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ABSTRACT

Moments of Cubic Hecke L-Functions

Arihant Jain

Moments of families of L-functions provide understanding of their size and also about
their distribution. The aim of this thesis is to calculate the asymptotics of the first moment
of L-functions associated to primitive cubic Hecke characters over Q(w) and upper bounds
for 2k-th moments for the same family. Both of these results assume Generalized Riemann
Hypothesis. We consider the full family of characters which results in a main term of order
xlogx. We also calculate conditional upper bounds for 2k-th moments for the same family
and conclude that there are > x primitive characters of conductor at most x for which the
L-function doesn’t vanish at the central point.
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Chapter 1

Introduction

Finding moments of Riemann zeta-function and families of L-function is an old and inter-
esting problem in number theory. There are several applications of moments to the theory
of Riemann zeta-functions and L-functions. Using Random Matrix Theory [CEKT03] gave a
recipe to conjecture moments for a very large variety of L-functions. Their conjectures are
very far from proven completely. For the L-functions associated to quadratic characters first
four moments can be computed ([Tut&1], [Souddl, [SYIQ]). In contrast, only the first moment
was calculated for the family of cubic characters. In this article we present a result for cubic
characters. Let v be a Hecke character and the associated Hecke L-function is

A
Lsw) = 3 4

AF£0

where the sum runs over non-zero integral ideals of Z[w]. Our result is the following theorem.

Theorem 1.1. Let ¢ be a primitive cubic Hecke character such that » € F (see (2.1)) for
definition) and L(s,1) be a Hecke L-function. Assuming GRH we have

Z L (%7 w) = Cizlogx + Cox + Oe($§+e)
YeF ()

where C1, Cy are absolute constants described in ([3.16)).

This theorem is similar to results of [Luo04] and [BYI1Q]. However [Luo04] considered a
thin subfamily of the primitive cubic characters over Q(w) and [BYTI(Q] considered L-series
over rationals, which also reduces the size of family of characters. Both of these results are
unconditional. The difference in our case is that we consider full family of primitive Hecke
characters. Due to the increase in size of family, we need to assume GRH to bound error
terms. Over function field, the first moment in the Kummer case was computed by [DELI9].
Their result also requires GRH which is not a hypothesis in function field (see Theorem 1.2
of [DELIY]). The exponent in their error term is HT‘ﬁ = 0.9114378 ... which is smaller than
% = 0.958333 . ... One reason for their better error term is that they computed the residue
in dual term and saved on both sums instead of just saving over one sum.

We also prove the upper bounds for moments of absolute values of L-functions. The meth-

ods are based on Harper’s proof [HarI3] which is a refinement of the work of Soundararajan
[Soud9. In proving the upper bounds, we have also followed the work of [LRI9] and [DFL2Q.
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Theorem 1.2. Let i) € F, then assuming GRH

> IL(1/2,9)* <y (zlog z)(log 2)*
YeF(z)

Upper bounds for Dirichlet L-functions associated with cubic characters are also obtained
in Theorem 1.3 of [GZ2] for Dirichlet characters over Q and then their bound is z(log z)*". In
[DET2Q], the authors have calculated upper bounds for all mollified moments of L-functions
associated to cubic characters in the function field setting and further obtained non-vanishing
results in the non-Kummer case. Using [I'heorem 1.1} and [[heorem 1.2} along with Cauchy
Schwarz inequality, we get the following result.

Corollary 1.3. Assuming GRH we have

#{ 9y € F(z) and L(1/2,¢) # 0} > x.

Since the family of characters is of size xlogx (up to a constant), this is not a positive
proportion.

1.1 Outline of the proof

In chapter [2] we discuss the family of primitive cubic Hecke characters. We also state the
approximate functional equation for L-functions which is a sum of two quantities : principal
term and dual term.

In chapter [3| we estimate the principal term. The main term is C'yx log x and for the error
term we assume GRH which is where we differ from [Luo04] and [BYTIQ] as stated before. At
the end of this chapter we briefly state the difficulty encountered while trying to get rid of
GRH assumption. Further in chapter [4] we estimate the dual term. Here we get cancellation
and therefore this contributes to the error in [Theorem 1.1] The proofs here rely on results

of [Pat7d], [HBPTI, and ideas from [BYIQ].
Proof of appears in chapter ] We use an L-function inequality due to

[Cha0d and an important lemma (Lemma [5.5]). Using the work of [Sou09) and [DEL20] we

establish slightly weaker upper bounds which are then used in §5.4]to yield the required sharp
upper bounds. In obtaining sharp bounds we follow [Har13|, [LRI9 and [DFL20].



Chapter 2

Preliminaries

This chapter is divided in three sections. We start by describing Hecke characters and the
Hecke L-functions, approximate functional equation and some results on cubic Gauss sums.
All of the content presented in this chapter is standard and well-known. We also include
Proposition 2.1 which is a result on smooth character sums and will be useful in obtaining
upper bounds.

2.1 Primitive Cubic Hecke Characters

All of what we present here is mentioned in [[K04] (section 3.8), [[R9Q] (Chapter 9) and
[BYTQ (section 2). We first start by describing the cubic residue symbol. For a prime
T € Z|w] (w is a cube root of unity other than 1) and 7 1 3 we define the cubic residue symbol

<g>3 = (mod ).

™

This is well defined since N(7) = 1(mod 3). Also, by Proposition 9.3.2 of [[R90], for any «
and prime 7 1 3o we have o3 = w™ () for m = 0,1, or 2. Therefore the residue symbol

is a third root of unity. We extend the definition to all o € Z[w] using periodicity and by

assigning 0 whenever m|a. Note that the conjugate character (;)3 is a different character

than (=) , and both are are primitive with norm of the conductor equal to N(rr). For ¢ € Z[w],

square free, (5)3 and ( )3 are primitive characters defined as

C

C=1G), e Q=116
Now we move to the discussion of Hecke characters. To see a complete detailed discussion,
we refer the reader to section 3.8 of [[KQ4]. Let m = (m) be a non-zero integral ideal of Z[w]
such that m = 1(mod 3). A Hecke character 1)(mod m) is a homomorphism on the group
of ideals coprime to m for which there exist two characters ¥ : (Z[w]/(m))* — C* and
Vo : C* — C*, satisfying

¥((a)) = d(a)u(a)  and  [P(a)] = [ola)] = 1



for every a € Z[w], (a,m) = 1. When we consider the case of cubic Hecke characters of
Z[w], the group homomorphism ¢ is a cubic residue symbol. To simplify calculations we

choose 1, to be a trivial character which forces J to be trivial on units since for a unit
u € Z[w], ¥v((u)) = 1 = (u)theo(u). To achieve this we choose ¢y, ¢y = 1(mod 9) and thus
we get N(c1), N(c2) = 1(mod 9) and such cubic residue character is trivial on units (see the
remarks below Theorem 1 in Chapter 9 of [IR90]). So we will consider the following family
of primitive cubic Hecke characters

Fo= {wq@(-) = (31)3@3 L c1, ¢ = 1(mod 9); c1, ca square free; (¢, cy) = 1} (2.1)
F(x) i= {theyes € F: N(cica) < x} (2.2)

In [Luc04], the author considered a thin subfamily by taking ¢, = 1. Further, the def-

inition of cubic residue symbol can be generalized to any modulus by multiplicativity. For

— 01 2 Qg
a=m"tmy? - -m, we define

(.= (5), &), ()

and for a primitive Hecke cubic character v,

Lew= X

A:Integral ideal of Z|w]
AF#0

is the Hecke L-function associated to ¢. In [BYIQ|, the authors considered Dirichlet L-
function and consequently the size of family is reduced. For R(s) > 1, the Hecke L-functions
have an Euler product. Let us use p to denote rational primes and p to denote prime ideals
of Z[w] lying over p.

- 3) I ) ()

p )
where
() p = 1(mod 3)
ai(p,) = { ¢¥(p) =¥ (p*) p=2(mod 3) (2.4)
Y(1 - w) p=3
W»(T) p = 1(mod 3)
ax(p,¥) = 4 —¥(p) = —(p*) p=2(mod 3) (2.5)
0 p=3

and 7,7 are prime ideals lying over p when p = 1(mod 3).
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Cubic Reciprocity. For primes a,b € Z[w| and a = b = £1(mod 3), then we have the

Now we prove a proposition on character sums which is analogous to Remark 1 of [LR20]
and is based on Poisson Summation Formula.

Proposition 2.1. Let x be a Dirichlet character on Z[w] of modulus m € Z[w| and F be a
Schwartz function whose Fourier transform has compact support contained in (—A, A). Then
for X > A?2N(m) we have

> x(o)F (M> _ é\;(—m)F(O)éf?(m) X is trivial

X . -
cE€Z[w) X 1S non-trivial

Proof. Using Poisson Summation Formula (see the proof of Lemma 10 in [HB00a]) we have

> x0r (N0 = o & ﬁ( %@f) 3 xorttrimy

CcEZ[W] keZw] r(mod m)

where the terms corresponding to k # 0 vanish since N(k) > 1 = A]]V((]%( > A% If y is

non-trivial then > . ;. x(r) = 0 by orthogonality otherwise 3 .4 . X(r) = ¢(m) and
we get X F(0)p(m)/N(m). O

2.2 Approximate Functional Equation

We state the approximate functional equation based on [[K04]. For any o > 1/2 we have

H2 ) = ﬁZ % / ( ) F%{f/;w dzu

A#O
1 @Z)Clcz 3 N(ciea)\" T(1/2 4+ u) du
W)y 3 L) / | (1 ey Tz (26)

A;éo (o
where A denotes the integral ideal of Z|w| and w(?,.,) is the normalized Gauss sum given




where we have used that .., (1 —w) = 1 for ¢1,co = 1(mod 9) (Remark(c) below Theorem
1 in Chapter 9 of [[RA0]). The first sum is generally referred to as the principal term and
second as dual term. We follow the same terminology in this article. Let us define the

integrals appearing in ([2.6) as
1 o T'(1/24u) du
V(X)=— [ xv -2t
211 (o) F(1/2) u
Using Proposition 5.4 of [[K04] we have

1+ O((N(A)/y)*) N(A) <y and 0 <a<1/2

O((y/N(A)Y) N(A) >y and A>0 (2.7)

V(N(A)/y) = {

For finding moments we need to calculate sum over all characters. We evaluate the
principal term and the dual term in §8 and §4 respectively.

2.3 Results Related to Gauss Sums

Lemma 2.2. For ¢icy square free and (c1,c2) = 1 we have

2d 2d d
> L))
d(mod cic2) /s €2 /3 €12
2d d 2d d
2 @) L2, ) ()
di(mod c1) €1 3 1 da2(mod c2) 2 3 c2
Proof. Multiplying the right hand side

Z (azdl) (CL2d2> e(TT(C2d1 +Cld2>>. (28)
di(mod c1) €1 3 €2 3 €162

da(mod c2)

Note that for the terms inside the summation to be non-zero, both d; and d, should be
coprime to c¢; and ¢, respectively. Let us consider the following map

(Z[w]/er)” x (Zlw]/e2)” = (Z[w]/(c1c2))"
(0475) = (0205 + Clﬂ)'

It is not difficult to see that this map is one-one and onto. So the summation over d; and
dy can be rewritten in terms of d(mod cicy) and the dy,dy appearing in the terms can be
replaced using the the inverse of the map described above.

a’d; = a*(dcy V) (mod ¢) and a*dy = a*(de;t)(mod )



Also for ¢; and ¢y we have

Therefore <lel)3 :®3’ (
(55,() ), (20 )
),

Using cubic reciprocity we rewrite as
d
(), ()
C1C2

3 @( ), (2
- (5 () (L))

and its conjugate is
— d —d d d
0= 2 () ((F)-, 2 0 (0)
d (mod c) 3 d (mod c) 3

where we replaced d by —d and used (_71) = 1. Using these definitions we can write the

result of the Lemma 2.2] as

1 — a g(er) ( a ) g(ca)
w ,lvz)clc ¢c1c a) = <_) —T— | — _—. 2.9
N(ciep)™ (Werea)erca (@) ¢1)4N(c)z \ 2/ 5 N(cg)z ™ (29)
We also collect three important properties (stated in Proof of Theorem 2 and in beginning of

Section 4 of [HBPT9) related to g(-) and its generalizations, which will be useful later. The
proofs are application of the definitions, cubic reciprocity and properties of cubic characters.

1. g(c) = g(e)

2. g(rm,m?) = N(m)g(r,7) (given (r,m) = 1) where g(r,c) is defined as

g(r,c) = d(ﬂ%c) <f>3 <T7~(’nj))- (2.10)
3. For (r,¢) = 1 we have

g(r.c) = @3 7; | (%)36 <Tr (Cgl)) (2.11)

3




Chapter 3

Principal Term

In this chapter we prove the following proposition.

Proposition 3.1. Let x,y be positive real numbers such that y < x. Then for any e > 0 we
have the following result

c1es (A N(A 1 1,1
2. X %13(1/3% ( )) = Crrloga + Cyr + O, (I ?gf) + Ou(atteyit
ci1,c2 sq free A#0 ( ) Yy ye
c1,c2=1(mod 9)

(c1,e2)=1

N(cic2)<z

where C1,Cy are described in .

The main term of xlogx comes from a double pole and for the error term Oe(sc%“y%“)
we use GRH. We complete the proof in first four sections. At the end of this chapter we
briefly mention the difficulty while trying to remove the GRH assumption.

3.1 Setting up the Double Sum

The principal term in ([2.6]) is

Verer(A) - ((N(A)
S ()

where A runs over all non-zero ideals in Z[w]. The family of characters is parameterized by
c1, co and we work towards evaluating the following sum

Sprine = D Z%ZZ%QV(N(A))'

c1,c2 sq free A#0 Yy
c1,c2=1(mod 9)

(e1,c2)=1

N(cie2)<z




The remaining of this section consists of proving this proposition. For every non-zero ideal
A, we have A = (1 —w)"(a) where (a,1 —w) = 1,7 > 0 and we write

Yerea(@)V (1) =)

Sew= Y Y RS- Y SN(G);( 3 wm<a>>.

c1,c2 sq free r>0 r>0 c1,c2 sq free

c1,c2=1(mod 9) a=1(mod 3) a=1(mod 3) c1,c2=1(mod 9)
(c1,e2)=1 (c1,e2)=1
N(cie2)<z N(cic2)<z

/\

(3.1)

We rewrite the sum over ¢y, ¢y in (3.1) as

Z (Cl> <C2>
a’/’3 \Na’/3
c1,ca sq free
c1,c2=1(mod 9)

(cl,cg):l
N(cic2)<z

(&1 Co
- X X um(3),(3),
c1,c2 sq free  hl(ci,c2)

c1,c2=1(mod 9) h=1(mod 3)
N(cic2)<z

hCl hCQ
- X () ()
_ a/Jz\ @ /3
h=1(mod 3) c1,c2 sq free
N(h)<vz (h,6102)=1
c1,c2=h~1(mod 9)
N(C1C2)<TL)§

C1 Co
= > w3 (3),(3)
a’/3 a’/3
h=1(mod 3) c1,c2 sq free
N(h)<yz (’%6102):1
(a,h)=1 c1,62=h"~ (mod 9)
N(cie2)<

N(h)2

= > > N(m%}?(h) > xale)xale) (%)3@5 (3.2)

X1,x2(mod 9) h=1(mod 3) 9) c1,c2 sq free
(h)<\f (hyere2)=1

(a,h)=1 c1,c2= 1(mod 3)

N(cie2)< N(h)2

where Y1, x2 are ray class characters mod 9. From here we consider two cases depending
whether a is a cube or not.

3.2 CASE1: ais a cube

This case provides the main term. In this case, we encounter poles depending on the following
cases

double pole X1, x2 are trivial
single pole  exactly one of x1, x2 18 trivial

no pole iof both x1 and x2 are non-trivial

9



Both ray class characters are trivial : Double pole. Using Perron’s formula (see
chapter 7 of [KouI9]), the sum over ¢, ¢z in (3.2)) is equal to

1 .
M oga tiT (71(5)

1 2 s ds xlogx )
— DEWT IS W L
> 1 /1+ L By (29) ﬂgh (1+N(7T)S) O (N(h)zT

c1,c2 sq free log =
(ah,cic2)=1

c1,c2=1(mod 3)

N(cice2)

SN(GZF
Using Cauchy’s residue theorem the main term will come from the residue at s = 1. We
postpone the calculation of the residue to §3.4] and bound horizontal and vertical integrals

here, using the convexity bounds. For the vertical integral, this gives for any € > 0

1

5+etil C2w (3) 1 -2 s d I4e
ﬁ e <1+N ) Yo s < T gV @
Liemir Gz (29) et () (h)* s (h)

and for the horizontal integral

1 .
Mioga tT (Fr(s 1\ 2 d
/ g QZ[ }( ) H (1 - 8) ; 2s - <Le $1+e N(a)*
Liewir G(28) N(m)s) N(h)* s ° N(h)“*T

Taking T' = T we get

B gé[w](s) 1 21 rite .
2 o cz[w]<2s>H(“N<w>s) N 5 ) O (N(th(‘”)‘

c1,c2 sq free
(ah,c1c2)=1

c1,c2=1(mod 3)

N(C1C2)SW

Exactly one of the ray class characters is trivial : Single Pole. Let us assume that
X2 is trivial so the sum over ¢y, ¢y in (3.2) is

> e

c1,c2 sq free

(ah7011(62)313)
Cc1,c2=1(mo
N(ere2)< iz
I ) L
:/'1+10g513+T CZ[UJ](S) L(S,X1> H <1+ 1 > 1H <1+X1((7T))) 1 - @
bt Gt (29) (29, x1) N@ ) o N(m)* ) N(h)* s

xlogx
+O(N(h>2T)
_ Gz (8) L(s,x1)
=1 | @ 2 1L

zite .
+ O, (WN(G) )

1
where, as before, we chose T' = z7.

<1 ! N(lms)_l (1 ! >5¢<<<:>3>_1 o

w|9ah

10



None of the ray class characters are trivial : No Pole. For xi, x2 non-trivial, the

sum in (3.2)) is
Z xi(er)xa(c2)

c1,c2 sq free

(ah,c1c2)=1
c1,c2=1(mod 3)
N(6102)<N(h)2
:/H@“T L(s,x1) L(s,x2) H ( x1((m)) )_11—[ <1+ X2((7T))>_1 x®  ds
It jogz T L(2s, XI)L (25,x3) xlah N(m)s rlah N(m)* N(h)* s

°(xtir)
= O, (%N(cﬁ)

where T = xi. We recall that our aim is to evaluate Sprinc and in this section we have
partially dealt with the case when a is a cube. Using (3.1]), (3.2) and the discussion in this
section, we get

2 %( > tanl)

r>0 c1,c2 sq free

a=1(mod 3) c1,c2=1(mod 9)
a=cube (e1,c2)=1
N(cic2)<z
V(3’"N(a)) (h) h I
_ ) xa(h)x(h) (2). (%)
- Z 3r/2N<a>1/2 Z Z 'u<h) #h29 Z Xl(Cl)Xz(Cz) a’/s3\a/s
r>0 X1,x2(mod 9) h=1(mod 3) (9) c1,c2 sq free
azl&mogi 3) ((h})L)<\1f (hfllc(z)zdl 3)
a=cube a,h)= c1,c2=1(mo
N(clcz)gﬁ

Vv <3TN(a)> 31e €
_ v 3 S x1(h)xa(h) z1°N(a)
= Z w(h) > res(x1, x2) + O ’
r>0 3 N(a) X1,x2(mod 9) h=1(mod 3) #h(g) N(h)1+
a=1(mod 3) N(h)<\VT
a=cube (a,h)=1

R2RNp> MR Bresta )| +0. ()
2(mod 9

r>0 od 9) h=1(mod 3)
a=1(mod 3) N(h) <z
a=cube (a,h)=1

where res(x1, x2) is the residue depending on whether x1, xo are trivial as discussed in this
section. As stated before we will calculate the residues in and thus completely evaluate
this case of a = cube.

11



3.3 CASE II : a is not a cube

If @ is neither a cube nor a unit, then for ¢ = 1(mod 3), x, : (¢) — (%)3
of modulus 9a. The Hecke L-function associated to this character is

Xa(A) a »
o= TS T ()
c=1(mod 3)

is a Hecke character

Therefore for the case when a is not a cube we have

Z xi(e1)xa(c2) (%)3@3

c1,c2 sq free a
(h,c1e2)=1
c1,c2=1(mod 3)
N(clcg)gﬁ
1+—loéz+iT o
_ 1 L(s, xaXa) _L(s, X2Xa)
2mi fo o L2sxAXE) L(2s,x3x2))
logx
-1 — -1
X1Xa((7)) X2Xa((T)) zt  ds zlogw
14— 1 —+0
X 1} (+ N(r)° T N@r ) NeE s\ NmeT
w=1(mod 3)
(3.3)

The character x1X, is not necessarily primitive so we first establish that L(s, x1x,) is entire
in R(s) > 0 using arguments similar to those from Chapter 5 of [Dav80]. Let x4, X2 be
the primitive characters that induce y;x, and x2Xq, respectively. Then we have

L(s,x1xa) = L(s,x1a)  |] (1 _ M)

|9a N(W)
w=1(mod 3)
— X2,a\\T
L<5>X2Xa) = L(S7X27“) H <1 a 5\7((75')8)))
Trzlq(jr?gd 3)

The functions L(s, x1.4), L(s, Xx2.) and the products over primes dividing 9a are entire in

the region R(s) > 0 and thus the same is true for L(s, x1x.) and L(s, x2Xa). We define the
following notation for the Euler products appearing above

o I (ED0ED) e

w|m
w=1(mod 3)

12



Using Cauchy’s Theorem, the integral in (3.3)) is

1, A 1
1 ( /1+ Tog @ +iT 1/24e+iT 1+10gx —iT
=—| — + +
271 ; 1/2+4€—iT 1/2+4e—iT

1/24€+iT
L S, a L S, a
( >2(1:2) ( XZ,Q)_Q F(9a Sy X1,a> X2,a
L(2S,X1Xa)L(2S?X2Xa)

S

) F(hﬂSaXleXQE) x dS
F(h,2s,x3x2.x3x2) N(h)*

and for the function F(,-,-) we have

~ ) 1
F(m, % +6,%, X) = O(N(m)°) and Fondtex ) =0.(1)

We are assuming GRH which implies the Lindelof Hypothesis, so we have the bound
L(3+e+it,x14) <e (N(a)|t])*
and similarly for L(% + € +it, X2,4). Thus we have for the vertical integral

) F(h,s,X1Xa» X2Xa) ° @
F(h,2s,x3x2, x3x2) N(h)* s

1
27T (s, x1.0)L(S, X2.a 2
/1 : 2172) ( 272)2 (94, 8, X1,0: X2,0
et L(28,XTx3) L(25, X3X3)

1 1
r2N(a)* (T 1 202N (a)" ...
o - (I ey

SONWE T N

and for the horizontal integral

) F(h,s,X1Xa) X2Xa) ° @
F(h,2s, x3x2,x3x2) N(h)* s

1

Higgz T [ L

/; g (87>2<1’;) (S XZQ) F(9a S, X1,a5 X2,a
5+etiT L(2s, x1x2) L(2s, sza)

1 1+10gx x°
<. N(a)T°N(h) = / —do
T %-i—e N(h)QU

1 1 " iogz xN(a)*
e N)T°N(h) =———— d ¢ T
< N(a) ( )T (h)tT2e /;ﬂ 760 K N (h)i+e

Taking T' = /x, the contribution from horizontal and vertical integral is O, <W méﬂ) .

We now sum over a and h to get the complete error term

x1(h)xz2(h) ( N(a) x;+e) (3.5)

DRt S
Y
p(h) T
>0 32/N(a) x1,x2(mod 9) h=1(mod 3) #h(9) N(h)
a=1(mod 3) h( sqh)free
Ny

13



The sum over h is bounded by a constant depending on ¢, thus

y(ENG) 1 1 V()
3.5) <. Z I— Z r2°N(a) <« x2t° Z z—yl_
r>0 32 \% N Xl x2(mod 9) r>0 32N(CL)2
a=1(mod 3) a=1(mod 3)
Thus we need to estimate
V(3’"N( 1 V(BTN(Q))
A R
D et O 2N YIED VD VIR VD DR F e
r>0 r<logy a=1(mod 3) r<logya=1(mod 3) r>logya=1(mod 3)
a=1(mod 3) N(a)<y/3T N(a)>y/3T

where logy is the logarithm of y to base 3. Using ([2.7) for 3"N(a) < y and taking o = 1/3
we have

V(?’TN 3+e 3ro lta
DY —r S o((2) + 2 -ow
r<logy a=1(mod 3) 32N( r<logy 3 2y

N(a )<y/3’"

For the range in the second and third sum , 3"N(a) > y, we again use ([2.7)

PSS

r<logy a=1(mod 3)
N(a )>y/3’"

V(3TN(CL) V(3TN((Z))

o 5, T N o

2
r>logy a=1(mod 3)

Therefore the error term for the case when a is a cube is OC(:U%“y%*E).

3.4 Calculation of Residue

As promised before, we compute the residue in this section. Let us first do the case when
both x1, x2 are trivial. In this case we encounter a double pole (at s = 1) of the following
function

x® C%[w](s) ( 1 >_2 1
I+ —— —. 3.6
N(R @, (25) ﬂgh T N@y) s (36)
Let us define
- Czpw(8) o G (5) B 1\ !
Ry = res m ; Ry = res m and f(m) = H (1 + N(ﬂ')s> )
(3.7)

14



So the residue of (3.6)) at s = 1 is equal to

yis () BT (15 )+ e rereied !

w|9ah Z[w]
-2 -2
x ) 1 2log N () x ) 1
_ 14— SV 14+ —
O lH( ) [Z ESe O VAR
f(9ah)?* _, f(9ah)? ) ) ) 2log N () N
=zl — Rilog N — —_— = — )
wlog @ Ty Bt e | T il NI Ry = A Zg;h T+ N@m
(3.8)
Therefore the term we have to evaluate is the following
2 2 V(3N () B) £ (h)2
o TEO VE L
71 ) r20 N(a) h=1(mod 3) ()
a=cube h sq free
a=1(mod 3) N(l;l)g\/gf
(a,h)=1
9 9 V(3’"N(a)) h h 2
P L SR i IR SO
©) >0 32/ N(a) h=1(mod 3)
ST h g e
(a,h)=1
2log N ()
— Rilog N(h)? Py ————R}|. :
Rilog N(h)* + Ry + R Zgjh TN Rl] (3.9)

We simplify the above expression in two parts : one for the sum with z log x and another
with z. Let us define

h) f(h)?
Hya) = % (3.10)
h=1(mod 3)
h sq free
(a,h)=1

then the term with zlogx in (3.9)) is

REFOP 5~ V() Py ey

z logr ——5— Y f(a AAR X
#hl) = /N (a) et ) N(h)?
a=1(mod 3) 7\,(8,3) gfg
(a,h)=1
"N (a)
R2f(9)? V(EE) > 1
=zlog x| —2 ——Y__f(a)’Hy(a) | + O 22 logx ). 3.11
LG 7l D Y0 . B.1)
) >0
o= 3)



V(EEe)
f(a)* Hi(a). (3.12)

We break the main term in (3.11]) as
V(3TN(a)
———=— f(a)® Hi(a) = < + >T—y
L A R BT
a=Tmod 3) a=Tmod 3)  a=i(mod 3)
3"N(a)<y 3"N(a)>y
Using ([2.7) we have
V(STN(G)
—Y_~ f(a)* Hi(a
L S o

1. For 3'N(a) <y
3TN(a))
W= Y Y
rEE Y s 3)
3" N(a)<y
2
H
S mia) |

N(a)

1
6

)

[N

r>0
=cube
a=1(mod 3)
3"N(a)<y
DD
r<logzy 3 a=cube
a=1(mod 3)

2. For 3'N(a) >y
V(3TN(a)
y 2 y
> o - Y« ¥ )
r>0 32 N(a) r<log y r>log y 32 N(a)
a=T(mod 3) =Tmod 3)  a=i(mod 3)
3"N(a)>y N(a)>y/3"
1 1 1
— —gte
< 3 gt Xt
r<log y r<log y
Therefore (3.11)) is equal to
3  R? f(9)? *H 1
xlog x ( V3 1 fg ) Z M) +O€(x f% m) (3.13)
\/g -1 #h(g) a=cube N((l) ye ‘
a=1(mod 3)
Now we evaluate the residue term with x in (3.9)). Let us define
pu(h) f(h)? 2 p(h)f(h)* <~ 2log N(m)
H. = ————log N(h H. =
2(a) ) N2 8 () 3(a) ) N(h)? ) 1+ N(n)
h=1(mod 3) h=1(mod 3) w|9ah
h sq free h sq free
(a,h)=1

(a,h)=1

16



Then the residue term with z is

3"N(a)
() T e e
#h(9) r>0 32 N(a') h=1(mod 3) N(h)
a=cube h sq free
a=1(mod 3) (a,h)=1
N(h)<yz
2log N ()
_ 21 N(h 2 2 2
RHog N( + R+ 3 B }

2 3"N(a) a 2 |
- <£§;>> 2 R ((Ry — R})Hy(a) — RiHy(a) — RiHs(a)) + O(x2**)

a=cube
a=1(mod 3)
We already saw the procedure to evaluate the sum over r and a in the case of xlogx, so we
write the results directly.

(R Y T (- ) - Rt - R <0 =5

V3 — 1 ##hi) N(a) ys~©

a=cube
a=1(mod 3)

Now we move to the case when exactly one of the ray class character is trivial. Let us
assume that y; is trivial. In this case we encounter a single pole of the following function

' Caw(s) 1\ L(s,x2) X2 (™) 711
N(h)? Czpw)(25) 11 (1 " N(”)) L(2s,x3) I_Ih (1 " N(W)) S

7|9ah 7la

where x5 is a non-trivial ray class character modulo 9. Let

fem) =] (1 - ;(Q))_l (3.14)

and the residue is equal to

T

N(h)?

R f(90h) 7155 fafah)

We need to sum for all h,a and r and also over all non-trivial y, to get a complete expression
for residue. Let us define

17



and we get that the complete expression for residue is

3" N(a)
£(9) L(1,x) v (*52) u(h) f(h) £, (D)
R N 7 7
T z;g)L(zx?) Z 35 UN@) (“)f"(a)hzl(%dg) N(h)?
X#tr’ivial a=cube h sq free
N(h) <z
(a,h)=1
37N (a)
7(9) Lo« V() "
= Rz - - 7 H O(zxzTe
' #h(g)X%Q)L(sz) ; 32/N(a) fla)fla)H(a,x) +O(x=™)
XFtrivial a=cube

L(1 H
= V3 R }{2(9) Z K (2 ;Xz) Z f(a)fy(a)H(a, x) n Oe( 1%_6).
\/g -1 # (9) x(mod 9) ( ' X ) a=cube N(CL) ys
x#trivial a=1(mod 3)
Finally we conclude the proof by combining all the cases and the error terms obtained
earlier.

1
3 Zwm i ( ()) 01x1og:c+02x+0(“gf>+0( 2yt

c1,c2 sq free A#0 Y ye
c1,c2=1(mod 9)

(c1,e2)=1

N(cie2)<z

(3.15)

where (', Cy are as follows

. V3 R%f(9)2( 3 f(a)2NH1(a)>

2
V3-1  #h, a=1(mod 3) ()
a=cube
V3 Rif(9)? a)?
Crim 1;’;;)( 3 f>[
o (9) a=1(mod 3) CL)
a=cube

ﬁ L(LX) a a a _ R2 a 2 a) — 2 a
jwuggﬂ@%gmﬁmﬂmm+mgRmﬂ>+&&<)Rﬁﬁﬂ)

xFtrivial

(3.16)

where f(a) and f,(a) are defined by (3.7) and (3.14]), respectively.

Remark 3.2. We assumed GRH to bound the product of L-functions L(s, x1Xa)L($, Xx2Xa) in
terms of powers of N(a) at ®(s) = 1/2+¢€. In [BYID] and the GRH was replaced by
cubic large sieve which is equivalent to GRH on average, and they computed the first moment
without any hypothesis. We try to use such a sieve, but the double sum over ci,co seems
to cause trouble, and we did not succeed in getting an unconditional result. The large sieve
for cubic character is proved in [HBOOBO] under the following form. Let ¢, be an arbitrary

18



sequence of complex numbers, where n runs over Zw|. Then

2

* * *

S (D) e < VM INQMY Y el

m
N(m)<M |N(n)<N n

for any € > 0, where >_" denotes that the sum is over square free elements of Z[w).
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Chapter 4

Dual Term

In this chapter we prove the following proposition which gives an upper bound for the dual
term.

Proposition 4.1. Let o be a real number such that o > 1/2. Then, for any € > 0, we have
the following estimate of dual term

2N \/— () (47T2 y?}V(A))u {F<;{12/_g)U) (

A#£0
1 _— du
Z N(cics) " w(ﬁ/Jle)l/JchQ(A))} " L. T

H‘:
RS
< |8
N——

[N}
+
[0}

c1,c2 sq free

c1,c2=1(mod 9)
(c1,e2)=1
N(cic2)<z

In the first section we remove coprimality conditions on ¢, ¢ and then deduce this propo-
sition assuming some bounds which we prove in In the last section we will deduce

using Proposition and Proposition

4.1 Removing the Interdependence of c¢; and cy

We recall from (2.6) that the dual term is the sum

w0102 3 Nclc2) UF(1/2+u)du
2 e N / (a2 ) Tram

c1,c2 sq free .A;éO
c1,c2=1(mod 9)

(c1,e2)=1

N(clcz)<r

«47&0\/— / (‘W yN (A >)ur(1£{12/;>u>( >, Nae) w(wCIC2>wc_lcQ<A>)dzu

c1,c2 sq free

c1,c2=1(mod 9)
(c1,e2)=1
N(cie2)<z

(4.1)
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where

TardAloltor) = Tl = (£) el (¢ ol

For the first equality we have used that A is generated by (1 — w)"a for some r > 0 and
a = 1(mod 3) and t¢,.,(1 —w) = 1. For the second equality we have used (2.9). In this
section we will prove the following proposition and thus establish an upper bound for the
dual term.

Our main task is to estimate the following

3 (g) g(c1) (g) g(ca)
1 1
c1,c2 sq free ! 3N(cl)§_u C2 3 N<02)§_u
c1,c2=1(mod 9)

(e1,c2)=1

N(ciee)<z

but we first prove the following lemma which removes the condition (ci,c2) = 1 from this
summadtion.

Lemma 4.2. For a € Z|w], a = 1(mod 3) and u € C, we have
Z <£> g(c1) <g) g(c2)
c1,c2 sq free “ 3N(Cl)%_u ©2/3 N(CQ)%_U

c1,c2=1(mod 9)
(e1,c2)=1

N(cico)<z
_ p(h) 3 glah, c1) 3 g(@h, c;)
N (h)=2 N(er)™ k N(c)*
(a,h)=1 (ah,c1)=1 (@h,c2)=1
h=1(mod 3) c1=h~1(mod 9) CQEEil(mod 9)
Nh<ve N(er)<z/N(h)? N(c2)<a/N(e1)N(h)?
where ' = 3 —w and g(r,c) is defined in (2.10).
Proof. We remove the condition (c1,c2) =1
a a 1
> ( > u(h)) (—) gler) (—) 9(c2) w——
c1,ca sq free hl(c1,c2) €1 3 C2 3 N(ClcQ)
c1,c2=1(mod 9)  h=1(mod 3)
N(cice)<z
a a 1
= > uh > —) g(her) (—) g(he) — -
h=1(mod 3) (h,c1c2)=1 €1/3 hc2 3 N(h> N(Clc2)
N(h)<\z c1,c2 sq free
c1,c2=h~(mod 9)
N(cico)<z/N(h)?

For (h,¢) = 1 we have (see section 4 of [HBPZY) g(hc) = (%), g(h)g(c). Replacing above,
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we obtain

1
= > ub > N(h)Q“’N(m)“’{

h=1(mod 3) (h,c1e2)=1

N(h)<zx c1,c2 sq free
c1,coa=h~ 1 (mod 9)
N(cico)<z/N(h)?
a h a h —
2 (2 g L
(=), (2) smsten (7). (%), stmate]
Using

(), (1) = (0,9, (4) = (), (%)

in the last equation we get

1
) DRRTORD S P

h=1(mod 3) (h,c1e2)=1

N(h)<\z c1,c2 sq free
c1,ca=h~1(mod 9)
N(cic2)<z/N(h)?

Since

replacing we get

> e 2 (e (), T

(a,h)=1 (h,c1c2)=1
h=1(mod 3) c1,c2 sq free
N(h)<Vz c1,ca=h~1(mod 9)
N(cic2)<z/N(h)?
pu(h) ah g(c1) ah) g(c2)
- X e S (e T (5) N
(a,h)=1 (hye1)=1 L/ g2t (hyez)=1 2/3 2
h=1(mod 3) c1 sq free c2 sq free
N(h)<vz c1=h~1(mod 9) ca=h~1(mod 9)
N(e1)<z/N(h)? N(cz2)<z/N(c1)N(h)?
. pu(h) 3 (ﬂ) g(c1) 3 (@) g(c2)
—2u w o
h=1(mod 3) c1 sq free co sq free
N(h)<z c1=h~1(mod 9) ca=h~1(mod 9)
N(c1)<z/N(h)? N(cz)<z/N(c1)N(h)?



where we have used g(h)g(h) = |g(h)|?> = N(h). Since g(c) # 0 if and only if ¢ is not square

free we can drop the condition that ¢;, ¢o are square free. Using g(c) = ¢g(¢) and (%) 5= (%)
3
we have
_ Z p(h) Z <@> g(c1) Z (i) 9(2)
o —2u u! o u’
(a,h)=1 N(h) (hye1)=1 c1 /5 Nici) (hyez)=1 @ /3 N(c2)
h=1(mod 3) c1=h~1(mod 9) ca=h"1(mod 9)
N(W<VE N(e1)<a/N(h)? N(ca)<a/N(e1)N (h)?
_ Z p(h) Z glah, c1) Z g(ah, &)
- —2u u’ =—\u'
(a,h)=1 N(n) (a,e1)=1 N(er) (aye2)=1 N(e)
h=1(mod 3) (h,e1)=1 (h,c2)=1
N(h) <z c1=h~1(mod 9) ca=h~1(mod 9)
N(c1)<z/N(h)? N(c2)<z/N(c1)N(h)?
pi(h) 3 g(ah,c) 3 g(@h, cs)
N(h)—2 N(c)™ E N(c2)™
(a,h)=1 (ah,c1)=1 (ah,c2)=1
h=1(mod 3) c1=h~1(mod 9) co=h (mod 9)
Nib)zve Ne)se/N(h)? N(e2) <a/N(er) N (h)?
where g(ah, c) for (a,h) =1, is described in ([2.11]) . Thus, the proof is completed. ]

4.2 Proof of Proposition

Using the above lemma we removed the coprimality condition of ¢1, s and now we use ray
class characters to get the condition of ¢1,cy = 1(mod 3). Let x1, x2 be ray class characters
mod 9 then

2 : :U’(h) 2 g(ahacl) E : g(aﬁ7 02)
N(h)—Zu N(Cl)ul 4 N(Cg)ul

(a,h)=1 (ah,c1)=1 (@h,c2)=1

h=1(mod 3) clzhfl(mod 9)

1
N(h)<vz N(e1)<z/N(h) c2=h  (mod 9)

N(cz2)<z/N(e1)N(h)?

_ 1(h)xa(h)xz(h) g(ah, c1) g(ah, c)
- X 3 Simr A ule) el Vo)

x1,x2(mod 9)  (a,h)=1 ah,c1)=1
h=1(mod 3) (@h,c2)=1
N(h) <z c1,c2=1(mod 3)
N(cice)<z/N(h)?

Let us define

ah,c
Sl = Z N(CQ)ER(U) Z Xl (Cl)gjng)ul/) (43)
co=1(mod 3) (ah,c1)=1 !
N(e2)<y/z/N(h) c1=1(mod 3)
N(c1)<z/N(c2)N(h)?
a_, c
S5= Y Ne@| % XQ(CQ)%T);) (4.4)
c1=1(mod 3) (@h,c2)=1 2
N(c1)<vz/N(h) c2=1(mod 3)
N(c2)<z/N(c1)N(h)?
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ah, cq
Sz 1= ' Z X1(01)W

Sy = ‘ > X2((32)M

(ah,c1)=1 (@h,c2)=1 N<C2>
c1=1(mod 3) ca=1(mod 3)
N(e1)<vx/N(h) N(c2)<vz/N(h)
(4.5)

then using Dirichlet’s Hyperbola method, for the sum over c;, cs in (4.2]), we have

g (Zh,, 1 glan, c;
> ) G 4o
_ N(cr)
(ah,c1)=1
(ahzc2):1
c1,c2=1(mod 3)
N(cico)<z/N(h)?

< S+ Sy + S35 (4.6)

We will estimate Sp,S; and S3S54 in §4.3] However we first deduce Proposition by
using the bounds for Sy, Sy from (4.13]) and bound for S354 from (4.15]). So (4.2)) is less than

1 x1(c1)x2(c2)
Z Z N(h)—m(u)#h%g) Z e

g(ah,ci)g(ah, )

x1,x2(mod 9)  (a,h)= (ah,c)=1 N(CIC2)
h= 1(mod 3) (@h,c2)=1
h sq free c1,c2=1(mod 3)
N(h) <z N(cic2)<wz/N(h)?
11 1,
R(w) Tr12 xﬁN( )Z
“be 3|
hzl&mod 3)
h sq free
N(WZVE
N e L Wi L it
u u Uu .
N(a1)'/3N (h)? N(a1)YSN(h) i N(h)s

It is easy to see that first four terms are converging when summed over h and the term
containing N (h)%® will contribute a 2'/'2. Thus the above expression is bounded by

’u|2 R(u) |:x1—2 _i_aj%N(a)iJre +x%+eN(a)%+2ei| )

Using these results we have

3 )“ T(1/2 + u) ( N\ du
> — N(cic2)" w(theye;)¥eien(A) | —
2 Z 162 cic2 cic2
2 v d (ven) T R u
c1,c2=1(mod 9)
(c1,02)=1
N(cic2)<z

JIT(1/2 + u)
I(1/2)

1 3 i
e ; /37N (a) . (47ry37"N(a)>

a=1(mod 3)

11

|ua® 272 + 26N (a)TT + 217N (a)2%] du
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1 x §+€x% . ['(1/2 4+ u) "
“« Y v evw) /@4' [Fram
a=1(mod 3)
1 T 4+Ex% a%Jrﬁ u F(1/2+u) u
* 2 e (Fov) =@ /@Q‘ Bk
a=1(mod 3)
| s N o [ T2,
* X vw (o) #v@ /. e
a=1(mod 3)

where we have chosen different values of ¢ in each of the above integrals. In each of these
three terms, the sum over r, a contributes O(1) and therefore the dual term is bounded by

L <x)§+e (x)i—i-e 3 (l‘>1+6
riz | — +x6 | — +x4 | —
Y ) Y
1

We need to choose y > 2% so that all three are less than z. Thus z12(z/y)27 is the
dominant term and the dual term is bounded by <, z12 (z/y)2 7.

-

M
oo

4.3 Proofs of Estimates

In this section we establish the bounds on Sy, S; and S3S4. These sums are very similar
except some parameters. We will estimate these using Perron’s formula (Lemma and
using the properties of Gauss sums as established in section 4 of [HBP79]. Let us define the
following notation for the generating series of Gauss sums

Glrs) = 3 ()LD

(b,e)=1
c=1(mod 3)

where x is a ray class character modulo 9, ;b = 1(mod 3) € Z[w] and g(r, c) is defined in
(2.10). It is clear that we need to know about the analytic behaviour of Guy(ah, x, s), so

we use the results for Gy(ah, x, s) from the work of [Patld, [HBP79 and [Pai87) and the
following lemma which relates G,p,(ah, x, s) and Gy(ah, x, s).

Lemma 4.3. Let us write a = aya3a3 for ay,ay square free, (a1, az) = (az,a3) = (aj,a3) =1
and define ay := Hﬂ|a3 7, the product over primes dividing az. Let x1 be a ray class character
then for h € Z[w] such that h is square free, = 1(mod 3), and coprime to a we have the
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following equality relating Gan(+, x1, ) to G1(+, X1, 5)

Gala a3h(a1a2a3h X1, S )

=10~ xa(m?* N>

T|asz

x Z /l Xl alazh d) < H (1 - Xl(ﬂ_)fsN(ﬂ_)Qf?)s)fl

wlaidh

X Z u(e)N(e)'2x1(m)?g(ara3dh/e, e)Gi(arasdh/e, x1, s ))
elaidh
(4.7)

This is almost identical to Lemma 3.6 in [BYIQ]. There are some changes in notation so we
briefly state the path to prove it without going into details. Using g(aia2a3h, c) = g(aia3h, c)
we establish that G, g azh(alaQagh X1,8) = Goa2 ash(alazh X1,8). Also by definition of
G(y(+,+,+), the powers in the subscript are redundant and we can replace the quantity in
subscript by product of all primes dividing aja3a3h or equivalently by ajasajh. The next
task is to remove ay and aj from the subscript and is described in [BYTQ] quite clearly (see
proof of (25) and (27) in their Lemma 3.6). Finally we get rid of a;h in the subscript using

Lemma 3(i) of [HBPTY.

Lemma 4.4. Let a = aja3a3 with ay, as, a3, ay and h as defined in Lemma . The function
Gan(ah, x, s) is holomorphic in the region R(s) > 1 except possibly a pole at s = 4/3. Further,
fors=p0+it and 1 +e<[3<3/2+¢€, |s—4/3] >1/12,

Gan(ah, x1, 8)| < N(ah)2GTeB)(1 4 (2)ate s
and if a3 = 1 then the residue satisfies

7’&/9 Gan(ah, x1,5) < N((zllz)_%Jr%]\f(CLg)E =: G(a,h). (4.8)

s=4
Proof. From [BYTIO], we have for s =3+ it and 1 + € < 3 < 3 +¢[s —4/3] > 1/12,
G1(ah, x1, 8)| < N(ah)2® =P (1 4 )=~ (4.9)
and if a is cube free then the residue satisfies

7;373G1(ah, X1,5) < N(aph) s+,

Using Lemma {.3{for s =+ it and 1 + € < 5 < 3 +¢,

|Ganlah, x1, )| < H<1—$>_1

laz
-1
xi(m)? 1 2
1-=—F—= — G dh
a3 T|ay €lay
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Using (4.9), we bound the innermost sum over divisors of a;dh. Thus we have the following
upper bound for |G (ah, x1, )|

(- wis)

lasz
_ LN N(aaddh)sG+=5)
" —1{ (1_——> x o (L +17)21 )
%N(d)ﬁ 3 wl;[dh N(?T)3/B 2 6%;”1 N(G)Z,B S+ +e-p)

< (1+ t2)%Jre_ﬁj\f(alagh)%(%Jre_ﬁ)]\f(ag)ej\f(alh)E < N(ah)2GHeB)(1 4 ¢2)5te b,
Now we calculate the bounds for the residue. Again, we make use of ([4.7))

resGah ah, x1,$) < H (1-N

s=4/3

X ZN(d)—B/G H (1—N(m)?) ! x Z N(e)—7/6N(a1dh/e)—1/6+s

dlaf wlaidh elardh
< N(aph) Y42 N (ah)e.

]

We now estimate the sums 57, S5 and 5354 using Perron’s formula. Since these steps are
going to be similar for each of the four sums, we mention the general results in the form of
following lemma and then specialize to different cases.

Lemma 4.5. Let xq be a ray class character modulo 9 then we have the following result

14T
ah, c .ds X1*elog X
Z Xl(C)g( ) — / Gah(ah7X17%+S> _+O (Tg)
1

1
(ah,c)=1 N<C) : +e—iT
c=1(mod 3)
N(c)<X

X1+el X
- X3 res Gah(ah X135 + 5) + Enor(a, b, T) + Ever(a,h, T) + O (TOg>

where

Ever(a,h,T) < N(ah)it<Xzt/T (4.10)
1+€
X do

v T (4.11)

1
3t

Epor(a, h, T) < N(ah)ite(1 + T?)'*e /

The value of X for 57, S5 will be different from that for Sz, S, and accordingly our choice
of T will change as well.
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Proof. The statement is basically Perron’s formula. The only thing non-trivial is the bound
on the vertical and horizontal integrals. Let us first estimate the vertical integral using

Lemma 3 (see (20)) of [HBOO4]

s+etiT
d
/ Gan(ah, x1, % + S)XS?S < N(ah)%“X%ﬁﬁ
Lie—iT

and for the horizontal integral, using result of Lemma [4.4]

1+e

14e+2T
ds 1 X° do
Gan(ah, x1,% + ) X*— <. N(ah)zT¢(1 +T?)'*e —
[ w(ah, X1, 3 + )X (ah)=™ ) (vV/N@ah)(1+12) T

1

5 tetiT 5te
1+e€ X d
1 g g
. N(ah 1 te 1 T2 14€ et
< Ny | g
5te

Recall (4.3),
Si= Y. N(e)™™

g(ah,cy)
Z Xl(cl) N(Cl)ul

(ahch)zl (ah’?cl)zl
co=1(mod 3) c1=1(mod 3)
N(ez)<va/N(h) N(er)<a/N(e2) N (h)?

We apply partial summation to get

S owefE-( X @) (ioae)

(ah,c1)=1 (ah,c1)=1
c1=1(mod 3) c1=1(mod 3)
N(c1)<z/N(c2)N(h)? N(c1)<z/N(c2)N(h)?
N2 ah,c
- [ ( Y a(e)dna) 1>) utv dt
1 (ah,c1)=1 N(Cl)
c1=1(mod 3)
N(Cl)gt

1/3
where we have used v’ = 1/2—wu. In Lemmawe take X = /(N (coh?)) and T = (NE”CQ)> :
so in the horizontal integral we have

1+e 1+€

x? do < 1 x° do
s WNENEPA+T2)7 T = (NmpR)sre f, o Ne)(+T2)7 T
xlj—e

(N(h)N(c2)(1 +T2))*T

<
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Therefore

Eyor(a,h,T) < x
N(

2
x3te

Ever(a,h,T) <
Vi ( ) N )%-l-e

=
I
=

C2

Lastly, the error from Perron’s formula is O(z3%logz/N(c3)3 N (h)372). Using the
notation of the residue as defined in Lemma [4.4] we have the following relation

(5 o)

ah,c1)=1
c1=1 (mod 3)
N(e1)<z/N(c2)N(h)?

x 6 N(a)ite )
= res Ggp(ah, x1,8)| ————— +O(2—$3+610 z|.
T8 Gan(ah, xa )(N<c2>N<h>2) N(e2)iN(h) °

Using the similar procedure we can also bound the term for a general ¢, for this case we take
1
T =1s.

=l

h
( Z Xl(cl)w) — 3 res Gan(ah, x1,s) + O(N(ah)%-i-ft%—i-e log t). (4.12)
(ah,c1)=1 N(C1) s=4/3
c1=1 (mod 3)
N(e1)<t

We can always choose our € so we include the terms of logz and logt in 23+ and ¢3¢,
respectively. Therefore

N(e) N2 g(ah, 01)) ut"
) —F— | —dt
[T 2 ety

(ah,c1)=1
c1=1 (mod 3)
N(Cl)St

[T (0 oy i) B
1

T SR 1y
< |U‘ G(a, h) (W) + |U,‘ N(a’h’)4 (N(C2>N<h)2

NSRRI Lv(@)z]v(h)z N N
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where G(a, h) is the bound for residue of G,p,(ah, x1,s) at s = 4/3 (see {1.§)). So

2R G(a,h) 5 N(a)ite 2
(afg:l N(ea) "IN (h)2 [ N(cp) 3 N(h)3 N(c2)3N(h)i
ca=1(mod 3)
N(e2)<Va/N(h)
Rw) T G 3N (g)ite
P (ﬁ) XG(a,hg ngr( ﬁ) (a)43 x§+e]
N(h)#R0) [\ N(h) N(h)s N(h))  N(n)i
<o 0 [Clah) oy N xg]
NP | N () N(h)i:
I%(u) [ 1 11 ]\7(0,)%4_E 5:|
< |u T2 + ———5 T6|. 4.13
| |N(h)”*(“> | N(ay)s N(h)? N(h)i2 (4.13)

Analysis of S, is same as S; except the fact that the generating series we get is G (ah, x2, s)
instead of Gui(ah, x1,s) but that doesn’t affect all these calculations and we get the same
bound for Sy as well.

For S35, we follow the same procedure as we did for S; above. Since S3 and S, are similar
we show the process only for Ss.

s T e (s

(ah,c1)=1 (ah,c1)=1
c1=1 (mod 3) c1=1 (mod 3)
N(c1)<v/x/N(h) N(er)<t

(4.14)

Again, we use Lemma [.5| with X = \/z/N(h) and T = X'/3. Using (4.10) for vertical
integral

1y 1 xge:N(a)iJre )3T
B, T) < N{ah) ¥ ot (V) = S0 ()

and using (4.11)) for horizontal

1+e \/E Udo_ X (\/E)H_e
[ <m> T < (1 + T2)1+¢ N(h)\*+eT

ate

Hence
LD DN N
Epor(a, h, T) < N(ah) it~ _ ngyite _ W Wy
Lastly, the error from Perron’s is O((y/z)37¢/N(h)*/3). Therefore
glah, q)) ((ﬁ))? (N<a>i+f )
- Ganlah, x1, +0 : 3T ).
(X, weRe) e (35 W

c1=1 (mod 3)
N(c1)<vz/N(h)
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Using (4.12) in ({4.14]) we get

) (ah, e1) ut”
ah,c1)\ u
/ ( > Xl(cl)g—l) —
1 (ah,c1)=1 N(Cl)
c1=1 (mod 3)
N(e1)<t
5 2
\/E 1+ R(u) i \/E S+R(u)
h N(ah)ate| L= )
<luGtan( )+ v
Thus for S3 we have
. g(ahacl)
53 - ’ Z X1<Cl) N(Cl)u’
(ah,c1)=1
c1=1(mod 3)
N(c1)<vz/N(h)
Gla, h) 2R (u) N(a)ite 21 R (u)
<Le ul [W(\/@ﬁ + m(ﬁ)g :

Same bounds for S; and thus multiplying the two sums we get the following upper bound

|u|2 |: G(a57 h)2 x%—l—ﬁR(u) + G(a, h)i\f(a)1+emi+%(u) + N(a2 2tz §+§R(u):|
N(h>§+2%(u) N(h)1+2§R(u) N(h)g—i-%)?(u)
R(u) 1 N i—‘re ) N %+2E 5
- ’“‘ZNéUh)w(u) { . x4 (?) Fri+ Lst] (4.15)
N(ar)z N(h)? N(a1)sN(h)r N(h)e

4.4 Proof of Theorem 1.1
We deduce [Theorem 1.1} using ([2.6]), Proposition and Proposition

S L/2t00) = Cirloga + Cor + O (ad¥d+) 4.0 ( f_g)
yﬁ

Lo
+0 <:10%é (f) )
Y

The main term is clear and for the error term we choose y = 212 which gives (azy)% =2
vi(x/y)t.

c1,c2=1(mod 9)
(c1,e2)=1
c1,c2 8q free
N(cie2)<z

co
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Chapter 5

Conditional Upper Bounds for
Moments of L-Functions

In this chapter we prove [Iheorem 1.2} In we set up notations and useful lemmas. The
last ingredient is slightly weaker upper bounds of moments and we establish these bounds
in §5.3] Finally in we complete the proof using the strategy of [HarI3] and useful ideas

from [LRI9Y.

5.1 L-function Inequality

In the following proposition we state Chandee’s inequality ([Cha09]) written as a sum over
prime ideals.

Proposition 5.1. Assume GRH. Let 1 be a Hecke character with norm of conductor equal
to C and let L(s,v) be a Hecke L-function. Then

v(p) +¥(p) , b(p) + () 4 log C
LA/29) <exp | D = —Ld (0 X)+ Y TR P v
N(p)<X plp=p<vX
(5.1)
where
N(p) 2 mx (1 — lalNk) = 1(mod
a'(p, X) = (®) ( WX) plp=p=1imods3) (5.2)
0 p|p=p=2mod 3)
a"(p, X) = EN () (1= 22N | p = p= Lmod 3) (5.3)
7 N(p)_%_ﬁ (1 - %) p|p=p=2(mod 3)

and both functions are extended to all ideals of Z|w| by defining o/ (ZJ, X) = d'(Z, X)a' (T, X)
for any T, J and similarly o (ZJ,X) = d"(Z,X)d" (T, X).
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Proof. Using Theorem 2.1 of [ChaQ9], taking A = 1 and for X > 10 we have

a(p",¥)  log X/p"  logC >
L(1/2 < r O(1 5.4
L1/2.0)] e 3 ek Thex tOW) 64
where
a(p”, 1) == (au(p,¥)" + aa(p,¥)") log p (5.5)
and a;(p", 1), as(p", 1) are described in and (2.5)). Thus
log X/p"
Ry - og X/p
"L<Xp +logx)n10gp ].OgX
—r ¥ (W (m)" +(T)") log X/p" oo 3 W@*)" + (=¥ (p)*)") log X/p"
N n(3+pax) log X n(3+ i x) log X
<X p 2 lsX og X P2l X )y og
p=1(mod 3) p=2(mod 3)
P=TT
(5.6)

Clearly for n > 3, the contribution is O(1). In the summation over primes congruent to 2
modulo 3, terms corresponding to n = 1 vanish and only primes congruent to 1 modulo 3
contribute. Hence for n = 1 we get

R (m) +9(7) log p
pg;( p2+logz (1 B 10gX>
p=1(mod 3)

- _Rep) () logN(p)Y _ Up) +0(p)
- N%X N(p)%J“@ (1 logX) Z 5

plp=p=1(mod 3)

Now for n = 2 we get

R (Y(n)>+4(m)?) 1 2logp Ryp) 1 2log p
2 2p 2<1_logX)+ ;} P 2(1_10gX)

p<vX plee= <VX pleeX
p=1(mod 3) p=2(mod 3)
p=7T
(5.7)
2log N log N
> Nwl(f?zx (1 - —fg;c(p)) LS N%w(f)x (1 - —Oig)(cp))
Npevx  2N(p) T N(p)<x (p)2 "o
plp=p=1(mod 3) plp=p=2(mod 3)
(5.8)
+ "
_ w(p)zz/)(p)a(p,X). (5.9)
plp=p<vX
[
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The following lemma shows that the sum over prime squares (5.7) can be shortened
significantly. This lemma is based on Lemma 2.1 of [Sou09] and [HarI3].

Lemma 5.2. Let ¢ be a Hecke character of conductor less than or equal to x and y € R be
such that logx < y < x then

Sy | () )

1
Py p<logx 2p plosy lOg Y
PEl(mil 3) pzl(m()ﬁl 3)
p=7m p=nT
P((p) 1 log p
+ Z N Z sl oou ) O(1).
p<y p<logzx p Pplogy gY

p=2(mod 3) p=2(mod 3)

Proof. The argument is based on explicit formula proof. By following the argument in [Dav8&(]
(Chapter 19,20) and assuming GRH to calculate the contribution of zeros we have for z < x

S@W,2) = > W@ +v@)logp+ Y 20((p))logp

p<z p<z
p=1(mod 3) p=2(mod 3)
zP z
- T Zeofiuend
+ T og-xz
[S(p)|<T
p:L(pyp)=0

< /zlog? T + % log® 2

where L(s,1)) is the Hecke L-function associated to Hecke character ¢. Taking T' = /z < \/x
we get

S, 2) < Vzlog?xz. (5.10)

By partial summation we have S(¢,y) — S(¢, (log z)®) = o(1) and using D log r<p<(
O(1), we obtain the result.

1_
logz)® p ™
m

Let us use this lemma to shorten the sum over prime squares. In ([5.7)), the length of the
sum is v X so for logx < v X <z we divide 1} in two parts

T R (¥(r)* +9(m)?) 1 <1_21ogp)+ 3 Ry(p) 1 (1_210gp)

p<log x 2]7 plogx log X p<logz p plogQX log X
pEﬂmO,d 3) p=2(mod 3)
P=TT
R W) +y(@?) 1 log p Ryp 1 log p
> % el U s D D] Vs
log z<p<VX plogﬁ 08 log z<p<vVX plogﬁ 08
p=1(mod 3) p=2(mod 3)
p=nT
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The second sum is O(1) by the lemma proved above. Hence the sum over prime squares
is essentially of length log x. Therefore in 1) for logz < v X < x, we have

|L(1/2,1/))| < exp Z ¢(P)‘;‘¢(P)a/(p7){) + Z %ZJ(P) _g w(p)a"(p,X) + logC

log X
N(p)<X plp=p<log

(5.11)

5.2 Notations and Useful Combinatorics

Following [HarI3] and [LRI9], our strategy is to partition the set of primes less than or equal
to X into multiple intervals I, ,, for 1 < n < J, each of which is (:1:9"*1,389"} where
67’1

Qn::W fOTOSTLSJ

1
where J is chosen such that it satisfies n; < 0; < eny for 0 < n; < (8;3;?4 (see Remark.
We also define I := (1,2%]. We also define intervals Iy, := (2m~1,2™] for 1 < m < M,

where M := Foglﬂ—‘. We partition the sum in 1' by defining

log 2

P(I,,B,a") =Y MB@,W) (5.12)

pel

where I is an interval which can be I, or I, and p €  means p | p = p € I. B(p,2%) is a
completely multiplicative function such that B(ZJ,z%) = B(Z, 2%)B(J,2%) for any ideals
Z and J. For instance, B can be a’ or a” as defined in and respectively. Hence
using these notations in we have for a fixed 0 < j < J and X = 2% and ¢ € F(z)

J Mo
(12, 6)] < exp (Z Tyt d,2%) + 3 (Lo, 2%) + i) (5.13)

n=0 m=1 9]'
J Mo
=e /% ex a',x” ex a’,x")). .
Yo [ [ exp(P(In, ¢, ', 2%)) [ exp(P(Lam, ¢, 0", 2%)) (5.14)
n=0 m=1
Lemma 5.3. Let v be a multiplicative function on ideals defined on powers of prime ideals
as
" 1
v(p") = ]

where n is non-negative. Then for any even integer s > 0 we have

s om (pP(] B xgu m B
2 ( (Jijl 2P Y. BEI " w@w(TN(@T). (5.15)
" Pllégpel

(L7)<s
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Proof. We calculate powers of P(I,, B, z%) to get

P B2 (Zw p) + O(p (xeu))

pel
_ YD) OJT)
o Z 29(7) 99(7) B(ZJ,x ) Z 1
pip2..pm=LJ
pIZ, J:>pel
QIT)=m
m)! _
=on 2. BEI"Ww@UITW@UI). (5.16)
7.J
p|Z,T=pel
QZT)=m
On summing these expressions for m = 0 to m = s, the proof follows. n

. k .
Remark 5.4. For an even integer s and t € R we have Y ;_, % > 0. Thus the expression
m 18 non-negative whenever s is even.

Lemma 5.5. Let j be a fized non-negative integer and 0 < Ty < Ty <Ty <Th < --- < Tj
be real numbers. For 0 < n < j we define I, := (T,,-1,T,] and let a,(-) be a completely
multiplicative function on ideals of Zlw] and s, be an even integer. If there exist A > 0 such
that

then for ¥.,c, € F

> 1 — (5.17)

(01702):1 n=0 m=0
c1,c2 8q free
c1,2=1 (mod 9)
N(cieo)<z

J

<(zlogz) [ Y. aZIv(@v(T). (5.18)

n=0 ZJ72%2=cube

PIZT=>pEln

QZT)<sn
Proof. Remark ensures that the sum from m = 0 to s, is non-negative. Let F' be a
Schwartz function, which is greater than or equal to 1 on [—1, 1] and of finite support such
that its Fourier transform has compact support contained in (—A, A). Then (5.17)) is bounded

above by

J Sn (Zpe[n (1/}6102 (p> + Ecmg (p)) an(p))m N(Clcg)
DS SN | " F()
c1=1(mod 9) ca=1(mod 9) n=0 \ m=0
N(c1)<z N(c2)<

X

N(e1)

36



where we have lifted the restrictions of ¢, ¢y square free and (¢p,co) = 1 using positivity of
the sums from m = 0 to s,. For prime ideals p, let 7 = 1(mod 3) be the generator of ideal

p. Since ¢1,c0 = 1(mod 9), ey, (P) = <01%) , and the above term is equal to
2/3

S Oy I ;Z”O<E(”€I”(<$)3+®3>G"W)m ()

c1=1(mod 9) ca=1(mod 9) n=0

N(cl)<a: N(cg)<N<c

Let xo be the principal ray class character modulo 9. Then above quantity is

> 2 Xo(clcz)ﬁ i <Z(W)EIH (<$)3+®3) “n((”)))m F (M)

N(c1)<z N(c2)< =~ N(q) n=0 \ m=0

N(czl):<z N(cz)z<: XO(ClCQ)yﬁ)r,tzl(Zm:od 3) () <?r03>3 (fcg)gF(N((;CZ))

= Nlew pl(rt)=pel,
Q(rt)<sn

= > ao((roto)) - a;((rgty))((ro))w((to)) - - v((r;))((t)))

r0,...,r;=1(mod 9)
to,....t;=1(mod 9)
p|(rntn):>p61n
Q(rntn)<sn

’T‘OtQ"'T‘tz TOtQ...r.tz N{c
Z Xo(c1) (M) Xo(c2) (M F % .
N(er)<a “a PNty “ s N

For any ¢ € Z[w] and (¢, 3) = 1, a = b(mod 9¢c) = (9)3 = (‘—;)3 using cubic reciprocity. There-

a

rotd-rit2\ . . . .
fore XO(') (ML is a Dirichlet character of modulus 9ot - - - r;t5. Since N (rot§ - - - 1;t3) <

n=0"n
cube which is equivalent to rnti = cube for all 0 < n < j. Therefore the term above is

< >, ao((roto)) - a;((rst;))w((ro)w((t)) - . v((r)))w((5)) D N(er)
T0yeery rjfll(:nzsacll 3) N(c1)<z
e

T < x/9A%, we apply Proposition [2.1and get contributions only when rotg - - - r;t5 =

Q(rntn)<sn
J
< (zlog ) H > alr)r()v((®) = (zlogz) [ Y. alZIv(@D)v(T).
n=0rt=1(mod 3) n=0 T J2%2=cube
pl(rt):wem pIZT=pel,
rt2=cube QIZT)<sn
Q(rt)<sn
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Remark 5.6. By following the arguments in the proof, we can also prove the following results.

1. For an even integer s, a(-) be a completely multiplicative function on ideals and I =
(To, T such that T* < x/9A?. Then we have

> (Z(w(PHE(P))a(p)) < (zloga)(s) Y alZIW@w(T)  (5.19)

peF(z) \pel ZJ?=cube
p|ZT=pel
QTT)=s

2. For a non-negative integer s, let a(-) be a completely multiplicative function on ideals
and I = (Ty, T) such that T* < x/9A%. Then we have

Z 2s

YeF(z)

< (zlogz) (s Y aZIID)v(T) (5.20)

TT%=cube
PIZT=pel
QD)=T)=s

S b(p)alp)

pel

5.3 Almost Sharp Upper Bound

Before proving the complete result, we first prove a slightly weaker version that will be very
useful in our proof.

Proposition 5.7. For any real positive k and € > 0

> IL/200)* < (zlog ) (log 2) "+
c1,c2=1(mod 9)
c1,ca sq free
(01,(32):1
N(cic2)<z
Our proof of this proposition here is obtained by following the work of [DEL20] (Proposition
6.1) and [Sou09. The difference in our case, as compared to [DFL20], is that we work over
Q(w) and there is a double sum which gives xlog x instead of x in the RHS. However this
difference is not really significant in terms of ideas involved in the proof. We start with

proving an important lemma.

Lemma 5.8. Let { be a positive integer divisible by 3 and y',y € R such that 1 <y’ <y <
(/2 /3A)% where A is constant.

> > W) (p,y)

c1,c2=1(mod 9) ' N(p)e(y’,y]
c1,c2 sq free

(c1,e2)=1

N(cic2)<z

where a'(p,y) is as defined in . LD Npew .y a'(p?,y)[37¢ then

Z <<(xlogm)(€!)( Z a’(pz,y)) (5.22)

c1,c2=1(mod 9) N(pe(y' v
c1,c2 sq free

(c1,e2)=1

N(cic2)<z

2 2 2/3 ¢
< (zlog x)% ( N(p;/ ; a'(p?, y)) (5.21)

> wp)d (p,y)

N(p)ey'y]
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Proof. Since y* < 2/9A2, we apply (5.20) to get

20
S ey <@lgn@? Y dET@ud)  (523)
N(pe(y’ vl TJ?=cube
PIZT=N(p)E(y’ ]
S(T)=(T )=t

Let Z = GI; and J = GJ; such that (Z,,7;) = 1. ZJ? = cube implies Z; = cube ,
J1 = cube and the above bound is same as

(zloga)(@)® Y d(G%y) > (LT, y)(GT)v(G )

pIG=N(p)e(y ] L1 =cube;Jy =cube
QG)<t plZ1,Ji=N(p)E(y ]
Q(Z1)=Q(J1)=£—Q(9)

S(xlogg(;>(f')2 Z a/(g27y)y(g)( Z a,/(p;vy)>

pIG=N(p)e(y’ Y] N(p)e(y' ]
QG)<L

3192(9)

(G2, y)v(G
< (zlogz)(0)? Z Sg(j_g(g))?lyé(g))‘y (5.24)
— !

pIG=N(p)e(y' ]
Q(G)<e
31(G)

where we have used v(ZJ) < v(Z)v(J), v(T) < 1, and v(Z?) < v(Z)/3%?D). In the last step
we used a'(p3,y) < N (p)_% and bounded the innermost sum over p by a constant. So the

bound in ([5.24)) is
1 12
a'(G*,y)v(9)
=(log2) ()Y D
3li plg=N(p)e( v

¢
1 1
— 12 ov
15? 3 N(p)e(' ]
‘¢, N
(0 : 3%
N(p)e(y' vl 50 3
¢
25/9)"/3
<logn(f (3 dhy) | D
N(pe' vl 37
This establishes (5.21). For the case when £ < [ 37y 1, @ (0%, y)[>¢, we need to show for
3liandi </
i N ¢
33 1
2 2
Z a'(p*,y) m<<a Z a'(p*,y)
N(p)ey'v] 3 3 N(p)e(y'v]
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or equivalently _
2i3% T
(G <
for ¢ < x37¢ which is shown in [DEL20] and thus our proof is complete. O
We define
n(w, V) = #{ 6 € F(a) log | L(1/2,9)| > V)
and note that

> L(L/2,9)* = zk/ exp(2kV)n(x, V) dV. (5.25)
YEF(z)

We will use the L-function inequality but we first bound the contribution from prime squares
in (5.11]).

plp=p<logz
R (P(m)*+¢(7)?
_ Z () +o()°) 12 (1_210gp>+ Z %w(p)x 12 (1_210gp)
p<log = p p@ log X p<lon s D p@ log X
p=1(mod 3) p=2(mod 3)
p=7T

1
< Z — < C'logloglog x.

p<logz

for an absolute constant C'. Therefore using this bound in (5.11]) we get

a(p, X) + logw (loglog z)°. (5.26)

v(p) + o) ,
2 log X

a2 <ens| Y

N(p)<X
plp=p=1(mod 3)

We will use this bound in (5.25)) and we choose X according to x and V' as follows :

% log log log x Vioglogx <V <loglogx
X = 2BV and B := loié‘{;” logloglogx loglogx <V < loglgo(;”(log log log z)
6 18082 (Jog log log z) < V.

For the remaining case of V' < y/loglogx we use n(x,V) < z(logx) to get the contribution
to the integral in ((5.25)) < z(logz)(logz)".

To compute the contribution to (5.25)) in the remaining range of values of V', we define
1 < z:= X/lglogz < X and

Si) =] Y ¢(p)a'(p, X) Sa() =1 D b(p)d(p, X)|.

N(p)<z 2<N(p)<X
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If log|L(1/2,%)| > V then by (p.26)), for large x,

Si0)+ 5:0) 2V (1 2)

and there are two possibilities

1. S2(¢) > V/B

2. $(4) SV/B = Si(¥) = V(1—3/B) = Vi.
We define

ni(z, V) = #{ 1 € F(z) and S1(v) > Vi}
na(z, V) := #{¢ : ¢p € F(x) and Sy(yp) > V/B}.

For £ < 45 B, using Lemma and Stirling’s formula we have
Sa()\* _ (BY* (250')" a/(p%, X)
< — — —_— 1 —_—
na(z, V) < Z ( V/B < v 1ci Vi(zlogz) Z Np)
Cp)<= N(p)€(2,X]

The sum over p can be trivially bounded as O(log llc(’)ggx) O(logloglog x). Taking ¢ =3 L,)OLBJ
and using (43 < (V/B)*/3, we get

¢ 25(logloglog x)?

20 B
ne(z, V) < exp (E log vt 3 log 5ot

1 V
+ §log€) < z(logz) exp <—30—Blog V) .

Now we do similar steps for ny(z, V). If V < (loglogz)i we pick ¢ = 3L$J which

ensures that we can apply Lemma Also for this choice of ¢ we have ¢ < (loglog x)i <
O Nw)<z a'(p?, 2))> ¢ since Do N(m)<: a'(p?, z) = loglog z +o(loglog x). So we use (-22) to get

)% < (zlogz)Vl <€> (%)

< (zlogx)

xV<<Z(

i, V72
—_— X —_—
Vloglogx P log log x

The other case if V > (loglogz)* we pick £ = 3|V | and apply Lemma [5.8] to get

n(@ V)< Y (%)% < (zlogz)V7 (2554(10@; log x)g)m < exp (—% log v> .

4776
veF( N ! 4ty

12
where we have used *(loglogz)® < 81V'7 and V/2 < V;. We now calculate estimates for
n(z,V) in all three ranges of V.
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1. If Vloglogz <V <loglogx

2 2
n(z,V) < (xlogx)y/loglog x exp (— 4 (1 L) )

log log x B log log log x

2. Ifloglogz <V < k’gll%”logloglog:c

e 90V 2
1 log1 - L-
n(z, V) < (zlogz)(loglog x) exp ( logloga < (log log ) (log log log@) )

loglog x
3. ItV > =228 logloglog x

VlogV)

n(x,V) < (xlogz)(loglog x)% exp (_ 360

To calculate 2k-th moments using (5.25)) we use n(z, V) <, z(logz) " exp (—=V?/loglog z))
if V < 4kloglogr and n(x, V) <, z(log x)'*¢ exp(—4kV) if V' > 4kloglog x. This completes
the proof of Proposition

[

5.4 Sharp Upper Bounds
We partition the set of characters F(x) in different sets depending on the values taken by

P(Iip,,a’,2%) and P(Iym, 0, a”,2%). Let £, := 2{9;3/% for 0 <n < J and we define

Pi(J) = {w € F(z) : |2kP (I, %, d, 2%)| < i—g forall 0<n<u< J} (5.27)
P1(0) := {w € F(x) : [2kP(I1 9,0, d , 2™)| > g for some u < J} (5.28)

and for 0 < j < J,

ly
Pi(j) == {w € F(x): [2kP (I, ¥, d ,2")| < = forall 0<n<jandn<u<.J

/.
but |2kP (11 j41,%,d,2%))] > ]6—;1 for some j <u < J}. (5.29)
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The sets Pi(j) are mutually disjoint. Further we define for 1 < j < J and 1 <m < M,
Pa(m, j) = {w € Pi(j) : |[P(Iom, ¢, a” 20 N> 27 but |P(Ip, 1, a" 2’ <27

log1
forallm+1<n< M, = PE 08T
log 2

Q5(j) = { € P1(j) : |[P(Lop, ¥, a",2%)| < 27" for all 0 < n < M}

J
where ¢, := . Therefore F(z |_| ) and for 1 < j < J,

= (UP2WJ>I_IQ2(j)

and

> L2, 9)*
YeF(z)

SRS Sl SR
peP1(0) J= 1we7>1 ()

J M>

< Z L(1/2,1) |2’f+z Z L2+ > Y |L(1/2,4)*  (5.30)

PeP1 (0 J=1 %€Qa(j J=1 m=1¢ePa(m,j)

We first consider the simplest case, 1 € P;(0), which provides a good glimpse of the methods
involved. Let sy be an even integer such that £y < sy <6, /% then

SR < Y L2, 0P (%Pma,w,a o >)°

P»EP1(0) PYeEF(z)

IN

. 2ke? 0 250
Z |L(1/2,)|* Z (6 P(]1,0,¢>a'ax“))

veF(z) YeF(z) 0
(5.31)

Note that the first sum is bounded above by (z log z)(log )****¢ using Proposition [5.7} Since
ly < 59 < 90_7/8 = (loglog z)® < sy < (loglog x)7/? = %% < 2° for any § > 0, so we use
(5.19) with a = da'(p,2%+)/2, S = I, and s = 25 to get

Z P(Iy 9,0, d, 2")*° < (zlogx) (2s0) Z d (2T, 2" \v(T)v(T) (5.32)

2280
YEF (x) ZJ%=cube
p|ZT=p€l10
QZT)=2s0
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The following steps are similar to what we did in the proof of Lemma

Therefore the

right hand side of the above inequality is

280!
= (;p log q;) 5250 Z Z a/(QQIj, x%)lj(QI)V(QJ)
p|G=pelio Z,J=cube
Q(G)<so p|ZT=pel1 0
Q(G)=s0(mod 3) UTT)=250—29(G)
280! 1
< (zlog )75 > d(@w(9) > GI(I?’J?’,ZEG“)V(I)V(J)W
p|G=pelio pIIj=>peh 0
Q(G)<so QZT)=2(s0—27))
Q(G)=so(mod 3)
‘ 2 (40-0(G) 2(s0—(9))
B 250! Vo 231507 103 O
p|G=peli o 3 : pelio
Q(G)<so
Q(G)=so(mod 3)
50
250! 2/3)%/3 250)![s0/3]! /2™
< (zlogz) == Z a(p?, %) Z % < (z logm)M =] (loglogz)®™
22s —  (so—1)I(5]) So! 3
pelo OSZ|S80 3
3Ji

Therefore replacing in ([5.31])

4 s0/2
2k 1) 1/4 32k%e? 53
Z |L(1/2,9)]™ < z(log x) e )80 <<36)4/3E10g10g:c
P»eEP1(0)

s0/2
<, x(log )9+ _“
(loglog x)1/3
32k2etnl/3

where " = =257 < e'3(loglog z)~*/5.
Finally using sy > (loglog z)? we get that the bound above is < x(log x)~P for any D > 0.

Now we move to the cases when ¢ € P;(j) for 0 < j < J. For each j we have two cases.
The first is when ¢ € Qs(j) which implies that the contribution from prime squares is just
O(1). Another case is 1) € Pa(m, j) for some m which means that there are sums over prime
squares which are large. We consider both these cases in separate sections.

and for the second inequality we have used 22

The sum over prime squares is small. For j > 0, take X = 2% in (5.1, so we can use

(5.13). Also, v € Qu(j) = M2, P(Iym, 1, a”,2%) = O(1) and we have

2 M2t 3 e (Z%P Lt >+29’?>.
J

YEQ2(5) YEQ2(5) n=0

Let ¢ be an even integer then for ¢ < ¢/ e? we have

¢
15
S 1+€ Z/Q (Z—|>

(5.33)
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Since |2k P (11,1, d', 2% )| < £,/e? for 0 < n < j we have

J ) ,
P (Z QkP(Il,mw,a/,iL‘ > & H (Z 2kP Il m;!/;’a T ) )

n=0 s=0

and

] 2 Sj41
Z | (1/2 w |2k < Z H <Z 2/€P Ilnasllp a , L )> <2k€ P<[17j+1’1/}’a xou]))

$EQ(4) peF(z) n=0 \s=0 li+1

(5.34)

where wu; is any u for which |2kP(Iy j11,%,d',2%)] > €;41/€* and s, = QLmJ. We

remark that when j = J, there is no extra term of P(I; ;1,v,d ,x9 i). The choice of
m along with the choices of ¢,,s;1 ensure that >/ _ 20,0, + 20,1541 < 1 — %, as
explained in Remark ([5.9)), and we use Lemma [5.5 together with (5.19)) to get

S IL(1/2,0)P* < (wlog ) (/) H S EELT, I (T(T)

YeQa(j4) n=0 TJ%=cube
PIZT=N(p)El1,n
QZT)<ly

« (2""62>8H1 (Zﬂ_f') S dE@T I

l
g+l ZJ2=cube
PIZT=N(p)€lr,j+1
QZT)=sj+1

Again, for j = J, all the terms involving index j -+ 1 are not there in the above expression.
For j < J, the factors involving s;;; can be estimated by following the steps done for the

term on right of ([5.32)).

We now focus on the sum over ideals appearing inside the product from n =0 to j. Let
(Z,J)=G,T =GI, and J = GJ, with (Z,,J;) = 1. The condition of ZJ? = cube forces
7, = cube and J; = cube. Therefore for a fixed n,

S KT, (D))

TJ2=cube
PIZT=N(p)Elr n
QIZT)<ln
< Z km(g)a/(gz’ xen) Z kQ(Il)a/(Ih .’L’e”)l/(gzl) Z l€§2(‘71)a/(\717 :Lﬁ")l/(gjl)
p|G=pel,n Z1=cube Ji=cube
QG)<ln/2 plZi=p€lin pl1=p€lin

QG2T1)<ly, QUG2T1 1) <ln
(5.36)
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For any Z, a'(Z, 2%) < \/ﬁ We also use v(GZ) < v(G)v(Z) for Z; and J; in the inner
two sums. Also we have
Yoo KWW (Gt ) < Y. B (TR ()

J1=cube plA=N(p)Eln
pli=N(p)Elr,n Qn)<ie

Q(j1)§£n_9(11g2)
e (Saipen, o 6.2)

<
- m!
m=0
Since a’(p3, 2%) < N(p)~3/2, the quantity above is bounded by exp(k® > el N(p)=3/%) =
Ok (1). Hence (5.36) is bounded above by
S K9G (@) <exp K2 b < exp [ K2 logM
’ - N(p) log 2:9n—1
p|G=pEli n pElL N
Q(G)<tn/2

[ log 2o\ (O K
~ \log zfn—1 -\ 6,
for n > 0. As Iy = (¢, 2%), for n = 0, the bound is (log 2% / log ¢)**. We now use this result

in (5.35)) and get
> /2 )P

$heQ2(j)
y i+l
2%/ log 2% K 0; K 12 [ 32k%e* S?f’l Eh Z 2 0 2
< (alogae (MEIL) (B (T o J (2, %)
log ¢ 6o (6e)¥/3 3, e
Sj+1
s (2% b+ (16024 V3 7
J

where we used the fact that the sum over p € I;;, is simply bounded by a constant, say 5.
If j = J then 2/ = O,(1), there are no s, terms and 6% = O(1) and for j = J we have

S L2, 6)* < (sloga)(log ) (5.38)
PYeQa(J)
4/3 1/6

. . 0.
For the case of 0 < j < J we use 4+ < -ZL and 0]]:1 < 1285511 < 2«9]2:1 to get

2, = 256
> L(L/2,9)*

HEQa(j)
2ke 1 1 1 ! !
1 2 f R loglogx + 5 1 Cr(k) — 1
< (zlogx)exp <0j+1 + r7loglogw + 5 08 041 * 1280;.44 1(F) 25601 o8 9;1?)
2 log 9]'11 2 .
<L (zlogz)exp | k*loglogz — 210(3)0, 1 < (zlogz)exp | k”loglogz — 200301,
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where C (k) = ‘log 1(2,0’“4/63 Combining the above estimate with ([5.38)) we get
S Y 2P - Y E020F Y Y K20
=1 9€Qa(j) PEQ2(J) J=1 ¢%€Qa(j)
J-1 1
<(zlogz)(logz)* + (xlogz)(log z)* ;exp (—m) < (zlog z)(log z)*¥*
Remark 5.9. We need to ensure 2 Zizo Ol +20; 11541 < 1— 2}2?? So
1 /M7 —q 1 (Bpe”) /4 1
1 - 4 _ _
2;%9 ol +29]+ls]+1<420 + 55 < 463 < v )+32 g4<€1/4_1>+32
49/ L1
“el/A -1 32
4len)V* 1
— e/t -1 32
where 85 < eny. Thus for large x,
(er™)*  A(pe)t 1 4 1 _ 3 2log 34
< = — < —<1-=
= Tos, el 2596 26 log z

The sum over prime squares is big. We move to the final case when for some 1 < 5 < J
and 0 < m < My, 1 € Po(m, j). We consider two cases depending on the size of m.

Case I Consider the case when 2™ > ﬁ% =i (loglog ). Then with t,, := 2[29™/16]
> L2 < Y LA/ ) (2Pl b 2") (5:39)
YEP2(m,j) YEF(x)
< [2(logm)o) | 225 N P(Ly, 0,0, a%)2n | (5.40)
YeF(z)

where we applied Cauchy Schwarz inequality and Proposition Since m < log log x/ log 2
and t,,, < 4(logz)*% we have (m + 1)t,, < logz for large enough z and thus we can use
Lemma for the sum in (5.40). Since this is similar to the sum on LHS of (5.32), we
directly write the estimates in this case which is

2t,,!
S Pl a) < (@logn)oms Y (@ W)
YeF (x) TZJ?=cube
PIZT=>pEl2,m
QTT)=2tm,

tm

2t | tm /311 2\ ,
< (atoga) 2228 ()57 e

me pEIZ,m
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Note that a”(p?, 2%) < for p|p, and the sum over primes can be bounded trivially as
(35)". Replacing in ((5.40)),

4 tm/2
1 t3,
S IL(1/2, ) < w(log )% Wi, < LA ) | (5.41)

1/’€P2(m7j) (36)

Using 2% < t,, < 4(2%) and 2 > C(k)(loglog 2)° (where C(k) := (32n3k2e*)™), we
have

tm /2
tm | =——=—= <exp| -logt,, — —log22 | <exp | ——log22 5.42
(3e)4/3 97" 4 2 4
< exp <_C (k)75 (log log :)*"/*

1 log C’(l{:)% (loglog x)3/10>

and this is < (logz)~? for any D > 0. Replacing this estimate in ((5.41]) we have

J
Z Z Z L(1/2,9)* <, z(logz)"P(JM,) < z(logx)~P/?
j=1 m<M22 PEP2(m,j)

Vi
m Q
2m> 32k2e4

for any D > 0.

Case II Finally we consider the case where 2™ < 322—‘2;64 =i (loglogz)® < x%. For p|p we
have |a/(p,2%)| < p~2 and |a”(p,2%)| < p~! thus we have the following trivial estimate

P((1,2™] ¢, a',a%) + Y " P(Ipp, ,a”,2%) < (3v/2)2772.
n=0

Also for ¢ € Pa(m, ), |P(Iop, ), a”, 2% )| < 277/1° for n > m + 1. Hence using these bounds

in (5.13) we have for ¢ € Pa(m, j)

[L(1/2,9)*
m 2k
< 70V oxpy Z 2kP((2m 1 2%]), 4, d, 2% —i—ZQkP L, d %) + 7
N(p)e(2m+ afo] n=1 ’
Further by triangle inequality
‘P(2m+1,x90],w7a/,x9j)| < |P(110,¢,a,,l‘0j)| + ‘P(l 2m+1]7¢7a/ax9j)|

14 14 14
22t Loy 0 0
+ \/_) = 2ke? + 2ke2 ke

IN

2
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where we used |P(I1,%,d’,3%)| < 5% and trivially bounded P((1,2™],¢,a’,2%). Thus
for ¢ € Py(m, j)

m 2EO m+1 ] En
ok (2% 6vak)+ 3¢ (2kP((2 2%],4, ', %) (2kP( [1n,w,a 2%))?
N O . (s
and we have for ¢, = 2[2?7/16] as defined in Case I
> /2P
TﬁEPz(mJ)
m o oop m 26o 2k P 2m+1 6o A FANY
< Z 66\/§k27+9j (QI—OP(IZm,w’aN’lﬁj))tm <Z ( (( 7'1:3' ]7waaax ))
YEF(2) =0 :
i .
(2kP (I, 1, a’, 2% 2ke? A
(HZ 1 ¢ )) ) (é P([17j+17¢7alax9uj))
J+1

where, as done in the previous section the factor P(Iy j11,%,d, 2% )%+ is only present when
j < J. We now apply Lemma [5.5] Since we have carried out calculations for each factor in
one of the previous cases, we erte the results directly here, so

> L(/2,9)*
PYEP2(m,j)

tm gj 1

m 3 2 4/3

6v2(k2% )+2E 4 tin K g b 160k2%e* s;i3

< e i (rlogx) Vi — log x)" 0} =
k (zlog z) (3)4/321/3 o2 (log )™ 07" s\, (6e)i/3 2,

There is no dlfference from ) for the factors involving s;;; and 6;. For the factors
involving m, using 2% < t,, < 2(2 16 ) we have the bound

4
3

1 th, 1 . 276
exp (6\/5162’”/2 + 3 logt,, + log 24m> < exp (6\/§k2m/2 + 2 log P log 220> .

Therefore

XYY sz

Jj=1 gm< 2Z0 PEP2(m,j)

J
1 276 1
log z)(1 E E 6v/2k2™/2 4 ~log 278 — 2 log 25 -
L (zlogz)(logx) 2. 2 exp< NG) 7 log 5 1og >eXp( 210(30j+1)>

= 32k2ed

<(zlog z)(log 2)*

Hence the proof of is complete.
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