
STUDIES ON DYNAMIC LOSS FUNCTIONS AND

CURRICULUM LEARNING IN OFFENSEVAL DATASETS

Zhanfan Zhou

A thesis

in

The Department

of

Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science (Computer Science)

Concordia University

Montréal, Québec, Canada

September 2021

© Zhanfan Zhou, 2021

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Zhanfan Zhou

Entitled: Studies on Dynamic loss functions and Curriculum learn-

ing in OffensEval datasets

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Tse-Hsun Chen

Chair

Dr. Eugene Belilovsky

Supervisor

Dr. Sabine Bergler

Approved

Leila Kosseim
Chair of Department or Graduate Program Director

2021

Mourad Debbabi, Ph.D., Dean

Faculty of Engineering and Computer Science

Abstract

Studies on Dynamic loss functions and Curriculum learning in

OffensEval datasets

Zhanfan Zhou

The spread of offensive language has become a severe social problem and may stress

unmeasurable mental health illnesses. The rapid usage of social media worsens the

situation. We develop a lite but robust offensive language identification system and

evaluate the system on two SemEval offensive language identification shared tasks:

SemEval 2019 Task 6 and SemEval 2020 Task 12. In order to take the advantage

of a large semi-supervised dataset, and reduce the processing complexity of such

huge data, we investigate approaches to adapt a model to the silver standards via

curriculum learning and dynamic loss functions. By adapting a model to such data

with the curriculum learning or dynamic loss functions, the systems are capable of

scattering the focus properly on data of different difficulty levels. Experiments show

both help the model learn effectively and acquire more messages from the hard cases

without impairing the performance on easy cases. The best run on each task achieves

competitive F1 score of 81.6% and 91.7% on the official test data of SemEval 2019

Task 6 and SemEval 2020 Task 12 respectively with at least 50% parameters and less

data overhead, compared to the state-of-the-art systems.

iii

Acknowledgments

This thesis was carried out with the selfless help of my supervisor, Dr. Sabine Bergler

who guide me with her rich experience, knowledge, and distinct flair over the past 3

years. I am sincerely grateful to her for the endless supplies of patience and subtleties.

I thoroughly enjoyed my time in the CLaC lab where I met so many individuals who

were truly unique and wonderful in every way that mattered. To: Parsa, Narjes,

Nihatha, Mingyou, Nadia S., Nadia B., Benjamin, and Claire, I will always appreciate

all the things we learned and times we spent together. I would like to especially thank

Parsa for giving many invaluable insights on my thesis, as well as sharing personal

experiences to help me further.

I owe deep gratitude to my parents who supported me every way possible, and

every step along the way; I love them beyond words. I also feel very fortunate to

have tremendously supportive family members both back home and here in Canada,

especially the latter who made my transition into a brand new environment that much

smoother and my cousin Shiwei who offered suggestions on my writing.

The final thoughts go out for my best friends. I would like to thank Jiawen who

brought my mood up with accompanying, and made me feel warm inside with the

appealing memories we shared. I also need to give a shout-out to my awesome homie

Gaoshuo and all the great friends with whom I shared countless joy and tears. My

appreciation goes to Xu He for cheering me up on the gloomiest of days, making me

feel at ease with the lovely moments.

To all: thanks for all the love during the journey.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Objectives and Motivation . 2

1.2 Contributions . 3

1.2.1 Thesis Outline . 4

2 Background 5

2.1 Tweet Language . 5

2.2 Offensive Language . 6

2.3 Linguistic Notations . 8

2.4 Deep learning in NLP . 9

2.4.1 Neural Networks . 9

2.4.2 Word Representations . 12

2.4.3 From Word Embeddings to Pre-trained Language Models . . . 13

2.5 Underlying Concepts . 16

2.5.1 Curriculum Learning . 16

2.5.2 Continual Learning . 21

2.5.3 Loss Functions . 22

2.6 Offensive Language Detection . 27

2.6.1 SemEval Challenge and Datasets 27

2.6.2 Existing Systems for Offensive Language Detection 30

v

3 Experiments 35

3.1 Comparing Datasets . 35

3.2 Baseline Study . 42

3.3 Selective fine tuning on SOLID . 44

3.4 Curriculum Learning on SOLID . 51

3.5 Experiment with Dynamic Loss Functions 57

3.6 Performance on Official Test Data . 67

4 Conclusion and Future Work 70

vi

List of Figures

1 A Typed dependency example . 8

2 Transformer Encoder . 11

3 Plotting FL with different γ . 25

4 Histogram showing the confidence score distribution of SOLID. The x

axis is divided evenly into 10 bins. Each of them contains the samples

whose scores fall into the interval. The y axis is the probability density

in which each bin will display the bin’s raw count divided by the total

number of counts and the bin width. 29

5 Normalized word frequency of the most frequent words in SOLID-fold-4 36

6 Normalized word frequency of the most frequent words in OLID . . . 36

7 Normalized word frequency of the most frequent words in SOLID-fold-7 37

8 Summing the normalized frequency in the CMU list and words with

different AFINN scores. 38

9 Normalized POS frequency of three datasets 39

10 Typed dependency frequency of three datasets 40

11 Normalized POS frequency of SOLID-OFF, OLID-OFF and SOLID-NOT 41

12 Normalized typed dependency frequency of SOLID-OFF, OLID-OFF

and SOLID-NOT . 41

13 Normalized term frequency of frequent words in SOLID-OFF 42

14 Normalized term frequency of frequent words in OLID-OFF 42

15 F1 values computing on OLID training set. For AC and ER, the model

validated at time step i is trained on the top of folds k (k <= i; k, i ∈
Z+). ER indicates that the extreme samples are excluded for each fold.

SP denotes the baselines where each fold is trained individually. . . . 50

vii

16 The values of class parameters changing with the training iteration.

The x axis represents the training iteration and the y axis is the value of

class parameters. 0.0 is used to denote the bin for data scoring [0, 0.1),

0.1 to [0.1, 0.2) and so on. The class parameters are updated inversely. 54

17 The values of class parameters changing with the training iteration. The

class parameters are updated using the negative value of the gradient.

The hyper-parameters and notation stick with Figure 16 55

18 Plotting g′(qt) with different µ and σ 60

19 Ablation study for different µ and σ combinations in scaled loss functions 62

20 The accuracy of each data bin. In general, the middling bins are

considered difficult away from which are those relatively easy bins. . . 65

21 The values of µ and σ . 65

viii

List of Tables

1 Summary of released BERT pre-trained models 16

2 Selected keywords for retrieving tweets from Twitter’s API and the

percentage of offensive tweets for each keyword. Note that @Breit-

BartNews includes the tweets sent by @BreitBartNews account and

filter:unsafe corresponds to tweets that were flagged as unsafe by Twitter. 28

3 Label distribution of OLID training and test set. 28

4 Label distribution of SOLID training and test set, assuming that the

silver scores above 0.5 are labeled as OFF and below 0.5 are NOT. . . 30

5 Real tweet examples from OLID and SOLID 30

6 Summary of top 6 systems for SE19T6A. The table is sorted according

to the ranking of SE19T6A in descending order. Some systems not

discussed herein, come along with citations since they use similar

techniques. 32

7 System summary for SE20T12A. The table is sorted according to the

ranking of SE20T12A in descending order. Some systems not discussed

herein, come along with citations. 34

8 ρ values between OLID and SOLID-subsets and in between SOLID-

subsets. 39

9 The performances of baseline models. The evaluation metric of the

OffensEval is used, which is macro-averaged F1 (Macro F1). For better

presentation, F1 score with respect to positive class (offensive class) is

added, namely F1-1. The results are ranked by F1 score in descending

order. 43

10 Description of some subsets. The subsets are sampled based on condi-

tions described in the caption of Table 11. 45

ix

11 Results using different complementary subsets to further train the

DistilBERT model. The first epoch is trained on OLID solely and

is shared across all experiments as the base tuned model. Note that

all subsets above are equal size. Unlisted hyper-parameters are the

same across these experiments. The first line sets a baseline where no

complementary subset engages in. Additionally, for better comparison,

the baseline results are averaged on a dozen runs. SOLID-1 to 5 refer to

the SOLID-subsets mentioned at Table 8 respectively. The two digits

with the TH indicates a score threshold while sampling a subset, where

any confidence score satisfies the conditions: first digit > Score ∗ 10

and Score ∗ 10 > second digit. (e.g. SOLID-TH37 indicates this subset

contains samples of which scores satisfy 0.3 > score and score > 0.7.)

’b’ denotes a balanced subset where ratio between classes is closed to 1.

For clarity, the subset from SOLID-1 to 5 are named random subsets;

the subsets with the TH modifier conditional subsets. 46

12 Further experiments based on Table 11. In particular, the four digits are

used as an identifier where the first two digits and the other two describe

two conditions mentioned in Table 11 respectively. (e.g. TH2468 denotes

the criterions scoring between 0.2 and 0.4 and between 0.6 and 0.8).

Other notations stick to Table 11. The results are ranked by F1 score

in descending order. 47

13 Averaging performances on representative folds. SOLID are first filtered

under different criterions. Instead of taking a subset from it, all qualified

samples are divided into folds where each fold consists of nearly 300,000

samples. Regarding the time consuming issue, we randomly pick fine

tune our model with 5 of the folds separately and average the results.

For conciseness, some unnecessary notations are omitted. The standard

deviations are provided to inspect the robustness. 49

x

14 Results of applying class parameters to DistilBERT models. Evalua-

tion is done over the OLID development set. The stochastic gradient

descent is applied to update class parameters (learning rate of 1e-3 and

momentum of 0.9). The relevant models are trained for 3 epochs on

SOLID-TH55 and TH3558 with learning rate 1e-5, batch size 64, and 1

epoch on SOLID-TH55f. 56

15 Accuracy on SOLID validation set. The header indicates the difficulty

level of data bins. Note that the difficulty is not monotonic. As the

middle bins is more difficult than the bins at both sides. The 9 runs

correspond to the training configurations from Table 14. They are

accordingly divided into 3 sections by the different training data they

use. All runs perform almost perfect except in the bin 0.4 and 0.5.

thereby, the highest results of different training datasets in bin 0.4 and

0.5 are in bold. 57

16 Cross influence of sample difficulty and system difficulty. The dual

impacts come from qt and pt respectively. When the difficulty indicators

are divergent, the impact is deducted by each other. The exact direction

is determined by the system. 60

17 The results of using dynamic loss functions on OLID development set. 66

18 Results on OLID official test set and SOLID official test set. 67

19 Error examples from official test data of OLID and SOLID. The first

section shows the examples that are misclassified by the baseline Distil-

BERT model but are well-classified in the best run while the second

section lists the otherwise. Note that SOLID holds gold standard for

OFF labels but silver standard for NOT labels. 69

xi

Chapter 1

Introduction

Social media such as Twitter, Facebook and Reddit, unprecedentedly expose peo-

ple to myriad content which may contain a considerable amount of verbal cyber-

bullying such as offensive language, toxicity, hate speech, and abusive language.

Anonymity on these platforms makes it more likely for users to post aggressive

content [Festinger et al., 1963]. Manual efforts on verbal cyber-bullying identifica-

tion tasks are unrealistic. Not to mention that the tremendous time would be

devoted, long-term exposure to such content causes severe mental health after-

math to the annotators. This motivates studies on automatic detection of the ver-

bal cyber-bullying [Xu et al., 2012, Gitari et al., 2015, Burnap and Williams, 2015,

Malmasi and Zampieri, 2017, Zampieri et al., 2019a]. The most basic approach is

gazetteer based models [Gitari et al., 2015] where trigger terms such as swear words

and hate terms are precompiled as a filter. However, these gazetteer based ap-

proaches are insufficient for the detection due to the fact that the user generated

content is steadily increasing and the context, social factors, events could largely

influence our judgment on the offensiveness [Schmidt and Wiegand, 2017]. Moreover,

the user-created new words and oscillating real world trending also make these systems

vulnerable. Thus, leveraging deep learning methods in this field has increasingly drawn

attention. Given multitude terminologies, some researches studied the differences and

the overlaps between these concepts: hate speech, abusive language, offensive language

etc. [Waseem et al., 2017, Davidson et al., 2017, Poletto et al., 2021]. Among these

fields, prior studies have investigated such as hate speech: [Burnap and Williams, 2015,

Davidson et al., 2017], Facebook posts: [Kumar et al., 2018] and offensive language:

1

[Zampieri et al., 2019a, Wiegand and Siegel, 2018]. However, the datasets they lever-

aged are rather small, and biased to certain social groups. This thesis focuses on the

identification of offensive language, using a huge unbiased open-domain semi-supervised

dataset.

1.1 Objectives and Motivation

When the data on social media is accessible within reach, the annotation for the

numerous data is the main challenge. Apart from the post-traumatic effects on the

annotators, it is intrinsically hard to obtain a large scale of high quality gold standard

due to the multifold influences from linguistic and social phenomenon [Waseem, 2016,

Laaksonen et al., 2020]. To side step the annotation issues, [Rosenthal et al., 2020a]

addresses the limitations by creating a semi-supervised dataset for the offensive

language detection task. However, the semi-supervised dataset (SOLID) is very

large and provides silver standards. Since it was collated from Twitter without

any filter options, it is comparatively unbiased but lacks corpus linguistic design

and is highly imbalanced. It has limited offensive language patterns and together

with the massive size it is unpracticable to use the whole dataset. Thus, it is

nearly unusable without proper preprocessing such as down-sampling, folding, and

resampling, etc [Zampieri et al., 2020]. The silver standard of SOLID is provided via

four machine learning systems including a basic point-wise mutual information (PMI)

model, neural network based models and the powerful pre-pretrained language model

BERT [Devlin et al., 2019]. Deep learning has greatly promoted the field of NLP and

the pre-trained language models such as BERT has achieved milestone progress in

many natural language understanding tasks. The significant achievements give rights

to automatic annotation, which largely facilitates the annotation efforts in terms of

time and spend. Regarding the subjectivity of manually annotating, the automatic

annotation even bypasses the deficiency. However, lack of investigation on the silver

standard generated impedes the possible contributions from semi-supervised data.

Given the corrupted annotations and the inadequacy mentioned, lots of work on

offensive language identification discard the dataset or the noisy labels. Although

these systems do not take the advantage of these labels or the whole dataset, they

still yield promising results [Zampieri et al., 2020]. We owe this to the over simplicity

2

of the test data, with which a baseline system can achieve promising performance.

And this also narrows the chances for improvement.

To confront the massive but questionable data, this thesis leverages curriculum

learning and dynamic loss functions in our offensive language detection system. Cur-

riculum learning has been successfully employed in noisy datasets [Jiang et al., 2018]

and well-annotated datasets [Saxena et al., 2019] of image data. It simulates the

human learning process and effectively enhances the learning efficiency. However, we

find very few studies in the field of NLP, thereby we attempt to investigate the offensive

language detection with curriculum learning. In this thesis, the dynamic loss functions

and the curriculum learning share the same purpose, that is to adapt to the large

amount of semi-supervised data. To the best of knowledge, most of the existing work

investigates the supervised learning in this field but now more with semi-supervised

data. It is true that using the semi-supervised data is not the best optimal approach

in terms of targeting the classification task. But our goal is not to attempt the SOTA

in the task. Thus, it could be the second best option in the sense of reducing the

processing time and human annotation efforts as automatically as possible. Given

the abundant accessible semi-supervised data, our goal is to build a classification

system on the top of heterogeneous data sources: supervised and semi-supervised.

By adapting the model to the semi-supervised data, the system requires less human

annotation work and yields promising performances on data collected from 2019 and

2020.

1.2 Contributions

The main contributions are primarily listed as follows:

1. ways to use a rather large semi-supervised data with silver standards are explored;

2. the effects of curriculum learning and dynamic loss function on offensive language

detection are investigated;

3. building a offensive language classification system by adapting the supervised

and semi-supervised data;

4. competitive results on the shared tasks for offensive language identification via

a light but robust model.

3

1.2.1 Thesis Outline

This thesis is orchestrated in the following order: the background knowledge is

provided in Chapter 2 where the language features of Twitter and offensive posts are

summarized. Moreover, the deep learning in NLP and the recent prevalent techniques

are reviewed. This thesis emphasizes on reviewing some work on curriculum learning

and dynamic loss functions and give detailed illustration on some of key methodologies.

Afterward, the existing systems on offensive language identification and the datasets

are introduced. In Chapter 3, the datasets are first compared and analyzed; then the

experiments is reported; models on curriculum learning and dynamic loss functions

are presented respectively. Chapter 4 concludes the study and discusses future work.

4

Chapter 2

Background

2.1 Tweet Language

As social media has been a massive part of our lives, people nowadays are overwhelmed

with tons of messages. Meanwhile, we spread out our ideas, thoughts, feelings with

simple taps on our phones. Twitter is one of such popular platforms where we

post tweets for expression. Almost without any constraints, tweets cover diverse

topics, formal or informal. It is possible to have a wide range of dictions, phrasing

styles. Utterances may have spelling errors unintentionally or intentionally, grammar

mistakes, abbreviations, acronyms, elongation, dog whistle terms, all-capitalization,

slangs, emoticons, etc. To increase the communication diversity, Twitter provides

various emojies. Users are allowed to insert URL links, create hashtag to make a topic

trending, and mention other users by adding @ to an account. We also enjoy creating

new phrases, some of which survive and become common phrases and some perish.

To show some of the aforementioned language phenomena, some real examples are

given to show some of the mentioned language phenomena.

Example 1. @USER1 @USER Go home you’re drunk!!! @USER #MAGA

#Trump2020 URL

It is normal to have redundant @USER mentions. The hashtags are consist of a

sequence of unbroken words, which is sometime confusing at the first sight. MAGA is

1All user account mentions are normalized to @USER for anonymization.

5

an acronym for Make America Great Again.

Example 2. @USER ajsjjsjdkkdjdk i want him so much he’d literally tell me to die

and i’d obey him

where ajsjjsjdkkdjdk is an intentional typo.

Example 3. @USER she is idk what’s going on #Qanon

where idk is an acronym for I Don’t Know. Such acronyms or abbreviations are

prevalent on Twitter. Similarly, #Qanon or simply #Q refer to a far right conspiracy

theory which readers without any background find it hard to understand.

Example 4. @USER Varda is my fav valar. She is badass I bet melkor agrees with

me also xd

where fav is the abbreviation for Favourite and xd is a variant of the emoticon XD,

which is signalling happiness or laughter.

Example 5. @USER I love you bitchhh I aint never gonna stop loving you....

bitchhhhhh

where bitchhhhhh is an elongation.

2.2 Offensive Language

This section presents the general definition of offensive language with demonstration

of a few typical examples. The goal is not to provide a precise definition or distinguish

it from related terms such as hate speech, abusive language, or aggressive language.

Because of the intrinsic complexity in language, these terms mingle and overlap with

each other very often. Although hierarchically they are in different level of specificity,

the boundaries for these terms are relatively vague [Poletto et al., 2021]. This section

emphasizes on revealing the general challenges on offensive language identification,

knowing which may shed light on our studies, further experiments and analysis.

[Waseem, 2016] studied the influence of annotators’ knowledge on hate speech

classification task by training the system with data annotated by expert or amateur

annotators. They found that the annotation agreement within amateurs are low and

of high standard deviation. When they compared the annotation agreement of expert

with an existing annotated dataset, they also saw low agreement. The disagreement

6

suggests that the hate speech dataset annotation is not an easy task and to obtain the

high quality gold standards, extra efforts must be made. We believe this conclusion

can be extended to the annotation of offensive language data as well.

[Reyes et al., 2012] investigated the figurative language of social media. Specifically,

they studied two domains of figurative language: humor and irony by analyzing tweets.

Figurative language in tweets implies meanings beyond the text per se. Different

readers may infer the figurative language by their race, color, ethnicity, gender,

cognitive level, etc. Thus it conveys distant semantics, sometimes offensive. Thereby,

it sets great challenges to the detection of offensive language.

In addition, due to the nature of tweets, lack of context is also an issue. Furthermore,

we have witnessed a lot of word sense changing chronologically. Many words used to

be offensive but less nowadays and vice versa. We herein provide a few examples to

show how the language complicates the offensiveness detection.

Example 1. #Feinstein you cant say anything truthful. You are a loers

and liar.

Example 2. #Liberalismisamentaldisorder, but it is also a danger to our

country. #Liberals are showing themselves to be utterly hateful. They do

not CARE about TRUTH, they only care about POWER.

Two examples above are obvious offensive toward an individual or an organization

and has strong signals of offending. The offensive parts are indicated by bold.

Example 3. #FF @USER he is an alien from the future URL

Example 4. #GreatestThingsAboutThe90s liberals weren’t unhinged

Example 5. @USER @USER Ppl who say I’m not racist are racist. You Are A

Racist. Repeat after me

Example 3 contains metaphors and Example 4 is being humorous or ironic. The last

example is too vague to determine the offensiveness. The intriguing parts are indicated

by bold.

7

2.3 Linguistic Notations

This section covers the linguistic notions that are fundamental in NLP and these

notions are employed for dataset language comparison.

Tokenization Word tokenizer splits a sequence of text into single words, which

is usually the foremost preparation for NLP. Lots of tokenizers have been devel-

oped for diverse text genres with different purposes. The prevailing pre-trained

language model BERT [Devlin et al., 2019] is embedded with the WordPiece tokenizer

[Wu et al., 2016]. Unlike the regular tokenizers that merely separate words, other

than that, WordPiece may splits a word into subwords based on frequent sequence

patterns. The example below shows how a sentence is tokenized by WordPiece. ANNIE

[Cunningham et al., 2002] is another well-known domain independent tokenizer. For

its stability and robustness, we use ANNIE for analyzing our dataset, which will be

covered in the experiment section.

Part of Speech (POS) From the perspective of English grammar, a POS

is a set of words sharing the similar grammar properties. In the field of NLP,

POS tagging assigns each word token a POS tag from a tag set. Other than those

typical English POS such as noun, verb, article, adjective, preposition, pronoun,

adverb, conjunction, and interjection, the tag set contains finer tags with a lot more

morphological subcategories. The most commonly used POS tag set is the Penn

Treebank tag set [Marcus et al., 2002] which is primarily consist of 36 POS tags.

Typed Dependency The typed dependency provides binary relations among

the words in an utterance. It sheds some light on representing syntactic structure of a

sentence. The link of a dependency relation holds between a head word (governor)

and a dependent (modifier). Below is a example of how typed dependency parses a

sentence.

I do n’t like playing games and I hate pick up lines .

nsubj

aux

advmod

obj

conj

punct

amod

cc

nsubj xcomp compound

obj

Figure 1: A Typed dependency example

Zips’s Law Zips’s law examines the frequency of words in natural language and

8

how the most common word occurs twice as often as the second most frequent word,

three times as often as the subsequent word and so on until the least frequent word

[Zipf, 2013].

2.4 Deep learning in NLP

The filed of NLP is being developed rapidly as deep learning has been dominating

the field over the recent years. To illustrate the background of deep learning in NLP,

we abstract a neural network as a function f(·). In general, the function takes in the

word representations 2 as inputs and outputs task specific targets. Let X ∈ RT×d be

the input word representations where T is the number of tokens in the input and d

the size of word representations. f(X) represents the basic form of a neural net and

let z = f(X), z ∈ Rc be the output of the network where c is the number of classes. In

common practices, the word representations are converted from a sequence of words

which can be a sentence, or any text we feed in the neural network. To obtain the

prediction of a neural net, a softmax function is often applied to the logits:

softmax(zi) =
exp(zi)∑
j exp(zj)

(1)

The logits are denoted as z and zi is the logit for the class of index i. For a classification

task, the logits are transformed to the probability of each class. Next, we will illustrate

some common neural network structures and word representation approaches.

2.4.1 Neural Networks

For years, researchers have been exploring powerful network structures for NLP tasks.

The feed-forward network is one of the fundamental work of which form is linear

f(X) = XW + b. The W is the weights and b is the bias term. Not taking into

account the word order is a drawback of the feed-forward network. Taking the word

order into consideration, the Recurrent Neural Network (RNN) [Elman, 1990], is

composed from a sequence of recurrent units unfolded from a single unit through

time. It produces sequential outputs and each recurrent unit is based on a small

feed-forward net. Formally, a recurrent unit of the RNN is written as ht = f(xt, ht−1),

2in form of vectors or matricies

9

where the t denote the index of the input sequence, xt is the word representation

at position t and ht is the output of a recurrent unit, namely hidden states. In all,

we abstract the RNN as H = f(X, h0), where H = [h1 ⊕ · · · ⊕ hT] is the row-level

concatenation of all hidden states. When the sequence becomes too lengthy, it may

raise the long-range dependency issue in which the dependency of two distant units

exponentially decay and effect very little on each other eventually. To alleviate

this, [Hochreiter and Schmidhuber, 1997] proposed long short term memory networks

(LSTMs) where cell states are employed to cope with the long-range dependency issue.

Sharing the sequential structure with the RNN, LSTMs can maintain information in

memory for long periods of time with the cell states. In addition, to get better control

of the inputs, outputs, and cell states, a set of gates are added to the LSTM blocks

which allows the LSTM to decide what information to memorize, to output and to

forget.

Convolutional Neural Networks (CNN) are one of the milestones and also were

first used in the field of computer vision and later CNN was introduced in NLP

successfully by [Kim, 2014] The convolutional blocks enable the CNN to capture the

spacial information among words, and it yields promising results in NLP tasks.

Transformers, proposed by [Vaswani et al., 2017] launched a new era of NLP. It

is based on sequence-to-sequence architecture which transforms a sequence of input

into another sequence. The Transformer consists of a stack of encoders and decoders.

Figure 2 shows the structure of a Transformer encoder.

Transformer architecture ditched the recurrent structure in favor of multi-head

self-attention mechanism. The input word representations X = [x1 ⊕ · · · ⊕ xT] is a

row level concatenation of input word representations, denoted as xt(t = 1, . . . , T).

To embed the positional information, in addition to the input word representations,

positional encoding is added to the input. After obtaining the positional encoding, the

inputs are fed into the Multi-head self attention block which is based on scaled dot-

product attention. To explain the Multi-head self attention mechanism, we start from

scaled dot-product attention. Given queries Q, keys K, and values V of dimension dk,

the scaled dot-product attention is given by:

scaled dot-product attention(Q,K, V) = softmax(
QKT

√
dk

)V (2)

10

Add & norm

Feed-forward

Add & norm

Dot product
Attention

Q K V

Positional

Encoding

X = [x1 ⊕ . . . ⊕ xT]

P

H = [h1 ⊕ . . . ⊕ hT]

Figure 2: Transformer Encoder

where KT is the transposed K and
√
dk is a scaling factor which prevents the dot

products of Q and KT growing large in magnitude then overwhelming the softmax

function. The intuition behind scaled dot product attention is that the first part

softmax(QKT
√
dk

) produces an element-wise similarity matrix scaled by
√
dk. The similari-

ties decide how the output is composed by V . Under the self attention setting, Q,K, V

are computed by the same input. That is: Q = xWq; K = xWk; and V = xWv where

x is the input word representations and W s are learnable weights. To perform the

Multi-head, one can split the Wq,Wk,Wv into n parts evenly and perform the scaled

dot-product attention to the input n times. The output of each attention head is then

concatenated and applies a linear transform. The formal expression is given by:

headi = scaled dot-product attention(Qi, Ki, Vi)

Multi-head self attention(Q,K, V) = Concat(head1, ..., headn)W0

(3)

where W0 is the added linear transform and Qi, Ki, Vi are obtained via the split

Wq,Wk,Wv respectively. Afterward, the residual connection adds the input word

representations to the attention output and performs a normalization operation. Note

that to fit the shape of a sequence, the feed-forward net is positional-wise. The output

of a Transformer encoder block is defined as hidden states H which share the same

11

shape of input word representations. Each word of the input x has its corresponding

encoded output h. Thus, the Transformers can be stacked on top of each other easily.

The self attention mechanism enables the Transformer to capture contextual infor-

mation bidirectionally or better non-directionally. Unlike the recurrent architectures,

which can either receive the input from the previous or reversely from the future,

Transformers gather the contextual semantics for each input word. With the relatively

simple architecture (feed-forward neural networks and attention mechanisms), the

Transformer usually yields better results than recurrent models like RNNs and LSTMs.

2.4.2 Word Representations

As the input of a neural net, lots of approaches exist for generating word representa-

tions.

Early studies represent words using the One-hot representation, in which the

input words are often encoded as a 0/1 vector. Each entry in the vector is zero

except the word co-occur in the input are set to ones. To this end, one should first

create a word inventory to store the vocabulary of all the inputs and the size of

the word representation vector is the size of the vocabulary V , X ∈ {0, 1}|V |. The

One-hot representation catalyzes the Bag-of-Words (BoW) model [Harris, 1954] which

describes the occurrence of words in a count vector. Although it is straightforward and

convenient to use, the One-hot representation loses the word order and is usually a

sparse vector in which the zero values account for most of the vector entries. Because

the vocabulary size is rather large but the input text is relatively short and consists of

a small amount of vocabulary.

Other than the One-hot representation, co-occurrence matrices represent a word

by the words co-occurring in a same context. The matrix is symmetric and is of

shape |V | × |V | in which each entry represents a word and each cell is the number

of times the row word co-occurs with the column word. Here V is a set, and |V |
represents the cardinality of the set. One deficiency is the excessive matrix size.

Having the co-occurrence matrices treat every word equally, TF-IDF is an approach

to build document representations based on the word importance. The document

representations is composed of the representation of words that form the document.

Each word that occurs in the document has its term frequency (TF) and inverse

document frequency (IDF) score. The product of TF and IDF of a word is used as

12

a weight to represent the word. The TF-IDF score implies the importance of the

word in the text and corpus. The higher score, the more important the word could

be. However, although TF-IDF is more informative than One-hot representation, it

eventually generates a sparse vector for the inputs.

It is problematic to use the sparse word representation vectors, since the large

size vector impedes the computation efficiency and lack of word order, word sense

information, and semantics. Addressing these issues, dense word representations, often

called word embeddings are proposed.

2.4.3 From Word Embeddings to Pre-trained Language Mod-

els

Word embeddings have proven to be powerful in many text classification tasks

[Sun et al., 2020, Liu et al., 2019a, Wiedemann et al., 2019]. The earlier represen-

tative efforts on word embeddings such as Word2Vec [Mikolov et al., 2013], GloVe

[Pennington et al., 2014] are pre-trained word embeddings, aiming at converting words

to context independent vector space representations. They are trained on large scale

text corpora by an unsupervised approach and are often used as the input to a

neural net. Such context independent word embeddings are available to be used

off-the-shelf and map each word into a vector representation regardless of the context.

In order to embed contextual information in the embeddings, deep contextualized

word representations (ELMo) is proposed by [Peters et al., 2018]. In contrast to the

previous word embedding models such as Word2Vec and GloVe, these context-sensitive

word embeddings are able to capture the sequential information of the input words

and dynamically provide context dependent word representations. Note that ELMo

takes in character-level inputs and therefore to some extent embeds morphological

information. Different form the previous word embeddings, ELMo is derived from a

bidirectional LSTM training with the language model (LM) objective on a large scale

corpus. Briefly, a traditional LM task learns to predict the next word in a sentence

based on the previously observed words. The pre-trained ELMo is often used for fine

tuning [Dauphin et al., 2012] in down-stream tasks. The most common way to adapt

a pre-trained language model is to fine-tuning it on task specific datasets. Pre-training

and fine-tuning have been prevalent in recent years and have demonstrated to be

superior to retrain a word embedding or a LM from scratch in lots of studies, and

13

some of them will be covered in next section.

[Devlin et al., 2019] proposed a contextualized language model BERT: Bidirec-

tional Encoder Representations from Transformers. It has obtained new state-of-the-art

results on eleven NLP benchmarks. BERT is derived from Transformers and is trained

ob an unsupervised approach for masked language model (MLM) and next sentence

prediction (NSP) tasks.

In contrast to ELMo, a uni-directional language model, BERT encodes each word

of the input sentences based on the bidirectional surrounding context. Although EMLo

leverages bidirectional LSTM structure, it still has the directional properties due to

the fact that LSTM encodes the input sentence sequentially, either from the beginning

to the end or in the reverse direction in one go. The Transformer base, however, allows

BERT to capture the surrounding context in both directions (bidirectional). BERT is

a stack of Transformer encoders. Thereby, it inherits the property of the Transformer.

BERT is trained with two objectives:

• MLM, where 15% of the tokens of the input are randomly masked and the model

learns to predict only those masked tokens

• NSP, where a pair of sentences are given to the model who learns to predict

whether the second sentence is the actual next sentence of the first one.

To perform the two tasks, BERT adds a special [CLS] token at the beginning of every

sentence. The final hidden state of the Transformer corresponding to this token is taken

as a sequence embedding vector for classification tasks. Since BERT has been already

trained on the BooksCorpus (800M words) [Zhu et al., 2015] and English Wikipedia

(2,500M words), one can take the advantage of the well-trained BERT models. For

different purposes, [Devlin et al., 2019] released four BERT models differentiated by

word case-foldings and parameter size, namely BERT-base-uncased, BERT-base-cased,

BERT-large-uncased and BERT-large-cased. A brief summary of these models is

provided in Table 1. To employ BERT on down-stream tasks, [Sun et al., 2020] found

that further training of the BERT model with MLM helps the model adapt to the

down-stream task. As [Devlin et al., 2019] suggested, fine tuning BERT by adding

a classification layer on the top of BERT and using the final hidden state of [CLS]

token as the input of the classification layer is also practicable.

Thanks to the success of BERT, a series of BERT like pre-trained language models

are proposed. [Liu et al., 2019b] proposed a robustly optimized BERT pre-training

14

model (RoBERTa). Retaining the BERT-large architecture, RoBERTa optimizes

BERT’s training procedure and outperforms BERT on most of the benchmarks. Firstly,

it is no longer trained with the NSP objective. Second, they increase the training

data to 10 times as BERT’s and train the RoBERTa with larger batch size and longer

sequences. Third, instead of using the static mask for MLM training, RoBERTa

dynamically changes the mask every time a sequence is fed in.

Despite the prominent achievement of BERT, operating such a heavy model is

costly in inference and imposes huge stress on computational hardwares. Addressing

these issues, [Sanh et al., 2019] proposed DistilBERT, a lower cost, faster, lighter

pre-trained model. DistilBERT is derived from BERT using knowledge distillation.

Retaining 97% of BERT’s language understanding capabilities, the size of DistilBERT

is reduced to 40% of BERT’s. They take DistilBERT as a student model who learns to

mimic the behaviour of the teacher model, in their case, BERT. The teacher-student

training diagram transfers the knowledge from the teacher to the student via soft

targets learning rather than training with hard targets (one-hot encoding of the

true class). Thus, one of the key components of the loss function of DistilBERT

is distillation loss, given in Eq 4, hoping the student model evolving the same way

as teacher by mimicking the teacher’s output distribution. It certainly enriches the

learning materials compared with one-hot encoding target learning.

Ldistillation = −
∑
i

ti log(si) (4)

where ti and si are softmax-temperature for teacher model and student model which

is given by:

softmax-temperature(zi) =
exp(zi

T
)∑

j exp(
zj
T

)
(5)

where zi is the model logit for class i and T is the temperature, controlling the

smoothness of output distribution. As T → 0, the softmax-temperature becomes

more skewed and is equivalent to the one-hot target vector; Contrarily, as T → +∞,

the function is flatten and the output is close to uniform distribution. If T = 1,

it reduces to the standard softmax function. softmax-temperature is introduced by

[Hinton et al., 2015] as a modification of softmax. The purpose is to explore more out

of the granularities from the teacher model output distribution. In other words, it

describes the sensitivity that the student model is influenced by the teacher.

15

Hinton released the DistilBERT model based on distillation from BERT-base.

Table 1 compares the mentioned models by their model size.

Model Transformer block Parameter

BERT-base-cased
12 ≈110 million

BERT-base-uncased

BERT-large-cased
24 ≈340 millionBERT-large-uncased

RoBERTa-large

DistilBERT 6 ≈66 million

Table 1: Summary of released BERT pre-trained models

One limitation of these pre-trained LM is that they are trained for generic purpose

tasks with open domain corpus. These LMs may not adapt ideally to the task

specific language varieties. Therefore, re-training a BERT-like model has shown

to be an effective and competitive approach in adapt the LM to a new domain

[Barbieri et al., 2020]. This approach is practicable when the training data is not

scarce to train a new BERT. HateBERT 3 is re-trained on the Reddit Abusive Language

English dataset (RAL-E) following BERT training convention [Caselli et al., 2021].

The dataset contains Reddit Comments from December 2005 to March 2017, resulting

in 1,492,740 messages after conducting data cleaning.

2.5 Underlying Concepts

2.5.1 Curriculum Learning

Curriculum learning (CL) was first proposed by [Bengio et al., 2009] and sev-

eral applications have been published in the field of NLP and computer vision

[Soviany et al., 2021, Wang et al., 2021]. Drawing inspiration from the cognitive learn-

ing process of human beings and animals, CL aims at presenting learning systems

with appropriate learning materials at current stage rather than feeding randomly.

Presenting learning materials to machine learning systems in a well organized order,

CL achieves considerable progress such as enhancing learning quality, improving

3There exists more re-training BERT models in other domains such as HurtBERT, BERTweet
etc. This thesis primarily introduces HateBERT.

16

robustness and better generalization. Thus, it has drawn increasing attention from

researchers in recent years.

Common teaching practices reveal that learning always starts with the fundamen-

tals, then progressively moves onto the more advanced field. With that plain and

straightforward cognition, it is enough for junior students to solve many simple prob-

lems. When it comes to advanced, it requires involving sophisticated knowledge from

multiple angles. Solving complicated puzzles need senior students who equip with skill-

ful mindset and techniques. This learning paradigm is commonly applied in many CL

studies. [Elman, 1993] found that the RNN learns synthetic grammar effectively when

presenting the data from simple to hard order. The paradigm has been demonstrated

to have better generalization by [Bengio et al., 2009, Kumar et al., 2010].

One of the main issues in applying CL to tasks is the definition of easy and hard

cases. Most earlier studies carefully designed a ranking function that prioritizes the easy

cases before the hard one following the easy-to-hard paradigm. The ranking function

is usually manually defined by heuristic knowledge such as [Sachan and Xing, 2016]’s

work or as simple as short-sentence-first principle [Kocmi and Bojar, 2017].

One of the curriculum that [Bengio et al., 2009] proposed is referred as one pass

curriculum by [Cirik et al., 2016]. All samples are sorted into different difficulty levels

of bins. Training starts from the simplest bin and it will not move to the next bin

until the loss on a held out development set stops reducing for a certain epoch. The

entire training process will be carried on until all the bins are trained.

The underlying problem for predetermined heuristics is that they are only rea-

sonable to humans but may not be the case to machine learning systems. With this

notion, [Xu et al., 2020] employed a difficulty evaluation module to estimate difficulty

scores, instead of explicitly setting heuristic rules. Still, given that we are able to

feed the learning system with appropriate examples, it is important to feed them

in at the right time. For example, easy cases should garner less attention when

the learning system had become mature. Thereby, [Saxena et al., 2019] proposed a

dynamic curriculum learning manner with class parameters, which shows improvement

on image classification and object detection. Additionally, the model outperforms the

SOTA system in presence of noisy labels. In the field of neural machine translation

(NMT), [Wan et al., 2020] employed a flexible manner to address the problem in which

the NMT model is able to measure the confidence level over training examples and

17

therefore regulate the loss during training.

The above researches aiming to alleviate the drawbacks of CL, share the same

purpose with self-paced learning (SPL). Proposed by [Kumar et al., 2010], SPL aims

at alleviating

1. the mismatch of pre-defined fixed ranking function and the flowing learning

system;

2. the lack of computational definition of difficulty of a training sample, by merging

the learning curriculum into loss functions.

The loss function is dynamically changed along with the model.

To elaborate, [Kumar et al., 2010] defined the structure of learning objective for

SPL. To approaching their end, a binary vector parameters v is added to standard

loss function l(ŷ, y), computing the loss between predicted label ŷ and ground true

label y. The parametrized learning objective is given by:

min
w∈Rd,v∈{0,1}n

L(w, v; k) =
n∑
i

vil(fw(xi), y) + r(w) − 1

k

n∑
i

vi (6)

where fw(·) represents a model with model parameter w, it can be a neural network.

fw(xi) is model’s prediction of sample xi, and r(·) is a regularization term which

penalize w for obtaining excessively large value. vi is a binary variable, either 0

or 1. k is a weighting term that determines the current number of valid examples.

With − 1
k

∑n
i vi, the model is encouraged to include as many sample as they can,

however, it may have a great loss value given brought by l(fw(xi), y). Given a large

k, 1
k

down-weights
∑n

i vi making it less important numerically whereas vil(fw(xi), y)

dominating the loss. To minimize L, the loss function focuses on a very few the easy

cases who tend to have small loss given by l(fw(xi), y), minimizing vil(fw(xi), y). As

the k decreases, vi is allowed to increase the number of ones, which is equivalent to

include more training samples.

During the training, the k is decreasing gradually. They found that optimizing v

using alternative convex search (ACS) yields better accuracy, that is:

vi =

1 l(fw(xi), y) < 1
k

0 otherwise
(7)

18

In general, [Kumar et al., 2010] embeds selective curriculum into the form of loss

function, in which the parameters controlling the curriculum change with the model.

Again, as suggested beforehand, it is significant to have non-monotonous learning,

that is, the difficulty of sample varies across the course of training. It is the loss

that determine the degree of difficulty. However, the binary nature of v and the

predetermined k limit the training flexibility. As shown in Eq. 7, if the given loss

is above the threshold, the corresponding sample will be discarded. It will not be

included until the model is at the stage when it can produce a small loss w.r.t that

sample. vi acts as a gate mechanism filtering out the hard cases for current stage.

What [Saxena et al., 2019] differs from [Kumar et al., 2010] is that the loss func-

tions is more flexible and dynamic. Specifically, samples can partially contribute to

loss depending on the learning stage. Besides, it is possible to have different loss

for different classes compared with [Kumar et al., 2010] in which the loss is fixed in

l(ŷ, y).

For the rest of this section, we will review the dynamic curriculum learning

manner, which is proposed by [Saxena et al., 2019] in detail, including explaining the

functionality behind, analyzing the drawbacks and how we employ the manner in our

scenario.

For conciseness, we cover the technique that is relevant to the thesis. Each class

has an additional parameter namely class parameters which describe the importance

during training. Intuitively, class parameters assign a dynamic weight for each class

indicating the importance at current learning stage. During back propagation, the

class parameters are updated along with model parameters. This process leads to

dynamic changes of class parameters as well as the loss function, which reflects the

learning curriculum in favour of the learning system.

To elaborate, we define our dataset as D = {(xi, yi)}, i ∈ N, where x is training

samples and y denotes target classes. For a classification task of k classes, we have

yi ∈ {0, 1, ..., K} and class parameters σy ∈ RK , where the each entry is the learnable

weight of that class. Let zi ∈ RK be the logits predicted by the network and L(·) be

the loss function. For clear explanation, we assume k the index of true label and zki

the logit for the ground true class. The class parameters are used to scale the logits

19

before the softmax happens:

softmax(zki)
′
=

exp(
zki
σyk

)∑
j≤K exp(

zji
σyj

)
(8)

where
zki
σyk

is the scaled logit for class k. The scaled softmax values softmax(zki)
′

are

fed into the loss function L(·). Supposed the cross entropy loss is used, the loss for xi

is given by:

L(xi) = − log(softmax(zki)′) (9)

The derivative of loss w.r.t σy is calculated as:

∂Li

∂σyk

=
1 − softmax(zi)

′

σyk
2

(zki −
∑

j≤K,j 6=k

softmax(zji)
′

1 − softmax(zki)
′ z

j
i) (10)

and let:

δ = zki −
∑

j≤K,j 6=k

softmax(zji)
′

1 − softmax(zki)
′ z

j
i (11)

where the term δ = zki −
∑

j≤K,j 6=k
softmax(zji)

′

1−softmax(zki)
′ z

j
i becomes negative if the logit of

real label less than the sum of logits of other labels, which decides the direction of

the gradient. In [Saxena et al., 2019]’s work, they update the class parameters with

the negative value of the gradient using stochastic gradient descent (SGD). In such

way, if the system correctly predicts a sample with δ > 0, the gradient w.r.t that class

parameter is a positive value. Thereby the class parameter σyk is decreased when

updating it with the negative value of the gradient, resulting in the up weighting of
zki
σyk

. It acts oppositely when δ < 0.

Updating the negative gradient of loss w.r.t parameters is commonly applied to

minimize the loss. At the beginning stage of training, the learning system prefers

easy cases by up-weighting the class it has done well already. In their implementation,

a regularization term as used in [Kumar et al., 2010] is added to loss L in order to

prevent the system from focusing solely on easy classes. Therefore, as the training

moves forward, σy of hard classes are decaying gradually with increasing of σy of easy

classes. Because of the regularization term, the weights for easy class does not rise

greedily. On the contrary, it strikes the balance between acquiring easy knowledge

with large regularization penalty and turning the attention to learning hard cases with

20

low penalty. Normally, it requires a huge amount of training time and data before the

switching. It takes 20 epochs in their experiments.

They mention that updating the class parameters using the exact value of the

gradient will accelerate the learning, but they do not provide any relevant experiment.

During the inferencing, the class parameters are detached from the model because the

labels are inaccessible. The class parameters effect on the learning process and lay no

burden on the model parameters and inference.

2.5.2 Continual Learning

Lots of existing work on machine learning trains the learning system in isolation. The

resulting system may fail to achieve a reliable performance on different sources of data

[Widmer and Kubat, 1994]. The fact is, we are continually exposed to innumerable

types of data which could be varying in word distribution, annotation standard,

and even word sense. It is neither time-efficient nor sustainable to retrain a model

with new data. Thereby the fact of increasingly growing data requires our learning

system having the ability to learn new knowledge based on what has learnt and avoids

forgetting the previous.

Continual learning aims to confer a learning system the ability to incrementally

acquire knowledge from a continuous data stream, hoping to leverage the previously

learnt task to improve the current task. The main challenge is the catastrophic

forgetting problem [McCloskey and Cohen, 1989]. Learning systems suffer from

forgetting the well-learnt representations when trying to acquire knowledge from new

tasks. It is also known as stability-plasticity dilemma (Abraham and Robins, 2005) in

which models balance the trade-off between retaining previous knowledge and adapting

to the new field [Hong et al., 2018, Biesialska et al., 2020]. Another relevant key issue

is referred as capacity saturation [Sodhani et al., 2019] which emphasizes that the

representation ability of a parameterized model is limited by a fixed maximum amount,

where no more new representation could be embedded in net.

As illustrated in [Li and Hoiem, 2016] Fine tuning [Dauphin et al., 2012] and

Multi-task learning are two of the prevailing manners to transfer knowledge from

previous data. For fine tuning, it is common to have a slightly low learning rate

when fine tuning on a new task, which prevents the weights from drastically shifting.

Multi-task learning requires that all tasks are trained jointly and optimized the model

21

across tasks.

Although continual learning has been widely exploited in computer vision, to the

best of our knowledge, the work remains nascent in the field of NLP [Biesialska et al., 2020].

[Kemker et al., 2017, Shin et al., 2017] leveraged the data distribution of previous

tasks to generative models. [Greco et al., 2019] demonstrated that the catastrophic

forgetting problem could be alleviated to a certain degree by reorganizing the order of

task difficulty. The notion accords with the view of curriculum learning. Specifically,

in [Greco et al., 2019]’s visual question answering tasks, wh-questions are believed

to be easier than yes-or-no questions, since the former are simple and naive with

fixed alternative answers space, whereas the later requires reasoning. It corresponds

with the performance when separately train and test on these two tasks respectively.

The test accuracy for yes-or-no questions are merely above random guess while the

wh-questions are around 0.8. They found that precedding from wh-question (easy

task) to yes-or-no questions (hard task) facilitates the course of training and yields

better performance.

2.5.3 Loss Functions

Before getting into the functionality of loss functions, we start with introducing the

role of loss function playing in deep learning. A loss function is also referred to as error

function or cost function. What we say objective function is something more general

[Goodfellow et al., 2016]. For a deep learning model, the loss function measures how

well the model fits the data. In general, a model with lower loss fits the data better

than the higher. Given a set of data points X and labels Y , we define the dataset as

D = {(xi, yi)}, i ∈ N. The goal of training the model is to minimize the loss over D.

Formally, it is written as:

L(D) =
∑
i

L(ŷi, yi) (12)

where L(D) is the overall loss of D and ŷi is the label predicted by the model. Supposed

we use f(·) to denote our model and θ the model parameters to learn. The predicted

label of data point xi, ŷi is given by ŷi = fθ(xi). In order to get the optimal parameter

θ that minimizes the overall loss L(D), we update θ with a small step to the direction

of minimizing L at each iteration. To this end, we take the gradient of loss w.r.t θ (∂L
∂θ

)

and renew θ with the negative value of the gradient. Hopefully, it may converge and

22

approximate the global minimum after many iterations. Supposed we use stochastic

gradient descent (SGD) to optimize θ, θt+1 is derived from θt following:

θt+1 = θt − η
∂Li

∂θt
(13)

where η is the learning rate, a small scalar controlling the learning step size and ∂Li

∂θt
is

the the gradient of loss given by sample xi.

Cross entropy loss (CE) has been the most common used loss function among many

machine learning studies. It claims to work best and become the first option for many

systems. However, it has been proved not robust to noisy labels [Ghosh et al., 2017].

Further, [Wang et al., 2019] found that learning with CE may suffer from class-bias,

in which some easy classes converge much faster than the hard classes causing the

notable under-fitting of hard cases. This diverges from what is commonly believed

that the underperforming is due to overfitting to noise.

To be specific, [Wang et al., 2019] investigated the accuracy of the prediction of

intrinsically hard classes with and without noise injection on distinct learning stages

(early, middle, and later). The results showed that with noise injection, test accuracy

varied significantly across classes, whereas even without noise injection, the prediction

confidence of hard cases is at low level across all stages. they concluded that CE

by itself is not sufficient for hard case learning, noisy data will only worsen this

situation. To address the issue, they proposed Symmetric CE loss (SL) which

combines Reverse CE loss (RCE) and CE loss with weight parameters α and β:

lsl = αlrce + βlce (14)

The RCE is given by:

lrce = −
∑
k

p(k | x) log q(k | x) (15)

where p(k | x) is the predicted distribution over label k, and q(k | x) ground truth

distribution of label k which is a constant in practice. We explain how SL alleviates

that issue from the perspective of gradient. Let zj denote the logits and k the index

of true label. For clarity, we assume binary labels and k = 1. The derivative w.r.t to

23

zj is give by:

∂lsl
∂zj

=

∂lce
∂zj

− ε(p2j − pj) k = j

∂lce
∂zj

− εpjpk k 6= j
(16)

where ε is a negative constant replacement for log 0 and pj ∈ [0, 1]. The core of SL is

a scaled CE loss where ε(p2j − pj) and εpjpk are the modulating factors. The former

term increases the learning volume stepping toward true class, whereas the later term

deducts the gradient from false classes.

Further, The same team proposed a normalization framework for normalizing

any loss functions [Ma et al., 2020] addressing the similar issue. Another successful

demonstration of scaling CE loss is Focal loss.

Focal Loss (FL) which is proposed by [Lin et al., 2017] and is widely used in

object detection. The aim of FL is to address the class imbalance issue. They found

that easily classified cases compose the majority of the loss and dominate the gradient.

In object detection, it is normal to have a relatively large background and small objects

that merely account for a small part of an image. Accordingly, Focal loss up-weight

the loss of miss-classified samples by down-weighting the well-classified samples. Such

that the system focuses more on hard, miss-classified samples. It has demonstrated

success in dealing with the large class imbalance issue.

FL defines pt to measure difficulty.

pt =

p y=1

1 − p otherwise
(17)

where y ∈ {0, 1} denotes gold standard label. p is the model estimated probability for

positive class. Then pt can rewrite binary cross entropy loss (BCE):

BCE =

− log(p) y=1

− log(1 − p) otherwise
= − log(pt) (18)

Focal loss reshapes the binary cross entropy loss by adding a modulating factor (1−pt)
γ

with a tunable parameter γ ≥ 0, defined as:

FL(pt) = −(1 − pt)
γ log(pt) (19)

24

The curves of FL with different gammas is shown in Figure 3. We see that the

outer curve is the standard CE loss where easily classified examples with large pt > 0.5

can incur a loss with non-trivial magnitude. By adding the modulating factor, the

standard loss is reduced for that easily well-classified samples, addressing more focus

on those hard. Over all, FL reduces the loss contribution from the easy negatives and

increases the hard positives. It measures the difficulty via the predicted logits with

which it scales the BCE loss.

Figure 3: Plotting FL with different γ

Scaled loss functions enable the system to assign different weights to samples of

different level of difficulties. Intuitively, hard samples should be given more weight,

while the easy ones should be less considered since they are already well done. However,

fixing or carefully designed may work for some scenarios, but not for all. Samples

should not always be up-weighted or down-weighted. An elegant way is letting the

system decide what sort of sample is the most informative and turn its focus onto it

with dynamic loss functions.

Common teaching practices reveal that learning always starts with the funda-

mentals, then progressively moves onto the more advanced field. With that plain

and straightforward cognition, it is enough for junior students to solve many simple

problems. When it comes to advanced, it requires sophisticated knowledge from

multiple angles. Solving complicated puzzles needs senior students who are equipped

25

with a skillful mindset and techniques. Fundamental knowledge is less-likely to get

involved in directly when tackling higher level problems. However, it is necessary

to learn advanced knowledge based on the fundamentals. During that process, it

is also important to review the background knowledge before learning something

new. Otherwise the senior student may suffer from forgetting the well-learned, which

impedes them from moving forward.

[Wu et al., 2018] proposed a gradient based algorithm that optimizes the student

model with dynamic loss functions outputted by the teacher model. The motivation of

their work is the analogy between loss functions in machine learning and teachers in

educating human students. Loss functions reflect the teaching strategies. Conducting

exams during teaching reveals the learning quality of the student model as well as the

effectiveness of teaching skills. Therefore, the student is guided by dynamic learning

strategies, and the teacher keeps refining the teaching skills. Specifically in their work,

student model is evaluated under a stand-alone development set with the loss function

outputted by the teacher model. The gradient is computed then back propagated to

optimize the teacher model using Reverse-Mode Differentiation (RMD).

For detailed illustration, we define student model with trainable parameter w as

fw, teacher model with trainable parameter θ as gθ, L as the loss functions outputted

by gθ(·). We view the training of the student model as a sequential process with T

steps, in which w is gradually trained from initial values w0 to wT . Within a time

step, the loss function is determined by gθ(st) where st is a state vector of the student

model which can be any feature representing the current training phase. For each

training data point at time t, denoted as Dt, the derivative of the outputted loss Lgθ(st)

w.r.t wt can be written as
∑

x,y∈Dt

∂Lgθ(st)
(fwt (x),y)

∂wt
, which is used to update wt by any

optimization algorithm. Similarly, we define M̃(·) as the evaluation function which

acts like a loss function, to evaluate the student model at time step t.

When it comes to training the teacher model, RMD will loop backward from the

last time step T . The gradient of wT computed on development set can be written as∑
x,y∈Ddev

∂M̃(fwT
(x),y)

∂wT
. Since wt is already obtained and updated during the training

process of the student model, wt is no longer updated while training the teacher model.

It is used for calculating the derivative with respect to θ. θ is updated with calculating

dθ cumulatively for T steps. The training process of the teacher model will continue

until the convergence of θ. The detailed derivation of dθ and recursive computation of

26

∂M̃(fwT
,Ddev)

∂wt
can be seen in [Wu et al., 2018].

Instead of using fixed and well-designed loss function, Wu proposed a gradient

based framework of learning dynamic loss function. It has proven to be more efficient

in time compared to other optimization approach such as reinforcement learning.

Additionally, the framework does not require any human knowledge and achieves

significant improvement in NMT and image classification. However, the convergence of

the teacher model is usually costly even if the teacher model is light. Because updating

the teacher model requires a course of training of the student model from scratch.

Further, without leveraging any empirical knowledge may worsen the convergence

issue, since the teacher model may wander in parameter space blindly.

2.6 Offensive Language Detection

In this section, we will introduce the offensive language detection task as well as the

datasets, and review the literatures about the existing systems for offensive language

detection.

2.6.1 SemEval Challenge and Datasets

SemEval-2019 Task 6A (SE19T6A) is one of the subtasks of SemEval-2019 Task 6

(OffensEval-2019) which focuses on identifying and categorizing offensive language in

social media. The gold of SE19T6A is to identify offensive and non-offensive contents.

Offensiveness is perceived as veiled or direct insults, threats, any form of untargeted

profanity, and swear words [Zampieri et al., 2019b]. Each post is assigned one of the

two labels: offensive (OFF) and non-offensive (NOT). The challenge is based on a new

Offensive Language Identification Dataset (OLID) [Zampieri et al., 2019b] containing

14100 English twitter posts.

SemEval-2020 Task 12A (SE20T12A) is one of the subtasks of SemEval-2020

Task 12 (OffensEval-2020) [Zampieri et al., 2020]. It shares the same purpose as

OffensEval-2019 and use the same taxonomy of the OLID schema. Compared with

OffensEval-2019, OffensEval-2020 prepares tasks for five languages and extend an

additional Semi-Supervised Offensive Language Identification Dataset (SOLID) with

more than 9M English twitter posts [Rosenthal et al., 2020a]. In our thesis, we solely

focus on the English data.

27

OLID (SemEval 2019 data) is a large-scale and English dataset of tweets with high

quality human annotations, containing 14100 tweets in total. The tweets were collected

via Twitter’s API using keyword searching. The keywords that are likely to spread

offensive speech were selected. Given that most of the tweets in real world are not

offensive, the collation of OLID maintains the unbalanced distribution. The full list is

shown in Table 2 with the proportion of offensive tweets in each keyword. For reminder,

all user mentions and URLs are substituted by placeholders for anonymization. As

Keywords Offensive tweets (%)

you are 21.0
she is 26.6

@BreitBartNews 31.6
he is 32.4

gun control 34.7
filter:unsafe 58.9
conservatives 23.2

antifa 26.7
MAGA 27.7
liberals 38.0

Table 2: Selected keywords for retrieving tweets from Twitter’s API and the percentage
of offensive tweets for each keyword. Note that @BreitBartNews includes the tweets
sent by @BreitBartNews account and filter:unsafe corresponds to tweets that were
flagged as unsafe by Twitter.

they consider political contents tend to be more offensive, eventually, half of the tweets

in OLID are retrieved from political keywords. They divided OLID into a training set

and a test set. The label distribution is shown in Table 3.

Label Training Test Total

NOT 8840 620 9460
OFF 4400 240 4640

Total 13240 860 14100

Table 3: Label distribution of OLID training and test set.

SOLID (SemEval 2020 data) contains over 9 million English tweets that were

also collected via Twitter’s API using keyword searching. The keywords selected for

SOLID are different from OLID’s. In order to collect domain independent tweets, a

28

set of English stop words were used for keywords, such as the, of, and, to, etc. The

resulting tweets were labeled by four machine learning systems training on OLID

following democratic co-training set-up [Rosenthal et al., 2020b]. Democratic co-

training is a semi-supervised technique that leverages the models trained on supervised

data to automatically tag silver scores to unsupervised data. For SOLID, four

machine learning systems are utilized for democratic co-training, they are: PMI

[Turney and Littman, 2003], Fast-Text [Joulin et al., 2017], LSTM, and BERT. The

average prediction confidence for positive class (OFF) are taken as the silver scores,

scoring from 0 to 1. The higher a tweet scores, the stronger confidence for it to be

truly offensive. Apart from the averaged confidence scores, standard deviation is also

provided. Eventually, the large-scale silver standards are created.

We inspect the confidence score distribution of SOLID as shown in Figure 4 The

Figure 4: Histogram showing the confidence score distribution of SOLID. The x axis
is divided evenly into 10 bins. Each of them contains the samples whose scores fall
into the interval. The y axis is the probability density in which each bin will display
the bin’s raw count divided by the total number of counts and the bin width.

tweets scoring from 0.1 to 0.4 account for the nearly 80% of the data while the extreme

tweets are rare.

For testing, 1397 potential offensive tweets are selected following the above proce-

dure, and then they are further manually annotated resulting in 1090 offensive tweets.

Afterwards, another 2500 potential non-offensive tweets are also selected without

29

further manual annotation. Assuming the 0.5 as the threshold between offensive and

non-offensive, the label distribution of SOLID are shown in Table 4.

Label Training Test Total

NOT >7.6M 1090 -
OFF >1.4M 2807 -

Total >9M 3897 >9M

Table 4: Label distribution of SOLID training and test set, assuming that the silver
scores above 0.5 are labeled as OFF and below 0.5 are NOT.

A few examples of tweets from OLID and SOLID are provided in Table 5. We

can see that, in SOLID, the higher score indicates the stronger offensive signal (swear

words and profanity). The samples close to 0 show clearly non-offensive signal. Those

in the middle, tend to be vague and ambiguous. As for OLID, it corresponds to what

we discussed on the nature of offensive language section. For the rest of this section,

we will introduce the existing offensive language detection systems.

Dataset Label/Score Tweet

SOLID 0.14 @USER It is haha one more for the road: Tyler Hansbrother
SOLID 0.44 @USER most of her fits are straight fire, except the coachella furry

pants (2)
SOLID 0.51 @USER @USER How? Is he not potbellied or a midget?
SOLID 0.57 “I felt personally attacked! My dad was a fat man when I was a little

boy!”
SOLID 0.69 i really fucking miss having someone to talk to all day
SOLID 0.88 @USER Popeye’s spicy chicken on some waffles = the shit
OLID OFF @USER YESSSSSHHHHH who else call you shitgull if it were not me

or ryme
OLID OFF @USER I want to kiss your ass.
OLID NOT Are you fucking serious? URL
OLID NOT @USER @USER I don’t think he’s guilty....this is what you leftwingers

do...make up sexual assault claims about conservatives.

Table 5: Real tweet examples from OLID and SOLID

2.6.2 Existing Systems for Offensive Language Detection

NULI, developed by [Liu et al., 2019a] ranks 1st place in SE19T6A and achieved the

SOTA results. NULI outperforms the second place system by 1.4% in F1 score, which

is the largest gap among the top systems. Their system is based on BERT. What

30

distinguishes them from others is the preprocessing. Particularly, they mapped emojis

to substituted meaningful phrases using an open project on github. Since BERT is

not designed for emojis, emoji substitution may enrich the text features for BERT. It

is popular to add a ’#’ to the beginning of an unbroken text to create a hashtag in

tweets. They employed another open project to tokenize the hashtag and eliminated

the ’#’ (e.g. #GUNCONTROL → GUN CONTROL). At last, they substituted URL

mentions with http and limited the occurrence of repetitive @USER mentions to 3.

They stratified split the OLID into 9:1.5 as training and development set and fine

tuned the BERT model for 3 epochs. The F1 score on the development set and official

test set is 78.3% and 82.9% respectively.

Nikolov-Radivchev is developed by [Nikolov and Radivchev, 2019] ranking the

2nd place in SE19T6A. For preprocessing, they excluded all @ and # symbols and

tokenized the hashtags as NULI. The data was split into a training and development

set in a ratio of 10:1. Afterward, They fine tuned BERT-large-uncased model and it

achieves 78.1% and 81.5% of F1 score with development data and official test data

respectively.

UM-IU@LING, developed by [Zhu et al., 2019] ranks 3rd place in SE19T6A. No

specific preprocessing is conducted. They fine tune the BERT-base-uncased model on

OLID and use the output [CLS] token embedding as the input for the classification

layer. Binary CE loss is used for loss function. They take the small trial dataset as

their development set which is available during the competition. The reported F1

score on development set and official test data is 83.9% and 81.4% respectively.

MIDAS, built by [Mahata et al., 2019] qualifies the fourth place in SE19T6A.

They takes a careful look at OLID raw data and dispute that about 4% of the

tweets are seemingly mislabeled. The issue is more often in NOT label tweets (e.g.

ANGELINA IS SO FUNNY AT RHE WRONG TIMES IMNGONNA SHOOT THIS

BITCH UPPDOALS Label: NOT). Experiments shows that the system benefits from

removing these samples. Besides, a few common swear words and their variants are

normalized to unified forms respectively. ’#’ symbols are removed and all hashtags

are tokenized as NULI. Eventually, they submitted an ensemble system of CNN and

bidirectional LSTM with attention and bidirectional LSTM followed by bidirectional

gated recurrent unit (GRU) achieving F1 score of 80.7% with official test set.

As examined by [Zampieri et al., 2019b], 7 teams out of the top 10 fine tune the

31

BERT in SE19T6A and we have reviewed 4 systems in detail. A summary for the top

6 systems are listed in Table 6. We can see from their experiments, the official test

set is simpler than the training set as models increase by approximately 3% in testing.

Most of the systems leverage transformer based structure, and the performance gaps

are trivial. Slight changes in preprocessing may lead to the change of ranking. Besides,

the improvement brought by the model ensemble is also subtle. Yet, it makes the

system bulky and increases inference time. For the rest of this section, we will review

the systems in SE20T12A.

System Model F1 score(%)

NULI BERT∗ 82.9
Nikolov-Radivchev BERT-large-uncased 81.5

UM-IU@LING BERT-base-uncased 81.4
Embeddia [Pelicon et al., 2019] BERT-large-uncased 80.8

MIDAS CNN+BiLSTM+LSTM,GRU 80.7
BNU-HKBU [Wu et al., 2019] BERT-base-uncased 80.6

* The type of BERT is not reported

Table 6: Summary of top 6 systems for SE19T6A. The table is sorted according to the
ranking of SE19T6A in descending order. Some systems not discussed herein, come
along with citations since they use similar techniques.

UHH-LT is the 1st ranking system in SE20T12A [Wiedemann et al., 2019]. Specif-

ically, they perform fine-tuning on BERT and some BERT variants models with

supervised dataset OLID. In addition, the models are further trained via the MLM

task on SOLID for the sake of domain adaptation. Since domain adaptation requires

unsupervised data, they avert handling the silver standard. Regarding the hardware

limitations, 5% of SOLID data (436k) are randomly sampled and are used for MLM

training. For preprocessing, @USER and URL mentions are removed beforehand. In

the competition, an ensemble of RoBERTa-based models was submitted in which the

further MLM trained model is fine tuned 10 times using 90% of OLID data leaving

the rest for validation. The F1 score on official test data of SE20T12A is 92.04%.

Galileo qualifies the 2nd ranking in SE20T12A [Wang et al., 2020]. Galileo aims

to build a multilingual model for offensive language detection. The work is built

on XML-R [Conneau et al., 2020] which is a RoBERTa based cross lingual language

model pre-trained on Common Crawl dataset in over 100 languages. They add a

32

classification layer over XML-R and fine tune XLM-R with OLID data, for English.

Galileo achieves high performance on OffensEval-2020 for all languages, and the F1

score for English official test data is 92.0%.

Rouges [Dadu and Pant, 2020] utilizes XML-R as [Wang et al., 2020] and ranks

3rd. They fine tune the XML-R model sequentially on supervised data. OLID is split

into 9:1 as training and validation set. The reported F1 score on validation data and

official test data of SE20T12A is 70.9% and 91.9% respectively.

GUIR [Sotudeh et al., 2020] ranks fourth place in SE20T12A. They preprocess

the data similar as [Liu et al., 2019a] did in NULI and further train the BERT-base

model with MLM and next sentence prediction objectives in unsupervised manner for

the sake of domain adaptation. They report the F1 score both on SE19T6A (82.8%)

and SE20T12A (91.7%).

KS@LTH [Socha, 2020] is the 5th ranking system. They first fine tune the

RoBERTa-large model with OLID supervised data. In order to use the semi-supervised

data, they manage to sample 400,000 tweets from SOLID based on the silver standard

score as weight. Afterward, the 400,000 tweet samples are further labeled using

the fine tuned RoBERTa model. 20,000 tweets with the highest score are labeled

as OFF, while the 20,000 lowest are labeled as NOT. In this way, 40,000 further

labeled tweets are joined into the training set. The resulting model achieves 91.5 F1

score on SE20T12A test data. However, they submitted another RoBERTa model for

SE20T12A, because they found that rather than using the silver standard, fine tuning

the RoBERTa on Davidson (an open dataset for hate speech and offensive language)

[Davidson et al., 2017]. This outperforms the previous by 0.2%.

Hitachi [Ravikiran et al., 2020] ranks 34th in SE20T12A with F1 score on official

test data of 0.909. To utilize the silver standard, they introduce a sampling algorithm

to access the trustworthy tweets from SOLID. Specifically, they retrieve the tweets

whose confidence standard deviation fall into a predetermined range. this reduces the

amount of tweets to 2.4M. Afterward, this filtered subset is combined with a auxiliary

dataset from OffensEval-2019 subtask B in which all tweets (≈ 0.2M) are offensive

and can also be seen in SOLID. This results in less than 2.6M unbalanced subset,

in which tweets from the majority class are randomly removed to release the class

imbalance issue. The final F1 score on SE20T12A test data is 90.9%.

Although the test set of SOLID is larger than OLID’s, the results indicate SOLID

33

test data is much easier. As SE20T12A also provides training data for 5 languages,

Galileo and Rouges leverage all of them and fine tune on RoBERTa based cross lingual

pre-trained language mode and yield high performance. Despite this, the gains brought

by increasing model size are still subtle. With domain adaptation and BERT base

model, GUIR is able to surpass many larger size models. Although domain adaptation

leverages SOLID data, it is an unsupervised approach and does not use the silver

standard. As we know that SOLID is a set of random tweets collected from Twitter,

domain adaptation is nothing more than adapting in Twitter language. But it is still

undeniable that it enhances the model’s representation ability. The drawbacks of

domain adaptation would be relatively costly in time. KS@LTH uses their own massive

re-labeled SOLID data and discards the silver standard labels. Hitachi resamples the

SOLID using the silver standard but underperforming. To the best of our knowledge,

overall, few teams leverage the whole SOLID due to its massive volume, hence, taking

subsets is the common approach. Table 7 shows a system summary on SE20T12A.

System Model F1 score(%) Use of SOLID Use of Silver Standard

UHH-LT RoBERTa-base 92.0 Domain adaptation False
Galileo XML-R 92.0 - False
Rouges XML-R 91.9 - False
GUIR BERT-base 91.7 Domain adaptation False

KS@LTH RoBERTa-large 91.7 Further re-labeling False
Kungfupanda [Dai et al., 2020] BERT-based 91.5 - False

Hitachi BERT-base-uncased 90.9 Selecting a subset True

Table 7: System summary for SE20T12A. The table is sorted according to the ranking
of SE20T12A in descending order. Some systems not discussed herein, come along
with citations.

Two team top teams out of seven use SOLID for domain adaptation, with three

of them discarding it, while the one team re-label the silver standard with their own

system and only last team truly exploited the raw silver standard. To the best of

our knowledge, the silver standard is rarely exploited and the approaches to properly

exploit SOLID are scarce.

34

Chapter 3

Experiments

Taking the SemEval shared tasks (SE19T6A and SE20T12A), the supervised offensive

language identification dataset OLID and semi-supervised dataset SOLID are used.

The overly large size of SOLID and its questionable annotations impede lots of studies

truly using the dataset. Addressing these problems, two practicable ways using the

SOLID are investigated. Class parameters leverage the curriculum learning and enable

a model to assign weights to samples of different difficulties, while dynamic loss

functions offer more flexibility in controlling difficulties. The two ways are inspired

based on the preliminary findings on selective fine tuning over OLID and SOLID.

Before introducing the experiments, the two datasets are first compared from linguistics

aspects, in order to gain insights of the two tasks and the datasets.

3.1 Comparing Datasets

This section analyzes the datasets (OLID and SOLID) by providing statistics respec-

tively, and compare them with each other standing on the view of linguistic notions.

To be able to operate on SOLID and provide inner analysis, SOLID is divided into 20

folds, namely SOLID-fold, each of which contains 450,000 tweet samples approximately.

To show the word token level distribution of SOLID and OLID, the word frequency of

the most common words in two SOLID folds and OLID are calculated respectively.

ANNIE [Cunningham et al., 2002] is used as the tokenizer and remove the English

stop words. The English stop words such as the, a, of, is, to etc. could be distracting

under this experiment because they are too common in English and are presumed

35

to be uninformative in representing the semantics without context. Regarding the

all-capitalized tweets and the casual spelling, the texts are converted to lower cases.

As shown in Figure 5, 6, and 7, the most 25 words are selected in SOLID-fold-4,

OLID, and SOLID-fold-7 respectively and calculate the normalized word frequency:
Raw Word Frequency

Total Number of Tweets
. Note that don is the tokenized form of don’t. The x axis is the

frequent words and the y axis is the normalized word frequency.

Figure 5: Normalized word frequency of the most frequent words in SOLID-fold-4

Figure 6: Normalized word frequency of the most frequent words in OLID

We can see from Figure 5 and 7 the top words from SOLID-fold-4 and SOLID-fold-7

are almost identical. The word frequency of the top words in SOLID folds (the blue

and green bars) are almost at the same level. However, among these words, the

frequency of such as like, @user, don, people, know, think, right, in OLID is even

higher, It can be infered that utterances in OLID are more opinionated and expressive

36

Figure 7: Normalized word frequency of the most frequent words in SOLID-fold-7

than those in SOLID. We also observe that people enjoy adding redundant @USER

repeatedly for emphasis. The term right should be used a lot more in the political

context in OLID, as we describe the genre of tweets in OLID in the earlier section.

As for Figure 6, the trending words in OLID are distinct from SOLID’s in which

the political terms even surpass the common words in daily conversations such as just

and like. However, those political terms rarely occur in SOLID folds, making the huge

divergence of the word composition of OLID and SOLID. Interestingly, we notice that

love occurs less often in OLID.

To inspect more on word level distribution, an offensive word list1 is employed that

is collected by Luis von Ahn’s Research Grouping from CMU and includes over 1300

English offensive terms, most of them are profanities. Besides, AFINN [Nielsen, 2011],

a manually crafted sentiment lexicon that assigns sentimental scores to 2477 English

sentiment-laden words is used. The sentimental score ranges from -5 to 5, the higher

score the more positive in sentiment, while 0 indicates neutral. Afterward, the words

are divided by their scores and sum up the normalized frequency among the three

comparing datasets respectively, and ditto the CMU list. As shown in Figure 8, overall,

the sentimental-laden words are more frequent in OLID than SOLID folds and the

frequency even doubles in terms of the profanities.

Further, the Spearman rank correlation coefficient is used as a measure of corpora

similarity. Spearman rank correlation coefficient, denoted as ρ, is a nonparametric

measure of correlation between the rankings of two variables. It assesses how tight

1https://www.cs.cmu.edu/~biglou/resources/

37

https://www.cs.cmu.edu/~biglou/resources/

Figure 8: Summing the normalized frequency in the CMU list and words with different
AFINN scores.

the relation between two variables can be measured. The value of ρ always ranges

from -1 to 1 where the negative value implies the negative correlation. The value of ρ

can be computed using equation 20.

ρ = 1 − 6
∑

d2i
n(n2 − 1)

(20)

where n denotes the number of observations and di represents the difference between

two ranking. In our expermients, word ranking is obtained in following steps: given

two datasets to operate on,

• union two datasets.

• select the top n common words from the union dataset.

• compute the sorted word count vectors of two datasets respectively.

• for each most common word, the ranking in two datasets namely ra, rb are

obtained from the word count vectors.

• compute the value of ρ using formula 20 where di = ra − rb

Specifically, five subsets are randomly sampled from SOLID with the same size of

OLID, namely SOLID-subset, and then computer the ρ values with OLID respectively.

The results are shown in Table 8. In addition, the ρ in between the subsets are also

computed, and the averaged score are provided at the last row.

38

Corpus vs Corpus top 500 top 320 top 200 top 150

OLID vs SOLID-subset-1 0.590 0.652 0.660 0.675
OLID vs SOLID-subset-2 0.613 0.652 0.659 0.674
OLID vs SOLID-subset-3 0.596 0.651 0.669 0.674
OLID vs SOLID-subset-4 0.620 0.656 0.653 0.665
OLID vs SOLID-subset-5 0.601 0.649 0.663 0.667

Inner SOLID-subsets 0.998 0.998 0.999 0.999

Table 8: ρ values between OLID and SOLID-subsets and in between SOLID-subsets.

The numbers are stable when comparing OLID with SOLID-subsets. It is reasonable

that the ρ increases as n decreases, as the common word bucket shrinks, the difference

(di) between ranks reduces. The word level similarity between OLID and SOLID-

subsets are largely divergent compared with the inner ρ values of SOLID-subsets.

Given that a corpus is never a random set of words, natural languages share

commonalities in terms of diction or syntax. Above experiments demonstrate the

word level distinction of OLID and SOLID. They showcase a highly repetitive nature

between the SOLID folds and the varying content between OLID and SOLID at word

level. For the rest of this section, we apply the above statistics on higher level linguistic

notions: POS and typed dependency, which may give us hints of the syntax differences

between SOLID and OLID. We calculate the POS frequency and typed dependency

frequency out of OLID and SOLID-folds respectively as shown in Figure 9 and 10.

Figure 9: Normalized POS frequency of three datasets

The POS tag and typed dependencies with low frequency are removed from the

figure. We notice that the frequency of VBZ (present tense, 3rd person singular

39

Figure 10: Typed dependency frequency of three datasets

verb), NNP (proper noun, singular), NNS (plural noun) and JJ (adjective) notably

surpass that of SOLID-folds, which corresponds with our observation that political

terms and sentiment-laden words are more prominent in OLID but less in SOLID.

The dependency distribution is less volatile between OLID and SOLID-folds where

compound (general modifier) and amod (adjectival modifier) of OLID slightly pass

that of SOLID-folds.

To have a better insight of the offensive language in both OLID and SOLID, we

redo the statistics on OFF2 data and NOT data respectively. As we have seen before,

the SOLID-fold-4 is almost identical to SOLID-fold-7 from the perspective of linguistic

statistics. To avoid the handling the whole SOLID, and linguistically inspect the

difference of offensive language between OLID and SOLID, we combine the OFF data

from those folds temporarily in this section for comparison, namely SOLID-OFF and

take the NOT data from SOLID-fold-7, namely SOLID-NOT and the OFF data from

OLID, namely OLID-OFF. To observe linguistic features of the offensive utterances,

we compute the normalized POS frequency and normalized typed dependencies in

SOLID-OFF, OLID-OFF and SOLID-NOT respectively. The results are shown in

Figure 11 and Figure 12. Interestingly, these two figure resemble Figure 9 and

Figure 10, despite the frequency of NN in OLID slightly surpass the others. The

resemblance indicates that the OFF utterances are offensive in different ways between

SOLID and OLID. As we observed before, the frequency of VBZ, NNP, NNS and

JJ (adjective) in offensive context still surpass that of SOLID. This raise our interest

2The labels are defined in section SemEval Challenge and Datasets where OFF stands for offensive
data and NOT for non-offensive.

40

Figure 11: Normalized POS frequency of SOLID-OFF, OLID-OFF and SOLID-NOT

Figure 12: Normalized typed dependency frequency of SOLID-OFF, OLID-OFF and
SOLID-NOT

to discover the different offensive diction between the two datasets. Therefore we

compare the normalized term frequency of most frequent words among SOLID-OFF

and OLID-OFF. The results are shown in Figure 13 and Figure 14. From Figure 13

and Figure 14 we can see the frequency of some profanities are distinct between two

SOLID-OFF and OLID-OFF. Their frequencies in SOLID-NOT are significantly higher

than those of OLID-OFF, which may suggest that user prefer cussing straightforward

with profanities in SOLID, however, in OLID, user tend to be more obscured and

veiled.

In conclusion, the high overlap of most of the above statistics between the folds

of SOLID showcases the repetition nature of SOLID. Comparing SOLID and OLID,

they are not only distinct from the content of tweets, but also from the phrasing and

41

Figure 13: Normalized term frequency of frequent words in SOLID-OFF

Figure 14: Normalized term frequency of frequent words in OLID-OFF

the way being offensive. More political terms and sentiment laden words in OLID

compared to SOLID indicates that users in OLID tend to be expressive. However,

when comparing the OLID-OFF and SOLID-OFF, the SOLID is the one who prefers

cussing straightforward; OLID, in contrast, is less direct. This could serve as an

evidence of the simplicity of SOLID.

3.2 Baseline Study

To get the baselines, the training samples in OLID are split into a training and

development set in a ratio of 8:2, which results in 2648 samples in the development

set, namely OLID development set, containing 1763 OFF labels and 885 NOT labels.

We use this development set across our experiments, and provide the final result in

42

official test data at the end.

A series of vanilla models: BERT, RoBERTa, DistilBERT, DistilRoBERTa, Hate-

BERT, BiLSTM, and CNN are trained with OLID and validate them on the OLID de-

velopment set. The results are presented in Table 9. The hyper-parameters are selected

via random search based on prior experience and the Transformer based model are fine

tuned for 1 epoch with learning rate 1e-5, while the CNN and BiLSTM are trained for 3

epochs with learning rate 2e-4. The Adam optimizer [Kingma and Ba, 2014] are used

across our experiments, unless another specified. The use GLoVe word embeddings as

the input for BiLSTM and CNN and for Transformer based models, the [CLS] token

embedding is extracted from the last hidden states as the input of the classification

layer. This thesis refers this as the default way to fine tune the Transformer based

models in the rest of the experiments. Following the hyper-parameters recommended

in [Caselli et al., 2021], that is learning rate of 1e-5 and batch size of 32, HateBERT

is fine tuned and is then validated. From the baselines in Table 9, we see that the

Model F1-1 Macro F1

RoBERTa 0.716 0.788
BERT-base 0.716 0.787

DistilRoBERTa 0.715 0.783
DistilBERT 0.707 0.783
HateBERT 0.686 0.759
BiLSTM 0.636 0.744

CNN 0.631 0.739

Table 9: The performances of baseline models. The evaluation metric of the OffensEval
is used, which is macro-averaged F1 (Macro F1). For better presentation, F1 score
with respect to positive class (offensive class) is added, namely F1-1. The results are
ranked by F1 score in descending order.

Transformer based language models notably superior to training a neural network from

scratch. They require less training epochs and yield higher results. The performances

of using BERT or RoBERTa or their distilled version are not distant. The macro F1

and F1-1 does not benefit largely from the increase of model capacity. The HateBERT

loses its competitiveness. This may caused by the incompatibility of offensive tweet

language and the abusive Reddit language that the HateBERT is specialized. Thereby

the DistilBERT model is used as our default pre-trained model for the rest of our

experiments since it yields the competitive results to the larger pre-trained models

43

with lite model size and the fine tuning and inference are faster. In addition, without

any extra efforts, the RoBERTa baseline hit over 78% in F1, surpassing the CNN by

5%. However, not to mention the model’s sizes of them are tremendously distinct, 5%

improvement under the great pre-trained effort of RoBERTa also seems insignificant.

The closeness between the baselines showcases that the visibility of improvement is

small and difficult.

3.3 Selective fine tuning on SOLID

This thesis employs continual learning on our tasks, in which a model is first fine

tuned on a dataset, after which the model is further fine tuned on another in domain

heterogeneous dataset. To address the catastrophic forgetting problem, the idea of

mimicking the data distribution [Kemker et al., 2017, Shin et al., 2017] is employed

in a simplified manner. That is, to approximate the label distribution of OLID,

down-sampling on the overwhelming class data is applied to SOLID. The down-

sampling is performed when subsets are sampled from SOLID. Likewise, we borrow

the aspects from curriculum learning to mitigate the catastrophic forgetting as shown

in [Greco et al., 2019]. Specifically, the models are selectively fine tuned with different

subsets of multiple difficulty levels. The experiment results are then investigated and

analyzed. In addition, we will also present experiments showing the limitation of

model capacity by conducting a long term fine tuning and discuss to what extent that

models gain from long term fine tuning.

It is a challenge to exploit the SOLID, since its size is rather large and the nature

of the silver standard. When it comes to BERT fine-tuning, it is estimated to run over

weeks on a common CPU machine. Sampling a subset from it is a common approach

among the teams who took part in the SE20T12A. As it investigated before, two top

teams out of seven use it for domain adaptation, with three of them discarding it,

while the one team re-label the silver standard with their system but rarely properly

exploit SOLID. Addressing this issue, we make the first attempt to investigate the

potential of SOLID by selectively leveraging the subsets of SOLID with various sizes

and content, taking the idea from continual learning. Beside, we manage to fine tune

a pre-trained model with different SOLID folds incrementally. Overall, in this section,

we present:

44

• selectively further fine tuning a pre-trained language model with different SOLID

subsets separately.

• fine tuning with different SOLID folds incrementally.

In order to reduce the model complexity, we decide to use DistilBERT model as our

default pre-trained language model across our experiments.

Selective fine tuning the DistilBERT model is fine tuned with OLID for one

epoch, then is further fine tuned with a small subset of SOLID for another epoch. Since

it is fine tuned successively, the weights are shared and the same hyper-parameters

settings are used across two epochs. The complementary subsets are sampled based on

simple criterions (the coverage of confidence scores) which are described in the caption

of Table 11. And a summary of these subsets is in Table 10. Note that we preserve

the distribution of OLID while sampling the subsets, by means of down-sampling the

majority class (non-offensive class). Results are shown in Table 11 and Table 12. The

results are averaged over at least 5 runs, if no specific mention.

Subset Size Down-sampling Balanced

SOLID-TH46 14100 Yes No
SOLID-TH55 14100 Yes No
SOLID-TH55b 14100 Yes Yes
SOLID-TH55f 450,000 Yes No
SOLID-{1...5} 14100 No No

Table 10: Description of some subsets. The subsets are sampled based on conditions
described in the caption of Table 11.

As shown in Table 11, very little improvement is made during the second epoch

without SOLID corpora. Both SOLID-4 and SOLID-5 outperform other random

subsets whereas F1 scores even descent in SOLID-2, 3. None of a random subset rises

in F1 measure with respect to positive class. We speculate the reason may be due to

the severe data unbalance of SOLID corpora where negative samples (non-offensive

class) accounts for higher proportion than that of OLID. As shown in Table 8, SOLID-

4, 5 are more distant from SOLID, compared to others. Increasing data variety could

benefit further training.

For conditional subsets, apart from setting thresholds, they are sampled following

the sample distribution of OLID, which amplifies the contribution of positive class. As

45

Fine tune on First fine tuning Second fine tuning Difference Ranking

OLID
Macro F1 .782 .781 -.1%

#7
F1-1 .705 .705 0%

OLID, SOLID-1
Macro F1

.779

.780 +.1%
#9

F1-1

.705

.692 -.7%

OLID, SOLID-2
Macro F1 .775 -.4%

#12
F1-1 .682 -2.23%

OLID, SOLID-3
Macro F1 .777 -.2%

#11
F1-1 .687 -1.96%

OLID, SOLID-4
Macro F1 .785 +.6%

#3
F1-1 .704 -.12%

OLID, SOLID-5
Macro F1 .786 +.68%

#2
F1-1 .702 -.32%

OLID, SOLID-TH55
Macro F1 .788 +.88%

#1
F1-1 .718 +1.25%

OLID, SOLID-TH55b
Macro F1 .781 +.2%

#7
F1-1 .712 +.7%

OLID, SOLID-TH56
Macro F1 .780 +.1%

#9
F1-1 .693 -1.2%

OLID, SOLID-TH45
Macro F1 .784 +.54%

#5
F1-1 .713 +.84%

OLID, SOLID-TH46
Macro F1 .785 +.64%

#3
F1-1 .700 -.46%

OLID, SOLID-TH37
Macro F1 .782 +.32%

#6
F1-1 .705 0%

OLID, SOLID-TH38
Macro F1 .746 -3.32%

#14
F1-1 .627 -7.78%

OLID, SOLID-TH28
Macro F1 .749 -3.0%

#13
F1-1 .632 -7.3%

OLID, SOLID-TH19
Macro F1 .738 -4.1%

#15
F1-1 .618 -8.7%

Table 11: Results using different complementary subsets to further train the Dis-
tilBERT model. The first epoch is trained on OLID solely and is shared across all
experiments as the base tuned model. Note that all subsets above are equal size.
Unlisted hyper-parameters are the same across these experiments. The first line
sets a baseline where no complementary subset engages in. Additionally, for better
comparison, the baseline results are averaged on a dozen runs. SOLID-1 to 5 refer
to the SOLID-subsets mentioned at Table 8 respectively. The two digits with the
TH indicates a score threshold while sampling a subset, where any confidence score
satisfies the conditions: first digit > Score ∗ 10 and Score ∗ 10 > second digit. (e.g.
SOLID-TH37 indicates this subset contains samples of which scores satisfy 0.3 > score
and score > 0.7.) ’b’ denotes a balanced subset where ratio between classes is closed
to 1. For clarity, the subset from SOLID-1 to 5 are named random subsets; the subsets
with the TH modifier conditional subsets.

46

Fine tune on First fine tuning Second fine tuning Difference (%) std.

OLID
Macro F1

.779

.780 +.1 .410
F1-1

.705

.705 0 .004

OLID, SOLID-TH3558
Macro F1 .794 +1.32 .003

F1-1 .723 +1.57 .003

OLID, SOLID-TH2558
Macro F1 .792 +1.30 .002

F1-1 .720 +1.54 .002

OLID, SOLID-TH2557
Macro F1 .792 +1.26 .002

F1-1 .717 +1.22 .002

OLID, SOLID-TH3468
Macro F1 .789 +1 .002

F1-1 .710 +.5 .002

OLID, SOLID-TH3557
Macro F1 .786 +.72 .003

F1-1 .703 -.18 .005

OLID, SOLID-TH2468
Macro F1 .782 +.34 .006

F1-1 .693 -1.18 .001

OLID, SOLID-TH4556
Macro F1 .770 +.12 .002

F1-1 .712 +.68 .001

Table 12: Further experiments based on Table 11. In particular, the four digits
are used as an identifier where the first two digits and the other two describe two
conditions mentioned in Table 11 respectively. (e.g. TH2468 denotes the criterions
scoring between 0.2 and 0.4 and between 0.6 and 0.8). Other notations stick to Table
11. The results are ranked by F1 score in descending order.

a reminder, while referencing a subset, the SOLID prefix is omitted for clarity. Among

the experiments in Table 11, TH55 strikes the most considerable increase during the

second epoch. Neither TH45 nor TH56 surpasses TH55, such that we owe it to the

significant contribution of middling samples, especially those barely above .5.

Subset TH55 can be also viewed as a random subset without any criterion, except

rectifying the distribution. Comparing it with random subsets, we learn that it is

beneficial to uplifting the proportion of positive samples. Nevertheless, the limited

improvement on F1-1 of theTH55b subset indicates that a balanced subset does not

guarantee a relatively large increase in positive class. Preserving skewness is helpful

for our task.

Interestingly, extreme samples such as TH28, TH38, and TH19 deteriorate the

performance largely. TH28 gains slight improvement for the negative class, which

compensate for the loss of positive prediction; TH19 does not bring any benefits.

Consequently, we consider excluding the polarized samples. Corresponding experiments

will be provided later.

Consistent drop of macro F1 is observed as the criterion range shrinks. TH55

outperforms both TH46 and TH37 largely, and ditto to TH45, TH56 but relatively

47

smaller in scale. These underperforming subsets exclude the middling samples while in-

creasing the proportion of extreme samples. This behaviour may imply the importance

of middling sample and the possible adverse effect of extreme sample.

Further in Table 12, aware of the impacts of extreme cases, we exclude them by

adjusting the criterion range from small and intensive to large and relaxing. Meanwhile,

we investigate the impact on excluding the middling cases, especially the tweets scoring

between 0.4 and 0.6. Overall, further fine tuning DistilBERT with SOLID excluding

the extreme cases is superior to feeding raw SOLID data. Comparing TH2468, TH3468

with TH2558, TH3558, we see more improvement is made if the middling samples

are included. This goes against our general perceptions that middling cases trivially

contribute to training a classifier for they usually carry vague and sometimes ambiguous

signals to the system. In this sense, the middling cases are referred as hard cases while

on the contrary, the extreme cases are easy cases with clear meanings that are strong

offensive or totally non-offensive signal. However, in the offensive identification task,

while further fine tuning a language model, we encourage exposing the model to these

middling cases. When it comes to the extreme cases, the system attains the highest

macro F1 when excluding the samples above 0.8 and below 0.3 (TH3558). Results

shown in Table 12 further justifies our conjecture drawing from Table 11.

Additionally, the experiments are extended on representative folds shown in 13. The

results are increased by varying degrees because of abundant training samples. TH3558

still yields the best performance and less volatility among the others. Apparently,

excluding the extreme cases benefits the system and preserving the middling cases

increase the model robustness.

Incremental fine tuning In this section, we will explore the potential of using

SOLID corpora. We take the whole SOLID corpus as training set and validate the

model performance on the OLID training set which consists of 14100 annotated

samples. Firstly, the corpora is divided into 20 folds where each fold contains 450,000

samples approximately. We design three training strategies namely AC, ER and SP,

each of which results in two curves shown in Figure 15, representing the macro F1

and F1 score w.r.t positive class (F1-1).

• AC: the folds are trained on the top of each other cumulatively.

• ER: the extreme samples of each fold are removed. Then train cumulatively as

AC.

48

Second fine tune on First fine tuning Second fine tuning Difference (%) std.

OLID
Macro F1

.779

.780 +.1 .410
F1-1

.705

.705 0 .004

SOLID-TH3558f
Macro F1 .805 +2.63 .002

F1-1 .733 +2.81 .005

SOLID-TH55f
Macro F1 .799 +1.99 .004

F1-1 .720 +1.53 .009

SOLID-TH46f
Macro F1 .796 +1.7 .005

F1-1 .718 +1.3 .009

SOLID-TH3468f
Macro F1 .800 +2.10 .003

F1-1 .728 +2.25 .009

Table 13: Averaging performances on representative folds. SOLID are first filtered
under different criterions. Instead of taking a subset from it, all qualified samples
are divided into folds where each fold consists of nearly 300,000 samples. Regarding
the time consuming issue, we randomly pick fine tune our model with 5 of the folds
separately and average the results. For conciseness, some unnecessary notations are
omitted. The standard deviations are provided to inspect the robustness.

• SP: the folds are trained separately and independent of each other.

Whatever strategy is used, we validate our models once a fold finishes training,

which results in performances for each time step. Note that we train for only one

epoch for each fold. For AC and ER, the model generated at the last time step, is

trained on the whole SOLID corpus. To verify our analysis of influence of extreme

samples, we remove samples scoring above 0.8 or below 0.2 in each fold for ER.

As illustrated in Figure 15, Strategy SP is underperforming at any fold and shows

a lot more volatile than AC and ER. The SP serves as a baseline of fine tuning

DistilBERT on the folds of SOLID. In general, there is a rising trend among AC and

ER curves, despite some fluctuations. However, feeding such massive data does not

yield a remarkable performance. The bonus of data volume is very limited: the macro

F1 increases merely about 1% training with 9 millon data. This can be explained

by the phenomenon of capacity saturation in which the representation ability of the

model is limited and the trade-off between retaining learned knowledge and obtaining

the new is inevitable. We also find that for macro F1, in the early stage of training,

the AC surpasses ER strategy till the fold 7, after which they intertwine and it is hard

to tell which strategy is better. However, the F1-1 for ER in fold 1 outperforms the

AC but it drops dramatically in later folds. We speculate that in the first fold, the

model preserves the memory of the original language model, hence, it benefits from

the removal of extreme cases. When it comes to the later folds, due to the catastrophic

49

forgetting and lack of extreme samples, it loses the memory of those strong signals

of offensive features. After incremental learning of a large scale of data, the model

regains those feature signals and catches up with the performance of AC.

Figure 15: F1 values computing on OLID training set. For AC and ER, the model
validated at time step i is trained on the top of folds k (k <= i; k, i ∈ Z+). ER
indicates that the extreme samples are excluded for each fold. SP denotes the baselines
where each fold is trained individually.

The incremental fine tuning experiments showcases the limitation of the using the

whole SOLID. It fails to guarantee an apparent improvement. On the contrary, it may

suffer from overfitting due to the repetitive nature and the corrupted annotation of

SOLID. Therefore, it worths nothing to use the whole SOLID dataset for the trivial

improvement.

In conclusion, we find it beneficial to remove the extreme cases when further fine

tuning our model, because the extreme cases (easy, clear cases) may distract the

preliminarily fine tuned model and impedes the model from further learning. When

fine tuning from scratch, the extreme samples could to some extent not interfere the

learning process since they often present straightforward strong signals.The middling

cases (hard, ambiguous cases) can not be neglected. Since they are easy to flip

between offensive and non-offensive, they are tricky but are more informative. What

is discovered from the selective fine tuning leads to the automatic curriculum learning

50

based on the difficulty of samples. It worth further investigation on the how different

difficulty samples impact the learner.

3.4 Curriculum Learning on SOLID

This section further leverages the silver standard and investigate the impact of extreme

samples and middling samples standing on the view of curriculum learning (CL). A

dynamic CL manner is implemented: class parameters [Saxena et al., 2019] in our

system and design a series of experiments with the purposes of

1. fitting the semi-supervised data using class parameters;

2. unveiling the effects of applying class parameters on semi-supervised data;

3. getting the intuitive insights into class parameters’ behaviour.

A simple solution to handle the silver standard is to divide them evenly into bins.

Then each bin is treated as a real class, converting continuous data to categorical.

However, because of the nature of tweets and offensive languages, it is hard to define

the offensiveness of tweets and offensive utterances are offensive in different levels.

Some may have strong offensive signals but some are vague. Leveraging a dynamic

system to learn these various signals is preferable.

More specific, for a classification task of k classes, we have yi ∈ {0, 1, ..., K} and

corresponding class parameters σy ∈ RK , where the each entry is a learnable weight of

the corresponding class. Let zi ∈ RK be the logits predicted by the network. To adapt

the class parameters to semi-supervised data, we set K = 10 to divide the dataset

into 10 bins. We therefore have σy ∈ R10, but the shape of outputted logits zi remains

unchanged. For the binary classification task, zi ∈ R2. The logits zi is scaled by the

class parameters depending on the bin xi in.

[Saxena et al., 2019] updates the data parameters σy using the negative of gradient.

Thereby, the system will first focus on the easy samples, and then it turns its attention

to hard samples gradually, which consumes numerous time and data. It is problematic

to spend a large amount of time on training, particularly overfitting in a small dataset.

Although it would be less impactful when it comes to a larger data, it is still preferable

to designa light and fast-training system.

51

For consistency, we further fine tune our model based on the fine tuned model that

we used in the last section. Since this model is already fine tuned on OLID for an epoch,

we assume that it has been preliminarily adapted to the domain of offensive language

and tweet language. Therefore the update rule for class parameters is modified. We

update the class parameters using the exact value of the gradient, namely inverse

update, which leads to totally opposite behaviour of class parameters. Although

inversely operating the class parameters have been mentioned in [Saxena et al., 2019],

they stop probing into the inverse update and update the class parameters regularly

across all experiments. The impacts of inverse update will be illustrated in Figure 16

later on. The inverse update reduces the importance of easy cases during the whole

training process, instead of up-weighting them before down-weighting (suggested in

[Saxena et al., 2019]). Normally, it is common to optimize the parameters in order to

minimize the overall loss causing by the data. However, to enforce the system focusing

on the hard ones, it worth nothing to avoid the loss by tuning down the weights of

the hard ones. On the contrary, they should be uplifted. In this way, our model

will increase the attention to hard cases once the fine tuning starts. The underlying

intuition is that, rather than mastering the knowledge already learnt, the system

should focus on those have not, which accelerates the training by turning the attention

to the hard samples earlier. Mathematically, in Eq. 11, the class parameters of well

classified classes (with δ > 0) decays, those δ < 0 rising up. We conclude the two

update strategies as follows:

• Inverse update: up-weighting the hard cases (misclassified ones and well-classified

but lack of confidence) at the cost of increasing training loss.

• Regular update: up-weighting the easy cases (already well-classified ones) avoid-

ing the increase of training loss.

Revealing the behaviour of class parameters We know that class parameters

achieve better generalization on supervised dataset. In order to see how it works

with semi-supervised data and show the ability to cope with noisy labels, we start

from observing how the class parameters flow during training. The experiments

are conducted on subsets of SOLID, where samples are annotated with averaged

confidence scores ranging from 0 to 1. The higher score the more offensive it suggests.

As described beforehand, we set 10 bins which divide the confidence score evenly. The

52

cardinality of the bins specify the difficulty level of the data included (e.g. bin 0.5

denotes the data scores in range [0.5, 0.6).). Note that the difficulty is not monotonic.

As the middle bins is more difficult than the bins at both sides. The class parameters

σyk for each bin is initiated as 1. We further fine tune the DistilBERT model for 2

epochs (learning rate=1e-5, batch size=64). We used stochastic gradient descent to

update class parameters with learning rate of 1e-3, momentum of 0.9. Two figures

showing the change of σy using different update rules are presented, which includes:

• updating σy through the negative of gradient;

• updating σy inversely (through the exact value of gradient).

Note that as it illustrated before, the increase of σy leads to down-weighting, in

contrast, the decrease suggests up-weighting.

As shown in Figure 16, σy=0.4,0.5 keep decaying. It represents bin 0.4 and 0.5

are been up-weighted across the training, because these samples are usually showing

veiled features for classification and therefore hard to classify. Even they are classified

correctly, if we refer to Eq. 11, the δ for these classes are often low, which indicates

the system is not confident enough to make that decision. Thus, the class parameters

are increased, as a way to rise the attention to these hard samples. The least favourite

bin is 0.2. Because samples within this bin rarely contain offensive terms or any veiled

insults. The system performs so well in these data that it reduce the attention to

learning on them. The curves of bin 0.0 and 0.9 are flattened all the time, of which

reason is the nature distribution of scores. The extreme samples only account for a

very small proportion of the training samples. Hence, the σy=0.0,0.9 are rarely updated.

A totally opposite curve trend is shown in Figure 17, in which the difficult bins (bin 0.4

and 0.5) are down-weighted. However, the curve σy=0.5 shows a downward trend whilst

the curves σy=0.2,0.3 show an upward trend. This phenomenon in due to the effect of

the regularization term in which the system is penalized from greedily focusing on

easy cases.

Experimenting class parameters with different training manners The

experiments are designed with the purposes to observe

• the effects of employing class parameters on different volume of data;

• the potential to fit the semi-supervised data;

53

Figure 16: The values of class parameters changing with the training iteration. The x
axis represents the training iteration and the y axis is the value of class parameters.
0.0 is used to denote the bin for data scoring [0, 0.1), 0.1 to [0.1, 0.2) and so on. The
class parameters are updated inversely.

• how it integrate with different training manners (inverse update or not).

During inferencing, the confidence scores of the test samples are not accessible, the

class parameters are no longer used. We conducted experiments shown on Table 14, in

which Run-1, Run-4 and Run-7 are baseline models without using class parameters. To

observe the performance on different data, we fine tune the models on different subsets

of SOLID, which are SOLID-TH55, TH3558, and Th55f. The dataset notations are

referred to Table 11 and Table 12. As suggested in the last section, the listed runs are

further trained based on the model that is fine tuned on OLID. The highest results of

different training datasets are in bold.

Among all the experiments above, under the same dataset, the models trained

with class parameters outperforms the those not, even under the conditional subset

TH3558, where extreme samples are eliminated. The models using inverse update

outperforms those regular update. The reason may be that inverse update is suitable

when the model is well-performed in the easy cases but requires further fine tuning in

hard cases. This will be illustrated later in Table 15. As shown in Figure 17, it takes

much longer iterations for regular updating class parameters to turning the model

focus from the easy to the hard. With the prior knowledge of the dataset and class

parameters, Run-6 (SOLID-TH3558) yields the best result in macro F1 among all the

54

Figure 17: The values of class parameters changing with the training iteration. The
class parameters are updated using the negative value of the gradient. The hyper-
parameters and notation stick with Figure 16

experiments and is competitive in terms of F1-1 with the run-9 who is fine tuned on

the over 20 time larger dataset and yield the best in F1-1.

We find that with class parameters, involving extreme samples are not as harmful

as we showed in Table 11. With a small proportion of down-weighted extreme samples,

Run-3 outperforms Run-4 who is fine tuned on the conditional subset excluding

extreme samples. Note that both of Run-4 are fine tuned with the conditional subset

SOLID-TH3558 who shows the significant improvement in the continual selective

learning experiments (Table 12). Based on the previous effort (SOLID-TH3558), Run-5

and Run-6 both surpass the performance of Run-4. Among these experiments, the

overall performance on small-scaled dataset such as SOLID-TH55 and SOLID-TH3558

are competitive, (for SOLID-TH3558, even superior) to the performance on the larger

size data (SOLID-TH55f). This shows the capability of applying class parameters to

small size dataset.

In conclusion, the class parameters shows the capability to confront with the noisy

labels with small data. Because of the continuous down-weighting of extreme samples

in which most of them are well-classified, the negative impacts are smoothed out.

Besides, the class parameters enable the system to dynamically decide how much the

system learns from the training samples.

It is interesting to note that, it usually takes more epoch for class parameters

55

Runs Further fine tune on F1 (%) Class Parameters Inverse Update

Run-1

SOLID-TH55

Macro F1 .788
False False

F1-1 .718

Run-2
Macro F1 .793

True False
F1-1 .717

Run-3
Macro F1 .795

True Ture
F1-1 .719

Run-4

SOLID-TH3558

Macro F1 .794
False False

F1-1 .723

Run-5
Macro F1 .796

True False
F1-1 .725

Run-6
Macro F1 .803

True True
F1-1 .733

Run-7

SOLID-TH55f

Macro F1 .799
False False

F1-1 .720

Run-8
Macro F1 .796

True False
F1-1 .715

Run-9
Macro F1 .801

True True
F1-1 .737

Table 14: Results of applying class parameters to DistilBERT models. Evaluation is
done over the OLID development set. The stochastic gradient descent is applied to
update class parameters (learning rate of 1e-3 and momentum of 0.9). The relevant
models are trained for 3 epochs on SOLID-TH55 and TH3558 with learning rate 1e-5,
batch size 64, and 1 epoch on SOLID-TH55f.

to show its potential. During the experiments, training for 3 epochs on a small size

subset leads to overfitting in most our models. However, training a model with class

parameters requires more epochs.

Further, how the class parameters influence the model inference is also investigated.

The training configurations in Table 14 are tested on a silver standard validation set,

from which we can eyeball how the model performs with different levels of test data.

Specifically, the validation set is divided into 10 bins by the scores and assume the

samples scoring above 0.5 as label OFF and the rest as NOT. Therefore, the results

are away from calibrate and can not be viewed as model evaluation, however, it can

provide us some insight on the model attention and the underlying motivations of

leveraging dynamic CL. Each data bin is used for model validation respectively and

their accuracies score are provided. The results are shown in Table 15.

As shown in Table 15, the classification accuracy are almost flawless among the bins

below 0.2 and above 0.7, while the bins in the middle are error prone. Comparing the

runs without class parameters (Run-1,4, and 7) with those applying class parameters

56

Runs 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Run-1 1.0 0.998 0.998 0.952 0.769 0.679 0.927 1.0 0.998 1.0
Run-2 1.0 0.999 0.998 0.961 0.773 0.684 0.934 1.0 0.998 1.0
Run-3 1.0 0.999 0.998 0.965 0.792 0.675 0.923 1.0 0.998 1.0

Run-4 1.0 0.999 0.994 0.942 0.686 0.77 0.952 1.0 1.0 1.0
Run-5 1.0 1.0 0.998 0.931 0.667 0.789 0.959 1.0 1.0 1.0
Run-6 1.0 1.0 0.999 0.95 0.725 0.733 0.945 1.0 1.0 1.0

Run-7 1.0 1.0 0.999 0.989 0.824 0.744 0.97 1.0 1.0 1.0
Run-8 1.0 1.0 1.0 0.994 0.898 0.615 0.959 1.0 1.0 1.0
Run-9 1.0 1.0 0.999 0.933 0.596 0.899 0.984 1.0 1.0 1.0

Table 15: Accuracy on SOLID validation set. The header indicates the difficulty
level of data bins. Note that the difficulty is not monotonic. As the middle bins is
more difficult than the bins at both sides. The 9 runs correspond to the training
configurations from Table 14. They are accordingly divided into 3 sections by the
different training data they use. All runs perform almost perfect except in the bin 0.4
and 0.5. thereby, the highest results of different training datasets in bin 0.4 and 0.5
are in bold.

under the same section, the accuracy of middle bins are increased, with the accuracy

of well-classified bins almost unchanged. These numbers embody the general idea of

the class parameters who applies a dynamic curriculum over learning the samples with

multiple difficulties. Focusing on the hard cases is nearly intact to the performance of

the easy ones, resulting in a general and robust model.

Over all the above experiments, inversely update the class parameters using

stochastic gradient descent (learning rate 1e-3 and momentum 0.9) in the SOLID-

TH3558 subset yields the best result. The above experiments demonstrate that with

the binning effects in the class parameters, the models gain the ability to confront

the corrupted silver standards, which interest us to further investigate the automatic

weighting of all difficulty levels via loss functions. Rather than using the fixed size

class parameters, loss functions offer flexibility on controlling the learning pace for

each sample with its own difficulty.

3.5 Experiment with Dynamic Loss Functions

Before stepping into dynamic loss functions, it is necessary to introduce a parametriz-

able loss function. We have seen many studies modified the standard cross entropy

57

(CE) loss such as Symmetric CE loss (SL) [Wang et al., 2019] and focal loss (FL)

[Lin et al., 2017]. They both embed task specific empirical evidence to scale the CE loss

and yield promising results. In terms of the dynamic loss functions, [Wu et al., 2018]

proposed the gradient based, teacher-student framework to optimize the loss function

and achieved progress in neural machine translation (NMT) and image classification.

However, we see nascent studies leveraging scaled loss functions or dynamic approach

to attain the optimized loss function in the field of NLP or any sentiment related

classification tasks. Further in our task, fitting a massive volume of semi-supervised

data has been a tough challenge. To the best of our knowledge, most of the practices

were done over supervised learning, few with semi-supervised learning. Moreover, the

nature of offensive language and the large volume noisy data even complicate the

problem. Many researchers who have taken participate in the SE19T6A and SE20T12A

would rather use the smaller but labeled data. Although the resulting systems yield

good performance, they may suffer from data bias and lack of generalization capability

because of the content of OLID. [Wang et al., 2019] pointed out that learning with

standard CE loss may cause hard class under-fitting problem, which also give rights

to exploit dynamic loss functions in this field.

We see the dynamic loss functions’ potential to adapt to the semi-supervised data.

Taking the challenge, the scaled loss functions and dynamic optimization framework

are therefore leveraged on the offensive language identification task. We first illustrate

the intuition of designing our scaled loss function and how the optimization framework

is applied to the scaled loss function. Afterward, corresponding experiment results are

presented.

To explain our scaled loss functions, we define system difficulty as the gap

between the system’s predicted probability and expected probability for gold standard

label; and sample difficulty as the objective difficulty to classify flawlessly. The

modulating factor can be seen as the measurement of system difficulty. As its value

ascending, the gap between prediction and gold standard being wider, it is hard for

the system to well-classified the sample, and vice versa.

One of the limitations of FL is that it is not designed for continuous labels.

Although it can be addressed by binning, converting continuous labels to discrete, the

continuous information is flatten out, which causes chaos in the system. Another way

to deal with continuous data is treating it as a regression task. However, we find it

58

very difficult fitting the data and underperforming. Therefore, in order to adapt the

semi-supervised data, we employ the idea (strengthening CE loss with scaling factors),

which is shown to be interact effectively with our data. Inspired by FL, in order to

make our scaling factor work like weights, a Gaussian function are used as a scaling

function that reshapes the CE loss is employed in the experiments.

g(qt) =
1

σ
√

2π
e−

1
2(qt−µ

σ)
2

(21)

where µ and σ represent the mean and standard deviation, which jointly control

the shape and central of the scaling function. A more intuitive illustration is provided

in figure 18. Then, The Min-max normalization is used to normalize the Gaussian

function:

g′(qt) =
g(qt)

g(µ)
(22)

Similar to pt, qt ∈ [0.5, 1] is defined as:

qt =

y∗ y∗ > 0.5

1 − y∗ otherwise
(23)

where y∗ is the silver standard score, ranging from 0 to 1. The Equation above maps

the non-offensive score from [0, 0.5) to [0.5, 1) for the sake of unity. In Figure 18, we

demonstrate the g′(qt) with different µ and σ, in which the µ controls the central

position which is the top focus region and the σ controls the shape. The steeper the

shape is, the lesser the focus shared other than the central. g′(qt) can be viewed as a

modulating factor as (1− pt)
γ in FL. It is then used for scaling the standard CE loss:

FL′(pt, qt) = −g′(qt)log(pt) (24)

Similar to pt, qt can be seen as the indicator of sample difficulty, which describes

the objective difficulty annotated via silver standard scores. The extreme cases are

considered as easy cases since they are obvious for human, because they carry strong

signal of offensiveness. However, the middling cases are vague and ambiguous in

semantics, therefore these are hard to classify correctly.

To combine the two concepts, the system difficulty and the sample difficulty are

integrated into one unified loss function, namely Dual focal loss (Dual FL). Dual

59

Figure 18: Plotting g′(qt) with different µ and σ

FL, as its core, is a scaled cross entropy loss. It takes the sample categorical label and

estimated difficulty as input, outputs the scaled CE loss, which is feasible for fitting

semi-supervised data. The dual focal loss are given by equation 25.

Dual FL(pt, qt, ỹ) = −pt ∗ g′(qt)log(pt) (25)

where ỹ is the categorical label. Normally, in most sentiment related task, 0.5 is the

threshold to divide positive and negative sentiment. This integrated loss function

possesses the property of down-weighting the well-classified samples as well as adjusting

the weight depending on its difficulty. The cross influence of sample difficultness and

system difficultness is illustrated in Table 16, in which the arrow indicates whether

the loss is up-weighted or down-weighted by Dual focal loss.

system difficultness
sample difficultness

Hard Easy

Hard ↑ ↑↓
Easy ↑↓ ↓

Table 16: Cross influence of sample difficulty and system difficulty. The dual impacts
come from qt and pt respectively. When the difficulty indicators are divergent, the
impact is deducted by each other. The exact direction is determined by the system.

Shown in Table 16, what differs Dual FL from FL is the ability to rectify the loss

60

through its sample difficulty. The system will still get some bonus from correctly

classifying high sample difficulty samples. What FL brings in is the miss-classifying a

low sample difficulty sample is penalized. To investigate how Dual FL loss alleviates

the distraction of noisy labels, we run an ablation study on the parameters of Dual

FL loss. Specifically, based on the same model we used for previous experiments, we

further fine tune the DistilBERT model on SOLID-TH55 for one epoch with learning

rate 1e-5. We experiment the µ in 0.5, 0.6, 0.65, 0.7, 0.8, 0.9 and σ from 0.1 to 1.2

with a step of 0.03, plus σ = 0.12, 6 ∗ 38 = 228 runs in total. For comparison, we

experiment standard FL with the default hyper parameters in [Lin et al., 2017], shown

as a constant value in Figure 19. In the figure, despite some poor performance in a

few extreme steep function shapes, most of the results fall around 0.788. From Figure

18 we know that µ controls the central focus of Dual FL and its shape is changed by

σ. In general, µ = 0.65 yields the most promising results, the following is the curve

µ = 0.7. This suggests that focusing on the medium hard samples is beneficial. The

trending of curve µ = 0.5 indicates putting excessive focus on the hard samples could

have counter effects. The curve gradually increases as its shape becomes less steep

and the focus is dispersed. Comparing to others, curve µ = 0.8, 0.9 does not severely

underperforming when providing suitable hyper-parameters, ditto to µ = 0.5. This is

because focusing on the minor extreme easy samples has trivial impact on the system.

But the performances are unacceptable once without hyper-parameter tuning. The

curve µ = 0.65 peaks at both σ = 0.12 and σ = 1.0 outperforming the standard FL by

1.5%. This shows the potential of unevenly scatter the focus over different difficulties

using scaled loss functions. With the small modification to standard FL, the dual

FL adapts better to the semi-supervised data given the proper hyper-parameters. In

this case, by setting µ = 0.65 and σ = {0.12, 1.0}, the scaled loss outperforms the

standard FL by 1.5%. The small invisibility of improvement is due to the simplicity of

the test data. As shown in the baseline study, many baseline approaches are able to

produce promising results such that a small improvement requires considerable efforts.

However, to obtain the best performance, the ablation study must be performed

(ditto to the FL), which accounts for huge overhead to search through the parameter

space and gain the heuristic of the best pick. We are not claiming the unworthiness

of ablation study but the costly overhead need to be automated. It is necessary to

perform an ablation to obtain the optimal hyper-parameters. But considering that

61

the huge overhead would be taken, designing dynamic loss functions to eliminate the

manual parameter tuning is prioritized as an option at a lower cost.

Figure 19: Ablation study for different µ and σ combinations in scaled loss functions

For the rest of the section, a dynamic curriculum is applied to the scaled loss

functions. Considering the costly time consuming issue in replicating the gradient

based, teacher-student framework, we simplify the learning framework such that it

can be applied on the huge amount of semi-supervised data with less time consuming.

To this end, we leverage the stand-alone SOLID development set to guide the teacher

model. The SOLID development set is split from the SOLID, containing 5000 silver

standard samples. In contrast to [Wu et al., 2018] who trains the teacher model after

the student model, we modify the training logic so that the teacher model is trained

along with the student model. Our training procedure is described as follow.

1. Initialize the teacher model gθ and load the student model fw. w and θ are

learnable model parameters.

62

2. Evaluate the student model fw0 in SOLID development set and get the current

state vector st.

3. If the current time step is 0, Input the s0 to the teacher model and output loss

parameters µ0 and σ0.

4. Fine tune the student model with training data for I iterations and update the

current w to wt.

5. Redo second step with fwt and update the teacher model.

6. Go to step four and continue the fine tuning with st and new parameters µt, σt.

I is an adjustable parameter controlling the frequency of updating the teacher model.

The higher I is, the teacher model is lesser often updated. Similar as [Wu et al., 2018],

the teacher model outputs the hyper parameter of the student model (the model

for our task), in our case, the µ and σ in the scaled loss function. The evaluation

manner in SOLID development set is identical to Table 15, which results in 10 accuracy

scores for 10 data bins. The accuracy vector is used for the state vector. With the

dynamic optimization framework, it is unnecessary to manually initialize the µ and σ.

They are randomly initialized from µ ∈ [0.5, 1) and σ ∈ (0, 2). To reduce the model

complexity, the teacher model is a one layer feed-forward network with 10 hidden

neurons. Addressing the hard case under-fitting issue, accuracy vector is used as

features as input to teacher model. Besides, since the teacher model is trained on

the SOLID development data, it accordingly optimizes the outputted parameters to

adapt to the different difficulties. The advance of the teacher-student model lies on

the ability to take into account of the state of the student and output appropriate

parameters at current state.

To update the teacher model efficiently, the update approach in [Wu et al., 2018]

is simplified. The RMD based teacher model update is ditched and we simplify update

rule of the teacher model as follows. The loss outputted by the teacher is written as

Lgθ(st). The teacher model is trained via the gradient of loss w.r.t its parameters θ,

that is
∑

x,y∈Ddev

∂Lgθ(st)
(fwt (x),y)

∂θ
, where x, y ∈ Ddev denotes the training samples in

SOLID development set. With the gradient, the θ is updated via SGD with learning

rate 2e-5 in our experiment.

63

In the experiments, the DistilBERT is used as student model, outputting the

prediction and the one layer feed-forward network as teacher. The dynamic scaled

loss functions are used as the criterion. Figure 20 shows the how the accuracy of

each difficulty evolves during the fine tuning and Figure 21 is an example of how the

exact parameters µ and σ change. As denoted before, colors distinguish the data

bins of different difficulties. At the beginning stage, bin 0.3 and 0.4 are relatively

under-performing whilst the other bins are at high accuracy level (above 85%). Since

the system difficulty is introduced before, the difficulty is never static, but changes

as model being fine tuned. In this case, bin 0.3 and 0.4 are the difficult bins at that

moment. During the fine tuning, the performances for all bins fluctuate with the

under-performing bins gradually rise up. Although the bin 0.5 falls from accuracy of

90%, it recovers after iterations and eventually approaches to the initial performance.

Bin 0.3 and 0.4 increase largely by nearly 20% compared to their initial accuracy. For

those already well-performed bins, they are less volatile than those difficult bins and

continue showing the high accuracies. The accuracies flowing in Figure 20 demonstrates

that the teacher-student optimization frame we applied to the loss functions is able to

take the account of the current state of the model and adjust the parameters as a way

to scatter the focus properly over the under-performing cases and the well-classified

cases. The performance of easy cases is almost intact and the poor performing cases

are improved. However, due to the corrupted labels in SOLID, the performances of

difficult bins fail to end up with high accuracies but still fluctuate within a small range.

This showcases that the poor annotation quality may distract the teacher model and

the obstacle of fitting in such corrupted silver standards.

Table 17 reports the results on the OLID development set. For comparison, the

results of previous experiments are pasted. For comparison Run 1, 4 and 7 are models

without dynamic loss. These runs are fine tuned on different datasets: SOLID-TH55,

SOLID-TH3558 and SOLID-TH55f for 1 epoch. The properties of these datasets

are referred to Table 11 and Table 12. The models are evaluated over the OLID

development set. Using the same policy, the models are further fine tuned based

on a tuned base model. The teacher model are trained with learning rate 2e-5 and

stochastic gradient descent (SGD) is used for optimization. The training interval I is

set to 19, which means the teacher model is updated every 19 iterations of the student

model.

64

Figure 20: The accuracy of each data bin. In general, the middling bins are considered
difficult away from which are those relatively easy bins.

Figure 21: The values of µ and σ

65

Runs Further fine tune on F1 (%) Dynamic loss

Run-1
SOLID-TH55

Macro F1 .788
False

F1-1 .718

Run-10
Macro F1 .793

True
F1-1 .719

Run-4
SOLID-TH3558

Macro F1 .794
False

F1-1 .723

Run-11
Macro F1 .796

True
F1-1 .724

Run-7
SOLID-TH55f

Macro F1 .799
False

F1-1 .720

Run-12
Macro F1 .795

True
F1-1 .722

Table 17: The results of using dynamic loss functions on OLID development set.

Comparing with the the results of class parameters in Table 14, The dynamic loss

function approach is slightly under-performing but still yields better performances

compared to the baselines, the standard FL, and the scaled loss functions. on the

small-scaled data (SOLID-TH55 and SOLID-TH3558). The reason on the limited

increase is speculated that the structure of the teacher model is relatively plain, which

may not adapt to the student model perfectly. This may incur overfitting of the

teacher model. Moreover, given that the teacher is trained on SOLID development

set which is a semi-supervised dataset and mislabeling of samples are inevitable, the

teacher may lose the calibrate estimation of the current proper parameters. Besides,

the state vector contains the accuracies of data bins in which most of the accuracies

are stable with only a few volatile data bins for hard cases. Therefore, the state vector

may not consist enough informative features.

Despite these drawbacks, dynamic loss yields better performance under the small

size of data and requires less manual hyper-parameters tuning. To obtain the relatively

optimized hyper-parameters, it is common to perform an ablation study on all the

hyper-parameters or a random search of parameter space. However, it is not necessarily

precise and causes huge training overhead. The dynamic loss largely reduces the

overhead by automating the precess and offers flexibility upon the hyper-parameters

with the better adaptation to the noisy silver standards than the standard FL as well

66

as scaled loss.

3.6 Performance on Official Test Data

This section evaluates the class parameter models and the dynamic loss function

models on OLID official test set and SOLID official test set respectively. Shown in

Table 18, the best results for OLID and SOLID test data are in bold. For comparison,

a baseline of the DistilBERT model and the SOTA results in SE19T6A and SE20T12A

are provided.

Run OLID SOLID Experiment type

DistilBERT
Macro F1 .807 .909

-
F1-1 .713 .875

SOTA-OLID Macro F1 .829 -
-

SOTA-SOLID Macro F1 - .920

Run-2
Macro F1 .816 .910

Class parameters

F1-1 .726 .876

Run-3
Macro F1 .816 .910

F1-1 .725 .876

Run-5
Macro F1 .818 .910

F1-1 .732 .876

Run-6
Macro F1 .819 .908

F1-1 .734 .876

Run-8
Macro F1 .814 .912

F1-1 .719 .879

Run-9
Macro F1 .798 .910

F1-1 .709 .877

Run-10
Macro F1 .813 .907

Dynamic loss

F1-1 .719 .875

Run-11
Macro F1 .815 .908

F1-1 .723 .875

Run-12
Macro F1 .816 .910

F1-1 .724 .877

Table 18: Results on OLID official test set and SOLID official test set.

The Run-6 is selected as the best run because it performs the best in OLID which

67

is believed as a harder task compared to SOLID. Table 19 lists some real test examples

that are misclassified by the baseline DistilBERT model but are well-classified in the

best runs (Run-6 and Run-8) and otherwise.

The first tweet is labeled as OFF because of the superlative adjective the most

incompetent. The second and third are lengthy and the second one is being offensive

implicitly. The offensive trigger of the forth tweet shyt has spelling error and is

correctly classified. The last three tweets of first section discussing the crime and

murder are labeled as NOT. The are well-classified even they carry strong offensive

signal such as getting murdered, commit murder, and thugs. These examples may be

considered as hard in the sense of text length, semantics, figurative language, metaphor

etc.. This suggests that focusing on the hard samples during fine tuning improves the

performance on some tricky samples.

The second section demonstrates the the examples that are correctly predicted by

the baseline DistilBERT model but are misclassified in the best model. The first two

examples contain implicit offensive signal such as the metaphor parasite glazers and

humiliate. Especially the second tweet which is veiled is offensive when considering

the context semantics. The rest of the examples are controversial. The third examples

are not offensive although it contains a profanity damn. It is totally acceptable and

normal to post such a tweet and means no offence. Such error is inevitable because of

the controversy itself and mitigating this sort of problem requires further work. The

last three examples are more offensive than their labels where they either expresses

hate towards gays, muslims or show hostility to a person. However, it could not

simply blame to the annotation error. Annotator may hold different interpretations

to controversial examples. Thus, it is acceptable for the model to misclassify these

examples. Without progresses in natural language reasoning and truly understanding

the hidden semantics of machine, these tricky samples may not be truly solved. In

addition, because of the silver nature in the SOLID test data, annotation errors are

inevitable. The last three samples could be the examples of mislabeling samples.

68

Dataset Gold
stan-
dard

Silver
stan-
dard

System
pre-
dic-
tion

Tweet

OLID OFF - OFF #Nigeria #Naija #9ja ’You are the most incompetent
leader in Nigeria’s history’ – Atiku blasts Buhari URL By
championnewsng Via URL

OLID OFF - OFF #BoycottNike campaign must continue and grow Paying
overseas staff $0.20 an hour is not okay because your staff
is over there”. You are exploiting poor women/men in the
world. This is more than Americans can stand. URL

OLID OFF - OFF #Antifa: Take note of how to protest with civility. This
is why socialism (aka communism) will never win. It is
inherently evil and unsustainable. URL

SOLID OFF - OFF @USER Trump is a piece of shyt human being
OLID NOT - NOT @USER @USER @USER @USER @USER @USER

@USER @USER @USER @USER Gun control doesn’t stop
kids and people getting murdered by guns. Chicago has had
gun control for decades and it has multiple shootings every
week.

OLID NOT - NOT @USER #MAGA who cares about the farm. He had no
reason to commit murder. End of story.

OLID NOT - NOT @USER Be sure to send out the left’s antifa thugs.

SOLID OFF - NOT @USER Get the parasite glazers out of our club. Enough
is enough #glazersout

OLID OFF - NOT @USER Do you get the feeling he is kissing @USER behind
so he can humiliate him later?

SOLID OFF - NOT Sometimes when I look into your eyes,I pretend you’re
mine, all the damn time.

SOLID - NOT OFF @USER Gay people Are cause by to be able to detect their
own fault

SOLID - NOT OFF @USER Muslims pushing the own agenda that’s all that is,

playing victim,
SOLID - NOT OFF what border agent let those snakes on a plane? did they

have passports? i bet you those snakes did not have any
legal identification

Table 19: Error examples from official test data of OLID and SOLID. The first section
shows the examples that are misclassified by the baseline DistilBERT model but are
well-classified in the best run while the second section lists the otherwise. Note that
SOLID holds gold standard for OFF labels but silver standard for NOT labels.

69

Chapter 4

Conclusion and Future Work

This thesis investigates the curriculum learning (CL) and dynamic loss functions in

offensive language identification. Confronting the scarce human annotated data, the

potential of leveraging the semi-supervised data by means of CL and dynamic loss

functions is tentatively explored. SemEval datasets OLID and SOLID are compared

from the perspective of their lexical properties and from the difference in their

annotation standards (gold and silver standard), as well as the content and phrasing,

which all are different.

The main goal of the thesis is not to attempt to beat SOTA on the datasets used.

Rather, this thesis explores ways to reduce the complexity of the processing to address

a very large dataset as automatically as possible without prohibitive resource allocation.

Regarding the costly training overhead, the DistilBERT model is selected because it

is relatively lite and is able to achieve competitive results with less parameter size

and training data, compared to other heavy pre-trained models such as BERT and

RoBERTa.

The first idea explored is forms of downsampling. The preliminary experiments on

selective further fine tuning with SOLID reveal that by excluding the extreme samples

(easy cases), the model gains improvement beyond simply balancing the classes.

This insight leads to the automatic curriculum learning based on the difficulty

of samples. In particular, the hard cases are up-weighted while the easy cases are

down-weighted. This idea is implemented via class parameters which assign learnable

weights to different difficulty levels.

To see if selective loss functions could offer more flexibility on the control of

70

difficulty, this thesis further investigates the idea of dynamic loss. To this end, a new

loss function Dual Focal Loss (DFL) is parameterized based the standard Focal Loss.

DFL takes into account the system difficulty (the gap between system prediction to

expected prediction) and sample difficulty (the objective difficulty indicating via the

annotation). A teacher-student framework is applied to optimize the DFL dynamically,

which allows the model adapt the dynamic attention to different difficulty levels of

data as well as adapting better to SOLID.

Both the class parameter approach and the dynamic loss show better results on

the silver standard and are robust when confronting the hard cases without impacting

the performance on easy cases.

The performance of our best model is approaching the SOTA system on SE19T6A

and SE20T12A tasks. Combining curriculum learning with dynamic loss functions,

the model lags SOTA by only 1% F1 score on SE19T6A and 1.2% on SE20T12A with

at least 50% parameter size reduction and less data overhead, compared to the SOTAs

on each task.

Given the increasing use of large silver standards in the field of NLP, this thesis

contributes approaches that mitigate the effects of questionable annotations on highly

imbalanced, huge datasets.

As for the future work, what is insufficient in evaluating the performance of

offensive language detection models is that: with the F1 score, one may preliminary

perceive the overall performance, but lack of the insight of concrete performances

with respect to samples of different difficulties. Given that the easy cases account

for the majority of the offensive language on social media, simple architectures may

yield acceptable performance. Building such versatile systems requires delicate efforts

in difficulty evaluation. We notice that before fine tuning a pre-trained model, some

studies further train the language model with the masked language model (MLM)

task, which shows promising results. It worth further investigation on whether the CL

or dynamic loss can accelerate or strengthen the further training. In addition, it is

also worthwhile to further investigate the other forms of verbal cyber-bullying with

CL and dynamic loss.

71

Bibliography

[Barbieri et al., 2020] Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., and

Neves, L. (2020). TweetEval: Unified benchmark and comparative evaluation for

tweet classification. In Findings of the Association for Computational Linguistics:

EMNLP 2020, pages 1644–1650, Online. Association for Computational Linguistics.

[Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009).

Curriculum learning. In Proceedings of the 26th Annual International Conference

on Machine Learning, ICML ’09, page 41–48, New York, NY, USA. Association for

Computing Machinery.

[Biesialska et al., 2020] Biesialska, M., Biesialska, K., and Costa-jussà, M. R. (2020).

Continual lifelong learning in natural language processing: A survey. In Proceedings

of the 28th International Conference on Computational Linguistics, pages 6523–6541,

Barcelona, Spain (Online). International Committee on Computational Linguistics.

[Burnap and Williams, 2015] Burnap, P. and Williams, M. L. (2015). Cyber hate

speech on twitter: An application of machine classification and statistical modeling

for policy and decision making. Policy & Internet, 7(2):223–242.

[Caselli et al., 2021] Caselli, T., Basile, V., Mitrović, J., and Granitzer, M. (2021).

Hatebert: Retraining bert for abusive language detection in english.

[Cirik et al., 2016] Cirik, V., Hovy, E., and Morency, L.-P. (2016). Visualizing and

understanding curriculum learning for long short-term memory networks.

[Conneau et al., 2020] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wen-

zek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., and Stoyanov, V. (2020).

Unsupervised cross-lingual representation learning at scale. In Proceedings of

72

the 58th Annual Meeting of the Association for Computational Linguistics, pages

8440–8451, Online. Association for Computational Linguistics.

[Cunningham et al., 2002] Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,

V. (2002). Gate: A framework and graphical development environment for robust

nlp tools and applications.

[Dadu and Pant, 2020] Dadu, T. and Pant, K. (2020). Team rouges at SemEval-2020

task 12: Cross-lingual inductive transfer to detect offensive language. In Proceedings

of the Fourteenth Workshop on Semantic Evaluation, pages 2183–2189, Barcelona

(online). International Committee for Computational Linguistics.

[Dai et al., 2020] Dai, W., Yu, T., Liu, Z., and Fung, P. (2020). Kungfupanda

at semeval-2020 task 12: Bert-based multi-task learning for offensive language

detection.

[Dauphin et al., 2012] Dauphin, G. M. Y., Glorot, X., Rifai, S., Bengio, Y., Good-

fellow, I., Lavoie, E., Muller, X., Desjardins, G., Warde-Farley, D., Vincent, P.,

Courville, A., and Bergstra, J. (2012). Unsupervised and transfer learning challenge:

a deep learning approach. In Guyon, I., Dror, G., Lemaire, V., Taylor, G., and

Silver, D., editors, Proceedings of ICML Workshop on Unsupervised and Transfer

Learning, volume 27 of Proceedings of Machine Learning Research, pages 97–110,

Bellevue, Washington, USA. PMLR.

[Davidson et al., 2017] Davidson, T., Warmsley, D., Macy, M., and Weber, I. (2017).

Automated hate speech detection and the problem of offensive language. In Proceed-

ings of the International AAAI Conference on Web and Social Media, volume 11.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019).

BERT: Pre-training of deep bidirectional transformers for language understanding.

In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association

for Computational Linguistics.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive Science,

14(2):179–211.

73

[Elman, 1993] Elman, J. L. (1993). Learning and development in neural networks:

the importance of starting small. Cognition, 48(1):71–99.

[Festinger et al., 1963] Festinger, L., Pepitone, A., and Newcomb, T. M. (1963). Some

consequences of de-individuation in a group.

[Ghosh et al., 2017] Ghosh, A., Kumar, H., and Sastry, P. S. (2017). Robust loss

functions under label noise for deep neural networks.

[Gitari et al., 2015] Gitari, N. D., Zuping, Z., Damien, H., and Long, J. (2015).

A lexicon-based approach for hate speech detection. International Journal of

Multimedia and Ubiquitous Engineering, 10(4):215–230.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press. http://www.deeplearningbook.org.

[Greco et al., 2019] Greco, C., Plank, B., Fernández, R., and Bernardi, R. (2019).

Psycholinguistics meets continual learning: Measuring catastrophic forgetting in

visual question answering.

[Harris, 1954] Harris, Z. S. (1954). Distributional structure. Word, 10(2-3):146–162.

[Hinton et al., 2015] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the

knowledge in a neural network. arXiv preprint arXiv:1503.02531.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long

short-term memory. Neural Computation, 9(8):1735–1780.

[Hong et al., 2018] Hong, X., Wong, P., Liu, D., Guan, S.-U., Man, K. L., and Huang,

X. (2018). Lifelong machine learning: Outlook and direction. In Proceedings of

the 2nd International Conference on Big Data Research, ICBDR 2018, page 76–79,

New York, NY, USA. Association for Computing Machinery.

[Jiang et al., 2018] Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. (2018).

MentorNet: Learning data-driven curriculum for very deep neural networks on

corrupted labels. In Dy, J. and Krause, A., editors, Proceedings of the 35th Inter-

national Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 2304–2313. PMLR.

74

http://www.deeplearningbook.org

[Joulin et al., 2017] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2017).

Bag of tricks for efficient text classification. In Proceedings of the 15th Conference

of the European Chapter of the Association for Computational Linguistics: Volume

2, Short Papers, pages 427–431, Valencia, Spain. Association for Computational

Linguistics.

[Kemker et al., 2017] Kemker, R., McClure, M., Abitino, A., Hayes, T., and Kanan,

C. (2017). Measuring catastrophic forgetting in neural networks.

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classification.

CoRR, abs/1408.5882.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kocmi and Bojar, 2017] Kocmi, T. and Bojar, O. (2017). Curriculum learning and

minibatch bucketing in neural machine translation. RANLP 2017 - Recent Advances

in Natural Language Processing Meet Deep Learning.

[Kumar et al., 2010] Kumar, M., Packer, B., and Koller, D. (2010). Self-paced learning

for latent variable models. In Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel,

R., and Culotta, A., editors, Advances in Neural Information Processing Systems,

volume 23. Curran Associates, Inc.

[Kumar et al., 2018] Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M. (2018).

Benchmarking aggression identification in social media. In Proceedings of the First

Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pages 1–11,

Santa Fe, New Mexico, USA. Association for Computational Linguistics.

[Laaksonen et al., 2020] Laaksonen, S.-M., Haapoja, J., Kinnunen, T., Nelimarkka,

M., and Pöyhtäri, R. (2020). The datafication of hate: Expectations and challenges

in automated hate speech monitoring. Frontiers in Big Data, 3:3.

[Li and Hoiem, 2016] Li, Z. and Hoiem, D. (2016). Learning without forgetting. In

Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, Computer Vision - 14th

European Conference, ECCV 2016, Proceedings, Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

75

Bioinformatics), pages 614–629, Germany. Springer. Funding Information: This work

is supported in part by NSF Awards 14-46765, 10-53768 and ONR MURIN000014-

16-1-2007. Publisher Copyright: © Springer International Publishing AG 2016.;

14th European Conference on Computer Vision, ECCV 2016 ; Conference date:

11-10-2016 Through 14-10-2016.

[Lin et al., 2017] Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017).

Focal loss for dense object detection. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 2999–3007.

[Liu et al., 2019a] Liu, P., Li, W., and Zou, L. (2019a). NULI at SemEval-2019 task 6:

Transfer learning for offensive language detection using bidirectional transformers.

In Proceedings of the 13th International Workshop on Semantic Evaluation, pages

87–91, Minneapolis, Minnesota, USA. Association for Computational Linguistics.

[Liu et al., 2019b] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,

O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019b). Roberta: A robustly

optimized bert pretraining approach. cite arxiv:1907.11692.

[Ma et al., 2020] Ma, X., Huang, H., Wang, Y., Romano, S., Erfani, S., and Bailey,

J. (2020). Normalized loss functions for deep learning with noisy labels. In III,

H. D. and Singh, A., editors, Proceedings of the 37th International Conference on

Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages

6543–6553. PMLR.

[Mahata et al., 2019] Mahata, D., Zhang, H., Uppal, K., Kumar, Y., Shah, R. R.,

Shahid, S., Mehnaz, L., and Anand, S. (2019). MIDAS at SemEval-2019 task 6:

Identifying offensive posts and targeted offense from Twitter. In Proceedings of the

13th International Workshop on Semantic Evaluation, pages 683–690, Minneapolis,

Minnesota, USA. Association for Computational Linguistics.

[Malmasi and Zampieri, 2017] Malmasi, S. and Zampieri, M. (2017). Detecting hate

speech in social media. arXiv preprint arXiv:1712.06427.

[Marcus et al., 2002] Marcus, M., Marcinkiewicz, M., and Santorini, B. (2002). Build-

ing a large annotated corpus of english: The penn treebank. Computational

Linguistics, 19:313–330.

76

[McCloskey and Cohen, 1989] McCloskey, M. and Cohen, N. J. (1989). Catastrophic

interference in connectionist networks: The sequential learning problem. volume 24

of Psychology of Learning and Motivation, pages 109–165. Academic Press.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Effi-

cient estimation of word representations in vector space.

[Nielsen, 2011] Nielsen, F. Å. (2011). A new anew: Evaluation of a word list for

sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903.

[Nikolov and Radivchev, 2019] Nikolov, A. and Radivchev, V. (2019). Nikolov-

radivchev at SemEval-2019 task 6: Offensive tweet classification with BERT and

ensembles. In Proceedings of the 13th International Workshop on Semantic Evalua-

tion, pages 691–695, Minneapolis, Minnesota, USA. Association for Computational

Linguistics.

[Pelicon et al., 2019] Pelicon, A., Martinc, M., and Kralj Novak, P. (2019). Embeddia

at SemEval-2019 task 6: Detecting hate with neural network and transfer learning

approaches. In Proceedings of the 13th International Workshop on Semantic Evalu-

ation, pages 604–610, Minneapolis, Minnesota, USA. Association for Computational

Linguistics.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). GloVe:

Global vectors for word representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,

Doha, Qatar. Association for Computational Linguistics.

[Peters et al., 2018] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,

Lee, K., and Zettlemoyer, L. (2018). Deep contextualized word representations. In

Proceedings of the 2018 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pages 2227–2237, New Orleans, Louisiana. Association for Computational

Linguistics.

[Poletto et al., 2021] Poletto, F., Basile, V., Sanguinetti, M., Bosco, C., and Patti, V.

(2021). Resources and benchmark corpora for hate speech detection: a systematic

review. Language Resources and Evaluation, 55(2):477–523.

77

[Ravikiran et al., 2020] Ravikiran, M., Muljibhai, A. E., Miyoshi, T., Ozaki, H., Ko-

reeda, Y., and Masayuki, S. (2020). Hitachi at SemEval-2020 task 12: Offensive lan-

guage identification with noisy labels using statistical sampling and post-processing.

In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 961–1967,

Barcelona (online). International Committee for Computational Linguistics.

[Reyes et al., 2012] Reyes, A., Rosso, P., and Buscaldi, D. (2012). From humor

recognition to irony detection: The figurative language of social media. Data &

Knowledge Engineering, 74:1–12.

[Rosenthal et al., 2020a] Rosenthal, S., Atanasova, P., Karadzhov, G., Zampieri, M.,

and Nakov, P. (2020a). A large-scale semi-supervised dataset for offensive language

identification. CoRR, abs/2004.14454.

[Rosenthal et al., 2020b] Rosenthal, S., Atanasova, P., Karadzhov, G., Zampieri, M.,

and Nakov, P. (2020b). A large-scale semi-supervised dataset for offensive language

identification. arXiv preprint arXiv:2004.14454.

[Sachan and Xing, 2016] Sachan, M. and Xing, E. (2016). Easy questions first? a

case study on curriculum learning for question answering. In Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 453–463, Berlin, Germany. Association for Computational

Linguistics.

[Sanh et al., 2019] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Dis-

tilbert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv,

abs/1910.01108.

[Saxena et al., 2019] Saxena, S., Tuzel, O., and DeCoste, D. (2019). Data parameters:

A new family of parameters for learning a differentiable curriculum. In Wallach, H.,

Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,

Advances in Neural Information Processing Systems, volume 32. Curran Associates,

Inc.

[Schmidt and Wiegand, 2017] Schmidt, A. and Wiegand, M. (2017). A survey on

hate speech detection using natural language processing. In Proceedings of the fifth

international workshop on natural language processing for social media, pages 1–10.

78

[Shin et al., 2017] Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning

with deep generative replay.

[Socha, 2020] Socha, K. (2020). KS@LTH at SemEval-2020 task 12: Fine-tuning

multi- and monolingual transformer models for offensive language detection. In

Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 2045–2053,

Barcelona (online). International Committee for Computational Linguistics.

[Sodhani et al., 2019] Sodhani, S., Chandar, S., and Bengio, Y. (2019). Toward

training recurrent neural networks for lifelong learning. Neural Computation, 32:1–

34.

[Sotudeh et al., 2020] Sotudeh, S., Xiang, T., Yao, H.-R., MacAvaney, S., Yang, E.,

Goharian, N., and Frieder, O. (2020). GUIR at SemEval-2020 task 12: Domain-

tuned contextualized models for offensive language detection. In Proceedings of the

Fourteenth Workshop on Semantic Evaluation, pages 1555–1561, Barcelona (online).

International Committee for Computational Linguistics.

[Soviany et al., 2021] Soviany, P., Ionescu, R. T., Rota, P., and Sebe, N. (2021).

Curriculum learning: A survey. arXiv preprint arXiv:2101.10382.

[Sun et al., 2020] Sun, C., Qiu, X., Xu, Y., and Huang, X. (2020). How to fine-tune

bert for text classification?

[Turney and Littman, 2003] Turney, P. D. and Littman, M. L. (2003). Measuring

praise and criticism: Inference of semantic orientation from association. ACM Trans.

Inf. Syst., 21(4):315–346.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, u., and Polosukhin, I. (2017). Attention is all you need. In

Proceedings of the 31st International Conference on Neural Information Processing

Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA. Curran Associates Inc.

[Wan et al., 2020] Wan, Y., Yang, B., Wong, D. F., Zhou, Y., Chao, L. S., Zhang,

H., and Chen, B. (2020). Self-paced learning for neural machine translation. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1074–1080, Online. Association for Computational

Linguistics.

79

[Wang et al., 2020] Wang, S., Liu, J., Ouyang, X., and Sun, Y. (2020). Galileo at

semeval-2020 task 12: Multi-lingual learning for offensive language identification

using pre-trained language models. arXiv preprint arXiv:2010.03542.

[Wang et al., 2021] Wang, X., Chen, Y., and Zhu, W. (2021). A survey on curriculum

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP.

[Wang et al., 2019] Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J. (2019).

Symmetric cross entropy for robust learning with noisy labels. pages 322–330.

[Waseem, 2016] Waseem, Z. (2016). Are you a racist or am I seeing things? anno-

tator influence on hate speech detection on Twitter. In Proceedings of the First

Workshop on NLP and Computational Social Science, pages 138–142, Austin, Texas.

Association for Computational Linguistics.

[Waseem et al., 2017] Waseem, Z., Davidson, T., Warmsley, D., and Weber, I. (2017).

Understanding abuse: A typology of abusive language detection subtasks. In

Proceedings of the First Workshop on Abusive Language Online, pages 78–84,

Vancouver, BC, Canada. Association for Computational Linguistics.

[Widmer and Kubat, 1994] Widmer, G. and Kubat, M. (1994). Learning in the

presence of concept drift and hidden contexts. Machine Learning, 23.

[Wiedemann et al., 2019] Wiedemann, G., Ruppert, E., and Biemann, C. (2019).

UHH-LT at SemEval-2019 task 6: Supervised vs. unsupervised transfer learning for

offensive language detection. In Proceedings of the 13th International Workshop on

Semantic Evaluation, pages 782–787, Minneapolis, Minnesota, USA. Association for

Computational Linguistics.

[Wiegand and Siegel, 2018] Wiegand, M. and Siegel, M. (2018). Overview of the

germeval 2018 shared task on the identification of offensive language.

[Wu et al., 2018] Wu, L., Tian, F., Xia, Y., Fan, Y., Qin, T., Lai, J., and Liu, T.-Y.

(2018). Learning to teach with dynamic loss functions. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems, NIPS’18, page

6467–6478, Red Hook, NY, USA. Curran Associates Inc.

80

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey,

W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson,

M., Liu, X., Lukasz Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,

K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A.,

Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016). Google’s neural machine

translation system: Bridging the gap between human and machine translation.

[Wu et al., 2019] Wu, Z., Zheng, H., Wang, J., Su, W., and Fong, J. (2019). BNU-

HKBU UIC NLP team 2 at SemEval-2019 task 6: Detecting offensive language

using BERT model. In Proceedings of the 13th International Workshop on Se-

mantic Evaluation, pages 551–555, Minneapolis, Minnesota, USA. Association for

Computational Linguistics.

[Xu et al., 2020] Xu, B., Zhang, L., Mao, Z., Wang, Q., Xie, H., and Zhang, Y. (2020).

Curriculum learning for natural language understanding. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages 6095–6104,

Online. Association for Computational Linguistics.

[Xu et al., 2012] Xu, J.-M., Jun, K.-S., Zhu, X., and Bellmore, A. (2012). Learning

from bullying traces in social media. In Proceedings of the 2012 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL HLT ’12, page 656–666, USA. Association for

Computational Linguistics.

[Zampieri et al., 2019a] Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,

N., and Kumar, R. (2019a). Predicting the type and target of offensive posts in

social media. pages 1415–1420.

[Zampieri et al., 2019b] Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,

N., and Kumar, R. (2019b). Semeval-2019 task 6: Identifying and categorizing

offensive language in social media (offenseval).

[Zampieri et al., 2020] Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P.,

Karadzhov, G., Mubarak, H., Derczynski, L., Pitenis, Z., and Çöltekin, Ç. (2020).

SemEval-2020 task 12: Multilingual offensive language identification in social me-

dia (OffensEval 2020). In Proceedings of the Fourteenth Workshop on Semantic

81

Evaluation, pages 1425–1447, Barcelona (online). International Committee for Com-

putational Linguistics.

[Zhu et al., 2019] Zhu, J., Tian, Z., and Kübler, S. (2019). UM-IU@LING at SemEval-

2019 task 6: Identifying offensive tweets using BERT and SVMs. In Proceedings of the

13th International Workshop on Semantic Evaluation, pages 788–795, Minneapolis,

Minnesota, USA. Association for Computational Linguistics.

[Zhu et al., 2015] Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R.,

Torralba, A., and Fidler, S. (2015). Aligning books and movies: Towards story-

like visual explanations by watching movies and reading books. In 2015 IEEE

International Conference on Computer Vision (ICCV), pages 19–27.

[Zipf, 2013] Zipf, G. K. (2013). The psycho-biology of language: An introduction to

dynamic philology. Routledge.

82

	List of Figures
	List of Tables
	Introduction
	Objectives and Motivation
	Contributions
	Thesis Outline

	Background
	Tweet Language
	Offensive Language
	Linguistic Notations
	Deep learning in NLP
	Neural Networks
	Word Representations
	From Word Embeddings to Pre-trained Language Models

	Underlying Concepts
	Curriculum Learning
	Continual Learning
	Loss Functions

	Offensive Language Detection
	SemEval Challenge and Datasets
	Existing Systems for Offensive Language Detection

	Experiments
	Comparing Datasets
	Baseline Study
	Selective fine tuning on SOLID
	Curriculum Learning on SOLID
	Experiment with Dynamic Loss Functions
	Performance on Official Test Data

	Conclusion and Future Work

