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Abstract 

Personalized Functional Near Infra-Red Optical Tomography to Investigate the 

Hemodynamic Correlates of Fluctuations in Neuronal Excitability 

Zhengchen Cai, Ph.D.  

Concordia University, 2021 

The relationship between cortical excitability and hemodynamic activity has been demonstrated in 

animal studies. However, it is poorly reproduced and understood in humans, limited by the 

requirement of simultaneous measurements of excitability and hemodynamic activity. 

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that induces human cortical 

plasticity and allows the assessment of modulated cortical excitability. Functional Near Infra-Red 

Spectroscopy (fNIRS) is a non-invasive neuroimaging modality, which allows monitoring changes 

in oxy- and deoxy-hemoglobin (i.e., HbO/HbR) in the cerebral cortex. Taking advantage of the 

fNIRS technique being insensitive to electromagnetic artifacts and wearable, the combination with 

TMS provides a unique and promising way to assess the relationship between cortical excitability 

and hemodynamic responses in humans.  

This Ph.D. thesis consists of four original studies combining personalized Near Infra-Red Optical 

Tomography (NIROT) and TMS to investigate the hemodynamic correlates of fluctuations in 

neuronal excitability, each including key methodological developments. In the first manuscript, 

we proposed and evaluated a new NIROT reconstruction method – the Maximum Entropy on the 

Mean (MEM), by adapting and improving its original version proposed for Electro-/Magneto-

encephalography source imaging. After detailed evaluations of MEM NIROT on realistic 

simulated data, we introduced in the second manuscript the original concept of personalized 

NIROT workflow combining MEM reconstruction and personalized optimal montage. Using 

functional magnetic resonance imaging as the reference, the evaluation of finger tapping data 

demonstrated that our proposed workflow allowed better spatial accuracy and reliability than other 

widely used NIROT methods. The third manuscript applied this workflow on a simultaneous TMS 

and fNIRS study and demonstrated a positive relationship between motor task-related 

hemodynamic activity and cortical excitability. The last manuscript applied advanced Bayesian 

data analysis and hierarchical models to the same data set, which improved the accuracy and 
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reliability of the results when dealing with relatively high variability and small sample size data. 

Our results showed a significant positive correlation between the effects of TMS modulated 

cortical excitability and its effects on task-related hemodynamic activity. Therefore, our studies 

contribute to further expand the application of brain stimulation to the treatment of neuronal 

disorders that may require modulations of the hemodynamic response. 
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Résumé 

Tomographie Optique Proche Infra-Rouge fonctionnelle et Personnalisée dans l’étude des 

corrélations entre les fluctuations hémodynamiques et l’excitabilité neuronale. 

Zhengchen Cai, Ph.D.  

Université Concordia, 2021 

La relation entre l'excitabilité corticale et l'activité hémodynamique a été démontrée dans des 

études animales. Cependant, cette relation est mal reproduite et comprise chez l'humain en raison 

de la nécessité de mesurer de façon simultanée l'excitabilité neuronale et l'activité hémodynamique. 

La Stimulation Magnétique Transcrânienne (SMT) est une technique non invasive qui permet 

d’induire une plasticité corticale chez l’humain et de moduler l’excitabilité corticale. La 

Spectroscopie Proche Infra-Rouge fonctionnelle (SPIRf) est une modalité de neuro-imagerie non 

invasive qui permet de mesurer les modifications d'oxy- et de désoxy-hémoglobines (c'est-à-dire 

HbO/HbR) au sein du cortex cérébral. L’utilisation de la SPIRf, qui a comme principaux avantages 

d’être portatif et insensible aux artefacts électromagnétiques, en combinaison avec la SMT, offre 

ainsi un moyen unique et prometteur d'évaluer la relation entre l'excitabilité corticale et la réponse 

hémodynamique chez l’humain. 

Cette thèse de doctorat s’articule autour de quatre études originales combinant la Tomographie 

Optique Proche Infra-Rouge Personnalisée (TOPIR) et la SMT pour étudier les corrélations entre 

les fluctuations hémodynamiques et l'excitabilité neuronale, chacune incluant des développements 

méthodologiques clefs. Dans le premier manuscrit, nous avons proposé et évalué une nouvelle 

méthode de reconstruction TOPIR - l'entropie maximale sur la moyenne (EMM), en adaptant et 

améliorant sa version originale proposée pour l'imagerie de source électrique/électromagnétique. 

Après des évaluations détaillées de l’EMM-TOPIR sur des données de simulations réelles, nous 

avons introduit dans le deuxième manuscrit le concept original d’analyse TOPIR personnalisée à 

l’aide du montage optimal personnalisé combinée à l’EMM. En utilisant l’imagerie par résonance 

magnétique fonctionnelle (IRMf) comme référence, l'analyse des données de tapotement des 

doigts a démontré que notre méthode permettait une meilleure précision spatiale et une meilleure 

fiabilité que les autres méthodes NIROT largement utilisées. Dans le troisième manuscrit, nous 

avons appliqué cette méthode à une étude simultanée SMT et SPIRf. Nous avons démontré qu’il 
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existait une relation positive entre l'activité hémodynamique liée à la tâche réalisée et l'excitabilité 

corticale. Dans le dernier manuscrit, nous avons appliqué une analyse bayésienne des données et 

des modèles hiérarchiques au même ensemble de données, ce qui a permis d’améliorer la précision 

et la fiabilité des résultats vue la grande variabilité de nos données et la petite taille de notre 

échantillon.  

Nos résultats ont montré une corrélation positive et significative entre les effets de l'excitabilité 

corticale modulée par la SMT et l’effet de l'activité hémodynamique liée à la tâche. Nos études 

contribuent donc à mieux comprendre et probablement à élargir les indications de la stimulation 

cérébrale dans le traitement des maladies neurologiques pouvant nécessiter des modulations de la 

réponse hémodynamique.  
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Introduction  

Both voluntary and spontaneous neural activity are inducing two physiological reactions known 

as neurometabolic coupling which is directly related to 𝑂2 consumptions of the brain for oxidative 

glucose metabolism (Clarke and Sokoloff, 1999), measured as the cerebral metabolic rate of 

oxygen (𝐶𝑀𝑅𝑂2); and the neurovascular coupling (NVC) which regulates the local cerebral blood 

flow (CBF) for 𝑂2 and glucose delivery (Phillips et al., 2015). The uncoupling of CBF and 𝐶𝑀𝑅𝑂2 

is called ‘functional hyperemia’ (Fox and Raichle, 1986; Fox, 2012), which results in increases in 

oxygenated hemoglobin (HbO) concentration and decreases in deoxygenated hemoglobin (HbR) 

concentration. Functional Near Infra-Red spectroscopy (fNIRS) measures fluctuations of both 

HbO and HbR non-invasively in the human head with high temporal resolution (Jöbsis, 1977; 

Scholkmann, Klein, et al., 2014). When only measuring the attenuation of infra-red light emitted 

at a constant intensity through the head, the hemodynamic activity represented by the relative 

concentration changes of HbO and HbR within the light pathway can be estimated. This technique 

is referred to as continuous wave (CW) fNIRS (Ferrari, Mottola and Quaresima, 2004; Ferrari and 

Quaresima, 2012).   

The associative synaptic plasticity (James, 1890; Feldman, 2012), explaining the mechanisms of 

neuroplasticity, is related to synapse's ability to adapt to continuous changes in the external and 

internal environment. The strengthening of synapses is known as Long-Term Potentiation (LTP, 

Bliss and Lomo, 1970; Bliss and Lømo, 1973) and the weakening of synapses is known as Long-

Term Depression (LTD, Sejnowski, 1977; Bienenstock, Cooper and Munro, 1982). Several 

noninvasive brain stimulation approaches have been proposed to induce transit and stable changes 

in neuronal excitability, such as transcranial Electrical Stimulation (tES) (Merton and Morton, 

1980; Reed and Cohen Kadosh, 2018), Transcranial Magnetic Stimulation (TMS) (Barker, 

Jalinous and Freeston, 1985; Klomjai, Katz and Lackmy-Vallée, 2015) and transcranial focused 

ultrasound (tFUS) (Legon et al., 2014; Blackmore et al., 2019).  

TMS is the most widely used technique, that can not only modulate neuronal excitability but also 

assess the modulation effect per se. For instance, excitability modulation can be obtained using 

repetitive TMS (rTMS). This procedure delivers repetitions of TMS pulses following a specific 

frequency, normally between 5 to 20Hz can increase cortical excitability, whereas stimulating with 

a lower frequency between 1 to 4Hz can decrease excitability (Fitzgerald, Fountain and Daskalakis, 
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2006). Another procedure, known as Paired Associative Stimulation (PAS), inspired by the 

concept of Spike-Timing Dependent Plasticity (STDP) from animal studies (Levy and Steward, 

1983) was established about two decades ago (Stefan, 2000). PAS consists in combining TMS 

with a peripheral electrical stimulation such as Median Nerve Stimulation (MNS). It relies on the 

principle that repetitive stimulation pairs (TMS and MNS) delivered with appropriate timing and 

pace can induce LTP and LTD-like plasticity. For example, when the interstimulus intervals (ISI) 

between MNS and TMS is around 25ms (PAS25), it would increase cortical excitability, whereas 

an ISI of 10ms (PAS10) would induce excitability decrease. Cortical excitability assessment has 

been conventionally obtained via the measurement of the Motor Evoked Potentials (MEPs) 

amplitude on the targeted muscles while delivering single pulse TMS (spTMS) on the motor cortex 

before and after PAS interventions.   

The relationship between hemodynamic activity and cortical excitability has been illustrated in 

several animal studies. For instance, a study on the visual cortex of anesthetized cats using low 

frequency rTMS (e.g., 1Hz) and invasive optical imaging reported immediately increased tissue 

oxygenations peaking from 10s to 15s after applying rTMS, followed by a reduction of 

oxygenation lasting around 2 minutes (Allen et al., 2007). Excitatory low-intensity rTMS was also 

shown to increase healthy rat’s resting-state connectivity and GABA, glutamine, and glutamate 

levels, whereas inhibitory stimulation resulted in reduced connectivity and glutamine levels 

(Seewoo et al., 2019). However, the relationship between cortical excitability and elicited 

hemodynamic activity is poorly understood in humans. Such investigation requires simultaneous 

measurements of excitability and hemodynamic activity (Siebner et al., 2009). Functional 

magnetic resonance imaging (fMRI) is a typical tool that measures hemodynamic activity 

considering its reliability, ease of use, high spatial resolution, and sensitivity to deep brain regions 

(Bandettini et al., 1992; Kwong et al., 1992; Glover, 2011). Unfortunately, conducting concurrent 

TMS and fMRI is technically challenging (Hallett et al., 2017), considering the fact that both 

techniques involve high magnetic fields,  raising safety issues, and introducing substantial artifacts. 

MRI-compatible TMS coils have been developed (Navarro De Lara et al., 2015; Wang, Xu and 

Butman, 2017) and applied to investigate TMS induced hemodynamic responses, showing similar 

time courses of fMRI signal when compared to the one evoked by a motor task (Navarro de Lara 

et al., 2017). However, a recent fMRI study did not reproduce these findings of the TMS induced 

hemodynamic responses (Rafiei et al., 2021). On the other hand, fNIRS relies on optical signals, 
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hence signals that are insensitive to electromagnetic artifacts (Curtin, Tong, et al., 2019). Besides, 

fNIRS acquisition does not limit the space for TMS coil placement when stimulating different 

cortical areas. In general, these advantages allow the implementation of concurrent TMS and 

fNIRS in a much more straightforward manner than simultaneous TMS/fMRI. More importantly, 

fNIRS brings more insights into hemodynamic responses by measuring both HbO and HbR 

concentration changes, with excellent temporal resolution. Therefore, simultaneous TMS/fNIRS 

appears as a unique tool to investigate the TMS stimulation effects on cortical hemodynamic 

fluctuations.  

However, the combination of TMS and fNIRS remains challenging especially when considering 

the following aspects. Firstly, conventional fNIRS channel space analysis relies on the usage of 

modified Beer-Lambert Law (MBLL), which makes a strong assumption on homogeneous 

concentration changes of hemoglobin within the underlying region(s) of interest. Indeed, the 

cortical hemodynamic is rather focal and not homogeneous within the brain, hence the analysis 

under this assumption induces systemic errors (O’Leary et al., 1995; Pogue et al., 1995). 

Fortunately, such errors could be substantially reduced when considering Near Infra-Red Optical 

Tomography (NIROT) suggested by Boas, Gaudette, et al., 2001; Strangman, Franceschini and 

Boas, 2003. NIROT avoids this assumption of underlying homogeneity, by reconstructing the light 

intensity changes measured in the channel space along the underneath cortical areas. It actually 

consists in solving an ill-posed inverse problem that requires specific regularizations to obtain a 

unique solution. Besides, standard fNIRS caps may also provide less reliable estimations of 

hemodynamic responses due to the lack of personalization and spatial information of fNIRS 

sensors (Novi et al., 2020). Secondly, similar to other non-invasive brain stimulation techniques, 

PAS response might be variable, exhibiting sometimes even unpredictable effects. For instance, 

López-Alonso et al., (2014) showed that only 39% of subjects provided an expected response to 

PAS25, and Suppa et al., (2017) suggested that PAS efficiency can be as low as 50% or even less. 

Such variability of the brain response to neurostimulation depends upon multiple factors, including 

the genetic susceptibility, position of the coil, and other aspects (Ziemann and Siebner, 2015). 

Similarly, variability has also been reported in task-evoked hemodynamic responses when 

measured using fNIRS (Novi et al., 2020). Lastly, a general problem for neuroimaging studies is 

the small sample size, especially when dealing with technical acquisition challenges, ethical 
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considerations, and costs. This brings up the issue of the robustness and reliability of research 

findings (M. Yu et al., 2018; Zuo, Xu and Milham, 2019).   

Overall, the investigation on the relationship between hemodynamic activity and cortical 

excitability not only requires the technical combination of TMS and fNIRS but also requires 

methodological developments aiming to reduce/solve the above-mentioned limitations. Such 

methodology improvements could include: the development of more accurate inverse problem 

estimation for NIROT; the integration of NIROT within a workflow designed to improve the 

reliability of estimated hemodynamic responses; the establishment of an analysis strategy 

considering the variability of the data; and finally, the application of sophisticated statistical 

framework carefully handling small sample size while allowing more informative and reliable 

inferences.   

The overall objective of this Ph.D. thesis was to develop and comprehensively evaluate 

personalized NIROT workflow using the MEM reconstruction framework combined with 

personalized fNIRS montage, and to apply it to the investigation on hemodynamic correlates of 

fluctuations in neuronal excitability using the concurrent TMS and fNIRS acquisition.  

This thesis is organized as follows:  

Chapter 1 to Chapter 3 are state of the art chapters reviewing essential background information.  

 Chapter 1 introduces the fundamentals of CW-fNIRS, focusing on explaining fNIRS signal 

components; how conventional data analysis processes the data in the channel space; and 

what could be the corresponding disadvantages. Then we present the concept of 

personalized NIROT workflow, from probe design using optimal montage to NIROT 

reconstruction using the MEM framework, designed to estimate more accurately and 

reliably hemodynamic responses using fNIRS. This chapter is also including a short review 

of the existing methodologies proposed to solve the NIROT inverse problem.  

 Chapter 2 reviews the concept of the combination of TMS and fNIRS. Biological 

mechanisms of brain plasticity are first briefly presented, followed by the introduction of 

several commonly used TMS sequences to elicit excitability changes, especially focusing 

on the PAS paradigm considered in this thesis. We then review the concept of combining 
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brain stimulations and neuroimaging modalities, including the advantages and challenges 

of commonly used neuroimaging modalities when conducting experiments with TMS, such 

as EEG, fMRI, and PET. The same perspectives are then discussed in detail for 

TMS/fNIRS followed by literature reviews covering most of the TMS/fNIRS-related 

studies on healthy subjects.  

 Chapter 3 introduces the fundamental aspects of Bayesian data analysis, which explicitly 

deals with the problems of small sample size and large variability when considering most 

non-invasive human brain studies combining neuroimaging and neurostimulation. This 

introduction includes the presentation of Bayes’ theorem and probability modeling; 

posterior distribution sampling techniques following the history of technical evolutions; 

the strategies to diagnose Bayesian models through sampling techniques and evaluation of 

the accuracy and reliability of the estimated posterior distribution; and finally, statistical 

inferences using the concept of posterior predictive simulations.  

Four manuscripts, presented in Chapters 4 to 7, are then composing the main contribution of 

this thesis.  

 Chapter 4 presents our work developing and evaluating the MEM framework for NIROT 

(Cai et al., under review). We adapted the MEM method, previously developed and 

validated by our team in the context of EEG/MEG source imaging, to solve the inverse 

problem of NIROT reconstruction. We originally introduced a depth weighting strategy 

within the MEM framework for NIROT reconstruction, to avoid biasing the reconstruction 

results of NIROT towards superficial regions. We also proposed a new initialization of the 

MEM framework to improve the temporal accuracy of the reconstructions when compared 

to the original framework. To evaluate MEM performance and compare it with the widely 

used depth-weighted Minimum Norm Estimate (MNE) inverse solution, we applied a 

realistic simulation scheme that contained 4,000 generators with different locations, spatial 

extents, and depths along the cortical surface.  

 Chapter 5 presents the study in which we proposed and evaluated an original workflow 

entitled the personalized NIROT (Cai et al., 2021, in press HBM). Personalized NIROT 

integrates methodological developments proposed in our lab to deliver accurate and 

reliable hemodynamic response estimations. This workflow carefully considered each step 
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of a fNIRS study from the experiment design, data acquisition, to the final data analysis, 

and was optimized to improve the accuracy and reliability of reconstructed hemodynamic 

responses. This workflow was evaluated on finger-tapping fNIRS data acquired from ten 

healthy subjects for whom we estimated the reconstructed NIROT spatiotemporal images 

and compared them with fMRI results of the same individuals. We also compared the 

performance of MEM reconstructions with MNE solutions and assessed the reliability of 

the performance differences between them, using a non-parametric measure called 

discriminability. 

 Chapter 6 includes our application study using the previously developed personalized 

NIROT workflow when investigating the relationship between task-related hemodynamic 

activity and brain excitability (Cai et al., under review). To do so, we conducted the first 

PAS-fNIRS investigation using simultaneous TMS and fNIRS. Sixteen healthy subjects 

participated in a sham-controlled, pseudorandomized, counterbalanced study with PAS on 

the right primary motor cortex. The relationship between primary motor cortex excitability 

and hemodynamic responses to finger tapping reconstructed via personalized NIROT was 

assessed. We also introduced an original resampling technique to ensure reliable, robust 

and data-driven (intervention type blind) estimation of HbO/HbR measures extracted from 

NIROT results, that was independent of PAS intervention types.  

 Chapter 7 presents the last study included in this thesis (Cai et al., in preparation), in which 

we revisited data analysis from our previous TMS/fNIRS study, considering this time an 

advanced Bayesian data analysis workflow in order to take into account inter-/intra-subject 

variability from both brain stimulation induced cortical excitability measures and task-

related hemodynamic responses. To do so, we proposed hierarchical Bayesian models 

investigating PAS effects on M1 excitability; PAS effects on the whole time course of task-

related hemodynamic responses; and the correlation between them. Diagnostics of the 

models were conducted to assess the robustness of the estimated posterior distributions. 

Finally, statistical inferences were conducted via posterior predictive simulations. 

In the end, Chapter 8 concludes this thesis with a general discussion of the main results, 

contributions, limitations, and perspectives of our proposed studies. 
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Chapter 1  

Personalized Functional Near Infra-Red Optical Tomography 

This chapter will present the personalized functional Near Infra-Red Optical Tomography 

proposed in this thesis for estimating spatiotemporal maps of hemodynamic responses along the 

human cortex. We will start by introducing the continuous wave fNIRS (CW-fNIRS), focusing on 

the explanation of 1) what CW-fNIRS measures and 2) conventional data analysis in the channel 

space and corresponding limitations. We then summarize our proposed personalized functional 

Near Infra-Red Optical Tomography (personalized NIROT) workflow from probe design using 

optimal montage to NIROT reconstruction methodologies, including how to solve fNIRS 

reconstruction forward and inverse problems.  

1.1 Continuous Wave fNIRS 

fNIRS measures non-invasively fluctuations of both oxygenated (HbO) and deoxygenated (HbR) 

hemoglobin in the head with high temporal resolution (Jöbsis, 1977; Scholkmann, Kleiser, et al., 

2014; Yücel et al., 2021). When only measuring the attenuation of infra-red light through the head 

emitted at a constant intensity, the relative concentration changes of HbO and HbR within the light 

pathway can be estimated. This technique is referred to the continuous wave (CW) fNIRS (Ferrari, 

Mottola and Quaresima, 2004; Martin Wolf, Marco Ferrari and Quaresima, 2007; Ferrari and 

Quaresima, 2012). This section will explain what CW-fNIRS measures and how to conduct 

conventional data analysis to infer the cortical hemodynamic responses.  

1.1.1 Cerebral neuronal activity related hemodynamics 

Hemodynamics is defined as the dynamics of blood flow and of all the structures through which it 

passes (Secomb, 2016). Cerebral neuronal activity related hemodynamics is defined as the process 

of glucose and oxygen (𝑂2) delivery by the blood within local vessels along the cortex, which is 

required by various metabolisms of cerebral neuronal activity. Cellular processes of neurons 

consume energy in the form of adenosine triphosphate (ATP), and almost 90% of ATP is 

synthesized by oxidative glucose metabolism which requires 𝑂2 (Dienel and Hertz, 2001; Phillips 

et al., 2015). It is of interest to note that the human brain consumes more than 20% of oxygen and 

glucose at rest while only taking 2% of whole body weight.  
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Hemoglobin (Hb), which is present in the red blood cells, is known as a two-way 𝑂2 carrier protein, 

delivering 𝑂2 from the lung to tissues (Marengo-Rowe, 2006). The binding of 𝑂2 and Hb was first 

reported by a French physiologist Paul Bert (Bert, 1878). Almost a century after this first report, 

in 1962, an Austrian-British molecular biologist Max Perutz won the Nobel Prize in chemistry by 

studying the structure of Hb using X-ray crystallography. Each hemoglobin actually consists of 

four subunits (see Fig.1a), and each subunit is constructed by two components: 1) the heme group 

(green in Fig.1a), which contains the ferrous ion atom that reversibly binds to a 𝑂2 molecule; and 

2) the polypeptide chain, which is either α-like (red in Fig.1a) or β-like chain (blue in Fig.1a) 

(Marengo-Rowe, 2006; Mairbäurl and Weber, 2012).  

The dynamic of 𝑂2 and Hb binding is known as cooperative binding (Ahmed, Ghatge and Safo, 

2020), meaning once Hb is bound with one 𝑂2, the other heme groups become more likely to bind 

with 𝑂2. In contrast, Hb is also allosterically inhibited by carbon dioxide (𝐶𝑂2). Therefore, when 

𝐶𝑂2 concentration is increasing in blood plasma of local tissue, Hb will dump the bunded 𝑂2 to 

support 𝑂2 consumptions. These two states of Hb are referred to as the tense state (T) when less 

𝑂2 molecules are bound to Hb; and the relaxed state (R) when more 𝑂2 molecules are bound to 

Hb. Such sophisticated mechanism allows efficient delivery of 𝑂2  to where it is needed. The 

cooperative binding can be summarized by the equilibrium between T and R states (Perutz et al., 

1998; Safo and Bruno, 2011; Safo et al., 2011) following the oxygen equilibrium curve (OEC) 

shown in Fig.1b, which represents the 𝑂2  saturation of Hb (i.e. 𝑆𝑂2 ) as a function of partial 

pressures of 𝑂2 (i.e. 𝑃𝑂2). When Hb is in T state (red curve), OEC shifts to the left side, therefore 

it is more likely to bind with 𝑂2, shown by increased slope and higher 𝑆𝑂2 than the one on the 

black curve with the same 𝑃𝑂2. Additionally in the R state (blue curve), OEC shifts to the right 

side thus tends to release 𝑂2, indicated by decreased slope and lower 𝑆𝑂2 than the one at the 

equilibrium state.  
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Fig.1.1 Structure of hemoglobin and the oxygen equilibrium curve. a) molecule structure of human 

hemoglobin. The green color represents the heme group contains ferrous ion atoms where 𝑂2 binds with; 

red and blue color represent the two α-chains and two β-chains, respectively. Figure taken from Mairbäurl 

and Weber, 2012. b) oxygen equilibrium curve, dashed lines indicate 𝑃𝑂2 at 50% 𝑆𝑂2 value under the 

equilibrium state represented by black curve, red and blue curves represent the left shift (T state) and right 

shift (R state), respectively. Figure taken from Ahmed, Ghatge and Safo, 2020.    

Voluntary or spontaneous neural activity will induce two physiological reactions, as shown in 

Fig1.2a, that is, neurometabolic coupling and neurovascular coupling. Neurometabolic 

coupling is directly related to the 𝑂2 consumption of the brain for oxidative glucose metabolism 

synthesizing ATP mentioned above, which is quantified by the cerebral metabolic rate of oxygen 

(𝐶𝑀𝑅𝑂2). It will increase the local concentration of HbR and decrease the local concentration of 

HbO. The second process is the neurovascular coupling (NVC) (Roy and Sherrington, 1890; 

Phillips et al., 2015), which regulate the local cerebral blood flow (CBF) for 𝑂2  and glucose 

delivery. This regulation involves the neuron, the astrocyte glial cells and the vascular smooth 

muscles, in which the astrocyte mediates the coupling of neuronal activity and the vascular smooth 

muscle to dilate cerebral arteries (Zonta et al., 2003; Metea and Newman, 2006; Huneau, Benali 

and Chabriat, 2015). However, CBF will not just deliver the right amount of 𝑂2  required by 

𝐶𝑀𝑅𝑂2, it rather increase with a larger fraction (2-4 times) of 𝐶𝑀𝑅𝑂2 (Buxton, 2012; Fox, 2012). 

This fraction is called oxygen extraction fraction (OEF) (Hoge et al., 1999; Buxton et al., 2004; 

Gauthier and Hoge, 2012). The uncoupling of CBF and 𝐶𝑀𝑅𝑂2  is historically referred as 

‘functional hyperemia’ (Fox and Raichle, 1986; Fox, 2012) or ‘wash out’ effect. This effect will 

result in local concentration increases of HbO and decreases of HbR. The combination of the above 
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two reactions will eventually induce the HbO increase and HbR decrease. Ideally, when 

investigating task evoked hemodynamic, CW-fNIRS is intended to measure (i.e. the measurement 

of interest) HbO/HbR concentration changes evoked by the voluntary neuronal activity within 

cerebral region, illustrated in the red cube of Fig.1.2b.     

 

Fig.1.2 Mechanism of HbO/HbR concentration changes and the signal component of interest for 

functional brain activity measurement. a) neural activity induced cerebral metabolic rate of oxygen 

(𝐶𝑀𝑅𝑂2) increase, and the functional hyperemia - neurovascular coupling (NVC). Eventually, these two 

physiological reactions result in the increase of HbO (O2Hb) and decrease of HbR (HHb). Figure taken 

from Scholkmann, Kleiser, et al., 2014. b) assumed (ideal) measurement of interest for the hemodynamic 

response evoked by the voluntary functional brain activity. Figure adapted from Tachtsidis and Scholkmann, 

2016. 

1.1.2 The principle of CW-fNIRS 

The work of Jöbsis published in Science is often cited as the first in vivo measurement of 

hemodynamic responses induced by neuronal activity using fNIRS (Jöbsis, 1977). Indeed, that was 

the proposal of Jöbsis, but in detail, it was not intended to measure HbO and HbR, but rather the 

cytochrome-c-oxidase (CCO) at a cellular level, which is an enzyme in the mitochondria directly 

involved in 𝑂2 metablism (Bale, Elwell and Tachtsidis, 2016). More importantly, CCO related 

near infra-red light attenuation is a brain-specific signal since the concentration of it is much higher 

in the brain than in extracerebral tissues. Although the attenuation of CCO in the near infra-red 

band is higher than Hb (see Fig.2.3a, the green curve in shade area), the signal amplitude 

fluctuation induced by CCO concentration changes is just 5% to 10% of that from Hb, especially 

because of the overall low quantity of CCO when compared to Hb (Bale, Elwell and Tachtsidis, 

2016). This brings technical challenges to improve the sensitivity of optical instrumentation even 
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nowadays. Fortunately, HbO and HbR, which are related to 𝑂2  delivery required by 𝑂2 

metabolism can also absorb light within the near infra-red band called ‘optical window’ shown in 

Fig.1.3a (from 650nm to 950 nm). The selection of this optical window considers the facts that 1) 

light attunation of water is much lower than for other wavelength bands, therefore, ensuring 

sufficient light intensity remain detectable after being absorbed by human tissues (around 73% is 

composed by water); 2) HbO and HbR have distinctive absorption coefficients 𝜇𝑎 , therefore, 

allowing to differentiate them by using IR light sources operating by at least two wavelengths. For 

details of the history and development of fNIRS, please refer to this review (Ferrari and Quaresima, 

2012). 

Wavelength selection for differentiating HbO and HbR was initially based on the idea to have one 

lower and one higher wavelength in the absorption spectrum shown in Fig.1.3a, rather than the 

isosbestic point where the absorption coefficient is the same for HbO and HbR (around 800nm) 

(Zijlstra, Buursma and van Assendelft, 2000). Different studies have investigated the optimal 

combination to increase the signal to noise ratio (SNR) and decrease the cross-talk between HbO 

and HbR. In general, 830nm was determined to pair with the other wavelengths that are lower than 

the isosbestic point. Studies have located the typical values of the other wavelength based on 

different criteria such as 1) the lower uncertainty of light absorbance change (Yamashita, Maki 

and Koizumi, 2001); 2) higher SNR of estimated HbO/HbR (H. Sato et al., 2004) and 3) lower 

HbO/HbR cross-talk estimated either theoretically or simulated by Monte Carlo simulations 

(Strangman, Franceschini and Boas, 2003; Okui and Okada, 2005; Kawaguchi et al., 2008). So far 

690nm and 750nm have been used by most of the commercial CW-fNIRS devices to pair with 

830nm. More details of the fNIRS instrument review can be found in Martin Wolf, Marco Ferrari 

and Quaresima, 2007.   

In practice, a light source (S), emitted by either a laser diode or a light-emitting diode (LED), is 

placed on the scalp surface and illuminates near infra-red light into the head tissue. Light diffuses 

in the head, and is detected by a detector (D) placed at a specific distance away from the light 

source. Due to the scattering, the path of the detected light follows a banana shape shown in 

Fig.1.3b, and the bottom of it can reach the superficial area of the cortex (e.g., grey matter). 

Depending on the distance of the SD pair, one can probe cortical regions that are less than 2cm in 

depth to the scalp using an SD separation of around 3cm. On the other hand, it is possible to only 
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monitor scalp Hb concentration fluctuations, using the short-separation (SD or SS) channel around 

0.8cm (see Fig.1.3b).   

Fig.1.3 Demonstration of the principle of CW-fNIRS. a) the absorption spectrum for different 

chromophores in the human head, the optical window is defined from 650nm to 950 nm, in which water has 

a low absorption coefficient, and HbO(O2Hb)/HbR(HHb) have distinctive absorption coefficients.  Figure 

taken from Scholkmann, Kleiser, et al., 2014. b) demonstration of the CW-fNIRS channel consists of a light 

source and detector. The path of the detected light follows a so-called ‘banana shape’ (yellow path) due to 

the scattering of the light.  The penetration depth depends on the separation of the SD pair. A typical 

channel with a 3cm SD distance would probe as deep as 2cm from the scalp, whereas a short-separation 

channel (around 0.8cm) only detects Hb concentration fluctuations within the scalp. Figure taken from 

Herold et al., 2020. 

Solving the concentration changes of HbO and HbR from the light absorption changes measured 

for two (or more) wavelengths requires two (or more) equations, obtained by the modified Beer-

Lambert Law (mBLL) first proposed by Delpy et al., 1988; Delpy and Cope, 1997, and based on 

the original work of Beer-Lambert Law (Bouguer, 1729; Lambert, 1760; Beer, 1852). In mBLL, 

relative changes of optical density ∆𝑂𝐷𝜆(𝛥𝑡)  within a specific time span 𝛥𝑡  at a certain 

wavelength 𝜆, is expressed as a function of Hb concentration changes,  

   ∆𝑂𝐷𝜆(𝛥𝑡) = (∆𝑂𝐷𝜆(𝑡1) + 𝐺𝜆(𝑡1)) − (∆𝑂𝐷𝜆(𝑡0) + 𝐺𝜆(𝑡1)) 

= −𝑙𝑜𝑔10 (
𝐼𝜆(𝑡1)

𝐼𝜆(𝑡0)
) 

= ∑ 𝜀𝑖
𝜆 ∙ ∆𝑐𝑖 ∙ 𝐷𝑃𝐹𝜆 ∙ 𝑑

𝑁

𝑖=1

 

(1.1) 
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where 𝐼𝜆(𝑡1) is the light intensity (in 𝑊) of wavelength 𝜆 (in 𝑛𝑚) transmitted through the medium 

at time instant 𝑡1. 𝐼𝜆(𝑡0) represents the baseline light intensity used to normalize the previous one 

so that relative changes could be estimated. 𝜀𝑖
𝜆(𝑖𝑛  𝐿 ∙ 𝑚𝑜𝑙−1 ∙ 𝑚𝑚−1) is the molar extinction 

coefficient of chromophore 𝑖 specific to wavelength 𝜆 (index i referring to either HbO or HbR). 

∆𝑐𝑖(𝑖𝑛  𝑚𝑜𝑙 ∙ 𝐿−1) is the concentration changes of chromophore 𝑖 (e.g., HbO or HbR). 𝐷𝑃𝐹𝜆 ∙ 𝑑 

estimates the path length of the ‘banana shape’ and consists of two parts, where 𝐷𝑃𝐹𝜆  is the 

differential path length factor used to correct the source-detector distance 𝑑(𝑖𝑛 𝑚𝑚) to the actual 

path length, which is affected by scattering of the light denoted as 𝐺𝜆 . This reflects the 

‘modification’ in the mBLL. In the end, 𝐺𝜆 is considered as stationary by assuming the changes 

of OD resulted from scattering are much less than the ones resulted from absorptions. Therefore,  

𝐺𝜆(𝑡1) and 𝐺𝜆(𝑡0) are canceled out. When HbO and HbR are the chromophores of interest, two 

above equations can be used to solve the relative concentration changes of them as follows, 

   

[
Δ𝐻𝑏𝑅

Δ𝐻𝑏𝑂
]  =  [

𝜀𝐻𝑏𝑅
𝜆1 𝜀𝐻𝑏𝑂

𝜆1

𝜀𝐻𝑏𝑅
𝜆2 𝜀𝐻𝑏𝑂

𝜆2
]

−1

[
∆𝑂𝐷𝜆1(𝛥𝑡) 𝐷𝑃𝐹𝜆1𝑑⁄

∆𝑂𝐷𝜆2(𝛥𝑡) 𝐷𝑃𝐹𝜆2𝑑⁄
] (1.2) 

The estimation of molar extinction coefficients of HbO and HbR used in CW-fNIRS are reviewed 

in Matcher et al., 1995; Jacques, 2013. Although 𝐷𝑃𝐹𝜆 was shown to vary from age, gender and 

even brain region (Duncan et al., 1995; Zhao et al., 2002; Strangman, Li and Zhang, 2013), most 

of the fNIRS studies nowadays still use the fixed empirical values reported in the literature 

(Hiraoka et al., 1993; Fukui, Ajichi and Okada, 2003; Li, Gong and Luo, 2011). Please also note 

that the effective pathlength 𝐷𝑃𝐹𝜆 ∙ 𝑑 can also be estimated individually by conducting Monte 

Carlo simulation on subject-specific anatomy (Nakamura et al., 2016; Whiteman et al., 2017).  

1.1.3 Other components of CW-fNIRS signal 

Knowing the principle of CW-fNIRS mentioned above, we can conclude that it is actually not 

ideal only measuring the evoked hemodynamic responses within the cerebral region shown in 

Fig.1.2b. As lights pass through multiple head tissues, the attention of it can not strickly reflect 

only the cortical hemodynamic. The components of the CW-fNIRS signal are well-reviewed by 

Scholkmann, Kleiser, et al., 2014; Tachtsidis and Scholkmann, 2016. We will briefly summarize 

them to emphasize what is really measured by CW-fNIRS, more importantly, how to reduce the 
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confounding. There are six components of the fNIRS signal proposed by Tachtsidis and 

Scholkmann, 2016 shown in Fig1.4a, including the voluntary task-evoked cerebral HbO/HbR 

concentration changes, which is the signal of interest in most CW-fNIRS applications. The second 

component may be the other signal of interest, which represents the spontaneous neuronal activity 

induced hemodynamic changes. It is often considered as the baseline activity that may not 

confound too much the voluntary task-evoked hemodynamics in CW-fNIRS applications since the 

latter one measures the relative changes to the baseline. This component is also the input of resting-

state functional connectivity analysis using fNIRS (Sasai et al., 2011; Sakakibara et al., 2016; 

Santosa et al., 2017), aiming to estimate the functional network of the brain, inspired by the same 

research topic in the field of functional magnetic resonance imaging (fMRI) (Bandettini et al., 

1992; Kwong et al., 1992; Smitha et al., 2017). The other four components consist of the systemic 

physiological noise (i.e., pairwise combinations between rest/task and extracerebral/cerebral) 

related to circulatory changes (Mesquita et al., 2013; Cabrerizo et al., 2014). These noises (see 

Fig.1.4b) are often contributed by cardiac (Bauernfeind et al., 2014; N and SK, 2018), blood 

pressure (Tachtsidis et al., 2009; Minati et al., 2011), respiration (Scholkmann et al., 2013; 

Scholkmann, Klein, et al., 2014), Mayer waves (Kirlilna et al., 2013; Yücel et al., 2016), and low-

frequency oscillations (Tong, Lindsey and Frederick, 2011; Tong et al., 2012). In the end, non-

physiological noise can be induced by motions (Brigadoi et al., 2014; Jahani et al., 2018).  

1.1.4 Channel space analysis for CW-fNIRS 

The conventional data analysis for estimating HbO/HbR concentration changes (see Fig1.4a) in 

CW-fNIRS applications consists of data processing to remove the above noises and to apply mBLL 

for each SD pair (channel). At the study design stage, one can introduce long jitters between task 

events or even totally randomize them, and then combine with simple trial averaging or 

deconvolution (Aarabi, Osharina and Wallois, 2017) to minimize systemic circulatory changes 

that are not phase-locked with stimulus. The most straightforward way to denoise is to directly 

reject the noisy channels or trials prior to further inferences. The noisy signal can be marked 

empirically by visualization or quantified by thresholding on SNR (Yücel et al., 2021); coefficient 

of variation (CV) (Schmitz et al., 2005; Schneider et al., 2011; Eggebrecht et al., 2012; Piper et 

al., 2014); and contrast to background ratio (CBR) (Selb et al., 2005). Cardiac, respiration, and 

Mayer waves related noises can be removed at some level by simple bandpass filtering (e.g. 0.01 

to 0.1 Hz) depends on the frequency of interest (Yücel et al., 2016). Although systemic 
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physiological noise that typically overlaps with this frequency band is difficult to remove, the 

general approach is to regress them out from the signals using general linear models (GLM) (von 

Lühmann, Li, et al., 2020; von Lühmann, Ortega-Martinez, et al., 2020). The estimation 

approaches do not require extra measurements approximating the noise. Such as the studies using 

global averaged fNIRS signal (Haeussinger et al., 2014) or applying a principal component spatial 

filter algorithm (Zhang, Noah and Hirsch, 2016; Zhang et al., 2017). The most popular approach 

to measure the extracerebral noise is applying the short distance (see Fig.1.3b and Fig.1.4b) 

channels that detect superficial physiological noise (Zeff et al., 2007; Gregg et al., 2010). A 

specially designed peripheral device measuring the low-frequency blood flow oscillation placed 

on ear lobe(s) or finger(s) can be utilized to estimate more accurate systemic physiological noise 

(Tong et al., 2012, 2013; Sutoko et al., 2019). In the end, motion artifacts can be removed by spline 

interpolation (Scholkmann et al., 2010; Cooper et al., 2012), principal component analysis (PCA) 

(Zhang et al., 2005; Brigadoi et al., 2014), correlation based signal improvement (CBSI) (Cui, 

Bray and Reiss, 2010), discrete Kalman filtering (Izzetoglu et al., 2010) and Wavelet filtering 

(Molavi and Dumont, 2010). Motion artifact components can also be detected directly by the 

accelerometer (see Fig.1.4b).    
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Fig.1.4 CW-fNIRS signal components. a) six components of CW-fNIRS signal, the first two components 

are voluntary (evoked) and spontaneous (non-evoked) neuronal activity induced hemodynamic, which are 

the signal of interest, other four components are often considered as systemic physiological noise induced 

by circulatory changes, related to voluntary and spontaneous activity, exist in both cerebral and 

extracerebral (scalp) regions. Figure taken from Scholkmann, Kleiser, et al., 2014. b) demonstration of the 

typical CW-fNIRS noise. Motion artifact (detected by accelerometer), cardiac noise (detected by 

Photoplethysmographic (PPG)), blood pressure and respiration (detected by respiration band) are shown 

by each green curve. They both exhibit in short separation and long separation channels. Figure taken from 

von Lühmann, Ortega-Martinez, et al., 2020. c) a typical HbO/HbR response evoked by 10s task, simulated 

using convolution model and canonical hemodynamic response function (HRF). 

1.2 Personalized NIROT  

While the channel space analysis relies on the usage of mBLL, it actually makes three strong 

assumptions 1) the effects of scattering on the relative Hb concentration changes is negligible; 2) 

the medium (i.e. human head) under the fNIRS channels is homogeneous and 3) homogeneous 

concentration changes of Hb within the underlying region(s) of interest. Although assumption 1) 

is valid in CW-fNIRS and 2) is physically not true but would not influence the estimation of 

relative changes, the invalidity of assumption 3) can actually introduce systematic errors. Indeed, 

the cortical hemodynamic response is focal (especially for task-evoked ones) rather homogeneous 

within the brain. Inspired by studies (O’Leary et al., 1995; Pogue et al., 1995) showing that such 

errors could be substantially reduced by the diffusion optical tomography (DOT), Boas, Gaudette, 

et al., 2001; Strangman, Franceschini and Boas, 2003  have demonstrated the misestimation of 

HbO/HbR concentration changes using mBLL-based channel space analysis. Boas et al. clearly 

showed that focal hemodynamic perturbation could be inaccurately estimated due to the partial 

volume effect (i.e., heterogeneous of Hb concentration changes induced for instance by a task) and 

the differential wavelength sensitivity (i.e., different optical pathlength dependents on wavelength). 

It is also interesting to notice that the reason why mBLL was initially used in fNIRS is that the 

early human related applications were mainly on measuring the global (rather local) hemodynamic: 

1) in tissues such as muscle, which is more valid as a homogeneous medium and the changes of 

Hb are also relatively homogenous; or 2) in the human head but focusing on general oxygenation 

level not specific to the task-evoked activity.   
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To solve the above problem, Near Infra-Red Optical Tomography (NIROT), also called DOT, has 

been proposed (Arridge, 1999; Boas, Brooks, et al., 2001). NIROT avoids assuming homogeneity 

by reconstructing the light intensity changes measured in the channel space onto the underneath 

cortical area before converting them into local hemodynamic HbO/HbR changes. It also provides 

a more flexible way for inferencing the results. One can visualize the reconstructed spatiotemporal 

map, extract the reconstructed HbO/HbR time course and even conduct statistical parametric 

mapping similar to fMRI studies. In this section, we will go through our workflow of NIROT 

proposed in this thesis – the personalized NIROT, based on the previous work of the lab (Machado 

et al., 2014b, 2018) and Chapter 4 and 5.  

1.2.1 Personalized fNIRS montage 

A montage refers to the spatial layout of the fNIRS sources and detectors along the scalp. 

Traditional fNIRS montage uses a fixed distance (~3cm) between a source (S) and detector (D) to 

probe the cortex. However, for NIROT, different SD separations are often required not only 

because it is named tomography but also to improve the accuracy and resolution of resulting 

spatiotemporal maps. Constrained by optodes size and the installation using a cap, early 

applications of NIROT often used a montage called “double density”, which consists of two 

different SD separations, depending on devices but in general a short one around 1.5cm and a long 

one around 4cm. Many studies (Yamamoto et al., 2002; Boas, Dale and Franceschini, 2004; 

Kawaguchi, Koyama and Okada, 2007; Yoshida et al., 2011) have shown that simply using this 

setup could improve both accuracy and resolution of the NIROT results compared to standard all 

3cm channel caps. A ‘multicentered geometries’, distributing sources and detectors symmetrically 

within a hexagon, was proposed by Zhao, Ji and Jiang, 2006. This montage contains more than 

two levels of SD separation and further improved the reconstruction image quality proved by 

simulations. One of the most used montages for NIROT was developed throughout the studies 

(Joseph et al., 2006a; Zeff et al., 2007; Koch, 2010; White and Culver, 2010), in which sources 

and detectors are arranged in different locations following a rectangular geometry with different 

SD separations. It could form up to 1,200 channels with four levels of separations 1.3, 3.0, 3.9, 

and 4.7cm to cover almost half of the scalp area (Eggebrecht et al., 2012, 2014). These layouts 

indeed improved the reconstruction accuracy and resolution, but the location of the channels is 

manually designed based on a predefined geometry. In 2014, Machado et al., 2014 proposed a 

personalized optimal fNIRS montage consists in estimating a subject-specific optimal fNIRS 
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layout, which maximizes the spatial sensitivity to the hemodynamic responses along a predefined 

targeted brain region. This optimal montage technique aimed to maximize the sum of the 

sensitivity of all possible channels along the scalp with constraints such as the optode number, SD 

separation range, and overlapping (i.e., adjacent describing how many detectors have to construct 

channels with each source) into a linear integer programming problem. Therefore, the resulting 

montage is quantified to be the optimized resolution with certain constraints (see Fig.1.5). 

Moreover, it is personalized since the sensitivity calculation and region of interest (ROI) definition 

are based on the individual anatomy (see details in Section 2.2.2). In this original work, all possible 

locations of the optodes were constrained in an electroencephalogram (EEG) /fNIRS cap due to 

the limitation of the device and optodes installation method. Finally, the optimal montage evolved 

in Machado et al., 2018, where optodes can be freely installed anywhere along the scalp. This was 

inspired by the work (Yücel et al., 2014), in which fNIRS sensors were glued (rather than using a 

cap with fixed position) on the scalp using a clinical adhesive, called collodion, which would 

minimize the motion artifacts and improve the signal to noise ratios of fNIRS signals. Moreover, 

Machado et al., 2018 showed that personalized optimal montage with a large number of locally 

overlapping channels allows accurate local reconstruction of NIROT images. Following these 

works on the optimal montage, Brigadoi et al., 2018 even claimed to terminate the manual montage 

design. In this thesis, to improve the accuracy of the montage gluing and the further forward 

modeling, we introduced the digitalization of the optodes positions along with more than 150 head 

points using a neuronavigation system. This ensured accurate co-registration with the subject’s 

head anatomy. Our pilot investigation showed that the average installation displacement to the 

theoretical optimal montage is 7mm among 120 optodes of 6 montages. This displacement is only 

the width of the optodes used in our studies.     
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Fig.1.5 Demonstration of personalized optimal montage probing the ‘hand knob’ area using different 

configurations. a) 4 sources 16 detectors with 2 adjacent, SD separations ranging from 20mm to 40mm. 

Note that since the overlapping is set too low (adjacent =2), to place the optodes along the head, optimal 

montage has to spread them away from the region of interest. b) 4 sources 8 detectors with 2 adjacent, SD 

separation ranging from 20mm to 40mm, decreasing the detector number reduced the problem in a), but 

the montage is not dense enough due to fewer optodes. c) 4 sources 8 detectors with 2 adjacent, SD 

separation ranging from 15mm to 40mm, increase the range of SD separation increased the overlapping. 

d) 4 sources 16 detectors with 10 adjacent, SD separations ranging from 15mm to 40mm. High density 

(overlapping) montage is achieved by a higher number of optodes, SD separation rang, and adjacent, which 

is preferred for conducting NIROT.   

1.2.2 Model of NIROT  

In CW-fNIRS based diffusion optical tomography (Arridge, 1999), a linear model is used to 

describe the relationship between measured optical density changes on the scalp and wavelength-

specific absorption changes within head tissue as follows, 

   ∆𝑂𝐷𝜆  =  𝐴𝜆∆𝜇𝑎
𝜆 (1.3) 

where ∆𝑂𝐷𝜆 is the optical density changes specific for wavelength 𝜆. ∆𝜇𝑎
𝜆(𝑖𝑛 𝑚𝑚−1) represents 

the wavelength-specific absorption change within the medium.  𝐴𝜆(𝑖𝑛 𝑚𝑚) is the sensitivity 

matrix (also called Jacobian matrix) relating absorption changes to optical density changes. Note 

that scattering is ignored from the full model of diffusion approximation since CW-fNIRS assumes 

only absorption related perturbations (Fantini and Franceschini, 2002). For convenience, a 

simplified notation is often used in NIROT literature,  

   𝑌 =  𝐴𝑋 +  𝑒 (1.4) 

where 𝑌(𝑝 × 𝑡)  is a matrix that represents the ∆𝑂𝐷𝜆  in fNIRS channel 𝑝  at time samples  𝑡 .  

𝑋(𝑞 × 𝑡) is the ∆𝜇𝑎
𝜆 in location 𝑞 along the cortex at time 𝑡. 𝐴(𝑝 × 𝑞) is the sensitivity matrix 

specific to the subject’s head anatomy. The additional term, 𝑒(𝑝 × 𝑡)  models the additive 

measurement noise estimated from the baseline fluctuations. Solving the reconstruction problem 

for NIROT consists of solving two problems known as 1) the forward problem, which computes 

matrix 𝐴 based on the modeling of light propagation within the heterogeneous medium – human 

head and 2) the inverse problem which estimates the matrix 𝑋 (i.e. the amplitude for each location 
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𝑞 at time 𝑡). This inverse problem is ill-posed and admits an infinite number of possible solutions 

due to the fact that the number of possible generators 𝑞 where a change of absorption could occur 

is much larger than the number of measurements 𝑝.  

Note that the resulted 𝑋  only estimates the relative absorption changes, i.e. ∆𝜇𝑎
𝜆 , for one 

wavelength, it is not yet the relative HbO/HbR concentration changes. To complete the 

reconstruction process, the last step consists of ‘converting’ reconstructed ∆𝜇𝑎  of at least two 

wavelengths to HbO/HbR concentration changes as follows, 

   

[
𝛥𝐻𝑏𝑅

𝛥𝐻𝑏𝑂
]  =  𝑀𝑠 [

∆𝜇𝑎
𝜆1

∆𝜇𝑎
𝜆2

] = [
𝛼𝐻𝑏𝑅

𝜆1 𝛼𝐻𝑏𝑂
𝜆1

𝛼𝐻𝑏𝑅
𝜆2 𝛼𝐻𝑏𝑂

𝜆2
]

−1

[
∆𝜇𝑎

𝜆1

∆𝜇𝑎
𝜆2

] (1.5) 

where 𝑀𝑠 is called the spectral composition matrix (Arridge, 1999; Zhan et al., 2012b), which 

contains the wavelength-specific molar absorption coefficient 𝛼 for HbO or HbR. This is similar 

as mBLL equation 1.2 but without the differential path length factor (DPF) corrected path length. 

∆𝜇𝑎  is estimated along the cortex by solving the inverse problem. Therefore, the resulting 

HbO/HbR concentration changes avoid the partial volume effects existing in the mBLL approach. 

In the following two subsections, we will introduce how to solve the above two problems.   

1.3 NIROT forward problem 

The NIROT forward problem is to solve the forward photon migration within the complex turbid 

medium. An analytical solution like Radiative Transfer Equation (RTE) is often considered an 

accurate estimation but challenging to solve in real applications. Diffusion approximation 

(Ishimaru, 1978; Dehghani, Eames, et al., 2009) was developed to approximate RTE solutions 

using the combination of few lower-order expansions of it. In general, the RTE for the photon 

fluence rate can be formulated by the diffusion approximation as follows (Wheelock, Culver and 

Eggebrecht, 2019), 

   ∂Φ(𝑟, 𝑡)

∂t
− ∇ ∙ (𝐷(𝑟)∇Φ(𝑟, 𝑡)) + 𝑣𝜇𝑎(𝑟)Φ(𝑟, 𝑡) = 𝑣𝑄(𝑟, 𝑡) (1.6) 

where Φ(𝑟, 𝑡) is the photon fluence rate (in 𝑊 𝑐𝑚2⁄ ) of a volume element at position 𝑟 and time 

𝑡. ∇ ∙ denotes the divergence and ∇ represents the gradient. 𝜇𝑎(𝑟) is the absorption coefficient (in 
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𝑐𝑚−1) and 𝑣 is the speed of light in biological tissue (in 𝑐𝑚 𝑛𝑠⁄ ). 𝑄(𝑟, 𝑡) is the total power of a 

unit volume radiating isotropically outward (in units of 𝑊 𝑐𝑚3⁄ ). 𝐷(𝑟) is the diffusion coefficient 

(in 𝑐𝑚2 𝑛𝑠⁄ ) at position 𝑟 defined as 

   
𝐷(𝑟)  =

𝑣(𝑟)

3(𝜇𝑎(𝑟) + 𝜇𝑠
′ (𝑟))

 (1.7) 

in which 𝜇𝑠(𝑟)  is the scattering coefficient at position 𝑟 . When assuming the homogeneous 

medium, the above equation 1.6 is simplified as,   

   𝜕Φ(𝑟, 𝑡)

𝜕𝑡
− 𝐷∇2Φ(𝑟, 𝑡) + 𝑣𝜇𝑎(𝑟)Φ(𝑟, 𝑡) = 𝑣𝑄(𝑟, 𝑡) (1.8) 

According to Svaasand, 1993; Tromberg et al., 1993; Haskell et al., 1994, the light source 𝑄(𝑟, 𝑡) 

modulated by intensity following a specific frequency can be expressed as the combination of 

direct current DC and alternating current (AC) parts with 𝜔  as the angular frequency of the 

intensity modulation as follows, 

   𝑄(𝑟, 𝑡) = 𝑄𝐷𝐶(𝑟, 𝑡) + 𝑄𝐴𝐶(𝑟, 𝑡)𝑒−𝑖𝜔𝑡 (1.9) 

In CW-fNIRS, where light intensity is constant, the above equation 1.9 then only consists of the 

DC part 𝑄0, therefore the solution of equation 1.8 is (Wheelock, Culver and Eggebrecht, 2019), 

   

Φ(𝑟) =
𝑣𝑄0

4𝜋𝐷

𝑒−𝑟[
𝑣𝜇𝑎

𝐷
]

1 2⁄

𝑟
 

(1.10) 

Note that this is only the static solution of the diffusion approximation under the assumption of the 

infinite and homogeneous medium. Although the fast finite element modeling (FEM) approach 

(Arridge et al., 1993; Paulsen and Jiang, 1995; Okada et al., 1996) is available when dealing with 

multiple tissue types of the medium such as the human brain, the accuracy of the above diffusion 

approximation is limited by the increase of the complexity of the medium. For more details of the 

diffusion approximation derivation specific NIRS, please refer to the recent review (Wheelock, 

Culver and Eggebrecht, 2019), which provides the clear equation derivation and the explanations 

of the underlying assumptions.  
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On the other hand, Monte Carlo (MC) algorithm (Harrison, 2009) is a general stochastic simulation 

approach to solve complex models numerically. It is also widely used to solve the RTE and is 

considered the gold standard solution (Prahl, 1989; Wang, Jacques and Zheng, 1995; Zhu and Liu, 

2013). In this thesis, we applied the most used MC toolbox for light propagation modeling in 

biological tissues - the Monte Carlo eXtreme (MCX, http://mcx.space/) developed by Fang and 

Boas, 2009; Yao, Intes and Fang, 2018. It takes advantage of graphics processing unit (GPU) 

parallel computation to speed up the calculations, completing the simulation of photon migrations 

in few tens of seconds using a GeForce GTX 1080 Ti graphic card with the following set-up: 108 

photons emitted by a point source migrating inside the human head model in 5ns with a step of 

0.5ns. MCX allows two approaches to estimate the sensitivity matrix (Jacobians), namely, the 

adjoint Monte Carlo (aMC) (Crane et al., 2003; Fang et al., 2004; Chen and Intes, 2011) and 

perturbation Monte Carlo (pMC) (Hayakawa et al., 2001). The term ‘adjoint’ refers to the adjoint 

simulation of the light fluence from the detector position along with the one calculated for the 

source position per se. The Jacobian is then calculated by the normalized multiplication of these 

two fluences according to the reciprocity of light. The latter approach is a more efficient method 

that avoids calculating the adjoint fluences by a reply mode (Yao, Intes and Fang, 2017, 2018) but 

less accurate with the same computation cost. Considering the accuracy and acceptable 

computation costs, we utilized aMC approach for solving the Jacobian (𝐴 in equation 1.4).  

To describe the changes in optical properties in 𝑋 of equation 1.4, which reflects the neuronal 

activity evoked hemoglobin concentration changes, one needs to derive how 𝑌  is changed by 

perturbating Φ(𝑟)  with a slight change. This requires the Rytov approximation as follows 

(O’Leary et al., 1995; Arridge, 1999), 

   Φ(𝑟𝑗⃗⃗⃗, 𝑟𝑠⃗⃗⃗)  = Φ0(𝑟𝑗⃗⃗⃗, 𝑟𝑠⃗⃗⃗)𝑒𝛿Φ(𝑟𝑗⃗⃗⃗⃗ ,𝑟𝑠⃗⃗⃗⃗ ) (1.11) 

the current fluence Φ(𝑟𝑗⃗⃗⃗, 𝑟𝑠⃗⃗⃗)  is expressed by the baseline fluence Φ0(𝑟𝑗⃗⃗⃗, 𝑟𝑠⃗⃗⃗)  after a small 

perturbation 𝛿Φ(𝑟𝑗⃗⃗⃗, 𝑟𝑠⃗⃗⃗) ≪ Φ(𝑟𝑗⃗⃗⃗, 𝑟𝑠⃗⃗⃗). 𝑟𝑠⃗⃗⃗ specifies the location of the light source and 𝑟𝑗⃗⃗⃗ represents 

the location of the perturbation within the medium. 

Under the Rytov approximation, the full expression of forward modeling of the equation 1.4 using 

the aMC approach for CW-fNIRS based NIROT is then expressed as (Yao, Intes and Fang, 2018; 

Wheelock, Culver and Eggebrecht, 2019), 

http://mcx.space/
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𝑌 = − ln (

Φ

Φ0
) 

= 𝐽𝜇𝑎(𝛺𝑗)∆𝜇𝑎(𝑟𝑗⃗⃗⃗) 

= −
𝑣

𝐷
∫

𝐺(𝑟𝑗⃗⃗⃗, 𝑟𝑠)Φ(𝑟𝑑⃗⃗⃗⃗ , 𝑟𝑗⃗⃗⃗)

Φ(𝑟𝑑⃗⃗⃗⃗ , 𝑟𝑠)
∆𝜇𝑎(𝑟𝑗⃗⃗⃗) 𝑑𝑟 

(1.12) 

where ∆𝜇𝑎(𝑟𝑗⃗⃗⃗) is the absorption changes at the location 𝑟𝑗⃗⃗⃗ . 𝐽𝜇𝑎(𝛺𝑗) is the Jacobin specific for 

absorption perturbations at 𝑟𝑗⃗⃗⃗  within spatial regions 𝛺𝑗 ; 𝐺(𝑟𝑗⃗⃗⃗, 𝑟𝑠) is the Greens function of the 

diffusion equation defined at 𝑟𝑗⃗⃗⃗ according to the isotropic point source location 𝑟𝑠; Φ(𝑟𝑑⃗⃗⃗⃗ , 𝑟𝑠) and 

Φ(𝑟𝑑⃗⃗⃗⃗ , 𝑟𝑗⃗⃗⃗) represents the photon fluence (in 𝑚𝑚−2) measured at the point detector located at 𝑟𝑑⃗⃗⃗⃗  

migrated from the location at 𝑟𝑠  (location of the point light source) and 𝑟𝑗⃗⃗⃗ , respectively (see 

Fig1.6c). When measuring the fluence inside the diffusive medium (Furutsu and Yamada, 1994; 

Yao, Intes and Fang, 2018),  

   Φ(𝑟𝑑⃗⃗⃗⃗ , 𝑟𝑗⃗⃗⃗) = 𝐺(𝑟𝑑⃗⃗⃗⃗ , 𝑟𝑗⃗⃗⃗) = 𝐺(𝑟𝑗⃗⃗⃗, 𝑟𝑑⃗⃗⃗⃗ ) (1.13) 

The photon fluence at any location 𝑟𝑗⃗⃗⃗ within the medium can be solved by launching Monte Carlo 

simulations. The photon packet weight is initialized as 1 at a predefined location at the scalp 

surface and decreased according to 1) the scattering determines where the photon migrates to, the 

initial scattering direction is randomized according to the Henyey-Greenstein phase function 

(Furutsu and Yamada, 1994; Boas et al., 2002a) and the scattering depends on the scattering 

coefficient (𝜇𝑠) and anisotropy facto (g); 2) absorption coefficient (𝜇𝑎) at each location within the 

medium determines the amount of weight loose. After launching sufficient number of photons, the 

wight of each photon packet at each location is accumulated and forms a fluence distribution of a 

specific source (see Fig1.6b) during a specified time gate (Fang and Boas, 2009).   
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Fig.1.6 Solving NIROT forward problem by Monte Carlo Simulation. a) head tissue segmentation 

resulted in five tissues, scalp, skull, Cerebrospinal fluid (CSF), gray matter and white matter. Tissue-

specific absorption coefficient (𝜇𝑎), scattering coefficient (𝜇𝑠) and anisotropy factor (g) (Yaroslavsky et al., 

2002) will be assigned to be the medium of MC simulation. b) launching photons at the source location 

𝑟𝑠⃗⃗⃗ to simulate the light migration inside the head and estimate the fluence at each location 𝑟𝑗⃗⃗⃗. c) adjoint MC 

to calculate the sensitivity for location 𝑟𝑗⃗⃗⃗ by launching two MC simulations: one from b) and an adjoint one 

from the detector location 𝑟𝑑⃗⃗⃗⃗   d) projected sensitivity profile on cortical surface (i.e. mid-surface) using 

volume to surface projection process proposed by Grova, Makni, et al., 2006.  Figures b) and c) adapted 

from Strangman, Li and Zhang, 2013.  

The above aMC approach is calculated specifically for a medium, which is the human head in 

NIROT. This requires the 3D anatomical image of the full head and its segmentations. The 3D 

anatomical image is acquired by high-resolution T1 and T2 weighted Magnetic resonance imaging 

(MRI) images (Bloch, 1946; Purcell, Torrey and Pound, 1946; Grover et al., 2015). Due to the 

difference of 𝜇𝑎, 𝜇𝑠 𝑎𝑛𝑑 𝑔 in different tissue types, it is often recommended to segment the head 

into five tissues (i.e. scalp, skull, Cerebrospinal fluid (CSF), gray matter and white matter) 

(Yaroslavsky et al., 2002; Fang and Boas, 2009). In this thesis, the segmentation was processed 

using FreeSurfer6.0 (Fischl et al., 2002) (https://surfer.nmr.mgh.harvard.edu/) and SPM12 [Penny 

et al., 2011] (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Gray matter and white matter 

masks were generated from the cortical/subcortical segmentation of FreeSurfer. Scalp and skull 

masks were segmented using SPM. All segmentation processes used both T1 and T2 weighted 

https://surfer.nmr.mgh.harvard.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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images to achieve more accurate estimations of the tissue types by taking advantage of their 

complementary contrasts (see Fig1.6a). 

In addition, considering the hemodynamic fluctuations are evoked in the cortical regions, 

anatomical constraints can be involved by defining the reconstruction solution space within the 

gray matter volume (Boas and Dale, 2005). Furthermore, in NIROT applications, the forward 

model in volume space was usually down-sampled considering the general spatial resolution of 

fNIRS. Such as 2 × 2 ×  2𝑚𝑚3 used in (Eggebrecht et al., 2014), 3 × 3 ×  3𝑚𝑚3 in (Eggebrecht 

et al., 2012) and 4 × 4 ×  4𝑚𝑚3 applied in (Yamashita et al., 2016). Another NIROT approach 

(Pfeifer, Scholkmann and Labruyère, 2018) also projected the volumetric forward model to a 

cortical surface before conducing reconstruction. This is also seen in electroencephalogram (EEG) 

and magnetoencephalography (MEG) source localization studies (Dale and Sereno, 1993; Grova, 

Daunizeau, et al., 2006; Chowdhury et al., 2013). In this thesis, we assumed that there are many 

possible locations of absorption changes distributed over the reconstruction space defined on the 

cortical surface mesh (see Fig1.6d). Therefore we projected the sensitivity from volume to surface 

using a Voronoi based method proposed by Grova, Makni, et al., 2006. This cortical surface 

projection is also preferred by the fact that our inverse problem solution (Maximum Entropy on 

the Mean: MEM) was originally developed operating in the surface space.     

1.4 Solving NIROT inverse problem 

Several inverse problem solutions have been proposed for NIROT throughout the literature. This 

subsection reviews these methodologies from the most straightforward back projection to the one 

used in this thesis – MEM. 

1.4.1 Back projection (BP)  

Back project (BP) was first proposed in optical image reconstruction in Walker, Fantini and 

Gratton, 1997, firstly applied in NIROT for human cortical hemodynamic reconstruction in Boas 

et al., 2004 and still used in some studies (Zhai and Cummer, 2009; Das, Dileep and Dutta, 2018) 

nowadays. In the BP method, the sensitivity matrix 𝐴 in equation 1.4 is assumed to be orthogonal, 

therefore, the pseudo-inverse of itself is 𝐴𝑇, and the solution of inverse problem 𝑋̂𝐵𝑃 is defined as 

follows, 
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   𝑋̂𝐵𝑃 = (𝐴𝑆)𝑇𝑦 (1.14) 

where 𝑆 is a diagonal matrix that normalizes the column of 𝐴. BP is known to overestimate the 

reconstructed amplitude, therefore providing a larger spatial extend and more blurring image (Boas 

et al., 2004) compared to Tikhonov regularization-based reconstructions.   

1.4.2 Truncated singular value decomposition (tSVD) 

The tSVD method is based on the Moore–Penrose (MP) pseudo-inverse (Penrose, 1955) of the 

sensitivity matrix 𝐴 used for instance in Piper et al., 2014; Tremblay et al., 2018, 𝐴+ (pseudo-

inverse of 𝐴) is estimated as, 

   𝐴+ =  𝑉𝛴−1𝑈𝑇 (1.15) 

where 𝑈 (an orthogonal matrix) and 𝑉 (consists of singular vectors in each column) are from the 

SVD decomposition of the matrix 𝐴, then the estimated solution of the inverse problem is, 

   𝑋̂𝑡𝑆𝑉𝐷 =  (𝑉𝑚𝛴𝑚
−1𝑈𝑚

𝑇 )𝑦 (1.16) 

in which 𝑚 corresponds to the dimensionality of the truncated matrix (i.e., 𝑉𝑚,  𝛴𝑚
−1 and 𝑈𝑚) in 

equation 1.16.  The truncations discard the terms with singular values that are zero or very small. 

Moreover, 𝑚 can be optimized by locating the point that exhibits the highest curvature in the L-

curve (Hansen, 1999; Tremblay et al., 2018). tSVD solution is also known for producing blurry 

reconstructed images (Habermehl et al., 2014).  

1.4.3 Minimum norm estimation (MNE) 

Minimum norm estimation (MNE) is first proposed by Hämäläinen and Ilmoniemi, 1994 for EEG 

and MEG source localization. It is also one of the most widely used reconstruction algorithms in 

NIROT (Boas et al., 2004a; Zeff et al., 2007; Dehghani, Eames, et al., 2009; White et al., 2009; 

Eggebrecht et al., 2012, 2014). MNE is based on the Tikhonov regularization, in which a penalty 

regularization term 𝜆‖𝑋‖𝛴𝑠

2  is added to the least squares of the data fit term ‖(𝑌 − 𝐴𝑋)‖𝛴𝑑

2 , and 

the MNE solution is to minimize the sum of them as follows, 

   𝑋̂𝑀𝑁𝐸 =  𝑎𝑟𝑔𝑚𝑖𝑛(‖(𝑌 − 𝐴𝑋)‖𝛴𝑑

2 + 𝜆‖𝑋‖𝛴𝑠

2 ) (1.17) 
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=  (𝐴𝑇𝛴𝑑𝐴 + 𝜆𝛴𝑠)−1𝐴𝑇𝛴𝑑𝑌 

where Σ𝑑  and Σ𝑠  are the inverse of noise covariance and the inverse of source covariance, 

respectively, 𝜆 is the hyperparameter to regularize the inversion. Σ𝑑 is estimated from baseline 

recordings considered as the representation of the noise. Σ𝑠 is assumed to be an identity matrix in 

conventional MNE. In the end, 𝜆 can be optimized by the L-Curve method suggested by Hansen, 

2000. Like tSVD, MNE solution is also known for producing scattered and blurry reconstruction 

images (Haufe et al., 2008).  

1.4.4 Low-resolution electromagnetic tomography (LORETA) 

LORETA was first proposed by Pascual-Marqui, Michel and Lehmann, 1994 for EEG source 

localization and applied in NIROT in Tremblay et al., 2018, it introduces a spatial smoothness 

constrain for neighboring sources in matrix 𝑋 using a Laplacian operator 𝐿, therefore the solution 

is expressed as, 

   𝑋̂𝐿𝑂𝑅𝐸𝑇𝐴 =  𝑎𝑟𝑔𝑚𝑖𝑛(‖(𝑌 − 𝐴𝑋)‖𝛴𝑑

2 + 𝜆‖𝐿𝑋‖𝛴𝑠

2 ) 

=  (𝐴𝑇𝛴𝑑𝐴 + 𝜆𝐿𝑇𝛴𝑠𝐿)−1𝐴𝑇𝛴𝑑𝑌 
(1.18) 

It can be understood as a weighted form of MNE solution seeking maximum spatial smoothness. 

However, it still produces large spatial extent results.   

1.4.5 Sparse reconstructions based on 𝓵𝟏 −  𝐚𝐧𝐝 𝓵𝟎 − 𝐧𝐨𝐫𝐦 

To overcome the large spatial extent issues in the above approaches, several reconstruction 

methods have been developed to result in sparse maps. Therefore, the reconstructed maps tend to 

locate most of the amplitudes inside one or more focal regions. Such as the ℓ1 − norm based 

sparsity regulation (Matsuura and Okabe, 1995; Lu, Lighter and Styles, 2018) and the ℓ0 − norm 

based regulation combined with a parameter controls the smoothness (Mohimani, Babaie-Zadeh 

and Jutten, 2009; Prakash et al., 2014). These methods can be generalized as follows, 

   𝑋̂ℓ𝑝−𝑛𝑜𝑟𝑚 =  𝑎𝑟𝑔𝑚𝑖𝑛(‖(𝑌 − 𝐴𝑋)‖𝛴𝑑

2 + 𝜆‖𝑋‖𝛴𝑠

𝑝 ) (1.19) 

where 𝑝 refers to the order of the norm, 0 ≪ 𝑝 ≪ 1, known as ℓ𝑝 − norm based regulations. 

These methods might result in too focal results, therefore, having difficulty in the applications with 

extending generator along the cortex. There are also other methods proposed to combine MNE and 
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ℓ𝑝 − norm to result in a trade-off between focality, extension, and smoothness, such as the Focal 

Vector Field Reconstruction (FVR) proposed by Haufe et al., 2008 combined ℓ1-norm and ℓ2-

norm in the penalty function.  

1.4.6  Bayesian model averaging (BMA) 

Bayesian model averaging (BMA) relies on the Bayesian inferences, which estimate the 

probability distribution of 𝑋. It calculates the weighted average of the solutions estimated under 

different models (MacKay, 1992; Fragoso, Bertoli and Louzada, 2018). The weight is defined by 

the posterior probability of each model. Trujillo-Barreto, Aubert-Vázquez and Valdés-Sosa, 2004 

introduced this framework in EEG source location and further applied it in NIROT by Tremblay 

et al., 2018. In general, it can be formulated as,  

   

𝑝(𝑋̂𝐵𝑀𝐴|𝑌) = ∑ 𝑝(𝑋̂𝑀𝑘
|𝑌, 𝑀𝑘)𝑝(𝑀𝑘|𝑌)

𝐾

𝑘=0

 (1.20) 

where 𝑝(𝑋̂𝐵𝑀𝐴|𝑌) is the posterior probability distribution of BMA estimated 𝑋 conditioned on 

data 𝑌. It is calculated by the weighted average of the posterior probability distribution of a specific 

model 𝑀𝑘 estimated 𝑋 conditioned on data 𝑌, namely, 𝑝(𝑋̂𝑀𝑘
|𝑌, 𝑀𝑘). The weight is represented 

by the posterior probability of each model 𝑀𝑘 conditioned on data y, i.e. 𝑝(𝑀𝑘|𝑌), which is often 

referred to as the ‘evidence’ for the model. It is usually relying on the calculation of Baye’s factor, 

𝐵𝑖𝑗 = 𝑝(𝑌|𝑀𝑖)/𝑝(𝑌|𝑀𝑗)  between models, which quantifies the model uncertainty when 

conducting model comparisons. 𝑝(𝑀𝑘|𝑦) can be derived for multiple models by the combination 

of Bayes factors between each model 𝑀𝑘 to a reference model 𝑀0  (Trujillo-Barreto, Aubert-

Vázquez and Valdés-Sosa, 2004a). In practice, multiple models can be constructed by applying 

different inverse approaches mentioned above and using different prior of the underlaying 

activation with different cortical parcellation. In both works on EEG (Trujillo-Barreto, Aubert-

Vázquez and Valdés-Sosa, 2004a) and NIROT (Tremblay et al., 2018), this approach improved 

the sensitivity and specificity of the reconstruction comparing to the others. However, it is well 

understood nowadays that the Bayes factor is not preferred as a model comparison approach in the 

modern Bayesian framework (Gelman et al., 2013a; McElreath, 2020) due to the facts that 1) it 

could be biased by prior selections and 2) difficult to calculate in practice since it requires to 

calculate the integral of a certain probability density function. 
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1.4.7 Bayesian approach using Automatic Relevance Determination (ARD) hierarchical 

prior 

A hierarchical Bayesian (HB) approach has been proposed firstly to regularize the inverse problem 

resulting in sparse reconstructed maps in MEG source localization study (M. A. Sato et al., 2004). 

The probability distribution of the generator along cortex (𝑋 in equation 1.4) conditioned on data 

𝑦 can be assumed as a Gaussian distribution as follows, 

   
𝑝(𝑋̂𝐻𝐵|𝑌) = 𝑒−

1
2

𝑋𝑇𝛴𝑠𝑋
 (1.21) 

The prior of the inverse of source covariance Σ𝑠 (also called precision, same as the one in equation 

1.17) is modeled as a diagonal matrix in which the diagonal elements 𝛼𝑛=1
𝑁  (𝑁 for the number of 

voxel or vertex along the cortex) can be modeled by an Automatic Relevance Determination (ARD) 

hierarchical prior borrowed from the Bayesian machine learning field (Neal, 1996), 

   

𝑝(𝛼) = ∏ 𝛤(𝛼𝑛|𝛼̅0𝑛, 𝛾0𝑛𝛼)

𝑁

𝑛=1

 (1.22) 

where 𝛼𝑛 follows a Gamma distribution (𝛤) with mean equals to 𝛼̅0𝑛 and degree of freedom equals 

to 𝛾0𝑛𝛼. The use of Gamma distribution introduces a soft constraint for the source covariance Σ𝑠
−1, 

such that large mean of precision (large 𝛼̅0𝑛) would penalize small values of 𝑋 and vice versa. In 

the original work of M. A. Sato et al., 2004, 𝛼̅0𝑛 and 𝛾0𝑛𝛼 were estimated from the fMRI activation 

map of the same subject. The approximated posterior distribution was calculated by using the 

Variational Bayesian (VB) method based on maximizing the free energy function equivalent to 

minimizing the Kullback-Leibler distance between the posterior distribution of 𝑋  and a trial 

distribution (Attias, 1999; Sato, 2001). 

This approach was adapted for solving the NIROT inverse problem firstly by Shimokawa et al., 

2012 using the MNE solution (in equation 1.17) to initialize the hierarchical prior (in equation 

1.21). The authors also further introduced a spatial smoothing filter for 𝑋, using a 5-mm full width 

at half maximum (FWHM) Gaussian kernel. Considering the fact that fNIRS signal consists of 

physiological noise exhibits in scalp (see section 2.13), Shimokawa et al., 2013 expanded the 

model in equation 1.4 into the summation of two parts, 1) cortical reconstruction using the above 
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method and 2) scalp reconstruction using a source covariance Σ𝑠
−1 constructed by the combination 

of the Laplace operator (𝐿) and a hyperparameter (𝜂) controlling the smoothness, such that 𝛴𝑠
−1  =

 𝐿−1𝜂−1𝐿−1𝑇
. Therefore, the physiological noise was assumed to be removed from the 

reconstruction directly. This method is finally validated on real data set of motor task by comparing 

to fMRI activation maps in Yamashita et al., 2016.  

The above method improved the accuracy of EEG/MEG and NIROT reconstructions and 

demonstrated the superiority of Bayesian approaches over conventional methods described 

previously. However, methodologically speaking, as also pointed out by Nummenmaa et al., 2007; 

Yamashita et al., 2016, it is hard to optimize the initialization value for the parameter 𝛾0𝑛𝛼 which 

controls the balance between prior and data. Besides, the posterior is approximated by variational 

Bayesian (VB) rather than a full Bayesian approach using the posterior sampling technique (see 

section 3.2). VB solution can result in biased estimation of the posterior distribution.  

1.4.8  Maximum Entropy on the Mean (MEM) framework 

Maximum Entropy on the Mean (MEM) was first proposed by Amblard, Lapalme and Lina, 2004, 

before being adapted and carefully evaluated in our lab in the context of EEG/MEG source 

localization (Grova, Daunizeau, et al., 2006; Chowdhury et al., 2013). A key property of MEM 

source imaging is its ability to recover the spatial extent of the underlying generators accurately, 

as we demonstrated in the context of 1) localizing transient epileptic discharges (Chowdhury et al., 

2016; Grova et al., 2016; Heers et al., 2016; Pellegrino, Hedrich, et al., 2016; Pellegrino et al., 

2020) and oscillations (Pellegrino, Hedrich, et al., 2016; Avigdor et al., 2021);  2) dealing with 

focal sources evoked by electrical median nerve stimulations (Hedrich et al., 2017), 3) EEG/MEG 

fusion in the presurgical evaluation of epilepsy (Chowdhury et al., 2018); and 4) MEG resting 

state connectivity (Aydin et al., 2020). We will introduce MEM framework by two parts as follows, 

1) MEM solution: 

In the MEM framework, which is a probabilistic framework, the probability distribution of the 

amplitude of 𝑋, described as 𝑑𝑝(𝑥) = 𝑝(𝑥)𝑑𝑥, can be estimated by Bayesian inference, starting 

from a predefined prior distribution of 𝑋 denoted as 𝑑𝜈(𝑥). The peak of the posterior of 𝑑𝑝(𝑥) 

represented by 𝑑𝑝∗(𝑥) is estimated by maximizing the Kullback-Leibler divergence or 𝜈-entropy 

to the prior as following, 
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𝑆𝜈(𝑑𝑝(𝑥)) =  − ∫ log (

𝑑𝑝(𝑥)

𝑑𝜈(𝑥)
) 𝑑𝑝(𝑥) =  − ∫ 𝑓(𝑥) log(𝑓(𝑥)) 𝑑𝜈(𝑥) 

𝑑𝑝∗(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑𝑝(𝑥)𝜖ℂ𝑚
(𝑆𝜈(𝑑𝑝(𝑥))) 

(1.23) 

where 𝑆𝜈(𝑑𝑝(𝑥))  is the 𝜈 -entropy of 𝑑𝑝(𝑥)  to prior 𝑑𝜈(𝑥) , ℂ𝑚  is the set of probability 

distributions of 𝑥 that explains the data 𝑌 on average,  

   
𝑌 − [𝐴|𝐼] [

𝐸𝑑𝑝[𝑥]

𝑒
] = 0, 𝑑𝑝𝜖ℂ𝑚 (1.24) 

where 𝐸𝑑𝑝[𝑥]  is the statistical expectation of 𝑥  under the probability distribution 𝑑𝑝 , 𝐼  is the 

identity matrix with the dimension of the number of vertices involved in the reconstruction. 

𝐸𝑑𝑝[𝑥] = ∫ 𝑥𝑑𝑝(𝑥) represents the statical expectation of 𝑥 under the probability distribution 𝑑𝑝. 

Therefore, within the MEM framework, a unique solution of 𝑑𝑝(𝑥) could be obtained as follows 

(see Fig.1.7), 

   𝑑𝑝∗(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑𝑝(𝑥)∈𝐶𝑚
(𝑆𝑣(𝑑𝑝(𝑥))) (1.25) 

As shown in above equation 1.25, the solution of 𝑑𝑝∗(𝑥) can be solved by maximizing the 𝜈-

entropy which is a convex function. It is equivalent to minimizing an unconstrained concave 

Lagrangian function i.e. 𝐿(𝑑𝑝(𝑥), 𝜅, 𝜆), along with two Lagrangian constrain parameters, i.e. 𝜅 

and 𝜆. It is finally equivalent to maximizing a cost function 𝐷(𝜆) which is described as, 

   
𝐷(𝜆) = 𝜆𝑇𝑌 − 𝐹𝑣(𝐴𝑇𝜆) −

1

2
𝜆𝑇𝛴𝑑

−1(𝛴𝑑
−1)𝑇𝜆 (1.26) 

where 𝛴𝑑
−1 is the noise covariance matrix same as in equation 1.18. 𝐹𝑣 represents the free energy 

associated with reference 𝑑𝜈(𝑥). Finally, if we denote 𝜆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆𝐷(𝜆), the solution of MEM 

framework is, 

   𝑋̂𝑀𝐸𝑀 = 𝛻𝜉𝐹𝜈
∗(𝜉)|𝜉=𝐴𝑇𝜆∗ (1.27) 
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Fig.1.7 Illustration of Maximum entropy on the mean (MEM) framework. MEM assumes the brain 

activity could be described by 𝐾  non-overlapping and independent cortical parcels along with 𝛼𝑘 

represents the probability of each parcel to be active. The joint distribution (initialized by MNE solution) 

of each parcel can form a reference distribution (i.e. prior). MEM solves the unique inverse problem 

solution by maximizing the Kullback-Leibler divergence to the prior. Figure taken from Chowdhury et al., 

2015. 

2) Prior distribution: 

To construct the prior distribution 𝑑𝜈(𝑥), we assumed that brain activity could be described by 𝐾 

non-overlapping and independent cortical parcels (see Fig.1.7), therefore, 

   

𝑑ν(𝑥) = ∏[(1 − α𝑘)δ(𝑥𝑘) + α𝑘𝑁(μ𝑘, Σ𝑘)]𝑑𝑥𝑘

𝐾

𝑘=1

,   0 < α𝑘 < 1 (1.28) 

where the hidden variable 𝑆𝑘 defines the activation state (active or not) of each cortical parcel 𝑘. 

α𝑘  is the probability of 𝑘𝑡ℎ  parcel to be active, i.e. 𝑃𝑟𝑜𝑏(𝑆𝑘 = 1). δ𝑘  is a Dirac function that 

allows to ‘switch off’ the parcel when considered as inactive (i.e. 𝑆𝑘 = 0). 𝑁(𝜇𝑘, Σ𝑘) is a Gaussian 

distribution, describing the distribution of absorptions changes within the 𝑘𝑡ℎ parcel, when the 

parcel is considered as active, 𝑆𝑘 = 1.  Note that the multiplication in the definition of 𝑑ν(𝑥) is 

referring to the assumption that all parcels are statistically independent.  

A Data Driven Parcellization (DDP) technique (Lapalme, Lina and Mattout, 2006) was used to 

parcellate the cortical surface into 𝐾 non-overlapping parcel. The probability of each parcel to be 
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active (α𝑘) was initialized as the median Multivariate Source Pre-localization (MSP) (Mattout et 

al., 2005) score from all the sources within the parcels. To initialize the 𝑁(𝜇𝑘, Σ𝑘)  in 

prior 𝑑𝜈(𝑥),  𝜇𝑘 was set to zero. Σ𝑘(𝑡) at each time point 𝑡 was defined according to Chowdhury 

et al., 2013, 

   Σ𝑘(𝑡) = η(𝑡)𝑊𝑘(σ)𝑇𝑊𝑘(σ) 

η(𝑡) = 0.05
1

𝒫𝓀
∑ 𝑋̂𝑀𝑁𝐸

2 (𝑖, 𝑡)

𝑖∈𝒫𝓀

 
(1.29) 

where 𝑊𝑘(𝜎) is a spatial smoothness matrix, defined by Harrison et al., 2007; Friston et al., 2008, 

which controls the local spatial smoothness, similar to LORETA, within the parcel according to 

the geodesic surface neighborhood order. 𝜂(𝑡) was defined as 5% of the averaged energy of MNE 

solution within each parcel.  

1.5 Depth weighting 

As described in section 2.1 on mBLL, light intensity decreases exponentially along with the 

increase of the effective path length. In the meantime, the human cortex is highly folded with 

complex morphology exhibiting different depths relative to the scalp (see Fig.1.8a) where the 

optodes are installed. The deeper the region of interest is, the longer the SD separation is needed, 

therefore, the longer the effective path length is. The relationship between the sensitivity of fNIRS 

montage to the depth of the cortical area was comprehensively investigated by applying aMC 

method on the Colin27 human head template with different SD separations (Strangman, Li and 

Zhang, 2013). The above theoretical exponential relationship was exhibited in all channels and 

various regions of interest (see Fig.1.8b). The author fitted a formula from the simulation results 

as follows,  

   𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  0.075 ∙ 0.85𝑑𝑒𝑝𝑡ℎ (1.30) 

Such reduction of sensitivity along depth not only limits the probing ability of fNIRS to about 2cm 

from the scalp in general (Culver et al., 2003; Dehghani, White, et al., 2009; Scholkmann, Kleiser, 

et al., 2014; Scarapicchia et al., 2017), but also introduces potential bias from the depth without 

further regulation when solving the inverse problem in the previous section. The reconstruction 

will tend to exhibit within the high sensitivity area (i.e. more superficial). This bias from the depth 
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has been investigated and compensated in EEG/MEG source localization studies (Fuchs et al., 

1999; Liu, Dale and Belliveau, 2002; Lin et al., 2006) even though the forward model in 

EEG/MEG follows a more moderate reduction along with the depth. Depth-dependent 

regularization in reconstruction has also been proposed in NIROT by Culver et al., 2003 and then 

widely applied in Zeff et al., 2007; Dehghani, White, et al., 2009; White et al., 2009; Eggebrecht 

et al., 2012, 2014. In general, the solution is to scale the source covariance matrix by a factor that 

plays a role in tuning the effective FOV for reconstructions. This means the higher the scaling 

factor, the more compensation for deeper regions. The tunning of the depth weighting then seeks 

a trade-off between under- and over-compensation, which is empirically defined by the researcher 

according to the specific applications.     

 

Fig.1.8 Illustration of the relationship between sensitivity and depth for the cortical area. a) depth map 

calculated for each vertex along the mid-surface of Colin27 template using the distance from a cortical 

vertex to its closest point along the head surface. b) relationship between the relative sensitivity and the 

depth from cortex to the inner skull surface for different SD separations. In general, sensitivity decrease 

along with the increase of depth, following an exponential relationship. Figures b) adapted from Strangman, 

Li and Zhang, 2013. 

1.5.1 Depth weighted MNE 

Depth-weighted MNE (Ioannides, Bolton and Clarke, 1990; Lin et al., 2006) has been proposed 

as an approach to compensate for the above effect. It consists of using the following expression 

for the prior model of the source covariance Σs
−1 in equation 1.17, which is no longer an identity 

matrix but scaled by a weighting matrix 𝑊 as follows, 
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𝑑𝑖𝑎𝑔(𝑊) =

1

𝑑𝑖𝑎𝑔((𝐴𝑇𝛴𝑑𝐴)𝜔)
 (1.31) 

where 𝜔 is a weighting parameter tuning the amount of depth compensation. The larger 𝜔 is, the 

more depth compensation is considered. 𝜔 = 0 refers to no depth compensation and an identity 

source covariance model.  

1.5.2 Depth weighted MEM 

One of the contributions of this thesis is adapting MEM for fNIRS reconstruction, in which we 

implemented for the first time depth weighting within the MEM framework. Two depth weighting 

parameters, ω1 and ω2 were introduced. Therefore, the standard MNE solution 𝑋̂𝑀𝑁𝐸 in equation 

1.17 is replaced by the depth weighted version of MNE solution 𝑋̂𝑑𝑀𝑁𝐸. And the depth weighted 

version of Σ𝑘 for prior initialization is defined as, 

    Σ𝑘𝑑𝑤
= Λ𝒫𝓀

𝜂𝑑𝑤𝑊𝑘(σ)𝑇𝑊𝑘(σ) 

𝜂𝑑𝑤 = 0.05
1

𝒫𝓀
∑ 𝑋̂𝑑𝑀𝑁𝐸

2

𝑖∈𝒫𝓀

 
(1.32) 

where Λ𝒫𝓀
 is the depth weighting matrix for each parcel 𝑘 . 𝜔1  is used to weight the source 

covariance matrix of each parcel Σ𝑘 in equation 1.28. 𝜔2 is applied to solve the depth weighted 

MNE in equation 1.29. This strategy is also seen in Yamashita et al., 2016, in which depth-

weighted MNE solution is used to initialize the prior 𝑝(𝛼) in equation 1.22.  

1.5.3 Other depth weighting approaches 

There are other depth weighting approaches based on the MNE method. The idea is to normalize 

the MNE solution in equation 1.17, using an empirical variance matrix denoted as 𝑆, such that the 

resulted reconstruction results 𝑆−1/2𝑋̂𝑀𝑁𝐸 follow a t-distribution (Hedrich, 2020). For instance, 

the dynamic statistical parametric mapping (dSPM) proposed by Dale et al., 2000 used a variance 

matrix 𝑆𝑑𝑆𝑃𝑀 = 𝑑𝑖𝑎𝑔(𝑊𝑀𝑁𝐸𝛴𝑑𝑊𝑀𝑁𝐸
𝑇) and the standardized LORETA (sLORETA) proposed by 

Pascual-Marqui, 2002 used the variance matrix to normalize the MNE solution, in which 

𝑆𝑠𝐿𝑂𝑅𝐸𝑇𝐴 = 𝑑𝑖𝑎𝑔(𝑊𝑀𝑁𝐸(𝐴𝑇𝛴𝑑𝐴 + 𝜆𝛴𝑠)𝑊𝑀𝑁𝐸
𝑇). These two methods are considered as a depth 
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weighting approach since higher amplitude will be normalized by higher source variances (Hauk, 

Wakeman and Henson, 2011; Chowdhury, 2016). 

1.6 Summary 

This chapter introduced the personalized NIROT approach proposed in this thesis. We reviewed 

the principle of CW-fNIRS mainly focused on what it is actually measuring. The basic biological 

principle of  𝑂2 consumption of the brain for oxidative glucose metabolism and the functionality 

of HbO/HbR was first explained, followed by the physics principle of detecting and differentiating 

HbO/HbR concentration changes using near infra-red light. Then we discussed that the 

components of CW-fNIRS signal are not only contributed by the cerebral hemodynamic but also 

consists of physiological noise from systemic circulations. The approaches of removing these 

noises were also reviewed along with the conventional channel space analysis. Acknowledging the 

disadvantage of mBLL based channel space analysis, we introduced the personalized NIROT 

approach consisting of 1) personalized optimal montage, 2) solution of the forward problem from 

diffusion approximation to the numerical solution using aMC, and 3) how to solve the inversion 

problem mainly using the MEM framework and the depth weighting compensation.    
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Chapter 2  

Combination of TMS and fNIRS 

This chapter will introduce the combination of Transcranial Magnetic Stimulation (TMS) and 

functional Near-Infrared Spectroscopy (fNIRS). We used this technique in Chapters 5 and 6 to 

investigate the hemodynamic correlates of cortical excitability. The hemodynamic activity was 

measured via fNIRS, while cortical excitability was assessed and modulated via TMS. Biological 

mechanisms of brain plasticity, such as long-term potentiation (LTP), long-term depression (LTD) 

and spike timing dependent plasticity (STDP) are briefly summarized before explaining the TMS 

techniques commonly used to induce plasticity: repetitive TMS (rTMS), intermittent Theta-Burst 

Stimulation (iTBS) and continuous Theta-Burst Stimulation (cTBS). Paired Associative 

Stimulation (PAS), another neuromodulatory technique that combines peripheral stimulation and 

TMS, will be reviewed with more details as it was applied in Chapters 5 and 6.  

As the combination of non-invasive brain stimulation and brain mapping is challenging, we also 

shortly reviewed the pros and cons of commonly used neuroimaging modalities when applied in 

conjunction with TMS, such as Electroencephalogram (EEG), functional magnetic resonance 

imaging or functional MRI (fMRI), Positron emission tomography (PET) and, in more details, 

TMS/fNIRS.  

In summary, this chapter aims to encapsulate the basic principle, technical details, and applications 

of TMS/fNIRS, which provide sufficient background for Chapters 5 and 6. 

2.1 Spike timing dependent plasticity 

Brain plasticity is the ability to adapt to continuous changes in the external and internal 

environment. This process relies on functional and anatomical modifications of the neuronal 

circuits. Associative synaptic plasticity (James, 1890; Feldman, 2012) is one of the most studied 

mechanisms of cortical plasticity (Feldman, 2009). Canadian neurophysiologist Donald O. Hebb 

proposed his famous theory called Hebbian or Hebbian learning (Hebb, 1949). As stated in Hebb, 

1949: “When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or both cells 

such that A’s efficiency, as one of the cells firing B, is increased”. The work on Hebbian learning 
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focused on the effect of repetitive stimulation. Bliss and Lomo, 1970; Bliss and Lømo, 1973 

discovered long lasting strengthening effects of repetitive stimulation on synapses, originally 

named `frequency potentiation' and nowadays known as long-term potentiation (LTP). This type 

of plasticity was achieved with high frequency (10Hz to 20Hz) electric stimulations of the 

hippocampus of anesthetized rabbits. The effect of repetitive stimulation is not always an 

enhancement of effect: long lasting weakening was also found by Sejnowski, 1977; Bienenstock, 

Cooper and Munro, 1982 and termed long-term depression (LTD). 

The first experiment to investigate the effects of timing between presynaptic and postsynaptic 

spike on synaptic plasticity, rather than the stimulated spike frequency, was proposed by 

McNaughton, Douglas and Goddard, 1978. This work refined the understanding of LTP by 

clarifying that the timing of the postsynaptic spike is critical and found that LTP is possible only 

when the delay between postsynaptic and presynaptic spikes is lower than 25ms. Later on, Levy 

and Steward, 1983 confirmed this finding comprehensively, showing that if the presynaptic spike 

leads postsynaptic spike, the synapse is strengthened and vice versa. This work established the 

concept of associative synaptic plasticity - known as spike timing-dependent plasticity (STDP) 

(Markram, Gerstner and Sjöström, 2012). For detailed reviews of STDP on technical evolution 

and biological mechanisms, please refer to Müller-Dahlhaus, Ziemann and Classen, 2010; 

Markram, Gerstner and Sjöström, 2011, 2012; Feldman, 2012. Works on the implementation of 

STDP on the human cortex are further discussed in section 2.2.3.   

As shown in Fig.2.1, when a presynaptic spike excites a neuron repeatedly while a postsynaptic 

spike is firing (see Fig.2.1a), the timing between these two spikes could induce either LTP or LTD. 

The effect of strengthening or weakening depends on which spike is leading the other. For instance, 

in the work of Feldman, 2000 on rat barrel cortex (see Fig.2.1b), LTP indicated by the slope of 

excitatory postsynaptic potential (EPSP) is achieved by presynaptic leading postsynaptic spikes; 

and LTD is obtained by postsynaptic leading presynaptic spikes. Besides, only one of them could 

not modulate synaptic plasticity. In the end, this time delay is mostly within a few tens of 

milliseconds (Fröhlich, 2016) shown in Fig.2.1c.  
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Fig2.1 Principle of spike timing-dependent plasticity (STDP). a) presynaptic spike is persistently exciting 

a neuro while a postsynaptic spike is firing, figure taken from Feldman, 2012, b) experimental results on 

rat barrel cortex showed that when presynaptic spikes were leading the postsynaptic ones, LTP was 

obtained; and LTD was obtained by postsynaptic leading presynaptic spikes. Synaptic plasticity is 

measured by the slope of excitatory postsynaptic potential (EPSP), figure taken from Feldman, 2012 which 

was originally published by Feldman, 2000, c) summary of STDP and the requirement of timing, the red 

curve, and the blue curve represents LTP and LTD, respectively. The delay between two spikes should be 

within few tens of milliseconds, figure taken from Fröhlich, 2016 

2.2 Inducing neuronal plasticity noninvasively 

The principle of neuronal plasticity can be exploited to modulate human cortical excitability 

noninvasively. Several noninvasive brain stimulation (NIBS) approaches have been proposed, 

such as the very first works using transcranial Electrical Stimulation (tES) (Merton and Morton, 

1980; Reed and Cohen Kadosh, 2018), Transcranial Magnetic Stimulation (TMS) (Barker, 

Jalinous and Freeston, 1985; Klomjai, Katz and Lackmy-Vallée, 2015), and the more recent 

transcranial focused ultrasound (tFUS) (Legon et al., 2014; Blackmore et al., 2019). The common 

principle is to directly interact with neurons and synapses, following the basic principles of 

plasticity modulation learned from animal models. This section will only focus on TMS related 

approaches by first briefly review the commonly used protocols and then explain more details on 

Paired Associative Stimulation (PAS) used in Chapters 5 and 6.  



Chapter 2: Combination of TMS and fNIRS 

40 
 

2.2.1 Single pulse TMS  

TMS was established at the beginning of the nineties as an evolution and improvement of tES. 

Indeed, tES induces plasticity by applying a current to the scalp, which flows through skin, skull, 

cerebrospinal fluid and reaches the cortical surface. tES directly interacts with the body of 

pyramidal neurons, but is a very uncomfortable and painful technique (Merton and Morton, 1980). 

To reduce the discomfort and improve the convenience of tES, Barker, Jalinous and Freeston, 1985 

proposed TMS, for noninvasive brain stimulation on the human motor cortex. TMS generates a 

magnetic pulse ranging from 1 to 2.5 Tesla (Pawar et al., 2008) through a coil (see Fig.2.2b). The 

magnetic field is generated by releasing charges stored in the capacitor (see Fig.2.2a) in less than 

1 ms (Rossini et al., 2015a). This type of magnetic pulse allows depolarizing neuronal pools, 

therefore triggering action potentials in axons instead of cell bodies of pyramidal neurons (Klomjai, 

Katz and Lackmy-Vallée, 2015). When TMS is delivered as a single pulse (without specific 

protocol on stimulation timing), it is called the single pulse TMS (spTMS) (Di Lazzaro, Rothwell 

and Capogna, 2018), it will temporarily excite (i.e., transit excitation) the corresponding cortical 

regions under the coil. Figure 2.2c demonstrated a typical pathway of the TMS stimulation of the 

motor cortex. Excited neurons induce descending corticospinal volleys through the pyramidal tract, 

which evoke motoneuron activations and eventually lead to a brief muscle contraction in the 

contralateral limb (Klomjai, Katz and Lackmy-Vallée, 2015). In terms of penetration depth and 

spatial resolution, a figure-8 coil usually stimulates around 1.5𝑐𝑚 depth (from scalp) and an area 

as focal as 15𝑐𝑚2 along the cortex (Gomez, Goetz and Peterchev, 2018).  

The combination of simultaneous TMS and neuroimaging techniques such as EEG has allowed us 

to better understand the effects of spTMS. A typical waveform of the TMS evoked potentials (TEP) 

measured by the scalp EEG when conducting spTMS on the motor cortex is shown in Fig.2.2c. 

Similar to other event-related potentials (ERPs), it consists of several positive and negative peaks, 

such as P30, N45, N100 and P180 (Komssi and Kähkönen, 2006), which are related to neuronal 

activities induced by spTMS. When measuring the descending corticospinal volleys induced by 

spTMS at the level of cervical spine with invasive electrodes, there are two typical waveforms 

called direct wave (D-wave) and indirect waves (I-wave) as shown in Fig.2.2c. D-waves reflect 

the direct activation of axons and I-wave represents the synaptic (indirect) activation of 

corticospinal neurons (Day et al., 1989; Di Lazzaro et al., 1998, 2004). Electromyography (EMG) 

electrodes placed on the muscle belly allow measuring the last effects of TMS of the motor cortex 
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corresponding to the motor evoked potential (MEP) shown in Fig2.2c and Fig.2.4b. The peak-to-

peak amplitude of MEP is often seen as an indicator of motor cortex excitability (see Fig.2.4). 

MEPs are also used to quantify the spTMS stimulation intensity while the muscle is relaxing 

(Rossini et al., 1994) or contracting (Fitzgerald, Fountain and Daskalakis, 2006), called resting 

motor threshold (resting MT or RMT) and active motor threshold (active MT or AMT), 

respectively. Traditionally, RMT or AMT was defined such that 50 µV peak-peak amplitude of 

MEP can be observed at least in half of 10 continuous spTMS (Rossini et al., 1994). In Chapters 

5 and 6, to improve the efficiency and accuracy of this process, we used the TMS Motor Threshold 

Assessment Tool (MTAT 2.0, http://www.clinicalresearcher.org/software.html) based on the 

maximum-likelihood parameter estimation by sequential testing approach (Awiszus et al., 1999; 

Ah Sen et al., 2017). 

 

Fig2.2 Demonstration of spTMS consisting of the physics principle of TMS, TMS evoked activities and 

pulse configurations. a) TMS machine circuit which consists of a Voltage (V) source, Switch (S), Capacitor 

(C), Diode (D), Resistor (R), and Thyristor (T) taken from Farzan et al., 2016. b) TMS coil’s magnetic flux 

and induced current flows along the cortex, figure taken from Hallett, 2007 which was adapted from Hallett, 

2000. c) Pathway and corresponding activation waveforms of TMS delivered on the motor cortex, figure 

adapted and merged from Klomjai, Katz and Lackmy-Vallée, 2015; Farzan et al., 2016. d) three typical 

TMS pulse configurations depend on the current direction(s), the current direction(s) in the coil is from 

http://www.clinicalresearcher.org/software.html


Chapter 2: Combination of TMS and fNIRS 

42 
 

posterior to anterior (PA) or/and from anterior to posterior (AP), figure adapted from Davila-Pérez et al., 

2018.  

Last but not least, there are mainly three types of spTMS configurations that produce different 

pulse waveforms, as shown in Fig.2.2d. The monophasic pulse can be generated by a unidirectional 

current in the coil. In contrast, bidirectional currents can produce a biphasic pulse where an initial 

current is followed by a reversed one. Although it is shown biphasic pulse has higher efficiency 

when stimulating the motor cortex (Kammer et al., 2001; Sommer et al., 2006), monophasic 

activates a relatively uniform population of neurons when modulating long term plasticity using 

repetitive rTMS (Arai et al., 2007; Taylor and Loo, 2007). 

2.2.2 Repetitive TMS  

Due to hardware limitation, earlier TMS applications could only deliver spTMS with an 

interstimulus interval (ISI) longer than 4s. The technology was soon improved to stimulate with 

an ISI of 10ms  (Rossini and Caramia, 1992). This granted the ability to investigate the effects of 

repetitive or rhythmic TMS protocol on cortical function, especially on cortical excitability. Burst 

or prolonged trains of TMS could for instance be applied to induce speech arrest (which 

corresponds to a transient virtual lesion) (Pascual-Leone, Gates and Dhuna, 1991), and modulate 

cortical excitability (Chen and Seitz, 2001). Such repetition of spTMS pluses in a certain frequency 

is referred as repetitive TMS (rTMS). Throughout the years, it has been shown that (see Fig2.3a), 

when using stimulation frequency from 5-20Hz, one can increase the cortical excitability, whereas, 

1-4Hz lower frequency can induce inhibition (Fitzgerald, Fountain and Daskalakis, 2006). The 

most successful clinical application of rTMS is probably on the treatment of depression 

(Eschweiler et al., 2000; Voigt, Carpenter and Leuchter, 2019), which holds two US Food and 

Drug (FDA) clearances (Rossini et al., 2015a).  

A special type of rTMS protocol is the so-called Theta-Burst Stimulation (TBS). TBS is of more 

recent introduction and was established in Rothwell lab in London UK (Huang et al., 2005; Talelli, 

Greenwood and Rothwell, 2007). The idea behind TBS is that theta and gamma rhythms are 

extremely important for brain function and plasticity. Therefore, it was hypothesized that TMS 

stimulation with these rhythms could be functionally relevant. TBS is typically performed below 

the motor threshold. There are two well-known types and several variants aiming at inducing LTP 

and LTD. Intermittent TBS (iTBS) can increase the cortical excitability (LTP). It consists of TMS 
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trains delivered at 5Hz, and each train contains 3 spTMS pluses burst delivered at 50Hz (see 

Fig2.3b). These trains are applied in the first 2s of every 10s and repeated often for about 3 minutes 

(Huang et al., 2005; Suppa et al., 2016). Inhibitory TBS, is a continuous TBS (cTBS) (Huang et 

al., 2005) with TMS trains (i.e., 3 spTMS pluses burst delivered at 50Hz) at 5Hz for about 20 to 

40s (see Fig2.3b). There is still debate on whether TBS induces the most effective and reliable 

plasticity modulation (Rossini et al., 2015a; Suppa et al., 2016), but the obvious advantage is the 

short application time. For instance, cTBS could induce LTD in about 20-40s, whereas it could 

take 20 minutes for low frequency rTMS.   

 

Fig2.3 Three typically used TMS protocols for modulation of cortical excitability. a) repetitive TMS 

(rTMS) delivered by high frequency (5-20Hz) and low frequency (1-4Hz) to induce long-term potentiation 

(LTP) and long-term depression (LTD), respectively. Stimulation intensity needs to be higher than the 

resting motor threshold (RMT). b) special protocols of rTMS, namely, intermittent Theta-Burst Stimulation 

(iTBS) and continuous TBS (cTBS). cTBS delivers a train of spTMS consisting of 3 TMS pulses at 50Hz and 

repeats this train at 5Hz for about 40s to induce LTP.  iTBS utilizes the same spTMS train at 5Hz in the 

first 2s of every 10s and repeats for about 190s to induce LTD. c) Pair associative stimulation (PAS) 

combines pairs of TMS and Median Nerve Stimulation (MNS) delivered with proper timing – around 25ms 

or 10ms interstimulus intervals (ISI) to excite (PAS25) or inhibit (PAS10) cortical areas, respectively.   

Figure adapted from Di Pino et al., 2014. 
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2.2.3 Pair associative stimulation 

Paired Associative Stimulation (PAS) was first proposed by Mariorenzi et al., 1991 and Stefan, 

2000, which consists of pairs of TMS and Median Nerve Stimulation (MNS) delivered with proper 

interstimulus intervals (ISI) (see Fig.2.3c). Stefan, 2000 invented this protocol inspired by the 

concept of STDP from the animal study (Levy and Steward, 1983), which is also known as 

Hebbian learning (Hebb, 1949) mentioned in section 2.1. This means that TMS stimulation excites 

the pyramidal cells mimicking a postsynaptic spike, and somatosensory activations induced by 

MNS propagate to pyramidal cells along the motor cortex, acting as a presynaptic spike. Many 

studies have implemented this theory and reproduced the work of Stefan, 2000 noninvasively on 

the human brain using PAS, for instance on the primary motor (M1) cortex (Carson and Kennedy, 

2013), somatosensory (S1) cortex (Müller-Dahlhaus, Ziemann and Classen, 2010) and dorsal-

lateral pre-frontal cortex (DLPFC) (Casula et al., 2016).  

MEPs before and after PAS interventions are usually acquired by 10 to 20 spTMS, as shown in 

Fig.2.4a and c. The averaged pre- and post-PAS MEP peak-peak amplitudes are then compared by 

calculating the ratio between them (see Fig.2.4b). If this ratio is larger than 1 it indicates the 

excitability increase and vice versa. As shown in Fig.2.4b, ISI around 25ms (PAS25) usually 

induces LTP and ISI of 10ms (PAS10) usually induces LTD (Stefan, 2000; Wolters et al., 2003, 

2005a). It requires around 100 pairs of stimulations to have the desired modulation that could last 

for more than 30 minutes (Stefan, 2000; Stefan et al., 2002; Lee et al., 2017). The ISI could be 

refined individually using N20+5ms or N20-5ms for PAS25 and PAS10, respectively (Carson and 

Kennedy, 2013) to improve the efficiency (see Fig2.4c). Where N20 latency (Allison et al., 1991) 

can be predefined by conducting electrical stimulation at the wrist (e.g., Median Nerve) and 

measuring response using two bipolar EEG electrodes located at CP3 and CP4 in 10-20 system. 

This latency estimates the propagation time of electric signal (induced by MNS) from the wrist 

(e.g., Median Nerve) to the somatosensory cortex.  

PAS has been utilized in many applications. For instance, it could enhance the motor learning 

process (Jung and Ziemann, 2009); may provide a rehabilitative approach for stroke patients by 

promoting inter-hemispheric connectivity (Michou et al., 2012, 2014a); can help in understanding 

the mechanism of reduced plasticity on preventing seizures (Strigaro et al., 2015); and indicated 
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that motor cortex plasticity reduction might not progress during the development of the mild 

cognitive impairment (MCI) (Lahr et al., 2016).  

We selected PAS to modulate the cortical excitability in Chapters 6 and 7 due to the following 

advantages: 1) It triggers mechanisms of ‘heterosynaptic plasticity’, meaning that the activity of a 

particular neuron induces changes in synaptic connections strength between other neurons, which 

are highly involved in epilepsy (Chandler et al., 2003). Therefore, we could reproduce in healthy 

subjects a ‘model of epilepsy’, where phasic changes of brain excitability (by spTMS) occur on 

top of stable enhanced excitability (by PAS); 2) The interval between stimulation pairs is relatively 

longer than rTMS (around 10s to 20s (Suppa et al., 2017)) and the number of paired stimulation is 

sufficient (e.g., 100) to assess both the hemodynamic response to single paired pulses and the 

build-up of ongoing excitability changes and plasticity induction. 3) PAS might have higher 

efficiency when inducing LTP on the motor cortex than using TBS, as shown by Player et al., 

2012. 

 

Fig2.4 Demonstration of Paired Associative Stimulation (PAS). a) a typical PAS experiment protocol 

which consists of PAS intervention in the middle of two spTMS sessions, used to measure the MEP peak-

peak amplitude changes, therefore, indicating the effects of PAS on cortical excitability, figure adapted 

from Stefan, 2000. b) reflection of spike-timing dependent plasticity (STDP) when using different 

interstimulus intervals (ISI) in PAS. Typically, 25ms (PAS25) and 10ms (PAS10) ISI increase and decrease 

cortical excitability, respectively. Figure adapted from Suppa et al., 2017. c) averaged MEPs measured 
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before and after PAS25, peak-peak amplitude of post-PAS25 MEP increased when comparing to pre-PAS25. 

The red vertical lines indicate the TMS stimulation artifact, which appears N20+5ms after the Median 

Nerve Stimulation (MNS). Figure from one subject of Chapter 6.   

Finally, although the ability of PAS and rTMS to elicit significant cortical excitability changes 

have been replicated in many studies (Stefan, 2000; Chen and Seitz, 2001; Wolters et al., 2005a; 

Fitzgerald, Fountain and Daskalakis, 2006; Tsang, Bailey and Nelson, 2015; Lee et al., 2017; 

Suppa et al., 2017), only 39% and 43% of 56 subjects showed expected MEP amplitude increase 

after conducting PAS25 and intermittent theta-burst stimulation (iTBS), respectively (López-

Alonso et al., 2014). The efficiency of PAS is estimated to be lower than 50% (Fratello et al., 2006; 

Suppa et al., 2017). This can be explained by the between- and within-subject variability of cortical 

plasticity modulated by non-invasive brain stimulations (Ziemann and Siebner, 2015). The 

variability might depend upon multiple factors, including state of the brain, genetic susceptibility, 

position of the coil and so on. However, a more recent study (Minkova et al., 2019) did not 

conclude any of these known factors significantly influenced PAS efficiency with 41 subjects. 

Note that high variability in the induced effects of stimulation is not exclusive of PAS: all non-

invasive brain stimulation techniques induce highly variable effects. This is also the motivation 

for conducting Bayesian data analysis in Chapter 7, so as to reduce the uncertainty of estimations 

of the effects from the methodological point of view.  

2.3 Combination of TMS and fNIRS 

2.3.1 Combination of TMS and human brain mapping  

Combining TMS with neuroimaging brings benefits to both of them. For neuroimaging, TMS 

added a new dimension to human brain mapping (Siebner et al., 2009). If we view TMS as an 

external intervention, it could bring insights into causal inferences when combined with 

neuroimaging modalities (O’Shea, Taylor and Rushworth, 2008). It has substantially expanded the 

application of TMS in neuroscience and clinical studies, and it helps us to understand brain 

functioning better. For instance, Braack, Koopman and Putten, 2016 applied single pulse TMS to 

the left/right motor cortex of healthy subjects and epilepsy patients and measured TMS evoked 

potentials (TEPs) using scalp electroencephalography (EEG). The topography of EEG showed 

different spatiotemporal patterns between healthy subjects and patients, indicating 

electrophysiology features of epilepsy. Using a similar protocol, Sarasso et al., 2014 showed more 



Chapter 2: Combination of TMS and fNIRS 

47 
 

integrated TEPs time course patterns during consciousness and less integrated patterns during 

unconsciousness state, revealing the underlaying mechanism of consciousness - engaging in 

complex activity patterns integrating more cortical areas. Concurrent TMS/fNIRS (Oliviero et al., 

1999; Noguchi, Watanabe and Sakai, 2003; Mochizuki et al., 2006) and TMS/fMRI (Navarro de 

Lara et al., 2017) studies investigated the hemodynamic response function to spTMS, 

demonstrated similar responses compared to voluntary stimulus. Resting-state functional 

connectivity study (Watanabe et al., 2014) using non-concurrent fMRI and rTMS demonstrated 

decreased functional connectivity between bilateral primary motor cortices after excitatory rTMS 

interventions, and increased connectivity after inhibitory rTMS, bring insights into how brain 

networks associates to cortical plasticity. Finally, in Chapters 6 and 7, we also combined PAS and 

fNIRS to investigate the relationship between task-related cortical hemodynamic activity and 

cortical excitability changes.  

On the other hand, brain mapping also provides a unique understanding of the mechanism of TMS 

per se while improving the efficiency of the intervention. Using resting state fMRI,  Singh et al., 

2019 proposed a personalized rTMS stimulation target of interest selection of the left dorsolateral 

prefrontal cortex (DLPFC) for clinical application in treating depression; Another study using 

fNIRS (Thomson et al., 2013) optimized the TMS coil orientation to maximizing the effects of 

signal pulse TMS and rTMS by showing the greatest relative changes in HbO amplitudes at a 45° 

angle to the midline of the head. The same group applied simultaneous inhibitory rTMS and fNIRS 

on the left prefrontal cortex and showed increased HbO over 20s to 40s after rTMS train (Thomson 

et al., 2012, 2013) and then a long term reduction of HbO (Thomson et al., 2012). These results 

reproduced the observations in an animal study on the visual cortex of the anesthetized cat using 

inhibitory rTMS and invasive optical imaging, which showed immediately increased tissue oxygen 

peaked at 10s to 15s after rTMS and followed by a 2 minutes long reduction (Allen et al., 2007). 

Such combination helped us better understand the hemodynamics modulated by TMS 

interventions.  

In practice, the combination of TMS and neuroimaging can be summarized in two categories 

proposed by Siebner et al., 2009, which are ‘online’ and ‘offline’ approaches. The following 

Fig.2.5 summarizes these two approaches. The so-called ‘online’ approach (Fig.2.5a) conducts 

concurrent TMS and neuroimaging protocol. Therefore, neuroimaging measurement could reflect 

the TMS effects at the exact moment of the simulation. However, this approach brings more 



Chapter 2: Combination of TMS and fNIRS 

48 
 

technical challenges (briefly summarized in section 2.3.2). The first ‘offline’ approach (Fig.2.5b) 

applies TMS after the neuroimaging scans. It could take benefits from the observations of 

neuroimaging results to improve TMS efficiency as mentioned above. The other ‘offline’ approach 

(Fig.2.5c) performs the neuroimaging protocol after TMS, therefore, the long-term effects of TMS, 

such as modulated cortical excitability can be probed.  

 

Fig.2.5 Demonstration of two approaches for combination TMS and neuroimaging. a) the ‘online’ 

approach in which TMS and neuroimaging are conducted simultaneously. b) one of ‘offline’ approaches 

in which TMS is performed after neuroimaging protocol and c) the other ‘offline’ approach in which TMS 

is applied before neuroimaging scans. Figure adapted from Siebner et al., 2009. 

2.3.2 Advantages and challenges of TMS/fNIRS 

Reviewing the advantages of challenges of the combination of TMS and each neuroimaging 

mobility in detail is beyond the scope of this thesis. However, it is essential to first briefly 

summarize these aspects on modalities except fNIRS to help to understand and emphasize the 

uniqueness of TMS/fNIRS.  

When investigating hemodynamic responses evoked by TMS or the effects of TMS interventions 

on hemodynamic activity and brain connectivity, fMRI is usually considered as a possible option 

because of its reliability, ease of use, high spatial resolution and sensitivity to deep brain regions 

(Bandettini et al., 1992; Kwong et al., 1992; Glover, 2011). However, combining neurostimulation 

techniques within the MRI environment is challenging (Hallett et al., 2017). There is a safety issue 

as the MRI scanners used for human brain mapping produce a homogeneous magnetic field 

ranging from 1.5 to 7 Tesla. Any ferromagnetic material inside the scanner might cause a terrible 

accident (Siebner et al., 2009). MRI compatible TMS coils have been developed (Navarro De Lara 

et al., 2015; Wang, Xu and Butman, 2017) and applied to investigate the TMS induced 

hemodynamic responses (Navarro de Lara et al., 2017). In addition, since the TMS pulse itself is 

a magnetic pulse, it could cause remarkable artifacts when scanning the brain simultaneously with 

fMRI. Therefore, special fMRI sequences (Navarro De Lara et al., 2015; Wang, Xu and Butman, 
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2017) were developed to interleave the scanning sequence and TMS sequence to ensure artifacts 

could be blocked. Although concurrent TMS/fMRI is technically available nowadays, the 

resolution of the above limitations also reduced the signal quality of fMRI. Moreover, due to the 

physical space limitation of the scanner, it is also difficult to stimulate certain brain regions such 

as the visual cortex. This explains the reason why the majority of studies have had an “offline” 

approach  (Siebner et al., 2009), meaning that hemodynamic and excitability measures are not 

taken simultaneously. 

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) 

are molecular imaging approaches that measure certain brain metabolism, such as blood flow, 

glucose and dopamine levels, using short-lived radioisotope agents (Zimmer and Luxen, 2012). 

PET and SPECT do not interface with TMS and have much less space limitation in the scanner 

(Paus et al., 1997; Paus and Wolforth, 1998) when compared to fMRI. As such, most of earlier 

(back to 1990s) applications of concurrent neuroimaging and TMS were using PET and SPECT 

(Tremblay et al., 2020). For example, the investigation on the blood flow fluctuation and its 

relationship to stimulation dose induced by 3Hz TMS trains (Fox et al., 2006); blood flow changes 

during rTMS modulation of the cortical excitability and the temporal effects of it on baseline blood 

flows (Paus et al., 1997, 1998; Siebner, Takano, et al., 2001); and the corresponding glucose 

metabolism (Siebner, Peller, et al., 2001; Kimbrell et al., 2002); release of dopamine in the basal 

ganglia following frontal stimulation (Strafella et al., 2003). However, the exposure to radiation 

in PET and SPECT limited the number of such applications (Siebner et al., 2009). Another 

limitation is the poor temporal resolution of PET and SPECT mainly allowing one or very few 

"snapshots" in time of the underlying metabolism. 

Using sources and detectors of infra-red light placed on the scalp, functional Near-Infrared 

Spectroscopy (fNIRS) is another noninvasive functional neuroimaging modality (Jöbsis, 1977; 

Scholkmann, Kleiser, et al., 2014), which allows monitoring changes in oxy-and deoxy-

hemoglobin (i.e., HbO/HbR) in the cerebral cortex, with higher temporal resolution than fMRI. 

Since it relies on the optical signal, TMS pulse does not introduce interferences. In general, this 

advantage allows the implantation of concurrent TMS and fNIRS much more straightforwardly 

than other modalities mentioned above. Similar to EEG, fNIRS acquisition is often performed with 

a cap, which does not limit the space for coil placement when stimulating different cortical areas. 

Finally, as introduced in Chapter 1, fNIRS bring more insights into the hemodynamic responses 
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by measuring both HbO and HbR concentration changes. This grants TMS/fNIRS the ability to 

provide more information when investigating stimulation effects on hemodynamics. However, 

there are still some challenges for combining TMS and fNIRS as summarized as follows. 

Alike EEG electrodes which often have a low profile design (flat and thin), some fNIRS optodes 

are designed to be vertical to the scalp (as shown in Fig.2.6a and b) for the purpose of either 1) 

providing extra space for installing springs to push optodes towards the scalp, thus increasing 

signal quality; or 2) integrating light-emitting diode (LED) source directly inside the optodes. 

These optodes will increase the distance from TMS coil to the scalp when stimulating right on top 

of the region of interest probed by fNIRS.   

 

Fig2.6 NIRS optodes from different commercial products. Vertical optodes design in a) NIRx (NIRx 

Medical Technologies, LLC, US) cap https://nirx.net/nirscaps/ and b) Shimadzu (Shimadzu Corp., Japan) 

NIRS cap https://shop.neurospec.com/shimadzul; low profile NIRS optodes design in c) Brainsight (Rogue 

Research, Inc, Canada) NIRS cap https://www.rogue-research.com/nirs/ and the same optodes used in 

Chapters 6 and 7 but installed with Collodion (Yücel et al., 2014; Pellegrino, Machado, et al., 2016; 

Machado et al., 2018) shown in d).    

The relationship of coil-scalp distance and the stimulation electric field strength was investigated 

by Stokes et al., 2013, as shown in Fig2.7a, the stimulation electric field strength decreased 

dramatically along with increased coil-scalp distance to the motor and visual cortical. In the 

meantime, the motor threshold (MT) (Rossini et al., 1994) and the phosphene threshold (PT) 

https://nirx.net/nirscaps/
https://shop.neurospec.com/shimadzul
https://www.rogue-research.com/nirs/
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(Abrahamyan et al., 2011) used for motor cortex and visual cortex stimulations, respectively, 

increased with larger distances, shown in Fig.2.7.b.  

 

Fig2.7 Relationship between TMS coil to scalp distance and stimulation strength. a) TMS stimulation 

electric field strength as a function of coil-scalp distance measured when stimulating motor cortex and 

visual cortex. b) the motor threshold (MT) and the phosphene threshold (PT) used for motor cortex and 

visual cortex stimulations as a function of coil-scalp distance. Stimulation threshold at the scalp surface 

(denoted as MT0 and PT0) as a function of distance effect slope. Each circle (PT) and triangle (MT) 

represents a subject. Figure adapted from Stokes et al., 2013. 

Therefore, a higher stimulation dose is necessary when applying TMS/fNIRS with NIRS optodes 

that are not low profile. For instance, the coil-scalp distance was even up to 15mm in Kozel et al., 

2009, which requires high stimulation dose among 12 subjects - 95% ± 5% (mean±sd) to the 

machine’s maximum intensity, when compared to TMS only study (Stefan, 2000) in which the 

group level stimulation intensity was only 44% ± 6% the maximum stimulator output (note that 

although this may vary from stimulator to stimulator, the general increase of the stimulation 

intensity is indeed considerable). To overcome this limitation, concurrent TMS/fNIRS approaches 

were categorized into two sets shown in Fig2.8 a and b, namely proximal and distal set-up proposed 

by Parks, 2013. Distal set-up (see in Fig.2.8b) means although the stimulation and fNIRS 

acquisition are conducted at the same time, the coil is placed away from the stimulation area seen 

in Nissilä et al., 2002; Mochizuki et al., 2007. Such an approach measures the hemodynamic 

response evoked in the cortical region that is functionally connected to the stimulation region. 

Whereas proximal set-up (see in Fig.2.8a) places the TMS coil directly on top of optodes. It could 

measure the TMS effects directly instead of indirectly informed by connectivity. Specially 

designed montage or optodes is then required. For instance, in Fig.2.8c optodes are placed in the 

empty space around the coil used by Noguchi, Watanabe and Sakai, 2003; Hada et al., 2006; 

Mochizuki et al., 2006; Furubayashi et al., 2013; Groiss et al., 2013; or as shown in Fig.2.8d, 
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optodes are right under the coil which requires low profile design used in the works of Näsi et al., 

2011; Thomson et al., 2011, 2012, 2013. For this thesis, all fNIRS experiments were conducted 

with Brainsight NIRS machine (Rogue-Research Inc, Montréal, Canada), which uses low profile 

optodes by default (see Fig.2.5c). Moreover, we also applied clinical adhesive – collodion to glue 

the optodes on the scalp to ensure the tight contact of them, which resulted in only a small coil-

scalp distance (~5mm) shown in Fig.2.5d.    

 

Fig2.8 Concurrent TMS and fNIRS acquisition set-up and optodes design. a) proximal set-up places the 

TMS coil directly on top of optodes b) distal set-up places the TMS coil away from the NIRS montage, the 

stimulation region is often functionally connected to the cortical region probed by NIRS, therefore, 

indirectly measure the stimulation effects. c) vertical optodes can be placed in the empty space around the 

TMS coil to allow small coil-scale distance. d) low profile designed optodes can be installed right under 

the TMS coil only lifting up it a small distance. Figure adapted from Parks, 2013     

Although fNIRS signal is electromagnetic artifacts free, TMS indeed causes other artifacts that 

could be captured by fNIRS. These artifacts are often caused by 1) systemic physiological noise; 

2) vascular contraction; 3) skeletal muscle contraction and 4) cortical sensory responses. Firstly, 

TMS could induce systemic circulatory changes (Mesquita et al., 2013; Cabrerizo et al., 2014) 

such as the amplitude of Photoplethysmographic (PPG) pulse waveforms, the pulse transit time 

and blood pressure. These circulatory changes could then influence the fNIRS signal measured at 

the same time (Kirilina et al., 2012; Tong et al., 2012, 2013; Erdoǧan, Yücel and Akin, 2014). 

Then, smooth muscle walls of blood vessels could be contracted by TMS, such contraction may 

cause local blood volume changes lasting few seconds (Näsi et al., 2011), therefore, introducing 

confounding to hemodynamic responses of the stimulation per se. Thirdly, magnetic pulses of 

TMS could also induce muscle contractions in the scalp (Mäki and Ilmoniemi, 2011). Such 

contraction would introduce two kinds of artifacts in fNIRS measurement, one is the local scalp 

blood volume changes that could be detected by fNIRS (Jasdzewski et al., 2003; Boden et al., 

2007), the other is the local motion that induces motion artifact in fNIRS signal. Finally, the ‘click’ 

sound of TMS and muscle contractions mentioned above could induce auditory and sensory 
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responses (Freche et al., 2018; Salo et al., 2020), respectively, along the cortex. These responses 

may directly introduce confounding by measuring the corresponding cortical area using fNIRS or 

indirectly bring confounding via underlying brain networks which involve the corresponding 

cortical area and the region of interest probed by fNIRS. Näsi et al., 2011 demonstrated fNIRS 

signal confounded by these artifacts by comparing the TMS/fNIRS experiment conducted on the 

motor cortex and shoulder. High temporal correlation (Pearson’s correlation ranging from 0.65 to 

0.87) of hemodynamic response induced by TMS on the motor cortex and shoulder remind us to 

carefully denoise the TMS induced artifact in fNIRS.  

Fortunately, several fNIRS denoising techniques have been proposed throughout the last decades. 

From the study design point of view, one can introduce long jitters between TMS events or even 

totally randomized stimulation pulses delivery, and then combine with simple trial averaging or 

deconvolution (Aarabi, Osharina and Wallois, 2017) to minimize non-phase locked artifacts such 

as systemic circulatory changes. Without introducing extra measurements for differentiating 

artifacts, one can apply simple regressions to denoise systemic physiological noise by using the 

global averaged fNIRS signal (Haeussinger et al., 2014) as the regressor or applying a principal 

component spatial filter algorithm proposed by Zhang, Noah and Hirsch, 2016; Zhang et al., 2017. 

In addition, so-called short distance (~5mm between source and detector of fNIRS montage) 

channels, allow better estimation of the local fluctuations within the scalp and regress it out from 

the normal distance channels, which are the mixture of cortical hemodynamic and superficial 

physiological noise (Zeff et al., 2007; Gregg et al., 2010). This approach helps in removing the 

TMS events phase-locked artifacts, and global physiological noise. A specially designed peripheral 

device measuring the low frequency blood flow oscillation placed on ear lobe(s) or finger(s) can 

be utilized to estimated more accurate systemic physiological noise (Tong et al., 2012, 2013; 

Sutoko et al., 2019) which can then be removed using recently developed general linear models 

(GLM) which involves artifacts regressions (von Lühmann, Li, et al., 2020; von Lühmann, Ortega-

Martinez, et al., 2020). Finally, one can apply fNIRS reconstructions with a mixed forward model, 

which consists of superficial physiological in the scalp and cortical hemodynamics (Shimokawa 

et al., 2012; Yamashita et al., 2016a).          

2.3.3 Hemodynamic responses evoked by spTMS 
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Taking advantage of the high temporal resolution of fNIRS, spTMS evoked hemodynamic 

responses can be measured when applying concurrent TMS/fNIRS acquisitions.  spTMS on the 

left motor cortex significantly increases HbO with a stimulation intensity of 90% and 110% RMT 

(Noguchi, Watanabe and Sakai, 2003). Increases of HbO were found when contracting the right 

first dorsal interosseous muscle and delivering spTMS with 100% AMT by Mochizuki et al., 2006. 

On the other hand, decreases of HbR were detected when the muscle was relaxed at rest and 

stimulating the left primary motor cortex at 120 and 140% AMT. Finally, significant increases of 

HbO after spTMS with intensities of 100%, 120 and 140% AMT at left M1 were reported by 

Furubayashi et al., 2013.  

Similar investigations were conducted on dorsal-lateral pre-frontal cortex (DLPFC), considering 

the application of TMS for the treatment of depression. Thomson et al., 2011 studied the 

hemodynamic responses of spTMS delivered at the left DLPFC with intensities of 90%, 100% and 

130% RMT; in contrast to the results on M1, a significant decrease of HbO was found with the 

highest dose. This observation was reproduced in Thomson, Daskalakis and Fitzgerald, 2011, 

showing significant decreases of HbO using 120% RMT intensity when comparing with a lower 

dose case (70% RMT). No differences were found when comparing spTMS and two sets of short 

(2ms or 15ms) inter stimulus interval (ISI) paired pulses. The same group reproduced this result 

again when rotating the TMS coil to be 135° to the middle headline (Thomson et al., 2013) and 

did not find significant HbO changes with a 45° scenario. In the end, spTMS at 110% RMT did 

not induce considerable hemodynamic responses showed by Curtin et al., 2017. All these studies 

seem to provide conflicting results when comparing M1 and DLPFC stimulations. These might 

indicate that spTMS elicited hemodynamics are region specific. However, none of these studies 

utilized the denoising approaches mentioned in the previous subsection, meaning that the 

conclusions might have been biased due to the systematic physiological noise or local muscle and 

vessel contractions.     

2.3.4 Effects of excitability modulations on hemodynamic responses 

Instead of spTMS, investigations on hemodynamic responses during or after cortical excitability 

modulations using TMS sequences may bring more insight into understanding the mechanism of 

neurovascular coupling and brain plasticity. Oliviero et al., 1999 applied for the first time 2 

minutes of 0.5Hz rTMS on the right M1 and found significant increases in HbO and decreases in 
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cytochrome oxidase. A more comprehensive investigation (Hada et al., 2006) using pairwise 

combinations of two simulation intensities (80% and 120% RMT) and frequencies (0.5Hz and 2Hz) 

on the left M1 showed decreased HbO lasting 60s and nonchanged HbR after all 4 interventions 

scenarios. A distal set-up study  (Mochizuki et al., 2007) found that excitatory theta burst 

stimulation (TBS) evoked HbO decreases in the contralateral side (right M1) of the stimulation, 

which was then reproduced by Kozel et al., 2009 on both ipsilateral and contralateral side using 

inhibitory rTMS (1Hz). This result was further investigated on test-retest reliability by the same 

group (Tian et al., 2012), reproducing similar observations from two rTMS sessions separated by 

2 to 3 days. Total hemoglobin concentration changes (i.e., HbT = HbO+HbR) were observed 

decreasing in bilateral M1 when stimulating left M1 using 8s rTMS at three different frequencies 

(0.5, 1, and 2 Hz) at 75% RMT (Näsi et al., 2011). The largest decrease was found at the highest 

stimulation frequency. Hirose et al., 2011; Groiss et al., 2013 applied both excitatory and 

inhibitory quadripulse rTMS (QPS), inducing bidirectional excitability modulations over the left 

M1. Decreases of HbO were found in the right M1 for both excitatory and inhibitory QPS (Hirose 

et al., 2011); and in the left M1 for the excitatory case. In contrast to all these findings, both 

increased HbO and cerebral metabolic rate of oxygen consumption (𝐶𝑀𝑅𝑂2) were observed 

ipsilaterally during inhibitory rTMS (1Hz) in Mesquita et al., 2013. This is supported by another 

study (Park et al., 2017) in which similar results were found in contralateral side of the inhibitory 

rTMS intervention.  

Inconsistent results were also illustrated in studies modulating the excitability of DLPFC. For 

inhibitory rTMS at 1Hz, decreased HbO were found ipsilaterally with stimulation intensity using 

120% (Thomson et al., 2012) and 110% (Cao et al., 2013) of RMT, respectively; contralateral in 

Hanaoka et al., 2007 and Aoyama et al., 2009 using 50% and 58% of resting MT, respectively; 

and bilaterally in Kozel et al., 2009 using 120% of RMT. In contrast, Thomson et al., 2013 reported 

bilaterally increased HbO when conducting 1Hz rTMS at 120% of RMT intensity and non-

significant HbO changes using 120% of RMT (Thomson et al., 2012). In excitatory rTMS studies 

using 110% of RMT,  Cao et al., 2013 and Curtin et al., 2017 found bilaterally and ipsilaterally 

increased HbO, respectively. Similar results were obtained by Shinba et al., 2018 when stimulating 

with 110% of RMT.   

It is interesting to notice three points when summarizing these studies, 1) all of them involved a 

small sample size, the number of subjects ranges from 4 to 17 with a mean of 11 and a standard 
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deviation of 3. This may explain inconsistent findings since the combination of a small sample 

size and statistical significance test often leads to this issue, which will be further discussed in 

Chapter 3. It is also one of the main motivations of Chapter 7, in which Bayesian data analysis was 

applied to deal with this issue and attempted to make more reliable inferences; 2) only three studies 

reported HbR results. In Chapters 6 and 7, we indeed not only reported HbO and HbR results, but 

the observations on them were also consistent; and 3) stimulation intensity varies from study to 

study, and higher stimulation intensities might provide more observable effects. This was 

confirmed in Chapter 7 without conducting an experiment using different intensities but inferred 

from probabilistic modelling.   

2.3.5 TMS effects on task evoked hemodynamics   

As we investigated in Chapters 6 and 7, several studies aimed to reveal the effects of TMS 

interventions on task hemodynamic responses. The first work was conducted on motor task-related 

hemodynamic response and resting state. Increases of HbO lasting 40 minutes after inhibitory 

rTMS were found in the contralateral M1 of the stimulation site (Chiang et al., 2007). Significantly 

increased HbO measured on the frontal lobe was observed when conducting a match-to-sample 

task under the condition that the right parietal cortex was excited by 5Hz rTMS (Yamanaka et al., 

2010). Tupak et al., 2013 showed bilaterally reductions of emotional stroop task-evoked HbO after 

the inhibitory continuous theta burst stimulation (cTBS) applied on the left DLPFC. Another 

inhibitory cTBS applied on the right-DLPFC showed reduced HbO during dictator game in the 

right DLPFC comparing to sham (Maier et al., 2018). In the end, decreased HbT was reported 

bilaterally in DLPFC when performing a cognitive task (i.e., speed of processing) after both 

excitatory rTMS and intermittent theta burst stimulation (iTBS), indicating increased efficiency of 

task performance. In Chapters 6 and 7, using PAS interventions and a finger tapping task, we found 

that enhanced excitability corresponds to higher hemodynamic activity and vice versa. It is of 

interest to notice that, for the first time, we demonstrated the results in this topic using NIROT 

(mentioned in Chapter 1), which provided spatiotemporal reconstruction maps of both HbO and 

HbR, rather than channel space analysis involved in these studies.      

2.4 Summary 

This chapter first introduced one of the principles of neuronal plasticity - STDP. We then reviewed 

the TMS related techniques on modulating human brain cortical plasticity noninvasively and 
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mainly focused on PAS which was used in Chapters 6 and 7. Our motivation for using PAS was 

explained in the meantime by briefly summarizing these commonly used TMS protocols. The 

followed reviews on the challenges and advantages of combining TMS and neuroimaging 

modalities introduced our rationale for applying TMS/fNIRS in this thesis. Finally, a literature 

review on TMS/fNIRS brought the general methodology development and findings on this topic, 

therefore, emphasizing the originalities and contributions of our works in Chapters 6 and 7.  
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Chapter 3  

Introduction of Bayesian Data Analysis  

This chapter will introduce fundamental aspects of Bayesian data analysis. It is a complete 

workflow, not only conducting appropriate statistical inferences of scientific research results, but 

also a true implementation of the “hypothesis-driven” philosophy into the whole research process 

from study design to data analysis and final inferences. Bayesian modeling explicitly addresses 

problems of small sample size and large variability of the data, which often exist in non-invasive 

human brain studies but are rarely carefully taken into account. 

Bayesian is the principle of the MEM reconstruction introduced in Chapter 1 and was also the key 

approach in data analysis presented in Chapter 7. In this state of the art chapter, we introduce the 

workflow of Bayesian data analysis as follows: 1) the principle of Bayesian framework, which is 

Bayes’ theorem and probability modeling; 2) posterior sampling methodologies, describing 

several technical evolutions of corresponding implementation strategies; 3) diagnostics of the 

posterior distribution sampling to evaluate the accuracy and reliability of Markov chains; 4) 

statistical inferences using Bayesian framework and a brief comparison with the conventional 

frequentist approach, i.e., statistical significance hypothesis tests.   

Last but not least, as Bayesian data analysis is not often seen in publications of our field, this 

chapter also attempts to clarify some misunderstandings and update our views on the latest 

Bayesian methodologies. 

3.1 Probabilistic modeling 

When statistically inferring a research finding, the Bayesian approach uses probability to quantify 

underlying uncertainty. According to the general Bayesian data analysis workflow (Gelman et al., 

2013a, 2020), there are mainly three steps involved, 

1) Probabilistic modeling: constructing a full probability model which encapsulates the scientific 

problem, data collection process, and observable/unobservable variables using Bayes’ theorem. 

2) Estimating the joint posterior distribution: conditioning the probabilistic model by the 

observed data and solving the posterior distribution of each parameter using analytical or 

numerical resolutions.  
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3) Evaluating the model fitting and inferring results: assessing how reliable the model fitting is 

and answering the research questions using Bayesian inferences. 

This section will introduce the first step regarding probability modeling. Since this is a 

comprehensive topic, we will only focus on the techniques applied in this thesis, especially in 

Chapter 7.  

3.1.1 Bayes’ rule 

In the 18th century, an English mathematician Thomas Bayes (1702-1761), proposed his famous 

conditional probability theory based on physical simulations of the probability theory, known as 

Bayes’ rule (Thomas and Laplace, 1763).  Here is a brief and simplified derivation of it, let us 

denote the joint probability of two events A and B as 𝑃𝑟(𝐴, 𝐵), which can be expressed as, 

   𝑃𝑟(𝐴, 𝐵) =  𝑃𝑟(𝐴)𝑃𝑟(𝐵|𝐴) (3.1) 

where 𝑃𝑟(𝐴) is the probability of occurrence of event A, and 𝑃𝑟(𝐵|𝐴) is the probability of event 

B to happen, given that event A has occurred, also denoted as the conditional probability of 

observing B knowing A has occurred. Similarly, the joint probability 𝑃𝑟(𝐴, 𝐵)  can also be 

expressed as, 

   𝑃𝑟(𝐴, 𝐵) =  𝑃𝑟(𝐵)𝑃𝑟(𝐴|𝐵) (3.2) 

where 𝑃𝑟(𝐵)  is the probability of occurrence for event B, and 𝑃𝑟(𝐴|𝐵)  is the conditional 

probability of event A to happen, knowing that event B has occurred. Combining equation 3.1 and 

3.2 yields, 

   𝑃𝑟(𝐴)𝑃𝑟(𝐵|𝐴) = 𝑃𝑟(𝐵)𝑃𝑟(𝐴|𝐵) 

𝑃𝑟(𝐴|𝐵) =
𝑃𝑟(𝐴)𝑃𝑟(𝐵|𝐴)

𝑃𝑟(𝐵)
 

(3.3) 

Therefore, the conditional probability, i.e., 𝑃𝑟(𝐴|𝐵), can then be estimated using Bayes’ rule 

presented in equation (3.3), i.e., from the conditional probability of B knowing A as well as the 

marginal probabilities of A and B. Unfortunately, this highly relevant work was not published in 

Bayes’ lifetime.  
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Nowadays, when Bayesian data analysis is mentioned, it is not only referring to Bayes’ rule, which 

is only the theory about conditional probability. Instead, it is considering the framework called 

Bayes’ theorem (Gelman et al., 2013), which was independently rediscovered based on Bayes’ 

rule (Thomas and Laplace, 1763) and extensively developed for real applications (Laplace, 1810) 

by a French scholar Pierre-Simon Laplace (1749-1827).  This work is considered as the first 

“inversion of the probability” (Thomas and Laplace, 1763), which means solving the posterior 

distribution of parameter 𝜃  conditioned on the observed data 𝑦 . In Bayes’ theorem, the prior 

distributions of the unknown parameters are denoted as 𝑝(𝜃). The data distribution or likelihood, 

also known as sampling distribution, is defined as 𝑝(𝑦|𝜃).  The posterior distribution of interest, 

i.e., 𝑝(𝜃|𝑦) of parameters conditioned on the observed data is then expressed as,  

   
𝑝(𝜃|𝑦) =

𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
 (3.4) 

where 𝑝(𝑦) is the average likelihood of the data over all possible values of 𝜃. This expression 

looks similar to the conditional probability in equation 3.3. However, the breakthrough Laplace 

contributed to, which is now the core of the Bayesian framework, was the development of analytic 

tools for computing the numerator of equation 3.4. In practice, calculating the probability of 

𝑝(𝜃|𝑦) in a certain range given by 𝜃 ∈  [𝜃1, 𝜃2], denoted as 𝑃𝑟(𝜃 ∈  [𝜃1, 𝜃2]|𝑦), is equivalent of 

calculating the area under the joint probability density function. Thus, one needs to solve the 

following integral, 

   
∫ 𝑝(𝜃)𝑝(𝑦|𝜃)𝑑𝜃

𝜃2

𝜃1

 (3.5) 

In the original work of Bayes and Laplace, data distribution function 𝑝(𝑦|𝜃) is describing the 

probability of a randomly thrown ball lands on the right side of the previous randomly thrown ball. 

It was modelized as a binomial distribution,  

   𝑝(𝑦|𝜃) = 𝐵𝑖𝑛(𝑦|𝑛, 𝜃) 

=  (
𝑛

𝑦
) 𝜃𝑦(1 − 𝜃)𝑛−𝑦 

(3.6) 
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Laplace solved the integral presented in equation 3.5 with two assumptions. First, a non-

informative prior for parameter 𝜃  using a uniform distribution was applied, therefore, 𝑝(𝜃) is 

constant along the range 𝜃 ∈ [𝜃1, 𝜃2]. Second, the shape of the posterior density function was 

approximated by a normal distribution. The mean of this normal distribution is equal to the mode 

(i.e., maximum of probability density function) of the joint posterior distribution. In binomial case, 

the mode is 𝜃  =  𝑦/𝑛 . The variance of it was estimated from the curvature of the posterior 

distribution at mode location 𝜃. Such an approach is known as the normal approximation and 

inspired other posterior approximation techniques categorized as the variational Bayesian (Gelman 

et al., 2013a). These approaches are usually computationally efficient since they rely on an 

analytical solution – the parametric form of the joint posterior distribution is approximated by an 

assumed known distribution.  However, these approximations may provide inaccurate and biased 

estimations of the posterior distribution, when the approximated parametric form is far from the 

underlying real joint posterior distribution. 

In modern Bayesian data analysis (Gelman et al., 2013a), 𝑝(𝜃|𝑦) is numerically sampled from the 

joint posterior distribution 𝑝(𝜃)𝑝(𝑦|𝜃) using Markov Chain Monte Carlo (MCMC) (Neal, 1993; 

Gelman et al., 2013a), while omitting the normalization factor 𝑝(𝑦), therefore, 

   𝑝(θ|𝑦) ∝ 𝑝(θ)𝑝(𝑦|θ) (3.7) 

This approach will be introduced later in section 3.2. To summarize this subsection, as well as to 

address some common misunderstandings of Bayesian: the Bayesian framework is not only about 

utilizing the Bayes’ rule. In fact, the conventional significant test approach also makes use of Bayes’ 

rule in a specific manner, which will be mentioned later in section 3.4.2. The uniqueness of 

Bayesian is to use Bayes’ theorem more generally, which is a combination of 1) prior distribution 

of parameters that are not or cannot be observed but can be assumed based on prior knowledge; 2) 

hypothesized associations between parameters and data, expressed by a probabilistic model; 3) 

posterior sampling and diagnostics and 4) inferences using posterior predictive simulations. We 

will introduce these important concepts in the following sections.  

3.1.2 Modeling the association between data and parameters 
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Modeling is the mathematical expression of the association between parameters and data. There 

are various ways of constructing models, but two principles may be of interest to consider when 

applied in scientific research.  

The first one is to apply a hierarchical structure, also called multilevel modeling. This is useful for 

studies in neuroimaging field, which attempt to infer both individual and group level effects. The 

underlying motivation of hierarchical modeling is all about how we can handle the variances of 

the data at the different levels of the analysis. Suppose we conducted an experiment on a group of 

subjects, and each subject went through several trials of the same experiment. The conventional 

statistics would analyze the trials of each individual first and then infer group-level effects by 

summarizing statistics among subjects. This approach has “amnesia” by assuming all subjects are 

unrelated (infinite between-subject variance), therefore, nothing can be shared between each 

subject, meaning no pooling of information. The other opposite way would be to put all trials 

together and summarize statistics directly, this time ignoring the heterogeneity of the subjects (zero 

between-subject variance), by completely pooling all the information from all subjects and all trials.  

On the other hand, hierarchical modeling assumes that subjects share some common features, and 

heterogeneity also exists between them. This means between-subject variance is a finite number 

(neither infinite nor zero mentioned above), which is more realistic and is called partial pooling. 

Partial pooling allows the variance to propagate from lower levels to higher levels. The estimated 

group-level effects of the experiment are then more accurate and reliable since it respects the 

natural structure of the data. Moreover, since everything is encoded in one model and solved 

simultaneously, group-level information also helps to regularize individual-level inferences and 

vice versa. These features are critical for the neuroimaging field, in which between- and within-

subject variability are often discussed but not always carefully modeled.  

The second principle is to try to construct scientific models rather than general models. Every 

research question is unique and requires a bespoke (customized) model to encounter data that are 

collected differently and hypotheses that are assumed based on specific knowledge. This approach 

will also push us to think generatively, hence, the resulted inferences may be closer to the truth. 

One probable bad example in the neuroimaging field is the abuse of the General Linear Model 

(GLM) in some literature. A common and simple procedure is to consider all possible confounding 

factors as additional regressors (e.g., age, gender, cognitive test scores) into a GLM model and 
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claim that confounding effects are therefore regressed out. However, it will not disentangle the 

effect of confounding factors as expected but may rather result in biased inferences, since the 

underlying interactions are not considered. For instance, age value per se may not quantify the 

effect of age on the variable of interest. Therefore, simply adding age values as a regressor into 

the linear model assumes the age effects are linear and homogeneous along the age range, which 

is often not the case. Fortunately, the Bayesian framework suggests several modeling techniques 

addressing these issues. For instance, when looking for the effect of age, it can be modeled as an 

ordered categorical predictor when assuming the effect is consistent within several subranges of 

age. Bayesian inferences could then estimate the cut-off age points as hyperparameters. When 

assuming a nonlinear continuous effect of age, it can be modeled as an autoregressive (AR) model 

or using a specific kernel for a Gaussian process model.  

Good examples of bespoke modeling are for instance studies in computational neuroscience 

(Sotero and Trujillo-Barreto, 2007; Jirsa et al., 2017; Hashemi et al., 2020) or calibrated fMRI 

(Hoge et al., 1999; Gauthier and Hoge, 2012, 2013),  modeling neuroimaging data or metabolism 

processes generatively, while involving scientific knowledge in the design, from animal or human 

published studies. They reflect the hypothesis of a specific research question. In most studies, we 

do not know the exact underlying relationship between quantities of interest, especially when using 

non-invasive measures of brain activity. However, multiple models can be constructed based on 

different hypotheses. Then we can compare the proposed models to find the one(s) offering the 

best trade-off between data fitting and predicting abilites. Actually, model comparisons can bring 

us much more insights into the research question than inferring any single model. Bayesian model 

comparisons could be of great interest when studying neuroimaging data, for instance, studies from 

our group assessing the correspondence between several modalities like EEG source imaging and 

fMRI responses (Daunizeau et al., 2007; Grova et al., 2008).  

3.1.3 Weakly informative prior 

Once a model is defined and data are collected, one needs to determine the prior distribution for 

each parameter to complete the probabilistic modeling. This aspect is actually the most 

misunderstood part of Bayesian, often criticized as being a “subjective” approach because of the 

use of priors. Debating whether any scientific approach is “subjective” or not will always bring 

circular because the definition of so-called “objective” is vague and inconsistent. This section will 
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introduce best practices in choosing priors while trying to clarify some of those misunderstandings 

from technical views.  

Early Bayesian approaches were using the so-called “non-informative” priors. For instance, in 

Laplace’s work (Thomas and Laplace, 1763) mentioned in section 3.1.1, a uniform distribution 

was used as the prior. Since all possible values of a parameter will have the same probability in a 

uniform distribution, it is then considered as “non-informative”. In that sense, no new information 

is introduced and the approach is as “objective” as conventional approaches. If one only checks 

the mode (peak(s) in probability density function) of the posterior distribution, maximum 

likelihood-based optimization approaches will end up with the same results. However, Bayesian 

still contains the advantage of estimating the whole “posterior” distribution of the parameter rather 

than only its mode.  

We often have some basic knowledge of the parameters included in a typical model. For instance, 

if the parameter is human height, at least we know it should be positive; it should have a mean and 

a finite variance. Such weak information could help us in selecting priors from known probability 

distributions, and then these priors can be referred to as “weakly informative” priors. How to 

choose the priors depends on the specific parameter of interest, but a general rule is to follow the 

concept of maximum entropy introduced in Chapter 1, when solving an ill-posed inverse problem. 

We just need to choose the distribution which has the maximum entropy, with respect to the 

knowledge constraints we could have. Then the prior would contain the highest uncertainty and 

would be as “objective” as possible. For instance, when assuming a parameter should contain real 

value and with finite variance, Gaussian distribution is the one that corresponding to maximum 

entropy. When assigning prior for a variance parameter (i.e., a scale), which should be a non-

negative real number and has a unique mean, then exponential distribution is the one providing 

maximum entropy. When a parameter of interest is a binary event with a fixed probability (e.g., 

tossing a coin), Binomial distribution provides maximum entropy. Furthermore, one can introduce 

field-specific knowledge from the literature review to set reasonable values for parameters in prior 

distributions and to help the model regulating outliers. Such regulation is always more 

conservative than conventional arbitrary thresholding since the thresholding value itself will have 

a distribution to allow more or fewer outliers, and the further away from the value to the threshold, 

the lower plausible it will be.  
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If one is skeptical that the chosen prior is still too “subjective” or even tends to hack the expected 

results, one can perform the prior predictive simulation to assess the impact of the choice of a prior. 

The prior predictive simulation consists in simulating data using only the model and prior 

distributions, i.e., when considering no observed data. This is a purely generative process aimed 

at exploring the parameter values spanned by the model before introducing any observed data. 

Therefore,  by comparing the distribution of such simulated data to some known knowledge, one 

can evaluate whether or not the priors are too informative and could eventually bias the results. In 

Chapter 7, we performed prior predictive simulation for linear regressions. We demonstrated that 

our choice of priors allowed us to span a large proportion of possible linear regressions (i.e., post- 

versus pre-PAS MEP to assess the effect of PAS), spanning actually more possibilities of 

regression lines than when considering arbitrary thresholding for outlier rejections. More 

importantly, when conducting such an approach, it forces us to do a comprehensive literature 

review of the research topic, and consider the variance of each parameter into the probabilistic 

model, rather than just discussing the variability of results as a limitation at the end of the study.     

3.2 Estimation of the posterior distributions 

Once probability modeling is complete, the next step will be the estimation of the joint posterior 

distributions by conditioning the model with observed data, which is a probabilistic model fitting 

procedure. This step is the most critical part of the Bayesian framework and requires significant 

efforts, especially on computation algorithms and power (not available decades ago). This is the 

main reason why the Bayesian approach was rarely considered in research applications during the 

20th century. This section will briefly summarize the efforts that have been made throughout the 

history of the development of Bayesian and mainly focus on Hamiltonian Monte Carlo, which was 

used in Chapter 7.   

3.2.1 Analytical solution  

As mentioned previously in section 3.1.1, the original Bayesian approach proposed by Thomas 

and Laplace, 1763 was an analytical resolution using the normal approximation. Instead of using 

the uniform distribution as prior (i.e., 𝑝(𝜃)) in equation 3.4 proposed by Laplace, one can use a 

Beta distribution as the prior. It is proven that the resulted posterior density function 𝑝(θ|𝑦) will 

have the same parametric form (i.e., Beta distribution) as the prior itself. This brings algebraic 

convenience and accuracy for the analytical solution, since 𝑝(θ|𝑦) can be calculated in closed 
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form by knowing the exact parametric of the posterior distribution. Such an approach often relies 

on the property called conjugacy (Gelman et al., 2013a), which means if the likelihood distribution 

𝑝(𝑦|θ) belongs to a certain distribution family ℱ, and the prior distribution 𝑝(𝜃) belongs to a 

certain distribution family 𝒫, then the family 𝒫 is conjugate for ℱ when the resulted posterior 

distribution 𝑝(θ|𝑦) satisfying the following expression,  

   𝑝(θ|𝑦) ∈ 𝒫 for all 𝑝(𝑦|θ) ∈ 𝒫 and 𝑝(𝜃) ∈ ℱ (3.8) 

There are several but not many known conjugate priors, mainly from the exponential family. For 

instance, Bata distribution is a conjugate prior for binomial likelihood; Gamma distribution is a 

conjugate prior for Poisson and exponential likelihood; normal distribution is a conjugate prior for 

normal likelihood. Therefore Beta, Gamma, and normal distributions are often used as priors 

traditionally in Bayesian models. The disadvantages of such analytical approaches are less 

flexibility regarding the choice of the prior especially introducing difficulties when dealing with 

multiparameter models.    

3.2.2 Grid approximation 

Without constraining the prior by a specific form for a particular likelihood distribution, it is 

impossible to solve the posterior distribution analytically. Therefore, numerical techniques are then 

required to approximate the analytical solutions. The most straightforward numerical approach, 

which is pedagogical to understand other more advanced approaches, is the grid approximation, 

also called grid sampling. The idea behind grid approximation is simple: although we cannot solve 

the continuous probability density function of each parameter, a finite grid of parameter values can 

be used to approximate its distribution. The algorithm for grid approximation can be summarized 

as follows (McElreath, 2020): 1) define the grid on probability value range [0, 1] according to the 

preference of the resolution; 2) calculate the corresponding prior and likelihood values on each 

grid location; 3) calculate the posterior value by multiplying the prior and likelihood values; 4) 

normalize the resulted posterior by dividing the sum of all posterior values. The accuracy of this 

approach is highly influenced by the resolution of the grid. The more grid points we define, the 

more accurate the resulting posterior distributions will be. However, this approach may only work 

for models with very few parameters. For instance, if one proposes to sample the posterior with 

100 grids, the required number of multiplications to compute for a model with 𝑁 parameters will 
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then be 𝑁100. It will more likely take “forever” to finish calculations for most real applications. 

Moreover, it is also tricky to set grid locations and resolution because the probability density 

function varies from parameter to parameter and the joint distribution is even more complicated. 

It is not easy to know which region in the probability range should be explored with more samples 

and sufficient density of the grid. This difficult issue can be explained by the following example: 

imagine one needs to sample a 1D Gaussian using 9 homogeneously distributed grid points shown 

on the top marginal distribution of Fig.3.1. The typical set, which contains the most probability 

density, of this 1D Gaussian would only be sampled by 3 grid points. Therefore the efficiency (i.e., 

the portion of points used for sampling the typical set over the total number of grid points) would 

only be 3/9 = 1/3. This will become even worse when increasing the dimensionality of the model, 

for instance, in Fig.3.1, to sample a 2D Gaussian with the same resolution, one needs 9 × 9 = 81 

grid points, whereas the typical set of this 2D Gaussian is only sampled from 3 × 3 = 9 grid points, 

resulting in an even lower efficiency 1/9.  

 

Fig.3.1 Demonstration of grid approximation for a 2D Gaussian distribution. Joint distribution density 

is shown in the middle as a heat map. Marginal density (blue) is illustrated on the side of each axis. A 9 × 9 

grid is used to sample the joint distribution. The typical set of marginal density was sampled by only 3 grid 

points. The efficiency is even worse when sampling joint distribution, only 9 grid points (points in the black 

shade) were used, resulting in lower efficiency of 1/9  
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The numerical approach and its limitation illustrated above are at the origin of the development of 

more advanced methods – sampling the joint distribution numerically along with high efficiency 

and accuracy. 

3.2.3 Markov Chain Monte Carlo 

Nowadays, the general approach used to sample the posterior probability distribution is called 

Markov Chain Monte Carlo (MCMC) (Robert and Casella, 1999; Brooks et al., 2011). It is a 

stochastic process that explores the target probability distribution by so-called “random walk”. It 

randomly initiates a starting point of a Markov chain and then “random walk” through the target 

joint distribution by accepting/rejecting a proposal to move to the next randomly assigned new 

location. After a sufficient amount of iterations, the stationary distribution of the Markov chain is 

close enough to the target distribution. The proof of the convergence can be found in Chapter 11 

of Gelman et al., 2013.  

Note that MCMC is a general approach. The actual algorithm used in Bayesian is called the 

Metropolis-Hastings algorithm. Before we briefly summarize the process in Table3.1, let us recall 

some essential notations: 𝑝(𝜃|𝑦) is the posterior distribution, which is our target to sample by 

MCMC; 𝜃 is the parameter of the model, y is the observational data. 

Table3.1 Process of Metropolis-Hastings algorithm. 

Step 1. Initiate a starting point for parameter 𝜃, denoted as 𝜃0,  the corresponding location of 

it on the posterior distribution 𝑝(𝜃|𝑦) will be the starting point of a Marko chain. Note 

that this initialization needs to satisfy 𝑝(𝜃0|𝑦) > 0.  

Step 2. Define a so-called jumping distribution, 𝒥𝑡(𝜃∗|𝜃𝑡−1), that propose a randomly 

assigned new location for the chain to proceed at time 𝑡 − 1 , 𝑡 =  1,2,3. . . 𝑇 . ∗ 

represents a proposal but not yet the actual next move of the chain. 

Step 3. Randomly sample a 𝜃∗ according to 𝒥𝑡(𝜃∗|𝜃𝑡−1), therefore, the chain has a proposed 

location to move. 

Step 4. Calculate the acceptance ratio of the proposal defined as 𝑟 =  
𝑝(𝜃∗

|𝑦)/𝒥𝑡(𝜃∗
|𝜃𝑡−1

)

𝑝(𝜃𝑡−1
|𝑦)/𝒥𝑡(𝜃𝑡−1

|𝜃∗
)
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Step 5. Random sample a value 𝛼 ∈ [0, 1] from a uniform distribution.  

Step 6. Accept or reject the proposal by, 𝜃𝑡  =  {
𝜃∗,         𝑟 ≥ 𝛼

𝜃𝑡−1,       𝑟 < 𝛼 
 , where 𝜃𝑡  is the next 

location for the chain to proceed. 

Step 7. Repeat the above process with 𝑇 iterations. Since the acceptance ratio 𝑟 is related to 

𝑝(𝜃∗|𝑦), the higher the density of 𝑝(𝜃∗|𝑦) the higher probability 𝜃 tends to stay at 𝜃∗, 

the target posterior distribution 𝑝(𝜃|𝑦) is then estimated by the probability density of 

𝜃 among all locations 𝜃𝑡.  

Step 8. Launch several Markov chains with different initiations and mix them to get a stable 

estimation of 𝑝(𝜃|𝑦) 

According to Step 4-6, the current state of a Markov chain is dependent on the previous one. 

Therefore, the samples are not always independent from each other. It is rather a lag-1 

autocorrelation sequence (green trajectory in Fig.3.2).  In fact, the accuracy and efficiency of a 

Markov chain are related to so-called effective samples that are independent from each other.  

The other problem of the Metropolis-Hastings algorithm is the low acceptance ratio since the 

jumping proposal is randomly defined, and it is not guaranteed to jump to a higher density location 

on the target distribution. Computations times for rejected proposals will be wasted. Fig3.2 

demonstrates the Metropolis-Hastings algorithm to sample a bivariate normal distribution. After 

200 draws, it has not yet fully explored the target distribution. Actually, the first 500 samples are 

considered as a warm-up phase in which the Markov chain is still wandering outside the typical 

set of the target distribution. These samples are often discarded for final inferences. In the end, 

even with 1000 samples in Fig3.2 right column, the contrast (between the high-density region and 

low-density tails) of the 2D Gaussian is not well shown. This can be explained by the low 

proportion of independent samples.    
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Fig.3.2 Demonstration of Metropolis-Hastings algorithm when sampling a bivariate normal distribution. 

The ground truth distribution is (𝜃1, 𝜃2) ~ 𝒩𝑜𝑟𝑚𝑎𝑙(0, 0.8,1), meaning two 1D Gaussian distributions 

(mean=0, standard deviation =1) that have a correlation of 0.8. The blue ellipse covers the 89% Highest 

Posterior Density (HPD). One chain is conducted and the trajectory is shown with green bars. Each sample 

is represented by a red dot. The first column showed the first 200 draws from the initial point. The second 

column showed 1000 draws after removing the first 500 draws as the warm-up samples. Figures are 

produced from the adaption of the code in https://github.com/avehtari/BDA_course_Aalto       

To solve the low acceptance ratio problem, one of the most famous MCMC algorithms called 

Gibbs sampling was proposed by Geman and Geman, 1984; Gelfand and Smith, 1990. It is actually 

a special case of Metropolis-Hastings algorithm which was implemented in the software package 

called Bayesian inference using Gibbs sampling (BUGS) (Gilks, Thomas and Spiegelhalter, 1994; 

Lunn et al., 2009) that is not maintained anymore. Gibbs sampling allows high-efficiency jumps 

by replacing the jumping distribution, 𝒥𝑡(𝜃∗|𝜃𝑡−1) with the conjugate prior distribution introduced 

previously in section 3.2.1. It could be proved that doing so the resulted acceptance ratio will 

always equal to 1, therefore, accepting all jumps. However, using conjugate priors limits the 

number of parameters in the model, meaning the priors together may not be conjugate for the joint 

distribution condisering all parameters rather than one of them. The solution is then to divide the 

parameters into few subsets in which conjugate priors are available. Then each subset of 

parameters will be sampled one by one from the conditional distribution of the other parameters. 

This is why Gibbs sampling is also called alternating conditional sampling. Fig3.3 illustrate the 

Gibbs sampling version of Fig.3.2, the alternating property is reflected by the fact that resulting 

https://github.com/avehtari/BDA_course_Aalto
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Markov chain trajectory is either horizontal or vertical, so sampling 𝜃1  (horizontal) and 𝜃2 

(vertical) in an alternating way. The chain jumped to the typical set of the target distribution rapidly 

even if it was initialized around the boarder. This observation demonstrates the high acceptance 

ratio (almost every jumping proposal is accepted by Metropolis-Hastings algorithm in Table.3.1) 

of Gibbs sampling. It actually took only 50 samples to complete the warm-up phase. The 1000 

sample draws in the right panel of Fig.3.3 also demonstrated better contrast of the estimated 2D 

Gaussian distribution. 

 

Fig.3.3 Demonstration of Gibbs sampling when sampling the same 2D Gaussian distribution in Fig.3.2. 

The first column showed the first 200 draws from the initial point. The second column showed 1000 draws 

after removing the first 50 draws as the warm-up samples. Figures are produced from the adaption of the 

code in https://github.com/avehtari/BDA_course_Aalto  

However, Gibbs sampling is still a “random walk” approach and can only be efficient when 

sampling independent parameters one by one. Even though reparametrizing the model into subsets 

that are independent from each other may satisfy this requirement, the statistical concept called 

“concentration of measure” (McElreath, 2020) will push us to seek more advanced algorithms. 

This concept is based on the fact that the general goal when solving a model is actually about 

estimating the statistical expectation of each parameter. The statistical expectation is defined as 

∫ 𝑝(𝜃)𝑑𝜃, were 𝑝(𝜃) is the probability density function (PDF) of parameter 𝜃. On one hand, the 

further a certain value of 𝜃 is to the mode of its PDF (i.e., peak(s) of PDF), the smaller 𝑝(𝜃) will 

be (see curve 𝑝(𝜃) in Fig.3.4). On the other hand, the corresponding 𝑑𝜃 will become larger while 

𝜃 is departing to the mode of its PDF, especially in a high dimensional space (see curve 𝑑𝜃 in 

https://github.com/avehtari/BDA_course_Aalto
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Fig.3.4). For instance, the geomtary of a 3D Gaussian distribution is a ball, then the unit volume 

(𝑑𝜃) increases while 𝜃 is departing from the mode (i.e., the center of the ball). Hence, the product 

of 𝑝(𝜃)  and 𝑑𝜃 , which is the term 𝑝(𝜃)𝑑𝜃  required to calulate the integral ∫ 𝑝(𝜃)𝑑𝜃  for 

estimating the statistical expectation, is actually maximized as a trade-off between these two terms 

(𝑝(𝜃) and 𝑑𝜃) while increasing the distance (𝜃 − 𝜃𝑀𝑜𝑑𝑒) from a certain value of 𝜃 to the mode of 

its PDF (see curve 𝑝(𝜃)𝑑𝜃 Fig.3.4). Therefore, the highest density of the statistical expectation of 

any parameter does not distribute around the mode of the corresponding distribution. Moreover, 

this observation is especially true when increasing the dimensionality of the model since the higher 

the dimensionality of the parameter space, the larger 𝑑𝜃 will be while increasing the distance 𝜃 −

𝜃𝑀𝑜𝑑𝑒. This is also the reason why nowadays maximum likelihood or optimization based point 

estimation is raising some concerns when dealing with high dimensionality models. All in all, 

these issues led the developers to sample the entire posterior at one time rather than part by part. 

This introduces the last algorithm, Hamiltonian Monte Carlo, described in the next section and 

applied in Chapter 7.   

 

Fig.3.4 Demonstration of the concept called concentration of measure. The horizontal axis shows the 

distance, 𝜃 − 𝜃𝑀𝑜𝑑𝑒, between a certain point on the probability distribution to the mode of it. Each line 

respectively represents the value of  𝑝(𝜃), 𝑑𝜃 and 𝑝(𝜃)𝑑𝜃 as a function of 𝜃 − 𝜃𝑀𝑜𝑑𝑒 . The figure is 

adapted from https://betanalpha.github.io/assets/case_studies/probabilistic_computation.html 

3.2.4 Hamiltonian Monte Carlo 

Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987) is a brilliant idea to efficiently 

explore the target distribution with a high acceptance ratio and more independent samples. It 
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actually considers the target distribution as a physics model involving momentum and kinetic 

energy. To introduce how HMC works, we could use the toy example presented in Fig3.5a. The 

target distribution is still the same 2D Gaussian considered in previous sections. Each possible 

value of the distribution is considered as a coordinate in 2D space, and the log transformation of 

the density function is considered as a frictionless multi-dimensional surface that can be imagined 

as a bowl. Then, we assign “gravity” to space by putting the Earth in the center of the distribution 

(bottom of the bowl). If we initialize the kinetic energy and direction to a little ball (grey arrow in 

Fig.3.5), it will glide through the target distribution according to the gradient (reflected its 

corresponding “gravity”) on each location. In the end, the trajectory of the little ball (black curve) 

will actually follow the exact shape of the target distribution. In practice, the number and size of 

the sampling step (black dots in Fig3.5a) need to be predefined. It is preferred to enlarge the 

distance (green arrow) between the current sample and the next accepted proposal, meaning to 

have more steps in the trajectory (black dots). Therefore, HMC is a unique sampling framework 

resulting in more independent samples, because the distance from the current sample to the next 

one is large. However, inappropriate step size may result in the trajectory make a “U-turn” as 

shown in Fig3.5.b, in which the proposal will be too close or even overlaps with the current sample.  

 

Fig.3.5 Demonstration of Hamiltonian Monte Carlo (HMC) algorithm. a) one sampling proposal made 

by HMC. The grey arrow showed the location of the current sample and the proposed direction of the 

kinetic energy to flick the little ball; the black curve illustrates the trajectory of this trial; the green arrow 

represents an accepted proposal (origin as the current sample and destination as the next sample). b) 
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demonstration of the problem called U-turn, in which the trajectory made a turn and coincidentally came 

back to the current sample. The chain will still work but become much less efficient. Simulation adapted 

from MCMC demos in https://chi-feng.github.io/mcmc-demo/  

To avoid such circumstances and improve the efficiency of HMC, an advanced algorithm called 

No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014) was developed to adaptively set the 

step numbers and size of the sampling in the warm-up phase, therefore, preventing the trajectory 

to make a U-turn. NUTS will launch two trajectories in opposite directions, and sample the 

posterior at the time when these two trajectories start turning around. This approach will prevent 

U-Turn, and in the meantime, make sure the distances between neighbor samples are relatively 

long, therefore, resulting in more independent samples in total. Fig3.6 illustrates this sampling 

strategy. In this example, NUTS is so efficient that it is actually explores the target distribution by 

following its exact shape, i.e., a donut, which will be quite challenging for Metropolis-Hastings 

algorithms. Finally, the most recent implementation of HMC, based on the idea of NUTS, is 

entitled dynamic HMC (Betancourt, 2017). Dynamic HMC was developed to replace the slice 

sampling approach with a multinomial sampling approach for each trajectory, therefore achieving 

massive improvement in the performance and accuracy. 

 

Fig.3.6 Demonstration of No-U-Turn Sampler (NUTS). A donut shape 2D distribution is the target 

distribution in this case. NUTS can detect when the sampling trajectory is turning and then sample right 

away. The proposal is not close to the current location, therefore allowing more independent samples. 

https://chi-feng.github.io/mcmc-demo/
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HMC algorithm allows exploring this complex target distribution efficiently by following its shape. 

Simulation adapted from MCMC demos in https://chi-feng.github.io/mcmc-demo/   

In practice, thanks to the drastic improvement in Bayesian data analysis workflow in the last 

decade, Bayesian inferences have become more accessible, and estimated posterior distributions 

are also becoming more accurate and reliable. NUTS and dynamic HMC are implemented in a 

Bayesian statistical modeling and computation platform called Stan (Stan Development Team, 

2020b). Not only the functionalities of these samplers but also the diagnostic statistics (introduced 

in section 3.3) of the resulted HMC chains are provided in Stan, to allow accurate and reliable 

Bayesian data analysis. In Chapter 7, the R Version 4.0.3 (R Core Team, 2020) distribution of the 

Stan Probabilistic programming languages (Stan Development Team, 2020b) - RStan package 

Version 2.21.2 (Stan Development Team, 2020a) was used to program and solve the models with 

the advanced dynamic HMC.  

3.3 Markov Chain Diagnostic statistics  

Although sampling algorithms are evolving more efficiently nowadays, the target distribution to 

estimate may still be complex and challenging to sample. Therefore, diagnostics of the sampling 

process is a crucial step for evaluating the accuracy and eventual biases of the estimated posterior 

distributions. In this chapter, we introduce the diagnostic statistics proposed for MCMC sampling. 

Some of them were designed for general MCMC approaches, whereas others were specifically 

proposed for HMC.  

3.3.1 General MCMC diagnostics 

Convergence diagnostic consists in evaluating whether a Markov chain converges, which means 

the sampled distributions are close enough to the true target distribution. A common approach is 

to launch multiple chains initialized randomly and visualize if the traces of all chains mixed well, 

meaning each chain sequence achieves stationarity and no single chain looks different from others. 

Fig3.7 shows the traces of 4 chains mixed together. In the left column, all four chains mixed well 

so that none of them looks different and all chains reached stationarity, whereas in the right column, 

two chains (green and red curves) did not become stationary, and all chains did not mix well. Note 

that the term stationary means the range of 𝜃 value sampled by each chain is not changing while 

increasing the number of interactions, for instance, the 𝜃 values in the left figure stay in the range 

from -2 to 2 along the whole range of interactions.  

https://chi-feng.github.io/mcmc-demo/
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Fig3.7 Visualization of MCMC chain traces to diagnose convergence. Each color represents one chain 

trace. a) 4 converged chains showing homogenous explorations of the whole range of 𝜃, and there is no 

obvious difference among all chains, indicating they mixed well,  whereas in b) all 4 chains did not converge, 

each chain preferred to sample the values of  𝜃 that are only part of its full range.  

Quantitative approaches have been proposed to assess chain convergence, for instance, the 𝑅̂ 

metric proposed by Gelman and Rubin, 1992; Brooks and Gelman, 1998. It calculates for each 

parameter as the ratio of between-chains variance over the within-chain variance, 

   

𝑅̂ =
√

𝑁 − 1
𝑁 𝑊 +

1
𝑁 𝐵

𝑊
 

(3.9) 

where 𝑊 and 𝐵 are within- and between- chain variance, respectively and  𝑁 is the number of 

samples per chain. In detail, the between-chains variance 𝐵 is calculated as the standard deviation 

among all chains, and the within-chain variance 𝑊 is represented as the weighted sum of the root 

mean square of the standard deviation within every single chain. If the chains mixed well, this ratio 

should be close to 1. 𝑅̂ would be larger than 1 if the chains did not mix well, indicating that one or 

more chain(s) did not converge. The recommended criteria for convergence is 𝑅̂ <  1.05. For more 

details of the latest version of 𝑅̂ estimation used in Chapter 7, i.e., split-𝑅̂, please refer to Vehtari 

et al., 2020.  

The other commonly used diagnostic metric is the effective sample size, i.e., 𝑁𝑒𝑓𝑓, describing how 

many independent samples are drawn by chains. It is estimated by the following (Vehtari et al., 

2020), 

   
𝑁𝑒𝑓𝑓 =

𝑁

1 + 2 ∑ 𝜌𝑡
∞
𝑡=1

 (3.10) 
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where 𝜌𝑡 is the estimated autocorrelation at lag 𝑡. When all samples are independent from each 

other, 𝜌𝑡 = 0 at any lag, 𝑁𝑒𝑓𝑓 = 𝑁. There is no strict threshold for 𝑁𝑒𝑓𝑓, but it is recommended to 

have at least 400 independent samples for each parameter (Vehtari et al., 2020).    

3.3.2 HMC diagnostic statistics 

While sampling a “high curvature” target distribution, meaning the geometry of the parameter 

space contains areas that are not smooth, an inappropriate large step size could miss-sample these 

regions. The resulted samples of the target distribution will then be biased. This sampling issue is 

usually caused by the parameterization of the models, especially when involving multivariate and 

hierarchical structures. Parameters tend to be dependent from each other in these models, therefore, 

creating a “high curvature” geometry also called Neal’s Funnel (Neal, 2003), which is difficult to 

sample. Thanks to the fact that HMC was developed based on a physics model (Neal, 2010; 

Betancourt and Girolami, 2013), such issues will be diagnosed as “transition divergences”. This 

diagnostic is specific for HMC sampler, mainly invigilating the miss-match of the step size of the 

HMC chain (e.g., the resolution of the sampler) and the target distribution geometry. For example, 

when an overly large step size was assigned to a chain, it will “fly off” while approaching the “high 

curvature” region, and this pathological behavior can be indicated by infinite energies (Betancourt, 

2017) and recorded by the algorithm. Note that reparameterization of the model into non-centred 

form could primarily reduce the chance of divergence, as we conducted in Chapter 7.  

Poorly chosen parameters of the HMC can also decrease the efficiency or even result in the 

incomplete exploration of the target distribution, especially for distributions with heavy tails. This 

issue can be diagnosed again by taking advantage of the physics feature of HMC, comparing the 

marginal energy density (denoted as 𝜋𝐸) and the energy transition density (denoted as 𝜋∆𝐸) of the 

chain. One can visualize it by superimposing the histograms of 𝜋𝐸  and 𝜋∆𝐸 , the higher the 

efficiency, the more overlapping the two distributions will be. Such diagnosis analysis is also 

illustrated in Chapter 7. Quantitatively, the Energy-Bayesian Fraction of Missing Information (E-

BFMI) (Rubin, 2004) has been proposed as a specific diagnostic for HMC sampler to evaluate the 

efficiency of the sampling process (Betancourt, 2016). Empirically, an E-BFMI value below 0.3 

is considered problematic, please refer to (Betancourt, 2016, 2017) for more detailed explanations 

and the derivation of E-BFMI indices.  

3.4 Bayesian Inferences vs. frequentist inferences 
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Statistical inferences of the research findings help us to evaluate how plausible an underlying 

hypothesis can be considered as true and how reliable the findings are. In this section, we will 

compare Bayesian inferences and conventional frequentist inferences.  

3.4.1 Bayesian inferences 

Bayesian inferences summarize the parameter in terms of probability conditioned on the observed 

data and regularized by prior knowledge. Since Bayesian models allow the estimation of the 

posterior probability distribution, one can then calculate any statistics of interest, such as the mean, 

variance and assess how plausible it is to have the parameter value within a specific range. 

Mathematically it can be proven that the uncertainty of the posterior, 𝑠𝑑𝐵𝑎𝑦𝑒𝑠, is lower than both 

the uncertainty of prior (𝑠𝑑𝑝𝑟𝑖𝑜𝑟) and data (𝑠𝑑𝑑𝑎𝑡𝑎) as follows (Gelman, Hill and Vehtari, 2020),   

   
𝑠𝑑𝐵𝑎𝑦𝑒𝑠 =

1

√
1

𝑠𝑑𝑝𝑟𝑖𝑜𝑟
2 +

1
𝑠𝑑𝑑𝑎𝑡𝑎

2

 

(3.11) 

Moreover, once the posterior distribution is known, one can estimate the uncertainty of any 

observed but also unobserved quantity of interest, by a given equation that describes the 

relationship between the unobserved quantity of interest and observed ones. This unique process 

is called posterior predictive simulations (Gelman et al., 2013a; McElreath, 2020). It estimates the 

posterior distribution of any quantity of interest by predicting it via the fitted model and feeding 

new simulated data. For instance, in Chapter 7, we performed posterior predictive simulations to 

infer what is the probability distribution of cortical excitability changes of each intervention at 

both group and individual level; and what would have been the probability distribution of cortical 

excitability changes when increasing the intensity of TMS pulses if we would have reconducted 

the experiments. Such a process makes Bayesian inferences substantially flexible and unique, fully 

exploiting the posterior distributions learned from the observed data and the model. In the end, 

since it is based on probabilistic modeling, Bayesian inferences could also be updated by involving 

new real data to improve the estimation (i.e., Bayesian updating) and conveniently performing 

meta-analysis by sharing models and data between research groups. In terms of open science, it 

would also be much easier for communications because all we need to share is the model and prior, 

which encapsulate the hypothesis (prior knowledge) and data analysis, rather than descriptive 
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analysis pipelines that are difficult to reproduce (Eklund, Nichols and Knutsson, 2016; Botvinik-

Nezer et al., 2020).  

3.4.3 Comparison with frequentist inferences 

Traditional statistical inferences, known as frequentist inferences, are based on only summarizing 

observed data features, without using priors. To estimate an accurate distribution, independent 

sampling of the data and a sufficiently large number of observations are required. The most applied 

frequentist technique in scientific research, especially in the neuroimaging field, is the statistical 

significance test, which was first proposed by Sir Ronald Fisher (Fisher, 1925, 1955) in the 20th 

century. It estimates the probability of an effect equal to or larger than a predefined value denoted 

as the null hypothesis. Since the accuracy of this estimated probability function to the true one is 

largely affected by the data sampling process and the number of samples, the reliability of the 

inference is then depends on the randomness of the data sampling and the number of data samples. 

To reject the null hypothesis, an arbitrary threshold - 95% is often considered (we usually report 

the type Ⅰ error threshold so 5% as the probability of detecting an effect when data are following 

the null hypothesis distribution, i.e., probability of making a false positive error). According to the 

original work of Sir Ronald Fisher (Fisher, 1925), the selection of this threshold simply considers 

convenience. Therefore, there is no link of this threshold to a scientific conclusion. This approach 

achieved success in practice, especially in agriculture studies in which a large number of data 

samples could be collected; the experimental conditions could be precisely controlled such as the 

temperature, humidity, soil nutrition, and the experiment outcomes could be accurately quantified 

such as the plant height, width and the amount of productions.   

Recently, many scientific fields are facing a replication crisis, including neuroscience and 

neuroimaging as reported in several studies (Craig M. Bennett et al., 2010; Carp, 2012; Eklund, 

Nichols and Knutsson, 2016; Botvinik-Nezer et al., 2020). It has been emphasized by the 

American Statistical Association (ASA) since (Wasserstein and Lazar, 2016) that the problem of 

applying significant tests is that they tend to overestimate the effect size in scientific research 

findings. Nature has published a comment article entitled “Retire statistical significance” (Valentin 

Amrhein, Sander Greenland, 2019), which gathered more than 800 signatories calls from scientists 

all over the world. The ASA conducted another special issue (Wasserstein, Schirm and Lazar, 

2019) after (Wasserstein and Lazar, 2016) to highlight this problem and provided several 
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alternative statistical solutions including Bayesian inferences. More importantly, overestimated 

scientific findings could propagate through the literature reviews and study designs when 

conducting new projects. These claims remind us to embrace the variation that we cannot reduce, 

instead of claiming overestimated significant findings. 

Arguing on the legitimacy of the statistical significance test was beyond the scope of this thesis, 

but we are referring here three inspiring points from statistical literature that may kindly remind 

us what are we concluding when referring to significance inferences, 

1) With a large enough amount of samples, anything can be statistically significant when 

compared to a null hypothesis (Gelman, Hill and Vehtari, 2020). To illustrate this point, one 

can simply perform a simulation: let us draw 1000 samples from a normal distribution 

𝒩𝑜𝑟𝑚𝑎𝑙(0.01,1), these samples are very noisy since the standard deviation is 100 times 

larger than the mean. Then we conduct a one sample t-test against 0 (i.e., null hypothesis). 

The resulted p-value is 0.33 indicating the test cannot reject the hypothesis that the true mean 

is 0. On the other hand, what if we draw 10,000 samples? Then the test will reject the null 

hypothesis with a p-value equal to 0.0004. Which experiment result is then true? The actual 

mean is indeed 0.01 according to our simulations. In fact, the effect size, the number of 

samples, and significance have a so-called “triangle association”, meaning significance can 

be achieved either by 1) large effect size and small sample size or 2) small effect size and 

large sample size.  

2) The difference between “significant” and “not significant” is not itself statistically significant. 

This is actually the title of the paper published by Gelman and Stern, 2006. One can 

demonstrate this by an analytical calculation inspired by Gelman, Hill and Vehtari, 2020; 

McElreath, 2020: suppose two research groups did the same experiment independently, one 

found an effect of 15 ± 5 (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) and the other obtained 5 ± 5. The first 

one is results significantly larger than 0, while the second one is not. Then the difference 

between the two measures is characterized by 10 ± 7 , since the standard error of the 

difference between two independent sample sets is √52 + 52 ≈ 7. Therefore, the difference 

itself between these two resutls is not significantly different from zero. Then, if the idea of 

significant test is strictly followed, we may not want to differentiate the works for publication, 
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which showing either significant or non-significant results, because the difference between 

them may be statistically non-significant.  

3) In section 3.1.1, we mentioned that the significance test approach also makes use of Bayes’ 

rule in a specific way. Let us illustrate this point according to the original investigation 

(Ioannidis, 2005) and the example in Chapter 3 of  McElreath, 2020. When one results in 

statically significant results, the probability of the corresponding conclusion being true, 

𝑃𝑟(𝑡𝑟𝑢𝑒|𝑠𝑖𝑔), can be expressed as,   

   
𝑃𝑟(𝑡𝑟𝑢𝑒|𝑠𝑖𝑔) =

𝑃𝑟(𝑠𝑖𝑔|𝑡𝑟𝑢𝑒)𝑃𝑟(𝑡𝑟𝑢𝑒)

𝑃𝑟(𝑠𝑖𝑔)
 

=
𝑃𝑟(𝑠𝑖𝑔|𝑡𝑟𝑢𝑒)𝑃𝑟(𝑡𝑟𝑢𝑒)

𝑃𝑟(𝑠𝑖𝑔|𝑡𝑟𝑢𝑒)𝑃𝑟(𝑡𝑟𝑢𝑒) +  𝑃𝑟(𝑠𝑖𝑔|𝑓𝑎𝑙𝑠𝑒)𝑃𝑟(𝑓𝑎𝑙𝑠𝑒)
 

(3.12) 

where “𝑠𝑖𝑔” represents the significant test being positive and “true” means the scientific 

hypothesis being true. 𝑃𝑟(𝑠𝑖𝑔|𝑡𝑟𝑢𝑒) is the probability of significant results conditioned on 

the true hypothesis, which is actually 0.95 when using the conventional significance threshold. 

𝑃𝑟(𝑠𝑖𝑔|𝑓𝑎𝑙𝑠𝑒) is the false positive rate equal to 0.05 in this case. 𝑃𝑟(𝑡𝑟𝑢𝑒) is the probability 

of a true (correct) hypothesis being proposed, which is called the “base rate” (Ioannidis, 2005). 

When conducting the null hypothesis test with a randomly sampled large data set of a well-

controlled experiment, we actually assumed 𝑃𝑟(𝑡𝑟𝑢𝑒)  =  0.5, since it is a binarized test 

saying whether the hypothesis is true or not. However, the base rate varies a lot in different 

fields and in general, it is much lower than 0.5. For instance, McElreath, 2020 suggested an 

empirical base rate of 0.01 in general. Let us assume an even higher base rate than 0.01, e.g., 

1 out of 10 hypotheses is true, by substituting it into equation 3.12 with a power of 0.95 and a 

false positive rate of 0.05, 𝑃𝑟(𝑡𝑟𝑢𝑒|𝑠𝑖𝑔) would only be 0.68, meaning the probability of the 

corresponding conclusion being true is just about 68%. A more detailed demonstration curves 

of 𝑃𝑟(𝑡𝑟𝑢𝑒|𝑠𝑖𝑔) as a function of statistical power, false positive rate and base rate can be 

found in Ioannidis, 2005.  

3.5 Conclusions 

This chapter introduced the essential workflow of modern Bayesian data analysis.  This workflow 

consists of 1) probabilistic modeling 2) posterior sampling 3) Markov chain diagnostic and 4) 
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Bayesian inferences. Probabilistic modeling is the key concept behind MEM reconstruction 

methodology for NIROT introduced in Chapter 1 and Chapter 4. The whole hierarchical Bayesian 

workflow was considered in Chapter 7 to handle TMS/NIRS data sets which often consist in small 

sample sized data and large between-/within-subject variances. When compared to conventional 

frequentist inferences, Bayesian has unique features, such as 1) the integration of observation and 

prior knowledge, 2) the estimation of the whole probability density function of the parameter of 

interest, 3) partial pooling to reduce the uncertainty of the estimation and 4) flexible statistical 

inferences using posterior predictive simulations. These advantages may bring more insights into 

analyzing data and inferring results for neuroimaging research.    
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Chapter 4 

Manuscript 1: Diffuse Optical Reconstructions of Functional Near 

Infra-Red Spectroscopy Data using Maximum Entropy on the Mean 

Context 

As outlined in Chapter 1, fNIRS measures non-invasively fluctuations of both HbO and HbR in 

the human head with high temporal resolution (Jöbsis, 1977; Scholkmann, Klein, et al., 2014). 

Conventional fNIRS data analysis considers so-called channel space analysis applying the mBLL, 

which makes strong assumptions on homogeneous concentration changes of hemoglobin within 

the underlying region(s) of interest, hence, inducing systemic errors in the estimations of 

HbO/HbR concentration changes (O’Leary et al., 1995; Pogue et al., 1995). NIROT has been 

proposed to provide more accurate estimations, since it does not assume such homogeneity and 

reconstructs the light intensity changes measured in the channel space along the underneath 

cortical area. The main technical challenge to conduct NIROT is to solve the inverse problem. It 

is ill-posed and requires specific regularization to obtain a unique solution. In the NIROT field, 

most studies are applying a linear reconstruction method – MNE based on Tikhonov 

regularization. It is well known in EEG/MEG source imaging field that MNE trends smearing the 

reconstruction maps and provides false positives outside the ground truth region (Ding, 2009). Our 

lab developed and carefully evaluated a non-linear reconstruction method – MEM, which was 

shown to provide accurate spatial reconstructions in the context of EEG/MEG source imaging, for 

several applications (Chowdhury et al., 2016; Heers et al., 2016; von Ellenrieder et al., 2016; 

Hedrich et al., 2017; Aydin et al., 2020; Pellegrino et al., 2020).  In this study, our main objective 

was to adapt the MEM framework to conduct NIROT reconstructions. This adaptation required 

two original improvements of the MEM method per se: 1) the implementation of depth weighting 

in the MEM framework, to compensate potential biases caused by the large reduction of fNIRS 

sensitivity when increasing cortical depth; 2) the improvement of MEM temporal accuracy, 

allowing the investigation of fNIRS hemodynamic responses within a broader time window. The 

proposed new MEM version for NIROT was comprehensively validated using realistic simulations 

performed considering different true generator locations, sizes, and depths as well as under 
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different SNRs. 

This manuscript is currently in revision in Scientific Reports journal, Zhengchen Cai, Alexis 

Machado, Rasheda Arman Chowdhury, Amanda Spilkin, Thomas Vincent, Ümit Aydin, Giovanni 

Pellegrino, Jean-Marc Lina, Christophe Grova. Diffuse Optical Reconstructions of Functional 

Near Infra-Red Spectroscopy Data using Maximum Entropy on the Mean. A preprint is also 

available on bioRxiv (Cai et al., 2021).  

Abstract 

Functional near-infrared spectroscopy (fNIRS) measures the hemoglobin concentration changes 

associated with neuronal activity. Diffuse optical tomography (DOT) consists of reconstructing 

the optical density changes measured from scalp channels to the oxy-/deoxy-hemoglobin (i.e., 

HbO/HbR) concentration changes within the cortical regions. In the present study, we adapted a 

nonlinear source localization method developed and validated in the context of Electro- and 

Magneto-Encephalography (EEG/MEG): the Maximum Entropy on the Mean (MEM), to solve 

the inverse problem of DOT reconstruction. We first introduced depth weighting strategy within 

the MEM framework for DOT reconstruction to avoid biasing the reconstruction results of DOT 

towards superficial regions. We also proposed a new initialization of the MEM model improving 

the temporal accuracy of the original MEM framework. To evaluate MEM performance and 

compare with widely used depth weighted Minimum Norm Estimate (MNE) inverse solution, we 

applied a realistic simulation scheme which contained 4000 simulations generated by 250 different 

seeds at different locations and 4 spatial extents ranging from 3 to 40cm2 along the cortical surface. 

Our results showed that overall MEM provided more accurate DOT reconstructions than MNE. 

Moreover, we found that MEM was remained particularly robust in low signal-to-noise ratio 

(SNR) conditions. The proposed method was further illustrated by comparing to functional 

Magnetic Resonance Imaging (fMRI) activation maps, on real data involving finger tapping tasks 

with two different montages. The results showed that MEM provided more accurate HbO and HbR 

reconstructions in spatial agreement with the main fMRI cluster, when compared to MNE. 

4.1 Introduction 

Functional near-infrared spectroscopy (fNIRS) is an non-invasive functional neuroimaging 

modality. It detects changes in oxy-/deoxy-hemoglobin (i.e., HbO/HbR) concentration within head 
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tissues through the measurement of near-infrared light absorption using sources and detectors 

placed on the surface of the head (Scholkmann, Kleiser, et al., 2014; Yücel et al., 2021). In 

continuous wave fNIRS, the conventional way to transform variations in optical density to 

HbO/HbR concentration changes at the level of each source-detector channel, is to apply the 

modified Beer Lambert Law (mBLL, Delpy et al., 1988). This model assumes homogeneous 

concentration changes within the detecting region, i.e., ignoring the partial volume effects which 

indicate the absorption of light within the illuminated regions varies locally. This assumption 

reduces the quantitative accuracy of HbO/HbR concentration changes when dealing with focal 

hemodynamic changes (Boas, Brooks, et al., 2001; Strangman, Franceschini and Boas, 2003). 

In order to handle these important quantification biases associated with sensor level based analysis, 

diffuse optical tomography (DOT) has been proposed to reconstruct, from sensor level measures 

of the optical density, the fluctuations of HbO/HbR concentrations within the brain (Arridge, 

1999). This technique not only provides better spatial localization accuracy and resolution of the 

underlying hemodynamic responses (Boas et al., 2004b; Joseph et al., 2006b), but also avoids 

partial volume effect in classical mBLL, hence achieves better quantitative estimation of 

HbO/HbR concentration changes (Boas, Brooks, et al., 2001; Strangman, Franceschini and Boas, 

2003).  DOT has been applied to reconstruct hemodynamic responses in sensory and motor cortex 

during median nerve stimulation (Dehghani, White, et al., 2009) and finger tapping (Boas et al., 

2004b; Yamashita et al., 2016a); to conduct visual cortex retinotopic mapping (Zeff et al., 2007; 

White and Culver, 2010; Eggebrecht et al., 2012) and to simultaneous image hemodynamic 

responses over the motor and visual cortex (White et al., 2009). 

To formalize DOT reconstruction, one needs to solve two main problems. The first one is the 

forward problem which estimates a forward model or sensitivity matrix that maps local absorption 

changes within the brain to variations of optical density changes measured by each channel (Boas 

et al., 2002b). The second problem is the inverse problem which aims at reconstructing the 

fluctuations of hemodynamic activity within the brain from scalp measurements (Arridge, 2011). 

The forward problem can be solved by generating a subject specific anatomical model, describing 

accurately propagation of light within the head. Such anatomical model is obtained by segmenting 

anatomical Magnetic Resonance Imaging (MRI) data, typically into five tissues (i.e., scalp, skull, 

cerebrospinal fluid (CSF), white matter and gray matter), before initializing absorption and 

scattering coefficients values for each tissue type and for each wavelength (Fang, 2010; Machado 
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et al., 2018). Solving the inverse problem relies on solving an ill-posed problem which does not 

provide a unique solution, unless specific additional constraints are added. The most widely used 

inverse method in DOT is a linear approach based on Minimum Norm Estimate (MNE) originally 

proposed for solving the inverse problem of Magnetoencephalography (MEG) and 

Electroencephalography (EEG) source localization (Hämäläinen and Ilmoniemi, 1994).   It  

minimizes  the  L2  norm of the reconstruction error along with Tikhonov regularization (Boas, 

Dale and Franceschini, 2004; Zeff et al., 2007; Dehghani, Eames, et al., 2009; Eggebrecht et al., 

2012, 2014; Tremblay et al., 2018). Other strategies to solve DOT inverse problem have also been 

considered, such as sparse regularization using the L1 norm (Süzen, Giannoula and Durduran, 

2010; Okawa, Hoshi and Yamada, 2011; Kavuri et al., 2012; Prakash et al., 2014; Tremblay et al., 

2018) and Expectation Maximization (EM) algorithm (Cao, Nehorai and Jacobs, 2007). A non-

linear method based on hierarchical Bayesian model for which inference is obtained through an 

iterative process (Shimokawa et al., 2012, 2013a) has been proposed and applied on finger tapping 

experiments in (Yamashita et al., 2016a). 

Maximum Entropy on the Mean (MEM) framework was first proposed by Amblard, Lapalme and 

Lina, 2004 and then applied and carefully evaluated by our group in the context of EEG/MEG 

source imaging (Grova, Daunizeau, et al., 2006; Chowdhury et al., 2013). The MEM framework 

was specifically designed and evaluated for its ability to recover spatially extended generators 

(Chowdhury et al., 2016; Grova et al., 2016; Heers et al., 2016; Pellegrino, Hedrich, et al., 2016). 

We recently demonstrated its excellent performances when dealing with focal sources (Hedrich et 

al., 2017) and when applied on clinical epilepsy data (Chowdhury et al., 2018; Pellegrino et al., 

2020). In addition to its unique ability to recover the spatial extent of the underlying generators, 

we also demonstrated MEM’s excellent accuracy in low SNR conditions, with the ability to limit 

the influence of distant spurious sources (Chowdhury et al., 2016; Heers et al., 2016; von 

Ellenrieder et al., 2016; Hedrich et al., 2017; Aydin et al., 2020; Pellegrino et al., 2020). 

We believe that these important aspects should be carefully considered in the context of fNIRS 

reconstruction. The first one is the ability to accurately recover the spatial extent of the underlying 

hemodynamic activity for both focal and extended generators. The second one is to provide robust 

reconstruction results when data SNR decreases, especially when considering the fact that it is 

challenging to maintain a good intra-subject consistence using continuous-wave fNIRS due to its 

relatively low SNR (Chen et al., 2020). Therefore, our main objective was to adapt the MEM 
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framework for fNIRS reconstruction and carefully evaluate its performance. Moreover, fNIRS 

reconstruction results tend to be biased towards more superficial regions, because the light 

sensitivity profile decreases exponentially with the depth of the generators (Strangman, Li and 

Zhang, 2013). To overcome this bias, we implemented and evaluated a depth weighted variant of 

the MEM framework.  

The article is organized as follows. The methodology of depth weighted MEM for DOT is first 

presented. Then, we described our validation framework using realistic simulations and associated 

validation metrics. fNIRS reconstruction using MEM was compared with widely used depth 

weighted Minimum Norm Estimate (MNE) inverse solution. Finally, illustrations of the methods 

on finger tapping fNIRS data set acquired with two different montages from 6 healthy subjects are 

provided and compared with functional Magnetic Resonance Imaging (fMRI) results. 

4.2 Material and methods 

4.2.1 fNIRS reconstruction 

To perform fNIRS reconstructions, the relationship between measured optical density changes on 

the scalp and wavelength specific absorption changes within head tissue is usually expressed using 

the following linear model (Arridge, 1999):  

   𝑌 = 𝐴𝑋 + 𝑒 (4.1) 

where 𝑌  is a matrix (𝑝 × 𝑡 ) which represents the wavelength specific measurement of optical 

density changes in 𝑝  channels at 𝑡 time samples. 𝑋  (q ×  t) represents the unknown wavelength 

specific absorption changes in 𝑞  locations along the cortex at time 𝑡 . 𝐴  (𝑝 × 𝑞) is called the light 

sensitivity matrix which is actually the forward model relating absorption changes in the head to 

optical density changes measured in each channel. Finally, 𝑒  ( 𝑝 × 𝑡 ) models the additive 

measurement noise. Solving the fNIRS tomographic reconstruction problem consists in solving an 

inverse problem which can be seen as the estimation of matrix 𝑋 (i.e., the amplitude for each 

location 𝑞 at time 𝑡). However, this problem is ill-posed and admits an infinite number of possible 

solutions. Therefore, solving the DOT inverse problem requires adding additional prior 

information or regularization constraints to identify a unique solution. 

In DOT studies, anatomical constraints can be considered by defining the reconstruction solution 
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space (i.e., where 𝑞 is located) within the gray matter volume (Boas and Dale, 2005) or along the 

cortical surface (Huppert et al., 2017; Machado et al., 2021). In EEG and MEG source localization 

studies (Dale and Sereno, 1993; Grova, Daunizeau, et al., 2006; Chowdhury et al., 2013), it also 

is common to constrain the reconstruction along the cortical surface. In this study, the 

reconstruction space was considered as the mid surface defined as the middle layer between gray 

matter/pial and gray/white matter interfaces (Fischl et al., 2002).  

4.2.2 Minimum Norm Estimation (MNE) 

Minimum norm estimation is one of the most widely used reconstruction methods in DOT (Zeff 

et al., 2007; Dehghani, White, et al., 2009; White et al., 2009; White, 2010; Eggebrecht et al., 

2012, 2014; Yamashita et al., 2016a). Such estimation can be expressed using a Bayesian 

formulation which solves the inverse problem by estimating the posterior distribution 𝑃(𝑋|𝑌) =

𝑃(𝑌|𝑋)𝑃(𝑋) 𝑃(𝑌)⁄  (i.e., the probability distribution of parameter 𝑋 conditioned on data 𝑌). A 

solution can be computed by imposing Gaussian distribution priors on the generators 𝑋 (𝑃(𝑋) =

𝑁(0, Σ𝑠
−1)) and the noise 𝑒 (𝑃(𝑒) = 𝑁(0, Σ𝑑

−1)). Σ𝑑 is the inverse of the noise covariance which 

could be estimated from baseline recordings. Σ𝑠 is the inverse of the source covariance which is 

assumed to be an identity matrix in conventional MNE. 

The Maximum a Posteriori (MAP) estimator of the posterior distribution 𝑃(𝑋|𝑌) can be obtained 

using maximum likelihood estimation: 

   𝑋𝑀𝑁𝐸̂ = 𝑎𝑟𝑔𝑚𝑖𝑛(‖(𝑌 − 𝐴𝑋)‖Σ𝑑

2 + 𝜆‖𝑋‖Σ𝑠

2 ) 

= (𝐴𝑇Σ𝑑𝐴 + 𝜆Σ𝑠)−1𝐴𝑇Σ𝑑𝑌 

(4.2) 

where 𝑋̂𝑀𝑁𝐸  is the reconstructed absorption changes along the cortical surface. λ  is a 

hyperparameter to regularize the inversion using the priori minimum norm constraint ‖𝑋‖Σ𝑠

2 . In 

this study, we applied the standard L-Curve method to estimate this λ as suggested in (Hansen, 

2000).  

4.2.3 Depth weighted MNE 

Standard MNE solutions assumes Σ𝑠 = 𝐼, which then tends to bias the inverse solution towards 

the generators exhibiting large sensitivity in the forward model, therefore the most superficial ones 

(Fuchs et al., 1999). When compared to EEG/MEG source localization, such bias is even more 
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pronounced in fNIRS since within the forward model light sensitivity values decrease 

exponentially with the depth (Strangman, Li and Zhang, 2013). This bias can be compensated by 

scaling the source covariance matrix such that the variances are equalized (van der Sluis, 1969; 

Fuchs et al., 1999). In the context of DOT, depth weighted MNE has been proposed by (Culver et 

al., 2003) as an approach to compensate this effect and applied in different studies (Zeff et al., 

2007; Dehghani, White, et al., 2009; White et al., 2009; Eggebrecht et al., 2012, 2014). In practice, 

depth weighting can be formulated differently, here we consider a generalized expression for the 

implementation of depth weighted MNE as proposed in (Lin et al., 2006). It consists in initializing 

the source covariance matrix as Σ𝑠
−1/2

=  Λ, resulting in a so called depth weighted MNE solution, 

described as follows: 

   𝑋𝑑𝑀𝑁𝐸
̂ = 𝑎𝑟𝑔𝑚𝑖𝑛(‖(𝑌 − 𝐴𝑋)‖Σ𝑑

2 + 𝜆‖𝑋‖Σ𝑠

2 ) 

= (𝐴𝑇Σ𝑑𝐴 + 𝜆(ΛΛ𝑡)−1)−1𝐴𝑇Σ𝑑𝑌 

𝑑𝑖𝑎𝑔(Λ) =
1

𝑑𝑖𝑎𝑔((𝐴𝑇Σ𝑑𝐴))
𝜔 

(4.3) 

Depth weighted MNE solution takes into account the forward model 𝐴 for each position in the 

brain and therefore penalizes most superficial regions exhibiting larger amplitude in 𝐴 , by 

enhancing the contribution to deeper regions. ω is a weighting parameter tuning the amount of 

depth compensation to be applied. The larger is ω, the more depth compensation is considered. 

ω = 0  would therefore refer to no depth compensation and an identity source covariance model. 

ω = 0.5 refers to standard depth weighting approach mentioned above. In the present study, we 

carefully evaluated the impact of this parameter on DOT accuracy with a set of ω values (i.e.,  ω =

 0, 0.1, 0.3, 0.5, 0.7  𝑎𝑛𝑑  0.9). 

4.2.4 Maximum Entropy on the Mean (MEM) for fNIRS 3D reconstruction 

MEM framework 

The main contribution of this study is the first adaptation and evaluation of MEM method 

(Amblard, Lapalme and Lina, 2004; Grova, Daunizeau, et al., 2006; Chowdhury et al., 2013) to 

perform DOT reconstructions in fNIRS. Within the MEM framework, the intensity of 𝑥, i.e., 

amplitude of 𝑋 at each location 𝑞 in Eq.4.1, is considered as a random variable, described by the 
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following probability distribution 𝑑𝑝(𝑥) = 𝑝(𝑥)𝑑𝑥 . The Kullback-Leibler divergence or ν -

entropy of 𝑑𝑝(𝑥) relative to a prior distribution 𝑑ν(𝑥) is defined as, 

   
𝑆𝑣(𝑑𝑝(𝑥)) = − ∫ 𝑙𝑜𝑔 (

𝑑𝑝(𝑥)

𝑑𝜈(𝑥)
) 𝑑𝑝(𝑥)

𝑥

= − ∫𝑓(𝑥)𝑙𝑜𝑔(𝑓(𝑥))𝑑𝜈(𝑥)
𝑥

 (4.4) 

where 𝑓(𝑥)  is the ν-density of 𝑑𝑝(𝑥)  defined as 𝑑𝑝(𝑥) = 𝑓(𝑥)𝑑ν(𝑥) . Following a Bayesian 

approach to introduce the data fit, we denote 𝐶𝑚 as the set of probability distributions on 𝑥 that 

explains the data on average: 

                            𝑌 − [𝐴|𝐼𝑞] [𝐸𝑑𝑝[𝑥]
𝑒

] = 0, 𝑑𝑝 ∈ 𝐶𝑚 (4.5) 

where 𝑌  represents the measured optical density changes, 𝐸𝑑𝑝[𝑥] = ∫ 𝑥𝑑𝑝(𝑥)  represents the 

statistical expectation of 𝑥 under the probability distribution 𝑑𝑝, and 𝐼𝑞 is an identity matrix of 

(𝑞 × 𝑞) dimension. Therefore, within the MEM framework, a unique solution of 𝑑𝑝(𝑥) could be 

obtained, 

                            𝑑𝑝∗(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑𝑝(𝑥)∈𝐶𝑚
(𝑆𝑣(𝑑𝑝(𝑥))) (4.6) 

The solution of 𝑑𝑝∗(𝑥) can be solved by maximizing the ν-entropy which is a convex function. It 

is equivalent to minimize an unconstrained concave Lagrangian function i.e., 𝐿(𝑑𝑝(𝑥), κ, λ), along 

with two Lagrangian constraint parameters, i.e., κ and λ. It is finally equivalent to maximize a cost 

function 𝐷(λ) which is described as, 

   
𝐷(𝜆) = 𝜆𝑇𝑌 − 𝐹𝑣(𝐴𝑇𝜆) −

1

2
𝜆𝑇𝛴𝑑

−1(𝛴𝑑
−1)𝑇𝜆 (4.7) 

where Σ𝑑
−1 is the noise covariance matrix. 𝐹𝑣 represents the free energy associated with reference 

𝑑ν(𝑥). It is important to mention that 𝐷(λ) is now an optimization problem within a space of 

dimension equal to the number of sensors. Therefore, if we estimate λ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥λ𝐷(λ) the 

unique solution of MEM framework is then obtained from the gradient of the free energy.  

   𝑋̂𝑀𝐸𝑀  =  ∇ξ𝐹ν
∗(ξ)|ξ=𝐴𝑇λ∗ (4.8) 
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For further details on MEM implementation and theory we refer the reader to (Amblard, Lapalme 

and Lina, 2004; Grova, Daunizeau, et al., 2006; Chowdhury et al., 2013). 

Construction of the prior distribution for MEM estimation 

To define the prior distribution 𝑑ν(𝑥) mentioned above, we assumed that brain activity can be 

depicted by a set of K  non-overlapping and independent cortical parcels. Then the reference 

distribution 𝑑ν(𝑥) can be modelled as, 

   

                𝑑ν(𝑥) = ∏[(1 − α𝑘)δ(𝑥𝑘) + α𝑘𝑁(μ𝑘, Σ𝑘)]𝑑𝑥𝑘

𝐾

𝑘=1

,  0 < α𝑘 < 1 (4.9) 

Each cortical parcel k is characterized by an activation state, defined by the hidden variable 𝑆𝑘, 

describing if the parcel is active or not. Therefore we denote α𝑘 as the probability of 𝑘𝑡ℎ parcel to 

be active, i.e., 𝑃𝑟𝑜𝑏(𝑆𝑘 = 1). δ𝑘 is a Dirac function that allows to “switch off” the parcel when 

considered as inactive (i.e., 𝑆𝑘 = 0 ). 𝑁(μ𝑘, Σ𝑘)  is a Gaussian distribution, describing the 

distribution of absorptions changes within the 𝑘𝑡ℎ parcel, when the parcel is considered as active 

(𝑆𝑘 = 1). This prior model, which is specific to our MEM inference, offers a unique opportunity 

to switch off some parcels of the model, resulting in accurate spatial reconstructions of the 

underlying activity patterns with their spatial extent, as carefully studied and compared with other 

Bayesian methods in (Chowdhury et al., 2013). 

The spatial clustering of the cortical surface into 𝐾 non-overlapping parcel was obtained using a 

data driven parcellation (DDP) technique (Lapalme, Lina and Mattout, 2006). DDP consisted in 

first applying a projection method, the multivariate source prelocalization (MSP) technique 

(Mattout et al., 2005), estimating a probability like coefficient (MSP score) between 0 and 1 for 

each vertex of the cortical mesh, characterizing its contribution to the data. DDP is then obtained 

by using a region growing algorithm, along the tessellated cortical surface, starting from local MSP 

maxima. Once the parcellation is done, the prior distribution 𝑑ν(𝑥) is then a joint distribution 

expressed as the multiplication of individual distribution of each parcel in Eq.4.9 assuming 

statistical independence between parcels, 

   𝑑ν(𝑥) = 𝑑ν1(𝑞1)𝑑ν2(𝑞2) … 𝑑ν𝑘(𝑞𝑘) … 𝑑ν𝐾(𝑞𝐾) (4.10) 
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where 𝑑ν(𝑥) is the joint probability distribution of the prior, 𝑑ν𝑘(𝑞𝑘) is the individual distribution 

of the parcel 𝑘 described as Eq.4.9.  

To initialize the prior in Eq.4.9, μ𝑘 which is the mean of the Gaussian distribution, 𝑁(μ𝑘, Σ𝑘), was 

set to zero. Σ𝑘 at each time point 𝑡, i.e., Σ𝑘(𝑡), was defined by Eq.4.11 according to  (Chowdhury 

et al., 2013), 

   Σ𝑘(𝑡) = η(𝑡)𝑊𝑘(σ)𝑇𝑊𝑘(σ) 

η(𝑡) = 0.05
1

𝒫𝓀
∑ 𝑋𝑀𝑁𝐸

2̂ (𝑖, 𝑡)

𝑖∈𝒫𝓀

 
(4.11) 

where 𝑊𝑘(σ) is a spatial smoothness matrix, defined by (Friston et al., 2008), which controls the 

local spatial smoothness within the parcel according to the geodesic surface neighborhood order. 

The same value of σ =  0.6 was used as in (Chowdhury et al., 2013). η(𝑡) was defined as 5% of 

the averaged energy of MNE solution within each parcel 𝒫𝓀 at time t. Finally, we can substitute 

this initialization into Eq.4.9 to construct the prior distribution 𝑑ν(𝑥), and then obtain the MEM 

solution using Eq.4.8. 

It is worth mentioning that we did not use MNE solution as the prior of μ𝑘 in Eq.4.9 at all, which 

was actually initialized to 0 in our framework. We only used 5% of the averaged energy of MNE 

solution, over the parcel 𝑘, to set the prior for covariance Σ𝑘. The posterior estimation of parameter 

μ𝑘 was estimated from the Bayesian framework by conditioning with data. Moreover, the prior of 

MEM framework is a mixture of activation probability α𝑘 and a Gaussian distribution (see Eq.4.9), 

in which the prior for α𝑘  was informed by a spatio-temporal extension of the MSP score (see 

Chowdhury et al., 2013 for further details). These aspects completely differentiate MEM from 

approaches that iteratively update reconstruction results initialized by a MNE solution.  

Depth weighted MEM 

In addition to adapting MEM for fNIRS reconstruction, we also implemented for the first time, 

depth weighting within the MEM framework. Two depth weighting parameters, ω1 and ω2, were 

involved in this process. ω1 was used to apply depth weighting on the source covariance matrix 

Σ𝑘 of each parcel 𝑘 in Eq.4.11. ω2 was applied to solve the depth weighted MNE, as described in 

Eq.4.3, before using those prior to initialize the source covariance model within each parcel of the 
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MEM model. Therefore, the standard MNE solution 𝑋𝑀𝑁𝐸̂(𝑖, 𝑡) in Eq.4.11 was replaced by the 

depth weighted version of MNE solution 𝑋𝑑𝑀𝑁𝐸
̂ (𝑖, 𝑡) described by Eq.4.3. Consequently, the 

depth weighted version of Σ𝑘(𝑡) is now defined as, 

   Σ𝑘(𝑡)𝑑𝑤 = Λ𝒫𝓀
η(𝑡)𝑑𝑤𝑊𝑘(σ)𝑇𝑊𝑘(σ) 

η(𝑡)𝑑𝑤 = 0.05
1

𝒫𝓀
∑ 𝑋𝑑𝑀𝑁𝐸

2̂ (𝑖, 𝑡)

𝑖∈𝒫𝓀

 
(4.12) 

where Λ𝒫𝓀
 is the depth weighting matrix for each parcel 𝑘, in which ω1 was involved to construct 

this scaling matrix as described in Eq.4.3. This initialization followed the logic that depth 

weighting is in fact achieved by scaling the source covariance matrix. The other depth weighting 

parameter, ω2 , was considered when solving 𝑋𝑑𝑀𝑁𝐸
̂ (𝑖, 𝑡) , therefore avoiding biasing the 

initialization of the source covariance with a standard MNE solution. 

To comprehensively compare MEM and MNE and also to investigate the behavior of depth 

weighting, we first evaluated the reconstruction performance of MNE with different ω2 (i.e., step 

of 0.1 from 0 to 0.9). Then two of these values (i.e., ω2 = 0.3 and 0.5) were selected for the 

comparison with MEM since they performed better than the others. Note that the following 

expressions of depth weighted MEM will be denoted as MEM(ω1, ω2) to represent the different 

depth weighting strategies. 

Accuracy of temporal dynamics 

The last contribution of this study was to improve the temporal accuracy of MEM solutions. In the 

classical MEM approach (Chowdhury et al., 2013), 𝑋𝑀𝑁𝐸̂(𝑖, 𝑡) in Eq.4.12 was globally normalized 

by dividing by max 1𝑖∈Ω,𝑡∈𝑇 (𝑋𝑀𝑁𝐸̂(𝑖, 𝑡)), where Ω represents all the possible locations along the 

cortical surface and 𝑇 is the whole time segment. Therefore, the constructed prior along the time 

actually contained the temporal scaled dynamics from MNE solution. To remove this effect, we 

performed local normalization for 𝑋𝑑𝑀𝑁𝐸
̂ (𝑖, 𝑡)  at each time instance 𝑡 , i.e., by dividing by 

max 1𝑖∈Ω (𝑋𝑑𝑀𝑁𝐸
̂ (𝑖, 𝑡)). This new feature would preserve the spatial information provided by 

prior distribution, while allowing MEM to estimate the temporal dynamics only from the data.   

4.2.5 Validation of fNIRS reconstruction methods 
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We evaluated the performance of the two fNIRS reconstruction methods (i.e., MEM and MNE), 

first within a fully controlled environment involving the use of realistic simulations of fNIRS data, 

followed by evaluations on real data acquired with a well controlled finger tapping paradigm. Two 

different fNIRS montages were considered in those two proposed evaluations. 

Montage 1: A full Double Density (DD) montage (see Fig.4.1) which is a widely used fNIRS 

montage, was considered given that it allows sufficient dense spatial coverage of fNIRS channel 

to allow local DOT (Kawaguchi et al., 2007). One healthy subject underwent fNIRS acquisitions 

with this DD montage, involving the two following sessions, 

• A 10 minutes resting state session was acquired to add realistic physiological noise to be 

considered in our realistic simulations. The subject was seated in a comfortable armchair 

and instructed to keep the eyes open and to remain awake. The optodes of the full DD 

montage (i.e., 8 sources and 10 detectors resulting in 50 fNIRS channels) are presented 

in Fig.4.1e. The montage composed of 6 second-order distance channels(1.5cm), 24 third-

order channels(3cm) and 12 fourth-order channels with 3.35cm distance. In addition, we 

also added one proximity detector paired for each source to construct close distance 

channels (0.7cm) in order to measure superficial signals within extracerebral tissues. To 

place the montage with respect to the region of interest, the center of the montage was 

aligned with the center of the right ”hand knob” area, which controls the left hand 

movement (Raffin et al., 2015a), projected on the scalp surface and then each optodes 

were projected on the scalp surface (see Fig.4.1d). 

• The subject was asked to sequentially tap the left thumb against the other digits around 

2Hz, therefore the main elicited hemodynamic response was indeed expected over the 

right hand knob area. The finger tapping paradigm consisted in 10 blocks of 30s tapping 

task and each of them was followed by a 30 to 35s resting period. The beginning/end of 

each block was informed by an auditory cue. 



Chapter 4: Manuscript 1 

95 
 

 

Fig.4.1 fNIRS measurement montage 1 and the anatomical model considered for DOT forward model 

estimation. (a) Anatomical 3D MRI segmented in five tissues, namely, scalp (green), skull (brown), CSF 

(light green), gray matter (purple) and white matter (black). (b) Optical fluence of one optode calculated 

through Monte Carlo simulation of Photons within this head model, using MCXLab. (c) Sensitivity profile 

of the whole montage in volume space. (d) Sensitivity profile, i.e., the summation of sensitivity map of all 

channels, along the cortical surface. Green dots represent detectors, including one proximity detector 0.7 

cm for each source, and red dots represent sources. (e) double density montage 1 considered for this 

acquisition. There were 50 channels in total, 12 of 3.8 cm (black), 24 of 3 cm (blue), 6 of 1.5 cm (yellow) 

and 8 of close distance (0.7cm) channels. 

Montage 2: A personalized optimal montage (see Fig.4.8) following the methodology we 

previously reported in Machado et al., 2018. First, the hand knob within right primary motor cortex 

was drawn manually along the cortical surface and defined as a target region of interest (ROI) 

using the Brainstorm software (Tadel et al., 2011). Then we applied optimal montage estimation 

(Machado et al., 2014a, 2018) in order to estimate personalized montages, built to maximize a 

priori fNIRS sensitivity and spatial overlap between channels with respect to the target ROI. To 

ensure good spatial overlap between channels for local 3D reconstruction, we constructed 
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personalized optimal montages composed of 3 sources and 15 detectors (see Fig.7b). The source 

detector distance was set to vary from 2cm to 4.5cm and each source was constrained such that it 

has to create channels with at least 13 detectors. Finally, we also manually added 1 proximity 

channel, located at the center of the 3 sources. Five subjects underwent fNIRS acquisitions with 

personalized optimal montage during a similar finger tapping task as the one for montage 1, in 

which 20 blocks were acquired by alternating a task (period of 10s) and a resting state period 

ranging from 30s to 60s. 

All 6 subjects have signed written informed consent forms for this study which was approved by 

the Central Committee of Research Ethics of the Minister of Health and Social Services Research 

Ethics Board, Quebec, Canada. 

MRI and fMRI Data acquisitions 

Anatomical MRI data were acquired on those 6 healthy subjects (25 ± 6 years old, right-handed) 

and were considered to generate realistic anatomical head models. MRI data were acquired in a 

GE 3T scanner at the PERFORM Center of Concordia University, Montreal, Canada.  T1-weighted 

anatomical images were acquired using the 3D BRAVO sequence (1 × 1 × 1 mm3, 192 axial slices, 

256 × 256 matrix), whereas T2-weighted anatomical images were acquired using the 3D Cube T2 

sequence (1 × 1 × 1 mm3 voxels, 168 sagittal slices, 256 × 256 matrix). 

Participants also underwent functional MRI acquisition (without fNIRS) while performing the 

same finger opposition tasks considered in fNIRS. fMRI acquisition consisted in a gradient echo 

EPI sequence (3.7 × 3.7 × 3.7 mm3 voxels, 32 axial slices, TE = 25ms, TR = 2,000ms). fMRI Z-

maps were generated by standard first-level fMRI analysis using FEAT from FSL v6.0.0 software 

(Smith et al., 2004; Jenkinson et al., 2012). 

fNIRS Data acquisition 

fNIRS acquisitions were conducted at the PERFORM Center of Concordia University using a 

Brainsight fNIRS device (Rogue Research Inc., Montreal, Canada), equipped with 16 dual  

wavelength sources (685nm and 830nm), 32 detectors and 16 proximity detectors (for short 

distance channels). All montages (i.e., double density and optimal montages) were installed to 

cover the right motor cortex. Knowing a priori the exact positions of fNIRS channels estimated on 

the anatomical MRI of each participant, we then used a 3D neuronavigation system (Brainsight 
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TMS navigation system, Rogue Research Inc.) to guide the installation of the sensors on the scalp. 

Finally, every sensor was glued on the scalp using a clinical adhesive, collodion, to prevent motion 

and ensure good contact to the scalp (Yücel et al., 2014; Machado et al., 2018). 

fNIRS forward model estimation 

T1 and T2 weighted anatomical images were processed using FreeSurfer V6.0 (Fischl et al., 2002) 

and Brain Extraction Tool2 (BET2) (Smith et al., 2004) in FMRIB Software Library (FSL) to 

segment the head into 5 tissues (i.e., scalp, skull, Cerebrospinal fluid (CSF), gray matter and white 

matter see Fig.4.1a). 

The same optical coefficients used in (Yücel et al., 2014; Machado et al., 2018) for the two 

wavelengths considered during our fNIRS acquisition, 685nm and 830nm, were assigned to each 

tissue type mentioned above. Fluences of light for each optode (see Fig.4.1b) was estimated by 

Monte Carlo simulations with 108 photons using MCXLAB developed by Fang and Boas, 2009; 

and Yu et al., 2018 (http://mcx.sourceforge.net/cgi-bin/index.cgi). Sensitivity values were then 

computed using the adjoint formulation and were normalized by the Rytov approximation 

(Arridge, 1999). 

For each source detector pair of our montages, the corresponding light sensitivity map was first 

estimated in a volume space, and then further constrained to the 3D mask of gray matter tissue 

(see Fig.4.1c), as suggested in (Boas and Dale, 2005). Then, these sensitivity values within the 

gray matter volume were projected along the cortical surface (see Fig.4.1d and Fig.4.7c) using the 

Voronoi based method proposed by (Grova, Makni, et al., 2006). We considered the mid-surface 

from FreeSurfer as the cortical surface. This surface was downsampled to 25, 000 vertices. This 

volume to surface interpolation method has the ability to preserve sulco-gyral morphology (Grova, 

Makni, et al., 2006). After the interpolation, the sensitivity value of each vertex of the surface 

mesh represents the mean sensitivity of the corresponding volumetric Voronoi cell (i.e., a set of 

voxels that have closest distances to a certain vertex than to all other vertices). 

fNIRS data preprocessing 

Using the coefficient of variation of the fNIRS data, channels exhibiting a standard deviation larger 

than 8% of the signal mean were rejected (Schmitz et al., 2005; Schneider et al., 2011; Eggebrecht 

et al., 2012; Piper et al., 2014). Superficial physiological fluctuations were regressed out at each 
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channel using the average of all proximity channels’ (0.7cm) signals (Zeff et al., 2007). All 

channels were then band-pass filtered between 0.01Hz and 0.1Hz using a 3rd order Butterworth 

filter. Changes in optical density (i.e., ∆OD) were calculated using the conversion to log-ratio. 

Finally, ∆OD of finger tapping data were block averaged around the task onsets. Note that since 

sensors were glued with collodion, we observed very minimal motion during the acquisitions. Real 

background signal considered to generate realistic simulations also underwent the same 

preprocessing. 

Realistic Simulations of fNIRS Data 

We first considered realistic simulations of fNIRS data to evaluate DOT methods within a fully 

controlled environment. To do so, theoretical task induced HbO/HbR concentration changes were 

simulated within cortical surface regions with a variety of locations, areas and depths. 

Corresponding optical density changes in the channel space were then computed by applying the 

corresponding fNIRS forward model, before adding real resting state fNIRS baseline signal as 

realistic physiological noise at different signal to noise ratio (SNR) levels. 

As presented in Fig.4.2a, we defined three sets of evenly distributed seeds within the field of view 

of DOT reconstruction. The locations were selected with respect to the depth relative to the skull, 

namely we simulated 100 ”superficial seeds”, 100 ”middle seeds” and 50 ”deep seeds”. The 

cortical regions in which we simulated an hemodynamic response were generated by region 

growing around those seeds, along the cortical surface. To simulate generators with different 

spatial extents (denoted here as Se), we considered four levels of neighborhood orders, growing 

geodesically along the cortical surface, resulting in spatial extents ranging from Se = 3, 5, 7, 9 

(corresponding areas of 3 to 40 cm2). For simplification, these cortical regions within which an 

hemodynamic response was simulated will be denoted as ”generators” in this paper. For each 

vertex within a ”generator”, a canonical Hemodynamic Response Function (HRF) was convoluted 

with a simulated experimental paradigm which consisted in one block of 20s task surrounded by 

60s pre-/post- baseline period (Fig.4.2b). Simulated HbO/HbR fluctuations within the theoretical 

generator (Fig.4.2c) were then converted to the corresponding absorption changes of two 

wavelengths (i.e., 685nm and 830nm). After applying the forward model matrix A in Eq.4.1, we 

estimated the simulated, noise free, task induced ∆OD in all channels. 
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Fig.4.2 Workflow describing our proposed realistic fNIRS simulation framework. (a) 100 Superficial 

seeds (black dots), 100 Middle seeds (red dots), 50 Deep seeds (blue dots) with spatial extent of Se = 3, 5, 

7, 9 neighbourhood order within the field of view. (b) Convolution of a canonical HRF model with an 

experimental block paradigm (60s before and 50s after the onset). (c) Simulated theoretical HbO/HbR 

fluctuations along the cortical surface within the corresponding generator. (d) Realistic simulations 

obtained by applying the fNIRS forward model and addition of the average of 10 trials of real fNIRS 

background measurements at 830nm. Time course of ∆OD of all channels with SNR of 5, 3, 2 and 1 

respectively are presented. 

∆OD of real resting state data were then used to add realistic fluctuations (noise) to these simulated 

signals. Over the 10min of recording, we randomly selected 10 baseline epochs of 120s each, free 

from any motion artifact by visual inspection. To mimic a standard fNIRS block average response, 

realistic simulations were obtained by adding the average of these 10 real baseline epochs to the 

theoretical noise-free simulated ∆OD, at five SNR levels (i.e., SNR = 5, 3, 2, 1). SNR was 

calculated through the following equation, 

   
𝑆𝑁𝑅λ =

max(𝑎𝑏𝑠(Δ𝑂𝐷λ[0, 𝑡1]))

𝑚𝑒𝑎𝑛 (𝑠𝑡𝑑(Δ𝑂𝐷λ[−𝑡0,0]))
 (4.13) 



Chapter 4: Manuscript 1 

100 
 

where Δ𝑂𝐷λ[0, 𝑡1] is the optical density changes of a certain wavelength λ in all channels during 

the period from 0𝑠  to 𝑡1 = 60𝑠 . 𝑠𝑡𝑑(Δ𝑂𝐷λ[−𝑡0,0]) is the standard deviation of Δ𝑂𝐷λ  during 

baseline period along all channels. Simulated trials for each of four different SNR levels are 

illustrated in Fig.4.2d. A total number of 4000 realistic simulations were considered for this 

evaluation study, i.e., 250 (seeds) × 4 (spatial extents) × 4 (SNR levels). Note that resting state 

fNIRS baseline signal was preprocessed before adding to the simulated signals. 

Validation metric 

Following the validation metrics described in (Grova, Daunizeau, et al., 2006; Chowdhury et al., 

2013, 2015; Hedrich et al., 2017), we applied 4 quantitative metrics to access the spatial and 

temporal accuracy of fNIRS 3D reconstructions. Further details on the computation of those four 

validation metrics are reported in section 4.6 Supplementary material S1. 

Area Under the Receiver Operating Characteristic (ROC) curve (AUC) was used to assess 

general reconstruction accuracy considering both sensitivity and specificity. AUC score was 

estimated as the area under the ROC curve, which was obtained by plotting sensitivity as a function 

of (1−specificity). AUC ranges from 0 to 1, the higher it is the more accurate the reconstruction is.  

Minimum geodesic distance (Dmin) measuring the geodesic distance in millimeters, following 

the circumvolutions of the cortical surface, from the vertex that exhibited maximum of 

reconstructed activity to the border of the ground truth. Low Dmin values indicate better accuracy 

in estimating the location of the generator.       

Spatial Dispersion (SD) assessed the spatial spread of the estimated generator distribution and the 

localization error. It is expressed in millimeters. A reconstructed map with either large spatial 

spread around the ground truth or large localization error would result in large SD values. 

Shape error(SE) evaluated the temporal accuracy of the reconstruction. It was calculated as the 

root mean square of the difference between the normalized reconstructed time course and the 

normalized ground truth time course. Low SE values indicate high temporal accuracy of the 

reconstruction. 

4.2.6 Statistics 

Throughout all of the quantitative evaluations among different methods involving different depth 

weighting factors ω in the results section, Wilcoxon signed rank test was applied to test the 
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significance of the paired differences between each comparison. For each statistical test, we 

reported the median value of paired differences, together with its p-value (Bonferroni corrected). 

We are only showing results at 830nm for simulations, since the ones from 690nm under the same 

SNR level would have provided similar reconstructed spatiotemporal maps except for the reversed 

amplitudes. However, reconstruction results on real data indeed involved both wavelengths.   

4.3 Results 

4.3.1 Evaluation of MEM v.s. MNE using realistic simulations 

We first investigated the effects of depth weighting factor ω2 selection for depth weighted MNE. 

To do so, we evaluated spatial and temporal performances of DOT reconstruction for a set of ω2 

(step of 0.1 from 0 to 0.9). Based on those results reported in the Supplementary material S2 and 

Fig.4.S1, we decided to considered that most accurate fNIRS reconstructions were obtained when 

considering ω2 = 0.3 and 0.5 for depth weighted MNE. Therefore only those two values were 

further considered for comparison with MEM reconstructions.  

Comparison of the performance of MEM and MNE on superficial realistic simulations are 

presented in Table.4.1 and Fig.4.3, for 4 levels of spatial extent (𝑆𝑒 =  3,5,7,9), using boxplot 

distribution of the 4 validation metrics. We evaluated 3 depth weighted implementations of MEM, 

namely, MEM (ω1 = 0.3, ω2 = 0.3), MEM(0.3, 0.5) and MEM(0.5, 0.5), as well as 2 depth 

weighted implementations of MNE, namely, MNE(0.3) and MNE(0.5).  

For spatial accuracy, results evaluated using Dmin, we obtained median Dmin values of 0mm for 

all methods, indicating the peak of the reconstructed map, was indeed accurately localized inside 

the simulated generator. It is worth mentioning that MEM(0.5, 0.5) provided few Dmin values 

larger than 0mm in 𝑆𝑒 = 3 and 𝑆𝑒 = 5 cases, which consisted of superficial and focal generators. 

Since MEM accurately estimated the spatial extent, more depth weighting considered for 

MEM(0.5, 0.5) could results in focal and deeper reconstruction, hence resulting in non-zero Dmin 

values. On the other hand, MNE would overestimate the size of the underlying generators, 

therefore resulting in 0mm Dmin, but larger SD values in similar conditions. 

When considering the general reconstruction accuracy using AUC, for focal generators such as 

𝑆𝑒 = 3 and 5, we found significant larger AUC (see Table.4.1) for MEM(0.3, 0.3) and MEM(0.3, 

0.5) when compared to the most accurate version of MNE, i.e., MNE(0.3). When considering more 
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extended generators, i.e., 𝑆𝑒 = 7 and 9, MEM(0.3, 0.5) and MEM(0.5, 0.5) achieved significantly 

larger AUC than MNE(0.3). However, the AUC of MNE(0.5) was significantly larger than 

MEM(0.3, 0.3) for 𝑆𝑒 = 7 as well as significantly larger than MEM(0.3, 0.5) and MEM(0.5, 0.5) 

for 𝑆𝑒 = 9. 

In terms of spatial extent of the estimated generator distribution and the localization error, MEM 

provided significantly smaller SD values among all the comparisons. Finally, for temporal 

accuracy of the reconstruction represented by SE, MNE provided significantly lower values, but 

with a small difference (e.g., 0.01 or 0.02, see results on real data as a reference of this effect size), 

than MEM among all comparisons when 𝑆𝑒 = 3, 5.  

 

Fig.4.3 Evaluation of the performances of MEM and MNE using realistic simulations involving 

superficial seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation of the distribution of 

four validation metrics for three depth weighted strategies of MEM and two depth weighted strategies of 

MNE, namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5) in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta 

and MNE(0.5) in black. Results were obtained after DOT reconstruction of 830nm ∆OD. 
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Table.4.1. Wilcoxon signed rank test results of reconstruction performance comparison of MEM and 

MNE in superficial seeds case. Median values of paired difference are presented in the table. p values 

were corrected for multiple comparisons using Bonferroni correction, * indicates p < 0.01 and ** 

represents p < 0.001. Median of the paired difference of each validation metrics is color coded as follows: 

green: MEM is significantly better than MNE, red: MNE is significantly better than MEM and gray: non-

significance. 

Similar comparisons between MEM and MNE were conducted respectively for middle seed 

simulated generators and deep seed simulated generators. Results were overall reporting similar 

trends when comparing MEM and MNE methods for middle and deep seeds, and as expected more 

depth weighting resulted in more accurate reconstructions (described in details in supplementary 

material, Fig.4.S2 and Table.4.S1 for middle seeds, Fig.4.S3 and Table.4.S2 for deep seeds).   

To further illustrate the performance of MEM and MNE as a function of the depth of the generator, 

we are presenting some reconstruction results in Fig.4.4. Three generators with a spatial extent of 

𝑆𝑒 =  5, were selected for this illustration. They were all located around the right "hand knob" 

area, and were generated from a superficial, middle and deep seed respectively. The first column 

in Fig.4.4 shows the location and the size of the simulated generator, considered as our ground 

truth. The generator constructed from the superficial seed only covered the corresponding gyrus, 

whereas the generators constructed from the middle seed, included parts of the sulcus and the 

gyrus. Finally, when considering the deep seed, the simulated generator covered both walls of the 

sulcus, extended just a little on both gyri. For superficial case, MEM(0.3, 0.3) and MEM(0.3, 0.5) 

provided similar performances in term of visual evaluation of the results and quantitative 
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evaluations (𝐴𝑈𝐶 = 0.96, 𝐷𝑚𝑖𝑛 = 0𝑚𝑚, 𝑆𝐷 = 1.94𝑚𝑚, 2.15 𝑚𝑚, 𝑆𝐸 = 0.03). On the other 

hand, for the same simulations, MNE(0.3) and MNE(0.5) resulted in less accurate reconstructions, 

spreading too much around the true generator, as confirmed by validation metric, exhibiting 

notably large SD values 𝐴𝑈𝐶 = 0.86, 0.8 , 𝐷𝑚𝑖𝑛 = 0𝑚𝑚 , 𝑆𝐷 = 9.84𝑚𝑚, 14.63𝑚𝑚 , 𝑆𝐸 =

0.02). When considering the simulation obtained with the middle seed, MEM(0.3, 0.5) retrieved 

accurately the gyrus part of the generator but missed the sulcus component, since less depth 

compensation was considered. When increasing depth sensitivity, MEM(0.5, 0.5) clearly 

outperformed all other methods, by retrieving both the gyrus and sulcus aspects of the generator, 

resulting in the largest 𝐴𝑈𝐶 = 0.98 and the lowest 𝑆𝐷 = 2.93𝑚𝑚. MNE(0.3) was not able to 

recover the deepest aspects of the generator, but also exhibited a large spread outside the ground 

truth area as suggested by a large 𝑆𝐷 = 9.69𝑚𝑚 . MNE(0.5) was able to retrieve the main 

generator, but also exhibited a large spatial spread of 𝑆𝐷 = 10.16𝑚𝑚. When considering the 

generators obtained from the deep seed, MNE(0.3) only reconstructed part of gyrus, missing 

completely the main sulcus aspect of the generator, resulting in low AUC of 0.57 and large SD of 

10.34mm. MEM(0.3, 0.5) was not able to recover the deepest aspects of the sulcus, but 

reconstructed accurately the sulci walls, resulting in an AUC of 0.89 and a SD of 2.71mm. 

MEM(0.5, 0.5) recovered the deep simulated generator very accurately, as demonstrated by the 

excellent scores (𝐴𝑈𝐶 =  0.97, 𝑆𝐷 =  2.11𝑚𝑚) when compared to MNE(0.5). For those three 

simulations, all methods recovered the underlying time course of the activity with similar accuracy 

(i.e., similar SE values). In supplementary material, we added Video.1, illustrating the behavior of 

all the simulations and all methods, following the same layout provided in Fig.4.4.  
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Fig.4.4 Comparisons of the reconstruction maps using MEM and MNE in realistic simulations. Three 

theoretical regions with spatial extent Se = 5 (11cm2) were selected near the hand knob at different depths. 

The first column presents the locations and the size of the generator along the cortical surface. (a) 

Superficial seed case with reconstructed maps reconstructed using all MEM and MNE implementations 

considered in this study. (b) Middle seed case with reconstructed maps reconstructed using all MEM and 

MNE implementations considered in this study. (c) Deep seed case with reconstructed maps reconstructed 

using all MEM and MNE implementations considered in this study. 20% inflated and zoomed maps are 

presented on the left corner of each figure. 100% inflated right hemisphere are presented on the right side. 

All the maps were normalized by their own global maximum and no threshold was applied. 

Note that for this quantitative evaluation of fNIRS reconstruction methods using a realistic 

simulation framework, we considered fNIRS data at only one wavelength (830nm). Using single 

wavelength in the context simulation based evaluation is a common procedure in DOT literature 

(Dehghani, White, et al., 2009; White, 2010; Okawa, Hoshi and Yamada, 2011; Shimokawa et al., 

2012, 2013b; Zhan et al., 2012a; Tremblay et al., 2018), since we may expect overall similar 

performances for 685nm wavelength under the same SNR level. 

4.3.2 Effects of depth weighting on the reconstructed generator as a function of the depth 
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and size of the simulated generators 

To summarize the effects of depth weighting in 3D fNIRS reconstructions, we further investigated 

the validation metrics, AUC, SD and SE, as a function of depth and size of the simulated 

generators. Dmin was not included due to the fact that we did not find clear differences among 

methods throughout all simulation parameters from previous results. In the top row of Fig.4.5, 250 

generators created from all 250 seeds with a spatial extent of 𝑆𝑒 = 5 were selected to demonstrate 

the performance of different versions of depth weighting as a function of the average depth of the 

generator. Whereas in the bottom row of Fig.4.5, we considered 400 generators constructed from 

all 100 superficial seeds with 4 different spatial extents of 𝑆𝑒 =  3,5,7,9 , to illustrate the 

performance of different versions of depth weighting as a function of the size of the generator. 

According to AUC, depth weighting was indeed necessary for all methods when the generator 

moved to deeper regions (>2cm) as well as when the size was larger than 20𝑐𝑚2. Moreover, any 

version of MEM always exhibited clearly less false positives, as indicated by lower SD values, 

than all of MNE versions, whatever was the depth or the size of the underlying generator. We 

found no clear trend and difference of temporal accuracy among methods when reconstructing 

generators of different depths and sizes.  

 

Fig.4.5 Effects of depth weighting on the depth and size of the simulated generators. First row 
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demonstrates the validation matrices, AUC, SD and SE, as a function of depth of generators. We selected 

250 generators created from all 250 seeds with a spatial extent of SD = 5. Depth was calculated by the 

average of minimum Euclidean distance from each vertex, within each generator, to the head surface. 

Second row demonstrates the validation matrices, AUC, SD and SE, as a function of size of generators. 

Involving 400 generators which constructed from 100 superficial seeds with 4 different spatial extend of Se 

= 3, 5, 7, 9. Line fittings were performed via a 4 knots spline function to estimate the smoothed trend and 

the shade areas represent 95% confident interval. Color coded points represent the values of validation 

matrices of all involved generators. 

4.3.3 Robustness of 3D reconstructions to the noise level 

All previous investigations were obtained from simulations obtained with a SNR of 5, in this 

section we compared the effect of the SNR level in Fig.4.6, on depth weighted versions of MNE 

and MEM, for superficial seeds only and generators of spatial extent 𝑆𝑒 =  5. We only compared 

MEM(0.3, 0.5) and MNE(0.5) considering the observation from previous results that these two 

methods were overall exhibiting the best performances in this condition. Regarding Dmin, paired 

differences were not significant but MNE exhibited more Dmin values above 0mm than  MEM at 

all SNR levels, suggesting that MNE often missed the main generators while MEM was more 

accurate in reconstructing the maximum of activity within the simulated generator. Regarding 

AUC, MEM(0.3, 0.5) exhibited values higher than 0.8 at all SNR levels, whereas MNE(0.5) failed 

to recover accurately the generator for 𝑆𝑁𝑅 = 1 . Besides, in Table.4.2, we found that the 

difference of AUC between MEM and MNE increased when SNR level decreased, suggesting the 

good robustness of MEM when decreasing the SNR level. The difference in SD also increased 

when SNR levels decreased. Indeed, MEM exhibited stable SD values among most SNR levels 

(except 𝑆𝑁𝑅 = 1), whereas for MNE SD values were highly influenced by the SNR level. Finally, 

for both methods, decreasing SNR levels resulted in less accurate time course estimation (SE 

increased), slightly more for MEM when compared to MNE. 
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Fig.4.6 Evaluation of the performances of MEM and MNE at four different SNR levels. Boxplot 

representation of the distribution of four validation metrics for MEM(0.3, 0.5) and MNE(0.5) involving 

superficial seeds with spatial extent Se = 5. SNR levels (SNR = 1, 2, 3, 5) are represented using different 

colors. 

 

Table.4.2 Reconstruction performance comparison of MEM and MNE with different SNR levels. Median 

of paired difference of validation metric (i.e., AUC, Dmin, SD and SE) values of Se = 5 are presented in 

the table following the SNR increase from 1 to 5. ** indicates corrected p < 0.001. 

4.3.4 Evaluation of MEM and MNE on real fNIRS data 

For all finger tapping fNIRS data considered in our evaluations, two wavelengths (i.e., 685nm and 

830nm) were reconstructed first and then converted to HbO/HbR concentration changes along the 

cortical surface using specific absorption coefficients. All the processes from fNIRS preprocessing 
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to 3D reconstruction were completed in Brainstorm (Tadel et al., 2011) using the NIRSTORM 

plugin developed by our team (https://github.com/Nirstorm). For full double density montage 

(montage 1), reconstructed HbR amplitudes were reversed to positive phase and normalized to 

their own global maximum, to facilitate comparisons. In Fig.4.7.a, we showed the reconstructed 

HbR maps at the peak of the time course (i.e., 31s) for MEM and MNE by considering the 4 depth 

weighted versions, previously evaluated, i.e., MEM(0.3, 0.3), MEM(0.3, 0.5), MNE(0.3) and 

MNE(0.5). The two depth weighted versions of MEM clearly localized well the "hand knob" 

region, while exhibiting very little false positives in its surrounding. On the other hand, both depth 

weighted version of MNE clearly overestimated the size of the hand knob region and also exhibited 

some distant possibly spurious activity. The fMRI Z-map obtained during the corresponding fMRI 

task is presented in Fig.4.7.b, after the projection of the volume Z-map on the cortical surface. 

Fig.4.7.c showed the time courses within the region of interest representing the "hand knob". Each 

curve represents the reconstructed time course of one vertex of the hand knob region and the 

amplitude was normalized by the peak value within the whole region. 

 

Fig.4.7 Application of MEM versus MNE reconstruction of HbR during a finger tapping task on one 

https://github.com/Nirstorm
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healthy subject. (a) Reconstructed maps of HbR (e.g., 20% inflation on the left and 100% inflation on the 

right side.) from MEM and MNE with different depth compensations. Each map was normalized by its own 

global maximum. (b) fMRI Z-map results projected along the cortical surface. (c) Reconstructed time 

courses of HbR within the hand knob region from MEM and MNE. Note that the hand knob region, 

represented by the black profile, was also matched well with the mean cluster of fMRI activation map on 

the primary motor cortex. No statistical threshold was applied on fNIRS reconstructions. 

Results obtained on 5 subjects for acquisition involving personalized optimal fNIRS montage 

(montage 2) and corresponding fNIRS reconstructions are presented in Fig.4.8. For every subject, 

fMRI Z-maps are presented along the left hemisphere only and thresholded at 𝑍 > 3.1 (p<0.01, 

corrected using Gaussian random field theory), The most significant fMRI cluster along M1 and 

S1 was delineated using a black profile. Reconstruction maps at the corresponding HbO/HbR 

peaks are then presented. Similar accuracy between MEM and MNE, with good overlap with fMRI 

results, was found for subjects 4 and 5, while MNE was overestimating the spatial extent of the 

generator. For subjects 1, 2 and 3, MNE exhibited poor spatial correspondence with fMRI results. 

Averaged reconstructed time courses within the fMRI main cluster region are shown with standard 

deviation as the error bar. Comparing to simulation results, MEM exhibited overall very similar 

time course estimations to MNE in all cases. Considering the task duration was 10s, the 

reconstructed peak timing of HbO/HbR appeared accurately within the range of 10s to 20s.  

 

Fig.4.8 Personalized fNIRS montage and comparisons between MEM and MNE reconstructions with 
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respect to fMRI Z-map at individual level. a) the region of interest defined as the hand knob, b) optimal 

montage targeting the ROI consisting 3 sources (red) and 15 detectors(green) and one proximity (in the 

center of sources not shown), c) normalized sensitivity profile of the optimal montage which calculated as 

the sum of all channels sensitivity along the cortical surface, d) optimal montage glued on the scalp of the 

one subject, using collodion. fMRI Z-map of each subject during finger tapping task (threshold with Z > 

3.1, Bonferroni corrected), black profile represents the main cluster along M1 and S1. MEM reconstruction 

maps at the corresponding HbO/HbR peak times, using depth weighted option 0.3, 0.3. MNE reconstruction 

maps, at the corresponding HbO/HbR peak times, using depth weighted option 0.3. Reconstructed time 

courses within the black profile, solid lines represent the main time courses and the shade areas represent 

standard deviation within the region of interest. Reconstructed time courses were normalized by the 

maximum amplitude, for each method respectively, before averaging. 

4.4 Discussion 

4.4.1 Spatial accuracy of 3D fNIRS reconstruction using MEM 

In the present study, we first adapted the MEM framework in the context of 3D fNIRS 

reconstruction and extensively validated its performance. The spatial performance of 

reconstructions can be considered in two aspects, 1) correctly localizing the peak of the 

reconstructed map close enough to the ground truth area, 2) accurately recovering the spatial extent 

of the generator. According to our comprehensive evaluations of the proposed depth-weighted 

implementations of MEM and MNE methods, accurate localization was overall not difficult to 

achieve as suggested by our results using Dmin metric. Almost all methods provided median value 

of Dmin to be 0mm in all simulation conditions except for the lowest 𝑆𝑁𝑅 =  1 condition where 

more localization error was found. On the other hand, recovering the actual spatial extent of the 

underlying generator is actually the most challenging task in fNIRS reconstruction. When 

considering the results of MNE on both realistic simulations and real finger tapping tasks, either 

from visual inspection (Fig.4.4, Fig.4.7 and Fig.4.8) or quantitative evaluation by SD (Fig.4.3, 

Table.4.1 and supplementary section S2), we found that MNE overall reconstructed well the main 

generator but largely overestimated the size of the underlying generator. MEM was specifically 

developed, in the context of EEG/MEG source imaging, as a method able to recover the spatial 

extent of the underlying generators, which has been proved not to be the case for MNE based 

approaches (Chowdhury et al., 2013, 2016; Pellegrino, Hedrich, et al., 2016; Hedrich et al., 2017; 

Pellegrino et al., 2020). A recent review (Sohrabpour and He, 2021) in the context of EEG/MEG 
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source imaging has also demonstrated that the Bayesian approach with sparsity constraints is 

required to accurately estimate the spatial extent. These important properties of MEM were 

successfully demonstrated in our results on fNIRS reconstructions. These excellent performances 

were reliable for different sizes and depths of simulated generators, and for real finger tapping 

fNIRS data as well.  

4.4.2 Implementation of depth weighting strategy within the MEM framework 

In this study, we are proposing for the first time a depth weighting strategy within the MEM 

framework, by introducing two parameters: ω1 acting on scaling the source covariance matrix, and 

ω2 tuning the initialization of the reference for MEM. When compared to depth weighted MNE, 

the MEM framework demonstrated its ability to reconstruct, different depth of focal generators as 

well as larger size generators, exhibiting excellent accuracy and few false positives (see Fig.4.5). 

When considering deeper focal generators (depth > 2cm), MEM(0.5, 0.5) clearly outperformed all 

other methods (see AUC and SD values in Fig.4.5). In summary, for a large range of depths and 

spatial extents of the underlying generators, MEM methods exhibited accurate results (large AUC 

values) and less false positives (lower SD values) when compared to MNE methods. In practice, 

we would suggest to consider either ω2 = 0.3 or 0.5 for the initialization of MEM in all cases and 

only tune ω1. This is due to the fact that MNE(0.3 or 0.5) provided a generally good reconstruction 

with larger true positive rate in most scenarios, therefore providing MEM an accurate reference 

model (𝑑ν(𝑥)) to start with. Even when considering the most focal simulated generators (𝑆𝑒 =

 3) case (see Fig.4.3, Table.4.1 and Fig.4.5), MEM(0.3, 0.3) and MEM(0.3, 0.5) were actually 

exhibiting very similar performances. Our proposed suggestion to tune ω1 and ω2 parameters was 

actually further confirmed when considered results obtained from real data. For both montages, 

MEM(0.3, 0.3) results in excellent spatial agreement with fMRI Z-maps. Note that depth weighting 

was also considered in DOT studies using MNE (Culver et al., 2003; Dehghani, White, et al., 

2009; White et al., 2009; Eggebrecht et al., 2012, 2014) and a hierarchical Bayesian DOT 

algorithm (Shimokawa et al., 2012, 2013a; Yamashita et al., 2016a). A spatially variant 

regularization parameter β was added to a diagonal regularization matrix featuring the sensitivity 

of every generator (forward model), and the value of β was tuned according to the sensitivity value 

of a certain depth. In practice, this strategy would result in similar depth compensation as ours, but 

we preferred the depth weighting parameter ω which mapped the amount of compensation from 0 
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to 1 (as described in Eq.4.3) for easier interpretation and comparison. This is also a standard 

procedure introduced in EEG/MEG source localization studies (Fuchs et al., 1999; Lin et al., 

2006). Finally, using the depth weighted MNE solution as the prior is a common consideration in 

Hierarchical Bayesian framework based fNIRS reconstructions (Shimokawa et al., 2012, 2013b; 

Yamashita et al., 2016a). 

4.4.3 Temporal accuracy of 3D fNIRS reconstruction using MEM 

Another important contribution of this study was that we improved the temporal accuracy time 

courses estimated within the MEM framework, resulting in similar temporal accuracy the one 

obtained with MNE. For instance, the largest significant SE difference between MEM and MNE 

was only 0.02 for 𝑆𝑒 =  3 and 0.01 for 𝑆𝑒 =  5. Corresponding time course estimations are also 

reported for MEM and MNE in real data (Fig.4.7 and Fig.4.8), suggesting again very similar 

performances. For instance, SE between MEM and MNE HbO time course was estimated as 0.02 

for Sub05 in Fig.4.8. Moreover, we found no significant SE differences between MEM and MNE 

for more extended generators (Se = 7,9). These findings are important considering that MNE is 

just a linear projection therefore the shape of the reconstruction will directly depend on the 

averaged signal at the channel level. On the other hand, MEM is a nonlinear technique, applied at 

every time sample, which is not optimized for the estimation of resulting time courses.  

4.4.4 Robustness of fNIRS reconstructions to the noise level 

To further investigate the effects of the amount of realistic noise in our reconstructions on both 

reconstruction methods, we performed the comparisons along 4 different SNR levels, i.e., 𝑆𝑁𝑅 =

 1,2,3,5. As shown in Fig.4.6 and Table.4.2, we found that MEM was overall more robust than 

MNE when dealing with simulated signals at lower SNR levels. This is actually a very important 

result since when reconstructing HbO/HbR responses, one has to consider at least two ΔOD of two 

different wavelengths exhibiting different SNR levels. For the simulation results, we reported 

reconstruction results obtained from 830nm data, whereas when considering real data (Fig.4.7 and 

Fig.4.8), we had to convert the reconstruction absorption changes at 685nm and 830nm into 

HbO/HbR concentration changes. Therefore, our final results were influenced by the SNR of all 

involved wavelengths. fNIRS is inherently sensitive to inter-subject variability (Novi et al., 2020), 

as also suggested in our application on real data presented in Fig.4.8. Data from Sub05 were 

exhibiting a good SNR level and therefore both MEM and MNE reconstructed accurately the main 
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cluster of the activation, while MNE presented more spatial spread and false positive activation 

outside the fMRI ROI. When considering subjects for whom we obtained lower SNR data, e.g., 

Sub02 and Sub03, MEM still recovered an activation map similar to fMRI map. In those cases, 

MNE not only reported suspicious activation pattern but also incorrectly reconstruct the peak 

amplitude outside the fMRI ROI. Our results suggesting MEM robustness in low SNR conditions 

for DOT are actually aligned with similar findings suggested for EEG/MEG source imaging, when 

considering source localization of single trial data (Chowdhury et al., 2018; Aydin et al., 2020). 

4.4.5 Comprehensive evaluation and comparison of the reconstruction performance using 

MEM and MNE 

To perform a detailed evaluation of our proposed fNIRS reconstructions methods, we developed 

a fully controlled simulation environment, similar to the one proposed by our team to validate 

EEG/MEG source localization methods (Chowdhury et al., 2013, 2016; Hedrich et al., 2017). The 

fNIRS resting state data, acquired by the same montage (montage1) and underwent the same 

preprocessing as conducted for the real data, was added to the simulated true hemodynamic 

response for each channel. Indeed such environment provided us access to a ground truth, which 

is not possible when considering real fNIRS data set. Previous studies validated tomography 

results (Eggebrecht et al., 2014; Yamashita et al., 2016a) by comparing with fMRI activation map 

which can indeed be considered as a ground truth, but only for well controlled and reliable 

paradigms. Since fMRI also measures a signal of hemodynamic origin, it is reasonable to check 

the concordance between fMRI results and DOT reconstructions. Therefore, as preliminary 

illustrations, we also compared our MEM and MNE results to fMRI Z-maps obtained during finger 

tapping tasks on 6 healthy participants, suggesting overall excellent performances of MEM when 

compared to MNE. Further quantitative comparison between fMRI and fNIRS 3D reconstruction, 

was out of the scope of this paper and will be considered in future studies. 

4.4.6 Availability of the proposed MEM framework 

Several software packages have been proposed to provide fNIRS reconstruction pipelines, as for 

instance NeuroDOT (Eggebrecht et al., 2014; Eggebrecht, Muccigrosso and Culver, 2019), 

AtlasViewer (Aasted et al., 2015) and fNIRS-SPM (Ye et al., 2009). To ensure an easy access of 

our MEM methodology to the fNIRS community, we developed and released a fNIRS processing 

toolbox - NIRSTORM (https://github.com/Nirstorm), as a plugin of  Brainstorm software (Tadel 

https://github.com/Nirstorm
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et al., 2011), which is a renown software package dedicated for EEG/MEG analysis and source 

imaging. Our package NIRSTORM offers standard preprocessing, analysis and visualization as 

well as more advanced features such as personalized optimal montage design, access to forward 

model estimation using MCXlab (Fang and Boas, 2009; L. Yu et al., 2018) and the MNE and 

MEM implementations considered in this study.  

4.4.7 Limitations and Perspectives 

Previously, Tremblay et al., 2018 had comprehensively compared a variety of fNIRS 

reconstruction methods using large number of realistic simulations. Since introducing MEM was 

our main goal of this study, we did not consider such wide range of methodological comparisons. 

We decided to carefully compare MEM with MNE since MNE remains the main method 

considered for DOT, and is available in several software packages. As suggested in Tremblay et 

al., 2018, DOT reconstruction methods based on Tikhonov regularization, such as least square 

regularization in MNE, usually allow great sensitivity, but performed poorly in term of spatial 

extent - largely overestimating the size of the underlying generator. On the other hand, L1-based 

regularization (Süzen, Giannoula and Durduran, 2010; Okawa, Hoshi and Yamada, 2011; Kavuri 

et al., 2012; Prakash et al., 2014) could achieve more focal solutions with high specificity but 

much lower sensitivity. As demonstrated in our results, the proposed MEM framework allows 

reaching good sensitivity and accurate reconstruction of the spatial extent of the underlying 

generator. Bayesian model averaging (BMA) originally proposed for EEG source imaging by 

(Trujillo-Barreto, Aubert-Vázquez and Valdés-Sosa, 2004a), also allows accurate DOT 

reconstructions with less false positives when compared to MNE. Similarly, we carefully 

compared MEM to Bayesian multiple priors approaches in (Chowdhury et al., 2013) in the context 

of MEG source imaging. Comparing MEM with more advanced DOT reconstruction methods, 

including also the one proposed by (Yamashita et al., 2016a), would be of great interest but was 

out of the scope of this study.   

Considering the main contribution of this study was to introduce the MEM framework for 3D 

fNIRS reconstruction, we decided to first carefully evaluate the performance of MEM, using well 

controlled realistic simulations. We also included few real data set reconstructions to illustrate the 

performance of the MEM reconstruction, whereas quantitative evaluation of MEM reconstructions 

on larger database will be considered in our future investigations. In previously reported studies 



Chapter 4: Manuscript 1 

116 
 

(Zeff et al., 2007; White, 2010; Eggebrecht et al., 2012, 2014; Zhan et al., 2012a), a high density 

montage was considered which was proved to be able to provide high spatial resolution and 

robustness to low SNR conditions (White, 2010), evaluating the performance of MEM when 

considering high density fNIRS montage would be of great interest but was out of the scope of this 

present study.  

4.5 Conclusion 

In this study, we introduced a new fNIRS reconstruction method entitled Maximum Entropy on 

the Mean (MEM). We first implemented depth weighting into MEM framework and improved its 

temporal accuracy. To carefully validate the method, we applied a large number (n=4000) of 

realistic simulations with various spatial extents and depths. We also evaluated the robustness of 

the method when dealing with low SNR signals. The comparison of the proposed method with the 

widely used depth weighted MNE was performed by applying four different quantification 

validation metrics. We found that the MEM framework provided accurate and robust 

reconstruction results, relatively stable for a large range of spatial extents, depths and SNRs of the 

underlying generator. Moreover, we implemented the proposed method into a new fNIRS 

processing plugin - NIRSTORM in Brainstorm software to provide the access of the method to 

users for applications, validations and comparisons.  

4.6 Supplementary material 

S1. Validation metrics 

Here is a detailed description of the four validation metrics considered in our evaluation. Except 

for the shape error (SE), other metrics were all calculated at the time instant τ when the simulated 

Δ𝑂𝐷 time course reached its peak value (e.g., 12.2s after onset). 

Area Under the Receiver Operating Characteristic (ROC) curve (AUC) was used to assess the 

overall detection accuracy of the reconstruction methods. We used a specific version of AUC that 

has been proposed in (Grova, Daunizeau, et al., 2006) in order not to bias results towards false 

positives. In further detail, ROC curves were generated by plotting the sensibility of the detection 

as a function of 1−specificity, while thresholding the normalized reconstruction map from 0 to 1 

with a certain step value. In the context of source reconstruction, especially when the generator is 

focal, the region of true positive is usually much smaller than the region of true negative, whereas 
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non-biased AUC evaluation would require to sample the same amount of active and inactive 

generators. To overcome this possible bias, we considered a ROC evaluation using the same 

number of active and inactive generators that were randomly sampled within two different regions: 

1) 𝐴𝑈𝐶𝑐𝑙𝑜𝑠𝑒: inactive generators were sampled within the immediate spatial neighborhood of the 

ground truth; and 2) 𝐴𝑈𝐶𝑓𝑎𝑟: inactive generators were sampled within the local maxima of the 

reconstructed activity located far from the ground truth. The final AUC was then the average of 

𝐴𝑈𝐶𝑐𝑙𝑜𝑠𝑒 and 𝐴𝑈𝐶𝑓𝑎𝑟. 

Minimum geodesic distance (Dmin) was represented by the geodesic distance, following the 

circumvolutions of the cortical surface, of the vertex that exhibited maximum of reconstructed 

activity to the border of the `generator'. It should be 0 when the peak of the reconstruction map 

was located inside the simulated cortical region.  

Spatial Dispersion (SD) assessed the spatial spread of the estimated `generator' distribution and 

the localization error using Eq.4.1. The ideal value (i.e., 𝑆𝐷 = 0𝑚𝑚), was achieved when no 

activation was reconstructed outside the theoretical `generator'. The larger the SD was, the more 

spatially spread were the reconstructed maps.  

   

𝑆𝐷 = √
∑ (𝑚𝑖𝑛𝑗∈Θ(𝐷2(𝑖, 𝑗))𝑋2̂(𝑖, 𝜏))𝐾

𝑖=1

∑ (𝑋2̂(𝑖, 𝜏))𝐾
𝑖=1

 (4.14) 

where 𝑚𝑖𝑛𝑗∈Θ(𝐷2(𝑖, 𝑗)) is the minimum Euclidean distance between the vertex 𝑖 to the vertex 𝑗 

which is located inside the simulated `generator' (Θ). 𝑋2̂(𝑖, τ) is the power of the amplitude of 

reconstructed time course on vertex 𝑖  at time τ . 𝐾  is the total number of vertices within the 

reconstruction field of view. 

Shape error (SE) evaluated the temporal accuracy of the reconstruction. Reconstructed time 

courses within the simulation `generator' were averaged and normalized. The root mean square of 

the difference between this time course and the normalized theoretical time course was estimated 

and denoted as SE in Eq.4.15 as introduced in (Chowdhury et al., 2013). 
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𝑆𝐸 = √
1

𝑇
∑ (

𝑋𝑡ℎ(𝑡)

𝑚𝑎𝑥(|𝑋𝑡ℎ(𝑡)|)
−

𝑚𝑒𝑎𝑛𝑗∈Θ (𝑋̂(𝑗, 𝑡))

𝑚𝑎𝑥 (|𝑚𝑒𝑎𝑛𝑗∈Θ (𝑋̂(𝑗, 𝑡))|)
)

2
𝑇

𝑡

 (4.15) 

where 𝑇 is the length of the time course. 𝑋𝑡ℎ(𝑡) is the theoretical time course of the simulation. 

𝑚𝑒𝑎𝑛𝑗∈Θ (𝑋̂(𝑗, 𝑡)) is the averaged mean of the reconstructed time courses within the `generator'.  

S2. Effects of depth weighting on MNE 

We first investigated the effects of the depth weighting factor ω2 selection for depth weighted 

MNE. To do so, we evaluated the spatial and temporal performances of DOT reconstruction. As 

presented in Fig.4.S1, we compared depth weighted MNE using depth weighting factors ω2 =

0,0.1,0.3,0.5,0.7,0.9 in superficial seeds case. In general, ω2 = 0.3 and 0.5 provided overall the 

most accurate results (i.e., median 𝐴𝑈𝐶 > 0.8 and 𝐷𝑚𝑖𝑛 = 0 𝑚𝑚 ). For focal generators (i.e., 

𝑆𝑒 =  3, 5), ω2 = 0.3 performed better than ω2 = 0.5 considering it was providing significantly 

lower SD. However, in extended generators (i.e., 𝑆𝑒 =  7, 9), reconstructions with ω2 = 0.5 were 

exhibiting more accurate results, consisting in significantly positive AUC difference (0.05 and 

0.08, p<0.001) and significantly positive SD difference (2.24 and 2.06, p<0.001). ω2 = 0 and 0.1 

only provided AUC higher than 0.8 in the case of 𝑆𝑒 = 3, whereas ω2 = 0.7 and 0.9 failed in all 

cases and even the median values of Dmin were significantly larger (median values around 2-3 

cm) than other cases. Based on these results, we decided to consider only the depth weighting 

values ω2 = 0.3 and 0.5 for depth weighting MNE in the comparisons with MEM reconstructions. 

S3. MEM v.s. MNE with realistic simulations involving middle and deep seeds 

In Fig.4.S2 and Table.4.S1, we are presenting the comparison of MEM and MNE in middle seeds 

cases. First of all, we found that more depth compensation was required to provide good 

reconstructions in all scenarios. Thus, MEM(0.5, 0.5) was compared to the best of MNE - 

MNE(0.5). Non-significant AUC and Dmin differences were found between them. However, 

MEM(0.5, 0.5) provided significant lower SD than MNE(0.5), median value of difference of 𝑆𝐷 =

−5.3, -4.80, -5.00, -4.95, p<0.001 for 𝑆𝑒 =  3,5,7,9 respectively. Fig.4.S3 and Table.4.S2 are 

presenting the comparison of MEM and MNE in the comparison of them in deep seeds case. 

Similarly, no significant AUC and Dmin differences were found. MEM(0.5, 0.5) provided 
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significant lower SD than MNE(0.5), median value of difference of 𝑆𝐷 = −6.39, -6.33, -6.97, -

5.52, p<0.001 for 𝑆𝑒 =  3,5,7,9  respectively. For temporal performance in these two cases, 

similar to Fig.4.3, MNE(0.5) gave significantly lower SE (-0.01 or -0.02, p<0.001) than MEM 

when 𝑆𝑒 = 3,5 (small difference). No significant difference in SE was found in 𝑆𝑒 = 7,9. 

 

Fig.4.S1. Evaluation of the performances of depth weighted MNE for different depth weighting factors 

ω = 0, 0.1, 0.3, 0.5, 0.7, 0.9. Distribution of validation metrics (AUC, Dmin , SD and SE) are displayed 

using boxplot representations, for simulations involving superficial seeds only and for spatial extents Se = 

3, 5, 7, 9. 

 

Fig.4.S2 Evaluation of the performances of MEM and MNE using realistic simulations involving middle 

seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation of the distribution of four 

validation metrics for three depth weighted strategies of MEM and two depth weighted strategies of MNE, 

namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5) in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and 
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MNE(0.5) in black. Results were obtained after DOT reconstruction of 830nm ∆OD. 

 

Table.4.S1. Wilcoxon signed rank test results of reconstruction performance comparison of MEM and 

MNE in middle seeds case. Median values of paired differences are presented in the table. p values were 

corrected for multiple comparisons using Bonferroni correction, *indicates p < 0.01 and ** represents p 

< 0.001. Median of the paired difference of each validation metrics are color coded as follows: green: 

MEM is significantly better than MNE, red: MNE is significantly better than MEM and gray: non-

significance. 

 

Fig.4.S3. Evaluation of the performances of MEM and MNE using realistic simulations involving deep 

seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation of the distribution of four 

validation metrics for three depth weighted strategies of MEM and two depth weighted strategies of MNE, 

namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5) in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and 
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MNE(0.5) in black. Results were obtained after DOT reconstruction of 830nm ∆OD. 

 

Table.4.S2. Wilcoxon signed rank test results of reconstruction performance comparison of MEM and 

MNE in deep seeds case. Median values of paired differences are presented in the table. p values were 

corrected for multiple comparisons using Bonferroni correction,* indicates p < 0.01 and ** represents p 

< 0.001. Median of the paired difference of each validation metrics are color coded as follows: green: 

MEM is significantly better than MNE, red: MNE is significantly better than MEM and gray: non-

significance. 
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Chapter 5 

Manuscript 2: Evaluation of a Personalized Functional Near Infra-

Red Optical Tomography Workflow using Maximum Entropy on the 

Mean  

Context 

In Chapter 4, we presented a new version of MEM framework dedicated to NIROT reconstruction. 

Its performance has also been carefully evaluated using realistic simulations along the cortical 

surface with different conditions (e.g., location, size, and depth). In source imaging literature for 

both EEG/MEG and fNIRS, an appropriate way to evaluate the reconstruction method consists of 

two steps: 1) evaluation with simulation data in which a ground truth is given, completed in 

Chapter 4; 2) application on real data, usually applied on relatively well-controlled tasks, such as 

finger tapping (Yamashita et al., 2016b), visual tasks (Zeff et al., 2007; Eggebrecht et al., 2012) 

and median nerve stimulations (Huppert et al., 2017). Hence, we conducted this second study to 

further evaluate the proposed MEM reconstructions. Moreover, we opted in this study to introduce 

a workflow of NIROT, integrating all of our methodology developments. Since in a real data 

scenario we do not have a ground truth area for fNIRS reconstruction validation, we also performed 

fMRI acquisitions and considered the resulting individual activation map as the reference for the 

validation. Task performance during fMRI is known to be variable, especially in terms of the size 

of the main cluster of activation (Zandbelt et al., 2008; Quiton et al., 2014). Therefore, we 

proposed to use the size of the main cluster estimated from group level analysis, to inform the 

expected size of the main cluster of activation at the individual level. Additionally, we also 

assessed the reliability of NIROT reconstruction performance, using a non-parametric measure 

called discriminability (Bridgeford et al., 2018; Wang et al., 2020). MEM and also MNE were 

considered as NIROT methods to conduct performance and reliability comparisons.  

This manuscript is published in Human Brain Mapping journal, Zhengchen Cai, Makoto Uji, Ümit 

Aydin, Giovanni Pellegrino, Amanda Spilkin, Edouard Delaire, Chifaou Abdallah, Jean-Marc 

Lina, Christophe Grova. Evaluation of a Personalized Functional Near Infra-Red Optical 

Tomography Workflow using Maximum Entropy on the Mean.   
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Abstract 

In the present study, we proposed and evaluated a workflow of personalized Near Infra-Red 

Optical Tomography (NIROT) using functional Near-Infrared Spectroscopy (fNIRS) for spatio-

temporal imaging of cortical hemodynamic fluctuations. The proposed workflow from fNIRS data 

acquisition to local 3D reconstruction consists of: 1) the personalized optimal montage maximizing 

fNIRS channel sensitivity to a predefined targeted brain region; 2) the optimized fNIRS data 

acquisition involving installation of optodes and digitalization of their positions using a 

neuronavigation system; and 3) the 3D local reconstruction using Maximum Entropy on the Mean 

(MEM) to accurately estimate the location and spatial extent of fNIRS hemodynamic fluctuations 

along the cortical surface. The workflow was evaluated on finger-tapping fNIRS data acquired 

from ten healthy subjects for whom we estimated the reconstructed NIROT spatio-temporal 

images and compared with functional Magnetic Resonance Imaging (fMRI) results from the same 

individuals. Using the fMRI activation maps as our reference, we quantitatively compared the 

performance of two NIROT approaches, the MEM framework and the conventional Minimum 

Norm Estimation (MNE) method. Quantitative comparisons were performed at both single subject 

and group-level. Overall, our results suggested that MEM provided better spatial accuracy than 

MNE, while both methods offered similar temporal accuracy when reconstructing oxygenated 

(HbO) and deoxygenated hemoglobin (HbR) concentration changes evoked by finger-tapping. Our 

proposed complete workflow was made available in the Brainstorm fNIRS processing plugin – 

NIRSTORM, thus providing the opportunity for other researchers to further apply it to other tasks 

and on larger populations.  

5.1 Introduction  

Functional Near Infra-Red spectroscopy (fNIRS) non-invasively measures fluctuations of both 

oxygenated and deoxygenated hemoglobin (i.e. HbO and HbR) in the cerebral cortex with high 

temporal resolution (Jöbsis, 1977; Scholkmann, Kleiser, et al., 2014; Yücel et al., 2021). fNIRS 

raw data measured by source-detector pairs called channels refer to light intensity changes at 

specific wavelengths (e.g., 685nm and 830nm), modulated by local absorption associated with 

underlying fluctuations of hemoglobin concentrations. Concentration changes in HbO/HbR in 

each channel are usually estimated via the modified Beer-Lambert Law (mBLL) (Delpy et al., 

1988).  
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Importantly, the channel space analysis assumes homogeneous concentration changes within the 

underlying region(s) of interest. Such an assumption actually introduces systemic errors when 

dealing with focal hemodynamic responses (Boas, Gaudette, et al., 2001; Strangman, Franceschini 

and Boas, 2003). Near Infra-Red Optical Tomography (NIROT) is a powerful alternative to 

channel space analysis to overcome this issue, as well as to generate hemodynamic images along 

the cortical surface (Arridge, 1999; Boas, Brooks, et al., 2001). NIROT avoids the homogeneity 

assumption by reconstructing the light intensity changes measured in the channel space on the 

underneath cortical area, before converting them into local hemodynamic HbO/HbR fluctuations. 

NIROT reconstruction actually consists in solving an ill-posed inverse problem that requires 

specific regularization to obtain a unique solution.  

The first step of NIROT involves the definition of a specific fNIRS channel layout, also called the 

montage, used for data acquisition, which should allow sufficient density and spatial overlap 

between channels to allow accurate 3D reconstruction (White and Culver, 2010). A high-density 

montage involving various channel distances and extensive overlapping between channels was 

initially proposed in (Zeff et al., 2007; White and Culver, 2010) and successfully considered in 

several NIROT studies (Eggebrecht et al., 2012, 2014; Ferradal et al., 2016; Hassanpour et al., 

2017; Fishell et al., 2019). However, fNIRS devices allowing such high-density montages are not 

widely accessible and are usually custom-made solutions not available commercially. In previous 

studies (Machado et al., 2014b, 2018), our group has proposed an approach entitled – personalized 

optimal montage, which maximizes the fNIRS channel layout's sensitivity to a targeted region of 

interest along the cortex, suggesting fNIRS as a technique mainly used to accurately and locally 

explore hemodynamic processes, rather than a whole brain imaging technique. While avoiding the 

need for a large high-density montage, our approach could provide a personalized fNIRS montage 

maximizing the detection efficiency as well as maintaining a sufficient number of channels and 

spatial overlap to allow local reconstruction of NIROT images.  

The other important step when considering NIROT is to solve the inverse problem to reconstruct 

HbO/HbR maps along the cortex from the channel space measurements. This inverse problem is 

ill-posed such that there are infinite number of solutions. Therefore, regularization is required to 

estimate a unique solution. The most widely used inverse problem estimator is the so-called 

Minimum Norm Estimation (MNE), which was first proposed by (Hämäläinen and Ilmoniemi, 

1994) for Electroencephalography (EEG) and Magnetoencephalography (MEG) source 
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localization and since then applied in several fNIRS reconstruction studies (Zeff et al., 2007; 

Dehghani, White, et al., 2009; Eggebrecht et al., 2012, 2014). MNE consists of applying Tikhonov 

regularization to minimize the L2-norm when solving the ill-posed inverse problem. 

The Maximum Entropy on the Mean (MEM) framework was first proposed by (Amblard, Lapalme 

and Lina, 2004), before being adapted and carefully evaluated in the context of EEG/MEG source 

localization (Grova, Daunizeau, et al., 2006; Chowdhury et al., 2013). A key property of MEM 

source imaging is its ability to accurately recover the spatial extent of the generators, as 

demonstrated in the context of: 1) localizing transient epileptic discharges (Chowdhury et al., 

2016; Grova et al., 2016; Heers et al., 2016; Pellegrino, Hedrich, et al., 2016; Pellegrino et al., 

2020) and oscillations (Pellegrino, Hedrich, et al., 2016; Avigdor et al., 2021);  2) localizing focal 

sources, such as those evoked by electrical median nerve stimulations (Hedrich et al., 2017);  3) 

EEG/MEG fusion in the presurgical evaluation of epilepsy (Chowdhury et al., 2018); and 4) MEG 

resting state connectivity (Aydin et al., 2020). In our previous study (Cai et al., 2021), we adapted 

the MEM framework to perform fNIRS reconstructions to generate NIROT images and then 

carefully evaluated MEM performance within a comprehensive and realistic simulation 

framework. In this study, we opted to combine the above methodology developments as a 

workflow for conducting NIROT and evaluated its performance using the real data acquired during 

a motor task. 

Here, we introduce a comprehensive NIROT workflow, the personalized NIROT using MEM, to 

accurately reconstruct and assess HbO/HbR fluctuations within targeted brain regions. Our 

workflow allows: 1) experiment planning and optimal probe design; 2) personalized fNIRS 

montage installation and digitalization of sensor positions using the neuro-navigation device and 

3) reconstruction of hemodynamic images using the MEM method. To evaluate the workflow, we 

considered a finger tapping task applied on a cohort of 10 healthy participants who performed the 

task twice, once during fMRI and then during personalized fNIRS data acquisition. fMRI Z-maps 

served as the reference for validation purposes. Evaluations were conducted by visual inspections 

of the reconstructed NIROT maps and using several quantitative validation metrics such as Area 

Under the Receiver Operating Characteristic (ROC) curve (AUC), Minimum geodesic distance 

(𝐷𝑚𝑖𝑛), Spatial Dispersion (𝑆𝐷) and reconstructed HbO/HbR peak times. We also compared 

MEM reconstructions to the conventional MNE approach. Finally, we also assessed the reliability 

(M. Yu et al., 2018; Zuo, Xu and Milham, 2019) of the performance differences between MEM 
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and MNE, using a non-parametric measure of discriminability (Bridgeford et al., 2018; Wang et 

al., 2020).    

5.1 Materials and methods  

5.2.1 Subject cohort and experiment protocol 

Ten healthy subjects (24 ± 5 years old, right-handed) participated in this study. The study was 

approved by the Central Committee of Research Ethics of the Minister of Health and Social 

Services Research Ethics Board, (CCER), Québec, Canada. All subjects signed a written informed 

consent before participating in the study. 

The study comprised two sessions for each participant who performed the same task during a fMRI 

scan and a personalized fNIRS scan. Participants performed a finger-tapping task which consisted 

of tapping the left thumb to the other four digits sequentially, with a pace at around 2𝐻𝑧. The 

duration of the finger tapping block was 10𝑠, and blocks were interleaved with a resting period 

lasting between 30𝑠 to 60𝑠 (i.e., one random sampled resting period in this range per block). In 

the fMRI scan, during the resting period, participants looked at a fixation cross through a mirror 

placed above the subjects' forehead. They were also asked not to move the head and body while 

tapping the finger to reduce motion artifacts. The beginning/end of each block was signalled by an 

auditory cue. The inter-block interval was set so to reduce the influence caused by physiological 

and systemic fluctuations so to achieve a better estimation of task-evoked brain hemodynamic 

responses (Aarabi, Osharina and Wallois, 2017). The finger tapping-rest sequence was repeated 

20 times, for around 16 minutes scan duration.  

5.2.2 Structural and functional MRI acquisitions  

Each participant underwent anatomical and functional MRI with a General Electric Discovery 

MR750 3T scanner at the PERFORM Centre of Concordia University, Montréal, Canada. The 

anatomical scans were performed for fNIRS head model, optimal montage, and coregistration 

between anatomical and fMRI data. In details, data were recorded with the following parameters:  

- T1-weighted anatomical images with the 3D BRAVO sequence (1 × 1 × 1 mm3, 192 axial 

slices, 256 × 256 matrix). 
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- T2-weighted anatomical images were scanned using the 3D Cube T2 sequence 

(1 × 1 × 1 mm3 voxels, 168 sagittal slices, 256 × 256 matrix). 

- fMRI images with a gradient echo EPI sequence (3.7 × 3.7 × 3.7 mm3, 32 axial slices, TE 

= 25ms, TR = 2000ms, 70° flip angle).  

5.2.3 Anatomical data processing  

High-resolution T1- and T2-weighted images were processed using FreeSurfer 6.0 (Fischl et al., 

2002) (https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki) and SPM12 [Penny et al., 

2011] (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to segment the head into five tissues 

(i.e., scalp, skull, Cerebrospinal fluid (CSF), gray matter and white matter). Gray matter and white 

matter masks were generated from the cortical/subcortical segmentation of FreeSurfer. Scalp and 

skull masks were segmented using SPM. All segmentation processes used both T1 and T2 

weighted images to achieve more accurate estimations of the tissue types by taking advantage of 

their complementary contrasts. Anatomical surfaces such as pial surface, gray/white matter 

interface and mid surface (i.e. a middle layer of the gray matter) were estimated using FreeSurfer 

(Fischl and Dale, 2000). 

5.2.4 fMRI data processing  

fMRI data were processed using FSL v6.0.0 (https://fsl.fmrib.ox.ac.uk/fsl/)(Jenkinson et al., 

2012). Data pre-processing included the following steps: 1) slice timing correction using 

interleaved Hanning-windowed interpolation; 2) brain extraction using BET2; 3) head motion 

correction applying rigid-body transformations (MCFLIRT); 4) spatial smoothing (5 mm FWHM 

Gaussian kernel); 5) high-pass temporal filtering (45𝑠 cut-off) and 6) registration to the individual 

T1 anatomical image (FLIRT, linear transformation with 6 degrees of freedom), and normalization 

(linear affine transformation with 12 degrees of freedom) to the MNI (Montreal Neurological 

Institute and Hospital) 1𝑚𝑚 standard brain template (i.e., ICBM152).  

The first-level general linear model (GLM) analyses were performed using FEAT v6.0 (Woolrich 

et al., 2001), employing boxcar (10𝑠) finger-tapping events convolved with the double-gamma 

Hemodynamic Response Function (HRF). Time series analysis was carried out using FILM 

(Woolrich et al., 2001) with local autocorrelation correction. The resulting first-level task-evoked 

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://fsl.fmrib.ox.ac.uk/fsl/
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BOLD Z statistic images were thresholded using Gaussian random field theory based maximum 

height thresholding (Worsley, 2001) with the voxel-wise inference (𝑝  <  0.01, corrected). To 

allow visual and quantitative comparison with NIROT, individual images estimated along the 

cortical surface, individual volumetric fMRI Z-maps were projected onto the mid-surface 

(downsampled to 25,000 vertices) using a Voronoi-based projection, which is a volume to surface 

interpolation method able to preserve sulco-gyral morphology (Grova, Makni, et al., 2006). Z-

values were averaged within each Voronoi cell and assigned to the corresponding vertex of the 

cortical surface.   

By using each subject's volume-based fMRI first-level results, we conducted a group-level analysis 

in order to identify a reliable fMRI reference region of interest (ROI) to be considered as our 

‘ground truth’ for NIROT images evaluation. This group-level analysis was performed using a 

mixed-effects model – FLAME1 in FEAT (Woolrich et al., 2004). The resulted BOLD Z-statistic 

images were thresholded using Gaussian random field theory based maximum height thresholding 

(Worsley, 2001) (clusters determined 𝑍  >  3.1 , cluster significance threshold of 𝑝  <  0.01 , 

corrected). The thresholded fMRI group-level Z-map registered on the MNI standard template (see 

Supplementary Fig.5.S1) was projected onto the mid-surface of the template per se, using the same 

Voronoi projection method previously mentioned. The significant region on the surface was 

determined according to the Z threshold of volume-based results.   

5.2.5 Personalized fNIRS data acquisition and pre-processing  

FNIRS data acquisition was conducted in the Multimodal Functional Imaging Laboratory at 

PERFORM Center (Concordia University, Montréal, Canada) using a continuous wave Brainsight 

fNIRS device (Rogue-Research Inc, Montreal, Canada). Personalized fNIRS acquisition strategy 

consists of estimating a subject-specific optimal fNIRS montage to maximize, a priori, the fNIRS 

sensitivity to the hemodynamic activity in some targeted brain regions, while ensuring sufficient 

spatial coverage and overlap to allow accurate local 3D reconstruction (Machado et al., 2014b, 

2018). In this study, the hand-knob region within the right primary motor cortex was defined as 

the individual ROI. It was selected manually along the cortical surface (see Fig.5.1.a), taking into 

account anatomical landmarks (Raffin et al., 2015a) and using the Brainstorm software (Tadel et 

al., 2011) (http://neuroimage.usc.edu/ brainstorm). Then, we estimated a personalized optimal 

fNIRS montage under the following constraints (see Fig.5.1.b): 1) 3 sources and 15 detectors; 2) 

http://neuroimage.usc.edu/%20brainstorm
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source-detector distance between 2.0𝑐𝑚 and 4.5𝑐𝑚; 3) spatial overlap between channels - signal 

from each source to be detected by at least 13 out of 15 detectors. For each candidate 

source/detector pair, a fNIRS forward model, computed using MCXLab Monte Carlo Photon 

simulator (Fang and Boas, 2009; L. Yu et al., 2018) was considered to measure light sensitivity 

within the target region. The output of the resulting optimization algorithm under proposed 

constraints, consisted in a set of spatial 3D coordinates indicating the optimal position of the 

optodes on subject’s scalp. Please find further details in (Machado et al., 2014b, 2018; Cai et al., 

2021). To monitor systemic fluctuations within superficial layers, we also added one proximity 

detector (i.e., ~0.7𝑐𝑚 to each source), located in the center of the 3 sources of the montage. These 

optimal 3D coordinates were loaded into a neuro-navigation system (Brainsight TMS navigation 

system, Rogue-Research Inc, Montreal) to guide the installation of the optodes on the scalp 

(Machado et al., 2018). fNIRS sensors were then glued on the scalp (see Fig.5.1.d) using a clinical 

adhesive, called collodion, in order to minimize sensitivity to motion artifacts and to improve 

fNIRS signal to noise ratio (Yücel et al., 2014; Machado et al., 2018). 

Raw fNIRS data were then pre-processed using a conventional pipeline. Channels exhibiting either 

negative raw amplitude or a coefficient of variation (standard deviation over the signal mean) 

larger than 8%  were classified as low-quality and rejected (Schmitz et al., 2005; Schneider et al., 

2011; Eggebrecht et al., 2012; Piper et al., 2014). Superficial physiological fluctuations, also 

considered here as noise, were modelled by the average signal of all proximity channels and were 

regressed out from all channels using a linear regression (Zeff et al., 2007). All channels were 

band-pass filtered between 0.01𝐻𝑧 and 0.1𝐻𝑧 using a 3rd order Butterworth filter. Optical density 

changes (i.e., ∆𝑂𝐷), normalized for each channel by the mean amplitude of the entire time course, 

were calculated using the logarithm conversion of the filtered signal. ∆𝑂𝐷 epochs with a time 

window ranging from −10𝑠 to 30𝑠 around the task onset were extracted, and noisy epochs were 

rejected through visual inspections (i.e., overall, less than 4 out of 20 epochs were rejected for 

each subject, mainly caused by motion artifacts). Then, the resulting epochs were averaged. This 

epoch averaged ∆𝑂𝐷 , measured either at 685nm or 830nm, was the input signal of fNIRS 

reconstruction algorithm to obtain the NIROT images for each subject. 

5.2.6 Forward model estimation for NIROT 
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The subject-specific head model was calculated to estimate how a local change in light absorption 

elicited by the hemodynamic response at a specific vertex of the cortical area would impact fNIRS 

signals on scalp channels. Volume-based subject-specific head segmentation (e.g., scalp, skull, 

CSF, grey matter and white matter), were used to model the light propagation from each optode 

of the optimal montage within head tissues. We assigned each tissue the same optical coefficients 

used in (Fang and Boas, 2009; Machado et al., 2018) for the two wavelengths (i.e. 685𝑛𝑚 and 

830𝑛𝑚 ). Fluences of each wavelength for each optode were calculated by simulating the 

propagation of 108  photons using MCXLAB (Fang and Boas, 2009; L. Yu et al., 2018) 

(http://mcx.space/wiki/index.cgi?MCX). Each voxel's sensitivity value corresponding to each 

fNIRS channel was then computed using the adjoint formulation with the Rytov approximation 

(Arridge, 1999).  

To constrain the fNIRS reconstruction space within the cortical region (Boas and Dale, 2005), we 

applied volume-to-surface interpolation using Voronoi (Grova, Makni, et al., 2006) to generate 

surface based sensitivity matrix along the mid cortical surface (please see (Cai et al., 2021) for 

further details). 

Finally, to define the field of view (FOV) of fNIRS reconstruction, this surface-based sensitivity 

was further spatially constrained to be within 3𝑐𝑚 to any optode of a specific optimal montage, 

Euclidean distance calculated from 100% inflated cortical surface to the head surface by 

Brainstorm.  

 

Fig.5.1 Personalized fNIRS investigation using an optimal montage targeting the right motor cortex. a) 

black profile represents the right ‘hand knob’ targeted region of interest, b) resulting personalized optimal 

montage targeting this ROI consisting of 3 sources (red), 15 detectors (green) and one proximity (in the 

center of sources not shown), c) normalized light sensitivity profile of the optimal montage which was 

http://mcx.space/wiki/index.cgi?MCX
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calculated as the sum of all channel’s sensitivity along the cortical surface, d) optimal montage glued on 

the subject’s head using collodion. Installation was guided by a neuro-navigation system, and optodes 

positions were then digitized after the acquisition for coregistration and forward modelling.  

5.2.7 NIROT reconstruction  

We compared two fNIRS reconstruction methods, one being our previously proposed and 

validated Maximum Entropy on the Mean (MEM) (Cai et al., 2021) and the other one being the 

conventional Minimum Norm Estimation (MNE) (Hämäläinen and Ilmoniemi, 1994). MEM offers 

an efficient nonlinear probabilistic Bayesian framework to incorporate prior knowledge in the 

solution of the inverse problem. It assumes that brain activity is modelled by cortical parcels that 

are estimated using a data-driven parcellation of the full field of view considered for NIROT. 

While fitting the data through relative entropy maximization, MEM has the unique ability to switch 

off parcels of the model considered as inactive using a hidden variable. In our previous studies in 

the context of EEG/MEG source imaging, we have demonstrated excellent accuracy of MEM and 

the ability to be sensitive to the spatial extent of the underlying generators (Chowdhury et al., 

2013, 2016; Grova et al., 2016; Heers et al., 2016; Hedrich et al., 2017; Pellegrino et al., 2020), 

before adapting this framework in the context of NIROT (Cai et al., 2021). As the most 

conventional inverse procedure considered in NIROT, MNE is a linear method (Hämäläinen and 

Ilmoniemi, 1994) using Tikhonov regularization to minimize the L2-norm. Please refer to 

Appendix.1 for further details on those NIROT methods. In practice, NIROT reconstructions were 

calculated by our implementations of these two methods in the fNIRS processing plugin - 

NIRSTORM (https://github.com/Nirstorm/nirstorm) in Brainstorm software.  

5.2.8 Quantitative evaluation by comparing NIROT to fMRI  

To evaluate and compare the spatial accuracy of NIROT reconstructions obtained using either 

MEM or MNE mentioned above, we proposed to compare the reconstructed HbO/HbR responses 

along the cortical surface to surface-based fMRI Z-maps, both at the individual and at the group 

level. To do so, we first defined two cortical regions from the resulted surface-based fMRI Z-map 

as the ROIs to quantitatively assess the spatial accuracy of NIROT maps.  

Determination of the cortical ROIs used for quantitative evaluation   

https://github.com/Nirstorm/nirstorm
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ROIs selected for quantitative evaluation consisted of two cortical regions, extracted from surface-

based subject-specific fMRI Z-map response to the finger-tapping task. The first one, fMRI 

reference ROI#1, corresponded to the ‘activated’ region where the main activation of task-evoked 

HbO/HbR responses should be expected. The second one, fMRI reference ROI#2, corresponded 

to the ‘non-activated’ region where no significant HbO/HbR responses were expected. These two 

fMRI regions were our reference ‘true positives’ and ‘true negatives’ for later NIROT evaluations.  

The determination of fMRI reference ROI#1 for each subject was obtained from the first-level Z-

map projected on individual mid-surface. We did not directly use the significant region on the 

projected Z-map (threshold) considering that each subject only went through one fMRI task 

session, and this might not be enough to estimate a reliable size of the main activation cluster, as 

suggested by fMRI test-retest reliability studies during motor tasks (Zandbelt et al., 2008; Quiton 

et al., 2014). Instead, the ROI#1 was defined by thresholding the individual surface-based fMRI 

Z-map until a predefined size, in order to ensure a similar spatial extent of the activated area of the 

one found at the group level. The group level analysis provided a more reliable generalized size 

parameter of the activation pattern, as suggested by (Zandbelt et al., 2008). Therefore, to identify 

the expected size of fMRI reference ROI#1, we considered from the fMRI group-level map 

(described in section 2.4) the most significant cluster (Fig.5.2a) projected along the cortical 

surface. It resulted in 366 vertices shown by the black profile in Fig.5.2a. Consequently, we 

considered a parameter size of 366 vertices to determine the threshold of each individual map, to 

estimate the ‘activated’ region at the expected size. It is worth mentioning that such an approach 

was actually more conservative than the conventional threshold obtained at the single subject 

volume map (see section 2.4, p<0.01 corrected using Gaussian random field theory). Finally, fMRI 

reference ROI#2 (‘true negatives’) was directly defined as the ‘non-activated’ region (see Fig.5.2b) 

on each individual fMRI Z-map on the cortical surface, by identifying vertices that were below the 

conventional threshold on the single subject volume map (p<0.01 corrected using Gaussian 

random field theory). The remaining vertices between ROI#1 and ROI#2 could be considered as a 

region of fMRI uncertainty at the single subject level.  
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Fig.5.2 Determination of the cortical regions used for quantitative evaluations. a) group-level fMRI Z-

map obtained by FSL group-level activation map projected along the mid-surface of MNI template 

ICBM152.  The map was thresholded to only contain the significant activation region along the surface.  

Black profile represents the most significant cluster, which consists of 366 vertices. b) Determination of 

fMRI reference ROIs on the individual level surface-based fMRI Z-map of Sub01, projected from FSL first-

level activation map on subject’s mid-surface. The black profile is the individual fMRI reference ROI#1 

which contains 366 vertices when thresholding the individual map by Z values. It represents the ‘activated’ 

region used for AUC, SD and Dmin metrics. The white profile is the individual fMRI reference ROI#2 

represents the intersection between non-significant region and NIROT reconstruction field of view, which 

is defined as the ‘non-activated’ region for AUC calculations. Cortical surfaces are 50% inflated for 

visualization purposes.  

Quantitative validation metrics   

To assess the spatial accuracy of NIROT maps, we applied similar validation metrics described in 

our previous evaluation of MEM source imaging in the context of EEG/MEG data (Grova, Makni, 
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et al., 2006; Chowdhury et al., 2013, 2016; Hedrich et al., 2017). Each reconstructed NIROT 

image is actually a spatio-temporal map of the whole hemodynamic response, whereas the fMRI 

Z-map consists of a statistical static map assessing the presence of a modelled canonical 

hemodynamic response. To select a single NIROT map to evaluate, from the spatio-temporal 

estimates of each subject using each reconstruction method, we first averaged the reconstructed 

HbO/HbR time courses within the fMRI reference ROI#1, and then extracted the HbO/HbR maps 

at the time point of HbO versus HbR peaks on these averaged time courses. Moreover, since we 

have no ground truth for the reconstructed time course in fNIRS and since fNIRS is considered a 

relative measurement compared to baseline activity, we considered only the shape of the 

reconstructed fNIRS response by normalizing each selected spatial-temporal HbO/HbR map by 

this selected peak amplitude.  

Using the 2 previous selected fMRI reference ROIs, defining our reference ‘true positives’ and 

‘true negatives’, we proposed the following four validation metrics to evaluate NIROT spatial and 

temporal accuracy, for both MNE and MEM:   

• Area Under the Receiver Operating Characteristic (ROC) curve (𝑨𝑼𝑪) was used to assess 

the detection ability of the reconstruction methods. ROC analysis consists of assessing the 

sensitivity and specificity of NIROT maps, when varying the threshold from 0 to maximum 

amplitude of normalized NIROT maps at their peak. The ROC curve is obtained by plotting 

sensitivity as a function of (1- specificity). AUC score is then estimated as the area under this 

ROC curve. It is considered as a measure of detection accuracy, assessing the sensitivity of 

NIROT map to the underlying spatial extent of the hemodynamic response. We used the two 

ROIs defined in the previous section to calculate sensitivity and specificity. Sensitivity was 

calculated when considering fMRI reference ROI#1 as the ‘true positive (TP)’ region, and 

specificity was calculated when considering fMRI reference ROI#2 as the ‘true negative (TN)’ 

region. Moreover, we applied a random and homogeneous parcellation on ROI#2 to have the 

size of each cluster similar to the size of ROI#1. Then the fictive generators were sampled 

cluster wise within ROI#2, instead of vertex wise when calculating the True Negative rate. 

This approach was considering the fact that if the fictive generators would have sampled 

vertex wise, the number of samples for calculating True Negatives would have been much 

larger than for calculating True Positive. This procedure is consistent with (Grova, Daunizeau, 
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et al., 2006) on AUC calculation to fit the context of a distributed source model - generating 

as many “fictive” sources in the TN region as the number of vertices of the TP region. 

Therefore, our approach to estimate AUC prevented underestimation of the True Negative 

rate. Please note that the remaining vertices between selected ROI#1 and ROI#2 were not 

considered by our proposed ROC analysis, but they were actually taken into account in the 

following Dmin and SD metrics. 

• Minimum geodesic distance (𝑫𝒎𝒊𝒏) was calculated as the minimum geodesic distance, 

following the circumvolutions of the cortical surface, from the vertex that exhibited maximum 

of reconstructed activity to the closest border from the individual fMRI reference ROI#1. The 

Dmin score would therefore be 0𝑚𝑚 if the peak of the HbO/HbR reconstruction map was 

located inside the fMRI reference ROI#1.  

• Spatial Dispersion (𝑺𝑫 ) assessed the spatial spread of the estimated activation region 

distribution and the localization error using the following equation, 

𝑆𝐷 =  √
∑ (𝑚𝑖𝑛𝑗∈𝛩(𝐷2(𝑖, 𝑗))𝑋̂2(𝑖, 𝜏))𝑁

𝑖=1

∑ (𝑋̂2(𝑖, 𝜏))𝑁
𝑖=1

 

where 𝑚𝑖𝑛𝑗∈𝛩(𝐷2(𝑖, 𝑗)) is the minimum squared Euclidean distance between the vertex 𝑖 to a 

vertex 𝑗 located inside the fMRI reference ROI#1 represented by Θ. 𝑋̂2(𝑖, 𝜏) is the power of 

the peak amplitude of the reconstructed time course on vertex 𝑖 at the peak time 𝜏. 𝑁 is the 

total number of vertices within the reconstruction field of view. The ideal value (i.e., 𝑆𝐷 =

0𝑚𝑚) would be achieved when no activation is reconstructed outside the fMRI reference 

ROI#1. The larger the 𝑆𝐷 is, the more spatially spreading or mislocalized the reconstructed 

maps are.  

• Peak times of reconstructed HbO/HbR time course and the delay between HbO and HbR peak 

times were compared when reconstructing NIROT images using MEM and MNE. The average 

of the reconstructed time course of HbO/HbR within fMRI reference ROI#1 was first 

calculated to extract corresponding peak times (i.e., 𝑃𝑒𝑎𝑘𝐻𝑏𝑂  and 𝑃𝑒𝑎𝑘𝐻𝑏𝑅 ). The delay 

between HbO and HbR peak times was then calculated as 𝑃𝑒𝑎𝑘𝐻𝑏𝑅 − 𝑃𝑒𝑎𝑘𝐻𝑏𝑂.  

To conduct group-level evaluation for NIROT, individual NIROT maps at their corresponding 

peak amplitude were first normalized to [-1, 1]. FreeSurfer spherical registration was used to 

project normalized individual HbO/HbR maps onto the mid surface of ICBM152 template. Group-
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level HbO/HbR reconstruction maps were then estimated by averaging the projected individual 

maps. AUC, SD and Dmin were calculated by comparing to the group-level fMRI Z-map. We also 

conducted in the supplementary materials a group-level Z map, in which the Z score was calculated 

for each vertex, using the mean amplitude divided by the standard deviation among 10 subjects, 

instead of considering only the average.  

Additionally, 𝐴𝑈𝐶 was also calculated under three different scenarios to answer the following 

questions specific to the use of personalized fNIRS reconstructions.  

• Was MEM more accurate than MNE at different time instants other than only the peak of 

the hemodynamic response? 𝐴𝑈𝐶s of the reconstructed HbO/HbR maps using MEM and 

MNE were evaluated at different time instants ranging from 5𝑠 to 20𝑠 with a step size of 0.5𝑠.  

• Would it be possible to further threshold MNE reconstruction maps to achieve a similar 

spatial accuracy than the one obtained when using MEM? 𝐴𝑈𝐶s of HbO/HbR peak maps 

were calculated by considering different initial thresholds, as a percentage of the peak 

amplitude of each corresponding map, ranging from 0% to 50% with an increment of 1%, 

instead of standard AUC starting with a threshold of 0%.  

• Was the 3D reconstruction obtained by using the combination of personalized optimal 

montage and MEM reconstruction primarily biased by the local forward model (i.e. 

sensitivity map), since the optimal montage was optimized to a targeted ROI in the motor 

region? We assumed the sensitivity profile of each subject, obtained by summing up the 

sensitivity of all channels of the corresponding optimal montage, to mimic a fully ‘montage-

biased’ reconstruction map. Therefore, computing the 𝐴𝑈𝐶 score of this sensitivity profile 

and comparing it to the reconstruction results obtained from either MEM or MNE can evaluate 

whether the local forward model plays a role in biasing the reconstruction. 

5.2.9 Reliability of the performance differences between MEM and MNE 

Considering reliability is the basis for individual difference research, especially on personalized 

methods (M. Yu et al., 2018; Zuo, Xu and Milham, 2019), we also evaluated the reliability of 

reconstruction performance of both MEM and MNE individually, and more importantly, when 

considering the paired performance differences between the two methods. To do so, we considered 

the discriminability measure, which was proposed as a novel non-parametric approach for 
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assessing reliability, proved to be more robust than traditional intraclass correlations and 

fingerprinting approaches (M. Yu et al., 2018; Wang et al., 2020). Considering a reliability study 

design, pair-wised distances of the measurement of interest are first calculated for all experiment 

sessions (within- and between-subjects), and discriminability is then defined as the proportion of 

the number of cases in which within-subject distances are smaller than between-subject distances. 

We applied the Multiscale Graph Correlation (MGC) package (Bridgeford et al., 2018; Vogelstein 

et al., 2019) (available at https://github.com/neurodata/r-mgc) to estimate discriminability. 

Euclidean distance was considered as the default distance measurement to construct within- vs. 

between-subject distance matrices (Wang et al., 2020) (see Fig.5.A2).  

Although we did not have multiple sessions of the same task for each subject, we considered 

random sub-averaged 16 non-overlapping blocks out of a total of 20 blocks to mimic the task 

performance variability within each subject. To ensure good coverage of within-subject variance, 

we sorted all sub-averaged trials by decreasing SNR values and selected 10 trials with a step of 10 

SNR value increments around the median SNR value. The selection of 10 sub-averaged trials was 

to ensure the same degree of freedom of within-subject when compared to between-subject 

variance, which was 10 subjects in our case. The selection of 16 blocks was to ensure not reducing 

SNR too much after averaging. This number was empirically defined according to the observation 

that usually there were less than 4 artifacts contaminated blocks in one finger tapping session. 

Selecting sub-averaged trials around the median SNR ensured a good representation of fNIRS 

responses, while discarding artifacts in the meantime. For instance, in artifacts contaminated data, 

large motion artifacts would result in high SNR of sub-averaged trials. We then performed both 

MEM and MNE reconstructions on all data samples (e.g., 100 = 10 within-session sub-averaged 

× 10 subjects) and applied the same evaluations for the reconstructed hemodynamic maps. 

Discriminability was then estimated for each validation metric AUC, SD and Dmin, considering 

either MEM and MNE individually, or paired performance differences between them.  

5.2.10 Data availability 

The original raw data supporting the findings of this study are available upon reasonable request 

to the corresponding authors. 

5.2 Results  

https://github.com/neurodata/r-mgc
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5.3.1 Reconstruction performance comparisons at the individual-level  

Statistical summary of individual level results is presented in Fig.5.3. Paired two sample t-tests 

were considered when comparing performance between the two methods (MEM vs. MNE). When 

reconstructing HbO responses, MEM provided significantly larger AUC values than MNE 

(0.79 𝑣𝑠. 0.68, 𝑝 < 0.01). Moreover, MEM also showed significantly lower spatial dispersion 

(SD) than MNE ( 5.11𝑚𝑚 𝑣𝑠. 9.83𝑚𝑚 , 𝑝 < 0.01 ). Both methods reconstructed the peak 

amplitude very closely from the fMRI main cluster as quantified using Dmin, with no significant 

difference between MEM and MNE (2.17𝑚𝑚 𝑣𝑠. 3.00𝑚𝑚 , 𝑝 > 0.05). Similar performances 

were also observed when reconstructing HbR responses. MEM provided significantly larger AUC 

(0.80 𝑣𝑠. 0.70, 𝑝 < 0.05), significantly lower SD (5.93𝑚𝑚 𝑣𝑠. 8.97𝑚𝑚, 𝑝 < 0.05) and similar 

Dmin values (3.33𝑚𝑚 𝑣𝑠. 2.90𝑚𝑚, 𝑝 > 0.05).  

 

Fig.5.3 Quantitative evaluation of the performances of MEM and MNE reconstructions. a) Distribution 

of AUC values for MEM and MNE NIROT reconstructions, for HbO and HbR responses respectively, b) 

Distribution of SD (in mm) comparison between MEM and MNE in the context of reconstructed HbO/HbR, 

c) Distribution of Dmin (in mm) comparison between MEM and MNE in the context of reconstructed 

HbO/HbR. Each circle represents the index of one subject, superimposed on a boxplot representation of 

the distribution, * represents significant paired two sample t-test at p<0.05 and ** for p<0.01  

Fig.5.4 and Fig.5.5 present all the individual level reconstruction maps and time courses calculated 

using MEM and MNE for each of 10 subjects. Fig.5.4a and Fig.5.5a showed the individual fMRI 

Z-map along with the individual fMRI reference ROI#1 represented by a black profile. All subjects 

showed clear fMRI activations along M1 and S1 areas, evoked by the finger tapping task. Columns 

b and c of Fig.5.4 and Fig.5.5 showed NIROT maps normalized by the peak amplitude of 

HbO/HbR reconstructed using MEM and MNE, respectively, together with validation metric 
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values. For Sub02, 03, 05, 07, 08, 09 and 10, MEM reconstructed accurately HbO/HbR responses 

with high AUC values ([𝑄1, 𝑄3]  =  [0.73, 0.89] for HbO, [0.74, 0.94] for HbR among all maps, 

𝑄1, 𝑄3 referring to  the 1st and 3rd quartile of the distributions, respectively) and small spatial spread 

(low SD values, [𝑄1, 𝑄3]  =  [3.52𝑚𝑚, 6.63𝑚𝑚] for HbO, [3.45𝑚𝑚, 6.37𝑚𝑚] for HbR). On the 

other hand, for these selected 7 subjects, MNE provided less accurate reconstructions characterized 

by lower AUC values ([𝑄1, 𝑄3]  =  [0.60, 0.75] for HbO, ([0.60, 0.77] for HbR) and larger SD 

values ([𝑄1, 𝑄3]  =  [7.64𝑚𝑚, 10.46𝑚𝑚] for HbO, [8.31𝑚𝑚, 10.59𝑚𝑚] for HbR). For Sub01, 

MEM and MNE were both able to provide accurate HbO/HbR reconstructions when comparing to 

fMRI results. For Sub06, MEM and MNE provided similar reconstruction results, all maps were 

able to recover the main cluster but spread out toward more anterior regions. For Sub04, only 

MEM provided a good reconstruction only for HbO, resulting in an 𝐴𝑈𝐶 =  0.7 and 𝐷𝑚𝑖𝑛 =

 0𝑚𝑚. Column d of Fig.5.4 and Fig.5.5 illustrated the averaged reconstructed HbO/HbR time 

courses within the fMRI reference ROI#1. Temporal fluctuations of averaged reconstruction time 

courses of HbO/HbR were similar between MEM and MNE in most of the subjects, except that 

the amplitudes were larger for MEM in Sub 04, 07 and 08, because MNE did not reconstruct the 

spatial map accurately within the expected region.   
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Fig.5.4 Visual and quantitative evaluation for NIROT images at the individual level (subjects 1 to 5). a) 

individual level fMRI Z-map thresholded to only contain the significant activation of each subject during 

finger tapping task, black profile represents the fMRI reference ROI#1 (‘true positive’), non thresholded 

grey area (non-significant) within the reconstruction FOV represents the fMRI reference ROI#2 (‘true 

negatives’). b) MEM reconstructed NIROT maps at HbO/HbR peak amplitude, respectively, c) MNE 

reconstructed NIROT maps at HbO/HbR peak amplitude, respectively, d) reconstructed time courses within 

the black profile, solid lines represent the averaged time courses, and the shaded areas represent standard 

deviation within the ROI#1. Quantitative evaluation metric results are showed on top of each map, 

respectively. AUCs were calculated by setting black profiles (fMRI reference ROI#1) as the ‘activated’ 

region and grey area (fMRI reference ROI#2) as the ‘non-activated’ region.  SD and Dmin only considered 

fMRI ROI#1 as the ‘activated’ region. Note that each subject's map was normalized by its own peak, and 

time courses were normalized by the maximum HbO amplitude across two methods before averaging within 

the black profile.  
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Fig.5.5 Visual and quantitative evaluation for NIROT images at the individual level (subjects 6 to 10). 

a) individual level fMRI Z-map thresholded to only contain the significant activation of each subject during 

finger tapping task, black profile represents the fMRI reference ROI#1 (‘true positives’), non thresholded 

grey area (non-significant) within the reconstruction FOV represents the fMRI reference ROI#2 (‘true 

negatives’). b) MEM reconstructed NIROT maps at HbO/HbR peak amplitude, respectively, c) MNE 

reconstructed NIROT maps at HbO/HbR peak amplitude, respectively, d) reconstructed time courses within 

the black profile, solid lines represent the averaged time courses, and the shaded areas represent standard 

deviation within the ROI#1. Quantitative evaluation metric results are showed on top of each map, 

respectively. AUCs were calculated by setting black profiles (fMRI reference ROI#1) as the ‘activated’ 

region and grey area (fMRI reference ROI#2) as the ‘non-activated’ region.  SD and Dmin only considered 

fMRI ROI#1 as the ‘activated’ region. Note that each subject's map was normalized by its own peak, and 

time courses were normalized by the maximum HbO amplitude across two methods before averaging within 

the black profile.  

Table.5.1 summarized the statistical comparison of the peak times of HbO/HbR extracted from the 

above averaged reconstruction time courses within the fMRI reference ROI#1. When comparing 

MEM and MNE results, there were no significant differences in the peak times of HbO/HbR 

(paired two sample t-test, 𝑝 = 0.71 𝑎𝑛𝑑 0.17  for HbO and HbR, respectively). Both NIROT 

methods demonstrated a significant (one sample t-test against 0, 𝑝 < 0.05 ) delay between the 

peak time of HbR and HbO (0.9𝑠 ± 0.3𝑠  and 1.9𝑠 ± 0.7𝑠  for MEM and MNE, respectively. 

Moreover, there was no significant difference (paired two sample t-test, 𝑝 = 0.27) between the 

delays estimated by MEM and MNE. Note that Sub04 was rejected from this analysis since it was 

exhibiting a very noisy reconstructed time course and therefore was considered as an outlier 

(Fig.5.4.d).    

Table.5.1 Statistical comparison of reconstructed HbO/HbR peak times. The first row showed the 

𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 of each corresponding peak time in seconds. 𝑃𝑒𝑎𝑘𝐻𝑏𝑅−𝐻𝑏𝑂 indicated the time 

delay between peak time of HbR (𝑃𝑒𝑎𝑘𝐻𝑏𝑅) and HbO (𝑃𝑒𝑎𝑘𝐻𝑏𝑂). The second row listed the 1st quartile 
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(𝑄1) to 3rd quartile (𝑄3)  of each peak time and delay. The third row indicated the p-value of one sample t-

test against 0s of peak time delay estimated by MEM and MNE. The last row demonstrated the p-value of 

paired two sample t-test, when comparing MEM and MNE results, for each peak time and delay. ‘– ’ 

represented the cases in which no statistical test was conducted since we consider it was not necessary to 

test whether 𝑃𝑒𝑎𝑘𝐻𝑏𝑂  or 𝑃𝑒𝑎𝑘𝐻𝑏𝑅  itself were significantly larger than 0. Red background indicated 

significant differences with 𝑝 < 0.05.  

5.3.2 Reconstruction performance comparisons at the group-level  

Fig.5.6 reports fMRI versus NIROT comparisons at the group-level. Validation metrics were 

calculated on the group averaged NIROT HbO and HbR maps, when using either MEM or MNE. 

Similar trends were found when considering group-level comparisons by visualization. When 

compared to MNE results (Fig.5.6, using fMRI group-level activation as a reference), MEM 

provided similar AUC ( 0.73 𝑣𝑠. 0.72  for HbO and 0.74 𝑣𝑠. 0.74  for HbR), lower SD 

(7.52 𝑚𝑚 𝑣𝑠. 10.52𝑚𝑚  for HbO and 7.48𝑚𝑚 𝑣𝑠. 11.18𝑚𝑚  for HbR) and similar Dmin 

(6.14𝑚𝑚 𝑣𝑠. 6.14𝑚𝑚 for HbO and 2.99𝑚𝑚 𝑣𝑠. 2.76𝑚𝑚 for HbR). When comparing the group 

averaged reconstructed HbO/HbR time course within the fMRI main cluster region, as a nonlinear 

method MEM provided almost identical ones to MNE.  As a reference, we also illustrated the 

expected fMRI time course (black dash line in Fig.5.6d) by convolving a standard canonical 

hemodynamic response function (HRF) (Penny et al., 2011) and a 10s boxcar stimuli. It followed 

well both MEM and MNE reconstructed HbR mean time courses and laid within the shaded areas, 

demonstrating the good temporal accuracy of our NIROT workflow. 

 

Fig.5.6 Comparisons of MEM and MNE group averaged reconstructions with fMRI Z-maps at the 

group-level, 10 subjects included. a) group-level fMRI Z-maps estimated by FSL group-level activation 

map projected along the mid-surface of ICBM152 mid-surface. The black profile represents fMRI the most 
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significant cluster projected on the cortical surface. Maps were thresholded to exclude the non-significant 

regions along the cortical surface. b) group averaged MEM reconstruction peak maps, individual peak 

maps were extracted at the peak times of HbO/HbR in native space and then projected onto the ICBM152 

mid-surface, c) group averaged MNE reconstruction peak maps, individual peak maps were extracted at 

the peak times of HbO/HbR in native space and then projected onto the ICBM152 mid-surface. d) group-

level reconstructed time courses within the black profile, solid lines represent the averaged time courses, 

and the shaded areas represent standard deviation within the black profile. The black dash line represents 

the expected fMRI time course resulting from the convolution of the standard canonical HRF and a 10s 

boxcar representing the task stimuli. The amplitude was reversed for better comparison with HbR time 

courses. 

5.3.3 NIROT performance along time  

Fig.5.7a illustrates the comparison of AUC values obtained for MEM and MNE reconstructions 

when considering NIROT maps at different time samples between 5𝑠 to 20𝑠 by steps of 0.5𝑠. 

Overall, AUC values corresponding to HbO and HbR reconstructions, when considering either 

MEM or MNE, were following the temporal fluctuation of the expected task-evoked hemodynamic 

responses from 5s to 20s. Within this temporal window, MEM always provided larger AUC values 

when compared to MNE, for both HbO and HbR reconstructions. The differences were statistically 

significant (paired two sample t-test at each time sample, 𝑝 < 0.05  for both HbO and HbR 

comparisons) within the range 8.5𝑠 to 14.5𝑠. Additionally, AUC values of HbR were also slightly 

larger than HbO for both reconstruction methods.  

Fig.5.7 AUC comparisons of MEM and MNE reconstructions with respect to time and amplitude 

threshold value. a) AUC comparison between MEM and MNE, for both HbO and HbR reconstructions. 

AUC values (𝑚𝑒𝑎𝑛 ±  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) were estimated within the time range 5𝑠 − 20𝑠 with increments 
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of 0.5𝑠. The last column denoted as ‘Peak’ reports the distribution of AUC values considered at the peak 

of the hemodynamic response, within the ROI#1, b) AUC comparison between MEM and MNE, for both 

HbO and HbR reconstructions, AUC values ( 𝑚𝑒𝑎𝑛 ±  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 ) were estimated within a 

percentage threshold of the peak amplitude of each NIROT maps ranging from 0% to 50% with an 

increment of 1%. Error bars represented the standard error within 10 subjects. Horizontal black bars 

indicated a significant difference of AUC between MEM and MNE, paired two sample t-test at each time 

sample or percentage threshold, p<0.05 for both HbO and HbR comparisons.     

5.3.4 NIROT performance when applying spatial thresholding on reconstruction maps 

Fig.5.7b illustrates AUC as a function of different initial percentage thresholds (percentage relative 

to the peak amplitude of each NIROT map) applied on reconstructed HbO/HbR maps. ROC 

analyses were estimated from a specific starting percentage amplitude threshold from 0 up to 50%, 

in order to assess the impact of initial thresholding on detection accuracy.  As expected, AUC 

values decreased when thresholding the reconstruction map with a larger initial percentage 

threshold. Overall, MEM provided larger AUC than MNE under all the thresholding scenarios, 

and the difference was statistically significant (paired two sample t-test at each percentage 

threshold, 𝑝 < 0.05  for both HbO and HbR comparisons) within the whole threshold range. 

Results of this analysis, as illustrated in Fig.5.7b, showed that additional thresholding of the MNE 

results does not improve the estimation accuracy of the activity map, when compared to MEM.  

5.3.5 AUC of the sensitivity profile of the optimal montage   

The last column of Fig.5.8 demonstrates the AUC values calculated when assessing detection 

accuracy only on the light sensitivity profile (SP) resulting from the personalized optimal montage 

of each subject. The mean AUC value among 10 subjects was 0.64, significantly lower than the 

mean AUC value of MEM reconstructed HbO ( 0.76, 𝑝 < 0.01 , paired two sample t-test, 

Bonferroni corrected) and HbR (0.81, 𝑝 < 0.01, paired two sample t-test, Bonferroni corrected). 

This AUC measure was also lower than MNE reconstructed HbO (0.66) and HbR (0.71) map but 

the difference was not statistically significant. These results suggest that our detection accuracy is 

slightly influenced by the installation of the optimal montage, but MEM reconstruction still 

significantly improves NIROT accuracy within the targeted brain region.  
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Fig.5.8 Distribution of AUC values estimated for MEM and MNE local reconstructions with the 

personalized optimal montage, in comparison to the AUC values obtained when considering only the 

montage light sensitivity profile (SP) for each subject. Exactly the same calculations of AUC for 

reconstruction methods were applied considering the light sensitivity profile (forward problem) as the 

reconstructed map. Paired two sample t-test showed significant higher AUC of MEM reconstructed HbO 

(mean = 0.76) and HbR (mean = 0.81) than ‘SP’ (mean = 0.64), p<0.01, Bonferroni corrected for multiple 

comparison). AUC of ‘SP’ was lower than MNE reconstructed HbO (mean = 0.66) and HbR (mean = 0.71) 

but not significant. 

5.3.6 Reliability of performance differences between MEM and MNE   

Over 100 reconstructions, including 10 within-subject resampled sessions and 10 subjects, all three 

validation metrics (AUC, SD and Dmin) showed significantly better performances using MEM, 

when compared to MNE. The 95% confidence interval (CI) of the paired differences (MEM-MNE) 

was [0.13, 0.17] for AUC, [-5.50, -4.31] for SD (in mm) and [-2.76, -0.23] for Dmin (in mm) (see 

distributions reported in Fig.5.A1). Discriminability of these performance differences was 

estimated as 0.68 for AUC, 0.70 for SD and 0.68 for Dmin (see Fig.5.A2), indicating that MEM 

was exhibiting reliably better performances than MNE. When considering the performance of 

MEM and MNE individually, the discriminability of MEM was estimated as 0.71 for AUC, 0.66 

for SD and 0.64 for Dmin, whereas the discriminability of MNE was estimated as 0.85 for AUC, 

0.88 for SD and 0.73 for Dmin.  
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5.4 Discussion  

The present study proposed and evaluated a workflow of personalized NIROT using MEM for 

spatio-temporal imaging of cortical hemodynamic fluctuations evoked by a motor task. This 

workflow attempted to optimize the reconstruction accuracy considering 1) fNIRS montage 

planning using personalized optimal montage (Machado et al., 2014b, 2018), which aimed to 

maximize the fNIRS probing ability of the hemodynamic responses within a targeted ROI along 

the cortical surface; 2) data acquisition involving the neuro-navigation-guided optode installation 

using collodion, which ensured accurate positioning, excellent contact to the scalp and minimized  

motion artifacts (Yücel et al., 2014; Pellegrino, Machado, et al., 2016; Machado et al., 2018), 

digitalization of the positions of the sensors along with more than 150 head points, accurate 

coregistration with the anatomical head model, and therefore minimizing potential errors when 

calculating the forward model of NIROT; 3) reconstruction using MEM, which is sensitive to the 

spatial extent of the generators in the context of EEG/MEG source location (Chowdhury et al., 

2013, 2016; Grova et al., 2016; Heers et al., 2016; Hedrich et al., 2017; Pellegrino et al., 2020) 

and fNIRS reconstructions with realistic simulations (Cai et al., 2021). We evaluated the spatial 

accuracy of the NIROT workflow by comparing the HbO/HbR maps to fMRI Z-maps. Our results 

showed that MEM provided overall better spatial accuracy than MNE, while both NIROT methods 

exhibited similar temporal features when estimating the fNIRS hemodynamic responses.  

5.4.1 Evaluation of the performance of personalized NIROT using MEM 

Individual and group analysis revealed that MEM recovers more accurately the hemodynamic 

responses for both HbO and HbR, when compared to MNE (significantly larger AUC). MEM was 

sensitive to the spatial extent of the generator (significantly lower SD), in agreement with our 

previous EEG/MEG results (Chowdhury et al., 2013, 2016; Grova et al., 2016; Heers et al., 2016; 

Hedrich et al., 2017; Pellegrino et al., 2020). Additionally, when assessing the reliability of our 

measures using discriminability (M. Yu et al., 2018; Wang et al., 2020) through bootstrap 

resampled sub-averaged task responses, we found that MEM provided reliably better 

reconstruction performance than MNE. When evaluating the discriminability of MEM and MNE 

individually, MNE exhibited very large reliability values (e.g., 0.85 for AUC, 0.88 for SD), which 

were even larger than the known largest reliability values reported in neuroimaging fields – 0.8 for 

morphological measures of the human brain (Zuo, Xu and Milham, 2019). This finding might be 
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explained since MNE is known to spatially smear the reconstruction map, therefore reducing 

sensitivity and specificity (Ding, 2009), hence resulting in reliable but less accurate results when 

compared to MEM. On the other hand, the reliability of MEM only (0.71 for AUC, 0.66 for SD 

and 0.64 for Dmin) was overall good. 

MEM reconstructed temporal fluctuations of HbO and HbR were similar to MNE (last column of 

Fig.5.4 and Fig.5.5). The statistical analysis of the reconstructed HbO/HbR peak times in Table.5.1 

further proved this point as no significant differences were found between MEM and MNE 

regarding the HbO/HbR peak times and the delay between them. Moreover, both methods provided 

significant delay around 1-2s between HbR and HbO peak times consistent with previous literature 

(Jasdzewski et al., 2003; Steinbrink et al., 2006). In the end, our group level reconstructed HbR 

time courses (see Fig.5.6d) estimated by MEM and MNE were almost identical to the expected 

fMRI time course estimated through the convolution of a 10s boxcar with the standard canonical 

HRF. To the best of our knowledge, this is the first study reproducing this aspect by investigating 

reconstructed time courses rather than measures in the channel space. It is important to note that 

the time course reconstructed by MNE directly depends on the averaged signal at the channel level 

as it is a linear projection. Conversely, MEM is a nonlinear technique applied at every time sample, 

and not originally optimized for the estimation of resulting time courses. The temporal similarity 

to MNE further validated our previous improvement of MEM (Cai et al., 2021) on temporal 

accuracy of fNIRS reconstruction.  

5.4.2 Comparison of MEM and MNE reconstruction performance along time 

Most of the spatial accuracy comparisons in this study were performed with the NIROT maps 

extracted at the HbO/HbR peak. Would MEM outperform MNE at other time points? We also 

assessed detection accuracy using AUC along the time course of the hemodynamic response, and 

our results demonstrated that MEM outperformed MNE at any time instance along the elicited 

hemodynamic response from 5𝑠 to 20𝑠 after the task onset (Fig.5.7). 

5.4.3 Comparison of MEM and MNE reconstruction performance with spatial thresholding 

MNE tends to spatially spread the reconstructions out of the ‘true positive’ region due to the use 

of L2-norm for the regularization when solving the inverse problem (Ding, 2009). Could post-hoc 

thresholding on the reconstruction map achieve a better spatial extension estimation in MNE? As 

illustrated in Fig.5.7.b, when increasing the initial thresholding in ROC analysis, MNE still 
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provided smaller 𝐴𝑈𝐶 values than MEM along all percentage thresholding values from 0% to 

50%. Therefore, thresholding the MNE map does not solve the typical rate of false positives 

introduced by the method. While both methods were localizing accurately the maximum of the 

underlying activity (see Dmin results), MNE did not recover the underlying spatial extent of the 

active region, whereas MEM did. This result further supported the study of (Ding, 2009), which 

demonstrated that MNE reconstruction cannot retrieve the spatial extent of the underlying 

generator.  

5.4.4 Assessment whether the local forward model of personalized optimal montage was 

biasing NIROT reconstructions   

We also carefully assessed if the use of a local forward model (light sensitivity profile map) 

obtained from an optimal personalized montage targeting a specific ROI, could bias NIROT 

reconstruction towards this targeted region. We found that the optimal montage maximized the 

sensitivity with respect to a targeted ROI, but this does not mean that it was ‘blind’ to the other 

surrounding areas. As shown in Fig.5.1c, the optimal montage used in this study provided 

sensitivity covering not only the ROI (‘hand knob’) but also surrounding areas such as the pre-

central and post-central cortex. To assess this critical issue, we estimated what would be the 

detection accuracy of the personalized sensitivity profile of each individual optimal montage using 

𝐴𝑈𝐶  (see Fig.5.1c), assuming that the sensitivity profile itself could be considered as a 

reconstruction result entirely biased by the optimal montage sensitivity. Our results reported in 

Fig.5.8 demonstrated that MEM reconstruction of data from personalized optimal montage 

provided significantly larger 𝐴𝑈𝐶  values than the ones estimated when considering only the 

sensitivity profile as the solution. These results are indeed suggesting that the reconstruction 

performance is dominated by the process of solving the inverse problem rather than the sensitivity. 

If optimizing the sensitivity could simply lead the MEM reconstructed activation easily showing 

up in the targeted ROI, such a clear difference of 𝐴𝑈𝐶  between sensitivity profile and real 

reconstructions conducted by MEM should not have been observed. Besides, the apparent 

difference we found between MEM and MNE reconstruction should not have been observed either. 

On the other hand, MNE was showing slightly larger AUC when compared to the sensitivity profile 

(non-significant), further demonstrating the inability of the MNE operator to recover accurately 

the spatial extent. This indicated MNE reconstruction is actually not far from a simple projection 
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of the channel space data onto the cortical surface (Ding, 2009). In the end, these reconstruction 

results also support our previous conclusion (Machado et al., 2018) that local reconstruction, 

comparing to NIROT using the high density montage (Zeff et al., 2007; White and Culver, 2010), 

is posssible given appropriate spatial sampling of the montage.    

5.4.5 Using fMRI as the reference for NIROT evaluation 

Using fMRI as the reference to evaluate the accuracy of NIROT reconstructions has been 

conducted in previous studies (White and Culver, 2010; Eggebrecht et al., 2012, 2014; Zhan et al., 

2012a; Yamashita et al., 2016a; Huppert et al., 2017; Tremblay et al., 2018). Mainly three types 

of reconstruction errors have been considered in these evaluation studies, as follows: 

- The first evaluation criterion was the overall localization accuracy, as assessed in our study 

using AUC, also considered in the simulation study (Tremblay et al., 2018) and in a motor task 

study (Yamashita et al., 2016a), which considered both the reconstructed map sensitivity and 

specificity when compared to the fMRI activation map. (Tremblay et al., 2018) used the theoretical 

ground truth defined in the simulation as the ‘true positive’ region. On the other hand, for real data 

reconstructions, the calculation of AUC requires the definition of the ‘true positive’ and the ‘true 

negative’ regions referring to the fMRI activation map. Yamashita et al., 2016 (Yamashita et al., 

2016a) defined the ‘true positive’ region on the fMRI t-map, thresholded at 𝑝 < 0.05 (Family-

wise error rate (FEW) corrected), and the ‘true negative’ regions with the other voxels exhibiting 

𝑝 values below this threshold. However, in our study, we decided to propose a different approach 

to determine more robust ROIs from fMRI results as our proposed NIROT validation references.  

Our ‘true positive’ region, denoted fMRI reference ROI#1, consisted in two features, which are 

respectively size and shape. We proposed a robust approach to define the size of it from the group-

level fMRI Z-map for the following reasons: 1) each subject only went through one fMRI task 

session, and this is not enough to estimate a robust size of the main activation cluster, as suggested 

by fMRI test-retest reliability studies during motor tasks (Zandbelt et al., 2008; Quiton et al., 

2014). 2) Group-level analysis involved more sessions, although collected from different subjects, 

therefore likely to result in a more robust estimation of the spatial extent of the activated map. This 

important finding was demonstrated by (Zandbelt et al., 2008) who showed a highly stable group-

wise spatial activation pattern and BOLD signal changes but substantial variations at the individual 

level. Then, the shape of the ‘true positive’ region was automatically defined when thresholding 
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the individual fMRI Z-map until the resulted region was exhibiting a similar size to the one defined 

from the group-level analysis. In the end, the ‘true positive’ region for each individual map was 

following its own spatial pattern, along the individual level fMRI Z-map, but constrained by a 

robust cluster size parameter estimated from group-level fMRI analysis. Our resulting threshold 

informed by the group-level size parameter was usually higher (more conservative) than the 

conventional threshold considered at the single subject level (p<0.01, corrected using Gaussian 

random field theory).  

When defining the ‘true negative’ region, denoted fMRI reference ROI#2, we did not simply use 

the area that is outside the ‘true positive’ region defined above. Instead, we rather referred to the 

significance test results of conventional FSL individual voxel-wise fMRI analysis (p<0.01, 

corrected using Gaussian random field theory). The non-significant fMRI regions projected on the 

cortical surface were then considered as our ‘true negative’ reference. Our results (Fig.5.2, Fig.5.4 

and Fig.5.5) showed that this region was always more extended than the areas outside the ‘true 

positive’ region. We believe that this proposed approach, discarding the vertices between ROI#1 

and ROI#2 from ROC analysis, was fair regarding the evaluation of MNE, since it is known that 

MNE tends to spatially spread the reconstruction along the cortical region (Ding, 2009). On the 

other hand, those “in between” vertices were actually taken into account in our other validation 

metrics (SD and Dmin). 

- The second evaluation criterion was the localization error (LE) which can be estimated as 

suggested in (Yamashita et al., 2016a) by the distance between the peak of fNIRS reconstruction 

map and the peak of fMRI Z-map. On the other hand, other authors (White and Culver, 2010; 

Eggebrecht et al., 2012, 2014; Huppert et al., 2017) proposed a  center of mass error calculated by 

the distance between the center of mass of two maps (fMRI and NIROT), while others (Zhan et 

al., 2012a; Tremblay et al., 2018) considered the Euclidean distance between reconstruction peak 

to the peak of the stimulated ground truth. In our study, we defined Dmin as the minimum geodesic 

distance, following the circumvolutions of the cortical surface, from the vertex that exhibited 

maximum of reconstructed activity to fMRI reference ROI#1. Overall, we believe that there was 

little difference between these different localization error metrics, given the fact that reconstructing 

HbO/HbR peak inside the ‘true positive’ region was not so challenging, resulting in our case of 

Dmin values mostly close to 0 mm.  
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- A third validation criterion was the false positive or spatial extent reported by the 

reconstructions. The square root of the area exhibiting amplitudes higher than half maximum, i.e.,  

– an estimatee of the full width at half maximum (FWHM), was proposed by (White and Culver, 

2010). Similarly, a focality measurement was considered by (Zhan et al., 2012a), which calculates 

the ratio between localized full volume half maximum (LVHM) and full volume half maximum 

(FVHM). FVHM is determined as the volume of all voxels along the whole reconstruction field 

of view that exhibit amplitude larger than half of the peak amplitude. LVHM is defined similarly 

but only considering the voxels within the single cluster that contains the peak. (Yamashita et al., 

2016a) estimated a false-positive amount metric defined as the average amount of negative HbR 

results in the fMRI non-significant region, and finally (Tremblay et al., 2018) considered a 

measurement of blurring using the root mean squared of the gradient of the reconstructed map. In 

our study, we considered the Spatial Dispersion metric (SD), originally proposed by (Molins et 

al., 2008) when studying EEG/MEG source imaging results. SD consists in weighting the distance 

of the spread of the reconstructed activity around the ‘true positive’ region, by the reconstructed 

energy in such a region. SD distance in mm is therefore sensitive to how much the reconstructed 

map is spreading around the ‘true positive’ region but also to eventual mislocalization errors. In 

our study, by considering SD metric, we are not weighting in a similar manner a false positive 

activation reported close to the ‘true positive’ region, as opposed to the same amplitude false-

positive activation reported far away from the reference region. Therefore, SD is handling correctly 

such an issue by weighted the distance to the ‘true positive’ region by reconstructed amplitude. 

When considering only the spatial extent around the peak of the activation, SD also serves similarly 

as a FWHM measure to quantify the PSF of the reconstructions (Hedrich et al., 2017).   

In our previous studies in the context of EEG/MEG source imaging, AUC and SD metrics appeared  

overall as key metrics to assess how a source localization or NIROT reconstruction technique 

could accurately recover the spatial extent of the underlying generators (Chowdhury et al., 2013, 

2016; Hedrich et al., 2017; Pellegrino et al., 2020; Cai et al., 2021) therefore they were considered 

in this study, exhibiting very informative trends in NIROT maps.  

5.4.6 Difference between NIROT and fMRI maps 

Our results also suggested that NIROT images exhibit activations maps more superficial than fMRI 

Z-maps, both at the individual and group-level analysis. This is in agreement with findings from a 
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simultaneous fMRI/fNIRS study investigating electrical median nerve stimulation (Huppert et al., 

2017). This observation is due to the limited ability of fNIRS to detect the deeper areas, a standard 

limitation of the technique itself (Scholkmann, Kleiser, et al., 2014) which can be partially 

compensated by introducing depth weighting when solving the inverse problem. We investigated 

the impact of depth weighting, in both MEM and MNE, in fNIRS reconstruction in our previous 

study (Cai et al., 2021). The optimal depth weighting parameters identified in our previous study 

were actually the ones considered for this study. Therefore, we believe that our reconstructed 

results should not overcompensating the effect of the depth of the cortical region.  

Although fMRI results were considered as our ‘ground truth’, fMRI and fNIRS signals still have 

different physical and physiological origins. fMRI measures the Blood-Oxygen-Level-Dependent 

(BOLD) signal which is a combination of blood flow changes, blood volume changes and 

deoxygenated hemoglobin concentration changes (Ogawa et al., 1990; Buxton, 2012). On the other 

hand, using infra-red light absorption in two wavelengths, fNIRS measures the relative oxy-

/deoxygenated hemoglobin concentration changes evoked by a task or during the resting state 

(Scholkmann, Kleiser, et al., 2014). Previous studies have provided conflicting results on whether 

BOLD signals exhibit the highest correlation with HbO or HbR (Strangman et al., 2002; Huppert 

et al., 2006; Steinbrink et al., 2006; Cui et al., 2011; Eggebrecht et al., 2012, 2014; Wijeakumar 

et al., 2017). HbR is physically closer to fMRI BOLD signal but the correlation is biased by 

variability resulted from systemic errors (Strangman et al., 2002). We did not fully investigate this 

aspect, but HbR reconstruction maps showed overall a better consensus with fMRI Z-map (see 

Fig.5.4 and 5). For similar reasons, (Yamashita et al., 2016a) decided to compare only HbR maps 

in their comparison with fMRI results.  

5.4.7 Comparison with other NIROT workflows 

Most references reported on NIROT results were performed in the context of high-density fNIRS 

montage (Zeff et al., 2007; Eggebrecht et al., 2014). Increasing the density of the fNIRS montage 

is expected to improve the power of the reconstruction accuracy and the resolution (White and 

Culver, 2010). Along with our previous work (Machado et al., 2018; Cai et al., 2021) and the 

present study, we showed that our approach allows accurate local reconstruction of  NIROT images 

even when considering fewer well-positioned channels. Moreover, we believe that optimal 

montage can also be beneficial for studies which require more portability. 
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Other NIROT strategies have also been reported in the literature. Other linear approaches using 

L1-norm based regularization (Süzen, Giannoula and Durduran, 2010; Okawa, Hoshi and Yamada, 

2011; Kavuri et al., 2012; Prakash et al., 2014) have been used to obtain more focal localization 

with high specificity but with much lower sensitivity. Bayesian model averaging (Tremblay et al., 

2018) proposed by (Trujillo-Barreto, Aubert-Vázquez and Valdés-Sosa, 2004b) and a hierarchical 

Bayesian model applied by (Shimokawa et al., 2012, 2013a; Yamashita et al., 2016a) reported 

more accurate sparse reconstructions with both higher sensitivity and specificity than L1-and L2-

norm based regularizations. It would be of great interest to compare our MEM framework with 

these other NIROT Bayesian methods, as we previously completed in the context of MEG source 

imaging (Chowdhury et al., 2013), either on realistic simulations or on well controlled 

experimental data, however such analysis was out of the scope of this study.  

Regarding the statistical analysis of NIROT maps, a hierarchical random-effects cortical surface 

reconstruction model proposed by Abdelnour, Genovese and Huppert, 2010 was applied by 

Huppert et al., 2017 to estimate a group level hemodynamic responses evoked by parametric 

median nerve stimulations. Individual channel space optical density changes and forward model 

(sensitivity) were concatenated into a single inverse model so that the group-level inference can 

be made directly by solving this model. In our study, we mainly focused on the paired comparison 

of the reconstruction performance between MEM and MNE at the individual-level, not on 

statistical inferences at the group-level. However, in addition to standard evaluation of the grand 

average group-level responses (average of individual NIROT maps) presented in Fig.5.6, we also 

investigated group-level evaluation when considering group-level Z maps of MEM and MNE 

reconstructions (see Supplementary Fig.5.S2). In this case, the Z score was estimated for each 

vertex along the cortical surface among 10 subjects’ reconstruction maps, using the mean of the 

normalized amplitude divided by the standard deviation of 10 subjects, therefore resulting in a 

random effect group-level analysis. Our results further demonstrated a good estimation of the main 

activation cluster using MEM, when compared to MNE.  

5.4.8 Implementation of the workflow in an open-source toolbox 

Our personalized NIROT workflow is publicly available. All methods described in this study have 

been implemented in an fNIRS processing plugin - NIRSTORM 

(https://github.com/Nirstorm/nirstorm) in Brainstorm software. Brainstorm (Tadel et al., 2011) 

https://github.com/Nirstorm/nirstorm
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(https://neuroimage.usc.edu/brainstorm/) is an open-source software dedicated to analyzing 

multimodality brain recordings such as MEG, EEG, fNIRS, Electrocorticography, depth electrodes 

and multiunit electrophysiology. Researchers could apply our proposed NIROT workflow in 

NIRSTORM starting with designing a personalized optimal montage using individual MRI or a 

template MRI (Colin 27). If gluing optodes on any possible location is not feasible, our optimal 

montage can also be estimated on a discrete set of free optodes positions available on a specific 

cap. fNIRS data pre-processing using the conventional pipeline, and finally reconstruction NIROT 

spatio-temporal images using depth weighted versions of MEM and MNE are all available in 

NIRSTORM. 

5.4.9 Limitations and future directions 

The subject cohort involved in this study was still relatively small – 10 subjects. This could reduce 

the power of our statistical analysis. However, the design of the study was fully within-subject, 

with paired comparisons which typically grants more statistical power. The input to each 

reconstruction method contained the exact same variances of hemodynamic responses between- 

and within-subjects, meaning the paired comparisons or contrasts involved in this study are not 

biased by such variances. When studying the reliability of fNIRS 3D reconstruction performances, 

within-subject variability was conducted using a resampling sub-averaged approach. Although it 

was beyond the scope of this study, it would be of great interest to perform such reliability 

evaluation with a well designed test-retest reliability study.  It is worth noting that a recent fNIRS 

reproducibility study has demonstrated the importance of involving montage spatial information, 

which specifically increased the within-subject reproducibility (Novi et al., 2020), hence taking 

advantages of the personalized optimal montage our proposed workflow is expected to provide 

high reliability in a test-retest reliability evaluation study.        

Although the same task was performed by the same cohort, fMRI and fNIRS acquisitions were not 

conducted simultaneously. Within-subject task performance variability might also cause some 

potential differences between the NIROT and fMRI images, including influence of other processes 

like attention or arousal (Novi et al., 2020). Concurrent fMRI/fNIRS acquisitions (Huppert et al., 

2017; Wijeakumar et al., 2017) might be used to address this problem but this was beyond the 

scope of this study. Overall, we believe there should be great interest to apply the proposed NIROT 

workflow into different experiments designs, involving a variety of tasks.        

https://neuroimage.usc.edu/brainstorm/
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5.5 Conclusion 

In the present study, we demonstrated and evaluated our proposed workflow for personalized 

NIROT using MEM. Finger tapping data acquired from 10 subjects were used to reconstruct 

NIROT images and validating the results by comparing them to the fMRI Z-maps obtained from 

the same task and cohort. Conventionally used reconstruction method – MNE - was compared with 

MEM. Our results showed that MEM provides better spatial accuracy and similar temporal 

features as compared with MNE, when reconstructing both HbO and HbR responses evoked by a 

finger tapping task. Our proposed workflow is publicly available, and all the processing 

functionalities have been implemented and validated in the fNIRS processing plugin - 

NIRSTORM (https://github.com/Nirstorm/nirstorm) in Brainstorm software.  

5.6 Appendices 

A1. fNIRS reconstruction using Minimum Norm Estimate (MNE) and Maximum Entropy 

on the Mean (MEM) 

NIROT reconstruction can be modelled as a linear problem, 𝑌 = 𝐴𝑋 + 𝑒, where Y (𝑝 × 𝑡) is the 

pre-processed ∆𝑂𝐷 at a specific wavelength for a specific channel 𝑝 at a time sample 𝑡; 𝐴 is the 

sensitivity matrix (𝑝 × 𝑞) estimated when solving NIROT forward problem between the vertex 𝑞 

and the channel 𝑝. 𝑋 is a (𝑞 × 𝑡) matrix representing the reconstructed amplitude at vertex 𝑞 along 

the cortical surface at time 𝑡, and 𝑒 is the reconstruction error (same dimension as 𝑌). Solving 𝑋 

by knowing 𝑌 and 𝐴 involves solving an ill-posed inverse problem, which requires regularization. 

In the MNE approach (Hämäläinen and Ilmoniemi, 1994), Tikhonov regularization was used to 

minimize the L2-norm, thus the estimated reconstruction spatial-temporal matrix 𝑋̂𝑀𝑁𝐸 as,  

𝑋̂𝑀𝑁𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛(‖(𝑌 − 𝐴𝑋)‖Σ𝑑

2 + 𝜆‖𝑋‖Σ𝑠

2 ) =  (𝐴𝑇Σ𝑑𝐴 + 𝜆Σ𝑠)−1𝐴𝑇Σ𝑑𝑌 

where Σ𝑑 and Σ𝑠 are the inverse of noise covariance and source covariance, respectively, 𝜆 is the 

hyperparameter to regularize the inversion. Σ𝑑  was estimated as a full noise covariance matrix 

from baseline recordings (i.e. -10s to 0s). Σ𝑠 is assumed to be an identity matrix in conventional 

MNE. In our implementation, 𝜆 was estimated by the standard L-Curve method, as suggested in 

(Hansen, 2000). 

https://github.com/Nirstorm/nirstorm
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In our proposed MEM method, which is a probabilistic framework, the probability distribution of 

the amplitude of 𝑋 , described as 𝑑𝑝(𝑥) = 𝑝(𝑥)𝑑𝑥 , can be estimated by Bayesian inference, 

starting from a predefined prior distribution of 𝑋 denoted 𝑑𝜈(𝑥). The peak of the posterior of 

𝑑𝑝(𝑥) represented by 𝑑𝑝∗(𝑥) is estimated by maximizing the Kullback-Leibler divergence or 𝜈-

entropy to the prior as following, 

𝑆𝜈(𝑑𝑝(𝑥)) =  − ∫ log (
𝑑𝑝(𝑥)

𝑑𝜈(𝑥)
) 𝑑𝑝(𝑥) =  − ∫ 𝑓(𝑥) log(𝑓(𝑥)) 𝑑𝜈(𝑥) 

𝑑𝑝∗(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑𝑝(𝑥)𝜖ℂ𝑚
(𝑆𝜈(𝑑𝑝(𝑥))) 

where 𝑆𝜈(𝑑𝑝(𝑥))  is the 𝜈 -entropy of 𝑑𝑝(𝑥)  to prior 𝑑𝜈(𝑥) , ℂ𝑚  is the set of probability 

distributions of 𝑥 that explains the data 𝑌 on average, meaning 

𝑌 − [𝐴|𝐼] [
𝐸𝑑𝑝[𝑥]

𝑒
] = 0, 𝑑𝑝𝜖ℂ𝑚 

where 𝐸𝑑𝑝[𝑥]  is the statistical expectation of 𝑥  under the probability distribution 𝑑𝑝 , 𝐼  is the 

identity matrix with the dimension of the number of vertices involved in the reconstruction.  

Then, assuming that brain activity could be described by 𝐾  non-overlapping and independent 

cortical parcels, we proposed the following reference distribution 𝑑𝜈(𝑥) model, 

𝑑ν(𝑥) = ∏[(1 − α𝑘)δ(𝑥𝑘) + α𝑘𝑁(μ𝑘, Σ𝑘)]𝑑𝑥𝑘

𝐾

𝑘=1

,   0 < α𝑘 < 1 

where the hidden variable 𝑆𝑘 defines the activation state (active or not) of each cortical parcel 𝑘. 

α𝑘  is the probability of 𝑘𝑡ℎ  parcel to be active, i.e. 𝑃𝑟𝑜𝑏(𝑆𝑘 = 1). δ𝑘  is a Dirac function that 

allows to ‘switch off’ the parcel when considered as inactive (i.e. 𝑆𝑘 = 0). 𝑁(𝜇𝑘, Σ𝑘) is a Gaussian 

distribution, describing the distribution of absorptions changes within the 𝑘𝑡ℎ parcel, when the 

parcel is considered as active, 𝑆𝑘 = 1.  Note that the multiplication in the definition of 𝑑ν(𝑥) is 

referring to the assumption that all parcels are statistically independent.  
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A data driven parcellation (DDP) technique (Lapalme, Lina and Mattout, 2006) was used to 

parcellate the cortical surface into K non-overlapping parcel. The probability of each parcel to be 

active (α𝑘) was initialized as the median Multivariate Source Pre-localization (MSP) (Mattout et 

al., 2005) score from all the sources within the parcels. 

To initialize the 𝑁(𝜇𝑘, Σ𝑘) in prior 𝑑𝜈(𝑥),  μ𝑘  was set to zero. Σ𝑘(𝑡) at each time point 𝑡 was 

defined according to (Chowdhury et al., 2013), 

Σ𝑘(𝑡) = η(𝑡)𝑊𝑘(σ)𝑇𝑊𝑘(σ) 

η(𝑡) = 0.05
1

𝒫𝓀
∑ 𝑋̂𝑀𝑁𝐸

2 (𝑖, 𝑡)

𝑖∈𝒫𝓀

 

where 𝑊𝑘(𝜎) is a spatial smoothness matrix, defined by (Friston et al., 2008), which controls the 

local spatial smoothness within the parcel according to the geodesic surface neighborhood order. 

𝜂(𝑡) was defined as 5% of the averaged energy of MNE solution within each parcel.  

Note that for NIROT reconstruction, we also applied a depth-weighted version of MEM and MNE, 

as described and evaluated in (Cai et al., 2021). Please refer to this work for further methodological 

details.   

A2. The reliability of performance differences between MEM and MNE   
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Fig.5.A1. Histograms of paired evaluation metric differences between MEM and MNE estimated over 

100 sessions (10 within subject resampled sessions × 10 subjects). The blue dashed lines indicated the 

95% confidence interval (CI) of the estimated paired differences on a) AUC, b) SD (in mm) and c) Dmin 

(in mm). Red dashed lines showed 0 difference and black dashed lines represented the mean of the 

corresponding differences. Based on all sessions including within- and between-subjects variability, MEM 

provided significantly higher AUCs (overall better sensitivity and specificity), smaller SDs (less amplitude 

weighted spatial spread) and smaller Dmin (closer to the main fMRI cluster) than MNE.     
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Fig.5.A2. Evaluations of reliability of performance differences between MEM and MNE using 

discriminability. Each diagonal matrix demonstrated the within-subject and between-subject Euclidean 

distances of the pair-wised performance differences (MEM−MNE) for a) AUC, b) SD (in mm) and c) Dmin 

(in mm). MEM showed reliably better reconstruction performance than MNE indicated by a 

discriminability measure of 0.68 for AUC, 0.70 for SD and 0.68 for Dmin, as illustrated in the figure 

showing that within-subject distances (block diagonal terms) were overall smaller than between-subject 

distances (off diagonal terms).  
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5.7 Supplementary Materials  

 
Fig.5.S1. FSL group-level fMRI activation maps of each slice thresholded by Z>3.1 (cluster-wise 

inference, p<0.01, corrected).  
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Fig.5.S2. Group-level NIROT Z-maps and standard deviation maps. a) group-level NIROT Z-maps of 

HbO and HbR reconstructed by MEM. Individual peak maps were first normalized by its own peak 

amplitude to [-1,1] in the native space, then projected to the mid-surface of the ICBM152 template using 

FreeSurfer spherical registration. Z values were calculated for each vertex using the mean amplitude 

divided by the standard deviation among 10 subjects. Black profile represents the group-level fMRI main 
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cluster. b) same illustrations as a) but reconstructed by MNE. c) and d) demonstrate the standard deviation 

used for the calculation of Z-maps of the corresponding reconstruction results. 
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Chapter 6 

Manuscript 3: Hemodynamic Correlates of Fluctuations in Neuronal 

Excitability: A Simultaneous Paired Associative Stimulation (PAS) 

and functional Near Infra-Red Spectroscopy (fNIRS) Study 

Context 

In Chapter 2, we introduced the advantages of combining TMS and fNIRS when investigating the 

correlation between hemodynamic activity and cortical excitability. Corresponding literature is 

also briefly reviewed in that chapter, reporting some inconsistent findings. Whereas combined 

TMS/fNIRS features some technical advantages from the data acquisition perspective, addressing 

research questions remains challenging, especially for the following aspects: 1) brain stimulation 

techniques are known for inducing variable and sometimes unpredictable effects.  López-Alonso 

et al., 2014 showed that only 39% of subjects exhibited an expected response to PAS25, and 43% 

of subjects showed an expected response to iTBS.  This intrinsic variability of PAS effect depends 

upon multiple factors, including genetic susceptibility and the position of the coil (Ziemann and 

Siebner, 2015); 2) task-evoked hemodynamic response measured using fNIRS also contains 

considerable levels of variability (Novi et al., 2020). These sources of variability may explain some 

reported non-reproducible fNIRS/TMS results. So far, all fNIRS/TMS studies considered 

traditional fNIRS cap/patch, i.e., fNIRS sensors layout which is not personalized to the subject 

anatomy, and data analyses were mostly using the basic channel space approach. Not considering 

spatial information included in fNIRS montage has been shown to impact the reliability of the 

results (Novi et al., 2020), and may result in inaccurate hemodynamic response estimations by 

mBLL, when assuming homogenous HbO/HbR concentration changes along the light pathway 

(see Chapter 1). To address these limitations, in this chapter, we are applying our previously 

developed and evaluated personalized NIROT workflow in the context of a simultaneous 

fNIRS/TMS study to investigates the effects of PAS.    

This manuscript is currently in preparation, Zhengchen Cai, Giovanni Pellegrino, Amanda Spilkin, 

Edouard Delaire, Makoto Uji, Chifaou Abdallah, Jean-Marc Lina, Shirley Fecteau, Christophe 
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Grova. Hemodynamic Correlates of Fluctuations in Neuronal Excitability: A Simultaneous Paired 

Associative Stimulation (PAS) and functional Near Infra-Red Spectroscopy (fNIRS) Study.   

Abstract  

Background: The relationship between task-related hemodynamic activity and brain excitability 

is poorly understood in humans as it is technically challenging to combine simultaneously non-

invasive brain stimulation and neuroimaging modalities. Cortical excitability corresponds to the 

readiness to become active and as such it may be linked to metabolic demand.  

Hypotheses: Cortical excitability and hemodynamic activity are positively linked so that increases 

in hemodynamic activity correspond to increases in excitability and vice-versa.  

Methods: Fluctuations of excitability and hemodynamic activity were investigated via 

simultaneous Transcranial Magnetic Stimulation (TMS) and functional Near Infrared 

Spectroscopy (fNIRS). Sixteen healthy subjects participated in a sham-controlled, 

pseudorandomized, counterbalanced study with PAS (PAS10/PAS25/Sham) on the right primary 

motor cortex (M1). The relationship between M1 excitability (Motor Evoked Potentials, MEP) 

and hemodynamic responses to finger tapping reconstructed via personalized fNIRS was assessed. 

Results: Hemodynamic activity exhibited a significant correlation with cortical excitability: 

increased HbO and HbR (absolute amplitude) corresponded to increased excitability and vice-

versa (r=0.25; p=0.03 and r=0.16; p=0.17, respectively). MEP ratios (post-PAS/pre-PAS) showed 

a significant linear relationship with HbO and HbR ratios (r=0.82, p<0.001 and r=0.88, p<0.001, 

respectively), when considering sessions with concordant PAS effects on MEP, HbO and HbR. 

Conclusions: TMS-fNIRS is a suitable technique for simultaneous investigation of excitability 

and hemodynamic responses and indicates a relationship between these two cortical properties. 

PAS effect is not limited to cortical excitability but also impacts hemodynamic processes. These 

findings have an impact on the application of neuromodulatory interventions in patients with 

neuropsychiatric disorders. 

6.1 Introduction  
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The relationship between cortical excitability and elicited hemodynamic activity is poorly 

understood in humans. Such investigation requires simultaneous measurements of excitability and 

hemodynamic activity (Siebner et al., 2009). Transcranial Magnetic Stimulation (TMS) is a 

versatile technique that allows the assessment and modulation of primary motor cortex (M1) 

excitability. Cortical excitability assessment is easily achieved via single pulse TMS (spTMS) by 

measuring the amplitude of the Motor Evoked Potentials (MEPs). M1 excitability modulation can 

be obtained by repetitive TMS (rTMS) and related techniques, such as Paired Associative 

Stimulation (PAS). PAS was established about two decades ago (Stefan, 2000) and consists in 

combining TMS with peripheral electrical stimulation such as Median Nerve Stimulation (MNS). 

It relies on the principle that repetitive stimulations delivered with proper timing and pace induce 

long-term potentiation and long-term depression like plasticity, exploiting the concept of spike-

timing-dependent plasticity (Levy and Steward, 1983; Rossini et al., 2015b). PAS effects can last 

for 30 minutes or more (Stefan, 2000; Lee et al., 2017; Suppa et al., 2017). This technique is 

therefore well-suited to manipulate cortical excitability by tuning the timing of the interstimulus 

intervals (ISI), because it can generate either an excitability increase, when applying a 25ms time-

interval between MNS and TMS pulses (PAS25), or an excitability decrease, when applying a 

10ms time-interval between pulses (PAS10). A PAS sham has also been described and validated 

(Loo et al., 2000; Gow et al., 2004; Michou et al., 2014b).  

A standard approach to non-invasively map brain functions is to measure the fluctuations of brain 

hemodynamic signals elicited by neuronal activity. Functional magnetic resonance imaging 

(fMRI) is typically the tool of choice for its reliability, ease of use, high spatial resolution and 

sensitivity to deep brain regions (Bandettini et al., 1992; Kwong et al., 1992; Glover, 2011). 

Nevertheless, bringing TMS within the MRI environment is challenging (Hallett et al., 2017). MRI 

compatible TMS coils have been developed (Navarro De Lara et al., 2015; Wang, Xu and Butman, 

2017) and applied to investigate the TMS induced hemodynamic responses (Navarro de Lara et 

al., 2017), but the majority of studies have had an “offline” approach, meaning that no continuous 

fMRI measurement during TMS is usually performed (Siebner et al., 2009).  

Functional Near InfraRed Spectroscopy (fNIRS) is a non-invasive neuroimaging modality, which 

allows monitoring changes in oxy- and deoxy-hemoglobin (i.e., HbO/HbR) in the cerebral cortex 

(Jöbsis, 1977; Scholkmann, Kleiser, et al., 2014; Yücel et al., 2021). It measures light intensity 

changes, modulated by local absorption associated with underlying hemoglobin concentration 
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fluctuations, via source-detector pairs placed on the scalp. fNIRS has high temporal resolution and 

acceptable spatial resolution with no electromagnetic interference (Siebner et al., 2009; Vasta et 

al., 2017; Curtin, Tong, et al., 2019). It allows the estimation of both HbO and HbR concentration 

changes in cortical regions. It is relatively portable and permits prolonged scans, with little or no 

discomfort for the participants (Scholkmann, Kleiser, et al., 2014; Pellegrino, Machado, et al., 

2016; Gramigna et al., 2017). The drawback of combining fNIRS and TMS is that when both 

techniques are applied to the same cortical area, the optodes (fNIRS sensors) introduce some 

additional space between the TMS coil and the scalp. This requires higher TMS stimulation 

intensities as the strength of the magnetic field decays sharply when increasing the coil distance to 

the target region (Parks, 2013; Curtin, Tong, et al., 2019). Nevertheless, we are proposing 

combining PAS and fNIRS as a promising way to assess the relationship between cortical 

excitability and hemodynamic responses.  

We conducted here the first PAS-fNIRS investigations of the relationship between cortical 

excitability and task-related hemodynamic response. Cortical excitability corresponds to the 

cortical readiness to become active and as such it may be linked to metabolic demand. We first 

hypothesized that fluctuations of cortical excitability are positively correlated with fluctuations of 

hemodynamic activity. This hypothesis was tested by estimating the correlation between MEP 

peak-peak amplitude and task-related HbO/HbR response, regardless of the PAS interventions 

(PAS25, PAS10, Sham). Second, we hypothesized that PAS affects cortical task-related 

hemodynamic responses in addition to cortical excitability, and such modulations of excitability 

and hemodynamic positively correlate. In other words, when PAS increases cortical excitability, 

it results in enhanced task-related hemodynamic response, whereas when PAS decreases cortical 

excitability, it results in reductions of the hemodynamic response to the task. This hypothesis was 

tested by estimating the correlation between MEP and HbO/HbR ratios calculated as the post- over 

pre-intervention amplitudes. As PAS is known to induce variable effects (López-Alonso et al., 

2014; Suppa et al., 2017), this second analysis was restricted to cases showing concordant PAS 

effects on MEP, HbO and HbR.  

6.2 Material and methods  

6.2.1 Subjects and study design 
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This study was approved by the Central Committee of Research Ethics of the Minister of Health 

and Social Services Research Ethics Board, (CCER), Québec, Canada. All subjects signed a 

written informed consent before participation. Only subjects meeting the following 

inclusion/exclusion criteria were considered: 1) age between 18 and 40 years old; 2) right-handed 

male; 3) no present or past neurological disorders; 4) no medications acting on the central nervous 

system; 5) no contraindications to MRI or TMS (Rossi et al., 2009; Suppa et al., 2017). Nineteen 

subjects (24 ± 5 years old, mean±SD) participated in the study. Subjects were instructed to have 

a regular sleep cycle for the days before the experiments and to not consume caffeine for at least 

90 minutes before the experiment.  

The experimental design and setup are illustrated in Fig.6.1 and Fig.6.2, respectively. Every 

participant had 1) an anatomical head MRI scan (T1- and T2-weighted, 1mm3 isotropic) for 

neuronavigated TMS; calculate personalized fNIRS optical head model (Machado et al., 2014b, 

2018); and install optodes, followed by 2) somatosensory evoked potentials recording during 

electrical stimulation of the median nerve at the wrist to measure N20 latency and tune PAS 

accordingly. We then conducted three experimental sessions corresponding to three different PAS 

interventions: PAS25, PAS10, and sham. These sessions were performed at least two days apart 

to minimize potential carryover effects. As this study included three sessions, we decided to 

consider male participants to minimize the confounding of cortical excitability changes due to the 

menstrual cycle (Hattemer et al., 2007; Lee et al., 2017). Experimental sessions were performed 

with a pseudorandomized order, counterbalanced across subjects, which consisted of the following 

components:  

• PAS was performed with 100 pairs of MNS and TMS with a fixed interval of 10s according 

to the guidelines (Suppa et al., 2017), for a total duration of 18 minutes (Fig.6.1c). MNS was 

delivered at the left wrist and with the following parameters: intensity = 300% perceptual 

threshold, square wave and 0.2ms duration. TMS intensity was 120% of the resting motor 

threshold (RMT). The ISI between MNS and TMS were then set to be individual N20+5ms 

for PAS25 and N20-5ms for PAS10, respectively (Carson and Kennedy, 2013). Sham was the 

same as PAS25, except TMS was not delivered, whereas its sound was provided via a stereo 

speaker (Zangrandi et al., 2019). 

Before and after each intervention,  
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• Cortical excitability was measured via M1 spTMS, applying 75 stimuli (ISI ranging between 

5s and 25s) to the right hand-knob (Fig.6.1b). MEPs were recorded by bipolar 

electromyography (EMG) electrodes attached on the right abductor pollicis brevis (APB), 

with a standard belly-tendon montage (Fig.6.2d). The RMT was defined with the TMS Motor 

Threshold Assessment Tool (Awiszus et al., 1999; Ah Sen et al., 2017). All TMS procedures 

followed the recommendations of the International Federation of Clinical Neurophysiology, 

and no participants reported any severe discomfort or side effects (Rossi et al., 2009). 

• A finger tapping task was performed to activate M1 and estimate its task-related hemodynamic 

activity. Subjects were instructed to tap the left thumb to the other digits sequentially, at a 

pace of about 2Hz (Fig.6.1a). The movement was performed in short blocks of 10s interleaved 

with a resting period jittered between 30s to 60s. This time-constraint was meant to avoid task 

events phase locking to undergoing physiological hemodynamic oscillations (Aarabi, 

Osharina and Wallois, 2017). Movement onset and offset were instructed by auditory cues. 

The duration of the motor task was about 18 minutes and consisted of 20 blocks. 

fNIRS data were acquired using a Brainsight fNIRS machine (Rogue-Research Inc, Montreal 

Canada), sampling at 10Hz. MEPs were recorded by a BrainAmp ExG bipolar system (Brain 

Products GmbH, Germany). Please refer to Appendix A for further detailed experiment protocol. 

From the nineteen subjects, one was excluded due to low sensitivity to TMS and two due to poor 

fNIRS signal quality. Four subjects dropped out after the first session due to personal reasons, 

resulting in 16 PAS25, 12 PAS10 and 12 sham sessions. Ten subjects completed all 3 sessions.  
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Fig.6.1 Study design. Each acquisition session described above contains sections following the order of 

a, b, c and b, a. (a) Finger tapping task: subjects were asked to tap the left thumb (D1) to the other four 

left digits (D2-D5) sequentially, at around 2Hz. Each tapping block lasted 10s and was followed by 30s to 

60s jitter rest. Start and stop signals were delivered by auditory cues. 20 blocks were performed for 18 

minutes total duration. (b) A single pulse TMS was delivered onto the “hot spot” at 120% of individual 

RMT. 75 pulses were delivered with a 5s to 25s jittered ISI for a total duration of about 19 minutes. (c) 

Three PAS simulations were performed on different days separated by at least 2 days and presented in a 

pseudorandomized order. ISI between peripheral (MNS) and TMS was set to individual N20+5ms (PAS25) 
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and N20-5ms (PAS10) for excitatory and inhibitory PAS, respectively. Sham was similar to PAS25, same 

MNS followed by a 0 intensity TMS, whereas the TMS click was reproduced via speakers. MNS intensity 

was set to 3x individual perceptual threshold. PAS pairs were separated by a 10s interval. In total, 100 

pairs were delivered in 18 minutes. Note that fNIRS signal was acquired during the whole experiment 

session.   

6.2.2 Personalized fNIRS using the optimal montage 

In order to maximize the sensitivity of fNIRS channel layout (i.e., montage) to M1 hemodynamic 

activity, we applied a personalized optimal montage, previously developed and validated by our 

group. Specifically, this montage maximizes fNIRS sensitivity along the cortical surface with good 

spatial overlap between channels (Machado et al., 2014b, 2018, 2021; Pellegrino, Machado, et al., 

2016). The T1-/T2-weighted images were processed by FreeSurfer 6.0 to segment the head (i.e., 

scalp, skull, cerebrospinal fluid, gray matter and white matter) and generate a mid-cortical surface 

(i.e., a middle layer of the gray matter, between pia mater and gray-white matter interface) (Fischl 

et al., 2002). The target area for the optimal montage (see Fig.6.2a) corresponded to the right hand-

knob and was manually defined for each participant along the mid-surface (Raffin et al., 2015b). 

The personalized optimal montage was estimated imposing the following constraints: 1) 3 light 

sources and 15 detectors (see Fig.6.2b); 2) distance between source-detector pairs ranging from 

2.0cm to 4.5cm and 3) large spatial overlap between channels, e.g., each source must construct at 

least 13 channels among 15 detectors. The output of the optimal montage procedure is a set of 

fNIRS optode positions along the scalp to probe the right hand-knob with the highest sensitivity. 

Finally, a proximity detector for recording physiological hemodynamics of the scalp was added at 

the center of the 3 sources (Zeff et al., 2007; Gregg et al., 2010).  
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Fig.6.2 Personalized optimal montage and simultaneous PAS-fNIRS acquisition setup. (a) The right M1 

hand region (“hand knob”) was pre-defined as the target ROI of personalized optimal fNIRS montage. This 

area was manually selected on each subject’s cortical surface extracted from individual MRI. (b) Example 

of the optimal montage estimated for Sub06. The montage was constrained to have 3 sources (red), 15 

detectors (green) and 1 proximity detector (placed in the middle of sources, not shown). (c) Normalized 

light sensitivity profile of the optimal montage expressed as the sum of all channels’ sensitivity along the 

individual cortical surface. (d) PAS and fNIRS acquisition setup. (1) Participants sat on a comfortable TMS 

armchair. Four different machines were involved: a Brainsight-fNIRS for fNIRS data acquisition and 

neuronavigation; Magstim 2002 TMS stimulators for spTMS and PAS; a Digitimer DS7A for MNS and PAS; 
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and a BrainAmp ExG bipolar system for recording MEPs. (2) Low-profile (thin) optodes were attached on 

the subject’s head using collodion based on their optimal positions defined in (b). (3) A figure-8 TMS coil 

was placed on top of the optodes, guided with the neuronavigation system, held with a mechanical arm.  

6.2.3 Excitability data analysis  

EMG data collected during spTMS were analyzed using the Brainstorm software (Tadel et al., 

2011) and R 4.0.3 (R Core Team, 2020). They were filtered between 3 and 2000Hz. MEP trials 

were extracted within a time window from -10ms to 100ms around the stimulation and baseline 

corrected (-10ms to 0ms). Run specific (e.g., pre-PAS 25 of Sub01) excitability was expressed as 

the average of MEP peak-peak amplitudes across spTMS. Session specific (e.g., PAS 25 of Sub01) 

excitability change was measured as the post-/pre-PAS ratio of averaged MEP peak-peak 

amplitudes.  

6.2.4 fNIRS data processing 

The details of the following procedures are provided in Appendix. B. Briefly, fNIRS data 

processing was performed applying 3D reconstructions with the Maximum Entropy on the Mean 

(MEM) framework, as described in (Cai et al., 2021). The goal was to extract HbO/HbR amplitude 

from spatiotemporal maps reconstructed from the channel space data to the underlying cortical 

surface. fNIRS data pre-processing involved the following steps: bad channel rejections; 

physiological noise regression using proximity channels (Zeff et al., 2007; Gregg et al., 2010); 

band-pass filter between 0.01Hz and 0.1Hz, and epochs extraction with a time window of -10s to 

30s around the task onset. To extract robust and reliable HbO/HbR amplitude for further estimation 

of PAS effects on hemodynamic, we introduced in this study an original approach which comprises 

three steps: 1) selection of 101 trials centred around the median signal to noise ratio (SNR) of “all 

the possible” sub-averaged 16 out of 20 fNIRS epochs. This procedure aimed to exclude eventual 

motion artifacts contaminated epochs from sub-averaging and resulted in a distribution 

representing the variability of task-evoked fNIRS signal changes specific for each run (e.g., pre-

PAS25 of Sub01); 2) fNIRS 3D reconstructions of each sub-averaged trial using the MEM 

framework, resulted in 101 spatiotemporal hemodynamic responses maps for each task run; 3) 

extraction/identification of a data-driven ROI which exhibited significant task-related 

hemodynamic responses for each session (e.g., PAS25 of Sub01). Importantly, since this procedure 

was data-driven, fNIRS analysis was blind to PAS interventions. Finally, the measure of HbO/HbR 
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was defined as the averaged amplitude within a 5s window centred around the peak of the 

reconstructed time course, extracted by averaging reconstructed time courses within the ROI 

defined in 3). Therefore, 101 HbO/HbR amplitudes were extracted for each run. Run specific 

hemodynamic responses were expressed as the averaged HbO/HbR amplitude among all 101 trials. 

Session specific PAS effects on task-related hemodynamic response were represented by the post-

/pre-intervention ratios of averaged HbO/HbR measures. To demonstrate group-level intervention 

effects on reconstructed HbO/HbR maps, individual maps selected at their respective peak were 

first coregistered on the mid-surface of MNI ICBM152 (Fonov et al., 2009, 2011) template using 

FreeSurfer spherical registration, and then averaged over all subjects.  

6.2.5 Statistical analysis  

To assess the relationship between fluctuations of cortical excitability and task-related 

hemodynamic activity regardless of PAS intervention, we pooled together subjects’ data of all runs 

(before and after PAS) and calculated Pearson’s correlations (r) between MEPs amplitude and 

HbO responses (HbR, respectively). Furthermore, as cortical excitability is usually estimated on 

20 or fewer MEPs while we had 75 measures, we applied a procedure to keep within-subject 

variability, that would have been lost by collapsing all trials in a single average. We then performed 

a bootstrap so that 2000 correlations were computed considering averaged amplitudes of 20 MEPs, 

20 HbO and 20 HbR trials randomly selected for each run. The resulting r empirical distribution 

allowed the estimation of an average r-value and a confidence interval.  

To estimate the effect of PAS on excitability (MEPs), HbO and HbR responses, we considered 

post-/pre- ratios. The effects of PAS across interventions were tested with a one-way ANOVA 

applied independently for MEPs, HbO and HbR ratios, whereas the effect of each intervention was 

tested with a one-sample t-test against 1.  

To estimate the relationship between PAS-related excitability and hemodynamic changes, linear 

regressions were performed between MEP and HbO ratios (HbR, respectively). The regression 

was conducted on three classes: 1) pooling all sessions; 2) sessions exhibiting concordant effects 

only, defined as MEP and HbO and HbR ratios simultaneously larger or smaller than 1; and 3) 

sessions with discordant effects (see Appendix. C).  

6.3 Results  
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6.3.1 Correlation between cortical excitability and task-related hemodynamic responses 

Fig.6.3 illustrates the relationship between excitability (MEPs amplitude) and task-related 

hemodynamic activity (HbO and HbR). We found a significant positive linear correlation between 

MEP and HbO amplitude (r = 0.25, p=0.03) and a non-significant negative linear relationship 

between MEP amplitude and HbR (r = -0.16, p=0.171), meaning that an increased level of 

excitability corresponded to higher task-related HbO concentration and lower HbR concentration. 

These relationships were robust when considering the variability of the three amplitudes, as 

demonstrated by the bootstrapped correlation histograms (Fig.6.3c and d). The 95% confident 

interval of correlation value was [0.16, 0.33] for HbO and [-0.24, -0.08] for HbR. In both cases, 

the confidence interval did not cross the zero line, meaning that the variability of excitability and 

hemodynamic activity measures within subjects and across trials did not influence the sign of the 

correlation. 

 

Fig.6.3 Correlation between MEP peak-peak amplitude and task-related HbO/HbR amplitudes. (a) 

scatterplot of HbO amplitude as a function of MEP amplitude. Each dot corresponds to a run (average over 

all MEPs amplitudes and all HbO trials). There was a significant positive linear relationship (Pearson’s r = 
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0.25, p=0.03). Red lines represent the estimated regression line, and the gray area indicated the 95% 

confidence interval. (b) There was a negative linear relationship between HbR and MEPs amplitude which 

did not reach statistical significance when considering run averages of all MEPs and HbR amplitudes. (c) 

and (d) the histogram of the correlation between MEP and HbO/HbR amplitudes, respectively, estimated 

from the bootstrap procedure (selecting 20 out of 75 MEP, HbO and HbR trials). Black curves represented 

the estimated density functions; black dashed lines showed the resulting mean correlation value; blue 

dashed lines indicated the 95% confidence interval estimated from the histograms; red dashed lines 

indicated r=0.   

6.3.2 PAS effects on cortical excitability and task-related hemodynamic activity 

Fig.6.4 shows the group-level MEP, HbO and HbR ratios for the PAS25, PAS10 and sham 

sessions. Overall, PAS produced similar effects for excitability and hemodynamic, with an overall 

increase of MEP, HbO and HbR ratios after PAS25, a decrease of MEP and HbO ratios after 

PAS10, and the ratio of sham was always in between PAS25 and PAS10. Table.6.1 summarizes 

the corresponding ratio values. Of note, all measures and especially fNIRS measures showed rather 

high variabilities, which likely prevented from reaching statistical significance (p>0.05 for the 

ANOVA and one-sample t-test) for the planned comparisons. 

Fig.6.5 illustrates the single subject level (Sub02) PAS effects on reconstructed HbO and HbR. 

Following PAS25 and PAS10, absolute HbO and HbR amplitude were exhibiting increases and 

decreases, respectively. These effects were concordant with MEP amplitude changes (detailed 

values in Fig.6.5 caption). Fig.6.6 presented the group-level reconstruction maps. HbO peak 

amplitude (mean within the ROI, 𝜇𝑚𝑜𝑙. 𝑙−1) increased after PAS25 and decreased after PAS10. 

HbR peak amplitude within the ROI decreased after PAS25 and also decreased after PAS10 

(detailed values in Fig.6.6). 
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Fig.6.4 Group-level PAS effects on cortical excitability and hemodynamic activity. Effects of PAS25, 

PAS10 and sham on M1 cortical excitability (MEP amplitude) and M1 task-related hemodynamic activity 

(HbO and HbR) expressed as mean±SEM (standard error of the mean). PAS produced similar effects for 

excitability and hemodynamic activity, with an increase of MEP amplitude, HbO and HbR following 

PAS25, and a decrease of MEP amplitude and HbO following PAS10, a slight increase of the three 

measures after sham. All measures, and especially fNIRS measures, showed rather high variabilities (see 

standard error of the mean in the figure). 

 

Table.6.1 Group-level PAS effects on cortical excitability and hemodynamic activity. 
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Fig.6.5 PAS effects on task-related hemodynamic responses using personalized fNIRS tomography 

for Sub02. Individual-level reconstructed fNIRS maps of HbO and HbR responses for each experimental 

session, pre- or post-intervention, PAS25 (1st row), PAS10 (2nd row), sham (3rd row). Each map 

demonstrated the spatial distribution pattern of the task-related hemodynamic responses at its own peak 

timing of the reconstructed time courses showed in the last column. The red, blue and green profiles 

represented the extracted specific ROIs exhibiting significant hemodynamic responses at the peak 

amplitudes (see method section for details) for PAS25, PAS10 and sham, respectively. The averaged time 

course of HbO and HbR within each selected ROI for each session is presented in the last column by the 
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solid lines, within a time window from 0s (the task onset) to 30s. All HbO and HbR time courses 

demonstrated the typical hemodynamic responses evoked by a 10s duration task. The shaded area 

represented the standard deviations of the time course within the ROI. Both the absolute amplitudes of HbO 

and HbR showed expected increase (after PAS25) and decrease (after PAS10) patterns within the selected 

ROIs. However, sham session also resulted in increased HbO and decreased HbR. The corresponding ratios 

of HbO and HbR were also in agreement with the mean MEP ratios, e.g., MEP ratio = 1.37, HbO ratio = 

1.62 and HbR ratio = 1.56 for PAS25; then 0.85, 0.58 and 0.61 for PAS10, respectively. Colour maps for 

pre- and post- maps were fixed for specific hemoglobin and session (e.g., HbO in PAS25). HbO amplitudes 

generally exhibit a larger range than HbR amplitudes.  



Chapter 6: Manuscript 3 

181 
 

 

Fig.6.6 Group-level PAS effects on task-related hemodynamic responses. Group level reconstructed 

maps of HbO and HbR of each experimental session, pre- or post-, were shown in each row for PAS25, 
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PAS10 and sham, respectively. Each map demonstrated the averaged corresponding individual-level task-

related hemodynamic responses. Individual HbO/HbR maps selected at their respective peak were first 

coregistered on the mid-surface of the MNI ICBM152 template using Freesurfer spherical registration and 

then averaged over all subjects. The numbers indicated on every map are reporting the mean HbO or HbR 

amplitude within the corresponding ROI. This group-level ROI was defined manually along the M1 cortex 

of the template cortical surface to cover the hand knob region. Note that these maps were mainly considered 

for the visualization of PAS effects, whereas the statistical summary of hemodynamic changes was 

extracted at the individual levels. Colour maps for pre- and post- maps were fixed for specific hemoglobin 

and session (e.g., HbO in PAS25). HbO amplitudes generally exhibit a larger range than HbR amplitudes. 

6.3.3 Relationship between PAS-related excitability and hemodynamic changes  

When pooling all sessions together (Fig.6.7a), the resulted linear regression between HbO ratio 

(HbR, respectively) and MEP ratio presented a positive relationship, but no significant association 

(MEP-HbO ratios, r=0.19, p=0.29; MEP-HbR ratios, r=0.18, p=0.30). Fig.6.7b illustrated the 

linear regression for sessions with concordant PAS effects (e.g., MEP and HbO and HbR ratios 

were simultaneously larger or smaller than 1), resulting in significant positive linear corrections 

between MEP ratio and both HbO (r = 0.82, p<0.001) and HbR (r=0.88, p<0.001) ratios. No 

significant linear correlations were found when considering sessions with non-concordant PAS 

effects (Fig.6.7c). For the sessions with concordant PAS effects, the probability of obtaining such 

correlation results in Fig.6.7b by chance was respectively 0%, 0%, 0.8% and 1.1%, when 

simulating null hypothesis distributions of correlation values using respectively 1000, 100, 50, 40 

samples (see Appendix. C).  
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Fig.6.7 Correlates of task-related hemodynamic changes and PAS modulated excitability changes. 

The 1st row presented HbO ratio as a function of MEP ratio and 2nd row showed HbR ratio as a function of 

MEP ratio. Each point represented a session (e.g., PAS25 for Sub01, post-/pre- ratios). Sessions were color 

coded as red for PAS25, blue for PAS10 and yellow for sham. (a) linear regression between MEP ratios 

and HbO/HbR ratios when considering all sessions. We found positive Pearson’s correlations, r=0.19 and 

r=0.18 between MEP-HbO and MEP-HbR ratios, respectively, but none of them were statistically 

significant. (b) Linear regression for the PAS concordant sessions, in which MEP and HbO and HbR ratios 

were all larger than 1, or all smaller than 1. Both MEP-HbO and MEP-HbR cases demonstrated significant 

positive linear correlations (r=0.82 and r=0.88, p<0.001 in both cases). Besides, both fitted lines were not 

far from the point (1,1), e.g., HbO ratio = 0.96 and HbR ratio = 1.16, when fixing MEP ratio at 1, which is 

consistent with our prior knowledge. (c) Linear regression for the PAS non-concordant cases acting as a 

control in which none of the correlations were statistically significant. Two lines were also slightly more 

distant from the point (1,1), e.g., HbO ratio = 1.18 and HbR ratio = 1.43, when fixing MEP ratio at 1.  

6.4 Discussion  

Our study is the first one investigating the relationship between excitability and hemodynamic 

activity with simultaneous PAS-fNIRS in humans. We took advantage of this novel approach to 
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achieve two main results: 1) fluctuations of cortical excitability were positively correlated with 

fluctuations of hemodynamic responses to the task; 2) there was a significant linear relationship 

between effects of PAS on excitability and hemodynamic activity, when considering sessions with 

concordant PAS effects on MEP, HbO and HbR. Our results provide a unified view on two 

fundamental properties of cortical function and highlight that they represent two faces of the same 

coin. In addition, the demonstration of the effects of PAS on hemodynamic activity is relevant for 

the application of non-invasive brain stimulation techniques for the treatment of neuropsychiatric 

disorders. Finally, the tight link between excitability and hemodynamic activity may suggest that 

the effects on hemodynamics might be monitored via the standard spTMS technique. 

6.4.1 Correlation between cortical excitability and hemodynamic activity 

We demonstrated a link between excitability and task-related hemodynamic activity. Since PAS 

is known to induce variable effects across subjects, we pooled together all runs (before and after 

interventions) to investigate relationships between excitability and hemodynamic activity 

independently from specific PAS effects. Finger tapping is known to increase the metabolic 

demand and is therefore associated to increase HbO, decrease HbR and increase blood volume 

(Kashou et al., 2016; Novi et al., 2020). Moreover, finger tapping itself is known to increase 

cortical excitability (Koeneke et al., 2006). The correlation that we found underlines that metabolic 

demands linked to finger tapping depend on the excitability state when the task was performed. In 

other words, the metabolic demands seem state-dependent, where brain state corresponded here to 

cortical excitability. State dependency is a very well-known concept in cortical function and 

involves multiple measures of neuronal activity such as activity, oscillations and connectivity 

(Gonçalves et al., 2006; Romei et al., 2008; Silvanto and Pascual-Leone, 2008; Silvanto, 

Muggleton and Walsh, 2008; Giambattistelli et al., 2014).  

6.4.2 PAS effects on hemodynamic activity  

In the field of non-invasive human brain stimulation, two previous studies investigated the effect 

of M1 cortical excitability modulation on task-related hemodynamic activity. Kriváneková et al 

(2013) combined PAS and “offline” fMRI and reported no definite effects of PAS on either the 

task-related BOLD signal of the sensorimotor regions or resting-state functional connectivity. 

They reported that BOLD fluctuations following PAS were rather unpredictable, with almost no 

change after excitatory PAS, BOLD increase after inhibitory PAS and BOLD decrease after sham. 
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Comparing these results to ours is challenging, but the low sampling frequency of fMRI might 

have contributed to their negative results. A low sampling rate means limited temporal sampling 

which might dilute small effects of excitability changes that we identified mostly around the peak 

of the hemodynamic response. Although PAS effects on HbO and HbR were also not significant 

in our study, we did find expected trends in some individuals and at the group level (Fig.6.4, 5 and 

6). Our results are certainly in agreement with those reported by Chiang et al., (2007), who 

combined rTMS and fNIRS. They found that 1Hz rTMS over M1 induced an expected HbO 

increase in the contralateral cortex lasting up to 40 minutes, likely related to reciprocal inhibition 

mechanisms (Di Lazzaro et al., 2014). Such cortical excitability effects on hemodynamic were 

also observed in other cortical regions. 5Hz rTMS on the right parietal cortex during the retention 

period of a match-to-sample task significantly increased HbO levels during the task period 

(Yamanaka et al., 2010); whereas continuous theta-burst stimulation (cTBS) applied on the left 

dorsolateral prefrontal cortex (DLPFC) reduced Emotional Stroop task-evoked HbO levels 

bilaterally (Tupak et al., 2013); cTBS on the right-DLPFC also reduced HbO during the dictator 

game (Maier et al., 2018).  

Further development of our simultaneous fNIRS-TMS protocol may open new avenues for 

understanding the mechanism of PAS per se. For instance, the sparse rhythmic stimulation 

involved during PAS will allow investigating pulses-related hemodynamic effects and their build-

up. Such analysis was out of our scope and will be considered in future investigations.   

6.4.3 Correlation between PAS effects on excitability and PAS effects on hemodynamic 

activity 

We also evaluated the correlation between excitability changes and hemodynamic activity changes 

modulated by interventions. Such analysis was challenging as the modelling involved dealing with 

the variabilities of MEP amplitudes, hemodynamic activity and PAS effects. Similar to other 

neuromodulatory techniques, PAS is known for inducing variable and sometimes unpredictable or 

even reversed effects (Ziemann and Siebner, 2015; Suppa et al., 2017),  depending upon multiple 

factors, including state of the brain, genetic susceptibility, position of the coil, and much more 

(Ziemann and Siebner, 2015). Using fMRI and PAS, Kriváneková et al., (2013) did not report any 

significant relationship between PAS related excitability changes and finger-tapping related 

BOLD changes. We found similar results regarding the correlation between MEP ratios and HbO 
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(HbR, respectively) ratios when considering all sessions. However, this correlation reached 

significance when taking into consideration sessions with concordant PAS effects on MEP, HbO 

and HbR ratios. This proposed strategy simply regulates the influences of PAS variability on the 

correlation of ratios by claiming that the correlation should have existed in sessions where those 

three measurements varied in the same direction after PAS. The constrain itself does not guarantee 

high and significant correlations, as demonstrated when compared to a null hypothesis distribution 

obtained using simulations (see Appendix. C). This finding underlines the complexity of non-

invasive brain stimulation effects, which are often only investigated in the domain of excitability, 

but always involve also hemodynamic activity, electromagnetic activity, connectivity, and much 

more (Pellegrino et al., 2018, 2019). This finding also underlines the tight link between these 

cortical properties and may offer new opportunities for patients’ treatment whenever the target 

action is a modulation of blood and hemoglobin supply.  

6.4.4 Reliability and robustness  

We did our best to acquire and analyze data in a robust way, including only male subjects, tuning 

PAS on individual N20, applying neuronavigation on individual MRI, collecting many MEPs (75 

vs usual 20 trials). We considered personalized fNIRS data acquisition targeting the hand-knob 

using an optimal montage (Machado et al., 2014b, 2018; Pellegrino, Machado, et al., 2016) 

computed on the individual MRI. Physiological noise such as heartbeats, respiration and Mayer 

wave were minimized by filtering and regression using short-distance channels that only probe 

hemodynamics in the scalp (Zeff et al., 2007). Optodes were positioned with neuronavigation and 

glued on head skin via collodion to ensure good contact and optimal probe design. We extracted 

HbO/HbR features after 3D reconstructions along the cortical surface. fNIRS 3D reconstructions 

have been shown to provide more accurate quantification (Arridge, 1999; Boas, Gaudette, et al., 

2001) of HbO/HbR than sensor level analyses applied in most fNIRS involved TMS studies 

(Oliviero et al., 1999; Thomson et al., 2011, 2013; Curtin, Ayaz, et al., 2019; Curtin, Tong, et al., 

2019). More importantly, rigorous statistical procedures were conducted considering variabilities 

of data at different levels: 1) a bootstrap procedure to pool together data from all recordings instead 

of simply taking averages to investigate the relationship between excitability and hemodynamic 

activity; and 2) a resampling technique ensured to extract reliable, robust and data driven 

(intervention type blind) HbO/HbR measures from fNIRS reconstructions. Finally, most of fNIRS 

involved TMS studies only reported results on HbO. However, we showed consensus results when 
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considering both HbO and HbR signals, as recommended in a recent fNIRS guideline paper (Yücel 

et al., 2021).  

6.4.5 Limitations  

The small number of subjects and unbalanced data set are the main limitations of this study. 

However, considering the main contribution of this study was investigating the correlation, the 

number of sessions involved in the correlation analysis (Fig.6.3 and Fig.6.7) was sufficient. 

Secondly, the finger-tapping task and the spTMS session were not conducted at the same time, but 

within a few minutes. To be noted, applying TMS during the task would have answered different 

biological questions than the ones assessed here. Nonetheless, the time gap between TMS and 

motor tasks may have introduced some noise when investigating the correlation between MEP and 

HbO/HbR because of the fluctuations of both measures over time.  

6.5 Conclusion 

In conclusion, we demonstrated a linear relationship between brain excitability and task-related 

hemodynamic activity measured using personalized fNIRS. We also demonstrated that PAS may 

have effects on hemodynamic activity in addition to those on excitability and also influences the 

relationship between excitability and activity. These effects are not necessarily PAS-specific and 

may characterize other non-invasive brain stimulation techniques as well. Finally, our findings 

may further expand the field of non-invasive brain stimulation application for treating brain 

disorders by targeting those areas for which a modulation of hemodynamic activity is desired.  

6.6 Appendices 

A. Experiment design and Data acquisition   

Anatomical MRI  

To guide TMS procedure and to calculate the head model for fNIRS acquisitions and analyses, 

MR brain images were acquired for each participant, using a General Electric Discovery MR750 

3T scanner at the PERFORM Center of Concordia University, Montréal, Canada. T1-weighted 

images were acquired using the 3D BRAVO sequence and the following parameters: 1 × 1 × 1 

mm3, 192 axial slices, 256 × 256 matrix. T2-weighted anatomical images were acquired using the 
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3D Cube T2 sequence and the following parameters: 1 × 1 × 1 mm3 voxels, 168 sagittal slices, 

256 × 256 matrix. 

fNIRS data acquisition 

fNIRS data were acquired using a Brainsight fNIRS machine (Rogue-Research Inc, Montréal, 

Canada) sampling at 10Hz. A neuro-navigation system (Rogue-Research Inc, Montréal) with 

individual MRI images guided the installation of the optodes according to the previously estimated 

optimal montage (see Fig.6.2). Optodes were glued over the subject’s scalp with collodion, taking 

care to remove the hair between skin and sensor, thus allowing reducing motion artifacts during 

prolonged recordings (Fig.6.2) (Yücel et al., 2014; Pellegrino, Machado, et al., 2016; Machado et 

al., 2018).  

Measurement of M1 cortical excitability 

TMS was delivered with a Magstim 2002 stimulator (Magstim Company, Carmarthenshire, Wales, 

UK) connected to a figure-8 coil (Magstim double 70mm remote control coil). Subjects were 

sitting in a comfortable armchair with the support of the left arm and neck (see Fig.6.2.d). To 

reduce potential motion, we placed the head of the participant between a mechanical arm wrapped 

with a soft cushion and the TMS coil (see Fig.6.2.d). TMS procedures were guided by the neuro-

navigation system Brainsight (Rogue-Research Inc, Montréal, Canada). TMS coil was placed 

tangential to the scalp and with a 45o angle to the midline of the head (Thomson et al., 2013). 

MEPs were recorded by a BrainAmp ExG bipolar system with 2 TECA disposable 20mm disk 

electromyography (EMG) electrodes attached on the right abductor pollicis brevis (APB), with a 

standard belly-tendon montage (Fig2.d). The TMS “hot spot” was found for each session as the 

location with the maximal Motor Evoked Potentials (MEP). Resting motor threshold (RMT) was 

defined efficiently using the TMS Motor Threshold Assessment Tool (MTAT 2.0, 

http://www.clinicalresearcher.org/software.html) based on maximum-likelihood parameter 

estimation by sequential testing approach (Awiszus et al., 1999; Ah Sen et al., 2017).  

Somatosensory evoked potentials 

Electrical stimulation (Digitimer DS7A, Letchworth Garden City, U.K) at the left wrist (e.g., 

Median Nerve) was performed after the MRI scan. Two bipolar EEG (BrainAmp ExG, Brain 

Products GmbH, Germany) electrodes located at CP3 and CP4 were used to measure subject 

http://www.clinicalresearcher.org/software.htm


Chapter 6: Manuscript 3 

189 
 

specific N20 latency. Stimulation was delivered slightly above the motor threshold at 4Hz for 2 

minutes. N20 latency was visually estimated via the online segment averaging functionality of the 

BrainVision Recorder (BrainAmp ExG, Brain Products GmbH, Germany). 

B. Reliable and robust estimation of task-related hemodynamic responses using fNIRS 3D 

reconstructions and resampling technique  

To conduct a reliable and robust task-related hemodynamic response estimation to compare 

hemodynamics before and after interventions, we combined fNIRS 3D reconstruction and 

resampling techniques to appropriately handle variability between trials and influence of eventual 

motion artifacts. The workflow consisted of 3 steps: a) resampling of “all the possible” averaged 

optical density time courses; b) fNIRS 3D reconstruction along the cortex using the MEM and c) 

definition of a session specific spatial ROI for HbO/HbR features extraction.   

a) We conducted a resampling of “all the possible” averaged optical density time course (-10s to 

30s) as the input for further fNIRS 3D reconstructions. First, for every 20 blocks of pre-

processed optical density data, we sub-averaged all 16 out of 20 blocks, resulting in a total of 

𝐶20
16 = 4845 possible combinations. These averaged trials were then sorted by the averaged 

signal-to-noise ratio (SNR) for two wavelengths. SNR was calculated by the largest amplitude 

among all channels from 0s to 30s, normalized by the mean of standard deviation over all 

channels during the baseline [-10s, 0s]. Finally, we selected 101 out of 4845 sub-averaged 

blocks centred around the median SNR of all sub-averages. The selection of 16 trials for sub-

averaging was empirically defined according to the observation that usually there were around 

4 artifacts contaminated blocks per condition (i.e., containing eventual motion artifacts). For 

artifacts contaminated data, large motion artifacts would then result in large SNR of sub-

averaged trials. On the other hand, for data that are not contaminated by artifacts, the SNR 

distribution will be flat. Therefore, selecting sub-averaged trials around the median SNR 

should ensure a good representation of fNIRS responses, discarding artifact sub-averages. We 

finally chose 101 sub-averaged trials to ensure a good representation of the underlying 

distribution of SNR values, while being sensitive to the inherent variability of task-evoked 

fNIRS responses. 

b) fNIRS 3D reconstruction along the cortex was conducted using the MEM method applied to 

each of 101 sub-averaged trials specific for task run (e.g., pre-PAS25 of Sub01). We, 
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therefore, took into account the variability of the hemodynamic response, instead of 

considering only one averaged response. “All the possible” spatiotemporal maps of HbO and 

HbR along the cortical surface were reconstructed using MEM from these 101 resampled sub-

averaged trials. MEM is an efficient nonlinear probabilistic Bayesian framework to 

incorporate prior knowledge in the solution of the inverse problem for 3D reconstruction 

(Amblard, Lapalme and Lina, 2004). We have demonstrated the excellent accuracy of MEM, 

especially its high sensitivity and specificity to the spatial extent of the underlying generators 

in the context of electro-/magneto-encephalogram source imaging (Chowdhury et al., 2013, 

2016; Grova et al., 2016; Heers et al., 2016; Hedrich et al., 2017; Pellegrino et al., 2020) as 

well as for fNIRS 3D reconstructions (Cai et al., 2021). 

c) A session specific (e.g., PAS25 of Sub01) spatial ROI was finally defined along the cortical 

surface, to extract the reconstructed HbO/HbR time courses features from MEM reconstructed 

spatiotemporal maps. To do so, we first extracted the task run specific (e.g., pre-PAS25 of 

Sub01) HbO/HbR peak maps, at the peak timing estimated from the reconstructed time 

courses within the hand knob. This resulted in 101 HbO/HbR peak spatial maps for each task 

run. Then, a one-sample t-test of HbO (respectively HbR) amplitude for each vertex of the 

map was performed across 101 maps for each task run. Regions exhibiting a significant 

response (p<0.05, false discovery rate corrected) were kept as the cortical area, which 

contained significant hemodynamic responses of one task run. For each session (e.g., PAS25 

of Sub01), this analysis resulted in 4 regions exhibiting significant hemodynamic responses, 

i.e., HbO and HbR response t-maps, in pre- and post-intervention conditions. The final ROI 

was defined as the intersection between these 4 statistically significant regions to ensure 

reliability and robustness. Note that this final ROI was confirmed to be within the M1 cortical 

area for all participants. Two PAS10 sessions and 1 sham session were rejected due to the 

empty intersection regions (no overlapping between the 4 regions), suggesting a lack of 

reliability of the resulting hemodynamic responses. We defined this ROI for each intervention 

session rather than for each subject, considering the variability of task performance within 

each subject, since the intervention sessions of each subject were performed on different days. 

c. PAS effects and relationship between cortical excitability and hemodynamic activity 

PAS effects on cortical excitability and hemodynamic activity 
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As shown in Fig.6.C1, PAS exerted the expected group level effect with average MEP ratios 

(mean±SEM) of 1.23±0.15, 0.88±0.08 and 1.08±0.15 for PAS25, PAS10 and Sham, respectively. 

Such group level trends were also manifested in HbO and HbR ratios. For instance, the group level 

effect with average HbO ratios (mean±SEM) were 1.27±0.21, 0.95±0.24 and 1.04±0.17 for 

PAS25, PAS10 and Sham, respectively; and the group level effect with average HbR ratios 

(mean±SEM) were 1.48±0.24, 1.02±0.20 and 1.23±0.35 for PAS25, PAS10 and Sham, 

respectively. However, these effects did not reach statistical significance (one-sample t-test against 

1, p>0.05). There were also no significant differences among 3 interventions (ANOVA test 

p>0.05). 

 

Fig.6.C1. PAS effects on cortical excitability and hemodynamic activity. At the group level, 

Mean±SEM (standard error of the mean) for the excitatory, inhibitory and sham session were: (a) 

1.23±0.15, 0.88±0.08 and 1.08±0.15 for MEP ratios; (b) 1.27±0.21, 0.95±0.24 and 1.04±0.17 for HbO 

ratios; and (c) 1.48±0.24, 1.02±0.20 and 1.23±0.35 for HbR ratios. Even if trends were observed, none of 

these ratios were significantly different from 1 based on a one-sample t-test. The individual ratios 

represented by each dot demonstrated a relatively large variance of the ratios for each scenario. Boxes 

showed the Mean±SEM in each case. Note that one MEP session (e.g., Sub16, PAS10) was rejected from 

the whole analysis due to a high ratio of 2.81; and one HbR session (e.g., Sub12, PAS25, HbR) was rejected 

from the whole analysis due to a high ratio of 5.45. A similar process was also considered in Kriváneková 

et al (2013).     

Simulation of null hypothesis distributions of the correlation between concordant MEP and 

HbO/HbR PAS effects 



Chapter 6: Manuscript 3 

192 
 

To further justify our approach of considering concordant effects only for linear regression 

analyses presented in Fig.6.7, we simulated several null hypothesis distributions of the correlation 

between concordant MEP and HbO/HbR ratios. To do so, different numbers (e.g., 1,000, 500, 50 

and 40) of points, mimicking a pair of MEP ratio and HbO/HbR ratio, were randomly drawn on 

the MEP – HbO/HbR ratio plane following a 2D Gaussian distribution with 0 correlation (Null 

distribution). The marginal distributions (i.e., 1D Gaussian for either MEP or HbO/HbR ratio) 

were defined using the same mean and standard deviation of the respective ratios estimated on our 

real data. Then, we performed the same linear fit as the one proposed for real data, between these 

simulated MEP and HbO/HbR ratios. Note that this analysis was also only conducted between 

concordant MEP and HbO/HbR ratios (1st and 3rd quadrants), considered to assess the linear 

regression. This process was repeated 1,000 times to obtain 1,000 Pearson’s correlation values, to 

estimate empirically a null hypothesis distribution of the linear correlations when considering only 

the 1st and 3rd quadrants of the MEP – HbO/HbR ratios plane. Finally, we compared the actual 

correlation values obtained from real data and this null hypothesis distribution, to evaluate the 

reliability of our real data fitting results (see Fig.6.C2). Simulations involving 50 and 40 points 

were similar to the dimensionality of our real data, whereas 1,000 and 500 points represented more 

ideal scenarios. Since these points were drawn randomly from a 0 correlation 2D Gaussian, the 

distribution of the correlation values can be inferred as a null hypothesis of the correlation between 

concordant MEP and HbO/HbR ratios. Therefore, the likelihood of obtaining our resulted 

correlation by chance between concordant MEP and HbO/HbR ratios can be quantified.  
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Fig.6.C2. Simulated Pearson correlation distribution of the concordant MEP and HbO and HbR 

ratios. In the first columns, simulated Pearson correlation distributions of the concordant MEP and HbO 

ratios were shown along with the actual Pearson’s correlation values from Fig.6.7b. The red vertical dash 

line represented the Pearson’s correlation (e.g., 0.82) of the actual MEP-HbO fit, and the blue vertical dash 

line represented the case of the actual MEP-HbR fit (e.g., 0.88). On the right side of each correlation density 

plot, we showed the distribution of the number of points within 1st and 3rd quadrants. There were originally 

(a)1000, (b)100, (c)50 and (d)40 randomly drown points in the whole MEP-HbO/HbR plane, and such 
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processes were repeated 1000 times. When sampling the null distributions with 100 and 1000 points, the 

chance to have a significant Pearson correlation equal to or larger than 0.82 was 0%. When consider similar 

dimensionality as in our data set (simulating 50 or 40 points), the chance to have a significant Pearson 

correlation equal to or larger than 0.82 was 0.8% (for 50 points) and 1.1% (for 40 points), respectively. This 

indicated that the linear fits shown in Fig.7b were not acquired by chance. Note that to make the fair 

comparison, 0.8% and 1.1% were calculated when conditioning the simulated fits to 1) provide a significant 

(p<.05) Pearson correlation, as well as 2) the interaction of the fitted lines on the vertical line (MEP ratio = 

1) has to be within a range of [0.9, 1.1].  
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Chapter 7 

Manuscript 4: Hierarchical Bayesian Modeling of Task Related 

Hemodynamic Correlates of Neuronal Excitability Changes: a 

simultaneous fNIRS/TMS study  

Context 

In Chapter 6, we reported two types of correlations between M1 excitability and task-related 

hemodynamic response. First, we found a significant positive correlation between fluctuations of 

cortical excitability and the fluctuations of HbO activity, whatever was the PAS intervention 

considered. The second correlation was tested by estimating the correlation between MEP and 

HbO/HbR ratios calculated as the post- over pre-intervention amplitudes. We found that when 

PAS increased cortical excitability, it resulted in enhanced task-related hemodynamic response, 

whereas when PAS decreased cortical excitability, it resulted in reductions of the hemodynamic 

response to the task. This correlation was only significant when constraining the data to concordant 

PAS effects (e.g., MEP and HbO and HbR ratios were either both larger or smaller than 1). This 

constraint can be considered as a simple way to regularize intrinsic variability of the data, such as 

PAS effects on both cortical excitability and task-related hemodynamic responses. To further 

improve this evaluation of PAS effects on cortical excitability and hemodynamic response, it is 

necessary to carefully consider the variability of the data at the different levels in the analysis. 

Therefore, in this chapter, we are proposing hierarchical Bayesian modeling to further analyze the 

data set presented in Chapter 6. The rationale to apply hierarchical models was considering the 

fact that the so-called “involvement of variability in the analysis” was all about modeling the 

heterogeneity of the variables of interest (e.g., MEP, HbO/HbR) at each stage of the analysis. The 

hierarchical Bayesian model is indeed a good candidate to encode inter-/intra-subject 

heterogeneity within the data. On the other hand, the difficulty of solving a hierarchical model is 

often underestimated, especially when dealing with the identifiability of the models 

(Papaspiliopoulos, Roberts and Sköld, 2007). This means that without a proper model solver, the 

estimation of the parameters of the model could be biased and therefore leading to biased 

inferences. Fortunately, Bayesian data analysis is a good candidate to solve these issues by 
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sampling the distribution of each parameter before making any summary statistics and inferences. 

More importantly, the unique diagnostic statistics available when evaluating the sampling process, 

ensure robust and reliable inferences. We found significant correlations between PAS effects on 

MEP and PAS effects on HbO/HbR, such correlation is mainly exhibited around the peak of the 

hemodynamic responses.  

This manuscript is being finalized for submission, Zhengchen Cai, Giovanni Pellegrino, Jean-Marc 

Lina, Habib Benali, Christophe Grova. Hierarchical Bayesian Modeling of Task Related 

Hemodynamic Correlates of Neuronal Excitability Changes: a simultaneous fNIRS/TMS study. 

Abstract 

Background: Investigating the relationship between task-related cortical hemodynamic activity 

and brain excitability is challenging for the following reasons: 1) it requires simultaneous 

measurement of brain hemodynamic activity, while applying non-invasive brain stimulation; 2) 

both brain stimulation and task-related hemodynamic responses are associated with considerable 

inter-/intra-subject variability.  

Methods: We performed a study on 16 healthy subjects with simultaneous Paired Associative 

Stimulation (PAS) and functional Near-Infrared Spectroscopy (fNIRS) on the right primary motor 

cortex (M1). PAS was applied to conduct excitability modulation along with sham control. Before 

and after each intervention, cortical excitability was measured by motor evoked potentials (MEPs), 

and the motor task-related hemodynamic response was measured using fNIRS. We proposed 

hierarchical Bayesian modeling to improve statistical inference by taking into account variability 

in the data at the individual and group levels. We constructed three models to encode 1) PAS 

effects on the M1 excitability; 2) PAS effects on the whole-time course of fNIRS hemodynamic 

responses to finger tapping tasks, and 3) the correlation between PAS effects on M1 excitability 

and PAS effects on task-related hemodynamic responses. Dynamic Hamiltonian Monte Carlo 

(HMC) was considered to sample the posterior distributions of parameters involved in these 

models. Posterior predictive simulations were performed to conduct Bayesian inferences of PAS 

effects. 

Results: Significant increase of the cortical excitability was found after PAS25, whereas a small 

reduction of the cortical excitability was shown after PAS10 and no changes after sham. PAS 
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elicited modulation of M1 excitability effects could be more pronounced when increasing the 

spTMS intensity. We found PAS effects on finger tapping evoked HbO/HbR within M1, around 

the peak of the hemodynamic time courses. Both HbO and HbR absolute amplitudes increased 

after PAS25 and decreased after PAS10. Cortical excitability changes and task-related HbO/HbR 

changes showed a high probability of being positively correlated, 77.2% and 79.2%, respectively. 

The corresponding Pearson’s correlations were 0.58 (p<.0001, HbO with MEP) and 0.56 (p<.001, 

HbR with MEP), respectively. 

Conclusion: Our results showed that PAS modulates task-related cortical hemodynamic responses 

in addition to M1 excitability. The fact that PAS effects on hemodynamic response were exhibited 

mainly around the peak of the hemodynamic time course may indicate the intervention only 

increases metabolic demanding rather than modulating hemodynamic response function per se. 

Moreover, the positive correlation between PAS modulations of excitability and hemodynamic 

brings insights to understand the fundamental properties of cortical function and cortical 

excitability.  

7.1 Introduction  

Investigation of the association between hemodynamic response and excitability of the 

corresponding cortical region helps to understand the relationship between cortical metabolic 

demand and cortical readiness. Therefore, expanding the field of application of non-invasive brain 

stimulation for treating brain disorders in which targeting areas may require modulation of 

hemodynamic activity. In this context, when considering invasive animal studies using optical 

imaging, Allen et al., (2007) reported immediate increases of tissue oxygenation followed by a 

prolonged reduction of oxygenation during around 2 minutes after inhibiting the anesthetized cat’s 

visual cortex using low-frequency repetitive Transcranial Magnetic Stimulation (rTMS). A recent 

study on healthy rats combining functional Magnetic Resonance Imaging (fMRI) and proton 

Magnetic Resonance Spectroscopy (MRS) showed increases in resting-state connectivity, GABA, 

glutamine and glutamate levels following high frequency rTMS and reduced connectivity and 

glutamine levels after low frequency rTMS stimulations (Seewoo et al., 2019).  

When considering the human brain, similar investigations have been considered using 

neuroimaging and non-invasive brain stimulation approaches. fMRI (Bandettini et al., 1992; 
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Kwong et al., 1992; Glover, 2011) can be considered to measure the cortical hemodynamic 

processes during or after TMS interventions, but simultaneous fMRI/TMS acquisitions are 

challenging and require specific coil and fMRI sequence developments (Navarro De Lara et al., 

2015; Wang, Xu and Butman, 2017). Therefore most studies consisted in fMRI sessions before 

and after TMS interventions (Siebner et al., 2009). Alternatively, as a wearable/bedside 

neuroimaging approach, functional Near-InfraRed Spectroscopy (fNIRS) non-invasively measures 

fluctuations of both oxygenated- and deoxygenated-hemoglobin (i.e., HbO and HbR) 

concentration changes in the human head with a high temporal resolution (Jöbsis, 1977; 

Scholkmann, Kleiser, et al., 2014). fNIRS relies on optical absorption signals which are 

independent of electromagnetic signals, as opposed to fMRI, therefore, fNIRS appears as an 

interesting alternative offering better compatibility for simultaneous acquisition during TMS 

(Curtin, Tong, et al., 2019).  

Regarding the modulation of cortical excitability, TMS pulses repeated in a train following a 

certain frequency – the repetitive TMS (rTMS) (Ridding and Rothwell, 2007; Di Pino et al., 2014) 

– were applied to induce the cortical plasticity. A simultaneous rTMS and fMRI study 

demonstrated increases in functional connectivity with the anterior cingulate cortex 15 minutes 

after applying high frequency rTMS stimulation over the left dorsolateral prefrontal cortex 

(Navarro De Lara et al., 2015; Tik et al., 2017). Studies using low frequency rTMS and fNIRS 

reported an increase in HbO over 20s to 40s after rTMS train followed by a prolonged reduction 

in HbO (Thomson et al., 2012, 2013). When conducting a match-to-sample task, significant 

increases in HbO over the frontal lobe were observed, when increasing right parietal excitability 

using 5Hz rTMS (Yamanaka et al., 2010). Chiang et al., (2007) applied 1Hz rTMS over M1 and 

reported HbO increases in the contralateral cortex lasting up to 40 minutes according to reciprocal 

inhibition mechanisms (Di Lazzaro et al., 2014).  

Another neurostimulation approach entitled Paired Associative Stimulation (PAS) has also been 

proposed by Mariorenzi et al., 1991; Stefan, 2000. PAS is inspired by the concept of Spike Timing 

Dependent Plasticity (Levy and Steward, 1983; Rossini et al., 2015b). It consists of pairs of cortical 

TMS and peripheral electrical Median Nerve Stimulation (MNS) delivered with proper timing – 

around 25ms or 10ms interstimulus intervals (ISI) to excite (PAS25) or to inhibit (PAS10) motor 

cortical areas, respectively. In this study, we decided to choose PAS rather than rTMS to change 

cortical excitability. Indeed, using simultaneous TMS/fNIRS, Näsi et al. (2011) reported that 
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physiological fluctuations measured using photoplethysmography (PPG) amplitude and heart rate 

measured using electrocardiogram were largely influenced by trains of TMS pulses (0.5 to 2Hz). 

Therefore, these systemic physiological fluctuations evoked by TMS trains may influence 

hemodynamic fluctuations in both scalp and brain signals, resulting in additional confounds when 

investigating the hemodynamic correlates of TMS. Even if fNIRS short distance channel 

regression approach can be applied to remove scalp components of systemic physiological 

fluctuations (Zeff et al., 2007; Gregg et al., 2010), TMS trains may still introduce additional 

confounding signals in the brain. This brings the advantage of applying PAS rather than rTMS 

when investigating neurostimulation and hemodynamic, since the frequency of stimulation pairs 

in PAS is often suggested to be 0.1Hz or less (Suppa et al., 2017), therefore PAS intervention is 

likely introducing significantly less or even no systemic physiological fluctuations when compared 

to rTMS.  

The relationship between the primary motor cortex (M1) excitability and Blood-Oxygen-Level-

Dependent (BOLD) signal was investigated using PAS stimulation and “offline” fMRI acquisition 

in Kriváneková et al., (2013). They reported no significant effect of PAS interventions neither on 

task-related (motor and sensory) BOLD response nor on resting-state functional connectivity. In 

Chapter 6, we conducted the first simultaneous PAS-fNIRS study to investigate the relationship 

between motor task-evoked cortical hemodynamic response and M1 excitability. We found a 

significant and positive correlation between fluctuations of cortical excitability and fluctuations of 

HbO responses to the task. When comparing PAS modulated excitability changes and PAS 

modulated hemodynamic changes, we demonstrated significant correlations between motor 

evoked potential (MEP) post-/pre-intervention ratios and HbO/HbR amplitude post-/pre-

intervention ratios, only when restricting our analyses to concordant sessions, in which all three 

post-/pre-intervention ratios, MEP, HbO and HbR, were simultaneously larger or smaller than 1.  

However, inconsistency between results on hemodynamic correlates of excitability reported either 

in rTMS or PAS literature can mainly be explained by the variability of brain stimulation 

efficiency. Although the ability of PAS in eliciting significant changes in cortical excitability has 

been replicated by several studies (Stefan, 2000; Wolters et al., 2005b; Tsang, Bailey and Nelson, 

2015; Lee et al., 2017; Suppa et al., 2017), PAS efficiency has also been investigated in López-

Alonso et al., 2014, in which only 39% of 56 subjects showed expected MEP amplitude increase 
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after conducting PAS25. A lower than 50% efficiency of PAS was also suggested in a review study 

(Suppa et al., 2017). Similarly, inter-subject variability of the task-evoked hemodynamic response 

has also been reported, whether measured using fMRI (Witt, Laird and Meyerand, 2008) or fNIRS 

(Novi et al., 2020). Therefore, it seems essential to carefully take into account intrinsic variability 

of both cortical excitabilities elicited by non-invasive brain stimulation and hemodynamic 

responses to tasks, when investigating the correlation between both effects.  

To conduct accurate and robust investigations of PAS elicited cortical excitability (measured using 

MEP) and hemodynamic responses to finger tapping task (measured using HbO/HbR), we propose 

to consider the variability of data within a hierarchical Bayesian model to infer PAS effects on 

both cortical excitability and hemodynamic response, as well as their correlation. Hierarchical 

Bayesian modeling allows taking into account heterogeneity of the variables of interest (MEP, 

HbO/HbR) at every stage (inter-/intra-subject, intervention type) of the analysis (Papaspiliopoulos, 

Roberts and Sköld, 2007; Betancourt and Girolami, 2015). Moreover, when considering a 

hierarchical structure, partial pooling can decrease the uncertainty of estimated parameters 

(Gelman et al., 2013b; McElreath, 2020). This means the group-level and individual-level 

estimations could inform each other to regularize the uncertainty of each parameter. In this context, 

Bayesian data analysis allows estimating the statistical expectation of each parameter of the model 

by sampling the joint posterior distributions. Thanks to the developments in Bayesian data analysis 

workflow during the last decade, Bayesian inferences have become more accessible and can 

provide accurate and reliable estimations of the posterior distribution. For instance, the most recent 

implementations of the Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987) called 

the dynamic HMC (Betancourt, 2017, 2019) is available as an open source Bayesian statistical 

modeling and computation platform called Stan (Stan Development Team, 2020b). This technique 

not only accurately and efficiently samples the joint posterior distribution, but also provides robust 

estimations by quantitatively diagnosing pathological behaviours of Markov Chain Monte Carlo 

(MCMC) chains that are used to sample the joint posterior distributions (Betancourt and Girolami, 

2015; Betancourt, 2017).  

In this study, we propose to revisit our analysis of a TMS/fNIRS dataset first reported in Chapter 

6, using a Bayesian data analysis workflow (Gabry et al., 2019; Gelman et al., 2020) to investigate 

whether cortical excitability and hemodynamics are directly linked to each other. We hypothesize 
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that enhanced brain excitability should be associated with higher hemodynamic activity elicited 

by a finger tapping task, and decreased excitability should be associated with a reduced 

hemodynamic response to the task. We first summarized the study design and data acquisition. 

Data preprocessing was then conducted to prepare the inputs of our proposed Bayesian framework. 

We evaluated the relevance of three hierarchical models to investigate: 1) PAS effects on M1 

excitability measured using MEP; 2) PAS effects on the whole-time course of task-related 

hemodynamic responses measured using fNIRS, and 3) the correlation between PAS modulated 

excitability changes and PAS modulated hemodynamic changes. The variability of each 

measurement was carefully considered in each model and at each level (i.e., at the individual and 

group levels) to conduct reliable estimations of the intervention effects and correlations. Statistical 

inferences were made via posterior predictive simulations (McElreath, 2020). Diagnostic of the 

models were conducted to ensure the robustness of the estimated posterior distributions.  

7.2 Material and methods  

7.2.1 Study design and subjects 

Nineteen subjects (24 ± 5  (mean ± sd) years old, male and right-handed) with no history of 

neurological disorders were selected to participate in the study. We only included male participants 

in order to minimize the confounding of cortical excitability changes due to the menstrual cycle 

(Hattemer et al., 2007; Lee et al., 2017). This study was approved by the Central Committee of 

Research Ethics of the Minister of Health and Social Services Research Ethics Board (CCER), 

Québec, Canada. All subjects signed written informed consent prior to the data acquisition. They 

also went through a screening procedure to confirm no contraindications to MRI or TMS (Rossi 

et al., 2009; Suppa et al., 2017), and no medication related to the central nervous system was taken. 

Subjects were instructed to have a regular sleep cycle for the days and not to take caffeine for at 

least 90 minutes before the data acquisition.  

The experiment paradigm of this study is illustrated in Fig.7.1a. To modulate M1 cortical 

excitability and inducing brain plasticity, three different intervention sessions were performed at 

least two days apart to minimize carryover effects. Each session consisted of five time-ordered 

sections, defined as follows:  

1) A block designed finger-tapping task composed of 20 blocks, 10s of finger-tapping followed 

by 30s ~ 60s of resting was conducted within each block. Subjects were informed to tap their 
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left thumb to the other 4 digits sequentially around 2Hz (Fig.7.1a). This long-range jitter was 

designed to prevent the task responses from phase locking to the undergoing physiological 

hemodynamic oscillations (Aarabi, Osharina and Wallois, 2017), therefore, reducing the 

physiological confounding on the task-related response at the stage of experiment paradigm 

design. Tapping onsets/offsets were instructed by auditory cues.  

2) An event-related designed single pulse TMS (spTMS) composed of 75 events, jittered from 

5s to 25s (Fig.7.1a). Guided along with subject specific anatomical MRI using a Brainsight 

neuro-navigation system (Rogue-Research Inc, Canada), we placed a figure-8 coil (Magstim 

double 70mm remote control coil) targeting M1, tangential to the scalp and with a 45o angle 

to the midline of the head (Fig.7.1c) to maximize stimulation efficiency (Thomson et al., 

2013). The individual ‘hot spot’ was defined for each session as the location which maximally 

twitched the left thumb, therefore, resulting in the largest Motor Evoked Potentials (MEPs) 

amplitude measured on the left thumb using electromyography (EMG). A Magstim 2002 

stimulator (Magstim Company, U.K.) was used to generate accurate stimulation intensity, 

defined as 120% of the subject-specific resting motor threshold (RMT). This RMT was 

determined based on the maximum-likelihood parameter estimation by sequential testing 

approach (Awiszus et al., 1999; Ah Sen et al., 2017), implemented as a toolbox called TMS 

Motor Threshold Assessment Tool (MTAT 2.0, 

http://www.clinicalresearcher.org/software.html), as an approach to find efficiently the right 

intensity more efficiently than traditional methods. All TMS procedures followed the 

recommendations of the International Federation of Clinical Neurophysiology (Rossi et al., 

2009) and no participants reported any considerable discomfort or side effects. 

3) A PAS intervention session attempted to modulate the M1 cortical excitability temporally 

(Fig.7.1a). The PAS intervention consisted either in PAS25, PAS10 or sham-PAS. PAS was 

conducted with 100 pairs of electrical median nerve stimulation (MNS) on the left wrist, 

followed by TMS pulse delivered over the right M1, with a fixed interval of 10s between 

paired stimulations, for a total intervention of 18 minutes, as suggested in Suppa et al., (2017). 

MNS was delivered with a Digitimer (Digitimer DS7A, U.K) at the left median nerve and 

with the intensity equals 300% of the subject-specific perceptual threshold. TMS intensity was 

the same as the spTMS - 120% of RMT. After estimating subject-specific N20 response to 

electrical MNS using bipolar electroencephalogram (EEG) (BrainAmp ExG, Brain Products 

http://www.clinicalresearcher.org/software.html
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GmbH, Germany) on CP3 and CP4 electrodes, the interstimulus intervals (ISI) between MNS 

and TMS were determined to be pre-measured individual N20+5ms for PAS25 and N20-5ms 

for PAS10 (Carson and Kennedy, 2013). Sham parameters (e.g., MNS intensity, coil position, 

ISI) were the same as PAS25, but TMS was not delivered, and instead, its sound (‘TMS click’) 

was played via a stereo speaker. 

4) Repetition of the event-related designed spTMS (Fig.7.1a) after the intervention. By 

comparing the MEPs measured during pre-intervention and post-intervention sessions, PAS 

intervention effects on M1 cortical excitability can be assessed.  

5) Repetition of the block designed finger tapping task (Fig.7.1a) after the intervention. 

Similarly, the corresponding effects on task-evoked hemodynamic responses can be estimated 

by comparing HbO/HbR concentration changes measured during pre-intervention and post-

intervention sessions.   

7.2.2 Data acquisitions  

Anatomical MRI  

Individual anatomical MRI was acquired to guide TMS and to calculate the head model required 

for fNIRS acquisition planning and fNIRS reconstructions. A General Electric Discovery MR750 

3T scanner at the PERFORM Center of Concordia University, Montréal, Canada, was used to scan: 

1) T1-weighted images using the 3D BRAVO sequence ( 1 × 1 × 1  mm3, 192 axial slices, 

256 × 256 matrix) and 2) T2-weighted images using the 3D Cube T2 sequence (1 × 1 × 1 mm3 

voxels, 168 sagittal slices, 256 × 256 matrix). 

Motor Evoked Potentials  

MEPs induced by spTMS pulses were measured to assess the M1 cortical excitability. A BrainAmp 

ExG bipolar system (BrainAmp ExG, Brain Products GmbH, Germany) was used to record EMG 

of the right abductor pollicis brevis (APB) muscle, with 2 TECA disposable 20mm disk 

electromyography (EMG) electrodes attached with a standard belly-tendon montage (Fig1.c).  

functional Near-Infrared Spectroscopy  

fNIRS data were acquired to estimate the finger-tapping evoked hemodynamic responses (i.e., 

HbO/HbR). fNIRS data were acquired at 10Hz using a Brainsight fNIRS system (Rogue-Research 
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Inc, Canada), which consists of two wavelengths – 685nm and 830nm. fNIRS optodes were 

attached to the subject’s scalp using a clinical adhesive called collodion (Fig.7.1.c) to reduce 

motion artifacts (Yücel et al., 2014; Pellegrino, Machado, et al., 2016; Machado et al., 2018) and 

to ensure better contact to the skin, when compared to standard fNIRS caps. A personalized 

optimal montage developed by our group (Machado et al., 2014b, 2018; Pellegrino, Machado, et 

al., 2016) was used to maximize the sensitivity of fNIRS channels to a predefined region of interest 

(ROI) - the individual ‘hand knob’ region (see Fig.7.1b) manually defined along the right M1 

cortical surface which controls the left hand movement (Raffin et al., 2015b). The resulted 

personalized optimal montage consisted of 3 sources and 15 detectors (see Fig.7.1b). The distance 

between each source-detector pair was constrained to range from 2.0 cm to 4.5 cm. Each source 

was positioned to construct at least 13 channels among the 15 detectors ensuring a high spatial 

overlap between channels, to allow accurate local reconstruction along the cortical surface. A 

proximity detector was added at the center of 3 sources to record the physiological hemodynamics 

fluctuations within the scalp. Brainsight neuro-navigation system coregistered with subject 

specific T1 MRI was used to guide the installation and to digitize the position of fNIRS sources 

and detectors glued at their optimal positions. Additional 150 points were digitized on the head 

surface to allow accurate montage registration with the anatomical MRI, as a prerequisite for 

computing the fNIRS forward model. fNIRS data were acquired continuously during the whole 

experimental session, as described in Fig.7.1a.    

From the nineteen subjects selected for this study, one was excluded due to low sensitivity to TMS 

and two were excluded because they exhibited poor fNIRS signal qualities. Four subjects dropped 

out after the first session due to personal reasons, resulting in 16 PAS25, 12 PAS10 and 12 sham 

sessions. Please note that starting from here, we will denote 1) “Session” as one specific 

acquisition, consisted in any PAS intervention type, of one subject including experiments 1 to 5 as 

illustrated in Fig.7.1a (e.g., PAS25 for Sub01); “Run” as one specific experiment (spTMS or 

finger tapping), before or after any PAS intervention type, of one subject (e.g., pre-PAS25 spTMS 

for Sub01); and “Time” to differentiate whether one specific experiment was conducted before or 

after the intervention (e.g., pre-PAS25 vs. post-PAS25).  
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Fig.7.1 Experimental paradigm and set-up (adapted from Chapter 6).  a) experiment paradigm ordered 

by time: 1) is a block designed finger-tapping task consisted of 20 blocks, each contained 10s task and 30s 

to 60s rest; subjects were informed to tapping their left thumb to the other 4 digits sequentially at around 

2Hz; 2) is an event-related designed single pulse TMS (spTMS) Run consisted of 75 events jittered from 5s 

to 25s. 3) PAS25/PAS10/sham-PAS consisted of 100 pairs of stimulations, interleaved by 10s; 4) and 5) 

repeated 2) and 1), respectively, after the PAS intervention. b) personalized optimal montage for fNIRS 

acquisition. 3 sources (red dots) and 15 detectors (green dots) were selected to optimize the sensitivity of 

fNIRS montage to a predefined ROI, the right M1 hand knob (outlined using a black profile) along the 

cortical surface. c) an overview of the experimental set-up, the personalized optimal montage was glued on 

the scalp using clinical adhesive – collodion; TMS coil was placed on top of the fNIRS optodes to target 

the ‘hot spot’ which corresponded to subject’s left thumb, note that the low-profile feature of the fNIRS 

optodes allowed less TMS intensity decreases when departing from the scalp surface; a neuro-navigation 

system was used to guild the placement of the TMS coil and the digitization of the fNIRS optodes.      

7.2.3 Data preprocessing  

EMG data processing 

EMG data collected during spTMS Runs were processed using Brainstorm software (Tadel et al., 

2011) (https://neuroimage.usc.edu/brainstorm/) to extract MEP amplitudes. Raw EMG data were 

first band-pass filtered between 3 and 2000Hz.  A time window from -10ms to 100ms around the 

stimulation onset was defined to extract MEP trials. These trials were then baseline corrected (-

10ms to 0ms), and the peak-to-peak amplitude of each MEP trial was calculated. Note that 

https://neuroimage.usc.edu/brainstorm/
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throughout the analysis reported in this study, none of the single MEP trials was excluded to 

preserve the intrinsic variability of MEP peak-to-peak amplitude measures. From here, for 

convenience, we will denote as “MEP”, the actual MEP peak-to-peak amplitude, as often 

considered in TMS literature.  

At the end, the output of the whole EMG data preprocessing section was a set of 75 MEPs 

estimated for each participant (specified by subject ID from 1 to 16), each intervention (PAS25, 

PAS10 or sham) and Time (pre-PAS or post-PAS).  

fNIRS data preprocessing 

fNIRS data processing was performed using our fNIRS processing plugin - NIRSTORM 

(https://github.com/Nirstorm/nirstorm) implemented in Brainstorm software (Tadel et al., 2011) 

(https://neuroimage.usc.edu/brainstorm/). fNIRS data analysis consisted of the following three 

parts (further details are provided in Chapter 5) 

1) Raw fNIRS data were first preprocessed following standard recommendations (Yücel et al., 

2020): a) bad channel rejections of channels exhibiting either a negative raw amplitude during 

the whole time course and a coefficient of variation (CV) larger than 8% (Schmitz et al., 2005; 

Schneider et al., 2011; Eggebrecht et al., 2012; Piper et al., 2014): b) linear regression of 

superficial physiological fluctuations using the average of all proximity channels (Zeff et al., 

2007); c) band-pass filtering (i.e., 0.01Hz to 0.1Hz) using a 3rd order Butterworth filter (zero-

phase); d) conversion in optical density changes (i.e., ∆OD) using logarithm conversion; e) 

∆OD epochs extraction within a time window ranging from -10s to 30s around task onsets. 

Instead of the conventional process averaging extracted ∆OD epochs, we then conducted a 

resampling process to estimate not one but a set of ‘possible’ averaged ∆ODs (see also Chapter 

6). Our rationale was to propose an evaluation preserving the intrinsic variance of averaged 

∆OD related to the underlying physiological fluctuations and eventual measurement errors 

such as motion artifacts. To do so, we first averaged 16 out of 20 preprocessed ∆OD epochs 

for all possible unique combinations (i.e., 𝐶20
16 = 4845  possibilities). Then, the averaged 

signal to noise ratio (SNR) of the resulting averaged ∆ODs, for each wavelength, was 

estimated as the peak amplitude over the averaged standard deviation of baseline (within -10s 

to 0s) among all channels. Lastly, we selected 101 of these resampled averaged ∆ODs, 

distributed around the median SNR (50 averaged below and 50 averaged above the median 

https://github.com/Nirstorm/nirstorm
https://neuroimage.usc.edu/brainstorm/
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SNR), to obtain a distribution of ‘possible’ responses evoked by one finger-tapping Run. The 

selection of 16 blocks out of 20 trials and 101 resampled averaged ∆ODs maintained a good 

coverage of the data distribution. This number was empirically defined according to the 

observation that usually there were less than four blocks contaminated with artifacts in one 

finger-tapping Run. Selecting sub-averaged trials around the median SNR ensured a good 

representation of fNIRS responses, while discarding artifacts in the meantime. Indeed, in 

artifacts contaminated data, large motion artifacts would result in high SNR of corresponding 

sub-averaged trials.  

2) We applied our 3D fNIRS reconstruction workflow using personalized optimal montage and 

maximum entropy on the mean (MEM), as further described and validated in Chapter 5, to 

the 101 sub-averaged ∆ODs. Therefore, ‘all possible’ HbO/HbR responses for each finger-

tapping Run were reconstructed as spatiotemporal maps along the cortical surface. To do so, 

the subject-specific fNIRS forward model was first estimated as the following steps: a) 5 

tissues head segmentation (e.g., scalp, skull, Cerebrospinal fluid, grey matter and white 

matter) calculated using FreeSurfer6.0 (Fischl et al., 2002) 

(https://surfer.nmr.mgh.harvard.edu) and SPM12 (Penny et al., 2011) 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/); b) light fluences at each optode 

location, and for each wavelength (i.e., 685nm and 830nm), were calculated by simulating 

108 photons, using MCXLAB toolbox - a Monte Carlo photon simulator for modeling light 

transport in 3D turbid media, developed by Fang and Boas, 2009 and Yu et al., 2018; c) 

sensitivity of each voxel was computed using the adjoint formulation and was normalized by 

Rytov approximation (Arridge, 1999); d) surface space sensitivity was finally obtained by 

projecting volumetric sensitivity map to subject’s cortical surface (i.e., mid-surface, a middle 

layer of the gray matter, between pia mater and gray-white matter interface, 25,000 vertices) 

using the Voronoi based method proposed by Grova et al., 2006. Finally, each of 101 averaged 

∆OD epoch was down-sampled to 2Hz and MEM method proposed previously by our group 

for fNIRS reconstruction (Cai et al., 2021) was applied to estimate the HbO/HbR 

spatiotemproal maps (0s to 30s) along the subject-specific cortical surface.  

3) After the fNIRS 3D reconstruction using MEM, the HbO/HbR spatiotemproal maps of each 

subject during each finger-tapping Run (e.g., 101 HbO maps for Sub01 during pre-PAS25 

finger-tapping) were co-registered to the mid-surface of the MNI ICBM152 template (Fonov 

https://surfer.nmr.mgh.harvard.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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et al., 2009, 2011), using FreeSurfer spherical transformation. An ROI was defined along the 

template surface as the ‘hand knob’, to cover the expected activation regions. Finally, 

reconstructed HbO/HbR time courses (0s to 30s) within this “hand knob” ROI were averaged 

to represent the hemodynamic responses of each specific finger-tapping Run.  

The output of the whole fNIRS data preprocessing section was a set of 80 Runs (i.e. 40 Sessions 

(16 PAS25+12 PAS10+12 sham) × 2 Times) of 101 reconstructed HbO/HbR time course ranging 

from 0s to 30s, for each Run specified by Subject (ID 1 to 16), Intervention (PAS25, PAS10 or 

sham) and Time (pre-PAS or post-PAS).  

7.2.4 Hierarchical Bayesian Modeling 

To clarify the notation used in the following model equations, we used small letters to denote a 

scale variable (e.g., 𝜇 for the mean of a Gaussian distribution) and capital letters to denote a matrix 

(e.g., Σ for the covariance matrix of a multivariate Gaussian distribution). A list of scalar values 

from one specific variable is represented by a small letter along with a subscript letter, for instance, 

a symbol 𝜇𝑠 refers to a list of means, and the subscript 𝑠 represents each individual element of this 

list (mean for the 𝑠𝑡ℎ Session). The dimensionality of each list is given by the range of 𝑠 (e.g., 𝑠 =

1, 2, 3, … 40, 𝑓𝑜𝑟 𝑠𝑡ℎ  𝑠𝑒𝑠𝑠𝑖𝑜𝑛). If subscript letter(s) is contained in square brackets, it means the 

individual element of this list variable is differentiate by the model using index variables. Such as, 

𝑖  in 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑖=1,2,3]  indicates our model differentiates the intercept parameter for each 

intervention type by index variable 𝑖 = 1,2,3, 1 for PAS25, 2 for PAS10 and 3 for sham.  

Hierarchical Bayesian Model #1: Assessment of PAS effects on cortical excitability 

We proposed a first hierarchical Bayesian model to assess PAS effects on M1 cortical excitability, 

which was evaluated using the MEPs measured during spTMS Runs before and after each PAS 

intervention. This model consists of two parts: 1) a measurement error model taking into account 

the variability of MEPs within each spTMS Run and 2) a multivariate hierarchical linear model 

describing post-intervention MEP as a function of pre-intervention MEP.  

1) A model of measurement error  

We assume the “empirical” mean of the observed MEP in each Run to be drawn from a Gaussian 

distribution with the mean equals to the ‘true’ MEP amplitude and the scale equals to the standard 
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error of all MEPs trials. The ‘true’ and observed (‘obs’) MEP of the pre-PAS spTMS Run can be 

expressed as follows,  

 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑟𝑒

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒

, 𝑀𝐸𝑃𝑠𝑒,𝑠
𝑝𝑟𝑒

) 

𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(0.5, 1) 

𝑠 = 1, 2, 3, … 40, 𝑓𝑜𝑟 𝑠𝑡ℎ𝑠𝑒𝑠𝑠𝑖𝑜𝑛  

(7.1) 

where 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒

 is the ‘true’ value of the pre-PAS mean MEP for Session 𝑠. 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑟𝑒

 is the 

“empirical” mean of the observed MEP from the same Run expressed as,  

 
𝑀𝐸𝑃𝑜𝑏𝑠,𝑠

𝑝𝑟𝑒
=

∑ 𝑀𝐸𝑃𝑘,𝑠
𝑝𝑟𝑒𝑁

𝑘=1

𝑁
 

𝑘 = 1, 2, 3, … 75, 𝑓𝑜𝑟 𝑘𝑡ℎ 𝑡𝑟𝑖𝑎𝑙  

(7.2) 

where 𝑀𝐸𝑃𝑘,𝑠
𝑝𝑟𝑒

 represents the pre-PAS MEP of the 𝑘𝑡ℎ trial from a total of N=75 trials in Session 

𝑠. The corresponding measurement error 𝑀𝐸𝑃𝑠𝑒,𝑠
𝑝𝑟𝑒

 is then represented by the standard error of the 

MEP among all 75 trials, estimated by, 

 

𝑀𝐸𝑃𝑠𝑒,𝑠
𝑝𝑟𝑒

= √
∑ (𝑀𝐸𝑃𝑘,𝑠

𝑝𝑟𝑒
− 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠

𝑝𝑟𝑒
)

2𝑁
𝑘=1

𝑁(𝑁 − 1)
 (7.3) 

Finally, substituting (7.2) and (7.3) into (7.1), both empirical mean and variance estimated over 

the 75 observed pre-PAS MEPs of a specific Session were modeled to estimate the ‘true’ 

corresponding amplitude. For the prior distribution of 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒

, we applied a weakly informed 

prior (Gelman et al., 2008; Gelman, Simpson and Betancourt, 2017; Gabry et al., 2019) consisting 

in a Gaussian distribution 𝒩𝑜𝑟𝑚𝑎𝑙(0.5, 1) . Note that all observed MEPs ( 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

 and 

𝑀𝐸𝑃𝑠𝑒,𝑠
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

 , for 40 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠 ×  2 𝑇𝑖𝑚𝑒𝑠 (𝑝𝑟𝑒 −/𝑝𝑜𝑠𝑡 − 𝑃𝐴𝑆)  =  80) were normalized by 

the global maximum value of 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

 to ensure a [0, 1]  range. Then, 0.5 appears as an 

appropriate prior of the mean when nothing is known about the MEP amplitude, but only the range 

(i.e., (0 + 1) 2⁄  =  0.5).  

The ‘true’ MEP in the post-PAS spTMS Run was then modeled as follows, 
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 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑜𝑠𝑡

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑜𝑠𝑡

, 𝑀𝐸𝑃𝑠𝑒,𝑠
𝑝𝑜𝑠𝑡

)      

𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑜𝑠𝑡

=
∑ 𝑀𝐸𝑃𝑘,𝑠

𝑝𝑜𝑠𝑡𝑁
𝑘=1

𝑁
 

𝑀𝐸𝑃𝑠𝑒,𝑠
𝑝𝑜𝑠𝑡

= √
∑ (𝑀𝐸𝑃𝑘,𝑠

𝑝𝑜𝑠𝑡
− 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠

𝑝𝑜𝑠𝑡
)

2𝑁
𝑘=1

𝑁(𝑁 − 1)
 

 

(7.4) 

Note that the prior distribution of the parameter 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑜𝑠𝑡

 is introduced in the next section, within 

the context of hierarchical multivariate linear regression.  

2) Hierarchical multivariate linear regression 

PAS effects on M1 cortical excitability were then modeled using a multivariate linear regression 

model, in which 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑜𝑠𝑡

 and 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒  were considered as the dependent and predictor 

variables, respectively.  

 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑜𝑠𝑡

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝜇𝑠, σ) 

𝜇𝑠 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑖] + (𝑔𝑟𝑜𝑢𝑝[𝑖] + 𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖]) ⋅ 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒

 

𝑖 = 1, 2 𝑎𝑛𝑑 3, 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

𝑎 = 1, 2, 3, …  16, 𝑓𝑜𝑟 𝑎𝑡ℎ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 

𝑠 = 1, 2, 3, … 40, 𝑓𝑜𝑟 𝑠𝑡ℎ  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 

(7.5) 

where 𝜇𝑠  is the mean of 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑜𝑠𝑡

, predicted by 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒

 using the following linear model:  

𝜇𝑠 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑖] + (𝑔𝑟𝑜𝑢𝑝[𝑖] + 𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖]) ⋅ 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒

, and σ is the error of the linear regression 

(i.e., the scale of the normal distribution). We added the following index variables to differentiate 

Subject, Intervention (PAS25/PAS10/sham) and Time (pre-/post-PAS) in the model. 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑖] 

is the intercept of the linear regression, for the 𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛, in which 𝑖 =  1, 2 𝑎𝑛𝑑 3 refers 

to PAS25, PAS10 and sham, respectively. The slope parameter is modeled using two parts, a 

group-level slope parameter 𝑔𝑟𝑜𝑢𝑝[𝑖], specific for each intervention 𝑖, and a parameter modeling 

inter-subject variability, denoted as 𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖] , for each intervention 𝑖  and each subject 𝑎 , 

associated with the following prior model:  
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[

𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖=1]

𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖=2]

𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖=3]

] ∼ ℳ𝑢𝑙𝑡𝑖𝒩𝑜𝑟𝑚𝑎𝑙 ([
0
0
0

] , Σ ) 

Σ =  Σ𝑎𝑐𝑡𝑜𝑟 ⋅ 𝑅ℎ𝑜 ⋅ Σ𝑎𝑐𝑡𝑜𝑟 

 =  (
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

) (
1 𝜌12 𝜌13

𝜌21 1 𝜌23

𝜌31 𝜌32 1
) (

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

) 

(7.6) 

where ℳ𝑢𝑙𝑡𝑖𝒩𝑜𝑟𝑚𝑎𝑙(∙) is a multivariate Gaussian distribution to model the interaction, which 

allows the effects of each specific intervention to vary for each subject, meaning each subject can 

respond to each intervention differently. We defined this multivariate Gaussian prior distribution 

to have zero means (3 elements vector) therefore assuming all the subjects to have zero mean 

deviation around the group-level slope parameter 𝑔𝑟𝑜𝑢𝑝[𝑖]. 𝑅ℎ𝑜 and Σ𝑎𝑐𝑡𝑜𝑟  denote respectively 

the correlation matrix and the scale matrix of the covariance matrix Σ of the multivariate Gaussian 

distribution. 𝜎1,2,3 is the scale among all subjects within each intervention group, for example, 𝜎3 

is the scale of the vector 𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖=3]  for sham. 𝜌  is the correlation between pair-wised 

interventions, for instance, 𝜌12  represents the correlation between 𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖=1]  for PAS25 and 

𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖=2] for PAS10. 

Weakly informed priors were assigned to the parameters in (5) and (6) as follows, 

 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑖] ∼ 𝒩𝑜𝑟𝑚𝑎𝑙(0, 0.1) 

𝑔𝑟𝑜𝑢𝑝[𝑖] ∼ 𝑙𝑜𝑔𝒩𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔(1), 0.5) 

𝜌 ∼ ℒ𝒦𝒥𝑐𝑜𝑟𝑟(2) 

σ ∼ ℋ𝑎𝑙𝑓𝒩𝑜𝑟𝑚𝑎𝑙(0, 1) 

(7.7) 

𝒩𝑜𝑟𝑚𝑎𝑙(0, 0.1)  was chosen for 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑖]  considering that when  𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑟𝑒  =  0 , the 

corresponding 𝑀𝐸𝑃𝑡𝑟𝑢𝑒,𝑠
𝑝𝑜𝑠𝑡

 should not be too much apart from 0. 𝑙𝑜𝑔𝒩𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔(1), 0.5) was 

selected for the group-level slope to ensure it is a positive value with a median of 1. Therefore, 

without knowing any intervention type, the slope should be equal to 1, assuming there is no 

averaged PAS effect among subjects when the intervention type is not known. ℒ𝒦𝒥𝑐𝑜𝑟𝑟(𝜂 = 2), 

the Lewandowski-Kurowicka-Joe distribution (Lewandowski, Kurowicka and Joe, 2009), is a 

weakly informative prior for the correlation parameter 𝜌  that does not prioritize extreme 
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correlation values such as ±1. 𝜂 is a positive value, 𝜂 = 1 denotes uniform density of 𝜌. The 

larger 𝜂 is (when compared to 1), the least likely the extreme correlation values to occur (sharper 

probability density distribution), and vice versa. We selected 𝜂 = 2 as a weakly informed prior 

commonly considered in Bayesian data analysis (McElreath, 2020). Finally, ℋ𝑎𝑙𝑓𝒩𝑜𝑟𝑚𝑎𝑙(0,1) 

was used for variance parameters to ensure a positive value, whereas its likelihood decreased 

following the positive half of a 𝒩𝑜𝑟𝑚𝑎𝑙(0, 1) distribution, when variance increases. As denoted 

previously, we normalized all data 𝑀𝐸𝑃𝑘,𝑠
𝑝𝑟𝑒

 and 𝑀𝐸𝑃𝑘,𝑠
𝑝𝑜𝑠𝑡

within the range [0,1], therefore 

𝒩𝑜𝑟𝑚𝑎𝑙(0, 1) is considered as a conservative (“flat”) enough prior, not reducing the variance.   

 

Fig.7.2 The hierarchical model of PAS effects on either cortical excitability (MEP) or hemodynamic 

responses (Hb). From bottom to top, 1) a measurement error model assuming the mean of the variable of 

interest (either the observed MEPs, e.g.,  𝑀𝐸𝑃𝑠𝑒,𝑠
𝑝𝑟𝑒

; or a spline weight of HbO/HbR time course, e.g., 

𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

 of each Run at a different Time (pre-/post-) is drawn from a Gaussian distribution. The mean of 

this Gaussian distribution is the ‘true’ value of the variable of interest, and the scale is the corresponding 

standard error; 2) each subject and intervention were differentiated using index variables; 3) PAS effects 

were modeled by linear regression in which the ‘true’ post- variable of interest was predicted by the ‘true’ 

pre- variable of interest. Solving this hierarchical model by Bayesian allows partial pooling on each 

parameter to reduce the uncertainty.  

Hierarchical Bayesian Model #2: Assessment of PAS effects on task-related HbO/HbR 
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A similar hierarchical multivariate linear regression model is proposed to assess PAS effects on 

task-related fNIRS hemodynamic responses. This model is very similar to previous Model#1, the 

main difference being that the input variables to the model are now ‘features’ representing 

hemodynamic responses during the finger-tapping task. Instead of extracting amplitudes at a 

particular time sample of HbO/HbR time courses, for instance the hemodynamic peak amplitude, 

or performing a local average within a specific time window, in this Model #2, we conducted a 

procedure to model the PAS effects over the whole time course of HbO/HbR responses to finger 

tapping.  

To do so, after 3D reconstruction using MEM of all 101 sub-averaged of the fNIRS responses, 

HbO/HbR time courses were first averaged within the selected M1 ROI along the selected time 

range [0s, 30s]. To lower the dimension of the input to the model, resulting time courses were then 

projected on B-splines temporal basis functions (Boor, 2001; Gelman et al., 2013b; Hastie, 2017). 

Therefore, hemodynamic responses were expressed as a weighted linear combination of those 

basis functions, considering the hierarchical model summarized in Fig.7.3. Please note that Hb 

refers to either HbO or HbR in the model, which was fitted separately for each chromophore,  

   𝐻𝑏𝑜𝑏𝑠,𝑠,𝑡
𝑝𝑟𝑒

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝜇𝑠,𝑡
𝑝𝑟𝑒

, 𝐻𝑏𝑠𝑑,𝑠,𝑡
𝑝𝑟𝑒

) 

𝜇𝑠,𝑡
𝑝𝑟𝑒

= 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

× 𝐵𝑛,𝑡 

𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(0,10) 

𝐻𝑏𝑜𝑏𝑠,𝑠,𝑡
𝑝𝑜𝑠𝑡

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝜇𝑠,𝑡
𝑝𝑜𝑠𝑡

, 𝐻𝑏𝑠𝑑,𝑠,𝑡
𝑝𝑜𝑠𝑡

) 

𝜇𝑠,𝑡
𝑝𝑜𝑠𝑡

= 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑜𝑠𝑡

× 𝐵𝑛,𝑡 

𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑜𝑠𝑡

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(0,10) 

𝑛 = 1, 2, 3, …  10, 𝑓𝑜𝑟 𝑛𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑡 = 0𝑠 𝑡𝑜 30𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑠𝑡𝑒𝑝 𝑜𝑓 0.5𝑠  

𝑠 = 1, 2, 3, … 40, 𝑓𝑜𝑟 𝑠𝑡ℎ  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 

(7.8) 

where 𝐻𝑏𝑜𝑏𝑠,𝑠,𝑡
𝑝𝑟𝑒

 is the observed empirical mean of pre-PAS HbO/HbR responses among all 101 

sub-averaged time courses, for a specific finger-tapping Run (e.g., finger-tapping Run in pre-

PAS25 of Sub01) of a specific Session 𝑠 at a specific time point 𝑡. 𝐻𝑏𝑜𝑏𝑠,𝑠,𝑡
𝑝𝑟𝑒

 is assumed to follow 

a Gaussian distribution with a mean of 𝜇𝑠,𝑡
𝑝𝑟𝑒

 and a scale of 𝐻𝑏𝑠𝑑,𝑠,𝑡
𝑝𝑟𝑒

, where 𝐻𝑏𝑠𝑑,𝑠,𝑡
𝑝𝑟𝑒

 is the 

corresponding standard deviation estimated among all 101 sub-averaged time courses. Note that 
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all pre- and post-PAS HbO/HbR time courses in one Session were normalized by the global 

maximum amplitude to be within the range [-1,1]. Then, 𝜇𝑠,𝑡
𝑝𝑟𝑒

 representing the mean time course 

of the true pre-PAS HbR/HbO for time sample t and session s, was defined as a linear combination 

of 𝑛 = 10 B-spline basis functions 𝐵𝑛,𝑡  using the corresponding weight 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

. Each basis 

function 𝐵𝑛,𝑡  was defined as a 3rd order polynomial function. A similar model structure was 

applied to data and parameters corresponding to the post-PAS finger-tapping Run. To model the 

temporal response using B-spline, we selected 10 knots pivoted at the percentiles of time sequence 

𝑡 = 0𝑠 𝑡𝑜 30𝑠 with a step of 0.5𝑠; therefore, 10 corresponding weights and basis functions, as 

illustrated in the second column of Fig.7.3. Using this Bayesian spline model, not only the 

averaged time course of HbO/HbR, but also their corresponding standard deviation over the 101 

sub-averaged, for each time point, were projected in the ‘spline space’. This means the averaged 

time course of HbO/HbR can be recovered by the linear combination of the mean of each weight 

(over 101 sub-averaged) and basis functions 𝐵𝑛,𝑡, whereas the standard deviation of HbO/HbR 

time course is reflected by the linear combination of the standard deviation of each weight (over 

101 sub-averaged) and 𝐵𝑛,𝑡. Note that the use of spline basis functions in this study was mainly to 

reduce the dimensionality of the HbO/HbR time course from 60 sampling points to 10 weights, 

while preserving the variability structure to be modeled. Therefore, selecting 10 spline knots was 

a trade-off between: 1) choosing fewer knots that would result in eventual distortion of the 

HbO/HbR time courses, involving too much temporal smoothness; 2) adding more knots that 

would increase the dimensionality of the data after projection. Hence, our empirical choice ensured 

accurate representation of the whole HbO/HbR time courses with a minimum dimensionality span. 

Importantly, projecting to spline space also preserved the autocorrelation of the HbO/HbR time 

courses per se, which could not be achieved when simply applying the same hierarchical model on 

each of 60 data points independently. Finally, 𝒩𝑜𝑟𝑚𝑎𝑙(0,10)  is considered as a weakly 

informative prior for spline weight considering the HbO/HbR time course was normalized within 

the range [-1,1]. 

We then embedded this spline model of the hemodynamic response within the same hierarchical 

model proposed in the previous section (Model#1), for instance, replacing the 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑟𝑒

 with the 

spline weights 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

 as follows, also illustrated in the third column of Fig.7.3.  
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 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑜𝑠𝑡

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝑤𝑡𝑟𝑢𝑒,𝑠,𝑛
𝑝𝑜𝑠𝑡

, 𝑤𝑠𝑑,𝑠,𝑛
𝑝𝑜𝑠𝑡

) 

𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝑤𝑡𝑟𝑢𝑒,𝑠,𝑛
𝑝𝑟𝑒

, 𝑤𝑠𝑑,𝑠,𝑛
𝑝𝑟𝑒

) 

𝑤𝑡𝑟𝑢𝑒,𝑠,𝑛
𝑝𝑜𝑠𝑡

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(𝜇𝑠, 𝜎) 

𝜇𝑠 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑖] + (𝑔𝑟𝑜𝑢𝑝[𝑖] + 𝑎𝑐𝑡𝑜𝑟[𝑎,𝑖]) ⋅ 𝑤𝑡𝑟𝑢𝑒,𝑠,𝑛
𝑝𝑟𝑒

 

𝑤𝑡𝑟𝑢𝑒,𝑠,𝑛
𝑝𝑟𝑒

∼ 𝒩𝑜𝑟𝑚𝑎𝑙(0,10) 

(7.9) 

where 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑜𝑠𝑡

 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒  , 𝑤𝑠𝑑,𝑠,𝑛

𝑝𝑜𝑠𝑡
and  𝑤𝑠𝑑,𝑠,𝑛

𝑝𝑟𝑒   were all calculated from the corresponding posterior of 

spline weights estimated from equation (7.8). In total, 10 models were considered for 10 pairs of 

weights (pre- and post-PAS) to encode the PAS effects for either HbO or HbR separately. 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑜𝑠𝑡

 

and 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

 are referring to the empirical mean of each spline weight for either pre- or post-PAS 

HbO/HbR for Session 𝑠, estimated from the corresponding posterior of spline weights in equation 

(7.8). The scale of Gaussian distribution in the measurement error model was then 𝑤𝑠𝑑,𝑠,𝑛
𝑝𝑜𝑠𝑡

 and 

𝑤𝑠𝑑,𝑠,𝑛
𝑝𝑟𝑒

, respectively. Note that equation (7.8) resulted the estimated posterior distribution of 

𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑜𝑠𝑡

 and 𝑤𝑜𝑏𝑠,𝑠,𝑛
𝑝𝑟𝑒

 after projecting HbO or HbR time course to the spline space, then scales of 

Gaussian distributions used for measurement error model in (7.9) were directly reflected by the 

standard deviation of the posterior distribution (denoted as 𝑠𝑑  in subscript). Finally, the 

intervention, subject index variables and priors to be considered for this model, were similar to 

those previously introduced for Model#1, so the PAS effects on HbO/HbR whole time course were 

then encapsulated in the hierarchical model of spline weights. 
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Fig.7.3 The hierarchical Bayesian spline model for PAS effects on the whole HbO/HbR time course. 

HbO/HbR time courses, from 0s to 30s, before and after each intervention Session were selected as the 

inputs of the model. They were projected into the spline space which is composed of 10 predefined basis 

functions (3rd order polynomial with 10 knots). The linear combination of basis function using 10 

corresponding weights 𝑤1~10  can fully recover the HbO/HbR time course. The resulting pre- and post-

PAS spline weights were then fed into the hierarchical model, similar to model #1 to estimate the PAS 

effects on each weight. Therefore, the associations between each pair of weights encapsulated the PAS 

effects on the whole time course of HbO/HbR.  

Hierarchical Bayesian Model #3: Relationship between PAS effects on task-related 

M1 hemodynamic activity and PAS effects on M1 excitability  

In this third model, we propose to investigate the interactions between (i) PAS effects on M1 

excitability (PAS effects on MEP, represented by the slope parameter in Model#1) and (ii) PAS 

effects on reconstructed hemodynamic finger tapping responses (PAS effects on HbO/HbR, 

represented by the slope parameter in Model#2 for a specific weight 𝑤𝑛 ). We assumed the 

relationship between task-related M1 hemodynamic activity and M1 excitability was not 

intervention specific, then the previous hierarchical models (i.e., Model#1 and Model#2) were 

modified to be only Session specific, i.e., only index variable of Session 𝑠 was used, whereas 

intervention and subject index 𝑖 and 𝑎 were ignored.  

 
[
𝑠𝑙𝑜𝑝𝑒[𝑠]

𝑀𝐸𝑃

𝑠𝑙𝑜𝑝𝑒[𝑠]
𝐻𝑏 ] ∼ ℳ𝑢𝑙𝑡𝑖𝒩𝑜𝑟𝑚𝑎𝑙 ([

0
0

] , 𝛴𝑠𝑙𝑜𝑝𝑒 ) 

𝛴𝑠𝑙𝑜𝑝𝑒 =  𝛴𝑠𝑒𝑠𝑠𝑖𝑜𝑛 ⋅ 𝑅ℎ𝑜𝑠𝑙𝑜𝑝𝑒 ⋅ 𝛴𝑠𝑒𝑠𝑠𝑖𝑜𝑛  

 =  (
𝜎𝑀𝐸𝑃 0

0 𝜎𝐻𝑏
) (

1 𝜌𝑀𝐸𝑃−𝐻𝑏

𝜌𝐻𝑏−𝑀𝐸𝑃 1
) (

𝜎𝑀𝐸𝑃 0
0 𝜎𝐻𝑏

) 

𝑠 = 1, 2, 3, … 40, 𝑓𝑜𝑟 𝑠𝑡ℎ  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 

(7.10) 

The interactions were modeled using a multinormal distribution, in which the parameter 𝜌𝑀𝐸𝑃−𝐻𝑏 

in the 𝑅ℎ𝑜𝑠𝑙𝑜𝑝𝑒  matrix denotes the correlation between the two slopes (representing the PAS 

effects in both linear models). The same model was fitted separately when investigating either the 

relationship between MEP and HbO or between MEP and HbR. 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 is the Session specific 

slope parameter in Model#1. Similarly, 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝐻𝑏 (either HbO or HbR) is the Session specific slope 

parameter in Model#2 for one of the corresponding spline weights 𝑤1~10. 𝜎𝑀𝐸𝑃 and 𝜎𝐻𝑏 are the 
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standard deviations of 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 or 𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏, respectively. Note that this model was fitted for each 

spline weight separately - 10 correlation investigations between MEP and each spline weight were 

conducted. Therefore, the posterior distribution 𝜌𝑀𝐸𝑃−𝐻𝑏 inferred for a specific spline weight  can 

be interpreted as the correlation between brain excitability and task-related cortical hemodynamic 

activity at a specific period (e.g., 𝑤5 reflecting HbO/HbR fluctuations around the peak time point 

of the hemodynamic response). For the parameters of the Multinormal distribution, we considered 

the same weakly informed priors as those proposed in Model#1 and Model#2.  

 

Fig.7.4 Modeling the relationship of task-related M1 hemodynamic activity and M1 excitability. For 

MEP, which represented the M1 excitability, the previous Model #1 was modified to be Session-specific 

only. For spline weights, which represented the features of task-related HbO/HbR time course, the previous 

‘Model #2 was also modified to be Session-specific only. The association between the 𝑠𝑙𝑜𝑝𝑒𝑀𝐸𝑃 in MEP 

model and 𝑠𝑙𝑜𝑝𝑒𝐻𝑏  represented by any of the spline weight of the HbO/HbR time course model were 

described by a multinormal distribution.     

7.2.5 Prior predictive simulation 
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To justify the choices of ‘weakly informed’ prior, a prior predictive simulation was conducted in 

Fig.7.3. The prior predictive simulation consists in a generative process simply checking what kind 

of data we would expect to generate from our hierarchical models, when applying all possible 

values of the parameters considering the proposed prior distributions of the model. Then by 

comparing the distribution of data generated by our model, to the domain knowledge, one can 

assess whether the proposed priors could be overregulating or not objective (e.g., too strongly 

informed). In our study, PAS effects were modeled using linear regression. To perform prior 

predictive simulation, we considered prior predictive simulation to draw 1000 lines following the 

prior distributions of the intercept and slope in the normalized pre-MEP vs. post-MEP amplitude 

plane. Then the distribution of generated regression lines was compared to three reference lines 

summarizing our knowledge of the problem. The three reference lines were featuring a slope of 

0.2, 1 and 3, respectively and an intercept of 0. When the intercept is set to 0, the slope just refers 

to the ratio of post- over pre-PAS MEP amplitude, which was used in our previous conventional 

analysis to represent the PAS effects. Whereas a slope of 1 would then correspond to no effect 

(post-/pre-PAS ratio of 1), the reference slopes of 0.2 and 3 represented the thresholds for outliers 

of extremely small or large MEP ratios reported in Kriváneková et al., 2013. 

7.2.6 Hierarchical Bayesian model fitting 

Using Bayes’ theorem (Laplace, 1810), the posterior density of the conditional probability 

distribution, 𝑝(𝜃|𝑦), of all parameters ( 𝜃), knowing the data 𝑦, can be expressed as follows,  

   
𝑝(𝜃|𝑦) =

𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
 (7.11) 

where 𝑝(𝑦|𝜃) is considered as the likelihood of the data y, when parameters 𝜃 are known and 𝑝(𝜃) 

is the prior distribution of those parameters. 𝑝(𝑦) is then the average likelihood of the data over 

all possible values of 𝜃. 𝑝(𝜃|𝑦) was sampled from the joint posterior distribution 𝑝(𝜃)𝑝(𝑦|𝜃) 

using Markov Chain Monte Carlo (MCMC) (Neal, 1993; Gelman et al., 2013b), while omitting 

the normalization factor 𝑝(𝑦), therefore, 

   𝑝(θ|𝑦) ∝ 𝑝(θ)𝑝(𝑦|θ) (7.12) 
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In this study, we used the R Version 4.0.3 (R Core Team, 2020) distribution of the Stan 

Probabilistic programming languages (Stan Development Team, 2020b) - RStan package Version 

2.21.2 (Stan Development Team, 2020a) to implement and solve the proposed Bayesian models. 

Specifically, the joint posterior distribution was sampled using the implementation of dynamic 

HMC in Stan (Betancourt, 2017, 2019), as an improved version of HMC algorithm (Neal, 2010; 

Betancourt and Girolami, 2015). In total, 4 MCMC chains were used to sample each model and 

they were initialized randomly to ensure a better exploration of the joint posterior distribution, 

while allowing diagnostic of the convergence. Each chain consisted of 2000 samples, including a 

first half warm-up phase (1000 samples) for the adaptation of the HMC parameters. Therefore, 

when combining all 4 chains, we obtained 4000 samples of each parameter of the models 

mentioned above, drawn respectively to estimate the corresponding posterior distributions. 

Regarding computation time, using an Intel 10750H laptop CPU and parallel computation (one 

core per chain), dynamic HMC took 66s for sampling once Model#1, 59s for Model#2 and 53s for 

Model#3 (including compiling time and calculation of the diagnostics).  

Diagnosing the HMC sampling process is a crucial step when evaluating the accuracy and biases 

of the estimated posterior distributions. This is also known as a unique and advanced feature of 

HMC when compared to other MCMC algorithms (Roberts and Rosenthal, 2004). In this study, 

we considered the diagnostic approach recommended by Stan to evaluate pathological behaviours 

of HMC sampling (Betancourt, 2017; Gabry et al., 2019; Gelman et al., 2020), 

1) Divergent transitions for real samples drawn after the warm-up phase. This diagnostic 

statistic is specific for the HMC sampler, mainly invigilating the miss-match between the step 

size of the MCMC chain and the target distribution geometries (Betancourt et al., 2017). While 

sampling a ‘high curvature’ region of the target distribution, an inappropriate large step size 

may miss-sample it, therefore biasing the resulted posterior distribution. MCMC chains will 

approach infinite energy immediately – called divergent transitions – when approaching such 

regions (Neal, 2010; Betancourt, 2017). These divergences are recorded and reported by Stan. 

Note that divergence is usually related to the parameterization of the model, especially when 

involving multivariate and hierarchical structures. Parameters may usually be dependent on 

each other in these models, therefore, creating a ‘high curvature’ distribution landscape, also 

denoted as Neal’s Funnel (Neal, 2003), which is difficult to sample. In order to reduce the 
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chances of such divergences, in our study, we considered reparameterization of the model into 

non-centred forms when sampling with HMC.  

2) The Energy-Bayesian Fraction of Missing Information (E-BFMI) is a specific diagnostic 

statistic for HMC sampler, evaluating the efficiency of the sampling process (Betancourt, 

2016). Poorly chosen parameters of the HMC can decrease the efficiency of the sampling 

process or even result in incomplete exploration of the target distribution, especially when 

considering distributions with heavy tails. Such a behaviour can be diagnosed by taking 

advantage of the physics feature of HMC, by comparing the marginal energy density (denoted 

as 𝜋𝐸) and energy transition density (denoted as 𝜋∆𝐸) of the chain. When superimposing the 

histograms of 𝜋𝐸  and 𝜋∆𝐸 , the higher the efficiency, the more overlap between the two 

distributions. The Energy Bayesian Fraction of Missing Information (E-BFMI) (Rubin, 2004) 

is used in Stan to quantify such comparison, by calculating the statistical expectation of the 

variance of 𝜋∆𝐸  over the variance of 𝜋𝐸 . Empirically, an E-BFMI value below 0.3 is 

considered as problematic (Betancourt, 2016, 2017).  

3) 𝑹̂ as a general and primary diagnostic statistic when evaluating convergence of MCMC 

chains (Gelman and Rubin, 1992; Brooks and Gelman, 1998). 𝑹̂ is estimated for each 

parameter of the model as the ratio of between-chains variance over the within-chain variance. 

In detail, the between-chains variance is calculated as the standard deviation among all chains, 

whereas the within-chain variance is calculated as the weighted sum of the root mean square 

of the standard deviation within each single chain. The recommended criteria for convergence 

is 𝑅̂ <  1.05 (Gabry et al., 2019; Vehtari et al., 2020).  

Finally, we used tidyverse package (Wickham et al., 2019) in R (R Core Team, 2020) for general 

data wrangling and visualization. Tidybayes package (Kay, 2020) was used for visualizing the 

posterior distributions whereas bayesplot package (Gabry et al., 2019; Gabry and Mahr, 2020) was 

used for visualizing the diagnostics of HMC chains.  

7.2.7 Statistical inferences 

In general, two types of statistical inferences were made in this study:  

1) When investigating the effect of PAS on MEP, we first made inferences by answering the 

question - what would be the distribution of MEP after a certain PAS intervention when giving 
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a specific pre-PAS MEP? This approach is more direct and convenient comparing the process 

checking the posterior distribution of each parameter of the model one by one. This technique 

is referred as the posterior predictive simulation (Gabry et al., 2019; Gelman et al., 2020). For 

instance, to infer the PAS effects on the M1 cortical excitability, we used the averaged MEP 

(i.e., equals to 1.0mV, in the original data scale before normalizing) among all pre-PAS Runs 

to represent the group-level pre-PAS M1 cortical excitability. This amplitude was then 

substituted into the fitted Model#1 along with all posterior distributions of parameters (e.g., 

intervention-specific intercepts and slopes) to estimate a group-level post-PAS MEP 

distribution. By comparing the distributions of the percentage change of this post-PAS MEP 

distribution relative to the pre-PAS MEP amplitude, the effects of each intervention can be 

inferred. We also performed this inference using a set of different pre-PAS MEPs values, such 

as 0.2mV, 0.6mV, 1.2mV, 2.2mV and 2.8mV according to the observed range of all individual 

pre-PAS MEP (i.e., ranging from 0.1mV to 3.0mV), to investigate how PAS effects could be 

related to the pre-PAS MEP amplitude. Note that these pre-PAS MEP amplitudes were also 

scaled by dividing the global maximum value of 𝑀𝐸𝑃𝑜𝑏𝑠,𝑠
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

 before being feed into the 

model, and posterior predicted post-PAS MEP amplitudes were rescaled back to the original 

data scale.  

Similarly, the PAS effects on task-related hemodynamic were statistically inferred using the 

following steps: 1) select any preferred pre-PAS HbO/HbR time course (e.g., the averaged 

HbO/HbR of all pre-PAS Runs demonstrated in the results); 2) calculate the 10 weights 

(variable) corresponding to this specific time courses; 3) inferring the 10 post-weights along 

with their variance by posterior predictive simulations of the fitted hierarchical Model#2; 4) 

apply a linear combination of 10 post-weight and basis functions to obtain the distribution of 

post-PAS HbO/HbR time course. Note that we also calculated the PAS effects on HbO/HbR 

by contrasting post-PAS25 or post-PAS10 hemodynamic response to the one obtained in post-

sham condition. To do so, we subtracted from the posterior predicted distributions of post-

PAS25 HbO/HbR time courses (or post-PAS10) the posterior predicted post-sham HbO/HbR 

time courses.  

2) The correlation between M1 cortical excitability and task-related hemodynamic response 

can be inferred directly from the posterior distribution of the correlation parameter 𝜌𝑀𝐸𝑃−𝐻𝑏 
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per se. Note that this correlation distribution was estimated for each spline weight separately, 

therefore, the resulted posteriors can be used to infer the excitability association for each 

specific time point of the HbO/HbR time course. For instance, the posterior distribution of the 

correlation between 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and 𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏(𝑤5)
 indicated the relationship between the peak 

period (e.g., few seconds around the expected peak timing of the response) of task-related 

HbO/HbR and M1 cortical excitability. We also conducted typical frequentist inferences of 

this relationship using the linear fit and Pearson’s correlation over all 40 Sessions on the 

resulted mean of 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and 𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏(𝑤5)
, for both HbO and HbR.  

Note that for quantified statistics, we reported median and the median absolute deviation (i.e., 

𝑚𝑎𝑑𝑠𝑑 ), which was suggested by Gelman et al., 2020a and estimated as follows: 𝑚𝑎𝑑𝑠𝑑 =

 1.483 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛𝑖=1
𝑛 |𝑧𝑖 − 𝑀|, where 𝑧𝑖 is a certain value of a set of values 𝑧𝑖=1,2,3...𝑛 and 𝑀 is the 

median of all 𝑧𝑖 . The 𝑚𝑎𝑑𝑠𝑑  is a more universal representation of the variance, which is 

comparable to the standard deviation, without considering the parametric/nonparametric 

distribution of 𝑧𝑖 and is more computationally stable.  

7.3. Results  

7.3.1 Prior predictive simulation 

As illustrated in Fig.7.5, resultant prior predictive simulation lines were distributed symmetrically 

around the control line suggesting no PAS effect (i.e., intercept = 0, slope =1). This means our 

priors exhibited no preference towards a slope < 1 or >1. Moreover, within the post-PAS MEP 

versus pre-PAS MEP plane, the area spanned by all simulated lines covered a larger area than the 

area enfolded by the reference lines (0 intercepts, a slope spanning from 0.2 to 3.0). These results 

are confirming that priors in our hierarchical model are not biased to the expected PAS effect and 

are more conservative than the conventional MEP ratio thresholding approach. This prior 

predictive simulation result also applies to PAS effects on HbO/HbR, since fNIRS data were 

normalized similarly as MEP values and the priors in the multivariate linear regression models 

were the same.   
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Fig.7.5 Prior predictive simulations for the hierarchical model of PAS effects on cortical excitability. 

Each blue line represents one prior predictive simulation obtained by drawing simultaneously the intercept 

and the slope parameters when considering only the priors proposed in Model#1. For comparison 

purposes, as a reference, we first represented a control line suggesting no PAS effect (intercept of 0, slope 

of 1), then two lines referring to MEP ratio outliers (intercept of 0 and slope of 0.2 and 3 respectively.  

7.3.2 Diagnosis of HMC  

All of the models resulted in 0 divergences reported by Stan, indicating they were well 

parameterized, and HMC chains explored sufficiently well the target distribution. Fig.7.6 reports 

the evaluation of diagnostic statistics for the two metrics 𝑅̂  and E-BFMI. In each column of 

Fig.7.6, a specific model sampling process for a specific model is being diagnosed (see further 

details in Fig.7.6 caption). The first row illustrates the histogram of 𝑅̂ for all parameters in each 

corresponding model. No parameters resulted 𝑅̂ > 1.05 indicating the corresponding HMC chains 

indeed well converge. The second row demonstrated the superimposed histograms of 𝜋𝐸  (i.e., 

marginal energy density) and 𝜋∆𝐸 (i.e., energy transition density), which overlapped well for all 

models. This evaluation was also quantified by reporting E-BFMI values for each model, which 

were all smaller than 0.3. Therefore, we can conclude that the HMC chains used to sample the 
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parameters of the key models involved in this study were robust and reliable according to these 

reported diagnostic statistics.  

 

Fig.7.6 Diagnostic statistics of key features of the models considered in this study. Diagnostic statistics 

for a) Model#1 - PAS effects on MEP amplitude, b) Model#2 - PAS effects on 𝑤5 of task-evoked HbO, c) 

Model#2 - PAS effects on 𝑤5 of task-evoked HbR, d) Model#3 - correlation between PAS effects on MEP 

and PAS effects on 𝑤5 of task-evoked HbO and e) Model#3 - correlation between PAS effects on MEP and 

PAS effects on 𝑤5 of task-evoked HbR. The first row presents the histogram of 𝑅̂ values for all parameters 

among all chains of each model. No 𝑅̂ value was above 1.05, suggesting that all chains converged well. 

The second row presents the superimposed distributions of the marginal energy density 𝜋𝐸 and the energy 

transition density 𝜋∆𝐸  for all HMC chains sampled for each model. The corresponding quantification 

metric E-BFMI was smaller than 0.3, indicating a good overlapping between the two distributions.  

7.3.3 PAS effects on cortical excitability 

When considering Model#1, the estimated regression lines (using the averaged intercept and slope 

parameters calculated from their posterior distributions) linking pre- and post-PAS MEPs for each 

intervention are reported in Fig 7a. The regression line estimated for sham intervention (black line) 

was found as expected - between the regression lines estimated for PAS25 (red line) and PAS10 

(blue line), and it was almost identical to the reference line reporting no effect (intercept=0, 

slope=1). Observed pairs of post-PAS MEP and pre-PAS MEP mean amplitude over all trials are 

presented as solid pints (observed data), whereas corresponding estimated ‘true’ amplitudes are 

presented as empty points. The black lines connecting each pair of solid (observed mean) and 
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empty (estimated ‘true’ mean) points illustrate the shrinkage process, also known as the result of 

partial pooling obtained when considering hierarchical Bayesian modeling. This demonstrated the 

regularization property of the model, where the estimated ‘true’ MEPs corresponding to each 

intervention group shrank toward the corresponding regression line. Moreover, when considering 

the variance of the MEPs, the larger the MEP variability of a certain Run, the more shrinkage there 

was. Results of posterior predictive simulation at the group-level, when considering a pre-PAS 

MEP amplitude of 1.0mV is illustrated in Fig.7.7b, as the posterior distribution of relative changes 

of post-PAS MEP amplitudes (in %) after each intervention. PAS25 intervention resulted in a 

substantial relative increase of post-PAS MEP amplitude (median±𝑚𝑎𝑑𝑠𝑑 = 30.6% ± 14.6%), 

consisting of a posterior probability of 0.97 for obtaining an increase in MEP amplitude. The 

posterior distribution of sham post-PAS MEP amplitude exhibits a nice symmetric pattern around 

a 0% increase (an increase of 2.3% ± 14.5%). The effects of PAS10 were subtle, showing a slight 

shift towards the negative side consisting in a relative decrease of −1.80% ± 11.0%, and a 

probability of 0.57 of obtaining a decrease in MEP amplitude. Individual-level inferences are 

presented in Fig.7.S1, where both PAS25 and PAS10 effects are showing a large between-subject 

variability, as addressed in the introduction. When reporting individual level results, posterior 

predictive simulations were obtained by considering the same averaged pre-PAS MEP amplitude 

over 40 Sessions as the input for all subjects, taking full benefit of hierarchical modeling, allowing 

to compare individual-level results within the appropriate framework.  

 



Chapter 7: Manuscript 4 

226 
 

Fig.7.7 PAS effects on cortical excitability. a) the regression lines of each intervention estimated by the 

mean of intercept and slope from the corresponding posterior distribution, PAS25 (red), PAS10 (blue) and 

sham (black). Pre- and post-PAS MEP amplitudes were normalized by dividing by the global maximum 

amplitude of all 80 MEP values. Shadow areas represent the 50% interval estimated from the posterior 

distribution of the regression parameters. Solid points correspond to pairs of averaged pre-/post-PAS MEP 

amplitudes over all trials of each specific Run. Empty points represent the ‘true’ amplitude of the 

corresponding pre-/post-PAS MEP pair estimated using the proposed hierarchical Bayesian Model#1. The 

black bar connecting each solid point to the corresponding empty point illustrates the shrinkage process of 

Bayesian inference of the hierarchical model; b) Posterior predictive simulations of post-PAS MEP 

amplitudes obtained when considering a given pre-PAS MEP amplitude of 1mV as input, corresponding to 

the averaged pre-PAS MEP amplitude over all 40 Sessions. The blue area represents the probability of 

obtaining a relative increase (in %) for the post-PAS MEP amplitude when compared to the pre-PAS MEP 

amplitude, whereas the pink area represents the probability of obtaining a relative decrease (in %). The 

black dot represents the median of each posterior distribution, and the surrounding bars show the 

corresponding 50% and 90% credibility intervals.         

Fig.7.8 presents the effects of simulating different pre-PAS MEP amplitudes as inputs, on the 

relative change of post-PAS MEP amplitude for each intervention, at the group level. For both 

PAS25 and PAS10, the higher the pre-PAS MEP amplitude was, the higher the relative change in 

MEP amplitude was. In further details, PAS25 resulted in an increase of post-PAS MEP amplitude 

of +26.2% ± 15.7%  ( 𝑃𝑟𝑜𝑏 =  0.95 ), +31.4% ± 15.1%  ( 𝑃𝑟𝑜𝑏 =  0.97 ), +33.5% ± 17.7% 

(𝑃𝑟𝑜𝑏 =  0.96) and +33.9% ± 18.7% (𝑃𝑟𝑜𝑏 =  0.95) when considering an input pre-PAS MEP 

amplitude of 0.6𝑚𝑉, 1.2𝑚𝑉, 2.2𝑚𝑉 𝑎𝑛𝑑 2.8𝑚𝑉 respectively. Similarly, PAS10 resulted in an 

increase of post-PAS MEP amplitude of +4.2% ± 18.9% (𝑃𝑟𝑜𝑏 =  0.59), when considering an 

input pre-PAS MEP amplitude of 0.6mV, followed respectively by decreases of −3.1% ± 10.5% 

(𝑃𝑟𝑜𝑏 =  0.62), −6.5% ± 12.6% (𝑃𝑟𝑜𝑏 =  0.70) and −7.51% ± 13.8% (𝑃𝑟𝑜𝑏 =  0.71) when 

considering an input pre-PAS MEP amplitude of 1.2𝑚𝑉, 2.2𝑚𝑉 𝑎𝑛𝑑 2.8𝑚𝑉 . This important 

finding of our proposed Bayesian Model#1 suggests that even without increasing the TMS 

stimulation intensity during PAS, simply increasing the spTMS intensity considered to measure 

changes in excitability can reveal the expected PAS effects more clearly, while reducing some 

variability in the data. On the other hand, when assessing this effect on sham, we obtained similar 

distributions of relative changes in post-PAS MEP amplitude, all symmetric around 0%, consisting 

in relative changes of 4.6%, 2.0%, 0.6% 𝑎𝑛𝑑 0.2%, when considering a pre-PAS MEP amplitude 
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of 0.6𝑚𝑉, 1.2𝑚𝑉, 2.2𝑚𝑉 𝑎𝑛𝑑 2.8𝑚𝑉, respectively. Importantly, the higher the pre-PAS MEP 

amplitude was, the closer to 0% the median of relative change in post-PAS MEP amplitude was. 

Overall, when considering pre-PAS MEP amplitude of 0.2𝑚𝑉 for each intervention, we found a 

large level of uncertainty in spTMS responses, suggesting that small MEP amplitude induced by 

spTMS should be avoided when assessing the level of brain excitability.  

 

Fig.7.8 Effects of spTMS intensity on PAS assessment. We used posterior predicting simulations applied 

to five levels of pre-PAS MEP amplitudes, to evaluate the impact of five levels spTMS intensities. Posterior 

distributions of the corresponding relative changes in post-PAS MEP amplitude relative to pre-PAS MEP 

amplitudes are presented in each row. The expected effects of PAS25 (positive % increase) and PAS10 

(negative % decrease) became clearer when increasing the spTMS intensity. On the other hand, when 

considering the sham intervention, we found no effect of relative changes in post-PAS MEP amplitude, 

exhibited at all intensity levels, as well as symmetric distributions around 0%.  

7.3.4 PAS effects on task-related HbO/HbR responses  
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Fig.7.9 showed the PAS effects on the whole time course HbO/HbR, as a contrast (i.e., subtraction 

of posterior distributions) between the intervention of interest (PAS25 or PAS10) and sham 

condition. When considering the group level averaged pre-PAS HbO/HbR responses (normalized 

to [-1, 1]) as input for posterior predictive simulations (dashed red and blue curves for HbO and 

HbR), we observed that PAS25 (Fig.7.9a) resulted in a relative increase of HbO amplitude (solid 

red curve) and HbR amplitude (solid blue curve), mainly around the expected peak of the 

hemodynamic response (from 8s to 16s). When comparing absolute peak amplitudes, the 

probability of increasing the hemodynamic response after PAS25 was 80% for HbO response and 

82% for HbR response. After PAS10 (Fig.7.9b), our results are suggesting at the group level a 

subtle relative decrease of HbO and HbR absolute amplitudes around the peak of the hemodynamic 

response. The probability of obtaining a relative decrease in absolute peak amplitudes after PAS10 

was 66% for HbO response and 48% for HbR response. Interestingly, PAS10 demonstrated a clear 

absolute amplitude decrease within a period ranging from the peak to the end of the response (11s 

to 25s) for both HbO and HbR.   

 

Fig.7.9 PAS effects on the whole time course of HbO/HbR. Posterior predictive simulations of post-PAS 

HbO/HbR time course (solid curves: HbO in red and HbR in blue) when considering pre-PAS HbO/HbR 

template input defined as the group-level averaged pre-PAS HbO/HbR response (normalized to [-1,1]) over 

all 40 Sessions (dash curves). The shadow area represents the 89% credibility interval of resulted post-

PAS HbO/HbR responses. Note that sham effects were subtracted from the PAS25 and PAS10 to obtain so-

called ‘unbiased’ effects. The overlappings of lines in the sham panel are shown as a sanity check of the 

contrast.    
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7.3.5 Relationship between PAS effects on task-related cortical hemodynamic activity and 

PAS effects on M1 excitability 

Fig.7.10a presents inferences on the relationship between PAS effects on task-related cortical 

hemodynamic activity and PAS effects on M1 excitability, represented by the posterior distribution 

of correlations between the slope of MEP amplitudes (post-PAS versus pre-PAS) and the slope of 

spline weight 𝑤5 (post-PAS versus pre-PAS) for either HbO or HbR task-related responses. Since 

our previous observations of the PAS effects were conducted for the whole HbO/HbR time course 

(Fig.7.9), we selected 𝑤5 as the spline weight of interest considering it corresponded to the spline 

basis function exhibiting a peak at 12.5s, therefore consisting in the closest temporal pattern when 

compared to the expected hemodynamic response. The probability of obtaining a positive 

correlation between PAS effects on MEP amplitude and PAS effects on HbO response was 77%; 

and 79% for a positive correlation between PAS effects on MEP amplitude and PAS effects on 

HbR response. The corresponding 89% highest posterior density interval (HPDI) of this correlation 

was [-0.26, 0.89] for HbO; and [-0.20, 0.84] for HbR. Fig.7.10b presents the linear fits between 

the averaged 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and the averaged 𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏(𝑤5)
 obtained for each Session 𝑠 among all 40 

Sessions. The corresponding estimated Pearson’s correlation was 0.58 for MEP vs. HbO (p< .0001, 

CI95% = [0.33, 0.75]) and 0.56 for MEP vs. HbR (p< .001, CI95% = [0.30, 0.74]).     
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Fig.7.10 The relationship between task-related cortical hemodynamic activity and M1 excitability. a) the 

posterior distribution of the correlation between 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃  and 𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏(𝑤5)
  for HbO (top) and HbR 

(bottom). The blue area represents the probability of observing a positive correlation (𝜌>0). The black dot 

represents the median of each posterior distribution, and the surrounding bars show the corresponding 

50% and 90% credibility intervals. b) Linear fit (blue line) between the averaged 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃  and the 

averaged 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝐻𝑏(𝑤5)

 obtained for all 40 sessions (each represented by a grey dot). The grey area 

indicates the 95% confidence interval of the regression. Estimated Pearson’s correlation between𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 

and 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝐻𝑏(𝑤5)

 over the 40 sessions together with corresponding p-values and 95% confident intervals 

are shown on top of each panel. The marginal histograms and fitted density functions are shown on the 

side of each corresponding marginal axis.    

Fig.7.11 illustrates the posterior distribution of the correlation between 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃  and  

𝑠𝑙𝑜𝑝𝑒[𝑠]
𝐻𝑏(𝑤𝑛)

, when considering each spline weight for 𝑛 = 2,3,4,5,6,7 𝑎𝑛𝑑 8 . The closer the 

corresponding peak of the spline basis function associated with the weight 𝑤𝑛 was to the expected 

peak of the HbO/HbR response, the higher the correlation between 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and 𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏(𝑤𝑛)
 

was. In further details, the median of these correlation values was respectively -0.05, 0.13, 0.28, 

0.31, 0.13, -0.10 and 0.01 when considering 𝑤𝑛= 2,3,4,5,6,7,8 for HbO; and a median value of 0.06, 

0.17, 0.31, 0.32, 0.15, -0.06 and 0.03 when considering 𝑤𝑛= 2,3,4,5,6,7,8  for HbR, therefore 

confirming this trend. Our results are suggesting that the expected positive correlation between 

PAS effects on task-related hemodynamic response and PAS effects on M1 excitability appeared 

mostly around the peak of HbO/HbR time course (e.g., 𝑤5 ), in agreement with PAS effects 

reported previously in Fig.7.9. On the other hand, for the earliest aspects of the hemodynamic 

response (modeled using 𝑤2,3) as well as for the end of the response (modeled using 𝑤7,8), we 

found a posterior correlation with a median close to zero, suggesting no relationship between 

𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and 𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏(𝑤𝑛)
 for the corresponding time periods.      
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Fig.7.11 Posterior distributions of the correlations between 𝒔𝒍𝒐𝒑𝒆[𝒔]
𝑴𝑬𝑷 and several selected 𝒔𝒍𝒐𝒑𝒆[𝒔]

𝑯𝒃(𝒘𝒏)
. 

The posterior distribution of the correlation between 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and  𝑠𝑙𝑜𝑝𝑒[𝑠]

𝐻𝑏(𝑤𝑛)
, when considering each 

spline weights for 𝑛 = 2,3,4,5,6,7 𝑎𝑛𝑑 8 for HbO (left) and for HbR (right).  The prior distribution of the 

correlation (i.e., LKJ(2)) on the first row demonstrates a perfect symmetric to the 0 correlation. There was 

a trend showing the closer the corresponding peak of the spline basis function associated with the weight 

𝑤𝑛 was to the expected peak of the HbO/HbR response, the higher the correlation between 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and 

𝑠𝑙𝑜𝑝𝑒[𝑠]
𝐻𝑏(𝑤𝑛)

 was. 𝑤5 showed the highest correlation values for both HbO and HbR as it corresponded to 

the spline basis function exhibiting the peak at 12.5s, therefore the closest temporal pattern when compared 

to the expected hemodynamic response.  In contrast, the earliest aspects of the hemodynamic response 

(modeled using 𝑤2,3 ) and the end of the response (modeled using  𝑤7,8 ), showed almost identical 

distributions when comparing to the prior.  

7.4. Discussion  

7.4.1 PAS effects on cortical excitability  

Using hierarchical Bayesian modeling, we first investigated PAS effects on cortical excitability, 

which was measured using MEP amplitude induced by spTMS. Probability distributions of the 

relative changes (in %) of post-PAS MEP amplitudes when compared to pre-PAS MEP amplitudes 

were estimated using posterior predictive simulations. Our results showed a substantial increase 

of MEP amplitude after PAS25, a subtle decrease after PAS10 and no changes after control (sham). 

These results are consistent with previous PAS studies (Stefan, 2000; Wolters et al., 2005b; Tsang, 
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Bailey and Nelson, 2015; Lee et al., 2017; Suppa et al., 2017). These studies considered 

conventional MEP analysis, calculating the ratio between the averaged MEP amplitude after PAS 

over the one before PAS. Therefore, when MEP ratio was larger than 1, it indicated an excitability 

increase and vice versa. In contrast, here we applied for the first time a full Bayesian workflow 

using an advanced sampling algorithm. The benefits of this procedure are: 1) multivariate linear 

regression allowed the differentiation of interventions and subjects, hence modeling the 

heterogeneity of intervention effects exhibited in different groups of data; 2) involving intercept 

in linear regression reduced the influences of low MEP amplitudes Runs when compared to the 

conventional ratio calculation of post- over pre-PAS MEPs; 3) the variability of MEP amplitudes 

were considered in the estimation of the PAS effects rather than only using the averaged 

amplitudes of each Run and ignore the variance; 4) parameters of the model were estimated by 

Bayesian inferences using dynamic HMC algorithm sampling posterior distributions using a 

hierarchical structure and weakly informed priors, therefore, allowing partial pooling to reduce the 

estimation uncertainty; 5) flexible and intuitive statistical inferences of the modeled PAS effects 

were obtained by conducting posterior predictive simulations from the model learned from the 

data. This means by giving any pre-PAS MEP amplitude and intervention index, the distribution 

of the corresponding group-level post-PAS MEP amplitude could be estimated; Finally, 6) the 

estimated PAS effects were reliable and informative, as suggested by their posterior probability 

distributions, rather than considering only a statistical significance test providing a binary output.   

Moreover, our model also allowed inferring the effects of MEP amplitude itself on the effect size 

of the resulted excitability changes modulated by PAS. In Fig.7.8, we reported a pattern suggesting 

that the higher the MEP amplitude was, the larger was the effect size of both PAS25 and PAS10. 

This pattern was not biased when comparing to the sham session, which showed no effects for 

different pre-PAS MEP amplitudes. It is important to mention that when considering posterior 

predictive simulation, the intensity of the TMS pulse during the intervention session (PAS25 or 

PAS10 or sham) did not change. This means the underlying intervention effects did not change. 

Then considering spTMS as the assessment procedure to measure brain excitability, our results are 

suggesting that a high enough spTMS intensity might help to measure more accurately PAS 

effects.  

7.4.2 PAS effects on the whole HbO/HbR time course of finger tapping responses 
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To our best knowledge, our study demonstrated for the first time PAS effects on the whole time 

course of task-related HbO/HbR time courses. In contrast, few time segments along selected time 

windows were considered in previous studies, then HbO or HbR amplitudes were just averaged 

within each time segment and compared before and after interventions (Chiang et al., 2007; 

Yamanaka et al., 2010). In our previous study (Chapter 6), we also simply averaged the HbO/HbR 

amplitude within a 5s long time window centred around the peak of the hemodynamic response to 

represent the total amount of hemoglobin delivered to the region of interest. The Bayesian 

approach proposed in this study brings more insights into the investigation of PAS effects on 

hemodynamics, considering not only the peak amplitude before and after interventions, but whole 

HbO/HbR time courses. For instance, visual inspections of results presented in Fig.7.9 are 

suggesting that PAS effects are indeed more pronounced around the peak of the expected 

hemodynamic response. This is expected if we can assume that the hemodynamic response 

function (HRF) is not much affected by interventions, then the expected task-related hemodynamic 

response would result from  a convolution with a higher or lower amplitude boxcar function 

representing excited or inhibited neuronal activity patterns (Sotero and Trujillo-Barreto, 2007). 

Therefore, the effect of intervention should appear mostly around the peak, and the closer to the 

peak the higher the effect size. Consequently, averaging HbO or HbR amplitude within a certain 

time window would ‘dilute’ the estimation of the effect of interest, especially when considering 

the effect size was not large, for instance around 25% increase for HbO after PAS25 is shown in 

Fig.7.9.  

The fact that PAS intervention effects could be observed mainly around the peak of hemodynamic 

time courses may also explain the difficulty of investigating similar questions using fMRI. Indeed, 

a typical BOLD signal is sampled around 0.5Hz using standard fMRI sequences. Such low 

temporal resolution may not be sufficient to sample well the effects around the peak and could 

possibly explain why no PAS effects were found on BOLD signal changes in the PAS and fMRI 

study reported by Kriváneková et al., 2013. Besides, depending on how well fMRI BOLD samples 

and the actual peak of the hemodynamic response are phased-locked, the mismatch between the 

time of BOLD signal sampling and the actual peak of the response may introduce some confounds, 

when comparing BOLD signal changes before and after PAS interventions. Another benefit of 

modeling accurately the whole HbO/HbR time course is the possibility to offer alternative 

interpretations of PAS effects. For instance, our results in Fig.7.9 showed a slight time shift for 
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HbO after PAS25 and a larger one after PAS10 (e.g., the peak time of HbO shifted from 12s to 

10s after PAS10). The decrease of HbO amplitudes after PAS10 was also mainly exhibited from 

11s to 25s of the response time course. These observations may suggest a more complex 

mechanism of the effect of neuronal plasticity on neurovascular coupling. Further analysis using 

the deconvolution technique (Machado et al., 2021) to estimate HRFs that are related to these 

hemodynamic responses may help us to better investigate such a potential mechanism but it is 

beyond the scope of this study.   

It is important to mention that we did not perform a specific analysis for every time sample of the 

hemodynamic response. We regularized and reduced the dimensionality of the problem by 

projecting HbO/HbR responses on B-splines as temporal basis functions. Therefore, PAS effects 

on hemodynamic were modeled by only 10 weights instead of 60 data points, whereas the actual 

post-PAS HbO/HbR time courses could then be fully retrieved from the estimated weights and the 

spline basis functions. The choice of the number and locations of knots might have limited the 

‘resolution’ of our proposed correlation analysis. There are more advanced Bayesian spline 

approaches, such as the penalized spline (P-spline) (Eilers and Marx, 2010; Ventrucci and Rue, 

2016), which introduces an extra prior to regularize the number of effective knots. This approach 

was mainly designed to smooth a time course and prevent overfitting rather than considering an 

accurate representation of the time course. Non-parametric time series modeling techniques were 

also proposed in this context, without assuming the location of the knots along the time course. 

For instance, Gaussian process regression (Neal, 1998) characterizes the time course, such as the 

hemodynamic response, as an unknown function. Samples of the time course are then drawn from 

a multinormal distribution providing a full covariance matrix of all time samples. Our analysis 

could benefit from these non-parametric approaches to avoid eventual limitations associated with 

the choice of the knots, but this was beyond the scope of this study.  

It is also worth noting that these results of PAS effects on the whole HbO/HbR time courses were 

also benefiting from accurate time courses estimated by our previously proposed fNIRS 

reconstruction workflow (Chapter 5). In this workflow, the fNIRS acquisition montage was 

personalized and the detection sensitivity of it was maximized to the individual ROI. Meanwhile, 

the MEM framework adapted from our previous works in the context of electro-/magneto-

encephalogram source imaging (Chowdhury et al., 2013, 2016; Grova et al., 2016; Heers et al., 

2016; Hedrich et al., 2017; Pellegrino et al., 2020) for conducting fNIRS reconstruction (Cai et 
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al., 2021) also ensured accurate estimation of HbO/HbR time courses from reconstructed 

spatiotemporal maps. For instance, delays between HbO and HbR peak times were around 1s 

shown in Fig.7.9, which is consistent with our previous finding (Chapter 5) and fNIRS literature 

(Jasdzewski et al., 2003; Steinbrink et al., 2006).  

7.4.3 Relationship between PAS effects on task-related hemodynamic and PAS effects on M1 

excitability 

We also investigated for the first time the relationship between PAS effects on task-related 

hemodynamic activity and PAS effects on cortical excitability along the whole HbO/HbR time 

course. When compared to standard frequentist analysis of the correlation between 𝑠𝑙𝑜𝑝𝑒[𝑠]
𝑀𝐸𝑃 and 

𝑠𝑙𝑜𝑝𝑒[𝑠]
𝐻𝑏(𝑤𝑛)

 reported in Fig.7.10b, our proposed Bayesian analysis was more informative since 

we could estimate the whole posterior distribution of such a correlation, instead of providing a 

single correlation value estimated from the mean effects while ignoring the variance. Even if the 

sample size was not large and we acknowledge the influences from large variability of PAS effects 

and variability of task-evoked hemodynamic responses, our proposed hierarchical Bayesian 

models were able to demonstrate a high probability of positive correlations between MEP and 

hemodynamic slopes (representing the PAS effects), around the peak of HbO and HbR responses. 

This finding is consistent with previous results reported in animal studies, suggesting a positive 

correlation between hemodynamic responses and cortical excitability. For instance, Allen et al., 

2007 demonstrated decreased oxygenations in anesthetized cat’s visual cortex after applying 

inhibitory rTMS; increased fMRI resting-state connectivity, GABA, glutamine and glutamate 

levels after performing excitatory rTMS. Reduced connectivity and glutamine levels after applying 

inhibitory rTMS on healthy rat’s right hemisphere were reported by Seewoo et al., 2019. The 

reliability of our proposed model was further confirmed by the fact that no correlation was found 

between PAS effects on MEP and hemodynamic responses, when considering other time windows, 

such as the initial aspects and the end of the hemodynamic response. The further the analyzed time 

period was to the expected hemodynamic peak, the closer to the prior was to the posterior 

distribution of the correlation, with no preference on either positive or negative correlations.  

7.4.4 HMC sampling and diagnostic 

Taking advantage of dynamic HMC to sample the hierarchical Bayesian models in this study, we 

were able to carefully diagnose the pathological behaviour of MCMC sampling chains 
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(Betancourt, 2017, 2019). This diagnostic procedure is an essential step when applying Bayesian 

data analysis (Gelman et al., 2020). To allow accurate and reliable inferences, MCMC chains must 

explore well the typical set of the posterior distributions, in which most of the probability density 

is contained. For instance, the convergence of MCMC chains needs to be confirmed and quantified 

to ensure such full explorations. When inappropriate parameters of the chain are chosen (e.g., the 

step size), abnormalities such as divergences should be detected to avoid eventual sampling biases. 

In our study, we reported several diagnostic statistics for all key components of three models using 

both visualization and quantified metrics, following the recommendations of the Stan team 

(Gelman et al., 2013b; Gabry et al., 2019; Stan Development Team, 2020b). The proposed 

diagnostic statistics considered here also constitute a unique feature of HMC sampling, when 

compared to conventional MCMC algorithms such as Gibbs sampling (Geman and Geman, 1984; 

Gelfand and Smith, 1990). HMC is also considered to be more accurate by taking advantage of 

sampling all parameters at the same time, comparing to Gibbs that often samples parameters 

alternatively one after the other which may bias the resulted posterior distribution due to the 

inherent correlations between parameters. Overall, the diagnostic analysis of the sampling process 

in this study is suggesting that our inferences are built upon well-sampled posterior distributions, 

reasonably accurate and unbiased. Similar HMC sampling and diagnostic approaches were also 

reported in several recent studies, such as a Bayesian virtual epileptic patient to model the spread 

of epileptic activity (Hashemi et al., 2020); a Bayesian latent spatial model for mapping 

biomarkers of the progression of Alzheimer’s disease (Dai et al., 2021);  the Bayesian multilevel 

modeling to improve statistical inferences in fMRI analysis (Chen, Bürkner, et al., 2019; Chen, 

Xiao, et al., 2019; Chen et al., 2021) and a hierarchical Bayesian model to investigate mechanisms 

of reinforcement learning and decision-making (Ahn, Haines and Zhang, 2017). 

7.4.5 Limitations and perspectives  

While the Bayesian approach is known to improve the uncertainty of statistical inferences when 

dealing with small samples data set, as illustrated by our results, there is no doubt that this study 

would benefit from a larger sampling size. Conventional frequentist power analyses (Bhalerao and 

Kadam, 2010) could estimate the minimum number of samples required to obtain a significant 

effect for a statistical power such as 80%. When considering the standard deviation of MEP 

amplitudes and fMRI BOLD signals reported in PAS (López-Alonso et al., 2014) and in fMRI 

literature (Kriváneková et al., 2013), we estimated that when assuming random sampling, at least 
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50 subjects would be required for MEP analysis and more than 100 subjects would be required for 

hemodynamic analysis using fMRI BOLD. Despite the inherent limitation of power analysis which 

may underestimate the sample size (Gelman and Carlin, 2014), in practice, it is challenging to 

conduct acquisitions with this amount of subjects especially considering all three different 

interventions.   

We only involved one model for each investigation in this study. It is indeed recommended to 

construct multiple models based on different hypotheses of the same question and then 

quantitatively compare these models using techniques such as cross-validation to choose the most 

reliable one,  providing a trade-off between overfitting and underfitting (Gelman et al., 2020). For 

instance, we proposed a linear relationship between cortical excitability and hemodynamic 

responses evoked by a finger-tapping task. However, such association might reach a plateau when 

excitability changes are either too low or too high, suggesting some non-linear models. Moreover, 

the neurovascular system includes different aspects like excitatory and inhibitory neurons, glial 

cells, the vasculature components like pericytes (Populations, 2017). The interaction between 

inhibitory and excitatory neurons, the glial cell mediated signalling pathways, and their role in 

neurovascular coupling have been simplified in this linear model. A more detailed metabolism 

model involving blood flow dynamics (Buxton, 2021) may improve our inferences by comparing 

it with the model proposed in this study. Considering such advanced model comparisons, applied 

within a Bayesian framework, could be of great interest but was out of the scope of this study. 

Moreover, we conducted TMS following the recommendations of the International Federation of 

Clinical Neurophysiology (Rossi et al., 2009), which means our data set should not explore 

extreme conditions between excitability and hemodynamic response, which are more likely to 

exhibit eventual nonlinear relationships.  

Another limitation of our study was that the M1 excitability was not assessed at the same time as 

the finger-tapping task, but sequentially, hence we did not propose a fusion model to pool the 

relationship between cortical excitability and hemodynamic responses at the single-trial level. We 

indeed considered the mean and variance of MEP amplitudes and HbO/HbR time courses within 

the whole Session as the input for the correlation analysis. This might reduce the resulted 

correlation values considering additional fluctuations of the baseline excitability and 

hemodynamic responses. However, since it has been shown that PAS modulated excitability 

changes could last for more than 30 minutes (Stefan, 2000; Lee et al., 2017), we are confident that 
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our investigation of cortical excitability using MEP after spTMS and hemodynamic response 

elicited by finger tapping was indeed still within this PAS effective duration window.  

As perspectives for this study, it would be of great interest to investigate the relationship between 

spTMS evoked HbO/HbR and the corresponding MEP amplitude, when occurring exactly at the 

same time, therefore, preventing confounds introduced by fluctuations of excitability and 

hemodynamic responses along the time. Such an investigation may help us in understanding the 

integrity of neurovascular coupling during the transit cortical excitability change induced by 

spTMS. Furthermore, the effect of stable cortical excitability changes (induced by PAS) on this 

integrity can be explored by comparing the spTMS evoked hemodynamic responses before and 

after PAS interventions. Additionally, since fNIRS data were recorded during the whole 

experiments (i.e., also during spTMS and PAS intervention), our data would allow assessing 

dynamically the evolution of MEP and hemodynamic responses during PAS. However, such 

analysis would require modeling fNIRS response using advanced deconvolution techniques to 

handle the overlapping of TMS pulses induced hemodynamic responses (Machado et al., 2021), 

and will be considered in our future investigations. 

7.5 Conclusion 

In this study, we proposed for the first time hierarchical Bayesian modeling to investigate the 

relationship between motor task-related hemodynamic responses and M1 excitability. When 

compared with sham control condition, a substantial M1 excitability increase was found after 

PAS25 and a subtle reduction of M1 excitability was found after PAS10. PAS effects on motor 

task-related hemodynamic responses were observed mainly around the peak of HbO/HbR time 

courses. We showed a large probability of positive correlations between PAS effects on MEP 

amplitudes and hemodynamic responses. Such correlations were also mainly exhibited around the 

peak of HbO/HbR time courses. Diagnostics of sampling MCMC chains showed no pathological 

behaviour, ensuring the reliability of our results. Finally, this study also demonstrated the power 

of the Bayesian data analysis when dealing with relatively high variability and small sample size 

data while providing informative inferences.  

7.6 Supplementary material 
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Fig.7.S1 PAS effects on M1 excitability at the individual level. Each column presents the individual level 

posterior distribution of the intervention effect from PAS10, sham and PAS25, respectively. Posterior 

predictive simulations of post-PAS MEP amplitudes were conducted by assuming the same pre-PAS MEP 

amplitude for all subjects, i.e., the averaged pre-PAS MEP amplitude obtained for all subjects over all 40 

Sessions. The blue area represents the probability of obtaining a relative increase (in%) for the post-PAS 

MEP amplitude when compared to the pre-PAS MEP amplitude, whereas the pink area represents the 

probability of obtaining a relative decrease (in %). The black dot represents the median of each posterior 

distribution, and the surrounding bars show the corresponding 50% and 90% credibility intervals. Overall, 

large between-subject variability can be observed for both interventions. Note that missing Sessions were 

also included using posterior predictive simulations within the model, based on prior distributions and 

partial pooled information from other Sessions.    
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Chapter 8 

General Discussion 

8.1 Summary of main contributions and limitations 

The main objective of this thesis was to develop and evaluate a “personalized Near Infra-Red 

Optical Tomography (NIROT) workflow” and to apply it to investigate the cortical hemodynamic 

activity associated with cortical excitability modulated by Paired Associative Stimulation (PAS). 

This thesis involves both methodological developments and their applications. The following 

sections will discuss the contributions and limitations of each study reported in this thesis.  

8.1.1 Development and evaluation of MEM framework for NIROT 

In Chapter 4, the Maximum Entropy on the Mean (MEM) framework, previously proposed in the 

context of EEG/MEG source localization (Amblard, Lapalme and Lina, 2004; Grova, Daunizeau, 

et al., 2006; Chowdhury et al., 2013), was adapted and improved for conducting NIROT (Cai et 

al., 2021, submitted). We also applied a generalized implementation of depth weighting from 

EEG/MEG field to NIROT. For the first time, we successfully integrated depth-weighting into the 

MEM framework and showed the ability of this new MEM approach to reconstruct hemodynamic 

generators with different depths of the underlying generators. Moreover, we comprehensively 

investigated the role of depth weighting in NIROT using different parameter values for both MEM 

and the widely used reconstruction method - Minimum Norm Estimate (MNE). We pointed out 

that depth weighting could indeed control the effective field of view of NIROT. Regarding 

temporal accuracy, we showed that even if MEM is a nonlinear method not optimized for accurate 

estimation of the time courses of the generators, our proposed new MEM initialization in Chapter 

4, provided similar temporal accuracy when compared to MNE linear method. This result was very 

important, especially in our subsequent studies investigating the time delay between HbO and HbR 

finger tapping responses, and even more when investigating changes in hemodynamic time courses 

elicited by excitability modulation using TMS. Regarding robustness and reliability of MEM 

reconstruction, we emphasized the importance of evaluating the method with realistic simulations, 

especially when in the context of source reconstruction techniques, ground truth is lacking. We 
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conducted 4,000 simulations with different depths and sizes. Based on our simulation results, we 

are confident that our proposed MEM method for NIROT is exhibiting better source reconstruction 

performance, when compared to widely used MNE, especially when dealing with low signal to 

noise ratio (SNR) signals. However, we would like to disclose several limitations in this first study. 

First, even when considering realistic simulations, simulations can only represent a simplified 

version of the underlying problem. Therefore, simulation studies are necessary, but could not be 

sufficient to evaluate our methodology for real fNIRS data applications. Hence a follow-up study 

was to further validate our proposed method on real data acquired under a well-controlled 

paradigm. This overall strategic approach of validating a reconstruction method using simulated 

data first, followed by applying it to real data is recommended for the evaluation of source imaging 

in similar fields (Kavuri et al., 2012; Shimokawa et al., 2012, 2013a; Chowdhury et al., 2013, 

2016; Tremblay et al., 2018; Pellegrino et al., 2020). Second, several fNIRS reconstruction studies 

(Yamashita et al., 2016b; Wheelock, Culver and Eggebrecht, 2019) also considered mixed linear 

models to disentangle brain fNIRS responses from extra-cerebral superficial layers signals (skin 

and muscle layers). Such an approach is promising to integrate denoising processes with the 

reconstruction procedure which may further improve its accuracy. In this first study, we only 

considered short channel regression to remove the superficial layer's noise, whereas more 

advanced approaches could be considered in our future studies. Finally, as reviewed in Chapter 1, 

there are many other reconstruction methods proposed for NIROT in the literature, including 

several linear methods using different regularization approaches such as the ℓ1 − norm (Matsuura 

and Okabe, 1995; Lu, Lighter and Styles, 2018) and the ℓ0 − norm (Mohimani, Babaie-Zadeh 

and Jutten, 2009; Prakash et al., 2014) extensions of MNE,  as well as non-linear methods such as 

a hierarchical Bayesian approach (Shimokawa et al., 2013a; Yamashita et al., 2016b). It would be 

of great interest to compare MEM with these methods, but this was out of the scope of our proposed 

study.  

8.1.2 Evaluation and application of the personalized NIROT workflow using MEM 

For the second evaluation step, when assessing new reconstruction methodology by applying it to 

real data, it is recommended to consider relatively well-controlled tasks for which we have some 

good knowledge on underlying brain activity, such as finger tapping (Yamashita et al., 2016b), 

visual tasks (Zeff et al., 2007; Eggebrecht et al., 2012) and median nerve stimulations (Huppert et 
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al., 2017). The rationale is that the underlying cortical activations associated with these well-

controlled tasks are well known, and a ‘ground truth’ can then be obtained by applying the same 

task with other neuroimaging techniques, for instance using fMRI investigations. In Chapter 5, we 

extended our previous work on MEM NIROT reconstruction to further evaluate our method 

using well-controlled finger tapping data acquired using fNIRS. For the first time, we also 

integrated several methodologies developed in the lab to propose a workflow entitled personalized 

NIROT using MEM, combining personalized fNIRS sensor layout to maximize light sensitivity 

to targeted brain regions and accurate local NIROT using MEM. In this second study, 

considering fMRI Z-maps as our reference for evaluation, reconstruction performances were 

quantitatively evaluated using well-defined validation metrics proposed in our previous studies  

(Chowdhury et al., 2013; Hedrich et al., 2017). Doing so, we introduced a carefully designed 

approach to extract true positive and true negative regions from fMRI activation maps, considering 

the known within-subject variability of the main fMRI activation cluster (Zandbelt et al., 2008; 

Quiton et al., 2014), exploiting fMRI inference at the group level to more accurately defined the 

true positive region at the individual level. Furthermore, to compare reconstruction performances 

between MEM and MNE, we adapted to this approach, the Area Under the Receiver Operating 

Characteristic Curve (AUC) calculation, previously introduced for EEG/MEG source imaging 

(Grova, Daunizeau, et al., 2006; Chowdhury et al., 2013). These adaptations in our way to define 

fMRI reference at the individual level were not considered in previous literature (Yamashita et al., 

2016b), in which only significant regions from individual-level fMRI maps were used as the 

ground truth. Our results showed that MEM provided more accurate reconstructed spatial maps 

than MNE, when compared to fMRI reference. Improved spatial accuracy of MEM when 

compared to MNE was then further confirmed, considering the whole HbO/HbR reconstructed 

time courses, rather than assessing hemodynamic responses only at the peak of corresponding time 

courses. Furthermore, we revealed that even when reconstructed maps were additionally spatially 

thresholded to force them to be focal, MEM still outperformed MNE. Regarding temporal accuracy 

of reconstructed time courses, MEM provided a similar temporal accuracy to MNE.  

Importantly, we demonstrated the ability of both MEM and MNE to recover the peak time delay 

between the reconstrued time courses of HbO and HbR, in agreement with the literature 

(Jasdzewski et al., 2003; Steinbrink et al., 2006). Additionally, we further demonstrated that MEM 
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provided reliable reconstructions quantitatively assessed with validation metrics (e.g., AUC, SD 

and Dmin), whereas discriminability of those metrics over bootstrap resampled task-evoked 

hemodynamic responses was considered to assess the reliability  (M. Yu et al., 2018; Wang et al., 

2020). The reliability evaluation result is important to support our initial hypothesis that this 

personalized NIROT workflow was indeed designed to improve the reliability of fNIRS technique 

when measuring the human brain hemodynamics, from acquisition planning to local 3D 

reconstruction. Firstly, subject-specific anatomical MRI (e.g., 1mm isotropic T1- and T2-weighted 

images) was used to promote accurate head modeling. To further improve the reliability of head 

modeling, we considered both T1- and T2-weighted images to ensure accurate tissue segmentation, 

whereas most published studies in either EEG/MEG or fNIRS source imaging typically consider 

only T1-weighted MRI for this task. Secondly, Novi et al., (2020) suggested that taking into 

account spatial information of fNIRS montage improves fNIRS reproducibility. We used a 

neuronavigation system to guide the installation and digitization of fNIRS sensors and also to add 

around 150 extra head points in order to further improve the accuracy of the co-registration 

procedure. It is worth noting that most fNIRS studies use standard head caps which are not specific 

to each subject’s head anatomy, and fNIRS detection sensitivity is not optimized based on the 

underlying anatomy of each individual. The installation of caps is usually based on few head 

fiducials, and the locations of optodes are also rarely digitized. Hence, errors associated with cap 

installation and co-registration will result in less reliability of fNIRS measurements and 

localization results. Thirdly, we applied a long jittering between task events as suggested by Aarabi, 

Osharina and Wallois, 2017, in order to minimize the systemic blood circulation introduced 

“physiological noise”, which shares a similar frequency range with the expected hemodynamic 

fluctuations. Although we thoroughly investigated the reliability using within-subject variability 

estimated from a resampling technique, we also acknowledge that it would be preferable to conduct 

this evaluation with a well-designed test-retest reliability study. Additionally, since fMRI and 

fNIRS acquisitions were not performed simultaneously, between-scan task performance variability 

including the influence of processes like attention or arousal (Novi et al., 2020), might also cause 

some potential differences between NIROT and fMRI images.  

8.1.3 Application of personalized NIROT workflow on a simultaneous PAS/fNIRS study 
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In Chapter 6, we applied the personalized NIROT using MEM workflow to investigate 

hemodynamic correlates of fluctuations in neuronal excitability. This work pushed the challenge 

on our workflow to a new level, since the goal was to find the hemodynamic activity changes 

before and after the brain stimulation modulated cortical excitability, rather than only simply 

quantifying the response to the task.  Therefore, our objective requires the whole workflow to be 

highly sensitive to small fluctuations of hemodynamic signals that are related to neuronal 

excitability changes, and in the meantime to be substantially accurate and reliable to report less 

false-positive localizations. The contributions of this work can then be discussed from two 

perspectives. Firstly, from a scientific perspective, our study was, to the best of our knowledge, 

the first one investigating the relationship between cortical excitability and hemodynamic activity 

using simultaneous PAS-fNIRS in humans. We achieved two main results: 1) fluctuations of 

cortical excitability were positively correlated with fluctuations of hemodynamic responses to the 

finger-tapping task when pooling results from all interventions; 2) there was also a linear 

relationship between the effects of PAS on excitability and hemodynamic activity when 

considering sessions exhibiting concordant PAS effects on MEP, HbO and HbR. This study further 

confirms the feasibility of simultaneous fNIRS and PAS to investigate the relationship between 

cortical excitability and hemodynamic processes. Moreover, the fact that we demonstrated PAS 

effects were impacting hemodynamic activity within the same region, is relevant for the 

application of non-invasive brain stimulation techniques for the treatment of neuropsychiatric 

disorders. This means that PAS may be applied to therapeutic approaches in which modulation of 

hemodynamic response is required. Finally, the tight link between excitability and hemodynamic 

activity may suggest that the effect on hemodynamics might also be monitored via the standard 

spTMS technique. Secondly, from a methodological perspective, the findings reported in this 

study are illustrating the ability of our workflow in detecting small hemodynamic fluctuations after 

excitability modulations. Although it is difficult to compare our findings with a similar study 

conducted using fMRI (Kriváneková et al., 2013), we actually showed the expected trend of 

hemodynamic activity after the intervention, whereas in their fMRI study, Kriváneková et al., 

(2013) showed unpredictable BOLD fluctuations following PAS interventions. It is also worth 

noting that we proposed here for the first time a resampling technique allowing us to extract 

reliable and robust HbO/HbR estimations from fNIRS reconstructions. Especially, this strategy 

was suitable to consider the variability of these underlying hemodynamic responses, instead of 
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using only one averaged response among all trials. Our proposed methodology using bootstrap 

resampling can be further applied to other general fNIRS applications to improve the reliability of 

fNIRS results. However, some limitations remained for this study. Firstly, we only focused on 

finger tapping responses before/after intervention and not to fNIRS responses elicited by spTMS. 

Since the finger tapping was not performed at the same time as spTMS, this may bring some 

variability into the correlation analysis due to background fluctuations of the excitability and 

hemodynamic responses themselves. Secondly, this study was small sample-sized (n=16), and this 

might have ended up reducing the statistical power. Based on the conventional power analysis 

(Bhalerao and Kadam, 2010) considering the variances of MEP and fMRI BOLD signal reported 

in PAS literature (López-Alonso et al., 2014) and fMRI study (Kriváneková et al., 2013), at least 

50 subjects would be required to expect significant (p<.05, power of 80%) group-level inferences 

on PAS effect measured by MEP ratios, and at least few hundreds of subjects would be necessary 

for an expected significant fMRI BOLD changes after the PAS intervention. Despite the validity 

of power analysis that has been questioned in the statistical field (Gelman and Carlin, 2014), 

conducting our experiment with the sample size estimated by the above power analysis would have 

been practically quite challenging, given the complexity of the paradigms. Thirdly, MEPs have 

been commonly used to assess cortical excitability, but it is not a direct measurement as it also 

involves confounds like spinal cord excitability (Suppa et al., 2017). Although it is still under 

debate, more direct measurements such as scalp EEG response at the time of spTMS might be a 

better candidate for assessing TMS-induced cortical activity (Kimiskidis, 2016; Tremblay et al., 

2019). Finally, although we performed a resampling technique to extract more reliable MEP and 

HbO/HbR measures, the variance of them was not directly involved in the analysis but only the 

final arithmetic mean. 

8.1.4 Application of probabilistic modeling (Bayesian data analysis) to investigate the 

correlation between task-related hemodynamic responses and neuronal excitability.  

In the previous study, we reported the expected trend of correlation between task-related 

hemodynamic responses and cortical excitability. However, we acknowledge that variabilities on 

both fNIRS measured task response and MEP representing PAS effects were not directly 

involved in data analysis. Variability is often discussed in the literature but rarely directly involved 

in the analysis. Therefore, we revisited data analysis from the previous study, this time considering 
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the inter-/intra-subject variability on both brain stimulation-induced cortical excitability and task-

related hemodynamic responses. We proposed hierarchical Bayesian models to investigate: 1) PAS 

effects on M1 excitability; 2) PAS effects on the whole-time course of task-related hemodynamic 

responses, and 3) the correlation between them. The rationale to apply hierarchical models was 

that the so-called “involvement of variability in the analysis” is all about modeling the 

heterogeneity of the variables of interest (e.g., MEP, HbO/HbR) exhibited at each stage of analysis 

and each nest of data. Hierarchical models are known to be good candidates to encode inter-/intra-

subject heterogeneity. However, constructing an appropriate model does not guarantee accurate 

estimations and the implementation of hierarchical models is rather complicated. It is known in 

the statistics field, but not so well recognized in the neuroimaging field yet, that hierarchical model 

may intrinsically cause model identifiability issues (term used in frequentist statistics) or 

degeneracy issues (term used in Bayesian statistics), which require a more sophisticated model 

solver, otherwise, the final estimation might be biased (Papaspiliopoulos, Roberts and Sköld, 

2007). More importantly, the model solver has to provide sufficient diagnostic statistics to validate 

the reliability of estimation results, especially considering the fact that hierarchical models usually 

introduce hyperparameters which results in a complex geometry of the parameter space that is 

difficult to fully explore without special care. Fortunately, the dynamic HMC (Betancourt, 2017) 

implemented in Stan (Stan Development Team, 2020b) fulfills the above strict but essential 

requirements. Hence, we applied this technique to solve the models proposed in Chapter 7. 

Bayesian data analysis has been used in the neuroimaging field, but the methodologies proposed 

in most of the literature were mainly based on the previous generation Bayesian techniques, 

therefore suffering from criticisms regarding accuracy, validity, reliability, and computation cost 

(see Chapter 3). We introduced and applied here, for the first time, the latest developments of 

Bayesian data analysis workflow in the field of fNIRS. To our best knowledge, even when 

considering the whole neuroimaging field, only a few recent studies have considered similar 

techniques (Ahn, Haines and Zhang, 2017; Chen, Bürkner, et al., 2019; Chen, Xiao, et al., 2019; 

Hashemi et al., 2020; Chen et al., 2021; Dai et al., 2021). Taking advantage of this approach, we 

found correlations of PAS effects on excitability and hemodynamic activity without requiring to 

constrain the data for concordance of PAS effects on MEP, HbO, and HbR as was the case in our 

first analysis proposed in Chapter 6. This last complementary study is therefore supports and 

extends our findings and interpretations. We also demonstrated PAS effects on the whole 
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HbO/HbR time-courses of task-related hemodynamic. As expected, PAS effects on task-related 

HbO/HbR changes before and after interventions mainly occurred around the peak amplitude, 

which was consistent with the correlation findings showing the relationship between hemodynamic 

activity and cortical excitability only exhibited around the peak amplitude of HbO/HbR. Finally, 

we also showed that PAS effects on cortical excitability can be more pronounced when assessing 

excitability with higher intensity for spTMS, without changing the stimulation intensity of the 

intervention per se. In terms of limitations, we only involved one model for each investigation in 

this study. It is usually recommended to conduct multiple models and then quantitatively compare 

them using techniques such as cross-validation to choose the most reliable model that achieves an 

appropriate trade-off between overfitting and underfitting (Vehtari, Gelman and Gabry, 2017). 

Similar to the limitations reported in Chapter 6, we only focused on finger tapping responses in 

fNIRS, which were not performed at the same time as spTMS. This may bring potential confounds 

to the correlation analysis, and may explain the reason why the correlation values we found were 

overall not very high.  

8.2 Future directions 

8.2.1 Upgrading NIROT workflow using a hybrid montage containing both locally optimized 

montage and global fNIRS measurements 

Literature has shown that fNIRS signal contains not only cortical hemodynamic signals but also 

components from systemic physiological fluctuations (Scholkmann, Kleiser, et al., 2014; 

Tachtsidis and Scholkmann, 2016). Although short channel regression could reduce the influence 

of such physiological noise exhibited on scalp measurements (Zeff et al., 2007; Gregg et al., 2010), 

the resulting fNIRS signals remain uncleaned. Studies using global averaged fNIRS signal 

(Haeussinger et al., 2014) or applying a principal component spatial filter algorithm (Zhang, Noah 

and Hirsch, 2016; Zhang et al., 2017) have shown the ability to further remove remaining 

physiological noise exhibited in the brain. We hypothesize that combining these two measures 

(short channel and global averaged fNIRS signal) will provide more accurate cortical 

hemodynamic response estimations. Therefore, inspired by our pilot work on simultaneous high-

density EEG/fNIRS, in which we installed a 256-channel high-density EEG cap on top of an 

optimal montage (see Fig8.1a and b), we propose a new approach that would combine standard 

fNIRS cap/patch on top of a glued personalized optimal montage (see Fig8.1c and d). This 
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hybrid montage should take advantage of personalized optimal montage to prioritize the fNIRS 

sensitivity to the targeting ROI, as well as sampling sufficient hemodynamic fluctuations from 

other head regions, providing a more accurate estimate of global systemic fluctuations in the brain 

and superficial layers. Eventually, this hybrid montage would sample systemic physiological 

fluctuations using: 1) local short-distance channels from personalized optimal montage; 2) global 

short distance channels distributed along the standard fNIRS cap; 3) global conventional distance 

(3cm) channels distributed along the standard fNIRS cap. Whereas a whole head fNIRS cap would 

also measure the above three components, this hybrid montage should preserve the advantage of 

optimal montage to maximize the probing ability for specific ROIs. In practice, additional extra 

acquisition preparation time would just take about 10 to 20 minutes for additional standard 

cap/patch installation. Additionally, the noise components estimated from this hybrid montage can 

be used as nuisance regressors within a GLM framework (von Lühmann, Li, et al., 2020; von 

Lühmann, Ortega-Martinez, et al., 2020) or treated as instrumental variables to regularize the 

hidden noise model in a more advanced Bayesian framework (see the next subsection). Finally, it 

is also of great interest to apply personalized NIROT workflow using currently available wearable 

high-density fNIRS devices (Zhao et al., 2021), such as the LUMO fNIRS neuroimaging 

ecosystem (https://www.gowerlabs.co.uk/lumo) in which fNIRS layout can be customized to the 

individual subject and a high-density montage can improve the fNIRS reconstruction accuracy 

(White, 2010).  

https://www.gowerlabs.co.uk/lumo
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Fig.8.1 Demonstration of a possible hybrid montage. a) personalized optimal fNIRS montage targeting 

the right visual cortex. b) a 256 channels high-density EEG cap covered on top of fNIRS montage for a 

pilot concurrent EEG/fNIRS study. c) the personalized optimal fNIRS montage targeting the left and the 

right auditory cortex, combining local short-distance channels for sampling the physiological noise 

exhibited in the scalp and optimized channels probing the ROI, d) example of a standard fNIRS cap/patch 

applied on top of a personalized optimal montage to measure the global physiological noise exhibited in 

both scalp and cortex.  

8.2.2 Assessment of the integrity of neurovascular coupling at the time of transient discharges 

evoked by TMS under the stable cortical excitability changes modulated by PAS 

This perspective will extend the work presented in Chapter 6 and Chapter 7 by further investigating 

the correlation between MEP and spTMS induced fNIRS fluctuations, instead of finger tapping 

response. This investigation will benefit from the fact that the spTMS and hemodynamic 

measurement are time-locked, so that the variability of baseline excitability fluctuation on the 

correlation analysis would then be experimentally controlled. However, this approach will bring 

other methodological challenges, since the spTMS session should be considered as an event-

related design with temporally overlapped hemodynamic responses. This requires a deconvolution 

method (Machado et al., 2021) to estimate the Hemodynamic Response Function (HRF) from the 
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fNIRS data acquired during spTMS. Considering the goal is to investigate not only the HRF of 

spTMS but also the integrity of neurovascular coupling during each single TMS pulse, the 

analyzing methodology should also be able to “decode” the amplitude of each neuronal stimuli 

during the stimulation event from the fNIRS signal alone. Such analysis would give us a unique 

opportunity to investigate how changes in cortical excitability are learned during PAS intervention 

per se.  Eventually, the decoded stimulus amplitudes from the fNIRS signal alone (representing 

the neuronal activity estimated from fNIRS alone by assuming the convolution model) will be 

compared with the MEP amplitudes (representing the transient neuronal response to each spTMS). 

If these two sequences of amplitude are correlated, it will indicate the integrity of the neurovascular 

coupling at the time of transient discharges evoked by spTMS. Such a promising investigation 

would shed light on underlying mechanisms linking TMS and hemodynamic responses associated 

either to neuronal activity or to local changes in HbO/HbR concentrations elicited by contracting 

vessels at the time of TMS pulses. One concurrent fMRI/TMS study showed expected BOLD 

signal fluctuations varying along with different stimulation intensities (Navarro de Lara et al., 

2017), but a recent similar study claimed no BOLD signal changes during TMS (Rafiei et al., 

2021). A well-designed fNIRS/TMS study argued that the TMS “evoked” hemodynamic responses 

reported previously in fNIRS studies may be largely biased by the contribution of vessel 

contractions, when considering that similar TMS induced fNIRS responses were found on the 

shoulder and on the head (Näsi et al., 2011).  Our proposed methodology could provide a unique 

way to investigate this challenging problem. If the two sequences of amplitude are correlated, we 

could prove that TMS indeed evokes a hemodynamic response. This considers the fact that the 

intensity of spTMS used in our experimental protocol is constant (same “dose” for each spTMS), 

but the neuronal response (indirectly represented by MEP) to spTMS is varying due to the 

background fluctuations of cortical plasticity. If TMS only changes HbO/HbR concentrations by 

vessel contraction, the decoded stimuli amplitude from fNIRS data alone should be consistent, 

assuming no plasticity associated with TMS-induced vessel contraction per se.  

This model can also be applied to the fNIRS/PAS data to further investigate two questions. First, 

studying fNIRS fluctuations during spTMS before and after PAS is actually investigating the 

hemodynamic responses evoked by transit excitability changes (by spTMS) on top of stable 

excitability changes (by PAS). This study reproduces a “healthy model of an epileptic condition”. 
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Patients with focal epilepsy show transit excitability increases, in the form of transient epileptiform 

discharges and seizures (Badawy et al., 2010), occurring on top of stable augmented excitability 

(Badawy et al., 2007; Tombini et al., 2013). Such excitability impairment may have a 

hemodynamic correlate, hence allowing us to tune and investigate stable and phasic changes of 

brain excitability and associated hemodynamic responses. Second, we can investigate the 

development of plasticity and the corresponding hemodynamic responses during PAS intervention 

per se. This study would bring insights into understanding the mechanism of PAS especially 

considering its effects on hemodynamic activity.  

In practice, we would propose a new HRF deconvolution model, in which physiological noise can 

be estimated from short distance channels using the temporally embedded canonical correlation 

analysis (von Lühmann, Li, et al., 2020; von Lühmann, Ortega-Martinez, et al., 2020) and then 

applied it as an instrumental variable to regularize the hidden noise model. The HRF can be 

modeled by the Gaussian process (Neal, 1998) which can conveniently encode the assumption on 

the smoothness of HRF and will estimate the whole covariance matrix of the HRF itself. The 

amplitude of each event stimuli can be modeled as parameters instead of constant values as 

assumed in the conventional GLM analysis. As conducted in Chapter 7, to provide reliable 

estimations, the model could be solved by dynamic HMC (Betancourt, 2017) in Stan (Stan 

Development Team, 2020b). Preliminary results of this proposed method are presented in Fig.8.2. 

Using realistic simulations, we are able to first accurately estimate the HRF and then decode the 

stimuli amplitudes, providing a correlation of 0.8 between the estimated stimuli amplitude to the 

ground truth based on simulations. Finally, this technique can be further applied to our fNIRS 

related studies. For instance, we could use it for the application of simultaneous EEG/fNIRS in the 

assessment of the epileptic focus during awake and sleep conditions. This could help us to assess 

the pathological condition, especially on hemodynamic activity, at the time of transient EEG 

discharges in epilepsy. We could also use it to investigate the impact of external auditory 

stimulations on sleep, using a personalized simultaneous EEG with fNIRS during whole night 

recordings. Hemodynamic responses evoked by event-related designed auditory stimulations can 

be estimated and further compared under different sleep stages.   
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Fig.8.2 Preliminary results of the proposed method for deconvolution of HRF and estimation of stimuli 

amplitudes. a) four HRF configurations used for realistic simulations, b) realistic stimulus protocol that is 

randomly sampled from TMS/fNIRS data during spTMS, both times and amplitudes of 50 events are 

extracted from a randomly selected slice among 75 MEPs during a randomly selected spTMS run among 

the whole data set. c) estimated HRFs (blue) when compared with the ground truth (red), each blue line in 

the right figure shows a possible HRF that supports the model and data, estimated by Bayesian framework,  

d) the linear regression between estimated stimuli amplitudes and the ground truth stimuli amplitudes, the 

histogram of the corresponding correlation value is shown on the right side. 

8.3 Conclusion 

In the first part of this thesis, we developed a new fNIRS reconstruction method using the MEM 

framework and integrated it with personalized optimal montage, therefore proposing a new 

personalized NIROT workflow. The MEM reconstruction method was carefully validated using 

realistic simulations considering different hemodynamic generator locations, sizes, and depths. 

The personalized NIROT workflow was evaluated using a well-controlled motor task and 

compared with the fMRI activation map as the reference. Our results showed that the proposed 

methodology provided more accurate spatial reconstruction maps and similar temporal accuracy 

when compared to the widely used approach – MNE. More importantly, we demonstrated the 
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reliability of our MEM performance results, as well as its robustness when dealing with low SNR 

fNIRS signals. Following these methodological developments and evaluations, we applied the 

proposed workflow to the investigation of the relationship between hemodynamic activity and 

cortical excitability using the simultaneous fNIRS and PAS technique. We found a considerable 

positive association between the fluctuations of cortical excitability and the fluctuations of 

hemodynamic responses to the finger tapping task. A positive linear relationship between PAS 

effects on cortical excitability and hemodynamic activity was also illustrated by our advanced 

analysis method using the Bayesian data analysis. These studies validated the feasibility of 

simultaneous fNIRS and PAS technique, and demonstrated that PAS effects on hemodynamic 

activity are relevant for the application of non-invasive brain stimulation techniques for the 

treatment of neuropsychiatric disorders. Our findings may contribute to further expanding the field 

of non-invasive brain stimulation application for treating brain disorders by targeting those areas 

for which a modulation of hemodynamic activity is desired. Overall, this thesis involved both 

methodological developments and the corresponding applications. It contributed to the relevant 

field in both scientific and methodological perspectives.  
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