
Towards Adaptive Federated Semi-Supervised Learning for
Visual Recognition

6

Min Wen

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University

Montreal, QC, Canada

August 2021

6

© Min Wen, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Min Wen

Entitled: Towards Adaptive Federated Semi-Supervised Learning for Visual

Recognition.

 and submitted in partial fulfillment of the requirements for the

degree of

 Master of Applied Science (Quality Systems Engineering)

complies with the regulations of the University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

 Chair
 Dr. J. Bentahar

 Examiner
 Dr. C. Wang

 Examiner
 Dr. J. Bentahar

 Supervisor
 Dr. A. Ben Hamza

Approved by __
 Dr. A. Ben Hamza, Director

Concordia Institute for Information Systems Engineering

__

 Dr. M. Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Date __

Abstract
Towards Adaptive Federated Semi-Supervised Learning for Visual Recognition

Min Wen

Internet of Things (IoT) devices such as smart phones and wireless sensors have proliferated in

smart cities over the past few years. Various applications, including augmented reality, autonomous

driving and smart homes, are based on the effective use of data generated by IoT devices. However,

two main issues constrain the development of IoT applications. The first issue originates from the

data distribution, which is usually isolated and not easy to be centralized due, in large part, to pri-

vacy concerns. The second issue arises from the shortage of labeled data, as the labeling process

is costly, time-consuming and often requires input from domain experts. More recently, federated

semi-supervised learning has become a viable solution to mitigate these issues by collaboratively

training a machine learning model using decentralized labeled and unlabeled data. It also brings

extensibility and generalizability without privacy infringement compared to traditional centralized

training. However, the federated learning process is quite challenging due to data heterogeneity

among clients. The contributions in this thesis are two-fold. First, we present an adaptive feder-

ated semi-supervised learning framework, which seamlessly integrates adaptive optimizers on both

server and client sides in an effort to promote system adaptability. Experiments and ablations stud-

ies conducted on four standard benchmark datasets demonstrate the effectiveness of our proposed

approach in image classification, achieving superior performance over strong baseline methods.

The other contribution consists of designing a two-stage human activity recognition system,

which also incorporates adaptive optimizers into both local and global training. Clients train a local

autoencoder model with a learning rate adaptive to local gradients, while the central orchestration

server updates the global autoencoder model by applying a gradient-based adaptive optimizer to the

average of clients’ model updates. Our system leverages a large amount of unlabeled data on clients

with the aim of achieving a higher classification accuracy. The key benefit of adaptive optimizers is

their ability to improve local training, while stabilizing the global aggregation in a bid to guarantee

a proper optimization. We demonstrate through experiments that the proposed framework is robust

to non-independent and identically distributed data and yields a stable convergence rate in different

settings.

iii

Table of Contents

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Framework and Motivation . 1

1.2 Problem Statement . 2

1.2.1 Image Classification . 2

1.2.2 Human Activity Recognition . 2

1.3 Objectives . 3

1.4 Literature Review . 3

1.4.1 Federated Learning . 3

1.4.2 Semi-supervised Learning . 5

1.4.3 Federated Semi-Supervised Learning . 5

1.4.4 Adaptive Federated learning . 6

1.4.5 HAR with Wearables . 6

1.4.6 Federated Learning for HAR . 7

1.4.7 Semi-supervised Learning for HAR . 8

1.5 Overview and Contributions . 9

2 Semi-Supervised Image Classification 11
2.1 Introduction . 11

2.2 Preliminaries and Problem Statement . 16

2.2.1 Preliminaries . 16

2.2.2 Problem Formulation . 19

2.3 Proposed Framework . 21

2.4 Experiments . 22

iv

2.4.1 Datasets . 23

2.4.2 Models . 25

2.4.3 Implementation Details . 26

2.4.4 Experimental Settings . 26

2.4.5 Comparison with Other Methods . 27

2.4.6 Optimizers . 29

2.4.7 Statistical Concerns . 34

2.4.8 Communication Efficiency . 40

3 Human Activity Recognition 48
3.1 Introduction . 48

3.2 Adaptive Federated Semi-supervised Learning for Activity Recognition 50

3.2.1 Preliminaries . 51

3.2.2 Proposed Framework . 55

3.3 Experiments . 57

3.3.1 Hyperparameter Tuning . 62

3.3.2 Comparison With Other Methods . 65

3.3.3 Update Accumulator to All Users or Participated Users? 68

3.3.4 Effect of S and r . 69

3.3.5 Effect of Autoencoder . 70

4 Conclusions and Future Work 73
4.1 Contributions of the Thesis . 74

4.1.1 Adaptive Federated Semi-Supervised Learning for Image Classification . . 74

4.1.2 Adaptive Federated Semi-Supervised Learning for Human Activity

Recognition . 74

4.2 Limitations . 74

4.3 Future Work . 75

4.3.1 Statistical Concerns . 75

4.3.2 Semi-Supervised Learning on Clients . 75

4.3.3 Balancing Communication Burden and Model Performance 75

References 76

v

List of Figures

2.1 Proposed framework for adaptive federated semi-supervised learning. 15

2.2 Comparison between AdaFedSSL and other baseline methods. 24

2.3 Sample images for four tasks. 24

2.4 Structure of ResNet-18 with Group Normalization. Conv3-64 represents convolu-

tion layer with kernel of size 3 and output of 64-layer. GN stands for group normal-

ization and ReLU is Rectified Linear Unit activation. FC-10 is a fully-connected layer

with output of size 10. 25

2.5 Test accuracy of various combinations of global learning rate and local learning rate

on four tasks. 28

2.6 Relationship between global learning rate and local learning rate on four tasks.
Right plot lists the best global value among gird for each local value. Left plot is the

opposite. 30

2.7 Three types of learning rate schedules. All schedules are time-based with 10000

total steps and start with a 500-step warm-up. 31

2.8 Learning curves with cosine annealing schedule on different locations. LOCAL

and GLOBAL mean applying schedule on either local learning rate or server learning

rate. BOTH stands for applying on both optimizers. 31

2.9 Grid search results of global adaptivity rate and local adaptivity rate on four
tasks. The number is the accuracy of AdaFedSSL with various combination of local

value and global value. 33

2.10 Relationship between global and local adaptivity rate on four tasks. Left plot lists

the best τg in gird for each τl. Right plot is the opposite. 34

2.11 Class distribution with different IID data. Distribution among classes is represented

with different colors. Note all settings have 100 users and the number of overall class

is 10. R represents the number of classes in each user. 35

2.12 Learning curves of AdaFedSSL with various level of IIDness on four tasks. 35

vi

2.13 Learning curves of AdaFedSSL with or without weigthed average of MNIST,
Fashion-MNIST, CIFAR-10 and SVHN. Pseudo-label average shows a stable and

superior training performance among four tasks . 37

2.14 Learning curve of AdaFedSSL and FedSSL w/ or w/o drop out for tasks of
MNIST, Fashion-MNIST, CIFAR-10 and SVHN. AdaFedSSL demonstrate stable

accuracy when considering drop out in FL system. 38

2.15 Learning curves with random amount of labeled data. 39

2.16 Model performance with different statistical concerns. Left shows relationship be-

tween model performance with IIDness. Middle plot draw the function of accuracy and

the ratio of labeled data at one client. Right figure draws the performance decrements

when the number of unlabeled clients increases. 40

2.17 Communication cost by using different methods on four tasks. Dot line indicates

target accuracy that is set by the smallest accuracy over five methods. 41

2.18 Test accuracy over various client parallelisms on four tasks. Dot line is the respec-

tive target accuracy indicated in Table 2.7. All experiments are with F = 10. 43

2.19 Test accuracy over various communication frequencies on four tasks. Dot line

shows the respective target accuracy indicated in Table 2.7. All experiments are with

S = 10. 44

2.20 Learning curves over dynamic number of training devices. 46

3.1 Structure of a simple autoencoder with one hidden layer. Input x is encoded as

latent representation which has less number of dimensions after encoding process.

Decoding process try to reconstructs x from latent representation and build x̂. Au-

toencoder learns key information required for reconstruction. 51

3.2 Structure of a simple LSTM cell. At time point t, a LSTM cell takes previous mem-

ory state ct−1, previous hidden state ht−1 and current data point xt as inputs. The

outputs are corresponding memory state ct and hidden state ht. σ denotes applying

sigmoid activation and tanh applies Tanh activation funtion. 52

3.3 Architecture of Autoencoder and Long-short term memory (AE-LSTM) for human

activity recognition. D is feature dimension of original data and ∆t is the window size

of slicing. 54

3.4 Proposed framework of AdaFedSSL for human activity recognition. 55

3.5 Mean F1-score of AdaFedSSL with different combinations of global and local
learning rate. Global and local adaptivity rates are set as 10−5. 63

vii

3.6 Mean F1-score of AdaFedSSL with different combinations of global and local
adaptivity rates. Global and local learning rates are set as default value in Table 3.4. . 64

3.7 Learning curves of AdaFedSSL (Red) and other baseline methods over 100 training

rounds. 66

3.8 Learning curves of AdaFedSSL in two different updating techniques. We com-

pare two updating technique that are sharing average local accumulator to All Clients

or only Participated Clients. Two scenarios are based on same hyperparameter config-

uration. 68

3.9 Relationship between model performance and different statistical settings. Left

figure compares mean F1-score with different number of training clients. Right fig-

ure draw scores with different IIDness. Both experiments show stable performance

produced by AdaFedSSL in inferior statistical setting. 70

3.10 Relationship between model performance and compression rate. Left figure shows

mean F1-score on OPP where rf = 0.7 generates the best result. Middle figure draws

scores on DG where compression rate plays unimportant role in training. Right figure

shows reaults of PAMAP2 where rf = 0.5 is the best choice. 71

3.11 Relationship between model performance and model type. 72

viii

List of Tables

2.1 Test accuracy on MNIST, Fashion-MNIST, CIFAR-10 and SVHN over five federated

semi-supervised learning methods. Boldface numbers indicate the best classification

performance. 22

2.2 Default value and description in basic setting. 27

2.3 Test accuracy of four datasets over different averaging methods. Boldface numbers

indicate the best classification performance. 36

2.4 Test accuracy of w/ or w/o stragglers on four tasks. Boldface numbers indicate the best

classification performance. 39

2.5 Test accuracy related to the amount of labeled data in AdaFedSSL 41

2.6 T̂ over differernt methods on four tasks. Boldface numbers indicate the lowest com-

munication cost of each task. 42

2.7 Number of communication rounds to achieve target accuracy over different S and F .

Test accuracies in parenthesis indicate model performance. Boldface numbers indicate

the lowest communication cost of each task. 45

3.1 Three benchmark datasets for HAR . 60

3.2 Default values and descriptions in basic setting. 65

3.3 F1-score and accuracy of five baseline methods over three tasks. Boldface numbers

indicate the best classification performance. 65

3.4 Hyperparameter setting for five methods (log10) . 67

3.5 Key elements of baseline methods . 67

ix

C
H

A
P

T
E

R

1
Introduction

In this chapter, we present the motivation behind this work, followed by the problem statement,

objectives of the study, literature review, an overview of federated learning for image classification

and human activity recognition, and thesis contributions.

1.1 Framework and Motivation

Federated learning has garnered significant attention in both academia and industry due to its

distinctive characteristics of collaboratively training a machine learning model without explicitly

sharing data or privacy infringement. Application domains of federated learning include keyboard

prediction, wireless networks, financial risk prediction, and medical research [1]. The vast major-

ity of existing federated learning models focus primarily on tackling issues like non-independent

and identically distributed (Non-IID) data [2–6] and communicate efficiency [7–12], and typically

assume that the training data are fully labeled. However, labeling massive data generated by IoT

devices is not always feasible in practice. Therefore, properly utilizing unlabeled data has become

a major challenge in federated learning. Recent approaches [13, 14] use unlabeled data on clients,

while excluding the possibility of using labeled data locally. Considering both types of data is

more realistic, but tends to introduce a severe Non-IID problem. For example, one common so-

lution is to generate pseudo-labels through self-learning for unlabeled data of which distribution

is unpredictable. Thus, traditional optimization and aggregation schemes may not be suitable for

settings with a large unlabeled data. Other issues such as partial training (i.e. only a small fraction

of clients participate in each round) and stragglers (i.e. clients go offline during training), make it

1

more urgent to come up with a stable and adaptive method.

1.2 Problem Statement

Image classification and human activity recognition are two ideal application scenarios for dis-

tributed learning. Both tasks require large amounts of training data for better model training. This

data is usually generated and collected by IoT devices.

1.2.1 Image Classification

Image classification is all about labeling images in a dataset and organizing them into a known

number of classes so they can be found quickly and efficiently, and the goal is to assign new

images to one of these classes. In supervised learning tasks, the available data for classification is

usually split into two disjoint subsets: the training set for learning and the test set for testing. The

training and test sets are usually selected by randomly sampling a set of training instances from

the available data for learning and using the rest of the instances for testing. The performance of

a classifier is then assessed by applying it to test data with known target values and comparing the

predicted values with the known values. In semi-supervised learning tasks, a large portion of the

training data is unlabeled. Several techniques, such as self-learning and consistency regularization,

are used in this context.

1.2.2 Human Activity Recognition

Human activity recognition refers to a classification task where the objective is to identify which

human activity is performed by a certain person in a given period. Activities can be of different

types such as opening/closing doors, sitting down/standing up, and so forth. Unlike image clas-

sification that finds spatial correlations in an image, the objective of human activity is to finding

temporal correlation among time series signals. Continuous data is usually partitioned into dis-

crete frames whose features are quantized and then a label is attached in a supervised learning

fashion. Deep learning models draw a relation between the sequence of frames, and are thus able

to classify time series data. In semi-supervised learning, a common method follows a two-step

pipeline by first training an autoencoder using unsupervised learning and then tuning a classifier

using supervised learning.

2

1.3 Objectives

In this thesis, we propose federated semi-supervised learning models for image classification and

human activity recognition.

• For image classification, we propose an adaptive federated semi-supervised learning frame-

work for collaboratively training a deep learning model among clients, with the aim to in-

crease classification accuracy, facilitate hyperparameter tuning and make training robust to

partial training and stragglers. We simulate the most realistic scenario that clients may have

both labeled and unlabeled data, while no data on the central server.

• For human activity recognition, we apply adaptive federated semi-supervised learning to

time series data, where we assume the server has a small amount of labeled data while

clients hold a large amount of unlabelled data. The objective is to accurately categorize

human activity classes for each frame of the test dataset.

1.4 Literature Review

Both image classification and human activity recognition (HAR) are fundamental problems in

computer vision, medical imaging, and geometry processing. In our case, we focus on related

topics that have already been experimented with in federated learning, semi-supervised learning or

adaptive learning. Most federated learning algorithms use image classification accuracy to quantify

the model performance. Here, we review general federated learning methods and provide key

concepts of semi-supervised learning and adaptive learning. A multitude of HAR systems use

different optimizers and are deployed in various networks. Here, we describe HAR applications

from different perspectives, including HAR with wearable devices, HAR with federated learning,

and HAR with semi-supervised learning.

1.4.1 Federated Learning

The concept of FL was proposed by Google in 2016 [15]. The main purpose of FL is to train

a model based on multiple devices without centralizing data. It provides an alternative way to

alleviate data shortage in centralized training and protect user privacy. A typical FL has three

steps: sever implemented broadcasts global model to participating clients; then clients conduct

local training and send back model update to server; finally, server averages model update to

update global model. This process repeats until training converges. Afterward, FL is instantiated

by FedAvg [16] which generates a global model by iteratively computing the average of distributed

3

model weights instead of gradients of local batch step. This is also the main difference between

FedAvg and FedSGD. Since FL was proposed, it has already triggered numerous applications such

as mobile keyboard prediction [17], Human Activity Recognition [18], Recommender System [19],

and so on. FL is further surveyed by [20], which categorizes the definition of FL to vertical,

horizontal and transfer federated learning. Our work mainly focuses on vertical federated learning

and assumes that overall devices’ samples constitute the population. Mcmahan et al. [16] studied

that model in FL is always able to quickly converge among IID datasets in a non-convex problem,

while as for unbalanced and Non-IID settings, works [2–4, 6, 21] show that model performance

degrades significantly. This is recognized as statistical concern in FL [22, 23]. To resolve this

concern, Zhao et al. [3] suggested creating a globally shared subset to narrow the accuracy gap.

Jeong et al. [4] proposed federated augmentation (FAug), where each device collectively trains a

generative model and thereby augments its local data towards yielding an IID dataset. Peng et

al. [2] used adversarial domain adaptation to cope with divergence during training.

In addition to statistical concerns, another dominant constraint is the communication overhead.

Huge connection execution is required during FL training. For mitigating this problem, Wang

et al. [24] used atomic decomposition to stochastic gradients sparsification, therefore minimizing

the volume of transfer at the same time reducing the variance of gradients among clients. Yao et

al. [25] proposed two techniques, i.e. FedMMD and FedFusion, to reduce the number of commu-

nication rounds. FedMMD adds a Maximum Mean Discrepancy loss on local training in case of

enlarging divergence between global output and local output. FedFusion makes global and local

features fused to achieve higher accuracy with fewer communication costs. Both methods take

consideration of outputs from both global and local perspectives in order to speed up convergence.

Li et al. [26] introduced a proximal term in local loss function to constrain diversity among users.

Chang et al. [27] considered using multiple access channels to better use bandwidth. Rothchild

et al. [28] took advantage of momentum and error accumulation from clients to overcome sparse

client participation.

Based on these researches, we summarize two major concerns that constrain FL training effi-

ciency:

• Statistical Concerns: Mostly, data on one edge device is drawn from a different distribution,

i.e. Non-IID and the number of data in each device may be unbalanced.

• Effective Concerns: The ability of Edge Network depends heavily on network bandwidth,

edge computing resources (CPU, GPU, storage), and local battery level. Together with sta-

tistical concerns, these effective challenges make issues such as stragglers and fault tolerance

significantly more prevalent than in a typical data-centered environment [22].

4

1.4.2 Semi-supervised Learning

Semi-supervised learning (SSL) is halfway between supervised and unsupervised learning. It

makes use of unlabeled data in an unsupervised way while still conducting supervised train-

ing [29]. Many recent works [30–33] have shown SSL strong stability in dealing with a small

amount of labeled data in image classification. In our work, we utilize the proxy-label technique

to generate pseudo-label for unlabeled data. Along with consistency regularization, we define two

types of loss, i.e. classification loss and consistency loss, in semi-supervised learning. Referring

to [32], consistency regularization is an important component of many recent state-of-the-art semi-

supervised learning algorithms. It was first proposed as regularization with stochastic transforma-

tion and perturbation for deep semi-supervised learning in work [34]. Then different techniques

(e.g. data augmentation [35], stochastic regularization [34] and adversarial perturbations [36])

are adopted to perturb consistency. Dai et al. [37] even show that a heavier perturbation would

produce better results. Pseudo-labeling is one type of method in self-training, which was first em-

pirically emerged in Mclachlan’s work [38] and has been widely accepted as a basic self-labeling

method in many fields, including object detection, image classification, and name a few. In specific,

pseudo-labeling represents a labeling process that generates a hard label based on meeting certain

criteria. Recent works [36, 39, 40] demonstrate that pseudo-labeling is a powerful component in

semi-supervised learning as it can be adapted into entropy minimization [31].

1.4.3 Federated Semi-Supervised Learning

Many works [13, 14, 41–43] argue that implementing SSL in FL is non-trivial. According to

a unique characteristic (i.e. decentralized data) of FL, Jin et al. [44] divided federated semi-

supervised learning (FedSSL) into two streams: label-centralized FedSSL and label-distributed

FedSSL. As the names suggest, two categorizations differ at the location of labeled data. More-

over, many works [43, 45, 46] studied FL where sample features are non-unique among users,

which is different from our aspects that samples hold share same feature spaces. This can be seen

as another categorizing criterion that is beyond our scope.

Labeled-centralized FedSSL allows central server to participate in training. As server always

stores official labels (compared with user-defined labels), it conducts supervised training concur-

rently with local training [13] or sequentially [41] after local training. However, the number of

labeled samples is always limited. Labeled-distributed FedSSL utilizes enormous unlabeled data

generated by users on which local representation or logit is first produced. Itahara et al. [42]

shared labels instead of weight update among clients to distill labels for unlabeled samples, and

also limited communication cost scaling up when model size increases by only updating predicted

5

logits instead of model parameters. One of the main defects of this is that local labels are impre-

cise, resulting from clients heterogeneity. Jeong et al. [14] considered both distributed scenarios

and introduce inter-client consistency loss by exchanging outcomes between users. This approach

diminishes the heterogeneity effect among devices at the cost of inefficient communication.

1.4.4 Adaptive Federated learning

Adaptive optimizers (e.g. AdaGrad, AdaDELTA, ADAM) have been theoretically and empir-

ically studied that they are convergence-guaranteed for solving non-convex problems. Many

works [16, 47, 48] have fully studied the convergence performance with non-adaptive optimiza-

tions (e.g. SGD) in a distributed setting. While hardly works use distributed adaptive method, Xie

et al. [49] adopted AdaGrad as local optimizer to add adaptivity on user side. Reddi et al. [50]

proposed that adaptive optimizer on server can halve communication cost and local memory usage

while remaining comparable training performance. Instead of using AdaGrad, Tong [51] studied

ADAM and AMSGrad in FL and provide a scheme of calibration for adaptive learning rate. The

main motivation of our work comes from a variant of the combination of FedAdaGrad [50] and

AdaAlter [49].

1.4.5 HAR with Wearables

Human movement data recorded with sensors on the body are multivariate time-series data with

characteristics of high spatial and temporal resolution [52]. Bulling et al. [53] provided a baseline

tutorial to analyze this type of data from body-worn sensors. The first step is partitioning the

sequential data into several continuous segments by sliding windows. These segments can be

partially overlapped or distinctive due to the method used for partition. The second step is to extract

the features of each segment. Typical features such as statistical features [54], basis transform

features [55], multi-level features [55] or bio-mechanical features [56] are drawn and form a newly

discrete dataset. After that, a classifier such as support vector machine, decision tree or graph

model is trained in a typical machine learning way. This process always needs hand-crafted feature

extraction and thus heavily relies on expertise in certain domains.

Apart from manually selected features, deep learning has emerged as an alternative to automat-

ically extract features without the need for time-consuming and costly feature engineering pro-

cedures. Plotz [57] employed autoencoder-based feature learning on sequential data and showed

that deep autoencoder outperforms traditional statistical feature extraction. Besides, many works

choose convolutional neural networks (CNNs) as the feature extraction model [58, 59] or an end-

to-end classifier [60]. Yang et al. [59] fed raw sensory data into a convolutional network to extract

6

discriminative features following two dense layers as the classifier. Yao et al. [60] trained a fully

convolutional neural network to classify sequences of sensory data directly. This avoids multi-class

windows problem caused by sliding window. We normally treat a single frame from sensory data

as an individual and independent activity. However, we intuitively deem that there is a temporal

dependence between contiguous frames. Many works find deep recurrent neural network works

better in classifying sequential data. Ordonez et al. [58] proposed a generic deep framework for

activity recognition based on convolutional and long short-term memory (LSTM) recurrent units.

They used a 5-layer 1-D convolutional network to construct features and took a 2-layer LSTM

network as classifier. After many works evolve, Hammerla et al. [52] studied the relative effect

of model types, architectures or training techniques to model performance and provides directions

towards parameter tuning through thousands of experiments.

1.4.6 Federated Learning for HAR

Thanks to the advancement of computational ability at edge devices, HAR is one of the well-

motivated subjects that can benefit from FL. According to the distribution of feature space of

training data, Yang et al. [20] categorized FL into three types: horizontal, vertical and transfer FL.

Most federated HARs [18,41,61,62] belong to horizontal FL that all clients share the same feature

spaces while having different sample spaces. Due to this characteristic, individual devices such as

i.e. mobiles or wearables can collect samples and train a global model in a distributed way. Most

federated HAR works are solving three problems: personalization, application and data scarcity.

In general, Konstanin et al. [18] studied the new hybrid method for HAR that combines semi-

supervised and federated learning to take advantage of both approaches and evaluated model per-

formance in FL with finding acceptable accuracy compared with training in centralized learning.

Qiong et al. [63] proposed ProFit which integrates personalized federated training that includes

federated meta-learning [64], federated multi-task learning [22], federated distillation [4, 65] and

data augmentation [4] into the basic FL framework. Chen et al. [61] studied adding local trans-

fer learning besides FL can largely promote personalized recognition performance. Apart from

personalization, Feng et al. [66] gave a privacy-preserving mobility prediction framework without

personal information infringement. Works [61, 67, 68] provide specific application scenarios that

realize monitoring health conditions with Federated HAR. In specific, Federated HAR applications

are required to protect users’ privacy and recognize patterns in time and accurately.

Another trendy field in federated HAR is solving the lack of labeled data. Most works as-

sume that data acquired from local devices are labeled, and supervised learning is thus pervasively

adopted. This scenario is hard to achieve as labeling time-series data, unlike labeling image data,

7

is more error-pruning and time-consuming. Moreover, pre-processing sensory data from wearable

needs expertise and is objective-oriented. Works [41, 41, 62] sought to utilize semi-supervised

learning to automatically labeling or decoding data. We compare and detail these works in Sec-

tion 1.4.7.

1.4.7 Semi-supervised Learning for HAR

Semi-supervised learning takes both labeled and unlabeled data as input when training machine

learning models. It makes training models without sufficient labeled data produce considerable

improvement in learning accuracy. Several semi-supervised learning methods such as pseudo-

labeling, transfer learning and autoencoder have brought advantages in centralized training. In

HAR, annotating time-series data needs expertise and is time-consuming, intrusive, and costly.

Thus, using semi-supervised learning to tackle data scarcity is becoming more popular in this

domain. In computer vision or text classification, many semi-supervised methods produce proxy-

label as ground truth for unlabeled data. This is based on that these two types of data can have

different forms of augmentation and perturbation that are used to train models adversarially. For

time-series data, data augmentation is typically used to make synthetic data to complement original

data [69–72]. Speaking of generating proxy-label, approaches including self-learning [73], co-

learning [74] and multi-graph learning [75] choose the most confident label predicted by model or

directly comparing the similarity between unlabeled data and labeled data. Apart from generating

pseudo-label, active training is another way that needs users to input labels towards unlabeled data

actively. BETTINI et al. [41] used both active learning and label propagation to annotate local

streams of unlabeled sensor data semi-automatically.

Autoencoder is an alternative operation making unlabeled data available in HAR. Instead of

making pseudo-label, it learns how to extract useful features for further utilization. Some works

use it to extract representative features for understanding raw data [76] or reduce computation

overhead [77]. Vincint et al. [76] trained adversarial autoencoders to precisely reduce data di-

mensionality for the purpose of visualizing high dimensional time-series data. Bandar et al. [77]

used stacked autoencoder (SAE) classifier which trains classifier and autoencoder simultaneously.

Its results show that SAE classifier can enhance the recognition accuracy and decrease recogni-

tion time that suits poor-computation devices. In addition to this, most works are following a

two-step pipeline. First, an autoencoder is trained to learn latent representations from labeled or

unlabeled data in unsupervised learning. This process is irrelevant to the task. Second, learned

representations of labeled data are extracted and used for training classifier. Varamin et al. [78]

conducted unsupervised feature learning using a convolutional auto-encoder prior to supervised

8

learning. This largely mobilizes sufficient unlabeled data and helps extract useful high-level fea-

tures of labeled data. Similarly, Gu et al. [79] investigated the application of stacked denoising

auto-encoder for automatic feature extraction. Denoising auto-encoder is an extension of a simple

autoencoder that trains autoencoder by input with noise while still reconstruct input without noise.

It is proved effective in building more robust and relevant features for further classification. Gao

et al. [80] combined stacked denoising auto-encoder with LightGBM, a supervised classification

method that reveals the inherent feature dependencies among categories for accurate human activ-

ity recognition. Wei et al. [81] used characteristics of traffic flow data extracted by autoencoder

and a Long Short-Term Memory(LSTM) to predict complex linear traffic flow data. Han et al. [82]

proposed an Autoencoder Long-term Recurrent Convolutional Network that uses autoencoder to

sanitize the noise in raw data following a convolutional neural network module to extract high-

level representative features. Li et al. [83] conducted feature extraction in channel-wise instead of

in a monolithic way. It combines the features extracted from each channel and then encodes the

feature by three methods, i.e. sparse auto-encoder, denoising auto-encoder and Principal compo-

nent analysis. From these points of view, we can easily adapt this two-step framework into FL of

which server trains classifier and client trains autoencoder. Zhao et al. [41] applied this pipeline

in an FL setting where edge devices implement unsupervised training while central server conduct

supervised training. Our work follows the same framework as work in [41] while adding adaptive

learning to increase learning accuracy and robustness.

1.5 Overview and Contributions

The organization of this thesis is as follows:

• Chapter 1 begins with the motivations and goals for this research, followed by the problem

statement, the objective of this study, a literature review with a brief discussion of some algo-

rithms relevant to federated learning in image classification and human activity recognition.

• In Chapter 2, we introduce an adaptive federated semi-supervised learning model, which

employs an adaptive optimizer on both local and server sides. Our experimental results

demonstrate its effectiveness of our approach on visual classification. Our method is more

robust than other federated semi-supervised methods in the sense that we consider a more

realistic scenario. Our framework is compatible and resilient with three types of clients:

partial participation, stragglers and unbalanced data. Our framework is also easy to tune with

a small amount of interplay among key hyperparameters, and achieves superior performance

over other standard FedSSL or adaptive federated methods.

9

• In Chapter 3, we apply adaptive federated semi-supervised learning to human activity recog-

nition. Our method has a better mean F1-score compared with other baseline methods, and

is robust to partial participation and Non-IID data. Our ablation studies demonstrate the

effectiveness brought by the key elements of our framework. We provide insight into data

partition and partial updating, which play an important role in an effective federated frame-

work.

• Chapter 4 presents a summary of the contributions of this thesis, limitations, and outlines

several directions for future research in this area of study.

10

C
H

A
P

T
E

R

2
Semi-Supervised Image Classification

In this chapter, we introduce an adaptive federated semi-supervised learning that exploits an adap-

tive optimizer on both local and server sides. The training process consists of two main steps,

namely local update and global aggregation. More specifically, our proposed solution is geared to-

wards labeled-distributed horizontal federated learning problem, where data among clients shares

the same feature spaces. We assume that a curious and trustworthy server will not host data, but

deals only with weights aggregation. During local updates, clients perform multiple epochs of

training using local adaptive optimizers on their local data, where unlabeled data are labeled via

pseudo-labeling through consistency regularization. Clients transfer model updates, the number

of training samples and local gradient accumulators back to server, where a gradient-based server

optimizer updates the global model to the average of clients’ updates. The central server broad-

casts the new global model and averaged accumulator to clients selected in the next round. In this

framework, we consider a more realistic scenario that edge users may have intricate labeling be-

haviors, and that the number of participated devices varies at each round to simulate stragglers. Our

framework is easy to tune with a small interplay among key hyperparameters and achieves superior

performance compared to standard federated semi-supervised or adaptive federated methods.

2.1 Introduction

Smart Cities aim to solve common urban challenges such as energy consumption, traffic conges-

tion, environmental pollution or achieving intelligent scenes such as automatic human activity

recognition in the Internet of Things (IoT) system [84]. Numerous IoT applications such as aug-

11

mented reality, autonomous driving, surveillance and industry generate a significant amount of

data that largely exceeds today’s computational capability [85]. Other IoT devices such as motion

sensors, ambient sensors, or thermostats collect various time series data that require efficient data

processing. Traditional machine learning methods use centralized data stored at a data center and

require data transfer from a massive number of distributed IoT devices to a third-party location.

However, this learning approach is no longer sustainable due to several concerns. The first con-

cern arises from the unprecedented volume of data. Massive data transmission to a centralized

center involves long propagation delays and incurs unacceptable latency [86]. Despite a delayed

reaction, centralized processes can burden the backbone networks, especially in tasks involving

unstructured data [87]. Another concern is that servers are unable to properly exploit massive data.

On the one hand, data in Smart Cities is sensitive; and sending data to a centralized location may

cause privacy infringement. Also, data transfer can be inefficient as resource starvation may raise

network congestion. This is because many users endeavor to make use of the same resource at

the same time if the system requires an in-time update [88]. To this end, federated learning (FL)

was proposed to help alleviate such challenges by allowing multiple IoT devices to collaboratively

build machine learning models without explicitly sharing data [44].

Most existing FL frameworks assume that aggregating each device’s data will lead to a complete

dataset. This assumption is mostly unrealistic, as available data of one device is always imbalanced

and is collected as a highly-skewed distribution. This is referred to as the statistical concerns in

federated learning. Additionally, in many fields such as medical, on-device data is largely or totally

unlabeled because labeling is very costly and requires domain expertise. These make solely su-

pervised federated learning impractical. Semi-supervised learning (SSL) [29] is one of the widely

adopted paradigms utilizing unlabeled data to enlarge the scale of the training dataset. It takes both

labeled and unlabeled data as input when training machine learning models. It falls between un-

supervised learning and supervised learning, and makes training models without sufficient labeled

data to produce considerable improvement in learning accuracy. Several semi-supervised learning

methods such as proxy labeling, transfer learning and autoencoder have brought advantages in cen-

tralized training. Intuitively, incorporating semi-supervised learning into FL would be a non-trivial

solution. Until now, federated semi-supervised learning (FedSSL) has been tested as a practical

way to tackle the above issues [13, 14, 41, 44, 62]. FedSSL typically uses multi-view training (i.e.

generating pseudo-labels through different views of unlabeled data) technique to label unlabeled

data. Nevertheless, statistical concerns still remain and worsen in FedSSL because unlabeled data

could bring unprecedented data heterogeneity [1]. Apart from this, most FL works set partial par-

ticipation training (i.e. selecting a subset of devices at every training round) as a primary setting

12

that may cause deviation from global optima to local optima due to the heterogeneity introduced

by device selection. For example, the number of steps for initializing a step-based learning rate

schedule is thus unclear as it is dependent on clients’ training frequency, which becomes a random

number in partial training. In this case, a centralized optimization schedule (e.g. uniform learning

rate) is no longer proper in FedSSL.

Another essential bottleneck in FL is related to communication efficiency. Traditional distributed

optimization methods such as distributed stochastic gradient descent (SGD) incur heavy cost when

transmitting data between server and clients. Mcmahan et al. proposed FedAvg [16], attempting

to mitigate this issue by increasing updates at edge devices before communication. However, this

approach lacks adaptivity (the ability to incorporate past learning knowledge) and performs worse

when training on a continuous data stream. Several approaches [1, 49, 50] add adaptive optimizers

to either server and client or make selective updates at each training round. These approaches,

however, introduce a multitude of hyperparameters that may cause intrusive influence to original

training at the same time. For instance, the level of adaptivity on server and clients may interplay

and negatively affect hyperparameter tuning. Therefore, figuring out the relationship between

hyperparameters is an essential process for tuning FedSSL models.

Based on the above challenges, we summarize the three main challenges in adaptive FedSSL as

follows:

• Statistical challenge. Most works study the effect of original data heterogeneity among

local devices, while neglecting heterogeneity introduced by semi-supervised learning. For

image data, for instance, this skewed distribution typically arises from the pseudo-labeling

process, as the local data distribution may be considerably distinctive after labeling. More-

over, the accuracy of labels may be related to the model performance. If the global model

converges to local optima at an early stage, labeling would be in vain for afterward training.

This also increases sensitivity to the threshold, which is set in pseudo-labeling to manage

labeling confidence. All unlabeled samples on a device may be invalid for not being above

the threshold.

• Optimization challenge. Most FedSSL frameworks use a generic optimizer, such as a cen-

tralized SGD or AdaGrad managed by a server. At each training round, server broadcasts

updated learning rate and other information to devices. However, this is improper with partial

participation if we apply a general learning rate schedule. For example, the learning rate is

close to zero at the end of an annealing schedule, while the model does not thoroughly study

some local features due to late participation. In a Non-IID setting, global optima may be eas-

ily led to local optima due to a large learning rate at the beginning. Moreover, some learning

13

rate schedules cannot be properly initialized without knowing beforehand information such

as the number of steps, which require a concrete number of epochs. Hyperparameter tuning

is another issue. With learning taking place on both server and client, more attention should

be paid to their interaction effect. For example, a higher global learning rate may have an

adverse effect on choosing the best local learning rate. The level of optimal global and local

adaptivity rates may vary with different datasets.

• Generalization challenge. Most FedSSL systems only consider one type of edge devices

in terms of the type of training sample (i.e. all clients are solely labeled or unlabeled).

This is unrealistic in today’s IoT devices, in which samples may be totally labeled, partially

labeled, or totally unlabeled. In order to increase generality, exceptional circumstances such

as straggler or partial participation are not taken into account, while these are common in

the actual scenario. Moreover, making the framework applicable for different types of data

is intractable. Dense data and sparse data comply with diverse settings.

From these points of view, we introduce a realistic and robust adaptive federated semi-supervised

learning (AdaFedSSL) framework. For image data, we propose a solution specifically geared

towards labeled-distributed horizontal federated learning problems and scenarios of which edge

users may have complex labeling behaviors. We consider that the number of participated devices

varies at each round for both settings to simulate stragglers. In summary, our main contributions

are as follows:

• We introduce AdaFedSSL, which adopts an adaptive optimizer on both local and server

sides. Our experiments demonstrate the effectiveness in visual classification.

• Our method is more robust than other FedSSL methods as we consider a more realistic

scenario. Our framework is also resilient with three different clients, partial participation,

stragglers, and imbalanced data. Moreover, it is easy to tune with a small amount of interplay

among key hyperparameters.

• Our extensive experimental results show AdaFedSSL produces superior performance over

standard FedSSL or adaptive federated methods, achieving higher test accuracy compared

with the baselines.

Figure 2.1 shows our proposed framework. The main distinction among other works is that

we use adaptive optimization, i.e., AdaGrad [89], at two locations, i.e., client (local) side and

server (global) side. There are three types of clients. Labeled clients only contain labeled training

14

Central
Server

Unlabeled
Dataset

Pseudo-label
Weakly

Augmented

Strongly
Augmented

Prediction
Global

Gradient

Pseudo
Count

AdaGrad

Unlabeled Client 2

Pseudo
Count

Unlabeled
Dataset

Labeled
Count

AdaGrad

Local
Gradient

Semi-labeled Client 3

Labeled
Dataset

Dataset
Count

Loss

Global
Gradient

AdaGradAdaGrad

FedAdaGrad

Global
Gradient

Labeled
Dataset

Labeled
Count

Classification Loss

Consistency Loss

AdaGrad

Labeled Client 1
Local

Gradient

FedAvg
Global

Gradient

Local
Gradient

Local
Gradient

Classification Loss

Consistency Loss

Local
Gradient

Local
Gradient

Figure 2.1: Proposed framework for adaptive federated semi-supervised learning.

images. Unlabeled clients only contain unlabeled data that the number of pictures labeled by

FixMatch is treated as the weighting of FedAvg. Semi-labeled clients have both types of data of

which the weighting counts labeled data after pseudo-labeling. Each round, clients transfer local

gradient, local parameter and weighting to server where FedAvg and FedAdaGrad take place. This

framework brings better training performance significantly towards four baseline tasks. Detailed

information about our framework is described in Section 2.3.

The rest of this chapter is organized as follows. In Section 2.2, we provide preliminaries on adap-

tive federated learning and federated semi-supervised learning, followed by a problem formulation.

In Section 2.3, we introduced our proposed framework, and describe the main algorithmic steps.

In Section 2.4, we present extensive experiments to demonstrate the competitive performance of

our approach on four standard benchmark image datasets.

15

2.2 Preliminaries and Problem Statement

Notation For a,b ∈ Rd, we let
√
a, a2 and a

b
denote the element-wise square root, square, and

division of the vectors. The terms user, client and device are used interchangeably.

2.2.1 Preliminaries

Federated Learning is a distributed learning paradigm of reaching a global objective by separately

achieving local objectives. For a traditional FL, the global objective is formulated as:

min
θ∈Rd

F (θ) =
1

K

K∑
i=1

fi(θ) (2.1)

where K is the number of training clients and fi(θ) = Ez∼Di
[ℓ(θ; z)] is the loss function calculated

by feeding forward batched data z, sampled from training data of i -th clients Di, to model with

parameter θ. A canonical FL consists of two phrases: local update and global aggregation.

• local update denotes local training process on clients. At each round, participating clients

will receive global model parameter and replicate it as a local model, which is then be up-

dated on local data.

• global aggregation denotes the averaging process on server. Server receives all local model

parameters and combines them as one updated global model.

A multitude of training techniques, including partial training and multiple local epochs, can

be applied to reduce the high communication cost of transmitting parameters between server and

clients. For example, serve can select a small fraction of clients to conduct multi-epoch local up-

dates at each round. Besides, both phrases have chances to adjust objective solvers, such as stochas-

tic gradient descent (SGD) or adaptive optimizers, according to different tasks. FL assumes local

loss minimization leads to global loss minimization. Thus, to achieve this global objective, Mcma-

han et al. proposed FedAvg [16] that takes SGD as the local solver. At each round, server selects a

subset from total clients and broadcasts global model parameters to local clients. Clients run SGD

for several epochs and obtain updated local parameters. Supposing at each round, server selects

S number of clients and broadcasts model parameters θg to local clients as {θi}, i ∈ (1, 2, ..., S).

Partially selected clients independently update local parameters with local dataset Di by gradient

descent θi = θi − ∇fi(θi). Global server aggregates each trained model update and takes the

average as a new global model, i.e., θg = 1
S

∑S
i=1 θi. The newly updated global parameters are

then broadcast to clients chosen at the next round. The whole process repeats until convergence.

16

The amount of local training is controlled by the number of local epochs and the fraction of clients

that can be tuned to reduce communication costs.

Data distribution, whether on server or on clients, is typically categorized into independent and

identically distributed (IID) or Non-IID. In an IID setting, all clients have the same data distribu-

tion, i.e., each client has the same number of classes and the same number of samples with other

clients. For a Non-IID setting, clients have various distributions on either the number of classes

or the number of samples at each class, i.e., Di ̸= Dj or ni ̸= nj, ∀i ̸= j, where ni, nj represent

the number of samples in Di,Dj , respectively. We see data as balanced or unbalanced according

to the number of samples among clients. FedAvg weights local model update by the number of

samples of each client. In this regard, server aggregation can be rewritten as θg =
∑S

i=1
ni

n
θi,

where n =
∑S

i ni is the total number of training samples from all clients.

Adaptive federated learning integrates adaptive optimizer into FL. In our work, AdaGrad [89] is

chosen for adapting learning rate to past accumulated parameters. Supposing at global round t, we

have partial clients with local models {θt
i}Si=1 and a unified local learning rate ηl. We can write the

i-th local update as:

θt+1
i = θt

i − ηl∇H(θt
i,Di) (2.2)

where H(θt
i,Di) is the loss function with input parameter θt

i and i-th local dataset Di. At each

local iteration, i-th local client samples z from Di and compute gradient g = ∇H(θt
i, z). We

can make an alternation to this setting to make local learning adaptive to local gradients. For

example, we can use AdaGrad instead of SGD on each client. Xie et al. [49] proposed a SGD

variant based on AdaGrad to perform multiple epochs of training on local datasets. Instead of

using a generic learning rate, local learning rate ηl adapts the extent of learning to the frequency

of occurring parameters. In particular, a parameter with frequently occurring features will have

a small update and vice versa. It introduces a client accumulator to record past gradients, which

bring overhead on clients storage to quantify the frequency. This is tested effectively on non-

convex problems while introducing extra communication burden. Supposing at local iteration e,

let ge
i = ∇H(θe

i , z
e), ze ∼ Di denotes the stochastic gradient of i-th model; (ve

i)
2 =

∑e
b=1 g

b
i ◦ gb

i

refers to the accumulator of the squares of gradient up to local iteration e. Note ge
i is gradient

matrix with the same size as θi ∈ Rd and ◦ represents coordinate-wise product. We can define the

adaptive local update as:

θe+1
i = θe

i − ηl
ge
i√

(ve
i)

2 + τ 2l
(2.3)

where τl is a smoothing term for avoiding division by zero while determining the extent of adaptiv-

ity at the local side. At the synchronization period, server averages, not only model parameters but

17

also the client accumulators. This guarantees the same learning rate among participating clients at

the beginning of each round.

In addition to local adaptive learning, many works study the effectiveness of server-side adaptive

optimizers [50] or momentum [6]. Let server has global parameter θt
g at round t, we can redefine

the FedAvg’s server update as:

θt+1
g = θt

g −
1

S

S∑
i=1

(θt
g − θt+1

i) (2.4)

If we rewrite ∆t
i := θt

g−θt+1
i and ∆t := 1

S

∑S
i=1 ∆

t
i, the server update is equivalent to applying

SGD to gradient ∆t with learning rate ηg = 1. This makes the foundation of applying an adaptive

learning schedule on server side. Let wt =
∑t

b=1(∆
b)2 ◦ (∆b)2 as the server accumulator of past

gradient square up to round t, we can rewrite adaptive server update as:

θt+1
g = θt

g − ηg
∆t√

wt + τ 2g
(2.5)

where τg is also a scalar hyper-parameter that avoids zero division and controls the adaptivity on

server aggregation.

Federated Semi-Supervised Learning is applying federated semi-supervised learning on tra-

ditional machine learning models. Let us define a client with B number of labeled examples

X = {(xb,pb) : b ∈ (1, ..., B)} where xb is a training example and pb is its corresponding one-hot

label. The client has U number of unlabeled examples U = {ub : n ∈ (1, ..., U)} where ub is

an unlabeled training vector. Let pθ(y|x) be the predicted class distribution through a model with

parameter θ for an input x where pθ is a stochastic function. We define H(p,q) as the cross-

entropy between probability distribution p and q. FixMatch [32] uses two types of augmentations:

strong and weak that denoted by A(·) and α(·), respectively. For an image classification task,

consistency regularization assumes that model should output similar outcomes given weak and

strong augmented features. Thus for labeled dataset X , predicted distribution from original input

and weakly augmented input should be similar. We can write the supervised cross-entropy loss for

labeled examples as:

ℓs =
1

B

B∑
b=1

H(pb, pθ(y|α(xb))) (2.6)

Pseudo-Labeling makes artificial labels for unlabeled data with a constraint that only retaining the

labels whose largest class probability surpasses a predefined threshold. Let qb = pθ(y|α(ub)) de-

note the predicted class distribution of a given unlabeled example ub. We take q̂b = argmax(qb)

as corresponding pseudo-label. Note that we assume argmax function produce a "one-hot" prob-

ability distribution uniform with labeled example. With consistency regularisation, we can define

18

the unsupervised cross-entropy loss for unlabeled examples as:

ℓu =
1

U

U∑
b=1

1(max(qb)) ≥ τ̂)H(q̂b, pθ(y|A(ub))) (2.7)

where the threshold τ̂ is a scalar hyperparameter that controls the confidence we retain pseudo-

label. Supposing a federated network has K number of clients where each client has labeled data

and unlabeled data, namelyDi = Xi∪Ui, i ∈ (1, 2, ...K). Let ℓs(x) and ℓu(u) denote the loss term

for labeled sample x and unlabeled sample u, respectively. Based on Equation 2.1, we denote the

objective of federated semi-supervised learning as:

min
θ∈Rd

f(θ) =
1

K

K∑
i=1

E(x,u)∼(Xi,Ui)[ℓs(x) + λℓu(u)] (2.8)

where λ is a fixed scalar hyperparameter representing the relative weight of unlabeled data to the

labeled data.

2.2.2 Problem Formulation

The traditional solution of federated semi-supervised learning has two main issues. First, it is

improper to simply average local objectives with the same weight as a global objective in an un-

balanced setting. Local update (Equation 2.2) aims to grasp a high-level representation of local

data samples. However, the level of representation partially depends on the number of samples.

For example, local representation learned may be highly skewed towards the class of the largest

amount; thus, the averaged global objective would deviate. Considering pseudo-labeling brings

worse heterogeneity, it is crucial to take weighted aggregation as server update instead of simple

average. For weighted FedAvg, the global objective is:

min
θ∈Rd

f(θ) =
K∑
i=1

pifi(θ) (2.9)

where pi is the client’s weight where
∑K

i=1 pi = 1. Let Di = Xi ∪ Ui denotes the set of data

samples of i-th client and Bi = |Xi| and Ui = |Xi| denotes the number of labeled samples and

unlabeled samples. FedAvg regards the ratio of client’s data samples to overall data samples in an

FL system as the client weight, i.e., pi = Bi+Ui∑K
a=1 Ba+Ua

. Here instead, for the number of unlabeled

data, we only count the samples whose predicted probability of weak augmented sample surpasses

predefined threshold:

Ui = |1(max(pθ(y|α(u))) > τ̂)|,u ∼ Ui (2.10)

19

where pθ(y|α(u)) represent predicted class distribution of input α(u) with function parameter θ.

Let ni = Bi + Ui, we define the weighting of i-th client as:

pi =
ni∑K
i=1 ni

(2.11)

Data imbalance caused by pseudo-labeling is partially mitigated by this end.

The second issue relates to the skewed data distribution, i.e., statistical concerns in FL. In a

Non-IID setting, global objective hardly converges due to data heterogeneity. This is worsened

by partial participation that stochastic clients selected at each round introduce client drift. For

example, a single client may be selected several times while others only attend one or zero train-

ing round. Moreover, late training may be insufficient if learning rate decay or other annealing

schedules applies. In this case, data features may not be aggregated if clients are selected at the

end of the schedule. Instead of using a generic optimizer, we use an adaptive optimizer on both

local and server sides. Clients inherit local learning rate ηl and apply adaptive gradient descent

based on their own gradient record of Equation 2.3. Server in the same way stores global gradient

records. This ensures that local representation effectively generalizes local features regardless of

the order of training. Through our experiments, we find that global objective tends to diverge in

lower communication frequency or higher Non-IIDness. Reddi et al. [50] empirically and theo-

retically proved that an adaptive optimizer of Equation 2.4 on server side is effective and robust

for heterogeneity. Our method combines the client accumulator and server accumulator and thus

adds adaptivity on both sides. Note that local client accumulator is averaged with server aggre-

gation and broadcast to corresponding participated clients. This means the communication cost is

doubled due to communicating accumulator which shares the same size with model parameters.

Besides, a scalar number of trained examples for calculating pi is also sent from client to server, of

which communication cost is negligible compared to the size of parameters.

Another prominent issue related to federated semi-supervised learning is the robustness, which

normally consists of the tolerance to stragglers, and the ease of hyperparameters tuning. Stragglers

or dropped-out clients indicated that the number of selected clients before local training differs

from the number of clients sending model updates to the server. Our goal is to testify that the

model performance is not significantly affected by stragglers. Adaptive optimizing introduces

momentum parameter τ , which is referred to as adaptivity rate in our thesis. While applying

an adaptive optimizer on clients and server sides, the number of parameters doubles and makes

hyperparameter tuning difficult. Together with tuning two learning rates, learning process is made

harder to control. Our goal is to demonstrate that the performance of AdaFedSSL is robust with

tuning learning rates and adaptivity rates.

20

2.3 Proposed Framework

We simulate AdaFedSSL as training a deep neural network model over 100 clients. We assume a

curious and trusted server that will not host data but only dealing with averaging over parameters

or updates. At the beginning round t = 0, server initializes global model θgt and setup connections

to all users. Then, it randomly selects S number of users as partial clients who may be unqualified

and rejected from training due to connection failure or unstable network before global aggregation.

The number of users who finally participate in aggregation may not equal the number of users who

are selected at the beginning if clients drop out. Server then broadcasts θt
g to all S as local replicas

Lt = {θt
i, i ∈ (1, .., S)}. Many federated semi-supervised works [13, 14] only consider one type

of user, namely, users are solely labeled or unlabeled. While in practice, end users may or may

not have the motivation to label data. We assume three types of users in our framework: labeled

users, unlabeled users and semi-labeled users. Local users start their training according to their

data constitution. Suppose server selects Sl, Su, Ss number of three types of users, respectively.

Labeled users hold Bi, i = (1, ..., Sl) number of labeled data Xi = {(xb,pb) : b ∈ (1, ..., Bi), i ∈
(1, ..., Sl)}. Thus the global objective for labeled users is to minimize cross-entropy loss:

ℓtl =
1

Sl

Sl∑
i=1

1

Bi

Bi∑
b=1

H(pb, pθt
i
(y|α(xb))) (2.12)

Notations are same with Section 2.2.1. Semi-labeled users hold Bi,l and Bi,u number of labeled

samples Xi = {(xb,pb) : b ∈ (1, ..., Bi,l), i ∈ (1, ..., Ss)} and unlabeled samples Ui = {(ub) :

b ∈ (1, ..., Bi,u), i ∈ (1, ..., Ss)}, respectively. Referring to Equation 2.8, global objective for

semi-labeled users is to minimize loss:

ℓts =
1

Ss

Ss∑
i=1

(
1

Bi,l

Bi,s∑
b=1

H(pb, pθt
i
(y|α(xb)))+

1

Bi,u

Bi,u∑
b=1

1(max(qb) > τ)H(q̂b, pθt
i
(y|A(ub)))) (2.13)

Unlabeled users hold Bi, i ∈ (1, ..., Su) number of unlabeled samples Ui = {(ub) : b ∈
(1, ..., Bi), i ∈ (1, ..., Su)}, upon which we apply similar objective with semi-labeled users ex-

cept its labeled loss. The training objective can be defined as:

ℓtu =
1

Su

Su∑
i=1

1

Bi

Bi∑
b=1

1(max(qb) > τ)H(q̂b, pθt
i
(y|A(ub))) (2.14)

Suppose at local iteration e, after loss computed, users backpropagate loss and calculate pa-

rameter update ∆e
i , i ∈ (1, .., S), client gradient accumulator (ve

i)
2, i ∈ (1, ..., S), and record the

21

number of newly generated pseudo-label ne
i,u, i ∈ (1, .., S). One may naturally ask why counting

samples over batch basis. As the predicted probability of unlabeled samples varies over iteration,

we mark unlabeled data as true when successfully generating pseudo-label. We sum up all true

samples as the number of unlabeled data as the clent’s weight. Let define the communication fre-

quency as E, which means each E iterations of local update at each global round. Clients send

∆E
i , (vE

i)
2 and ni =

∑E
i=1 n

e
i,u + ni,l to server, where two aggregations are conducted:

vt+1 =
1

S

S∑
i=1

(vE
i)

2

∆t =
1

S

S∑
i=1

pi∆
E
i

where pi =
ni∑S
i=1 ni

is the weight of i-th user in aggregation. The sum of (∆t)2 is denoted as wt.

Given a global learning rate ηg, a global adaptive optimizer of Equation 2.5 updates global mode as

θt+1
g . After the update, server broadcast θt+1

g and vt+1 to users selected at next round. The whole

process will repeat T number of rounds until reaching global optima. The algorithmic steps of our

approach are shown in Algorithm 1.

2.4 Experiments

In this section, we conduct extensive experiments to evaluate our proposed AdaFedSSL on four

benchmark datasets and compare related performance in different dimensions, including test ac-

curacy and communication cost, with other benchmark methods. Additionally, we evaluate the

effect of factors or hyperparameters (optimizer, Non-IIDness, weighting in aggregation, learning

rate schedule, model selection).

Table 2.1: Test accuracy on MNIST, Fashion-MNIST, CIFAR-10 and SVHN over five federated
semi-supervised learning methods. Boldface numbers indicate the best classification performance.

Methods MNIST Fashion-MNIST CIFAR-10 SVHN
FedSSL 98.79 85.66 75.47 95.64
FedGrad 97.79 78.57 53.62 95.43
AdaAlter 97.28 80.56 65.29 93.92

FedAdaGrad 99.08 85.94 81.61 96.09
AdaFedSSL 99.2 87.39 83.66 97.15

22

Algorithm 1 AdaFedSSL: Adaptive Federated Semi-supervised Learning

1: Initialization: global model weight θg, server accumulator w0 ≥ τ 2g , client accumulator v0 ≥
τ 2l

2: for each round t = 0, 2, . . . (T − 1) do
3: Select S number of training clients
4: for each user i ∈ 1, 2, . . . S in parallel do
5: ∆t

i, n
t
i,v

t
i ← Local_Training(θg,vt−1)

6: end for
7: nt ←

∑S
i n

t
i

8: ∆t ←
∑S

i
ni

n
∆t

i

9: wt ← wt−1 + (∆t)2

10: vt ← 1
S

∑S
i v

t
i

11: θg ← θg + ηg
∆t√
wt+τ2g

12: end for
13:
14: return θg

Local_Training(θg,v
t−1)

15: θ ← θg, n← 0,v← vt−1

16: for e ∈ 0, 1, . . . (E − 1) do
17: g← ∇H(θ, z), z ∼ Di

18: θ ← θ − ηl
g√
v+τ2l

19: v← v + g ◦ g
20: end for
21: n← number of labeled examples
22:
23: return θ − θg, n,v

2.4.1 Datasets

Datasets used in our experiments are four image classification benchmark datasets: MNIST,

Fashion-MNIST, CIFAR-10 and SVHN. All tasks have a 10-class data distribution for which we

set the extent of IIDness to 10 levels as illustrated in Section 2.4.7. According to the number of

images of each task, we split training samples into 100 balanced or unbalanced shards to represent

100 clients. The summary descriptions of these benchmark datasets are as follows:

• MNIST [90] consists of a training set of 60,000 samples and a test set of 10,000 samples of

handwritten digits from 0 to 9, as shown in Figure 2.3a. Each example is a 28x28 gray-scale

image associated with a label from 10 numbers. The number of training samples of each

class is various and ranges from 5421 (class 5) to 6742 (class 1). The number of testing

samples ranges from 892 (class 5) to 1135 (class 5).

23

0 200 400 600 800 1000
Round

70

80

90

100
Te
st
…
Ac
cu
ra
cy

MNIST

AdaFedSSL
AdaAlter
FedAdaGrad
FedSSL
FedGrad

0 200 400 600 800 1000
Round

50

60

70

80

Fashion-MNIST

0 200 400 600 800 1000
Round

30

40

50

60

70

80

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000
Round

40

60

80

100
SVHN

Figure 2.2: Comparison between AdaFedSSL and other baseline methods.

0…-…zero1…-…one2…-…two3…-…three4…-…four5…-…five6…-…six7…-…seven8…-…eight9…-…nine

(a) MNIST

T-shirt/topTrouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle…boot

(b) Fashion-MNIST

airplaneautomobile bird cat deer dog frog horse ship truck

(c) CIFAR-10

0 1 2 3 4 5 6 7 8 9

(d) SVHN

Figure 2.3: Sample images for four tasks.

24

Figure 2.4: Structure of ResNet-18 with Group Normalization. Conv3-64 represents convolu-
tion layer with kernel of size 3 and output of 64-layer. GN stands for group normalization and
ReLU is Rectified Linear Unit activation. FC-10 is a fully-connected layer with output of size 10.

• Fashion-MNIST [91] has 60,000 training and 10,000 testing MNIST-like images. Each ex-

ample is a 28x28 grayscale image, associated with a label from 10 classes, as shown in

Figure 2.3b. The number of training/testing images at each class is uniformly at 6,000/1,000.

• CIFAR-10 [92] consists of 50,000 training images with 5,000 images per class and 10,000

testing images with 1,000 images per class (Figure 2.3c). Each image has 3 channels (RGB)

of 32x32 pixels. Each class has 5,000 training images and 1,000 testing images.

• SVHN [93] (training split) has 73,257 MNIST-like 3-channel 32-by-32 number images (Fig-

ure 2.3d) for training and 26,032 for testing. The number of training samples at each class is

highly unbalanced, ranging from 4659 (class 9) to 13,861 (class 1). The number of testing

images ranges from 1,595 (class 9) to 5099 (class 1).

2.4.2 Models

Models in our experiments have two versions, referred to as complex and simple models for each

task. For CIFAR-10 and SVHN, we use ResNet-18 [94] with GN (grouping normalization) as the

complex model. The model structure is shown in Figure 2.4. We train a 2-layer CNN as the simple

model. For MNIST and Fashion-MNIST, we train a 4-layer multilayer-perceptron (MLP) as the

complex model and a 2-layer CNN as the simplex model. The structure and number of parameters

are detailed in Section 2.4.8. If not specified, all experiments take complex model at default. The

two CNN models share the same structure with kernal size of 5 and each convolution layer is

followed by a max-pooling and a rectified linear unit (ReLU) activation. We choose two models

for each dataset in order to compare the effect of communication efficiency by reducing the model

complexity. These models are not state-of-the-art on the corresponding datasets but are sufficient

to show relative performance for the purposes of our investigation.

25

2.4.3 Implementation Details

We implement all experiments on a cluster of 2 machines with 8 GPUs in total. We use Pytorch

Distributed Data-Parallel Training (DDP) to spawn parallel training. We use 2 CPUs (40 cores in

total) of which one core represents one local computation. In case of 10 clients participating in

training at each round, we trigger computation on 10 cores in parallel to simulate parallel training.

We choose the first process to represent server that holds global accumulator and related global

information. For the aggregation of model parameters and client accumulators, we directly use

All-Reduce collective communication to update information locally. As each process cannot be

allocated one exclusive GPU, we use ’gloo’ as the communication backend. One GPU can host

multiple processes and make each process possessing GPU alternatively. Apart from hardware

settings, for federated training, our implementation has three distinctive features. First, the number

of clients selected at each round is not constant. This simulates stragglers during training. Second,

to account for the unbalanced quantity of training samples per client brought by pseudo-labeling,

we weight the i-th model update ∆t
i by Equation 2.11. We evaluate the effect of these two features

by ablation study in Section 2.4.7 and Section 2.4.7. Thirdly, for unlabeled clients, if no pseudo-

label is generated due to beneath of threshold τ̂ , local training is skipped.

2.4.4 Experimental Settings

Except for ablation study, all settings are following the default in Table 2.2. We define the extent

of IID among all clients as IIDness (definition is at Section 2.4.7) and set it as 3. For three types

of clients, We set the number of unlabeled clients as 10, 10% of all clients for three types of

clients. Other clients have a labeled client ratio, ranging from 0.1 to 1.0, representing the proportion

of labeled samples at a client. For partial participation, the number of clients selected at each

round is 10. For simulating stragglers, we randomly choose 7, 8, 9 or 10 clients to participate

in aggregation. Global learning rate starts from 0.03 (Note a cosine annealing schedule with 5

warm-up rounds is applied). The degree of global adaptivity rate and local adaptivity rate both

are 0.001. For settings of semi-supervised learning, we use two types of data augmentations (i.e.,

weak and strong augmentations) referred to Section 2.3. Particularly, we abandon flip-and-shift

augmentation from weak transformation on task MNIST and SVHN. This is because handwritten

digits and street number digits are sensitive to angle; thus we keep the orientation of original

images. Strong transformation is the same with RandAugment in work [95] that randomly selects

several transformations from a given collection of transformations.

26

Table 2.2: Default value and description in basic setting.

Notation Description Value
T The number of communication round 1000
K The number of clients 100
Ku The number of unlabeled clients 10
S The number of participated client at each round 10
ηg Global learning rate 0.03
τg Global training adaptivity rate 0.001
B Local batch size 64
E Number of local iterations at each round 10
ηl Learning rate of client 0.03
R Number of classes at local client 3
r Ratio of labeled data to all data at one client 0.1
τl Local training adaptivity rate 0.001
µ Relative size of unlabeled data to labeled data 5
τ̂ Threshold of pseudo-labeling 0.95
λ Relative weight of unlabeled data to labeled data 1

2.4.5 Comparison with Other Methods

We compare AdaFedSSL with the other four methods, FedSSL, FedAdaGrad, AdaAlter and Fed-

Grad. One important characteristic that distinguishes ours from other methods is the employment

of an adaptive optimizer (i.e., AdaGrad [89]) on both local and global sides. AdaGrad computes

the ℓ2 norm of all previous gradients on a per-dimension basis. Learning rate is divided by this

norm to make progress along each dimension even. It is very important to distributed deep neural

network training since heterogeneous clients and partial participation easily cause overfit on cer-

tain dimensions during training. Based on optimizer type and location, we choose four baseline

methods and provide a brief description below:

• FedSSL simply takes FedAvg as the global objective solver. Both server and client use SGD

as optimizer with a constant ηg = 1 and a tunable ηl. ηl is a scalar hyperparameter on which

techniques such as annealing schedule can be applied. Value of ηl is server-controlled and

uniform, which is broadcast to selected clients at each round.

• FedGrad is a distributed version of AdaGrad. Like FedSSL, server uses SGD with constant

ηg = 1. Clients apply AdaGrad, compute their own ℓ2 norm of previous gradients, and keeps

it locally without sharing between each clients.

• AdaAlter utilizes AdaGrad on local sides and SGD on server side. Unlike FedGrad, server

of AdaAlter averages ℓ2 norms of selected clients and updates norms to all clients with this

27

value at each round.

• FedAdaGrad [50] applies AdaGrad on server side and SGD on clients. Global learning rate

is moderated through server accumulator while local learning rate is uniform among clients.

Only model updates are communicated at each round.

-3 -2.5 -2 -1.5 -1 -0.5 0.0 0.5
Local…Learning…Rate…()

0.
5

0.
0

-0
.5

-1
-1
.5

-2
-2
.5

-3
G
lo
ba
l…L
ea
rn
in
g…
R
at
e…
(

)

10.1 10.2 10.5 10.2 10.6 10.3 10.2 10.5

10.3 10.7 14.7 17.3 13.1 12.4 13.4 13.1

53.2 51.2 52.3 68.0 57.7 54.2 44.2 24.7

82.7 88.9 89.4 89.3 89.4 88.2 63.9 43.3

80.1 89.2 96.5 94.2 95.7 82.4 52.3 41.6

83.4 85.2 89.1 98.7 97.5 88.5 72.2 43.2

74.2 79.8 84.2 89.2 91.3 80.9 69.2 45.1

43.1 75.2 80.4 86.6 81.1 71.2 68.2 32.2

MNIST

20

30

40

50

60

70

80

90

-3 -2.5 -2 -1.5 -1 -0.5 0.0 0.5
Local…Learning…Rate…()

0.
5

0.
0

-0
.5

-1
-1
.5

-2
-2
.5

-3
G
lo
ba
l…L
ea
rn
in
g…
R
at
e…
(

)

10.1 10.2 10.5 10.1 10.6 10.3 10.2 10.5

10.2 10.7 10.7 10.3 10.1 10.4 10.7 10.1

59.7 64.6 64.5 64.6 71.7 61.2 45.9 31.2

69.8 74.2 88.2 89.2 89.1 80.2 51.2 37.3

69.1 78.2 87.6 89.3 88.3 79.4 76.2 40.3

70.4 71.2 89.1 86.3 84.2 79.5 59.2 41.2

51.2 43.8 64.2 77.1 73.3 62.8 52.2 41.5

31.1 42.2 53.1 64.5 62.1 67.2 51.2 42.0

Fashion-MNIST

20

30

40

50

60

70

80

-3 -2.5 -2 -1.5 -1 -0.5 0.0 0.5
Local…Learning…Rate…()

0.
5

0.
0

-0
.5

-1
-1
.5

-2
-2
.5

-3
G
lo
ba
l…L
ea
rn
in
g…
R
at
e…
(

)

10.1 10.1 10.1 10.2 10.3 10.3 10.0 10.5

10.1 10.3 10.7 13.3 13.1 13.4 10.3 10.1

10.2 23.2 23.2 30.3 34.1 37.2 41.9 20.3

51.1 63.2 75.5 82.6 73.7 72.4 50.3 31.6

52.4 66.2 72.1 85.7 81.2 73.5 55.2 31.2

53.2 64.8 77.2 80.2 83.3 78.9 59.2 31.1

51.1 67.2 70.1 72.6 75.1 74.2 48.2 13.0

50.1 64.2 68.3 68.6 77.1 68.2 67.2 13.0

CIFAR-10

10

20

30

40

50

60

70

80

-3 -2.5 -2 -1.5 -1 -0.5 0.0 0.5
Local…Learning…Rate…()

0.
5

0.
0

-0
.5

-1
-1
.5

-2
-2
.5

-3
G
lo
ba
l…L
ea
rn
in
g…
R
at
e…
(

)

10.5 10.2 10.5 10.2 10.6 10.3 10.2 10.5

13.3 13.7 14.7 16.3 20.1 18.4 13.4 10.1

41.2 63.2 64.3 78.0 62.7 78.2 62.2 14.2

52.8 69.2 85.2 83.3 89.4 76.2 42.9 13.3

68.1 91.2 94.5 93.2 88.7 80.4 57.3 15.6

49.4 84.2 90.1 96.7 96.5 93.5 51.2 12.2

49.2 79.8 94.2 97.3 91.3 85.9 50.2 14.1

42.6 76.2 80.5 83.6 60.1 60.2 13.2 15.0

SVHN

20

30

40

50

60

70

80

90

Figure 2.5: Test accuracy of various combinations of global learning rate and local learning rate
on four tasks.

To measure model performance, as all tasks provide a test set, we quantify the performance as

the accuracy over corresponding test sets. As shown in Table 2.1, our method outperforms others

on all tasks. In specific, our method increases test accuracy of the best of others from (99.08, 85.39,

81.61, 97.15) to (99.2, 87.39, 83.66, 97.15) respectively on (MNIST, Fashion-MNIST, CIFAR-10,

SVHN). Simply adopting an adaptive optimizer on clients aggravates training, as the values of

FedGrad on all tasks are below FedSSL. As we illustrated above, FedGrad keeps client accumula-

tor local and simply averages model update; thus, especially for partial participation, local optima

could easily override global optima. Comparing AdaAlter with FedGrad, synchronization of client

accumulator brings mitigation on this divergence. AdaAlter achieves comparable or lower results

28

on MNIST and SVHN while dramatically improving on Fashion-MNIST and CIFAR-10 compared

with FedGrad. This is saying aggregating local gradient is of importance to certain tasks. We know

the number of samples in MNIST and SVHN is relatively high and we get dense gradient of model

parameters from later experiments. AdaAlter and FedGrad both perform worse than FedSSL on

all datasets. This aligns with the notion that AdaGrad works poorly in dense settings. Another

comparison between AdaAlter and FedAdaGrad gives that adaptive optimizer on server is more

effective than that on clients. All accuracies improve from AdaAlter to FedAdaGrad. FedAda-

Grad makes larger improvements on Fashion-MNIST and CIFAR-10 than the others (accuracy

increments are (0.49, 6.28, 6.14, 0.46) on four tasks). Due to simple features in MNIST and a

larger number of samples in SVHN, image features are well represented by local model. As a

result, model updates are lightly different between each other and global accumulator takes less

effect on moderating client drift. The accuracy rises significantly from FedSSL to FedAdaGrad,

which indicates the effectiveness of global adaptive optimizer (server accumulator). From above,

we conclude that sole local AdaGrad with or without synchronization can degrade model training

while sole global AdaGrad benefit model training in dense setting. How about their combination?

AdaFedSSL provides way better results than others. For a visualized comparison, We draw the

learning curves of all methods by taking the average accuracy of a rolling window size of 10. As

shown in Figure 2.2 our method shows a steady and the best learning curve.

2.4.6 Optimizers

In this part, we discuss two key elements that make AdaFedSSL successful: local and global

AdaGrad. There are two important hyper-parameters in this optimizer, namely learning rate and

adaptivity rate. We firstly grid search the best value of global learning rate and local learning

rate. Then investigate the effect of applying learning rate decay on both or either of them. As for

accumulator, same with learning rate, we grid search the best value of global and local adaptivity

rates and study their mutual relation.

Local learning rate controls the extent of update at each local iteration, while global learn-

ing rate manages the extent of global update at each round. We conduct grid search on ηg

and ηl and plot the accuracy with respect to each combination of them. As shown in Fig-

ure 2.5, we take grids of ηl ∈ {10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5} and ηg ∈
{10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5}. Roughly looking at the the bright part of the

images, we can observe a rectangular region, indicating many good pairs of learning rates are fit.

This aligns with observation in work [50] that adaptive methods possess a certain amount of ro-

bustness when tuning ηg and ηl. Besides, the rectangular width is slightly larger than height, which

29

means more good values of ηl for each ηg and partly indicates client accumulator (width) adds

more robustness into the learning process. Except Fashion-MNIST, all tasks have a rectangle at

lower left, while FashionMNIST has it at upper left. This demonstrates a relatively higher global

learning rate is more suitable for Fashion-MNIST task. As most optima present at or around the

cross of ηg = 10−1.5 and ηl = 10−1.5, we take this pair as our default. Note that all experiments in

this part are conducted with cosine annealing on ηg.

-3 -2.5 -2 -1.5 -1 -0.5 0.0 0.5
Local…Learning…Rate…()

3.0

2.5

2.0

1.5

1.0

G
lo
ba
l…L
ea
rn
in
g…
R
at
e…
(

)

MNIST
Fashion-MNIST
CIFAR-10
SVHN

-3 -2.5 -2 -1.5 -1 -0.5 0.0 0.5
Global…Learning…Rate…()

2.0

1.5

1.0

0.5

Lo
ca
l…L
ea
rn
in
g…
R
at
e…
(

)

Figure 2.6: Relationship between global learning rate and local learning rate on four tasks.
Right plot lists the best global value among gird for each local value. Left plot is the opposite.

One problem in tuning two hyperparameters (i.e., ηg and ηl) is how to understand the relation-
ship between them. We make two line plots that show the relation between optimal choices of these

two parameters in Figure 2.6. For each task, we fix one learning rate and find the best correspond-

ing the other one among the gird. From both plots, we cannot draw any obvious relation, though a

coarsely inverse relation at the bottom. This observation testifies that both learning rates are stable

in tuning because many good pairs of ηl or ηg can be selected when the value of the other fixes. In

addition, a roughly inverse relationship is caught in the left plot, while the trend in the right plot is

more constant. This indicates more suitable values of global learning rate when local learning rate

varies, while relatively fewer values of local learning rate when global learning rate varies. This

supports our observation in Figure 2.5 that the width of rectangular is larger than height (width

represents global learning rate; height represents local learning rate). In general, learning rates in

our approach are easy-tuning and demonstrate robustness in hyperparameter training.

Learning rate decay has been verified valuable in helping solver of gradient descent converge

to critical point of its loss function. Traditional FL uses a generic learning rate schedule that is

controlled by server. At each round, server computes the updated value and broadcasts it to each

client. Due to this uniform value among clients, learning process can be inefficient if partial partic-

ipation applies. For instance, learning rate becomes small at the end of training process if learning

30

0 2000 4000 6000 8000 10000
Local…Iteration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Le
ar
ni
ng
…
R
at
e

Cosine
Linear
Constant

Figure 2.7: Three types of learning rate schedules. All schedules are time-based with 10000
total steps and start with a 500-step warm-up.

0 200 400 600 800 1000
Round

80

85

90

95

100

Te
st
…
Ac
cu
ra
cy

MNIST

LOCAL
GLOBAL
BOTH

0 200 400 600 800 1000
Round

50

60

70

80

Fashion-MNIST

0 200 400 600 800 1000
Round

20

40

60

80

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000
Round

60

70

80

90

100
SVHN

Figure 2.8: Learning curves with cosine annealing schedule on different locations. LOCAL
and GLOBAL mean applying schedule on either local learning rate or server learning rate. BOTH
stands for applying on both optimizers.

31

rate decay applies; thus newly-selected clients, who never participate in previous training, are un-

able to be well learnt. For adaptive optimizers, learning rate is automatically adjusted by dividing

the norm. We consider applying different learning rate annealing schedules on AdaFedSSL and

test the decay effect on adaptive optimizers. By default, a cosine annealing schedule is applied

on ηg. We conjecture this technique brings effect on parameter tuning and model performance to

some extent. We choose two common annealing approaches, cosine annealing and linear anneal-

ing, as shown in Figure 2.7, compared with a constant schedule. In AdaFedSSL, schedules can

be applied on either or both ηl and ηg. Therefore we explore three scenarios, schedule on server

side, schedule on local side and schedule on both sides. It is easy to understand how to apply an

annealing schedule on server side. Analogous to centralized training, we multiply a scalar to ηg to

update the value. As of local schedule, one approach is to compute update ηl on server and then

broadcast the value among clients. Another approach is to set a personalized schedule that clients

control. Due to different participation and random training sequences, it is reasonable to make

schedules hold locally. However, in practice, this is unable to achieve as time-based schedules

require a determined number of steps, which is unclear if we set schedules locally. In this case, We

only experiment with the former approach.

Figure 2.8 shows the effect of applying cosines annealing schedule on either or both ηg and

ηl. Except for SVHN, a clear improvement (blue line) is drawn when the schedule is employed on

local side. Besides, the yellow line fluctuates significantly in the first two tasks. These observations

partially explain that ηg is more robust in tuning than ηl as scheduling ηl makes a more obvious

effect on training. For SVHN task, the number of training samples is huge, and the learning

rate schedule is irrelevant to accuracy improvement. Applying decaying technique on both sides

brings comparable results in MNIST, better result on Fashion-MNIST, worse result on CIFAR-10,

compared with others. In this case, we discard applying schedule on both sides as it also introduces

computation overhead.

Accumulator records the sum of the square of past gradients. To some extent, it represents

the momentum of updates in certain dimensions. Device heterogeneity can be partly solved by

adding regularization on local training objectives [96] and momentum on server [6]. We conjecture

that introducing gradients accumulator on either global or local side may bring the same effect.

Actually, the accumulator is a key element in AdaGrad. We instead compare adaptive methods

with non-adaptive methods. A simple FedSSL uses SGD as both global and local optimizer. We

separately compare FedSSL with the other two baseline methods: FedAdaGrad and AdaAlter.

FedAdaGrad has a global accumulator recording the sum of the past ∆2
t , which is the square of

an averaged model update at a given round. AdaAlter has a local accumulator recording the sum

32

-5 -4 -3 -2 -1
Local…Adaptivity…()

-1
-2

-3
-4

-5
G
lo
ba
l…A
da
pt
iv
ity
…(

)

94.63 93.45 93.50 94.25 93.36

95.38 97.13 97.74 96.98 96.17

97.23 97.18 97.53 96.92 96.25

97.81 98.31 98.21 97.83 97.14

98.17 98.25 98.18 98.31 97.83

MNIST

94

95

96

97

98

-5 -4 -3 -2 -1
Local…Adaptivity…()

-1
-2

-3
-4

-5
G
lo
ba
l…A
da
pt
iv
ity
…(

)

84.15 84.20 87.51 86.16 82.63

86.21 86.73 87.76 87.23 84.13

86.76 87.23 87.36 86.46 86.23

85.83 85.82 86.24 86.22 86.38

84.10 84.20 86.13 87.33 86.19

Fashion-MNIST

83

84

85

86

87

-5 -4 -3 -2 -1
Local…Adaptivity…()

-1
-2

-3
-4

-5
G
lo
ba
l…A
da
pt
iv
ity
…(

)

82.53 82.85 82.36 82.52 81.63

83.35 84.34 84.76 84.89 83.78

85.20 85.25 86.23 86.35 86.13

85.19 86.24 86.53 86.21 85.35

85.14 85.22 85.53 83.78 83.21

CIFAR-10

82

83

84

85

86

-5 -4 -3 -2 -1
Local…Adaptivity…()

-1
-2

-3
-4

-5
G
lo
ba
l…A
da
pt
iv
ity
…(

)

93.57 92.93 93.53 93.21 92.66

95.33 96.73 96.76 95.32 93.14

95.36 96.29 97.13 95.15 94.70

94.25 94.82 97.23 96.33 94.10

94.18 94.24 96.57 97.15 94.77

SVHN

93

94

95

96

97

Figure 2.9: Grid search results of global adaptivity rate and local adaptivity rate on four
tasks. The number is the accuracy of AdaFedSSL with various combination of local value and
global value.

of past g2, which is a square of gradients at a given iteration. Comparing red line and green line

in Figure 2.2, all tasks are seen a noticeable improvement with global accumulator. It indeed

triggers a global momentum that prevents global optima drifting. These observations align with

the conclusion in [50] that global adaptive optimizer plays an important role in global convergence.

Dissimilar with global accumulator, local momentum brings a negative effect on model training.

This is because AdaGrad has been demonstrated ineffective in dense settings. The main reason why

AdaFedSSL succeeds is the combination of these two accumulators. Local accumulator makes

local training effective though it further fits local optima, while global accumulator fine-tunes

divergence and accelerates convergence to global optima.

Another important hyperparameter in optimizer is adaptivity rates that determine the initializa-

tion and addition of accumulators. Server accumulator and client accumulator are initialized by

τ 2g and τ 2l , respectively. At each local iteration, τ 2l is the addition to the client accumulator. In

synchronization, τ 2g is the addition to global accumulator. We wonder how these two parameters

interplay and affect training just like we do of learning rates. Intuitively, they make effect directly

on momentum as addition of accumulator. Figure 2.9 shows test accuracy as the function of τg and

τl. We select both values from grid {10−5, 10−4, 10−3, 10−2, 10−1}. As we can see, all tasks are

non-tolerant to both high values of τg and τl. MNIST has better performance with low τg, while

Fashion-MNIST is not robust with low τg. Both CIFAR-10 and SVHN show good values in the

33

middle of grid. Almost all tasks fit with τg = 10−3, τl = 10−3, and we take 10−3 as the default

value for both τ . Figure 2.10 plots the relation between them. For each task, we fix one adaptivity

and find the best corresponding the other one among the gird. Left plot shows the best τg when τl

varies. There is an approximate direct relation between τl and the best τg. This also aligns with

other observations that global AdaGrad offsets deficiency brought by local AdaGrad. No relation

at right plot also indirectly testify the robustness of tuning τg.

-5 -4 -3 -2 -1
Local…Adaptivity…()

5

4

3

2

1

G
lo
ba
l…A
da
pt
iv
ity
…(

) MNIST
Fashion-MNIST
CIFAR-10
SVHN

-5 -4 -3 -2 -1
Global…Adaptivity…()

5

4

3

2

1

Lo
ca
l…A
da
pt
iv
ity
…(

)

Figure 2.10: Relationship between global and local adaptivity rate on four tasks. Left plot lists
the best τg in gird for each τl. Right plot is the opposite.

2.4.7 Statistical Concerns

We experiment with AdaFedSSL within various statistical settings, such as IID or Non-IID, weight-

ing methods in model aggregation, stragglers during training and different amounts of labeled data.

We define a variable to control the level of IID and acquire a direct relation between accuracy and

this variable. For an unbalanced setting, we define the weight of aggregation as the actual number

of training samples after pseudo-labeling. We also verified that AdaFedSSL is robust to stragglers.

In the end, we evaluate the effect brought by lowering the amount of labeled data.

IIDness

Traditional federated learning assumes that distribution over classes on devices is IID because

stochastic device update simulates stochastic gradient descent. However, it is unrealistic to make

each device IID in Smart cities. FedAvg can work on its pathological Non-IID partition where

each device only holds one to two classes while convergence speed is lowered. Work [3] specified

distortion degree to 1-class and 2-class IID and suggested a shared global samples can improve

accuracy dramatically. Jeong et al. [4] empowered server to train a conditional GAN’s generator

and replenish local device as IID. This approach is far away from ours that we assume server

34

User1

User2

User3

User4

User5

Class Distribution Class Distribution

User1

User2

User3

User4

User5

Class Distribution

User1

User2

User3

User4

User5

Class Distribution

User1

User2

User3

User4

User5

Figure 2.11: Class distribution with different IID data. Distribution among classes is repre-
sented with different colors. Note all settings have 100 users and the number of overall class is 10.
R represents the number of classes in each user.

0 200 400 600 800 1000
Round

90

92

94

96

98

100

Te
st
…
Ac
cu
ra
cy

MNIST

IIDness=10
IIDness=9
IIDness=8
IIDness=7
IIDness=6
IIDness=5
IIDness=4
IIDness=3
IIDness=2
IIDness=1

0 200 400 600 800 1000
Round

50

55

60

65

70

75

80

85

90
Fshion-MNIST

0 200 400 600 800 1000
Round

0

20

40

60

80

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000
Round

0

20

40

60

80

100
SVHN

Figure 2.12: Learning curves of AdaFedSSL with various level of IIDness on four tasks.

35

only served as aggregator. Hsu et al. [6] took advantage of Dirichlet distribution which samples a

predefined number of images from each class, whereas the number of samples must be balanced.

Same with Dirichlet, Zhang et al. [13] assumes the same size of data at different devices that

are not compatible with SVHN. We imitate work [3] to quantify the degree of distortion as the

number of classes at a client. We use the term "IIDness", denoted as R, to show the number of

classes at a client. As all tasks have 10 classes, R ranges from 1 to 10 to express IIDness from

lowest to highest. In specific, R = 1 indicates each client only holds one class and is the most

skewed distribution. Another extreme situation is R = 10 that each client holds all 10 classes

which are referred to IID. Note that four datasets are using the same partition technique while the

number of samples on each device may be different, i.e., balanced or unbalanced. For example,

the number of samples of each class is different for MNIST and SVHN. Given an R, we partition

the entire training dataset to 100 × R shards and give each client R shards. Each shard at a

client is from different classes. To achieve this, We first sort the data by class; calculate the total

number of shards needed in each class by multiplying R and the number of total clients; evenly

partition the data into shards. Then we assign R number of non-identical shards to each client.

Specifically, CIFAR-10 and Fashion-MNIST have partitioned 500 and 600 images respectively per

client; MNIST and SVHN are unevenly partitioned. In Figure 2.11, each block denotes one shard

of training data with different colors in different classes. We plot the test accuracy of IIDness from

1 to 10 in Figure 2.4.7 and plot the change of best accuracy over IIDness at the left of Figure 2.16.

A clear performance degradation can be seen on both convergence speed and the value of accuracy

when IIDness decreases. A more significant reduction in test accuracy and convergence stability

is observed on CIFAR-10 and SVHN.

Table 2.3: Test accuracy of four datasets over different averaging methods. Boldface numbers
indicate the best classification performance.

Methods MNIST Fashion-MNIST CIFAR-10 SVHN
even average 99.02 85.38 76.04 96.35
sample-weight average 99.08 85.94 83.61 95.09
pseudo-label average 99.20 87.39 83.66 97.16

Impact of pi

To testify the efficacy of our defined weighting from Equation 2.11, we compare model perfor-

mance based on three scenarios. The first one is called even average, which means each model

update ∆t
i is evenly weighted, i.e., 1

S
. The second method is sample-weight method. Each client’s

weight is defined as the number of training samples of the client divided by the total number of

36

0 200 400 600 800 1000
Round

90

92

94

96

98

100

Te
st
…
Ac
cu
ra
cy

MNIST

pseudo-label…average
sample-weight…average
even…average

0 200 400 600 800 1000
Round

20

40

60

80

100
Fshion-MNIST

0 200 400 600 800 1000
Round

20

40

60

80

100

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000
Round

20

40

60

80

100
SVHN

Figure 2.13: Learning curves of AdaFedSSL with or without weigthed average of MNIST,
Fashion-MNIST, CIFAR-10 and SVHN. Pseudo-label average shows a stable and superior train-
ing performance among four tasks

training samples of all clients. In specific, under basic setting (R = 3), the number of samples on

each client ranges from 573 to 629 of MNIST; from 498 to 501 of CIFAR-10; from 599 to 898 of

SVHN. The number of Fashion-MNIST is uniform 600 among clients. The total number of training

samples of all clients is articulated in Section 2.4.1. The third one is our defined pseudo-label av-

erage of Equation 2.11. The results are shown in Figure 2.13 and Table 2.3. Our method performs

comparably or better than the other two methods on all tasks. Specifically, accuracy increases 2.01

and 7.62 compared with even average on Fashion-MNIST and CIFAR-10. Sample-weight average

performs worse than even average on SVHN.

Impact of stragglers

Traditional FL frameworks assume that the connections of all training participants are always avail-

able. However, the connectivity may fail, or device energy drains, and thus device drops out from

the FL system during training. This is associated with many problems such as unreliable device

37

0 200 400 600 800 1000
Round

60

65

70

75

80

85

90

95

100

Te
st
…
Ac
cu
ra
cy

MNIST

AdaFedSSL…w/o…Drop…out
AdaFedSSL…w/…Drop…out
FedSSL…w/o…Drop…out
FedSSL…w/…Drop…out

0 200 400 600 800 1000
Round

30

40

50

60

70

80

90
Fashion-MNIST

0 200 400 600 800 1000
Round

20

30

40

50

60

70

80

90

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000
Round

20

30

40

50

60

70

80

90

100
SVHN

Figure 2.14: Learning curve of AdaFedSSL and FedSSL w/ or w/o drop out for tasks
of MNIST, Fashion-MNIST, CIFAR-10 and SVHN. AdaFedSSL demonstrate stable accuracy
when considering drop out in FL system.

connectivity and interrupted execution; orchestration of lock-step execution across devices with

varying availability, limited device storage and compute resources [97]. To simulate stragglers, we

anticipate the number of clients who participate in aggregation is smaller than the number of clients

selected at the beginning of each training round. We conduct experiments based on four scenarios

that show model performance of AdaFedSSL and FedSSL with and without stragglers. Note that

FedSSL utilizes sample-weight method referred in Section 2.4.7. To be more specific, during each

communication period, we randomly draw a number from {5, 6, 7, 8, 9, 10} to represent the number

of clients left. As such, for AdaFedSSL, on account of pseudo-label average, model performance

would be close or better than situation without stragglers. We speculate a better performance as

reduced client heterogeneity arisen from a reduced number of clients. As shown in Table 2.4, max

accuracy increases from (99.20, 83.66) to (99.23, 84.88) in MNIST and CIFAR-10, respectively,

after introducing stragglers clients. A slight drop is seen in Fashion-MNIST and SVHN but still

higher than other methods. We plot the learning curve in Figure 2.14. The converge performance

of drop-out for all tasks remains comparably or better than without drop-out. One notable obser-

38

vation is that clear performance degradation is seen in MNIST and Fashion-MNIST with regard to

FedSSL when drop-out happens. We conjecture that a small number of clients could introduce or

extrude heterogeneity from inter-device divergence. This also verifies that our algorithm is robust

to device dropping out in the networks.

Table 2.4: Test accuracy of w/ or w/o stragglers on four tasks. Boldface numbers indicate the best
classification performance.

Methods Drop Out MNIST Fashion-MNIST CIFAR-10 SVHN

AdaFedSSL
True 99.23 87.29 84.88 96.85
False 99.20 87.39 83.66 97.16

FedSSL
True 95.89 76.67 64.36 93.91
False 97.28 80.56 65.29 93.87

0 200 400 600 800
Round

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Te
st
…
Ac
cu
ra
cy

MNIST

random…

0 200 400 600 800 1000
Round

50

55

60

65

70

75

80

85

90
Fashion-MNIST

0 200 400 600 800 1000
Round

20

30

40

50

60

70

80

90

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000
Round

60

65

70

75

80

85

90

95

100
SVHN

Figure 2.15: Learning curves with random amount of labeled data.

Amount of labeled data

We can quickly sort clients into three types, i.e., totally labeled client, semi-labeled client and un-

labeled client. However, how do we define the number of labeled samples at semi-labeled clients?

Labeled and unlabeled clients are easy to get sorted while extra effort must be paid to quantify

labeled clients. In reality, users may have various labeling practices. Some only label small parts

39

of data while some may label the whole. To consider this scenario, we assume the ratio of labeled

samples to all samples at a client is r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In our simulation,

all clients randomly sample an r at initialization, and we make the corresponding amount of data

labeled. For example, the number of labeled samples of r = 0.1 corresponds to 57 to 62 images

in MNIST task, 60 images in Fashion-MNIST task, 49 to 50 images in CIFAR-10 task, 59 to 89

images in SVHN task per client. We take different random seeds and repeat the training 5 times.

We plot the average training accuracy and compare it with the setting of r = 0.5. As shown in Fig-

ure 2.15, Fashion-MNIST and CIFAR-10 gain performance improvement with random labeling,

while the other two almost keep intact. We conjecture that random r will potentially utilize more

labeled data for all tasks while for MNIST and SVHN, training is already sufficient with lower r.

We conduct another experiment to verify a direct relationship between model performance and

the number of samples. We all know a larger dataset makes centralized supervised training easier

than training with scarce data. In this case, we make all clients semi-supervised clients and assign

a unique r among clients to compare the effect of different values of r. The results are shown in

the middle of Figure 2.16. We can see a clear increment of accuracy in task Fashion-MNIST and

CIFAR-10 when labeled data scale-up, however nearly steady value in task MNIST and SVHN.

This verifies our conjecture about random r making less effect to MNIST and SVHN. Other factors

such as the number of unlabelled users Ku influence the overall amount of data. With increasing

Ku, namely the overall amount of labeled samples decreasing, accuracy drops obviously. Detailed

results are in Table 2.5 and right of Figure 2.16.

1 2 3 4 5 6 7 8 9 10
R

60

70

80

90

100

Te
st
…
Ac
cu
ra
cy

MNIST
Fashion-MNIST
CIFAR-10
SVHN)

0.010.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r

50

60

70

80

90

100

10 20 30 40 50

75

80

85

90

95

100

Figure 2.16: Model performance with different statistical concerns. Left shows relationship
between model performance with IIDness. Middle plot draw the function of accuracy and the ratio
of labeled data at one client. Right figure draws the performance decrements when the number of
unlabeled clients increases.

2.4.8 Communication Efficiency

Communication Efficiency is one of the main challenges in FL. This concern is worsened by unre-

liable network conditions of participating devices and the asymmetry in internet connection speed

40

Table 2.5: Test accuracy related to the amount of labeled data in AdaFedSSL

Ku/r CIFAR-10 MNIST Fashion-MNIST SVHN
10/0.1 83.66 99.2 87.39 97.16
20/0.1 80.75 99.06 85.61 97.13
30/0.1 78.18 98.91 84.45 96.99
40/0.1 72.61 98.98 85.22 96.86
40/0.1 72.29 99.02 84.93 96.70

10/0.01 46.85 98.32 79.63 96.08
10/0.05 73.82 98.97 84.01 97.02
10/0.2 86.46 99.09 86.96 97.09
10/0.3 88.76 99.1 87.27 97.02
10/0.4 89.59 99.2 87.94 97.08
10/0.5 90.47 99.22 87.76 97.11

0 200 400 600 800 1000
Round

80

85

90

95

100

Te
st
…
Ac
cu
ra
cy

MNIST

AdaFedSSL
AdaAlter
FedAdaGrad
FedSSL
FedGrad

0 200 400 600 800 1000
Round

50

60

70

80

90
Fashion-MNIST

//

0 200 400 600 800 1000
Round

20

40

60

80

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000
Round

40

60

80

100
SVHN

Figure 2.17: Communication cost by using different methods on four tasks. Dot line indicates
target accuracy that is set by the smallest accuracy over five methods.

41

Table 2.6: T̂ over differernt methods on four tasks. Boldface numbers indicate the lowest commu-
nication cost of each task.

Methods MNIST FashionMNIST CIFAR10 SVHN
FedSSL (T̂W) 260 300 210 360
FedGrad (T̂W) 720 740 850 580

AdaAlter (2T̂W) 900 730 540 810
FedAdaGrad (T̂W) 320 80 160 120
AdaFedSSL (2T̂W) 120 30 120 80

in which upload speed is faster than download speed [7]. In our setting, each user trains a com-

plex deep learning model that may contain millions of parameters, which contributes to a heavy

communication burden. To solve this problem, we attempt to use different techniques, includ-

ing decreasing communication frequency and reducing the size of model update, to analyze what

methods are effective towards this concern. Mao et al. [86] concluded three approaches (i.e., Edge

Computation, Model Compression and Importance Based Updating) to cut communication costs.

We only consider the first two methods in our case, as Importance Based updating involves com-

paring either gradients at different iterations or gradients at different locations, which is beyond

our research scope. We first compare the communication cost of four baseline methods in the same

configurations, namely having same model and communication frequency. Supposing our goal is

to learn a model with parameters denoted by θ, at round t, model update at i-th client can be written

as ∆t
i = θt

i−θt
g. Here θt

i and θt
g represent model parameters of i-th client and global model. Since

FedSSL and FedGrad only communicate model parameters each round and the model update is of

the same size as θ, we denote the communication cost of these two methods as T̂θ where T̂ is the

number of rounds reaching to the target accuracy. AdaAlter does share model update and shares

client accumulator, which is of the same size with model parameters. We denote the cost of AdaAl-

ter as 2T̂θ. FedAdaGrad computes global accumulator according to model updates, and thus only

communicates T̂θ. As such, AdaFedSSL will cost the same amount as AdaAlter. Even though

the amount of parameters doubles, decreasing T̂ would be another way to ease the burden. Target

accuracy should be defined first for computing T̂ . We set the lowest test accuracy of experiments

in a comparison group as the target. Then we make the learning curve monotonically improving

by taking the best test accuracy over all prior rounds as the value of current round. We construct

a continuous curve by using linear interpolation between discrete values and recording the round

where the curve cross or tangents to target accuracy. As shown in Figure 2.17, the black dot line is

our defined target accuracy. The round that achieves target is listed in Table 2.6. Note that we eval-

uate model at every 10 rounds resulting in all records of multiple of 10. AdaAlter spends the most

42

communication cost to achieve the target as the double size of model weight and highest number

of rounds on all tasks except CIFAR-10. Compared with FedSSL, FedGrad performs worse due to

increasing rounds of communication while FedAdaGrad is better on all tasks except MNIST. Our

method shares the lowest number of rounds and halves the number of FedAdaGrad on MNIST and

FashionMNIST while not effective on CIFAR-10 and SVHN, compared with FedAdaGrad.

0 200 400 600 800 1000
Round

90

92

94

96

98

100

Te
st
…
Ac
cu
ra
cy

MNIST

0 200 400 600 800
Round

70

75

80

85

90
Fashion-MNIST

0 200 400 600 800

Round

50

55

60

65

70

75

80

85

90

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800

Round

92

93

94

95

96

97

SVHN

Figure 2.18: Test accuracy over various client parallelisms on four tasks. Dot line is the re-
spective target accuracy indicated in Table 2.7. All experiments are with F = 10.

Decreasing communication frequency can be achieved by two ways: (i) parallelism increment

and (ii) communication frequency decrements. Large parallelism means more edge devices partic-

ipating in training per round, namely a larger S. We evaluate the model performance and the num-

ber of communication rounds to achieve target accuracy with various S on four tasks, as shown in

Figure 2.18 and Table 2.7. Intuitively, with more participation, training would converge faster and

more accurately. This is because increasing parallelism brings a larger batch size which improves

the estimate of error gradients. As a result, for all tasks except MNIST, S = 10 has the lowest

accuracy, and S = 40 generates the lowest communication cost. For MNIST and SVHN, a larger

batch size only gains a small advantage (accuracy improvement smaller than 0.2) when increasing

S from 10 to 20. Notably, the number of communication rounds remains steady in MNIST when

S changes from 30 to 40. The accuracy even drops when S climbs from 30 to 40 in all tasks except

43

MNIST. The increment difference between two groups (MNIST/SVHN and CIFAR-10/Fashion-

MNIST) aligns with our observations in Section 2.4.7. Better convergence occurs when S = 30

on CIFAR-10 and SVHN, S = 20 and S = 40 on MNIST and Fashion-MNIST, respectively.

Simply increasing S is hard to shrink the number of communication rounds due to the large batch

size, leading to a poor generation. Increased client participation only brings small advantage in the

number of communication rounds while triggers more communication parallelism, which requires

more computation locally. Based on this, we fix S = 10 as our basic setting. (S = 20 speeds up

convergence rate efficiently while not halves the number of communication rounds compared with

S = 10).

0 200 400 600 800 1000

Round

50

60

70

80

90

100

Te
st
…
Ac
cu
ra
cy

MNIST

0 200 400 600 800 1000

Round

40

50

60

70

80

90
Fashion-MNIST

0 200 400 600 800 1000

Round

20

30

40

50

60

70

80

90

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000

Round

30

40

50

60

70

80

90

SVHN

Figure 2.19: Test accuracy over various communication frequencies on four tasks. Dot line
shows the respective target accuracy indicated in Table 2.7. All experiments are with S = 10.

Another way to lower communication costs is to use infrequent communication, i.e., a larger F ,

which is the number of local computing iterations per round. Figure 2.19 gives the training curves

with various F and demonstrates that F = 10 produces the best convergence result. Bottom part

of Table 2.7 quantifies the communicating rounds and corresponding accuracy. All tasks gain

the smallest number of communication rounds at F = 100, while at the cost of degraded model

44

performance. The number of communication rounds peaks at F = 40 and then directly goes down

for MNIST while other tasks fluctuate when increasing F from 40 to 60. F = 40 is a proper

setting for our experiments. There is no clear relation between the frequency of communication

and the convergence speed. We can not draw any indirect relation between the amount to local

computation and the number of communication costs. We conjecture the reasons behind this may

relate to the sequence of training clients.

Table 2.7: Number of communication rounds to achieve target accuracy over different S and F .
Test accuracies in parenthesis indicate model performance. Boldface numbers indicate the lowest
communication cost of each task.

CIFAR10 MNIST FashionMNIST SVHN
F = 10

S = 10 990 (85.11) 990 (99.03) 990 (85.93) 990 (97.13)
S = 20 840 (87.22) 900 (99.11) 810 (86.69) 920 (97.28)
S = 30 750 (88.27) 890 (99.11) 810 (86.83) 820 (97.29)
S = 40 790 (87.72) 860 (99.07) 720 (87.27) 930(97.26)

S = 10
F = 10 50 (83.90) 40 (99.20) 50 (87.39) 50 (97.17)
F = 20 60 (73.85) 35 (98.93) 45 (84.82) 30 (96.62)
F = 30 156 (59.98) 96 (97.81) 90 (82.13) 66 (91.56)
F = 40 160 (46.76) 170 (93.75) 227 (77.09) 130 (86.13)
F = 50 50 (65.11) 26 (98.43) 192 (83.11) 20 (96.06)
F = 60 160 (35.56) 148 (87.04) 163 (71.44) 160 (67.27)
F = 70 115 (40.98) 131 (88.23) 120 (71.40) 137 (74.83)
F = 80 91 (40.98) 81 (88.23) 61 (71.40) 98 (74.83)
F = 90 38 (47.87) 57 (95.71) 21 (82.00) 67 (86.24)
F = 100 29 (60.29) 12 (98.09) 9 (81.78) 16 (95.43)

Decreasing model update means less amount of data are sent to server at each communication

round. Here we studied the trade-off between model performance and model complexity. For

MNIST and Fashion-MNIST, we use a 4-hidden-layer multilayer-perceptron (MLP) with 512, 256,

256, 128 units and each layer uses a ReLU activation at the end. This is the complex model for

these two tasks and the total number of parameters is 633226. We use a convolution neural network

(CNN) with 2 5×5 convolutions layers (the first with 10 channels followed by a 2×2 max pooling

and ReLu activation; the second with 20 channels followed by a 50% drop out, 2× 2 max-pooling

and ReLu activation), a fully connected layer with 50 units followed by a ReLu activation and

a 50% drop out. This is referred as simple model and the total number of parameters is 21840.

For CIFAR-10 and MNIST, the complex model is illustrated at Figure 2.4, which has 11173962

parameters. We use a CNN with two 5 × 5 convolutional layers (the first with 6 channels and the

45

0 200 400 600 800 1000

Round

90

92

94

96

98

100

Te
st
…
Ac
cu
ra
cy

MNIST

Complex
Simplex

0 200 400 600 800 1000

Round

50

55

60

65

70

75

80

85

90
Fashion-MNIST

0 200 400 600 800 1000

Round

20

30

40

50

60

70

80

90

Te
st
…
Ac
cu
ra
cy

CIFAR-10

0 200 400 600 800 1000

Round

50

60

70

80

90

100
SVHN

Figure 2.20: Learning curves over dynamic number of training devices.

second with 16 channels, each followed with a ReLu activation and a 2 × 2 max-pooling), two

fully connected layers with 120100 units, respectively and each followed with a ReLu activation.

The number of parameters is 64102. The number of parameters from complex model is 29 or

174 times larger than that of simplex model. We normally deem that a more complex model

gives a better solution to the objective function. Here we study to what extent communication

cost can be reduced by simplifying model structure while at the cost of deteriorating accuracy.

We compare the convergence of complex and simple models in Figure 2.20. As all settings are

unique except model type, the communication cost can be represented as the number of model

parameters multiply the number of rounds of achieving target accuracy. The test accuracy declines

form (83.66, 99.2, 83.79, 97.15) to (54.08, 98.39, 81.75, 87.97) of (CIFAR-10, MNIST, Fashion-

MNIST,SVHN). The decrement (1% to 2%) is relatively small in MNIST and Fashion-MNIST

compared with other tasks. Let us denote the target number of rounds required by complex model

as T̂c, by simplex model as T̂s; the number of parameters in complex model is |θc|, in simplex

model is |θs|. If we set the test accuracy of simplex model as target accuracy, we simply compare
T̂s

T̂c
with |θs|

|θc| . If the former value is smaller, we can reduce communication costs by reducing model

complexity. From our results, T̂s

T̂c
for all tasks are close but smaller than 10, which is far not enough

to 29 and 174. To this end, if communication is the main issue and accuracy is second, largely

46

simplifying model may be the key.

47

C
H

A
P

T
E

R

3
Human Activity Recognition

In this chapter, we apply adaptive federated semi-supervised learning to human activity prediction.

First, we assume clients host an equal and generous amount of unlabeled data while the server

has a small amount of labeled data. The training process is comprised of three main steps: client

update, server aggregation, and classifier training. In the first step, clients collaboratively train

autoencoders using adaptive optimizers in unsupervised learning and send model updates and ac-

cumulated gradients to the server. Second, the global autoencoder is updated via a gradient-based

server optimizer to the average of clients’ updates. In classifier training, labeled samples are en-

coded as latent representations by which a long-short term memory (LSTM) classifier is optimized

by stochastic gradient descent in a supervised fashion. The server will broadcast the global autoen-

coder, averaged gradient accumulator to clients selected in the next round. Our framework is robust

and resilient with partial participation and Non-IID data distribution. Our ablation studies show

the effectiveness of the two adaptive optimizers. We also provide further insight into techniques

such as data partition and partial updating, which play important roles in a successfull federated

framework.

3.1 Introduction

Various application areas such as smart homes, human body monitoring, and smart cities use IoT

technologies in modern life. A wide range of sensory data, including physiological data such

as weight and blood pressure, ambient data such as occupancy, temperature, and brightness, is

collected every moment by smart devices. These data are always in the form of time series data,

48

which is particularly helpful in training models for human activity recognition (HAR). Recently,

HAR has become increasingly important for individuals who need in-home support or personal

healthcare. By using IoT data, HAR can provide in-time and personalized assistance according

to sensory data for improved qualiy of life. For instance, anomaly detection based on detected

activity can trigger alerts when a person’s health is deteriorating and thus early interventions can

be adopted [98–100]. Medical specialists, for instance, can utilize long-term behavior change to

determine dementia care [101].

One type of frameworks in HAR is utilizing the computational ability of edge devices distributed

throughout IoT systems. Typically, these devices are responsible for collecting, storing, and pro-

cessing data and have certain abilities to communicate with each other. This feature provides a

possibility to collaboratively train or analyze human activity models under uniform deployment.

To this end, federated learning is ideally suited with a centralized cloud server and can generate a

general objective by aggregating the customized edge objectives in HAR. A traditional FL frame-

work consists of two parts, namely global server and local clients, where clients separately train

Deep Neural Networks (DNN), while the server aggregates local network parameters as the global

model. This process allows customers to use local data to improve generality without privacy

infringement. However, with the growing number and fast development of local devices, client

heterogeneity and transmitting data between clients and server have become the main bottleneck

that hinders IoT application development.

Most works of HAR take the premise that local clients only conduct supervised learning, where

clients use labeled data to train a DNN model. However, this is always impractical due to the

difficulty of acquiring labeled data.First, various sensors continuously generate time-series data;

therefore, local computation is incapable of dealing with this huge amount of data. Second, time

series data requires accurate preprocessing that is always time-consuming and needs input from

experts. To this end, one of the main challenges of HAR in the federated learning setting is how to

utilize unlabeled data properly.

An autoencoder [102] is one of the most commonly used techniques in unsupervised learning. It

uses an encoder and a decoder to generalize compressed representation that can be used for further

classifier training or feature extraction. Recent works (anomaly detection [103], Proactive Content

Caching [104]) have shown autoencoder can be a useful local trainer to grasp local representation

in an FL system. Autoencoder can be represented by a temporal convolutional network [105],

Elman network [106], Long short-term memory [107] and so forth. The learned representations

at local sides are then transferred to global server where further training is conducted. Results

from autoencoder even produce close or better than that of supervised learning. Based on this, we

49

incorporate autoencoder in our current FL system to enable training with unlabeled data.

Considering realistic scenarios, we combine autoencoder with adaptive optimizers by conduct-

ing unsupervised learning at the edge while supervised learning at server. Besides the above-

mentioned issue, we show our method is easy-tuned through our experiments even though the

adaptive optimizer introduces adjustable hyper-parameters compared with non-adaptive methods.

We also test our method on non-independent and identically distributed data (non-IID), one of the

main challenges in traditional FL. Our results show robustness with Non-IID or unbalanced data.

Our framework consists of three learning processes. First, local clients learn latent representation

by training autoencoders with local unlabeled data. Then global server collects all local autoen-

coders and learns global autoencoder by adaptively aggregating local model updates. After that,

server learns a classifier by using the encoded representation from global autoencoder which trans-

forms labeled data into latent representation. Labeled data account for a small portion of the entire

training data and are usually from the public datasets, which prevent clients’ privacy leakage. We

examine our framework on different benchmark datasets and compare our method with counter-

parts that replace key elements in our framework. Based on these points, the main contributions in

this chapter can be summarized as follows:

• We introduce an adaptive federated semi-supervised learning method that employs an adap-

tive optimizer on both local and server sides. Our method yields a better mean F1-score

compared with other baseline methods.

• Our framework is robust and resilient with partial participation and Non-IID data distribu-

tion. Ou experiments show a small amount of interplay among key hyperparameters and

effectiveness on training with time series data.

• Our ablation studies show effects brought by key elements of AdaFedSSL. We provide in-

sight into techniques such as data partition and partial updating in federated learning, which

play important roles in a successful federated framework.

The rest of this chapter is organized as follows. In the next section, we present the problem for-

mulation and propose our AdaFedSSL framework for human activity recognition. In Section 3.3,

we present experimental results to demonstrate the competitive performance of our approach on

three standard benchmark HAR datasets.

3.2 Adaptive Federated Semi-supervised Learning for Activity Recognition

50

3.2.1 Preliminaries

Autoencoder is a neural network that learns to reproduce its input as its output. It is an unsu-

pervised learning algorithm that learns features from unlabeled data using backpropagation via

stochastic gradient descent, and has typically an input layer representing the original data, one

hidden layer and an output layer. An autoencoder is comprised of an encoder and a decoder, as

illustrated in Fig. 3.1.

Input Output

Encoder Decoder

Figure 3.1: Structure of a simple autoencoder with one hidden layer. Input x is encoded as la-
tent representation which has less number of dimensions after encoding process. Decoding process
try to reconstructs x from latent representation and build x̂. Autoencoder learns key information
required for reconstruction.

The encoder, denoted by fθ, maps an input vector x ∈ Rq to a hidden representation (referred

to as code, activations or features) a ∈ Rr via a deterministic mapping

a = fθ(x) = σ(Wx+ b), (3.1)

parameterized by θ = {W,b}, where W ∈ Rr×q and b ∈ Rq are the encoder weight matrix

and bias vector, and σ is a nonlinear element-wise activation function such as the logistic sigmoid

or hyperbolic tangent. The decoder, denoted by gθ′ , maps back the hidden representation h to a

reconstruction x̂ of the original input x via a reverse mapping

x̂ = gθ′(a) = σ(W′a+ b′), (3.2)

parameterized by θ′ = {W′,b′}, where W′ ∈ Rq×r and b′ ∈ Rq are the decoder weight matrix

and bias vector, respectively. The encoding and decoding weight matrices W and W′ are usually

constrained to be of the form W′ = W⊺, which are referred to as tied weights. Assuming the

tied weights case for simplicity, the parameters {W,b,b′} of the network are often optimized by

minimizing the squared error

ℓauto =
N∑
i=1

∥xi − x̂i∥22 (3.3)

where N is the number of samples in the training set, xi is the ith input sample and x̂i is its

reconstruction.

51

Long short-term memory (LSTM) networks are a special type of recurrent neural networks

(RNNs), capable of learning long-term dependencies between time steps of sequence data while

being resilient to the vanishing gradient problem [108]. The key to an LSTM network is the cell

state, which contains information learned from the previous time steps and has the ability to re-

move or add information using gates [109]. These gates control the flow of information to and

from the memory. In addition to the hidden state, the architecture of an LSTM block is composed

of a cell state, forget gate, memory cell, input gate and output gate, as illustrated in Figure 3.2. At

each time step, the LSTM block takes as input the current input data vector xt and both the hidden

state (i.e. short-term memory) ht−1 and cell state (i.e. long-term memory) ct−1 from the previous

cell. In order to decide which information to be retained or discarded at each time step before

passing on the long-term and short-term information to the next cell, the LSTM block uses the

forget, input and output gates, which are trainable functions with weights and biases. The forget

gate decides which information from the long-term memory to forget, while the input gate can be

regarded as a filter that selects what information can be kept and what information to be thrown

out. The memory cell gt is created by passing the current input and short-term memory into a tanh

activation function, which is a shifted version of the sigmoid activation function. The new cell

state ct is obtained by adding two pointwise multiplication terms; the first term involves the input

gate and memory cell, while the second one uses the forget gate and the previous cell state. The

cell state ct stores information about the input data across time steps. Finally, the hidden state ht

is obtained via pointwise multiplication of the output gate ot and the new cell state through a tanh

activation function. This hidden state (i.e. new short-term memory) is then passed on to the cell in

the next time step.

Figure 3.2: Structure of a simple LSTM cell. At time point t, a LSTM cell takes previous
memory state ct−1, previous hidden state ht−1 and current data point xt as inputs. The outputs are
corresponding memory state ct and hidden state ht. σ denotes applying sigmoid activation and
tanh applies Tanh activation funtion.

Formally, given the input xt, current cell state ct−1 and hidden state ht−1 of the network, the

52

LSTM updates at time step t are given by

ft = σ(Wfxt +Rfht−1 + bf)

gt = tanh(Wgxt +Rght−1 + bg)

it = σ(Wixt +Riht−1 + bi)

ct = ft ⊙ ct−1 + it ⊙ gt

ot = σ(Woxt +Roht−1 + bo)

ht = ot ⊙ tanh(ct)

(3.4)

where ft, gt, it, ot, ct and ht are the forget gate, memory cell, input gate, output gate, cell state and

hidden state, respectively; σ(·) denotes the sigmoid activation function; ⊙ denotes the point-wise

product; W• and R• are the learnable input and recurrent weight matrices; and b• are the learnable

bias vectors.

In summary, the input gate controls what new information is added to cell state from current

input, while the forget gate controls what information to throw away from memory. The output

gate controls what information encoded in the cell state is sent to the network as input in the

following time step. An LSTM network with multiple LSTM layers is referred to as a stacked

or deep LSTM, with the output sequence of one LSTM layer forming the input sequence of the

next. With the help of above three gates, LSTM networks enables to automatically choose relevant

instead of all information to pass on. In our experiments, we treat a series of LSTM cell with the

same length of encoded input, followed by a fully connected layer and a softmax layer, as classifier,

which is trained in supervised learning.

Federated semi-supervised learning is applying semi-supervised learning in a federated way. Let

us define the i-th client has labeled data DL
i = {(xb, pb) : b ∈ (1, ..., nl)} where xb is the b-th data

sample and pb ∈ {1, 2, ..., C} is its corresponding label, where C is the number or classes and nl

is the number of labeled examples. Apart from labeled data, i-th client may also has unlabeled

samples DU
i = {xb : b ∈ (1, ..., nu)}, where nu is quantity of samples. Generally the number of

unlabeled data is large higher than the number of labeled data, i.e. nu >> nl, and in most cases of

HAR, clients only have access to unlabeled data due to the fact of uneasy access to labeled data.

In case that i-th client has both labeled and unlabeled data, local update is to minimize the loss:

Hi = H(θi,DL
i) +H(θi,DU

i) (3.5)

where H(θi,DL
i) and H(θi,DU

i) are losses for labeled data and unlabeled data, respectively. Re-

garding to the aggregation scheme of FedAvg, the weight to each client is the sum of the number

of both labeled and unlabeled samples, i.e. p = nl +nu. In case that server exclusively has labeled

53

Encoder

Encoder

Slicing

Frame1

Frame2

FrameN

Encoder

Input:
Time-series Data

Latent
Representa�on

Output:
Human Ac�vity

LSTM

LSTM

LSTM

...

FC

FC

FC

...
...

...
...

Discrete
Dataframes

Sequence
Representa�on

Figure 3.3: Architecture of Autoencoder and Long-short term memory (AE-LSTM) for human
activity recognition. D is feature dimension of original data and ∆t is the window size of slicing.

data Ds = {(xb, pb) : b ∈ (1, ..., n)} where n is the number of labeled instances, and clients only

store unlabeled data, we need calculate the loss twice. Supposing S number of clients is selected

to participate in training, our global loss can be calculated by:

H =
S∑

i=1

Hi +Hg(θg,Ds) (3.6)

where Hg(θg,Ds) is supervised training loss on server where θg is global model parameter. In

practice, global server has a different model structure compared with local model if HAR frame-

work separates whole process as a two-step, i.e. feature extraction and classification. They may

share same parameters in holistic training where one model is trained twice sequentially on clients

and server. In our framework, we this two-step version that an autoencoder is used in locally

unsupervised training and a LSTM network is used for globally supervised training.

To completely form a HAR system, we combines the trained encoder, LSTM network and a fully

connected layer end-to-end. First, original data is processed as latent features by encoder. Then

the features are analyzed by LSTM network and classified by fullyconnected layer. The process is

shown in Figure 3.3 and the specific prediction steps are:

• Encoder of a trained global autoencoder is utilized to extract high-level representation of

processed data in higher dimension, i.e. {xi}Ni=1,xi ∈ Rq, where N is the number of frames

54

of time-series data and q is the number of feature dimensions. This latent representation,

denoted as {at}Nt=1, at ∈ Rr where r is the number of encoded feature dimensions.

• Latent representations pass LSTM series and become hidden state {ht}Nt=1,ht ∈ Rh where

h is the size of hidden dimensions, which is then fed into a fully connected layer followed

by a softmax layers to generate distribution of class probability. We take the label with the

largest probability as the prediction.

3.2.2 Proposed Framework

FedAdaGrad
FedAvg

Global
Gradient

Local
Gradient

Local
Gradient

Local
Gradient

Unlabeled
Dataset

Unlabeled Client 2

Global
Gradient

Labeled
Count

AdaGrad

Local
Gradient

Labeled
Dataset

Unlabeled Client 1 Unlabeled Client 1

Server
Gradient

Encode
Labeled
Features

Classify

PredictionClassification Loss

Figure 3.4: Proposed framework of AdaFedSSL for human activity recognition.

Overall training pipeline follows work [41] which conducts a two-stage training on clients and

sever in sequence. We assume server hosts a small amount of data and is responsible for aggregat-

ing local autoencoders at each round. Two stages are shown in Figure 3.4. First, selected clients

learn local representations by training local autoencoders with personalized unlabeled data. Au-

toencoders are sent back to server and aggregated as a global autoencoder. Second, server trains

a classifier utilizing the encoded representation from global autoencoder in supervised learning,

which repeats a predefined number of rounds and keeps the classifier generating the best perfor-

mance. As server only requires a certain amount of labeled data which could be published or open

data, client privacy is protected through this process. We use a simple autoencoder (with one hid-

den layer) to learn local representation and use an LSTM cell followed by a fully connected layer

and a softmax layer as the classifier.

55

Initialization. At the beginning round t = 0, server initializes global autoencoder weight θt
g,

classifier weight θt
c, server accumulator wt ≥ (τg)

2 and client accumulator vt ≥ (τl)
2, where τg

and τl are global and local adaptivity rate respectively. Then server sets up connections to all 100

clients. As partial participation is our default training scheme, server randomly selects C fraction

of overall clients, and S = 100 · C represents the number of selected clients. Server broadcasts

θt
g and vt to all participated clients as local replicas denoted as Lt = {θt

i}Si=1,V t = {vt
i}Si=1. As

clients only conduct unsupervised learning, we term the participated clients as unlabeled clients

who start local training with the same configurations such as the number of epochs and the learning

rate value.

Autoencoder training. Supposing i-th client holds local dataset {xa}Ni
a=1,xa ∈ Rd where each

training sample is a sensory segment at a timestamp and d is the number of feature dimensions. At

each training epoch, clients randomly initialize a batch size b that partitions the dataset of batches

with size n = Ni

B
. Thus, i-th client data set is represented asDi = {(x′

a)}Ba=1 where x′
a ∈ Rn×d. As

the batch size is randomized at the beginning of each epoch, the sequence length n is not constant.

We aim to train an autoencoder in unsupervised learning by reconstructing the unlabeled dataset.

According to Equation 3.3, we can write the local objective of i-th client as:

ℓtauto,i =
n∑

a=1

H(fenc(θ
t
i,x

′
a), fdec(θ̂

t

i, x̂
′
a)) (3.7)

where H is loss function with input of original input vector and decoded vector. fenc and fdec, with

corresponding parameters θt
i and θ̂

t

i, respectively apply a mapping of Rn×d → Rn×p and Rn×p →
Rn×d where p is the dimension of latent features. Local encoders learn to extract key features

of local datasets by updating parameters through back-propagating local loss. Let gt
i = ∇ℓtauto,i

denotes the gradient computed by back-propagating loss upon θt
i. With AdaGrad, the optimization

on i-th client is:

θt+1
i = θt

i − ηl
gt
i√

(vt
i)

2 + τ 2l
(3.8)

where ηl is the local learning rate. Local optimizer is also updated by cumulating past gradients

to update (vt
i)

2, where (vt
i)

2 =
∑B

b=1 g
b
i ◦ gb

i . After local training, participated clients calculate

update ∆t
i = θt

i − θt
g and send ∆t

i, (v
t
i)

2 to server, where two aggregations are conducted:

vt =
1

S

S∑
i=1

(vt
i)

2

∆t =
1

S

S∑
i=1

∆t
i

56

Given a global learning rate ηg and a global adaptivity rate τg, the global adaptive optimizer updates

global autoencoder as:

θt+1
g = θt

g − ηg
∆t√

wt + τ 2g

where wt is the accumulator of past (∆t)2 .

Classifier training takes place after server aggregation. We choose an LSTM chain followed by a

fully connected layer as the classifier. Supposing server has time-series data Ds = {(xa,ya)}Ns
a=1

where Ns is the length of time span, each instance on server is a pair of sensory signals at time

a that xa ∈ Rd with d number of features and ya is its corresponding one-hot label. Similar to

autoencoder training, at each epoch, server randomly initializes a batch size B and batches dataset

as a series of sequential data with length n = Ns

B
. Labeled dataset can be rewritten as Ds =

{(x′
a,y

′
a)}Ba=1 where x′

a ∈ Rn×d and y′
a ∈ Rn. Batched data are encoded as latent representation at

first which then is passed to LSTM classifier. Supposing at classifier training epoch t, the recurrent

process is defined as:

ŷi = fcls(feco(θ
t
g,x

′
a),θ

t
c) (3.9)

where θt
c is the parameter of classifier. We use cross-entropy loss and SGD to update parameter

which is formulated as:

θt+1
c = θt

c − ηc∇H(ŷa,y
′
a) (3.10)

where H(ŷa,y
′
a) is cross-entropy loss and ηc is classifier learning rate. Note that this loss is only

used to update parameters of classifier, excluding autoencoder. After training classifier, server

broadcasts θt+1
g and vt+1 to users selected at next round. Detailed algorithm is shown in Algo-

rithm 2.

3.3 Experiments

In this section, we conduct extensive experiments to evaluate the performance of our proposed

AdaFedSSL on three HAR datasets and compare related performance in different dimensions,

including mean F1-score and test accuracy, with other benchmark methods. Additionally, we

evaluate the effect of factors or hyperparameters (fraction of partial participation, Non-IIDness,

types of autoencoder).

Datasets. We conduct experiments on three benchmark tasks: OPP, DG, and PAMP2. These

datasets have distinct features corresponding to different applications. Opportunity comprises

recordings of normal daily activities such as drinking coffee and open/close drawer, that are short

57

Algorithm 2 AdaFedSSL for HAR

1: Initialization: global autoencoder weight θ0
g, classifier weight θ0

c , server accumulator w0 ≥ τ 2g ,
client accumulator v0 ≥ τ 2l , labeled dataset Ds = {(xa,ya)}Ns

a=1

2: for each round t = 0, 1, . . . T − 1 do
3: Randomly selects S number of clients
4: for each i-th user in parallel, i = (1, 2, . . . , S) do
5: ∆t

i,v
t
i ← Local_Training(θt

g,v
t, τl)

6: end for
7: ∆t ← 1

S

∑S
i=1 ∆

t
i

8: wt+1 ← wt + (∆t)2

9: vt+1 ← 1
S

∑S
i=1 v

t
i

10: θt+1
g ← θt

g + ηg
∆t√
wt+τ2g

11: θt+1
c ← Classifier_Training(θt

g,θ
t
c,Ds)

12: end for
13:
14: return θg,θc

Classifier_Training(θt
g,θ

t
c,Ds)

15: θa ← θt
g, θc ← θt

c

16: for e ∈ 0, 1, . . . (Ec − 1) do
17: Randomly initialize a batch size B
18: n← Ns

B

19: Ds = {(x′
a,y

′
a)}Ba=1

20: for (x′
a,y

′
a) ∈ Ds do

21: ŷi ← fcls(feco(x
′
a,θa), θc)

22: θc ← ηc∇H(ŷa,y
′
a)

23: end for
24: end for
25:
26: return θc

Local_Training(θg,vt, τl)
27: Local dataset D = {xa}Na=1

28: θ ← θg,v← vt

29: for e ∈ 0, 1, . . . (El − 1) do
30: Randomly initialize a batch size B
31: n← N

B

32: D = {(x′
a)}Ba=1

33: for x′
a ∈ D do

34: x̂′
a ← feco(x

′
a,θ)

35: g← ∇H(x̂′
a,x

′
a)

36: θ ← θ − ηl
g√
v+τ2l

37: v← v + g ◦ g
38: end for
39: end for
40:
41: return θ − θg,v 58

and non-repetitive. Physical activity monitoring for aging people consists of physical activities

such as bicep curls and raise leg to categorize the type of exercises (aerobic or strength). This

type of signal is prolonged and repetitive in order to timely monitor and analyze user’s physical

condition. Daphnet Gait is used for automatically identifying gait freeze of Parkison patients. We

describe details of three datasets and summarize them at Table 3.1:

• Opportunity (OPP) [110] consists of annotated recordings from a multitude of on-body sen-

sors configured on four subjects while carrying out morning activities. The annotations

comprise few types of locomotion along with a Null activity that makes classification more

difficult. Data is collected while participants perform five activities of Daily Living (ADL)

runs and a drill run of 20 repetitive activity sequences. Each instance refers to 113 real-

valued signal measurements recorded at a frequency of 30Hz from 12 wearables on the body

and is annotated with 18 mid-level gesture annotations (i.e., open/close door). We only take

data that have no packet loss in our training data, which include accelerometer recordings

from the upper limbs and the back, and complete IMU data from both feet. Final dataset

has 79 features (dimensions). We take runs 4 and 5 from subject 2 and 3 as our test set,

while take run 2 from subject 1 as our validation set. The other data is used for training. For

frame-by-frame analysis, We slice the data by a time window of 1 second and 50% overlap

that thus create around 650k samples.

• Physical activity monitoring for aging people (PAMAP2) [111] consist of recordings from

multiple wearables on 9 subjects that each of the subjects followed a protocol of 12 activ-

ities (lie, sit, stand, walk, run, cycle, Nordic walk, iron, vacuum clean, rope jump, ascend

and descend stairs), and optionally performed a few other activities (watch TV, computer

work, drive car, fold laundry, clean house, play soccer) as well. Over 10 hours of data were

collected altogether from the 18 different activities. Data is collected from 3 inertial mea-

surement units (Colibri wireless inertial measurement units) over the wrist on the dominant

arm, on the chest and on the dominant side’s ankle, respectively with sampling frequency

of 100Hz and a heart rate monitor with sampling frequency around 9Hz. Final dataset has

52 features. We take runs 1 and 2 of subject 5 as our validation set and runs 1 and 2 of

subject 6 as our test set. The other data is used for training. In order to have comparable

temporal resolution with OPP dataset, data from accelerometer is downsampled to 33.3Hz.

For slicing data, we use non-overlapping sliding windows of 5.12 seconds duration with one

second shifting. From the segmented 3D-acceleration data, various signal features were cal-

culated in both time and frequency domain (mean, variance, energy, etc.), and (normalized)

mean and gradient are calculated on the heart rate data. The extracted features serve as input

59

for the next processing step, the classification. The resulting data consist of approx. 473k

samples (14k frames) in training set.

• Daphnet Gait (DG) [112] consists of recordings from 10 patient with Parkinson’s Disease

(PD) while carrying out three kinds of tasks: straight line walking, walking with numerous

turns, and finally a more realistic activity of daily living (ADL) task, where users went into

different rooms while fetching coffee, opening doors, etc. Freezing is the temporary, invol-

untary inability to move that commonly happens in PD. The dataset is devised to benchmark

automatic methods to recognize freezing incidents. Data is collected from several acceler-

ations on ankle, leg and trunk, which comprise three classes (i.e., no freezing, freezing and

Null) with 9 features. We take run 1 from subject 9 as our validation set, runs 1 and 2 from

subject 2 as our test set. The other data is used for training. Similarly, we downsampled the

accelerometer data to 32Hz. For frame-by-frame analysis, we created sliding windows of

1 second duration and 50% overlap. The training set contains approx. 470k samples (30k

frames).

Table 3.1: Three benchmark datasets for HAR

Dataset Opp PAMAP2 DG
Activity Morning routine Exercise Parkinson
#features 79 52 9
#classes 18 12 3
#training 651K 473K 470K
#validation 119K 83K 81K

Models. The model consists of two parts, i.e., an autoencoder and an LSTM classifier. We use

the simplest fully-connected autoencoder with one hidden layer. The dimensionality of input and

output accords with the number of features of each task. For input samples with nf features, we

take rf ∈ (0, 1) as compression ratio to control the level of encoding. The round value of rf × nf

is the size of hidden features of autoencoder. We test with different rf and different types of

hidden layers, such as convolutional and LSTM autoencoder. Detailed comparison is shown in

Section 3.3.5. Classifier on sever is a one-layer LSTM followed by a fully connected layer and a

softmax activation. The input size accords with the output of encoder, and the hidden size is fixed

at 1024.

Implementation Details. All experiments are carried out on a Linux server with one Intel Gold

6148 Skylake @ 2.4 GHz, 64 GB RAM, one NVidia V100SXM2 (16G memory) GPU card. For

60

comparing the best result of each baseline method, instead of using a uniform hyperparameter set,

we tune hyperparameters separately on each method towards each task. Detailed tuning process

is shown in Section 3.3.1. Based on the best setting, we repeat the experiments 10 times with a

randomly split of data and take the average of metric as the final result. The partition and metric

scheme are illustrated below. For training local autoencoder and server classifier, we take mean

square error and cross-entropy loss as loss functions. Local and global autoencoders are optimized

by AdaGrad while classifier is optimized by stochastic gradient descent. We implement all code

based on Pytorch library.

Evaluation Metrics. We use mean F1-score as our basic metric to evaluate model performance.

The highest possible value is 1.0, indicating perfect precision and recall, and the lowest possible

value is 0 if either the precision or the recall is zero. Traditional F1-score or balanced F1-score is

the harmonic mean of the precision and recall:

F1 = 2 · Precision ·Recall

Precision+Recall

Precision (also called positive predictive value) is the fraction of relevant instances among the

retrieved instances, while Recall (also known as sensitivity) is the fraction of retrieved instances.

Their corresponding definitions are:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP, FP, and FN denote true positives, false positives and false negatives, respectively. F1-

score is typically interpreted in binary classification. For instance, in classifying whether a human

is walking or not, TP is the number of correctly predicted human walking, while TN is the number

of correctly predicted human not walking. A classifier that reduces FN (predict not walking while

walking) and FP (predict walking while in fact not walking) indicates a better performance. In

a general sense, precision measures the correct predictions among all positive predictions and

reflects the level of trust in system. Recall is also called sensitivity and measures the true case in all

positive cases. It is usually used in detecting disease detection. F1-score is a better measure to use

if we need to strike a balance between precision and recall. Our tasks are multi-class classification

problem, which requires extra effort to obtain overall F1-score. Traditional method for a balanced

setting is to average F1-scores of classes. However, three datasets in our experiments are highly

unbalanced (OPP: ranging from 4195 to 491072; PAMP2: ranging from 13790 to 60336; DG:

61

ranging from 40955 to 428485). We choose mean F1-score as the evaluation metric:

Fm =
2

C

C∑
c=1

precisionc · recallc
precisionc + recallc

where C is the number of classes.

Data Partitioning. Regarding federated learning, data partition is a key element for successfully

simulating federated learning. As labeled data only resides on server, we adjust parameter rl to

control the ratio of labeled data distributed to server. For a training dataset with N samples, we

adjust rl ∈ (0, 1) and take round value of rl × N as the number of labeled samples on server.

Though time-series data is processed into discrete data samples, the temporal relation is still ex-

pressed as the sequence of samples. To this end, we can not randomly pick rl × N samples from

overall samples. Instead, we first split training data into 100 chunks where each chunk retains the

sequence of samples. Then we randomly select 100× rl divisions and concatenate them as the fi-

nal labeled dataset. This could largely avoid breaking the activity sequence while may cause some

issues at division point. As for the rest data, we discard their labels and form unlabeled dataset

for clients. Another partition regards distribution among clients. There are two strategies: IID and

Non-IID. Supposing after generating labeled dataset, the number of unlabeled data is Nu. For a

balanced setting, each client is supposed to have nk = Nu

100
number of unlabeled data. For generat-

ing an IID local dataset, we firstly split unlabeled dataset into 100 chunks. Then for each chunk,

we use a time window of length nk

100
to contiguously generate 100 shards. Each client picks one

shard from one chunk and combines 100 chunks into a local training dataset. Another strategy is

Non-IID partition. For an IID distribution, we assume that the divided 100 chunks have same data

distribution; thus local clients have the same distribution when they sample same amount of data

from chunks. This is a systematic sampling that simulates local data as population distribution.

For Non-IID partition, one simple way is randomly choosing partial chunks as the data source.

For example, unlabeled data is still partitioned as 100 chunks, but for each client, we randomly

selected r×100 chunks to generate nk

r×100
number of time-series data concatenated as local dataset.

We name r ∈ (0, 1) as IIDness that controls the level of skewness. One extreme scenario that

r = 1 denotes IID partition while r = 0 indicates the most severe Non-IID. We show the results of

different r in Section 3.9.

3.3.1 Hyperparameter Tuning

Getting to the best performance includes tuning two learning rates ηg, ηl and two adaptivity rates

τg, τl. First, we draw the model performance as a function of ηg and ηl. As shown in Figure 3.5,

62

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Global…learning…rate…()

0.
5

0
-0
.5

-1
-1
.5

-2
-2
.5

-3
-3
.5

-4
Lo
ca
l…l
ea
rn
in
g…
ra
te
…(

)
0.26 0.33 0.30 0.31 0.32 0.34 0.36 0.27 0.29 0.30

0.29 0.25 0.31 0.25 0.30 0.26 0.29 0.31 0.29 0.30

0.26 0.30 0.24 0.27 0.35 0.28 0.31 0.29 0.25 0.28

0.27 0.29 0.32 0.34 0.39 0.36 0.31 0.31 0.28 0.32

0.33 0.30 0.31 0.34 0.31 0.30 0.38 0.35 0.32 0.29

0.25 0.30 0.35 0.31 0.37 0.24 0.29 0.28 0.29 0.23

0.31 0.29 0.25 0.32 0.35 0.33 0.32 0.26 0.20 0.24

0.33 0.32 0.33 0.32 0.33 0.24 0.29 0.27 0.27 0.28

0.30 0.28 0.32 0.33 0.28 0.25 0.22 0.29 0.25 0.26

0.29 0.26 0.34 0.27 0.27 0.25 0.27 0.25 0.25 0.26

OPP

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Global…learning…rate…()

0.
5

0
-0
.5

-1
-1
.5

-2
-2
.5

-3
-3
.5

-4
Lo
ca
l…l
ea
rn
in
g…
ra
te
…(

)

0.55 0.57 0.57 0.45 0.61 0.56 0.56 0.49 0.61 0.57

0.55 0.55 0.58 0.50 0.55 0.59 0.57 0.55 0.58 0.59

0.58 0.50 0.58 0.51 0.60 0.53 0.57 0.55 0.59 0.54

0.55 0.56 0.57 0.56 0.59 0.54 0.60 0.55 0.55 0.55

0.56 0.57 0.59 0.47 0.61 0.51 0.60 0.59 0.55 0.56

0.58 0.50 0.49 0.56 0.51 0.64 0.62 0.54 0.54 0.54

0.56 0.54 0.52 0.57 0.56 0.49 0.56 0.60 0.60 0.32

0.58 0.60 0.54 0.57 0.53 0.60 0.63 0.51 0.62 0.55

0.61 0.53 0.50 0.56 0.61 0.60 0.57 0.54 0.52 0.54

0.57 0.51 0.57 0.56 0.55 0.55 0.54 0.51 0.51 0.55

DG

0.35

0.40

0.45

0.50

0.55

0.60

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Global…learning…rate…()

0.
5

0
-0
.5

-1
-1
.5

-2
-2
.5

-3
-3
.5

-4
Lo
ca
l…l
ea
rn
in
g…
ra
te
…(

)

0.29 0.28 0.25 0.40 0.32 0.28 0.22 0.24 0.19 0.15

0.25 0.31 0.41 0.31 0.37 0.26 0.31 0.36 0.31 0.33

0.28 0.36 0.22 0.14 0.26 0.26 0.35 0.29 0.24 0.19

0.23 0.23 0.20 0.33 0.27 0.36 0.20 0.21 0.33 0.17

0.30 0.28 0.26 0.33 0.25 0.15 0.35 0.28 0.38 0.14

0.34 0.29 0.30 0.24 0.30 0.36 0.28 0.13 0.29 0.24

0.31 0.30 0.37 0.24 0.24 0.37 0.40 0.32 0.17 0.22

0.24 0.32 0.33 0.37 0.33 0.34 0.23 0.22 0.22 0.23

0.20 0.35 0.39 0.28 0.24 0.18 0.24 0.22 0.17 0.22

0.32 0.37 0.30 0.32 0.30 0.31 0.26 0.20 0.23 0.29

PAMAP2

0.15

0.20

0.25

0.30

0.35

0.40

Figure 3.5: Mean F1-score of AdaFedSSL with different combinations of global and local
learning rate. Global and local adaptivity rates are set as 10−5.

we plot the distribution of model performance over different combinations of ηg and ηl. The most

obvious observation is that most pairs on DG are good values, bringing a large area of light color.

The best pairs locate at ηg = 10−1.5, ηl = 10−2 while pairs around it still result in considerable

outcomes. There are fewer good choices on OPP that dark area is larger than that of DG. We can

see the best situation of OPP is at ηg = 10−2, ηl = 10−1. Unlike OPP and DG, PAMAP2 reveals

an unsystematic distribution of mean F1-score that tells an unsteady learning process. We take

ηg = 10−1, ηl = 10−2.5 as the default value for this task.

After setting learning rates, we need to dig deeper to fine-tune the level of adaptivity. Similarly,

we plot the mean F1-score as a function of global adaptivity τg and local adaptivity τl. The best

value pair of OPP is τg = 10−5, τl = 10−3 and some other acceptable values appear when having

small τl. The overall distribution of model performance seems not groups in a concentrated area.

Better results are seen on DG, which shows more good pairs on the middle plot. The best value

of the two parameters are 10−6 and 10−4. PAMAP2 demonstrates a complicated scenario that only

63

-7 -6 -5 -4 -3 -2 -1
Global…adaptivity…rate…()

-1
-2

-3
-4

-5
-6

-7Lo
ca
l…a
da
pt
iv
ity
…ra
te
…(

) 0.27 0.27 0.26 0.29 0.29 0.32 0.33

0.29 0.29 0.24 0.32 0.35 0.28 0.31

0.34 0.35 0.38 0.30 0.30 0.27 0.29

0.30 0.32 0.30 0.33 0.30 0.32 0.27

0.31 0.29 0.31 0.30 0.31 0.31 0.32

0.30 0.31 0.33 0.30 0.30 0.32 0.36

0.27 0.36 0.33 0.32 0.31 0.33 0.30

OPP

0.24

0.26

0.28

0.30

0.32

0.34

0.36

-7 -6 -5 -4 -3 -2 -1
Global…adaptivity…rate…()

-1
-2

-3
-4

-5
-6

-7Lo
ca
l…a
da
pt
iv
ity
…ra
te
…(

) 0.59 0.61 0.57 0.59 0.55 0.58 0.56

0.53 0.57 0.59 0.59 0.55 0.52 0.59

0.58 0.55 0.55 0.58 0.37 0.56 0.59

0.57 0.64 0.58 0.56 0.58 0.58 0.61

0.54 0.54 0.56 0.61 0.54 0.56 0.59

0.58 0.57 0.59 0.59 0.59 0.55 0.56

0.62 0.60 0.55 0.54 0.58 0.53 0.56

DG

0.40

0.45

0.50

0.55

0.60

-7 -6 -5 -4 -3 -2 -1
Global…adaptivity…rate…()

-1
-2

-3
-4

-5
-6

-7Lo
ca
l…a
da
pt
iv
ity
…ra
te
…(

) 0.25 0.16 0.21 0.22 0.18 0.23 0.15

0.18 0.21 0.21 0.30 0.23 0.20 0.27

0.31 0.31 0.31 0.30 0.23 0.29 0.30

0.18 0.26 0.35 0.20 0.36 0.26 0.30

0.15 0.25 0.35 0.26 0.28 0.25 0.34

0.38 0.36 0.33 0.30 0.28 0.16 0.20

0.24 0.32 0.26 0.28 0.19 0.28 0.27

PAMAP2

0.15

0.20

0.25

0.30

0.35

Figure 3.6: Mean F1-score of AdaFedSSL with different combinations of global and local
adaptivity rates. Global and local learning rates are set as default value in Table 3.4.

few acceptable values are scattered over plot. We draw the value of τg = 10−7 and τl = 10−6 as

default.

Except specifically mentioned, all settings are following default values in Table 3.2. We test

with different S in Section 3.3.4 that directly increase the amount of training data at each round.

N denotes the overall number of data samples that differ at different tasks. Local clients train

autoencoders θl with local learning rate ηl and local adaptivity rate τl for El epochs. Subsequently,

server learns θg with learning rate ηg with global adaptivity rate τg. Server also trains a classifier θc
with learning rate ηc for Ec epochs. For choosing the best setting, we first conduct grid search for

ηl, ηg, ηc based on grids: {10−4, 10−3.5, 10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5}. Sec-

ond, we grid search for τg, τl based on grids: {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. Note that

both τ is set to 10−5 when tuning learning rate. We compress input feature to half by default and

we also test with different rf in Section 3.3.5. r is the level of IIDness where we set r = 0 as

default. We utilize bootstrap aggregating strategy to train our models with random batch sizes be
and sequence lengths in range (125, 256).

64

Table 3.2: Default values and descriptions in basic setting.

Location Notation Description Default Value

Global
Server

T The number of communication round 100
K The number of clients 100
S The number of participated client at each round 10
N The number of overall data samples N/A
θg Parameter of autoencodoer N/A
θc Parameter of classifier N/A
Ec The number of epoch for training classifier 5
ηg Global learning rate 0.03
ηc Classifier learning rate 0.03
τg Global training adaptivity 0.001
rf The compression ratio of autoencoder 0.5
rl The ratio of labeled data on server 0.1

Local
Clients

El Number of epoch for locally autoencoder training 1
ηi i-th local parameter of autoencoder N/A
ηl Learning rate of client 0.03
r The level of IIDness 0
τl Local training adaptivity 0.001

Other be Batch size of training (125, 256)

3.3.2 Comparison With Other Methods

Table 3.3: F1-score and accuracy of five baseline methods over three tasks. Boldface numbers
indicate the best classification performance.

OPP DG PAMP2
Performance Fm Acc Fm Acc Fm Acc
FedSSL 0.282 0.824 0.510 0.726 0.230 0.478
FedGrad 0.308 0.834 0.493 0.788 0.278 0.521
AdaAlter 0.302 0.835 0.522 0.727 0.247 0.439
FedAdaGrad 0.285 0.841 0.566 0.772 0.329 0.536
AdaFedSSL 0.386 0.862 0.637 0.872 0.408 0.633
Delta from median ∆Fm ∆Acc ∆Fm ∆Acc ∆Fm ∆Acc
FedSSL 0.102 0.231 0.259 0.323 0.143 0.213
FedGrad 0.183 0.172 0.238 0.245 0.104 0.242
AdaAlter 0.083 0.089 0.201 0.218 0.094 0.193
FedAdaGrad 0.203 0.124 0.147 0.184 0.135 0.133
AdaFedSSL 0.093 0.127 0.112 0.172 0.078 0.136

We compare the performance of AdaFedSSL with four methods, FedSSL, FedAdaGrad, AdaAl-

ter and FedGrad. The key difference between these methods is shown in Table 3.5. To measure

65

0 20 40 60 80 100
Round

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

M
ea
n…

F1
-s
co
re

OPP

FedSSL
FedGrad
AdaAlter
FedAdaGrad
AdaFedSSL

0 20 40 60 80 100
Round

0.425

0.450

0.475

0.500

0.525

0.550

0.575

M
ea
n…

F1
-s
co
re

DG

0 20 40 60 80 100
Round

0.0

0.1

0.2

0.3

0.4

0.5
M
ea
n…

F1
-s
co
re

PAMAP2

Figure 3.7: Learning curves of AdaFedSSL (Red) and other baseline methods over 100 training
rounds.

the model performance, both test accuracy and mean F1-score are recorded. For best performance

comparison, we conduct grid search of ηg, ηc, ηl, τl, τg for each task and each method. The setting

with best performance is in Table 3.4.

We plot the learning curves of mean F1-score over rounds in Figure 3.7. Each line is the average

of 10 experiment replicas with a different seed. AdaFedSSL generates the highest score over

other learning curves with few fluctuations during the process on three datasets. In the same way,

the mean F1-score of FedAdaGrad floats up and down while FedSSL, FedGrad and AdaAlter

stay smooth during training. All methods have comparable learning ability on DG while the gap

increases when on OPP and PAMAP2, where AdaFedSSL show obvious superior performance

over other methods. A clear trend that first goes up and then gradually declines can be drawn on

OPP for five methods, while the score of our method surpasses others at the beginning 20 rounds

and takes the lead till the end. FedAdaGrad shows the worst performance on this task. For DG, five

lines stay close while AdaFedSSL takes effect during the last 40 rounds where its mean F1-score

increases significantly. We can see the performance gap between five methods on PAMAP2 starts

from the first round and continues until the end.

We quantify the learning performance by recording the highest mean F1-score and classification

66

Table 3.4: Hyperparameter setting for five methods (log10)

Dataset Method ηl ηg ηc τl τg

OPP

FedSSL -2.5 0 -3 N/A N/A
FedGrad -3.5 0 -3 -5 N/A
AdaAlter -3 0 -3 -6 N/A

FedAdaGrad -2.5 -2 -3 N/A -4
AdaFedSSLn -1 -1.5 -3 -7 -6

DG

FedSSL -3 0 -2 N/A N/A
FedGrad -2 0 -2 -5 N/A
AdaAlter -2.5 0 -2 -4 N/A

FedAdaGrad -1 -1.5 -2 N/A -4
AdaFedSSLn -2 -1 -2 -4 -6

PAMAP2

FedSSL -2.5 0 -3 N/A N/A
FedGrad -2.5 0 -3 -4 N/A
AdaAlter -3 0 -3 -4 N/A

FedAdaGrad -2.5 -2 -3 N/A -4
AdaFedSSLn -2.5 -1 -3 -5 -5

Table 3.5: Key elements of baseline methods

Method Local Optimizer Server Optimizer local gradient accumulator
FedSSL SGD SGD N/A
FedGrad AdaGrad SGD w/o synchronization
AdaAlter AdaGrad SGD w/ synchronization
FedAdaGrad SGD AdaGrad N/A
AdaFedSSLn AdaGrad AdaGrad w/ synchronization

accuracy in Table 3.3. Our method outperforms all other methods on both metrics. Overall we

obtain a very large performance improvement on PAMAP2 with more than 77% mean F1-score

between AdaFedSSL and FedSSL, while on OPP and DG, this increase is smaller but still sig-

nificant at 36% and 25%, respectively. The mean F1-scores of OPP and PAMAP2 are generally

lower than that of DG (only having 3 classes), indicating magnificent unbalance between classes

on these two tasks. Thus we put more attention on the accuracy of OPP and PAMAP2. Accu-

racy of classifying daily morning activity (OPP) has an insignificant spread of 0.03 between the

best performance of AdaFedSSL and the worst of FedSSL. While for mean F1-score, the spread

rises to 0.104 which demonstrates AdaFedSSL truly improves model performance by adding two

accumulators. Similarly, the good performance of AdaFedSSL is also expressed by the score of

DG and PAMP that improves 0.07 from the best of other methods on both tasks. One notable

improvement is the accuracy from 0.788 of FedGrad to 0.872 of AdaFedGrad with more than 10%

corresponding metric. FedGrad and AdaAlter perform equally on OPP and DG with a difference

67

of less than 6% mean F1-score. FedGrad is slightly better than AdaAlter on physical activity clas-

sification with an improvement of 10% mean F1-score. However, it shows unstable results but

has better performance on OPP and PAMAP2 while worse result on DG. FedAdaGrad typically

is the best method other than ours. It shows trivial degradation of 7% of OPP from FedGrad and

light upgrade of 7% of DG from AdaAlter on mean F1-score, while boosts more than 17% score

on PAMPA2 from FedSSL. Considering the performance fluctuation between experiment replicas,

we also illustrate the variance at half bottom of Table 3.3. Effect of two adaptivity rates results

in the lowest mean F1-score and accuracy variance on DG while comparable results on OPP and

PAMAP2. We observe the model performance of AdaAlter and AdaFedSSL remains steady on

OPP and PAMAP that only a small amount of fluctuation appears in mean F1-score. However, DG

brings more than 17% mean F1-score and 19% accuracy variance on AdaFedSSL, which is still the

smallest spread in both metrics. Combining the variation between tasks and experiment replicas,

we argue that our method is stable than other baseline methods.

3.3.3 Update Accumulator to All Users or Participated Users?

0 20 40 60 80 100
Round

0.24

0.26

0.28

0.30

0.32

0.34

M
ea
n…

F1
-s
co
re

OPP

All…Clients
Participated…Clients

0 20 40 60 80 100
Round

0.425

0.450

0.475

0.500

0.525

0.550

0.575

M
ea
n…

F1
-s
co
re

DG

0 20 40 60 80 100
Round

0.250

0.275

0.300

0.325

0.350

0.375

M
ea
n…

F1
-s
co
re

PAMAP2

Figure 3.8: Learning curves of AdaFedSSL in two different updating techniques. We compare
two updating technique that are sharing average local accumulator to All Clients or only Partici-
pated Clients. Two scenarios are based on same hyperparameter configuration.

68

The difference between AdaAlter and FedGrad resides in how to dealing with local accumu-

lators. In FedGrad, local clients accumulate past gradients without transferring them to central

server, which means local gradients are not shared with other clients. AdaAlter remedies this by

making clients sending local gradient accumulators to server, which shares the average of accu-

mulators among clients selected at next round. This shared gradient breaks the isolated islands

of information and provides an opportunity to make past gradients useful for other clients. How-

ever, there are two options when updating updated gradients. The first option is that server only

broadcasts gradients to participated clients at current training round. In other words, those who

contribute to updated gradients are eligible for updating their local accumulator. Essentially, this

method moderates past gradient by taking average and only take effect on participated clients while

not influence those who are not selected in training. The other option is that server broadcasts up-

dated gradient to all clients. Intuitively, the later option may have issue with partial training as

clients have large gradient accumulator at later round though it is the first time they are selected.

We plot the learning curves of two options in Figure 3.8 at the same way. For better comparison,

we take window size of 5 to rolling average the values. Overall we observe a better performance of

updating participated clients. Same with our intuition, for three tasks red line (updating all clients)

shows a smoother process than green line (updating participated clients) because all clients sharing

same accumulated gradient would make later training invalid. Partial update brings a higher F1-

score while the violent fluctuation during training brings unpredictability. For example, the last

round of PAMAP2 falls off more than 25% of that at the best round. Generally, for better model

performance, we use partial updating at default.

3.3.4 Effect of S and r

We conduct experiments to test the effect of various statistical settings. We first compare model

performance with different S, i.e., different numbers of partial clients. The result is shown in the

left of Figure 3.9. Mean F1-score of DG stays around 0.5 with a small amount of fluctuation.

For OPP and PAMAP2, the undulation is more obvious than DG while remaining near 0.3 and

0.225, respectively. In general, there is no obvious relationship between S and mean F1-score.

Essentially, with a higher S, training process is more similar to distributed SGD and having heav-

ier communication burden (server broadcasting and receiving information from more clients). A

higher S may reach global optima in a small number of rounds for reducing communication costs.

While in case of only considering model performance, a small S would be a better choice for

AdaFedSSL. The other concern is about IIDnsee r. We plot the relationship between model per-

formance and r as the function of mean F1-score with r. As shown in the right of Figure 3.9,

69

10 20 30 40 50 60 70 80 90 100
Numer…of…Selected…Clients

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea
n…

F1
-s
co
re

OPP
DG
PAMAP2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The…Level…of…IIDness

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea
n…

F1
-s
co
re

Figure 3.9: Relationship between model performance and different statistical settings. Left
figure compares mean F1-score with different number of training clients. Right figure draw scores
with different IIDness. Both experiments show stable performance produced by AdaFedSSL in
inferior statistical setting.

with similar results in S, three parallel lines remain near steady when changing r. Except for

PAMAP2, we see the score jumps up and down at the lower level of IIDness. Overall, we cannot

see any advantage of increase the r to improve model performance. From these two experiments,

we demonstrate stable performance of AdaFedSSL, even with extremely poor statistic situations

such as only 10% of partial clients and the most severe Non-IID data.

3.3.5 Effect of Autoencoder

One may be curious about whether the compression rate of autoencoder takes effect in training

a two-step HAR. As we define the dimensionality of encoded feature is the round value of the

original number of feature dimensions multiply rf , intuitively a lower rf means more information

from data is compressed. We compare model performance with rf ∈ {0.1, 0.3, 0.5, 0.7, 0.9} on

three tasks. For each setting, we tune learning rates and adaptivity rates separately. The results

are shown in Figure 3.10. Basically, rf = 0.1 draws the worst learning process compared with

others. For OPP, mean F1-score peaks at 0.2 and declines to almost zero during training. This rate

hardly keeps data information resulting in invalid training. With regard to rf = 0.3, 0.5, 0.7, 0.9,

all experiments produce comparable results. In specific, setting of rf = 0.7 generates highest

mean F1-score while rf = 0.9 has insignificant performance decrease compared with rf = 0.3.

An autoencoder partially filters useful information from original data and provides accurate latent

representation for further classification. Results from DG are complicated. As it only has three

classes and nine features, a sophisticated representation plays an instinctive role. Basically all five

settings have nearly same training curves that the value of F1-score floats up and down till the end.

Nevertheless, we can see a clear disadvantage of taking lower rf in PAMAP2 and OPP. rf = 0.5

70

0 20 40 60 80 100
Round

0.18

0.20

0.22

0.24

0.26

0.28

0.30

M
ea
n…

F1
-s
co
re

OPP

0 20 40 60 80 100
Round

0.43

0.44

0.45

0.46

0.47

0.48

0.49

M
ea
n…

F1
-s
co
re

DG

0 20 40 60 80 100
Round

0.10

0.12

0.14

0.16

0.18

0.20

0.22
M
ea
n…

F1
-s
co
re

PAMAP2

Figure 3.10: Relationship between model performance and compression rate. Left figure
shows mean F1-score on OPP where rf = 0.7 generates the best result. Middle figure draws scores
on DG where compression rate plays unimportant role in training. Right figure shows reaults of
PAMAP2 where rf = 0.5 is the best choice.

has the highest mean F1-score on PAMAP2 and rf = 0.9 is the second. With half number of

features, autoencoder sufficiently grasps core factors that determine the Parkinson symptom. Same

with OPP, rf = 0.1 has invalid results.

Another interesting element is the type of autoencoder. We compare three autoencoders of, i.e.,

fully-connected (FC-AE), convolutions neural network (CNN-AE) and long short-term memory

(LSTM-AE). All settings are tuned to fit the best learning rate and adaptivity rate. CNN-AE

applies a 1-layer convolution to our one-channel input data. Followed by a batch normalization,

ReLu activation and a fully connected layer, CNN-AE takes much more computation resources

at local sides. With same compression rate, the number of parameters of CNN-AE is (51307,

22149, 872) of (OPP, PAMAP2, DG), respectively, while the number of FC only has (6439, 2782,

104). LSTM-AE has same structure as sever classifier defined in Section 3.2.2. However, instead

of having a sizeable hidden size, we directly compress original features to hidden representations,

i.e., hidden size equals to the number of latent features. The results are shown in Figure 3.11. CNN-

AE performs best on PAMAP2 while worst on DG as no complex feature needs to be extracted on

71

0 20 40 60 80 100
Round

0.16

0.18

0.20

0.22

0.24

0.26

0.28

M
ea
n…

F1
-s
co
re

OPP
FC
CNN
LSTM

0 20 40 60 80 100
Round

0.42

0.44

0.46

0.48

M
ea
n…

F1
-s
co
re

DG

0 20 40 60 80 100
Round

0.14

0.16

0.18

0.20

0.22

0.24
M
ea
n…

F1
-s
co
re

PAMAP2

Figure 3.11: Relationship between model performance and model type.

DG. It has a comparable result with FC-AE on OPP that mean F1-score increases at first 30 rounds

while declines at last 70 rounds. Interestingly, CNN-AE dominates the leaderboard at around round

20 due to a significant drop of FC-AE. On PAMAP2, a consistent increase can be seen while the

other two stay flat. The advantage of CNN is that its capability to capture complex features makes

it suitable for complicated data while at the cost of a heavier model. On both OPP and PAMAP2,

LSTM-AE makes worst results and a slightly higher score than CNN-AE on DG, which means

taking a small hidden size damages representation learning.

72

C
H

A
P

T
E

R

4
Conclusions and Future Work

This thesis has presented two efficient federated learning approaches for image classification and

human activity recognition. Both frameworks achieve superior performance compared with com-

peting baseline methods. The key element contributing to the better performance of AdaFedSSL

is adaptive optimizers utilized on both clients and server. AdaGrad employs an accumulator to

record past gradients; thereby remembering the information learned from past data. The local

accumulator lessens the adverse effects brought by heterogeneity among clients, while the global

accumulator helps guarantee that the local optima do not overwhelm the global optima. For im-

age classification, we weight the number of images with pseudo-labels instead of the number of

all images in aggregation. Hyperparameters can be easily tuned in that a multitude of learning

rates and adaptivity rates are suitable for different settings. We applied unsupervised learning on

clients and supervised learning on the central server with the goal of maximizing the use of un-

labeled data for human activity recognition. The local accumulator helps autoencoder training,

while the global accumulator limits the large jump of model updates in the global autoencoder. We

demonstrated through extensive experiments and ablation studies the superior performance of our

proposed method in comparison with existing techniques in the literature. In a balanced setting, our

method is robust to bad data distribution and partial participation, which are major statistical con-

cerns in federated learning. In Section 4.1, the contributions made in each of the previous chapters

and the concluding results drawn from the associated research work are presented. The limitations

of the proposed approaches are discussed in Section 4.2. Suggestions for future research directions

related to this thesis are also provided in Section 4.3.

73

4.1 Contributions of the Thesis

4.1.1 Adaptive Federated Semi-Supervised Learning for Image Classification

In Chapter 2, we proposed an adaptive federated semi-supervised learning framework that adopts

adaptive optimizers on both client and server sides. We find that AdaFedSSL is robust and effec-

tive in both balanced and unbalanced settings. Our work can be easily implemented in smart cities

systems, as we consider training in a realistic setting that takes stragglers, random labeling behav-

iors, client heterogeneity, and partial participation into account. We found that taking the number

of samples after pseudo-labeling as weighting can effectively mitigate the adverse effects of unbal-

anced partition. Through our extensive experiments, we also found that AdaFedSSL can be easily

tuned and is robust to various statistical issues. We also studied ways to reduce the communication

cost of AdaFedSSL.

4.1.2 Adaptive Federated Semi-Supervised Learning for Human Activity Recognition

In Chapter 3, we introduced an adaptive federated learning approach for semi-supervised human

activity classification on time series data by collaboratively learning an autoencoder and centrally

learning a classifier. We incorporated AdaGrad optimizers into both local learning and global

aggregation in a bid to make federated learning more stable under Non-IID data and partial training.

We demonstrated the competitive and superior performance of AdaFedSSL in terms of mean F1-

score over standard baseline methods on several benchmarks through extensive experiments. We

also conducted ablation studies to assess the key elements such as local or global accumulators to

better understand AdaFedSSL.

4.2 Limitations

While the proposed adaptive semi-supervised federated learning frameworks are capable of pro-

viding stable and superior training through adaptive optimizers, they do not, however, take com-

munication efficiency into account. AdaFedSSL requires communicating both model update and

client’s accumulator that shares the same size with model trainable weights. Therefore, the com-

municating cost doubles relative to FedAvg. Due to similar reasons, our method also increases

clients memory needed for computation, which may exceeds clients computational capability. For

image classification, severe Non-IID data has a negative effect on training, and model performance

depends heavily on the size and quality of data. For human activity recognition, though data is

74

easier to collect than image data, preprocessing such as slicing and feature extraction is relatively

difficult. Also, how to use labeled data on clients is quite challenging.

4.3 Future Work

Several interesting research directions, motivated by this thesis, are discussed below:

4.3.1 Statistical Concerns

In a much larger scale, statistical concerns magnify the importance of stability in federated learn-

ing. We aim to explore alternative algorithms that are stable with severe Non-IID data and imbal-

anced data.

4.3.2 Semi-Supervised Learning on Clients

For time series data, using proxy-label methods to generate pseudo-label to increase the model

performance is quite promising. In a real scenario, local data could be labeled by users, and semi-

supervised training on clients would be of great interest.

4.3.3 Balancing Communication Burden and Model Performance

Communication bottlenecks impede the development of federated learning as the number of train-

ing round increases when model converges slowly, or the amount of communication increases

when transferring complicated messages needed for advanced algorithms. How to balance the

communication burden and training efficiency is of paramount importance in federated learning.

For future work, we plan to investigate more adaptive optimizers, and at the same time not exceed-

ing the communication bottleneck.

75

References

[1] Z. Long, L. Che, Y. Wang, M. Ye, J. Luo, J. Wu, H. Xiao, and F. Ma, “Fedsemi: An adaptive

federated semi-supervised learning framework,” arXiv preprint arXiv:2012.03292, 2020.

[2] X. Peng, Z. Huang, Y. Zhu, and K. Saenko, “Federated adversarial domain adaptation,”

arXiv preprint arXiv:1911.02054, 2019.

[3] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-iid

data,” arXiv preprint arXiv:1806.00582, 2018.

[4] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Communication-efficient

on-device machine learning: Federated distillation and augmentation under non-iid private

data,” arXiv preprint arXiv:1811.11479, 2018.

[5] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and communication-

efficient federated learning from non-iid data,” IEEE transactions on neural networks and

learning systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[6] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-identical data distribu-

tion for federated visual classification,” arXiv preprint arXiv:1909.06335, 2019.

[7] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efficiency,” arXiv preprint

arXiv:1610.05492, 2016.

[8] X. Yao, T. Huang, C. Wu, R.-X. Zhang, and L. Sun, “Federated learning with additional

mechanisms on clients to reduce communication costs,” arXiv preprint arXiv:1908.05891,

2019.

[9] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and

R. Arora, “Fetchsgd: Communication-efficient federated learning with sketching,” in In-

ternational Conference on Machine Learning, pp. 8253–8265, PMLR, 2020.

76

[10] S. U. Stich, “Local sgd converges fast and communicates little,” arXiv preprint

arXiv:1805.09767, 2018.

[11] W.-T. Chang and R. Tandon, “Communication efficient federated learning over multiple

access channels,” arXiv preprint arXiv:2001.08737, 2020.

[12] M. Ribero and H. Vikalo, “Communication-efficient federated learning via optimal client

sampling,” arXiv preprint arXiv:2007.15197, 2020.

[13] Z. Zhang, Z. Yao, Y. Yang, Y. Yan, J. E. Gonzalez, and M. W. Mahoney, “Benchmarking

semi-supervised federated learning,” arXiv preprint arXiv:2008.11364, 2020.

[14] W. Jeong, J. Yoon, E. Yang, and S. J. Hwang, “Federated semi-supervised learning with

inter-client consistency,” arXiv preprint arXiv:2006.12097, 2020.

[15] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Dis-

tributed machine learning for on-device intelligence,” CoRR, vol. abs/1610.02527, 2016.

[16] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient learning of deep networks from decentralized data,” in Artificial Intelligence and

Statistics, pp. 1273–1282, PMLR, 2017.

[17] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner,

C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard prediction,” arXiv

preprint arXiv:1811.03604, 2018.

[18] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human activity recognition using fed-

erated learning,” in 2018 IEEE Intl Conf on Parallel & Distributed Processing with

Applications, Ubiquitous Computing & Communications, Big Data & Cloud Com-

puting, Social Computing & Networking, Sustainable Computing & Communications

(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 1103–1111, IEEE, 2018.

[19] L. Zhou, S. El Helou, L. Moccozet, L. Opprecht, O. Benkacem, C. Salzmann, and D. Gillet,

“A federated recommender system for online learning environments,” in International Con-

ference on Web-Based Learning, pp. 89–98, Springer, 2012.

[20] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and appli-

cations,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2,

pp. 1–19, 2019.

77

[21] J. Wang, H. Liang, and G. Joshi, “Overlap local-sgd: An algorithmic approach to hide com-

munication delays in distributed sgd,” in ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 8871–8875, IEEE, 2020.

[22] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learning,”

Advances in neural information processing systems, vol. 30, pp. 4424–4434, 2017.

[23] P. P. Liang, T. Liu, L. Ziyin, R. Salakhutdinov, and L.-P. Morency, “Think locally,

act globally: Federated learning with local and global representations,” arXiv preprint

arXiv:2001.01523, 2020.

[24] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright, “Atomo:

Communication-efficient learning via atomic sparsification,” in Advances in Neural Infor-

mation Processing Systems, pp. 9850–9861, 2018.

[25] X. Yao, T. Huang, C. Wu, R.-X. Zhang, and L. Sun, “Federated learning with additional

mechanisms on clients to reduce communication costs,” arXiv preprint arXiv:1908.05891,

2019.

[26] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimiza-

tion in heterogeneous networks,” Proceedings of Machine Learning and Systems, vol. 2,

pp. 429–450, 2020.

[27] W.-T. Chang and R. Tandon, “Communication efficient federated learning over multiple

access channels,” arXiv preprint arXiv:2001.08737, 2020.

[28] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and

R. Arora, “Fetchsgd: Communication-efficient federated learning with sketching,” in In-

ternational Conference on Machine Learning, pp. 8253–8265, PMLR, 2020.

[29] X. J. Zhu, “Semi-supervised learning literature survey,” tech. rep., University of Wisconsin-

Madison Department of Computer Sciences, 2005.

[30] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv preprint

arXiv:1406.2661, 2014.

[31] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel, “Mix-

match: A holistic approach to semi-supervised learning,” in Advances in Neural Information

Processing Systems, pp. 5049–5059, 2019.

78

[32] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang,

and C. Raffel, “Fixmatch: Simplifying semi-supervised learning with consistency and con-

fidence,” arXiv preprint arXiv:2001.07685, 2020.

[33] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy student improves

imagenet classification,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 10687–10698, 2020.

[34] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with stochastic transformations

and perturbations for deep semi-supervised learning,” in Advances in neural information

processing systems, pp. 1163–1171, 2016.

[35] G. French, M. Mackiewicz, and M. Fisher, “Self-ensembling for visual domain adaptation,”

arXiv preprint arXiv:1706.05208, 2017.

[36] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial training: a regular-

ization method for supervised and semi-supervised learning,” IEEE transactions on pattern

analysis and machine intelligence, vol. 41, no. 8, pp. 1979–1993, 2018.

[37] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. R. Salakhutdinov, “Good semi-supervised

learning that requires a bad gan,” in Advances in neural information processing systems,

pp. 6510–6520, 2017.

[38] G. J. McLachlan, “Iterative reclassification procedure for constructing an asymptotically

optimal rule of allocation in discriminant analysis,” Journal of the American Statistical As-

sociation, vol. 70, no. 350, pp. 365–369, 1975.

[39] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness, “Pseudo-labeling and

confirmation bias in deep semi-supervised learning,” in 2020 International Joint Conference

on Neural Networks (IJCNN), pp. 1–8, IEEE, 2020.

[40] H. Pham and Q. V. Le, “Semi-supervised learning by coaching,” 2019.

[41] Y. Zhao, H. Liu, H. Li, P. Barnaghi, and H. Haddadi, “Semi-supervised federated learning

for activity recognition,” arXiv preprint arXiv:2011.00851, 2020.

[42] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Yamamoto, “Distillation-based semi-

supervised federated learning for communication-efficient collaborative training with non-

iid private data,” arXiv preprint arXiv:2008.06180, 2020.

79

[43] Y. Kang, Y. Liu, and T. Chen, “Fedmvt: Semi-supervised vertical federated learning with

multiview training,” arXiv preprint arXiv:2008.10838, 2020.

[44] Y. Jin, X. Wei, Y. Liu, and Q. Yang, “A survey towards federated semi-supervised learning,”

arXiv preprint arXiv:2002.11545, 2020.

[45] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning for health: Distributed

deep learning without sharing raw patient data,” arXiv preprint arXiv:1812.00564, 2018.

[46] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang, “Secureboost: A lossless federated

learning framework,” arXiv preprint arXiv:1901.08755, 2019.

[47] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized stochastic gradient de-

scent.,” in NIPS, vol. 4, p. 4, Citeseer, 2010.

[48] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization: Distributed optimiza-

tion beyond the datacenter,” arXiv preprint arXiv:1511.03575, 2015.

[49] C. Xie, O. Koyejo, I. Gupta, and H. Lin, “Local adaalter: Communication-efficient stochas-

tic gradient descent with adaptive learning rates,” arXiv preprint arXiv:1911.09030, 2019.

[50] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and H. B.

McMahan, “Adaptive federated optimization,” arXiv preprint arXiv:2003.00295, 2020.

[51] Q. Tong, G. Liang, and J. Bi, “Effective federated adaptive gradient methods with non-iid

decentralized data,” arXiv preprint arXiv:2009.06557, 2020.

[52] N. Y. Hammerla, S. Halloran, and T. Plötz, “Deep, convolutional, and recurrent models for

human activity recognition using wearables,” arXiv preprint arXiv:1604.08880, 2016.

[53] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition using body-

worn inertial sensors,” ACM Computing Surveys (CSUR), vol. 46, no. 3, pp. 1–33, 2014.

[54] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition from accelerom-

eter data,” in Aaai, vol. 5, pp. 1541–1546, Pittsburgh, PA, 2005.

[55] M. Zhang and A. A. Sawchuk, “Motion primitive-based human activity recognition using

a bag-of-features approach,” in Proceedings of the 2nd ACM SIGHIT International Health

Informatics Symposium, pp. 631–640, 2012.

80

[56] A. Wickramasinghe, D. C. Ranasinghe, C. Fumeaux, K. D. Hill, and R. Visvanathan, “Se-

quence learning with passive rfid sensors for real-time bed-egress recognition in older peo-

ple,” IEEE journal of biomedical and health informatics, vol. 21, no. 4, pp. 917–929, 2016.

[57] T. Plötz, N. Y. Hammerla, and P. L. Olivier, “Feature learning for activity recognition in

ubiquitous computing,” in Twenty-second international joint conference on artificial intelli-

gence, 2011.

[58] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural networks for

multimodal wearable activity recognition,” Sensors, vol. 16, no. 1, p. 115, 2016.

[59] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy, “Deep convolutional

neural networks on multichannel time series for human activity recognition,” in Twenty-

fourth international joint conference on artificial intelligence, 2015.

[60] R. Yao, G. Lin, Q. Shi, and D. C. Ranasinghe, “Efficient dense labelling of human activity

sequences from wearables using fully convolutional networks,” Pattern Recognition, vol. 78,

pp. 252–266, 2018.

[61] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated transfer learning

framework for wearable healthcare,” IEEE Intelligent Systems, vol. 35, no. 4, pp. 83–93,

2020.

[62] C. Bettini, G. Civitarese, and R. Presotto, “Personalized semi-supervised federated learning

for human activity recognition,” arXiv preprint arXiv:2104.08094, 2021.

[63] Q. Wu, K. He, and X. Chen, “Personalized federated learning for intelligent iot applica-

tions: A cloud-edge based framework,” IEEE Open Journal of the Computer Society, vol. 1,

pp. 35–44, 2020.

[64] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving federated learning personaliza-

tion via model agnostic meta learning,” arXiv preprint arXiv:1909.12488, 2019.

[65] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model distillation,” arXiv

preprint arXiv:1910.03581, 2019.

[66] J. Feng, C. Rong, F. Sun, D. Guo, and Y. Li, “Pmf: A privacy-preserving human mobil-

ity prediction framework via federated learning,” Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 1, pp. 1–21, 2020.

81

[67] Q. Wu, X. Chen, Z. Zhou, and J. Zhang, “Fedhome: Cloud-edge based personalized fed-

erated learning for in-home health monitoring,” IEEE Transactions on Mobile Computing,

2020.

[68] Y. Zhao, H. Haddadi, S. Skillman, S. Enshaeifar, and P. Barnaghi, “Privacy-preserving ac-

tivity and health monitoring on databox,” in Proceedings of the Third ACM International

Workshop on Edge Systems, Analytics and Networking, pp. 49–54, 2020.

[69] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority

over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357,

2002.

[70] K. M. Rashid and J. Louis, “Times-series data augmentation and deep learning for construc-

tion equipment activity recognition,” Advanced Engineering Informatics, vol. 42, p. 100944,

2019.

[71] J. Wang, Y. Chen, Y. Gu, Y. Xiao, and H. Pan, “Sensorygans: An effective generative adver-

sarial framework for sensor-based human activity recognition,” in 2018 International Joint

Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2018.

[72] M. H. Chan and M. H. M. Noor, “A unified generative model using generative adversarial

network for activity recognition,” Journal of Ambient Intelligence and Humanized Comput-

ing, pp. 1–10, 2020.

[73] B. Longstaff, S. Reddy, and D. Estrin, “Improving activity classification for health appli-

cations on mobile devices using active and semi-supervised learning,” in 2010 4th Inter-

national Conference on Pervasive Computing Technologies for Healthcare, pp. 1–7, IEEE,

2010.

[74] Y.-S. Lee and S.-B. Cho, “Activity recognition with android phone using mixture-of-experts

co-trained with labeled and unlabeled data,” Neurocomputing, vol. 126, pp. 106–115, 2014.

[75] M. Stikic, D. Larlus, S. Ebert, and B. Schiele, “Weakly supervised recognition of daily

life activities with wearable sensors,” IEEE transactions on pattern analysis and machine

intelligence, vol. 33, no. 12, pp. 2521–2537, 2011.

[76] V. Hernandez, D. Kulić, and G. Venture, “Adversarial autoencoder for visualization and

classification of human activity: Application to a low-cost commercial force plate,” Journal

of biomechanics, vol. 103, p. 109684, 2020.

82

[77] B. Almaslukh, J. AlMuhtadi, and A. Artoli, “An effective deep autoencoder approach for on-

line smartphone-based human activity recognition,” Int. J. Comput. Sci. Netw. Secur, vol. 17,

no. 4, pp. 160–165, 2017.

[78] A. A. Varamin, E. Abbasnejad, Q. Shi, D. C. Ranasinghe, and H. Rezatofighi, “Deep auto-

set: A deep auto-encoder-set network for activity recognition using wearables,” in Proceed-

ings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Comput-

ing, Networking and Services, pp. 246–253, 2018.

[79] F. Gu, K. Khoshelham, S. Valaee, J. Shang, and R. Zhang, “Locomotion activity recogni-

tion using stacked denoising autoencoders,” IEEE Internet of Things Journal, vol. 5, no. 3,

pp. 2085–2093, 2018.

[80] X. Gao, H. Luo, Q. Wang, F. Zhao, L. Ye, and Y. Zhang, “A human activity recognition

algorithm based on stacking denoising autoencoder and lightgbm,” Sensors, vol. 19, no. 4,

p. 947, 2019.

[81] W. Wei, H. Wu, and H. Ma, “An autoencoder and lstm-based traffic flow prediction method,”

Sensors, vol. 19, no. 13, p. 2946, 2019.

[82] H. Zou, Y. Zhou, J. Yang, H. Jiang, L. Xie, and C. J. Spanos, “Deepsense: Device-free

human activity recognition via autoencoder long-term recurrent convolutional network,” in

2018 IEEE International Conference on Communications (ICC), pp. 1–6, IEEE, 2018.

[83] Y. Li, D. Shi, B. Ding, and D. Liu, “Unsupervised feature learning for human activity

recognition using smartphone sensors,” in Mining intelligence and knowledge exploration,

pp. 99–107, Springer, 2014.

[84] D. Puiu, P. Barnaghi, R. Tönjes, D. Kümper, M. I. Ali, A. Mileo, J. X. Parreira, M. Fischer,

S. Kolozali, N. Farajidavar, et al., “Citypulse: Large scale data analytics framework for

smart cities,” IEEE Access, vol. 4, pp. 1086–1108, 2016.

[85] L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. Nguyen, and C. S. Hong,

“Federated learning for edge networks: Resource optimization and incentive mechanism,”

IEEE Communications Magazine, vol. 58, no. 10, pp. 88–93, 2020.

[86] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge comput-

ing: The communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19,

no. 4, pp. 2322–2358, 2017.

83

[87] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and

C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE

Communications Surveys & Tutorials, 2020.

[88] A. Albaseer, B. S. Ciftler, M. Abdallah, and A. Al-Fuqaha, “Exploiting unlabeled data in

smart cities using federated edge learning,” in 2020 International Wireless Communications

and Mobile Computing (IWCMC), pp. 1666–1671, IEEE, 2020.

[89] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and

stochastic optimization.,” Journal of machine learning research, vol. 12, no. 7, 2011.

[90] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[91] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017.

[92] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”

2009.

[93] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural

images with unsupervised feature learning,” 2011.

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[95] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated data

augmentation with a reduced search space,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

[96] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimiza-

tion in heterogeneous networks,” arXiv preprint arXiv:1812.06127, 2018.

[97] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,

J. Konečnỳ, S. Mazzocchi, H. B. McMahan, et al., “Towards federated learning at scale:

System design,” arXiv preprint arXiv:1902.01046, 2019.

[98] Y. Cao, P. Hou, D. Brown, J. Wang, and S. Chen, “Distributed analytics and edge intelli-

gence: Pervasive health monitoring at the era of fog computing,” in Proceedings of the 2015

Workshop on Mobile Big Data, pp. 43–48, 2015.

84

[99] S. Enshaeifar, A. Zoha, A. Markides, S. Skillman, S. T. Acton, T. Elsaleh, M. Hassanpour,

A. Ahrabian, M. Kenny, S. Klein, et al., “Health management and pattern analysis of daily

living activities of people with dementia using in-home sensors and machine learning tech-

niques,” PloS one, vol. 13, no. 5, p. e0195605, 2018.

[100] J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund, “Edge-ai in lora-based health

monitoring: Fall detection system with fog computing and lstm recurrent neural networks,”

in 2019 42nd international conference on telecommunications and signal processing (TSP),

pp. 601–604, IEEE, 2019.

[101] S. Enshaeifar, P. Barnaghi, S. Skillman, A. Markides, T. Elsaleh, S. T. Acton, R. Nil-

forooshan, and H. Rostill, “The internet of things for dementia care,” IEEE Internet Com-

puting, vol. 22, no. 1, pp. 8–17, 2018.

[102] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Proceedings of

ICML workshop on unsupervised and transfer learning, pp. 37–49, JMLR Workshop and

Conference Proceedings, 2012.

[103] S. Singh, S. Bhardwaj, H. Pandey, and G. Beniwal, “Anomaly detection using federated

learning,” in Proceedings of International Conference on Artificial Intelligence and Appli-

cations, pp. 141–148, Springer, 2021.

[104] Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas, “Federated learning

based proactive content caching in edge computing,” in 2018 IEEE Global Communications

Conference (GLOBECOM), pp. 1–6, IEEE, 2018.

[105] B. van Berlo, A. Saeed, and T. Ozcelebi, “Towards federated unsupervised representation

learning,” in Proceedings of the Third ACM International Workshop on Edge Systems, Ana-

lytics and Networking, pp. 31–36, 2020.

[106] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and D.-R. Liou, “Autoencoder for words,” Neurocom-

puting, vol. 139, pp. 84–96, 2014.

[107] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep learning for solar power forecasting—an

approach using autoencoder and lstm neural networks,” in 2016 IEEE international confer-

ence on systems, man, and cybernetics (SMC), pp. 002858–002865, IEEE, 2016.

[108] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

85

[109] J. Chen, X. Qiu, P. Liu, and X. Huang, “Meta multi-task learning for sequence modeling,”

Neurocomputing, 2018.

[110] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R. Millán, and

D. Roggen, “The opportunity challenge: A benchmark database for on-body sensor-based

activity recognition,” Pattern Recognition Letters, vol. 34, no. 15, pp. 2033–2042, 2013.

[111] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity monitoring,”

in 2012 16th international symposium on wearable computers, pp. 108–109, IEEE, 2012.

[112] M. Bächlin, D. Roggen, G. Tröster, M. Plotnik, N. Inbar, I. Maidan, T. Herman, M. Brozgol,

E. Shaviv, N. Giladi, et al., “Potentials of enhanced context awareness in wearable assistants

for parkinson’s disease patients with the freezing of gait syndrome.,” in ISWC, pp. 123–130,

2009.

86

	Signpage
	Thesis
	List of Figures
	List of Tables
	Introduction
	Framework and Motivation
	Problem Statement
	Image Classification
	Human Activity Recognition

	Objectives
	Literature Review
	Federated Learning
	Semi-supervised Learning
	Federated Semi-Supervised Learning
	Adaptive Federated learning
	HAR with Wearables
	Federated Learning for HAR
	Semi-supervised Learning for HAR

	Overview and Contributions

	Semi-Supervised Image Classification
	Introduction
	Preliminaries and Problem Statement
	Preliminaries
	Problem Formulation

	Proposed Framework
	Experiments
	Datasets
	Models
	Implementation Details
	Experimental Settings
	Comparison with Other Methods
	Optimizers
	Statistical Concerns
	Communication Efficiency

	Human Activity Recognition
	Introduction
	Adaptive Federated Semi-supervised Learning for Activity Recognition
	Preliminaries
	Proposed Framework

	Experiments
	Hyperparameter Tuning
	Comparison With Other Methods
	Update Accumulator to All Users or Participated Users?
	Effect of S and r
	Effect of Autoencoder

	Conclusions and Future Work
	Contributions of the Thesis
	Adaptive Federated Semi-Supervised Learning for Image Classification
	 Adaptive Federated Semi-Supervised Learning for Human Activity Recognition

	Limitations
	Future Work
	Statistical Concerns
	Semi-Supervised Learning on Clients
	Balancing Communication Burden and Model Performance

	References

