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Montréal, Québec, Canada

© Haonan Zhang, 2021

August 2021



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Haonan Zhang

Entitled: Studying Logging Practice in Test Code

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Jinqiu Yang

External Examiner
Dr.

Examiner
Dr. Nikolaos Tsantalis

Supervisor
Dr. Weiyi Shang

Approved by
Narayanan, Lata, Chair
Department of Computer Science and Software Engineering

2021
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Studying Logging Practice in Test Code

Haonan Zhang

Logging is widely used in modern software development to record run-time information for

software systems and plays a significant role in software testing. Although the research area of

logging has attracted much attention, there is no research on the practice of test logging (i.e., the

logging involved in test files). To fill this knowledge gap, we conduct this empirical study to explore

and disclose the practice of test logging. This study examines 21 open-source subjects with ∼8

million sources lines of code and ∼70 thousand logging statements. We organize our study by

answering four research questions, and as a result, (1) we have yielded five findings to reveal the

differences between test and production logging statements, (2) we have disclosed four findings

regarding the differences between the maintenance efforts of test and production logging statements,

(3) we have identified four reasons why developers use test log and (4) we have uncovered the

relationship between test logging and production logging. To the best of our knowledge, this is the

first study that quantitatively and qualitatively analyzes the logging practices in test and production

code, providing developers and researchers with insight into this topic.

iii



Acknowledgments

It would be impossible for me to complete this thesis without the support from various people.

I would like to firstly thank my Supervisor professor Weiyi Shang. His expertise helped me a lot

in selecting the research topic, finding the research questions and formulating the methodologies.

Without his help and encouragement, I would never be able to be here presenting this thesis.

I would particularly like to acknowledge Dr. Yiming Tang, who helped me to overcome the

procrastination and focus on the research. She also helped to revise my thesis again and again and

brought my work to a higher level. Without her, I would probably still be daydreaming and escaping

to write my thesis.

I would also like to thank Dr. Maxime Lamothe and Dr. Heng Li. They helped me a lot in

determining the categories for RQ3 and RQ4 and classifying the data. Without their help, I would

not be able to complete my research topic before August.

Finally, I would like to thank my parents. They are always there for me no matter what happens.

iv



Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Case study setup 5

2.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Extracting logging statements . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Classifying logging code changes . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Executing tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Case study result 9

3.1 RQ1: What is the difference between the characteristics of test logging statements

and production logging statements? . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 RQ2: What is the difference of developers’ maintenance efforts between test and

production logging statements? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 RQ3: Why do developers use test logging? . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 RQ4: What is the relationship between test logging and production logging? . . . 32

3.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Threats to validity 42

4.1 External validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Internal and construct validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Related work 45

5.1 Characterizing logging practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Where to log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 What to log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusion 48

Bibliography 49

vi



List of Figures

Figure 2.1 Overview of the research workflow. . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3.1 Distributions of the logging statement levels. . . . . . . . . . . . . . . . . . 14

Figure 3.2 Distributions of the logging information types. . . . . . . . . . . . . . . . . 16

Figure 3.3 Distribution of static logging texts lengths and variable numbers. . . . . . . 17

Figure 3.4 Distributions of the change types of logging statements. . . . . . . . . . . . 23

Figure 3.5 Overview of the updated logging components. . . . . . . . . . . . . . . . . 26

Figure 3.6 Statistical test results for comparing the distributions of the changed logging

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.7 Rationales for developers logging in test files. . . . . . . . . . . . . . . . . 30

Figure 3.8 Overview of the research approach for RQ4. . . . . . . . . . . . . . . . . . 33

Figure 3.9 Relationship between test and production logs. . . . . . . . . . . . . . . . . 36

Figure 3.10 Usefulness of non-Test-Only logs. . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.11 Test log categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



List of Tables

Table 2.1 Overview of studied subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 3.1 Metrics used to characterize logging statements in production and test files. . 10

Table 3.2 Overview of the logging statement numbers. Columns LOG and LOG/F

denote the number of logging statements and the number of logging statements per

file respectively. Column Density is the number of source code lines per logging

statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Table 3.3 Statistical test results for comparing test and production logging metrics. . . 18

Table 3.4 Metrics used to characterize logging statements maintenance efforts. . . . . 20

Table 3.5 Various change types of logging statement components in Hadoop. . . . . . 22

Table 3.6 Overview of the logging statement changes . . . . . . . . . . . . . . . . . . 23

Table 3.7 Overview of the churn rates of each subject . . . . . . . . . . . . . . . . . . 24

Table 3.8 Relationships between test and production logs. . . . . . . . . . . . . . . . . 35

Table 3.9 Example of usefulness of the test logs. . . . . . . . . . . . . . . . . . . . . . 37

Table 3.10 Classifications of test logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii

https://github.com/apache/hadoop


Chapter 1

Introduction

Logging is an important practice in recording the run-time information of software systems.

Logging has been used for a variety of purposes, such as software quality evaluation (Kernighan &

Pike, 1999; Shang, Nagappan, & Hassan, 2015), anomaly detection (Fu, Lou, Wang, & Li, 2009;

Lou, Fu, Yang, Xu, & Li, 2010), error reporting (Glerum et al., 2009), performance diagnosis

(Nagaraj, Killian, & Neville, 2012), system behavior understanding (Fu et al., 2013; H. Li, Shang,

Adams, Sayagh, & Hassan, 2020) and code coverage estimation (Chen, Song, Xu, Hu, & Jiang,

2018), many of which facilitate testing. Moreover, a number of programming languages provide

logging frameworks to assist developers in logging. For instance, Python has a widely used built-in

logging module, logging, and Java offers a variety of logging frameworks, including the built-

in logging framework JUL (Oracle JUL, 2021) and frameworks provided by third parties (such as

SLF4J (QOS.ch, 2021) and Log4j (The Apache Software Foundation, 2021)). Logs are generated

by logging statements. The following is a sample of a typical logging statement that consists of four

components: a logging object (LOG), a logging level (INFO), a static text, and a dynamic variable:

LOG.info("Static text." + variable);

A logging level allows developers to filter the run-time information of software systems, printing

only information about critical events (e.g., errors) while suppressing less critical information (e.g.,

debugging information) (Gülcü, 2002).

The significance of software logging has long been acknowledged, and numerous studies have
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been undertaken to improve logging practices. Chen and Jiang (2017a, 2017c); He, Chen, He, and

Lyu (2018); Yuan, Park, and Zhou (2012); Zeng, Chen, Shang, and Chen (2019) characterize the

logging practice and logging anti-patterns in different programming languages and platforms. H. Li,

Shang, and Hassan (2017b); Z. Li, Li, Chen, and Shang (2021); Liu et al. (2019); Shang, Nagappan,

Hassan, and Jiang (2014) explore what information to log and Fu et al. (2014); Zhao et al. (2017);

Zhu et al. (2015) investigate where developers should place logging statements.

Despite the considerable efforts that prior studies spent on analyzing and improving logging

practices, to the best of our knowledge, there is no study that explores logging practices in test files

and production files separately. In general, production files are used to develop software that will be

released to users, while test files are used to verify the functionality of production files. In this thesis,

we define the logging involved in test and production files as test logging and production logging

respectively. Production and test files can be easily distinguished by their file paths. For example,

in Hadoop, the source code directory of each module consists of two separate folders, a main folder

and a test folder that contain production and test files, respectively. Since test files and production

files serve different purposes, the logging practices in test and production files may also differ, and

identifying such differences may help developers more effectively and unambiguously log in test

and production files. Therefore, to fill this knowledge gap between the logging practices in test and

production code, we conduct an empirical study on logging statements in test files. Specifically, this

study focuses on four aspects: (1) the statistical differences of logging statements in test and pro-

duction files, (2) the differences of efforts that developers spent on maintaining test and production

logging statements, (3) the rationales why developers use test logging, (4) the relationships between

test and production logging.

To investigate the logging practice in test and production files, we have conducted a comprehen-

sive study on 21 software projects. These projects have ∼8 million source code lines, ∼70K logging

statements, ∼214K commits (during the analyzed histories) and ∼89K files in total. To identify the

differences of the logging practice between test and production files, we analyze the density, distri-

butions and historical data of test and production logging statements separately. Furthermore, we

conduct a “firehouse email” (Murphy-Hill, Zimmermann, Bird, & Nagappan, 2015) survey to reveal

why developers use logging statements in test files. Then, we analyze and label test logs according
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to their relationship with production logging to explore how test and production logging are re-

lated. Our research yielded five findings regarding the difference between the characteristics of test

logging statements and production logging statements, four findings with respect to the difference

between developers’ maintenance efforts for test and production logging statements, and revealed

four reasons for why developers use test logs, as well as the relationship between production and

test logging. The summary of our research questions and findings are as follows:

RQ1: What is the difference between the characteristics of test logging statements and production

logging statements?

Logging is commonly used both in test and production files. In test and production log-

ging statements, INFO is the most commonly used logging level, while TRACE is the least

commonly used. In general, developers prefer logging with a combination of static texts

and variables rather than exclusively static texts or variables, with production logging con-

veying more information on average than test logging. Furthermore, there exist significant

differences between the distributions of the static texts, dynamic variables and logging

levels in test and production files.

RQ2: What is the difference between developers’ maintenance efforts for test and production log-

ging statements?

The effort expended by developers to maintain production logging statements is only

slightly greater than that expended on test logging statements. Our statistical test reveals

that although there is a difference between developers’ maintenance effort in test and pro-

duction logging statements, the effect sizes are quite small. For both test and production

logging statements, the most commonly modified logging component is variable, while the

least commonly modified component is logging level.

RQ3: Why do developers use test logging?
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Developers log in test files for four reasons: Debugging, Recording operational actions,

Code refactoring and Code clone. The most common reason is Debugging, followed by

Operational Information. Two minor reasons for using test logging are Refactoring and

Code Clone.

RQ4: What is the relationship between test logging and production logging?

The vast majority of testing logs are used for Test only (e.g., recording a test setup) and

not related to the production logs. However, we also observe some test logs that Overlap,

Complement, or Elaborate production logs. In particular, we discover that some test log-

ging information (e.g., intermediate status of the system) is useful for production and can

be added to the production source code.

The implications of our findings are that test logging is quite essential to developers, and future

research should treat logging statements in test files discretely, due to significant differences between

test and production logging. Our findings also suggest that some information (e.g., production

intermediate data) recorded by test logging statements can be used in production logging, implying

that more research into how to extract and leverage such information is required.

Thesis organization. The rest of this thesis is organized as follows. Chapter 2 introduces the

subjects we have studied and how we extract the related data from these subjects. Chapter 3 explains

the motivation, research process as well as the results of each research question. Chapter 4 presents

the threats to validity. Chapter 5 discusses the related work. Chapter 6 concludes this thesis.
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Chapter 2

Case study setup

This Chapter describes the projects under study and how we extract data from these projects.

2.1 Subjects

Our research involves 21 open-source subjects varying in size and domain. These subjects were

chosen because: (1) These are all well-known open-source software applications that have been

developed for at least 5 years, (2) These contain sufficient logging code for our research, (3) These

subjects are under the control of professional development teams for production and testing, (4)

They have been selected as studied subjects by the prior study (Chen & Jiang, 2017c).

Table 2.1 presents an overview of our studied subjects. In total, we analyzed 21 open-source

projects with ∼8 million sources lines of code. Column KLOC is the thousands of source lines of

code, ranging from ∼10K for Rat to ∼1754K for Hadoop. Column Files denotes the number of

Java files at the analysis time. The total number of files in the study is ∼89K, while each file has an

average of ∼87 source lines of code. Column Commits indicates the number of the analyzed com-

mits. During the analyzed commit histories, 214,763 commits were pushed, while Rat had the least

commits at 1,043, and Hadoop had the most commits at 24,083. The average age of these subjects

at the time of analysis is ∼14 years old, with a minimum age of ∼5 years for Openmeetings and

a maximum age of ∼22 years old for Jmeter.
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Table 2.1: Overview of studied subjects

Subjects KLOC Files Commits Commit history

Hadoop 1,753.94 14,042 24,083 (2009-05-19, 2020-08-05)
Hbase 776.12 5,083 17,896 (2007-04-03, 2020-08-05)
Hive 1,480.47 19,310 14,777 (2008-09-02, 2020-08-03)
Zookeeper 108.85 1,372 2,173 (2008-05-19, 2020-08-04)
Tomcat 338.98 4,159 22,363 (2006-03-27, 2020-08-04)
Lucene 1,285.20 12,607 33,950 (2001-09-11, 2020-08-05)
ActiveMQ 414.74 5,462 10,644 (2005-12-12, 2020-07-31)
Maven 89.58 1,978 11,216 (2003-09-01, 2020-08-05)
Ant 143.75 2,383 14,648 (2000-01-13, 2020-07-30)
Empire-DB 55.23 729 1,172 (2008-08-04, 2020-07-01)
Karaf 124.84 2,575 8,208 (2007-11-26, 2020-07-29)
Log4j 30.29 620 3,275 (2000-11-16, 2015-06-04)
Mahout 110.19 2,080 4,440 (2008-01-14, 2020-07-29)
Mina 23.63 362 2,401 (2005-12-28, 2017-06-06)
Pig 269.98 2,458 3,693 (2007-10-29, 2020-04-23)
Pivot 106.47 1,791 4,660 (2008-06-05, 2019-08-14)
Struts 166.23 3,244 5,938 (2006-02-22, 2020-07-17)
Openmts∗ 55.16 1,194 2,833 (2015-12-13, 2020-07-27)
Fop 215.43 4,169 8,354 (1999-10-31, 2020-07-30)
Jmeter 143.13 2,987 16,996 (1998-09-02, 2020-08-05)
Rat 9.72 294 1,043 (2008-03-11, 2020-07-28)

Total 7,701.95 88,899 214,763
* Openmts is Openmeetings.

2.2 Data extraction

Figure 2.1 illustrates the overview of our research workflow. In each analyzed subject, we

examined the logging practice in its latest version and all commit histories. The workflow mainly

consists of three phases: Extracting logging statements (marked by ‘yellow’ color), Classifying

logging code changes (marked by ‘turquoise’ color) and Executing tests (marked by ‘red’ color).

2.2.1 Extracting logging statements

We first use GitPython (GitPython-Developers, 2021), an open-source tool for accessing and

processing Git commits, to identify source code changes from Git histories. In order to identify

logging statements from source code changes, we use srcML (Collard, Decker, & Maletic, 2013),

a free tool for analyzing source code, to transform the source code to XML format. A similar data

extraction strategy was used in a previous study (Zeng et al., 2019) as well. Through XPath, we

can extract all method calls from these XML documents, and then we can search these method calls
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Figure 2.1: Overview of the research workflow.

for logging statements using Regular Expression by using logging-related keywords, such as log

and logger. To increase the detection accuracy, we remove method calls whose names include

the logging-related keywords, but they are not logging-related, for example, the method calls with

name logo, logic, and logdir. We further filter the remaining method calls using logging-level

related keywords like info, warn, and error, etc. Following the identification of these logging

statements, they are labeled as test logging statements or production logging statements, depending

on whether they are from test or production files.

2.2.2 Classifying logging code changes

In order to characterize logging practices, we measure how many logging statements have been

added, deleted, or updated during development histories. We first sort the source code files with

logging code changes extracted from GitPython into three categories: file additions, file deletions,

and file updates. Our goal is then to convert the logging code changes made in these three types

of files into three types of logging code changes (i.e., added/deleted/updated logging statements).

Changes in the logging statements in the added/deleted files could be regarded as added/deleted

logging statements respectively. If the insertion and deletion of a logging statement in the Git

7
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revision of a revised file occur in the same method and they seem to be very similar, the logging

statement is considered updated. This can help us find the logging statement additions/deletions

among the remaining of logging code changes in this file’s revision.

2.2.3 Executing tests

To study the relationship between test and production logs, we execute the unit tests in our

studied subjects and analyze the generated logs (including both test and production logs) from these

tests. We first clone the source code of the head commit (when the study is conducted) for each

research subject from GitHub and then execute unit tests on our local Linux machine (Ubuntu 18.04,

4-Core Intel i5-2400 CPU, 8GB memory). If a failure occurs during the testing, we ignore the failure

and let the tests continue executing.

8



Chapter 3

Case study result

In this chapter, we present the study results of our research questions. We describe the motiva-

tion for each research question, as well as the approaches proposed to address the research questions

and the experimental results.

3.1 RQ1: What is the difference between the characteristics of test

logging statements and production logging statements?

3.1.1 Motivation

Many research studies have been conducted to characterize logging practices. On the one hand,

previous research has investigated the logging statements in production code (H. Li et al., 2017b;

H. Li, Shang, Zou, & E. Hassan, 2017a) and disclosed the logging characteristics in various pro-

gramming languages and platforms (Chen & Jiang, 2017c; Yuan, Park, & Zhou, 2012; Zeng et al.,

2019). On the other hand, prior research has not provided insights into the distinctions between

logging statements in test and production code. Investigating the logging characteristics in test and

production code could help developers write more effective logs and improve the state of practice

(e.g., by improving bug detection). Therefore, in this research question, we explore the differences

between the logging statements characteristics in test and production code. At the time of analysis,

the study is conducted on the most recent version of the subjects. Table 2.1 provides an overview of

9



the subjects.

3.1.2 Approach

To understand the differences between the logging statements in test and production code, we

extract the following three dimensions of metrics from the studied subjects, and we investigate the

relationship between the distributions of test and production logging density. Table 3.1 presents a

list of metrics for each of the three dimensions with further description. These metrics are all used

to characterize logging statements.

Table 3.1: Metrics used to characterize logging statements in production and test files.

Dimension Metric Description

Log quantity
metrics

Log quantity The number of logging statements in production/test files.

Log quantity per file
The average number of logging statements per produc-
tion/test file.

Log density Log density of logging statements in production/test files.
Logging level met-
rics Log level number The number of log levels in production/test files.

Logging
information metrics

Text length
The average length of static texts per logging statement in
production/test files.

Variable number
The average variable numbers per logging statement in pro-
duction/test files.

• Log quantity metrics are used to measure the number of logging statements in varying kinds

of source code files, such as total logging statements, logging statements per file, and log

density. To calculate the logging density, we first use CLOC (CLOC, 2021), a widely used

open-source tool, to count the number of source code lines (SLOC) in test and production

files, then use srcML1 and regular expressions to count the number of logging statements in

these files. The densities defined by prior work (Yuan, Park, & Zhou, 2012) are then computed

by dividing the SLOC of test and production files by the number of logging statements in each

type of file separately. As the log density increases, logging statements get sparser in the files.

• Logging level metrics measure the logging level distributions in test files and production files

(i.e. The proportions of each logging level in test and production files). The logging level is

a component of a logging statement, and learning more about it can help us understand the
1https://www.srcml.org/
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differences in logging statement characteristics between production and test files. After the

logging statements are identified, we use XPath to identify the logging level.

• Logging information metrics quantify the information volume supplied by logging state-

ments. A logging statement consists of two types of information: static texts and dynamic

variables. We calculate the length of the static texts and the number of dynamic variables to

estimate logging information volume. This dimension could be used to identify the differ-

ences between test and production files in terms of logging information types.

Statistical test. We have introduced the three dimensions above in order to investigate the dif-

ference between test and production logging statements. Such difference is summarized by our

plain statistics. We then leverage a popular statistical methodology named Mann-Whitney U test

(Nachar, 2008) to further measure the differences between test and production logging statements.

We choose Mann-Whitney U test because it does not enforce any assumptions about the distribu-

tion of analyzed data. Mann-Whitney U test is applied to distributions of reciprocals for logging

densities in test and production files (there is no logging statements in some files, therefore logging

densities for these files cannot be calculated), distributions of logging variable numbers as well as

distributions of lengths of logging static texts in test and production logging statements respectively

for each subject. Before the test, we propose two hypotheses (i.e, null hypothesis and alternative

hypothesis):

H0: The distributions under test are same.

H1: The distributions under test are different.

The test is executed at the 5% level of significance, which implies that if p-value ≤ 0.05, the

H0 is rejected but H1 is supported, and vice versa. Reporting only the statistical significance may

lead to erroneous results (i.e., if the sample size is very large, the p-value can be small even if

the difference is trivial (Laaber, Scheuner, & Leitner, 2019).) Hence, we use Cliff’s delta effect

size (Cliff, 1996) to quantify the magnitude of difference between the two distributions under test.

In the case of positive effect size, the higher its value, the greater the significance of the difference.

The thresholds of Cliff’s delta is defined as follows (Romano, Kromrey, Coraggio, & Skowronek,
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2006):

effect size =



negligible if Cliff’s d ≤ 0.147

small if 0.147 < Cliff’s d ≤ 0.33

medium if 0.33 < Cliff’s d ≤ 0.474

large if Cliff’s d > 0.474

(1)

3.1.3 Results

By analyzing the three dimensions of metrics we obtained, we discover five findings regarding

the differences between the logging statement characteristics in test files and production files. We

find that logging in test files is as common as in production files and that the distributions of logging

densities in test and production files are almost the same. Conversely, test logging statements and

production logging statements present notable differences in their logging level distributions, and

their logging information types and sizes. However, such differences are often disregarded by prior

studies which suggest general rules to help developers choose proper log levels (H. Li et al., 2017b;

Z. Li et al., 2021) or useful information to log (Liu et al., 2019). Consequently, our findings may

inspire researchers to further explore how logging can be facilitated for developers by considering

logging separately for test files and production files.

Log quantity metrics. Table 3.2 summarizes the results of Log quantity metrics to measure log

numbers for the subjects. Each subject is presented in terms of thousands of lines of code, the

number of logging statements, logging statements per file, and logging statement densities in the

production and test files separately.

As illustrated in Table 3.2, there are 48,030 production logging statements in production code,

which is about twice as many as the logging statements counted in test files (21,639). However, it

should be noted that source code lines are almost double in production files (5,127.11K) in compar-

ison to test files (2574.85K). As such, more logging statements in production files do not imply that

logging is more pervasive in production files than in test files.

Finding 1: Logging statements in test code are as pervasive as those in production code.

Table 3.2 reveals that test and production files have similar logging densities (118 vs. 105).
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Table 3.2: Overview of the logging statement numbers. Columns LOG and LOG/F denote the
number of logging statements and the number of logging statements per file respectively. Column
Density is the number of source code lines per logging statement.

Subject
Production Test

KLOC LOG LOG/F Density KLOC LOG LOG/F Density

Hadoop 986.75 13,059 1.83 75 767.19 6,088 1.59 126
Hbase 472.71 6,364 2.74 73 303.41 3,506 1.78 85
Hive 1205.66 7,602 1.40 155 274.81 1,352 0.80 202
Zookeeper 61.09 1,365 2.89 44 47.76 684 1.85 70
Tomcat 261.74 2,373 1.29 106 77.25 461 0.73 167
Lucene 740.02 3,179 0.59 234 545.18 2,996 0.96 182
ActiveMQ 212.73 2,499 1.10 83 202.01 4,112 1.89 48
Maven 69.40 317 0.42 218 20.18 47 0.18 429
Ant 111.54 1,313 1.45 85 32.21 73 0.18 441
Empire-DB 52.96 813 1.78 64 2.27 18 0.60 134
Karaf 103.00 1,308 1.03 77 21.84 283 0.94 77
Log4j 21.59 725 3.36 30 8.70 355 3.81 25
Mahout 82.44 622 0.67 132 27.75 223 0.71 124
Mina 16.49 212 1.01 78 7.15 48 0.44 149
Pig 166.37 1,437 1.13 116 103.62 644 1.24 161
Pivot 99.35 183 0.23 534 7.12 236 1.57 30
Struts 111.96 1,104 0.81 101 54.27 43 0.07 1,262
Openmts∗ 49.36 500 1.03 100 5.80 66 0.74 88
Fop 185.27 1,337 0.82 139 30.17 76 0.18 397
Jmeter 110.99 1,694 1.66 64 32.15 317 0.91 101
Rat 5.71 24 0.21 238 4.02 11 0.18 365

Total 5,127.11 48,030 1.32 105 2574.85 21,639 1.24 118

∗ Openmts is Openmeetings.
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Furthermore, on average, there is at least one logging statement in each test file (1.24) and each

production file (1.32). Specifically, there are at least two logging statements per file for certain

subjects, such as Hbase, Zookeeper, and Log4j. Therefore, logging is as commonly used in

test files as in production files. Such results indicate that logging in test files is as important as in

production files. However, as previously mentioned, logging practice in test files is often ignored

despite the numerous studies performed with regard to logging practice, thus more focus may need

to be set on it.

Logging level metrics. Figure 3.1 illustrates the results on the subjects’ logging level measure-

ments — a proportional distribution of log levels in test and production files.

Figure 3.1: Distributions of the logging statement levels.

Finding 2: In test and production logging statements, INFO is the most commonly used logging

level and is the dominating one for test logging statements while TRACE is the least commonly

used.

Test files and production files use the INFO level in the majority of log statements, accounting for

77.81% and 31.74%, respectively, of all log statements. The TRACE level is seldom used either in

test or production files: their ratios are 0.48% and 4.15% separately. Such results imply that in both

test and production files, logging is most frequently used to record necessary informational data

(e.g., encounter a status or an event) and is rarely used to trace the code.
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Finding 3: The distribution of logging levels in production logging statements is more evenly

distributed than in test logging statements.

Apart from the INFO level, the remaining four logging levels account for less than a quarter (22.19%)

of logging statements in test files, but they account for 68.26% in production code. Furthermore, the

standard deviations for the distributions of logging level proportions in test and production files are

29.10% and 9.44% separately. This indicates the distribution of logging levels in production code

is more evenly than in test files.

Software testing benefits a lot from logging. For example, error messages displayed by logging

statements can provide developers with information about run-time failures, which can aid in de-

bugging. The fact that error messages serve for testing may lead developers to believe that higher

log levels (e.g., ERROR or WARN) account for a significant portion of total log levels in test logging

statements. Our research, on the other hand, contradicts this straightforward notion. In test files,

developers prefer to use the log level INFO to print run-time information that, while not as crucial

to testing as error messages, is logged in many places in test code and is required for developers.

Logging information metrics. The purpose of these metrics is to determine whether there are

differences in logging information content between test and production log files based on the distri-

bution of argument types and quantities in test and production logging statements.

Finding 4: For both test and production logging, developers prefer logging with a combination

of static texts and variables rather than exclusively static texts or variables.

Figure 3.2 plots the distribution of logging statement argument types in test files and production

files. According to Figure 3.2, the majority of logging statements use a combination of static texts

and variables to log information in production files (81.44%) and test files (70.93%). In test files,

there are more logging statements with static text (29.07%) than in production code (18.56%).

Production and test files contain very similar proportions of logging statements that only log variable

information, 3.79%, and 4.40% respectively. Such results indicate that developers prefer logging

with a combination of static texts and variables rather than exclusively static texts or variables (i.e.,

finding 4).
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Figure 3.2: Distributions of the logging information types.

The preservation of these complicated logging content compositions could exacerbate the dilemma

of “what to log”, which has already sparked a lot of research (more details in chapter 5). Fu et al.

(2014) point out there is no existing work to assist developers in making informed decisions to avoid

over-logging and under-logging. It is essential to provide developers with the appropriate amount

of logging information, which can also facilitate testing. Therefore, we investigate the logging in-

formation volume in the studied subjects and hope that our findings would provide developers with

further insight into logging information content.

Finding 5: On average, production logging statements contain more information than test

logging statements.

Figure 3.3 portrays the distribution of static logging text lengths and variables. The sub-figures

(a) and (c) display the original box-plot charts used for analyzing text lengths and variable numbers

respectively, while sub-figures (b) and (d) display their magnified versions used for subsequent

analysis. In Figure 3.3, the mean variable numbers in each production logging statement is 1.33

which is approximately 25% greater than it in each test logging statement (1.06). The average length

of the static texts captured by developers in the production logging statements is 37.81, while the

mean length of logging static texts for each test logging statement is 25.16. It should be noted that

a value of 0 indicates that the logging messages only contain variables or static text. For example,

the variable number of LOG.info("Initializi- ng DS Client") is 0, and the text length of
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LOG.info(outputDirPathForEntity) is 0. The implication behind these differences is that

on average, developers log more information in production logging statements than test logging

statements.

Statistical test. Table 3.3 demonstrates the results of our statistical test on the distributions of log-

ging densities in test and production files, variables number distributions, and static text length dis-

tributions in test and production logging statements, which correspond to the table’s three columns.

There are three sub-columns below each column for p-value, cliff’s d (only calculated with p-values

≤ 0.05), and effect size. In the column eff size, the abbreviations NEGL, SM, MED, and LG refer

to negligible, small, medium, and large effect size respectively.

Table 3.3: Statistical test results for comparing test and production logging metrics.

Subjects
Log density Variable numbers Static text length

p-val cliff’s d eff size p-val cliff’s d eff size p-val cliff’s d eff size

Hadoop 0 0.062 NEGL 0 0.215 SM 0 0.319 SM
Hbase 0 0.053 NEGL 0 0.220 SM 0 0.371 MED
Hive 0.104 N/A N/A 0 0.141 NEGL 0 0.447 MED
Zookeeper 0.356 N/A N/A 0 0.127 NEGL 0.002 0.079 NEGL
Tomcat 0.316 N/A N/A 0 0.135 NEGL 0 0.414 MED
Lucene 0 0.087 NEGL 0 0.071 NEGL 0 0.372 MED
ActiveMQ 0 0.205 SM 0 0.210 SM 0 0.347 MED
Maven 0.206 N/A N/A 0.182 N/A N/A 0.055 N/A N/A
Ant 0 0.163 SM 0 0.492 LG 0 0.328 SM
Empire-DB 0.146 N/A N/A 0.031 0.243 SM 0 0.541 LG
Karaf 0.066 N/A N/A 0 0.118 NEGL 0 0.598 LG
Log4j 0.212 N/A N/A 0 0.394 MED 0 0.743 LG
Mahout 0.461 N/A N/A 0.048 0.069 NEGL 0 0.378 MED
Mina 0.434 N/A N/A 0.464 N/A N/A 0.007 0.226 SM
Pig 0.021 0.048 NEGL 0 0.156 SM 0 0.304 SM
Pivot 0 0.365 MED 0.118 N/A N/A 0.096 N/A N/A
Struts 0 0.145 NEGL 0.235 N/A N/A 0 0.414 MED
Openmts∗ 0.193 N/A N/A 0.377 N/A N/A 0 0.463 MED
Fop 0 0.099 NEGL 0.031 0.120 NEGL 0 0.326 SM
Jmeter 0 0.124 NEGL 0.015 0.073 NEGL 0 0.293 SM
Rat 0.428 N/A N/A 0.130 N/A N/A 0.149 N/A N/A

∗ Openmts is Openmeetings.

In Table 3.3, there is no significant difference (i.e., p-value ≥ 0.05) in log density between

test and production files for half of the studied subjects (11/21). For the remaining 10 subjects,

7 subjects have negligible effect sizes while only 2 subjects have small effect sizes and 1 subject

has a medium effect size. Based on these findings, we can conclude that there are no significant
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differences in log density between test and production files for half of the studied subjects, and the

effect sizes of those differences are limited for the other half of the subjects.

In terms of variable numbers, there is no significant difference between test and production

logging statements in 6/21 subjects, which is lower than it is for log density. In the 15 remaining

subjects, 8 exhibit negligible effect sizes, 5 small effect sizes, 1 medium effect size, and 1 large

effect size. We can draw the conclusion from this result that there are no significant differences in

variable number distributions between test and production logging statements for more than one-

fourth of the studied subjects, and the effect sizes of those differences are almost limited for the

remaining subjects.

As for static text length, only 3/21 subjects have no significant difference between test and

production logging statements. Among the remaining 18 subjects, only 1 has a negligible effect

size, while 6 have small effect sizes, 8 have medium effect sizes, and 3 have large effect sizes. This

indicates that only a small subset of the studied subjects have no significant difference of static text

length between test and production logging statements, while the effect sizes of those differences in

the remaining subjects are substantial.

In summary, the statistical test on log density in test and production files and variable number

distributions for test and production logging statements yield nearly identical results, indicating that

there is no corresponding difference in a significant portion of subjects and that the effect sizes

of the differences in the remaining subjects are quite small. However, for the static text length

distributions, only a small proportion of subjects have no difference between test and production

logging statements, while those differences are substantial for the remaining subjects.

3.2 RQ2: What is the difference of developers’ maintenance efforts

between test and production logging statements?

3.2.1 Motivation

The maintenance effort of the logging statements is the effort developers spend to modify the

logging statements, which includes adding, deleting, or updating logging statements. A prior study
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by Yuan, Park, and Zhou (2012) examines the maintenance of logging statements in four C and C++

projects, finding that logging statements are unstable and that developers expend significant effort to

maintain them. Chen and Jiang (2017c) quantify the efforts (i.e. code churn rates) developers spent

on maintaining the logging statements in Java and Zeng et al. (2019) investigate the maintenance

efforts developers spent on maintaining logging statements in mobile applications. Nevertheless,

prior studies ignore the differences between the maintenance efforts of test logging statements and

production logging statements. To fill this knowledge gap, we study the differences between the

maintenance efforts of test logging statements and production logging statements. Our findings

disclose that there exist notable differences between the maintenance efforts of test and production

logging statements and we should treat test and production logging statements separately.

3.2.2 Approach

To recognize the differences between the maintenance efforts of test logging statements and

production logging statements, we extract the following metrics in two dimensions from the studied

subjects. Table 3.4 presents a list of metrics for each of the two dimensions with further description.

These metrics are all used to measure developers’ maintenance efforts of logging statements.

Table 3.4: Metrics used to characterize logging statements maintenance efforts.

Dimension Metric Description

Log change
metrics

Log churn The number of changed production/test logging statements.

Log churn rate
The change rate of production/test logging statements in each
subject.

Commits with change
The number of commits with production/test logging state-
ments changed.

Component met-
rics Components modified

The number of the changed components for the updated pro-
duction/test logging statements.

• Log change metrics measure the efforts developers spend on maintaining the logging state-

ments as the projects evolve. We identify logging statements and classify their changes by

exploiting the techniques introduced in chapter 2. Log churn refers to the amount of logging

statement changes. It is measured by counting the number of log statements that have been

changed, including adding/deleting/updating log statements (Nagappan & Ball, 2005). In our

study, the log churn rate for a subject is the average log churn rate of all the commits in that
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subject, which is calculated by the following formula (Yuan, Park, & Zhou, 2012):

Log Churn Rate =

∑Commits
i=1

Log Churn of Commiti
LOG in Commiti

Commits

In this formula, Commits indicates the number of all commits in the analyzed subject, and

LOG refers to the total number of logging statements.

• Component metrics are used to gauge how developers modify the components of logging

statements. Given a list of updated logging statements from the prior study regarding log

churn, we still use srcML and XPath to extract the components from this list and analyze

them individually. For example, we use an XPath query ./src:expr/src:literal to

extract the static texts from logging statements, and then disclose the characteristics of static

texts in logging statements. As presented in Table 3.5 (we use Hadoop as an example), the

logging statement changes could be classified into five categories: whitespace format change,

text change, variable change, logging level change and logging object change. Similar cate-

gories have been uncovered in prior research (Zeng et al., 2019) as well.

Statistical test. As with RQ1, we conduct a statistical test regarding the efforts developers spend

on maintaining test and production logging statements. For each subject, we perform the Mann-

Whitney U test on the distributions of test and production logging code churn rates at the commit

level. The differences are then quantified further using Cliff’s Delta (Cliff, 1996) and effect size

(Coe, 2002).

3.2.3 Results

By analyzing the two dimensions of metrics we obtained and performing the statistical test on

the maintenance efforts (i.e. logging churn rates), we identify four findings with respect to the

variations in maintenance efforts of test and production logging statements. We find that, although

overall, the logging statements are less likely to be updated in test files compared to that in produc-

tion files, the average efforts developers spent on maintaining the logging statement are comparable.
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Table 3.5: Various change types of logging statement components in Hadoop.

Change Example

Whitespace
format

- LOG.trace("Issued delegation token -> expiryTime:{},tokenId:{}",
+ LOG.trace("Issued delegation token -> expiryTime:{}, tokenId:{}",

expiryTime, tokenId);

(a) OzoneBlockTokenSecretManager.java (Commit: a031388)

Static texts

- LOG.debug("Acquired {} lock on resource {} and {}",
+ LOG.debug("Acquired Write {} lock on resource {} and {}",

resource.name, firstUser, secondUser);

(b) OzoneManagerLock.java (Commit: 87d9f36)

Dynamic vari-
ables

- logger.debug(DISABLED_LOG_MSG, bucket);
+ logger.debug(text);

(c) S3Guard.java (Commit: 93b662d)

Logging level

- LOG.info("Encountered ObserverRetryOnActiveException from {}." +
+ LOG.debug("Encountered ObserverRetryOnActiveException from {}." +

" Retry active namenode directly.", current.proxyInfo);

(d) ObserverReadProxyProvider.java (Commit: 74780c2)

Logging
object

- logger.error(message);
+ LOG.error(message);

(e) TestLog4jWarningErrorMetricsAppender.java (Commit: bd8d299)

Furthermore, we identify the difference between logging components in updated logging statements

for test and production files.

Log change metrics. In this dimension, we analyzed the numbers of the added, deleted and up-

dated logging statements (during the analyzed histories) in each subject, as presented by Table 3.6.

To further investigate the difference between test log churn and production log churn, we created

Figure 3.4 below, which demonstrates the proportions of added, deleted, and updated logging state-

ments in each subject, and complements Table 3.6.

Finding 6: Overall, logging statements are less frequently updated in test files than in produc-

tion files.

According to Table 3.6 and Figure 3.4, during the studied commit histories of the subjects,

the total proportion of logging statements that are updated in production code is 18.07% which is

roughly twice as much as it in test code (8.97%). Exceptionally, in Maven and Rat, the logging

statements in the test code are more frequently updated. The percentage of the logging statements
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Table 3.6: Overview of the logging statement changes

Subject
Production Files Test Files

Updated Added Deleted Updated Added Deleted

Hadoop 7,702 25,889 12,658 595 9,510 3,403
Hbase 6,665 17,944 11,721 1,003 7,009 3,527
Hive 3,870 16,842 9,225 208 3,903 2,501
Zookeeper 1,385 2,668 1,256 504 1,206 519
Tomcat 1,808 6,186 3,711 97 719 249
Lucene 4,037 8,625 5,430 1,360 6,362 3,354
ActiveMQ 2,875 5,239 2,711 871 5,559 1,445
Maven 623 1,809 1,451 346 439 392
Ant 2,313 4,872 3,505 56 640 568
Empire-DB 207 1,131 315 1 19 1
Karaf 756 3,405 1,841 40 689 398
Log4j 656 2,325 1,705 167 953 347
Mahout 1,699 1,999 1,392 235 704 480
Mina 480 1,254 1,041 44 233 185
Pig 556 2,876 1,296 259 3,058 2,279
Pivot 86 410 226 68 585 340
Struts 998 3,134 2,007 1 75 32
Openmts∗ 511 1,747 1,261 14 133 68
Fop 1,584 4,084 2,969 32 131 45
Jmeter 2,809 6,167 4,330 343 852 517
Rat 8 59 30 10 24 5

Total 41,628 118,665 70,081 6,254 42,803 20,655

∗ Openmts is Openmeetings.

Figure 3.4: Distributions of the change types of logging statements.
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added in the test code is 61.40%, which is about 10% higher than that in the production code

(51.51%). This finding implies that, when compared to production logging, developers are more

likely to add logging statements but not update them in test code. The proportion of the logging

statements deleted in test code (29.63%) and production (30.42%) code are comparable, indicating

that with a portion of production logging statements deleted, a similar amount is deleted from test

logging statements.

Finding 7: The average effort expended by developers to maintain production logging state-

ments is only slightly greater than that expended on test logging statements.

Table 3.7: Overview of the churn rates of each subject

Subject
Code Churn Rate (‱) Log Churn Rate (‱)

General Test Production General Test Production

Hadoop 3.47 3.99 3.31 4.56 3.39 4.92
Hbase 12.25 9.63 13.18 11.09 8.33 12.22
Hive 8.34 12.56 7.87 10.61 7.91 11.28
Zookeeper 33.84 40.73 30.78 51.22 47.88 52.15
Tomcat 2.37 3.37 2.30 2.14 2.59 2.18
Lucene 6.63 6.29 6.78 8.46 4.66 20.26
ActiveMQ 7.02 6.53 7.12 10.06 9.15 10.76
Maven 20.06 16.35 21.01 23.21 32.81 21.30
Ant 8.28 8.98 8.01 14.77 9.68 18.70
Empire-DB 16.91 30.60 16.62 26.28 47.83 26.18
Karaf 14.86 17.26 14.70 20.19 15.58 19.73
Log4j 29.63 31.06 29.35 34.17 35.04 33.60
Mahout 27.39 20.23 38.41 37.70 30.80 37.24
Mina 66.63 56.56 69.43 75.06 111.73 72.64
Pig 29.31 29.94 29.03 21.14 41.23 19.11
Pivot 17.60 27.66 17.42 39.68 43.37 38.46
Struts 21.11 16.98 22.85 24.34 11.15 24.69
Openmts∗ 14.21 14.73 14.13 19.26 10.80 20.21
Fop 16.80 18.54 16.68 22.61 17.27 22.85
Jmeter 8.35 8.90 8.25 7.64 16.85 7.55
Rat 55.94 56.03 55.71 84.72 71.63 89.97

Total 11.21 11.44 11.53 13.76 13.27 15.93
* Openmts is Openmeetings.

Table 3.7 presents an overview of the code churn rate and log churn rate for the studied subjects.

Column General indicates the churn rate of code or logs that are not specific to test or production,

while the columns Test and Production indicate churn rates specific to test and production, respec-

tively. According to Table 3.7, production logging statements have a total churn rate of 15.93‱ for

all subjects, which is slightly higher than test logging statements (13.27‱). In general, the churn
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rates of test and production logging statements are higher than the churn rates of test and production

code separately, implying that developers actively maintain the logging code, as revealed by prior

studies (Chen & Jiang, 2017c; Yuan, Park, & Zhou, 2012; Zeng et al., 2019).

During our analysis, we discovered that the number of commits with log changes differs sig-

nificantly between test and production files. To be more specific, the test logging statements are

changed in 10,832 commits for all analyzed subjects, while the production logging statements are

changed in 29,650 commits which more than doubles the number of commits with test log changes.

Because log churn rates of test and production logs are only slightly different, we can conclude

that, on average, developers prefer to change a smaller proportion of production logging statements

in a commit and change them more frequently (i.e., more commits with production log changes),

whereas they prefer to change a larger proportion of test logging statements in a commit but change

them less often.

In conclusion, despite the fact that developers have different habits for modifying production and

test logging statements, the corresponding log churn rates are only marginally different, implying

that the effort expended by developers to maintain production logging statements is only slightly

greater than that expended on test logging statements (i.e., finding 7).

Component metrics. Figure 3.5 depicts the proportions of the changed logging components for

all updated logging statements in test and production files. In this dimension, we disclose two

findings by comparing the changed logging component proportions for test and production logging

statements.

In Figure 3.5, the ordinate (Y axis) represents the proportions of logging components in updated

logging statements, while the abscissa (X axis) represents the various logging component types as

introduced in Table 3.5. Several components of a logging statement may be modified simultaneously

when the logging statement is updated. Our logging component proportion calculation includes such

overlapping, i.e., a logging statement with various component changes could be counted multiple

times for analysis.
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Figure 3.5: Overview of the updated logging components.

Finding 8: For both test and production logging statements, the most commonly modified log-

ging component is variable, while the least commonly modified component is logging level.

According to Figure 3.5, the logging component variable is the most commonly updated com-

ponent in both test logging statements (53.88%) and production logging statements (49.15%). Com-

ponent static text is the second most commonly modified logging component in test (38.22%) and

production (42.69%) logging statements. The proportion of component logging level in test logging

statements is 3.41%, compared to 8.85% in production logging statements, which indicates that the

least commonly modified component is logging level.

Finding 9: There are no significant differences in the proportions of updated logging com-

ponents for both test and production logging statements (the highest different is 5.44% for

component logging level).

Based on the Figure 3.5, we examine the differences between the components of updated log-

ging statements in test and production files. The component logging level has the greatest difference

(5.44%), whereas the component Whitespace Format has the smallest difference (0.07%). The dif-

ferences between logging components in test and production files are modest, signifying that the

proportions of updated logging components for both test and production logging statements are

nearly identical (i.e., finding 9).
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Statistical test. We first conducted Mann-Whitney U tests on test and production log churn data

at the commit level for each subject, which yielded that all p-values ≤ 0.05 (from 0 to 0.032),

indicating significant differences between developers’ maintenance effort (measured by log churn

rates) between test and production logging statements. To further study the effect size of these

differences, Figure 3.6 presents Cliff’s delta between the distributions of the maintenance efforts on

production and test logging statements for each subject.

Figure 3.6: Statistical test results for comparing the distributions of the changed logging compo-
nents.

As illustrated in Figure 3.6, the differences in distributions of the maintenance efforts on test

and production logging statements are negligible in 19 subjects and are small in the rest 2 subjects.

This means that, while there are significant differences in developers’ maintenance effort on test and

production logging across all subjects, almost all of these differences have negligible effect sizes.

3.3 RQ3: Why do developers use test logging?

3.3.1 Motivation

In RQ1, we reveal the log level distributions in test and production files. We have discussed how

the number of INFO levels is (much) greater than other log levels, particularly at higher log levels

(i.e., ERROR and WARN), which contradicts our straightforward notion (i.e., the higher logging levels
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may account for the major portion of test logging levels). Because of these discrepancies between

logging level distribution and our plain notation, a research question arises: why do developers use

test logs? By answering this question, we build a bridge from log level usage to actual test log usage

in this section. In order to answer this question, we conduct a “firehouse email interview” (Murphy-

Hill et al., 2015) with the developers to find out why they recently added logging statements to the

test files. A similar approach is used by Zeng et al. (2019) as well.

3.3.2 Approach

Our approach constitutes two phases. In the first phase, we collect data from developers. Then

in the second phase, we analyze developers’ response messages and identify the rationales.

• Data collection. During this phase, we survey developers by email to find out why test

logging statements are added. We first identify logging statements newly added to test files of

the studied subjects every week from 2020-07-28 to 2021-01-14 by using our data extraction

scripts, and then we email developers to inquire about the reasons that they add those logging

statements in test files. In order to increase the survey response rate, we try to provide as many

details as possible (e.g. file URL, commit ID, and line number) about the logging statements

and we only ask developers one question about why they added the logging statements, such

as asking if they can describe briefly why they added the logging statement in a specific

scenario. As surveying developers multiple times may lead to biased results, we only survey

each developer once and sometimes we may ask the rationales regarding multiple logging

statements since developers sometimes added multiple logging statements in one commit.

Finally, we have emailed 50 developers and received 22 replies regarding the addition of 43

test logging statements.

• Data analysis. We perform a pair review (i.e., each reviewer examines the same data indi-

vidually and then merges their review results) to classify the rationales that developers log in

test files. Two reviewers first examine each responded email separately to tag each logging

statement with a label that indicates the rationale behind it. After the first round of exami-

nation, reviewers combine the initial labels into new labels. During a second round, the two
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reviewers then re-label the logging statements individually according to the new labels and

the contents of the emails. After these two rounds of examination, we use Cohen’s kappa

(McHugh, 2012) to measure the reliability of the agreements between two reviewers. Below

is a formula from McHugh (2012) that gives the relationship between the level of agreement

and the value of cohen’s kappa:

Level of Agreement =



None if Cohen’s k ≤ 0.20

Minimal if 0.20 < Cohen’s k ≤ 0.39

Weak if 0.39 < Cohen’s k ≤ 0.59

Moderate if 0.59 < Cohen’s k ≤ 0.79

Strong if 0.79 < Cohen’s k ≤ 0.90

Almost perfect if Cohen’s k > 0.90

(2)

3.3.3 Results

During the research, we gathered the rationale for adding 43 logging statements from 22 sur-

veyed developers. The Cohen’s kappa regarding the agreement between the two reviewers after the

first round is 0.69 this value increased to 1 after the second round review. This indicates that our

classification is reliable. As illustrated in Figure 3.7, our research results have revealed four reasons

why developers log in test files.

Finding 10: Developers use test logs for four reasons, the most common of which is De-

bugging, followed by Recording Operational Information. Two minor reasons for using test

logging are Refatcoring and Code Clone.

Debugging (20/43). Debugging is the most typical reason for developers to use test logging.

Across these 20 Debugging cases, there are few minor differences in the rationale for developers

to use test logs. In 9/20 cases, developers use logging statements to collect information for certain

source code lines that are prone to cause bugs. For example, in Hive with commit 077952f, one

developer added the following logging statement:

+ LOG.info("+runStatementOnDriver(" + stmt + ")");
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Figure 3.7: Rationales for developers logging in test files.

The following is the developer’s response on why this logging statement was added:

In this particular case, it was added mainly for debug/troubleshooting purposes to highlight any changes to

physical data representation after a certain query. This might give some quick hints on a type of problem

to QA/RelEng and help DEVs to pinpoint commit that might have introduced the change (e.g., change in a

dependent component (query executor) especially when versioning is dynamic.

In 7/20 cases of Debugging, test logs are used to print the error message directly to facilitate debug-

ging. For example, in the commit 52db86b of Hadoop , one of the developers we surveyed added the

logging statement below:

+ System.err.print(err.toString());

The developer’s justification for adding this logging statement is as follows:

The test case testSupportedFs() aims to test the system error output when the FileSystem doesn’t support

concat. It first redirects the error output stream to collect the error message. Then it prints the error message

back to system.err so the user won’t lost the error output. What the line 137 does is printing back the error

message.

In the remaining four cases, developers responded that they added logging statements for debug-

ging on their local machine, but that they should have eliminated them before committing or used

assertions instead.

Recording operational information (18/43). The second most common reason for developers to

log in test files is Recording operational information in order to monitor test behaviors and enhance

printed log messages. In 13/18 cases, logging statements are used to check the results of certain
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operations. For example, in the commit 4b62152 of Hbase, the developer added a logging statement

below:

+ LOG.info("The Master FS is pointing to: " + master2.getMasterFileSystem()

+ .getFileSystem().getUri());

The following is the developer’s response on the reason for the logging statement addition:

In the said situation, the test was about checking the behavior of an operation(i.e., wal splitting) in the case

of different wal and root filesystem which is why the first log line.

In the rest 5/18 cases, the logging statements are introduced to enhance the readability and compre-

hensiveness of the generated log messages. For example, a following logging statement was added

into Lucene-solr with commit 6bf5f4a:

+ log.info("Starting routeFieldTest");

The rationale explained by the developer is:

When analyzing logs produced by tests, Solr creates quite large output files. Sometimes it’s difficult to know

exactly where in one of those log files a test starts, so I added that line when I happened to be looking at

that code.

Refactoring (3/43). Some logging statements are introduced in test files as a result of the refac-

toring of test code. For example, one developer added a following logging statement into Hbase

with commit b556343:

+ LOG.debug("row count duration (ms): " + duration);

The reason behind this logging addition is that the developer just rearranged the code in that class

and that logging statement was already there since the creation of the test.

Code clone (2/43) Only a few logging statements was added due to the clone of test code. For

example, in commit 2ffe00f of Hadoop a developer added a logging statement below:

+ LOG.info("Running {}", testMatrixEntry);

The following is how the developer justified the reason:
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The main reason I added those logging statements is because I copied and pasted an existing test, which I

then modified for the new scenario. As the logging was there in the original, I just kept it.

In conclusion, developers use test logs for four reasons, the most common of which is Debug-

ging, followed by Recording Operational Information. In conjunction with the discovery of log

level distribution, which reveals that INFO is the most commonly used log level in test files, we can

conclude that developers use a significant portion of INFO for debugging purposes. In other words,

in addition to the error messages printed by logging statements with higher log levels, developers

always use informational data (e.g., recording an event) to debug.

3.4 RQ4: What is the relationship between test logging and produc-

tion logging?

3.4.1 Motivation

During the software testing process, both production and test logs are printed. A production log

displays production information under testing while a test log is generated by a test suite. RQ1 and

RQ2 highlight some significant differences and similarities in logging practices between test and

production files, implying that test logs may not be independent of production logs. Therefore, we

conduct a manual study to explore the relationships between test and production logging. Specif-

ically, we examine if the information in test logs can be used by production logging and classify

the test logs accordingly. To the best of our knowledge, this is the first study to investigate the

relationship between test logging and production logging.

3.4.2 Approach

As shown in Figure 3.8, our approach consists of three steps. In the first step, we execute all of

the unit tests for the subjects under investigation in order to obtain test outputs2. The second step

takes the test outputs from the first step as input and uses regular expressions to identify the test logs

from them. In the final step, we randomly select a sample from the test logs identified in the previous
2In this work, we refer to test outputs as the log messages produced during the execution of the unit tests.
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step and label each test log using a pair review. These labels reflect the relationship between test

logs and their corresponding production logs, as well as whether the information supplied by the

test logs is useful for production logging and the test log’s classification.

Figure 3.8: Overview of the research approach for RQ4.

• Tests outputs collection. We begin by cloning the research subjects onto our local machine.

Because all of the research subjects use automation build tools, such as maven and ant,

for software building and testing that publishes logs through Terminal, we modify the test

configuration files to redirect the test outputs from Terminal into text files to facilitate further

data analysis. Finally, we execute the tests through the command line. For example, we run

all the tests of the subjects that use maven as their automation build tool with mvn clean

install -fn.

• Log messages identification. Each text file generated in the first step contains test logs and

production logs produced by the production code covered by the test case involved in this text

file. The goal of this step is to identify test logs so that we can investigate the relationships

between them and the other logs (i.e., production logs) in the following step. A typical test

log would appear like this:

2021-01-27 17:19:13,973 INFO [pool-1-thread-4] amrmproxy.TestAMRMProxyService (TestAMRMProxyService.java:invoke(402)) - Sucessfully registered applica-

tion master with appId: 3

We first use regular expressions to match the time patterns to identify the typical logs (atypical

logs are worthless for subsequent analysis), and then we use regular expressions and the

search-keyword “Test” to identify test logs in the test outputs.

• Log messages analysis. We first sample the test logs and then apply two rounds of labeling

to the logs samples. We randomly sample test logs with five confidence interval and 95%

confidence level (Confidence Intervals/Levels, 2021). Our log samples are divided into five

batches, each of which is reviewed by two researchers individually, due to the fact that there
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are five researchers involved in this study. Each test log is provided with the context of the

test output which includes all the production and test logs produced during the execution of

a unit test. The first round of labeling only examines a subset of the log samples in order to

obtain an initial consensus and get some common knowledge. The second round of labeling

covers all log samples and is based on the common understanding of the prior round. If the

two researchers are unable to achieve an agreement, a third researcher may be invited to reach

the final agreement.

3.4.3 Results

We obtained 385 test samples from the unit tests’ outputs, and we selected 100 logs at random

from this log sample set to perform the first round of labeling. After these two rounds of labeling,

the Cohen’s kappa of researcher agreement ranges from 0.91 to 1 for three labels, indicating that re-

searchers attain a consistent agreement on the test log labels. The final agreement was then reached

with the assistance of a third researcher.

Each test log sample has three labels: (1) the relationships between it and the relevant surround-

ing production logs, (2) the usefulness of test logs for production, and (3) test log classifications.

Below are the details of these three labels:

Relationship between the test logs and production logs. As shown in Figure 3.9, our research

has yielded four categories with regard to the relationship between test and production logs: Test

only, Overlap, Elaboration and Complementary. The definition of each category is provided below,

along with an example in table Table 3.8. The fonts of labeled test logs are in ‘blue color’, while

the fonts of associated production logs are in ‘orange color’. In every category, we display not only

the labeled test logs, but also logs that surround them to help readers understand the context of each

test log.

• Test only (290/385). Test logs in this category only contain information about the tests and

do not include any relevant production logs in the same file. As illustrated in Table 3.8, the

test log refers to cleaning up a directory used for testing only during a test.
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Table 3.8: Relationships between test and production logs.

Relationship Example

Test only

2021-03-01 22:23:45,738 INFO [Time-limited test] wal.AbstractFSWAL(990): Closed WAL: AsyncFSWAL hregion-45030200:(num
1614655425101)
2021-03-01 22:23:45,738 INFO [Time-limited test] hfile.TestScannerFromBucket Cache(94): Cleaning test
directory:/anonymous/hbase-master/hbase-server/target/ test-data/anonymous
2021-03-01 22:23:45,755 INFO [Time-limited test] hbase.ResourceChecker(179): after: io.hfile.TestScannerFromBucketCache#test-
BasicScanWithOffheapBucketCacheWithMBB Thread=39 (was 26) - Thread LEAK? -, OpenFileDescriptor=358 (was 310) - Open-
FileDescriptor LEAK? -, MaxFileDescriptor=1048576 (was 1048576), SystemLoadAverage=77 (was 77), ProcessCount=122 (was
122), AvailableMemoryMB=1831 (was 2244)

(a) Generated by TestScannerFromBucketCache (subject: Hbase)

Overlap

2020-12-10 17:39:27,707 [main ] - INFO KahaDBDeleteLockTest - Lock file /anonymous/activemq-master/activemq-unit-
tests/target/activemq-data/KahaDBDeleteLockTest/kahadb/lock, last mod at: Thu Dec 10 17:39:27 EST 2020
2020-12-10 17:39:30,078 [KeepAlive Timer] - INFO LockFile - Lock file /anonymous/activemq-master/activemq-unit-
tests/target/activemq-data/KahaDBDeleteLockTest/kahadb/lock, locked at Thu Dec 10 17:39:27 EST 2020, has been modified at Thu
Dec 10 17:39:29 EST 2020

(b) Generated by KahaDBDeleteLockTest (subject: ActiveMQ)

Elaboration

2021-01-27 17:17:17,627 INFO [main] scheduler.DistributedOpportunisticContainerAllocator (DistributedOpportunisticContainerAl-
locator.java:allocateContainersInternal(227)) - Opportunistic container has already been allocated on h3.
2021-01-27 17:17:17,627 INFO [main] scheduler.TestDistributedOpportunisticContainerAllocator (TestDistributedOpportunisticCon-
tainerAllocator.java:testMaxAllocationsPerAMHeartbeat(669)) - Containers: [Container: [ContainerId: container 0 0001 01 000002,
AllocationRequestId: -1, Version: 0, NodeId: h3:1234, NodeHttpAddress: h3:1234, Resource: ¡memory:1024, vCores:1¿, Prior-
ity: 1, Token: Token kind: ContainerToken, service: h3:1234 , ExecutionType: OPPORTUNISTIC, ], Container: [ContainerId:
container 0 0001 01 000003, AllocationRequestId: -1, Version: 0, NodeId: h2:1234, NodeHttpAddress: h2:1234, Resource: ¡mem-
ory:1024, vCores:1¿, Priority: 1, Token: Token kind: ContainerToken, service: h2:1234 , ExecutionType: OPPORTUNISTIC, ]]

(c) Generated by TestDistributedOpportunisticContainerAllocator (subject: Hadoop)

Complementary

2021-01-27 17:37:04,213 INFO [Container Monitor] monitor.ContainersMonitorImpl (ContainersMonitorImpl.java:run(512)) - Skip-
ping monitoring container container 123456 0001 01 000001 since CPU usage is not yet available.
2021-01-27 17:37:04,233 INFO [main] monitor.TestContainersMonitorResourceChange (TestContainersMonitorResourceChange.java-
:waitForContainerResourceUtilizationChange(326)) - Monitor thread is waiting for resource utlization change.
2021-01-27 17:37:04,254 WARN [Container Monitor] monitor.Container- sMonitorImpl (ContainersMonitorImpl.java:run(561)) -
org.apache.hadoop.yarn- .server.nodemanager.containermanager.monitor.ContainersMonitorImpl is interrupted. Exiting.

(d) Generated by TestContainersMonitorResourceChange (subject: Hadoop)

• Overlap (40/385). In this category, the information provided by test logs is also reflected in

production logs. For example, the test log (blue font) and related production log (orange font)

in Table 3.8 are both indicating the same file is locked therefore this test log is overlapping

with production logs.

• Elaboration (29/385). Test logs in this category contain information that somewhat overlaps

with relevant production logs, but they elaborate the production logs with additional details.

In Table 3.8, although the production log includes information about the opportunistic

container, the test log provides more details about the opportunistic container,

such as container ID and version.

• Complementary (26/385). Test logs in this category complement the information conveyed

in the production logs. As shown in Table 3.8, the test log indicates that the monitoring thread

is waiting for the required resource to be utilizable while the first production log indicates that

CPU usage is not yet available.
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Figure 3.9: Relationship between test and production logs.

Figure 3.9 presents proportions for each category of relationship between production logs and

test logs. Based on this figure, the most prevalent relationship is Test Only (75.3%), implying that the

vast majority of test logs are dedicated to testing rather than production. The second most prevalent

relationship is the Overlap relationship (10.4%), which signifies that either the test code developers

are not aware of the similar logging in production code, or the production logging is not in a good

format that facilitates testing. The least common relationships between test logs and production

logs are Elaboration (6.8%) and Complementary (7.5%), both of which have fairly comparable

proportion numbers.

The Elaboration and Complementary relationships suggest that the production run-time infor-

mation contained in the production logging is not sufficient for understanding the testing results.

Test logs that are labeled with Overlap relationship with production logging provide the same infor-

mation as in production logs, hence we conjecture that such test logs may not be useful to production

logging. However, there is no existing evidence (to the best of our knowledge) proving this. Thus,

we also examine whether such test logging could be useful and added to the production code.

Usefulness of test logs. In the subsequent analysis, we examined the usefulness (to production

logging) of the 95 test logs that are not labeled with Test only and assigned these logs three labels:

Useful, Not useful and Unclear. Table 3.9 presents some examples of useful and useless test logs.

As in the previous section,the analyzed test logs are denoted by ‘blue’ font color. Figure 3.10 depicts

the connections between the usefulness of test logs and their relationship with production logs.

• Useful (35/95). The information provided by test logs in this category is useful to production
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Table 3.9: Example of usefulness of the test logs.

Usefulness Example

Useful

2021-01-27 19:43:18,394 INFO [Thread-179] webapp.RouterWebServices (RouterWebServices.java:initializePipeline(267)) - Initializ-
ing request processing pipeline for user: test1
2021-01-27 19:43:18,395 INFO [Thread-180] webapp.TestRouterWebServices (TestRouterWebServices.java:run(309)) - init web inter-
ceptor success for usertest1

(a) Generated by TestRouterWebServices (subject: Hadoop)

Not useful

2021-01-27 17:55:54,353 INFO [main] distributed.CentralizedOpportunistic- ContainerAllocator (CentralizedOpportunisticCon-
tainerAllocator.java:allocatePerSchedulerKey(167)) - Opportunistic allocation requested for [priority=1, allocationRequestId=2,
num containers=2, capability=¡memory:1024, vCores:1¿] allocated = [¡memory:1024, vCores:1¿]
2021-01-27 17:55:54,353 INFO [main] distributed.TestCentralizedOpportunistic- ContainerAllocator (TestCentralizedOpportunistic-
ContainerAllocator.java:testAllocationLatencyMetrics(598)) - Containers: [Container: [ContainerId: container 0 0001 01 000002,
AllocationRequestId: 2, Version: 0, NodeId: h1:1234, NodeHttpAddress: null, Resource: ¡memory:1024, vCores:1¿, Priority: 1,
Token: Token kind: ContainerToken, service: h1:1234 , ExecutionType: OPPORTUNISTIC, ], Container: [ContainerId: con-
tainer 0 0001 01 000003, AllocationRequestId: 2, Version: 0, NodeId: h1:1234, NodeHttpAddress: null, Resource: ¡memory:1024,
vCores:1¿, Priority: 1, Token: Token kind: ContainerToken, service: h1:1234 , ExecutionType: OPPORTUNISTIC, ]]

(c) Generated by TestCentralizedOpportunisticContainerAllocator (subject: Hadoop)

logging. As the example shows in Table 3.9, the surrounding log is describing the initial-

ization of a requested resource from a specific user, and the target test log is indicating the

success of initialization.

• Not useful (57/95). The information contained in test logs is useless to production logging.

For example, the surrounding log in Table 3.9 describes the properties of opportunistic

container. Although the analyzed test log contains more details about this container, it is

useless for production logging since this container is primarily used for testing, and details

about it are not required in production.

• Unclear (3/95). Finally, we have observed several test logs that are difficult to determine

whether they are useful to production logging due to the lack of related domain knowledge.

Figure 3.10: Usefulness of non-Test-Only logs.

Figure 3.10 demonstrates the correlations between usefulness of test logs and their relationships
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with production logs. We find that the the category Useful consists 20 cases of Complementary

and 15 cases of Elaboration, with no Overlap. The category Not useful is composed of 6 cases of

Complementary, 12 cases of Elaboration and 39 cases of Overlapping. The majority of Overlap

cases fall into the category of Not useful, which implies the test logs having a Overlap relationship

with production logging are almost useless to production logging which is because such information

is already available in the production logging.

Classification of test logs. To further investigate what information makes test logs useful, we

then classify the information recorded in the 95 test logs that are not labeled with Test only during

our subsequent analysis. Our study has revealed ten categories based on the information contained

within these logs which can be leveraged in future research with regard to how to identify and

utilize the useful information in test logs. These ten categories are defined below, and examples are

included in Table 3.10. Just as in the previous section, the analyzed test logs are marked with a blue

color.

• Production intermediate data (31/95). In this category, test logs contain information re-

garding the properties of the software or production code that is being tested. For example,

the test log in Table 3.10 depicts ID of an ongoing production event.

• Test intermediate data (6/95). Test logs in this category display the intermediate status of

the resource exclusively for testing or the temporary values of variables in test code during

test execution. In Table 3.10, the test log is recording the temporary status of the resources

only for testing.

• Production event (21/95). Test logs in this category depict the events related to produc-

tion code under test. The example presented in Table 3.10 is describing an event about the

production code under test.

• Test event (15/95). Test logs in this category portray events that only pertain to the tests rather

than the tested production code. The example in Table 3.10 displays the event of initiating a

session, which is exclusively relevant to the test.
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Table 3.10: Classifications of test logs.

Classification Example

Production
intermediate

data

2021-01-27 20:38:31,249 INFO [AsyncDispatcher event handler] impl.JobImpl (JobImpl.java:handle(1022)) - job 0 0000Job Transi-
tioned from SETUP to RUNNING
2021-01-27 20:38:31,253 INFO [Listener at 0.0.0.0/46761] hs.TestJobHistoryEvents (TestJobHisto-
ryEvents.java:testHistoryEvents(61)) - JOBID is job 0 0000

(a) Generated by TestJobHistoryEvents (subject: Hadoop)

Test
intermediate

data

2021-01-27T12:25:02,674 WARN [main] ql.TestTxnNoBuckets: after compact
2021-01-27T12:25:02,674 WARN [main] ql.TestTxnNoBuckets: {”writeid”: 0,”bucketid”:536870912,”rowid”:4} 1 4
file:/anonymous/hive-master/ql/target/tmp/org.apache.hadoop.hive.ql.TestTxnNoBuckets-1611779017548/warehouse/nonacidnonbuck-
et/base 10000004 v0000023/bucket 00000
2021-01-27T12:25:02,674 WARN [main] ql.TestTxnNoBuckets: {”writeid”: 0,”bucketid”:536870912,”rowid”:5} 1 5
file:/anonymous/hive-master/ql/target/tmp/org.apache.hadoop.hive.ql.TestTxnNoBuckets-1611779017548/warehouse/nonacidnonbuck-
et/base 10000004 v0000023/bucket 00000

(b) Generated by TestTxnNoBuckets (subject: Hive)

Production
event

2021-01-27 17:19:13,973 INFO [pool-1-thread-4] amrmproxy.TestAMRMProxyService (TestAMRMProxyService.java:invoke(402)) -
Sucessfully registered application master with appId: 3
2021-01-27 17:19:13,974 INFO [pool-1-thread-1] amrmproxy.BaseAMRMProxyTest (BaseAMRMProxyTest.java:call(251)) - Suc-
cessfully sent request for context: 0

(c) Generated by TestAMRMProxyService (subject: Hadoop)

Test event
Mar 03, 2021 12:48:26 AM org.apache.tomcat.websocket.server.TestClose$TestEndpo- int onOpen INFO: Session opened
Mar 03, 2021 12:48:26 AM org.apache.tomcat.websocket.server.TestClose$TestEndpo- int onMessage INFO: Message received: Test

(d) Generated by TestClose (subject: Tomcat)

Production
method call

2020-12-10 16:12:03,380 [main ] - INFO AMQ4636Test - *** createDurableConsumer() called ...
2020-12-10 16:12:03,383 [ActiveMQ Task-1] - INFO FailoverTransport - Successfully connected to tcp://anonymous:36205

(e) Generated by AMQ4636Test.java (subject: ActiveMQ)

Test setup

2021-01-27 12:46:11,576 [Listener at localhost/10990] INFO ha.TestFailureToReadEdits (TestFailureToReadEd-
its.java:setUpCluster(130)) - Set SHARED DIR HA cluster’s basePort to 13512
2021-01-27 12:46:11,576 [Listener at localhost/10990] INFO hdfs.MiniDFSCluster (MiniDFSCluster.java:¡init¿(509)) - starting cluster:
numNameNodes=2, numDataNodes=0

(f) Generated by TestFailureToReadEdits (subject: Hadoop)

Production
return

2021-01-27 16:40:18,119 [Time-limited test] DEBUG net.NetworkTopology (NetworkTopology.java:chooseRandom(539)) -
chooseRandom returning 2.2.2.2:9866
2021-01-27 16:40:18,119 [Time-limited test] DEBUG net.NetworkTopology (NetworkTopology.java:chooseRandom(539)) -
chooseRandom returning 9.9.9.9:9866
2021-01-27 16:40:18,119 [Time-limited test] INFO net.TestNetworkTopology (TestNetworkTopology.java:pickNodesAtRandom(406))
- Result:{2.2.2.2:9866=4, 20.20.20.20:9866=3, 4.4.4.4:9866=3, 15.15.15.15:9866=7, 17.17.17.17:9866=6, 19.19.19.19:9866=8,
16.16.16.16:9866=9, 9.9.9.9:9866=4, 8.8.8.8:9866=9, 14.14.14.14:9866=2, 7.7.7.7:9866=5, 5.5.5.5:9866=4, 6.6.6.6:9866=5,
12.12.12.12:9866=9, 11.11.11.11:9866=4, 10.10.10.10:9866=5, 18.18.18.18:9866=2, 3.3.3.3:9866=3, 1.1.1.1:9866=0,
13.13.13.13:9866=8}

(g) Generated by TestNetworkTopology (subject: Hadoop)
Environmental

information
2021-03-02 00:36:13,370 [myid:] - INFO [main:ClientPortBindTest@79] - Using [0:0:0:0:0:0:0:1%lo]:30073 as the host/port

(h) Generated by ClientPortBindTest (subject: Zookeeper)

Test assertion
2021-01-27 11:36:35,377 [Listener at localhost/35513] INFO blockmanagement.TestNameNodePrunesMissingStorages (TestNameN-
odePrunesMissingStorages.java:get(361)) - Expected blk 1073741825 to be in storage id DS-2ab551a0-7f03-4b60-8102-ea222efeecbd,
but it was in DS-6ab27eb6-9c23-4c21-89bc-cdca79ea996e. Continuing to wait.

(i) Generated by TestNameNodePrunesMissingStorages (subject: Hadoop)
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• Production method call (1/95). Test logs describe the method invocations in production

files for this category. An example in Table 3.10 obviously mentions a production method

createDurableConsumer() is invoked.

• Test setup (4/95). In this category, test logs describe the configuration to setup tests. The test

log in Table 3.10 describes how to set up the cluster’s (SHARED_DIR_HA) port number for

testing.

• Production return (5/95). Test logs in this category record the information returned from

the production code. As the example shown in Table 3.10, the test log is displaying the

node selection result for a network topology which is the return result from production code

regarding node selection strategy.

• Environmental information (7/95). Test logs in this category display the environmental

information of the platform, host, or hardware that the test is running on.

• Test assertion (2/95). In this category, test logs record the assertion results, and always

include both expected and actual test results. The example in Table 3.10 represents the two

types of test results in a single log.

• Others (3/95). In this category, we include those cases not covered by any of the preceding

categories.

Figure 3.11: Test log categories.
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Figure 3.11 demonstrates the proportion of each category for the test logs not labeled with

Test Only. As it shows in this figure, the most common category is Production intermediate data

(32.6%), which indicates that the majority of test logs are leveraged to record the intermediate

status of the software or resources under test. The second and the third most common categories

are Production Event (22.1%) and Test Event (15.8%) respectively, implying that test logs are often

utilized to record the events of production or tests. The least common category is Production Method

Call (1.1%).
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Chapter 4

Threats to validity

We discuss the threats to the validity of our research in this chapter.

4.1 External validity

The subjects involved in this research are all open-source Java projects hosted on GitHub and

incubated by Apache Software Foundation (2021). The selection of the research subjects can lead

to the following threats:

• Our research results may not be applicable to industry or non-free software considering that

the logging practice can be different in industrial environments. We attempt to reduce this

issue by investigating multiple software projects. However, this drawback can be further

overcome through collaboration with developers from the industry and analyzing the closed-

source applications developed by them.

• Our findings may not be reproduced to software written in other programming languages

(e.g., C and C++) rather than Java since we only investigated Java projects. Therefore, it

necessitates a further exploration of applications implemented in other languages. Although

we only look at Java projects, Java is a popular programming language and we believe that

our results can be useful to numerous software developers.
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• As all of the studied subjects are developed and maintained by Apache Software Founda-

tion (2021), our findings may not be applicable to the software systems developed by other

foundations or organizations (e.g. Microsoft Developer (2021)) since the developers’ logging

practices may vary among them. However, our studied subjects are all well-known projects

that have been developed for many years by professional developer teams, and we believe

that our results can reflect the real-world logging practice in software development.

4.2 Internal and construct validity

The threats to the internal and construct validity of our research may result from the way we

gather the data:

• When extracting data from the studied subjects, we leveraged the Levenshtein Distance algo-

rithm and set the threshold to 0.5 (Zhao et al., 2017) to determine whether the change type of

a logging statement is updated or not. Actually, the threshold selection may have an impact

on our research results. However, a similar approach and the same threshold were utilized in

prior researches (Zeng et al., 2019; Zhao et al., 2017) and their results were also found to be

highly accurate.

• When classifying the change types of the logging statements, our scripts first identified the

code changes at the method level then compared the logging statements in the methods.

Therefore, if a logging statement is moved from one method to another method, our scripts

may mistakenly classify it as a newly added logging statement. However, in RQ3, before

asking developers the rationales that they added logging statements in test files, we manually

examined each logging statement that is identified as newly added logging statements and

we found that there are only a few logging statements that are moved from one method to

another.

• While collecting JUnit test outputs, we did not guarantee that all of the tests passed. We

allow projects to continue running even if a test fails. The presence of failed tests can result

in limited test coverage, which may have an impact on our results. However, in real-world
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software testing, a 100% passing rate is not always promised. Moreover, by observing our test

outputs, we did not find many test failures, therefore the impact of these test failures should

not be significant to our research results.

• RQ3 and RQ4 require a considerable amount of manual analysis, which may result in subjec-

tive results. However, this threat was mitigated by assigning two researchers to analyze every

log. To resolve the disagreements between the two researchers, we also invited a third person

to act as a tie-breaker.
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Chapter 5

Related work

This chapter introduces the related work. These studies are primarily concerned with charac-

terizing logging practices, as well as determining what should be logged and where the logging

statements should be placed.

5.1 Characterizing logging practice

Several studies involve characterizing logging practice. The first study on logging practices is

performed by Yuan, Park, and Zhou (2012), who analyze four open-source C and C++ projects.

Shang et al. (2015) study the relationship between logging characteristics and code quality of plat-

form software by characterizing logging statements in Hadoop and JBoss. Fu et al. (2014) inves-

tigate two large industrial C# software systems to better understand developers’ logging practices

in the industry. Likewise, Chen and Jiang (2017c) conduct their study on Java applications and

compare logging practices in Java to those in C and C++. H. Li, Chen, Shang, and Hassan (2018)

investigate the connections between logging decisions and the topics of related code snippets. Has-

sani, Shang, Shihab, and Tsantalis (2018) study the characteristics of log-related issues. Zeng et al.

(2019) research the logging practice in 1,444 F-Droid applications and compare the logging prac-

tices in server, desktop, and mobile applications. He et al. (2018) characterize the natural language

descriptions in the logging statements in Java and C# projects. Chen and Jiang (2017b) disclose
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six anti-patterns of the logging statements in Hadoop, ActiveMQ and Maven, and propose an ap-

proach to assist developers in detecting the anti-patterns. Z. Li, Tse-Hsun (Peter), Jinqiu, and Weiyi

(2019) identify the duplicate code smells in logging statements, categorize them into five patterns

and propose a static analysis approach to detect the duplicate logging code smells. H. Li et al.

(2020) conduct a qualitative study to understand developers’ perspectives regarding the benefits and

costs of logging practice. More recently, Tang, Spektor, Khatchadourian, and Bagherzadeh (2021)

study the logging practices specific to log levels and present an automated approach to help devel-

opers rejuvenate log levels. Although various studies have been conducted to characterize logging

practices, none of the aforementioned studies have taken into account the significant differences in

logging characteristics between production and test logging. Our study, on the other hand, fills this

knowledge gap between the differences between test logging and production logging.

5.2 Where to log

The research field where to log is primarily concerned with where developers should place log-

ging statements. Yuan, Park, Huang, et al. (2012) is the first to perform a study into where to log,

and they present an approach to help developers record common error events. Zhu et al. (2015)

propose a learning framework to help developers make decisions on where to add logging state-

ments. Ding et al. (2015) propose a logging framework that is able to decide where to place the

logging statements based on the logging overhead and effectiveness. Zhao et al. (2017) present

an approach named Log20 that is able to automatically add the logging statements to record non-

erroneous events. Yao et al. (2018) present an automated logging tool aiming to assist developers in

monitoring the web-based system resource usages. More recently, Z. Li, Chen, and Shang (2020) in-

troduce a deep learning-based approach to help developers decide where to place logging statements

at the block level. Nevertheless, as we stated in relation to the related work concerning character-

izing logging practices, these studies do not take into account the differences in logging practices

in test and production files. Our findings reveal that there are considerable differences between test

logging and production logging such as the usage of the logging levels, therefore these approaches

may be further enhanced by taking such differences into consideration.
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5.3 What to log

The research topic what to log to log is mostly concerned with what content developers should

log. Yuan, Zheng, Park, Zhou, and Savage (2011) investigate what information should be recorded

by logging statements and present an approach to enhance the logging information for effective

logging. Likewise, Liu et al. (2019) proposes a learning-based approach to assist developers in

choosing which variables to log when developing software. He et al. (2018) utilize the information

retrieval technology to automate the generation of logging descriptions. H. Li et al. (2017b) present

an ordinal regression model to help developers determine which logging level to use when adding

a new logging statement. Their researches use dynamic variable numbers and static text length

to measure logging information, which we also included in our research. Again, studies should

not overlook the distinctions between test and production logging, which necessitates additional

attention from developers.
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Chapter 6

Conclusion

In this research, we have studied 21 open-source Java projects to characterize the differences of

logging practice in test and production files, and answered four research questions. Our research

has yielded nine findings on the differences between test and production logging, four reasons why

developers use test logging, four relationships between test and production logging, and ten classifi-

cations based on the information provided by test logs. The contribution of this thesis is as follows:

• To the best of our knowledge, this is the first study that quantitatively and qualitatively ana-

lyzes the logging practice in test and production files.

• We revealed the significance of test logging and production logging and filled the research

gap between test and production logging.

• We surveyed developers and disclosed four reasons why developers log in test files.

• For the first time, a study has revealed the relationship between test logging and production

logging.

Our findings highlight that test logging, to some extent, is different from production logging and

should be treated differently in future research. On the other hand, test logging may contain useful

information for the production system and can be leveraged in future work to improve production

logging In the future, we will explore opportunities to further leverage these findings to improve

both logging practices in test and production logging.
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