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Montréal, Québec, Canada

August 2021

© Bavand, 2021



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Amir Hossein Bavand

Entitled: The Impact of Parallel and Batch Testing in Continuous Integration

Environments

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Joey Paquet

Examiner
Dr. Joey Paquet

Examiner
Dr. Weiyi Shang

Supervisor
Dr. Peter C. Rigby

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

September 2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science



Abstract

The Impact of Parallel and Batch Testing in Continuous Integration Environments

Amir Hossein Bavand

Testing is a costly, time-consuming, and challenging part of modern software development.

During continuous integration, after submitting each change, it is tested automatically to ensure that

it does not break the system’s functionality. A common approach to reducing the number of test

case executions is to batch changes together for testing. For example, given four changes to test, if

we group them in a batch and they pass we use one execution to test all four changes. However,

if they fail, additional executions are required to find the culprit change that is responsible for the

failure.

In this study we first investigate the impact of batch testing in the level of the builds. We evaluate

five batch culprit finding approaches: Dorfman, double pool testing, BatchBisect, BatchStop4, and

our novel BatchDivide4.

All prior works on batching use a constant batch size. In this work, we propose a dynamic batch

size technique based on the weighted historical failure rate of the project.

We simulate each of the batching strategies across 12 large projects on Travis with varying

failures rate. We find that dynamic batching coupled with BatchDivide4 outperforms the other

approaches. Compared to TestAll, this approach decreases the number of executions by 47.49%

on average across the Travis projects. It outperforms the current state-of-the-art constant batch size

approach, i.e. Batch4 by 5.17 percentage points.

Our historical weighting approach leads us to a metric that describes the number of consecutive

build failures. We find that the correlation between batch savings and FailureSpread is r = −0.97
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with a p � 0.0001. This metric easily allows developers to determine the potential of batching on

their project.

However, we then show that in the case of failure of a batch, re-running all the test cases is

inefficient. Also, for companies with notable resource constraints, e.g., Ericsson, running all the

tests in a single machine is not possible and realistic. To address this issues we extend our work to

an industrial application at Ericsson.

We first evaluate the effect of parallel testing for a project at Ericsson. We find that the re-

lationship between the number of available machines for parallelization and the FeedbackTime is

nonlinear. For example, we can increase the number of machines by 25% and reduce the Feedback-

Time by 53%.

We then examine three batching strategies in the test level: ConstantBatching, TestDynamic-

Batching, and TestCaseBatching. We evaluate their performance by varying the number of parallel

machines. For ConstantBatching, we experiment with batch sizes from 2 to 32. The majority of

the saving is achieved using batch sizes smaller than 8. However, ConstantBatching increases the

feedback time if there are more than 6 parallel machines available. To solve this problem, we pro-

pose TestDynamicBatching which batches all of the queued changes whenever there are resources

available. Compared to TestAll TestDynamicBatching reduces the AvgFeedback time and AvgCPU

time between 15.78% and 80.38%, and 3.13% and 48.78% depending on the number of machines.

Batching all the changes in the queue can increase the test scope. To address this issue we propose

TestCaseBatching which performs batching at the test level instead of the change level. Using Test-

CaseBatching will reduce the AvgFeedback time and AvgCPU time between 19.84% and 84.20%,

and 5.65% and 50.92% respectively, depending on the number of available machines for parallel

testing. TestCaseBatching is highly effective and we hope other companies will adopt it.
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Chapter 1

Introduction

Recently, there has been an increasing desire among developers to transfer their testing pro-

cesses to a continuous integration (CI/CD) environment. To ensure each change does not break the

software system, it is important to test each commit before merging it into the code repository [37].

Testing each change individually is costly, and in some cases, infeasible [70]. To reduce this cost,

there are multiple techniques including test selection [83], test prioritization [100], and batch test-

ing [70]. In this work, we focus on batch testing. A passing batch will save resources and allow

the commits to be integrated quickly. However, if a batch fails a bisection must be performed to

identify the failing commit, i.e. the culprit, potentially delaying and increasing the execution cost.

In this work, we study the impact of batch testing with three case studies.

1.1 Software Batch Testing to Save BuildTest Resources and to Re-

duce FeedbackTime

Chapter 2 was accepted to the IEEE journal Transaction on Software Engineering [13]. I per-

formed the major revisions for this TSE paper and added two additional research question. The first

two research questions are included only as prior work, and my contribution is RQ3 and RQ4. In

this chapter we examined how well the batching approaches, Batch4, BatchStop4, and RiskBatch,

compared to prior work by Najafi et al. [70].

In RQ3, we examine the impact of failure rate on batching effectiveness. Prior works indicated

1



that batching is not effective with a failure rate at or above 25% [70, 12]. However, this assumes

a normal distribution of failures. In this research question, we do an analysis on 152 Travis torrent

projects. 85.5% of the projects see a savings in build test executions when using Batch4. All

projects below a failure rate of 40% experience savings. With a failure rate between 40% and

60% the results vary by project, and developers would need to investigate the failure distribution to

determine if batching is effective for their project. Only 5.2% of projects have a failure rate above

60% where batching results in a substantial increase in executions.

For RQ4, we examine the impact of batching on feedback time because prior works had only

focussed on resource utilization [70, 12]. We find that on average all the proposed simple batching

techniques provide feedback more quickly than TestAll. Compared to TestAll, Batch4 reduces the

time for feedback by 32.22% on average and between 14.00% and 41.20% across projects. While

BatchBisect and BatchStop4 can outperform Batch4 by a few percentage points, they require an

optimal batch size and a variable amount of time to find the culprit. Even the minimum batch size

of two can provide feedback savings with an average of 15.47%.

1.2 Mining Historical Test Failures to Dynamically Batch Tests to Save

CI Resources

All prior works on batching use a constant batch size [70, 13]. In this chapter, we propose a

dynamic batch size technique based on the weighted historical failure rate of the project.

We simulate each of the batching strategies across 12 large projects on Travis with varying

failures rate. We find that dynamic batching coupled with BatchDivide4 outperforms the other

approaches. Compared to TestAll, this approach decreases the number of executions by 47.49%

on average across the Travis projects. It outperforms the current state-of-the-art Batch4 by 5.17

percentage points.

Our historical weighting approach leads us to a metric that describes the number of consecutive

build failures. We find that the correlation between batch savings and FailureSpread is r = −0.97

with a p � 0.0001. This metric easily allows developers to determine the potential of batching on

their project.

2



We also contribute a theoretical limit for the savings that can be achieved by batch testing. We

show that using dynamic batching, we achieve an across project average of 58.91% of the theoretical

limit. Although batching is highly effective, there is still substantial room for improving batching

relative to the theoretical batch savings limit.

1.3 Parallel and Batch Testing in a Continuous Integration Environ-

ment

The previous chapters make three assumptions which are unrealistic on large software systems.

First, they do not run tests in parallel and implicitly use a single machine. Second, after the failure of

a batch, they rerun every test. However, this is unnecessary as we are aware of the failed test cases,

and we do not need to re-run all the test cases that pass successfully. Third, previous researchers

focus only on introducing new algorithms to reduce the resource costs of finding the culprit change

in a batch [70, 13]. They did not perform an in depth investigation into the impact of the feedback

time of batching.

In this chapter, we first evaluate the effect of parallel testing on a project at Ericsson. We find

that the relationship between the number of available machines for parallelization and the Feed-

backTime is nonlinear. For example, we can increase the number of machines by 25% and reduce

the FeedbackTime by 53%.

We examine three batching strategies: ConstantBatching, TestDynamicBatching, and TestCase-

Batching. We evaluate their performance by varying the number of parallel machines. For Constant-

Batching, we experiment with batch sizes from 2 to 32. The majority of the saving is achieved using

batch sizes smaller than 8. However, ConstantBatching increases the feedback time if there are more

than 6 parallel machines available. To solve this problem, we propose TestDynamicBatching which

batches all the queued changes whenever there are resources available. Compared to TestAll, Test-

DynamicBatching reduces the AvgFeedback time and AvgCPU time between 15.78% and 80.38%,

and 3.13% and 48.78% depending on the number of machines. Batching all the changes in the

queue can increase the test scope. To address this issue we propose TestCaseBatching which per-

forms batching at the test level instead of the change level. Using TestCaseBatching will reduce

3



the AvgFeedback time and AvgCPU time between 19.84% and 84.20%, and 5.65% and 50.92% re-

spectively, depending on the number of available machines for parallel testing. TestCaseBatching is

highly effective, and we hope other companies will adopt it.

4



Chapter 2

Software Batch Testing to Save Build

Test Resources and to Reduce Feedback

Time

In this manuscript thesis, this Chapter is a verbatim copy of the paper published in Transac-

tion on Software Engineering (TSE) [13]. I performed the major revisions for this TSE paper

and added two additional research question. The first two research questions are included

only as prior work and my contribution is RQ3 and RQ4.

2.1 Introduction

Testing is a critical but costly quality assurance practice [45]. Tests are run at multiple levels

including unit, integration, and system tests [29]. The move to Continuous Integration and Deliv-

ery (CI/CD) emphasizes testing individual changes to ensure that problems are found immediately

and before release [36]. In some development environments testing each change is infeasible and

changes must be batched. For example, at Ericsson, expensive hardware simulation makes test-

ing each change impossible [70]. To overcome these resource constraints Ericsson uses bisection to

batch groups of builds and test them together. The bisection requires failing builds to be divided into

5



smaller sized batches until the culprit is found. At Google, individual integration tests can run for

more than 45 minutes, requiring the batching of all recent changes. Test Feedback can be delayed

by up to 9 hours [103, 68]. Google uses bisection in conjunction with static build dependencies to

eliminate unlikely culprits. In this work, we examine the largest open source projects that use Travis

CI to re-evaluate the existing batching approaches: BatchBisect and RiskTopN.

The open source projects that use Travis CI have different constraints from Ericsson and Google.

Beller et al. [17] examine building and testing on Travis CI and finds that on most open source

projects the time to run tests takes much longer and consumes more resources than the build and

other aspects. This cost is amplified by the running of tests in different environments, e.g., Python

2.7 and 3.7. Furthermore, the most common cause of CI build failure is a failed test which can

further lengthen the integration and release cycle. In terms of resource consumption, Travis CI limits

the number of builds that an open source project can run [3]. During busy times, the waiting time

can more than doubles the build test cycle [18]. Resources are clearly an important consideration

for open source projects. In contrast with prior work, we also examine how batching impacts the

time to receive the test verdict, i.e. the change in feedback time.

We introduce three novel approaches, Batch4, BatchStop4, and RiskBatch, to improve the effi-

ciency of testing CI. We conduct an evaluation on large open source projects that use Travis CI [18].

We release the BatchBuilder [15] tool that batches pull-request on GitHub for testing on Travis

CI. Since the batching happens in the background and results are reported for each individual pull-

request, the development process is unchanged.

2.1.1 Research Questions and Batching Approaches

RQ 1. Batching: How well does simple bisection and batching improve resource utiliza-

tion?

RA 1. TestAll: Running tests on a single build containing a single pushed change immediately

isolates any failing test to the changed code. This approach is simple, allowing developers to test

each push as a single build in modern CI pipelines [35]. We use the TestAll as the baseline approach

because it is in widespread use and does not require builds to be combined and does not introduce

the complexity of bisection on test failure.
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RA 2. BatchBisect: TestAll can be prohibitively expensive for large companies with many tests

or expensive test hardware. For example, Google [103], Ericsson [70], and Shopify [66] combine

commits into a single batch to reduce the total number of test executions. If all the tests pass on

a build of size n, then there will be n − 1 saved build test executions. In the case of test failure,

a bisection is performed until a single build is isolated as the culprit. The execution savings are

dependent on the number of test failures that result in bisection. We run simulations to determine

the best batch size for a project.

Compared to TestAll, we see a BatchBisect saves between 22.35% and 57.55% of the total build

test executions with an average across projects of 46.05%. The best batch size per project ranges

from 4 to 8.

RA 3. Batch4: Tooling exists to batch commits and perform bisection on test failure, for exam-

ple, SandCastle from Facebook [44]. However, bisection adds additional batching and complexity

to the CI process. To avoid bisection, we note that batches of size four have the special property:

on failure a bisection will cost at least 4 additional executions, which is the same as testing each

build individually. We propose the novel Batch4 approach, which groups builds into batches of four,

saving n − 1 = 3 executions when all tests pass. On failure, we do not run a bisection, instead we

revert to TestAll which costs 4 additional test executions or n+ 1 = 5 executions in total.

This simple approach is also very effective at execution reduction. Compared to TestAll, we

see that Batch4 saves between 29.51% and 55.84% with an average across projects of 47.63%.

Compared to BatchBisect, Batch4 is not only simpler, requiring no bisections, but also outperforms

BatchBisect with an average execution improvement of 1.58 percentage points.

RA 4. BatchStop4: On projects that have few failures, BatchBisect can still be more efficient

than Batch4. For example, on the puppet project, the batch size is 8 and requires 5.09 percentage

points fewer executions than Batch4. As a result, we introduce BatchStop4, which can make large

batches and uses normal bisection until the batch size is four.

Compared to TestAll, we see that BatchStop4 saves between 29.51% and 60.83% with an av-

erage across projects of 50.31%. The majority of the savings are achieved with small batch sizes,

batch 2, 4, and 8, realizing an average of 72%, 93%, and 99% of the total batch savings. Com-

pared to BatchBisect and Batch4 the average execution improvement is 4.23 and 2.69 additional
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percentage points.

RQ2. Risk Models: Can commit risk models improve the resource utilization during

batching?

RA 5. RiskTopN: When a test fails on a batch, a bisection is required which costs additional

executions. Not all builds are equally likely to fail, i.e. risky. Models of change risk have been

widely used to identify bug-introducing changes [39]. Recent work by Najafi et al. [70] used risk

models to identify commits that had likely failing tests at Ericsson, and we reproduce the RiskTopN

approach on nine OSS projects. When a batch fails, the N builds with the highest risk are isolated

and tested by themselves. The remaining builds that have a lower modelled risk are tested together

in a single batch. The process is repeated until all culprits are found.

Compared to TestAll, RiskTopN reduces executions between 23.23% and 54.80% with an aver-

age across projects of 44.17%. However, Batch4 and BatchStop4 both outperform RiskTopN by 3

and 6 percentage points and do not require a statistical risk model.

RA 6. RiskBatch: In the previous approaches, the batch size is constant for all batches. We

introduce the RiskBatch approach that uses a statistical model of risk to continue to add builds to a

batch until a risk threshold is reached. Low-risk builds will be put into larger batches than high-risk

builds, and a single high-risk build that is above the threshold will be tested individually. In our

simulations, we vary the risk threshold.

Compared to TestAll, RiskBatch reduces executions by between 25.93% and 57.43% with an

average across projects of 48.50%. RiskBatch outperforms previous risk-based approach, RiskTopN

by 4.33 percentage points.

RQ3 FailureRate: How does the failure rate effect resource utilization during batching?

Prior work indicated that batching is not effective with a failure rate at or above 25% [70].

However, this assumes a normal distribution of failures. In this research question, we do an initial

analysis of all the Travis torrent projects that have 1000 or more tested builds (152 projects). While

the projects cover the full range of build failure rates from 2.80% to 96.03%, we find that the

distribution is skewed towards lower failure rates, with a median failure rate of 23.23%. To simulate

the impact of failure rate on batching, we use the Batch4 approach because it is effective and simple

compared to the bisection and risk-based startegies.

8



85.5% of the projects see a savings in build test executions when using Batch4. The failure

rate and savings have a strong negative correlation, Spearman r = −0.97 and p � 0.001. All

projects below a failure rate of 40% experience savings. With a failure rate between 40% and

60% the results vary by project, and developers would need to investigate the failure distribution to

determine if batching is effective for their project. Only 5.2% of projects have a failure rate above

60% where batching results in a substantial increase in executions.

RQ4 Feedback: What is the impact of batching on feedback time?

Batching is typically used when there are hard resource constraints such as hardware testing at

Ericsson [70] or during massive integration testing at Google that can run for over 9 hours [68].

While we focus on resource savings, we provide an initial formulation of the change in feedback

time on the large open source projects that use Travis CI.

We find that on average all the proposed simple batching techniques provide feedback more

quickly than TestAll. Compared to TestAll, Batch4 reduces the time for feedback by 32.22% on

average and between 14.00% and 41.20% across projects. While BatchBisect and BatchStop4 can

outperform Batch4 by a few percentage points, they require an optimal batch size and a variable

amount of time to find the culprit. Even the minimum batch size of two can provide feedback

savings with an average of 15.47%.

2.2 Background on Batching and Definitions

In this section, we introduce the background on batching, bisection, and statistical risk models.

We mathematically show the minimum and maximum number of build test executions required

to find the culprit build on failing tests as well as the savings when builds pass. We note that

these equations require the build sizes to be powers of two. These definitions are complimented

by examples for each of our six research approaches. In subsequent simulations, we calculate the

actual number of executions.
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Figure 2.1: BatchBisect. In this example, a batch of size eight builds is tested. The batch fails.
Bisection is used to isolate the culprits in two batches of size four. The bottom passes and can be
integrated. The top contains two failures that are isolated. In total, we need nine executions to
isolate the culprits.

2.2.1 RA 1. TestAll

TestAll is the simplest and most common form of running tests in a CI flow. Every change will

be tested individually before being merged to the main repository or master branch. The number

of build test executions is equal to the number of changes made to the system, n. The number of

executions is constant regardless of a pass or fail in a build because on failure there is only one

possible culprit build. Formally, the number of executions for a pass, p, or fail, f , is defined below:

TestAllp(n) = TestAllf (n) = n (1)

2.2.2 Batching

Instead of testing each build individually, we batch builds together and test them in groups.

When the batches pass, we need only one test execution:

Batchp(n) = 1 (2)
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Figure 2.2: On batch failure, the minimum and maximum number of executions required to isolate
the culprit build(s) for each approach.
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Figure 2.3: Batch4. If TestAll is run on failure the number of executions is constant and equal to
the minimum executions for BatchBisect(4). In this example, the first four builds fail, and each is
then tested individually for a total of five executions. The second batch passes requiring a single
execution. We need a total of six executions, while the same builds required nine executions for
BatchBisect in Figure 2.1

Figure 2.4: BatchStop4. We add a stopping condition for bisection when the batch is size four. For
example, the first batch fails and a bisection is performed. In the second batch, Build 1 and 4 are
culprits but batch size is four, so instead of bisection, all builds are tested individually. Build 5 to
8 have no failures and there is no need for further test executions. In total, we need 7 execution to
find all culprits.
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Figure 2.5: RiskTopN. A risk model is run to determine the likelihood of failure for each build [70].
The riskiest N builds are tested in isolation with the remainder tested as a batch. Using RiskTop1 in
this example, Build 4 is the riskiest and is isolated for testing. When the remaining batch still fails,
Build 1 is now the riskiest. The remaining batch passes. In total, we need five executions to isolate
the culprits.

This savings can be substantial. In an extreme example, imagine a project that does a nightly

test run on 100 builds, if the build passes the savings in execution will be 1− n = −99 or 99 build

test executions.

BatchSavingp(n) = Batchp(n)− n = 1− n = 1− TestAllp(n) (3)

However, on failure the culprit must be identified and the number of executions varies depending

on the approach used to identify the culprit failure.

2.2.3 RA 2. BatchBisect

When a batch passes, only one execution is required to merge the builds in the batch. However,

if the batch fails, the build that has failing tests, i.e. the culprit(s), must be found using bisection.

GitBisection uses a binary search and in so doing assumes ordered commits and that there is only

one commit that introduces the failure (i.e. we search for the failing commit). However, if there

are two commits that have failing tests, then GitBisection would only be able to find the oldest
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Figure 2.6: RiskBatch. Builds are added to the batch until a threshold is reached. With a threshold
of 40%, Build 1 is isolated, while Builds 2 and 3 are tested together because their combined risk
is 20%. Adding Build 4 would have a increased the cumulative risk to 75%, so Build 4 is tested
individually. The remaining builds have a combined risk of 35%, so they are tested as a single batch.
In total, we need four executions to isolate the culprits.
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culprit commit. The remaining commits could not be integrated without further testing as a second

culprit may also be present. Instead of a search for a single culprit, we need to traverse a binary

tree identifying all the culprits. As a result, in this work we bisect by splitting the builds into equal

batches for testing. Figure 2.1 illustrates the process.

Mathematically, we know that the number of test executions required to find a single culprit is

the minimum cost on failure. The bottom line in Figure 2.2 shows the number of executions required

to find a single culprit for batch sizes between 1 and 10.

min(BatchBisectf (n)) = 2 ∗ log2(n) + 1 (4)

If all builds in a batch contain a failing test, i.e. are culprits, then the number of required exe-

cutions is equal to the number of nodes in a full binary tree, which is the maximum cost on batch

failure. This maximum is shown as the top line in Figure 2.2.

max(BatchBisectf (n)) = 2 ∗ n− 1 (5)

The greater the number of builds that have failing tests, the greater the number of test executions.

For example, Figure 2.1, in a batch of 8 that contains two culprits we need 9 build test executions

to find both culprits. This is actually larger than the TestAll scenario with one build test execution

per build, i.e. eight. In Section 2.4.1, we run simulations to determine the optimal batch size and

execution reduction attained by BatchBisect for the Travis projects.

2.2.4 RA 3. Batch4

When a batch fails, bisection requires test executions to find the culprits. Given that the bisection

is performed using a binary tree, a batch of size four has special properties that we will discuss. The

build test execution reduction when a batch of size four passes is constant at 3 build test executions.

For completeness:
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Batch4p(4)− n = 1− 4 = −3

= BatchBisectp(4))− n

(6)

However, one failure with BatchBisect(4) requires between 5 and 7 executions to identify the

culprits. In contrast, the Batch4 approach, that on failure runs the tests on each individual build, i.e.

TestAll, resulting in a constant number of executions described below.

min(Batch4f (4)) = max(Batch4f (4))

= n+ 1 = 4 + 1 = 5

= min(BatchBisectf (4))

< max(BatchBisectf (4) = 7

(7)

Figure 2.3 provides an example of the Batch4 approach. The first batch has two culprits and

BatchBisect would require 9 executions. In contrast, Batch4 requires 6 test executions. The second

batch has no culprits, so it requires one build test execution. When there is a single culprit, Batch-

Bisect and Batch4 are the same (see Equation 7), however, when there are two or more culprits the

Batch4 saves up to 2 executions.

Batch4 is a special case of the Dorfman [33] method introduced during World War II to batch

medical tests of, for example, syphilis. The naive Dorfman algorithm combines n soldiers into a sin-

gle batched test, on failure each individual solider is tested individually, i.e. TestAll. In Figure 2.2,

we show that Dorfman requires additional executions beyond the minimum for BatchBisect after

four builds. In our simulations in Section 2.2.4, we show that the simple Batch4 approach is highly

effective.

2.2.5 RA 4. BatchStop4

In the previous section, we mathematically demonstrated that bisection with four builds should

be replaced by Batch4. We build upon this idea with BatchStop4, which runs normal bisection until
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the batch size is four, in which case it runs Batch4. For example, in Figure 2.4 the batch size is 8

and Builds 1 and 4 contain failures. After a bisection, the first batch contains the failures while the

second batch passes. Since the batch size is four, bisection is no longer performed, instead each

build is tested individually i.e. TestAll. The total number of execution is 7 for BatchStop4, while

the total for BatchBisect is 9.

With the stopping condition at 4, then the number of executions required to find one culprit is

the modified version of Equation 4:

min(BatchStop4f (n)) = 2 ∗ log2(n) + 1− 4 + 4

= 2 ∗ log2(n) + 1

= min(BatchBisectf (n))

(8)

While the maximum number of executions on failure is

max(BatchStop4f (n)) = 2 ∗ n− 1− (n/2 + n) + n

= 2 ∗ n− 1− n/2

< max(BatchBisectf (n))

= 2 ∗ n− 1

(9)

Since we stop bisection when a batch contains 4 builds, the height of the tree is reduced by two

with an execution reduction of n/2 + n. However, we still need to run TestAll on these batches of

4, so we need n additional executions. With one culprit BatchStop4 is equivalent to BatchBisect,

however, with additional culprits we can save up to n/2 executions. Section 2.4.3 presents the

simulation results, and we find that BatchStop4 has the second highest savings of our approaches.

2.2.6 RA 5. RiskTopN

When a batch fails, bisection requires expensive additional executions. Commit risk models

have been used to alert developers to bug-introducing changes that may need additional testing or
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review [8]. Najafi et al. [70] used risk models to isolate the top N riskiest commits to be tested

individually while batching the remaining low-risk commits.

For example RiskTop1 is illustrated in in Figure 2.5. We see the modeled risk probabilities for

each build with Build 4 has the highest risk, i.e. 55% chance of failure, so it is tested individually.

The remaining builds are tested in a single batch. The process of testing risky builds in isolation is

repeated until all failures are found and passing builds are integrated. Finding the 2 culprits in our

examples take only 5 build test executions compared to the 9 and 7 required for BatchBisect and

BatchStop4 respectively.

Najafi et al. [70] created a simple logistic regression model with seven features. In contrast,

as we show in our data and methodology, Section 2.3, we create more sophisticated models, e.g.,

Random Forest using 19 features. As we discuss in the result, the accuracy of the model dictates

the degree of savings (see Section 2.5.1).

2.2.7 RA 6. RiskBatch

The approach in Najafi et al. [70] tests risky builds in isolation. In contrast, we introduce the

RiskBatch approach that group builds into a batch up to a cumulative risk threshold. For example

in Figure 2.6 we set the risk of failure threshold to 40%. Build 1, with a risk of 45%, is tested

individually while Build 2 and build 3 are tested together because their combined risk is 20%. Build

4 could not be added to the previous batch because the combined risk of would be 75%, so build 4

is tested individually. The process is repeated for the remaining four builds that have a combined

risk of 35%. In this example, we need four executions to isolate the culprits and integrate the

passing builds, compared to the 9 and 5 for BatchBisect and RiskTop1, respectively. The savings

are dependent on the accuracy of the risk model, and Section 2.5.2 presents our results and tuning

with various thresholds.

2.3 Data and Methodology

In this section, we describe the projects and data used in the study. We then describe our statis-

tical risk models. Finally, we describe our simulation method and define the outcome measures.
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Table 2.1: Size of projects under study

Project Failure Rate Tested Builds Years Contributors
ruby 22.21% 15,382 5 192
metasploit 7.93% 8,836 4 703
graylog2 10.51% 5,194 4 98
owncloud 16.13% 4,452 2 71
vagrant 9.59% 4,402 4 914
gradle 8.96% 4,018 2 434
puppet 6.95% 3,223 4 532
opal 9.87% 2,980 4 99
rspec 19.36% 2,856 5 274

2.3.1 Travis Projects Under Study

Travis CI is a continuous integration system that is freely available for use by open source

projects.1 The data from the builds of 1,200 open source projects was made available by Travis

Torrent [18]. We use the Travis Torrent dataset in this work. In the Travis Torrent dataset, a Travis

build can have the following outcomes:

• “passed:” The code has been successfully tested and no failures have occurred.

• “failed:” The code has been successfully tested but some tests have failed.

• “errored:” There was an error while running the tests. For example, there is a bug in test code,

an error in setup test environment, a timeout, or an error returned from git.

• “canceled:” The build has been canceled by the user.

We discard “canceled” builds because a developer manual stopped the test run and we cannot

model the reason for this stoppage. We consider “errored” and “failed” builds as failures because

environmental failures will also result in a bisection [70].

Following Najafi et al. [70], we only considered projects with a failure rate below 25%. We or-

der projects by the number of builds and select the top nine active projects: Ruby, Metasploit, Gray-

log2, OwnCloud-android, Vagrant, Gradle, Puppet, Opal, and Rspec. We do not consider projects

with a failure rate above 25% as batching is not effective with high failure rates [70]. Table 3.1
1Travis: https://travis-ci.com/
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provides additional descriptive statistics on the projects. The projects have between 2.8k and 15k

test builds, there is a wide range of failure rates from 7% to 22%, multiple years of development,

and between 67 and 914 contributors per project.

The projects are from diverse software domains and we briefly describe each project. The Ruby

project is a popular object oriented programming language that is often used for web development.

The Metasploit project is a testing framework used for penetration testing with about 900 exploits

for different operating systems. The Graylog2 project is an open source logging system capable of

collecting, storing and analyzing logs in production. The OwnCloud-android project is an Android

app to access cloud storage provided by an OwnCloud Server. The Opal project is a source-to-

source compiler for converting Ruby code to JavaScript. The Rspec project is a testing framework

for Ruby projects focusing on test driven development. The Vagrant project helps to build and

manage portable virtual machines and containers such as AWS or Docker containers. The Gradle

project is a build automation and dependency management software that supports many languages

including Java, C++, and Python. The Puppet project is management software that controls dis-

tributed operating systems with a centralized configuration and facilities administrative tasks such

as updating software and managing users.

Najafi et al. [70] argued that a failure rate of 25% should be the cutoff for batching because

one in four builds will fail making even small batches sizes ineffective. However, this assumes a

normal distribution of batch failures. For completeness, in RQ3, we run the Batch4 approach on

all projects in the Travis torrent dataset with 1000 or more builds regardless of failure rate (a total

of 152 projects). These projects cover the full range of failure rates, from 2.80% to 96.03% with

a median of 23.11%, and allows us to understand the actual upper limit on failure rates and batch

savings.

2.3.2 Statistical Risk Models

Two of our approaches require statistical models: RiskTopN (RA 5) and RiskBatch (RA 6). We

develop risk models to identify the builds that are most likely to fail. We use scikit-learn2 library
2https://scikit-learn.org/

20



for this purpose. Change risk modelling has been widely studied to identify faults [39] and bug-

introducing changes [58]. Prior work by Najafi et al. [70] created a simple logistic regression using

seven predictors. In this work, we use more sophisticated models and additional features. The

dataset has 61 features for each Travis build. We exclude all features that are available only after

the tests have been run, including number of failed tests, number of skipped tests, and test duration.

We also exclude unique features including the commit hash, date, and project level features, such as

the team size that would be constant across all project builds. In total, we have 19 features in total,

which we describe briefly for completeness.

(1) gh is pr: true if this build is started by a pull request otherwise false.

(2) gh num commits in push: Number of commits in the push that started the build.

(3) git prev commit resolution status: String, ”merge found” if this build is a merge otherwise

”build found”.

(4) git num all built commits: Integer, Number of all commits in this build.

(5) gh num commit comments: Number of comments on all commits in this build on GitHub.

(6) git diff src churn: Number of modified lines of source code.

(7) git diff test churn: Number of modified lines of test code.

(8) gh diff files added: Number of files added.

(9) gh diff files deleted: Number of files deleted.

(10) gh diff files modified: Number of files modified.

(11) gh diff tests added: Number of test cases added.

(12) gh diff tests deleted: Number of test cases deleted.

(13) gh diff src files: Number of source files changed.

(14) gh diff doc files: Number of documentation files changed.
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(15) gh diff other files: Number of other files changed (other than source code and documenta-

tion).

(16) gh num commits on files touched: Total number of commits on the files touched in this build

in previous 3 months.

(17) gh sloc: Total number of lines of source codes in the repository.

(18) gh asserts cases per kloc: Number of assertions per 1000 gh sloc.

(19) gh by core team member: True if the triggering commit was by a core team member. (Some-

one who has committed code at least once in previous 3 months)[18]

The outcome of our risk model is the probability that a build will fail one or more tests. We

evaluated five classifiers: random forest, Naive Bayes, MLP, logistic regression, and SGD.

2.3.3 Simulation and Evaluation

The Travis dataset provides the test verdict for each individual build. Failed builds must be

investigated while passing builds are integrated. To simulate the impact of our batching approaches

on the number of build test executions, we use the verdict of each build, and combine builds based

on the approaches described in Section 3.2.

Our simulated batches contain only the builds that have been flagged as ready for integration

with Travis CI. We do not introduce any new conflicts when we create batches because any conflict

would have been dealt with when the developer ensures that the code can be merged in the pull

request prior to submission to Travis CI.

We only combine builds that have the same Travis CI configuration, e.g., that request the same

dependencies and environment. If two builds have different configurations, we cannot combine

them in a batch. For example, a build that requires postgres cannot be combined with one that

requires MySQL. We only batch builds with identical configuration files.

For risk based approaches, we must train a risk model, and we use the first month of data for

training. As we discuss in threats to validity, we experimented with larger training time periods,
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but found that one month was equal or better than longer time periods. To compare with the other

approaches, we also ignore the first month in non-risk approaches.

The goal of this work is to identify failing builds and integrate passing builds with a minimal

number of build test executions. We report the percentage decrease in build test executions for each

research approach, A, relative to the total number of builds that must be tested, i.e. the TestAll

approach, according to the following equation:

ExecutionReduction(A) = 1− Executions(A)
TotalBuilds

= 1− Executions(A)
Executions(TestAll)

(10)

We also report the additional savings for each approach relative to the total number of builds.

This is equivalent to calculating the differences in percentages, i.e. percentage point difference, for

each approach. We use the equation below to calculate the additional savings for approach, A2,

given approach, A1, and the number of TotalBuilds:

AdditionalReduction(A2 — A1)

= (1− Executions(A1)

TotalBuilds
)− (1− Executions(A2)

TotalBuilds
)

=
Executions(A2)− Executions(A1)

TotalBuilds

= ExecutionReduction(A1)− ExecutionReduction(A2)

= PercentagePointDifference(A2, A1)

(11)

Although resource savings is the primary goal of the work, we provide an initial investigation

of the change in feedback time for batching relative to test all. The reduction in feedback time is

calculated for approach A as follows:

FeedbackReduction(A) = 1− Duration(A)
Duration(TestAll)

(12)
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Table 2.2: Percentage savings in build test executions relative to TestAll. We see on average the
techniques save slightly less than half the build test executions. The best performing approach is
BatchStop4. However, Batch4, which does not require bisection or a risk model, performs well and
is simple to implement.

Project Batch Batch4 Batch Risk Risk
Bisect Stop4 Top2 Batch

ruby 22.87% 32.97% 32.97% 29.96% 33.77%
metasploit 52.37% 51.46% 54.64% 50.60% 53.54%
graylog2 52.05% 52.17% 55.69% 49.39% 55.20%
owncloud 53.82% 53.42% 57.98% 54.80% 57.43%
vagrant 57.55% 55.84% 60.83% 50.35% 55.27%
gradle 48.49% 49.21% 50.92% 41.91% 49.29%
puppet 57.16% 54.86% 59.34% 50.85% 56.26%
opal 47.81% 49.19% 50.91% 46.40% 49.84%
rspec 22.35% 29.51% 29.51% 23.23% 25.93%
Minimum 22.35% 29.51% 29.51% 23.23% 25.93%
Average 46.05% 47.63% 50.31% 44.17% 48.50%
Maximum 57.55% 55.84% 60.83% 54.80% 57.43%

2.4 RQ 1: Batching

How well does simple bisection and batching improve resource utilization?

2.4.1 Result: RA 1. BatchBisect

Batching commits is widely used for integration testing and when the tests are long-running or

expensive [103]. Najafi et al. [70] empirically showed that batching commits and using a bisecting

process to isolating the failing commit is effective at Ericsson with a savings in build test executions

of 7%, 14%, and 41% depending on the project. We reproduce the result on nine large projects

hosted on Travis CI. We run simulations with batch sizes between 1 and 20 builds and plot the

saving in build test executions in Figure 2.7. From the execution saving curve in the figure, we note

a logarithmic improvement with the majority of the savings coming from small batches sizes. At a

batch size of 8, we see that at a minimum 97% of the total executions savings has been achieved.

On the projects that Najafi et al. [70] studied, the improvements began to decrease with larger batch

sizes. We see a similar trend on the rspec and ruby projects that have the highest failure rates. The

remaining projects plateau with larger batch sizes resulting in little to no improvement in execution
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Figure 2.7: Savings in number of build test executions for each batch size. We see that much of
the savings is achieved with small batch sizes. Batch4 is represented as a vertical line in the middle
figure. Projects with higher failure rates see a decrease in savings with large batch sizes, while most
projects plateau.

savings. As a result, we report the saving results at or below 8 for the remainder of the work. The

best batch sizes are 4, 8, 8, 7, 8, 8, 8, 8, and 4 for each project respectively and the corresponding

execution savings are 22.87%, 52.37%, 52.05%, 53.82%, 57.55%, 48.49%, 57.16%, 47.81%, and

22.35%, respectively, with an average of 46.05%.

Compared to TestAll, we see a BatchBisect saves between 22.35% and 57.55% of the total

build test executions with an average across projects of 46.05%. The best batch size per

project ranges from 4 to 8, with the majority of the savings realized with small batch sizes.

2.4.2 Result: RA 2. Batch4

In Section 2.2.4, we mathematically showed that batches of four builds save three executions

when they pass, but can require between five and seven executions on failure for BatchBisection.

However, if we simply test all the builds individually on failure, we always need five executions

which is the same as the minimum number of executions for BatchBisect. Furthermore, the Batch4

approach does not require bisection and the complexity of regrouping commits inherent in this

process. In Figure 2.7, we see the vertical line represents the savings for Batch4 which are 32.97%,

51.46%, 52.17%, 53.42%, 55.84%, 49.21%, 54.86%, 49.19%, and 29.51% per project.
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Compared to TestAll, we see that Batch4 saves between 29.51% and 55.84% with an average

across projects of 47.63%. Compared to BatchBisect, Batch4 is not only simpler, requiring

no bisections, but also outperforms BatchBisect with an average improvement of 1.58 per-

centage points.

2.4.3 Result: BatchStop4

For BatchStop4, we use bisection until there are only four builds in a batch at which point we

revert to Batch4 and TestAll on failure as discussed in Section 2.2.3. Figure 2.7, shows the sim-

ulation results. The execution saving compared to TestAll are 32.97%, 54.64%, 55.69%, 57.98%,

60.83%, 50.92%, 59.34%, 50.91%, and 29.51% for each project respectively, with an average of

50.31. These savings are achieved by choosing batch sizes: 4, 7, 8, 8, 8, 6, 8, 8, and 4, respec-

tively. Compared to BatchBisect and Batch4, we see a reduction of 4.26 and 2.69 percentage point

in number of build test executions.

Again the figure shows a logarithmic improvement. In Table 2.3 we show the percentage of total

savings for each batch size. With a batch size of 2 we have already realized an average of 72% of

the total savings, by batch 4 we see an average of 93%, and by batch size 8 the average savings is

99%. It is clear that the largest gain in savings comes with small batch sizes and that larger batch

sizes provide little further advantage and in some cases require extra executions.

Compared to TestAll, we see that BatchStop4 saves between 29.51% and 60.83% with an

average across projects of 50.31%. The majority of the savings are achieved with small

batch sizes, batch 2, 4, and 8, realizing an average of 72%, 93%, and 99% of the total batch

savings. Compared to BatchBisect and Batch4 the average execution improvement is 4.23

and 2.69 additional percentage points.

2.5 RQ2: Risk Models

Can commit risk models improve the resource utilization during batching?
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Table 2.3: Proportion of total build test execution savings with a given batch size for BatchStop4.
We also include the optimal batch size in the final column. The added complexity of large batches
are not worthwhile. Small batch sizes account for the vast majority of the savings, with at least 97%
of the savings achieved with a batch size of 8 or less.

Project Size = 2 Size = 4 Size = 6 Size = 8 Best Size
ruby 0.83 1.00 1.00 1.00 4
metasploit 0.71 0.93 0.99 1.00 7
graylog2 0.68 0.92 0.98 0.99 12
owncloud 0.62 0.87 0.93 0.97 15
vagrant 0.61 0.87 0.93 0.98 16
gradle 0.75 0.97 1.00 1.00 6
puppet 0.64 0.89 0.94 0.98 16
opal 0.74 0.97 0.99 1.00 8
rspec 0.88 1.00 1.00 1.00 4
Minimum 0.61 0.87 0.93 0.97 4
Average 0.72 0.93 0.97 0.99 9.77
Maximum 0.88 1.00 1.00 1.00 16

The RiskTopN and RiskBatch depend on a risk model of how likely a build is to fail. RiskTopN

then tests the riskiest N builds in isolation, while RiskBatch groups builds into until a cumulative

risk threshold is reached. We described the 19 features that we included in our risk model in Sec-

tion 2.3.2. Najafi et al. [70] used 7 features and a simple logistic regression. In contrast, we evaluate

five classifiers: Naive Bayes, Random Forest, Multilayer Perceptron (MLP), logistic regression and

Stochastic Gradient Decent (SGD). We did not use decision trees because they are not designed

to provide a probability for the prediction and would not be able to create risk thresholds need to

create batches [94, 30]. Table 2.4 shows the F-score for each model. We see that Random Forest out

performs the other predictors on all projects except gradle where it is 1 percentage point worse than

SGD. As a result, we use Random Forest in the remainder of this work. For completeness we report

the precision and recall for Random Forest. The precision is 0.51, 0.29, 0.40, 0.46, 0.30, 0.14, 0.23,

0.23, and 0.30 for each project respectively. The recall is 0.55, 0.18, 0.33, 0.37, 0.25, 0.09, 0.14,

0.16, and 0.27, respectively.

We tuned the parameters for random forest. For number of trees we experimented the values of

10, 50, 100, 200, and 400 and found a difference in F score between 2 and 4 percentage point. For

maximum depth of the trees we evaluated the model with the values of 10, 20, 50, 100, 200 and no

limit. The difference in F score was between 0 and 4 percentage point. For the criterion parameter,
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Table 2.4: Comparison of F-scores for each model and project. Regardless of F-score all failing
builds are found. Low F-scores result in more build test executions. Precision and recall for Random
Forest are in the text.

Project Random Naive MLP Logistic SGD
Forest Bayes Regression

ruby 0.53 0.31 0.35 0.31 0.35
metasploit 0.23 0.03 0.08 0.03 0.08
graylog2 0.36 0.31 0.20 0.33 0.28
owncloud 0.41 0.32 0.28 0.14 0.11
vagrant 0.28 0.17 0.11 0.22 0.17
gradle 0.11 0.05 0.11 0.06 0.12
puppet 0.18 0.05 0.14 0.05 0.06
opal 0.19 0.09 0.03 0.18 0.13
rspec 0.29 0.22 0.19 0.25 0.19

we experimented gini and entropy and found the default gini function was the best choice in all of

the projects. For minimum samples split we experimented the values of 2, 5, 10, 20, 50, 100. The

default value of 2 had the best result in 8 of the projects. One of the projects had the best result with

the value of 10 although the difference was 1 percentage point in F score. For minimum samples

leaf we evaluated the values of 1, 2, 5, 10, 20, 50, 100 and found the default value of 1 generates

the best result in all of the projects.

An accurate risk model will reduce the number of executions, while an inaccurate model can

even increase the number of executions to find culprits. However, unlike bug prediction that can

result in a developer investigating a commit that does not introduce a bug, i.e. a false positive, our

risk models are used to automatically batch builds. The failing build will always be found and an

inaccurate risk model will simply require more executions but will never change the final outcome,

i.e. it will never add a false positive or negative.

2.5.1 Result: RA 4. RiskTopN

The RiskTopN approach isolates the riskiest builds to be tested in isolation, while testing the

less risky builds in a batch. We reproduce Najafi et al.’s [70] Ericsson study on Travis CI projects

using more predictors, a random forest, and removing the fixed batch size of four and top N = 2.

We evaluate N = 1 to 10 and batch sizes from 1 to 20.
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Figure 2.7 shows the execution savings for each batch size. We found that N = 2 produced the

best results for all projects. Like the other approaches, we see that the majority of the savings are

at batch 8, so for comparison purposes we report the results at batch size 8 in the work. The im-

provement over TestAll is 29.96%, 50.60%, 49.39%, 54.80%, 50.35%, 41.91%, 50.85%, 46.40%,

and 23.23% respectively. On all projects, the savings in executions is lower than Batch4 and Batch-

Stop4 which do not require a risk prediction model. Despite the use of more advanced models and

predictors than Najafi et al. [70], the results do not justify the addition of a risk prediction model in

the CI pipeline.

Compared to TestAll, RiskTopN introduced by Najafi et al. [70] reduces executions between

23.23% and 54.80% with an average across projects of 44.17%. However, Batch4 and Batch-

Stop4 both outperforms RiskTopN by 3 and 6 percentage points and do not require a statis-

tical risk model.

2.5.2 Result: RA 6. RiskBatch

Instead of isolating risky builds, our RiskBatch approach adds builds to a batch until the sum of

the builds added to the batch reaches a threshold. Section 2.2.7 and Figure 2.6 illustrate the process.

We varied the cumulative risk threshold of failure from 10% to 200% in steps of 10 percentage

point increases. We find that the best thresholds are 90%, 120%, 120%, 170%, 140%, 90%, 110%,

130%, and 80% for each project respectively. The cumulative risk is often over 100% indicating

that although the model predicts a high cumulative risk of failure, the strategy of making large

batches appears to outweigh this risk. However, Figure 2.8 plots the execution improvement for

each threshold and shows that low-risk threshold are also reasonably effective.

Compared to TestAll, the reduction in number of executions are 33.77%, 53.54%, 55.20%,

57.43%, 55.27%, 49.29%, 56.26%, 49.84%, and 25.93% respectively. RiskBatch outperform previ-

ous risk based approach, RiskTopN by 4.33 percentage points.

Compared to TestAll, RiskBatch reduces executions by between 25.93% and 57.43% with

an average across projects of 48.50%. RiskBatch outperforms RiskTopN by 4.33 percentage

points.
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Figure 2.8: Experimenting with the RiskBatch cumulative risk threshold. We see that most projects
have at or above 90%.
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Figure 2.9: The scatter plot shows a strong negative relationship between failure rate and Batch4
executions savings. 85.5% of the projects are above the horizontal line representing zero execution
savings. The data is skewed, with most projects seeing substantial savings. All projects with a
failure rate below 40% save executions. Only 5.2% of projects have a failure rate above 60% where
batching is ineffective.

2.6 RQ3: FailureRate

How does the failure rate effect resource utilization during batching?

Based on the Ericsson data of three projects, Najafi et al. [70] found that the failure rate limited

the savings and they speculated that projects with a failure rate above 25% could not see savings.

To further examine the relationship between failure rate and execution savings, we processed all

of the large projects in the Travis torrent dataset that have 1000 or more builds, for a total of 152

projects. We only simulate the Batch4 approach as we have shown that it is as effective as the more

complex bisection and risk approaches at reducing test executions. Section 2.3.1 fully describes the

simulation and approach details.
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Figure 2.9, plots the savings in build test executions on the y-axis relative to the project’s failure

rate on the x-axis. The Spearman correlation is strong and negative at r = 0.97 and p � 0.001,

providing empirical evidence for Najafi et al.’s [70] observation that failure rate controls savings.

From the perspective of savings, 85.5% of a projects have a positive savings, i.e. are above the

horizontal zero line in the figure. 76.97% see a savings of 10% or more, 66.45% see a savings of

20% or more.

From the perspective of failure rate (vertical lines in the figure), 21.05% of the projects have a

failure rate under 10% and show the strength of batching with savings between 48.17% and 65.30%.

These savings remain clear for projects with failure rates under 30% with savings between 10.34%

and 47.73%. All projects under 40% see some savings, however, the savings diminish with projects

with failure rates between 30% and 40% seeing savings between 3.16% and 28.05%. Between 40%

and 60%, the savings vary between negative (-10.88%) and positive (10.04%). Only 5.2% of the

projects have a failure rate above 60% and in all cases batching is ineffective.

85.5% of the projects see a savings in build test executions when using Batch4. The failure

rate and savings have a strong negative correlation, Spearman r = −0.97 and p � 0.001.

All projects below a failure rate of 40% experience savings. With a failure rate between 40%

and 60% the results vary by project, and developers would need to investigate the failure

distribution to determine if batching is effective for their project. With failure rates above

60%, batching is ineffective leading to additional build test executions.

2.7 RQ4: Feedback

What is the impact of batching on feedback time?

Batching has been most commonly used in strongly resource constrained environments such

as with Ericsson’s hardware simulation tests [70] and during Google’s integration testing that can

take upwards of 9 hours [68]. The focus of our work is on reproducing the resource savings of

batching on the largest open source projects using Travis CI. However, we contribute an initial

formulation of the change in feedback time from batching. We use a constant execution time, T ,
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Figure 2.10: Feedback time for passing batch. For TestAll, each build is processed in order by Build
number, for example, Build 1 would provide a verdict after time T, while Build 3 would have to wait
and would provide a verdict only after 3T. On pass, with batching, Build 1 would still take time T,
but Build 3 would be available 3T - 1T = 2T earlier.

Figure 2.11: Feedback time for Batch4 on failure. Batch4 reverts to TestAll on failure. Since the
original Batch test took 1T, each build will be delayed by -1T.
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Figure 2.12: Feedback time for BatchBisect on failure. With bisection at each split, two new batches
must be tested. The change in feedback time depends on where the culprit is in the build. In our
example, Build 1 is delayed, -3T, while Build 4 sees a speedup of 1T.

for each build because we only batch builds that have the same configuration files. We calculate

the change in feedback time relative to the TestAll scenario where each build in a batch is tested

sequentially as we described in our simulation methodology in Section 2.3.3 and Equation 12. We

run the simulation for Batch2, Batch4, BatchBisect, and BatchStop4. For the latter two we use the

optimal batch size. We do not report feedback results for the risk based models because they do not

outperform the simple batching and bisection strategies in terms of resource consumption.

When a batch passes, the savings for each build within the batch is proportional to its position.

In Figure 2.10, we see that the first build in a passing batch will have no time savings, while the

second will provide feedback one time unit earlier, the third will be two time units earlier, and the

fourth will be three time units earlier.

In Figure 2.11, we see that on failure, Batch4 reverts to TestAll, and will delay each build’s

feedback by one time unit. In contrast, the delay for a bisection process varies depending on where

the culprit is in the batch. An example, is shown in Figure 2.12.

The simulation results are in Table 2.5, and all approaches provide feedback on average more

quickly than TestAll. We can see that BatchBisect [70] has a wide range in feedback time savings

from 2.89% to 49.33%. The projects with high failure rates incur feedback delays when the batch

size is large and there are multiple culprits. Futhermore, Batch4, which does not require bisection

is only 1.13 percentage points lower than BatchBisect.

Batch4 has an average speedup of 32.22% and the range across projects is from 14% to 41.20%.

While BatchStop4 slightly outperforms Batch4 by 4.26 percentage points, the additional complexity
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Table 2.5: Change in average feedback time for batching compared with TestAll. For all batching
approaches, the feedback time on average is less than TestAll. We see that BatchBisect has a wide
range of feedback times, while Batch4 has a simpler algorithm that leads to more consist feedback
times and a constant delay on failure.

Project Batch Batch2 Batch4 Batch
Bisect stop4

ruby 4.80% 2.66% 18.40% 18.40%
metasploit 40.88% 20.00% 36.40% 40.25%
graylog2 43.55% 18.66% 37.20% 43.55%
owncloud 39.50% 16.00% 36.40% 43.55%
vagrant 49.33% 21.33% 41.20% 49.33%
gradle 35.77% 18.00% 33.20% 35.70%
puppet 45.77% 21.33% 39.60% 45.77%
opal 37.77% 16.66% 33.60% 37.77%
rspec 2.79% 4.66% 14.00% 14.00%
Minimum 4.80% 2.66% 14.00% 14.00%
Average 33.35% 15.47% 32.22% 36.48%
Maximum 49.33% 21.33% 41.20% 49.33%

of bisection and the larger/optimal batch size make it unlikely that it is worth this minor speedup in

feedback compared to Batch4.

Projects can also see advantages even when batching only two builds together, with feedback

improving by 15.47% on average and a range of 2.66% to 21.33% depending on the project. Even

the strategy of combining two waiting builds on projects with low failure rates can see both resource

savings and an improvement in feedback time.

Future work on the feedback time related to batching has a huge potential. For example, al-

gorithms could be designed to spend more resources on a failing batch to provide feedback on the

culprit faster at the expense of additional parallel compute resources.

Compared to TestAll, Batch4 reduces the time for feedback by 32.22% on average and be-

tween 14.00% and 41.20% across projects. While BatchBisect and BatchStop4 can outper-

form Batch4 by a few percentage points, they require an optimal batch size and a variable

amount of time to find the culprit. Batch2 is even simpler than Batch4 and can provide

feedback savings with an average of 15.47%.
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2.8 Tool implementation on GitHub: BatchBuilder

We created the BatchBuilder tool to implement the BatchStop4 approach for use by de-

velopers. The tool integrates with GitHub pull requests and runs Travis CI. We release the source

code [15]. After configuring a batch size and a maximum waiting time, the development process

will remain unchanged because each submitted change will still have its own test verdict regardless

of how it was batched. If the ‘batch size’ is set to four the approach will be the Batch4 strategy. The

highlevel pseudocode for BatchBuilder is show in Algorithm 1.

Algorithm 1: GitHub App: BatchBuilder
When there are ‘batch size’ changes or the ‘wait’ time has elapses create a batch

branch to combine changes
Function TestBatch(batch):

result = Travis(batch)
if tests result is passed then

set status of each change to ”successful” on GitHub;
else

if batch length is equal to 1 then
set status of the change to ”failed” on GitHub;

else
if batch length is smaller than or equal to 4 then

foreach change ∈ batch do
TestBatch(change);

end
else

TestBatch(first half of batch);
TestBatch(second half of batch);

end
end

end

Merge Conflicts. Our approach does not introduce any new merge conflicts. With pre-merge

testing, if two or more changes are combined in a testing batch and have a conflict, this conflict will

also exist when the changes are added to the master or main branch and would need to be resolved

regardless of batch testing. BatchStop4 preserves the testing order of changes, so the conflict can

be assigned to the change that occurred later and the changes without conflict can still be tested and

integrated with master. With post-merge testing, any conflicts related to integration with master will

already have been dealt with before batch testing begins.
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Performance. In our implementation, on failure, each batch is implemented as a git branch

containing the changes that need to be tested. In TestAll, each commit must also be merged with

master and tested. This same merge operation occurs with the branch. An additional branch op-

erations must occur on failure. However, further optimizations could be performed because each

branch has the same ancestor, i.e. the latest commit on master, meaning that we already know the

last common ancestor and the branch creations simply involves a simple diff operation. In prac-

tice, we see that the new branch operation takes less than one second (about 700 milliseconds). In

contrast, the testing time is on the order of minutes [17].

2.9 Threats to validity

External Validity. We selected large open source projects with at least 100 contributors and a

failure rate at or below 25% from the Travis torrent dataset [18]. The projects covered a variety of

software development contexts, from programming languages to cloud computing. In reproducing,

Najafi et al. [70] work at Ericsson on OSS projects we increase the generalizability of batching and

bisection. Our novel approaches will need to be evaluated in other development contexts. To this

end we release our scripts, data, and our BatchBisect developer tool [15].

To further improve external validity, in RQ3, we simulated the Batch4 approach on all projects

with more than 1000 builds regardless of failure rate. We provide quantitative evidence across 152

projects that the failure rate has a strong negative correlation with batch effectiveness. Future work

could evaluate approaches that are robust against high failure rates as well as an investigation of

failure distributions.

Construct Validity. We operationalize the overall resource savings and change in feedback

time for builds. In our simulations, we only consider the order of the tests and test outcome. Future

work may consider other constructs such as feedback time on individual tests or changes in test

scope.

In this work, we use the Travis configuration file to ensure that the combined builds run the same

tests in the same environment, i.e. have the same test scope. In simulation, it is only possible to batch

builds that required the same test environment, e.g., pull-requests that both requested python 2.7 can
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be combined while these builds could not be combined with a request for python 3.7. On projects

that select a subset of tests to be run, combining builds might increase the test scope and future

studies of are necessary impact of test scope on batching.

Internal Validity. Our works involved simulation and assumed builds available for batching.

On small projects, there may not always be multiple pull-request available for batching. Clearly,

these projects require fewer resources and can either wait until there are enough changes, or run

with a smaller batch size. As we show in Section 2.4.3, the majority of the savings happen with

batch sizes of 4, i.e. 93%, and even the smallest batch size of two sees substantial savings, i.e. 72%.

In our tool implementation, we provide a workaround that will test commits that have waited for

longer than the “wait time” specified in the configuration file.

We created build failure risk models using five classifiers: Random Forest, Naive Bayes, MLP,

logistic regression, and SGD. Random Forest was the best classifier, so we tuned five hyper parame-

ters for Random Forest leading to a total of 27 configurations for each project. We found an average

of one percentage point difference and did not find consistent configurations across projects, so we

reported results with the default parameters. After tuning, the longest training time for the projects

was reduced from 4.25 to 3.5 minutes (on a standard laptop).

We assessed the impact of the training period by using builds from the previous 30 days, two

months, or six months of data. We found that the 30 day training period had the same or higher F-

scores compared to the longer periods. As other researchers have reported, longer training periods

tend to reduce the accuracy of the model by including stale data [52, 95].

2.10 Discussion and Future Work

We contrast the approaches and discuss the implications of our findings as well as future work.

Table 2.6 shows the important variations for each approach. The first point of variation is the

action to be taken on test failure. The original bisection algorithm continues recursively until the

individual culprits have been identified [70]. In Section 2.2.4, we showed mathematically that it

is more efficient to stop when the batch is of size four. On failure the Batch4 algorithm tests each

commit individually, TestAll, for a constant of 5 executions on failure. The BatchStop4 algorithm
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Table 2.6: Variations in Batching Technique. Stopping at batch size four is the most promising tech-
niques. We do not report feedback time improvement for the risk models as they do not outperform
the simpler models in terms of resource utilization.

Technique In Case of Resource Feedback Stop Use Dynamic Preserve
Failure Improvement Improvement At 4 Bug Model Batch Size Order

TestAll - - - 5 5 5 X

BatchBisect Repeat 46.05% 33.35% 5 5 5 X

Batch4 TestAll 47.63% 32.22% X 5 5 X

BatchStop4 Bisect until Batch4 50.31% 36.48% X 5 5 X

RiskTopN Repeat 44.17% - 5 X 5 5

RiskBatch BatchStop4 48.50% - X X X X

uses bisection on failure, but stops bisection when the failing batch contains only four builds using

the Batch4 approach. RiskTopN uses a risk model to test the riskiest N builds in isolation and the

remaining builds as a batch [70]. If the batch fails, RiskTopN recursively continues with the next

N riskiest builds. RiskBatch uses a risk model to group builds until a cumulative risk threshold is

reached. If the build fails RiskBatch, it cannot be repeated because the batch already reaches to

threshold. Instead, BatchStop4 is used to isolate culprits.

Ranking of approaches. Compared to the standard practice of testing each change in an in-

dividual build, all approaches provide substantial improvements reducing the test executions by

around half on average. The following is the ranking of approaches by average reduction in sav-

ings across projects from worst to best: 44.17% RiskTopN, 46.05% BatchBisect, 47.63% Batch4,

48.50% RiskBatch, and 50.31% BatchStop4.

Stop at 4 The worst two approaches do not use the stop at four condition. From the algorithmic

analysis, BatchStop4 has requires the same number of executions as BatchBisect when there is

one culprit, but when there are more culprits BatchStop4 requires less, see plot in Figure 2.7. In

the empirical evaluation, we see that BatchStop4 is on average 4 percentage points better than

BatchBisect. As we later discuss, most savings occurs with small batch sizes resulting in the simple

Batch4 algorithm performing only 3 percentage points lower than BatchStop4.
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Risk Model. RiskTopN and RiskBatch use a risk model. The model is created using tradi-

tional features such as SLOC and number of tests as well as change features, such as the number

of changed files or added lines. The accuracy of the model affects the performance of batching ap-

proaches, however, we guarantee that all culprits are found and isolated in contrast to, for example,

test selection methods that may allow failing tests to ”slip-through” to other QA stages.

Algorithmically, RiskTopN is substantially different from the other algorithms and it does not

preserve the test order of builds providing results for the riskiest builds in isolation first. However,

the approach appears to work poorly with the lowest reduction in executions of all techniques. The

approach is highly dependent on the risk model and on projects with highly predictive risk the

approach may be effective. In contrast, RiskBatch, also uses the risk model but allows for variable

batch sizes and uses BatchStop4 on failure. This combination appears to allow for appropriate risk

and batch sizes providing the second best average savings. For the ruby project, the F-score of 0.53

is the highest among the projects and RiskBatch outperform the other approaches. It is possible that

a more accurate risk model may allow RiskBatch to the most effective approach.

Best Batch Size. In all batching approaches, most of the saving is found early with smaller

batch sizes 2.7. For BatchStop4 the proportion of saving using different batch sizes is reported, see

Figure 2.3. On average across projects, 93% of the saving is achieved with a batch size of 4. The

saving achieved by batch size 8 is at least 97% and does not increase with batch size 10. As a result,

we reported the savings with a maximum batch size of 8. However, on projects graylog2, owncloud,

vagrant, and puppet we see that the true best batch size is actually 12, 15, 16, and 16. Table 2.3

shows the projects’ best batch size and the additional percentage of savings for those batch sizes,

1, 3, 2, and 2, respectively. While developers from these projects would need to experiment with

batch sizes, we feel that it is unlikely that these minor improvements would be beneficial given the

additional need for bisection of large batches on failure.

Impact on Feedback Time. While prior work examined only resource savings [70], we con-

ducted a initial examination of the change in feedback time of the non-risk based batching ap-

proaches relative to TestAll. With resource utilization, we are only interested in the total resources,

however, with bisection, the feedback time for an individual build varies depending on the location

of the culprit. With bisection, we see examples where some builds see huge delays, while other
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builds in the same batch see speedups. The variability of bisection in feedback time makes it less

attractive.

In contrast, Batch4 provides the same dramatic speedup when the batch passes, but has a con-

stant delay of the time to run one additional build test cycle. While we see that in the average

case all approaches improve feedback time Batch4 and even Batch2 provide a more stable average

improvement of 32.22% and 15.47%, respectively. Future work is necessary to develop algorithms

that optimize for feedback time potentially at the expense of parallel compute resources that focus

on the failing batch.

Failure rate vs Savings. On the basis of three projects at Ericsson, Najafi et al. [70], concluded

that the failure rate controls the batch savings. We examined 152 open source projects and found

a strong negative correlation between failure rate and execution savings for the Batch4 approach

(r = −0.97 with a p � 0.001). We see that projects with low failure rates can have substantial

savings, e.g., vagrant has a failure rate of 8.96% and a maximum savings of 60.83%. Projects with

failure rates below 40% all see savings. The best batch size for bisection is also controlled by the

failure rate, for example, on ruby and rspec that have the higher failure rates, 22.51% and 19.36%,

we also see that the best batch size is the lowest at four with savings at 32.97% and 29.51%.

However, we see exceptions to the failure rate controlling the savings and batch size. For ex-

ample, owncloud has the third highest failure rate but the second highest, 53.42%, savings and the

best batch size of 15. Examining owncloud over time we see an uneven distribution of failures with

some periods having multiple consecutive build failures followed by consecutive build passes.

Fixed Batch Size In our work, for BatchBisect, BatchStop4, and RiskTopN we have identified

a single batch size for the entire period of study. Developers, will need to examine their project

history to identify the best batch size. If the failure rate is not constant over time, then projects with

an uneven distribution, would clearly benefit from a variable batch size. This uneven risk of failure,

was the main motivation for introducing RiskBatch that dynamically adjust the batch size based on

a risk model. We believe that dynamic batching strategies is the most promising direction for future

work.
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2.11 Related Work

Continuous integration and delivery (CI/CD) systems are beneficial in both industry and open-

source projects because the deployment tasks are automated and developers receive feedback faster,

tests are run automatically, and critical updates are delivered to customers more frequently [65, 88,

47, 78]. However, the goal of CI/CD is to release changes as quickly as possible which increases the

already high computational requirements involved in regression testing [45]. Running a subset of

tests can reduce the cost of testing. Regression testing research has three streams of research [98].

The first, minimization, involves eliminating tests that are redundant or of low value. Early work

reduced the problem to one of code coverage, for example, tests become redundant as the system

evolves and more than one test covers the same control flow. As a result, much of the work in

this area is algorithmic, such as transforming it into a spanning set problem [67], using divide-and-

conquer strategies [24], and greedy algorithms [91]. More recent approaches include ant colony

optimization in a search space to find the optimum set of test cases [60]. The use genetic algorithms

to optimize selected tests and evaluate by total code coverage has also received substantial attention,

e.g., [55, 59].

The second, selection, uses the same static analysis techniques such as coverage [90] and slicing

[48], but selects tests that cover source files that are at higher risk because they have been changed

recently [82]. Using specifications such as requirements defined by customer is also used in test

selection [26]. A recent work have focused on using deep learning models to optimize test selection

results [74].

Test case selection is also performed by choosing a subset of test cases, but in contrast to test

minimization, test cases that verify risky or recent changes are chosen. Noor et al. [75] predict

failed test based on similarity to previous failed tests. Wang et al. [93] first detect fault-prone source

code and then identify related test cases by coverage. Nguyen et al. [73] select test cases based on

change-sensitivity to external services. Laali et al. [61] dynamically identify failed test based on the

location of previous failed tests.

The third, prioritization, orders tests such that expensive, low-value, or long-running tests are

run after tests that find faults early. While early prioritization techniques continued to use coverage
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measures to gauge priority [43], more recent approaches incorporate the faults found in past test runs

[56, 38, 71] and change relationships among files [87] to identify high value tests. Zhu et al. [101]

examine the tests that historically fail together prioritizing test runs. Just et al. [53] propose an

approach based on mutation analysis. Qu et al. [79] suggest to prioritize risky configuration in

testing. Wang et al. [93] utilizes the quality of source code before finding the relationships between

tests and code based on coverage.

The savings from minimization and selection will have the cost of slip-throughs because not

all tests are run [45]. In contrast, our reduction in test executions comes from grouping builds

not from eliminate/selecting a subset of tests. As a result, we guarantee no slip-throughs because

we run all the tests. In contrast, prioritization saves no resources but improves feedback time.

With prioritization the assumption is that tests can be run in an arbitrary order. However, changing

the test order can lead to new flaky failures. Lam et al. [62] found that flaky failures due to order

dependencies account for 50.5% of flaky failures in the projects they examined. We do not introduce

order dependency flaky failures, because the entire test suite is run in its original order. Batching

saves not only resources but also reduces feedback time without introducing any slip-throughs and

without changing the test run order.

2.11.1 Risk Models

Predicting software defects using statistical models is a research area which has been popular

in recent years [42, 86, 72, 31]. Different learning models are used and evaluated to perform bug

prediction, such as Support Vector Model (SVM) [57], Logistic Regression [54, 70], KNN [25], and

Deep Learning [97, 76]. Bug prediction can be made on varying units, with early studies focusing

on file level predictions while recent studies perform change level prediction [57, 54]

Radjenović et al.’s [80] survey of bug models categorized the metrics into 1) traditional source

code metrics, such as SLOC, 2) object-oriented metrics, such number of children in a class and depth

of inheritance [27], and 3) development process metrics such as code change frequency which uses

historical data to predict failures. In our work, we use the first and third types of metrics.

Recent works have identified risky changes. Early work focused on regression models [54].

Chen et al. [25] use source code metrics such as number of methods, average method complexity,
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and number of lines of code to build their model. Their learning model is created using k nearest

neighbor (KNN). Yang et al. [97] study software defect prediction using deep learning at the change

level. Their prediction has two stages: 1) feature selection which is done by extracting a set of

features from a broader initial set of feature using Deep Belief Network. 2) building a logistic

regression classifier using the selected attributes. Pandey et al. [76] introduce an approach to detect

software defective modules using a deep ensemble learning model. Their approach allocates more

testing resources to modules that are more likely bug-prone based on model prediction. In our work,

we evaluated five classifiers and found that Random Forests performed the best.

A criticism of statistical bug prediction models is that they do not provide actionable out-

comes [54], e.g., what specific action can a developer take if a change is labeled ‘risky’ because

it is in a recently changed file? A further problem is that predictions are often incorrect, which in

practice reduces developer confidence [85]. In contrast, our work uses the risk to batch commits

and requires no action from developers. If the prediction is inaccurate then additional build test

executions are required. However, the saving achieved, even with relatively inaccurate models, is

substantial compared to testing each change individually.

2.11.2 Batching and Bisection

Batching is an effective technique to deal with resource constraints, whether it is computational

power, development costs, or time [4, 28]. When changes are batched together and there is a failure,

bisection can be used to reduce the number of test execution. When commits are ordered, GitBi-

section [1] uses a binary search to identify the culprit in O(log(n)) time. The approach works well

when finding a single regression, but is not designed to find multiple culprits in a batch of changes

for integration. To ensure that all tests pass on all changes in a batch, GitBisect would need to run

multiple searches, in the worst case n searches, O(n∗ log(n)). In contrast, the bisection approaches

discussed in Section 2.2.5 are designed for integrating multiple commits in O(log(n)) time when

there is a single culprit and in the worst case 0(n) time.

At Google, integration tests can run on the order of hours and can cover thousands of commits,

making GitBisection too computationally expensive. Instead, Google developers use the static build

dependencies to determine which tests must be run when a file is changed. When a group of changes
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fails during integration testing, Google developers can immediately eliminate all changes that do not

individually relate to the failing test. Since there can be thousands of changes in an integration test,

Google also scores the remaining commits on the basis of the number of files in a change (more

files, more likely to be the culprit) and the distance to the root of the build test dependency DAG

(closer to the root, safer as more developers have assessed it by now) [103]. In our work, we do not

have ordered commits and we do not have the static dependencies. As a result, we run the entire test

suite on each build. Future work is necessary to determine which of the individual tests can be run

independently. Breaking individual tests out of a test suite is often non-trivial and can lead to flaky,

unexpected test order dependencies [62], but could increase the effectiveness of batching.

2.11.3 Pooling Medical Tests

In medical tests, pool testing, i.e. batching, is an effective way to reduce the number of required

test kits and thus decreasing costs. Dorfman [33] proposed an approach to detect infected individuals

in a large population during World War II. He suggests pooling tests to reduce the cost and the time.

If the test is negative, it means all members of that group do not have the disease, otherwise each

individual needs to be tested separately, i.e. the same strategy as TestAll. Gajpal et al. [41] propose

an approach to partition people into groups and test each group with one kit. Only, groups with

a positive result need to be divided into subgroups and tested further. To improve the pooling

process, double and multiple pooling place samples into more than one pool [20, 92]. If a pool

tests positive, the samples that are common among other negative tested pools can be removed from

further testing. Aragón-Caqueo et al. [7] study the effectiveness of batching in COVID-19 tests

and report that batching gains more saving when the infection rate is lower. The interest in pool

testing has risen dramatically with COVID-19, with these works being submitted in early 2020.

Medical pool testing and software batch testing have the same mathematical background and it will

be interesting to use the approaches developed in the medical world, e.g., double pool testing, in

and SE context and vice versa, e.g., BatchStop4 in medical pools.
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2.12 Conclusion and Recommendations

In this work, we introduced a mathematical basis for the batching approaches and make the

following research contributions and recommendations for development practices.

Najafi et al. [70] showed that BatchBisect was an effective strategy on three projects at Ericsson

and could save 7%, 14%, and 41% of build test executions compared to TestAll. We reproduce this

result on the Travis dataset and show that BatchBisect reduces the number of executions by between

22.35% and 57.55% with an average of 46.05%.

We introduce the Batch4 approach in Section 2.2.4, and we mathematically show that Batch4

requires a constant number of executions on failure, i.e. 5, which is the minimum for BatchBisect

and saves up to two executions when there are multiple culprit builds in a batch. Batch4 reduces the

number of execution required by 29.51% and 55.84% with an average of 47.63%. Batch4 is simpler

and does not require bisection while saving an additional 1.57 percentage points on average relative

to the total number of builds. We release our tool that integrates with GitHub and Travis CI tool to

allow developers to seamlessly batch pull-requests [15].

We introduce BatchStop4 that uses bisection until a batch of four is reached in which case we

use Batch4. With this stopping condition, we mathematically show that BatchStop4 is equivalent

to BatchBisect when there is one culprit, but requires fewer executions when there is more than

one culprit build. We see that BatchStop4 saves between 29.51% and 60.83% with an average of

50.31%, with an additional savings of 2.17 to 10.10 percentage points relative to BatchBisect. We

recommend that any project already using BatchBisect should modify their algorithm to include

a stopping condition for batches of size four. Our tool BatchBuilder allows developers to

configure the batch size for their project.

We reproduce Najafi et al.’s [70] RiskTopN approach where the riskiest N changes in a batch are

tested individually and the remaining builds in the batch are tested together. On the Travis projects

under study, we find a reduction between 22.04% and 55.77% with an average of 44.04%. However,

the simple Batch4 outperforms RiskTopN by 3.59 percentage points on average, and Batch4 does

not require a risk model, so we do not recommend that developers adopt this approach.

We introduce the RiskBatch approach which adds builds to a batch until a risk threshold is
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reached. RiskBatch reduces the number of executions by between 25.93% and 57.43% with an

average of 48.50%. The approach is complex requiring both bisection and a risk model and does

not perform better than BatchStop4 except in the projects that has the highest F-score in risk model.

Projects that can build a highly accurate risk model may consider using this approach.

We examine the relationship between failure rate and build test execution savings. We examine

Batch4 on 152 projects and find a strong negative correlation (r = −0.97 with a p � 0.001) with

a skew towards lower failure rates and high execution savings. Furthermore, all projects with a

failure rate below 40% see savings and some projects below 60% see savings. Batching is effective

on 85.5% of projects.

We provide an initial formulation of feedback time and evaluate the non-risk based approaches.

Compared to the bisection approaches that introduce variable delays on failure, Batch4 delays each

batch by a constant single additional of the time to run one build test cycle. Batch4, and even

Batch2, provide substantial average improvements in feedback time relative to TestAll, 32.22% and

15.47%. Batching saves not only resources but also reduces feedback time without introducing any

slip-throughs and without changing the test run order.
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Chapter 3

Mining Historical Test Failures to

Dynamically Batch Tests to Save CI

Resources

As a manuscript thesis, this chapter is a verbatim copy of the paper accepted to ICSME 2021:

International Conference on Software Maintenance and Evolution.

3.1 Introduction

Recently there has been an increasing desire among developers to transfer their testing processes

to a continuous integration (CI/CD) environment. To ensure each change does not break the software

system, it is important to test each commit before merging it into the code repository [37]. Testing

each small change is costly, and in some cases, infeasible [70].

To reduce this cost, there are multiple techniques including test selection [83], test prioritiza-

tion [100], and batch testing [70]. In this work, we focus on batch testing. A passing batch will save

resources and allow the commits to be integrated quickly. However, if a batch fails a bisection must

be performed to identify the failing commit, i.e. the culprit, potentially delaying and increasing the

execution cost.
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We first introduce the origin of batching techniques in medical applications and explain two

culprit finding techniques from the medical literature including Dorfman [34] testing and double

pool testing [20]. We then build upon prior works that evaluated bisection at Ericsson [70] and

Travis CI projects [14] and replicate their culprit finding techniques for a failed batch including

BatchBisect, BatchStop4, as well as our new proposed technique, BatchDivide4.

These techniques combine a constant number of changes into a batch e.g., a size of 4 or 8 [14].

However, the optimal batch size can vary over time as the number of test failures changes. For

example, the tests may fail repeatedly as the developers work to fix a difficult bug. In contrast,

most builds pass and on a stable branch there may be long periods of minor changes that do not

result in build failures. Since culprit finding involves bisection and additional commits, when there

are repeated failures, the batch size should be small. While during times of relative stability large

batch sizes can be used to save test resources. Our novel contribution is to examine the history

of test failures to dynamically adjust the batch size. We propose dynamic batch size adjustment

approaches that complement the culprit finding techniques.

This paper is structured as follows. In Section 3.2 we present the background for the batching,

and when a batch fails, the culprit finding techniques. In Section 3.3 we introduce dynamic batch

sizes based on historical weighting of prior test runs. In Section 3.4 we describe our dataset and the

simulation methodology. In Section 4.4 we present the result of our simulations. In Section 3.6,

we introduce a theoretical upper limit on the savings we can achieve from batch testing. We also

discuss the impact and importance of consecutive failures in limiting the effectiveness of batching.

In Section 4.5 we discuss the threats to the validity of the paper. In Section 4.6 we position our work

in the literature. In Section 4.7 we conclude the paper.

3.2 Background on Batching Approaches

We first explain TestAll which is our baseline and lower bound for test effectiveness. We then

explain the background of the existing as well as our new culprit finding techniques: Dorfman,

double pool testing, BatchBisect, BatchStop4, and BatchDivide4. We provide mathematical back-

ground and examples to create intuition for readers.
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Figure 3.1: DoublePoolTesting: In this example, the total number of builds that are tested is 6.
Builds 3 is broken. We first put each build in two batches, we see the first and the third batch are
broken. We see only build3 is in two batches that both fail. So we run build3 in isolation to find the
culprit. The total number of executions is 5 for the 6 builds.

Figure 3.2: BatchBisect: In this example, the total number of builds that are tested is 14. Builds 1,
3, and 10 are broken. We first test the whole 14 builds in a batch and it fails. We then do bisection
and traverse the binary tree for the next 4 levels. After 17 executions, we find the broken builds.
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Figure 3.3: BatchStop4: Introduced by Beheshtian et al. uses a stopping condition for bisection
when the size of a batch or sub batch is 4 or fewer. if the size of a batch is fewer than 4, instead of
doing bisection, we test each build in isolation. In this example, at level 2 of the three, we approach
this condition and execute each build in the broken batches in isolation. This reduces the total
number of executions from 17 to 15.
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Figure 3.4: BatchDivide4: If the size of the batch is greater than 10, instead of doing bisection, we
divide the batch into 4 sub batches. In this example, instead of doing bisection, after the failure
of the original batch, we divide it into two batches with size 4 and two batches with size 3. This
reduces the total number of executions to 13
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3.2.1 TestAll

This is the naivest, yet the most common way of testing a software system in CI. In this tech-

nique, every single change in the code is tested individually. After a single pull request, the project

is automatically built and test suites are run. The outcome shows whether the change is faulty. There

is no batching or grouping builds together. The number of executions is the same as the total number

of changes to the system. For example, if there are 100 changes in a repository, then there are ex-

actly 100 build test executions. The failure rate of the builds does not change the build test execution

numbers. We use TestAll as a reference point to allow easy comparison among techniques.

3.2.2 Dorfman Medical Pool Testing

Medical pool testing was introduced by Dorfman [34] during World War II to test soldiers for

syphilis by mixing their blood samples in a batch. If the test is negative, none of the soldiers have

syphilis. If the batch is positive, then each soldiers’ sample is retested individually. In the case of

software testing, we group builds together and test them in a batch. If the batch passes, all the builds

in the batch are considered successful. However, if it fails, we run each of the builds in the batch in

isolation to find the culprit builds.

3.2.3 Double Pool Testing

During the COVID-19 pandemic, due to the shortage of COVID test kits, double pool test-

ing was proposed by Broder and Kumar [20] to reduce the number of required tests compared to

Dorfman testing. They prove that double pool testing outperforms Dorfman pool testing for the

populations that have a positivity rate less than 10%.

In the context of software testing for double pool testing, we place each build in two separate

batches such that there is no overlap among batches. Figure 3.1, shows an example of double pool

testing. We have 6 builds and Build3 is culprit. Build3 is in batches 1 and 3, which both fail. The

only build that is in both these batches is Build3, so we know that Build3 is culprit and others are

successful. However, to avoid complexity, Border and Kumar [20] always run the build fails in

multiple batches in isolation. Using double pool testing, the total number of executions for testing
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these 6 builds would be 5.

3.2.4 BatchBisect

Instead of testing commits individually on batch failure, we can use bisection to traverse the

binary tree to find the culprits in a batch. In the medical world, this approach is called hierarchical

group testing [77]. In the software engineering, batch bisection is widely used and we re-evaluate

the prior works [70, 14] and propose a new BatchDivide4 approach.

With BatchBisect, we group builds together and test them in a batch. If the batch passes, all the

builds in the batch are considered successful. However, if it fails, we perform bisection and traverse

the binary tree to find the culprit builds in the batch. Figure 3.2 shows an example of BatchBisect.

The original batch contains 14 builds. Builds 1, 3, and 10 are having failing tests. We first test this

Batch of 14 builds all at once. After its failure, we divide it into two sub-batches with size 7. Both

batches of size 7 fail. We perform another level of bisection and divide each batch into two sub

batches with sizes 4 and 3. In both of the branches of the tree, the sub-batches with size 3 pass and

sub-batches with size 4 fail. We then divide each of the failed sub batches into two sub-batches with

size 2, we continue this process until finding the whole broken faulty builds. This process needs a

total of 17 executions.

The maximum number of executions for BatchBisect happens when all the builds in the batch

are the culprit. In this situation, the total number of executions will be O(n). This means that all

nodes in the binary tree should be visited. The minimum happens when only one build is culprit.

For example, if in Figure 3.2 only Build 1 was culprit, then we would find it with the minimum

number of executions. In this situation, the time complexity of the algorithm is O(log(n)).

As Najafi et al. [70] note, we cannot use a Git bisection because it assumes that the commits

are ordered and that we only need to find the first failing commit for a failing test. In contrast, our

goal is to integrate all commits. We do not have an order to the commits, i.e. none have already

been tested, and we may have multiple culprits commits and multiple test failures, so even though a

subbatch fails it does not imply that another subbatch will pass.

54



3.2.5 BatchStop4

Beheshtian et al. [14] proved that bisection is inefficient when there are 4 or fewer commits in

a batch and introduced the BatchStop4 approach. BatchStop4 uses bisection when there are more

than 4 commits to be batched, and uses TestAll when there are 4 or fewer. In the worst case, to find

all the culprits in a batch of size 4, BatchBisect would need 7 executions. In contrast, if all four

commits are tested individually after failure, we only need 5 executions.

Figure 3.3, shows an example of BatchStop4. Up to level two of the tree BatchStop4 uses

BatchBisect. However, at level 3, instead of doing bisection, it tests each builds in a failed batch

individually. It reduces the total number of executions from 17 to 15 in the example.

3.2.6 BatchDivide4

In BatchStop4, we do bisection until reaching batches with size 4 or fewer. We note that this

is a general trend and can be applied to batches greater than 10. In our proposed algorithm Batch-

Divide4, if the batch size is 10 or fewer, the algorithm is the same as the BatchStop4. However, in

batch sizes higher than 10, instead of doing bisection, we divide each batch into 4 subbatches. In

doing so, we combine two levels of search tree to prevent possible additional executions.

Figure 3.4 shows an example of BatchDivide4. In this example, instead of doing bisection in a

batch with size 14, we directly divide it into four subbatches. It decreases the depth of the search

tree by one level compared to BatchStop4 (contrast with Figure 3.3). In the example, BatchDivide4

reduces the total number of executions to 13 compared to 15 and 17 for BatchStop4 and BatchBisect,

respectively.

3.3 Dynamic Batch Size Adjustment

Prior works used a constant batch size [34, 20, 70, 14]. A constant batch size fails to acknowl-

edge the varying failure rates across time. For DynamicBatching we vary the batch size based on

the historical failure rate of the project and dynamically update the batch size over the project life-

time. Intuitively, we know that the recent build outcomes of the project are more representative

of the current state of the project. We weight recent failures more highly than older failures. The
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WeightedFailureRate of the last C commits is

WeightedFailureRate =

∑C
c=1 Smoothing(c) ∗ IsFailurec∑C

c=1 Smoothingc(c)
(13)

where c shows the position of the commit relative to the current commit, and IsFailure is a

function which returns 1 if the commit had at least one failing test and 0 otherwise.

For the Smoothing function we experimented with different weights including a constant

weight of 1, log(c), ec, and 1/c. With the exception of constant weight, there is marginal differences

in effectiveness, and we report results with a 1/c weight.

We also varied the number of historical commits considered in the weighting function. We

varied C = 50, 100, 200. We also used the last month and the entire history. We found that exact

value of C has a marginal impact on the results with C = 100 being the best.

To calculate the batch size, we calculate the expected value for each batch size between n =

1...20 (Beheshtian et al. [14] show that batch sizes more than 20 are not effective), and choose the

batch size that minimizes the expected value of the number of executions for testing a build in a

batch. For each culprit finding approach, A, we calculate the following:

BatchSize = argmin
n

(ExpectedValue(A,n,WeightedFailureRate)) (14)

To calculate the expected value, we perform a simulation. For each failure rate in (0, 1) e.g.

0.01 and 0.02, we randomly generate passes and failures 100k times. We then vary the batch size to

find the expected value of the number of executions for batch sizes between 1 and 20.

3.4 Data Sources and Evaluation Methodology

Our data comes from the Travis CI continuous integration service that is used to automatically

build and test the projects on GitHub. To facilitate comparison we mine the build results from

the same top 9 open-source projects from the TravisTorrent [18] as Beheshtian et al. [14]. The

build outcomes on Travis CI are passed, failed, errored, and canceled. In this work, we divide the

builds into successful, i.e. passed, or unsuccessful, i.e. all other build outcomes. In addition, since
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Table 3.1: Size of projects under study and their failure rate

Project Failure Rate Tested Builds Years
ruby 19.87% 14,180 5
metasploit 6.85% 7,736 4
graylog2 6.69% 2,105 4
owncloud 6.91% 882 2
vagrant 8.39% 4,036 4
gradle 9.23% 3,586 2
puppet 6.57% 2,311 4
opal 8.97% 2,551 4
rspec 17.65% 1,818 5
rails 32.78% 15,151 5
okhttp 40.30% 1,913 4
cloudify 24.09% 5,138 2

Beheshtian et al. [14] only picked projects with a failure rate below 20%, to generalize the result,

we add the 3 largest project with a failure rate between 20% and 40% to understand the impact of

high failure projects on batching. Table 3.1 shows the descriptive information for each project under

study. The failure rate of the selected projects is between 6.57% and 40.30%. The largest project is

Rails with 15,151 builds and the smallest one is Ownclowd with 882 builds.

We extract builds only from the master branch. The test suites run on master are constant

and so any change to master can be combined because the same tests are requested. Furthermore,

the commits to master have already been integrated, while other branches may have commits that

would lead to a merge conflicts and cannot be easily batched. In this way, we do not introduce

merge conflicts or change the test scope.

We use the first 100 commits from each project to train our dynamic algorithms. These commits

are also excluded from the constant batch approaches to facilitate comparison of techniques. We

run simulations for each culprit finding approaches with constant and dynamic bath sizes. We

use an incremental simulation methodology [70, 19, 96, 49, 46]. We order the commits by time

and batch them sequentially. If a batch fails we run the culprit finding technique. Our outcome

measures is the percentage change in executions for each approach, A, relative to testing each

commit individually [14]:
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Table 3.2: Percentage savings in build test executions relative to TestAll. The batch size selection
approaches are CB: ConstantBatching, and DB: DynamicBatching. The culprit finding approaches
are BB: BatchBisect, BS4: BatchStop4, BD4:BatchDivide4, Dorfman: Drfman Medical Pool Test-
ing, DPooling: Double Pool Testing, and Batch4. For example, with DB Pooling the batch size
is selected using DynamicBatching and the culprits are found using Dorfman. Batch4 provides
the same results as BatchDivide4 and BatchStop4, so we only show Batch4. We see that using
DynamicBatching with BatchDivide4 (DB BD4) is the best performing combination.

Project CB CB CB CB DB DB DB DB DB
Batch4 DPooling(9) BB(8) Dorfman(4) Pooling DPooling BB BS4 BD4

ruby 37.20% 32.20% 28.17% 37.20% 38.90% 35.74% 36.74% 42.24% 42.89%
Metasploit 55.35% 58.44% 57.29% 55.35% 55.35% 54.03% 57.42% 60.41% 61.00%
graylog 56.15% 58.71% 57.10% 56.15% 56.65% 51.47% 60.04% 62.94% 63.29%
owncloud 57.70% 57.70% 55.62% 57.70% 59.33% 57.28% 62.14% 65.60% 65.72%
vagrant 56.96% 57.85% 58.51% 56.96% 60.28% 58.25% 62.04% 64.68% 64.81%
gradle 49.10% 58.54% 46.95% 49.10% 46.09% 39.73% 44.49% 49.05% 50.22%
puppet 55.60% 59.58% 56.98% 55.60% 56.67% 57.44% 58.07% 61.42% 61.73%
opal 50.68% 50.84% 48.63% 50.68% 49.12% 39.08% 48.83% 53.16% 53.89%
rspec 29.20% 20.35% 14.31% 29.20% 28.23% 22.58% 20.48% 29.51% 30.79%
rails 16.60% 02.40% -04.75% 16.60% 17.63% 14.01% 11.09% 19.17% 19.93%
okhttp 06.79% 04.54% -26.30% 06.79% 13.62% 08.93% 06.72% 14.83% 15.38%
cloudify 36.60% 28.94% 24.03% 36.60% 38.50% 28.58% 34.20% 39.34% 40.23%
Minimum 06.79% 04.54% -26.30% 06.79% 13.62% 08.93% 06.72% 14.83% 15.38%
Average 42.32% 39.90% 37.04% 42.32% 43.36% 38.92% 41.85% 46.86% 47.49%
Maximum 57.70% 58.44% 57.29% 57.70% 60.28% 58.25% 62.14% 65.60% 65.72%

ExecutionReduction(A) = 1− Executions(A)
TotalCommits

= 1− Executions(A)
Executions(TestAll)

(15)

We make our scripts and data available for replication [11].

3.5 Results

3.5.1 Result: ConstantBatching

ConstantBatching assumes a constant batch size for the entire lifetime of the project. We exper-

imented with batch sizes from 1 to 20. Figure 3.5 shows the result for each culprit finding technique

(we do not show BatchBisect because we mathematically show that BatchStop4 is always more
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Figure 3.5: The result of ConstantBatching for different batch sizes for each of the projects under
study. We see the majority of saving for all of the projects is achieved in a batch size of 4. After
the batch size of 4, the number of required executions for some of the projects with higher failure
rate increases e.g. Ruby. a few projects see an increase in resource saving. However, in average
across the projects, using batches with size 4 can save more resources rather than other batch sizes.
We also see that double pool testing outperforms other techniques in the projects with a failure rate
below 10%.
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efficient). We see curve is logarithmic with most of the savings achieved with small batch sizes.

With a constant batch size, large batch sizes result in too many bisection making BatchBisect and

BatchDivide4 ineffective.

The result is consistent with Beheshtian et al. [14], and few projects see a substantial increase

in executions savings after a batch size of 4. The figure also shows that projects with higher failure

rates actually see an increase in the required execution with larger batch sizes. For example, Okhttp

see an increase in execution of -6.79% in batches of size 5, requiring more test executions than

TestAll.

Double Pool Testing outperforms Dorfman testing in projects with a failure rate of below 10%.

In Table 3.2 we see that Batch4, i.e. Dorfman(4), outperforms double pool testing by 2.42 per-

centage points across the projects. However, with a failure rate below 10%, double pool performs

outperforms Batch4 by 2.87 percentage points on average.

The result shows that in comparison to TestAll, Batch4 can reduce the number of executions

by an average of 42.32% across the projects. The savings are 37.20%, 55.35%, 56.15%, 57.70%,

56.96%, 49.10%, 55.60%, 50.68%, 29.20%, 16.60%, 6.79% and 36.60% respectively. The min-

imum saving is 6.79% for okhttp, and the maximum is achieved for Owncloud with 57.70% of

saving.

Batch4, i.e. Dorfman(4), is simple and effective with an a average of 42.32% executions

across the projects. BatchBisect and BatchDivide4 are ineffective on these projects because

failures require too many bisections. For projects with a failure rate below 10%, double pool

testing outperforms Batch4 by 2.87 percentage points.

3.5.2 Result: DynamicBatching

DynamicBatching computes the next batch size based on the weighted failure rate of the pre-

vious builds. The weighting approach can be found in Section 3.3. Table 3.2 shows the result

of DynamicBatching for each culprit finding approach. The average saving across the projects

for Dorfman, double pool testing, BatchBisect, BatchStop4, and BatchDivide4 is 43.26%, 38.92,

41.85%, 46.86%, and 47.49% respectively.
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Table 3.3: The theoretical limit as well as the CorrectedExecutions (CE) of each project for Dynam-
icBatching(DB) and Batch4.

Project Batch DB Theoretical CE CE
4 BatchDivide4 Limit Batch4 DB

ruby 37.20% 42.89% 72.46% 51.33% 59.19%
metasploit 55.35% 61.00% 88.32% 62.66% 69.06%
graylog 56.15% 63.29% 88.74% 63.27% 71.32%
owncloud 57.70% 65.72% 89.11% 64.75% 73.75%
vagrant 56.96% 64.81% 88.13%. 64.63% 73.53%
gradle 49.10% 50.22% 84.69% 57.97% 59.29%
puppet 55.60% 61.73% 88.61% 62.74% 69.66%
opal 50.68% 53.89% 85.22% 59.46% 63.23%
rspec 29.20% 30.79% 71.17% 41.02% 43.26%
rails 16.60% 19.93% 56.48% 29.39% 35.28%
okhttp 06.79% 15.38% 46.88% 14.48% 32.08%
cloudify 36.60% 40.23% 70.39% 51.99% 57.15%
Minimum 06.79% 15.38% 46.88% 14.48 32.08%
Average 42.32% 47.49% 77.51% 51.97% 58.91%
Maximum 57.70% 65.72% 89.11% 64.75% 73.75%

Double pool testing is ineffective even on projects with a failure rate below 10% because even

on these projects, there will be periods where the failure rate is above 10%

BatchDivide4 outperforms the other approaches and achieves per project savings of 42.89%,

61.00%, 63.29%, 65.72%, 64.81%, 50.22%, 61.73%, 53.89%, 30.79%, 19.93%, 15.38%, and

40.23% respectively. With low failure rates and large batches, it traverses the search tree efficiently

using fewer executions to find the culprit. When the failure rate of the project is high and the batch

size is small, it uses Batch4 and tests failing builds in isolation similar to Dorfman. This allows it to

perform well in both high and low failure rate periods.

Compared to TestAll, DynamicBatching with BatchDivide4 reduces the number of execu-

tions by 47.49%. Compared to Batch4, which is the best ConstantBatching technique, the

improvement is 5.17 percentage points.
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Table 3.4: The ConsecutiveFailureRate of the projects under study

Project ConsecutiveFailureRate
ruby 61.46%
metasploit 29.62%
graylog2 31.91%
owncloud 41.66%
vagrant 58.70%
gradle 33.93%
puppet 26.97%
opal 35.37%
rspec 36.70%
rails 67.24%
okhttp 67.92%
cloudify 77.14%

Figure 3.6: Theoretical Limit. In this example, Builds 4, 5 and 9 are broken. Without changing
the order of the builds, the minimum number of executions occur when builds 1, 2, and 3 are tested
together; builds 4 and 5 are tested in isolation; builds 6, 7, and 8 are tested together; and build 9 and
10 are tested in isolation. We test all 10 builds with the minimum number of 6 executions.

Figure 3.7: The number of successful builds between each two failures for Ruby and Rspec. We see
the distribution of the failures are more even in Rspec rather than Ruby.
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3.6 Discussion

3.6.1 Theoretical upper limit

We calculate the theoretical limit on the minimum number of executions that can be saved with

batch testing. The optimal batch size is attained when we test each failing commit in isolation and

group all the passing commits between failures. Figure 3.6 shows an example of the theoretical

limit. Builds 4, 5, and 9 are failures, while the other builds are successful. If we group build 1, 2,

and 3 together, we can test all three of them in one execution. Builds 4 and 5 fail and grouping a

failing build requires culprit finding, so we test each of them in isolation instead. We then group

builds 6, 7, and 8 and test them in a batch. Build 9 is tested in isolation and fails, so build 10 is also

tested by itself. This process for testing 10 builds using 6 executions in total in contrast to the 10

required by TestAll and the 13 for Batch4.

Table 3.3 shows the theoretical limit for each project. We can see that it is between 46.88%

for Okhttp and 89.11% for Owncloud. Based on this theoretical limit, we correct the reduction

percentage by dividing the actual savings by the savings limit for each project:

CorrectedReduction =
ExecutionReduction

TheoreticalLimit
∗ 100 (16)

where ExecutionReduction is equal to the saving percentage of our selected batching technique.

If CorrectedReduction is equal to 100%, we achieve the theoretical limit.

We calculate CorrectedReduction for the current state of the art technique Batch4 and our best

suggested technique, DynamicBatching with BatchDivide4. We show the result in Table 3.3. We

can see that the average CorrectedReduction across the projects is 51.97% and 58.91% for Batch4

and DynamicBatching respectively. We can see that the difference between DynamicBatching and

ConstantBatching is 6.94 percentage points.

On owncloud we have achieved 73.75% of the theoretical limit, while on Okhttp we can achieve

only 32.08%. In both cases, we drastically reduce the number of execution required for testing,

but the theoretical limit reveals a large potential for future work. We note that this theoretical

limit may be difficult to achieve as we have evaluated state-of-the-art techniques from both medical
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pool testing and software testing. It is possible that a classifier that predicts build failures with

high accuracy could perform better. However, existing attempts with machine learning are more

complicated and less successful than simpler batching [14]. We look forward to innovative batching

strategies.

3.6.2 Relationship between the Failure Rate, Consecutive Failure, and Savings

Prior works assumed an even or normal distribution of failures [70, 14] and stated that the failure

rate controls the possible batch savings. Although the failure rate of a project is a critical metric for

the saving achieved by batching, it is not the only controlling metric for execution reduction. We find

that most projects have times of consecutive failures followed by periods with few failing builds.

To measure these consecutive failures, we define a new metric called ConsecutiveFailureRate for

each project. It is the number of consecutive failing builds divided by the the total number of failing

builds for the project. For example, in figure 3.6, the total number of culprit builds is 3, i.e. builds

4, 5, and 9. After build 4 that is a culprit, the next build i.e. build 5 is also a culprit. But the next

build after builds 5 and 9 are successful. In this example, the ConsecutiveFailureRate is 33.33%

Table 3.4 shows the ConsecutiveFailureRate for each of the projects. The values are between

26.97% for Puppet and 77.14% for Cloudify. All projects see repetitive failures and do not see an

even or normal distribution of failures as would be necessary for a constant batch size. To quantify

the significance of consecutive failures to the failure rate, we define the spread of failures with

following metric:

FailureSpread =
FailureRate

ConsecutiveFailure
(17)

If all of the failures are consecutive and in a row, the FailureSpread would be equal to the

FailureRate. In an extreme case, where the failure rate is 1 in 4 and the spread is perfectly even, a

batch of size 4 will always fail and result in an additional execution. In this “perfect storm” batching

will be ineffective. In contrast, if the failure rate is low, and the failures are consecutive, then large

batch size will be effective.

To understand the effect of FailureSpread on saving in batch testing, we calculate the Spearman
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correlation between ExecutionSavings vs FailureRate and FailureSpread. We find that the correla-

tion between FailureRate and ExecutionSavings for our 12 projects is −0.86 with a p � 0.0001.

This shows a strong correlation between failure rate and saving for a project. However, we also

calculate the correlation between FailureSpread and ExecutionSavings and find an r = −0.97 with

a p � 0.0001. This means that in addition to the overall FailureRate, ConsecutiveFailure is also a

critical metric for execution reduction in a batch testing.

To illustrate the importance of considering the FailureSpread we examine Ruby and Rspec, that

despite having similar failure rates have disparate executions saving: 43.42% and 31.54% respec-

tively. Figure 3.7 shows the number of consecutive passing commits for both projects. For Ruby the

failure rate varies dramatically, but remains consistent for periods of time. For example, between

commit 400 and 600 and 700 and 1100, the failure rate is much higher than the earlier development

on Ruby. Ruby is an ideal project for dynamic weighted batch sizes. In contrast, Rspec also has

substantial variation, but there are no periods of constant failure rates making it difficult to do dy-

namic weighted batch sizing as the failure clusters are nearly random. We believe a promising area

of further study will be using time series analysis to better model this variation in failure rates.

3.7 Threats to validity

External Validity. We choose our projects from the largest projects available on TravisTorrent

dataset [18]. The projects are from a variety of development contexts from cloud computing to

development tools. Unlike Najafi et al. [70], we choose projects with a wide range of failure rates.

This range allowed us to understand that failure rate was not the only controlling factor on savings.

Internal Validity. In our simulations, we assume that there are always some builds waiting

for testing. In other words, batching is only effective when there are builds in the queue waiting

for resources. To accelerate testing these builds, we can run then in parallel machines or batch

them. However, in some projects, especially small projects, there might not always be available

some builds for batching. In this situation batching can lead to an increase in the time between

submitting a change and receiving feedback. However, even small batch sizes lead to large savings,

so if resources are available all waiting commits should be batched regardless of the batch size.
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Also, we simulated the result using only a single machine. Having multiple machines to parallelize

testing the queued builds can affect the result.

We have only batched commits to master that require the same test suites. In future work,

researchers may want to examine how batching after test selection on large project effects the test

scope, resource consumption, and feedback time.

3.8 Related Work

3.8.1 Test Selection and CI/CD

Continuous integration and delivery is an important part of developing modern software sys-

tems; and is beneficial for both industrial and open-source projects. It automatically runs the test

cases after committing a change and integrates the changes to the code. This helps to provide faster

feedback to the developers about their changes [78, 47, 88, 65]. In a Continuous integration pipeline,

each commit needs to be tested to make sure it does not break the software functionality. However,

testing every change is very costly and time-consuming [45]. Even companies with farms of servers

e.g., Google [37] cannot run all tests for every commit. To solve this problem, there are multiple

techniques including test prioritization [9, 102, 84], test selection, test minimization [67, 91, 24],

and batch testing.

Test selection is a technique to reduce the cost of regression testing [81, 40]. It reduces the

number of tests and chooses only the most important tests that can reveal bugs in the code. Some

studies investigate using static analysis approaches including code coverage [90] or slicing [48] for

test selection purposes. They select and run only the tests that cover files with a higher probability of

being faulty. Zhang [99] proposes a hybrid test selection strategy and instead of using a test selection

in a just method level or file level, they use a combination. They show their hybrid approach

outperforms other pure method level or file level strategies. Recently, there have been multiple

strategies based on mining historical data and machine learning algorithms for implementing test

selection. Spieker et al. [89] have proposed a reinforcement test case selection strategy. Chen et al.

[23] propose a semi-supervised approach based on clustering for test case selection. However, the

computational complexity of this approach is high and may not be feasible in very large industrial
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software systems. Anderson et al. [5] use association rule mining. They extract and use various

types of information in software systems and by conducting an empirical study on multiple industrial

projects show that their approach can find the tests that are likely to reveal failures.

The saving for test selection is achieved by eliminating some of the tests being run. This selec-

tion, may result in slipthoughs as tests that fail may not be run. In contrast, with batch testing all

tests are run and the savings comes from grouping changes not eliminating tests.

3.8.2 Batch Testing and Bisection

Batching is a technique for performing regression testing in a resource constraint environment

[28, 22]. In this technique, we run the entire commits in the batch all at once. However, in the case

of a failure of a batch, there is a need to find the culprit commits. GitBisection [1] can be seen as a

form of batch testing where a binary search is used to find the culprit commit on a given failing test.

The number of executions for GitBisection is log(n) in which n is the number of commits in the

batch. However, GitBisection has been designed for a situation that there is only one culprit commit

in the batch. If the number of culprits in the batch is more than one, GitBisection would fail to find

other culprits except the first one. To solve this problem, we can use a simple bisection technique. In

simple bisection [70], we divide batches into sub-batches in every branch of the search tree to make

sure that we find all of the culprits commits. In this scenario, however, the number of executions will

be at least 2 ∗ log(n) when there is only one culprit and 2 ∗ n+ 1 in the worst-case scenario that all

of the commits in the batch are culprits. To improve the speed of simple bisection, Beheshtian et al.

[14] proposed BatchStop4 that has a stopping condition at the batches with size 4 or fewer. There

are also risk-based techniques to prioritize testing the commits in a failed batch [14, 70]. However,

Beheshtian et al. show that none of them can outperform simple BatchStop4. In this study, we

introduce a new culprit finding technique BatchDivide4 and we show that it outperforms all of the

previous approaches.

At companies with an extremely large codebase e.g. Google [103] even running a GitBisection

could be extremely expensive. Google developers determine the dependency of builds using static

analysis tools and find the tests that need to be run based on the files under change. In the case of

failures, Google developers can find the files that are not related to the failed test cases and do not
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investigate them. They also rank commits based on the distance between commits in a batch and

the root of the build test dependency DAG. However, in this work, we are not able to perform such

a process because we do not have the build dependencies or the ability to select tests within a test

suite.

3.8.3 Medical Pool Testing

The batch testing idea originally comes from the medical research field. Dorfman introduced the

idea of medical batch testing during world war II to reduce the number of kits for testing infected

people [34]. By using one kit to test all the samples and having a negative result, we can make

sure that no one in the population is infected. However, in the case of having a positive result,

we have to test each of the samples individually using a separate kit. There are also other studies

that use a similar technique to perform batch testing for medical analysis [41]. Recently due to the

Covid-19 pandemic and lack of test kits in large populations, there has been an increasing interest

in medical pool testing again. Aragón-Caqueo et al. [7] investigate the effect of batch testing on

Covid-19 testing. Their conclusion is that the lower the infection rate, the higher the efficiency of

pool testing. This is similar to the observations of our experiments in the context of software testing.

Broader and Kumar [20] proposed the idea of double pool testing for Covid-19. In this approach,

they put each sample in two pools. So in the case of being positive of a sample, the result of both

of the pools that contain that sample must be positive. If one of the pools positive and another

one is negative, this means that we know the sample which is both the pools is negative. Double

pool testing was effective on software projects with low failure rates. The idea behind medical pool

testing and software testing is similar. This means future researches in the area of software batch

testing can be taken from the ideas of medical pool testing or vice versa.

3.9 Concluding Remarks

Testing every change is expensive and sometimes impossible for large companies e.g., Ericsson[70]

and Google[37]. In this work, we build upon previous research by Beheshtian et al. [14] and Najafi
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et al. [70]. We also examine medical batch pool testing. For culprit finding, we examined the exist-

ing algorithms: Dorfman [34], double pool testing [20], BatchBisect [70], BatchStop4 [14], and we

then propose our new culprit finding algorithm, BatchDivide4.

Batch testing requires a certain number of builds to be batched. All prior works used constant

batch sizes, in this work we suggest a dynamic batch size adjustment solution. We calculate the

WeightedFailureRate of the recent builds of the project. We prioritize the most recent builds over

the older ones. We use this WeightedFailureRate to calculate the batch size which minimizes the

expected number of executions for testing each build.

Our simulation on 12 large open-source projects that use Travis CI shows that DynamicBatch-

ing with BatchDivide4 outperforms the other approaches. It decreases the number of executions

by 47.85% over TestAll with an improvement over Beheshtian’s [14] Batch4 of 5.17 percentage

points. We note that all the batching approaches are much more effective than testing each build

individually.

We describe a theoretical limit for the savings that can be achieved in batch testing. We show

that using DynamicBatching, we achieve an across project average of 58.91% of the theoretical

limit. Although batching is highly effective, there is still substantial room for improving batching

relative to the theoretical batch savings limit.

Najafi et al. [70] suggested that the failure rate dictates the potential savings for batching. We

provide a more nuanced view showing that the failure rate varies overtime and that there are periods

of consecutive passes and failures. We develop the FailureSpread metric that measures consecutive

build failures and find that the correlation between batch savings and FailureSpread is r = −0.97

with a p � 0.0001. This metric easily allows developers to determine the potential of batching on

their project. We make our scripts and data available for replication [11].
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Chapter 4

Parallel and Batch Testing in a

Continuous Integration Environment

As a manuscript thesis, this chapter is a verbatim copy of the paper submitted to ICSE 2022:

the International Conference on Software Engineering.

4.1 Introduction

Testing is costly, time-consuming, and one of the most challenging parts of modern software

development. In the past few years, many large companies transferred their testing process to a

continuous integration pipeline. In a CI environment, to merge the changes to the main repository,

we need to test every single change to ensure it does not introduce a new fault to the system [37].

However, testing each individual change is a costly process that can be prohibitively expensive on

large software systems [70].

Batch testing groups changes and tests to reduce the number of redundant test runs. If the batch

passes the tests, we save resources and merge the changes to the code base. If the batch contains a

failing test, we have to perform a bisection to identify the culprit change(s). Identifying the culprit

can add additional build test executions.

There have been recent works that study the impact of software batch testing. Najafi et al. [70]
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proposed a new batching technique using machine learning to reduce the cost of testing at Erics-

son [70]. Beheshtian et al. [13] propose BatchStop4 which currently is the state-of-the-art algorithm

for culprit finding in a batch. However, previous works make three assumptions which are unreal-

istic on large software systems. First, they do not run tests in parallel and implicitly use a single

machine. Second, after the failure of a batch, they rerun every test suites. However, this is unnec-

essary as we are aware of the failed test cases, and we do not need to run all the test cases that pass

successfully. Third, previous researchers focus only on introducing new algorithms to reduce the

resource costs of finding the culprit change in a batch. They did not perform an indepth investigation

into the impact on the feedback time of batching.

In this work, we study the impact of parallel testing and batch testing on one of Ericsson’s prod-

ucts. We have two input parameters: the degree of parallelization (i.e. the number of machines) and

the batching techniques: ConstantBatching, TestDynamicBatching, and TestCaseBatching. Through

simulation we evaluate the change in Feedback time, i.e. wall time, and Resource usage, i.e. CPU

time. We present a brief overview of the batching algorithms and our results.

TestAll baseline: The most common testing approach is to test each change individually, i.e.

TestAll. In this work, we simulate TestAll by varying the number of parallel machines. We find that

by increasing the number of machines, the feedback time will decrease. Interestingly the relation-

ship between machines and feedback time is nonlinear because the delays are compounded and are

propagated to all changes waiting in the queue.

ConstantBatching: TestAll is expensive and often infeasible for large companies such as Er-

icsson [70] or Google [104]. To solve this problem, ConstantBatching, e.g., Batch4 [13] groups 4

changes in a batch and tests the union of their required test cases. The common test cases requested

by each change are run only once saving both CPU time and decreasing feedback time. If there

is a failed test case, we need to identify the change that caused this failure using a culprit finding

technique, e.g., BatchStop4 [13]. Since only the failed test case needs to be re-run, there is often

still savings.

We vary the batch size from 2 to 32 and the number of machines. We plot the tradeoff between

machines and batch size, but note that large batch sizes are ineffective because machines can sit idle

while waiting for changes and there is a greater likelihood of a failing batch that requires bisection.
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However, in a resource constrained environment with few machines ConstantBatching effectively

decreases feedback time.

TestDynamicBatching: Prior work on batching uses a constant batch size for the entire lifetime

of a project [70, 13]. We suggest TestDynamicBatching which immediately runs a batch with all

the changes in the queue, i.e. batch size = queue size. This approach adapts to the environment.

With limited available resources, we can process changes sooner by creating larger batch sizes. In

contrast, if the change queue is empty, any new change will be processed immediately in a “batch”

of size 1. By adapting to the change queue, TestDynamicBatching reduces the average feedback

time and resource consumption.

We vary the number of machines available to TestDynamicBatching in simulations. We plot the

savings and discuss why the savings are nonlinear. We find that with only 4 machines we are able

to decrease the feedback time by 80.38% and reduce the CPU usage by 32.29%.

TestCaseBatching: All prior works batch changes, which can increase the test scope as each

change may request different tests. In contrast, we suggest batching at the test case level. We create

a test queue that contains all the requested tests from the change queue. We then batch all the

changes and run the first test in the test queue. After the test completes, we add any new changes

that have arrived in the change queue. If the new change requests tests not already in the test queue,

these are added to the test queue. Once a change has had all its tests run, the verdict is reported for

that change. In contrast to change batching that must run all the tests for the changes before making

a new batch, TestCaseBatching ensures that the change queue is always emptied every time an

individual test completes. We find that TestCaseBatching provides feedback an average of 19.47%

and 84.20% faster than TestDynamicBatching and TestAll and reduces the CPU resources by 2.82%

and 34.19% with four machines, respectively. TestCaseBatching is highly effective at Ericsson.

This article is structured as follows. In Section 4.2, we provide definitions, background, and

the advantages and disadvantages of each batching algorithm. In Section 4.3, we describe our data,

simulation methodology, and evaluation metrics. In Section 4.4, we describe the results from the

simulation for each batching algorithm with a variable number of machines. In Section 4.5, we

discuss threats to validity. In Section 4.6, we position our work in the literature. In Section 4.7, we

conclude the paper.
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4.2 Background and Definitions

This paper evaluates the change in Feedback time, i.e. how long it takes for a final test verdict,

and the CPU time, i.e. how many machine cycles are necessary to test the change. We vary the

number of machines and the batching algorithm. We describe our metrics and algorithms below.

Feedback time. One of the most important factors in designing a continuous integration testing

infrastructure is giving fast feedback on test outcomes for each change. The time between commit-

ting a change and receiving all test verdicts is defined as the feedback time.

FeedbackTime = TimeTestVerdicts − TimeCommit (18)

For example, if a developer commits a change at 9 am and receives the feedback that the tests

passed successfully on that change at 10 am, the feedback time will be 1 hour for that change. In

contrast, if the change was queued for 1 hour, then the feedback time would be 2 hours, a doubling

in feedback time.

CPU time. The CPU time is the number of CPUs that are in use to test a change. For example,

if we are running 3 batches then we will be using 3 machines. If each is in use for 2 hours then the

CPU time is 2 ∗ 3 = 6 hours. CPU time is formalized below:

CPU Time =

M∑
m=1

CPUm (19)

Number of machines. Testing large software systems is time-consuming. To solve this prob-

lem, companies such as Google [37] parallelize their test suites. The test parallelization process

distributes the tests across multiple machines to reduce the feedback time [63]. Suppose a devel-

oper commits a change. To verify and merge the commit to the main branch, it needs to pass tests

A, B, and C. Each test takes 1 hour to run. If we use a single machine, testing the change will take

3 hours. If the testing starts immediately after the committing, the feedback time will be 3 hours.

However, by using 3 machines, we can execute each test on a different machine in parallel. As a

result, the testing process will take only 1 hour, and the feedback time will decrease by 2 hours.

However, in both cases, the CPU time will still be 3 hours (1 ∗ 3 = 3 ∗ 1 = 3 hours). In this work,
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Figure 4.1: TestAll: In this example, the total number of changes that are tested is 2. The feedback
time for change1 and change2 by assuming that there is only one machine will be 2 and 3 respec-
tively. By assuming two machines for parallel testing, the feedback time for both of the changes
would be 1. In both scenarios, the total CPU time would be 4

we vary the number of machines and simulate the impact on Feedback time and CPU time.

4.2.1 Background on batching

Although parallel testing can help to reduce the feedback time, even at large companies using

farms of servers to run tests in parallel, they still need to batch changes to further reduce CPU

time [104]. We describe the batching algorithms that are used in practice and introduce novel ones.

4.2.2 TestAll

Ideally, each change would be tested immediately and in isolation. This approach works well

on small projects that are not resource constrained. The total CPU time for this technique is equal

to the total execution time of the tests that have to be run for each change. However, the feedback

time for each change varies and depends on the time that a change waits in the queue.
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Figure 4.2: Batching and BatchStop4: In this example, there are 8 changes needing to be tested.
To test them all using batching, we combine them and execute the union of their required test cases
on a batch. We see five tests will pass and test A fails. To find the culprit changes we perform a
BatchStop4 on the changes and test A. The total number of executions for testing using batching
would be 12 compared to TestAll which needs 24 executions, we can reduce the 50% of the number
of executions
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Figure 4.3: ConstantBatching: In this example, we use batches of size 2 i.e. batch2. Using a single
machine, the feedback time would be 5, 4, 4, and 2 respectively. Using two machines for parallel
testing, the feedback time would be 4, 2, 3, and 1 respectively. In both situations, the CPU time is
6. If there are fewer changes than the batch size, then there will be unused resources.
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Figure 4.4: TestDynamicBatching: After committing the change1, we immediately allocate re-
sources and start testing it. As a result, the size of the first batch would be 1. After finishing
testing the first batch, there are 3 changes waiting for the testing process, i.e., change 2, 3 and 4, and
we batch all three. Change4 is waiting when the batch finishes so we would start the third batch of
size 1. The total resource usage would be 9. The feedback time for each change would be 3, 5, 4, 3,
and 5 respectively.
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Figure 4.5: TestCaseBatching: After each test finishes, we include any waiting builds and run the
next requested test in the test queue. We have to run Test A three times, because it has finished for
Change1 before Changes 2, 3, and 4 and we have to run it independently for Change 5. In contrast,
we must only run B and C twice as they overlap when more changes are available. The feedback
time for each change is 3. The total CPU time is 7.
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Figure 4.1 shows an example of TestAll. In this example, there are two changes that are com-

mitted for testing. The time of committing each change is T=0 and T=1 for Change 1 and Change

2 respectively. Change 1 requests tests A and B. Change 2 requests tests A and C. Executing each

of the tests needs exactly 1 unit of CPU time. We run each of the tests for each change individually.

Each change has exactly two tests. As a result, the total CPU time for testing this example regardless

of the tests’ outcome is

TCTTestAll = CTA + CTB + CTA + CTC = 4 (20)

In which CT means CPU Time and TCT means the Total CPU Time for testing these two

changes.

In contrast, the feedback time will vary depending on the number of available machines. In

Figure 4.1, we show the result of testing Change 1 and 2 on a single machine as well as having two

machines for parallelization. In a single machine environment, after committing Change 1, the tests

run. At time T = 2, the execution of both the tests A and B finish. As a result, the feedback time

for Change 1 is equal to 2 units of time. After finishing the testing process of Change 1, we start

running tests A and C for Change 2. The results of the test executions will be available at T=4. As

the time of committing Change 2 is T = 1, the feedback time for this change will be equal to 3 units

of time.

Using two machines, M1 and M2 will change the feedback time. We show an example of this

situation in the Figure 4.1 for TestAll. For testing Change 1, test A is run on M1, and test B at the

same time is run on M2. Due to test parallelization, the result of the tests will be ready at T=1. The

feedback time for Change 1 is equal to 1 unit of time. After finishing the testing process of Change

1, the tests A and C of Change 2 are executed on machines M1 and M2 in parallel, respectively.

The result will be available at T=2. As a result, the feedback time for Change 2 is equal to 1 unit of

time.

We can see that the average feedback time by having a single machine is equal to 2.5 units of

time. However, using two machines and parallel testing, the average feedback time will decrease to

1. In both situations, the CPU time remains constant at 4.
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4.2.3 Batch Testing and BatchStop4

TestAll is expensive and sometimes impossible in large companies, e.g., Ericsson [70] or Google [104].

Instead of testing every change individually, we can combine multiple changes and run the union

of their requested tests in a batch. If a batch passes, we save resources and provide feedback more

quickly. However, if a test fails, we need to find the culprit change(s) that are responsible for the

failure. If the intersection of the requested tests for the batched changes is large, and most tests pass,

the saving could be substantial. In an extreme example, if we batch 50 changes, and each change

requests the same tests, when the batch passes we save 49 build test executions. This results in a

reduction in CPU time of 98%.

If the batch fails, we need to bisect and rerun tests to find the culprit change(s). There are

several approaches for culprit finding in a failed batch including Dorfman [34] for medical pool

testing, bisection [70], and the current state-of-the-art BatchStop4. BatchStop4 [13] has been shown

both mathematically and empirically to be the top performing culprit finding algorithm when using

constant batch sizes. Figure 4.2 shows an example of batch testing and BatchStop4 for culprit

finding. To simplify the example, we focus the example only on the process of BatchStop4 for

culprit finding and do not show the feedback time or the number of machines. For the example,

there are a total 8 changes that need to be tested. For each change, we need to execute 3 tests among

the set of tests {A, B, C, D, E, F}. The execution time for each test is 1 unit of time. The requested

tests for each change vary. Using TestAll, we need to run every test for every change, which requires

a total of 24 test executions. However, by combining all the changes, we run the union of their test

cases which means running 6 test cases. If the batch passes for all tests, we would save in total 18

executions. This means saving 75% in terms of CPU time. However, with a failure of a test, e.g.,

test A which needs to pass in 7 different builds, we need to localize the faulty builds. We apply

BatchStop4 to test A and find the culprit changes that are responsible for the failure of the batch.

After finishing the process, the total number of test executions for testing all the 8 builds would be

12, which leads to a saving of 50% of the resources compared to TestAll.
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4.2.4 ConstantBatching

Prior works have selected a constant batch size for testing [70, 13]. In the ConstantBatching

technique, we group n changes together and test them in a batch. For example, with n = 8,

we batch every 8 changes together for testing. Figure 4.3 shows an example of Batch2 using a

single machine as well as having two parallel machines. There are in total 4 changes. The time of

committing the changes is equal to T=0, T=2, T=4, and T=6 respectively. Similar to the previous

examples, for simplicity we assume each test execution takes 1 unit of time. For both the single

machine and two machines environments, the CPU time is equal to 6 hours. In a single machine

configuration, the feedback time for each build would be 5, 4, 4, and 2 units of time respectively.

By using two machines, the feedback time would be 4, 2, 3, and 1 unit of time respectively.

We can see using two parallel machines, there is a time that machines are free and no test has

been assigned to them for execution. Although it does not have any effect on the CPU time, it

affects the feedback time for Change 3. As the approach is Batch 2, even though there are resources

available, we have to wait until there are two changes available for creating a batch.

4.2.5 TestDynamicBatching

The assumption of a constant batch size introduces problems. First, the rate of committed

changes varies over time. For example, during the peak of the workday, there may be 1000’s more

commits than at night. We need to vary the batch size based on the change queue. In TestDynam-

icBatching, when there are resources available, all the waiting changes, are grouped and the union

of required tests are run for the batch. When the testing process of the batch finishes and the cor-

responding resources are free, another batch is created using all the current waiting changes and

the resources are allocated to the new batch. The Algorithm 2 shows the high-level procedure for

TestDynamicBatching.

Figure 4.4 shows an example of TestDynamicBatching with a single machine. We assume that

there is no failure and all the changes pass the tests. Using TestDynamicBatching, after committing

the first change, the resources are immediately allocated to it for testing. Change 1 arrives first, and

only after we finish testing Change 1, can we batch all the changes that are now waiting, i.e. changes
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Algorithm 2: TestDynamicBatching procedure for batching and resource allocation

Whenever there are resources available for testing;
Pull all the waiting changes from change queue;
compute the union of the test cases that need to be run on the changes;
Run all the tests on the batch of the changes;
if all the tests pass then

consider the batch as a passing batch ;
else

for each test that fails do
Perform BatchStop4 on that test to find the culprit changes

end
end
Release all the busy resources;
Repeat the process for other changes in the queue;

2, 3, and 4. After testing the second batch of size 3, we test Change 5 in a batch of size 1 because

no other changes are waiting for testing. The total CPU time will be 9 units of time. However, the

feedback time for each change will be 3, 5, 4, 3, and 5 respectively.

4.2.6 TestCaseBatching

TestDynamicBatching can decrease the feedback time by reducing the idle time of resources.

However, when all resources are utilized for testing, new changes must be queued until all the tests

for the current batch complete. With TestCaseBatching new changes are added to the batch when

any test finishes rather than having to wait for all the tests to finish. This approach requires the

requested tested to be queued. To manage the test queue, the requested test cases for each change

are added to the queue, i.e. the ChangeID, TestID. When a test finishes, any new changes are added

to the batch and the next test in the queue is run. Once a change has had all its tests run, the results

are reported (see Algorithm 3).

In Figure 4.5 we provide an example of TestCaseBatching, and see that we need only 7 CPU

time units compared to the 9 need for TestDynamicBatching a reduction of 22.23%. The average

feedback time is reduced to to 3 compared to the 4 needed for TestDynamicBatching, meaning that

we get feedback to developers 25% sooner.
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Algorithm 3: TestCaseBatching procedure for batching and resource allocation

test queue management;

Whenever a change is committed;
compute the required test cases for that change;
add the required test cases to the test queue with the format (testID, changeID);
build a version of software that includes the current change;

resource management;

whenever the resources are available;
pull a test from the queue;
pull all the tests with the same testID from the queue;
if all the tests pass then

consider the test as a passing test ;
else

Perform BatchStop4 on that test to find the culprit changes;
end
Release all the busy resources;
Repeat the process for other builds in the queue;

4.3 Project, Data, and Simulation Methodology

In the previous sections, we describe the theory behind batching and introduced our metrics.

These approaches can be applied to any project that uses continuous integration of changes and has

resource constraints. In this section, we provide the background on the Ericsson project used in this

study.

Testing at Ericsson is an expensive multistage process. In order for a chance to be integrated

into the released product, it has to pass multiple testing levels. In this paper, we focus on Confidence

level 2 and Confidence level 3, which are the second and third phase of integration testing.

Ericsson tests the software that runs on cellular base stations. In this context, the machines used

for testing are extremely expensive and limited in number. The unit of integration testing is called

an Upgrade Packages (UP) and is the unit for our study. Each upgrade package consists of smaller

change units that are grouped into Load Module Containers (LMC). Every day there are thousands

of changes grouped into LMCs and into UPs for integration testing. We evaluate the integration

testing phase at the UP level for a project at Ericsson for the period of six weeks from January
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to February 2021. This time period includes over 11,000 changes. For each change, we have the

test cases that are run, the outcome of each test case, the execution time for each test case, and

the time of creating each change. Over this time period the average feedback time was 8.33 hours.

The number of available machines is difficult to determine exactly because the test machines are

also used by other projects, however, our simulations results provide approximations of available

machines based on the processing time.

The data necessary to conduct the simulation is not company specific and is simply the time

a change, e.g., UP, is ready for test, the requested tests, and the running time for each test. We

use the common incremental simulation methodology that is used in software engineering literature

[70, 19, 96, 49, 46]. For ConstantBatching, we simulate the batches of sizes from 2 to 32. We

note that above batch size 8 there is little to no improvement. We varied the number of machines

from 1 to 16. Although 16 seems like a small number of machines, the specialized hardware makes

it impossible to increase resources beyond this number. Furthermore, we will show that after 9

machines there is little to no decrease in feedback or CPU time, and additional resources would be

underutilized.

4.3.1 Outcome measures

Our goal is to reduce both feedback time and resource consumption. We define the AvgFeedback

and the AvgCPU. The AvgFeedback is the sum of the feedback times for each change in the project

divided by the total number of changes for the project. The equation below shows the AvgFeedback

for batching algorithm A across C changes with m machines.

AvgFeedbackm(A) =

∑C
c=1 Feedbacktimec

c
(21)

In the example in Figure 4.1, the AvgFeedback with a single machine is 2.5 units of time.

The average CPU time is the sum of the CPU time for each change in the project divided by the

total number of changes, C. For batching algorithm A with m machines the AvgCPU is

AvgCPUm(A) =

∑C
c=1 CPUTimei

c
(22)

84



Table 4.1: The FeedbackReduction for each algorithm relative to TestAll with a m machines. With
the exception of 1 or 2 machines, TestCaseBatching has the greatest FeedbackReduction. Con-
stantBatching can reduce the Feedback time in an extreme resource constraint environment, but
ineffectively utilizes additional machines.

Algorithm m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9
Batch2 27.25% 33.45% 42.39% 55.90% 67.50% 49.64% -3.33% -31.09% -51.48%
Batch4 44.08% 52.80% 65.49% 74.64% 66.06% 28.75% -65.99% -127.69% -174.79%
Batch8 49.02% 56.73% 65.38% 66.96% 43.95% -28.52% -215.75% -345.87% -450.70%
TestDynamicBatching 40.15% 56.57% 72.27% 80.38% 78.46% 64.43% 31.56% 20.25% 15.78%
TestCaseBatching 32.85% 55.56% 73.67% 84.20% 82.13% 69.37% 38.69% 26.73% 19.84%
Minimum Batch2 Batch2 Batch2 Batch2 Batch8 Batch8 Batch8 Batch8 Batch8
Maximum Batch8 Batch8 TestCase TestCase TestCase TestCase TestCase TestCase TestCase

In the example in Figure 4.1, the AvgCPU with two machines is 2 units of CPU time.

To compare batching algorithms, we define the FeedbackReduction as the percentage decrease

in AvgFeedback of A1 compared to the AvgFeedback of A2 with m machines.

FeedbackReductionm(A1, A2) = (1− AvgFeedbackA1

AvgFeedbackA2

) ∗ 100 (23)

The CPUReduction for algorithm A1, is relative to percentage decrease in AvgCPU compared

to to algorithm A2 with m machines.

CPUReductionm(A1, A2) = (1− AvgCPUA1

AvgCPUA2

) ∗ 100 (24)

We use the historical test outcomes of 11k changes and to understand how each batching algo-

rithm would have changed the AvgCPU and AvgFeedback.

4.4 Results

4.4.1 Result: TestAll

As a baseline we simulate testing each change individually, we run the historical simulation

and vary the number of machines and plot the AvgCPU as well as AvgFeedback. In Figure 4.6 the

AvgFeedback for TestAll is 721.60, 290.15, 146.33, 75.78, 35.30, 13.76, 5.18, 3.45, 2.66 hours for

1 to 9 machines, respectively. As we can see, the AvgFeedback is reduced dramatically with the
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Figure 4.6: The average feedback time(AvgFeedback) for each algorithm with a variable number of
machines. We see by increasing the number of parallel machines, the feedback time will decrease.
However, because of the delay consolidation in future changes, the relation is nonlinear.
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Figure 4.7: The average CPU Time(AvgCPU) of each algorithm varying the number of machines.
We see by larger batch sizes save more resources. Since TestDynamicBatching and TestCaseBatch-
ing attempt to maximize the utilization of each machine, their AvgCPU will increases with more
machines.
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Figure 4.8: The CPUReduction of each algorithm relative to TestAll. We see the CPUReduction
for Batch2, Batch4, and Batch8 is 25%, 40%, and 50% respectively. However, for TestDynam-
icBatching and TestCaseBatching, it is not constant and decreases as we increase the number of
machines.

Figure 4.9: The FeedbackReduction each algorithm relative to TestAll. With TestDynamicBatching
and TestCaseBatching, we always decrease the feedback time compared to TestAll. We note that
ConstantBatching is highly ineffective adapting to an increase in resources.
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number of parallel machines. For example, by increasing the number of machines from 4 to 5, the

AvgFeedback decreases from 75.78 hours to 35.30 hours. The relationship between machines and

AvgFeedback is clearly non-linear, with an increase in machines from 4 to 5, i.e. 25%, we see a

reduction in AvgFeedback) time of 53%. The improvement is nonlinear because without sufficient

resources the delay is compounded to all subsequent changes leading to large delays. An illustrative

example of the compounded delay can be found in background Section 4.2.1.

In contrast, for TestAll, the resource consumption is constant because regardless of whether

the test runs are parallelized we still need to run each request test on each individual change. For

TestAll, the AvgCPU is 16.15 hours.

With TestAll, any delay will be compounded in delays to all subsequent changes in the

queue. By increasing the number of parallel machines for testing, the feedback time will

decrease in a nonlinear manner, e.g., from 721.60 hours with one machine to 5.18 hours with

7 machines, a decrease of 99.3%. The CPU time is constant with TestAll because commits

are tested independently with an AvgCPU time of 16.15 hours.

4.4.2 Result: ConstantBatching

Batching changes reduces the number of test executions when the changes request the same

tests. Prior works [70, 13] used a constant batch size, and we replicate the state-of-the-art approach

on a project at Ericsson. We varied the batch size from 2 to 32, but as we can see in Figure 4.8, the

savings plateau, so we report results for batch sizes of 2, 4, and 8, i.e. Batch2, Batch4, and Batch8

in the body of the paper.

Figure 4.8 shows the CPUReduction for these batching technique relative to TestAll. The

CPUReduction for Batch2, Batch4, and Batch8 is 23%, 37%, and 44%, respectively. The reduction

increases with batch size because the majority of the tests pass. As noted by prior work [13], the

reduction is limited by the number of failing tests because a failure requires additional executions

to find the culprit changes.

Prior works have focused on resource savings and largely ignored or simplified feedback time [70,
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13]. If we strictly follow a constant batch size, then we see that commits can wait for extended peri-

ods of time. Figure 4.9 plots the result of FeedbackReduction compared to TestAll. When resources

are constrained and the queue is full, in this case up to 5 machines, Batch2, Batch4, and Batch8 all

reduce the average feedback time. However, as the machines increase up to 9 the constant batch size

increases the feedback time by -51.48%, -174.79%, and -450.70% respectively. In practice, with

constant batching, developers set a maximum waiting time and then process all available commits

regardless of batch size.

A constant batch size of 2, 4, and 8 reduce the number of executions by 23%, 37%, and 44%

relative to TestAll. Feedback time can increase or be reduced depending on the number of

available machines for parallelization. Large batch sizes lead to feedback delays.

4.4.3 Result: TestDynamicBatching

ConstantBatching can save resources and can decrease the feedback time in an extreme re-

source constraint environment where there are many commits in the queue. However, the queue

size varies over time, with peak changes happening during working hours. To better utilize the

available resources, we suggest TestDynamicBatching which batches all available changes in the

queue. Section 4.2.1 provides the background.

Varying the number of machines from 1 to 9, we see a FeedbackReduction of 40.15%, 56.57%,

72.27%, 80.38%, 78.46%, 64.43%, 31.56%, 20.25%, and 15.78% relative to TestAll. Figure 4.9

and Table 4.1 compare the effectiveness against the other approaches. The maximum reduction in

feedback time is achieved with four machines.

In terms of CPUReduction, varying the machines from 1 to 9 results in a respective reduction of

in 48.87%, 46.08%, 40.75%, 32.29%, 21.52%, 13.16%, 7.71%, 4.76%, 3.13% compared to TestAll.

Figure 4.8 compares against all other techniques. We can see that constant batching can outperform

dynamic batching in terms of CPU reduction, however, this comes at a cost in feedback time.
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We see the FeedbackReduction for TestDynamicBatching is substantial and the largest saving

relative to TestAll is 80.38% decrease in feedback time. To attain this improvement we need

four machines, which results in a 32.29% reduction in CPU time.

4.4.4 Result: TestCaseBatching

TestDynamicBatching process all available changes. However, any change that arrives when no

machines are available has to wait until all the tests for a batch have completed. In background

Section 4.2.1, we introduced TestCaseBatching that queues the request tests across all changes and

includes any new change after each test completes (rather than waiting for all tests to complete).

We vary the number of machines from 1 to 9, and see a respective FeedbackReduction of

32.85%, 55.56%, 73.67%, 84.20%, 82.13%, 69.37%, 38.69%, 26.73%, and 19.84% relative to

TestAll. Figure 4.9 and Table 4.1 compare the effectiveness against the other approaches. Rel-

ative to TestDynamicBatching the corresponding change is -12.18, -2.33, 5.04%, 19.47%, 17.08,

13.9%, 10.42%, 8.13%, and 4.83%, respectively. We see that TestCaseBatching is more effective

than dynamic batching with 3 or more machines and can be substantially more effective with 7 or 8

machines.

For CPUReduction the corresponding reduction is 50.92%, 49.11%, 43.01%, 34.19%, 24.05%,

16.80%, 11.19%, 7.63%, and 5.65% relative to TestAll. Relative to TestDynamicBatching, it can

reduce CPU resources by 4.01%, 5.62%, 3.81%, 2.82%, 3.23%, 4.21%, 3.78%, 3.01%, and 2.61%.

In Figure 4.8 we that TestCaseBatching is always more effective.

TestCaseBatching has the largest savings in both feedback time and CPU time of any tech-

nique. With four machines, compared to TestAll it reduces feedback time by 84.20% and

CPU time by 34.19%. Relative to TestDynamicBatching it reduces feedback time by 19.47%

and CPU time by 2.82%.
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4.5 Threats to validity

We selected a large project with over 11k changes at Ericsson. While our definitions and algo-

rithms are not tied to the project, the approach that works the best may change with different project

environments. For example, on a project that tests in the cloud, additional machines may be very

cheap. However, we have shown that additional machines do not always improve the results, and as

Microsoft noted, cloud test machines are not free and can add up quickly [45].

The historical simulation simplified parts of the Ericsson’s testing processes. Developers can

stop the testing of a build or manually batch select changes for testing. Since we cannot model these

manual interventions, we excluded them from our simulation.

In our simulations, we assumed that all changes can be batched and none lead to merge conflict.

Since each must be ultimately merged into the main branch, we do not introduce any new conflicts

because any conflict would have been dealt with when the developer ensures that the code can be

merged. However, the batching process may bring this conflict to the developer’s attention earlier

as we batch different combinations of changes.

We have two thresholds in our work, the batch size is varied from 2 to 32 and the number

of machines is varied from 1 to 16. For the studied project, our results show that these ranges

are appropriate, with the outcome measures either reaching a plateau or showing a downward trend.

Our discussion of compounded delays and utilized resources also demonstrate appropriate threshold

ranges.

4.6 Related Work

4.6.1 Test parallelization

Test parallelization distributes testing across multiple machines to reduce feedback time. Pre-

vious works widely studied the impact of test parallelization on software testing and introduced

algorithms to run tests in parallel [51, 69, 10, 64]. For example, Arabnejad et al. [6] investigated

using GPUs for running tests in parallel. The most popular algorithms for parallelizing tests are

scheduling tests across the machines based on their IDs and their historical execution time [2].
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Candido et al. [21] investigated the impact of test parallelization on open source projects. By

analyzing more than 450 Java projects, they found that less than 20% of major projects use test

parallelization due to concerns with concurrency issues. They provide recommendations to practi-

tioners to facilitate their parallel testing, such as refactoring tests for load balancing and grouping

tests based on their dependencies and running tests with dependencies on the same machine. Bell

et al. [16] studied the impact of test dependency on test parallelization. They introduced the Elec-

tricTest approach to detect dependencies before scheduling them across the machines. Ding et al.

[32] proposed a software behavior oriented test parallelization to reduce conflicting behaviors.

At the Ericsson, we run tests that have already been parallelized. We note that none of the prior

works studied the effect of test parallelization in the context of batch testing.

4.6.2 Batch Testing and CI/CD

Continuous integration and delivery is an essential aspect of modern software development [50].

Using a CI infrastructure, developers can automatically build and test their changes to make sure it

does not break software functionality [78, 47, 88, 65].

In a CI pipeline, we need to test each commit before merging it to the main branch. In large

software systems, testing every change individually is impossible [45]. Even Google with huge

server farms is not able to test every single commit independently [37]. There are multiple solutions

to solve this problem including test selection [81, 40, 23], test minimization [67, 91, 24], test priori-

tization [9, 102, 84], and batch testing [70, 13]. The first three techniques have been widely studied

and various articles about them are available in the literature. However, there are a few papers that

studied batch testing.

Batch testing is used to decrease the CPU time and the feedback time in resource constraint

environments [28, 22]. Instead of testing every single change in isolation, we batch them and run

them all at once. If the batch fails, we have to find the culprit change(s) responsible for the failure.

GitBisection [1] is the most well-known culprit finding technique. It performs a binary search on

the changes to find the culprit. GitBisection can find the culprit with log(n) executions. However,

in the condition that there is more than one culprit, GitBisection only finds the first one. To solve

this problem, Najafi et al. [70] introduced a bisection that use a divide-and-conquer algorithm to
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find all the culprits. It divides the failing batch into two subbatches and tests both of them to find if

they include a culprit change. As it performs a complete search, the total number of executions is

between 2log(n) and 2n + 1 when all the changes in the batch are culprits. Beheshtian et al. [13]

showed that for batches with a size of 4 or fewer, bisection only increases the number of executions.

They propose BatchStop4 which tests every change individually in the batches with size 4 or fewer.

They mathematically show that using BatchStop4 always outperforms batch bisection.

These previous works studied batch testing at the change level and with a single machine. They

did not investigate the impact of parallel testing. In this work, we study the combination of batching

and parallel testing for the first time and show the impact of batching by varying the number of

parallel machines.

4.7 Contributions and Concluding Remarks

In this paper, we make the following contributions.

(1) We introduce metrics to gauge the change in feedback time and CPU resource usage for batch

testing.

(2) We introduce two novel batching strategies. TestDynamicBatching builds batches out of all

the waiting changes and runs culprit finding on failure, allowing better resource utilization.

TestCaseBatching batches all changes that request a particular test, and adds new changes

immediately after each test case finishes.

We report the following findings from our historical simulations at Ericsson varying the number

of machines available for each batching algorithm.

(1) TestAll. If changes are tested individually, any delay will be compounded in delays to all sub-

sequent changes in the queue. By increasing the number of parallel machines for testing, the

feedback time will decrease in a nonlinear matter, e.g., from 721.60 hours with one machine

to 5.18 hours with 7 machines, a decrease of 99.3%. The CPU time is constant with TestAll

because commits are tested independently with an AvgCPU time of 16.15 hours.
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(2) ConstantBatching. A constant batch size of 2, 4, and 8 reduce the number of executions by

23%, 37%, and 44% relative to TestAll. Feedback time will increase as changes wait for the

batch size before being run.

(3) TestDynamicBatching. The feedback reduction for TestDynamicBatching is substantial and

the saving relative to TestAll is 80.38% decrease in feedback time. To attain this improvement

we need only four machines, which results in a 32.29% reduction in CPU time.

(4) TestCaseBatching has the largest savings in both feedback time and CPU time of any tech-

nique. With four machines, compared to TestAll it reduces feedback time by 84.20% and

CPU time by 34.19%. Relative to TestDynamicBatching it reduces feedback time by 19.47%

and CPU time by 2.82%.

We show that TestCaseBatching rather than batching at the change level can be highly effective

at Ericsson. We hope to see other reports on its usage.
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Chapter 5

Conclusion

Testing every change is expensive and sometimes impossible for large companies e.g., Ericsson[70]

and Google[37]. In this work, we have done an extensive study on the impact of batching and par-

allel testing in continuous integration environments. We extended the work that have been done by

Beheshtian et al. [13] and study the impact of batching in more diverse open source projects with a

wider range of failure rates. We have seen that batching is still effective by having a failure rate of

up to 50%. We then introduced new batching techniques based on a dynamic batch size for projects

under study. In the DynamicBatching technique, instead of assuming a constant batch size for all

the batches over time, we calculate the batch size based on the recent failure rate of the project.

Our simulations show that DynamicBatching decreases the number of executions by 47.85% over

TestAll with an improvement over the state-of-the-art Batch4 of 5.17 percentage points.

We describe a theoretical limit for the savings that can be achieved in batch testing. We show

that using DynamicBatching, we achieve an across project average of 58.91% of the theoretical

limit. Although batching is highly effective, there is still substantial room for improving batching

relative to the theoretical batch savings limit.

All the previous approaches including DynamicBatching perform batching in the build level of

projects. To find a culprit build in a failed batch, they rerun all the test cases to find which change

is responsible for the failure of the batch. However, in large industrial projects, there are three

additional assumptions which need to be considered. First, the test cases need to be run could vary

among different builds. Second, we have access to test outcomes of each build in the test case, level.
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This means in the case of failure of a batch, we can just rerun the failed test cases to save resources

and time. In addition, in Chapter 2 and 3, we only considered testing builds in a single machine.

But in industrial projects, we have access to multiple machines to parallelize test runs. We also have

to consider the feedback time of our batching approaches because it is a critical metric for CI.

Using the above assumptions, we extend our study to a real world industrial project at Ericsson

to study the impact of batching and parallel testing at the test case level. We introduce metrics to

measure the change in feedback time and CPU resource usage for batch testing. We introduce two

novel batching strategies. TestDynamicBatching builds batches out of all the waiting commits and

runs culprit finding on failure. TestCaseBatching groups all changes that request a particular test.

We find that the feedback reduction as well as the CPU time reduction in both the proposed ap-

proaches is substantial. We find among all the approaches TestCaseBatching has the largest savings

in both feedback time and CPU time of any technique. With four machines, compared to TestAll

it reduces feedback time by 84.20% and CPU time by 34.19%. Relative to TestDynamicBatching,

it reduces feedback time by 19.47% and CPU time by 2.82%. We conclude that TestCaseBatching

rather than batching at the change level can be highly effective at Ericsson. We hope to see other

reports on its usage.
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