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ABSTRACT

Moments of Cubic Hecke L-Functions

Arihant Jain

Moments of families of L-functions provide understanding of their size and also about
their distribution. The aim of this thesis is to calculate the asymptotics of the first moment
of L-functions associated to primitive cubic Hecke characters over Q(ω) and upper bounds
for 2k-th moments for the same family. Both of these results assume Generalized Riemann
Hypothesis. We consider the full family of characters which results in a main term of order
x log x. We also calculate conditional upper bounds for 2k-th moments for the same family
and conclude that there are � x primitive characters of conductor at most x for which the
L-function doesn’t vanish at the central point.
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Chapter 1

Introduction

Finding moments of Riemann zeta-function and families of L-function is an old and inter-
esting problem in number theory. There are several applications of moments to the theory
of Riemann zeta-functions and L-functions. Using Random Matrix Theory [CFK+05] gave a
recipe to conjecture moments for a very large variety of L-functions. Their conjectures are
very far from proven completely. For the L-functions associated to quadratic characters first
four moments can be computed ([Jut81], [Sou00], [SY10]). In contrast, only the first moment
was calculated for the family of cubic characters. In this article we present a result for cubic
characters. Let ψ be a Hecke character and the associated Hecke L-function is

L(s, ψ) =
∑
A6=0

ψ(A)

N(A)s

where the sum runs over non-zero integral ideals of Z[ω]. Our result is the following theorem.

Theorem 1.1. Let ψ be a primitive cubic Hecke character such that ψ ∈ F (see (2.1) for
definition) and L(s, ψ) be a Hecke L-function. Assuming GRH we have∑

ψ∈F(x)

L
(

1
2
, ψ
)

= C1x log x+ C2x+Oε(x
23
24

+ε)

where C1, C2 are absolute constants described in (3.16).

This theorem is similar to results of [Luo04] and [BY10]. However [Luo04] considered a
thin subfamily of the primitive cubic characters over Q(ω) and [BY10] considered L-series
over rationals, which also reduces the size of family of characters. Both of these results are
unconditional. The difference in our case is that we consider full family of primitive Hecke
characters. Due to the increase in size of family, we need to assume GRH to bound error
terms. Over function field, the first moment in the Kummer case was computed by [DFL19].
Their result also requires GRH which is not a hypothesis in function field (see Theorem 1.2

of [DFL19]). The exponent in their error term is 1+
√

7
4

= 0.9114378 . . . which is smaller than
23
24

= 0.958333 . . .. One reason for their better error term is that they computed the residue
in dual term and saved on both sums instead of just saving over one sum.

We also prove the upper bounds for moments of absolute values of L-functions. The meth-
ods are based on Harper’s proof [Har13] which is a refinement of the work of Soundararajan
[Sou09]. In proving the upper bounds, we have also followed the work of [LR19] and [DFL20].
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Theorem 1.2. Let ψ ∈ F , then assuming GRH∑
ψ∈F(x)

|L(1/2, ψ)|2k �k (x log x)(log x)k
2

Upper bounds for Dirichlet L-functions associated with cubic characters are also obtained
in Theorem 1.3 of [GZ21] for Dirichlet characters over Q and then their bound is x(log x)k

2
. In

[DFL20], the authors have calculated upper bounds for all mollified moments of L-functions
associated to cubic characters in the function field setting and further obtained non-vanishing
results in the non-Kummer case. Using Theorem 1.1 and Theorem 1.2, along with Cauchy
Schwarz inequality, we get the following result.

Corollary 1.3. Assuming GRH we have

#{ψ : ψ ∈ F(x) and L(1/2, ψ) 6= 0} � x.

Since the family of characters is of size x log x (up to a constant), this is not a positive
proportion.

1.1 Outline of the proof

In chapter 2 we discuss the family of primitive cubic Hecke characters. We also state the
approximate functional equation for L-functions which is a sum of two quantities : principal
term and dual term.

In chapter 3 we estimate the principal term. The main term is C1x log x and for the error
term we assume GRH which is where we differ from [Luo04] and [BY10] as stated before. At
the end of this chapter we briefly state the difficulty encountered while trying to get rid of
GRH assumption. Further in chapter 4 we estimate the dual term. Here we get cancellation
and therefore this contributes to the error in Theorem 1.1. The proofs here rely on results
of [Pat77], [HBP79], and ideas from [BY10].

Proof of Theorem 1.2 appears in chapter 5. We use an L-function inequality due to
[Cha09] and an important lemma (Lemma 5.5). Using the work of [Sou09] and [DFL20] we
establish slightly weaker upper bounds which are then used in §5.4 to yield the required sharp
upper bounds. In obtaining sharp bounds we follow [Har13], [LR19] and [DFL20].
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Chapter 2

Preliminaries

This chapter is divided in three sections. We start by describing Hecke characters and the
Hecke L-functions, approximate functional equation and some results on cubic Gauss sums.
All of the content presented in this chapter is standard and well-known. We also include
Proposition 2.1 which is a result on smooth character sums and will be useful in obtaining
upper bounds.

2.1 Primitive Cubic Hecke Characters

All of what we present here is mentioned in [IK04] (section 3.8), [IR90] (Chapter 9) and
[BY10] (section 2). We first start by describing the cubic residue symbol. For a prime
π ∈ Z[ω] (ω is a cube root of unity other than 1) and π - 3 we define the cubic residue symbol(α

π

)
3
≡ α

N(π)−1
3 (mod π).

This is well defined since N(π) ≡ 1(mod 3). Also, by Proposition 9.3.2 of [IR90], for any α

and prime π - 3α we have α
N(π)−1

3 ≡ ωm(π) for m = 0, 1, or 2. Therefore the residue symbol
is a third root of unity. We extend the definition to all α ∈ Z[ω] using periodicity and by

assigning 0 whenever π|α. Note that the conjugate character
( ·
π

)
3

is a different character

than
( ·
π

)
3

and both are are primitive with norm of the conductor equal to N(π). For c ∈ Z[ω],

square free,
(
c

)
3

and
(
c

)
3

are primitive characters defined as( ·
c

)
3

:=
∏
π|c

( ·
π

)
3

and
( ·
c

)
3

:=
∏
π|c

( ·
π

)
3

Now we move to the discussion of Hecke characters. To see a complete detailed discussion,
we refer the reader to section 3.8 of [IK04]. Let m = (m) be a non-zero integral ideal of Z[ω]
such that m ≡ 1(mod 3). A Hecke character ψ(mod m) is a homomorphism on the group

of ideals coprime to m for which there exist two characters ψ̃ : (Z[ω]/(m))∗ → C∗ and
ψ∞ : C∗ → C∗, satisfying

ψ((a)) = ψ̃(a)ψ∞(a) and |ψ̃(a)| = |ψ∞(a)| = 1

3



for every a ∈ Z[ω], (a,m) = 1. When we consider the case of cubic Hecke characters of

Z[ω], the group homomorphism ψ̃ is a cubic residue symbol. To simplify calculations we

choose ψ∞ to be a trivial character which forces ψ̃ to be trivial on units since for a unit
u ∈ Z[ω], ψ((u)) = 1 = ψ̃(u)ψ∞(u). To achieve this we choose c1, c2 ≡ 1(mod 9) and thus
we get N(c1), N(c2) ≡ 1(mod 9) and such cubic residue character is trivial on units (see the
remarks below Theorem 1 in Chapter 9 of [IR90]). So we will consider the following family
of primitive cubic Hecke characters

F :=

{
ψc1c2(·) :=

(
·
c1

)
3

(
·
c2

)
3

: c1, c2 ≡ 1(mod 9); c1, c2 square free; (c1, c2) = 1

}
(2.1)

F(x) := {ψc1c2 ∈ F : N(c1c2) ≤ x} (2.2)

In [Luo04], the author considered a thin subfamily by taking c2 = 1. Further, the def-
inition of cubic residue symbol can be generalized to any modulus by multiplicativity. For
a = πα1

1 πα2
2 · · · π

αk
k , we define( ·

a

)
3

:=

(
·
π1

)α1

3

(
·
π2

)α2

3

· · ·
(
·
πk

)αk
3

.

and for a primitive Hecke cubic character ψ,

L (s, ψ) =
∑

A:Integral ideal of Z[ω]
A6=0

ψ(A)

N(A)s

is the Hecke L-function associated to ψ. In [BY10], the authors considered Dirichlet L-
function and consequently the size of family is reduced. For <(s) > 1, the Hecke L-functions
have an Euler product. Let us use p to denote rational primes and p to denote prime ideals
of Z[ω] lying over p.

L(s, ψ) =
∏
p

(
1− ψ(p)

N(p)s

)−1

=
∏
p

(
1− α1(p, ψ)

ps

)−1(
1− α2(p, ψ)

ps

)−1

(2.3)

where

α1(p, ψ) =


ψ(π) p ≡ 1(mod 3)

ψ(p) = ψ(p2) p ≡ 2(mod 3)

ψ(1− ω) p = 3

(2.4)

α2(p, ψ) =


ψ(π) p ≡ 1(mod 3)

−ψ(p) = −ψ(p2) p ≡ 2(mod 3)

0 p = 3

(2.5)

and π, π are prime ideals lying over p when p ≡ 1(mod 3).
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Cubic Reciprocity. For primes a, b ∈ Z[ω] and a ≡ b ≡ ±1(mod 3), then we have the
following relation (a

b

)
3

=

(
b

a

)
3

.

Now we prove a proposition on character sums which is analogous to Remark 1 of [LR20]
and is based on Poisson Summation Formula.

Proposition 2.1. Let χ be a Dirichlet character on Z[ω] of modulus m ∈ Z[ω] and F be a
Schwartz function whose Fourier transform has compact support contained in (−A,A). Then
for X > A2N(m) we have

∑
c∈Z[ω]

χ(c)F

(
N(c)

X

)
=


X

N(m)
F̂ (0)φ(m) χ is trivial

0 χ is non-trivial

Proof. Using Poisson Summation Formula (see the proof of Lemma 10 in [HB00a]) we have

∑
c∈Z[ω]

χ(c)F

(
N(c)

X

)
=

X

N(m)

∑
k∈Z[ω]

F̂

(√
N(k)X

N(m)

) ∑
r(mod m)

χ(r)e(−kr/m
√
−3)

where the terms corresponding to k 6= 0 vanish since N(k) ≥ 1 ⇒ N(k)X
N(m)

≥ A2. If χ is

non-trivial then
∑

r(mod m) χ(r) = 0 by orthogonality otherwise
∑

r(mod m) χ(r) = φ(m) and

we get XF̂ (0)φ(m)/N(m).

2.2 Approximate Functional Equation

We state the approximate functional equation based on [IK04]. For any σ > 1/2 we have

L(1/2, ψc1c2) =
1

2πi

∑
A6=0

ψc1c2(A)√
N(A)

∫
(σ)

(
y

N(A)

)u
Γ(1/2 + u)

Γ(1/2)

du

u

+w(ψc1c2)
1

2πi

∑
A6=0

ψc1c2(A)√
N(A)

∫
(σ)

(
3

4π2

N(c1c2)

yN(A)

)u
Γ(1/2 + u)

Γ(1/2)

du

u
. (2.6)

where A denotes the integral ideal of Z[ω] and w(ψc1c2) is the normalized Gauss sum given
by

w(ψc1c2) =
1√

N(c1c2)

∑
a(mod c1c2)

ψc1c2(a)e

(
Tr

(
a

(1− ω) c1c2

))

=
1√

N(c1c2)
ψc1c2(1− ω)

∑
a(mod c1c2)

ψc1c2(a)e

(
Tr

(
a

c1c2

))

=
1√

N(c1c2)

∑
a(mod c1c2)

ψc1c2(a)e

(
Tr

(
a

c1c2

))

5



where we have used that ψc1c2(1− ω) = 1 for c1, c2 ≡ 1(mod 9) (Remark(c) below Theorem
1 in Chapter 9 of [IR90]). The first sum is generally referred to as the principal term and
second as dual term. We follow the same terminology in this article. Let us define the
integrals appearing in (2.6) as

V (X) :=
1

2πi

∫
(σ)

X−u
Γ(1/2 + u)

Γ(1/2)

du

u
.

Using Proposition 5.4 of [IK04] we have

V (N(A)/y) =

{
1 +O((N(A)/y)α) N(A) ≤ y and 0 < α < 1/2

O((y/N(A))A) N(A) > y and A > 0
. (2.7)

For finding moments we need to calculate sum over all characters. We evaluate the
principal term and the dual term in §3 and §4 respectively.

2.3 Results Related to Gauss Sums

Lemma 2.2. For c1c2 square free and (c1, c2) = 1 we have

∑
d(mod c1c2)

(
a2d

c1

)
3

(
a2d

c2

)
3

e

(
Tr

(
d

c1c2

))

=

 ∑
d1(mod c1)

(
a2d1

c1

)
3

e

(
Tr

(
d1

c1

))  ∑
d2(mod c2)

(
a2d2

c2

)
3

e

(
Tr

(
d2

c2

)) .

Proof. Multiplying the right hand side

∑
d1(mod c1)
d2(mod c2)

(
a2d1

c1

)
3

(
a2d2

c2

)
3

e

(
Tr

(
c2d1 + c1d2

c1c2

))
. (2.8)

Note that for the terms inside the summation to be non-zero, both d1 and d2 should be
coprime to c1 and c2 respectively. Let us consider the following map

(Z[ω]/c1)∗ × (Z[ω]/c2)∗ → (Z[ω]/(c1c2))∗

(α, β) 7→ (c2α + c1β).

It is not difficult to see that this map is one-one and onto. So the summation over d1 and
d2 can be rewritten in terms of d(mod c1c2) and the d1, d2 appearing in the terms can be
replaced using the the inverse of the map described above.

a2d1 ≡ a2(dc−1
2 )(mod c1) and a2d2 ≡ a2(dc−1

1 )(mod c2)

6



Also for c1 and c2 we have(
c−1

2

c1

)
3

=

(
c2

c1

)
3

,

(
c−1

1

c2

)
3

=

(
c1

c2

)
3

Therefore(
a2d1

c1

)
3

=

(
a2dc−1

2

c1

)
3

=

(
c2

c1

)
3

(
a2d

c1

)
3

(
a2d2

c2

)
3

=

(
a2dc−1

1

c2

)
3

=

(
c1

c2

)
3

(
a2d

c2

)
3

Using cubic reciprocity we rewrite (2.8) as∑
d(mod c1c2)

(
c2

c1

)
3

(
a2d

c1

)
3

(
c2

c1

)
3

(
a2d

c2

)
3

e

(
Tr

(
d

c1c2

))

=
∑

d(mod c1c2)

(
a2d

c1

)
3

(
a2d

c2

)
3

e

(
Tr

(
d

c1c2

))
.

We define the following notation

g(c) :=
∑

d(mod c)

(
d

c

)
3

e

(
Tr

(
d

c

))
and its conjugate is

g(c) =
∑

d (mod c)

(
d

c

)
3

e

(
Tr

(
−d
c

))
=

∑
d (mod c)

(
d

c

)
3

e

(
Tr

(
d

c

))
where we replaced d by −d and used

(−1
c

)
3

= 1. Using these definitions we can write the
result of the Lemma 2.2 as

1

N(c1c2)−u
w(ψc1c2)ψc1c2(a) =

(
a

c1

)
3

g(c1)

N(c1)
1
2
−u

(
a

c2

)
3

g(c2)

N(c2)
1
2
−u
. (2.9)

We also collect three important properties (stated in Proof of Theorem 2 and in beginning of
Section 4 of [HBP79]) related to g(·) and its generalizations, which will be useful later. The
proofs are application of the definitions, cubic reciprocity and properties of cubic characters.

1. g(c) = g(c)

2. g(rπ, π2) = N(π)g(r, π) (given (r, π) = 1) where g(r, c) is defined as

g(r, c) =
∑

d(mod c)

(
d

c

)
3

e

(
Tr

(
rd

c

))
. (2.10)

3. For (r, c) = 1 we have

g(r, c) =
(r
c

)
3

∑
d(mod c)

(
d

c

)
3

e

(
Tr

(
d

c

))
(2.11)

7



Chapter 3

Principal Term

In this chapter we prove the following proposition.

Proposition 3.1. Let x, y be positive real numbers such that y < x. Then for any ε > 0 we
have the following result∑

c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

∑
A6=0

ψc1c2(A)

N(A)1/2
V

(
N(A)

y

)
= C1x log x+ C2x+Oε

(
x log x

y
1
6
−ε

)
+Oε(x

1
2

+εy
1
2

+ε)

where C1, C2 are described in (3.16).

The main term of x log x comes from a double pole and for the error term Oε(x
1
2

+εy
1
2

+ε)
we use GRH. We complete the proof in first four sections. At the end of this chapter we
briefly mention the difficulty while trying to remove the GRH assumption.

3.1 Setting up the Double Sum

The principal term in (2.6) is ∑
A6=0

ψc1,c2(A)√
N(A)

V

(
N(A)

y

)
where A runs over all non-zero ideals in Z[ω]. The family of characters is parameterized by
c1, c2 and we work towards evaluating the following sum

Sprinc :=
∑

c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

∑
A6=0

ψc1c2(A)

N(A)1/2
V

(
N(A)

y

)
.

8



The remaining of this section consists of proving this proposition. For every non-zero ideal
A, we have A = (1− ω)r(a) where (a, 1− ω) = 1, r ≥ 0 and we write

Sprinc =
∑

c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

∑
r≥0

a≡1(mod 3)

ψc1c2(a)V (3rN(a)
y

)

3
r
2N(a)

1
2

=
∑
r≥0

a≡1(mod 3)

V (3rN(a)
y

)

3
r
2N(a)

1
2

( ∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

ψc1c2(a)

)
.

(3.1)

We rewrite the sum over c1, c2 in (3.1) as∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

(c1

a

)
3

(c2

a

)
3

=
∑

c1,c2 sq free
c1,c2≡1(mod 9)
N(c1c2)≤x

∑
h|(c1,c2)

h≡1(mod 3)

µ(h)
(c1

a

)
3

(c2

a

)
3

=
∑

h≡1(mod 3)
N(h)≤

√
x

µ(h)
∑

c1,c2 sq free
(h,c1c2)=1

c1,c2≡h−1(mod 9)
N(c1c2)≤ x

N(h)2

(
hc1

a

)
3

(
hc2

a

)
3

=
∑

h≡1(mod 3)
N(h)≤

√
x

(a,h)=1

µ(h)
∑

c1,c2 sq free
(h,c1c2)=1

c1,c2≡h−1(mod 9)
N(c1c2)≤ x

N(h)2

(c1

a

)
3

(c2

a

)
3

=
∑

χ1,χ2(mod 9)

∑
h≡1(mod 3)
N(h)≤

√
x

(a,h)=1

µ(h)
χ1(h)χ2(h)

#h2
(9)

∑
c1,c2 sq free

(h,c1c2)=1
c1,c2≡1(mod 3)
N(c1c2)≤ x

N(h)2

χ1(c1)χ2(c2)
(c1

a

)
3

(c2

a

)
3

(3.2)

where χ1, χ2 are ray class characters mod 9. From here we consider two cases depending
whether a is a cube or not.

3.2 CASE I : a is a cube

This case provides the main term. In this case, we encounter poles depending on the following
cases 

double pole χ1, χ2 are trivial

single pole exactly one of χ1, χ2 is trivial

no pole if both χ1 and χ2 are non-trivial

9



Both ray class characters are trivial : Double pole. Using Perron’s formula (see
chapter 7 of [Kou19]), the sum over c1, c2 in (3.2) is equal to∑

c1,c2 sq free
(ah,c1c2)=1

c1,c2≡1(mod 3)
N(c1c2)≤ x

N(h)2

1 =

∫ 1+
1

log x
+iT

1+
1

log x
−iT

ζ2
Z[ω](s)

ζ2
Z[ω](2s)

∏
π|9ah

(
1 +

1

N(π)s

)−2
xs

N(h)2s

ds

s
+O

(
x log x

N(h)2T

)

Using Cauchy’s residue theorem the main term will come from the residue at s = 1. We
postpone the calculation of the residue to §3.4 and bound horizontal and vertical integrals
here, using the convexity bounds. For the vertical integral, this gives for any ε > 0∫ 1

2
+ε+iT

1
2

+ε−iT

ζ2
Z[ω](s)

ζ2
Z[ω](2s)

∏
π|9ah

(
1 +

1

N(π)s

)−2
xs

N(h)2s

ds

s
�ε T

1+ε x
1
2

+ε

N(h)1+ε
N(a)ε

and for the horizontal integral∫ 1+
1

log x
+iT

1
2

+ε+iT

ζ2
Z[ω](s)

ζ2
Z[ω](2s)

∏
π|9ah

(
1 +

1

N(π)s

)−2
xs

N(h)2s

ds

s
�ε

x

N(h)1+εT
N(a)ε

Taking T = x
1
4 we get∑

c1,c2 sq free
(ah,c1c2)=1

c1,c2≡1(mod 3)
N(c1c2)≤ x

N(h)2

1 = res
s=1

 ζ2
Z[ω](s)

ζ2
Z[ω](2s)

∏
π|9ah

(
1 +

1

N(π)s

)−2
xs

N(h)2s

1

s

+Oε

(
x

3
4

+ε

N(h)1+ε
N(a)ε

)
.

Exactly one of the ray class characters is trivial : Single Pole. Let us assume that
χ2 is trivial so the sum over c1, c2 in (3.2) is∑

c1,c2 sq free
(ah,c1c2)=1

c1,c2≡1(mod 3)
N(c1c2)≤ x

N(h)2

χ1(c1)

=

∫ 1+
1

log x
+iT

1+
1

log x
−iT

ζZ[ω](s)

ζZ[ω](2s)

L(s, χ1)

L(2s, χ2
1)

∏
π|9ah

(
1 +

1

N(π)s

)−1 ∏
π|ah

(
1 +

χ1((π))

N(π)s

)−1
xs

N(h)2s

ds

s

+O

(
x log x

N(h)2T

)

= res
s=1

 ζZ[ω](s)

ζZ[ω](2s)

L(s, χ1)

L(2s, χ2
1)

∏
π|9ah

(
1 +

1

N(π)s

)−1(
1 +

χ1((π))

N(π)s

)−1
xs

N(h)2ss


+Oε

(
x

3
4

+ε

N(h)1+ε
N(a)ε

)
where, as before, we chose T = x

1
4 .
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None of the ray class characters are trivial : No Pole. For χ1, χ2 non-trivial, the
sum in (3.2) is∑

c1,c2 sq free
(ah,c1c2)=1

c1,c2≡1(mod 3)
N(c1c2)≤ x

N(h)2

χ1(c1)χ2(c2)

=

∫ 1+
1

log x
+iT

1+
1

log x
−iT

L(s, χ1)

L(2s, χ2
1)

L(s, χ2)

L(2s, χ2
2)

∏
π|ah

(
1 +

χ1((π))

N(π)s

)−1 ∏
π|ah

(
1 +

χ2((π))

N(π)s

)−1
xs

N(h)2s

ds

s

+O

(
x log x

N(h)2T

)
= Oε

(
x

3
4

+ε

N(h)1+ε
N(a)ε

)

where T = x
1
4 . We recall that our aim is to evaluate Sprinc and in this section we have

partially dealt with the case when a is a cube. Using (3.1), (3.2) and the discussion in this
section, we get

∑
r≥0

a≡1(mod 3)
a=cube

V (3rN(a)
y

)

3r/2N(a)1/2

( ∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

ψc1c2(a)

)

=
∑
r≥0

a≡1(mod 3)
a=cube

V (3rN(a)
y

)

3r/2N(a)1/2

∑
χ1,χ2(mod 9)

∑
h≡1(mod 3)
N(h)≤

√
x

(a,h)=1

µ(h)
χ1(h)χ2(h)

#h2
(9)

∑
c1,c2 sq free

(h,c1c2)=1
c1,c2≡1(mod 3)
N(c1c2)≤ x

N(h)2

χ1(c1)χ2(c2)
(c1

a

)
3

(c2

a

)
3

=
∑
r≥0

a≡1(mod 3)
a=cube

V
(

3rN(a)
y

)
3
r
2

√
N(a)

∑
χ1,χ2(mod 9)

∑
h≡1(mod 3)
N(h)≤

√
x

(a,h)=1

µ(h)
χ1(h)χ2(h)

#h2
(9)

(
res(χ1, χ2) +Oε

(
x

3
4

+εN(a)ε

N(h)1+ε

))

=


∑
r≥0

a≡1(mod 3)
a=cube

V
(

3rN(a)
y

)
3
r
2

√
N(a)

∑
χ1,χ2(mod 9)

∑
h≡1(mod 3)
N(h)≤

√
x

(a,h)=1

µ(h)
χ1(h)χ2(h)

#h2
(9)

res(χ1, χ2)

+Oε

(
x

3
4

)

where res(χ1, χ2) is the residue depending on whether χ1, χ2 are trivial as discussed in this
section. As stated before we will calculate the residues in §3.4 and thus completely evaluate
this case of a = cube.
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3.3 CASE II : a is not a cube

If a is neither a cube nor a unit, then for c ≡ 1(mod 3), χa : (c)→
(
a
c

)
3

is a Hecke character
of modulus 9a. The Hecke L-function associated to this character is

L(s, χa) =
∑
A6=0

χa(A)

N(A)s
=

∑
c∈Z[ω]

c≡1(mod 3)

(a
c

)
3
N(c)−s.

Therefore for the case when a is not a cube we have∑
c1,c2 sq free

(h,c1c2)=1
c1,c2≡1(mod 3)
N(c1c2)≤ x

N(h)2

χ1(c1)χ2(c2)
(c1

a

)
3

(c2

a

)
3

=
1

2πi

∫
1+

1
log x

+iT

1+
1

log x
−iT

L(s, χ1χa)

L(2s, χ2
1χ

2
a)

L(s, χ2χa)

L(2s, χ2
2χ

2
a))

×
∏
π|h

π≡1(mod 3)

(
1 +

χ1χa((π))

N(π)s

)−1(
1 +

χ2χa((π))

N(π)s

)−1
xs

N(h)2s

ds

s
+O

(
x log x

N(h)2T

)

(3.3)

The character χ1χa is not necessarily primitive so we first establish that L(s, χ1χa) is entire
in <(s) > 0 using arguments similar to those from Chapter 5 of [Dav80]. Let χ1,a, χ2,a be
the primitive characters that induce χ1χa and χ2χa, respectively. Then we have

L(s, χ1χa) = L(s, χ1,a)
∏
π|9a

π≡1(mod 3)

(
1− χ1,a((π))

N(π)s

)

L(s, χ2χa) = L(s, χ2,a)
∏
π|9a

π≡1(mod 3)

(
1− χ2,a((π))

N(π)s

)
.

The functions L(s, χ1,a), L(s, χ2,a) and the products over primes dividing 9a are entire in
the region <(s) > 0 and thus the same is true for L(s, χ1χa) and L(s, χ2χa). We define the
following notation for the Euler products appearing above

F (m, s, χ, χ̃) :=
∏
π|m

π≡1(mod 3)

(
1− χ((π))

N(π)s

)(
1− χ̃((π))

N(π)s

)
. (3.4)
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Using Cauchy’s Theorem, the integral in (3.3) is

=
1

2πi

(
−
∫ 1+

1
log x

+iT

1/2+ε+iT

+

∫ 1/2+ε+iT

1/2+ε−iT
+

∫ 1+
1

log x
−iT

1/2+ε−iT

)
L(s, χ1,a)L(s, χ2,a)

L(2s, χ2
1χ

2
a)L(2s, χ2

2χ
2
a)
F (9a, s, χ1,a, χ2,a)

F (h, s, χ1χa, χ2χa)

F (h, 2s, χ2
1χ

2
a, χ

2
2χ

2
a)

xs

N(h)2s
ds

and for the function F (·, ·, ·) we have

F (m, 1
2

+ ε, χ, χ̃) = Oε(N(m)ε) and
1

F (m, 1 + ε, χ, χ̃)
= Oε(1)

We are assuming GRH which implies the Lindelöf Hypothesis, so we have the bound

L
(

1
2

+ ε+ it, χ1,a

)
�ε (N(a)|t|2)ε

and similarly for L(1
2

+ ε+ it, χ2,a). Thus we have for the vertical integral

∫ 1
2

+ε+iT

1
2

+ε−iT

L(s, χ1,a)L(s, χ2,a)

L(2s, χ2
1χ

2
a)L(2s, χ2

2χ
2
a)
F (9a, s, χ1,a, χ2,a)

F (h, s, χ1χa, χ2χa)

F (h, 2s, χ2
1χ

2
a, χ

2
2χ

2
a)

xs

N(h)2s

ds

s

�ε
x

1
2

+εN(a)ε

N(h)1+ε

∫ T

−T

1

|t|
(|t|)εdt� 2x

1
2

+εN(a)ε

N(h)1+ε
|T |ε

and for the horizontal integral∫ 1+
1

log x
+iT

1
2

+ε+iT

L(s, χ1,a)L(s, χ2,a)

L(2s, χ2
1χ

2
a)L(2s, χ2

2χ
2
a)
F (9a, s, χ1,a, χ2,a)

F (h, s, χ1χa, χ2χa)

F (h, 2s, χ2
1χ

2
a, χ

2
2χ

2
a)

xs

N(h)2s

ds

s

�ε N(a)εT εN(h)ε
1

T

∫ 1+
1

log x

1
2

+ε

xσ

N(h)2σ
dσ

�ε N(a)εT εN(h)ε
1

T

1

N(h)1+2ε

∫ 1+
1

log x

1
2

+ε

xσdσ �ε
xN(a)ε

N(h)1+ε
T−1+ε.

Taking T =
√
x, the contribution from horizontal and vertical integral is Oε

(
N(a)ε

N(h)1+ε
x

1
2

+ε

)
.

We now sum over a and h to get the complete error term

∑
r≥0

a≡1(mod 3)

V (3rN(a)
y

)

3
r
2

√
N(a)

∑
χ1,χ2(mod 9)

∑
h≡1(mod 3)
h sq free
(a,h)=1
N(h)≤

√
x

µ(h)
χ1(h)χ2(h)

#h2
(9)

(
N(a)ε

N(h)1+ε
x

1
2

+ε

)
(3.5)
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The sum over h is bounded by a constant depending on ε, thus

(3.5)�ε

∑
r≥0

a≡1(mod 3)

V (3rN(a)
y

)

3
r
2

√
N(a)

∑
χ1,χ2(mod 9)

x
1
2

+εN(a)ε � x
1
2

+ε
∑
r≥0

a≡1(mod 3)

V (3rN(a)
y

)

3
r
2N(a)

1
2
−ε
.

Thus we need to estimate

∑
r≥0

a≡1(mod 3)

V (3rN(a)
y

)

3
r
2N(a)

1
2
−ε

=

( ∑
r≤log y

∑
a≡1(mod 3)
N(a)≤y/3r

+
∑
r≤log y

∑
a≡1(mod 3)
N(a)≥y/3r

+
∑
r>log y

∑
a≡1(mod 3)

)
1

3
r
2

V (3rN(a)
y

)

N(a)
1
2
−ε

where log y is the logarithm of y to base 3. Using (2.7) for 3rN(a) ≤ y and taking α = 1/3
we have

∑
r≤log y

∑
a≡1(mod 3)
N(a)≤y/3r

V (3rN(a)
y

)

3
r
2N(a)

1
2
−ε

=
∑
r≤log y

O

((
y

3r

) 1
2

+ε

+
3rαy

1
2

+α

3r(α+ 1
2

)yα

)
= Oε(y

1
2

+ε).

For the range in the second and third sum , 3rN(a) > y, we again use (2.7)

∑
r≤log y

∑
a≡1(mod 3)
N(a)≥y/3r

V (3rN(a)
y

)

N(a)
1
2
−ε

+
∑
r>log y

∑
a≡1(mod 3)

V (3rN(a)
y

)

N(a)
1
2
−ε

= Oε(y
1
2

+ε)

Therefore the error term for the case when a is a cube is Oε(x
1
2

+εy
1
2

+ε).

3.4 Calculation of Residue

As promised before, we compute the residue in this section. Let us first do the case when
both χ1, χ2 are trivial. In this case we encounter a double pole (at s = 1) of the following
function

xs

N(h)2s

ζ2
Z[ω](s)

ζ2
Z[ω](2s)

∏
π|9ah

(
1 +

1

N(π)s

)−2
1

s
. (3.6)

Let us define

R1 := res
s=1

ζZ[ω](s)

ζZ[ω](2s)
, R2 := res

s=1

ζ2
Z[ω](s)

ζ2
Z[ω](2s)

and f(m) :=
∏
π|m

(
1 +

1

N(π)s

)−1

.

(3.7)
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So the residue of (3.6) at s = 1 is equal to

x

N(h)2
log

(
x

N(h)2

)
R2

1

∏
π|9ah

(
1 +

1

N(π)

)−2

+
x

N(h)2
res
s=1

ζ2
Z[ω](s)

ζ2
Z[ω](2s)

∏
π|9ah

(
1 +

1

N(π)

)−2

− x

N(h)2
R2

1

∏
π|9ah

(
1 +

1

N(π)

)−2[ ∑
π|9ah

2 logN(π)

1 +N(π)

]
− x

N(h)2
R2

1

∏
π|9ah

(
1 +

1

N(π)

)−2

= x log x
f(9ah)2

N(h)2
R2

1 + x
f(9ah)2

N(h)2

[
−R2

1 logN(h)2 +R2 −R2
1

∑
π|9ah

2 logN(π)

1 +N(π)
−R2

1

]
.

(3.8)

Therefore the term we have to evaluate is the following

x log x
R2

1 f(9)2

#h2
(9)

∑
r≥0

a=cube
a≡1(mod 3)

V (3rN(a)
y

)√
N(a)

f(a)2
∑

h≡1(mod 3)
h sq free
N(h)≤

√
x

(a,h)=1

µ(h)f(h)2

N(h)2

+ x
f(9)2

#h2
(9)

∑
r≥0

a=cube
a≡1(mod 3)

V (3rN(a)
y

)

3
r
2

√
N(a)

f(a)2
∑

h≡1(mod 3)
h sq free
N(h)≤

√
x

(a,h)=1

µ(h)f(h)2

N(h)2

[

−R2
1 logN(h)2 +R2 +R2

1

∑
π|9ah

2 logN(π)

1 +N(π)
−R2

1

]
. (3.9)

We simplify the above expression in two parts : one for the sum with x log x and another
with x. Let us define

H1(a) :=
∑

h≡1(mod 3)
h sq free
(a,h)=1

µ(h)f(h)2

N(h)2
. (3.10)

then the term with x log x in (3.9) is

x log x
R2

1 f(9)2

#h2
(9)

∑
r≥0

a=cube
a≡1(mod 3)

V (3rN(a)
y

)√
N(a)

f(a)2
∑

h≡1(mod 3)
h sq free
N(h)≤

√
x

(a,h)=1

µ(h)f(h)2

N(h)2

=x log x

(
R2

1f(9)2

#h2
(9)

∑
r≥0

a=cube
a≡1(mod 3)

V (3rN(a)
y

)

3
r
2

√
N(a)

f(a)2H1(a)

)
+O

(
x

1
2

+ε log x

)
. (3.11)
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We break the main term in (3.11) as

∑
r≥0

a=cube
a≡1(mod 3)

V (3rN(a)
y

)

3
r
2

√
N(a)

f(a)2 H1(a) =

( ∑
r≥0

a=cube
a≡1(mod 3)
3rN(a)≤y

+
∑
r≥0

a=cube
a≡1(mod 3)
3rN(a)>y

)
V (3rN(a)

y
)

3
r
2

√
N(a)

f(a)2 H1(a). (3.12)

Using (2.7) we have

1. For 3rN(a) ≤ y

∑
r≥0

a=cube
a≡1(mod 3)
3rN(a)≤y

V (3rN(a)
y

)

3
r
2

√
N(a)

f(a)2 H1(a) =
∑

r≤log3 y

∑
a=cube

a≡1(mod 3)
3rN(a)≤y

V (3rN(a)
y

)

3
r
2

√
N(a)

f(a)2 H1(a)

=
∑

r≤log3 y

1

3
r
2

∑
a=cube

a≡1(mod 3)

f(a)2 H1(a)√
N(a)

+O(y−
1
6 ).

2. For 3rN(a) > y

∑
r≥0

a=cube
a≡1(mod 3)
3rN(a)>y

V (3rN(a)
y

)

3
r
2

√
N(a)

f(a)2 H1(a) =

( ∑
r≤log y
a=cube

a≡1(mod 3)
N(a)>y/3r

+
∑

r>log y
a=cube

a≡1(mod 3)

)
V (3rN(a)

y
)

3
r
2

√
N(a)

f(a)2 H1(a)

�ε

∑
r≤log y

1

3
r
3

1

y
1
6
−ε

+
∑

r≤log y

1

3
r
2

� y−
1
6

+ε

Therefore (3.11) is equal to

x log x

( √
3√

3− 1

R2
1 f(9)2

#h2
(9)

∑
a=cube

a≡1(mod 3)

f(a)2 H1(a)√
N(a)

)
+Oε

(
x log x

y
1
6
−ε

)
. (3.13)

Now we evaluate the residue term with x in (3.9). Let us define

H2(a) :=
∑

h≡1(mod 3)
h sq free
(a,h)=1

µ(h)f(h)2

N(h)2
logN(h)2 H3(a) :=

∑
h≡1(mod 3)
h sq free
(a,h)=1

µ(h)f(h)2

N(h)2

∑
π|9ah

2 logN(π)

1 +N(π)
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Then the residue term with x is

x

(
f(9)2

#h2
(9)

) ∑
r≥0

a=cube
a≡1(mod 3)

V (3rN(a)
y

)

3
r
2

√
N(a)

∑
h≡1(mod 3)
h sq free
(a,h)=1
N(h)≤

√
x

µ(h)f(ah)2

N(h)2

[

−R2
1 logN(h)2 +R2 +R2

1

∑
π|9ah

2 logN(π)

1 +N(π)
−R2

1

]

= x

(
f(9)2

#h2
(9)

) ∑
r≥0

a=cube
a≡1(mod 3)

V (3rN(a)
y

)f(a)2

3
r
2

√
N(a)

(
(R2 −R2

1)H1(a)−R2
1H2(a)−R2

1H3(a)
)

+O(x
1
2

+2ε)

We already saw the procedure to evaluate the sum over r and a in the case of x log x, so we
write the results directly.

x

( √
3√

3− 1

f(9)2

#h2
(9)

)[ ∑
a=cube

a≡1(mod 3)

f(a)2√
N(a)

((R2 −R2
1)H1(a)−R2

1H2(a)−R2
1H3(a))

]
+Oε

(
x

y
1
6
−ε

)
.

Now we move to the case when exactly one of the ray class character is trivial. Let us
assume that χ1 is trivial. In this case we encounter a single pole of the following function

xs

N(h)2s

ζZ[ω](s)

ζZ[ω](2s)

∏
π|9ah

(
1 +

1

N(π)

)−1
L(s, χ2)

L(2s, χ2
2)

∏
π|ah

(
1 +

χ2(π)

N(π)

)−1
1

s

where χ2 is a non-trivial ray class character modulo 9. Let

fχ(m) :=
∏
π|ah

(
1 +

χ(π)

N(π)

)−1

(3.14)

and the residue is equal to

x

N(h)2
R1f(9ah)

L(1, χ2)

L(2, χ2
2)
fχ2(ah).

We need to sum for all h,a and r and also over all non-trivial χ2 to get a complete expression
for residue. Let us define

H(a, χ) :=
∑

h≡1(mod 3)
h sq free
N(h)≤

√
x

(a,h)=1

µ(h)f(h)fχ(h)

N(h)2

17



and we get that the complete expression for residue is

R1x
f(9)

#h2
(9)

∑
χ(mod 9)
χ 6=trivial

L(1, χ)

L(2, χ2)

∑
r≥0

a=cube

V
(

3rN(a)
y

)
3
r
2

√
N(a)

f(a)fχ(a)
∑

h≡1(mod 3)
h sq free
N(h)≤

√
x

(a,h)=1

µ(h)f(h)fχ(h)

N(h)2

= R1x
f(9)

#h2
(9)

∑
χ(mod 9)
χ 6=trivial

L(1, χ)

L(2, χ2)

∑
r≥0

a=cube

V
(

3rN(a)
y

)
3
r
2

√
N(a)

f(a)fχ(a)H(a, χ) +O(x
1
2

+ε)

= x

√
3√

3− 1

R1 f(9)

#h2
(9)

∑
χ(mod 9)
χ 6=trivial

L(1, χ)

L(2, χ2)

∑
a=cube

a≡1(mod 3)

f(a)fχ(a)H(a, χ)√
N(a)

+Oε

(
x

y
1
6
−ε

)
.

Finally we conclude the proof by combining all the cases and the error terms obtained
earlier.∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

∑
A6=0

ψc1c2(A)

N(A)1/2
V

(
N(A)

y

)
= C1 x log x + C2x+Oε

(
x log x

y
1
6
−ε

)
+Oε(x

1
2

+ε y
1
2

+ε).

(3.15)

where C1, C2 are as follows

C1 :=

√
3√

3− 1

R2
1 f(9)2

#h2
(9)

( ∑
a≡1(mod 3)
a=cube

f(a)2 H1(a)√
N(a)

)

C2 :=

√
3√

3− 1

R1f(9)2

#h2
(9)

( ∑
a≡1(mod 3)
a=cube

f(a)2√
N(a)

[
2R

f(9)

∑
χ(mod 9)
χ 6=trivial

L(1, χ)

L(2, χ2)
f(a)fχ(a)H(a, χ) + (R2 −R2

1)H1(a) +R2
1H2(a)−R2

1H3(a)

])
.

(3.16)

where f(a) and fχ(a) are defined by (3.7) and (3.14), respectively.

Remark 3.2. We assumed GRH to bound the product of L-functions L(s, χ1χa)L(s, χ2χa) in
terms of powers of N(a) at <(s) = 1/2 + ε. In [BY10] and [Luo04] the GRH was replaced by
cubic large sieve which is equivalent to GRH on average, and they computed the first moment
without any hypothesis. We try to use such a sieve, but the double sum over c1, c2 seems
to cause trouble, and we did not succeed in getting an unconditional result. The large sieve
for cubic character is proved in [HB00b] under the following form. Let cn be an arbitrary

18



sequence of complex numbers, where n runs over Z[ω]. Then

∗∑
N(m)≤M

∣∣∣∣∣∣
∗∑

N(n)≤N

( n
m

)
3
cn

∣∣∣∣∣∣
2

�ε (N +M + (MN)2/3)(QM)ε
∗∑
n

|cn|2

for any ε > 0, where
∑∗ denotes that the sum is over square free elements of Z[ω].
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Chapter 4

Dual Term

In this chapter we prove the following proposition which gives an upper bound for the dual
term.

Proposition 4.1. Let σ be a real number such that σ > 1/2. Then, for any ε > 0, we have
the following estimate of dual term∑

A6=0

1√
N(A)

∫
(σ)

(
3

4π2 yN(A)

)u[
Γ(1/2 + u)

Γ(1/2)

(
∑

c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

1

N(c1c2)−u
ω(ψc1c2)ψc1c2(A)

)]
du

u
�ε x

11
12

(
x

y

) 1
2

+ε

.

In the first section we remove coprimality conditions on c1, c2 and then deduce this propo-
sition assuming some bounds which we prove in §4.3. In the last section we will deduce
Theorem 1.1 using Proposition 3.1 and Proposition 4.1.

4.1 Removing the Interdependence of c1 and c2

We recall from (2.6) that the dual term is the sum

∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

w(ψc1c2)
∑
A6=0

ψc1c2(A)√
N(A)

∫
(σ)

(
3

4π2

N(c1c2)

yN(A)

)u
Γ(1/2 + u)

Γ(1/2)

du

u

=
∑
A6=0

1√
N(A)

∫
(σ)

(
3

4π2 yN(A)

)u
Γ(1/2 + u)

Γ(1/2)

( ∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

N(c1c2)u ω(ψc1c2)ψc1c2(A)

)
du

u

(4.1)
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where

ψc1c2(A)ω(ψc1c2) = ψc1c2(a)ω(ψc1c2) =

(
a

c1

)
3

g(c1)

N(c1)
1
2

(
a

c2

)
3

g(c2)

N(c2)
1
2

For the first equality we have used that A is generated by (1 − ω)ra for some r ≥ 0 and
a ≡ 1(mod 3) and ψc1c2(1 − ω) = 1. For the second equality we have used (2.9). In this
section we will prove the following proposition and thus establish an upper bound for the
dual term.
Our main task is to estimate the following

∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

(
a

c1

)
3

g(c1)

N(c1)
1
2
−u

(
a

c2

)
3

g(c2)

N(c2)
1
2
−u

but we first prove the following lemma which removes the condition (c1, c2) = 1 from this
summation.

Lemma 4.2. For a ∈ Z[ω], a ≡ 1(mod 3) and u ∈ C, we have

∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

(
a

c1

)
3

g(c1)

N(c1)
1
2
−u

(
a

c2

)
3

g(c2)

N(c2)
1
2
−u

=
∑

(a,h)=1
h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)−2u

∑
(ah,c1)=1

c1≡h−1(mod 9)
N(c1)≤x/N(h)2

g(ah, c1)

N(c1)u′
∑

(ah,c2)=1

c2≡h
−1

(mod 9)
N(c2)≤x/N(c1)N(h)2

g(ah, c2)

N(c2)u′

where u′ = 1
2
− u and g(r, c) is defined in (2.10).

Proof. We remove the condition (c1, c2) = 1

∑
c1,c2 sq free
c1,c2≡1(mod 9)
N(c1c2)≤x

( ∑
h|(c1,c2)

h≡1(mod 3)

µ(h)

)(
a

c1

)
3

g(c1)

(
a

c2

)
3

g(c2)
1

N(c1c2)u′

=
∑

h≡1(mod 3)
N(h)≤

√
x

µ(h)
∑

(h,c1c2)=1
c1,c2 sq free

c1,c2≡h−1(mod 9)
N(c1c2)≤x/N(h)2

(
a

hc1

)
3

g(hc1)

(
a

hc2

)
3

g(hc2)
1

N(h)2u′N(c1c2)u′
.

For (h, c) = 1 we have (see section 4 of [HBP79]) g(hc) =
(
h
c

)
3
g(h)g(c). Replacing above,
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we obtain

=
∑

h≡1(mod 3)
N(h)≤

√
x

µ(h)
∑

(h,c1c2)=1
c1,c2 sq free

c1,c2≡h−1(mod 9)
N(c1c2)≤x/N(h)2

1

N(h)2u′N(c1c2)u′

[

(
a

hc1

)
3

(
h

c1

)
3

g(h)g(c1)

(
a

hc2

)
3

(
h

c2

)
3

g(h)g(c2)

]
Using ( a

hc

)
3

(
h

c

)
3

=
(a
h

)
3

(a
c

)
3

(
h

c

)
3

=
(a
h

)
3

(
ah

c

)
3

.

in the last equation we get

∑
h≡1(mod 3)
N(h)≤

√
x

µ(h)
∑

(h,c1c2)=1
c1,c2 sq free

c1,c2≡h−1(mod 9)
N(c1c2)≤x/N(h)2

1

N(h)2u′N(c1c2)u′

[

(a
h

)
3

(
ah

c1

)
3

g(h)g(c1)
(a
h

)
3

(
ah

c2

)
3

g(h)g(c2)

]
Since (a

h

)
3

(a
h

)
3

=

{
1 (a, h) = 1

0 otherwise

replacing we get

∑
(a,h)=1

h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)2u′

∑
(h,c1c2)=1
c1,c2 sq free

c1,c2≡h−1(mod 9)
N(c1c2)≤x/N(h)2

(
ah

c1

)
3

g(h)g(c1)

(
ah

c2

)
3

g(h)g(c2)
1

N(c1c2)u′
.

=
∑

(a,h)=1
h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)2u′
N(h)

∑
(h,c1)=1
c1 sq free

c1≡h−1(mod 9)
N(c1)≤x/N(h)2

(
ah

c1

)
3

g(c1)

N(c1)u′
∑

(h,c2)=1
c2 sq free

c2≡h−1(mod 9)
N(c2)≤x/N(c1)N(h)2

(
ah

c2

)
3

g(c2)

N(c2)u′

=
∑

(a,h)=1
h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)−2u

∑
(h,c1)=1
c1 sq free

c1≡h−1(mod 9)
N(c1)≤x/N(h)2

(
ah

c1

)
3

g(c1)

N(c1)u′
∑

(h,c2)=1
c2 sq free

c2≡h−1(mod 9)
N(c2)≤x/N(c1)N(h)2

(
ah

c2

)
3

g(c2)

N(c2)u′
.
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where we have used g(h)g(h) = |g(h)|2 = N(h). Since g(c) 6= 0 if and only if c is not square

free we can drop the condition that c1, c2 are square free. Using g(c) = g(c) and
(
A
B

)
3

=
(
A
B

)
3

we have

=
∑

(a,h)=1
h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)−2u

∑
(h,c1)=1

c1≡h−1(mod 9)
N(c1)≤x/N(h)2

(
ah

c1

)
3

g(c1)

N(c1)u′
∑

(h,c2)=1
c2≡h−1(mod 9)

N(c2)≤x/N(c1)N(h)2

(
ah

c2

)
3

g(c2)

N(c2)u′

=
∑

(a,h)=1
h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)−2u

∑
(a,c1)=1
(h,c1)=1

c1≡h−1(mod 9)
N(c1)≤x/N(h)2

g(ah, c1)

N(c1)u′
∑

(a,c2)=1
(h,c2)=1

c2≡h−1(mod 9)
N(c2)≤x/N(c1)N(h)2

g(ah, c2)

N(c2)u′
.

=
∑

(a,h)=1
h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)−2u

∑
(ah,c1)=1

c1≡h−1(mod 9)
N(c1)≤x/N(h)2

g(ah, c1)

N(c1)u′
∑

(ah,c2)=1

c2≡h
−1

(mod 9)
N(c2)≤x/N(c1)N(h)2

g(ah, c2)

N(c2)u′

where g(ah, c) for (a, h) = 1, is described in (2.11) . Thus, the proof is completed.

4.2 Proof of Proposition

Using the above lemma we removed the coprimality condition of c1, c2 and now we use ray
class characters to get the condition of c1, c2 ≡ 1(mod 3). Let χ1, χ2 be ray class characters
mod 9 then∑

(a,h)=1
h≡1(mod 3)
N(h)≤

√
x

µ(h)

N(h)−2u

∑
(ah,c1)=1

c1≡h−1(mod 9)
N(c1)≤x/N(h)2

g(ah, c1)

N(c1)u′
∑

(ah,c2)=1

c2≡h
−1

(mod 9)
N(c2)≤x/N(c1)N(h)2

g(ah, c2)

N(c2)u′

=
∑

χ1,χ2(mod 9)

∑
(a,h)=1

h≡1(mod 3)
N(h)≤

√
x

µ(h)χ1(h)χ2(h)

N(h)−2u(#h(9))2

( ∑
(ah,c1)=1

(ah,c2)=1
c1,c2≡1(mod 3)
N(c1c2)≤x/N(h)2

χ1(c1)
g(ah, c1)

N(c1)u′
χ2(c2)

g(ah, c2)

N(c2)u′

)
.

(4.2)

Let us define

S1 :=
∑

c2≡1(mod 3)
N(c2)≤

√
x/N(h)

N(c2)<(u)

∣∣∣∣ ∑
(ah,c1)=1

c1≡1(mod 3)
N(c1)≤x/N(c2)N(h)2

χ1(c1)
g(ah, c1)

N(c1)u′

∣∣∣∣ (4.3)

S2 :=
∑

c1≡1(mod 3)
N(c1)≤

√
x/N(h)

N(c1)<(u)

∣∣∣∣ ∑
(ah,c2)=1

c2≡1(mod 3)
N(c2)≤x/N(c1)N(h)2

χ2(c2)
g(ah, c2)

N(c2)u′

∣∣∣∣ (4.4)
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S3 :=

∣∣∣∣ ∑
(ah,c1)=1

c1≡1(mod 3)
N(c1)≤

√
x/N(h)

χ1(c1)
g(ah, c1)

N(c1)u′

∣∣∣∣ S4 :=

∣∣∣∣ ∑
(ah,c2)=1

c2≡1(mod 3)
N(c2)≤

√
x/N(h)

χ2(c2)
g(ah, c2)

N(c2)u′

∣∣∣∣
(4.5)

then using Dirichlet’s Hyperbola method, for the sum over c1, c2 in (4.2), we have∣∣∣∣ ∑
(ah,c1)=1

(ah,c2)=1
c1,c2≡1(mod 3)
N(c1c2)≤x/N(h)2

χ1(c1)
g(ah, c1)

N(c1)u′
χ2(c2)

g(ah, c2)

N(c2)u′

∣∣∣∣ ≤ S1 + S2 + S3S4. (4.6)

We will estimate S1, S2 and S3S4 in §4.3. However we first deduce Proposition 4.1 by
using the bounds for S1, S2 from (4.13) and bound for S3S4 from (4.15). So (4.2) is less than∑

χ1,χ2(mod 9)

∑
(a,h)=1

h≡1(mod 3)
h sq free
N(h)≤

√
x

1

N(h)−2<(u)#h2
(9)

∣∣∣∣ ∑
(ah,c)=1

(ah,c2)=1
c1,c2≡1(mod 3)
N(c1c2)≤x/N(h)2

χ1(c1)χ2(c2)

N(c1c2)u′
g(ah, c1)g(ah, c2)

∣∣∣∣

�ε|u|x<(u)
∑

(a,h)=1
h≡1(mod 3)
h sq free
N(h)≤

√
x

[
x

11
12

N(a1)1/6N(h)2
+
x

5
6N(a)

1
4

+ε

N(h)
13
12

+

|u| x
5
6

N(a1)1/3N(h)2
+ |u| x

3
4

+εN(a)
1
4

+ε

N(a1)1/6N(h)
17
12

+ |u|x
2
3

+εN(a)
1
2

+2ε

N(h)
5
6

]
.

It is easy to see that first four terms are converging when summed over h and the term
containing N(h)5/6 will contribute a x1/12. Thus the above expression is bounded by

|u|2x<(u)
[
x

11
12 + x

5
6N(a)

1
4

+ε + x
3
4

+εN(a)
1
2

+2ε
]
.

Using these results we have∑
A6=0

1√
N(A)

∫
(σ)

(
3

4π2 yN(A)

)u
Γ(1/2 + u)

Γ(1/2)

( ∑
c1,c2 sq free
c1,c2≡1(mod 9)

(c1,c2)=1
N(c1c2)≤x

N(c1c2)u ω(ψc1c2)ψc1c2(A)

)
du

u

�ε

∑
r≥0

a≡1(mod 3)

1√
3rN(a)

∫
(σ)

(
3

4πy3rN(a)

)<(u) ∣∣∣∣Γ(1/2 + u)

Γ(1/2)

∣∣∣∣
|u|x<(u)[x

11
12 + x

5
6N(a)

1
4

+ε + x
3
4

+εN(a)
1
2

+2ε] du
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�ε

∑
r≥0

a≡1(mod 3)

1√
3rN(a)

(
x

3ryN(a)

) 1
2

+ε

x
11
12

∫
(

1
2

+ε
) |u|

∣∣∣∣Γ(1/2 + u)

Γ(1/2)

∣∣∣∣ du
+

∑
r≥0

a≡1(mod 3)

1√
3rN(a)

(
x

3ryN(a)

) 3
4

+ε

x
5
6N(a)

1
4

+ε

∫
(

3
4

+ε
) |u|

∣∣∣∣Γ(1/2 + u)

Γ(1/2)

∣∣∣∣ du
+

∑
r≥0

a≡1(mod 3)

1√
3rN(a)

(
x

3ryN(a)

)1+ε

x
3
4N(a)

1
2

+ε

∫
(1+ε)

|u|
∣∣∣∣Γ(1/2 + u)

Γ(1/2)

∣∣∣∣ du
where we have chosen different values of σ in each of the above integrals. In each of these
three terms, the sum over r, a contributes Oε(1) and therefore the dual term is bounded by

x
11
12

(
x

y

) 1
2

+ε

+ x
5
6

(
x

y

) 3
4

+ε

+ x
3
4

(
x

y

)1+ε

We need to choose y > x5/6 so that all three are less than x. Thus x
11
12 (x/y)

1
2

+ε is the

dominant term and the dual term is bounded by �ε x
11
12 (x/y)

1
2

+ε.

4.3 Proofs of Estimates

In this section we establish the bounds on S1, S2 and S3S4. These sums are very similar
except some parameters. We will estimate these using Perron’s formula (Lemma 4.5) and
using the properties of Gauss sums as established in section 4 of [HBP79]. Let us define the
following notation for the generating series of Gauss sums

Gb(r, χ, s) :=
∑

(b,c)=1
c≡1(mod 3)

χ(c)
g(r, c)

N(c)s

where χ is a ray class character modulo 9, r, b ≡ 1(mod 3) ∈ Z[ω] and g(r, c) is defined in
(2.10). It is clear that we need to know about the analytic behaviour of Gah(ah, χ, s), so
we use the results for G1(ah, χ, s) from the work of [Pat77], [HBP79] and [Pat87] and the
following lemma which relates Gah(ah, χ, s) and G1(ah, χ, s).

Lemma 4.3. Let us write a = a1a
2
2a

3
3 for a1, a2 square free, (a1, a2) = (a2, a3) = (a1, a3) = 1

and define a′3 :=
∏

π|a3
π, the product over primes dividing a3. Let χ1 be a ray class character

then for h ∈ Z[ω] such that h is square free, ≡ 1(mod 3), and coprime to a we have the
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following equality relating Gah(·, χ1, s) to G1(·, χ1, s)

Ga1a2
2a

3
3h

(a1a
2
2a

3
3h, χ1, s)

=
∏
π|a2

(1− χ1(π)3N(π)2−3s)−1

×
∑
d|a′3

µ(d)χ1(d)g(a1a
2
2h, d)

N(d)s

( ∏
π|a1dh

(1− χ1(π)3N(π)2−3s)−1

×
∑
e|a1dh

µ(e)N(e)1−2sχ1(π)2g(a1a2
2dh/e, e)G1(a1a

2
2dh/e, χ1, s)

)
.

(4.7)

This is almost identical to Lemma 3.6 in [BY10]. There are some changes in notation so we
briefly state the path to prove it without going into details. Using g(a1a

2
2a

3
3h, c) = g(a1a

2
2h, c)

we establish that Ga1a2
2a

3
3h

(a1a
2
2a

3
3h, χ1, s) = Ga1a2

2a
3
3h

(a1a
2
2h, χ1, s). Also by definition of

G(·)(·, ·, ·), the powers in the subscript are redundant and we can replace the quantity in
subscript by product of all primes dividing a1a

2
2a

3
3h or equivalently by a1a2a

′
3h. The next

task is to remove a2 and a′3 from the subscript and is described in [BY10] quite clearly (see
proof of (25) and (27) in their Lemma 3.6). Finally we get rid of a1h in the subscript using
Lemma 3(i) of [HBP79].

Lemma 4.4. Let a = a1a
2
2a

3
3 with a1, a2, a3, a

′
3 and h as defined in Lemma 4.3. The function

Gah(ah, χ, s) is holomorphic in the region <(s) > 1 except possibly a pole at s = 4/3. Further,
for s = β + it and 1 + ε ≤ β ≤ 3/2 + ε, |s− 4/3| > 1/12,

|Gah(ah, χ1, s)| �ε N(ah)
1
2

( 3
2

+ε−β)(1 + t2)
3
2

+ε−β

and if a3 = 1 then the residue satisfies

res
s=4/3

Gah(ah, χ1, s)� N(a1h)−
1
6

+2εN(a′3)ε =: G(a, h). (4.8)

Proof. From [BY10], we have for s = β + it and 1 + ε ≤ β ≤ 3
2

+ ε, |s− 4/3| > 1/12,

|G1(ah, χ1, s)| � N(ah)
1
2

(β1−β)(1 + t2)β1−β (4.9)

and if a is cube free then the residue satisfies

res
s=4/3

G1(ah, χ1, s)� N(a1h)−
1
6

+ε.

Using Lemma 4.3 for s = β + it and 1 + ε ≤ β ≤ 3
2

+ ε,

|Gah(ah, χ1, s)| ≤

∣∣∣∣∣∣
∏
π|a2

(
1− χ1(π)3

N(π)3s−2

)−1

∣∣∣∣∣∣
×
∑
d|a′3

1

N(d)β−
1
2

∣∣∣∣∣∣
∏
π|a1dh

(
1− χ1(π)3

N(π)3s−2

)−1

∣∣∣∣∣∣×
∑
e|a1dh

1

N(e)2β− 3
2

|G1(a1a
2
2dh/e, χ1, s)|


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Using (4.9), we bound the innermost sum over divisors of a1dh. Thus we have the following
upper bound for |Gah(ah, χ1, s)|∏

π|a2

(
1− 1

N(π)3β−2

)−1

×
∑
d|a′3

1

N(d)β−
1
2

[ ∏
π|aadh

(
1− 1

N(π)3β−2

)−1

×
∑
e|a1dh

N(a1a
2
2dh)

1
2

( 3
2

+ε−β)

N(e)2β− 3
2

+ 1
2

( 3
2

+ε−β)
(1 + t2)

3
2

+ε−β)

]
�ε (1 + t2)

3
2

+ε−βN(a1a
2
2h)

1
2

( 3
2

+ε−β)N(a′3)εN(a1h)ε ≤ N(ah)
1
2

( 3
2

+ε−β)(1 + t2)
3
2

+ε−β.

Now we calculate the bounds for the residue. Again, we make use of (4.7)

res
s=4/3

Gah(ah, χ1, s) ≤
∏
π|a2

(1−N(π)−2)−1

×
∑
d|a′3

N(d)−5/6

 ∏
π|a1dh

(1−N(π)−2)−1 ×
∑
e|a1dh

N(e)−7/6N(a1dh/e)
−1/6+ε


�ε N(a1h)−1/6+2εN(a′3)ε.

We now estimate the sums S1, S2 and S3S4 using Perron’s formula. Since these steps are
going to be similar for each of the four sums, we mention the general results in the form of
following lemma and then specialize to different cases.

Lemma 4.5. Let χ1 be a ray class character modulo 9 then we have the following result

∑
(ah,c)=1

c≡1(mod 3)
N(c)≤X

χ1(c)
g(ah, c)

N(c)
1
2

=

∫
1+ε+iT

1+ε−iT

Gah(ah, χ1,
1
2

+ s)Xsds

s
+O

(
X1+ε logX

T

)

= X
5
6 res
s=5/6

Gah(ah, χ1,
1
2

+ s) + EHor(a, h, T ) + EVer(a, h, T ) +O

(
X1+ε logX

T

)
where

EVer(a, h, T )� N(ah)
1
4

+εX
1
2

+ε
√
T (4.10)

EHor(a, h, T )� N(ah)
1
4

+ε(1 + T 2)1+ε

∫
1+ε

1
2

+ε

Xσ

(1 + T 2)σ
dσ

T
. (4.11)

The value of X for S1, S2 will be different from that for S3, S4 and accordingly our choice
of T will change as well.
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Proof. The statement is basically Perron’s formula. The only thing non-trivial is the bound
on the vertical and horizontal integrals. Let us first estimate the vertical integral using
Lemma 3 (see (20)) of [HB00a]∫ 1

2
+ε+iT

1
2

+ε−iT

Gah(ah, χ1,
1
2

+ s)Xsds

s
� N(ah)

1
4

+εX
1
2

+ε
√
T

and for the horizontal integral, using result of Lemma 4.4.∫
1+ε+iT

1
2

+ε+iT

Gah(ah, χ1,
1
2

+ s)Xsds

s
�ε N(ah)

1
2

+ε(1 + T 2)1+ε

∫
1+ε

1
2

+ε

Xσ

(
√
N(ah)(1 + T 2))σ

dσ

T

�ε N(ah)
1
4

+ε(1 + T 2)1+ε

∫
1+ε

1
2

+ε

Xσ

(1 + T 2)σ
dσ

T

Recall (4.3),

S1 =
∑

(ah,c2)=1
c2≡1(mod 3)

N(c2)≤
√
x/N(h)

N(c2)<(u)

∣∣∣∣ ∑
(ah,c1)=1

c1≡1(mod 3)
N(c1)≤x/N(c2)N(h)2

χ1(c1)
g(ah, c1)

N(c1)u′

∣∣∣∣
We apply partial summation to get∑

(ah,c1)=1
c1≡1(mod 3)

N(c1)≤x/N(c2)N(h)2

χ1(c1)
g(ah, c1)

N(c1)u′
=

( ∑
(ah,c1)=1

c1≡1(mod 3)
N(c1)≤x/N(c2)N(h)2

χ1(c1)
g(ah, c1)√
N(c1)

)(
x

N(c2)N(h)2

)u

−
∫ x

N(c2)N(h)2

1

( ∑
(ah,c1)=1

c1≡1(mod 3)
N(c1)≤t

χ1(c1)
g(ah, c1)√
N(c1)

)
utu−1 dt

where we have used u′ = 1/2−u. In Lemma 4.5 we takeX = x/(N(c2h
2)) and T =

(
x

N(c2)

)1/3

,

so in the horizontal integral we have∫
1+ε

1
2

+ε

xσ

(N(c2)N(h)2(1 + T 2))σ
dσ

T
≤ 1

(N(h)2)
1
2

+ε

∫
1+ε

1
2

+ε

xσ

N(c2)σ(1 + T 2)σ
dσ

T

� x1+ε

(N(h)N(c2)(1 + T 2))1+εT
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Therefore

EHor(a, h, T )� N(a)
1
4

+ε

N(h)
3
4N(c2)

2
3

+ε
x

2
3

+ε

EVer(a, h, T )� N(a)
1
4

+ε

N(h)
3
4N(c2)

2
3

+ε
x

2
3

+ε.

Lastly, the error from Perron’s formula is O(x
2
3

+ε log x/N(c2)
2
3

+εN(h)
4
3

+2ε). Using the
notation of the residue as defined in Lemma 4.4 we have the following relation

( ∑
(ah,c1)=1

c1≡1 (mod 3)
N(c1)≤x/N(c2)N(h)2

χ1(c1)
g(ah, c1)√
N(c1)

)

= res
s=4/3

Gah(ah, χ1, s)

(
x

N(c2)N(h)2

) 5
6

+O

(
N(a)

1
4

+ε

N(c2)
2
3N(h)

3
4

x
2
3

+ε log x

)
.

Using the similar procedure we can also bound the term for a general t, for this case we take
T = t

1
3 .( ∑

(ah,c1)=1
c1≡1 (mod 3)
N(c1)≤t

χ1(c1)
g(ah, c1)√
N(c1)

)
= t

5
6 res
s=4/3

Gah(ah, χ1, s) +O(N(ah)
1
4

+εt
2
3

+ε log t). (4.12)

We can always choose our ε so we include the terms of log x and log t in x
2
3

+ε and t
2
3

+ε,
respectively. Therefore∫ x

N(c2)N(h)2

1

( ∑
(ah,c1)=1

c1≡1 (mod 3)
N(c1)≤t

χ1(c1)
g(ah, c1)√
N(c1)

)
utu

t
dt

�ε

∫ x
N(c2)N(h)2

1

(
t

5
6 G(a, h) +N(ah)

1
4

+εt
2
3

+ε

)
|u|t<(u)

t
dt

� |u| G(a, h)

(
x

N(c2)N(h)2

) 5
6

+<(u)

+ |u| N(ah)
1
4

+ε

(
x

N(c2)N(h)2

) 2
3

+<(u)+ε

= |u| x<(u)

N(c2)<(u)N(h)2<(u)

[
G(a, h)

N(c2)
5
6N(h)

5
3

x
5
6 +

N(a)
1
4

+ε

N(c2)
2
3

+εN(h)
13
12

x
2
3

+ε

]

29



where G(a, h) is the bound for residue of Gah(ah, χ1, s) at s = 4/3 (see (4.8)). So

S1 �
∑

(ah,c2)=1
c2≡1(mod 3)

N(c2)≤
√
x/N(h)

N(c2)<(u)|u| x<(u)

N(c2)<(u)N(h)2<(u)

[
G(a, h)

N(c2)
5
6N(h)

5
3

x
5
6 +

N(a)
1
4

+ε

N(c2)
2
3N(h)

3
4

x
2
3

+ε

]

� |u| x<(u)

N(h)2<(u)

[( √
x

N(h)

) 1
6

× G(a, h)

N(h)
5
3

x
5
6 +

( √
x

N(h)

) 1
3 N(a)

1
4

+ε

N(h)
3
4

x
2
3

+ε

]
�ε |u|

x<(u)

N(h)2<(u)

[
G(a, h)

N(h)
11
6

x
11
12 +

N(a)
1
4

+ε

N(h)
13
12

x
5
6

]
�ε |u|

x<(u)

N(h)2<(u)

[
1

N(a1)
1
6N(h)2

x
11
12 +

N(a)
1
4

+ε

N(h)
13
12

x
5
6

]
. (4.13)

Analysis of S2 is same as S1 except the fact that the generating series we get is Gah(ah, χ2, s)
instead of Gah(ah, χ1, s) but that doesn’t affect all these calculations and we get the same
bound for S2 as well.

For S3S4 we follow the same procedure as we did for S1 above. Since S3 and S4 are similar
we show the process only for S3.

S3 =

( ∑
(ah,c1)=1

c1≡1 (mod 3)
N(c1)≤

√
x/N(h)

χ1(c1)
g(ah, c1)√
N(c1)

)
(
√
x)u

N(h)u
−
∫ √

x
N(h)

1

( ∑
(ah,c1)=1

c1≡1 (mod 3)
N(c1)≤t

χ1(c1)
g(ah, c1)√
N(c1)

)
utu

t
du.

(4.14)

Again, we use Lemma 4.5 with X =
√
x/N(h) and T = X1/3. Using (4.10) for vertical

integral

EVer(a, h, T )� N(ah)
1
4

+ε 1

N(h)
2
3

+ε
(
√
x)

2
3

+ε =
N(a)

1
4

+ε

N(h)
5
12

(
√
x)

2
3

+ε

and using (4.11) for horizontal∫
1+ε

1
2

+ε

( √
x

N(h)(1 + T 2)

)σ
dσ

T
� 1

(1 + T 2)1+ε

(
√
x)1+ε

N(h)1+εT

Hence

EHor(a, h, T )� N(ah)
1
4

+ε (
√
x)1+ε

N(h)1+ε

1

T
= N(a)

1
4

+ε (
√
x)1+ε

N(h)
3
4

N(h)
1
3

x
1
6

≤ N(a)
1
4

+ε

N(h)
5
12

(
√
x)

2
3

+ε.

Lastly, the error from Perron’s is O((
√
x)

2
3

+ε/N(h)2/3). Therefore( ∑
(ah,c1)=1

c1≡1 (mod 3)
N(c1)≤

√
x/N(h)

χ1(c1)
g(ah, c1)√
N(c1)

)
= res

s=4/3
Gah(ah, χ1, s)

(
(
√
x)

N(h)

) 5
6

+O

(
N(a)

1
4

+ε

N(h)
5
12

(
√
x)

2
3

+ε

)
.
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Using (4.12) in (4.14) we get

∫ √
x

N(h)

1

( ∑
(ah,c1)=1

c1≡1 (mod 3)
N(c1)≤t

χ1(c1)
g(ah, c1)√
N(c1)

)
utu

t
dt

� |u|G(a, h)

( √
x

N(h)

) 5
6

+<(u)

+ |u|N(ah)
1
4

+ε

( √
x

N(h)

) 2
3

+<(u)

.

Thus for S3 we have

S3 =

∣∣∣∣ ∑
(ah,c1)=1

c1≡1(mod 3)
N(c1)≤

√
x/N(h)

χ1(c1)
g(ah, c1)

N(c1)u′

∣∣∣∣
�ε |u|

[
G(a, h)

N(h)
5
6

+<(u)
(
√
x)

5
6

+<(u) +
N(a)

1
4

+ε

N(h)
5
12

+<(u)
(
√
x)

2
3

+<(u)

]
.

Same bounds for S4 and thus multiplying the two sums we get the following upper bound

|u|2
[

G(a, h)2

N(h)
5
3

+2<(u)
x

5
6

+<(u) +
G(a, h)N(a)

1
4

+ε

N(h)
5
4

+2<(u)
x

3
4

+<(u) +
N(a)

1
2

+2ε

N(h)
5
6

+2<(u)
x

2
3

+<(u)

]
= |u|2 x<(u)

N(h)2<(u)

[
1

N(a1)
1
3N(h)2

x
5
6 +

N(a)
1
4

+ε

N(a1)
1
6N(h)

17
12

x
3
4 +

N(a)
1
2

+2ε

N(h)
5
6

x
2
3

]
(4.15)

4.4 Proof of Theorem 1.1

We deduce Theorem 1.1 using (2.6), Proposition 3.1 and Proposition 4.1.∑
c1,c2≡1(mod 9)

(c1,c2)=1
c1,c2 sq free
N(c1c2)≤x

L(1/2, ψc1c2) = C1x log x+ C2x+O
(
x

1
2

+εy
1
2

+ε
)

+O

(
x

y
1
6
−ε

)

+O

(
x

11
12

(
x

y

) 1
2

+ε
)

The main term is clear and for the error term we choose y = x
11
12 which gives (xy)

1
2 = x

23
24 =

x
11
12 (x/y)

1
2 .
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Chapter 5

Conditional Upper Bounds for
Moments of L-Functions

In this chapter we prove Theorem 1.2. In §5.2 we set up notations and useful lemmas. The
last ingredient is slightly weaker upper bounds of moments and we establish these bounds
in §5.3. Finally in §5.4 we complete the proof using the strategy of [Har13] and useful ideas
from [LR19].

5.1 L-function Inequality

In the following proposition we state Chandee’s inequality ([Cha09]) written as a sum over
prime ideals.

Proposition 5.1. Assume GRH. Let ψ be a Hecke character with norm of conductor equal
to C and let L(s, ψ) be a Hecke L-function. Then

|L(1/2, ψ)| � exp

 ∑
N(p)≤X

ψ(p) + ψ(p)

2
a′(p, X) +

∑
p|p⇒p≤

√
X

ψ(p) + ψ(p)

2
a′′(p, X) +

logC

logX


(5.1)

where

a′(p, X) :=

{
N(p)−

1
2
− 1

logX

(
1− logN(p)

logX

)
p | p⇒ p ≡ 1(mod 3)

0 p | p⇒ p ≡ 2(mod 3)
(5.2)

a′′(p, X) :=


1
2
N(p)−1− 2

logX

(
1− 2 logN(p)

logX

)
p | p⇒ p ≡ 1(mod 3)

N(p)−
1
2
− 1

logX

(
1− logN(p)

logX

)
p | p⇒ p ≡ 2(mod 3)

(5.3)

and both functions are extended to all ideals of Z[ω] by defining a′(IJ , X) = a′(I, X)a′(J , X)
for any I,J and similarly a′′(IJ , X) = a′′(I, X)a′′(J , X).
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Proof. Using Theorem 2.1 of [Cha09], taking λ = 1 and for X ≥ 10 we have

|L(1/2, ψ)| ≤ exp

(
<
∑
pn≤X

a(pn, ψ)

pn( 1
2

+ 1
log x

)n log p

logX/pn

logX
+

logC

logX
+O(1)

)
(5.4)

where

a(pn, ψ) := (α1(p, ψ)n + α2(p, ψ)n) log p (5.5)

and α1(pn, ψ), α2(pn, ψ) are described in (2.4) and (2.5). Thus

<
∑
pn≤X

a(pn, ψ)

pn( 1
2

+ 1
logX

)n log p

logX/pn

logX

= <
∑
pn≤X

p≡1(mod 3)
p=ππ

(ψ(π)n + ψ(π)n)

pn( 1
2

+ 1
logX

)n

logX/pn

logX
+ <

∑
pn≤X

p≡2(mod 3)

(ψ(p2)n + (−ψ(p)2)n)

pn( 1
2

+ 1
logX

)n

logX/pn

logX
.

(5.6)

Clearly for n ≥ 3, the contribution is O(1). In the summation over primes congruent to 2
modulo 3, terms corresponding to n = 1 vanish and only primes congruent to 1 modulo 3
contribute. Hence for n = 1 we get∑

p≤X
p≡1(mod 3)

<(ψ(π) + ψ(π))

p
1
2

+ 1
log x

×
(

1− log p

logX

)

=
∑

N(p)≤X
p|p⇒p≡1(mod 3)

<ψ(p)

N(p)
1
2

+ 1
logX

(
1− logN(p)

logX

)
=
∑

N(p)≤x

ψ(p) + ψ(p)

2
a′(p, X).

Now for n = 2 we get∑
p≤
√
X

p≡1(mod 3)
p=ππ

< (ψ(π)2 + ψ(π)2)

2p

1

p
2

logX

(
1− 2 log p

logX

)
+

∑
p≤
√
X

p≡2(mod 3)

< ψ(p)

p

1

p
2

logX

(
1− 2 log p

logX

)

(5.7)

=
∑

N(p)≤
√
X

p|p⇒p≡1(mod 3)

<ψ(p)

2N(p)1+ 2
logX

(
1− 2 logN(p)

logX

)
+

∑
N(p)≤X

p|p⇒p≡2(mod 3)

<ψ(p)

N(p)
1
2

+ 1
logX

(
1− logN(p)

logX

)

(5.8)

=
∑

p|p⇒p≤
√
X

ψ(p) + ψ(p)

2
a′′(p, X). (5.9)
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The following lemma shows that the sum over prime squares (5.7) can be shortened
significantly. This lemma is based on Lemma 2.1 of [Sou09] and [Har13].

Lemma 5.2. Let ψ be a Hecke character of conductor less than or equal to x and y ∈ R be
such that log x < y < x then

∑
p≤y

p≡1(mod 3)
p=ππ

−
∑
p≤log x

p≡1(mod 3)
p=ππ

 ψ(π)2 + ψ(π)2

2p

1

p
1

log y

(
1− log p

log y

)

+

 ∑
p≤y

p≡2(mod 3)

−
∑
p≤log x

p≡2(mod 3)

 ψ((p))

p

1

p
1

log y

(
1− log p

log y

)
= O(1).

Proof. The argument is based on explicit formula proof. By following the argument in [Dav80]
(Chapter 19,20) and assuming GRH to calculate the contribution of zeros we have for z ≤ x

S(ψ, z) :=
∑
p≤z

p≡1(mod 3)

(ψ(π) + ψ(π)) log p+
∑
p≤z

p≡2(mod 3)

2ψ((p)) log p

= −
∑

|=(ρ)|<T
ρ:L(ρ,ψ)=0

zρ

ρ
+O

( z
T

log2 xz
)

�
√
z log2 xT +

z

T
log2 xz

where L(s, ψ) is the Hecke L-function associated to Hecke character ψ. Taking T =
√
z ≤
√
x

we get

S(ψ, z)�
√
z log2 xz. (5.10)

By partial summation we have S(ψ, y)− S(ψ, (log x)6) = o(1) and using
∑

log x≤p≤(log x)6
1
p

=

O(1), we obtain the result.

Let us use this lemma to shorten the sum over prime squares. In (5.7), the length of the
sum is

√
X so for log x <

√
X < x we divide (5.7) in two parts

(5.7) =
∑
p≤log x

p≡1(mod 3)
p=ππ

< (ψ(π)2 + ψ(π)2)

2p

1

p
2

logX

(
1− 2 log p

logX

)
+

∑
p≤log x

p≡2(mod 3)

< ψ(p)

p

1

p
2

logX

(
1− 2 log p

logX

)

+
∑

log x<p≤
√
X

p≡1(mod 3)
p=ππ

< (ψ(π)2 + ψ(π)2)

2p

1

p
1

log
√
X

(
1− log p

log
√
X

)
+

∑
log x<p≤

√
X

p≡2(mod 3)

< ψ(p)

p

1

p
1

log
√
X

(
1− log p

log
√
X

)
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The second sum is O(1) by the lemma 5.2 proved above. Hence the sum over prime squares
is essentially of length log x. Therefore in (5.1), for log x <

√
X < x, we have

|L(1/2, ψ)| � exp

 ∑
N(p)≤X

ψ(p) + ψ(p)

2
a′(p, X) +

∑
p|p⇒p≤log x

ψ(p) + ψ(p)

2
a′′(p, X) +

logC

logX


(5.11)

5.2 Notations and Useful Combinatorics

Following [Har13] and [LR19], our strategy is to partition the set of primes less than or equal
to X into multiple intervals I1,n for 1 ≤ n ≤ J , each of which is (xθn−1 , xθn ] where

θn :=
en

(log log x)4
for 0 ≤ n ≤ J

where J is chosen such that it satisfies η1 ≤ θJ ≤ eη1 for 0 < η1 ≤ (e
1
4−1)4

232e
(see Remark 5.9).

We also define I1,0 := (1, xθ0 ]. We also define intervals I2,m := (2m−1, 2m] for 1 ≤ m ≤ M2

where M2 :=
⌈

log log x
log 2

⌉
. We partition the sum in (5.1) by defining

P (I, ψ,B, xθu) :=
∑
p∈I

ψ(p) + ψ(p)

2
B(p, xθu) (5.12)

where I is an interval which can be I1,n or I2,m and p ∈ I means p | p⇒ p ∈ I. B(p, xθu) is a
completely multiplicative function such that B(IJ , xθu) = B(I, xθu)B(J , xθu) for any ideals
I and J . For instance, B can be a′ or a′′ as defined in (5.2) and (5.3) respectively. Hence
using these notations in (5.11) we have for a fixed 0 ≤ j ≤ J and X = xθj and ψ ∈ F(x)

|L(1/2, ψ)| � exp

(
j∑

n=0

P (I1,n, ψ, a
′, xθj) +

M2∑
m=1

P (I2,m, ψ, a
′′, xθj) +

1

θj

)
(5.13)

= e1/θj

j∏
n=0

exp(P (I1,n, ψ, a
′, xθj))

M2∏
m=1

exp(P (I2,m, ψ, a
′′, xθj)). (5.14)

Lemma 5.3. Let ν be a multiplicative function on ideals defined on powers of prime ideals
as

ν(pn) :=
1

n!

where n is non-negative. Then for any even integer s ≥ 0 we have

s∑
m=0

2m (P (I, ψ,B, xθu))m

m!
=

∑
I,J

p|I,J⇒p∈I
Ω(IJ )≤s

B(IJ , xθu)ν(I)ν(J )ψ(I)ψ(J ). (5.15)
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Proof. We calculate powers of P (I, ψ,B, xθu) to get

P (I, ψ,B, xθu)m =

(∑
p∈I

ψ(p) + ψ(p)

2
B(p, xθu)

)m

=
∑
I,J

p|I,J⇒p∈I
Ω(IJ )=m

ψ(I)

2Ω(I)

ψ(J )

2Ω(J )
B(IJ , xθu)

∑
p1p2...pm=IJ

1

=
m!

2m

∑
I,J

p|I,J⇒p∈I
Ω(IJ )=m

B(IJ , xθu)ν(I)ν(J )ψ(I)ψ(J ). (5.16)

On summing these expressions for m = 0 to m = s, the proof follows.

Remark 5.4. For an even integer s and t ∈ R we have
∑s

k=0
tk

k!
> 0. Thus the expression

in (5.15) is non-negative whenever s is even.

Lemma 5.5. Let j be a fixed non-negative integer and 0 < T−1 < T0 < T1 < T2 < · · · < Tj
be real numbers. For 0 ≤ n ≤ j we define In := (Tn−1, Tn] and let an(·) be a completely
multiplicative function on ideals of Z[ω] and sn be an even integer. If there exist A > 0 such
that

j∏
n=0

T snn ≤
√
x

3A

then for ψc1c2 ∈ F

∑
(c1,c2)=1
c1,c2 sq free

c1,c2≡1 (mod 9)
N(c1c2)≤x

j∏
n=0

 sn∑
m=0

(∑
p∈In

(
ψc1c2(p) + ψc1c2(p)

)
an(p)

)m
m!

 (5.17)

� (x log x)

j∏
n=0

∑
IJ 2=cube
p|IJ⇒p∈In
Ω(IJ )≤sn

an(IJ )ν(I)ν(J ). (5.18)

Proof. Remark 5.4 ensures that the sum from m = 0 to sn is non-negative. Let F be a
Schwartz function, which is greater than or equal to 1 on [−1, 1] and of finite support such
that its Fourier transform has compact support contained in (−A,A). Then (5.17) is bounded
above by

≤
∑

c1≡1(mod 9)
N(c1)≤x

∑
c2≡1(mod 9)
N(c2)≤ x

N(c1)

j∏
n=0

 sn∑
m=0

(∑
p∈In

(
ψc1c2(p) + ψc1c2(p)

)
an(p)

)m
m!

F

(
N(c1c2)

x

)
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where we have lifted the restrictions of c1, c2 square free and (c1, c2) = 1 using positivity of
the sums from m = 0 to sn. For prime ideals p, let π ≡ 1(mod 3) be the generator of ideal

p. Since c1, c2 ≡ 1(mod 9), ψc1c2(p) =
(

π
c1c22

)
3
, and the above term is equal to

∑
c1≡1(mod 9)
N(c1)≤x

∑
c2≡1(mod 9)
N(c2)≤ x

N(c1)

j∏
n=0

 sn∑
m=0

(∑
(π)∈In

((
π
c1c2

)
3

+
(

π
c1c2

)
3

)
an((π))

)m
m!

F

(
N(c1c2)

x

)

Let χ0 be the principal ray class character modulo 9. Then above quantity is

≤
∑

N(c1)≤x

∑
N(c2)≤ x

N(c1)

χ0(c1c2)

j∏
n=0

 sn∑
m=0

(∑
(π)∈In

((
π
c1c2

)
3

+
(

π
c1c2

)
3

)
an((π))

)m
m!

F

(
N(c1c2)

x

)

=
∑

N(c1)≤x

∑
N(c2)≤ x

N(c1)

χ0(c1c2)

j∏
n=0

∑
r,t≡1(mod 3)
p|(rt)⇒p∈In

Ω(rt)≤sn

an((rt))ν((r))ν((t))

(
r

c1c2
2

)
3

(
t

c1c2
2

)
3

F

(
N(c1c2)

x

)

=
∑

r0,...,rj≡1(mod 9)
t0,...,tj≡1(mod 9)
p|(rntn)⇒p∈In

Ω(rntn)≤sn

a0((r0t0)) . . . aj((rjtj))ν((r0)))ν((t0)) . . . ν((rj)))ν((tj)))

∑
N(c1)≤x

χ0(c1)

(
r0t

2
0 · · · rjt2j
c1

)
3

∑
N(c2)≤ x

N(c1)

χ0(c2)

(
r0t20 · · · rjt2j

c2

)
3

F

(
N(c2)

x/N(c1)

)
.

For any c ∈ Z[ω] and (c, 3) = 1, a ≡ b(mod 9c)⇒
(
c
a

)
3

=
(
c
b

)
3

using cubic reciprocity. There-

fore χ0(·)
(
r0t20···rjt2j

·

)
3

is a Dirichlet character of modulus 9r0t
2
0 · · · rjt2j . Since N(r0t

2
0 · · · rjt2j) ≤∏j

n=0 T
2sn
n ≤ x/9A2, we apply Proposition 2.1 and get contributions only when r0t

2
0 · · · rjt2j =

cube which is equivalent to rnt
2
n = cube for all 0 ≤ n ≤ j. Therefore the term above is

�
∑

r0,...,rj≡1(mod 9)
t0,...,tj≡1(mod 9)
p|(rntn)⇒p∈In
r0t20···rjt2j=cube

Ω(rntn)≤sn

a0((r0t0)) . . . aj((rjtj))ν((r0)))ν((t0)) . . . ν((rj)))ν((tj)))
∑

N(c1)≤x

x

N(c1)

� (x log x)

j∏
n=0

∑
r,t≡1(mod 3)
p|(rt)⇒p∈In
rt2=cube
Ω(rt)≤sn

an((rt))ν((r)))ν((t)) = (x log x)

j∏
n=0

∑
IJ 2=cube
p|IJ⇒p∈In
Ω(IJ )≤sn

an(IJ )ν(I)ν(J ).
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Remark 5.6. By following the arguments in the proof, we can also prove the following results.

1. For an even integer s, a(·) be a completely multiplicative function on ideals and I =
(T0, T ] such that T 2s ≤ x/9A2. Then we have∑

ψ∈F(x)

(∑
p∈I

(ψ(p) + ψ(p))a(p)

)s

� (x log x)(s!)
∑

IJ 2=cube
p|IJ⇒p∈I
Ω(IJ )=s

a(IJ )ν(I)ν(J ) (5.19)

2. For a non-negative integer s, let a(·) be a completely multiplicative function on ideals
and I = (T0, T ] such that T 4s ≤ x/9A2. Then we have∑

ψ∈F(x)

∣∣∣∣∣∑
p∈I

ψ(p)a(p)

∣∣∣∣∣
2s

� (x log x) (s!)2
∑

IJ 2=cube
p|IJ⇒p∈I

Ω(I)=Ω(J )=s

a(IJ )ν(I)ν(J ) (5.20)

5.3 Almost Sharp Upper Bound

Before proving the complete result, we first prove a slightly weaker version that will be very
useful in our proof.

Proposition 5.7. For any real positive k and ε > 0∑
c1,c2≡1(mod 9)
c1,c2 sq free

(c1,c2)=1
N(c1c2)≤x

|L(1/2, ψc1c2)|2k �k (x log x)(log x)k
2+ε.

Our proof of this proposition here is obtained by following the work of [DFL20](Proposition
6.1) and [Sou09]. The difference in our case, as compared to [DFL20], is that we work over
Q(ω) and there is a double sum which gives x log x instead of x in the RHS. However this
difference is not really significant in terms of ideas involved in the proof. We start with
proving an important lemma.

Lemma 5.8. Let ` be a positive integer divisible by 3 and y′, y ∈ R such that 1 < y′ < y ≤
(
√
x/3A)1/2` where A is constant.∑

c1,c2≡1(mod 9)
c1,c2 sq free

(c1,c2)=1
N(c1c2)≤x

∣∣∣∣ ∑
N(p)∈(y′,y]

ψ(p)a′(p, y)

∣∣∣∣2` � (x log x)
(`!)2(25/9)`/3

(2`/3)!

( ∑
N(p)∈(y′,y]

a′(p2, y)

)`
(5.21)

where a′(p, y) is as defined in (5.2). If ` ≤ |
∑

N(p)∈(y′,y] a
′(p2, y)|3−ε then∑

c1,c2≡1(mod 9)
c1,c2 sq free

(c1,c2)=1
N(c1c2)≤x

∣∣∣∣ ∑
N(p)∈(y′,y]

ψ(p)a′(p, y)

∣∣∣∣2` � (x log x)(`!)

( ∑
N(p∈(y′,y]

a′(p2, y)

)`
(5.22)
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Proof. Since y4` ≤ x/9A2, we apply (5.20) to get∣∣∣∣ ∑
N(p∈(y′,y]

ψ(p)a′(p, y)

∣∣∣∣2` � (x log x)(`!)2
∑

IJ 2=cube
p|IJ⇒N(p)∈(y′,y]

Ω(I)=Ω(J )=`

a′(IJ , y)ν(I)ν(J ) (5.23)

Let I = GI1 and J = GJ1 such that (I1,J1) = 1. IJ 2 = cube implies I1 = cube ,
J1 = cube and the above bound is same as

(x log x)(`!)2
∑

p|G⇒N(p)∈(y′,y]
Ω(G)≤`

a′(G2, y)
∑

I1=cube;J1=cube
p|I1,J1⇒N(p)∈(y′,y]

Ω(I1)=Ω(J1)=`−Ω(G)

a′(I1J1, y)ν(GI1)ν(GJ1)

≤(x log x)(`!)2
∑

p|G⇒N(p)∈(y′,y]
Ω(G)≤`
3|Ω(G)

a′(G2, y)ν(G)

( ∑
N(p)∈(y′,y]

a′(p3, y)

3

) 2(`−Ω(G))
3 1

( `−Ω(G)
3

!)2

�(x log x)(`!)2
∑

p|G⇒N(p)∈(y′,y]
Ω(G)≤`
3|Ω(G)

a′(G2, y)ν(G)

3
2
3

(`−Ω(G))( `−Ω(G)
3

!)2
(5.24)

where we have used ν(IJ ) ≤ ν(I)ν(J ), ν(I) ≤ 1, and ν(I3) ≤ ν(I)/3Ω(I). In the last step

we used a′(p3, y) ≤ N(p)−
3
2 and bounded the innermost sum over p by a constant. So the

bound in (5.24) is

=(x log x)(`!)2
∑̀
i=0
3|i

∑
Ω(G)=i

p|G⇒N(p)∈(y′,y]

a′(G2, y)ν(G)

3
2
3

(`−i)( `−i
3

!)2

=(x log x)(`!)2
∑̀
i=0
3|i

1

( `−i
3

!)2

1

3
2
3

(`−i)(i!)

 ∑
N(p)∈(y′,y]

a′(p2, y)

i

�(x log x)
(`!)2

9`/3

 ∑
N(p)∈(y′,y]

a′(p2, y)

`∑̀
i=0
3|i

3
2i
3

(i!)( `−i
3

!)2

≤(x log x)(`!)2

 ∑
N(p)∈(y′,y]

a′(p2, y)

`

(25/9)`/3

(2`
3

)!
.

This establishes (5.21). For the case when ` ≤ |
∑

N(p)∈(y′,y] a
′(p2, y)|3−ε, we need to show for

3 | i and i ≤ `  ∑
N(p)∈(y′,y]

a′(p2, y)

i

3
2i
3

( `−i
3

)!2(2i
3

!)
� 1

`!

 ∑
N(p)∈(y′,y]

a′(p2, y)

`
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or equivalently
xi3

2i
3

( `−i
3

!)2(2i
3

!)
� x`

`!

for ` ≤ x3−ε which is shown in [DFL20] and thus our proof is complete.

We define

n(x, V ) := #{ψ : ψ ∈ F(x), log |L(1/2, ψ)| ≥ V }

and note that ∑
ψ∈F(x)

|L(1/2, ψ)|2k = 2k

∫ ∞
−∞

exp(2kV )n(x, V ) dV. (5.25)

We will use the L-function inequality but we first bound the contribution from prime squares
in (5.11).∑

p|p⇒p≤log x

ψ(p) + ψ(p)

2
a′′(p, X)

=
∑
p≤log x

p≡1(mod 3)
p=ππ

< (ψ(π)2+ψ(π)2)
2

p

1

p
2

logX

(
1− 2 log p

logX

)
+

∑
p≤log x

p≡2(mod 3)

< ψ(p)

p
× 1

p
2

logX

(
1− 2 log p

logX

)

≤
∑
p≤log x

1

p
≤ C log log log x.

for an absolute constant C. Therefore using this bound in (5.11) we get

|L(1/2, ψ)| ≤ exp

 ∑
N(p)≤X

p|p⇒p≡1(mod 3)

ψ(p) + ψ(p)

2
a′(p, X) +

log x

logX

 (log log x)C . (5.26)

We will use this bound in (5.25) and we choose X according to x and V as follows :

X := xB/V and B :=


1
30

log log log x
√

log log x ≤ V ≤ log log x
log log x

30V
log log log x log log x < V ≤ log log x

180
(log log log x)

6 log log x
180

(log log log x) < V.

For the remaining case of V <
√

log log x we use n(x, V )� x(log x) to get the contribution
to the integral in (5.25) �k x(log x)(log x)ε.

To compute the contribution to (5.25) in the remaining range of values of V , we define
1 ≤ z := X1/ log log x ≤ X and

S1(ψ) :=

∣∣∣∣∣∣
∑

N(p)≤z

ψ(p)a′(p, X)

∣∣∣∣∣∣ S2(ψ) :=

∣∣∣∣∣∣
∑

z<N(p)≤X

ψ(p)a′(p, X)

∣∣∣∣∣∣ .
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If log |L(1/2, ψ)| ≥ V then by (5.26), for large x,

S1(ψ) + S2(ψ) ≥ V

(
1− 2

B

)
and there are two possibilities

1. S2(ψ) > V/B

2. S2(ψ) ≤ V/B ⇐⇒ S1(ψ) ≥ V (1− 3/B) := V1.

We define

n1(x, V ) := #{ψ : ψ ∈ F(x) and S1(ψ) ≥ V1}
n2(x, V ) := #{ψ : ψ ∈ F(x) and S2(ψ) ≥ V/B}.

For ` ≤ V
10B

, using Lemma 5.8 and Stirling’s formula we have

n2(x, V ) ≤
∑

C(ψ)≤x

(
S2(ψ)

V/B

)2`

�
(
B

V

)2`(
25`4

4e4

)`/3√
`(x log x)

 ∑
N(p)∈(z,X]

a′(p2, X)

N(p)

`

.

The sum over p can be trivially bounded as O(log logX
log z

) = O(log log log x). Taking ` = 3
⌊
V

30B

⌋
and using `4`/3 ≤ (V/B)4`/3, we get

n2(x, V )� exp

(
2`

3
log

B

V
+
`

3
log

25(log log log x)3

2e4
+

1

2
log `

)
� x(log x) exp

(
− V

30B
log V

)
.

Now we do similar steps for n1(x, V ). If V < (log log x)
7
4 we pick ` = 3b V 2

1

3 log log x
c which

ensures that we can apply Lemma 5.8. Also for this choice of ` we have ` ≤ (log log x)
5
2 ≤

(
∑

N(p)≤z a
′(p2, z))3−ε since

∑
N(p)≤z a

′(p2, z) = log log x+o(log log x). So we use (5.22) to get

n1(x, V )�
∑

ψ∈F(x)

(
S1(ψ)

V1

)2`

� (x log x)
√
`

(
1

e

)`(
` log log x

V 2
1

)`
� (x log x)

V1√
log log x

exp

(
− V 2

1

log log x

)
The other case if V ≥ (log log x)

7
4 we pick ` = 3bV c and apply Lemma 5.8 to get

n1(x, V )�
∑

ψ∈F(x)

(
S1(ψ)

V1

)2`

� (x log x)
√
`

(
25`4(log log x)3

4e4V 6
1

)`/3
� exp

(
−V

7
log V

)
.

where we have used `4(log log x)3 ≤ 81V
12
7 and V/2 ≤ V1. We now calculate estimates for

n(x, V ) in all three ranges of V .
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1. If
√

log log x ≤ V ≤ log log x

n(x, V )� (x log x)
√

log log x exp

(
− V 2

log log x

(
1− 30

log log log x

)2
)

2. If log log x < V ≤ log log x
180

log log log x

n(x, V )� (x log x)(log log x) exp

(
− V 2

log log x

(
1− 90V

(log log x)(log log log x)

)2
)

3. If V > log log x
180

log log log x

n(x, V )� (x log x)(log log x)
5
4 exp

(
−V log V

1260

)
To calculate 2k-th moments using (5.25) we use n(x, V )�ε x(log x)1+ε exp (−V 2/ log log x))

if V ≤ 4k log log x and n(x, V )�ε x(log x)1+ε exp(−4kV ) if V > 4k log log x. This completes
the proof of Proposition 5.7.

5.4 Sharp Upper Bounds

We partition the set of characters F(x) in different sets depending on the values taken by

P (I1,n, ψ, a
′, xθu) and P (I2,m, ψ, a

′′, xθu). Let `n := 2bθ−3/4
n c for 0 ≤ n ≤ J and we define

P1(J) :=

{
ψ ∈ F(x) : |2kP (I1,n, ψ, a

′, xθu)| ≤ `n
e2

for all 0 ≤ n ≤ u ≤ J

}
(5.27)

P1(0) :=

{
ψ ∈ F(x) : |2kP (I1,0, ψ, a

′, xθu)| > `0

e2
for some u ≤ J

}
(5.28)

and for 0 < j < J,

P1(j) :=

{
ψ ∈ F(x) : |2kP (I1,n, ψ, a

′, xθu)| ≤ `n
e2

for all 0 ≤ n ≤ j and n ≤ u ≤ J

but |2kP (I1,j+1, ψ, a
′, xθu))| > `j+1

e2
for some j ≤ u < J

}
. (5.29)
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The sets P1(j) are mutually disjoint. Further we define for 1 ≤ j ≤ J and 1 ≤ m ≤M2,

P2(m, j) :=

{
ψ ∈ P1(j) : |P (I2,m, ψ, a

′′, xθj)| > 2−cm but |P (I2,n, ψ, a
′′, xθj)| ≤ 2−cn

for all m+ 1 ≤ n ≤M2 =

⌊
log log x

log 2

⌋}
Q2(j) := {ψ ∈ P1(j) : |P (I2,n, ψ, a

′′, xθj)| ≤ 2−cnfor all 0 ≤ n ≤M2}

where cm := m
10

. Therefore F(x) =
J⊔
j=0

P1(j) and for 1 ≤ j ≤ J ,

P1(j) =

(
M2⋃
m=1

P2(m, j)

)⊔
Q2(j)

and ∑
ψ∈F(x)

|L(1/2, ψ)|2k

=
∑

ψ∈P1(0)

|L(1/2, ψ)|2k +
J∑
j=1

∑
ψ∈P1(j)

|L(1/2, ψ)|2k

≤
∑

ψ∈P1(0)

|L(1/2, ψ)|2k +
J∑
j=1

∑
ψ∈Q2(j)

|L(1/2, ψ)|2k +
J∑
j=1

M2∑
m=1

∑
ψ∈P2(m,j)

|L(1/2, ψ)|2k (5.30)

We first consider the simplest case, ψ ∈ P1(0), which provides a good glimpse of the methods

involved. Let s0 be an even integer such that `0 ≤ s0 ≤ θ
−7/8
0 then

∑
ψ∈P1(0)

|L(1/2, ψ)|2k ≤
∑

ψ∈F(x)

|L(1/2, ψ)|2k
(

2ke2

`0

P (I1,0, ψ, a
′, xθu)

)s0

≤

√√√√√
 ∑
ψ∈F(x)

|L(1/2, ψ)|4k

 ∑
ψ∈F(x)

(
2ke2

`0

P (I1,0, ψ, a′, xθu)

)2s0


(5.31)

Note that the first sum is bounded above by (x log x)(log x)4k2+ε using Proposition 5.7. Since

`0 ≤ s0 ≤ θ
−7/8
0 ⇒ (log log x)3 � s0 � (log log x)7/2 ⇒ x4θ0s0 � xδ for any δ > 0, so we use

(5.19) with a = a′(p, xθu)/2, S = I1,0 and s = 2s0 to get∑
ψ∈F(x)

P (I1,0, ψ, a
′, xθu)2s0 � (x log x)

(2s0!)

22s0

∑
IJ 2=cube

p|IJ⇒p∈I1,0
Ω(IJ )=2s0

a′(IJ , xθu)ν(I)ν(J ) (5.32)
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The following steps are similar to what we did in the proof of Lemma 5.8. Therefore the
right hand side of the above inequality is

= (x log x)
2s0!

22s0

∑
p|G⇒p∈I1,0

Ω(G)≤s0
Ω(G)≡s0(mod 3)

∑
I,J=cube

p|IJ⇒p∈I1,0
Ω(IJ )=2s0−2Ω(G)

a′(G2IJ , xθu)ν(GI)ν(GJ )

≤ (x log x)
2s0!

22s0

∑
p|G⇒p∈I1,0

Ω(G)≤s0
Ω(G)≡s0(mod 3)

a′(G2)ν(G)
∑

p|IJ⇒p∈I1,0
Ω(IJ )= 2

3
(s0−2Ω(G))

a′(I3J 3, xθu)ν(I)ν(J )
1

3Ω(IJ )

= (x log x)
2s0!

22s0

∑
p|G⇒p∈I1,0

Ω(G)≤s0
Ω(G)≡s0(mod 3)

a′(G2)ν(G)
2

2
3

(s0−Ω(G))

3
2
3

(s0−Ω(G))(2(s0−Ω(G))
3

!)

∑
p∈I1,0

a′(p3, xθu)

 2
3

(s0−Ω(G))

� (x log x)
2s0!

22s0

∑
p∈I1,0

a′(p2, xθu)

s0 ∑
0≤i≤s0

3|i

(2/3)2i/3

(s0 − i)!(2i
3

!)
� (x log x)

(2s0)!ds0/3e!
s0!

(
2

3

)s0
(log log x)s0

Therefore replacing in (5.31)

∑
ψ∈P1(0)

|L(1/2, ψ)|2k �k x(log x)Ok(1)s
1/4
0

(
32k2e4

(3e)4/3

s
4
3
0

`2
0

log log x

)s0/2

�k x(log x)Ok(1)

(
C ′

(log log x)1/3

)s0/2
where C ′ = 32k2e4η1/3

(3e)4/3 and for the second inequality we have used
s
4/3
0

`20
≤ e1/3(log log x)−4/3.

Finally using s0 � (log log x)3 we get that the bound above is �k x(log x)−D for any D > 0.
Now we move to the cases when ψ ∈ P1(j) for 0 < j ≤ J . For each j we have two cases.

The first is when ψ ∈ Q2(j) which implies that the contribution from prime squares is just
O(1). Another case is ψ ∈ P2(m, j) for some m which means that there are sums over prime
squares which are large. We consider both these cases in separate sections.

The sum over prime squares is small. For j > 0, take X = xθj in (5.1), so we can use
(5.13). Also, ψ ∈ Q2(j)⇒

∑M2

m=1 P (I2,m, ψ, a
′′, xθj) = O(1) and we have

∑
ψ∈Q2(j)

|L(1/2, ψ)|2k �k

∑
ψ∈Q2(j)

exp

(
j∑

n=0

2kP (I1,n, ψ, a
′, xθj) +

2k

θj

)
.

Let ` be an even integer then for t ≤ `/e2 we have

et ≤ (1 + e−`/2)

(∑̀
s=0

ts

s!

)
. (5.33)
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Since |2kP (I1,n, ψ, a
′, xθj)| ≤ `n/e

2 for 0 ≤ n ≤ j we have

exp

(
j∑

n=0

2kP (I1,n, ψ, a
′, xθj)

)
�

j∏
n=0

(
`n∑
s=0

2kP (I1,n, ψ, a
′, xθj)s

s!

)

and

∑
ψ∈Q2(j)

|L(1/2, ψ)|2k �k

∑
ψ∈F(x)

j∏
n=0

(
`n∑
s=0

2kP (I1,n, ψ, a
′, xθj)s

s!

)(
2ke2

`j+1

P (I1,j+1, ψ, a
′, xθuj )

)sj+1

(5.34)

where uj is any u for which |2kP (I1,j+1, ψ, a
′, xθu)| ≥ `j+1/e

2 and sj+1 = 2b 1
128θj+1

c. We

remark that when j = J , there is no extra term of P (I1,j+1, ψ, a
′, xθuj ). The choice of

η1 along with the choices of `n, sj+1 ensure that
∑j

n=0 2θn`n + 2θj+1sj+1 < 1 − 2 log 3A
log x

, as

explained in Remark (5.9), and we use Lemma 5.5 together with (5.19) to get

∑
ψ∈Q2(j)

|L(1/2, ψ)|2k �k (x log x)(e2k/θj)


j∏

n=0

∑
IJ 2=cube

p|IJ⇒N(p)∈I1,n
Ω(IJ )≤`n

kΩ(IJ )a′(IJ , xθn)ν(I)ν(J )



×
(

2ke2

`j+1

)sj+1
(
sj+1!

2sj+1

)


∑
IJ 2=cube

p|IJ⇒N(p)∈I1,j+1

Ω(IJ )=sj+1

a′(IJ , xθuj )ν(I)ν(J )

 .

(5.35)

Again, for j = J , all the terms involving index j+1 are not there in the above expression.
For j < J , the factors involving sj+1 can be estimated by following the steps done for the
term on right of (5.32).

We now focus on the sum over ideals appearing inside the product from n = 0 to j. Let
(I,J ) = G, I = GI1 and J = GJ1 with (I1,J1) = 1. The condition of IJ 2 = cube forces
I1 = cube and J1 = cube. Therefore for a fixed n,∑

IJ 2=cube
p|IJ⇒N(p)∈I1,n

Ω(IJ )≤`n

kΩ(IJ )a′(IJ , xθn)ν(I)ν(J )

≤
∑

p|G⇒p∈I1,n
Ω(G)≤`n/2

k2Ω(G)a′(G2, xθn)
∑
I1=cube

p|I1⇒p∈I1,n
Ω(G2I1)≤`n

kΩ(I1)a′(I1, x
θn)ν(GI1)

∑
J1=cube

p|J1⇒p∈I1,n
Ω(G2I1J1)≤`n

kΩ(J1)a′(J1, x
θn)ν(GJ1)

(5.36)
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For any I, a′(I, xθn) ≤ 1√
N(I)

. We also use ν(GI) ≤ ν(G)ν(I) for I1 and J1 in the inner

two sums. Also we have∑
J1=cube

p|J1⇒N(p)∈I1,n
Ω(J1)≤`n−Ω(I1G2)

kΩ(J1)a′(J1, x
θn)ν(J1) ≤

∑
p|J1⇒N(p)∈I1,n

Ω(J1)≤ `n
3

k3Ω(J1)a′(J 3
1 , x

θn)ν(J1)

≤
`n∑
m=0

(∑
N(p)∈I1,n k

3a′(p3, xθn)
)m

m!

Since a′(p3, xθn) ≤ N(p)−3/2, the quantity above is bounded by exp(k3
∑

p∈I1,n N(p)−3/2) =

Ok(1). Hence (5.36) is bounded above by

∑
p|G⇒p∈I1,n
Ω(G)≤`n/2

k2Ω(G)a′(G2, xθn)ν(G) ≤ exp

k2
∑
p∈I1,n

1

N(p)

�k exp

(
k2 log

log xθn

log xθn−1

)

=

(
log xθn

log xθn−1

)k2

=

(
θn
θn−1

)k2

for n > 0. As I1,0 = (c, xθ0), for n = 0, the bound is (log xθ0/ log c)k
2
. We now use this result

in (5.35) and get∑
ψ∈Q2(j)

|L(1/2, ψ)|2k

�k (x log x)e2k/θj

(
log xθ0

log c

)k2 (
θj
θ0

)k2

s
1/2
j+1

(
32k2e4

(6e)4/3

s
4/3
j+1

`2
j+1

) sj+1
2

 ∑
p∈I1,j+1

a′(p2, xθj+1)


sj+1

2

�k (x log x)(log x)k
2

θk
2

j exp

(
2k

θj

)
s

1
2
j+1

(
160k2e4

(6e)4/3

s
4/3
j+1

`2
j+1

) sj+1
2

(5.37)

where we used the fact that the sum over p ∈ Ij+1 is simply bounded by a constant, say 5.
If j = J then e2k/θJ = Ok(1), there are no sj+1 terms and θk

2

J = Ok(1) and for j = J we have∑
ψ∈Q2(J)

|L(1/2, ψ)|2k �k (x log x)(log x)k
2

. (5.38)

For the case of 0 < j < J we use
s
4/3
j+1

`2j+1
≤ θ

1/6
j+1

256
and θ−1

j+1 ≤ 128sj+1 ≤ 2θ−1
j+1 to get∑

ψ∈Q2(j)

|L(1/2, ψ)|2k

� (x log x) exp

(
2ke

θj+1

+ k2 log log x+
1

2
log

1

θj+1

+
1

128θj+1

C1(k)− 1

256θj+1

log
1

θ
1/6
j+1

)

�k (x log x) exp

(
k2 log log x−

log 1
θj+1

210(3)θj+1

)
≤ (x log x) exp

(
k2 log log x− 1

210(3)θj+1

)
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where C1(k) =
∣∣∣log 160k2e4

(6e)4/3

∣∣∣. Combining the above estimate with (5.38) we get

J∑
j=1

∑
ψ∈Q2(j)

|L(1/2, ψ)|2k =
∑

ψ∈Q2(J)

|L(1/2, ψ)|2k +
J−1∑
j=1

∑
ψ∈Q2(j)

|L(1/2, ψ)|2k

�k(x log x)(log x)k
2

+ (x log x)(log x)k
2
J−1∑
j=1

exp

(
− 1

210(3θj+1)

)
� (x log x)(log x)k

2

.

Remark 5.9. We need to ensure 2
∑j

n=0 θn`n + 2θj+1sj+1 < 1− 2 log 3A
log x

. So

2

j∑
n=0

θn`n + 2θj+1sj+1 ≤ 4

j∑
n=0

θ
1
4
n +

1

32
≤ 4θ

1
4
0

(
e(1/4)J − 1

e1/4 − 1

)
+

1

32
≤ 4

(
(θ0e

J)1/4

e1/4 − 1

)
+

1

32

≤ 4θ
1/4
J

e1/4 − 1
+

1

32

≤ 4(eη1)1/4

e1/4 − 1
+

1

32

where θJ ≤ eη1. Thus for large x,

η1 ≤
(e

1
4
−1)4

232e
⇒ 4(η1e)

1
4

e
1
4
−1

+
1

32
≤ 4

256
+

1

32
≤ 3

64
< 1− 2 log 3A

log x

The sum over prime squares is big. We move to the final case when for some 1 ≤ j ≤ J
and 0 ≤ m ≤M2, ψ ∈ P2(m, j). We consider two cases depending on the size of m.

Case I Consider the case when 2m >
`20

32k2e4
�k (log log x)6. Then with tm := 2d29m/16e∑

ψ∈P2(m,j)

|L(1/2, ψ)|2k ≤
∑

ψ∈F(x)

|L(1/2, ψ)|2k
(
2m/10P (I2,m, ψ, a

′′, xθj)
)tm

(5.39)

�

√√√√√x(log x)Ok(1)

2
2mtm

10

∑
ψ∈F(x)

P (I2,m, ψ, a′′, xθj)2tm

 (5.40)

where we applied Cauchy Schwarz inequality and Proposition 5.7. Since m ≤ log log x/ log 2
and tm ≤ 4(log x)9/16 we have (m + 1)tm ≤ 1

8
log x for large enough x and thus we can use

Lemma 5.5 for the sum in (5.40). Since this is similar to the sum on LHS of (5.32), we
directly write the estimates in this case which is∑

ψ∈F(x)

P (I2,m, ψ, a
′′, xθj)2tm � (x log x)

2tm!

22tm

∑
IJ 2=cube

p|IJ⇒p∈I2,m
Ω(IJ )=2tm

a′′(IJ , xθu)ν(I)ν(J )

� (x log x)
2tm!btm/3c!

tm!

(
2

3

)tm ∑
p∈I2,m

a′′(p2, xθu)

tm

.
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Note that a′′(p2, xθj) ≤ 1
p2 for p|p, and the sum over primes can be bounded trivially as

( 1
2m

)tm . Replacing in (5.40),

∑
ψ∈P2(m,j)

|L(1/2, ψ)|2k �k x(log x)Ok(1)t
1
4
m

(
8

(3e)4/3

t
4
3
m

2
4m
5

)tm/2

. (5.41)

Using 2
9m
16 < tm ≤ 4(2

9m
16 ) and 2m > C(k)(log log x)6 (where C(k) := (32η

3
2k2e4)−1), we

have

t
1
4
m

(
8

(3e)4/3

t
4
3
m

2
4m
5

)tm/2

≤ exp

(
1

4
log tm −

tm
2

log 2
m
20

)
� exp

(
−tm

4
log 2

m
20

)
(5.42)

� exp

(
−C(k)

9
16 (log log x)27/8

4
logC(k)

1
20 (log log x)3/10

)

and this is � (log x)−D for any D > 0. Replacing this estimate in (5.41) we have

J∑
j=1

∑
m≤M2

2m>
`20

32k2e4

∑
ψ∈P2(m,j)

|L(1/2, ψ)|2k �k x(log x)−D(JM2)� x(log x)−D/2

for any D > 0.

Case II Finally we consider the case where 2m ≤ `20
32k2e4

�k (log log x)6 � xθ0 . For p|p we

have |a′(p, xθj)| ≤ p−
1
2 and |a′′(p, xθj)| ≤ p−1 thus we have the following trivial estimate

P ((1, 2m+1], ψ, a′, xθj) +
m∑
n=0

P (I2,n, ψ, a
′′, xθj) ≤ (3

√
2)2m/2.

Also for ψ ∈ P2(m, j), |P (I2,n, ψ, a
′′, xθj)| ≤ 2−n/10 for n ≥ m+ 1. Hence using these bounds

in (5.13) we have for ψ ∈ P2(m, j)

|L(1/2, ψ)|2k

� e(2
m
2 6
√

2k) exp

 ∑
N(p)∈(2m+1,xθ0 ]

2kP ((2m+1, xθ0 ], ψ, a′, xθj) +

j∑
n=1

2kP (I1,n, ψ, a
′, xθj) +

2k

θj

 .

Further by triangle inequality

|P (2m+1, xθ0 ], ψ, a′, xθj)| ≤ |P (I1,0, ψ, a
′, xθj)|+ |P (1, 2m+1], ψ, a′, xθj)|

≤ `0

2ke2
+ (2
√

2)2m/2 ≤ `0

2ke2
+

`0

2ke2
=

`0

ke2
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where we used |P (I1,0, ψ, a
′, xθj)| ≤ `0

2ke2
and trivially bounded P ((1, 2m+1], ψ, a′, xθj). Thus

for ψ ∈ P2(m, j)

|L(1/2, ψ)|2k � e
(2
m
2 6
√

2k)+ 2k
θj

(
2`0∑
s=0

(2kP ((2m+1, xθ0 ], ψ, a′, xθj))s

s!

)(
j∏

n=1

`n∑
s=0

(2kP (I1,n, ψ, a
′, xθj))s

s!

)

and we have for tm = 2d29m/16e as defined in Case I∑
ψ∈P2(m,j)

|L(1/2, ψ)|2k

�
∑

ψ∈F(x)

e
6
√

2k2
m
2 + 2k

θj (2
m
10P (I2,m, ψ, a

′′, xθj))tm

(
2`0∑
s=0

(2kP ((2m+1, xθ0 ], ψ, a′, xθj))s

s!

)

×

(
j∏

n=1

`n∑
s=0

(2kP (I1,n, ψ, a
′, xθj))s

s!

) (
2ke2

`j+1

P (I1,j+1, ψ, a
′, xθuj )

)sj+1

where, as done in the previous section, the factor P (I1,j+1, ψ, a
′, xθuj )sj+1 is only present when

j < J . We now apply Lemma 5.5. Since we have carried out calculations for each factor in
one of the previous cases, we write the results directly here, so∑
ψ∈P2(m,j)

|L(1/2, ψ)|2k

�k e
6
√

2(k2
m
2 )+ 2k

θj (x log x)
√
tm

(
4

(3e)4/321/3

t
4
3
m

2
4m
5

) tm
2

(log x)k
2

θk
2

j s
1
2
j+1

(
160k2e4

(6e)4/3

s
4/3
j+1

`2
j+1

) sj+1
2

There is no difference from (5.37) for the factors involving sj+1 and θj. For the factors

involving m, using 2
9m
16 ≤ tm ≤ 2(2

9m
16 ) we have the bound

exp

(
6
√

2k2m/2 +
1

2
log tm +

tm
2

log
t

4
3
m

2
4m
5

)
� exp

(
6
√

2k2m/2 +
1

2
log 2

9m
16 − 2

9m
16

2
log 2

m
20

)
.

Therefore

J∑
j=1

∑
2m≤ `0

32k2e4

∑
ψ∈P2(m,j)

|L(1/2, ψ)|2k

�k(x log x)(log x)k
2

J∑
j=1

∑
2m≤ `0

32k2e4

exp

(
6
√

2k2m/2 +
1

4
log 2

9m
16 − 2

9m
16

2
log 2

m
20

)
exp

(
− 1

210(3θj+1)

)
�k(x log x)(log x)k

2

Hence the proof of Theorem 1.2 is complete.
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