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Abstract

Investigating neurocognition in design creativity under loosely controlled
experiments supported by EEG microstate analysis

Wenjun Jia, Ph.D.

Concordia University, 2021

Design is a recursive process to create original and useful artifacts to meet human needs.

Creativity is a critical ability for designers to create original and useful artifacts. Design

creativity focuses on creativity mechanisms during the design process. Even though many

studies endeavor to understand cognition in design creativity by protocol analysis, neu-

rocognition underlying design creativity remains unknown. Such scarcity can be explained

by the intrinsic characteristics of the design process and the data analysis approaches.

Loosely controlled experiments are capable of simulating the intrinsic characteristics of

the design process, whereas they would increase difficulties of data analysis due to unstruc-

tured data and hidden causal relationships between a stimulus and its response. Therefore,

this research aims to: (i) test the effectiveness of loosely controlled experiments through

comparing its findings on phenomena that have been effectively studied by validated ex-

perimental research; (ii) structure and segment unstructured electroencephalography (EEG)

signals through EEG microstate analysis; (iii) identify EEG-defined large-scale brain net-

works and uncover their temporal dynamics in design creativity; (iv) capture the temporal

dynamics of EEG-defined large-scale brain networks to classify different cognitive activ-

ities in design creativity through RNN techniques under the autoencoder framework. The

loosely controlled experiments supported by EEG microstate analysis appear to offer an

effective approach to facilitating an ecologically valid neurocognitive study.
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Chapter 1

Introduction

Design is a ubiquitous phenomenon in our daily life [1]. We have designed the room

for living; we have designed the phone for communication; we have designed the car for

driving. Except for physical products, we have designed the course materials for learning;

we have designed the organization’s rules for operation; even more, we have designed our

thinking for everything.

Formally, design is a recursive process to create original and useful products that are

able to serve its environment without breaking natural laws and social and technical regu-

lations in the environment [2]. The environment of products is everything other than prod-

ucts; alternatively, the environment of products is anything existing and known [3]. Prod-

ucts, which are anything non-existing and unknown, come from the environment, serve the

environment, and change the environment [4].

Design involves complex cognitive activities that may trigger the creative process and

the creative product that is original and useful. The creative product can be considered

as the result of the creative process. Design creativity focuses on creativity mechanisms

while involving in design activities. Understanding the creativity mechanisms during the

design process is particularly important in that it can improve products’ quality and cost

and designers’ capability and performance.
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Modeling the design process is the first step to understand the creativity mechanisms

involved in design activities. Simon [5] viewed design from the perspective of a rational

problem-solving process, which would search well-defined problem and solution spaces.

The search spaces are supposed to be stable, while the designers’ information process-

ing capacity limits iteration steps toward the solution. Alternatively, Schön [6] provided

a constructionist perspective for scholars to model the design process as a ‘reflective con-

versation with the situation’, in which problems are actively framed by designers who take

action improving the current situation, approaching to solutions (see Dorst and Dijkhuis,

1995 for a comprehensive comparison [7]). This interaction between problem framing and

solution generation is formulated into the recursive logic [2], representing the nature of

design, which is seen in general human cognition and reasoning [8–10]. The recursivity of

design implies a co-evolutionary construction of problem and solution spaces [11, 12], and

calls for environment-oriented design methodology.

With the help of modeling the design process, design cognition further investigates

designers’ mental processes and representations while involving in design activities [13].

Such design cognition is worth studying as they not only support designers’ mental ac-

tivities throughout the design process but also serve as fundamental parts of the evolving

environment [14, 15]. Design cognitive may involve a few mixed cognitive activities: re-

membering, understanding, applying, analyzing, evaluating, and creating based on Bloom’s

taxonomy [16]. For instance, recalling, which belongs to remembering, refers to retrieve

relevant knowledge from long-term memory. Designers would recall past design experi-

ences to accomplish a routine design task.

Protocol analysis is a widely used method to investigate designers’ mental processes

and representations during the design process [17–21]. Protocol analysis applied in design

research can be defined as a series of means to extract ‘reliable information about what

2



people are thinking while they work on a task’ [22], the form of which can be verbaliza-

tion, video, audio, sketches, and eye-tracking. Verbal protocol analysis is valuable in that

designers can interpret a design problem, elaborate on a design solution, and explain their

decision-making process verbally. Verbal protocols are typically collected during and after

the design process, corresponding to concurrent and retrospective verbal protocols. For

example, the concurrent verbal protocols are collected when designers to report all their

thoughts verbally while involving in design activities [18]. These collected verbal proto-

cols are then split into sequences of semantic segments and analyzed by a coding scheme.

Sketch protocol analysis is also usable when inferring designers’ mental processes and

representations. Schon and Wiggins indicated that sketch makes unintended discoveries

by allowing designers’ to inspect their own sketches [23]. When designers sketch ideas

on paper and inspect sketches, this inspection allows designers to see new relations and

features that would help designers refine and revise their ideas [24]. Indeed, Athavankar

suggested that sketch can be considered as an external memory [25]. Along with similar

thoughts, Zeng and colleagues suggested that sketch provides mental relaxation and helps

in generating new ideas through reducing cognitive workload and encouraging the free

flow of creativity [26]. Bilda and colleagues found no significant differences in design out-

come scores, the total number of cognitive actions, and overall density of idea production

between conditions of blindfold and full-version [27]. Bilda and Gero concluded that ex-

pert designers are capable of using knowledge and spatial information stored in long-term

memory to facilitate the design process without the use of sketches [28].

Protocol analysis revealed that design is either a searching process or an exploration

process [13]. An optimal design solution can be determined by searching well-defined

problem and solution spaces under certain degrees of constraints. The searching target and

spaces will not be changed significantly over time. Goel proposed that there are two search-

ing strategies: lateral- and vertical-first [29]. The lateral-first strategy refers to ‘movement

3



from one idea to a slightly different idea’, while the vertical-first strategy refers to ‘move-

ment from one idea to a more detailed version of the same idea’ [29]. Chan proposed that

designers need to retrieve declarative and procedural knowledge from long-term memory

given a design problem and activate this knowledge in working memory [30]. This knowl-

edge is manipulated and updated through operations of synthesis and evaluation until an

optimal design solution is determined [25, 30, 31].

Alternatively, a satisfactory design solution can be determined through a co-evolutionary

process between ill-defined problem and solution spaces [11, 12]. The search target and

spaces will be changed significantly over time. This co-evolutionary process between prob-

lem and solution spaces does not result in a predefined and optimal solution. Indeed, this

co-evolutionary process follows the recursive logic that the design problem, design solu-

tion, and design knowledge would evolve simultaneously and interdependently throughout

the design process [2, 32, 33]. As a result, a perceived design problem can determine a

design solution, which in turn will change the perception of design problem.

1.1 Motivations

These models about the design process have established solid foundations to understand

the creativity mechanism involved in design activities. The important involvement and

impact of designers’ brain activities during the design process have been realized by more

and more researchers, whereas related research is still at an early stage. Brain activities are

worth studying as they not only support designers’ mental processes and representations

throughout the design process but also as fundamental parts of the evolving environment

[14, 15].

However, little is known about how brain activities support and influence designers’

mental processes and representations during the design process. This insufficient investi-

gation may result from the intrinsic characteristics of the design process and data analysis
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approaches. In neurocognitive science, a strictly controlled experiment involves observ-

ing the effects of a design activity on brain responses with control of all extraneous vari-

ables [34]. Such a strictly controlled experiment provides a reliable approach to identify-

ing repeatable/reproducible causal relations between a stimulus and a response [34]. The

strictly controlled experiment is not the most appropriate to simulate creativity underlying

the design process in that one cannot control whether, when, or how a designer generates a

creative solution. Moreover, the strictly controlled experiment ignores the positive effects

of incubation and mind wandering on creativity underlying the design process [35–38].

A loosely controlled experiment may be a proper way to simulate the creative pro-

cess while involving design activities [15, 39]. The loosely controlled experiments will be

conducted without control of all extraneous variables, such as task response time. Under

this loosely controlled setting, designers have sufficient time to explore potential solutions

freely; some of the solutions may be creative. In addition, this loosely controlled exper-

iment is able to simulate some critical characteristics of design, such as recursivity. A

design problem will identify relevant knowledge to generate a tentative solution, which

will, in turn, further re-identify relevant knowledge to reformulate the design problem.

Although the loosely controlled experiment is capable of stimulating the creative pro-

cess while involving design activities, its effectiveness remains unknown. Also, this loosely

controlled experiment will increase the difficulties of electroencephalography (EEG) sig-

nals analysis. First of all, the EEG signals collected from the loosely controlled experiment

are unstructured, which results in hidden causal relationships between a stimulus and its

response. Secondly, the hidden causal relationships are very complex since one stimulus

may trigger many brain responses while many stimuli may trigger one brain response. The

brain responses may involve complex activities that are associated with large-scale brain

networks. Thirdly, a stimulus for design activities may always keep changing in that the

design problem, design solution, and design knowledge keep evolving simultaneously and
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interdependently throughout the design process.

1.2 Objectives

This research aims to address the difficulties in EEG signals analysis when a loosely

controlled experiment simulates the creative process while involving design activities. The

main objectives are summarized as follows:

• test the effectiveness of loosely controlled experiments through comparing its find-

ings on phenomena that have been effectively studied by validated experimental re-

search;

• structure and segment the unstructured EEG signals collected from the loosely con-

trolled experiments in design creativity;

• associate the segmentations of structured EEG signals with EEG-defined large-scale

brain networks and their functions in design creativity;

• investigate neural oscillations and temporal dynamics of network oscillations in de-

sign creativity through measuring temporal properties of EEG-defined large-scale

brain networks;

• capture the temporal dynamics of network oscillations in design creativity and use

this characteristic to classify cognitive activities in design creativity.

1.3 Organization

Chapter 2 presents a review on design methodologies, design creativity, cognition in

design creativity, neurocognition in design creativity, and challenges in design creativity

studies. Chapter 3 presents a framework of loosely controlled experiments supported by
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EEG microstate analysis to address these challenges, as mentioned in Chapter 2. Chapter 4

reports findings of network oscillations in design creativity when applying the framework

as mentioned in Chapter 3. Chapter 5 reports findings of temporal dynamics of network os-

cillations in design creativity through investigating the temporal dynamics of EEG-defined

large-scale brain networks. Chapter 6 reports findings of capturing temporal dynamics of

EEG-defined large-scale brain networks and classifying cognitive activities in design cre-

ativity. Chapter 7 concludes the thesis.
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Chapter 2

Background

2.1 Design methodologies

Intuitively, ‘design is an activity that aims to change an existing environment to a de-

sired one by creating a new artefact into the existing environment’ [4]. An original and use-

ful product must be able to satisfy design requirements constituted by a set of human needs.

A product can be considered as a solution to a design problem, while the environment of

a product can be viewed as all objects other than the product itself [3]. A design prob-

lem is a set of statements about the product-environment system, which includes a product

and its environment [3]. According to focused respective parts of the product-environment

system, design methodologies can be classified into three categories: product-based de-

sign methodologies, function-based design methodologies, and environment-oriented de-

sign methodologies [40].

Product-based design methodologies consider a product as their focus in that one must

have a product at the beginning of design. Theory of Inventive Problem Solving (TRIZ)

is a product-based design methodology for developing a new product in a structured and

systematic manner [41]. TRIZ pays more attention to how to generate innovative solutions

rather than understanding and analyzing the design problem. TRIZ analyzed contradictions
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of desired features of a product and uses 40 inventive principles, separation principles, or

substance field analysis to design a new product through solving contradictions [42]. There

are two major types of contradictions, which are technical and physical. The technical con-

tradictions illustrate that an attempt to improve one aspect of desired features of a product

results in deteriorations of other aspects of desired features of a product. The physical con-

tradictions illustrate that desired features of a product cannot be satisfied at the same time

in physical conditions. Later, the 40 inventive principles can be used to deal with techni-

cal and physical contradictions conceptually. The separation principles can be applied to

understand and solve complex physical contradictions with what appeared to be unresolv-

able contradictions. This too rigid and definite direction to the thinking process has been

challenged because of inflexibility in a variety of situations and difficulty in learning this

thinking process [43].

Function-based design methodologies consider functional structures of a product as

their focus in that functional structures implied in the design problem embody the expec-

tations of a product. Function-Behaviour-Structure (FBS) is a widely used methodology to

design a new product through transforming a set of functions into design descriptions [44].

A design description represents the components of a product and their relations, which is

labeled as structure. Behaviour represents the attributes that can be derived from structure.

Transformation among function, structure, and behaviour constitutes basic design activi-

ties, which are formulation, synthesis, analysis, evaluation, reformulation, and production

of design description. A Design prototype is a conceptual schema for representing a set of

generalized concepts from similar design cases. The design prototype consists of function,

behaviour, and knowledge, which provides the basis for the start of a design. Initial design

prototype may consist of more function and behaviour while subsequent design prototype

may have more details on structure. The design process can be considered as retrieval and

transformation of the design prototype.
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Environment-oriented design methodologies consider the environment of a product as

their focus. Environment-based Design (EBD) [3], User-Centred Design (UCD) [1], and

Situated Function-Behaviour-State (S-FBS) [45] are widely used approaches to design a

product in a creative manner, which start a design process from the environment of a prod-

uct. In the cases of EBD, the environment of a product represents everything except the

product itself. It is easier and more intuitive for designers to start an activity from the

environment of a product, which is already existing and known for designers. Next, a

transformation between environment and product constitutes basic design activities, such

as formulation, evaluation, and synthesis [32, 33]. Then, the product is designed to serve

its environment while the product brings changes to its environment and becomes one of

the components in its environment [4]. The design process can be considered as a co-

evolutionary process between a product and its environment.

Indeed, EBD is stemmed from the recursive logic that demonstrates a simultaneous and

interdependent evolution process among the design problem, design solutions, and design

knowledge [2, 32, 33]. The recursive logic implies that ‘the generation and evaluation of

design solutions depend on design knowledge while the kind of design knowledge that can

be used for the current design is determined by the design solutions’ [4]. The idea of evo-

lution among the design problem, design solutions, and design knowledge is also reflected

in situatedness, ‘which emphasizes that the agent’s view of a world changes depending

on what the agent does’ [45]. In line with the statements of the evolving environment, a

few researchers view design as a co-evolutionary process between problem and solution

spaces [11, 12]. Corne and colleagues thought of design as exploration in that design ‘in-

volves the construction and incremental extension of problem statements and associated

solutions’ [46]. Logan and Smithers stressed the importance of incremental extension of

problems and solutions in design creativity [47]. Maher and Poon proposed a computa-

tional model of co-evolution using modified genetic algorithms [11].
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Findings of protocol analysis support the statement that design is a co-evolutionary pro-

cess between problem and solution spaces [12, 48]. For instance, Dorst and Corss asked

participants to create a concept for a ‘litter disposal system’ in a new Netherlands train [12].

They observed that designers interpreted the design task quite differently in terms of their

own design environment, resources, and capabilities. This different interpretation resulted

in different solutions. Some of the solutions may be considered as one of the key fea-

tures in the subsequent design process, leading to a change in the design task. In addition,

Maher and Tang analyzed the protocol data collected from designing new electrical ket-

tles and designing a house for a couple [48]. They segmented protocol data into changes

of problem requirements and solutions. The changes of problem requirements included

adding new problem requirements, refining problem requirements, searching for new re-

quirements, and re-examining problem requirements. The changes of solutions included

generating a creative solution, expressing a solution, and examining a solution. Using this

coding scheme, the authors found that designers spent more time thinking about solutions

in designing electric kettles and balance time thinking about problems and solutions in de-

signing a house. Also, they observed the transitions between problem and solution spaces

in the design process. Therefore, design creativity is not a search process under a fixed

design problem for an optimal design solution. Design creativity seems to be a process

of formulating a design problem, generating and elaborating design solutions, as well as

reformulating and reframing the design problem recursively.

2.2 Design creativity

Creativity has been studied in two folds in the field of design research. One kind of cre-

ativity is related to the design process since some special processes underlying the design

process are believed to be creative processes. Similarly, Gero indicated this kind of cre-

ativity is related to ‘developing an understanding of the creativity of designs as a precursor
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to improving the generation of designs that are deemed to be creative’ [49]. Another kind

of creativity is related to the creative product that is a result of the creative process. In this

research, we focus on the first kind of creativity that is creativity mechanisms during the

design process, namely design creativity.

In the field of psychology, Sternberg and Lubart defined creativity as ‘the ability to

produce work that is both novel (i.e., original, unexpected) and appropriate (i.e., useful or

meets task constraints)’ [50]. Similarly, Weisberg defined creativity as ‘novel and valuable

products, capacity to produce such works and the activity of generating such products’ [51].

Simonton added surprising to the definition of creativity except for novel and useful [52].

Guilford proposed that divergent and convergent thinking processes are credited to two

fundamental processes underlying creativity [53]. In the divergent thinking process, there

are inconclusive and no unique solutions that can be found in many directions. In the con-

vergent thinking process, there is one conclusive and unique solution that can be found in

the direction. Finke developed this dual-process model into a ‘Geneplore’ model that is

constituted by generative and exploratory processes [54]. In the generative phase, one con-

structs an initial idea. In the exploratory phase, the initial idea is interpreted, modified, and

regenerated, leading to creative products. The exploratory process can be viewed as inter-

actions among many sub-processes underlying creativity, such as idea interpretation, idea

generation, idea evaluation, and overcoming fixation. An integrated dual-process model of

creativity has been proposed to systematically describe shifting between idea generation

and idea evaluation [55].

Similar efforts were attempted in the field of design. Goel proposed symbol systems to

understand design creativity [56]. The first symbol system supports associative processes

that benefit lateral transformations, extending the design problem space. The second sym-

bol system supports inference processes that facilitate vertical transformations, deepening
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the design problem space. The lateral transformations are associated with divergent think-

ing, while the vertical transformations are associated with convergent thinking. These two

symbol systems align with Guilford’s ideas that divergent and convergent thinking are two

fundamental processes underlying creativity. These two systems work together, leading to

design creativity.

Gero proposed that design creativity may be incubated through adding new variables to

perturbate an existing schema or the emergence of new schema [57]. Addition and substi-

tution are two fundamental processes to add new variables based on Stevens’ two forms of

psychological representational scales. The meaning of additive process is to add variables

to the existing variables, while the implication of substitutive process is to delete some of

the existing variables and add other variables. In the context of computational analogs,

combination, analogy, and mutation are associated with the additive process, while muta-

tion, analogy, and emergence are associated with the substitutive process. For instance,

analogy in the additive process refers to that structural knowledge of one problem is trans-

ferred to that of another problem. Emergence in the substitutive process facilitates new

behaviours and functions, similar to reallocating attention and reinterpreting the results.

The interaction between the additive and substitutive process can be modeled as an evolu-

tionary model.

A few scholars suggested that design creativity may be triggered by a co-evolutionary

process between problem and solution spaces [11, 12, 48]. The co-evolutionary process

illustrates ‘developing and refining together both the formulation of a problem and ideas for

a solution, which constant iteration of analysis, synthesis and evaluation processes between

the two notional design space’ [12]. Creative ideas may happen when the unstable co-

evolutionary process becomes fixed through an emergent bridge that links the problem and

solution spaces.

Nguyen and Zeng proposed that design creativity follows a nonlinear dynamics [58].

13



The nonlinear dynamics demonstrates that a minor initial state difference may lead to huge

state differences after many rounds of evolution. The minor initial state difference may

result from formulating the design problem differently, extending knowledge, and changing

the sequence of environment decomposition [4]. Some new states may be creative, whereas

the other states are inconclusive outcomes. Even if the inconclusive outcomes maybe not

creative, the process of exploring the potentially original and useful ideas is still considered

a creative process [59]. The nonlinear dynamics implies a mechanism of creativity, which

accommodates a degree of flexibility, uncertainty, and unpredictability through a structured

and deterministic model of design.

Zeng proposed that design creativity may happen when a designer in a medium level of

stress based on Yerkes-Dodson law [4]. The Yerkes-Dodson law shows an inverse U-shape

correlation between stress and performance [60]. The following studies of Nguyen and

Zeng elaborate stress as perceived workload over mental capacity [58]. Mental capacity

is constituted by knowledge, skills, and affect. Knowledge and skills are related to the

rational process in dealing with the perceived workload, while affect is associated with the

emotional response to the perceived workload.

Howard and Dekoninck described design creativity by the integration of engineering

design and cognitive psychology [61]. The authors mapped three creative processes: anal-

ysis, generation, and evaluation, into the FBS model. Generation in the creative process is

associated with formulation, synthesis, and reformulation, while evaluation in the creative

process is associated with analysis and evaluation. In addition, design output can be eval-

uated based on three criteria, including original, adaptive, and variant. In the context of

the FBS model, original design output refers to a creative design output at the behavioural

level; adaptive design output refers to a creative design output at the functional level; variant

design output refers to a creative design output at the structural level. Therefore, a creative

design product should contain at least one creative output at the behaviour, or functional,
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or structural level.

2.3 Cognition in design creativity

With the guidance of theoretical models of design creativity, cognition aims to under-

stand the mental processes and representations while engaging in design creativity [13].

Zhao and colleagues mapped cognitive activities of learning process into design activities

according to Bloom’s taxonomy [15]. The cognitive activities have been classified into

six levels: remembering, understanding, applying, analysis, evaluating, and creating [16].

For instance, remembering refers to retrieve relevant knowledge from long-term memory,

which includes recognizing and recalling. Creating refers to generating something new,

which includes generating, planning, and producing. The design activities have been clas-

sified into four levels: physical, perceptual, functional, and conceptual [62]. For example,

the physical level refers to activities of physical depictions on paper, which includes mak-

ing depictions on paper, looking at previous depictions, and moving tools or hands without

breaking. The perceptual level refers to activities of attending to visual features of elements

and spatial relations among elements, as well as organizing and comparing elements. Thus,

one cognitive activity may be associated with many design activities, while many cognitive

activities may be associated with one design activity.

Zeng and colleagues classified cognitive activities in the design process into three

stages: problem formulation, solution generation, and solution evaluation [32,33]. Problem

formulation is to decompose the design problem into components and understand relation-

ships among components. Some skills are required to appropriately formulate the design

problem, which includes gathering and structuring information and evaluating the moment

to move on to solution generation [63]. A protocol analysis from junior and senior indus-

trial design students revealed that senior students with more creativity due to ‘asks less

information, processes it instantly, and gives the impression of consciously building up an
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image of the problem. They look for and make priorities early on in the process’ [64]. In

line with this finding in design protocol analysis, senior students paid much attention to

the scope of the design problem while freshmen students stuck in problem-definition and

did not generate creative solutions [65]. In addition, problem reformulation is critical for

designers to generate a potentially creative idea. Problem reformulation can change the

structure state space in the FBS model while changing the rules of problem decomposition

in the EBD model.

Solution conjectures help designers formulate design problems through exploring and

defining problem-and-solution together. A behavioural study revealed that scientists focus

on the structure of the problem while architects pay more attention to generate high-quality

solutions until they satisfy with them [66]. Once a designer who has specific knowledge

and skills for a specific problem type tended to use solution conjectures instead of problem

analysis [67].

After formulating a problem, designers need to generate some candidate solutions. Syn-

thesis is to merge various existing components into a new component that does not yet

exist. Episodic knowledge, which is formulated from past design experiences, and seman-

tic knowledge, which is formulated from the fact, are involved in the synthesis process.

Involving too much past design experience may result in a fixation effect. Jansson and

Smith found when engineers faced a design problem with the addition of an illustration of

an existing solution resulted in final solutions, they would like to generate solutions that

shared many features from the existing solution in design problem [68]. The degrees of

fixation may be associated with educational programmers in that designers tended to have

less fixation compared to engineers in many cases [69–71]. Another fixation is related to a

phenomenon that designers are attachment to early solutions heavily [72]. Rowe observed

that initial design ideas have significant impacts on final solutions in that designers were

more like to make the initial design ideas work rather than reframing design problems [73].
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Ullman and colleagues found that experienced designers pursued a single design solution

instead of radically rejecting design solutions to develop a better one [74]. Balle and col-

leagues observed similar phenomena that once designers developed a poor quality solution,

they appeared to improve the solution laboriously by slightly changing the parts of solu-

tion [75]. Nguyen and Zeng concluded three paths leading to the fixation: i designers are

heavily attached a solution; (ii) designers do not have the right perception of the design

problem; (iii) designers evaluate the fitness of the example idea poorly [72].

This fixation has side effects on creative idea generation since designers tend to gen-

erate solutions similar to existing design solutions. Smith and Tjandra observed that the

quality of a final design solution seemed to depend on a willingness to retake into account

early design solutions [76]. Incubation and mind-wandering may help designers overcome

fixation due to refreshing memory or forgetting anchors [35, 77]. Such a break during the

design process may inhibit memory of inappropriate knowledge and give spaces for emerg-

ing appropriate knowledge [78]. Problem reframing is another way to minimize the effects

of fixation in that designers can reformulate the design problem from radically distinct per-

spectives. The components in the design problem and their relationships may be changed,

bringing changes to the problem scope and constraints.

Solution evaluation is to assess candidate design solutions’ merit and worth based on

criteria and standards [79]. The criteria and standards are defined by co-evolutionary spaces

of the design problem and design solution. Preferential and aesthetic evaluation have im-

plicit criteria, while permanence and structure evaluation have explicit criteria, which be-

long to internally guided decision-making and externally guided decision-making, respec-

tively. The externally guided decision-making requires participants to adjust their decisions

to fall in with the externally defined single correct answer, while the internally guided

decision-making requires participants to evaluate without no correct answer based on ex-

ternal circumstances [80]. After solution evaluation, designers may elaborate the solution
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slightly until a solution satisfies with design requirements or may reformulate the design

problem, which becomes the input for another solution generation.

2.4 Neurocognition in design creativity

Despite many results brought by protocol analysis in design creativity research, re-

searchers argued that the protocol analysis approaches would interfere with mental activ-

ity [81, 82], delay protocol data compared to thinking [83], and be sensitive to subjective

factors as the process of coding protocol data into logical and semantic episodes usually

depends on experts’ knowledge and options. Different from protocol analysis, biometric

measures are able to address the limitations of protocol analysis through directly and ob-

jectively inferring designers’ brain activities in design creativity.

2.4.1 EEG

EEG is a widely used biometric technique for cognitive science through measuring

brain activities. EEG is the record of the fluctuation of brain waves generated by the neu-

ron circuit. EEG signals directly measure ‘the dynamic, synchronous polarization of spa-

tially aligned neurons in extended grey matter networks, with post synaptic excitatory or

inhibitory potentials being the main sources of the signal’ [84]. The signals measured in

voltage can be seen as a result of ‘the process of current flow through the tissues between the

electrical generator and the recording electrode, which is called volume conduction’ [85].

The two most important effects of volume conduction imply that: (i) an electrode at a given

scalp location detects neuronal activity in simultaneously activated areas that far or near the

electrode and (ii) a single source activity affects all scalp electrodes simultaneously lead-

ing to high correlation among multichannel EEG signals. This implication gives rise to

an inverse problem in the EEG source localization that localizes the electrical activity in
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the brain according to EEG topographies. The inverse problem is that an EEG topography

can be explained by different distributions of neuronal generators. However, the differ-

ences in EEG topographies might result from different distributions of activated neuronal

generators.

As for the collection of EEG signals, EEG data can be collected through electrodes

distributed on the scalp. The position of electrodes on the scalp follows the international

10-20, 10-10, and 10-5 systems. The “10” before “-” and “20” after “-” represent that

the distances between adjacent electrodes are either 10% of the total distance between

the of nasion and inion, or 20% of the total distance between the left and right of skull.

The international 10-20 system has a maximum of 19 electrodes; the international 10-10

system has a maximum of 81 electrodes; the international 10-5 system has a maximum of

300 electrodes.

Each electrode placement is associated with parts of areas of the human cerebral cortex.

The human cerebral cortex, which is the outermost layer of the brain, can be divided into

four lobes: frontal lobe, parietal lobe, temporal lobe, and occipital lobe [86]. The frontal

lobe is the largest lobe in the front of the cerebral hemispheres. The frontal lobe plays an

important role in many cognitive functions, such as prospective memory, language, and

personality. The posterior frontal lobe is connected to the parietal lobe, which is also lo-

cated superior to the temporal lobe. The anterior parietal lobe includes the primary sensory

cortex, which receives most of the sensory inputs and interprets the simple somatosen-

sory signals. The posterior parietal lobe integrates the simple somatosensory signals into

higher-order cognitive functions, such as learning and planning. The temporal lobe is lo-

cated posterior to the frontal lobe and inferior to the parietal lobe. The temporal lobe has

significant roles in phonological representation, sound recognition, and semantic retrieval.

The occipital lobe is the smallest lobe, which is located in the most posterior region of the

brain. The occipital lobe is mainly responsible for visual processing and interpretation.
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Generally, EEG analysis methods can be classified into three domains: time-domain,

frequency-domain, and time-frequency domain. Event-related potential (ERP) analysis in

the time domain is a measure of that part of a neural response, which is consistently elicited

by the stimulus through averaging EEG voltages collected from hundreds and thousands of

repeated responses [87]. Two fundamental assumptions are underlying the ERP analysis:

(i) the evoked potentials are invariant over trials; (2) the background EEG, such as noise, is

random in each trial so that averaging techniques can remove them from EEG signals. The

ERP components are key features in an ERP waveform, which are represented by polarity

and temporal latency. For instance, ‘the P50 component is a positive-going modulation

of the ERP amplitude with a maximum voltage at about 50 ms following the onset of an

auditory stimulus’ [87]. The functional roles of ERP components have been well studied

over the last few decades. The N100 component is associated with early stages of attention

orienting [88]. The N400 component is associated with language processing and semantic

memory [89].

Despite the ERP analysis has made considerable contributions to neurocognitive sci-

ence, the ERP analysis is appropriate only to measure a controllable, repeatable, and re-

producible neural response over an extended period of time due to the assumptions of

averaging techniques. In addition, such controllable, repeatable, and reproducible neural

responses should be time-locked to exogenous stimuli. For instance, the ERP analysis is

appropriate to study the cognitive process of reading a single word while it is inappropriate

to research the cognitive process of reading a lengthy sentence [87].

The frequency analysis focuses on event-related oscillations, which are supposed to

reflect the coordinated activity of the network in large populations of neuronal [90]. A

fundamental assumption underlying the frequency-domain analysis is that EEG signals

consist of several oscillatory subcomponents. Each oscillatory subcomponent is thought

to reflect a basic cognitive function, such as perception and attention. The integration
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of oscillatory subcomponents is believed to reflect higher-order cognitive functions, such

as executive functions. These higher-order cognitive functions support human complex

and complicate behaviour, such as design and creativity, which is a promising direction in

neurocognitive science research.

Spectral decomposition is to decompose EEG signals into evoked event-related oscil-

lations. The evoked event-related oscillations are phase-locked to stimulus onset, meaning

that the phase of the oscillation elicited by the onset of a stimulus is consistent across trials

at a given time point [87]. Technically, the spectral decomposition can be implemented by

computing power spectral density (PSD) of each trial. The PSD is estimates of the dis-

tribution of power of a signal over different band frequencies, such as theta band (4-7.5

Hz), alpha band (8-13.5 Hz), beta band (14-29 Hz), and gamma band (30-70 Hz). Welch’s

method is popularly used to estimate the PSD by applying the discrete Fourier transform

(DFT) to each segmented EEG signal and then averaging the results across segments.

Event-related synchronization (ERS) is an increase in EEG power from the periods

of baseline to activation, whereas event-related desynchronization (ERD) is a decrease in

EEG power from the periods of baseline to activation [91]. Both ERS and ERD are time-

locked to the event. The ERS reflects an increase in the synchronicity with which a group

of neurons is firing during activation compared to baseline, whereas the ERD reflects a

decrease in the synchronicity with which a neuronal assembly is firing during activation

compared to baseline. A large number of studies revealed that ERS in alpha band is asso-

ciated with creativity performance (see Fink and Benedek. 2014 for a comprehensive re-

view [92]) and ERS in theta band is associated with cognitive control and working memory

processes(see Sauseng et al., 2010 [93] and Cavanagh and Michael, 2014 for comprehen-

sive reviews [94]).

The time-frequency analysis mainly addresses one of the limitations of frequency anal-

ysis in terms of discarding time information of EEG signals. This limitation results from
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the basis of the Fourier transform that EEG waveforms in the time domain can be re-

represented by a set of sinusoids whose amplitude is constant over time. Short-time Fourier

transform (STFT) and discrete wavelet transform (DWT) are two popular time-frequency

analysis methods to address this limitation. The STFT is an extension of discrete Fourier

transform (DFT) using a Fourier transform in a series of consecutive temporal windows.

These consecutive temporal windows can be overlapping or non-overlapping. Once the

window size is determined, the same window is used at all times and frequencies, leading

to a constant resolution over the time-frequency spectrum. This can be a problem in the case

of EEG signals due to low-frequency oscillations in long windows and high-frequency os-

cillations in short windows [87]. The DWT is able to address some of the limitations of the

STFT by ‘scaled’ and ‘shifted’ a window function called ‘wavelet’(see Allen and MacK-

innon, 2010 for a technical review [95]). The temporal and frequency resolution of DWT

is no longer fixed by allowing the length of the wavelet to vary. Due to the time-frequency

trade-off, the DWT has better temporal resolution but poorer frequency resolution at higher

frequencies, as well as better frequency resolution but poorer temporal resolution at lower

frequencies.

2.4.2 Neural oscillations in design creativity

With the help of the EEG technique, a large number of studies attempt to uncover brain

activities during design creativity. Nguyen and Zeng (2010) preliminarily analyzed the

EEG power in the design activity that was segmented into problem analysis, solution gen-

eration, solution expression, and solution evaluation [96]. The authors found that solution

evaluation was associated with more mental efforts in prefrontal areas compared to other

activities. The following study extended the previous work by identifying relationships

between mental effort and stress during the conceptual design [97]. That study concluded

that mental effort was the lowest at high-stress levels since theta, alpha, and beta power
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were lower during high-stress levels compared to low-stress levels. Subsequent studies re-

vealed that subjective rating measure was influenced by mental stress and effort during the

conceptual design [98]. The time-course analysis indicated that high levels of mental effort

occurred more frequently at the beginning and end of the conceptual design process [99].

Furthermore, the conceptual design process was segmented into a few semantic units, such

as reading problem, designing an object on the touchpad, and adding some object to the

drawing on the touchpad [100]. Compared to manual segmentation, the EEG microstate-

based method have an average deviation of manual segmentations of 2 s. A recent creativity

study revealed that idea evolution was associated with smaller decreases in alpha power and

more activity in the DMN compared to idea generation and evaluation [39].

In addition, other advanced neuroimaging techniques, such as functional magnetic res-

onance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), bring higher

spatial resolution of brain activities to neurocognition in design creativity. Early fMRI

studies indicated that design and problem-solving tasks activated distinct brain networks

being associated with distinct cognitive functions [101, 102]. In particular, compared to

problem-solving, design was associated with increased activity in the right dorsolateral

prefrontal cortex and recruited a more extensive network of brain areas. These findings

suggested that design involves more complex cognitive functions, such as insight, evalu-

ation, and decision-making under uncertainty. Ellamil and colleagues (2012) investigated

neural correlates of idea generation and evaluation while designing a book-cover [103],

which authors found that idea generation was associated with preferential recruitment of

medial temporal lobe regions, while idea evaluation was related to joint recruitment of ex-

ecutive and default mode network regions (DMN). Design ideation was associated with

greater activity in the left cingulate and the right superior temporal gyrus [104], while

spontaneous ideation was associated with increased activity in the cerebellum, thalamus,
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left parietal cortex, right superior frontal, left prefrontal, and paracingulate/cingulate re-

gions [105]. Such creative ideation has been attributed to iterations of two-fold processes:

generation and evaluation [106, 107]. Analogical reasoning improved the feasibility, use-

fulness, and uniqueness of design solutions [108]. Saggar et al. (2017) indicated that a five-

week design-thinking training improved participants’ improvisation-based creative capac-

ity being associated with the reduced engagement of executive functioning regions [109].

A fNIRS study supported that design was different from problem-solving being associated

with distinct brain activations [110]. Researchers also attempted to study the impact of de-

sign methodologies on distinct brain regions and coordination between brain regions [111].

2.5 Challenges in design creativity

Challenges with EEG-based design creativity are stemmed from two directions. One

is related to the fundamental characteristics of the design process, while another is related

to the data analysis approaches. Complexity, recursivity, and non-repetitiveness are three

intrinsic characteristics of the design process. The complexity of design lies in the com-

plex relationships among the participating basic design activities and cognitive functions.

Several cognitive functions can be simultaneously involved in one basic design activity,

whereas one cognitive function may contribute to different design activities. The involved

cognitive functions always appear in mixed manners while interacting with each other,

which constitute higher-order cognitive functions. Consequently, it is extremely difficult

to separate them from each other through experiment design or during data analysis for

studying one stimulus-response relationship in strictly controlled settings. The recursivity

demonstrates the fact that the design problem, solution, and knowledge keep evolving in-

terdependently and simultaneously [2, 32, 33], which stresses ‘an agent’s view of a world

changes depending on what the agent does’ [45] The recursivity implies a nonlinear dy-

namics process in design in which a minor difference may result in huge differences after
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many rounds of evolution among the design problem, design solution, and design knowl-

edge [58]. As a result, the non-repetitiveness of design is related to recursivity in that

whatever designers do and whatever changes in the environment will all contribute to up-

dating the initial design problem. This non-repetitiveness defies repetition/averaging based

cognitive study techniques.

Protocol analysis is a widely used method to address such non-repetitiveness in de-

sign research [12, 48]. Despite a great deal of results brought by protocol analysis in de-

sign research, researchers argued that the protocol analysis approaches would interfere

with mental activity [81, 82], delay protocol data compared to thinking [83], and be sensi-

tive to subjective factors as the process of coding protocol data into logical and semantic

episodes usually depends on experts’ knowledge and options. For instance, Lawson found

that insights are not elicited by concurrent verbalization since insights occur quickly and

unexpectedly with no general rules [82]. Schooler and colleagues indicated that insights in

problem-solving involve nonreportable or unconscious processes, which could be disrupted

by verbalization [81]. Retrospective data has been challenged with its incompleteness and

inaccurateness since one may forget the details of his her decision-making process after-

wards [112].

Different from protocol analysis, neuroimaging techniques, such as EEG, could address

the limitations of protocol analysis through directly and objectively inferring designers’

brain activities. EEG techniques have made considerable contributions to understanding

brain activities, which can be borrowed to study neurocognition during design creativity.

A strictly controlled experiment is widely used to observe the effects of stimulus on brain

response with control of all extraneous variables, which provides a reliable approach to

identifying repeatable causal relations between a stimulus and a response [34]. However,

such an experiment setting cannot be used to study design creativity since designers need

time and freedom to incubate creative solutions, which involves activities such as reframing
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and mind wandering [39,113]. In addition, due to design recursivity, strictly controlled set-

tings itself will become a critical independent factor to influence the design results through

changing designer’s perception of the design problem.

Data analysis approaches can be considered as another challenge in design creativity.

The ERP and ERD/ERS analyses, which are widely used methods in neurocognitive sci-

ence, are not appropriate to analyze EEG signals collected from design creativity. The

assumption regarding average and time-lock in the ERP and ERD/ERS can not be satisfied

due to the non-repetitiveness of the design process. In addition, the ERP and ERD/ERS

analyses have not taken full advantage of multi-channel EEG signals due to neglecting

the multivariate characteristics of these measurements, such as the spatial configuration of

electric fields at the scalp.
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Chapter 3

Loosely controlled experiment

supported by EEG microstate analysis

3.1 Loosely controlled experiment

A loosely controlled experiment seems to outperform a strictly controlled experiment

by avoiding many controls during the experiment [15]. Table 1 shows comparisons between

strictly and loosely controlled experiments. With fewer controls, the design process could

be simulated and analyzed in a more natural way compared to strictly controlled experi-

ments. The loosely controlled experiment can be designed by extending response time and

integrating thinking and drawing phases. Under this loosely controlled setting, participants

are given sufficient freedom to complete the given task in their own way without any inter-

ruption or interference. In this way, the characteristics of design creativity could be better

modeled as essential to allow participants’ naturally exploring possible solutions and gen-

erating creative solutions. At the same time, the loosely controlled experiment should main

a certain degree of control. A basic principle of loosely controlled experiment for studying

design creativity is to ‘ensure the emergence of regularities related to the phenomena under

observation while applying minimum controls’ [15].

27



The loosely controlled experiment would increase the difficulties of data analysis. EEG

signals collected from the loosely controlled experiment are unstructured and not time-

locked. The unstructured EEG signals result from not controlling when and where a stim-

ulus and its response happen. As a result, causal relationships between a stimulus and

its response are complex and hidden. A stimulus may trigger many responses, while a

response may be triggered by many stimuli. Such causal relationships are not always ob-

servable since a stimulus may keep changing over time, and its response may be delayed.

For instance, an insight moment may be originated before that moment and be influenced

by many previous states.

EEG data collection under the loosely controlled experiment is the same as that un-

der the strictly controlled experiment. EEG data are collected under the loosely controlled

experiment while designers are asked to solve a design problem, such as solution gener-

ation and solution evaluation. Meanwhile, behavioural data are also collected, including

sketches, head and body movements, facial expressions.

Table 1: Comparison between strictly and loosely controlled experiments

Experiment name Stimulus Causal relation Completion time Ecological validity

Strictly controlled experiment Simple task Explicit Fixed to a few seconds Low
Loosely controlled experiment Complex task Implicit Self-paced High

3.2 EEG microstate

To support the loosely controlled experiment, EEG microstate analysis appears to be

a compelling approach for its capability to segment the unstructured EEG signals into a

set of semantic microstates. Different from averaged-based techniques, such as ERP and

TRP, the semantic microstates are not time-locked. Each microstate reflects activity in

the distributed and large-scale brain networks whose configurations of the scalp potential

field remain quasi-stable during successive short time periods [114]. These EEG-defined
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large-scale brain networks are closely associated with resting-state networks using fMRI

[84]. Particularly, a large number of studies consistently found four EEG microstate classes

A, B, C, and D during wakeful rest and sleep. Microstate class A is supposed to reflect

verbalization in auditory networks; microstate class B is supposed to reflect visualization

in visual networks; microstate class C is supposed to reflect activities in control networks;

microstate class D is supposed to reflect activities in dorsal attention networks [115].

Pascual-Marqui and colleagues added several features to K-means to extract EEG mi-

crostate classes, namely modified K-means [116]. Considering a 2-D plan in which x- and

y-axes represent the electric potential measurements of two electrodes, ‘a brain microstate

is characterized by the coordinate vector of a point located at unit distance from the ori-

gin. All points lying on the line going from the origin toward the microstate belong to the

same microstate. The distance from the origin to a point on this line is directly related to the

intensity of the neuronal generators corresponding to this microstate, and is also directly re-

lated to the global field power (GFP)’ [116]. There are a few differences between K-means

and modified K-means. On a practical level, the spatial configuration of microstates is po-

larity invariant since neural oscillations in the brain result in polarity invariant of the scalp

potential filed [84]. At a conceptual level, microstate classes are considered as directions

in a multi-dimensional topographical space [117].

There are various methods to extract EEG microstate classes, such as atomize and

agglomerate hierarchical clustering (AAHC) [118], principle component analysis (PCA)

[119], and independent component analysis (ICA) [120]. AAHC is a specialization of

hierarchical clustering to extract EEG microstates since it is able to retain short-duration

periods of stable topography, which contribute a high global explained variance (GEV).

Compared to modified K-means, AAHC is a deterministic algorithm in that its results do

not vary from repetitions under the same dataset, while AAHC takes into account GFP.

The higher GFP means higher stability of spatial configuration of EEG microstates [84].
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AAHC costs a huge amount of time compared to modified K-means. However, Wegner

and colleagues indicated that the statistical and information-theoretical properties of EEG

microstate sequences are invariant no matter which algorithms are used to extract EEG mi-

crostates [121]. These invariant results deliver positive messages: (i) the intrinsic character-

istics of EEG microstates do not rely on computations algorithms; (ii) the results obtained

from different computations algorithms are comparable.

Once EEG microstate classes are determined, original EEG signals are mapped to EEG

microstate classes. A momentary EEG map at a time point is assigned to one of EEG

microstate classes when their spatial correlation is the highest compared to other EEG mi-

crostate classes. This mapping procedure applies the winner-take-all strategy, which is

supported by functional theories. Functional theories assume that only a global functional

state occurs at any given moment in time [122, 123]. Under this assumption, it is observed

that each microstate class remains quasi-stable from 60 ms to 120 ms before rapidly transi-

tioning to a distinct microstate, which remains quasi-stable again. This observation entails

important conclusions in terms of temporal organization of functional brain networks: if

brain activity of EEG microstate class is trigged by a network of approximately simultane-

ously active sources, these different sources must display the approximately same temporal

dynamics over a certain duration [84]. Otherwise, the quasi-stable microstate classes would

not be observed since differences in the time course of these sources would lead to contin-

uous changes of the spatial configuration of microstate classes [84].

After the fitting-back procedure, a few parameters of EEG microstates can be calculated

to reflect activities of neural assemblies. Duration, coverage, and occurrence are typically

parameters to describe the temporal properties of EEG microstates. For instance, duration

is the average lifespan of EEG microstates that remain stable. This parameter reflects the

average amount of time that a set of neural assemblies remains active at the same time.

In addition, if EEG microstates represent the atoms of thought, EEG microstate sequences
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would reflect the time-course the thought flow. The transitions of microstates are capable

of measuring such time-course the thought flow.

3.3 Data analysis approaches

Data pre-processing, task-related power analysis, EEG microstate analysis, and EEG

microstate sequences analysis constitute data analysis approaches. Chapters 4 and 5 will

use these approaches to analyze the EEG signals collected from loosely controlled experi-

ments of design creativity.

3.3.1 Data pre-processing

The EEGLAB toolbox was used to reduce noise and remove artefacts from the EEG

signals [124]. After acquisition, A one-pass zero-phase Hamming windowed-sinc FIR filter

between 1 and 40 Hz was applied to the EEG signals. Second, bad global channels of the

EEG signals were detected and isolated when one or more criteria were satisfied: a channel

was flat for more than 5 seconds; a correlation between a channel and its nearby channels

is smaller than 0.8; and a channel’s amplitude was greater than 3 standard deviations from

the mean. Third, eye-blink, eye-movement, muscle-generated, and other artefacts were

removed using the multiple artifact rejection algorithm (MARA) when IC components had

more than 40% chance to be labelled as artefacts. Fourth, the EEG signals were segmented

into 2-second epochs, with the aim to detect bad segments and bad local channels within

segments [125]. Bad local channels in each segment were detected using FASTER [126]

criteria (variance, median gradient, amplitude range, and deviation from mean amplitude)

when one or more Z scores of four criteria were greater than 3 standard deviations from

the mean. The detected bad local channels were interpolated using spherical splines. Next,

bad segments were rejected when one or more criteria were satisfied: a channel’ amplitude
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was higher than ±100 microvolts; the single electrode probability across segments or the

electrode group probability within segments was greater than 3 standard deviations from the

mean. Finally, the isolated bad global channels were interpolated using spherical splines.

The cleaned EEG signals were re-referenced to average reference and were downsampled

to 250 Hz.

3.3.2 Task-related power analysis

The power spectral density (µV2/Hz) of EEG signals was estimated by Welch’s method

with a time window of 500 sample points and 250 sample points overlap between neigh-

bouring time windows. The power (Pow, µV2) of EEG signals was estimated by the

composite trapezoidal rule in the theta band (4-7.5 Hz), alpha band (8-13.5 Hz), lower

alpha band (8-10 Hz), upper alpha band (10-12Hz), and beta band (14-29 Hz) [127].

The task-related power (TRP) was computed in each channel (i) based on the formula

TRPi = Log(Powi,activation)− Log(Powi,reference). It means that the estimated log-power

during the rest was subtracted from the estimated log-power during each design activi-

ties [91]. The condition-wise TRP was computed by averaging TRP across runs of the

same condition. Positive TRP values reflect power increases from the rest to the design

activities, whereas negative TRP values reflect power decreases from the rest to the design

activities.

To compare with the previous studies, the condition-wise TRP values at 63 electrodes

were grouped into the five cortical areas (frontal, central, temporal, parietal, and occipital)

and two hemispheres (left and right) [113]. In the left hemisphere, the areas were defined

as follows, frontal: Fp1, AF3, AF7, F1, F3, F5, F7, FC1, FC3; central: FC5, C1, C3, C5;

temporal: FT7, T7, TP7, CP5, P5; parietal: CP1, CP3, P1, P3; and occipital: PO3, PO7, P7,

O1. In the right hemisphere, the corresponding even-numbered electrodes were included.

Statistical analyses were performed on the design activities considering the selected five
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cortical areas in each hemisphere. The TRP changes were analyzed by a repeated measures

ANOVA with the three within factors CONDITION, AREA (frontal, central, temporal,

parietal, and occipital), and HEMISPHERE (left and right). Post-hoc comparisons of the

TRP changes at AREA were performed with the Bonferroni correction between CONDI-

TION. The Greenhouse-Geisser correction was applied in the case of sphericity violations.

3.3.3 EEG microstate analysis

The modified k-means clustering algorithm was applied to identify the microstate classes

[116]. Firstly, for each run, each participant, and each condition, the Global Field Power

(GFP) of EEG signals was calculated based on Eq. (1). The GFP is the standard deviation

of the potentials across all electrodes at a given time point. Secondly, the EEG signals at

GFP peaks were submitted to the modified k-means algorithm, which was run 100 times

for cluster number k = 2 . . . 10. Thirdly, the microstate classes were determined by mini-

mizing the cost function defined in Eq. (2). The optimal microstate classes were selected

among 100 repetitions based on minimum cross-validation as shown in Eq. (3). Fourthly,

the group-wise microstate classes were determined by the full permutation procedure ap-

plied to the subject-wise microstate map across runs, participants, and conditions [128].

GFP =

√∑NS

i=i(ui − u)2

NS

, (1)

F =
1

NT (NS − 1)

NT∑
t=1

||Vt −
NK∑
k=1

aktΓk||2, (2)

CV =

∑NT

t=1(V
′
t · Vt − (V ′t · Γk)2)
NT (NS − 1)

· ( NS − 1

NS − 1−NK

)2, (3)

In Equations 1-3, ui is the electric potential of the EEG signals u at the electrode i, u is the

average electric potential of all electrodes of the EEG signals u and NS is the number of
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electrodes of the EEG signals u. NT is the sample length . Vt is aNS×1 vector consisting of

the electric potential at time instant t. NK is the number of microstate classes. Γk, which is

a normalizedNS×1 vector, represents the k-th microstate class. akt is the intensity of the k-

th microstate class at the time instant t. Once the global microstate classes are determined,

they were fitted back to the individual EEG signals in the time domain to generate the

microstate sequences. Each time point of individual EEG signals was assigned into one

of the global microstate classes when they have the highest spatial correlations. In the

fitting process, the polarity of global microstate classes was ignored since the same neural

generators may result in the inversion of scalp potential field. To avoid modifications of

temporal dynamics of microstate sequences, we did not apply any criteria to smooth the

microstate sequences, such as the minimum duration of microstates. For each run, for

each participant, for each condition, and for each microstate class, the following microstate

parameters were calculated:

• mean microstate duration: the average lifespan or duration that a microstate remains

stable. The microstate duration can be interpreted as the average amount of time that

a set of neural generators remains synchronously active.

• mean microstate occurrence: the average number of times that a microstate oc-

curs per second. The mean microstate occurrence can be interpreted as the average

amount of times that a set of neural generators becomes synchronously active.

• mean microstate coverage: the fraction of the total analysis time covered by a mi-

crostate. The microstate coverage can be interpreted as the relative rather than abso-

lute presence of a microstate.
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3.3.4 EEG microstate sequence analysis

A finite estimate of the entropy rate [129], autoinformation function (AIF) [130], and

Hurst exponent estimated by detrended fluctuation analysis (DFA) [131] were applied to

measure the short-range, intermediate-range, and long-range temporal dependencies of mi-

crostate sequences within each run of conditions.

Firstly, the finite estimate of the entropy rate of microstate sequences was calculated

based on Eq. (4)

hX(t, k) = H(Xt+1|X(k)
t )

= H(Xt+1, X
(k)
t )−H(X

(k)
t )

= H(X
(k+1)
t+1 )−H(X

(k)
t )

(4)

where Xt+1 represents the next symbol of the microstate sequences, while X(k)
t represents

the past k values of the microstate sequences. H(·) represents joint entropy, while H(·|·)

represents conditional entropy. We used the logarithm to the base 2 for all entropy calcula-

tions, resulting in a unit of bits per sample for entropy rates.

Secondly, the AIF of microstate sequences was calculated based on Eq. (5).

I(τ) = H(Xt+τ )−H(Xt+τ |Xt)

= H(Xt+τ ) +H(Xt)−H(Xt, Xt+τ )

(5)

Thirdly, the Hurst exponent of microstate sequences was estimated by DFA. Microstate

sequences were first mapped into the metric space S0 = {−1,+1} [132]. If the number of

microstate classes is 7, we can use partitions into one set of 3, and another one containing

4 microstate classes ({{A,B,C}, {D,E, F,G}}, for instance). In total, we can obtain

35 different partitions and analyzed the arithmetic average of their DFA estimated Hurst

exponent. Each microstate belonging to the first component of the partition was mapped

to -1, microstates from the second component to +1, to the effect that each microstate
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sequence was mapped to the {−1,+1} state space.

Based on the mapped microstate sequence x′, the partially integrated sequence y(t) was

calculated based on Eq. (6). Then, the partially integrated sequence y(t) was segmented

into windows of various sizes4n that were logarithmically spaced on a scale between four

samples and NT samples. In each segmentation with 4n samples, the linear trend y4n(t)

of integrated y(t) was estimated by a least-squares fit, while the mean-squared residual

between y(t) and y4n(t) was calculated based on Eq. (7). The fluctuation was calculated

through averaged F (4n) across all identically sized windows. Thus, the Hurst exponent

was estimated by the slope of the fluctuations on the various window size.

y(t) =
t∑

m=1

x′(m)− x′, t ∈ [1, NT ] (6)

F (4n) =

√√√√ 1

4n

4n∑
t=1

[y(t)− y4n(t)]2 (7)
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Chapter 4

Network oscillations in design creativity

4.1 Introduction

Recent neurocognitive research aims to understand the neurophysiological mechanism

of the basic activities underlying design creativity, as reviewed in section 2.4.2. Similar

efforts were made in creativity. A recent special issue in a neuroimaging journal published

state of the art concerning neurocognitive creativity [133]. Many EEG studies indicated

that increases in alpha power over frontal and temporo-parietal sites are associated with

idea generation during alternative uses tasks (AUT) (see Fink and Benedek, 2014 [92]

for a comprehensive review). The time-course studies indicated that idea generation was

characterized as a U-shaped function of alpha power changes [134–136]. Differently, the

generation of the first idea was associated with alpha desynchronization, whereas the gener-

ation of more ideas was associated with synchronization [113]. In addition, idea evaluation

was associated with increases in alpha power, which has positive effects on the originality

of idea generation [137]. Beyond idea generation and evaluation, idea elaboration that re-

fines a previously generated idea was associated with increases in upper alpha power over

parietal and occipital sites and increases in functional coupling [138, 139].
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However, interactions among the basic activities and how they form the complex phe-

nomena comprising design creativity are still unknown. Along with similar thoughts, Fink

and Benedek identified three main challenges for creativity research [92]: (i) Conceptual

models of creativity need to be clarified to distinguish creativity from classic mental abil-

ities and to decompose the construct of creativity into definable neurocognitive processes;

(ii) Integration of structural and functional methods need to be developed to identify the de-

finable neurocognitive processes during creative thinking; and (iii) Studying more complex

and real-life creativity.

To investigate such the complex phenomena comprising design creativity, we applied

a loosely controlled experiment to simulate the interactions among basic activities in de-

sign creativity, including idea generation, idea evolution, and rating idea generation and

evolution. Participants were given considerable freedom regarding response time (up to 3

minutes) and response action (integrating thinking and drawing phases) to freely explore

and generate potentially creative solutions. To test the effectiveness of loosely controlled

experiment, we investigated the regional contribution of brain oscillations in the alpha band

through TRP analysis. In addition, we applied EEG microstate analysis to structure and

segment unstructured EEG signals collected from the loosely controlled experiment. The

structured EEG signals can be represented by a few EEG microstate classes, which are

associated with functional brain networks.

During idea generation, participants were expected to use their experience to simulta-

neously and intuitively generate an idea, which may not invoke creative thinking in par-

ticipants. During idea evolution, participants were expected to generate novel, useful, and

surprising ideas that were radically different from the previous ideas. Idea evolution is a

recursive process during which the goal, knowledge, and idea co-evolves through interac-

tive applications of divergent and convergent thinking [2, 3, 32, 33, 58]. Idea evolution is

distinct from idea elaboration [138], in which participants are instructed to elaborate and
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refine an existing idea to form a part of the final solution. Idea generation and idea evolu-

tion can be viewed as two parallel approaches to dealing with a sketch stimulus, which are

two independent methods to approaching a creative problem, whereas idea generation and

idea elaboration are two steps of creative idea generation. Of note, rating idea generation

and evaluation implied an evaluative process in which participants were asked to evaluate

the difficulties of those two processes.

We hypothesized that decreases in alpha power would be significantly lower during idea

evolution compared to idea generation and rating activity. In addition, we hypothesized that

microstate properties would be significantly different between rest and the three modes of

thinking, as well as between idea generation, idea evolution, and rating activity.

4.2 Method

4.2.1 Experiment Design

The objective of this experiment was to provide a degree of freedom to simulate the

flexible nature of design creativity in three modes of thinking: idea generation, idea evo-

lution, and rating activity. Not only basic design creativity activities but also interactions

between them were simulated to form creativity. Adapted from the TTCT-F test and a work

regarding sketch evolution [26], the experiment included three conditions: idea generation,

idea evolution, and rating activity [140]. A run included idea generation, idea evolution,

and rating activity sequentially, which was repeated three times. Three stimuli (see Fig-

ure 1A) were given at the beginning of idea generation for the three runs, respectively.

Therefore, the experiment consisted of three runs and three conditions within each run.

During idea generation, participants were instructed to complete an incomplete sketch

regarding how they had intuitively perceived the image at first sight. During idea evolution,

participants were instructed to complete a sketch that was radically distinctive from what
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was immediately triggered by the sketch stimulus. During rating activity, participants were

instructed to evaluate difficulties of thinking and drawing during idea generation and idea

evolution. The duration of each condition was self-paced up to three minutes. Rest was

placed at the beginning and end of the experiment, which lasted three minutes. Figure 1B

shows an example of the first stimulus of idea generation followed by idea evolution and

rating activity.

4.2.2 Participants and experiment procedure

Twenty-nine graduate students participated in this experiment from the Concordia Insti-

tute for Information Systems Engineering, Concordia University. Participants were offered

a small gift card (a value of CAD$15) to show appreciation for their volunteering in the

study after the experiment was completed. Participants were excluded from data analysis

in the case of extremely noisy EEG recording. The final sample included 28 participants

(4 women, 24 men) aged from 22 to 35, right-handed. All participants had normal or

corrected-to-normal vision and did not report any history of medical, psychiatric disorders

or treatments that could interfere any of the behavioural and neurophysiological measures.

The experimenter helped participants wear EEG cap, ECG belt, respiration rate belt, and

GSR finger strap. After being briefed on what to do and the impedances of all the EEG

electrodes were below 10 kΩ, the participant completed the experiment by following the

experimental procedures specified in the previous subsection. During the experiment, EEG

signals were recorded by a 64 channel BrainVision actiCHamp at 500 Hz. EEG was ref-

erenced to Cz, and the electrode placement was based on the international 10-10 system.

Body movements, the monitor, and the subjects’ sketch pad were also captured (Figure

2). This experimental protocol was approved by the Concordia Human Research Ethics

Committee. All sections of the experiment were performed in accordance with relevant

guidelines and regulations. Informed consent was obtained from all participants.
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B) An example of first stimuli

A) Stimulus

Rest

1) Eye-closed lasts 3 minutes

3 minutes
(Rest)

2) What do you see from the figure below? Draw it and give it a title

Up to 3 minutes
(Idea generation)

3) Complete the picture (creativity) so that your solution won t look
similar to others and to the previous drawing. Give it a title

Up to 3 minutes
(Idea evolution)

Others

4) How difficult is it for you to think of the image?
How difficult is it for you to draw the image?

Up to 3 minutes
(Rating idea generation and evolution)

Figure 1: A) Three different stimuli. B) The first stimulus of schematic time courses of
the modified TTCT-F. 1) A 3-minute rest period served as the baseline. 2) A maximal 3-
minute idea generation period refers to an activation state. 3) A maximal 3-minute idea
evolution period refers to an activation state. 4) A maximal 3-minute rating period served
as an activation state and a breaking fixation state.
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A)

Subject

Camera 5
to capture a monitor

Camera 3
to capture the sketch pad

Camera 1
to capture upper body movements

Camera 2
to capture leg movements

Camera 4
to capture facial expressions

Experiment roomMonitor room

B) EEG cap

ECG belt

SC finger strap

Respiration rate belt

Sketch pad
to draw ideas

Ex
pe

ri
m

en
te

r

Figure 2: A) View of the experimental configuration adapted from Nguyen and Zeng (2014)
with copyright permission from Elsevier. B) Configuration of the devices.

4.3 Results

4.3.1 Behavioural results

Task completion time was 54.047 s (SE=4.441) for idea generation (IG), 92.785 s

(SE=5.192) for idea evolution (IEV), and 16.476 s (SE=1.089) for rating idea generation

and evolution (RIGE). To test whether task completion time among participants was sig-

nificantly different for similar tasks, task completion time of each run of similar tasks was

normalized. Repeated measures ANOVA indicated that task completion time among par-

ticipants was significantly different for IEV (F (2, 54) = 4.762, p = 0.012, η2p = 0.150),

but was not significantly different for IG (F (2, 54) = 2.339, p = 0.106, η2p = 0.080) or

RIGE (F (1.570, 42.398) = 1.286, p = 0.285, η2p = 0.045). A post hoc paired t-test re-

vealed that task completion time decreased significantly from the first run to the second run

of IEV (t(27) = 2.518, p = 0.018, 95%C = [0.282, 0.277]), whereas task completion time

increased significantly from the second run to the third run of IEV (t(27) = −2.562, p =

0.016, 95%C = [−0.292,−0.032]). However, task completion time was not significantly

different between the first and third runs of IEV (t(27) = −0.185, p = 0.855, 95%C =

[−0.117, 0.980]).

To test whether task completion time among participants was significantly different for
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different tasks, task completion time of all tasks was normalized and averaged within IG,

IEV, and RIGE, respectively. Repeated measures ANOVA indicated that task completion

time among participants was significantly different amid IG, IEV, and RIGE (F (2, 54) =

69.554, p < 0.001, η2p = 0.720). A post hoc paired t-test revealed that task comple-

tion time decreased significantly from IEV to IG (t(27) = 5.805, p < 0.001, 95%C =

[25.046, 52.429]) and RIGE (t(27) = 11.811, p < 0.001, 95%C = [63.052, 89.566]), as

well as from IG to RIGE (t(27) = 5.991, p < 0.001, 95%C = [24.705, 50.738]).

4.3.2 EEG results

EEG alpha power

In the lower alpha band (8-10 Hz), the 3 × 5 × 2 repeated measures ANOVA revealed

three significant main effects, including CONDITION (F (1.291, 34.860) = 8.373, p =

0.004, η2p = 0.237), AREA (F (1.952, 52.693) = 40.390, p < 0.001, η2p = 0.599) and

HEMISPHERE (F (1.000, 27.000) = 5.383, p = 0.028, η2p = 0.166), as well as one sig-

nificant interaction effect for CONDITION × AREA (F (4.358, 117.658) = 3.199, p =

0.013, η2p = 0.106).

A post hoc test with Bonferroni correction on the main effect, CONDITION, indi-

cated that decreases in alpha power were significantly lower during IEV compared to IG

(p < 0.001) and RIGE (p = 0.008). For the main effect HEMISPHERE, decreases in alpha

power were significantly lower over left hemispheric sites compared to right hemispheric

sites (p = 0.028). For the main effect AREA, decreases in alpha power were significantly

lower at frontal sites compared to temporal (p < 0.001), parietal (p < 0.001), and occip-

ital sites (p < 0.001). Decreases in alpha power were significantly lower at central sites

compared to temporal (p < 0.001), parietal (p < 0.001), and occipital sites (p < 0.001).

Decrease in alpha power were significantly lower at temporal sites compared to parietal

(p = 0.017) and occipital sites (p < 0.001). Decreases in alpha power were significantly
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lower at parietal sites compared to occipital sites (p = 0.002). For the interaction effect

CONDITION × AREA, decreases in alpha power were significantly lower during IEV

compared to IG at frontal (p = 0.017) central (p = 0.002), temporal (p < 0.001), parietal

(p = 0.004), and occipital (p = 0.006) sites. Decreased alpha power was significantly

lower during IEV compared to RIGE at frontal (p = 0.005), central (p = 0.010), temporal

(p = 0.002), and parietal (p = 0.010) sites (see Figure 3).

Figure 3: Error bars of task-related alpha power in lower alpha band (8-10 Hz) during idea
generation (IG), idea evolution (IE), and rating idea generation and evolution (RIGE).

In the upper alpha band (10-12 Hz), the 3×5×2 repeated measures ANOVA uncovered

one significant main effect, AREA (F (1.782, 48.111) = 7.733, p = 0.002, η2p = 0.223), as

well as one significant interaction effect, CONDITION × AREA (F (2.980, 80.470) =

4.139, p = 0.009, η2p = 0.133).

A post hoc test with Bonferroni correction on the main effect AREA indicated that

decreases in alpha power were significantly higher at parietal sites compared to frontal

(p = 0.021), central (p = 0.040), and temporal sites (p < 0.001). In contrast, decreases
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in alpha power were significantly lower at temporal sites compared to occipital sites (p =

0.012). For the interaction effect CONDITION × AREA, decreases in alpha power were

significantly lower during IEV compared to RIGE at central sites (p = 0.086) (see Figure

4).

Figure 4: Error bars of task-related alpha power in upper alpha band (10-12 Hz) during
idea generation (IG), idea evolution (IE), and rating idea generation and evolution (RIGE).

EEG microstate classes

According to cross validation, the optimal number of individual microstate classes was

found to be 6.464 (SE = 0.166) for REST, 6.250 (SE = 0.152) for IG, 6.285 (SE =

0.168) for IEV, and 6.857 (SE = 0.199) for RIGE. Therefore, the number of individual

microstate classes was defined as six for each run, each condition and each participant due

to the comparability and simplicity of statistical analysis.

The six individual microstate classes explained 62.97% (SE = 1.111) of the global

variance of the original EEG topographies corresponding to peaks of GFP for REST,
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60.87% (SE = 1.150) for IG, 61.01% (SE = 1.108) for IEV, and 61.46% (SE = 1.129)

for RIGE. Figure 5 showed condition-wise EEG microstate classes and global-wise EEG

microstate classes. The microstate classes A, B, C, D, E, and F were labelled and sorted

according to the literature [84, 141].

Figure 5: The spatial configuration of the six microstate classes (A, B, C, D, E, and F) for
across conditions (global) and within conditions (rest (REST), idea generation (IG), idea
evolution (IEV), and rating idea generation and evolution (RIGE)).

EEG microstate topographies

The 4×6 TANOVA revealed a significant main effect, CLASS (p < 0.001). Neither the

main effect CONDITION (p = 0.066) nor the interaction effect CONDITION × CLASS

(p = 0.804) were significant.

Class-wise TANOVAs revealed a significant effect, CLASS C (p = 0.041). Effects

CLASS A (p = 0.838), CLASS B (p = 0.610), CLASS D (p = 0.740), CLASS E (p =

0.383) and CLASS F (p = 0.125) were not significant.

Paired t-test revealed a significant effect CLASS C between REST and the three modes
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of thinking: IG (p = 0.040), IEV (p = 0.041) and RIGE (p = 0.025), as well as a

significant effect, CLASS A, between IEV and RIGE (p = 0.014) (see Table 2).

Table 2: P-values of pairwise comparison for microstate topography between CLASS (A,
B, C, D, E and F) and CONDITION (rest (REST), idea generation (IG), idea evolution
(IEV), as well as rating idea generation and evolution (RIGE))

Conditions
Microstate classes

Class A Class B Class C Class D Class E Class F
REST Vs. IG 0.359 0.545 0.040* 0.707 0.137 0.153
REST Vs. IEV 0.257 0.317 0.041* 0.438 0.275 0.625
REST Vs. RIGE 0.136 0.381 0.025* 0.568 0.157 0.137
IG Vs. IEV 0.131 0.747 0.368 0.438 0.749 0.104
IG Vs. RIGE 0.733 0.476 0.879 0.800 0.946 0.305
IEV Vs. RIGE 0.014* 0.815 0.330 0.664 0.726 0.215

* ρ < 0.050, ** ρ < 0.010, *** ρ < 0.005

EEG microstate parameters

For coverage of microstate classes, the 4 × 6 repeated measures ANOVA revealed a

significant main effect, CLASS (F (2.609, 70.446) = 19.214, p < 0.001, η2p = 0.416), and

a significant interaction effect, CONDITIONS× CLASS (F (5.629, 151.984) = 7.081, p <

0.001, η2p = 0.208).

The paired t-test revealed that the coverage of microstate class A was lower during

REST compared to IG (p = 0.017) and IEV (p = 0.013). The coverage of microstate

class C was higher during REST compared to IG (p < 0.005), IEV (p < 0.005), and RIGE

(p < 0.005). The coverage of microstate class D was higher during REST compared to

IG (p < 0.005), IEV (p < 0.005), and RIGE (p < 0.05). The coverage of microstate

class E was lower during REST compared to IG (p < 0.005), IEV (p < 0.005), and

RIGE (p < 0.05). In particular, the coverage of microstate class C was higher during IEV

compared to RIGE (p = 0.018). Furthermore, the coverage of microstate class F was lower

during IEV compared to IG (p = 0.015) and RIGE (p = 0.019) (See Table 3 and Figure 6).
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Table 3: P-values of pairwise comparison for microstate coverage between CLASS (A, B,
C, D, E and F) and CONDITION (rest (REST), idea generation (IG), idea evolution (IEV),
as well as rating idea generation and evolution (RIGE))

Conditions
Microstate classes

Class A Class B Class C Class D Class E Class F
REST Vs. IG 0.017* 0.853 0.001*** 0.002*** 0.001*** 0.217
REST Vs. IEV 0.013* 0.722 0.001*** 0.010* 0.001*** 0.845
REST Vs. RIGE 0.056 0.815 0.001*** 0.013** 0.010* 0.134
IG Vs. IEV 0.968 0.842 0.447 0.131 0.378 0.015*

IG Vs. RIGE 0.956 0.969 0.057 0.496 0.738 0.317
IEV Vs. RIGE 0.976 0.894 0.018* 0.862 0.277 0.019*

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ microstate coverage increases
↘ microstate coverage decreases

Figure 6: Error bars of microstate coverage during rest (REST), idea generation (IG), idea
evolution (IE), and rating idea generation and evolution (RIGE). P-values between rest and
other conditions are annotated by black dots (p > 0.050), blue dots (p ≤ 0.050), yellow
dots (p ≤ 0.010), and red dots (p ≤ 0.005). P-values between conditions are annotated by
* (p ≤ 0.050), ** (p ≤ 0.010), *** (p ≤ 0.005).
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For duration of microstate classes, the 4 × 6 repeated measures ANOVA revealed a

significant main effect CLASS (F (2.443, 65.949) = 18.444, p < 0.001, η2p = 0.406) and

a significant interaction effect CONDITION × CLASS (F (5.967, 161.110) = 4.439, p <

0.001, η2p = 0.141).

The paired t-test revealed a significant effect that the duration of microstate A was lower

during REST compared to IG (p < 0.01), IEV (p = 0.004), and RIGE (p = 0.038). The

duration of microstate class C was higher during REST compared to IG (p < 0.01), IEV

(p < 0.005), and RIGE (p < 0.01). The duration of microstate class D was higher during

REST compared to IG (p = 0.033). The duration of microstate E was lower during REST

compared to IG (p < 0.005), IEV (p < 0.005), and RIGE (p = 0.038). The duration of

microstate class F was lower during REST compared to RIGE (p = 0.023). In particular,

the duration of microstate class F was lower during IEV compared to RIGE (p = 0.013)

(See Table 4 and Figure 7).

Table 4: P-values of pairwise comparison for microstate duration between CLASS (A, B,
C, D, E and F) and CONDITION (rest (REST), idea generation (IG), idea evolution (IEV),
as well as rating idea generation and evolution (RIGE))

Conditions
Microstate classes

Class A Class B Class C Class D Class E Class F
REST Vs. IG 0.006** 0.899 0.006** 0.033* 0.001*** 0.051
REST Vs. IEV 0.004*** 0.249 0.002*** 0.225 0.001*** 0.486
REST Vs. RIGE 0.038* 0.904 0.006** 0.780 0.038* 0.023*

IG Vs. IEV 0.154 0.213 0.661 0.238 0.533 0.082
IG Vs. RIGE 0.705 0.995 0.296 0.051 0.628 0.158
IEV Vs. RIGE 0.279 0.303 0.394 0.210 0.377 0.013*

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ microstate duration increases
↘ microstate duration decreases
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Figure 7: Error bars of microstate duration during rest (REST), idea generation (IG), idea
evolution (IE), and rating idea generation and evolution (RIGE). P-values between rest and
other conditions are annotated by black dots (p > 0.050), blue dots (p ≤ 0.050), yellow
dots (p ≤ 0.010), and red dots (p ≤ 0.005). P-values between conditions are annotated by
* (p ≤ 0.050), ** (p ≤ 0.010), *** (p ≤ 0.005).
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4.4 Discussion

Herein, we present a loosely controlled creativity experiment to uncover the interac-

tions of whole-brain neuronal networks among three modes of thinking in an ecologically

valid manner. This experiment provided sufficient flexibility and duration for participants

to generate potentially creative ideas while maintaining certain levels of control by struc-

turing the entire experiment into three sections, each of which was anticipated to simulate

one of the three modes of thinking. First, we observed that alpha power decreased signifi-

cantly from rest to the three modes of thinking. This finding is consistent with other more

structured experimental studies in that alpha power decreased from rest to visual creativ-

ity [142]. Second, microstate topographies were significantly different between rest and

the three modes of thinking, as well as between idea evolution and rating activity. Third, it

was found that microstate parameters were significantly different between rest and the three

modes of thinking, as well as between idea generation and idea evolution and between idea

evolution and rating activity. The last two findings benefited from the loose controllability

of the adopted experimental design.

Why do we need a loosely controlled creativity experiment?

The behavioural results revealed that task completion time among participants was sig-

nificantly different within idea evolution but was not significantly different within idea

generation or within rating activity. This finding implies that the process of idea evolution

is more flexible and unstructured than the processes of idea generation and rating activ-

ity. A post hoc paired t-test indicated that task completion time was significantly different

between the first and second runs, as well as between the second and third runs of idea

evolution. However, task completion time was not significantly different between the first

and third runs of idea evolution. This finding implies that the same person may not fol-

low a process in a similar way when generating solutions while solving similar creativity

51



problems. In addition, a previous experiment on the co-evolutionary creative design pro-

cess indicated that different people may not arrive at the same result or follow a process

similarly when they solve the same creativity problem [12].

Furthermore, task completion time for idea evolution was significantly higher compared

to idea generation and rating activity. This result confirms that idea evolution may require

more effort and implies more uncertainties due to its opened-ended goals and processes.

Experiments reported by other researchers also confirm that a subject needs to spend more

time defining and understanding a creativity problem to generate solutions recursively [12,

143].

Indeed, the process of design creativity, which is believed to be unrepeatable, irrepro-

ducible, and uncontrollable, is co-evolutionary and follows recursive logic [2, 11, 12, 144].

Recursive logic was first proposed by Zeng and Cheng (1991) to illustrate the nature of

design thinking [2]. The logic was further formulated and formalized using set theory into

a science-based design process model, which states that design problem, design knowl-

edge, and design solutions evolve simultaneously in a design process [32, 33]. Given a

design problem, a designer will identify the relevant knowledge to generate a tentative de-

sign solution, which will improve the designer’s understanding of the design problem. This

improved understanding might lead to a reformulation of the original design problem. The

reformulated problem will lead the designer to identify new knowledge and to change the

previous solution, which in turn leads to another reformulation of the design problem.

With a similar line of understanding, some scholars have noted the importance of recur-

sion in the sub-phases of creativity [145, 146]. In describing the design process, Gero and

Kannengiesser (2004) highlighted that an ‘agent’s view of the world changes depending

on what the agent does’ [45]. In describing the creativity process, Corazza (2019) stressed

that continued exploration is a primary force driving the recursion underlying the creativity
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process, while bidirectional dynamic interaction with the environment influences the recur-

sion underlying the creativity process in terms of dynamic assessment and the emergence

of unpredictable new functionalities [147]. Lubart (2001) indicated that initial ideas might

interact with the developing work in a dynamic and evolving creative process [145]. Lubart

also raised several key questions for future research on creativity, such as ‘to what extent

is the creative processes recursive?’; ‘how exactly this recursion is organized?’; ‘what pro-

vokes recursion?’; and ‘what metacognitive functions control the choice of certain subpro-

cesses and their recursive application?’. Nguyen and Zeng (2012) formulated the recursive

design process into a nonlinear dynamic, for which a minor initial state difference may lead

to huge state differences after many rounds of evolution [58]. Some of the new states can

be credited as creative, whereas others can be identified as inconclusive outcomes that are

not creative. The process of exploring the potentially original and effective ideas is still

considered a creative process regardless of the originality or conclusiveness of the final

outcome. [59]. The nonlinear design dynamics imply a mechanism of creativity, which

accommodates a degree of flexibility, uncertainty and unpredictability through a structured

and deterministic model of design. Since a design problem often arises from a conflict in

the current environment, which includes nature, human and artefacts, design knowledge is

retrieved from a subset of relationships among environment components, and a design solu-

tion is always generated by synthesizing existing objects in the environment. Therefore, the

nonlinear recursive design process can be naturally viewed as an environment-evolving pro-

cess. The environment evolutionary process, termed Environment-Based Design (EBD),

continues until the designer determines that a design solution is satisfactory [3].

It is obvious from both the experimental and theoretical observations described above

that flexibility/freedom is a fundamental need to incubate creativity through sufficient dura-

tion and open-ended tasks. The sufficient duration might induce a period of incubation and
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mind wondering that could facilitate creative problem solving through relaxation, overcom-

ing fixation, and mental set-shifting [35–38]. Open-ended tasks offer unlimited potential

for participants to explore solutions without predefined solutions or strategies. The ill-

defined nature of this method, which is the most important characteristic of open-ended

tasks, provides a degree of uncertainty of solutions in that an intermediate solution may

redefine the original task from which new tasks may emerge. Different emergent tasks will

induce different knowledge and solutions, which will, in turn, redefine the original tasks.

In order to achieve statistically significant results, conventional creativity tests, which

are strictly controlled, limit participants’ flexibility/freedom. Dietrich (2019) observed that

conventional creative tests do not have sufficient ecological validity due to the lack of con-

siderations of multifaceted creativity [148]. Agnoli et al. (2020) also indicated that insuf-

ficient duration (15 s) might inhibit the search for originality such that a less constrained

experimental setting is needed in future research [113]. Moreover, conventional creativity

tests are focused on a single phenomenon of a creative process that includes idea gen-

eration, idea elaboration or idea evaluation. Zeng et al. (2011) indicated that the lack

of understanding of interactions between the phenomena of a creative process is a major

shortcoming of conventional creativity tests [146].

Therefore, both behavioural findings and theoretical findings have suggested that cre-

ativity needs to be studied through a loosely controlled creativity experiment. The purpose

of loosely controlled creativity experiments is to encourage participants’ natural charac-

teristics of creativity in ways that can be analysed using a statistically reliable and sig-

nificant approach. The loosely controlled creativity experiment concentrates on complex

creativity activities, during each of which different creative phenomena are involved since

it is believed that these phenomena are interdependent. Idea generation, idea evaluation,

and idea elaboration, as suggested by Ellamil et al(2012) [103], Hao et al. (2016) [137],

and Rominger et al. (2018) [138], might occur at a different time during idea evolution.
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Idea generation could be generally associated with a bottom-up and spontaneous process,

whereas idea evaluation could be related to a top-down and controlled process. Idea elabo-

ration cannot continue without a recursive implementation of idea generation and idea eval-

uation. Recently, complex creativity activities gradually attracted the attention of scholars

in the field of design. For instance, Alexiou et al. (2009) designed an open-ended task that

required not only solution generation but also problem understanding and solution evalua-

tion [101].

Nevertheless, loosely controlled creativity experiments increase the difficulty of data

analysis since it triggers complex pairs of stimuli and response underlying the unstructured

EEG data. Nguyen and Zeng (2014) conducted a preliminary analysis of the EEG spectro-

gram of a single subject from the loosely controlled creativity experiment, which is further

analysed in the present paper [140]. The authors’ lab has been identifying the regulari-

ties underlying the unstructured data from the loosely controlled creative process. Nguyen

et al. (2019) proposed microstate- and frequency-based methods to segment unstructured

EEG data produced from complex design activities [100]. It was found that the best seg-

mentation algorithm, which is the microstate-based method, has an average deviation of

2-s from manual segmentation. Each structured segment can be associated with a primitive

design activity. Moreover, EEG microstate analysis has been used to structure unstructured

data in the goal-free and goal-directed tasks by different authors [115,141,149–154]. Each

microstate class could be associated with a specific whole-brain network, which has been

effectively studied through fMRI. Accordingly, the loosely controlled creativity experiment

with the support of EEG microstate analysis, known as a task-related EEG (tEEG) frame-

work [15], appears to offer an effective approach for studying real-world complex creativity

activities. This study further refines and validates the tEEG framework by investigating the

three modes of thinking in an ecologically valid manner.
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Is a loosely controlled creativity experiment valid?

The validity of the loosely controlled creativity experiment was verified by comparing

its findings on phenomena that have been effectively studied by validated experimental re-

search. It was found that alpha power decreased significantly from rest to the three modes

of thinking. These findings are consistent with those from ERD/ERS- and TRP-based re-

search on visual creativity (see Pidgeion et al. (2016) for a comprehensive review) [142].

Both of ERD/ERS and TRP revealed characteristics of neural oscillations in specific fre-

quency bands among different conditions. These frequency features were independent of

task completion time. That is, significant differences in task completion time did not affect

the results that were analysed by the ERD/ERS or TRP. Therefore, it is reasonable and fea-

sible to compare findings based on ERD/ERS and TRP to verify the validity of the loosely

controlled creativity experiment.

It was found that alpha power changes were more sensitive during the three modes

of thinking in the lower alpha frequency band (8-10 Hz) than that in the upper alpha fre-

quency band (10-12 Hz). This finding is in line with alpha power in the sub-frequency

bands potentially being associated with different functional roles [155]. In the lower alpha

band, alpha power decreased significantly over almost the entire scalp from idea evolution

to idea generation and rating activity, as shown in Figure 3. This finding is consistent with

the figural divergent production task being associated with power decreases in the lower

alpha band over almost the entire cortical sites [156]. Moreover, in line with decreases in

alpha power more likely being associated with general attention demands, such as alert-

ness and arousal [157, 158], these findings indicate heightened general attention demands

during idea generation and rating activity. The less general attention demands might result

from participants frequently switching their focus to connect more objects or to overcome

fixation, leading to creativity during idea evolution. Similarly, alpha power desynchronized

approximately 1-s before the onset of an imperative stimulus, reflecting expectancy [159].
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We speculate that participants might follow their intuition to generate a solution without

overcoming fixations during idea generation.

In the upper alpha band, the power differences between areas did not exhibit a general

trend for the lower alpha band in the three modes of thinking, as shown in Figure 4. It was

found that alpha power decreased more strongly in the three modes of thinking at parietal

sites compared to frontal, central, and temporal sites. This finding is in agreement with

findings from conventional experimental approaches in that stronger decreases in alpha

power are associated with figural creative ideation at parietal and occipital sites [138,156].

In addition, this finding is consistent with that alpha power desynchronization being asso-

ciated with the generation of first responses of four alternative uses [113]. Similarly, alpha

power desynchronization was also observed during the verbal creative tasks fulfillment

with and without overcoming self-inducted stereotypes, which lasted a few minutes [160].

Moreover, alpha power decreased significantly over temporal sites during rating activity

compared to during idea evolution. Of note, differences in alpha power changes between

idea generation and idea evolution were insignificant. However, this finding is inconsistent

with verbal divergent thinking being associated with increases in alpha power over frontal

and temporo-parietal sites (see Fink and Benedek (2014) for a comprehensive review). Re-

cent time-course studies of divergent thinking have indicated alpha power increases at the

end of the creative thinking process [113,134,135,161]. The insignificant differences might

result from the loosely controlled creativity experiment in which idea generation might be

embedded in idea evolution, which is the fundamental nature of an open-ended design

process [2, 12, 32, 162]. Alternatively, the insignificant differences might result from the

adopted reference interval that was placed at the beginning of the experiment rather than

the beginning of each run of the experiment. More research is needed to understand the

inconsistency since little evidence is available regarding the time-course of alpha activity

during the creative process in the figural domain. Indeed, previous findings have indicated
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that alpha power desynchronization was associated with semantic memory performance,

perceptual performance, and intelligence [163–165]. Intelligence has been categorized as

fluid intelligence (Gf) and crystallized intelligence (Gc), where Gf refers to the measure-

ment of reasoning ability while Gc refers to the measurement of abilities of gaining, retain-

ing, structuring, and conceptualizing information [166]. These findings indicated that the

rating activity involved more task-specific demands such as memory and fluid intelligence

since participants need to recall idea generation and idea evolution processes and evaluate

their difficulty regarding thinking and drawing. Therefore, on the one hand, the loosely

controlled creativity experiment appears to be valid due to consistent findings between our

experiment and validated experiments at a macro level. On the other hand, the loosely con-

trolled creativity experiment might induce some critical features of creativity, which could

lead to inconsistent findings at a micro level.

What added value is obtained from a loosely controlled creativity ex-

periment?

EEG microstate results revealed that multiple brain networks were activated in a dif-

ferent manner amid rest and the three modes of thinking. The motivation for applying

EEG microstate analysis was to decompose the complex creativity activity into several

primitive sub-activities through structuring the unstructured EEG data collected from the

loosely controlled creativity experiment. Each primitive sub-activity was associated with

a sub-phase of a creative process. The interactions between sub-activities were investi-

gated through temporal properties of microstate classes, such as coverage and duration.

Combined EEG-fMRI and EEG source localization studies have indicated that microstate

classes are closely associated with the resting-state networks [115, 141, 149]. Along a

similar line of thought, Benedek and Fink (2019) proposed a theoretical neurocognitive

framework of creative cognition that would also need to decompose the complex cognitive
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capacity into different basic cognitive functions such as memory, attention, and cognitive

control [167]. Benedek and Fink’s theoretical framework and the presented framework

of loosely controlled creativity experiment share the same philosophy. Naturally, the new

findings summarized above benefited from the loose controllability of the adopted experi-

mental design with the support of EEG microstate analysis.

The results reported in the section ‘EEG microstate classes’ revealed six optimal mi-

crostate classes, as shown in Figure 5. This finding supports the argument that the optimal

number of microstate classes should be estimated for each individual rather than for a group

by directly aggregating each individual’s EEG data [84]. Microstate classes were labelled

from A to F according to the study of Custo et al. (2017), who reported seven microstate

classes in the analysis of 164 subjects during rest [141]. Microstate A exhibits an asym-

metric left-right orientation; microstate B exhibits a right-left orientation; microstate C

exhibits an anterior-posterior orientation; microstate D exhibits a fronto-central maximum;

microstate E exhibits a likely symmetric left-right orientation; and microstate F exhibits an

anterior-posterior orientation. It must be noted that microstates C and F have high spatial

correlations, which could lead to incorrect microstate labels between them. However, mi-

crostates C and F have negative temporal correlations compared to rest and the three modes

of thinking, which could provide distinguishable information to assign their labels. This

phenomenon was also observed in another study when the number of microstate classes

was larger than four [141], according to which microstate F was associated with the nor-

mative microstate C described in the study of Britz et al. (2010), while microstate C was

newly generated and assigned [115]. Therefore, these findings agree with the argument that

not only spatial characteristics but also temporal characteristics are necessary for assigning

maps with the most appropriate microstate class [84].

The results reported in the section ‘EEG microstate topographies’ revealed that the to-

pographies of microstates A, B, D, E, and F were not significantly different among rest and
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the three modes of thinking, as shown in Table 2. These findings are in line with observa-

tions that a few resting state microstates persisted in goal-directed tasks [151], supporting

the notion that the brain might be activated in an organized manner instead of remaining

inactive during rest [168,169]. Moreover, the topography of microstate C was significantly

different among rest and the three modes of thinking. Microstate C has been associated

with the activity in the posterior cingulate cortex (PCC), which is a central part of the

default mode network (DMN) [141]. The functions of PCC appear to be associated with

internally directed cognition and unconstrained rest [170]. This finding implies that activity

in the DMN plays an important role during rest and the three modes of thinking. Tasks for

the three modes of thinking could change the activation of DMN topology.

The results reported in the section ‘EEG microstate parameters’, revealed that the cov-

erage and duration of microstate A increased significantly from rest to the three modes

of thinking, as shown in Figure 6 and Figure 7. These findings are in line with the

association of microstate A with visual processing since the loosely controlled creativ-

ity experiment triggers increased visual activity during idea generation and idea evolu-

tion [150, 154]. However, microstate A has been associated with verbal processing at rest

in a study from Britz et al. (2010) [115]. The inconsistent findings may indicate that mi-

crostate A does indeed reflect the activity in a left-posterior hub, which inhibits connections

to left-hemispheric areas that are activated during verbal processing [150]. We speculate

that the functional significance of EEG microstates might be distinct between goal-free

and goal-directed tasks. Since little evidence is available regarding the functions of EEG

microstates in task-specific conditions, more studies are needed to shed light on this issue

through establishing standard databases that could record the functions of EEG microstates

for each goal-free and goal-directed task.

It was found that the coverage of microstate D decreased significantly from rest to the

60



three modes of thinking. These findings support that microstate D is associated with re-

flexive aspects of attention, focus switching, and reorientation, which likely occur more

frequently during rest than during the goal-directed tasks [150]. Moreover, the coverage

of microstate D was not significant among the three modes of thinking. Similar to this

observation, the coverage of microstate D was not significantly different between fluid rea-

soning tasks [154]. These findings did not support another report in which microstate D

was associated with the dorsal attention network, which plays an important role in spatial

attention and working memory [115, 171]. However, memory might be relevant for idea

generation process, which is involved in recalling ideas from the memory and newly creat-

ing ideas during the tasks [172, 173]. Thus, further studies are needed to better understand

the functional role of microstate D and how they might be associated with memory.

Finally, the coverage of microstate C decreased significantly from idea evolution to

rating activity, whereas the coverage of microstate F increased significantly from idea evo-

lution to idea generation and rating activity. Furthermore, the duration of microstate F

increased significantly from idea evolution to rating activity. As mentioned earlier, mi-

crostate C has been associated with activity in the DMN that is more active during rest. In

contrast, microstate F has been primarily associated with activity in the dorsal anterior cin-

gulate cortex (dACC), which is more active during the cognitive control tasks [115, 174].

These findings support that the default mode network and cognitive control network play

central roles in creativity [38,175,176]. The more active DMN indicated that idea evolution

might be more associated with irrational cognitive process, such as relaxation or incuba-

tion. This irrational cognitive process might help participants overcome their fixation and

redefine the open-ended problem, which is necessary for generating creative ideas. The

more active control network indicated that idea generation and rating activity might be as-

sociated with rational cognitive process, such as decision-making. This rational cognitive

process might help participants to determine the most appropriate solutions from several
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tentative solutions.

4.5 Conclusion

The present study investigated different brain responses to idea generation, idea evo-

lution, and rating activity through a loosely controlled creativity experiment. The loosely

controlled creativity experiment was designed to offer a degree of flexibility/freedom for

participants to incubate the genesis of their creative ideas. The validity of the loosely con-

trolled creativity experiment was verified through comparing its findings on the phenomena

that have been effectively studied by validated experimental research. It was found that al-

pha power decreased significantly from rest to the three modes of thinking. These findings

are in line with those from visual creativity research based on ERD/ERS and TRP. The find-

ings of alpha power changes between three modes of thinking revealed that idea evolution

required less general attention, while rating activity involved more task-specific demands,

such as memory and intelligence. In addition, EEG microstate analysis revealed that mi-

crostate C was more active during idea evolution compared to during the other two modes

of thinking; microstate F was less active during idea evolution compared to during the

other two modes of thinking. These findings indicate that the default mode network plays

a central role during idea evolution while the cognitive control network plays an important

role during idea generation and rating activity. These new findings were obtained since the

loosely controlled creativity experiment activates multiple brain networks to accomplish

tasks involving the three modes of thinking. Taken together, the loosely controlled creativ-

ity experiment with the support of EEG microstate analysis appears to offer an effective

approach to investigating real-world complex creativity activity.
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Chapter 5

Temporal dynamics of network

oscillations in design creativity

5.1 Introduction

Recent research attempts to associate microstates with different cognitive components

such as modalities of thinking [150] and fluid reasoning [154]. Temporal dynamics of EEG

microstate sequences increasingly attract the attention of scholars, reflecting the need to

quantify the temporal structure and complexity of microstate sequences, running in paral-

lel to, and thus representing the ongoing flow of thoughts and cognitive processes, such

as self-reported spontaneous [177] and task-initiated thoughts [178, 179]. A few studies

revealed key characterises of temporal dynamics underlying resting EEG microstate se-

quences, such as scale-free dynamics [132], short- and long-range correlations [180], and

non-Markovianity [130]. In contrast to resting-state EEG microstate sequences, temporal

dynamics of EEG microstate sequences are still unknown for design creativity.

Besides, identifying the involvement of higher-order cognitive functions, namely cog-

nitive workload and cognitive control, during design creativity could lead to a better under-

standing of design thinking and designers’ cognitive activities. Cognitive workload could
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be interpreted as the increasing utilization of brain resources under an increasing demand

of the confronted task [88]. The fronto-parietal network activation was highlighted in the

literature when cognitive workload is high [181]. Alpha desynchronization reflects general

attention demands in the lower alpha band and semantic memory performance in the upper

alpha band [155]. Additionally, decreases in alpha power have been observed under in-

creased cognitive workload [182,183]. Cognitive control refers to‘the ability to coordinate

thoughts and actions in relation with internal goals’ [184], which supports goal-directed

human behaviour through engaging and coordinating a variety of brain activities [185].

Theta synchronization has been linked to cognitive control and working memory pro-

cesses [186–188] (see Sauseng et al., 2010 [93] and Cavanagh and Michael 2014 [94]

for comprehensive reviews). Research findings identified the active involvement of certain

brain areas, medial prefrontal cortex (mPFC) in particular, during tasks requiring cogni-

tive control [189]. Further research indicated that theta power over medial frontal cortex is

positively related to the cognitive control demands [190, 191].

We applied a loosely controlled experiment to simulate the nature of design creativity,

including problem understanding, idea generation, rating idea generation, idea evaluation,

and rating idea evaluation. Participants were given considerable freedom regarding re-

sponse time (self-paced) and response action (integrating thinking and drawing phases) to

comprehend design problems, generate and evaluate solutions through taking into account

creativity, structure, and performance. To align our findings with other validated evidence,

we investigated the regional contribution of brain oscillations in the classical frequency

bands (theta, alpha, and beta) to the different cognitive tasks studied through TRP analysis.

In addition, we identified EEG-defined large-scale brain networks and uncovered their tem-

poral dynamics regarding short- and long-range correlations during the conceptual design

process through EEG microstate analysis.

During problem understanding, participants read the given problem to comprehend the
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design requirements. Information related to problem description keeps being encoded dur-

ing such reading and understanding processes, where participants’ cognitive workload may

increase along the time course. During idea generation, participants need to generate and

express their ideas, which is the most ‘unstructured’ activity where designers are confronted

with incomplete and imprecise information. It is during idea generation that participants

have the least instructions and constraints to express their ideas, suggesting that cognitive

control mechanisms may be relaxed. In the meantime, given the least instruction but the

most freedom participants are most likely to unconsciously conduct different design ac-

tivities in a recursive way, which resembles an entire-design process. Higher cognitive

workload may be expected during idea generation when compared with the other four de-

sign activities, which seems like a comparison between the entire process and its individual

components. Following the same direction, idea generation may embody more character-

istics of the conceptual design process than the other activities so that idea generation is

sometimes viewed as a bottom-up, spontaneous, and unstructured activity [192]. During

idea evaluation, participants need to compare two design solutions and make their prefer-

ential evaluations. Rating idea generation and evaluation share a considerable similarity

especially when the same rating form is used for the two rating stages in the current ex-

perimental settings. The rating activity is the most ‘structured’ and well-defined process

among the studied design activities, which may indicate an opposite expectation on cogni-

tive control and cognitive workload compared to idea generation.

We hypothesized that idea generation would be associated with the highest cognitive

workload but the lowest cognitive control among the studied five design activities. Higher

cognitive workload would be associated with more pronounced decreases in alpha power,

while lower cognitive control would be associated with decreases in theta and beta power.

In addition, we expected that task-negative microstate classes would be more prevalent

during idea generation while idea generation would be associated with shorter correlation
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times.

5.2 Method

5.2.1 Experiment Design

The experiment consists of six runs corresponding to six different design problems:

design a birthday cake, design a recycle bin, design a toothbrush, design a wheelchair,

design a workspace, and design a drinking fountain [98], as listed in Table 5. Figure 8A)

shows the sequence of six design problems presented to the participants. Each run consists

of five successive design activities: problem understanding, idea generation, rating idea

generation, idea evaluation, and rating idea evaluation. Figure 8B) shows an example of

schematic time courses of designing a birthday cake.

During problem understanding, participants were asked to read and understand a design

problem. During idea generation, participants were asked to sketch a solution that satisfied

the requirements of design problem. During idea evaluation, participants were asked to

evaluate the performance or preference of two given solutions. NASA Task Load Index

was placed at the end of idea generation and evaluation, namely rating idea generation and

rating idea evaluation respectively. During rating activity, participants were asked to rate

their mental demand, time demand, performance, effort, and stress level. The rests were

placed at the begin and end of this experiment. By dividing the experiment into the above

mentioned five design activities, we aimed at a reduced difficulty in investigating such

a complex design process and adding certain ‘structure’ to the unstructured data. Such

segmentation was the main control applied in the experiment, meaning that despite the task

description showing on the screen from the beginning of each design activity, any additional

control including time limit, oral instructions, or ‘think-aloud’ related control, was avoided

during the experiment. In the meanwhile, the presented experiment was loosely controlled
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as participants were given unlimited response time during each design activity and they

were given sufficient freedom to complete the given task in their own way without any

interruption or interference. In this way, the characteristics of design process could be

better modelled as sufficient time and freedom could be essential to allow participants’

naturally exploring possible solutions and completing the given task recursively.

Table 5: Six design problems

Design Problem Description

Design a birthday cake
Make a birthday cake for a five year old kid. How should it
look like?

Design a recycle bin
Sometimes, we do not know which items should be recy-
cled. Create a recycle bin that helps people recycle cor-
rectly.

Design a toothbrush
Create a toothbrush that incorporates toothpaste. (Incorpo-
rate = include, combine)

Design a wheelchair

In Montreal, people on wheelchair cannot use metro safely
because most of metros have only stairs or escalators. Ele-
vator is not an option because it is too costly to build one.
You are asked to create the most efficient solution to solve
this problem.

Design a workspace

Employees in an IT company are sitting too much. The
company wants their employees to stay healthy and work
efficiently at the same time. You are asked to create a
workspace that can help the employee to work and exercise
at the same time.

Design a drinking fountain

Two problems with standard drinking fountain: (a) Filling
up water bottle is not easy; (b) People too short cannot use
the fountain and people too tall has to bend over too much.
Create a new drinking fountain that solves these problems.

5.2.2 Participants and experiment procedure

A total of 42 participants took part in this experiment, who were graduate students in

the Gina Cody School of Engineering and Computer Science, Concordia University. A

gift card of CAD$100 was given as compensation to the best design. Three participants

were excluded from data analysis since they have not completed all the experiments. 11
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A) Six design problems

B) An example of designing a birthday cake

1) Make a birthday cake for a five year old kid. How should it look like?

Design
a birthday cake

Design
a recycle bin

Design
a toothbrush

Design
a wheelchiar

Design
a workspace

Design
a drinking fountain

Problem understanding
Self-paced

2)

Idea generation
Self-paced

3) For each factor, choose the point that best indicates your experience of
the idea generation process.

Rating idea generation
Self-paced

4) Which solutions is better (or which solution do you prefer)? Why?

Idea evaluation
Self-paced

5) For each factor, choose the point that best indicates your experience of
the idea evaluation process.

Rating idea evaluation
Self-paced

Figure 8: A) The sequence of six design problems. B) An example of schematic time
courses of designing a birthday cake. 1) Self-paced problem understanding. 2) Self-paced
idea generation. 3) Self-paced workload rating for the idea generation. 4) Self-paced idea
evaluation. 5) Self-paced workload rating for the idea evaluation
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participants were excluded from data analysis due to technical errors such as missing mark-

ers. One participant was excluded from data analysis due to large electrode impedances and

poor data quality. The final samples included 27 participants (8 women, 19 men) aged from

24 to 39. All the participants had normal or corrected-to-normal vision. The experimenters

helped subjects wear the HRV chest strap, GSR finger strap, respiration rate belt and EEG

cap. The experimenters briefed each participant the experimental tasks; impedances of all

the EEG electrodes were below 10 kΩ; participants completed the experiment by follow-

ing the experimental procedures specified in the experimental design. EEG signals were

recorded by a 64 channel BrainVision actiCHamp at 500 Hz during the experiment. The

EEG was referenced to Cz and the electrode placement was based on the international 10-

10 system. The experimental protocol was approved by the Concordia Human Research

Ethics Committee. All sections of the experiment were performed in accordance with rel-

evant guidelines and regulations. All subjects signed the informed consent form before

taking the experiment.

5.3 Results

5.3.1 Behavioural results

In rating idea generation, self-rated mental demand was 49.01 (SE=3.25); self-rated

time demand was 39.79 (SE=3.68); self-rated performance was 54.23 (SE=3.08); self-

rated effort was 42.38 (SE=3.60); and self-rated stress was 41.84 (SE=3.59). In rating idea

evaluation, self-rated mental demand was 39.38 (SE=3.13); self-rated time demand was

32.14 (SE=3.60); self-rated performance was 61.66 (SE=3.04); self-rated effort was 36.29

(SE=3.22); and self-rated stress was 32.45 (SE=3.82).

Post hoc paired t tests revealed significant decreases in self-rated mental demand (p =

0.000), self-rated time demand (p = 0.001), self-rated effort (p = 0.007), and self-rated
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stress (p = 0.003) from idea generation to idea evaluation, as well as significant increases

in self-rated performance (p = 0.010).

5.3.2 EEG results

EEG theta power

In the theta band, the 5 × 5 × 2 repeated measures ANOVA revealed two significant

main effects of CONDITION (F (4, 104) = 31.838, p = 0.000, η2 = 0.550) and AREA

(F (2.528, 65.733) = 25.767, p = 0.000, η2 = 0.498), as well as three significant inter-

action effects of CONDITION × AREA (F (5.994, 155.848) = 26.820, p = 0.000, η2 =

0.508), CONDITION × HEMISPHERE (F (4, 104) = 5.299, p = 0.001, η2 = 0.169), and

CONDITION × AREA × HEMISPHERE (F (6.340, 164.833) = 3.756, p = 0.001, η2 =

0.126).

Table 6 lists the p-values of pairwise comparisons of TRP theta with Bonferroni cor-

rection between CONDITION on each AREA, while Figure 9 shows grand average to-

pographical maps and error bars of task-related theta power between conditions. It was

found that theta power was lower over frontal, central, temporal, parietal, and occipital

sites during IG than during PU (ps < 0.036), RIG (ps < 0.016), IE (ps < 0.007), and

RIE (ps < 0.001). Theta power was significantly lower over central sites during PU than

during RIG (p = 0.015), and over central and temporal sites during PU than during RIE

(ps < 0.004), whereas it was significantly higher over central sites during PU than during

IE (p = 0.036). Theta power was significantly lower over central and temporal sites during

IE than during RIG (ps < 0.022), as well as over frontal, central, temporal sites during IE

than during RIE (ps < 0.005).
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a

b

Figure 9: Task-related power in theta band during problem understanding, idea genera-
tion, rating idea generation, idea evaluation, and rating idea evaluation. a Grand average
topographical maps of task-related beta power. b Error bars of task-related theta power.
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Table 6: P-values of pairwise comparisons with Bonferroni correction of TRP theta be-
tween AREA and CONDITION, including problem understanding (PU), idea generation
(IG), rating idea generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE).

Activity
Area

Frontal Central Temporal Parietal Occipital
PU Vs. IG 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.002*** ↘ 0.036* ↘
PU Vs. RIG 1.0 0.015* ↗ 0.239 1.0 1.0
PU Vs. IE 0.556 0.036* ↘ 0.45 1.0 1.0
PU Vs. RIE 0.067 0.001*** ↗ 0.004*** ↗ 0.12 0.608
IG Vs. RIG 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.001*** ↗ 0.016* ↗
IG Vs. IE 0.0*** ↗ 0.001*** ↗ 0.0*** ↗ 0.007** ↗ 0.001*** ↗
IG Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.001*** ↗
RIG Vs. IE 0.074 0.001*** ↘ 0.022* ↘ 0.558 0.431
RIG Vs. RIE 0.335 1.0 1.0 1.0 0.414
IE Vs. RIE 0.005*** ↗ 0.0*** ↗ 0.002*** ↗ 0.08 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ TRP theta increases
↘ TRP theta decreases

EEG alpha power

In the alpha band, the 5 × 5 × 2 repeated measures ANOVA revealed two significant

main effects of CONDITION (F (4, 104) = 26.880, p = 0.000, η2 = 0.508) and AREA

(F (2.735, 71.105) = 51.801, p = 0.000, η2 = 0.666), as well as two significant interac-

tion effects of CONDITION × AREA (F (6.153, 159.978) = 21.723, p = 0.000, η2 =

0.455) and CONDITION × AREA × HEMISPHERE (F (6.512, 169.299) = 3.700, p =

0.001, η2 = 0.125).

Table 7 lists the p-values of pairwise comparisons of TRP alpha with Bonferroni cor-

rection between CONDITION on each AREA, while Figure 10 shows grand average to-

pographical maps and error bars of task-related alpha power between conditions. It was

found that decreases in alpha power were significantly smaller over frontal, central tempo-

ral, parietal, and occipital sites during PU compared to IG (ps < 0.001), as well as over

occipital sites during PU compared to RIG (p = 0.039), as well as over frontal, central,

temporal, and parietal sites during PU compared to IE (ps < 0.006). Decreases in alpha

power were significantly larger over frontal, central, temporal, and parietal sites during IG

72



compared to during RIG (ps < 0.002), as well as over frontal and temporal sites during IG

compared to during IE (ps < 0.001), as well as over frontal, central, temporal, parietal, and

occipital sites during IG compared to during RIE (ps < 0.017). In addition, decreases in

alpha power were significantly larger over central and temporal sites during IE compared

to during RIG (ps < 0.015), as well as over frontal, central, and temporal sites during IE

compared to RIE (ps < 0.015).

Table 7: P-values of pairwise comparisons of TRP alpha with Bonferroni correction be-
tween AREA and CONDITION, including problem understanding (PU), idea generation
(IG), rating idea generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE).

Activity
Area

Frontal Central Temporal Parietal Occipital
PU Vs. IG 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.001*** ↘ 0.001*** ↘
PU Vs. RIG 0.297 1.0 1.0 0.246 0.039* ↘
PU Vs. IE 0.004*** ↘ 0.001*** ↘ 0.004*** ↘ 0.006** ↘ 0.401
PU Vs. RIE 1.0 1.0 1.0 0.484 0.102
IG Vs. RIG 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.002*** ↗ 0.367
IG Vs. IE 0.0*** ↗ 0.052 0.01** ↗ 0.138 0.082
IG Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.017* ↗
RIG Vs. IE 0.088 0.001*** ↘ 0.015* ↘ 1.0 1.0
RIG Vs. RIE 0.89 1.0 1.0 1.0 1.0
IE Vs. RIE 0.015* ↗ 0.001*** ↗ 0.01** ↗ 0.431 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ TRP alpha increases
↘ TRP alpha decreases

EEG beta power

In the beta band, the 5×5×2 repeated measures ANOVA revealed two significant main

effects of CONDITION (F (2.864, 74.459) = 41.769, p = 0.000, η2 = 0.616) and AREA

(F (4, 104) = 43.514, p = 0.000, η2 = 0.626), as well as two significant interaction effects

of CONDITION × AREA (F (6.372, 165.660) = 30.607, p = 0.000, η2 = 0.541) and

CONDITION × AREA × HEMISPHERE (F (6.241, 162.265) = 3.425, p = 0.003, η2 =

0.116).
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b

Figure 10: Task-related power in alpha band during problem understanding, idea genera-
tion, rating idea generation, idea evaluation, and rating idea evaluation. a Grand average
topographical maps of task-related alpha power. b Error bars of task-related alpha power.
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Table 8 lists the p-values of pairwise comparisons of TRP beta with Bonferroni cor-

rection between CONDITION on each AREA, while Figure 11 shows grand average to-

pographical maps and error bars of task-related beta power between conditions. It was

found that beta power increased significantly over frontal, central, temporal, parietal, and

occipital sites from IG to PU (ps < 0.001), RIG (ps < 0.041), and RIE (ps < 0.001),

as well as over frontal, central, temporal and parietal sites from IG to IE (ps < 0.001).

The beta power increased significantly over frontal, central and temporal from IE to RIG

(ps < 0.029) and RIE (ps < 0.008), as well as over frontal, central, temporal, and parietal

sites from IE to PU (ps < 0.031).

Table 8: P-values of pairwise comparisons of TRP beta with Bonferroni correction between
AREA and CONDITION, including problem understanding (PU), idea generation (IG),
rating idea generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE).

Activity
Area

Frontal Central Temporal Parietal Occipital
PU Vs. IG 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.001*** ↘
PU Vs. RIG 1.0 0.945 0.463 0.412 0.547
PU Vs. IE 0.012* ↘ 0.002*** ↘ 0.031* ↘ 0.007** ↘ 0.988
PU Vs. RIE 1.0 0.264 0.711 1.0 0.751
IG Vs. RIG 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.041* ↗
IG Vs. IE 0.0*** ↗ 0.001*** ↗ 0.001*** ↗ 0.001*** ↗ 0.135
IG Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.0*** ↗ 0.001*** ↗
RIG Vs. IE 0.029* ↘ 0.001*** ↘ 0.006** ↘ 1.0 1.0
RIG Vs. RIE 1.0 1.0 1.0 1.0 1.0
IE Vs. RIE 0.008** ↗ 0.001*** ↗ 0.007** ↗ 0.147 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ TRP beta increases
↘ TRP beta decreases

EEG microstate classes

Based on cross validation as shown in Eq. (3), the optimal number of individual mi-

crostate classes was found to be equal to 7.109 (SE=0.134) for rest, 7.370 (SE=0.079) for

problem understanding, 7.547 (SE=0.080) for idea generation, 7.849 (SE=0.089) for rat-

ing idea generation, 7.458 (SE=0.087) for idea evaluation, and 7.156 (SE=0.302) for rating
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Figure 11: Task-related power in beta band during problem understanding, idea genera-
tion, rating idea generation, idea evaluation, and rating idea evaluation. a Grand average
topographical maps of task-related beta power. b Error bars of task-related beta power.
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idea evaluation. Figure 12 shows the topographic maps of seven microstate classes across

and within conditions, which include rest, problem understanding, idea generation, rating

idea generation, idea evaluation, and rating idea evaluation. The seven microstate classes

were labelled as A, B, C, D, E, F, and G according to the studies of Michel and Koenig

(2018) [84] and Custo et al. (2017) [141]. The number of individual microstate classes was

defined as seven for each run, each condition and each participant because of comparability

and simplicity of statistical analysis.

The seven individual microstate classes explained 68.6% (SE=0.7) of the global vari-

ance of the original EEG topographies corresponding to peaks of GFP for rest, 67.1%

(SE=0.4) for problem understanding, 67.4% (SE=0.3) for idea generation, 65.8% (SE=0.4)

for rating idea generation, 67.3% (SE=0.4) for idea evaluation, and 66.4% (SE=0.4) for the

rating idea evaluation.

Figure 12: The spatial configuration of the seven microstate classes (A, B, C, D, E, F, and
G) for across conditions (global) and within conditions (rest, problem understanding, idea
generation, rating idea generation, idea evaluation, and rating idea evaluation).
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EEG microstate parameters

For EEG microstate coverage, the 6 × 7 repeated measures ANOVA revealed a sig-

nificant main effect CLASS (F (3.737, , 97.159) = 4.498, p = 0.003, η2 = 0.147) and a

significant interaction effect CONDITION × CLASS (F (7.378, 191.837) = 37.213, p =

0.000, η2 = 0.589).

Table 9 lists p-values of post hoc paired t tests with Bonferroni correction on microstate

coverage, while Figure 13 shows error bars of microstate coverage in each condition. In

particular, the coverage of microstate class A was the lowest during REST compared to

during PU, IG, RIG, IE, and RIE (ps = 0.000), while the coverage of microstate class B

was the lowest during REST compared to PU, RIG, IE, and RIE (ps < 0.005). Similarly,

the coverage of microstate class G was the lowest during REST compared to during PU,

IG, RIG, and RIE (ps < 0.040). On the contrary, the coverage of microstate class C was

the highest during REST compared to during PU, RIG, IE, and RIE (ps < 0.001), while the

coverage of microstate class D was the highest during REST compared to PU, IG, RIG, and

RIE (ps < 0.009). The coverage of microstate class F was higher during REST compared

to during RIG and RIE (ps < 0.021).

In addition, the coverage of microstate class A decreased significantly from RIG and

RIE to PU, IG, and IE (ps < 0.001), as well as from PU to IG (p = 0.001). The coverage

of microstate class B increased significantly from IG and IE to PU, RIG, and RIE (ps <

0.001). The coverage of microstate class C decreased significantly from IG to RIG, RIE,

and IE (ps < 0.003), as well as from PU to RIG and RIE (ps < 0.002). The coverage

of microstate class D decreased significantly from IG and IE to PU, RIG, and RIE (ps <

0.002), as well as from PU to RIG and RIE (ps < 0.001). The coverage of microstate class

E increased significantly from PU to RIE (p = 0.028). The coverage of microstate class F

decreased significantly from IG and IE to PU, RIG, and RIE (ps < 0.003). The coverage

of microstate class G decreased significantly from RIG and RIE to IG and IE (ps < 0.002).
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Table 9: P-values of pairwise comparisons for microstate coverage with Bonferroni cor-
rection between CLASS (A, B, C, D, E, F, G) and CONDITION (rest (REST), problem
understanding (PU), idea generation (IG), rating idea generation (RIG), idea evaluation
(IE), and rating idea evaluation (RIE)).

Condition
Microstate classes

Class A Class B Class C Class D Class E Class F Class G
REST Vs. PU 0.0*** ↗ 0.0*** ↗ 0.001*** ↘ 0.0*** ↘ 1.0 0.91 0.008** ↗
REST Vs. IG 0.0*** ↗ 0.064 0.734 0.009** ↘ 1.0 1.0 0.04* ↗
REST Vs. RIG 0.0*** ↗ 0.0*** ↗ 0.0*** ↘ 0.0*** ↘ 1.0 0.021* ↘ 0.0*** ↗
REST Vs. IE 0.0*** ↗ 0.005*** ↗ 0.001*** ↘ 0.071 1.0 0.054 0.394
REST Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.0*** ↘ 0.0*** ↘ 1.0 0.009** ↘ 0.0*** ↗
PU Vs. IG 0.001*** ↘ 0.0*** ↘ 0.056 0.0*** ↗ 1.0 0.002*** ↗ 0.962
PU Vs. RIG 0.001*** ↗ 1.0 0.002*** ↘ 0.001*** ↘ 0.881 0.272 0.379
PU Vs. IE 0.223 0.001*** ↘ 1.0 0.002*** ↗ 1.0 0.003*** ↗ 0.271
PU Vs. RIE 0.001*** ↗ 1.0 0.001*** ↘ 0.001*** ↘ 0.028* ↗ 0.335 0.488
IG Vs. RIG 0.0*** ↗ 0.0*** ↗ 0.0*** ↘ 0.0*** ↘ 1.0 0.001*** ↘ 0.001*** ↗
IG Vs. IE 0.492 1.0 0.003*** ↘ 1.0 1.0 0.628 1.0
IG Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.0*** ↘ 0.0*** ↘ 1.0 0.002*** ↘ 0.002*** ↗
RIG Vs. IE 0.0*** ↘ 0.001*** ↘ 0.1 0.0*** ↗ 0.727 0.001*** ↗ 0.002*** ↘
RIG Vs. RIE 1.0 1.0 1.0 1.0 1.0 1.0 1.0
IE Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.055 0.0*** ↘ 0.388 0.001*** ↘ 0.001*** ↗

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ microstate coverage increases
↘ microstate coverage decreases
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Figure 13: Error bars of microstate coverage during rest (REST), problem understanding
(PU), idea generation (IG), rating idea generation (IE), idea evaluation (IE), and rating idea
evaluation (RIE). P-values between rest and other conditions are annotated by black dots
(p > 0.050), blue dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005).
P-values between conditions are annotated by * (p ≤ 0.050), ** (p ≤ 0.010), *** (p ≤
0.005).
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For EEG microstate duration, the 6 × 7 repeated measures ANOVA revealed two sig-

nificant main effects CONDITION (F (3.099.80.585) = 48.401, p = 0.000, η2 = 0.651)

and CLASS (F (3.616, 94.017) = 5.896, p = 0.000, η2 = 0.185), as well as a significant

interaction effect CONDITION × CLASS (F (6.911, 179.685) = 41.691, p = 0.000, η2 =

0.616).

Table 10 lists p-values of post hoc paired t tests with Bonferroni correction on mi-

crostate duration, while Figure 14 shows error bars of microstate duration in each condi-

tion. In particular, the duration of microstate class A was lower during REST compared to

during RIG and RIE (ps = 0.000). The duration of microstate class B was lower during

REST compared to during PU (p = 0.044), whereas it was higher during REST compared

to during IG (p = 0.007). The duration of microstate classes C, D and E was the low-

est during REST compared to PU, IG, RIG, IE, and RIE (ps < 0.002). The duration of

microstate class F was higher during REST compared to during PU, IG, RIG, and RIE

(ps < 0.004). The duration of microstate class G was higher during REST compared to

during IG (p = 0.027).

Besides, the duration of microstate class A decreased significantly from RIG and RIE

to PU, IG, and IE (ps < 0.001), as well as from PU to IG (p = 0.001). The duration

of microstate class B increased significantly from IG and IE to PU, RIG, and RIE (ps <

0.001). The duration of microstate class C decreased significantly from PU to RIG and

RIE (ps < 0.007), as well as from IG to RIG, IE, and RIE (ps < 0.006). The duration of

microstate class D decreased from PU to RIG and RIE (ps < 0.002), as well as from IG

and IE to PU, RIG, and RIE (ps < 0.001). The duration of microstate class E decreased

significantly from RIE to PU (p = 0.018). The duration of microstate class F decreased

significantly from IE to PU, RIG, and RIE (ps < 0.034). The duration of microstate class

G decreased significantly from RIG and RIE to IG and IE (ps < 0.001).

For EEG microstate occurrence, the 6 × 7 repeated measures ANOVA revealed two
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Table 10: P-values of pairwise comparisons with Bonferroni correction for microstate du-
ration between CLASS (A, B, C, D, E, F, G) and CONDITION (rest (REST), problem
understanding (PU), idea generation (IG), rating idea generation (RIG), idea evaluation
(IE), and rating idea evaluation (RIE)).

Condition
Microstate classes

Class A Class B Class C Class D Class E Class F Class G
REST Vs. PU 0.079 0.044* ↗ 0.0*** ↘ 0.0*** ↘ 0.001*** ↘ 0.0*** ↘ 1.0
REST Vs. IG 1.0 0.007** ↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.004*** ↘ 0.027* ↘
REST Vs. RIG 0.0*** ↗ 0.113 0.0*** ↘ 0.0*** ↘ 0.001*** ↘ 0.0*** ↘ 1.0
REST Vs. IE 1.0 0.123 0.0*** ↘ 0.0*** ↘ 0.001*** ↘ 1.0 0.069
REST Vs. RIE 0.0*** ↗ 0.005*** ↗ 0.0*** ↘ 0.0*** ↘ 0.02* ↘ 0.0*** ↘ 1.0
PU Vs. IG 0.001*** ↘ 0.0*** ↘ 0.081 0.0*** ↗ 1.0 0.409 0.419
PU Vs. RIG 0.001*** ↗ 1.0 0.001*** ↘ 0.001*** ↘ 1.0 0.787 0.918
PU Vs. IE 0.062 0.001*** ↘ 1.0 0.01** ↗ 1.0 0.034* ↗ 0.108
PU Vs. RIE 0.001*** ↗ 1.0 0.007** ↘ 0.002*** ↘ 0.018* ↗ 1.0 0.17
IG Vs. RIG 0.0*** ↗ 0.0*** ↗ 0.0*** ↘ 0.0*** ↘ 1.0 0.077 0.001*** ↗
IG Vs. IE 1.0 1.0 0.006** ↘ 1.0 1.0 0.741 1.0
IG Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.0*** ↘ 0.0*** ↘ 0.381 0.282 0.0*** ↗
RIG Vs. IE 0.0*** ↘ 0.001*** ↘ 0.455 0.0*** ↗ 1.0 0.003*** ↗ 0.001*** ↘
RIG Vs. RIE 1.0 1.0 1.0 1.0 0.526 1.0 1.0
IE Vs. RIE 0.0*** ↗ 0.0*** ↗ 1.0 0.0*** ↘ 0.209 0.004*** ↘ 0.0*** ↗

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ microstate duration increases
↘ microstate duration decreases
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Figure 14: Error bars of microstate duration during rest (REST), problem understanding
(PU), idea generation (IG), rating idea generation (IE), idea evaluation (IE), and rating idea
evaluation (RIE). P-values between rest and other conditions are annotated by black dots
(p > 0.050), blue dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005).
P-values between conditions are annotated by * (p ≤ 0.050), ** (p ≤ 0.010), *** (p ≤
0.005).
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significant main effects CONDITION (F (3.393.88.230) = 34.593, p = 0.000, η2 = 0.571)

and CLASS (F (3.707, 96.380) = 10.582, p = 0.000, η2 = 0.289), as well as a significant

interaction effect CONDITION × CLASS (F (7.618, 198.068) = 33.086, p = 0.000, η2 =

0.560).

Table 11 lists p-values of post hoc paired t tests with Bonferroni correction on mi-

crostate occurrence, while Figure 15 shows error bars of microstate occurrence in each

condition. In particular, the occurrence of microstate classes A, B, and G increased signif-

icantly from REST to PU, IG, RIG, IE, and RIE (ps = 0.000). Similarly, the occurrence of

microstate class E increased significantly from REST to IG, RIG, and RIE (ps < 0.043),

while the occurrence of microstate class F increased significantly from REST to IG and IE

(ps = 0.000). On the contrary. the occurrence of microstate class D decreased significantly

from REST to PU, RIG, and RIE (ps < 0.011).

In addition, the occurrence of microstate class A decreased significantly from RIG and

RIE to PU, IG, and IE (ps < 0.003), as well as from PU to IG (p = 0.014). The occurrence

of microstate class B increased significantly from IG and IE to PU, RIG, and RIE (ps <

0.011). The occurrence of microstate class C decreased significantly from PU to RIG and

RIE (ps < 0.014), from IG to RIG, IE, and RIE(ps < 0.002), as well as from IE to RIE

(p = 0.016). The occurrence of microstate class D decreased significantly from PU to RIG

and RIE (ps < 0.001), as well as from IG and IE to PU, RIG, and RIE (ps < 0.001). The

occurrence of microstate class F decreased significantly from IG and IE to PU, RIG, and

RIE (ps < 0.001). The occurrence of microstate class G increased significantly from IE to

RIG and RIE (ps < 0.047).

EEG microstate sequences

The finite entropy rate was 1.633 bits/sample (SE=0.021) for REST, 1.663 bits/sample

(SE=0.016) for PU, 1.826 bits/sample (SE=0.018) for IG, 1.623 bits/sample (SE=0.017)
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Table 11: P-values of pairwise comparisons with Bonferroni correction for microstate oc-
currence between CLASS (A, B, C, D, E, F, G) and CONDITION (rest (REST), problem
understanding (PU), idea generation (IG), rating idea generation (RIG), idea evaluation
(IE), and rating idea evaluation (RIE)).

Condition
Microstate classes

Class A Class B Class C Class D Class E Class F Class G
REST Vs. PU 0.0*** ↗ 0.0*** ↗ 1.0 0.011* ↘ 0.162 1.0 0.0*** ↗
REST Vs. IG 0.0*** ↗ 0.0*** ↗ 0.406 0.387 0.043* ↗ 0.0*** ↗ 0.0*** ↗
REST Vs. RIG 0.0*** ↗ 0.0*** ↗ 0.332 0.0*** ↘ 0.015* ↗ 1.0 0.0*** ↗
REST Vs. IE 0.0*** ↗ 0.0*** ↗ 1.0 1.0 0.116 0.0*** ↗ 0.0*** ↗
REST Vs. RIE 0.0*** ↗ 0.0*** ↗ 0.169 0.0*** ↘ 0.012* ↗ 1.0 0.0*** ↗
PU Vs. IG 0.014* ↘ 0.0*** ↘ 0.229 0.001*** ↗ 1.0 0.001*** ↗ 1.0
PU Vs. RIG 0.001*** ↗ 1.0 0.014* ↘ 0.001*** ↘ 1.0 1.0 0.462
PU Vs. IE 0.999 0.003*** ↘ 1.0 0.001*** ↗ 1.0 0.001*** ↗ 0.997
PU Vs. RIE 0.003*** ↗ 1.0 0.002*** ↘ 0.001*** ↘ 0.335 0.404 1.0
IG Vs. RIG 0.0*** ↗ 0.001*** ↗ 0.0*** ↘ 0.0*** ↘ 1.0 0.0*** ↘ 0.084
IG Vs. IE 1.0 1.0 0.002*** ↘ 1.0 1.0 0.915 1.0
IG Vs. RIE 0.0*** ↗ 0.001*** ↗ 0.0*** ↘ 0.0*** ↘ 1.0 0.001*** ↘ 0.378
RIG Vs. IE 0.001*** ↘ 0.011* ↘ 0.11 0.0*** ↗ 0.554 0.001*** ↗ 0.028* ↘
RIG Vs. RIE 1.0 1.0 1.0 1.0 1.0 1.0 1.0
IE Vs. RIE 0.001*** ↗ 0.006** ↗ 0.016* ↘ 0.0*** ↘ 0.751 0.0*** ↘ 0.047* ↗

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ microstate occurrence increases
↘ microstate occurrence decreases
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Figure 15: Error bars of microstate occurrence during rest (REST), problem understanding
(PU), idea generation (IG), rating idea generation (IE), idea evaluation (IE), and rating idea
evaluation (RIE). P-values between rest and other conditions are annotated by black dots
(p > 0.050), blue dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005).
P-values between conditions are annotated by * (p ≤ 0.050), ** (p ≤ 0.010), *** (p ≤
0.005).
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for RIG, 1.782 bits/sample (SE=0.017) for IE, and 1.595 bits/sample (SE=0.017) for RIE,

when considering the previous 6 microstate labels. The repeated measures ANOVA re-

vealed a significant effect CONDITION (F (3.237, 84.153) = 40.629, p = 0.000, η2 =

0.610). Post hoc paired t tests with Bonferroni correction as shown in Figure 16 indicated

that the entropy rate was higher during IG and IE compared to during REST, PU, RIG, and

RIE (ps < 0.001), while the entropy rate was higher during PU compared to during RIE

(p = 0.006).
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Figure 16: Error bars of entropy rate of microstate sequences during rest (REST), problem
understanding (PU), idea generation (IG), rating idea generation (IE), idea evaluation (IE),
and rating idea evaluation (RIE). P-values between rest and other conditions are annotated
by black dots (p > 0.050), blue dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red dots
(p ≤ 0.005). P-values between conditions are annotated by * (p ≤ 0.050), ** (p ≤ 0.010),
*** (p ≤ 0.005).

The first-peak latencies in milliseconds of AIF was 50 (SE=1.6) for REST, 36 (SE=1.1)

for PU, 42 (SE=1.6) for IG, 33 (SE=0.9) for RIG, 36 (SE=1.1) for IE, and 35 (SE=1.1) for

RIE, when time lags were considered up to 200 ms. Figure 17 shows the mean and 95%

confidence interval of AIF for each condition.

In addition, the Hurst exponent averaged from 35 partitions was 0.628 (SE=0.005) for
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Figure 17: The autoinformation function for each condition. The red line represents the
mean of autoinformation function across subjects for each condition, while the shaded area
represents 95% confidence interval for each condition.

REST, 0.628 (SE=0.004) for PU, 0.594 (SE=0.003) for IG, 0.637 (SE=0.005) for RIG,

0.604 (SE=0.003) for IE, and 0.644 (SE=0.005) for RIE. The repeated measures ANOVA

revealed a significant effect CONDITION (F (3.276, 85.182) = 24.696, p = 0.000, η2 =

0.487). Post hoc paired t tests with Bonferroni correction as shown in Figure 18 revealed

that the Hurst exponent was significantly lower during IG and IE compared to during REST,

PU, RIG, and RIE (ps < 0.041), while the Hurst exponent was significantly lower during

PU compared to during RIE (p = 0.025).

5.4 Discussion

Herein, we investigated the temporal dynamics of EEG-defined whole-brain neuronal

networks during the conceptual design process in a loosely controlled setting. First, the

loosely controlled setting simulated the natural design process to facilitate an ecologically

valid neurocognitive study. The experiment setting provides sufficient response time to
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Figure 18: Error bars of Hurst exponent of microstate sequences averaged from 35 parti-
tions during rest (REST), problem understanding (PU), idea generation (IG), rating idea
generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values between
rest and other conditions are annotated by black dots (p > 0.050), blue dots (p ≤ 0.050),
yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005). P-values between conditions are anno-
tated by * (p ≤ 0.050), ** (p ≤ 0.010), *** (p ≤ 0.005).

accommodate the flexibility and freedom necessary for participants to explore potentially

creative ideas. Simultaneously, the loosely controlled setting maintained certain degrees of

control over the experiment by dividing the experiment into three main sub-design activi-

ties, which are problem understanding (PU), idea generation (IG), and idea evaluation (IE).

NASA Task Load Index was added after IG and IE, namely rating idea generation (RIG)

and rating idea evaluation (RIE), to subjectively measure participants’ mental demand, time

demand, performance, effort, and stress level. Secondly, the TRP analysis revealed that IG

was associated with significant decreases in theta, alpha, and beta power, suggesting the

highest cognitive workload and lowest cognitive control. Finally, the EEG microstate anal-

ysis indicated that microstate class C was more prevalent during IG while IG was associated

with the shortest correlation times, supporting the lowest cognitive control in IG.
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How are different conceptual design activities associated with cognitive

workload?

The alpha band TRP analysis suggests differences among three groups of experimental

conditions, which are IG, IE, and PU/RIG/RIE. It was found that IG, IE, and PU/RIG/RIE

were associated with decreases in alpha power while the degrees of decreases in alpha

power were the largest over almost all sites during IG, followed by during IE and PU/RIG/RIE.

Decreased alpha power is considered as a reliable indicator of cognitive workload for eco-

logically valid tasks [193–195]. In addition, decreases in alpha power were associated with

task difficulty [156,196,197], semantic memory [155,198], and attention [199], when these

were manipulated to induce different levels of cognitive workload [200, 201]. These find-

ings indicated that the IG task triggered the highest cognitive workload, followed by IE and

PU/RIG/RIE.

Recent studies in the field of neurocognitive creativity demonstrated the functional role

of changes in alpha power. Some studies indicated that alpha power decreased from rest to

creativity-related tasks [39,142,156,160] while others reported that alpha power increased

from rest to creativity related tasks following a U-shaped curve [92, 134–136]. The former

is in line with the finding that a reduction of alpha power is associated with a more complex

and ill-defined problem, especially in ecologically valid settings where a higher cognitive

workload is triggered [39,156,195]. In more ecologically valid settings such as design, not

only functional but also performance factors need to be considered at the same time. The

more factors are considered, the more task-relevant information would be processed and

maintained in working memory. Such increased maintenance of task-relevant information

is associated with alpha desynchronization [202]. The latter demonstrates an inhibitory top-

down control process that inhibits task-irrelevant information to generate creative solutions

[203–205]. Therefore, IG would maintain the greatest amount of task-relevant information
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to generate solutions that meet design requirements, while IE would involve more task-

relevant information to make preferential evaluations.

Besides, the obtained NASA-TLX results indicated that mental demand, time demand,

effort, and stress decreased significantly from IG to IE, supporting the hypothesis that IG

would trigger the highest cognitive workload. The degrees of cognitive workload may

be affected by varying task difficulty and complexity, semantic process, and attention.

The higher cognitive workload is associated with ill-defined problems compared to well-

defined problems [156], as well as increases in task difficulty [196, 197]. Along the same

line, the degrees of ill-definedness and task difficulty are the highest during IG, the low-

est during PU/RIG/RIE, and at an intermediate level during IE. More specifically, par-

ticipants are confronted with the most well-defined problems during RIG and RIE, and

read/comprehend/decompose design requirements during PU. During IG, on the contrary,

participants are dealing with ill-defined problems, synthesising and evaluating knowledge

recursively to generate/detail/elaborate solutions, which in turn reformulate design require-

ments. IE is not as complex or ill-defined as IG, but is more complex than PU/RIG/RIE in

that participants apply the knowledge generated in PU and IG to judge the existing solutions

without pre-defined judging criteria/constraints. In sum, not only EEG but also behavioural

findings suggest that IG would be associated with the highest cognitive workload.

Indeed, cognitive workload and mental stress in conceptual design could be triggered

by uncertainty and recursivity, which are two fundamental characteristics of design. Uncer-

tainty inherits from ill-defined design statements and would last throughout the conceptual

design process due to recursivity. Incomplete and imprecise information collected from de-

sign statements may heighten the degrees of uncertainty and unpredictability, which could

be linked to mental stress such that Mental Stress = Perceived Workload / ((Knowledge +

Skills) * Affect) as defined in Nguyen and Zeng (2012) [58]. Designer’s affect could be
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very low when uncertainty becomes high, as Grupe and Nitschke (2013) stated that ‘un-

certainty diminishes how efficiently and effectively we can prepare for the future and thus

contributes to anxiety’ [206]. Consequently, the mental stress would increase and more

knowledge and skills are required to compensate for the decreasing affect in designer’s ef-

fort to complete the task. Such variations in designer’s mental stress, affect, knowldge, and

skills, indicate that cognitive workload may increase with increasing uncertainty, which is

supported by a meta-analysis of fMRI studies showing that the brain is more active under

conditions of uncertainty, compared to certainty [207]. From this viewpoint, participants

tend to experience the most uncertainty during IG whereas they are more certain about their

solutions during RIG/RIE. Therefore, the higher cognitive workload would be induced in

IG due to its greater degrees of uncertainty.

Furthermore, recursivity demonstrates continuous evolution during the conceptual de-

sign process in which goals, solutions, and knowledge evolve simultaneously [2, 32, 33].

The newly generated solutions will not only improve the designe’s understanding but also

help reformulate the design problem. The reformulated design problem will trigger the

designer to identify new knowledge to elaborate the previous solutions or regenerate dif-

ferent tentative solutions, which in turn updates the design problem. High cognitive work-

load would be triggered during such a recursive process as designers need to maintain

a large amount of multidimensional information and their relationships with goals, solu-

tions, and knowledge. IG seems to share the most features of the recursive design pro-

cess whereas PU/RIG/RIE share the most similarity with well-defined problem solving.

Therefore, higher cognitive workload would be induced during IG compared to IE and

PU/RIG/RIE.
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How are different conceptual design activities associated with cognitive

control?

The TRP analysis in theta and beta bands suggests differences among three groups of

experimental conditions, which are IG, IE, and PU/RIG/RIE. It was found that theta and

beta power increased over frontal sites from REST to PU/RIG/RIE and IE, whereas they

decreased over all sites from REST to IG. A comparison within design activities indicated

that theta and beta power increased significantly over almost all sites from IG to IE, and

PU/RIG/RIE, as well as from IE to PU/RIG/RIE, while theta and beta power did not show

significant differences over almost all sites in PU/RIG/RIE. Increased theta power over the

frontal sites has been viewed as a function of working memory and cognitive control. Gen-

erally, increased frontal theta activity has been interpreted as a need for increased cognitive

control in response to conflict [94, 208], encoding and retrieval of information from work-

ing memory [93, 127], while increased beta activity is associated with the maintenance of

intended status quo [209]. These findings indicated that IG, IE, PU/RIG/RIE triggered

cognitive control with the lowest to the highest intensities, respectively.

Higher cognitive control is beneficial to goal-directed contexts, whereas lower cognitive

control is helpful to learning and creative problem-solving contexts [192]. The heightened

cognitive control in the PU/RIG/RIE group may result from ignoring distractors in the

reading activity, which could improve reading speed and comprehension [210, 211]. Al-

ternatively, the increased cognitive control in the PU/RIG/RIE group may result from the

“structured” process, which could narrow the focus of attention on a well-defined target.

Besides, increases in theta power over frontal sites from IE and RIG/RIE to REST indi-

cated the involvement of more cognitive control during IE and RIG/RIE, which is in line

with increases in theta power being associated with heightened cognitive control during the

complex decision-making [186]. Interestingly, IE involved less cognitive control compared

90



to RIG/RIE due to the smaller increases in theta power, even if IE and RIG/RIE shared simi-

lar evaluative process. This difference in cognitive control may be ascribed to the properties

of evaluative criteria, such as abstractness and quantity. Riddle and colleagues reported that

a higher level of abstraction rules is linked to decreased beta amplitude while a larger num-

ber of rules is associated with increased theta amplitude [188]. Our analysis indicated the

same findings in that beta power decreased significantly over frontal, central, and temporal

sites from RIG/RIE to IE while theta power increased significantly over frontal, central,

and temporal sites from IE to RIG/RIE. Indeed, IE involved higher level of abstraction

rules compared to RIG/RIE in that participants needed to express their preferences with-

out an explicit criterion. IE could be categorized as internally guided decision-making

whereas RIG/RIE could be categorized as externally guided decision-making. The inter-

nally guided decision-making would involve less cognitive control compared to externally

guided decision-making [80]. These findings suggest that higher cognitive control results

from the heightened attention during more “structured” processes such as PU/RIG/RIE,

while less cognitive control results from internally oriented processes, such as IE.

Furthermore, the lowest cognitive control was associated with IG compared to IE and

PU/RIG/RIE. IG is typically viewed as a mixed process between self-generated and task-

initiated thoughts [192]. A study of the role of inhibition in creativity revealed that lower

cognitive control enhanced the frequency and originality of ideas [212]. In the same vein,

lower cognitive control may incubate a few critical activities, such as mind wandering [77]

and hypofrontality [213, 214], to improve creative performance. In addition, a study of

musical improvisation indicated that creative improvisation was characterized by a disso-

ciated pattern of activity in the prefrontal cortex [215]. Less activation in the prefrontal

cortex could reduce cognitive control, which may help participants overcome fixation or

associate objects that are semantically less similar to reinterpret the design problem [72].

In the same lines, neuroimaging studies indicated that creative idea generation is associated
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with activation of the DMN resulting from reduced cognitive control [38, 103]. However,

a recent study reported interactions between the DMN and the cognitive control network

underlying creativity [216], suggesting that the balance between the DMN and cognitive

control network may benefit flexible regulation for creative performance [175, 217]. Our

findings regarding decreased alpha and theta power in IG support the argument that IG

involves not only increased cognitive workload but also reduced cognitive control. Fur-

ther study is needed to shed light on the temporal dynamics of brain networks during the

conceptual design process.

How are different conceptual design activities associated with the range

of temporal correlations?

Our analysis of microstate parameters and temporal correlations within microstate se-

quences suggests differences between two groups of experimental conditions, IG and IE on

one side, and PU, RIG, RIE on the other side.

Summarizing the microstate parameters coverage, duration and occurrence, we found

a prevalence of microstate classes A and B during the conditions PU/RIG/RIE, whereas

microstate classes C and D were more prominent during REST, IG and IE. An increased

coverage and occurrence of classes C and D during rest is probably related to the fact

that their topography reflects the parieto-occipital dominance of resting-state alpha oscil-

lations. The relation with conditions IG and IE is less clear. One explanation is that all

design tasks involved visuo-spatial imagery, which would activate occipital (visual) and

parieto-occipital cortices. Combining EEG microstate analysis and source reconstruction,

microstate class C has been found to correlate with activity in the precuneus [141], which

is involved in visuospatial processing and introspection, both of which may play a role dur-

ing IG. In regard to cognitive control, the microstate literature has not reached a consensus

so far. As reviewed by Michel and Koenig [84], positive as well as negative correlations
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of microstate class C with cognitive control mechanisms have been reported. Assuming

that the RIG/RIE conditions correspond to a higher level of cognitive control, our results

suggest that microstate class C is negatively correlated with cognitive control, and that mi-

crostate classes A and B indicate more control. This interpretation would agree with the

results found in the studies of cognitive processes that microstate C reflects activity in the

DMN [178, 179].

The microstate classes (E,F,G) showed less pronounced differences between the exper-

imental conditions. Microstate class F was more prominent during IE, and microstate class

G was more pronounced during RIG/RIE.

The current literature on the relationship between individual microstate classes and

cognitive functions still contains open discussions [84]. Moreover, the assignment of to-

pographies obtained from clustering algorithms to specific microstate classes (A-G) can be

challenging, especially when more than four microstate classes are used. For this reason,

and hypothesizing that cognitive activities might be better captured by dynamic microstate

properties, we analyzed temporal correlations of microstate sequences and found marked

differences between our experimental conditions.

We analyzed temporal microstate correlations for short, intermediate and long time

scales, and observed the following patterns. Short- and long-range correlations, as mea-

sured by the finite entropy rate and Hurst exponents respectively, gave consistent results.

The finite entropy rate in IG and IE was significantly larger than in the PU/RIG/RIE group.

This indicates a faster decorrelation, or a lower predictability, in the former group. Thus,

a short sequence of IG/IE microstates (k = 6 samples in our case) encodes much less in-

formation about which network will activate next, compared to PU/RIE/RIG. A matching

observation was made via Hurst exponent analysis for time scales approximately 100 times

longer compared to the scale assessed by the entropy rate. Conditions IG and IE showed

Hurst exponents closer toH = 0.5, which indicates uncorrelated activity, and therefore less
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long-range correlated activity than found in the PU/RIG/RIE conditions. Taken together,

these findings suggest that functional brain networks, as measured by EEG microstates,

retain less memory about their previous trajectory during IG and IE.

In terms of our cognitive control hypothesis, we conclude that during problem under-

standing (PU) and rating (RIG,RIE) the brain exerts a stronger cognitive control over net-

work transitions, and that this control is reflected by a more deterministic brain state tra-

jectory, eventually producing a more predictable microstate sequence. During IG and IE,

the interplay of functional networks appears less restricted. Interpreting the microstate se-

quence as a process of stochastic transitions between functional brain networks, a larger

entropy rate means that the brain has more degrees of freedom in choosing the next net-

work configuration. In relation to the performed tasks, this less restricted mode of operation

might reflect the creativity component of the task, especially during IG, which shows the

maximum entropy rate and the lowest Hurst exponent. In our framework, the increasing

entropy rate is mediated by a relaxation of cognitive control mechanisms.

In this context, it is interesting to look at intermediate time scales, where oscillatory

brain activity becomes apparent. Microstate frequency analysis has been developed only

recently, where periodic microstate patterns linked to alpha oscillations were described dur-

ing the resting state [130]. Our AIF analysis (Figure 17) shows that the alpha frequency

linked microstate oscillations (time lag 100 ms) of the resting state are substituted by higher

frequencies as soon as the brain engages in the cognitive tasks. The conditions PU/RIG/RIE

show the highest microstate frequencies (AIF peaks at the lowest time lags), corresponding

to the lower beta frequency band around 14 Hz. These findings match the TRP analysis

where beta and theta frequencies appear during PU/RIG/RIE over bilateral fronto-temporal

areas. Likewise, TRP analysis for IG showed a decrease in theta and beta oscillatory ac-

tivity, explaining why the AIF during IG shows peaks at longer time lags, i.e. less beta

frequency contributions. As cognitive control mechanisms are known to be mediated by
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theta frequencies [93], we conclude that our cognitive control model is consistent not only

with the TRP results, but also with the temporal microstate analysis across all time scales.

The added value of microstate frequency analysis is that the identified frequencies indicate

periodic behaviour of entire large-scale brain networks, rather than analyzing oscillations

at the single sensor level. Our data suggest that cognitive control is associated with periodic

activity of large-scale networks in the beta frequency band.

Of note, entropy rates, Hurst exponents and AIF coefficients are independent of how

the microstate label assignment to the microstate maps is chosen. As seen in Figure 12, in

the case of seven microstate classes the assignment of the k-means output to the labels A-G

reported in the literature can be ambiguous. As the entropy-based quantities (entropy rate,

AIF) reported in this study would be the same for any label assignment, this methodology

adds further robustness to our results.

5.5 Conclusion

This present study was designed to investigate temporal dynamics of brain activity in

response to distinct design activities during the conceptual design process through a loosely

controlled setting. The loosely controlled setting simulated the natural design process to

facilitate an ecologically valid neurocognitive study, which offered sufficient response time

for participants to freely explore potentially creative solutions while maintaining certain

degrees of control through segmenting the conceptual design process into sub-design activ-

ities, including problem understanding, idea generation, rating idea generation, idea eval-

uation, and rating idea evaluation. Aligning our findings with those of other validated

evidence, the TRP analysis revealed that idea generation was associated with significant

decreases in theta, alpha, and beta power, suggesting the highest cognitive workload and

lowest cognitive control. In the same vein, the EEG microstate analysis indicated that mi-

crostate class C was more prominent during idea generation. Further temporal dynamics
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analysis found that idea generation was consistently associated with the shortest correla-

tion times, as measured by the finite entropy rate, AIF, and Hurst exponent. This finding

suggests that the interplay of functional brain networks is less restricted during idea genera-

tion, supporting the idea that the brain has more degrees of freedom during tasks involving

creativity. Taken together, we conclude that idea generation is associated with the high-

est cognitive workload and lowest cognitive control, consistently supported by TRP and

microstate analysis.
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Chapter 6

Capturing temporal dynamics of

network oscillations in design creativity

6.1 Introduction

The results in Chapter 5 indicated that cognitive activities in design creativity have

long-range temporal correlations. This study further investigates temporal dynamics of

network oscillations in design creativity through answering three questions: (i) can we

capture temporal dynamics of network oscillations in design creativity? (ii) how far can

we predict from current temporal dynamics of network oscillations in design creativity;

(iii) can we use temporal dynamics of network oscillations to classify different cognitive

activities in design creativity?

Gärtner and colleagues modeled EEG microstate sequences using a first-order Markov

chain in which the current microstate state depends on only one previous microstate state

[218]. The following studies applied the first-order microstate transition matrix to demon-

strate the temporal dynamics of microstates during rest [219,220] and cognitive processes,

such as mental calculation [178], self-reported/self-generated thoughts [177, 179]. How-

ever, Gschwind and colleagues challenged the approach of low-order Markov chain due to
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ignoring the long-range dependency [221].

Recurrent neural network (RNN) shows its own superiority in processing time series

or sequential data [222], which can be borrowed to implicitly model EEG microstate se-

quences. In RNN’s hidden state, the output from the previous time step is fed as input to

the current time step. This typical recurrent connection enables RNN to update the current

state based on past states and current input data. Hence, RNN performs well in capturing

temporal dynamics of sequential data, with the capability of memorizing previous informa-

tion. However, the standard RNN fails to explore long-term dependencies because of the

gradient vanishing problem [223]. Two improved versions of RNN, i.e., long-short term

memory (LSTM) [224] and gated recurrent unit (GRU) [225] are then proposed better to

analyze the temporal information of the input sequence.

LSTM has been shown to be capable of storing and accessing information over a very

long timespan by introducing a memory cell to control the previous information [226].

LSTM can update existing memory at each time step through three introduced gates: input

gate, forget gate, and output gate. These gates determine whether the input is significant

enough to remember, whether it should continue to keep or forget the value and whether

it should output the value, respectively. LSTM can migrate the gradient vanishing prob-

lem using explicit gating mechanisms and carry important information over a long-range.

Therefore, LSTM is widely used in a variety of tasks to capture potential long-term tempo-

ral dependencies [227–230].

GRU is recently proposed as a simpler alternative to the LSTM that can capture depen-

dencies of different time steps by modulating the information flow inside the unit. GRU

does not have memory cells and uses hidden states to transfer the long-term information di-

rectly with only two gates: reset gate and update gate. The simpler structure makes GRU’s

training process is faster than LSTM’s. However, it is difficult to conclude which types of

improved RNNs would perform better in general
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Therefore, this research will use LSTM and GRU to test (i) whether temporal dynamics

of network oscillations can be captured in design creativity by reconstructing EEG mi-

crostate sequences reproducibly; (ii) whether temporal dynamics of network oscillations

can be predicted in design creativity by lagging certain time points; (iii) whether differ-

ent cognitive activities can be classified in design creativity by considering their temporal

dynamics of network oscillations.

6.2 Method

Figure 19 shows the overview framework for reconstruction, predication, and classifi-

cation of EEG microstate sequences. The encoder and decoder were made up of the autoen-

coder architecture for two subtasks: the reconstruction and prediction of EEG microstate

sequences, while the encoder and classifier formed the framework for the classification

task.

Encoder

Reconstruction & Prediction

Classification
EEG Microstate

Sequence

AutoEncoder

Predicted
Label

Predicted 
Sequence

EEG Microstate
Sequence

Encoder

Decoder

Classifier

Figure 19: The overview of encoder-decoder architecture for reconstruction, prediction,
and classification of EEG microstate sequences.

99



6.2.1 Reconstruction of EEG microstate sequences

The goal of the reconstruction task was to approximate the output to the input as closely

as possible with a sequence-to-sequence (Seq2Seq) AE, which was divided into two main

parts as shown in Figure 20. At first, the encoding block, which comprised the one-hot

layer and encoder, transformed a variable-length EEG microstate sequence into a vector

representation that contained latent information of the input sequence. Then, the decoding

block, which consisted of the decoder and argmax operation, was followed to convert the

vector representation back to the original EEG microstate sequence.

A B E F <start><start>

Encoder

Input Microstate Sequence

Output Microstate Sequence

One-Hot
Layer

Decoder

One-Hot Encoding Unit LSTM Encoding Unit

LSTM Decoding Unit Linear Unit

Argmax Operation

B E FA

Argmax

Figure 20: The detail of encoder-decoder architecture along with LSTM network for re-
construction and prediction of EEG microstate sequences.

Encoding block

The encoding block included an one-hot layer and an encoder. The one-hot layer was

to convert EEG microstate sequences from categorical variables to numerical variables.

For instance, l = {l0, l2, · · · , lN} represents a EEG microstate sequence, in which l0 rep-

resents a start token while ln (n > 0) represents a categorical variable with one of EEG
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microstate classes from A to G. For each element in an EEG microstate sequence, An one-

hot layer was to map a categorical variable (A to G) to a numerical vector ((1, 0, · · · , 0, 0)

to (0, 0, · · · , 1, 0)), as well as a start token into a numerical vector (0, 0, · · · , 0, 1). The

obtained numerical microstate sequence x = {x0, · · · , xN} was then set as the input of the

encoder.

Next, the encoder was to extract latent representations of x, which contains information

of temporary dynamics of EEG microstate sequence. A LSTM and GRU networks were

implemented as the encoder to extract such information, respectively. The left parts in

Figure 20 shows the architecture of encoder containing of two-layer LSTM network as an

example. Equation 8 represents the inputs and outputs of encoder at each time step, where

h∗n is a hidden state at time step n for the *-th layer of LSTM network while c∗n is a cell

state at time step n for the *-th layer of LSTM network. Note that the initial hidden state

h0n and cell state c0n were set as zeros, which were default values generally.

(h1n, c
1
n) = EncoderLSTM1(xn, (h

1
n−1, c

1
n−1))

(h2n, c
2
n) = EncoderLSTM2(h1n, (h

2
n−1, c

2
n−1))

(8)

Once the final EEG microstate xN has been passed into the LSTM encoder, the (h1N , c
1
N)

and (h2N , c
2
N) are considered as the latent representations of the entire EEG microstate se-

quence.

Decoding block

The decoding block included a decoder and an argmax operation. The decoder was

to convert the extracted latent representations to an estimated numerical EEG microstate

sequence x′. The LSTM and GRU network was implemented as the decoder, respectively.

The right parts in Figure 20 shows the architecture of decoder containing of two-layer

LSTM network as an example. Equation 9 represents the inputs and outputs of decoder
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and argmax operation at each time step, where o2′n is an output at time step n for the second

layer of LSTM network while f(·) was to transfer the o2′n into the EEG microstate numer-

ical vector x′n+1. Note that the initial hidden and cell states of the decoder were the latent

representations that were extracted from the encoder. Finally, the reconstructed EEG mi-

crostate l′ was obtained by employing an argmax operation to estimate the label of the x′n

from the output layer at each time step.

o1
′

n , (h
1′

n , c
1′

n ) = DecoderLSTM1(x′n, (h
1′

n−1, c
1′

n−1))

o2
′

n , (h
2′

n , c
2′

n ) = DecoderLSTM2(h1
′

n , (h
2′

n−1, c
2′

n−1))

x′n+1 = f(o2
′

n )

(9)

6.2.2 Prediction of EEG microstate sequences

Prediction of EEG microstate sequences has the same architecture with reconstruction

of EEG microstate sequences, but with different inputs of the decoder. The input of encoder

was the EEG microstate sequence l while the input of decoder was the EEG microstate

sequence with k time steps lagging l̂ = {l0, lk+1, lk+2, · · · , lk+N} and the hidden and cell

states extracted from the encoder.

6.2.3 Classification of EEG microstate sequences

Researchers have proved that the alterations of temporal dynamics of EEG microstate

sequences are related to the disturbances of mental processes under neurological and psy-

chiatric conditions [229]. Based on these findings, our task in this section was to explore

whether the latent representation of EEG microstate sequence can be used as features in

the classification of cognitive activities in design creativity. As shown in the bottom part

of Figure 19, the classification framework can be divided into two main blocks: encoder

(feature extractor) and classifier. The details of each block are given as Figure 21, which
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will be described as following.

The encoder has been trained in the task of reconstruction of EEG microstate sequences

to extract the latent representations, which include temporary dynamics of EEG microstate

sequences. There were six independently trained encoders for EEG microstate sequences

collected from rest, problem understanding, idea generation, rating idea generation, idea

evaluation, and rating idea evaluation, which were named as EncoderRest, EncoderPu, En-

coderIG, EncoderRIG, EncoderIE, and EncoderRIE. The six encoders were used to encode

an EEG microstate sequence independently, which would output six independent vectors.

Such the six independent vectors would be concatenated to one vector as an input fea-

ture vector for a classifier. Next, different classifiers were used to distinguish EEG mi-

crostate sequences from different activities, which included naive Bayes (NB), support

vector machine (SVM), fully-connected neural network (FNN), and conventional neural

network (CNN).

Feature Extraction
Classifier

Encoder
 PU

Encoder 
IG

Encoder
RIG

Encoder 
RIE

Encoder
REST

Encoder 
IE

Input
Feature

Concatenation

CNN 
Layers

Output
 Layer

EEG Microstate
Sequence Predicted

Label

Figure 21: The detail of encoder-decoder architecture along with CNN network for classi-
fication of EEG microstate sequences.
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6.2.4 Network configuration

The encoder and decoder could be implemented by LSTM or GRU networks. The

details of LSTM network configuration would be described as follows while the GRU net-

work has similar configuration but without the cell state. The inputs of encoder included

three components: data, initial hidden and cell states. The data input had a dimension of

(frame_length, batch_size, feature_size), where frame_length represented the length of

frame of EEG microstate sequences; batch_size represented the number of frames in each

batch, that was 8; feature_size represented the number of EEG microstate classes adding

start token, that was 8. For the reconstruction and classification tasks, the frame length of

EEG microstate sequences varied among 100 ms, 200 ms, 400 ms, 800 ms. For the predica-

tion task, the frame length of EEG microstate sequences was 200 ms. The initial hidden and

cell states of encoder had the same dimensions of (layer_number, batch_size, hidden_size),

where layer_size represented the number of layers, that was 2; hidden_size represented the

number of features in the hidden state, that was 64. The inputs of decoder had the same

dimensions with encoder while the initial hidden and cell states of the decoder were the

final hidden and cell states of encoder.

In addition, two-layers CNN and a linear output layer constituted a CNN-based classi-

fier. The input of the first CNN layer has a dimension of (batch_size, in_channels, in_length),

where batch_size was 32; in_channels represented the number of channels in the input se-

quences, that was 6 obtained from the number of trained encoders; in_length represented

the length of input sequences, that was 64 obtained from trained encoder. The number of

channels of the first layer was 64. As such, the input dimension of the second CNN layer

was (32, 64, 64) while the output dimension was (32, 128, 64). The output of the second

CNN layer was flattened and then passed to the output layer whose input dimension and

output dimension were 64× 128 = 8192 and 6, respectively.
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6.2.5 Evaluation metrics on reconstruction, prediction, and classifica-

tion of EEG microstate sequences

The performance of the reconstruction and predication of EEG microstate sequences

was measured by accuracy in Eq. 10, for each condition and each participant. The overall

performance of the reconstruction and predication was measured by mean accuracy and its

standard error across conditions and participants.

Accuracy =
number of correctly predicted microstates

length of microstate sequence
, (10)

The performance of classification of EEG microstate sequences was measured by sen-

sitivity/recall, specificity, precision, and F-measure. Theses measures were typically used

in binary classification. Therefore, generalizations of these measures were needed in this

multiclass classification by dividing the multiclass classification into several binary classi-

fication [231]. The overall performance of the multiclass classification were measured by

mean accuracy and its standard error across conditions and participants. For each class, the

sensitivity/recall, specificity, precision, and F-measure are listed as follows:

Sensitivity =
TP

TP+FN
, (11)

Specificity =
TN

TN+FP
, (12)

Precision =
TP

TP+FP
, (13)

F-measure = 2 · precision · recall
precision+recall

, (14)

where TP is the number of true positive predictions; TN is the number of true negative

predictions; FP is number of false positive predictions; and FN is the number of false

negative predictions.

105



6.3 Results

6.3.1 Reconstruction of EEG microstate sequences

Table 12 shows accuracy results of reconstruction of EEG microstate sequences consid-

ering different frame length, overlap rate, RNN type, and tasks condition. The reconstruc-

tion accuracy was the most sensitive to the frame lengths. The frame lengths of 100 ms

and 200 ms resulted in significantly higher reconstruction accuracy compared to the frame

lengths of 400 ms and 800 ms. The 75% overlap rate between neighbouring frames resulted

in significantly higher reconstruction accuracy compared to the 50% and 0% overlap rate

between neighbouring frames. In most case, GRU performed well than LSTM in terms of

reconstruction accuracy.

For each task condition, the highest and lowest reconstruction accuracies were demon-

strated as follows. For REST, 99.65% reconstruction accuracy resulted from the frame

length of 100 ms, 75% overlap rate between neighbouring frames, and LSTM. 27.41% re-

construction accuracy resulted from the frame length of 800 ms, 0% overlap rate between

neighbouring frames, and GRU. For PU, 99.88% reconstruction accuracy resulted from

the frame length of 100 ms, 75% overlap rate between neighbouring frames, and LSTM.

31.99% reconstruction accuracy resulted from the frame length of 800 ms, 0% overlap

rate between neighbouring frames, and GRU. For IG, 99.99% reconstruction accuracy re-

sulted from the frame length of 100 ms, 75% overlap rate between neighbouring frames,

and LSTM. 38.85% reconstruction accuracy resulted from the frame length of 800 ms, 0%

overlap rate between neighbouring frames, and LSTM. For RIG, 99.87% reconstruction ac-

curacy resulted from the frame length of 100 ms, 75% overlap rate between neighbouring

frames, and GRU. 31.31% reconstruction accuracy resulted from the frame length of 800
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ms, 0% overlap rate between neighbouring frames, and GRU. For IE, 99.97% reconstruc-

tion accuracy resulted from the frame length of 100 ms, 75% overlap rate between neigh-

bouring frames, and GRU. 39.03% reconstruction accuracy resulted from the frame length

of 800 ms, 0% overlap rate between neighbouring frames, and LSTM. For RIE, 99.81% re-

construction accuracy resulted from the frame length of 100 ms, 75% overlap rate between

neighbouring frames, and GRU. 31.45% reconstruction accuracy resulted from the frame

length of 800 ms, 0% overlap rate between neighbouring frames, and GRU.

Generally, the reconstruction accuracy was higher for shorter frame lengths, larger over-

lap rate between neighbouring frames, and GRU. Once the frame lengths were larger than

200 ms, the reconstruction accuracy decreased significantly. Regardless of overlap rate and

RNN type, around 93% reconstruction accuracy were for shorter frame lengths of 100 ms

and 200 ms. A recent study of EEG microstate sequences revealed that around 90% re-

construction accuracy were for shorter frame lengths of 200 ms and 400 ms using LSTM

during rest [229]. This study also found that the reconstruction accuracy of random se-

quences were around 25% for frame lengths of 200 ms and 400 ms. These results indicated

that RNN techniques are capable of capturing the temporal dynamics of EEG microstate

sequences in design creativity.

Additionally, significantly low reconstruction accuracy for longer frame lengths of 400

ms and 800 ms corroborates the nonstationary nature of EEG signals in design creativity.

This approximation has a little bit different from previous studies that estimate the long-

range memory effects of EEG microstate sequences last up to 2000 ms during rest [180,

221, 229]. This difference may result from design creativity that involves complex and

high-order cognitive activities, such decision-making and incubation. Such complex and

high-order cognitive activities have less restrictions on brain networks, leading to rapid and

irregular changes of EEG microstate sequences.
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Table 12: Accuracy results for reconstruction of EEG microstate sequences considering
frame length, overlap rate, RNN type, and task condition. The results are presented as
Mean ± S.E. across subjects, while the best results are marked by bold font.

Frame
Length

Overlap
Rate

RNN
Type

Task Condition

REST PU IG RIG IE RIE AVG

100 ms

0 % LSTM 93.08±0.47 96.18±0.71 99.88±0.03 95.92±0.59 99.71±0.07 94.90±0.66 96.61±0.28
GRU 95.08±0.35 97.78±0.39 99.93±0.01 97.71±0.35 99.83±0.04 96.78±0.53 97.85±0.19

50 % LSTM 97.91±0.16 99.08±0.19 99.95±0.01 99.16±0.12 99.93±0.01 98.69±0.22 99.12±0.08
GRU 98.74±0.11 99.47±0.09 99.97±0.00 99.52±0.07 99.94±0.01 99.30±0.13 99.49±0.05

75 % LSTM 99.65±0.04 99.88±0.02 99.99±0.00 99.87±0.02 99.97±0.02 99.81±0.04 99.86±0.01
GRU 99.61±0.03 99.85±0.02 99.98±0.00 99.87±0.02 99.97±0.01 99.81±0.02 99.85±0.01

200 ms

0 % LSTM 71.79±1.27 77.66±1.21 92.38±1.13 79.11±0.84 87.19±1.28 78.73±0.89 81.14±0.70
GRU 75.88±0.89 78.82±1.76 94.20±0.87 77.66±1.17 92.63±0.77 74.42±1.31 82.27±0.79

50 % LSTM 80.82±1.21 82.42±1.22 92.84±1.05 82.01±0.93 90.55±1.15 81.33±1.11 84.99±0.59
GRU 84.53±0.90 87.76±1.11 97.91±0.30 84.89±1.00 96.64±0.46 83.87±1.02 89.27±0.57

75 % LSTM 86.65±0.95 88.11±1.23 95.00±0.78 86.91±1.06 92.96±0.96 85.99±0.83 89.27±0.48
GRU 92.16±0.53 92.99±0.83 98.96±0.14 92.47±0.87 98.29±0.26 91.98±0.68 94.47±0.34

400 ms

0 % LSTM 36.98±1.26 46.75±1.06 55.83±1.62 48.62±0.77 55.22±1.17 49.52±0.79 48.82±0.68
GRU 42.05±1.30 48.16±1.32 63.61±1.26 47.93±0.99 60.27±1.21 46.16±0.96 51.36±0.78

50 % LSTM 45.26±1.24 51.03±1.07 62.34±1.56 52.04±0.73 59.59±1.34 50.87±0.85 53.52±0.65
GRU 51.79±0.99 55.66±1.15 69.43±1.11 54.39±0.84 65.94±1.16 54.46±0.96 58.61±0.67

75 % LSTM 53.43±1.21 55.84±1.31 68.30±1.68 55.07±0.81 63.73±1.37 54.50±0.72 58.48±0.66
GRU 60.72±1.30 60.97±1.04 74.09±1.05 60.47±0.78 69.03±0.93 60.11±0.95 64.23±0.59

800 ms

0 % LSTM 28.00±0.99 35.73±0.65 38.85±0.88 37.47±0.64 39.34±0.82 36.92±0.54 36.05±0.43
GRU 27.41±1.06 31.99±0.83 41.59±0.75 31.31±0.76 40.11±0.74 31.45±0.61 33.98±0.52

50 % LSTM 28.45±1.06 34.36±0.78 38.85±1.05 35.77±0.56 39.02±0.81 35.03±0.68 35.24±0.44
GRU 31.68±1.30 36.75±0.91 44.46±0.84 36.48±0.76 43.16±0.88 35.88±0.75 38.07±0.51

75 % LSTM 32.51±1.15 37.89±0.98 42.56±0.90 37.66±0.67 42.40±0.80 37.10±0.68 38.35±0.44
GRU 33.49±1.39 38.62±0.72 45.63±0.83 37.87±0.74 43.93±0.74 36.53±0.83 39.34±0.49
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6.3.2 Prediction of EEG microstate sequences

Once temporal dynamics of EEG microstate sequences are captured with high recon-

struction accuracy for shorter frame lengths, it is worth to investigate how far we can predict

from a fixed frame length of EEG microstate sequences. The frame length of 200 ms was

used to predict the next 48 ms, 100 ms, and 200 ms through GRU under different condi-

tions, as shown in Table 13.

Under the frame length of 200 ms, the prediction accuracy was around 82% when pre-

dicting next 48 ms, around 67% when predicting next 100 ms, and around 39% when

predicting next 200 ms. These results indicated that predication accuracy was significantly

decreased when forecast lags beyond 100 ms. In addition, these results indicated that the

overlap rate between neighbouring frames is a key parameters to capture temporal dynam-

ics of EEG microstate sequences in that they may share more temporal information and

increase sample sizes.

Table 13: Accuracy results for prediction of EEG microstate sequences considering lag and
task condition. The results are presented as Mean ± S.E. across subjects, while the best
results are marked by bold font.

Lag Task Condition

REST PU IG RIG IE RIE AVG

48 ms 79.18±0.35 82.31±0.30 82.54±0.16 83.01±0.27 81.95±1.30 81.19±1.56 81.70±0.36
100 ms 62.44±0.38 67.67±0.42 63.72±0.37 70.20±0.34 65.78±0.47 70.37±0.38 66.70±0.29
200 ms 31.42±0.81 41.57±0.82 30.29±0.78 46.42±0.82 35.22±0.94 47.33±0.81 38.71±0.63

6.3.3 Classification of EEG microstate sequences

Sensitivity, specificity, precision, and F-measure were used to evaluate the classifier

performance under different parameters. Sensitivity (also known as recall) measures the

proportion of positive predictions, which can be used to evaluate the performance of a

classifier on instances of the positive classes.
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Table 14 shows the sensitivity results when various methods with different parameters

were used to classify cognitive activities in design creativity. For each task condition,

the highest and lowest sensitivity were demonstrated as follows. For REST, the highest

sensitivity was 51.20% using the frame length of 800 ms with the CNN-based classifier

while the lowest sensitivity was 1.70% using the frame length of 100 ms with the SVM-

based classifier. For PU, the highest sensitivity was 82.75% using the frame length of 800

ms with the CNN-based classifier while the lowest sensitivity was 2.48% using the frame

length of 100 ms with the SVM-based classifier. For IG, the highest sensitivity was 96.86%

using the frame length of 800 ms with the CNN-based classifier while the lowest sensitivity

was 24.80% using the frame length of 100 ms with the NB-based classifier. For RIG, the

highest sensitivity was 93.16% using the frame length of 800 ms with the CNN-based

classifier while the lowest sensitivity was 3.21% using the frame length of 100 ms with the

SVM-based classifier. For IE, the highest sensitivity was 93.16% using the frame length of

800 ms with the CNN-based classifier while the lowest sensitivity was 28.20% using the

frame length of 100 ms with the NB-based classifier. For RIE, the highest sensitivity was

93.66% using the frame length of 800 ms with the CNN-based classifier while the lowest

sensitivity was 2.47% using the frame length of 100 ms with the SVM-based classifier.

Therefore, these results indicated a clear trend of increasing sensitivity with increasing

frame lengths no matter what kinds of algorithms were used. This trending implies the

long-range correlations of network oscillations in design creativity. In addition, the CNN-

based classifier has good performance than other classifiers for the longer frame lengths.

This may result from the conventional structure in CNN that can capture the correlations in

the time and spatial spaces.

Specificity is used to evaluate the performance of a classifier on instances of the neg-

ative classes. Table 15 shows the specificity results when various methods with different

parameters were used to classify cognitive activities in design creativity. Generally, these
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Table 14: Sensitivity and recall results for classification of EEG microstate sequences con-
sidering frame length and method. The results are presented as Mean ± S.E. across sub-
jects, while the best results are marked by bold font.

Frame
Length Method Task Condition

REST PU IG RIG IE RIE AVG

100 ms

NB 38.89±3.61 20.72±2.31 24.80±1.97 26.40±2.87 28.20±3.11 26.22±2.87 27.54±1.22
SVM 1.70±0.90 2.48±0.85 82.73±3.06 3.21±1.20 35.24±4.20 2.47±0.95 21.30±2.53
FNN 4.40±1.71 12.82±2.55 85.60±2.78 22.96±4.04 58.87±4.12 19.18±3.63 33.97±2.61
CNN 4.86±1.10 13.23±2.14 89.07±2.72 20.80±3.51 46.40±4.77 17.02±2.99 31.90±2.57

200 ms

NB 41.61±3.54 22.18±2.37 28.73±2.28 28.98±2.82 31.25±3.21 29.70±3.01 30.41±1.25
SVM 4.00±1.74 4.60±1.37 83.28±2.68 6.31±1.65 40.02±4.25 4.81±1.53 23.84±2.52
FNN 18.27±3.52 39.48±5.49 92.57±1.37 54.06±6.29 71.90±4.64 49.64±6.52 54.32±2.72
CNN 22.37±3.01 44.47±4.56 91.38±1.61 55.99±5.75 68.38±4.32 52.27±5.62 55.81±2.43

400 ms

NB 47.20±3.51 26.16±2.27 36.17±2.32 34.60±3.27 35.60±3.25 31.45±2.64 35.20±1.27
SVM 13.97±3.28 9.80±2.02 84.43±2.38 15.08±2.78 48.34±4.43 11.08±2.30 30.45±2.48
FNN 39.55±4.94 63.92±5.94 94.84±1.09 70.81±5.57 83.87±3.93 69.32±5.76 70.38±2.37
CNN 47.91±3.46 75.81±3.33 94.94±0.72 87.07±1.85 90.85±1.47 87.90±2.07 80.75±1.57

800 ms

NB 47.84±4.17 28.45±2.97 40.96±2.77 35.84±2.96 40.77±3.57 36.38±2.65 38.37±1.38
SVM 20.16±4.24 19.92±3.07 85.81±2.06 28.37±3.78 57.14±4.34 22.61±3.53 39.00±2.41
FNN 29.37±4.96 57.18±5.85 95.45±1.15 65.66±5.99 80.13±4.31 63.36±5.11 65.19±2.52
CNN 51.20±3.97 82.75±2.60 96.86±0.35 93.67±0.81 93.16±1.58 93.66±0.55 85.22±1.50

results indicated relatively high specificity regardless of different classifiers and parame-

ters. The averaged specificity were around 93%.

For each task condition, the highest and lowest specificity were demonstrated as fol-

lows. For REST, the highest specificity was 99.88% using the frame length of 100 ms with

the SVM-based classifier while the lowest specificity was 82.26% using the frame length

of 100 ms with the NB-based classifier. For PU, the highest specificity was 99.38% using

the frame length of 100 ms with the SVM-based classifier while the lowest specificity was

88.26% using the frame length of 100 ms with the NB-based classifier. For IG, the highest

specificity was 92.78% using the frame length of 800 ms with the CNN-based classifier

while the lowest specificity was 32.44% using the frame length of 100 ms with the SVM-

based classifier. For RIG, the highest specificity was 99.55% using the frame length of 100

ms with the SVM-based classifier while the lowest sensitivity was 86.84% using the frame

length of 100 ms with the NB-based classifier. For IE, the highest specificity was 97.30%

using the frame length of 800 ms with the CNN-based classifier while the lowest specificity

was 81.50% using the frame length of 200 ms with the SVM-based classifier. For RIE, the

111



highest specificity was 99.74% using the frame length of 100 ms with the SVM-based clas-

sifier while the lowest specificity was 86.07% using the frame length of 200 ms with the

NB-based classifier.

Table 15: Specificity results for classification of EEG microstate sequences considering
frame length and method. The results are presented as Mean ± S.E. across subjects, while
the best results are marked by bold font.

Frame
Length Method Task Condition

REST PU IG RIG IE RIE AVG

100 ms

NB 82.26±1.62 88.26±1.16 83.67±1.19 86.84±1.26 82.84±1.57 86.20±1.62 85.01±0.60
SVM 99.88±0.07 99.38±0.27 32.44±4.05 99.55±0.22 81.22±3.08 99.74±0.11 85.37±2.11
FNN 99.81±0.07 98.50±0.36 55.83±3.85 98.74±0.21 83.07±2.94 98.87±0.27 89.14±1.49
CNN 99.69±0.07 98.63±0.37 44.70±4.69 98.79±0.25 87.40±2.67 99.27±0.14 88.08±1.80

200 ms

NB 84.52±1.35 89.24±0.94 83.21±1.27 87.47±1.06 82.83±1.37 86.07±1.77 85.56±0.56
SVM 99.80±0.11 99.08±0.33 37.67±3.97 99.34±0.23 81.50±2.71 99.57±0.14 86.16±1.95
FNN 99.60±0.07 98.31±0.36 71.72±4.31 98.50±0.24 90.85±1.79 98.76±0.21 92.96±1.10
CNN 99.15±0.21 97.83±0.48 70.40±4.22 98.49±0.19 91.78±1.38 99.05±0.13 92.78±1.10

400 ms

NB 85.92±1.31 89.53±0.96 81.83±0.97 88.12±1.06 84.47±1.28 89.30±1.02 86.53±0.50
SVM 99.64±0.14 98.58±0.42 46.98±3.93 98.83±0.26 83.22±2.30 99.17±0.18 87.74±1.68
FNN 99.57±0.07 98.49±0.49 83.03±3.81 99.24±0.10 94.63±1.05 99.30±0.11 95.71±0.80
CNN 99.49±0.07 98.77±0.25 90.81±1.30 99.36±0.10 95.92±0.58 99.26±0.14 97.27±0.34

800 ms

NB 86.35±1.11 90.40±0.98 82.50±1.14 90.62±0.87 84.99±1.23 89.39±1.06 87.38±0.49
SVM 99.66±0.10 98.17±0.46 57.27±3.66 98.37±0.26 85.36±1.90 98.79±0.20 89.61±1.38
FNN 99.70±0.05 98.66±0.24 78.43±3.83 99.13±0.12 94.40±1.28 99.28±0.12 94.93±0.89
CNN 99.58±0.07 99.20±0.15 92.78±1.09 99.47±0.08 97.30±0.32 99.60±0.04 97.99±0.27

Precision measures the proportion of which positive predictions are correct. Table 16

shows the precision results when various methods with different parameters were used to

classify cognitive activities in design creativity. These results indicated that a clear trend of

increasing precision with increasing frame lengths no matter what kinds of algorithms are

using. These findings are in line with the trend of sensitivity.

For each task condition, the highest and lowest precision were demonstrated as fol-

lows. For REST, the highest precision was 84.66% using the frame length of 800 ms with

the CNN-based classifier while the lowest precision was 7.50% using the frame length of

100 ms with the SVM-based classifier. For PU, the highest precision was 91.27% using

the frame length of 800 ms with the CNN-based classifier while the lowest precision was
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12.99% using the frame length of 100 ms with the SVM-based classifier. For IG, the high-

est precision was 93.02% using the frame length of 800 ms with the CNN-based classifier

while the lowest precision was 52.91% using the frame length of 100 ms with the SVM-

based classifier. For RIG, the highest precision was 92.90% using the frame length of 800

ms with the CNN-based classifier while the lowest precision was 11.75% using the frame

length of 100 ms with the NB-based classifier. For IE, the highest precision was 92.90%

using the frame length of 800 ms with the CNN-based classifier while the lowest preci-

sion was 36.89% using the frame length of 100 ms with the NB-based classifier. For RIE,

the highest precision was 92.88% using the frame length of 800 ms with the CNN-based

classifier while the lowest precision was 9.96% using the frame length of 100 ms with the

NB-based classifier.

Table 16: Precision results for classification of EEG microstate sequences considering
frame length and method. The results are presented as Mean ± S.E. across subjects, while
the best results are marked by bold font.

Frame
Length Method Task Condition

REST PU IG RIG IE RIE AVG

100 ms

NB 9.17±0.70 12.99±1.13 56.77±1.99 11.75±0.73 36.89±1.93 9.96±0.61 22.92±1.51
SVM 7.50±3.33 22.36±3.76 52.91±1.66 23.39±3.51 41.23±3.04 25.15±4.20 28.76±1.77
FNN 40.10±5.78 45.55±2.39 65.08±1.72 50.82±2.06 61.74±2.54 48.93±2.48 52.04±1.44
CNN 42.67±3.83 53.95±2.02 60.94±1.52 57.34±2.41 64.99±1.99 56.19±2.86 56.01±1.16

200 ms

NB 11.08±0.82 14.60±1.28 59.50±2.03 13.15±0.81 39.29±2.08 11.59±0.75 24.87±1.55
SVM 34.44±7.00 35.15±4.27 55.25±1.65 31.37±3.62 46.68±2.17 32.49±3.38 39.23±1.77
FNN 60.00±4.30 63.94±3.39 77.01±2.37 67.87±3.40 76.98±2.62 63.66±3.93 68.24±1.46
CNN 59.94±3.20 67.20±2.60 75.86±2.24 70.37±2.17 77.80±1.96 73.67±2.63 70.81±1.11

400 ms

NB 13.56±1.06 17.69±1.52 62.95±2.20 16.13±1.05 45.33±2.56 14.88±1.04 28.42±1.64
SVM 57.51±5.49 41.54±3.97 59.90±1.76 38.65±3.46 53.90±2.44 40.11±2.79 48.60±1.58
FNN 78.26±2.94 78.48±2.84 85.86±2.38 82.38±2.83 86.35±1.92 81.98±2.67 82.22±1.08
CNN 78.27±3.16 86.42±1.50 90.63±1.16 90.71±1.16 90.18±0.99 88.40±1.42 87.44±0.77

800 ms

NB 14.81±2.00 20.01±2.08 66.75±2.31 20.78±1.60 49.36±2.89 17.85±1.53 31.59±1.75
SVM 67.50±4.84 55.35±3.17 65.71±1.82 54.31±2.38 61.00±2.61 56.17±2.75 60.01±1.30
FNN 74.98±3.29 75.65±3.02 83.07±2.08 80.35±2.67 85.75±2.19 81.58±2.90 80.23±1.14
CNN 84.66±1.71 91.27±0.87 93.02±0.82 92.90±0.79 92.90±0.81 92.88±0.69 91.27±0.47

Table 17 shows the F-measure results when various methods with different parameters

were used to classify cognitive activities in design creativity. Generally, these results in-

dicated relatively higher F-measure for the longer frame lengths of 400 ms and 800 ms.
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For REST, the highest F-measure was 61.31% using the frame length of 800 ms with the

CNN-based classifier while the lowest F-measure was 2.64% using the frame length of 100

ms with the SVM-based classifier. For PU, the highest F-measure was 61.31% using the

frame length of 800 ms with the CNN-based classifier while the lowest F-measure was

2.64% using the frame length of 100 ms with the SVM-based classifier. For IG, the highest

F-measure was 86.01% using the frame length of 800 ms with the CNN-based classifier

while the lowest F-measure was 3.97% using the frame length of 100 ms with the SVM-

based classifier. For RIG, the highest F-measure was 94.83% using the frame length of

800 ms with the CNN-based classifier while the lowest F-measure was 33.20% using the

frame length of 100 ms with the NB-based classifier. For IE, the highest F-measure was

92.29% using the frame length of 800 ms with the CNN-based classifier while the lowest

F-measure was 4.79% using the frame length of 100 ms with the SVM-based classifier. For

RIE, the highest F-measure was 93.22% using the frame length of 800 ms with the CNN-

based classifier while the lowest F-measure was 3.82% using the frame length of 100 ms

with the SVM-based classifier.

In sum, the classification performance heavily depended on the frame lengths no matter

what kinds of algorithms were used. The longer frame lengths of 400 ms and 800 ms

resulted in higher classification accuracy compared to the shorter frame lengths of 100 ms

and 200 ms. This observation suggested long-range temporal correlations underlying EEG

microstate sequences in design creativity.

6.4 Conclusion

To conclude, we show that temporal dynamics of network oscillations in design creativ-

ity can be captured by LSTM and GRU; the frame length of 200 ms can predict the next 48

ms and 100 ms with around 75% predication accuracy; the captured temporal dynamics of
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Table 17: F-measure results for classification of EEG microstate sequences considering
frame length and method. The results are presented as Mean ± S.E. across subjects, while
the best results are marked by bold font.

Frame
Length Method Task Condition

REST PU IG RIG IE RIE AVG

100 ms

NB 13.74±1.07 14.40±1.18 33.20±1.99 14.44±1.05 30.15±2.58 12.80±1.09 19.79±0.93
SVM 2.64±1.37 3.97±1.28 64.23±2.07 4.79±1.54 35.69±3.61 3.82±1.36 19.19±2.01
FNN 6.69±2.37 17.72±2.76 73.35±1.93 28.25±4.04 57.88±3.13 24.22±3.74 34.68±2.21
CNN 8.12±1.70 19.37±2.61 71.77±1.75 26.78±3.61 49.44±3.64 23.52±3.42 33.17±2.04

200 ms

NB 16.28±1.13 16.30±1.38 36.99±2.38 16.61±1.10 33.20±2.63 14.98±1.19 22.39±1.00
SVM 5.74±2.37 6.93±1.86 66.19±1.92 9.30±2.08 40.12±3.79 7.08±1.95 22.56±2.05
FNN 25.30±4.07 45.31±5.34 83.62±1.72 56.07±5.80 71.99±4.09 52.44±6.00 55.79±2.40
CNN 29.87±3.37 50.75±4.33 82.44±1.71 58.79±4.94 70.73±3.46 57.76±5.13 58.39±2.06

400 ms

NB 20.06±1.41 20.06±1.57 44.64±2.22 20.52±1.30 38.24±2.84 19.21±1.43 27.12±1.11
SVM 19.51±3.95 14.12±2.47 69.86±1.88 19.93±3.08 48.32±4.02 15.31±2.59 31.17±2.06
FNN 48.49±5.03 67.49±5.42 89.64±1.70 74.15±4.87 83.99±3.20 72.66±5.04 72.74±2.05
CNN 57.99±3.38 79.89±2.45 92.66±0.85 88.68±1.39 90.39±1.11 87.90±1.61 82.92±1.23

800 ms

NB 19.86±1.68 22.01±2.19 49.44±2.57 25.09±1.84 43.15±3.24 22.82±1.65 30.40±1.28
SVM 26.73±4.93 26.36±3.35 74.25±1.81 33.67±3.73 57.08±3.92 28.15±3.42 41.04±2.05
FNN 38.15±5.28 62.42±5.12 88.47±1.48 68.86±5.23 81.12±3.77 69.20±4.36 68.04±2.17
CNN 61.31±3.54 86.01±1.62 94.83±0.45 93.18±0.56 92.79±1.06 93.22±0.47 86.89±1.15

network oscillations can be used to classify different cognitive activities in design creativ-

ity. EEG microstate sequences can be reconstructed for frame lengths of 100 ms and 200

ms but the reconstruction accuracy decreases significantly for longer frame lengths. This

observation supports that EEG microstate sequences are nonstationary. In addition, the re-

sults of classification accuracy show a trend of increasing accuracy with increasing frame

lengths for the same classifiers during the design process. However, the results across clas-

sifiers will be discussed in the future work. These results stress the long-range correlations

in charactering network oscillations in design creativity.
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Chapter 7

Conclusion and future work

7.1 Conclusion

This research investigated neurocognition in design creativity by EEG microstate anal-

ysis under loosely controlled experiments. The loosely controlled experiments can trigger

some critical characteristics of design creativity, such as incubation and mind wandering.

The loosely controlled experiments provide sufficient time for participants to generate and

evaluate solutions freely. Some solutions may be creative, while others may be inconclu-

sive. In addition, the thinking and sketching are integrated into one phase to avoid any

interruption or interference. At the same time, the loosely controlled experiments maintain

certain degrees of control.

However, such loosely controlled experiments would increase data analysis difficulties

since the EEG signals are unstructured, and the causal relationships between a stimulus and

its response are complex and hidden. Meanwhile, the simulated design creativity would

activate the large-scale brain networks to support complex and complicate cognitions.

This research addressed these difficulties of data analysis approaches. Firstly, this re-

search tested the effectiveness of loosely controlled experiments by comparing its findings

on phenomena that have been effectively studied by validated experimental research. It
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was found that idea generation and idea evolution were associated with decreases in alpha

power, while the decreases were significantly larger during idea generation compared to

idea evolution. It was also found that problem understanding, rating idea generation, and

rating idea evaluation were associated with increases in theta and beta power while the in-

creases were largest during problem understanding. These findings are in line with those

from visual creativity and higher-order cognition research based on ERD/ERS and TRP. In

addition, these findings suggest that idea generation is associated with the lowest cognitive

control and highest cognitive workload.

Secondly, EEG microstate analysis was applied to structure and segment the unstruc-

tured EEG signals collected from the loosely controlled experiments in design creativity.

Each microstate class was associated with EEG-defined large-scale brain networks, such as

the default mode network and cognitive control network. It was found that microstate class

C was more prominent during idea generation, while microstate class F was more prevalent

during idea evolution. Further temporal dynamics analysis found that idea generation was

consistently associated with the shortest correlation times, as measured by the finite en-

tropy rate, AIF, and Hurst exponent. These findings suggest that the interplay of functional

brain networks is less restricted during idea generation, supporting the idea that the brain

has more degrees of freedom during tasks involving creativity.

Thirdly, RNN techniques with the autoencoder framework were used to capture tem-

poral dynamics of network oscillations in design creativity. Around 94% reconstruction

accuracy of frame lengths of 100 ms and 200 ms corroborated that RNN techniques are

capable of capturing temporal dynamics of network oscillations in design creativity. The

reconstruction accuracy decreased significantly when frame lengths of EEG microstate se-

quences were 400 ms and 800 ms. Besides, the CNN-based classifier with encoded EEG

microstate sequences has a good performance on multitask classification, including rest,

problem understanding, idea generation, rating idea generation, idea evaluation, and rating
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idea evaluation. The F-measure of CNN-based classifier was around 83% and 87% for

frame lengths of 400 ms and 800 ms, respectively. These findings support that EEG signals

are nonstationary. Also, these findings suggest that RNN techniques with the autoencoder

framework are capable of capturing temporal dynamics of network oscillations, which can

be further used to classify cognitive activities in design creativity.

In sum, the loosely controlled experiment supported by EEG microstate analysis ap-

pears to offer an effective approach to facilitating an ecologically valid neurocognitive

study. In addition, this research is able to help design researchers to establish neurocog-

nitive mechanisms during the design process. This neurocognitive mechanisms may help

designers to improve their creativity and productivity through brainwave entrainment and

identifying implementation barriers [232].

7.2 Limitations and future directions

A few limitations of the current study need to be addressed in the future. First, the

objective of this research is to understand the brain activities in design creativity. We did not

take into account participants’ behaviour data except for NASA-LTX, since some aspects

of behaviour analysis heavily rely on subjective criteria. For instance, evaluating design

solutions depends on experts’ knowledge and experience, as well as sample size. Future

studies should consider how to analyse participants’ behaviour data in an objective manner

and relate them to neurocognitive data.

Second, the aim of EEG microstate analysis is to infer the activity of functional brain

networks from characteristic EEG topographic patterns. As the EEG signal is affected

by volume conduction, tissue-dependent signal filtering, and discrete sampling via an elec-

trode array, the relationship between microstates and functional networks is not one-to-one.

Thus, functionally different networks may be represented by only one microstate map. To
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further clarify the networks involved in design creativity execution, future studies may ben-

efit from methods such as high-density EEG combined with source localization, or func-

tional MR imaging approaches, although the latter imposes restrictions on the experimental

setting.
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