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Abstract

Generative Models Based on the Bounded Asymmetric Gaussian Distribution

Zixiang Xian

The bounded asymmetric Gaussian mixture model (BAGMM) has proved that it generally per-

forms better than the classical Gaussian mixture model. In this thesis, we investigate the learning

of the BAGMM. Indeed, we propose an Expectation-Maximization (EM) algorithm to estimate

the model parameters. A model selection criterion for BAGMM using minimum message length

(MML) is proposed to determine the optimal number of clusters. The MML is shown to perform

better than other model selection criteria.

In this thesis, we additionally propose an unsupervised feature selection framework using BAGMM

to determine the structure of high dimensional data without knowing in advance the number of clus-

ters nor the importance of the involved features. The validation for this framework involves several

human-related recognition challenges, such as human activity categorization and human gender

recognition.

Finally, we integrate the BAGMM into a hidden Markov model (HMM) framework, which uses

BAGMM to model the emission probability distribution. The BAGMM-based HMM is evaluated

with several real-world applications and compared with other Gaussian mixture-based HMMs.
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Chapter 1

Introduction

1.1 Introduction

Finite mixture models [1, 2] are widely applied in a wide range of applications for pattern recog-

nition, statistical inference, data mining and information retrieval because of their sound mathemat-

ical basis as an unsupervised learning approach. Mixture models are used for data clustering and

Gaussian mixture model (GMM) is a well-known Bayesian learning method widely used in many

applications. However, Gaussian distribution is symmetric and sensitive to outliers. In real life, data

can be asymmetric. Hence, in order to improve the robustness of existing learning approaches and

improve their modeling capabilities for asymmetric data, the asymmetric Gaussian mixture model

(AGMM) has been proposed in [3]. On the other hand, the mixture of generalized Gaussian distri-

butions (GGD) [4, 5, 6, 7, 8, 9, 10, 11] was proposed to overcome the drawback of GMM’s rigidity

in terms of shape and has been applied to many real applications [12, 13, 14, 15, 16]. Neverthe-

less, data lie in a bounded support range in many real applications, whereas algorithms to model

these datasets have an unbounded support range. So the bounded support Gaussian mixture model

(BGMM) was proposed in [17, 18, 19] to better model real-world data. Several bounded support

mixtures have been proposed so far to improve the modeling capabilities of these algorithms for

clustering [20, 21, 22]. Bounded asymmetric Gaussian mixture model (BAGMM) has been pro-

posed in [23] and successfully applied to several applications. Our work is based on the BAGMM,

which has been proven to perform better than the AGMM in clustering tasks [23] due to its bounded

1



support and non-symmetric nature.

1.1.1 Model Selection Criterion for BAGMM

The most general approach for parameter estimation in mixture models is based on maximiz-

ing the log-likelihood function efficiently through the Expectation-Maximization (EM) framework

[24, 25, 26, 27] but an essential part of modeling is to determine the optimal number of clusters. In

general, there are many ways to achieve this by either deterministic or stochastic ways. The general

stochastic approach uses Markov Chain Monte Carlo (MCMC) methods to either implement the

model selection criteria [28] or implement the fully Bayesian inference by approximating the pos-

terior distribution to find the optimal number of clusters. In this thesis, we focus on deterministic

approaches and propose a model selection criterion for BAGMM using minimum message length

(MML) [4, 3]. We also validate our proposed MML on synthetic and real-world datasets by com-

paring it with other model selection criteria, including Akaike’s information criterion (AIC) [29],

the Schwarz’s Bayesian information criterion (BIC) [30], Consistent AIC (CAIC) [31], minimum

description length (MDL) [32], the mixture minimum description length (MMDL) [33] and the

Laplace empirical criterion (LEC) [34].

1.1.2 Feature Selection Using BAGMM

Modern computer vision applications generate high-dimensional vectors which are challenging

to model [35]. In theory, the more features we have to represent a given object, the better per-

formance we obtain for mixture-based modeling. However, in many cases, irrelevant features can

compromise the effectiveness of clustering and increase computational complexity. Hence, irrele-

vant features should be given small weights or even discarded. Selecting a relevant feature space

is generally known as feature selection and sometimes also called variable selection or subset se-

lection. Although feature selection has been mainly discussed in the context of supervised learning

[36], there also have been some unsupervised feature selection techniques and some of them have

been proposed in the context of mixture models (see, for instance, [37, 38, 39, 40]). This thesis

investigates the effectiveness of feature selection using BAGMM (BAGMM-FS) in several human

related recognition challenging tasks such as human action recognition and gender recognition. The

2



learning of the parameters is performed using MML and the resulting model is compared with other

well-known mixture models using various clustering metrics.

1.1.3 BAGMM Integration into the HMM framework

Statistical methods of Markov source, known as hidden Markov modeling, were initially in-

troduced and studied in the late 1960s and early 1970s since Baum and his colleagues published

a theory about estimating HMM parameters given a training observation sequence via the maxi-

mum likelihood (ML) method [41, 42, 43, 44]. The fundamental motivation behind the adoption

of HMMs is to characterize real-world signals regarding the signal models, which may help us en-

hance signals by removing noise and transmission distortion, and to learn the details about the signal

source without having to have the source available via simulations [45]. Besides, they have been

proved to be very practical while dealing with non-observable data over a time interval to disclose

the future values or reveal the latent variables. Although there are some research works that tend

to improve the HMM structure by tuning the initialization step in the context of parameters setting

[46, 47], the training process of HMM remains the identical regulated form via the Expectation-

Maximization algorithm [48]. However, in most cases, the choice of emission probability distribu-

tions is less discussed and adopted by Gaussian mixture models (GMM) by default, often because

of mathematical and practical convenience and strong assumption of a common pattern for real data

[49]. However, this strong assumption is potentially insufficient to achieve the best modeling per-

formance, as discussed in Section 1.1, while BAGMM can overcome the drawbacks of assuming

symmetric unbounded data. For this reason, we propose to explore and evaluate the performance of

HMM by adopting BAGMM as emission probability distribution and compare it with the Gaussian

mixture model-based HMM (GMM-HMM) and other Gaussian-based generalizations. The details

on the parameters learning process of the proposed model, including the parameters setting, i.e., the

number of hidden states and mixture components, but also the performance, will be discussed in

this thesis.

3



1.2 Contributions

The contributions of this thesis are as follows:

� Model Selection Criterion for Multivariate Bounded Asymmetric Gaussian Mixture

Model

We propose model selection criterion for bounded support asymmetric Gaussian mixture

model (BAGMM) using minimum message length (MML). The proposed approach is ap-

plied to several sets of synthetic data, real data and occupancy detection. The results of

model selection and clustering are compared with other model selection criteria and asym-

metric Gaussian mixture model (AGMM). This contribution has been accepted by the 29th

European Signal Processing Conference, EUSIPCO 2021 [50].

� Statistical Modeling Using Bounded Asymmetric Gaussian Mixtures: Application to

Human Action and Gender Recognition

To determine the structure of high dimensional data without knowing the number of clusters

nor the importance of the involved features, we propose an unsupervised feature selection

framework using the bounded asymmetric Gaussian mixture model (BAGMM-FS). The eval-

uations involved several human-related recognition challenges. This work has been accepted

by the IEEE 22nd International Conference on Information Reuse and Integration for Data

Science [51].

� Bounded asymmetric Gaussian mixture-based hidden Markov models

We first introduce a complete derivation of the equations for integrating the bounded asym-

metric Gaussian mixture into the HMM framework and apply this innovative HMM frame-

work to real-world applications while comparing it with traditional HMM and Gaussian

mixture-derived HMMs. This research work has been accepted as a book chapter [52].

1.3 Thesis Overview

The rest of this thesis is organized as follows:

4



h Chapter 2 introduces the asymmetric Gaussian mixture model (AGMM) and bounded asym-

metric Gaussian mixture model (BAGMM) briefly. Then the derivation of the model selection

criterion for BAGMM using minimum message length (MML) is discussed in detail, as well

as the experiments on synthetic datasets and real-world applications.

h Chapter 3 is devoted to applying an unsupervised feature selection framework based on the

expectation-maximization (EM) algorithm using BAGMM to model high-dimensional data

without knowing the number of clusters or the weights of involved features. Several chal-

lenging human-related image datasets are selected for validation of the proposed approach.

h Chapter 4 describes the first integration of BAGMM into the framework of hidden Markov

models (HMM) using the EM approach. We evaluated the proposed innovative HMM with

the tasks of occupancy estimation and human activity recognition (HAR) compared with other

comparable Gaussian mixture-based HMMs.

h In conclusion, we summarize our work and contributions with some remarks for potential

future research.
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Chapter 2

Model Selection Criterion for Bounded

Asymmetric Gaussian Mixture Model

This chapter proposes a model selection criterion for bounded support asymmetric Gaussian

mixture model (BAGMM) using minimum message length (MML). The proposed approach is val-

idated using synthetic data, real-world data, and occupancy detection applications. The proposed

method is compared with other state-of-the-art model selection approaches. Moreover, the devel-

oped bounded mixture is compared with the asymmetric Gaussian mixture model (AGMM).

2.1 Mixture of Asymmetric Gaussian Distributions

The asymmetric Gaussian mixture model (AGMM) was designed to handle non-symmetric data

sets [3, 40, 53]. Given a D-dimensional random variable X = [X1, . . . , XD] that follows a M -

component mixture of distributions, where the PDF associated with each component is the multidi-

mensional asymmetric Gaussian distribution (AGD) [54, 55, 56, 57, 58, 59, 60]:

f( ~X|ξm) =
D∏
d=1

2√
2π(σlmd

+ σrmd)
×



exp

[
− (Xd−µmd)2

2σ2
lmd

]
Xd < µmd

exp
[
− (Xd−µmd)2

2σ2
rmd

]
Xd ≥ µmd

(1)

6



p Zi
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σl

σr
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Figure 1: Graphical representation of the asymmetric Gaussian mixture model

where ξm = (~µm, ~σlm , ~σrm) represents the parameters of AGD. Here, ~µm = (µm1, ..., µmD),

~σlm = (σlm1 , ..., σlmD
), and ~σrm = (σrm1 , ..., σrmD) are the mean, left standard deviation and right

standard deviation of the D-dimensional AGD, respectively. The parameters of AGMM are learnt

via Expectation-Maximization (EM), and details are explained in [3, 40, 53]. Graphical representa-

tion of AGMM is displayed in Figure. 1, where Xi is one of N data instances with i = 1, . . . , N .

µ, σl and σr are the parameters of the distribution; p and Zi are the mixing coefficient and posterior

probability in the mixure model, which will be explained in Section. 2.2

2.2 Mixture of Bounded Asymmetric Gaussian Distributions

Given aD-dimensional random variable ~X = (X1, ..., XD), that followsK-component mixture

distribution, then:

p( ~X|Θ) =

K∑
j=1

p( ~X|ξj)pj (2)

provided pj ≥ 0,
∑K

j=1 pj = 1, Θ = (ξ1, ξ2, ξ3, ξ4) with ξ1 = (~µ1, ..., ~µK), ξ2 = (~σl1 , ..., ~σlK ),

ξ3 = (~σr1 , ..., ~σrK ) and ξ4 = (p1, ..., pK). The term p( ~X|ξj) is the PDF of the bounded asymmetric

Gaussian distribution (BAGD) for vector ~X and defined as:

p( ~X|ξj) =
f( ~X|ξj)H( ~X|Ωj)∫

∂j
f(~u|ξj)du

,where H( ~X|Ωj) =


1 if ~X ∈ ∂j

0 otherwise
(3)

7



f( ~X|ξj) =
D∏
d=1

2√
2π(σljd + σrjd)

×


exp

[
− (Xd−µjd)2

2σ2
ljd

]
if Xd < µjd

exp

[
− (Xd−µjd)2

2σ2
rjd

]
if Xd ≥ µjd

(4)

where ~µj = (µj1, ..., µjD), ~σlj = (σlj1 , ..., σljD), and ~σrj = (σrj1 , ..., σrjD) are the mean, left

standard deviation and right standard deviation of the D-dimensional BAGD, respectively. The

term
∫
∂j
f(~u|ξj)du in Eq. (3) is the normalization constant that indicates the share of f( ~X|ξj)

which belongs to the support region ∂.

We introduce stochastic indicator vectors ~Zi = (Zi1, ..., ZiK), one for each observation. The

role is to encode the membership of each observation for a relative component of the mixture model.

In other words, Zij , the hidden variable in each indicator vector, equals 1 if ~Xi belongs to class j

and 0, otherwise. The complete data likelihood is given below:

p(X ,Z|Θ) =
N∏
i=1

K∏
j=1

(
p( ~Xi|ξj)pj

)Zij

(5)

where Zij is the posterior probability and can be written as:

Zij = p(j| ~Xi) =
p( ~Xi|ξj)pj∑K
j=1 p(

~Xi|ξj)pj
and Z = {~Z1, ..., ~ZN}. (6)

2.3 Model selection using minimum message length (MML) criterion

The general form of MML equation, which we should minimize to obtain the optimal number

of clusters in the mixture, is as follows:

Mess Len(K) ' − log(p(ΘK))− L(ΘK , Z,X ) +
1

2
log |F (ΘK)|+ Np

2
(1 + log(KNp)) (7)

where Np is number of parameters (equal to K(3D + 1)), ΘK is set of parameters when mix-

ture contains K components, p(ΘK) is prior probability, L(ΘK , Z,X ) is log-likelihood of mixture

8



model and |F (ΘK)| is determinant of Fisher information matrix. KNp is the optimal quantization

lattice constant, which can be approximated it by 1
12 . The estimation of number of classes is carried

out by finding minimum with respect to Θ of message length [4, 3]. The derivation of p(ΘK) and

|F (ΘK)| is given in following subsections.

2.3.1 Derivation of the prior p(Θ)

We assume that all the parameters of the mixture model are mutually independent, then the prior

distribution over the parameters, π, µ, σl and σr, is :

p(Θ) = p(π)p(µ)p (σl) p (σr) (8)

where π = (p1, ..., pK). Each parameter is independent, so each prior distribution is defined

separately. Beginning with p(π), we know that vector π is defined on the simplex as {(p1, ..., pK) :∑K
j=1 pj = 1}. In general, the Dirichlet distribution is a natural choice as a prior for vector π,

which is defined as:

p(π) =
Γ(
∑K

j=1 ηj)∑K
j=1 Γ(ηj)

K∑
j=1

pj
ηj

−1
(9)

where (η1, ..., ηK) is the parameters vector of Dirichlet distribution. By choosing, η1 = 1, ..., ηK =

1,

we get a uniform prior over space p1 + ...+ pK = 1, which is represented as: p(π) = (K− 1)!.

For each µjd, uniform prior is chosen. Each µjd is chosen to be uniform in the region (µjd − σld ≤

µjd ≤ µjd + σrd), then prior for µj is given by the following equations:

p(µjd) =
1

σld + σrd
=⇒ p(~µj) =

D∏
d=1

1

σld + σrd
(10)

p(µ) =

K∏
j=1

D∏
d=1

1

σld + σrd
=

D∏
d=1

1

(σld + σrd)
K

(11)

9



For the parameter σl and σr, we have:

p(σl) =
K∏
j=1

p(~σlj ), p(σr) =
K∏
j=1

p(~σrj ) (12)

where different components of vectors ~σlj and ~σrj are assumed to be independent. The principle

of ignorance is adopted due to the absence of other knowledge about σljd and σrjd , by taking from

a uniform prior. The ~µ = (µ1, ..., µD), ~σl = (σl1 , ..., σlD) and ~σr = (σr1 , ..., σrD) are mean, left

standard deviation and right standard deviation vectors of whole dataset, respectively. And for each

σljd and σrjd , following uniform prior will be used:

p(σljd) =
1

σld
, p(σrjd) =

1

σrd
(13)

where 0 ≤ σljd ≤ σld and 0 ≤ σrjd ≤ σrd . It follows that

p(~σlj ) =

D∏
d=1

1

σld
, p(~σrj ) =

D∏
d=1

1

σrd
(14)

From Eqs. (12 & 14), we obtain:

p(σl) =

K∏
j=1

D∏
d=1

1

σld
=

D∏
d=1

1

σld
K
, p(σr) =

K∏
j=1

D∏
d=1

1

σrd
=

D∏
d=1

1

σrd
K

(15)

Finally, by replacing the priors of parameters in Eq. (8) by Eqs. (11 & 15), we get:

p(Θ) = (M − 1)!
D∏
d=1

1

σld
Kσrd

K(σld + σrd)
K

(16)

2.3.2 Derivation of the Fisher information matrix |F (Θ)|

In general, the Fisher information matrix is the expected value of the Hessian matrix minus the

log-likelihood. But in practice, it is intractable to compute the expected Fisher information matrix.

So we utilize the complete-data Fisher information matrix to approximate the Hessian matrix, which

is the product of the information matrix’s determinant for each cluster times the information matrix

10



of the mixing weight as in Eq. ( 17).

|F (Θ)| = |F (π)| |F (µ)| |F (σl)| |F (σr)| (17)

|F (π)| = NK−1∑K
j=1 pj

, F (~µj)k1,k2 =
∂2L(Θ, Z,Xj)
∂µjk1∂µjk2

(18)

F (~σlj )k1,k2 =
∂2L(Θ, Z,Xj)
∂σljk1∂σljk2

, F (~σrj )k1,k2 =
∂2L(Θ, Z,Xj)
∂σrjk1∂σrjk2

(19)

|F (µ)| =
K∏
j

D∏
d=1

∣∣∣∣ l+nj−1∑
i=l,Xid<µjd

[
−1

σ2
ljd

]
+

l+nj−1∑
i=l,Xid≥µjd

[
−1

σ2
rjd

]
(20)

−
l+nj−1∑

i=l,xd<µjd

1

σ4
ljd

×
{
−

(
1
M

∑M
m=1(lmjd

− µjd)H(lmjd
|Ωj)

)2

(
1
M

∑M
m=1 H(lmjd

|Ωj)
)2

+
1
M

∑M
m=1

{
(lmjd

− µjd)2 − 1
}

H(lmjd
|Ωj)

1
M

∑M
m=1 H(lmjd

|Ωj)

}

−
l+nj−1∑

i=l,Xid≥µjd

1

σ4
rjd

×
{
−

(
1
M

∑M
m=1(rmjd

− µjd)H(rmjd
|Ωj)

)2

(
1
M

∑M
m=1 H(rmjd

|Ωj)
)2

+
1
M

∑M
m=1

{
(rmjd

− µjd)2 − 1
}

H(rmjd
|Ωj)

1
M

∑M
m=1 H(rmjd

|Ωj)

}∣∣∣∣
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|F (σl)| =
K∏
j

D∏
d=1

∣∣∣∣−3

l+nj−1∑
i=l,Xid<µjd

(
(Xid − µjd)2

σ4
ljd

)
(21)

−
l+nj−1∑

i=l,Xid<µjd

(
−2

σ3
ljd

(σljd + σrjd)

){
1
M

∑M
m=1(lmjd

− µjd)2H(lmjd
|Ωj)

1
M

∑M
m=1 H(lmjd

|Ωj)

}

−
l+nj−1∑

i=1,Xid<µjd

1

σ6
ljd

{
1
M

∑M
m=1(lmjd

− µjd)4H(lmjd
|Ωj)

1
M

∑M
m=1 H(lmjd

|Ωj)

}

−
l+nj−1∑

i=l,Xid<µjd

−3

σ4
ljd

{
1
M

∑M
m=1(lmjd

− µjd)2H(lmjd
|Ωj)

1
M

∑M
m=1 H(lmjd

|Ωj)

}

−
l+nj−1∑

i=l,Xid<µjd

1

σ6
ljd


(

1
M

∑M
m=1(lmjd

− µjd)2H(lmjd
|Ωj)

)2

( 1
M

∑M
m=1 H(lmjd

|Ωj))2


∣∣∣∣

|F (σr)| =
K∏
j

D∏
d=1

∣∣∣∣−3

l+nj−1∑
i=l,Xid≥µjd

(
(Xid − µjd)2

σ4
rjd

)
(22)

−
l+nj−1∑

i=l,Xid≥µjd

(
−2

σ3
rjd

(σljd + σrjd)

){
1
M

∑M
m=1(rmjd

− µjd)2H(rmjd
|Ωj)

1
M

∑M
m=1 H(rmjd

|Ωj)

}

−
l+nj−1∑

i=l,Xid≥µjd

1

σ6
rjd

{
1
M

∑M
m=1(rmjd

− µjd)4H(rmjd
|Ωj)

1
M

∑M
m=1 H(rmjd

|Ωj)

}

−
l+nj−1∑

i=l,Xid≥µjd

−3

σ4
rjd

{
1
M

∑M
m=1(rmjd

− µjd)2H(rmjd
|Ωj)

1
M

∑M
m=1 H(rmjd

|Ωj)

}

−
l+nj−1∑

i=l,Xid≥µjd

1

σ6
rjd


(

1
M

∑M
m=1(rmjd

− µjd)2H(rmjd
|Ωj)

)2

( 1
M

∑M
m=1 H(rmjd

|Ωj))2


∣∣∣∣

where lmjd
is a set of random variables drawn from the asymmetric Gaussian distribution (AGD)

with the constraint, u < µjd for the particular component j of the mixture model. These random

variables have M vectors with D dimensions. M is a large integer chosen to generate the set of

random variables, for example 2,000 draws in this paper. Similarly, rmjd
are the random variables

drawn from the AGD with constraint, u ≥ µjd for the particular component j of the mixture model.
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2.3.3 Complete learning algorithm for BAGMM with MML

In this section, we summarize the model learning algorithm for the bounded AGMM and the

model selection. we apply K-Means to initialize parameters, then use the EM algorithm to estimate

the mixture parameters. During each iteration, we need to update bounded support range. Note

that we initialize both left and right standard deviations with the standard deviation values obtained

from each cluster by K-means. Finally, we need to set up the predefined threshold tmin for the

log-likelihood between the two successive iterations, j and j+1, and a certain number of iterations,

epochmax. Once the log-likelihood difference is smaller than the preset point, the EM will converge,

or it will stop after specific number of iterations to avoid the infinity loop, or it will stop when the

parameters don’t change any more.

After using the EM algorithm to learn the model parameters, we calculate the associated cri-

terion MML using Eq. (7). Finally, select the optimal number of cluster K∗ such that K∗ =

arg minMML(K). The complete learning procedure for BAGMM with MML is given in Algo-

rithm 1.

Algorithm 1 Model Learning for BAGMM

1: Input:Dataset X = { ~X1, . . . , ~XN}, tmin, Kmin, Kmax.
2: Output: Θ, Z , K∗.
3: for Kmin ≤ K ≤ Kmax do
4: {Initialization}:
5: K-Means (Compute ~µ1, . . . , ~µK & cluster assignment)
6: for all 1 ≤ j ≤ K do
7: Computation of pj and {(~σlj & ~σrj )=~σj}
8: {Expectation Maximization}:
9: while relative change in log-likelihood ≥ tmin or iterations ≤ epochmax or relative changes

of parameters ≥ tmin do
10: {[E Step]}:
11: for all 1 ≤ j ≤ K do
12: Compute p(j| ~Xi) for i = 1, . . . , N .
13: {[M step]}:
14: update bounded support range
15: for all 1 ≤ j ≤ K do
16: Estimate pj , ~µj , ~σlj & ~σrj
17: end while
18: Compute K∗ = arg minMML(K)
19: end for
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2.4 Experimental Results

2.4.1 Comparison with other model selection criteria

The model selection criteria selected to compare with MML, include MDL [32], AIC [29],

Bayesian inference criterion (BIC) [30], consistent AIC (CAIC) [31], mixture MDL (MMDL) [33],

MMLlike [61], LEC [62, 63]. The details of these algorithms is given in [64].

The following equation is the general form of deterministic model selection criteria.

C(Θ̂(K),K) = −L(ΘK , Z,X ) + f(K) (23)

where f(K) is an increasing function which penalizes higher values of K and optimal number

of clusters in a mixture can be calculated as follows:

K̂ = arg min{C(Θ̂(K),K),K = Kmin, ...,Kmax} (24)

Although all model selection criteria share this common point and utilize log-likelihood, they

have different concepts, and their equations are described in the following.

MDL(K) = −L(ΘK , Z,X ) +
Np

2
log(N) (25)

where Np is the number of free mixture parameters and computed as K(3D+ 1)− 1 in this model.

AIC(K) = −L(ΘK , Z,X ) +
Np

2
(26)

BIC(K) = −2L(ΘK , Z,X ) +Np log(N) (27)

CAIC(K) = −2L(ΘK , Z,X ) +Np(1 + log(N)) (28)
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MMDL(K) = −L(ΘK , Z,X ) +
1

2
Np log(N) +

c

2

K∑
j=1

log(pj) (29)

where c is the number of free parameters for each mixture component and computed as 3D+ 1

in this model.

MMLLike(K) = −L(ΘK , Z,X ) +
K

2
log

(
N

12

)
+
c

2

K∑
j=1

log
(
N
pj
12

)
+
Np

2
(30)

For model selection via LEC, we have:

LEC(K) = −L(ΘK , Z,X )− log(P (ΘK))− 1

2
Np log(2π) +

1

2
log(|F (ΘK)|) (31)

2.4.2 Synthetic Datasets

We compared different model selection criteria when deploying BAGMM and AGMM with 2-

dimensional synthetic datasets, sampled from the asymmetric Gaussian distribution having 2, 3, 4

and 5 clusters. The parameters of each cluster of synthetic dataset are given in Table 1 and each

cluster has 2,000 data instances. The MML criterion along with EM algorithm of BAGMM is

applied to determine the optimal number of clusters in each dataset. The clustering accuracy is also

determined after finding the correct number of mixture components and results are compared with

other model selection criteria and AGMM. The comparison between the AGMM and BAGMM for

all the model selection criteria is provided in Table 1, which demonstrates that all model selection

criteria including MML for BAGMM have correctly determined the number of clusters. However,

model selections criteria for AGMM, provide wrong number of clusters in each case. Table 2

shows the execution time and accuracy of BAGMM and AGMM under this synthetic dataset. Note

that BAGMM always has high clustering accuracy as compared to AGMM, which indicates the

clustering capabilty of BAGMM.
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All experiments are running on a Macbook Pro 2015 with Dual-Core Intel Core i5 CPU. The

BAGMM is as relatively fast as the AGMM for 5 clusters or more, but in the case of less than 5

clusters, the AGMM is a little bit faster. The BAGMM always converges faster than the AGMM

with less iterations.

Table 1: The model selection and clustering results for synthetic dataset

‘

Synthetic Dataset(2,000 instances in each cluster)
clusters µ, σl, σr AIC BIC CAIC MDL MMDL MML like LEC MML

(2, -4) , (2, 3) , (1, 5)
2 (5, 4), (3, 6), (2.1, 3.8) 2 2 2 2 2 2 2 2

(2, -4), (2, 3), (1, 5)
3 (5, 4), (3, 6), (2.1, 3.8) 3 3 3 3 3 3 3 3

(-10, 12), (3, 3.7), (3.4, 5.9)
(2, -4), (2, 3), (1, 5)

4 (5, 4), (3, 6), (2.1, 3.8) 4 4 4 4 4 4 4 4
(-10, 12), (3, 3.7), (3.4, 5.9)

(-13, 14), (1, 2.1), (3, 3)
(2, -4), (2, 3), (1, 5)

5 (5, 4), (3, 6), (2.1, 3.8) 5 5 5 5 5 5 5 5
(-10, 12), (3, 3.7), (3.4, 5.9)

(-13, 14), (1, 2.1), (3, 3)
(-15, 16.6),(3.3, 4.4), (2.8, 2.7)

Table 2: Execution information of MML on synthetic dataset

‘

Execution information on synthetic dataset(seconds)
Mixture Models Clusters Time Accuracy Iterations

BAGMM 2 clusters 2.35 71.3% 5
BAGMM 3 clusters 8.60 85.7% 2
BAGMM 4 clusters 12.09 72.2% 4
BAGMM 5 clusters 12.58 65.7% 5

2.4.3 Real Datasets

We have adopted 10 standard multidimensional datasets to validate the proposed model with

real datasets, which include Indian Liver Patient, Iris, Vertebral Column, Wine Quality (red), Spect

Heart, Cryotherapy, Immunotherapy, Statlog (Heart), Parkinsons and Haberman Survival. They are
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from the machine learning repository at the University of California, Irvine [65]. They all differ in

the number of instances, dimensions, clusters, and complexity.

The model selection using MML for BAGMM is applied on all datasets to determine the optimal

number of clusters in the datasets along with comparison models and similar settings for AGMM.

The description of these datasets and model selection results are presented in Table 3. It is evident

from the results that MML and LEC have successfully determined the correct number of clusters

in all cases with BAGMM. In the case of AGMM, MML and LEC also have a high probability

of determining the correct number of clusters, however the performance with BAGMM is more

accurate. The equation of MML is almost the same as the LEC, containing both prior distribution

and the Fisher information matrix, which outperforms other model selection criteria.

Table 3: The model selection results for real dataset

Real Dataset
dataset N DKAICBICCAICMDLMMDLMML likeLECMML

Indian Liver Patient(AGMM)
583 10 2 4 2 2 2 4 4 2 2

Indian Liver Patient(BAGMM) 2 2 2 2 2 2 2 2
Iris(AGMM)

150 4 3 6 3 3 3 3 6 6 6
Iris(BAGMM) 6 6 6 6 6 6 3 3

Vertebral(AGMM)
310 6 3 3 3 3 3 3 3 3 3

Vertebral(BAGMM) 5 3 3 3 5 5 3 3
Wine Quality(red)(AGMM)

159911 6 5 5 5 5 5 5 6 6
Wine Quality(red)(BAGMM) 8 8 8 8 8 8 6 6

Spect Heart(AGMM)
80 44 2 6 4 2 4 4 6 2 2

Spect Heart(BAGMM) 5 2 2 2 5 5 2 2
Cryotherapy(AGMM)

90 6 2 2 2 2 2 2 2 2 2
Cryotherapy(BAGMM) 6 2 2 2 6 6 2 2

Immunotherapy(AGMM)
90 7 2 3 2 2 2 3 3 2 2

Immunotherapy(BAGMM) 2 2 2 2 2 2 2 2
Statlog(Heart)(AGMM)

270 13 2 6 6 2 6 6 6 6 6
Statlog(Heart)(BAGMM) 2 2 2 2 2 2 2 2

Parkinsons(AGMM)
197 22 2 6 6 6 6 6 6 6 6

Parkinsons(BAGMM) 2 2 2 2 2 2 2 2
Haberman Survival(AGMM)

306 3 2 2 2 2 2 2 2 2 2
Haberman Survival(BAGMM) 2 2 2 2 2 2 2 2
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2.4.4 Occupancy Detection and Model Selection

Occupancy detection is widely used in smart buildings and it helps in energy efficiency, im-

proves thermal comfort and reduces carbon footprints. This section compares several model selec-

tion methods with MML using AGMM and BAGMM on an occupancy dataset. The dataset [66]

is composed of 9752 instances, 5 dimensions and 2 clusters, as shown in the Table 4. In this ap-

plication, we need to detect room occupancy as a binary classification from CO2, light, Humidity,

temperature, and humidity ratio, which were taken every minute. Compared with 79% accuracy in

AGMM, the BAGMM has shown better performance with 94.8% accuracy, because the attributes

are all environmental data with a specific bounded range. It takes the BAGMM 3.66 seconds to con-

verge within 6 epochs, while 2.04 seconds for the AGMM with 51 iterations. Figure 2 and Figure 3

displays the results of different model selection criteria for BAGMM and AGMM, respectively. The

hollow black circle in each graph indicates the minimum value on the y-axis and the optimal num-

ber of clusters on the x-axis. For model selection, we can conclude BAGMM with MML and other

criteria has better performance in finding the number of clusters, since all model selection methods

with AGMM have shown 5 as the optimal number of clusters, while the ground truth is 2.

Table 4: Occupancy estimation and model selection results

Models N DK AIC BIC CAIC MDL MMDL MML like LEC MML Acc
AGMM

9752 5 2 5 5 5 5 5 5 5 5 79%
BAGMM 2 2 2 2 2 2 2 2 94.8%
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Figure 2: Different Model Selection Criteria for Occupancy Dataset for BAGMM
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Figure 3: Different Model Selection Criteria for Occupancy Dataset for AGMM
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Chapter 3

Feature Selection Using Bounded

Asymmetric Gaussian Mixtures:

Application to Human Action and

Gender Recognition

In the previous chapter, we have proposed a model selection criterion for bounded support

asymmetric Gaussian mixture model (BAGMM) using minimum message length (MML). In this

chapter, we propose an unsupervised feature selection framework using the bounded asymmetric

Gaussian mixture model (BAGMM-FS) to determine the structure of high dimensional data without

prior knowledge of the number of clusters and the importance of the involved features. In many

cases, irrelevant features can compromise the effectiveness of clustering and increase computational

complexity, so irrelevant features should be given small weights or even discarded. Selecting a

relevant feature space is generally known as feature selection or also called subset selection.

21



3.1 Proposed Model

Consider a set of independent and identically distributed vectors represented byX = ( ~X1, · · · , ~XN ),

arising from a mixture of BAGDs with K components, then its log-likelihood function can be de-

fined as follows:

p(X|Θ) =
N∏
i=1

K∑
j=1

p( ~Xi|ξj)pj (32)

where p( ~Xi|ξj) is the PDF of BAGD defined in Section. 2.2 of Eq. (3).

We introduce stochastic indicator vectors ~Zi = (Zi1, ..., ZiK), which satisfy Zij ∈ {0, 1},∑K
j=1 Zij = 1. In other words, Zij , the hidden variable in each indicator vector, equals 1 if ~Xi

belongs to component j and 0, otherwise. The complete data likelihood is given by:

p(X ,Z|Θ) =
N∏
i=1

K∏
j=1

(
p( ~Xi|ξj)pj

)Zij

(33)

We can get the complete data log-likelihood by taking the logarithm of Eq. (33) as follows.

log p(X , Z | Θ) =
N∑
i=1

K∑
j=1

Zij log
[
p
(
~Xi | ξj

)
pj

]
(34)

where Z =
{
~Z1, . . . , ~ZN

}
. According to Eq. (34), all the D features in the model have the same

weight which can not describe well real-world data since some features may be irrelevant for some

specific tasks. In order to take into account the irrelevant features, we represent them by background

Gaussian distribution with parameters ~λ = {~η, ~δ}, where ~η and ~δ represent the mean and standard

deviation, respectively. We adopt the feature relevancy approach proposed in [67] in the case of the

finite Gaussian mixture. Then, the resulting model can be rewritten as:

p( ~Xi | Θ, ~λ, ~ϕ) =
K∑
j=1

pj

D∏
d=1

p (Xd | ξjd)ϕd p (Xd | λd)1−ϕd (35)

where ~ϕ = (ϕ1, · · · , ϕd) is a set of binary parameters such that if ϕd = 1 then dth feature is

relevant, otherwise, ϕd = 0 for irrelevant features. Here, ~ϕ is considered as a hidden variable, and

according to [67], we can obtain:
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p
(
~Xi | ΘK

)
=

K∑
j=1

pj

D∏
d=1

[ωdp (Xd | ξjd) + (1− ωd) p (Xd | λd)] (36)

From above equation, we assume that not all the feature have the same relevancy by assigning

weights to these features, denoted as ~ω = (ω1, · · · , ωD), where 0 ≤ ωd ≤ 1, d = 1, . . . , D.

3.2 Model Learning

For the estimation of the model’s parameters, we consider the EM algorithm where we can

calculate the posterior probability as following in the E-step:

Ẑij =
pj
∏D
d=1 φijd∑K

j=1 pj
∏D
d=1 φijd

(37)

where

φijd = ωdp (Xid | ξjd) + (1− ωd) p (Xid | λd) (38)

The parameters are estimated from the maximization of log-likelihood function, which can be writ-

ten as:

L(X ,Z | Θ) =

N∑
i=1

K∑
j=1

Zij log
(
p
(
~Xi | ΘK

))

=
N∑
i=1

K∑
j=1

Zij

{
log pj + log

[
ωdp

(
~Xi | ξj

)
+ (1− ωd) p

(
~Xi | λ

)]} (39)

In the maximization step, the parameters can be estimated by taking the gradient of the log-likelihood

in the previous equation with respect to each parameters, which gives the following for the mixing

weights and the mean:

pnewj =

∑N
i=1 h

(
j | ~Xi,ΘM

)
N

(40)

µnewjd =

∑N
i=1

ωdp(Xid|ξjd)
φijd

h
(
j | ~Xi,ΘM

){
Xid −

∫
∂j
f(u|ξj)(u−µjd)du∫

∂j
f(u|ξj)du

}
∑N

i=1

ωdp(Xid|ξjd)
φijd

h
(
j | ~Xi,ΘM

) (41)

Note that in Eq. (41), the term
∫
∂j
f(u|ξj)(u− µjd)du is the expectation of function (u− µjd)

23



under the probability distribution f(Xd|ξj). Then, this expectation can be approximated as:

∫
∂j

f(u|ξj)(u− µjd)du ≈ 1

M

M∑
m=1

(smjd
− µjd)H(smjd

|Ωj) (42)

where smjd
∼ f(u|ξj) is a set of random variables drawn from the asymmetric Gaussian distribution

for the particular component j of the mixture model. The term
∫
∂j
f(u|ξj)du in Eq. (41) can be

approximated as:

∫
∂j

f(u|ξj)du ≈ 1

M

M∑
m=1

H(smjd
|Ωj) (43)

Thus, µnewjd can be written as:

µnewjd =

∑N
i=1

ωdp(Xid|ξjd)
φijd

h
(
j | ~Xi,ΘM

){
Xid −

∑M
m=1(smjd

−µjd)H(smjd
|Ωj)∑M

m=1 H(smjd
|Ωj)

}
∑N

i=1

ωdp(Xid|ξjd)
φijd

h
(
j | ~Xi,ΘM

) (44)

The left standard deviation can be estimated by maximizing the log-likelihood function with respect

to σljd , which can be performed using Newton-Raphson method :

σnewljd
= σoldljd −

(∂2L(X ,Z | Θ)

∂σ2
ljd

)−1(
∂L(X ,Z | Θ)

∂σljd

) (45)

where the first derivative of the model’s complete data log-likelihood with respect to left standard

deviation is given as follows:

∂L(X ,Z | Θ)

∂σljd
=

N∑
Xid<µjd

ωdp (Xid | ξjd)
φijd

× h
(
j | ~Xi, θM

)((Xid − µjd)2

σ3
ljd

)

−
N∑

Xid<µjd

ωdp (Xid | ξjd)
φijd × σ3

ljd

h
(
j | ~Xi, θM

)
×

{∫
∂j

g1 (u | ξj) (u− µjd)2 du∫
∂j

g1 (u | ξj) du

} (46)
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The term
∫
∂j

g1(u|ξj)(u− µjd)2du can be approximated as below:

∫
∂j

g1(u|ξj)(u− µjd)2du ≈ 1

M

M∑
m=1

(lmjd
− µjd)2H(lmjd

|Ωj) (47)

where lmjd
∼ g1(Xd|ξj) is a set of random variables drawn from the asymmetric Gaussian dis-

tribution with u < µjd for the particular component j of the mixture model. Similarly, the term∫
∂j

g1(u|ξj)du in Eq. (46) can be approximated as:

∫
∂j

g1(u|ξj)du ≈ 1

M

M∑
m=1

H(lmjd
|Ωj) (48)

The same approximation for the second order derivative of the model’s complete data log-likelihood

with respect to left standard deviation is defined as follows:

∂2L(X ,Z | Θ)

∂σ2
ljd

= −3
N∑

Xid<µjd

γij

(
(Xid − µjd)2

σ4
ljd

)

−
N∑

Xid<µjd

γij

(
−2

σ3
ljd

(
σljd + σrjd

))×{ 1
M

∑M
m=1

(
lmjd
− µjd

)2
H
(
lmjd

| Ωj

)
1
M

∑M
m=1 H

(
lmjd

| Ωj

) }

−
N∑

Xid<µjd

γij
σ6
ljd

{
1
M

∑M
m=1

(
lmjd
− µjd

)4
H
(
lmjd

| Ωj

)
1
M

∑M
m=1 H

(
lmjd

| Ωj

) }

−
N∑

Xid<µjd

−3γij
σ4
ljd

{
1
M

∑M
m=1

(
lmjd
− µjd

)2
H
(
lmjd

| Ωj

)
1
M

∑M
m=1 H

(
lmjd

| Ωj

) }

−
N∑

Xid<µjd

γij
σ6
ljd


(

1
M

∑M
m=1

(
lmjd
− µjd

)2
H
(
lmjd

| Ωj

))2

(
1
M

∑M
m=1 H

(
lmjd

| Ωj

))2



(49)

where

γij =
ωdp (Xid | ξjd)

φijd
Zij (50)

Similar approximations are used for the right standard deviation σnewrjd
:

σnewrjd
= σoldrjd −

(∂2L(X ,Z | Θ)

∂σ2
rjd

)−1(
∂L(X ,Z | Θ)

∂σrjd

) (51)
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where

∂L(X ,Z | Θ)

∂σrjd
=

N∑
i=1,Xid≥µjd

ωdp (Xid | ξjd)
φijd

× h
(
j | ~Xi, θM

)((Xid − µjd)2

σ3
rjd

)

−
N∑

i=1,Xid≥µjd

ωdp (Xid | ξjd)
φijd × σ3

ljd

h
(
j | ~Xi, θM

)
×

{∫
∂j

g2 (u | ξj) (u− µjd)2 du∫
∂j

g2 (u | ξj) du

} (52)

The term
∫
∂j

g2(u|ξj)(u− µjd)2du can be approximated as below:

∫
∂j

g2(u|ξj)(u− µjd)2du ≈ 1

M

M∑
m=1

(rmjd
− µjd)2H(rmjd

|Ωj) (53)

where rmjd
∼ g2(Xd|ξj) is a set of random variables drawn from the asymmetric Gaussian dis-

tribution with u ≥ µjd for the particular component j of the mixture model. Similarly, the term∫
∂j

g2(u|ξj)du in Eq. (52) can be approximated as:

∫
∂j

g2(u|ξj)du ≈ 1

M

M∑
m=1

H(rmjd
|Ωj) (54)

Similar approximations are used for ∂
2L(X ,Z|Θ)
∂σ2

rjd

is given as following:

∂2L(X ,Z | Θ)

∂σ2
rjd

= −3

N∑
Xid≥µjd

γij

(
(Xid − µjd)2

σ4
rjd

)

−
N∑

Xid≥µjd

γij

(
−2

σ3
rjd

(
σrjd + σrjd

))×{ 1
M

∑M
m=1

(
rmjd

− µjd
)2

H
(
rmjd

| Ωj

)
1
M

∑M
m=1 H

(
rmjd

| Ωj

) }

−
N∑

Xid≥µjd

γij
σ6
rjd

{
1
M

∑M
m=1

(
rmjd

− µjd
)4

H
(
rmjd

| Ωj

)
1
M

∑M
m=1 H

(
rmjd

| Ωj

) }

−
N∑

Xid≥µjd

−3γij
σ4
rjd

{
1
M

∑M
m=1

(
rmjd

− µjd
)2

H
(
rmjd

| Ωj

)
1
M

∑M
m=1 H

(
rmjd

| Ωj

) }

−
N∑

Xid≥µjd

γij
σ6
rjd


(

1
M

∑M
m=1

(
rmjd

− µjd
)2

H
(
rmjd

| Ωj

))2

(
1
M

∑M
m=1 H

(
rmjd

| Ωj

))2



(55)
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The parameters of background Gaussian can be estimated using the following equations:

ηnewd =

∑N
i=1

[∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

)]]
Xid∑N

i=1

∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

) (56)

δ2new

d =

∑N
i=1

[∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

)]
(Xid − ηd)2∑N

i=1

∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

) (57)

ωnew
d =

∑N
i=1

∑M
j=1

ωdp(Xid|ξjd)
φijd

h
(
j | ~Xi, θM

)
N

(58)

3.2.1 Model selection via MML and complete algorithm

In order to estimate the number of components of the mixture model, we apply MML criterion

which consists of minimizing the message length given by the following equation

MessLens ≈ − log p (ΘM ) +
c

2
(1 + log(Kc)) +

1

2
log |I (ΘM )| − log p (X | ΘM ) (59)

where p (ΘM ) is prior distribution, I (ΘM ) denotes the Fisher information matrix, log p (X | ΘM )

is log-likelihood. Here the constant value c represents the total number of free parameters, which

is equal M + D + 3DM + 2D, Kc is the optimal quantization lattice constant, which can be

approximated it by 1
12 , |I (ΘM )| denotes the determinant of the Fisher information matrix of our

model which is very hard to calculate analytically, so we assume that each group of parameters

is independent, which allows the factorization of p (ΘM ) and I (ΘM ). Moreover, we adopt the

uninformative Jeffrey’s prior for each group of parameters as prior distributions without knowing

the parameters. Then, we have the following equation:

MessLens ≈ c

2
(1 + log(Kc)) +

c

2
(logN) +

3M

2

D∑
d=1

logωd

+
3D

2

M∑
j=1

log pj +
D∑
d=1

log (1− ωd)− log p (X | θM )

(60)
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The minimization of the previous equation gives the following:

p*
j =

max
(∑N

i=1 h
(
j | ~Xi,ΘM

)
− 3D

2 , 0
)

∑M
j=1 max

(∑N
i=1 h

(
j | ~Xi,ΘM

)
− 3D

2 , 0
) (61)

ω*
d =

max
(∑N

i=1

∑M
j=1 aijd −

3M
2 , 0

)
max

(∑N
i=1

∑M
j=1 Uijd −

3M
2 , 0

)
+ max

(∑N
i=1

∑M
j=1 Vijd − 1, 0

) (62)

where

Uijd = h
(
j | ~Xi,ΘM

) ωdp (Xid | ξjd)
φijd

(63)

Vijd = h
(
j | ~Xi,ΘM

) (1− ωd) p (Xid | λd)
φijd

(64)

The complete learning of BAGGM-FS is given in Algorithm 2, where tmin is the minimum thresh-

old used to monitor the log-likelihood convergence, epochmax is maximum number of iterations,

Kmin and Kmax define the searching range for the optimal number of clusters. In the initialization

step, K-Means is used to initialize the parameters of each clusters.

3.3 Experimental Results

In this section, the effectiveness of our model is tested on several real-world applications, in-

cluding human gender recognition, human activity categorization, and human part recognition. We

have compared our approach (BAGMM-FS) with bounded asymmetric Gaussian mixture model

(BAGMM), asymmetric Gaussian mixture model (AGMM), asymmetric Gaussian mixture model

with feature selection (AGMM-FS), Gaussian mixture model (GMM), and bounded generalized

Gaussian mixture model (BGGMM). For comparison, we use the following clustering metrics: ac-

curacy, which is computed as:
(

TP+TN
TP+TN+FP+FN

)
, precision, which is computed as:

(
TP

TP+FP

)
,

recall, which is computed as:
(

TP
TP+FN

)
, F1 Score, which is computed as: 2 ∗ (precision ∗

recall)/(precision + recall). Here, the term TP stands for true positives, TN for true nega-

tives, FP for false positives, and FN stands for false negatives. In addition, we use the silhouette

score [68] which indicates the overlapping clusters with the range from -1 to 1, and 1 is the best
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Algorithm 2 Feature Selection for BAGMM

1: Input:Dataset X = { ~X1, . . . , ~XN}, tmin, epochmax, Kmin, Kmax.
2: Output: Θ, Z , K∗.
3: for Kmin ≤ K ≤ Kmax do
4: {Initialization}:
5: K-Means algorithm (Compute ~µ1, . . . , ~µK & cluster assignment)
6: Set ~ω = 0.5
7: for all 1 ≤ j ≤ K do
8: Computation of pj and {~µj = ~µj , (~σlj & ~σrj )=~σj} and ~λ = {~η = ~µj , ~δ = ~σj}
9: {Expectation Maximization}:

10: while relative change in log-likelihood ≥ tmin or iterations ≤ epochmax or relative changes
of parameters ≥ tmin do

11: {[E Step]}:
12: for all 1 ≤ j ≤ K do
13: Compute h

(
j | ~Xi,ΘM

)
for i = 1, . . . , N using Eq. (37).

14: {[M step]}:
15: update bounded support range
16: for all 1 ≤ j ≤ K do
17: Estimate pj , ~µj , ~σlj & ~σrj using Eqs. (40, 44, 45, & 51).
18: end for
19: Estimate ~η, ~δ & ~ω using Eqs. (56, 57, & 58).
20: If pj = 0, jth cluster is pruned
21: If ωd = 0, p (Xid | ξjd) is pruned
22: If ωd = 1, p (Xid | λd) is pruned
23: end while
24: Compute K∗ = arg minMML(K) using Eq. (60)
25: end for

value, -1 for the worst value, value near 0 indicates overlapping clusters. It is only defined if the

number of clusters is greater than 2. So if all the data instances are assigned to one cluster, the sil-

houette score is not applicable, and it will be denoted by N/A. Finally, we consider the classification

entropy (CE) index [69], which indicates good clustering when it is low and poor clustering when

it is high.

3.3.1 Human Activity Categorization

Human activity categorization (HAR) has received a lot of research attention in the last decade

[70, 71]. It has numerous practical applications such as surveillance and health monitoring. In this

section, we consider a human activity categorization dataset called UCI Daily and Sports Activity
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dataset (DSAD)1 for our experiment [72]. It contains 19 different kinds of signal data, acquired from

different sensors, of activities recorded in a flat outdoor area on campus, such as sitting, standing,

etc., performed by eight subjects (4 female, 4 male, between the ages 20 and 30). In our simulations,

firstly, eight daily activities from the first subject, including sitting, standing, walking, jumping,

playing basketball, rowing, exercising, and running, are chosen to be classified to prove our mixture

model’s effectiveness. There are 992 observations with 45 dimensions in 8 clusters. As we can

see from the results in the Table 5, the mixture models with feature selection outperform the other

models, which demonstrates the effectiveness of feature selection for high-dimensional data. GMM,

the baseline of mixture models, has the lowest accuracy. Note that our proposed model outperforms

all other models with respect to all the calculated metrics and we have received very high accuracy of

96.47% for this experiment. In addition, our model has converged with fewer epochs than AGMM

and AGMM-FS under the same initialization method and learning rate. We have also compared the

Table 5: 8 common daily activities, from the first subject, clustering using different mixture models.

Models Time Epoch Accuracy Precision Recall F1-score Silhouette CE
BAGMM-FS 3.11 3 96.47% 97.25% 96.47% 96.40% 0.451 0.004

BAGMM 3.04 1 95.56% 96.33% 95.56% 95.29% 0.454 1.49
AGMM-FS 2.67 38 96.37% 97.18% 96.37% 96.29% 0.451 0.002

AGMM 0.468 12 95.86% 96.89% 95.86% 95.75% 0.452 0.002
BGGMM 494.95 7 95.56% 96.33% 95.56% 95.30% 0.454 4.17e-7
GGMM 0.640 7 62.5% 43.81% 62.50% 50.03% 0.198 0.430
GMM 0.014 1 44.76% 36.74% 44.75% 34.83% 0.211 0.641

MML for BAGMM-FS with the MML for BAGMM, AGMM-FS, and AGMM in Fig. 4. According

to this figure only BAGMM and BAGMM-FS were able to find the correct number of components

which is 8, while AGMM and AGMM-FS favored 10 clusters.

For another experiment with this dataset, we cluster different sitting activities from the 8 subjects

representing by 992 data instances in total with 45 dimensions. From Table 6, we can see again that

feature selection improves the clustering results. Mixture models without feature selection have

almost the same accuracy as the baseline GMM, which is around 71%. Note that our proposed

mixture model distinguishes itself as compared to the other mixture models with respect to all the
1DSAD dataset available at: http://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+

Activities
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Figure 4: MML for the activities clustering application using different mixture models.

considered clustering metrics.

Mixture Models Time Epoch Accuracy Precision Recall F1-score Silhouette CE
BAGMM-FS 5.87 6 90.52% 93.13% 90.52% 89.80% 0.514 0.009

BAGMM 2.23 2 72.78% 70.88% 72.78% 71.47% 0.569 0.011
AGMM-FS 0.641 9 84.97% 78.35% 84.97% 80.43% 0.593 0.156

AGMM 0.105 1 72.47% 63.37% 72.47% 65.58% 0.624 0.384
BGGMM 107.74 16 72.47% 71.41% 72.48% 71.50% 0.495 4.4e-77
GGMM 0.237 3 72.47% 63.37% 72.47% 65.58% 0.624 0.384
GMM 0.015 1 71.67% 59.87% 71.67% 63.67% 0.556 0.383

Table 6: Clustering of the sitting activities of the 8 subjects using different mixture models.

3.3.2 Gender Recognition

Gender recognition is an important task in computer vision and has received increasing attention

with the rapid development of machine learning. There are numerous applications that require gen-

der recognition like human-computer interaction, image-based indexing and searching, biometrics,

and even targeted advertising. Some studies show that a human can classify between a male and

a female simply (over 95% accuracy from faces [73]). However, it’s a complex task for machines
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because of people’s variation status at different light intensities, such as different postures, angles,

etc [74]. Without prior information about training data, mixture models as the unsupervised learn-

ing method can be effective for gender recognition. In this section, we will verify BAGMM-FS

on three well-known datasets, PARSE-27k dataset 2, PETA dataset 3 and Human attribute dataset4

[75, 76, 77, 78].

Figure 5: Samples images from PARSE-27k dataset.

Fig. 5 shows sample images for gender recognition in PARSE-27k dataset. Compared with other

human attribute datasets, the PARSE-27k dataset has relatively more minor variance because it only

contains crops of pedestrian bounding boxes obtained by a pedestrian detector. For simplicity, the

website of PARSE-27k provides HDF5 file format of 64 × 128 sized crops, including labels for

quick experiments, so we did not need to crop images by ourselves. The PETA dataset consists of

19,000 images annotated with 61 binary and 4 multi-class attributes. The PETA dataset comprises

10 sub-datasets, including CUHK, CAVIAR4REID, and MIT, recorded at different places with dif-

ferent camera angles and viewpoints. In this experiment, we choose the CUHK sub-dataset with
2PARSE-27k dataset available at: https://www.vision.rwth-aachen.de/page/parse27k
3PETA dataset available at: http://mmlab.ie.cuhk.edu.hk/projects/PETA.html
4Human attribute dataset available at: https://www2.eecs.berkeley.edu/Research/Projects/

CS/vision/shape/poselets/
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Figure 6: Samples images from CUHK sub-dataset in PETA dataset

resolutions of 80× 160, a high camera angle, and a varying viewpoint. Fig. 6 shows sample images

from the PETA dataset.

In order to describe the images, we have considered bag of visual words (BOVW) [79]. The

basic idea is to extract local features for each image using scale invariant feature transform (SIFT)

[80]. Then, K-Means is used to cluster the 128-dimensional descriptors for building the visual

words vocabulary, where size is equal to the number of centroids. In short, the BOVW works by

extracting features such as shape, texture, etc., in a dense grid of rectangular windows and constructs

a fixed-size visual vocabulary by counting each visual word’s occurrence in an image.

Regarding the PARSE-27k experiment, we selected 2,000 images, composed of 1,000 female

photos and 1,000 male photos, by considering a visual vocabulary having a size of 110. Besides,

the distribution of clusters is so imbalanced which makes the clustering task very challenging. The

clustering results using different mixtures are summarized in Table 7 and show clearly that our

model outperformed all the others.

For another gender recognition experiment, we choose 346 images (200 for males and 146

females) from the CUHK folder in the PETA dataset. We also employ SIFT and BOVW approach

to extract feature vectors from these images. We considered a vocabulary with a size of 130 after

many tries. The clustering results for this data set are given in Table 7 and we can see again that our

model has an excellent performance as compared to the other models.
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Models dataset Time Epoch Acc Precision Recall F1-score Silhouette CE
BAGMM-FS PETA 2.18 7 81.21% 81.52% 81.21% 81.29% 0.018 0.170

BAGMM PETA 1.322 4 51.44% 48.73% 51.44% 48.97% -0.002 0.011
AGMM-FS PETA 0.813 45 57.80% 33.41% 57.80% 42.34% N/A 0.693

AGMM PETA 0.237 21 57.80% 33.41% 57.80% 42.34% N/A 0.693
BGGMM PETA 15.93 3 39.59% 41.91% 39.59% 36.31% 0.075 0.011
GGMM PETA 2.046 300 57.80% 33.41% 57.80% 42.34% N/A 0.693
GMM PETA 0.024 1 57.80% 33.41% 57.80% 42.34% N/A 0.693

BAGMM-FS PARSE-27k 3.13 5 77.33% 82.49% 77.33% 67.83% -0.122 0.005
BAGMM PARSE-27k 2.02 4 50.18% 82.47% 50.18% 51.47% 0.055 0.039

AGMM-FS PARSE-27k 4.10 13 76.93% 59.19% 76.93% 66.90% N/A 0.693
AGMM PARSE-27k 37.61 209 76.93% 59.19% 76.93% 66.90% N/A 0.693

BGGMM PARSE-27k 30.33 6 70.61% 76.80% 70.61% 72.52% 0.012 0.117
GGMM PARSE-27k 1.101 3 76.93% 59.19% 76.93% 66.90% N/A 0.693
GMM PARSE-27k 0.112 1 76.93% 59.19% 76.93% 66.90% N/A 0.693

BAGMM-FS HR dataset 0.506 1 70.61% 73.89% 70.61% 69.56% 0.125 0.116
BAGMM HR dataset 0.504 1 62.77% 78.66% 62.77% 56.79% 0.110 0.007

AGMM-FS HR dataset 0.571 16 50.00% 25.00% 50% 33.33% N/A 0.693
AGMM HR dataset 4.003 300 50.00% 25.00% 50% 33.33% N/A 0.693

BGGMM HR dataset 48.073 8 61.98% 62.43% 61.98% 61.62% 0.097 0.009
GGMM HR dataset 0.121 3 50.00% 25.00% 50% 33.33% N/A 0.693
GMM HR dataset 0.038 1 50.00% 25.00% 50% 33.33% N/A 0.693

Table 7: Gender recognition results

We have also considered a challenging dataset called Human attribute (HR) dataset [77, 78].

The Human attribute dataset of H3D folder comprises 750 images in total (437 for male images,

313 for female images) in which there are nine attributes and visible bounding boxes of person for

each image. The attribute value is 1 if it is present, -1 if it is not, and 0 if it is unspecified which we

have not considered nor use in our experiments. The same feature extraction process used above is

also considered for this data set.

This dataset is different from the datasets mentioned above because of its complex and color-

ful backgrounds. We randomly picked up 313 images (half males and half females). After feature

extraction, we considered a vocabulary of size 100. It’s observed that our proposed model per-

forms better than the other mixture models, as shown in Table 7. In particular, we can observe that

several silhouette score values are N/A, which means that the associated models failed to distin-

guish both classes. Our proposed BAGMM-FS has the highest accuracy of 70.61% as compared

with BAGMM with 62.77% accuracy and fewer iterations as compared with AGMM-FS because

of bounded support. Note that feature selection can help mixture models converge faster observed

from the execution time of AGMM and AGMM-FS.
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Figure 7: Samples images from human attribute dataset.
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Chapter 4

Bounded asymmetric Gaussian

mixture-based hidden Markov models

In the previous chapter, we have proposed an unsupervised feature selection framework using

the bounded asymmetric Gaussian mixture model (BAGMM-FS) and validated it on several human-

related recognition challenges to prove its effectiveness. In this chapter, we integrate the bounded

asymmetric Gaussian mixture model into a hidden Markov model (HMM) framework.

4.1 Introduction

In most cases, the choice of emission probability distributions in HMM is less discussed and

considered as Gaussian mixture models (GMM) by default, often because of mathematical and

practical convenience and strong assumption of a common pattern for the data [49]. In this Chapter,

we propose to explore and evaluate the performance of HMM by adopting BAGMM as emission

probability distribution.

Given aD-dimensional random variable X = [X1, . . . , XD], the bounded asymmetric Gaussian

distribution (BAGD) for the vector ~X can be defined as:

p(X|ξm) =
f(X|ξm)H(X|Ωm)∫

∂m
f(~u|ξm)du

,where H(X|Ωm) =


1 if ~X ∈ ∂m

0 otherwise
(65)
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Figure 8: Graphical representation for HMM

where f( ~X|ξm) is the PDF of the asymmetric Gaussian distribution (AGD) defined in Sec-

tion. 2.1 of Eq. (1), the term
∫
∂m
f(~u|ξm)du in Eq. (65) is the normalized constant that shows the

share of f( ~X|ξm) which belongs to the support region ∂.

4.2 Hidden Markov Model

For many real-world applications, such as occupancy estimation in buildings, we wish to pre-

dict the following number of people in a time series given sequences of the previous values. It’s

impractical to consider a general dependence of future observations on all previous values. There-

fore, the HMM assumes that the future predictions are dependent of the most recent observations

only. Moreover, the HMM is a specific instance of the state space model that the latent variables are

discrete. The latent variable, which is the state of this hidden process, satisfies the Markov property;

that is, given the value of sn−1; the current state sn is independent of all the states prior to the time

n−1. X = [x1, . . . , xN ] represents the observed variables and S = [s1, . . . , sn] is the hidden state.

A hidden Markov model is governed by a set of parameters, such as the set of state transitions and

emission probability. There are three main tasks for HMM-based modeling; first is to optimize those

parameters for the model given training data; second is scoring that calculates the joint probability

of a sequence given the model; third is decoding that finds the optimal series of hidden states.
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According to [81], given time series observations X = [x1, . . . , xn, . . . , xN ] generated by hid-

den states S = [s1, . . . , sn, . . . , sN ]; sk ∈ [1,K] where K is the number of the hidden states, we

define the transition probability matrix as A: Ajk = p(snk = 1 | sn−1,k = 1). They should satisfy

0 ≤ Ajk ≤ 1 with
∑

k Ajk = 1, because they are probabilities.

P (xm | Λ) is known as emission probability, where Λ is a set of parameters governing the

distribution if x is continuous. Note that P (xm | Λ) will be an emission probability matrix if x is

discrete. The joint probability distribution over both hidden states and observed variables is then

given by:

p(X,S | Θ) = p (s1 | π)

[
N∏
n=2

p (sn | sn−1,A)

]
N∏
m=1

p (x̃m | Λ) (66)

where X = [x1, . . . ,xN], S = [s1, . . . , sN], and Θ = {π,A,Λ} defines the set of parameters

of HMM. Indeed, there are a wide range of choices for emission distribution that include Gaussian

distribution and mixture models such as Gaussian mixture model (GMM). It’s worth mentioning that

the emission distributions are often taken as Gaussian mixtures for most continuous observations

cases [81, 82, 83, 84].

The parameters learning task is crucial for HMM. In this paper, we focus on the maximum log-

likelihood approach via EM algorithm, which can also be considered as a selection process among

all models in such a way to determine which model best matches the observations. It’s intractable to

directly maximize the log-likelihood function, leading to complex expressions with no closed-form

solutions.

The EM framework starts with some initial parameters. Then, we need to accumulate suffi-

cient statistics and find the posterior distribution of the state p
(
S | X,Θold ) by applying forward-

backward algorithm in E step. We utilize this posterior distribution to update parameters Θ via

maximizing the complete-data likelihood with respect to each parameter in M step. The function

Q
(
Θ,Θold ) can be defined as:

Q
(
Θ,Θold ) =

∑
S

p
(
S | X,Θold ) ln p(X,S | Θ) (67)

We introduce γ (snk) to denote the marginal posterior distribution of the nth state snk and

ξ (sn−1,j , snk) to define the joint posterior distribution of two successive states sn−1,j , snk that
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xn−1, xn are emitted from the jth and kth model state respectively.

γ (snk) = P (snk | X,Θ)

ξ (sn−1,j , snk) = P (sn−1,j , snk | X,Θ)

(68)

where γ (snk) denotes the conditional probability p(snk | X, θ), where snk = 1 if xn is emitted

from the kth model state, and snk = 0, otherwise.

We can make use of the definition of γ and ξ and substitute Eq. (67) with Eq. (68). We obtain

Q
(
θ,θold ) as:

Q
(
θ,θold ) =

K∑
k=1

γ (s1k) lnπk +

N∑
n=2

K∑
j=1

K∑
k=1

ξ (sn−1,j , snk) lnAjk

+

N∑
n=1

K∑
k=1

γ (snk) ln p (x̃n | Λnk)

(69)

4.3 BAGMM Integration into the HMM framework

From the previous section, the emission distribution p (x̃n | Λnk) is often taken as Gaussian

mixture model (GMM) for most continuous observations cases. However, the Gaussian distribution

assumes that the data is symmetric and has an infinite range, which prevents it from having a good

modeling capability in the presence of outliers. So, we suggest integrating the bounded asymmetric

Gaussian mixture model (BAGMM) into the HMM framework. The primary motivation behind

this choice is the bounded range support from BAGMMM and its asymmetric nature for modeling

non-symmetric real-world data. The BAGMM is flexible and has good capabilities to model both

symmetric and asymmetric data.

By replacing the emission probability distribution as BAGMM, we can integrate BAGMM into

the HMM framework, which is to substitute p (x̃n | Λnk) with Eq. (65) in Eq. (69). In the E step,

we obtain Q
(
θ,θold ) using Eq. (69). In the M step, we maximize Q

(
θ,θold ) with respect to the

parameters Θ = {π,A,Λ} in which we treat γ, ξ as a constant. The details are discussed in the

subsection.
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4.3.1 Estimation of π and A

Using Lagrange multipliers, the maximization concerning πk and Ajk gives the following:

πk =
γ (s1k)∑K
j=1 γ (s1j)

(70)

Ajk =

∑N
n=2 ξ (sn−1,j , snk)∑K

l=1

∑N
n=2 ξ (sn−1,j , snl)

(71)

Note that the initialization for πk and Ajk should respect the summation constraints,
∑K

k=1 πk = 1

and
∑K

k=1Ajk = 1.

4.3.2 Estimation of Λ

To maximize Q
(
θ,θold ) with respect to Λk, we note that the final term in Eq. (69) depends

on Λk. The Λk is a set of parameters of the kth state emission probability distribution, Λk =

[p1, . . . , pm, µ1, . . . , µm, σl1, . . . , σlm, σr1, . . . , σrm]. Here, we denote ϕn(k,m) the probability of

being at state sk at time nwith respect to themth bounded asymmetric Gaussian mixture. According

to [85, 86], the ϕn(k,m) can be computed as:

ϕn(k,m) =
α (snk)β (snk)∑K
k=1 α (snk)β (snk)

· p(x̃n|ξkm)pkm∑M
m=1 p(x̃n|ξkm)pkm

(72)

where α (sn) denotes the joint probability of observing all of the given data up to time n and the

hidden state sn, whereas β (sn) represents the conditional probability of all future data from time

n+ 1 up to N given the hidden state of sn:

α (sn) ≡ p (x1, . . . ,xn, sn) (73)

β (sn) ≡ p (xn+1, . . . ,xN | sn) (74)

The mixing coefficient pnewkm of the mth bounded Asymmetric Gaussian mixture in the state k is

given by:

pnewkm =

∑N
n=1 ϕn(k,m)∑N

n=1

∑M
m=1 ϕn(k,m)

(75)
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The mean µnewkmd can be defined using the same approach.

µnewkmd =

∑N
n=1 ϕn(k,m)

{
xnd −

∫
∂km

f(u|ξkm)(u−µkmd)du∫
∂km

f(u|ξkm)du

}
∑N

n=1 ϕn(k,m)
(76)

Note that in Eq. (76), the term
∫
∂km

f(u|ξkm)(u−µkmd)du is the expectation of function (u−µkmd)

under the probability distribution f(xd|ξkm). Then, this expectation can be approximated as:

∫
∂km

f(u|ξkm)(u− µkmd)du ≈ 1

M

M∑
m=1

(mkmd − µkmd)H(mkmd|Ωkm) (77)

wheremkmd ∼ f(u|ξkm) is a set of random variables drawn from the asymmetric Gaussian distribu-

tion for the particular component m of the mixture model at the state k. The term
∫
∂km

f(u|ξkm)du

in Eq. (76) can be approximated as:

∫
∂km

f(u|ξkm)du ≈ 1

M

M∑
m=1

H(mkmd|Ωkm) (78)

and

µnewkmd =

∑N
n=1 ϕn(k,m)

{
xnd −

∑M
m=1(mkmd−µkmd)H(mkmd|Ωkm)∑M

m=1 H(mkmd|Ωkm)

}
∑N

n=1 ϕn(k,m)
(79)

The left standard deviation can be estimated by maximizing the log-likelihood function with respect

to σlkmd
which can be performed using Newton-Raphson method:

σnewlkmd
= σoldlkmd

−

(∂2Q
(
θ,θold )

∂σ2
lkmd

)−1(
∂Q
(
θ,θold )

∂σlkmd

) (80)

where the first derivative of the model’s complete data log-likelihood with respect to left standard

deviation σlkmd
is given as follows:

∂Q
(
θ,θold )

∂σlkmd

= 0 (81)
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∂Q
(
θ,θold )

∂σlkmd

=
∂

∂σlkmd

N∑
n=1

ϕn(k,m)×{
log pkm + log f(x̃n|ξkm) + log H(x̃n|km)− log

∫
∂km

f(~u|ξkm)du
}

=
∂

∂σlkmd

N∑
n=1

ϕn(k,m)

{
log f(x̃n|ξkm)− log

∫
∂km

f(~u|ξkm)du
}

=
N∑

n=1,xnd<µkmd

ϕn(k,m)

(
(xnd − µkmd)2

σ3
lkmd

)

−
N∑

i=1,xnd<µjd

ϕn(k,m)

σ3
lkmd

{∫
∂km

g1 (u | ξkm) (u− µkmd)2 du∫
∂km

g1 (u | ξkm) du

}

(82)

The term
∫
∂km

g1(u|ξkm)(u− µkmd)2du can be approximated as below:

∫
∂km

g1(u|ξkm)(u− µkmd)2du ≈ 1

M

M∑
m=1

(lkmd − µkmd)2H(lkmd|Ωkm) (83)

where lkmd ∼ g1(x̃n|ξkm) is a set of random variables drawn from the asymmetric Gaussian distri-

bution with u < µkmd for the particular componentm of the mixture model at the state k. Similarly,

the term
∫
∂km

g1(u|ξkm)du in Eq. (82) can be approximated as:

∫
∂km

g1(u|ξkm)du ≈ 1

M

M∑
m=1

H(lkmd|Ωkm) (84)
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The same approximation for the second-order derivative of the model’s complete data log-likelihood

with respect to left standard deviation is defined as follows:

∂2Q
(
θ,θold )

∂σ2
lkmd

= −3

N∑
n=1,xnd<µkmd

ϕn(k,m)

(
(xnd − µkmd)2

σ4
lkmd

)

−
N∑

n=1,xnd<µjd

ϕn(k,m)

(
−2

σ3
lkmd

(σlkmd
+ σrkmd

)

)
×

{
1
M

∑M
m=1 (lkmd − µkmd)2 H (lkmd | Ωkm)

1
M

∑M
m=1 H (lkmd | Ωkm)

}

−
N∑

n=1,xnd<µkmd

ϕn(k,m)

σ6
lkmd

{
1
M

∑M
m=1 (lkmd − µkmd)4 H (lkmd | Ωkm)

1
M

∑M
m=1 H (lkmd | Ωkm)

}

−
N∑

n=1,xnd<µkmd

−3ϕn(k,m)

σ4
lkmd

{
1
M

∑M
m=1 (lkmd − µkmd)2 H (lkmd | Ωkm)

1
M

∑M
m=1 H (lkmd | Ωkm)

}

−
N∑

n=1,xnd<µkmd

ϕn(k,m)

σ6
lkmd


(

1
M

∑M
m=1 (lkmd − µkmd)2 H (lkmd | Ωkm)

)2

(
1
M

∑M
m=1 H (lkmd | Ωkm)

)2



(85)

The right standard deviation can be estimated by maximizing the log-likelihood function with

respect to σrkmd
which can be performed using Newton-Raphson method:

σnewrkmd
= σoldrkmd

−

(∂2Q
(
θ,θold )

∂σ2
rkmd

)−1(
∂Q
(
θ,θold )

∂σrkmd

) (86)
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Similar approximations are used for
∂Q(θ,θold )
∂σrkmd

as following:

∂Q
(
θ,θold )

∂σrkmd

=
∂

∂σrkmd

N∑
n=1

ϕn(k,m)×{
log pkm + log f(x̃n|ξkm) + log H(x̃n|km)− log

∫
∂km

f(~u|ξkm)du
}

=
∂

∂σrkmd

N∑
n=1

ϕn(k,m)

{
log f(x̃n|ξkm)− log

∫
∂km

f(~u|ξkm)du
}

=
N∑

n=1,xnd≥µkmd

ϕn(k,m)

(
(xnd − µkmd)2

σ3
rkmd

)

−
N∑

i=1,xnd≥µjd

ϕn(k,m)

σ3
rkmd

{∫
∂km

g2 (u | ξkm) (u− µkmd)2 du∫
∂km

g2 (u | ξkm) du

}

(87)

The term
∫
∂km

g2(u|ξkm)(u− µkmd)2du can be approximated as below:

∫
∂km

g2(u|ξkm)(u− µkmd)2du ≈ 1

M

M∑
m=1

(rkmd − µkmd)2H(rkmd|Ωkm) (88)

where rkmd ∼ g2(x̃n|ξkm) is a set of random variables drawn from the asymmetric Gaussian distri-

bution with u ≥ µkmd for the particular componentm of the mixture model at the state k. Similarly,

the term
∫
∂km

g2(u|ξkm)du in Eq. (87) can be approximated as:

∫
∂km

g2(u|ξkm)du ≈ 1

M

M∑
m=1

H(rkmd|Ωkm) (89)
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Similar approximations are used for
∂2Q(θ,θold )
∂σ2

rkmd

as following:

∂2Q
(
θ,θold )

∂σ2
rkmd

= −3

N∑
n=1,xnd≥µkmd

ϕn(k,m)

(
(xnd − µkmd)2

σ4
rkmd

)

−
N∑

n=1,xnd≥µjd

ϕn(k,m)

(
−2

σ3
rkmd

(σlkmd
+ σrkmd

)

)
×

{
1
M

∑M
m=1 (rkmd − µkmd)2 H (rkmd | Ωkm)

1
M

∑M
m=1 H (rkmd | Ωkm)

}

−
N∑

n=1,xnd≥µkmd

ϕn(k,m)

σ6
rkmd

{
1
M

∑M
m=1 (rkmd − µkmd)4 H (rkmd | Ωkm)

1
M

∑M
m=1 H (rkmd | Ωkm)

}

−
N∑

n=1,xnd≥µkmd

−3ϕn(k,m)

σ4
rkmd

{
1
M

∑M
m=1 (rkmd − µkmd)2 H (rkmd | Ωkm)

1
M

∑M
m=1 H (rkmd | Ωkm)

}

−
N∑

n=1,xnd≥µkmd

ϕn(k,m)

σ6
rkmd


(

1
M

∑M
m=1 (rkmd − µkmd)2 H (rkmd | Ωkm)

)2

(
1
M

∑M
m=1 H (rkmd | Ωkm)

)2



(90)

4.3.3 Complete algorithm

The complete learning of BAGMM-HMM is given in Algorithm 3, where epochmax is the

maximum number of iterations. The goal of this algorithm is to find the optimal parameters of

Θ = {π,A,Λ}.

The flowchart of this algorithm is shown in Figure 9. First, we initialize π and transition proba-

bility A with the mean probability according to the number of hidden states and number of mixture

components and employ K-Means to initialize parameters of BAGMM. Then, we iterate through the

E step and M step until convergence where we accumulate sufficient statistics using the forward-

backward algorithm in the E step and update the parameters in the M step.

4.4 Experimental Results

In this section, the effectiveness of our model is tested on some real-world applications, in-

cluding occupancy estimation and human activity recognition (HAR). We compare our approach

(BAGMM-HMM) with asymmetric Gaussian mixture model hidden Markov model (AGMM-HMM),
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Algorithm 3 Parameters learning for BAGMM-HMM.

1: Input:Dataset X = { ~X1, . . . , ~XN}, epochmax.
2: Output: {π,A,Λ}.
3: {Initialization for Θ = [π,A,Λ]}:
4: {Expectation Maximization}:
5: while iterations ≤ epochmax or relative changes of parameters not converged do
6: {[E Step]}:
7: for all [ ~X1, . . . , ~XN ] do
8: Compute γ (snk) and ξ (sn−1,j , snk) using forward-backward algorithm.
9: Accumulate sufficient statistics according to Eq. (67)

10: {[M step]}:
11: for all 1 ≤ j ≤ K do
12: Update πk, Ajk using Eqs. (70 & 71)
13: Update pnewkm , µnewkmd, σnewlkmd

, σnewrkmd
& ~σrj using Eqs. (75, 76, 80, & 86).

14: end for
15: end while

Figure 9: Training process.

bounded Gaussian mixture hidden Markov model (BGMM-HMM), and Gaussian mixture hidden

Markov model (GMM-HMM). For comparison, we use the following metrics: accuracy, which is

computed as: (
TP + TN

TP + TN + FP + FN

)
precision, which is computed as: (

TP

TP + FP

)
recall, which is computed as: (

TP

TP + FN

)
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specificity, which is computed as: (
TN

TN + FP

)
In addition, particularly in case of imbalanced dataset, we must also examine the F1 Score, the

harmonic mean of precision and recall, which is computed as:

2× (precision× recall)/(precision+ recall)

G-mean 1, the geometric mean of precision and recall, which is computed as:

√
precision× recall

G-mean 2, the geometric mean of specificity and recall, which is computed as:

√
specificity × recall

Mathew’ s correlation coefficient (MCC), which is computed as:

TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Here, the term TP stands for true positives, TN for true negatives, FP for false positives, and FN

stands for false negatives. Here, the term TP stands for true positives, TN for true negatives, FP

for false positives, and FN stands for false negatives.

4.4.1 Occupancy Estimation

Indoor occupancy estimation is a critical analytical task for several applications, such as smart

buildings or monitoring the energy consumption for power saving. Automating the devices in a

building based on occupancy estimation has proved to be very efficient since some research works

have indicated that one-third of energy can be saved while using this technique [87, 88].

In terms of privacy, most occupancy detection systems and their modeling approaches avoid

employing cameras or audio recorders in favour of non-intrusive sensors, which can be divided into
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two categories: pyroelectric infrared sensors (PIR) and ambient sensors. For the first category, some

research works have been proposed to utilize PIR sensors, and ultrasonic sensors [89, 90]. For the

second category, some research works [91, 92] have considered environmental features, such as

CO2 human emission, temperature, humidity, and sound level. Moreover, many machine learning

approaches have been used to predict occupants, such as Support Vector Machines (SVM) [90],

Logistic Regression [93] and HMMs [94, 95, 96]. They have been utilized to model the extracted

features from the environmental data and proved their effectiveness in the occupancy estimation

task.

In this section, we employ BAGMM-HMM to estimate occupancy in an office room and hence

be the first to tackle this problem with a bounded asymmetric Gaussian mixture-based HMM. Our

occupancy estimation task is based on low-cost non-intrusive environmental sensors without both-

ering privacy policy.

4.4.1.1 Occupancy Detection Dataset

The dataset of the first experiment for occupancy detection is from UCI machine learning Repos-

itory [95]. The experimental data about temperature, humidity, light, the ratio of humidity, and CO2

were obtained from time-stamped pictures taken every minute, which have two labels, occupied and

not occupied, respectively. We select training data from two days with 1993 observations and vali-

dation data from four days with 4879 observation, for our experiments.

The results in Table 8, showed promising average accuracy for our BAGMM-HMM as com-

pared to AGMM-HMM, BGMM-HMM, and GMM-HMM: 94.90%, 78.30%, 83.58%, and 76.84%,

respectively. These results show the effectiveness of our proposed model for occupancy detection.

BAGMM-HMM, AGMM-HMM and BGMM-HMM converge faster than traditional GMM-HMM

because of bounded range support.

In Figure 10, we present the confusion matrix for this dataset using BAGMM-HMM. Since

this is binary classification, our parameters setting is 2 for both the number of hidden states and

mixture components. Figure 11 displays the ground truth and our estimated results. From the

figures mentioned above, we can see again that our model has an excellent performance.
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Table 8: Occupancy detection results using different HMM models.

HMM Models
Metrics BAGMM-HMM AGMM-HMM BGMM-HMM GMM-HMM
Epoch 4 3 3 15

Accuracy 94.90% 78.30% 83.58% 76.84%
Precision 95.83% 88.96% 90.51% 88.59%

Recall 94.90% 78.30% 83.58% 76.84%
Specificity 98.45% 93.70% 91.51% 93.28%
F1-score 95.06% 80.06% 84.80% 78.74%
G-mean 1 95.36% 83.45% 86.97% 82.50%
G-mean 2 96.66% 85.65% 89.22% 84.66%

MCC 87.24% 60.52% 67.49% 58.77%

Figure 10: Occupancy detection confusion matrix for BAGMM-HMM.
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Figure 11: Occupancy detection using BAGMM-HMM.

4.4.1.2 Occupancy estimation dataset

The dataset consists of environmental sensors data collected in an office in Grenoble Institute

of Technology, which is housing four people. The dataset comprises luminance, CO2 concentra-

tion, relative humidity (RH), temperature, motion, power consumption, window, door position, and

acoustic pressure from a microphone. The data collection is performed continuously with an in-

terval of half an hour. The number of occupants is obtained from recorded videos and used for

validation only.

The dataset excludes the timestamp and label of occupants, which is observed information,

where the number of occupants is the hidden states that we need to determine. Eight dimensional

sensors outputs over a time interval t = 30 minutes represent our data and there are 5 hidden states

S = {s0, s1, s2, s3, s4} in this dataset as shown in Figure 12. At time t0, the number of occupants

can be one of the hidden states as shown using green arrows in Figure 12. Each hidden state may

switch to another with the transition probability at any time, as shown using black arrows. The red

dashed arrows are the emission probabilities indicating the connections between hidden states and

observations at a specific time tn.

With respect to the choice of features, the research paper [97] indicates that the level of CO2
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Figure 12: HMM for occupancy estimation according to the case of study.

do not rise immediately as a person comes in, and the authors only employed a subset of features

for training: {acoustic pressure, occupancy from power, motion counting}. Another consideration

is to re-evaluate the nature of the selected emission probability distribution, which is BAGMM in

our work. In this experiment, we use all the features except the datetime and occupancy labels.

The BAGMM-HMM is trained according to Algorithm 3 to estimate the model parameters that are

employed to test the validation dataset.

4.4.1.3 Experimental Results

The observations in the dataset are collected in the time frame of 20 days every 30 minutes.

We choose to train our model using the data collected on days from May 4th, 2015 to May 14th,

2015; test and adjust the model parameters using the data from May 15th, 2015 to May 20th, 2015;

validate the model for the rest of data. The compared models are also trained with the same raw

data. We just let the models exploit the features and tune the hyperparameters for the models.

After many experiments, the HMM models for our experiments use K = 5 for the number of

hidden states and M = 3 for the number of mixtures to have the best performance. The occupancy

estimation comparison results are presented in Table 9. The BAGMM-HMM achieves the best

performance with an average accuracy of 86.39% and the highest F1-score with 85.52% compared

to 78.45% and 79.28% for AGMM-HMM, 75.42%, and 64.86% for BGMM-HMM against 70.69%,

and 75.42% for GMM-HMM, respectively. Our proposed model distinguishes itself as compared to
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the other models with respect to the considered performance metrics.

Table 9: Occupancy estimation comparison using different HMM models.

HMM Models
Metrics BAGMM-HMM AGMM-HMM BGMM-HMM GMM-HMM
Epoch 4 4 2 10

Accuracy 86.39% 78.45% 75.42% 70.69%
Precision 85.71% 82.91% 56.89% 83.97%

Recall 86.38% 78.45% 75.42% 70.69%
Specificity 75.04% 82.47% 24.57% 88.57%
F1-score 85.52% 79.28% 64.86% 75.42%
G-mean 1 86.05% 80.66% 65.51% 77.05%
G-mean 2 80.52% 80.43% 43.05% 79.13%

MCC 68.35% 57.37% 52.28% 54.39%

The normalized confusion matrix is given in Figure 13. We notice the dataset is an imbalanced

dataset from the confusion matrix. But overall, our model can outperform the other HMM models

with the same training data.

Figure 14 presents the results obtained from the BAGMM-HMM with 86.39% accuracy, com-

pared with the ground truth as shown with the blue line.

4.4.2 Human Activity Recognition (HAR)

Human activity recognition (HAR) has emerged as an active area of research over the past

few years [70, 71] due to many novel ubiquitous applications such as smart buildings, just-in-time

surveillance, interactive game interfaces, and home healthcare. The goal of an activity recognition

system is to recognize human activities given video clips or environmental sensors data (for privacy

concerns) over a time series.

4.4.2.1 HAR Dataset

In this section, we present our experimental results of the proposed model on the challenging

human activity recognition (HAR) dataset from UCI machine learning repository [98]. The ex-

periments using this dataset have been carried out with a group of 30 volunteers who performed

six activities (walking, walking upstairs, walking downstairs, sitting, standing, laying) wearing a
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Figure 13: Occupancy estimation normalized confusion matrix for BAGMM-HMM.

Figure 14: Occupancy estimation using BAGMM-HMM.
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Figure 15: HAR dataset: Instances per activity.

smartphone on the waist. The data comprise 3-axial linear acceleration and 3-axial angular velocity

collected by the smartphone’s embedded accelerometer and gyroscope at a constant rate of 50Hz.

Besides, the experiments have been video-recorded to label the data manually. The dataset was ran-

domly partitioned into two sets, where 70% of the volunteers were selected to generate the training

data and 30% for the test data.

4.4.2.2 Preprocessing and Data Visualization

We concatenate all the signal data from the Inertial Signals folder, which has nine files, as our

training features. However, the combined features are such a large matrix with a size of 7352×1152

to which we applied principal component analysis (PCA) to reduce the dimension from 1152 to

100. We utilize exploratory data analysis (EDA) to analyze the dataset. We notice that the dataset

is balanced, as indicated in Figure 15 that shows the number of data instances per activity.

Furthermore, there are two categorical activities: static (sitting, standing, laying) and dynamic
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Figure 16: HAR dataset: stationary and moving activities.

(walking, walking upstairs, walking downstairs) activities, respectively. The body acceleration fea-

tures in the y-axis are significant in stationary activity while not substantial in moving action, as

shown in Figure 16.

4.4.2.3 Methodology and Results

An HMM is trained for classifying each human activity using corresponding training data. For

the testing stage, the log-likelihood of given testing sensor data is calculated by the respective six

trained HMMs, and the class label is assigned according to the maximum likelihood. Our training

and predicting process can be observed in Figure 17.

Furthermore, our proposed model outperforms other HMMs, with the best configuration being

K = 2 states andM = 2 mixture components associated with each state shown in Table 10. For the

sake of time-saving, we decrease the number of draws from the asymmetric Gaussian distribution

during the M step from 4,000 to 1,000. The convergence of BAGMM-HMM is faster than the

GMM-HMM model. The results obtained with the BAGMM-HMM are indubitably better than
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Figure 17: HMM for activity recognition accodring to the case of study.
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those with the HMMs, especially the highest accuracy of 84.64% for BAGMM-HMM.

Table 10: Activity recognition results using different HMM models.

HMM Models
Metrics BAGMM-HMM AGMM-HMM BGMM-HMM GMM-HMM

Accuracy 84.62% 77.27% 76.92% 75.00%
Precision 92.31% 69.32% 70.94% 69.44%

Recall 84.62% 77.27% 76.92% 75.00%
Specificity 97.20% 95.24% 24.57% 95.00%
F1-score 83.44% 71.21% 71.64% 68.88%
G-mean 1 88.38% 73.19% 73.87% 72.16%
G-mean 2 90.69% 85.79% 85.45% 84.40%

MCC 83.93% 69.98% 70.16% 68.02%
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Chapter 5

Conclusion

This thesis is based on the bounded asymmetric Gaussian mixture model (BAGMM) and its

model selection criterion, as well as its integration into the framework of hidden Markov models

(HMM). The fact that BAGMM generally performs better than the AGMM is due to its bounded

support range which motivated us to further explore the extent of this distribution on various chal-

lenging applications.

Chapter 2 discusses clustering using BAGMM and proposes the MML as model selection cri-

terion to determine the optimal number of clusters. Bounded support mixture has demonstrated its

success in many clustering applications. The proposed model is applied to synthetic datasets, real

datasets and an application is developed for occupancy detection. From all the experimental results,

it is observed that the BAGMM and the MML provide strong modeling ability for high-dimensional

and complex datasets.

Then chapter 3 proposes a statistical framework for simultaneous clustering and feature se-

lection based on BAGMM. The proposed statistical model is learned using the EM algorithm to

estimate the mixture’s parameters and select the number of clusters by MML. In contrast with other

dimensionality reduction approaches, our proposed algorithm uses the full dimensionality of the

data and gives a weight to each feature automatically. Using two applications that involve human

activity and gender recognition, we have shown that the proposed model outperforms other mixture

models considered for comparison.
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Finally, we presented a new extension to the traditional HMM by modifying its emission prob-

ability distribution as bounded asymmetric Gaussian mixture. The main goal was to enhance HMM

capability of modeling non-symmetric data with bounded support without performing major modifi-

cations on its underlying conventional structure. It’s examined from all real-life applications that we

have performed that the proposed model outperforms all the comparable Gaussian mixture-based

HMMs, including the AGMM-HMM, BGMM-HMM, and the traditional Gaussian mixture-based

HMM. The particular motivation in adopting bounded asymmetric Gaussian mixtures as the emis-

sion probability distribution is encouraged by their sound mathematical foundation and excellent

capabilities to approximate and model diverse shapes of real-world data.

Future works could be devoted to applying the proposed frameworks to other challenging ap-

plications or considering other learning techniques such as Bayesian inference or variational Bayes.

Finally other bounded distributions could also be integrated into the framework of HMMs.
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