figure 7.1). Since the platform is symmetrical on the roll and pitch axis, 

it shows the same behavior on the pitch axis as it shows on the roll axis. 
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Figure 7.1: The System behavior and responses. 

After following the same procedure for altitude and navigation controllers with the same 

PID structures as the others, it can navigate to a specific location. For example, the navigation 

strategy for the system is to change the platform heading to align with the target waypoint 

direction. When it gets alight (heading error < 5 degrees), it starts to move forward by changing 

the pitch angle. At the same time, it maintains the altitude, direction, and roll angle. Roll angle is 

always zero during the navigation. The roll and pitch controller diagram during the navigation is 

presented the Figure 7.2 and Figure 7.3.  The waypoint navigation direction controller diagram is 

also depicted in Figure 7.4. 

 

Figure 7.2: Roll Controller during navigation 
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Figure 7.3: Pitch controller during navigation 

The pitch set-point is a 15-degree constant while moving toward the target and is set to 

zero when it arrives at the waypoint to have enough time to change the direction to prevent 

overshoots. In other words, if it does not set it to zero, it gets an enormous overshot after touching 

each waypoint. 

 

Figure 7.4: Navigation loop direction controller diagram 

The waypoint direction is calculated in the navigation loop. The navigation loop maintains 

a list of the path waypoints. Each waypoint has an index number. When it starts or restarts the 

mission, the index is zero; when the platform distance to the waypoints is closer than a threshold 

value ( distance < 10 meters), it changes the heading set-point to the next waypoint by adding one 

to the index number. The course between two points in the ECEF system (Lat, Lon, and the 

altitude) can be calculated using Eq.(1) : 
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Х =  𝑎𝑡𝑎𝑛2( 𝑠𝑖𝑛 𝛥𝜆 ×  𝑐𝑜𝑠 𝜑2 , 𝑐𝑜𝑠 𝜑1 ×  𝑠𝑖𝑛 𝜑2 − sin 𝜑1 ×  𝑐𝑜𝑠 𝜑2 ×  𝑐𝑜𝑠 𝛥𝜆 )   (1) 

where : 

φ = latitude and λ = longitude of each point 

φ1, λ1 is the platform position, φ2, λ2 is the waypoint (Δλ is the difference in longitude) 

The above formula can be converted to a C++ code in the following form: 

// lat1, lon1 from GPS, and lat2, lon2 are waypoint coordination 

y = sin(lon2-lon1) * cos(lat2); 

x = cos(lat1)* sin(lat2) - sin(lat1)*cos(lat2)*cos(lon2-lon1); 

θ = atan2(y, x); 

wpBearing = (θ*180/Math.PI + 360) % 360; // course in degrees 

Furthermore, to calculate the distance to the waypoint, the navigation loop uses Eq.(4). 

 

𝑎 =  𝑠𝑖𝑛²(𝛥𝜑/2) +  𝑐𝑜𝑠 𝜑1 ×  𝑐𝑜𝑠 𝜑2 ×  𝑠𝑖𝑛²(𝛥𝜆/2)   (2) 

𝑐 =  2  𝑎𝑡𝑎𝑛2( √𝑎, √(1 − 𝑎) )      (3) 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑅 ×  𝑐        (4) 

 

where R is the earth's radius, for simplifying the equation, the navigation loop uses the mean radius 

of earth that is 6378137 meters. In the same manner, the above formula can be converted to a C++ 

code as follows: 

R = 6378137 ; // metres 

f1 = lat1 * PI/180; // f1, f2, dF, dL has to be in radians 

f2 = lat2 * PI/180; 

dF = (lat2-lat1) * PI/180; 

dL = (lon2-lon1) * PI/180; 

a = sin(dF/2) * sin(dF/2) + cos(f1) * Mcos(f2) * sin(dL/2) * sin(dL/2); 

c = 2 * atan2(sqrt(a), sqrt(1-a)); 

d = R * c; // in metres 

7.3 Image prosseing method 

The next step is to test the image processing system's functionality. The approach for 

detecting the fire location is to use the raw image from the simulated thermal camera and calculate 
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the centroid of high-temperature areas (the white pixels). Figure 7.5 shows the image that the flight 

controller sees and processes.  

 

Figure 7.5 High-temperature area's centroid 

Suppose the centroid position is off-center, based on its deviation from the image center, 

dy, dx (depicted in Figure 7.5), camera mounting angle, and the other camera parameters such as 

field of view. It estimates the fire location relative to the drone's absolute location that it gets from 

GPS and reports it to the GCS.   

Given the slight roll angle during a normal flight, the enormous size of the fire, the low 

field of view of the camera, and assuming the terrain field flat, the equation can be simplified. This 

simplification has the least effect on the accuracy since, in a real application, even a couple of 

meter accuracy is still acceptable for fire detection and monitoring purposes. The equations as 

follows:  

 

Figure 7.6: Side view geometry. 
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Figure 7.7: Top view geometry 

For a 96H x 64V pixel image and 75°H x 60°V field of view, we have: 

𝑋𝑐 =  
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (5) 

𝑌𝑐 =  
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 (6) 

𝑑𝑥 =
96

2
− 𝑋𝑐 (7) 

𝑑𝑦 =
64

2
− 𝑌𝑐 (8) 

𝑋𝑡 =  𝑑𝑥 ∗
75

96
 (9) 

𝜔𝑡 = 𝜔𝐺𝑃𝑆 + 𝑋𝑡 (10) 

𝜑𝑡 =  𝑑𝑦 ∗
60

64
 (11) 

𝜃𝑡 = 90 − (𝜑𝑓 + 𝜑𝑐) + 𝜑𝑡 (12) 
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𝐷𝑡 =  𝐻𝐺𝑃𝑆 ∗ tan 𝜃𝑡 (13) 

And now that we have the 𝑋𝑡 and 𝜃𝑡   we can use this equation[43] to calculate the fire location: 

𝐿𝑎𝑡𝑡 = arcsin (𝑆𝑖𝑛(𝐿𝑎𝑡𝑔𝑝𝑠 ) ∗ 𝐶𝑜𝑠 (
𝐷𝑡

𝑅
) + 𝐶𝑜𝑠(𝐿𝑎𝑡𝐺𝑃𝑆) ∗ 𝑆𝑖𝑛 (

𝐷𝑡

𝑅
) ∗ 𝐶𝑜𝑠𝜔𝑡 ) 

(14) 

𝐿𝑜𝑛𝑡 = 𝐿𝑜𝑛𝐺𝑃𝑆 + 𝐴𝑡𝑎𝑛2(𝑆𝑖𝑛𝜔𝑡 ∗ sin (
𝐷𝑡

𝑅
) ∗ 𝐶𝑜𝑠(𝐿𝑎𝑡𝐺𝑃𝑆), 𝐶𝑜𝑠 (

𝐷𝑡

𝑅
) − 𝑆𝑖𝑛(𝐿𝑎𝑡𝐺𝑃𝑆)

∗ 𝑆𝑖𝑛(𝐿𝑎𝑡𝑡)) 

(15) 

𝑥𝑖 , 𝑦𝑖 = 𝑥, 𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑢𝑟𝑒 𝑧𝑜𝑛𝑒. 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑢𝑟𝑒 𝑧𝑜𝑛𝑒.  

𝜔𝑡 = 𝑎𝑏𝑠𝑙𝑢𝑡𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 

𝐷𝑡 =  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑟𝑜𝑛𝑒 (Meter) 

𝐿𝑎𝑡𝑔𝑝𝑠 = 𝑇ℎ𝑒 𝑑𝑟𝑜𝑛𝑒 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑓𝑟𝑜𝑚 𝐺𝑃𝑆 

𝐿𝑜𝑛𝑔𝑝𝑠  = 𝑇ℎ𝑒 𝑑𝑟𝑜𝑛𝑒 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑓𝑟𝑜𝑚 𝐺𝑃𝑆 

𝑅 = 𝐸𝑎𝑟𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 =  6371 ∗ 103 𝑚𝑒𝑡𝑒𝑟 

7.4 HIL simulation result 

For testing the HIL simulation, a specific maneuver was designed. After detecting the fire 

location, it performs a loiter maneuver around the fire while keeping the camera (the platform 

heading) pointed toward the fire. It calculates the target direction using the fire position from Eq. 

(14) and Eq. (15) and the current platform position from GPS (simulated) and sends it to the YAW 

controller as the set point. On top of that, we calculate the distance from the fire location and 

control it simultaneously. The result has been shown in Figure 7.8. 
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Figure 7.8 The flight path of the mission 

The results suggest that the system has a high consistency where the guidance and 

navigation algorithms and the simulated image processing system perform to the satisfactory. We 

perform several other tests with different fire locations and calculated the error. The result is shown 

in Several other tests with different fire locations are carried out where the reported location error 

is calculated. The results are shown in Table 7.1. Since the terrain elevation is not provided to the 

system (the area is assumed to be a flat surface), thus only the x and y are calculated, and z is 

considered  0. 

Table 7.1 Fire location estimation accuracy 

Attempt Actual location(x,y,z) Detected location (x,y,z) Error 

#1 195, 219, 21 197.3, 231.4, 0 12.6m 

#2 150, 100, 10 153.1, 107.3, 0 7.9m 

#3 100, 100, 10 103.9, 106.1, 0 7.2m 

#4 250, 250, 0 252.8, 254.5, 0 5.3m 
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7.5 Outdoor tests 

The last confirmation for any simulation system is to test the result in a real-world situation, 

using real hardware in an uncontrolled environment. There are several requirements that need to 

be provided to the system to make it fly-worthy and tastable in an actual world situation.  

7.5.1 Hardware setup 

A quadcopter has a simple airframe structure. Fortunately, It is easy to construct using simple 

materials and skills. The frame is constructed using aluminum square tubes and fitted to for the 

motors and the autopilot installments screws. The platform needs four motors too. Brushless 

motors are the most efficient and common choices. For the designed weight (1200 grams), a motor 

of 400 watts has been chosen. The motor is depicted in Figure 7.9, and the specification is 

mentioned in Table 7.2. 

 

Figure 7.9: SunnySky X2212 

Table 7.2: The motor specification 

SunnySky X2212 KV980 

Stator Diameter 22mm 

Stator Thickness 12mm 

Motor Kv (RPM/Volt) 980 

No-load current 0.7A/10V 

Max Continuous Current 25A/30s 

Max Continuous Power 412W 

Weight 56g 
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Each brushless motor needs a driver too. Brushless motor drivers are called electronic 

speed controllers (ESC). ESC is an electronic board capable of monitoring each motor's behaviors 

and driving them to meet the user's rpm command (in this case, the commands come from the 

autopilot). The ESC is depicted in Figure 7.10. 

 
Figure 7.10: ESC 

Furthermore, To test the thermal vision, a thermal sensor is needed. For this stage, a cheap 

8x8 pixel (64 pixels) module has been chosen. The module is AMG8833 from Panasonic [44]. It 

transfers the image using an I2C interface.  

 

Figure 7.11: AMG8833 Module 

Alongside the thermal sensor, a video camera has been chosen to record the video to inspect 

the sensor result. The installation of the two devices is shown in Figure 7.12. 

 

Figure 7.12: Thermal sensor and video camera installation 
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For safety reasons, an RC Radio controller (Figure 7.13) is needed too. The Radio 

controller allows the user to intervene and control the platform manually. For example, the user 

can kill the motor or bring the drone back if it was heading far away or a dangerous area.  

 
 

Figure 7.13: Radio and the receiver 

Finally,  to connect the autopilot to the GCS, a pair of RF modems are needed (Figure 

7.14). One modem connects directly to the GCS computer using a USB port, and the other connects 

to the autopilot using a TTL UART port. 

 

Figure 7.14: RF modem 

In the end, the system structure is depicted in Figure 7.15, and also an image of the 

assembled drone is shown in Figure 7.16. 
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Figure 7.15: System architecture, air, and ground 
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Figure 7.16: Assembled drone 

7.5.2 Flight tests 

The flight test was involved with some autonomous flight to test the navigation system 

then flight to test the thermal sensor capability and detecting the fire location. The flight test was 

done in a safe and secure area. An outdoor grill was used as the heat source (Figure 7.17). 

 

Figure 7.17: Heat source 
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After some primitive tests, the autonomous flight was started with a manual takeoff. After 

that, the autonomous flight started the mission; the mission included two waypoints in different 

altitudes (Figure 7.18). The results show that the navigation loop was performing fine, but the 

navigation loop needs some tuning to make the perfect navigation. In addition, there was some 

altitude bias in the sensors, but the overall performance was satisfying. 

  

Figure 7.18: The mission Flightpath 

The next test was the thermal sensor inspection. The test was involved with the drone flying 

above the grill (Figure 7.19) and check the heat signature and estimate the fire location (Figure 

7.20). Because the sensor was a cheap sensor and didn't have some high performance that is needed 

for a flying robot, the outdoor performance was weak, but it was able to detect the grill from a 

considered distance. The farthest distance that it could detect the grill heat signature was 21 meters. 

Given the small size of the grill heat signature, it shows a fine performance even with the existing 

cheap sensor.  

 

Figure 7.19: Outdoor flight onboard video 
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Figure 7.20: The fire detection result 

Table 7.3: The fire detection and the location estimation result 

The heat source actual coordination Lat = 45.459151, Lon = -73.919035 

The drone position Lat = 45.459063, Lon = -73.918916 

The fire estimated coordination Lat = 45.459175, Lon = -73.919067 

The drone distance from the grill 21 meter (13 meters on the ground, altitude = 17 meters ) 

Estimation error ~ 3.9 meters 

The above result was the best system performance and was achieved after several rounds 

of testing. Even though the systems need more real-world testing to get the perfect result, it satisfies 

the testing goals to check the system consistency; all the subsystems work fine and are functional. 

A further test was obstructed by the COVID-19 pandemic and was not safe to perform since it 

needed more than one person to be performed. 

7.6 Summary 

The goal of this section was to test and confirm the system's performance. First, a control 

system is designed to test the platform stabilization; then, it expanded to altitude hold control and 

navigation controller. After getting the navigation system done, a simple fire detection algorithm 
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is designed to test the simulated thermal camera image and check its behavior. The simulation 

benchmark results show acceptable performance. Furthermore, the flying drone was assembled 

and perform the autonomous flight. The results show that the drone is flying worthy, and the 

navigation system works fine. After that, a fire location estimation test was performed.  An 

artificial heat source was used to simulate the fire. Even though the system was under-tested (due 

to the COVID-19 pandemic limitation), it showed a high level of consistency and yet estimated 

the fire location with an acceptable error. 
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Chapter 8 

 

Conclusion and future work 
 

In the following chapter, the outcomes of this research are summarised. Furthermore, the intended 

future works are recommended. Finally, I hope these results can be used in other projects and 

eventually help to preserve our precious forests. 

8.1 Results and conclusion 

This research program started with the idea of making a drone to detect the fire before it gets 

outrageous. A fast response needs a fast notification. It started with designing the autopilot. The 

autopilot was design base on one of the author's previous designs. The new autopilot is called 

APOne v1.7. It was powered by an STM32F722 microcontroller and utilize several sensors that 

an autopilot needed. Having a functional autopilot needs to implement some sophisticated 

algorithms such as state estimation, control, and waypoint navigation. Like every other computer 

program, those codes need to be tested. Also, the embedded implementation needs to be tested; 

thus, a test platform needs to be implemented; Such a test system that considers the real hardware 

in the testing loop is called hardware-in-the-loop or HIL. Because of this research's nature and 

intention and the final goal that is to design a solution to detect fire using the onboard thermal 

cameras, a new HIL system is needed to be designed since such a complete system is not part of 

any free or even affordable systems. It started with designing a simple setup to just implement the 

3D system base, 6DOF dynamics, and the interfaces. The 3D system is implemented using the 

Unity engine. Unity engine is a well-known game engine. The 6DOF dynamic and eventually the 

flight dynamic model is power by using the built-in Nvidia Physix engine. The interfacing is the 

most sophisticated part of this research. Data latency a key role in this system. If you are planning 
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to design such a system, make sure you did all the research and have all the abilities. When all the 

above task is done properly, it is time to simulate the forest and the fire. Since the actual fire 

behaviors are too complicated to be calculated in a real-time system, thus the fire is a pre-rendered 

animation with the help of the Unity particle system. To confirm the system consintency, a flight 

scenario is needed. The scenario was to flight to a pre-programmed direction and estimate the fire 

location (if any). The test was successfully full, and the final results and the estimated location 

error are presented for each round of testing. Despite the limitations (due to simplifications), the 

fire location estimation shows a rational error and confirms the system's consistency. The final test 

was to test the real platform. The platform is a quadcopter similar the drone used in the HIL 

simulation. Some outdoor tests confirm the system's general performance. For making a perfect 

platform, some more tests are needed, but unfortunately, the tests were not feasible due to the 

COVID-19 pandemic.  

8.2 Contribution 

Overall, in the course of this research, a simulation environment for a fire detection drone is 

designed. The fire and the thermal camera simulation can help other researchers to test their search 

algorithms and benchmark their efficiency. The equation that is developed to transfer the object's 

coordination in the image to the real-world location using the drone position and attitude is an 

academic achievement that can be used on other research projects. This equation shows a good 

performance while running it on the MCU and doesn’t need any range detector to full fill the 

formula. Furthermore, a durable autopilot for almost all robotic projects is design and 

manufacturing; it can be modified or expanded to be a solid starting point for other mechatronic 

systems. 

8.3 Future work 

Following the research challenges and according to the difficatties and the limitation were faced 

during this research, there are several steps needed to be done to make the final product more 

operational.  
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 Use a better thermal camera. The current thermal sensor that was used has a limited 

performance during daylight and losses accuracy under sunlight. A Lepton v3.5 LWIR is 

a good yet affordable candidate [45]. 

 To add a camera Gimbal. The gimbal helps to have broader and steadier vision feedback. 

 Add a laser range finder to detect the exact fire location. This sensor needs to be coupled 

with the gimbal system to detect the distance with the object in the camera image center. 

Keep in mind that this type of sensor is expensive (and heavy); it can significantly increase 

the overall cost. 

 Use a more accurate method to sense the platform altitude. During the outdoor tests, a 

significant altitude bias made the auto take-off and landing impossible. To tacle this issue, 

a laser range finder can be used to help with take-off and landing, but if the goal is to make 

it solid, it is better to use an RTK GPS. Even though the RTK GPS is expensive and needs 

a base station, it allows the system to get a position feedback accuracy of about a centimeter 

for vertical and horizontal positioning [46][47]. 

 More importantly, practice more outdoor tests when the COVID-19 pandemic is over! 

 Finally, when the platform is ready, it is time to design a command center network to 

connect all the units to a central command and monitoring system. Figure 8.1 shows the 

command center UI mockup. 

 

Figure 8.1: A mockup of the command and monitoring center software. 
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Appendix A 

 

Codes 
 

A.1 PID controller C++ Class source code 

/** 

 * Implementation of PID Controller 

 * @author Hossein Jamshidi 

 * Contact: hosseinjamshidien@gmail.com 

 * 

 */ 

class PID{ 

 

    double iMax; 

    double iMin; 

    double dMax; 

    double dMin; 

    double dState; 

    double iState; 

    double lastFeedback; 

    double outputMax; 

    double outputMin; 

    boolean iTermLimit = false; 

    boolean dTermLimit = false; 

    boolean outputLimit = false; 

    double outTemp = 0; 

    double deltaFeedback = 0; 

    double pGain; 

    double iGain; 

    double dGain; 

public: 

    double pValue = 0; 

    double dValue = 0; 

    double iValue = 0; 

    double err = 0; 

    PID(){ 

        iState = 0; 

        pGain = 0; 

        iGain = 0; 

        dGain = 0; 

        iTermLimit = false; 
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        last_micros = 0; 

    } 

    void reset(){ 

        iState = 0; 

    } 

 

    /** 

     * Sets the controler gains. 

     * 

     * @param _pGain the controller P gain. 

     * @param _iGain the controller I gain. 

     * @param _dGain the controller D gain. 

     */ 

    void setK(double _pGain, double _iGain, double _dGain){ 

        pGain = _pGain; 

        iGain = _iGain; 

        dGain = _dGain; 

    } 

    /** 

     * Limits the controller I term in order to prevent high overshoots. 

     * 

     * @param _iMin the controller, I term minimum output. 

     * @param _iMax the controller I term maximum output. 

     */ 

 

    void set_ITermLimits(double _iMin, double _iMax){ 

        iMax = _iMax; 

        iMin = _iMin; 

        iTermLimit = true; 

    } 

 

    /** 

     * Limits the controller D term in order to limit noise effects. 

     * 

     * @param _dMin the controller D term minimum output. 

     * @param _dMax the controller D term maximum output. 

     */ 

    void set_dTermLimits(double _dMin, double _dMax){ 

        dMax = _dMax; 

        dMin = _dMin; 

        dTermLimit = true; 

    } 

 

    /** 

     * Limits the controller output to limit it to the actuator constraints. 

     * 

     * @param _oMin the controller minimum output. 

     * @param _oMax the controller maximum output. 

     */ 

    void set_outputLimits(double _oMin, double _oMax){ 

        outputMax = _oMax; 

        outputMin = _oMin; 

        outputLimit = true; 

    } 

     

    /** 

     * Limits the controller output to limit it to the actuator constraints. 



 

78 
 

     * 

     * @param feedback the current reading of the sensor. 

     * @param desire the setpoint of the controller. 

     * @param dt elapsed time between calculation in uS. 

     * @return the controller output. 

     */ 

    double updatePID(double feedback, double desire, double dt){ 

        if (dt<1){ dt = 1; } // to deal with the timer roll over. 

        dt /= 1000000.0F; // convert uS to to Sec 

 

        err = desire - feedback; 

        iState += err * dt;  

        pValue = pGain * err; // calculate the P term. 

        iValue = iGain * iState; // calculate the I term. 

 

        if (iTermLimit){// limit the I term. 

            if (iValue > iMax) { 

                iValue = iMax; 

            } 

            if (iValue < iMin) { 

                iValue = iMin; 

            } 

        } 

 

        deltaFeedback = lastFeedback - feedback; 

        dValue = dGain * (deltaFeedback) / dt; // calculate the D term. 

         

        if (dTermLimit){// limit the D term. 

            if (dValue > dMax) { 

                dValue = dMax; 

            } 

            if (dValue < dMin) { 

                dValue = dMin; 

            } 

        } 

 

        lastFeedback = feedback; 

        outTemp = pValue + iValue + dValue; 

 

        if (outputLimit){ 

            if (outTemp > outputMax) outTemp = outputMax; 

            if (outTemp < outputMin) outTemp = outputMin; 

 

        } 

        return outTemp; 

    } 

 

}; 
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