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Abstract 

Design and Optimization of Optical Devices Using Artificial Intelligence Techniques 

 

Seyedmohammad Mirjalili, Ph.D. 

Concordia University, 2021 

 

Over the last decade, there has been a growing interest in utilizing novel photonic and optical 

devices for a diverse range of applications. For the next generation of wireless communication 

networks, the development of new and optimal optical devices is inevitable. Existing optical 

network infrastructure cannot meet the stringent requirements of next-generation data networks 

(such as a 1000-fold increase in bandwidth demand, very low latency, better spectral and energy 

efficiency, etc.). In other words, the physical layer of the communication network must be 

revolutionized to provide the proper foundation for these emerging technologies. 

 Optical networks are based on propagating light. Light propagation in realistic settings is 

usually a complicated phenomenon. When it comes to the context of optical devices and its 

propagation in the new devices, the complexity of the problem becomes much higher. In other 

words, the relations between the light propagation characteristics and the structural parameters of 

the new devices are mostly unknown. Therefore, the conventional method for designing such 

devices in the absence of a clear analytic description is usually based on a trial and error process. 

This method has many disadvantages, being time-consuming, inefficient, and the designed 

device is usually far from an optimized one. Also, the designing process needs intensive human 

involvement. 

Therefore, to fill this gap, we have utilized artificial intelligence (AI) techniques to design, 

analyze, and optimize several different optical devices. More specifically, we have proposed 

several optimization frameworks for designing orbital angular momentum (OAM) fibers, large 

mode area photonic crystal (PhC) fibers, waveguide-based LP01 to LP0m mode converter, PhC 

filters, PhC sensors, and PhC-enhanced light-emitting diodes (LEDs).  In all of these devices, we 

are dealing with a complicated system in which the relationships between the structural 

parameters and the output performance merit factors are very complicated. Such problems have a 

long simulation runtime, so it is not viable to employ an exhaustive optimization algorithm, 

which evaluates all of the possible combinations of the parameters to find the optimal one. 

Therefore, we consider our problem as a black box and use the AI optimization algorithm to find 

the optimal solution. Eventually, the proposed optimization frameworks open up an effective 

way to design high-performance optical devices for a diverse range of applications and pave the 

way for the development of next-generation optical devices for next-generation optical networks. 
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Chapter 1: Introduction 

1.1 Problem statement and motivation of the research 

During the last decade, there has been a growing interest in utilizing novel photonic and optical 

devices for a diverse range of applications. As a general statement, light propagation is usually 

considered as a complicated phenomenon. When it comes to the context of its propagation in 

optical devices, the complexity of the problem becomes much higher. More specifically, the 

relations between the light propagation characteristics and the structural parameters of the new 

devices cannot be expressed analytically. Therefore, to fill this gap, we have proposed several 

frameworks, which do not require a priori knowledge of the light propagation in a device, to 

design, analyze, and optimize a couple of optical devices. 

1.2 The methodology 

Due to the complex interplay between light and matter in optical devices with dimensions of a 

few wavelengths of light, finding an analytical equation that describes the relationship between 

the structural parameters and the device output performance is usually very challenging and 

requires many simplifications. Therefore, the conventional method for designing such devices in 

the absence of a clear analytic description is usually based on a trial and error process. This 

method has many disadvantages, being time-consuming, inefficient  (as the designed device is 

usually far from an optimized one), and the design process needs intensive human involvement. 

An alternative method for designing such devices is to utilize Artificial intelligence (AI) 

techniques to compensate for the lack of analytical equations. The first step is to formulate the 

device design process in a way that is amenable for an optimizer. The second step is utilizing an 

AI-based optimizer to find the optimum designs. This method intelligently encompasses the 

process of finding the relationship between the structural parameters and the device outputs. 

Most real-world problems, including the problems considered in this thesis, have a large 

number of difficulties, which makes finding analytical solutions for them very challenging. Such 

problems are also costly (have long simulation runtime), so it is not viable to employ an 

exhaustive optimization algorithm, which evaluates all of the possible combinations of the 

parameters to find the optimal one. The literature shows that heuristics are reliable tools in this 

situation because they find a reasonably good solution in a reasonable time. One issue with them 

is that they are stochastic and require specific heuristic information for different problems. Meta-

heuristics have been proposed to alleviate this drawback and ensure that we can consider our 

problem as a black box and use the optimization algorithm to find the optimal solution. 

It is worth mentioning here that meta-heuristic optimization techniques belong to the family of 

stochastic approaches and benefit from a number of advantages including simplicity, flexibility, 

and inexpensive computational cost as compared to deterministic approaches. These advantages 

make them highly suitable for real-world engineering design problems, including the problems 

investigated in this thesis. 

Another difficulty that comes up again and again in engineering design problems is multi-

objectivity. There are usually multiple, often conflicting, objectives in real-world problems, so 

applying a multi-objective formulation allows for exploration of the behavior of the problems 

across a range of design parameters and operating conditions. 

Another key concept in the optimization of real-world problems is robustness. Robust 
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optimization deals with finding the optimal designs that are not sensitive to probable 

uncertainties. Among different types of uncertainties, perturbations in the design parameters can 

be considered as the most common ones in engineering problems. In this type, the design 

parameters might fluctuate after the determination of the optimal solution(s), mostly due to the 

imprecisions of the manufacturing process. The presence of uncertainties, obviously, increases 

the difficulty of optimization problems. 

1.3 Areas where optical device optimization can be applied 

1.3.1 Optical data communication 

Time-division multiplexing (TDM) and wavelength-division multiplexing (WDM) are two 

mature technologies which are used in current fiber-optic communication systems. TDM is a 

technique where optical channels are combined, transmitted together, and separated again based 

on different arrival times. WDM multiplexes a number of optical channels onto a single optical 

fiber by using different wavelengths of laser light. These techniques enable bidirectional 

communications over a strand of fiber and multiplication of capacity. Similarly, multiplexing 

multiple orthogonal fiber modes enables high-capacity optical communication. This technique is 

known as mode-division multiplexing (MDM). Therefore, the future of fiber-optic 

communication systems will be based on a mixture of TDM, WDM, and MDM.  

Specifically, for the next generation of wireless communication networks (like 5G and 6G) and 

beyond, the development of new and optimal optical devices is of great importance. In other 

words, the physical layer of the communication network should be improved and revolutionized 

to provide the proper foundation for these emerging technologies [7]. The existing network 

infrastructure should evolve to meet the stringent requirements of next-generation of data 

communication networks such as the explosive growth of 1000 times in bandwidth demand, very 

low latency of a few ms, ten times growth in spectral efficiency, energy efficiency, etc., [8]. 

Recently, data transmission based on the orbital angular momentum (OAM) of light has been 

proposed to increase the capacity of optical fibers [1], [9], [10] A light beam that carries the 

OAM is also known as twisted light. 

Although space division multiplexing (SDM) is an alternative technology that offers an 

opportunity to multiply the carrying capacity of the optical fiber, in the case of OAM modes, the 

capacity increase can be accomplished without the added burden of complex multiple-input-

multiple-output (MIMO) digital signal processing. In order to take advantage of OAM, a new set 

of optical components such as the OAM beam generators, fibers, multiplexers, demultiplexers, 

etc., are needed. These components should be available as commercial products rather than just to 

be tested in scientific laboratories. 

The need for simpler MIMO processing in the receiver of data communication based on OAM 

modes enables information transmission in optical communications with a high capacity. 

Generation of OAM modes, modulation of OAM modes, the transmission of OAM modes with 

minimal dispersion, and detection and demultiplexing of OAM mode are all timely topics in the 

field of optical MDM. 

Research into twisted light has suggested that light waves could carry huge quantities of data 

through optical fibers. According to preliminary tests, this technology has proven a capacity to 

transfer up to 2.5 terabits of data per second which is equal to 66 DVDs or 320 Gigabytes per 

second [11]. On the other hand, research into twisted wave multiplexing in the radio and 

millimeter wavelengths has been shown that a data communication speed of 32 gigabits per 
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second can be achieved over the air [12]. Recently, the Nippon Telegraph and Telephone 

Corporation (NTT) has successfully demonstrated the world's first 100Gbps wireless 

transmission using this technology that already surpasses the upcoming 5G wireless 

communication standard [13]. 

1.3.2 Photonic Crystal (PhC) devices 

A photonic crystal (PhC) is a structure with a spatially periodic refractive index. PhC structures 

show bandgaps in their spectral transmission performance. By creating defects in the PhC lattice, 

some leaky modes will be generated in the bandgap region. In other words, these leaky modes 

provide the opportunity to manipulate the transmitted light  [14]. To date, Photonic Crystal 

devices have become popular because they cover a wide range of applications. 

The use of a leaky mode to implement optical filters is one of the most standard applications of 

PhC structures. This leaky mode provides a very narrow bandpass filter that could be used in a 

wide range of applications. In this thesis, we examined PhC fibers, PhC filters, PhC sensors, and 

PhC-enhanced light-emitting diodes (LEDs). 

The main problem inherent with the use of such devices is how to model the internal 

propagation of light. In other words, finding an analytical equation describing the relationship 

between the structural parameters and the device output performance is usually very challenging, 

and in many cases it is impossible. The complexity of the relationship between the structural 

parameters and the device output performance prevents researchers from proposing analytic 

methods to design such devices. 

1.4 Research Objectives 

In this thesis, we aim to investigate the design process of a number of different optical devices. 

After that, we formulate the design process in a way that the problem is considered as a black-

box and then we use an AI optimization algorithm to find the optimal solution(s). The optical 

devices which are examined in this thesis are as follows: 

• Orbital angular momentum (OAM) fibers 

• PhC filters 

• PhC-enhanced light-emitting diodes (LEDs) 

• Large mode area photonic crystal (PhC) fibers 

• Waveguide-based LP01 to LP0m mode converter 

• PhC sensors 

1.5 Organization of thesis 

In chapter 2, we explain the basic concepts of electromagnetism and the role of AI algorithms 

in device design optimization. In the next chapter, two well-known nature-inspired AI optimizers 

called Gray Wolf Optimizer (GWO) and Salp Swarm Algorithm (SSA) are explained. In chapters 

4 to 6 and appendixes A to C, we provide frameworks for design optimization of OAM fibers, 

PhC filters, PhC-enhanced light-emitting diodes (LEDs), large mode area PhC fibers, waveguide-

based LP01 to LP0m mode converter, PhC sensors. Eventually, chapter 7 concludes the thesis and 

provides some topics for future works. 
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Chapter 2: Background 

2.1 Basic concepts of electromagnetism 

In order to simulate the propagation of light in optical devices, we start with Maxwell’s 

equations. These sets of equations govern almost all the light propagation behaviors in both free 

space and dielectric waveguides. In 1870, James Maxwell proposed them and we can see that 

they became one of the most significant foundations of science in our modern world [15]. With 

the combination of Gauss’s law, Faraday’s law, and Ampere’s circuit law, Maxwell’s equations 

are written as a set of linear partial differential equations as follows: 

∇ ·  𝐃 =  ρ, 

∇ ·  𝐁 =  0, 

∇ × 𝐄 = −
∂𝐁

∂t
,  

∇ × 𝐇 =  𝐉𝐜 +
∂𝐃

∂t
   

(2-1) 

Where H is the magnetic field, E is the electric field, B is magnetic flux density, and D is the 

electric displacement field. ρ and Jc represent the free charge and current density in the medium. 

The symbols ∇· and ∇× indicate the divergence and the curl operator, respectively. In this thesis, 

we will be working on structures made with dielectric materials and no free charges or currents. 

Therefore, ρ=0 and Jc=0.  

In addition, the electric (magnetic) and electric displacement (magnetic flux density)  fields are 

connected through the constitutive relations that can be expressed as follows:  

D = ε0εrE = εE 

B = µ0µrH = µH 
(2-2) 

In these relations,  ε0 and µ0 are the electric permittivity and magnetic permeability of free 

space. They are related to the speed of light in vacuum as 𝑐0  =  1/√µ0휀0 = 2.998 × 108 [𝑚/

𝑠]. The parameters εr and µr are the relative permittivity and relative permeability of the material, 

both of which characterize the linear electro-magnetic properties of the medium. We have µr=1 

for non-magnetic materials. εr is a scalar for isotropic materials. In this case, εr = n2, where n is 

the refractive index of the material. 

2.1.1 Wave equations 

Applying the curl operator to the last two Maxwell’s equations and considering the identity 

𝛻 × 𝛻 × 𝑬 ≡ 𝛻 · (𝛻 · 𝑬) − 𝛻2𝑬, where ∇·E=0, the desired wave equation for a current- and 

charge-free homogeneous medium takes the following form [16]. 

(∇2 − µε 
∂2

∂t2
)𝐄 = 0 

(∇2 − µε 
∂2

∂t2
)𝐇 = 0 

(2-3) 
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The same derivation can be obtained for the magnetic field H, and thus we can arrive to the 

second equation. In a Cartesian coordinate system, the Laplace operator takes the form of 𝛻2 =
𝜕𝑥

2 + 𝜕𝑦
2 + 𝜕𝑧

2. Using the time-harmonic ansatz 𝑒−𝑖𝜔𝑡 for the electromagnetic field, wave 

equations can be written compactly as follows: 

(∇2 + 𝑘0
2𝑛2)𝐄 = 0 

(∇2 + 𝑘0
2𝑛2)𝐇 = 0 

(2-4) 

where ω is the angular frequency and 𝑘0 = 𝜔/𝑐0 is the wavenumber in a vacuum. These 

equations are called Helmholtz equations as well [17]. Given the spatial distribution of the 

refractive index of a given device, the behaviour of classical electromagnetic waves in it can be 

described by solving these equations. 

2.2 The role of AI algorithms in device design optimization 

We define optimization of device design as finding the values for the device structural 

parameters (typically physical dimensions, but these could also include other parameters such as 

refractive indices), which result in the best output performance. Most of the time we do not know 

the relation between the structural parameters and device output performance, so we cannot do an 

analytic analysis of the device performance to optimize it. A simple way to optimize the design is 

a trial-and-error approach to find a high-performance device design. While this may result in 

acceptable performance, it does not guarantee that there are better possible values for the 

parameters. Another method is to sweep the whole parameter search space to find the best 

design(s). Usually, optical devices have many structural parameters and vast search spaces. The 

number of possible combinations of the parameters is huge, so a very large number of 

simulations is required. Thus, even if a simulation takes a small amount of time to run, the 

required time to perform the whole search becomes unsurmountable. The proposed method for 

solving this problem is to utilize AI algorithms to find the best value for the structural 

parameters. These algorithms give us a way to find optimized designs reducing the number of 

required simulations. More specifically, metaheuristics algorithms such as Particle Swarm 

Optimization (PSO) [18], [19], Genetic Algorithm (GA) [20], Grey Wolf Optimizer (GWO) [21], 

Salp Swarm Algorithm (SSA) [22], and so on are highly suitable to be used. These algorithms 

consider the problem of device design as a black box (objective function) and try to find the 

maximum or minimum of the output merit factor(s). The maximum or minimum of the objective 

function corresponds to the best device design. Therefore, with a much smaller number of 

simulations, affordable with current processors, the best design(s) can be found. A flowchart of 

how an AI algorithm solves the problem of finding the best value for the structural parameters is 

shown in Figure 2-1. 
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Figure 2-1: Flowchart of how an AI algorithm solves the problem of finding the best value for the structural 

parameters. 

The source codes of a wide range of metaheuristics optimization algorithms that have been 

developed by us are publicly available in [23]. In the next chapter, as examples, Gray Wolf 

Optimizer (GWO) [21], [24] and Salp Swarm Algorithm (SSA) [22] are explained to show how 

metaheuristics optimization algorithms solve the problem of optical devices design. 
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Chapter 3: Nature-Inspired Optimizers 

3.1 Gray Wolf Optimizer (GWO) 

In this section, the inspiration of the GWO is first discussed. Then, the mathematical model is 

provided. This section is based on the paper published in the Journal of Advances in Engineering 

Software [21]. 

3.1.1 3.1. Inspiration 

The Grey wolf (Canis lupus) belongs to the Canidae family. Grey wolves are considered apex 

predators, meaning that they are at the top of the food chain. Grey wolves mostly prefer to live in 

a pack. The group size is 5-12 on average. Of particular interest is that they have a very strict 

social dominance hierarchy, as shown in Figure 3-1. 

         

Figure 3-1 Hierarchy of grey wolf (dominance decreases from top-down) 

The leaders are a male and a female, called alphas. The alpha is mostly responsible for making 

decisions about hunting, sleeping place, time to wake, and so on. The alpha’s decisions are 

dictated to the pack. However, some kind of democratic behavior has also been observed, in 

which an alpha follows the other wolves in the pack. In gatherings, the entire pack acknowledges 

the alpha by holding their tails down. The alpha wolf is also called the dominant wolf since 

his/her orders should be followed by the pack [25]. The alpha wolves are only allowed to mate in 

the pack. Interestingly, the alpha is not necessarily the strongest member of the pack but the best 

in terms of managing the pack. This shows that the organization and discipline of a pack is much 

more important than its strength. 

The second level in the hierarchy of grey wolves is beta. The betas are subordinate wolves that 

help the alpha in decision-making or other pack activities. The beta wolf can be either male or 

female, and he/she is probably the best candidate to be the alpha in case one of the alpha wolves 

passes away or becomes very old. The beta wolf should respect the alpha but commands the other 

lower-level wolves as well. It plays the role of an advisor to the alpha and discipliner for the 

pack. The beta reinforces the alpha's commands throughout the pack and gives feedback to the 

alpha. 

The lowest ranking grey wolf is the omega. The omega plays the role of scapegoat. Omega 

wolves always have to submit to all the other dominant wolves. They are the last wolves that are 

allowed to eat. It may seem the omega is not an important individual in the pack, but it has been 

observed that the whole pack faces internal fighting and problems in case of losing the omega. 

This is due to the venting of violence and frustration of all wolves by the omega(s). This assists 

in satisfying the entire pack and maintaining the dominance structure. In some cases, the omega 

𝜶

𝜷

𝜹

𝝎
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is also the babysitter in the pack. 

If a wolf is not an alpha, beta, or omega, he/she is called subordinate (or delta in some 

references). Delta wolves have to submit to alphas and betas, but they dominate the omega. 

 Scouts, sentinels, elders, hunters, and caretakers belong to this category. Scouts are responsible 

for watching the boundaries of the territory and warning the pack in case of any danger. Sentinels 

protect and guarantee the safety of the pack. Elders are the experienced wolves who used to be 

alpha or beta.  Hunters help the alphas and betas when hunting prey and providing food for the 

pack. Finally, the caretakers are responsible for caring for the weak, ill, and wounded wolves in 

the pack. 

In addition to the social hierarchy of wolves, group hunting is another interesting social 

behavior of grey wolves. According to Muro et al. [26], the main phases of gray wolf hunting are 

as follows: 

• Tracking, chasing and approaching the prey 

• Pursuing, encircling, and harassing the prey until it stops moving 

• Attack towards the prey 

These steps are shown in Figure 3-2. 

 

 

Figure 3-2 Hunting behavior of grey wolves: (A) chasing, approaching, and tracking prey (B-D) pursuing, harassing, 

and encircling (E) stationary situation and attack [26]. 

This hunting technique and the social hierarchy of grey wolves are mathematically modeled in 

order to design GWO and perform optimization.  

3.1.2 Mathematical model and algorithm 

In this subsection, the mathematical models of the social hierarchy, tracking, encircling, and 

attacking prey are provided. Then the GWO algorithm is outlined.  
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Social hierarchy:  

In order to mathematically model the social hierarchy of wolves when designing GWO, we 

consider the fittest solution as the alpha (𝛼). Consequently, the second and third-best solutions 

are named beta (𝛽) and delta (𝛿), respectively.  The rest of the candidate solutions are assumed to 

be omega (𝜔). In the GWO algorithm, the hunting (optimization) is guided by 𝛼, 𝛽, and 𝛿. The 𝜔 

wolves follow these three wolves.  

Encircling pray: 

As mentioned above, grey wolves encircle prey during the hunt. In order to mathematically 

model encircling behavior, the following equations are proposed: 

�⃗⃗� = |𝐶 . 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| (3-1) 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 . �⃗⃗�  (3-2) 

where t indicates the current iteration, 𝐴  and 𝐶  are coefficient vectors, 𝑋𝑝
⃗⃗ ⃗⃗   is the position vector of 

the prey, and 𝑋  indicates the position vector of a grey wolf. 

The vectors 𝐴  and 𝐶  are calculated as follows: 

𝐴 = 2𝑎 .𝑟1⃗⃗⃗  - 𝑎  (3-3) 

𝐶 = 2. 𝑟2⃗⃗  ⃗ (3-4) 

Where components of 𝑎  are linearly decreased from 2 to 0 over the course of iterations and 𝑟1, 𝑟2 

are random vectors in [0,1]. 

To see the effects of equations (3-1) and (3-2), a two-dimensional position vector and some of 

the possible neighbors are illustrated in Figure 3-3 (a). As can be seen in this figure, a grey wolf 

in the position of (X,Y) can update its position according to the position of the prey (X*, Y*). 

Different places around the best agent can be reached with respect to the current position by 

adjusting the value of 𝐴  and 𝐶  vectors. For instance, (X*-X, Y*) can be reached by setting 𝐴 =

(1,0) and 𝐶 = (1,1). The possible updated positions of a grey wolf in 3D space are depicted in 

Figure 3-3 (b). Note that the random vectors 𝑟1 and 𝑟2 allow wolves to reach any position 

between the points illustrated in Figure 3-3. So a grey wolf can update its position inside the 

space around the prey in any random location by using equations (3-1) and (3-2). 
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                                                            (b) 

 

Figure 3-3 2D and 3D position vectors and their possible next locations 

The same concept can be extended to a search space with n dimensions, and the grey wolves 

will move in hyper-cubes (or hyper-spheres) around the best solution obtained so far. 

Hunting: 

 Grey wolves have the ability to recognize the location of prey and encircle them. The hunt is 

usually guided by the alpha. The beta and delta might also participate in hunting occasionally. 

However, in an abstract search space, we have no idea about the location of the optimum (prey). 

In order to mathematically simulate the hunting behavior of grey wolves, we suppose that the 

alpha (best candidate solution) beta and delta have better knowledge about the potential location 

of prey. Therefore, we save the first three best solutions obtained so far and oblige the other 

search agents (including the omegas) to update their positions according to the position of the 

best search agent. The following formulas are proposed in this regard. 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶 1. 𝑋𝛼

⃗⃗ ⃗⃗  − 𝑋 |, 𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶 2. 𝑋𝛽

⃗⃗ ⃗⃗  − 𝑋 |, 𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 | (3-5) 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝑎 1. (𝐷𝛼
⃗⃗⃗⃗  ⃗), 𝑋2

⃗⃗⃗⃗ = 𝑋𝛽
⃗⃗ ⃗⃗  − 𝑎2⃗⃗⃗⃗ . (𝐷𝛽

⃗⃗ ⃗⃗  ), 𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝑎3⃗⃗⃗⃗ . (𝐷𝛿
⃗⃗ ⃗⃗  ) (3-6) 

𝑋 (𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ 

3
 (3-7) 

Figure 3-4 shows how a search agent updates its position according to alpha, beta, and delta in 

a 2D search space. It can be observed that the final position would be in a random place within a 

circle, which is defined by the positions of alpha, beta, and delta in the search space. In other 

words, alpha, beta, and delta estimate the position of the prey, and other wolves update their 

positions randomly around the prey.  
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Figure 3-4 Position updating in GWO 

Attacking prey (exploitation): 

As mentioned above, the grey wolves finish the hunt by attacking the prey when it stops 

moving. In order to mathematically model approaching the prey, we decrease the value of 𝑎 . 

Note that the fluctuation range of 𝐴  is also decreased by 𝑎 . In other words 𝐴  is a random value in 

the interval [-2a,2a] where a is decreased from 2 to 0 over the course of iterations. When random 

values of 𝐴  are in [-1,1], the next position of a search agent can be in any position between its 

current position and the position of the prey. Figure 3-5 (a) shows that |A|<1 forces the wolves to 

attack towards the prey.  
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                  (a)              (b) 

Figure 3-5 Attacking prey versus searching for prey 

With the operators proposed so far, the GWO algorithm allows its search agents to update their 

position based on the location of the alpha, beta, and delta; and attack towards the prey. However, 

the GWO algorithm is prone to stagnation in local solutions with these operators. It is true that 

the encircling mechanism proposed shows exploration to some extent, but GWO needs more 

operators to emphasize exploration.  

Search for prey (exploration): 

Grey wolves mostly search according to the position of the alpha, beta, and delta. They diverge 

from each other to search for prey and converge to attack prey. In order to mathematically model 

divergence, we utilize 𝐴  with random values greater than 1 or less than -1 to oblige the search 

agent to diverge from the prey. This emphasizes exploration and allows the GWO algorithm to 

search globally. Figure 3-5(b) also shows that |A|>1 forces the grey wolves to diverge from the 

prey to hopefully find a fitter prey. Another component of GWO that favors exploration is 𝐶 . As 

may be seen in Equation (3-4), the 𝐶  vector contains random values in [0, 2]. This component 

provides random weights for prey in order to stochastically emphasize (C>1) or deemphasize 

(C<1) the effect of prey in defining the distance in Equation (3-1). This assists GWO to show a 

more random behavior throughout optimization, favoring exploration, and local optima 

avoidance. It is worth mentioning here that C is not linearly decreased in contrast to A. We 

deliberately require C to provide random values at all times in order to emphasize exploration not 

only during initial iterations but also final iterations. This component is very helpful in case of 

local optima stagnation, especially in the final iterations.  

The C vector can also be considered as the effect of obstacles to approaching prey in nature. 

Generally speaking, the obstacles in nature appear in the hunting paths of wolves and in fact, 

prevent them from quickly and conveniently approaching prey. This is exactly what the vector C 

does. Depending on the position of a wolf, it can randomly give the prey a weight and make it 

harder and farther to reach for wolves or vice versa. 

To sum up, the search process starts with creating a random population of grey wolves 

(candidate solutions) in the GWO algorithm. Over the course of iterations, alpha, beta, and delta 

wolves estimate the probable position of the prey. Each candidate solution updates its distance 

from the prey. The parameter a is decreased from 2 to 0 in order to emphasize exploration and 

exploitation, respectively. Candidate solutions tend to diverge from the prey when |𝐴 |>1 and 

converge towards the prey when |𝐴 |<1. Finally, the GWO algorithm is terminated by the 

satisfaction of an end criterion.  
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The pseudo code of the GWO algorithm is presented in Figure 3-6.  

 

Figure 3-6 Pseudocode of the GWO algorithm 

To see how GWO is theoretically able to solve optimization problems, some points may be 

noted: 

• The proposed social hierarchy assists GWO to save the best solutions obtained so far 

over the course of the iteration 

• The proposed encircling mechanism defines a circle-shaped neighborhood around the 

solutions which can be extended to higher dimensions as a hyper-sphere 

• The random parameters A and C assist candidate solutions to have hyper-spheres with 

different random radii 

• The proposed hunting method allows candidate solutions to locate the probable position 

of the prey 

• Exploration and exploitation are guaranteed by the adaptive values of a and A 

• The adaptive values of parameters a and A allow GWO to smoothly transition between 

exploration and exploitation 

• With decreasing A, half of the iterations are devoted to exploration (|A|≥1) and the other 

half are dedicated to exploitation (|A|<1) 

• The GWO has only two main parameters to be adjusted (a and C) 

There are possibilities to integrate mutation and other evolutionary operators to mimic the 

whole life cycle of grey wolves. However, we have kept the GWO algorithm as simple as 

possible, with the fewest operators to be adjusted. 

 

 

 

 

Initialize the grey wolf population Xi (i = 1, 2, ..., n)  

Initialize a, A, and C 

Calculate the fitness of each search agent 

Xα=the best search agent 

Xβ=the second best search agent 

Xδ=the third best search agent 

while (t < Max number of iterations) 

for each search agent 

Update the position of the current search agent by equation (3-6) 

end for 

Update a, A, and C 

Calculate the fitness of all search agents 

Update Xα, Xβ, and Xδ 

t=t+1 

end while 

return Xα 
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3.2 Salp Swarm Algorithm (SSA): A Bio-inspired Optimizer for Engineering Design 

Problems 

3.2.1 Inspiration  

This section is based on the paper published in the Journal of Advances in Engineering 

Software [22]. Salps belong to the family of Salpidae and have a transparent barrel-shaped body. 

Their tissues are highly similar to jellyfishes. They also move very similar to jellyfish, in which 

the water is pumped through the body as propulsion to move forward [27]. The shape of a salp is 

shown in Figure 3-7(a). 

The biological research about this creature is in its early milestones, mainly because their living 

environments are extremely difficult to access, and it is really difficult to keep them in laboratory 

environments. One of the most interesting behaviors of salps, which is of interest in this chapter, 

is their swarming behavior. In deep oceans, salps often form a swarm called the salp chain. This 

chain is illustrated in Figure 3-7(b). The main reason for this behavior is not very clear yet, but 

some researchers believe that this is done for achieving better locomotion using rapid coordinated 

changes and foraging [28]. 

 
(a)              (b) 

Figure 3-7 (a) individual salp, (b) swarm of salps (salps chain) 

3.2.2 Proposed mathematical model for moving salp chains   

There is little in the literature to mathematically model the swarming behaviors [29] and the 

population of salps [30]. We proposed the first mathematical model of salp swarms for solving 

optimization problems, while swarms of bees, ants, and fishes have been widely modeled and 

used for solving optimization problems [22]. This subsection explains the first model of salp 

chains in the literature for the purpose of solving optimization problems.  

To mathematically model the salp chains, the population is first divided into two groups: leader 

and followers. The leader is the salp at the front of the chain, whereas the rest of the salps are 

considered as followers. As the name of these salps implies, the leader guides swarm, and the 

followers follow each other (and leader directly or indirectly).  
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Similar to other swarm-based techniques, the position of salps is defined in an n-dimensional 

search space where n is the number of variables of a given problem. Therefore, the position of all 

salps is stored in a two-dimensional matrix called x. It is also assumed that there is a food source 

called F in the search space as the swarm’s target.  

To update the position of the leader, the following equation is proposed: 

𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 ≥ 0

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 < 0
 (3-8) 

where 𝑥𝑗
1 shows the position of the first salp (leader) in the j-th dimension, 𝐹𝑗 is the position of 

the food source in the j-th dimension, 𝑢𝑏𝑗 indicates the upper bound of j-th dimension, 𝑙𝑏𝑗 

indicates the lower bound of j-th dimension, 𝑐1, 𝑐2, and 𝑐3 are random numbers.  

Eq. (3-8) shows that the leader only updates its position with respect to the food source. The 

coefficient 𝑐1 is the most important parameter in SSA because it balances exploration and 

exploitation defined as follows:  

𝑐1 = 2𝑒−(
4𝑙
𝐿 )

2

 (3-9) 

where l is the current iteration and L is the maximum number of iterations.   

The parameter 𝑐2 and 𝑐3 are random numbers uniformly generated in the interval of [0,1]. In 

fact, they dictate if the next position in j-th dimension should be towards positive infinity or 

negative infinity as well as the step size. 

To update the position of the followers, the following equations is utilized (Newton’s law of 

motion):  

𝑥𝑗
𝑖 =

1

2
𝑎𝑡2 + 𝑣0𝑡 (3-10) 

were 𝑖 ≥ 2, 𝑥𝑗
𝑖 shows the position of i-th follower salp in j-th dimension, t is time, 𝑣0 is the initial 

speed, and 𝑎 =
𝑣𝑓𝑖𝑛𝑎𝑙

𝑣0
 where 𝑣 =

𝑥−𝑥0

𝑡
. 

Because the time in optimization is iteration, the discrepancy between iterations is equal to 1, 

and considering 𝑣0 = 0,  this equation can be expressed as follows: 

𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) (3-11) 

where 𝑖 ≥ 2 and 𝑥𝑗
𝑖 shows the position of i-th follower salp in j-th dimension. With Eqs. (3-8) 

and (3-11), the salp chains can be simulated. 

3.2.3 Swarm simulation  

In order to see the effects of the above mathematical model proposed, a simulation is done in 

this subsection. Twenty salps are randomly placed on a search space with stationary or moving 
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sources of food. The position of the salp chains and history of each salp are drawn in Figure 3-8 

to Figure 3-11. Note that the blue point in the figures shows the position of the food source, and 

the darkest filled circle is the leading salp. The follower salps are colored with a grey-based on 

their position in the salp chain with respect to the leader. Inspecting the behaviour of salp chain 

over nine consecutive iterations in Figure 3-8 and Figure 3-10, it may be observed that the swarm 

can be formed and moved using the equation proposed effectively right after the first iteration. 

Also, it can be seen that the leading salp changes its position around the food source and follower 

salps gradually follow it over the course of iterations. The same model has been utilized for both 

simulations and the merits of the model proposed in both 2D and 3D spaces are evident in Figure 

3-8 and Figure 3-10. It can be stated that the model is able to show the same behavior in an n-

dimensional space.  

Figure 3-8 and Figure 3-11 show the position history of salps around stationary and mobile 

food sources in 2D and 3D space after 100 iterations. The points searched around the stationary 

food source show that the salps effectively move around the search space. The distribution of 

points is reasonable and shows that the model proposed is able to explore and exploit the space 

around the stationary food source. Also, Figure 3-9 and Figure 3-11 show that the mathematical 

model proposed it requires salps in the salp chain to chase a moving food source. The distribution 

of the points searched around the start point is higher than the endpoint. This is due to the c1 

parameter, which controls exploration and exploitations. These findings evidence that the model 

of the salp chain movement is able to explore and exploit the space around both stationary and 

mobile food sources.  

3.2.4 Single-objective Salp Swarm Algorithm (SSA) 

The mathematical model for simulating salp chains cannot be directly employed to solve 

optimization problems. In other words, there is a need to tweak the model a little bit to make it 

applicable to optimization problems. The ultimate goal of a single-objective optimizer is to 

determine the global optimum. In the SSA swarm model, follower salps follow the leading salp. 

The leading salp also moves towards the food source. If the food source is replaced by the global 

optimum, therefore, the salp chain automatically moves towards it. However, the problem is that 

the global optimum of optimization problems is unknown. In this case, it is assumed that the best 

solution obtained so far is the global optimum and assumed as the food source to be chased by 

the salp chain. 
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Figure 3-8 Slap chain movement around a stationary source of food in a 2D space.  

  

  

Figure 3-9 Search history around stationary and mobile food sources in a 2D space after 100 iterations.  
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Figure 3-10 Slap chain movement around a stationary source of food in a 3D space.  

  

  

 

Figure 3-11 Search history around stationary and mobile food sources in a 3D space after 100 iterations.  
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The pseudo-code of the SSA algorithm is illustrated in Figure 3-12. This figure shows that the 

SSA algorithm starts approximating the global optimum by initiating multiple salps with random 

positions. It then calculates the fitness of each salp, finds the salp with the best fitness, and 

assigns the position of the best salp to the variable F as the source food to be chased by the salp 

chain. Meantime the coefficient c1 is updated using Eq. (3-9). For each dimension, the position of 

leading salp is updated using Eq. (3-8) and the position of follower salps is updated utilizing Eq. 

(3-11). If any of the salps goes outside the search space, it will be brought back on the 

boundaries. All the above steps except initialization are iteratively executed until the satisfaction 

of an end criterion.  

 

Figure 3-12 Pseudo code of the SSA algorithm.  

It should be noted that the food source will be updated during optimization because the salp 

chain is very likely to find a better solution by exploring and exploiting the space around it. The 

simulations in subsection 3.2.3 show that the salp chain modeled is able to chase a moving food 

source. Therefore, the salp chain has the potential to move towards the global optimum that 

changes over the course of iterations. To see how the proposed salp chain model and SSA 

algorithm are effective in solving optimization problems, some remarks are listed as follows:  

• SSA algorithm saves the best solution obtained so far and assigns it to the food source 

variable, so it never gets lost even if the whole population deteriorates.  

• SSA algorithm updates the position of the leading salp with respect to the food source 

only, which is the best solution obtained so far, so the leader always explores and 

exploits the space around it.  

• SSA algorithm updates the position of follower salps with respect to each other, so they 

move gradually towards the leading salp.  

• Gradual movements of follower slaps prevent the SSA algorithm from easily stagnating 

in local optima.  

• Parameter c1 is decreased adaptively over the course of iterations, so the SSA algorithm 

first explores the search space and then exploits it.  

• SSA algorithm has only one main controlling parameter (c1). 

• SSA algorithm is simple and easy to implement. 

These remarks make the SSA algorithm theoretically and potentially able to solve single-

objective optimization problems with unknown search spaces. The adaptive mechanism of SSA 

Initialize the salp population xi (i = 1, 2, ..., n) considering ub and lb  

while (end condition is not satisfied) 

Calculate the fitness of each search agent (salp) 

F=the best search agent 

Update c1 by Eq. (3.9) 

for each salp (xi) 

if (i==1) 

Update the position of the leading salp by Eq. (3.8) 

else  

Update the position of the follower salp by Eq. (3.11) 

end  

end  

Amend the salps based on the upper and lower bounds of variables 

end  

return F 
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allows this algorithm to avoid local solutions and eventually finds an accurate estimation of the 

best solution obtained during optimization. Therefore, it can be applied to both unimodal and 

multimodal problems. The above-mentioned advantages potentially allow SSA to outperform 

recent algorithms. However, this cannot be guaranteed for all optimization problems according to 

the No-Free-Lunch (NFL) theorem, which stated that none of such algorithms are able to solve 

all optimization problems [31]. 

3.2.5 Multi-objective Salp Swarm Algorithm (MSSA) 

The solution for a multi-objective problem is a set of solutions called the Pareto optimal set. 

The SSA algorithm is able to drive salps towards the food source and updates it over the course 

of iterations. However, this algorithm is not able to solve multi-objective problems, mainly due to 

the following two reasons: 

• SSA only saves one solution as the best solution, so it cannot store multiple solutions as 

the best solutions for a multi-objective problem.  

• SSA updates the food source with the best solution obtained so far in each iteration, but 

there is no single best solution for multi-objective problems.  

This first issue is tackled by equipping the SSA algorithm with a repository of food sources. 

This repository maintains the best non-dominated solutions obtained so far during optimization 

and is very similar to the archives in Multi-Objective Particle Swarm Optimization (MOPSO) 

[32]. The repository has a maximum size to store a limited number of non-dominated solutions. 

During optimization, each salp is compared against all the repository residents using the Pareto 

dominance operators. If a salp dominates a solution in the repository, they have to be swapped. If 

a salp dominates a set of solutions in the repository, they all should be removed from the 

repository, and the salp should be added in the repository. If at least one of the repository 

residents dominates a salp in the new population, it should be discarded straight away. If a salp is 

non-dominated in comparison with all repository residents, it has to be added to the archive. 

These rules can guarantee that the repository always stores the non-dominated solutions 

obtained so far by the algorithm. However, there is a special case where the repository becomes 

full and a salp is non-dominated in comparison with the repository residents. Of course, the 

easiest way is to randomly delete one of the solutions in the archive and replace it with the non-

dominated salp. A wiser way is to remove one of the similar non-dominated solutions in the 

repository. Since a posteriori multi-objective algorithm should be able to find uniformly 

distributed Pareto optimal solutions, the best candidate to remove from the archive is the one in a 

populated region. This approach improves the distribution of the archive residents over the course 

of iterations.  

To find the non-dominated solutions with populated neighbourhood, the number of 

neighbouring solutions with a certain maximum distance is counted and assumed. This distance is 

defined by 𝑑 =
𝑚𝑎𝑥⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ −𝑚𝑖𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 𝑠𝑖𝑧𝑒
 where max and min are two vectors for storing maximum and 

minimum values for every objective, respectively. The repository with one solution in each 

segment is the best case. After assigning a rank to each repository resident based on the number 

of neighboring solutions, a roulette wheel is employed to choose one of them. The more number 

of neighboring solutions (the larger rank number) for a solution, the higher probability of 

removing it from the repository. An example of this repository update mechanism is illustrated in 

Figure 3-13. Note that the neighborhood should be defined for all the solutions, but only four of 
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the non-dominated solutions are investigated in this figure.  

As mentioned above, the second issue when solving multi-objective problems using SSA is the 

selection of the food source because there is more than one best solution in a multi-objective 

search space. Again, the food source can be chosen randomly from the repository. However, a 

wiser way is to select it from a set of non-dominated solutions with the least crowded 

neighborhood. This can be done using the same ranking process and roulette wheel selection 

employed in the repository maintenance operator. The main difference is the probability of 

choosing the non-dominated solutions. In the archive maintenance, the solutions with a higher 

rank (crowded neighborhood) are more likely to be chosen. By contrast, the less populated 

neighborhood (the lower rank number) for a non-dominated solution in the repository, the higher 

probability of being selected as the food source. In Figure 3-13, for instance, the non-dominated 

solutions in the middle with no neighboring solution have the highest probability of being chosen 

as the food source. After all, the pseudo-code of the Multi-objective Salp Swarm Algorithm 

(MSSA) is shown in Figure 3-14.  

f2

f1

Maximize

M
a

x
im

iz
e

Best candidates for removing from 

repository if it becomes full

 

Figure 3-13 Update mechanism of the repository when it is full. 

Figure 3-14 shows that the MSSA algorithm first initializes the population of salps with respect 

to upper bounds and lower bourns of variables. This algorithm then calculates the objective 

values for each salp and finds the non-dominated ones. The non-dominated solutions are added to 

the archive if the repository is not full. If the repository is full, the repository maintenance is run 

to delete the solutions with a crowded neighborhood. In this step, the solutions are first ranked 

and then selected using a roulette wheel. After removing enough number of repository residents, 

the non-dominated salps can be added to the repository. After updating the repository, a food 

source is selected from the non-dominated solutions in the repository with the least crowded 

neighborhood. Similarly, to the archive maintenance, this is done by ranking the solutions and 

employing a roulette wheel. The next step is to update c1 using Eq. (3-9) and update the position 

of leading/follower salps using either Eq. (3-8) or Eq. (3-11). If during the process of updating 

the position, a salp goes outside of the boundaries, it will be brought back on the boundary. 

Finally, all the above steps except initialization are repeated until the satisfaction of an end 

condition.  
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To see how effective the MSSA algorithm is, some comments are:  

• The non-dominated solutions obtained so far are stored in a repository, so they never get 

lost even if the entire population deteriorates in an iteration.  

• The solutions with the crowded neighborhood are discarded every time the repository 

maintenance is called, which results in improving the coverage of non-dominated 

solutions across all objectives.  

• A food source is selected from the list of non-dominated solutions with the least number 

of neighboring solutions, which leads the search towards the less crowded regions of the 

Pareto optimal front obtained and improves the coverage of solutions found. 

•  MSSA inherits the operators of SSA due to the use of a similar population division 

(leading and follower salps) and position updating process.  

• MSSA algorithm has only two main controlling parameters (c1 and archive size). 

• MSSA algorithm is simple and easy to implement. 

These comments show that the MSSA algorithm is logically able to find accurate Pareto 

optimal solutions with high distribution across all objectives. 

 

Figure 3-14 Pseudo code of the MSSA algorithm. 

 

 

 

 

Initialize the salp population xi (i = 1, 2, ..., n) considering ub and lb  

while (end criterion is not met) 

Calculate the fitness of each search agent (salp) 

Determine the non-dominated salps 

Update the repository considering the obtained non-dominated salps 

if the repository becomes full  

Call the repository maintenance procedure to remove one repository resident 

Add the non-dominated salp to the repository 

end 

Choose a source of food from repository: 𝐹=SelectFood(repository) 

Update c1 by Eq. (3-9)  

for each salp (xi) 

if (i==1) 

Update the position of the leading salp by Eq. (3-8)  

else  

Update the position of the follower salp by Eq. (3-11)  

end 

end 

Amend the salps based on the upper and lower bounds of variables 

end 

return repository  
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Chapter 4: Design optimization of OAM fibers using the grey wolf 

optimizer 

4.1 Introduction 

This chapter is based on the paper published in the Journal of Applied Optics [1]. The demand 

for higher capacity in optical fiber communication systems is ever-increasing. Recently, Mode 

Division Multiplexing (MDM) schemes have attracted much attention as a path to increase the 

transmission capacity beyond the nonlinear Shannon limit inherent in conventional single-mode 

fiber [33]. MDM uses a set of spatially orthogonal modes as independent optical channels to 

transmit the data. Those modes are supported modes of a multi-mode fiber. In conventional 

MDM systems, linearly polarized (LP) modes are utilized since they are easily excited and 

detected instead of using true vector modes [34]. A number of papers in the literature explored 

MDM implementations based on LP modes of weakly-guiding multi-mode fibers [35]–[42]. An 

important concern with LP modes in weakly-guiding multi-mode fibers is that they easily couple 

to each other, since their neighboring guided modes have a very similar effective indices. As a 

result, the cross-talk level between channels can be significant. Therefore, a complex multiple-

input multiple-output (MIMO) processing is required on the receiver side to extract each channel.  

Recently, the use of orbital angular momentum (OAM) modes has been proposed for MDM 

systems [43]–[48]. OAM modes are also orthogonal to each other. Typically, an OAM mode has 

a helical phase front and is characterized by a topological charge (l) indicating how many phase 

rotations are there over the field distribution plane. The difference between LP modes and OAM 

modes is that LP modes are made from a superposition of multiple degenerate vector modes; 

however, circularly-polarized OAM modes are themselves a single degenerate vector mode. This 

degenerate mode can be EHl-1,m or HEl+1,m where l is the topological charge and m is the radial 

number [49]. Since those OAM modes are made from one degenerate mode, it is possible to 

engineer the fiber and to achieve enough effective index separation between the OAM modes and 

other fiber modes. This situation makes the OAM modes more stable and robust to perturbations. 

As a result, we can simplify or eliminate complex MIMO processing, which is an essential part of 

MDM systems based on LP modes. OAM modes can exist on typical multi-mode fibers but they 

are unstable and easily couple into LP modes because EHl-1,m and HEl+1,m modes in such fibers 

are nearly degenerate (i.e. they have a very close mode effective index). Hence, those modes are 

strongly coupled to each other as they transmit through the fiber [43]. Therefore, to take 

advantage of OAM modes, it is necessary to design a new type of optical fiber in which the 

modal degeneracies between the aforementioned vector modes have been lifted.  

The most popular fiber structure supporting OAM modes is a ring core fiber  (RCF) with a high 

refractive index contrast [33]. This structure can increase the differences between the effective 

indices (Δneff) of EHl-1,m and HEl+1,m modes. In the literature, there are a number of works focused 

on designing OAM fibers. For example, some designs of step-index RCFs were introduced to 

achieve OAM modes with topological charge (l) of 1 and 2 [50]. Other fiber structures such as 

inverse parabolic index fibers [51], RCFs with graded-index [52], photonic crystal (PhC) fibers 

[53], and trench-assisted index fibers [54] can increase Δneff and mitigate mode mixing. 

Having an abrupt refractive index change that coincides with a large amplitude of the 

transverse mode field and its gradient can strongly break the degeneracy of the fiber modes [55]. 

Hollow-core RCFs with an air-filled inner cladding provide a very high refractive index contrast 

at the interface of their ring core and inner air cladding. Therefore, such fibers are one of the most 
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promising fiber designs supporting a large number of high-quality OAM modes [56]–[60]. 

In spite of the diversity in proposed OAM fiber designs, there is still an urgent need for a 

comprehensive framework for designing such fibers. Usually, this kind of design has been done 

by using computer simulations coupled with a trial-and-error approach.  This method is not 

efficient, requiring intensive human involvement and, more importantly, without any guarantees 

that the obtained design is optimal. 

In [33], an initial systematic optimal fiber design method using the particle swarm optimization 

algorithm has been proposed, where some criteria derived from total system requirements have 

been considered for designing OAM fibers. This method can address the basic requirements of 

OAM fiber design, but it still needs to be improved to become more accurate, time-efficient, and 

to better include other OAM fiber requirements. That work considered some performance merit 

factors and combined them in a way that allows the use of a single-objective optimization 

approach. However, this is not ideal. The problem of designing OAM fibers is intrinsically a 

multi-objective problem, and the actual solutions for such problems is a set of optimal solutions. 

Solving such a problem with the single objective approach is able to find just one of the optimal 

designs. Hence, it is necessary to formulate the OAM fiber design problem as a multi-objective 

optimization problem and to utilize proper multi-objective algorithms. 

Previously, we have used the same approach and utilized artificial intelligence techniques to 

design a few optimized optical devices such as optical modulators [61], large mode area PhC 

fibers [4], PhC filters [2], [62], [63], PhC liquid sensors [6], PhC low bend loss waveguides [64], 

PhC LED [3], [65], waveguide-based LP01–LP0m mode converters [5], and PhC slow-light 

waveguides [66]–[75][76]. Also, other research groups followed the same approach for the 

optimization of bend-insensitive optical fiber [77], fiber amplifiers [78], and grating couplers 

[79]. 

In this chapter, firstly, we propose a new problem formulation of the single-objective 

optimization approach for designing OAM fibers. Then as a case study, we solve the problem of 

designing an RCF. Later, we change the problem formulation into a multi-objective form and 

then utilize a multi-objective optimizer algorithm to solve it. Then, we perform a proper 

comparative study to discuss the advantages of the new problem formulations. It should be noted 

that the main criterion to have a high-performance OAM fiber is to have a large number of 

supported OAM modes with very high mode purities. Furthermore, the effective index separation 

between the OAM modes and the other fiber modes should be larger than 1e-4. In addition, a 

minimum acceptable bending loss should be considered. 

The rest of the chapter is organized as follows. We explain the structure of OAM fibers,  then 

explain the basic concept, and go through the details of the OAM fiber design process in section 

4.2. In section 4.3, the proposed optimization frameworks for designing OAM fibers are 

elaborated. The results of utilizing the proposed frameworks for designing a case study OAM 

fiber are provided in section 4.4. Eventually, section 4.5 concludes the work. 

4.2 OAM fiber Structure and Related Issues 

Typically, OAM modes have a doughnut-shaped intensity profile. Therefore, it is rational to 

expect that the refractive index profile of the fiber cross-section should follow a similar pattern. 

RCFs in which the ring section has a higher refractive index provide a more convenient medium 

for OAM mode transmission. The step-index RCF is shown in Figure 4-1. 
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Figure 4-1 Cross-section refractive index profile of a step-index RCF. 

Since our objective is to provide a fair comparative study, we use the same material for the 

fiber structure, as it is used in [33]. Also, we design the OAM fiber for the wavelength range of 

the C-band (from 1530 to 1565 nm). Therefore, the inner cladding can be either air (ni = 1) or 

silica doped with fluorine (F) (1 ≤ ni≤ 1.394). The ring section is made of fused  silica doped with 

germanium dioxide (GeO2) (1.447 ≤ nr ≤ 1.4839). The outer cladding is made of fused silica 

(SiO2) with nc = 1.444 @ λ = 1.55 μm. Also, we assume that the inner cladding radius can have a 

value in the range of 1.5 μm ≤ ri ≤ 14 μm. The ring width can be in the range of 1.5 μm ≤ wr ≤ 6 

μm. The outer cladding diameter is considered to have a standard value of 125 μm. 

To evaluate the performance of OAM fibers and to calculate their modal characteristics, we use 

the finite element method (FEM) [4]. Each OAM fiber structure supports a number of confined 

modes. Some of them can be used as the guided modes of the fiber. Therefore, a guided mode 

should have some specific characteristics as explained in the following.  

Each mode has a mode profile and an effective index value. The effective index is a complex 

number in which the real part is associated to the propagation properties of the mode and the 

imaginary part is related to the loss coefficient. After each simulation, we sort the modes based 

on the real value of their effective refractive index. 

 As mentioned earlier, an OAM mode in the optical fiber results from a combination of two 

vector modes. In other words, we should look for every two consecutive modes generating an 

OAMl,m modes, where l is the topological charge and m is how many concentric rings are in the 

mode intensity profile. OAMl,m modes with |l| > 1 are expressed with the following equations 

[56]. 

𝑂𝐴𝑀±𝑙,𝑚
± = 𝐻𝐸𝑙+1,𝑚

𝑒𝑣𝑒𝑛 ± 𝑗𝐻𝐸𝑙+1,𝑚
𝑜𝑑𝑑  (4-1) 

𝑂𝐴𝑀±𝑙,𝑚
∓ = 𝐸𝐻𝑙−1,𝑚

𝑒𝑣𝑒𝑛 ± 𝑗𝐸𝐻𝑙−1,𝑚
𝑜𝑑𝑑  (4-2) 

where the superscript sign indicates the circular polarization direction and the sign of l shows the 

phase rotation  direction. In OAM modes, the polarization and phase rotation of the modes are 
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interpreted as the spin and orbit of the modes. The spin and orbit of an OAM mode can be 

aligned or anti-aligned. Therefore, equation (4-1) shows the spin-orbit aligned and equation (4-2) 

indicates the spin-orbit anti-aligned mode. 

The two groups of HEl+1,m and EHl-1,m modes are often degenerate. They have almost the same 

effective indices, resulting in mode mixing and the generation of the LP modes group. 

Interestingly, the step-index RCF of Figure 4-1 can break down the degeneracy of some HEl+1,m 

and EHl-1,m mode groups. Therefore, in the case that Δneff is high enough, the two obtained OAM 

modes of equations (4-1) and (4-2) will not interact anymore, and hence there will be no mode 

mixing. Note that each OAM mode obtained from equations (4-1) or (4-2) provides two channels 

(spin-orbit aligned and anti-aligned cases) for data communication. These two channels have 

crosstalk and require the use of a simple 2×2 MIMO to undo crosstalk within each channel. 

The minimum acceptable Δneff, which is necessary to mitigate significant mode coupling, varies 

based on the target transmission configuration. The conventional minimum value of Δneff is 1e-4 

[80]. This value is experimentally obtained and represents a threshold above which the modal 

crosstalk among OAM modes can be suppressed to a value lower than -10 dB after >1-km long 

transmission [59]. 

In addition to the necessity of having a minimum Δneff of 1e-4 between the OAM modes to the 

other fiber modes, another consideration should be taken into account. If adjacent mode groups 

(HEl+1,m to HEl,m or EHl,m to EHl-1,m) are not sufficiently separated, bend-enabled mode coupling 

can cause significant inter-group crosstalk. Generally, the mode groups need to be separated by 

an effective index difference on the order of 1e-3 to suppress this mode coupling [81]. We refer 

to this effective index difference as Δneff g, and we have chosen a threshold of 0.7e-3. 

In each optical fiber, there can be many OAM modes, but only a few of them may satisfy the 

requirements of the target transmission configuration. The main objective of the whole 

optimization process is to increase the number of eligible OAM modes which will satisfy the 

targeted requirements for data communication. 

 To organize the process of finding legitimate OAM modes for the application of data 

communication, we propose the following algorithm. After each simulation run, we sort the 

obtained fiber modes based on the real value of their effective index. We look for pairs of 

consecutive modes which may generate an OAM mode. Then, for each pair, we compute the 

linear combination  Modei+j*Modei+1 (i is the mode number in the sorted order of the first mode 

in the pair) and then check whether the result is an OAM mode or not. After that, we calculate |l| 

and m of the OAM modes. The next step is to filter out the obtained OAM modes and select some 

of them suitable for carrying data. 

The OAMl,m modes with radial order m greater than one are difficult to generate and excite 

because they have a complex modal distribution [33]. Besides, the OAMl,m mode with |l|=1 is 

prone to experience a wide pulse spreading because of the parasitic effects of the TM01 and TE01 

modes [82]. The OAMl,m mode with l=0 can be used for data communication; however, higher-

order modes (|l|>0) provide more clear scalability advantages [47]. Depending on the 

requirements of the target transmission configuration, these modes can be filtered out from the 

last selected OAM modes. In this work, we consider OAMl,m modes with m=1 and |l|>0 as data-

carrying OAM modes. 

Typically, generating linear and circular polarized vector modes is prevalent, since the 

generation of arbitrarily polarized vector modes is quite challenging. This work will focus on the 
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generation of circularly polarized OAM modes. 

We can define a number of merit factors to evaluate the quality of OAM modes. The Δneff 

(effective index separation) between the OAM mode and adjacent fiber modes should be very 

high, with a minimum acceptable value of 1e-4. The bending loss of the OAM modes should be 

very low with a maximum acceptable value of 0.0001 dB/m (@ 30 mm bending radius and 

λ=1565 nm) [33], [83]. In this work, we consider the bending loss as a criterion for selecting the 

OAM modes.  

In order to quantify the OAM character of a mode, and its polarization properties, we calculate 

mode purity, polarization purity (PP), and polarization purity factor (PPF) for each mode. 

The purity of an OAM mode is quantitatively calculated by using Fourier transform concepts. 

An OAM mode has a periodic dependence on the azimuthal angle ϕ. Therefore, the Fourier 

conjugate of ϕ is the OAM spectrum. To calculate how much a prospective  OAM mode overlaps 

with an ideal OAM mode, we need to calculate the corresponding Fourier coefficient Al. To 

calculate the coefficient Al, first, we need to take a set of sampling data points (sampling phase 

ψ(φ)) from the middle of the doughnut-shaped section of the OAM mode in the range of φ=[0 

2π]. The Fourier relationship between the sampling phase ψ(φ) and the OAM spectrum Al is 

given by equation (4-3) [84]. 

𝐴𝑙 =
1

2𝜋
∫ 𝜓(𝜙)

2𝜋

0

𝑒−𝑖𝑙𝜙𝑑𝜙 (4-3) 

The PP of a mode refers to how much its polarization deviates from perfect circular 

polarization [85], [86].  It is defined by the ratio of how much power of the mode belongs to the 

right circularly polarized (RCP) ideal OAM mode and to the left circularly polarized (LCP) one 

(equation (4-4)). 

𝑃𝑃(𝑑𝐵) = 10𝑙𝑜𝑔 |
𝑃𝑅𝐶𝑃

𝑃𝐿𝐶𝑃
| = 20𝑙𝑜𝑔 |

𝐴+𝑙

𝐴−𝑙
| (4-4) 

The PPF of an OAM mode reflects its degree of circular polarization and has a value between 

0 and 1 (equation (4-5)) [33]. 

𝑃𝑃𝐹 = (1 − 𝑒−
𝑃𝑃
𝜎 )

𝑤

 (4-5) 

where σ and w are tuning factors. The PPF has been proposed to transform the PP into a number 

that can be used to qualify acceptable levels of PP. Usually, the signal quality degradation is very 

important when polarization crosstalk (
1

𝑃𝑃
) is in the range of -10 dB to -30 dB [87]. For example, 

in the case of moderate quadrature-amplitude modulation (QAM) levels (<256), the bit-error-rate 

(BER) penalty is negligible as long as the crosstalk level is less than -30 dB. On the other hand, 

the BER is unacceptably high when crosstalk is around -10 dB, even for more robust modulations 

such as quadrature phase-shift keying (QPSK) [33]. Considering σ=5 and w=30, the PPF yields a 

curve that varies almost linearly with the PP in the range of 10 dB to 30 dB and saturates outside 

this range [33]. Assuming a minimum acceptable PP for OAM modes equals to 10 dB, the 

corresponding PPF value is 0.013. For other applications, the tuning factors σ and w should be 
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modified with respect to the acceptable levels of PP. 

In order to evaluate the performance of the OAM fibers, we require to simulate at least four 

wavelengths (λ) over the entire working bandwidth. Also, we should verify that each OAM mode 

remains valid over the entire bandwidth. Based on the defined merit factors for OAM fibers, the 

overall objective of the optimization process is to increase the number of supported OAM modes, 

Δneff, and PPF. 

In the next section, we will introduce the proposed optimization frameworks for designing 

OAM fibers. 

4.3 Optimization frameworks for designing OAM fibers 

As mentioned before, the objective of this chapter is to provide comprehensive optimization 

frameworks to maximize the number of supported OAM modes, PPF, and Δneff of OAM fibers. 

In addition, the proposed frameworks must be constructed to work independently without human 

involvement. The first step is to define the general expression for the cross-section refractive 

index profile of the OAM fiber. Subsequently, the framework automatically finds corresponding 

optimal values for the structural parameters. The proposed frameworks are divided into three 

main modules, as shown in Figure 4-2. These three modules are explained as follows: 

 
Figure 4-2 Proposed design optimization framework for designing OAM fibers. 

A. Parameters Module (P) 

Usually, there are several structural parameters for any optical device. Therefore, the structural 

parameters which need to be optimized should be defined in this module. In the case of the OAM 

fiber shown in Figure 4-1 ri, wr, ni, and nr are the corresponding structural parameters. The P 

module for this problem is given by: 

𝑃: 𝑥 = [𝑟𝑖 , 𝑤𝑟 , 𝑛𝑖 , 𝑛𝑟] (4-6) 

B. Constraints Module (C) 

In this module, all of the considerations involved in the design of an OAM fiber should be 

addressed. Hence, for the structure shown in Figure 4-1 two sets of constraints are considered. 

The first set (C1) is the available range  of structural parameters. Any additional  manufacturing 

limitations can be added to this set. The second set (C2) involves the requirements of the target 

transmission configuration. The C module for designing OAM fiber of Figure 4-1 is given by: 
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𝐶 = [𝐶1, 𝐶2],  
 

𝑪𝟏: (structural parameters 𝑟𝑎𝑛𝑔𝑒) 

1.5 𝜇𝑚 ≤ 𝑟𝑖 ≤ 14 𝜇𝑚, 
1.5 𝜇𝑚 ≤ 𝑤𝑟 ≤ 6 𝜇𝑚, 
1 ≤ 𝑛𝑖 ≤ 1.394, 
1.447 ≤ 𝑛𝑟 ≤ 1.4839 

 

𝑪𝟐: (𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑂𝐴𝑀 𝑚𝑜𝑑𝑒) 

∆𝑛𝑒𝑓𝑓 > 1𝑒 − 4, 

∆𝑛𝑒𝑓𝑓 𝑔 > 1𝑒 − 3, 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 > 0.0001 dB/m,  

𝑃𝑃𝐹 > 0.013 

(4-7) 

C. Optimizer Module (O) 

In this module, the objective function and an optimizer must be identified. The whole process 

of OAM fiber design should be formulated and considered in the objective function as shown in 

Figure 4-3. After that, the optimizer is connected to the objective function and looks for the 

optimal design(s) using an iterative process. We aim to maximize the number of supported OAM 

modes, PPF, and Δneff of OAM fibers. Note that there is a range of values for PPF and Δneff since 

these are wavelength-dependent quantities for each OAM mode. Therefore, we average the 

values of PPF and Δneff over the wavelength span of interest to come to a number that represents 

the overall quality of each OAM mode. After that, again, we calculate the average values of 

Avg(PPF) and Avg(Δneff ) for all of the OAM modes to finally come up with a single value for 

each merit factor. 

The first way to solve this multiple objective problem is to combine the different merit factors 

into a combined one, and use a single-objective optimization algorithm. Therefore, we can use 

𝐶𝑜𝑠𝑡 = 𝑂1 ∗ 𝑂2 ∗ 𝑂3 where O1 is the number of supported OAM modes, O2=mean(PPF), and 

O3=mean(Δneff). Note that we consider the number of supported modes to be equal to the number 

of EH or HE modes which satisfy the conditions mentioned earlier. Using the more usual 

convention, this would correspond to twice the number of supported OAM modes (or the number 

of OAM channels). 

The single-objective optimizer will be trying to maximize the Cost, which means that a high-

performance OAM fiber design will be achieved. 

The problem of solving such problems with the single-objective optimization approach is that 

we will lose many designs meeting the requirements, since the actual answer for the OAM fiber 

design problem is a set of optimal designs. The single-objective algorithm finds only one of 

these. To solve the problem with a multi-objective optimization approach, we consider O1, O2, 

and O3 as three independent objectives and we apply a multi-objective optimization algorithm. 

The algorithm will find the Pareto optimal set of solutions which represent the best trade-offs 

among the objectives [73]. 

For the optimization work, several single- and multi-objective metaheuristic optimization 

algorithms can be used [21], [22], [24], [88]–[91]. We choose the Grey Wolf Optimizer (GWO) 

[21], [24], [91] since this algorithm has proved its performance in various fields of engineering 
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[92]. This algorithm simulates the collaboration and leadership of gray wolves when they want to 

hunt prey. One additional property of this algorithm is that it can explore the search space 

without being stuck in local minima [92]. This is very useful since the problem of designing 

OAM fibers is complicated [92]. 

We have designed an algorithm to manage the evaluation of OAM fibers and to calculate the 

merit factors, as shown in Figure 4-3. In this flowchart, firstly, a candidate OAM fiber design is 

evaluated @ λ = 1.55 μm. If the structure provides one or more OAM modes, the rest of the 

calculations will be done. Otherwise, the rest of the simulations/calculations are bypassed. By 

doing so, the process of evaluating a candidate OAM fiber design will be sped up. In [33], the 

authors use two FEM simulations for evaluating each candidate design. For sure, two simulations 

are not enough to calculate the behavior of Δneff over the entire bandwidth. We found out that 

four simulations or more over the entire bandwidth are required to evaluate the structures 

properly. Since FEM simulations are computationally expensive, we added two yes/no condition 

sections in the flowchart (Figure 4-3) to avoid unnecessary simulations. The second condition is 

added because sometimes a selected mode reaches the cutoff wavelength. Hence, it is necessary 

to verify that the selected modes are available over the entire working bandwidth. 
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Figure 4-3 Flowchart of the objective function for the design optimization of OAM fibers. 

The candidate design to be 
evaluated:

x=[x1 x2 x3 x4]

Initial FEM simulation @ 
λ=1.55µm 

Find each two consequence 
modes which their combination 

generates an OAM mode.

Yes

Number of OAM 
modes > 0

FEM simulation to evaluate the modal 
characteristics of OAM modes over the 

rest of working wavelength range.
λ(µm)=

[1.53 1.55) (1.55 1.565] 

Calculate the following characteristics 
for each obtained OAM mode over the 

entire bandwidth: 
Polarization purity factor → PPF

 neff → Dneff

Infeasible design

No

Output=[O1 O2 O3] Output=[-1e20 -1e20 -1e20]

Verifying the consistency of OAM 
modes over the entire bandwidth.

No

Calculate:
O1=Number of OAM modes

O2=mean(PPF)
O3=mean(Dneff)

Many vector modes are obtained.

Sort the obtained modes based on 
Real(neff).

Based on the X values, adjust the 
cross-section refractive index 

profile of the fiber.

Select OAM modes which have:
Bending loss<0.0001 dB/m,
 neff>1e-4,  neff g>0.7e-3, and 

PPF>0.013

Omit the OAM modes which do not 
satisfy (Bending loss<0.0001 dB/m, 
 neff>1e-4,  neff g>0.7e-3, PPF>0.013) 
for each λ over the entire bandwidth.

Yes
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In the case that a candidate design cannot satisfy first or second yes/no condition, the rest of the 

calculations are skipped. Since the objective function should have a set of values for its output in 

each point in the search space, a set of values should be assigned for such cases (infeasible 

designs). We consider a value of -1e20 for each merit factor, which is much worse than that of a 

normal valid design. 

In the next section, we solve the problem of OAM fiber design with single- and multi-objective 

optimization approaches and provide a comparative study. 

4.4 Results and discussion 

After the proper set up of the modules, the framework was ready to design OAM fibers. 

a) Single-objective optimization approach: 

To solve the problem with a single-objective optimization algorithm, we used the single-

objective version of GWO with 30 artificial grey wolves and up to 200 iterations. Artificial grey 

wolves start searching for the best solution from random positions in the search space. Through 

an iterative process, each artificial grey wolf updates its position until they reach the maximum 

iteration value. The maximum of 200 iterations is high enough so that we can be confident that 

the best solution (or a solution near it) has been found. The history of GWO searching is shown 

as a convergence curve in Figure 4-4. Also, the effective indices (neff) and the effective index 

differences (Δneff) as a function of wavelength over the bandwidth are also shown in Figure 4-5a 

and 5b. In the effective index differences graph (Figure 4-5b), we show the effective index 

distance between the different found modes. The graph shows that the optimized design has no 

modes with effective indices closer than 1e-4, even for pairs of modes with the same OAM order 

(solid lines), and that the distances to modes with different OAM order (dashed lines) are always 

larger than 2e-4, with mostly larger than 1e-3. 

The obtained optimal structural parameters and corresponding output merit factors are shown 

in Table 4-1. In this table, we also show some of the obtained designs during the search. The final 

optimal design was found at the 107th iteration, which maximized Cost value. The designs 

obtained in iterations 7 and 55 show a higher number of supported OAM modes than that of the 

final optimal designs. Since the algorithm just considers the overall Cost value, it finally reached 

a design that shows the highest Cost value. This conflicting behavior among the output merit 

factors shows that this problem is intrinsically a multi-objective problem. 

 To justify the obtained design, we compare it with the best design of [33] since both have the 

same material in their structures. We have obtained 14 OAM modes; however, 4 modes are 

obtained in [33]. In this work, we do not sacrifice or dismiss any condition. With a more proper 

problem formulation, we could reach a better design.  

Although the obtained result is satisfactory, the problem can be solved with a more 

comprehensive approach. As it has already been mentioned, this problem is a multi-objective 

problem and its actual solution is a set of optimal solutions. The single-objective optimizer can 

find only one of these optimal solutions.  Therefore, we are more interested in solving the 

problem with a multi-objective approach. 
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Figure 4-4 Convergence curve of single-objective GWO optimization. 

 

Table 4-1: Properties of obtained structures by single-objective GWO 

 Structural parameters Output merit factors  

Iter ri  (μm) wr (μm) ni nr 
# of 

OAMs 

Avg 

(PPF) 

Avg 

(Δneff) 
Cost |l| 

3 8.587 2.653 1.139 1.484 8 0.999 9.00E-04 6.90E-03 3 3 4 4 5 5 6 6 

7 14 1.589 1.394 1.484 18 0.997 7.00E-04 1.20E-02 
3 4 4 5 5 6 6 7 7 8 8 

9 9 10 10 11 11 12 

55 12.432 2.271 1.278 1.484 17 0.976 8.00E-04 1.27E-02 
3 4 4 5 5 6 6 7 7 8 8 

9 9 10 10 11 11 

70 9.438 1.985 1.266 1.484 14 0.996 1.00E-03 1.46E-02 
3 3 4 4 5 5 6 6 7 7 8 

8 9 9 

107 8.567 2.238 1 1.484 14 0.998 1.20E-03 1.62E-02 
3 3 4 4 5 5 6 6 7 7 8 

8 9 9 
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Figure 4-5 a) Effective indices (neff) as a function of wavelength over the C-band of optimal design obtained by 

single-objective GWO. The colored lines show the selected modes and the black dashed lines are other fiber modes. 

b) Effective index differences (Δneff) as a function of wavelength over the C-band of optimal design obtained by 

single-objective GWO. The solid lines correspond to the difference for modes with the same OAM order, and that 

the dashed lines correspond to the distance between OAM modes to other OAM or fiber modes. 

b) Multi-objective optimization approach: 

The O1, O2, and O3 figures of merit show conflicting behavior (for instance, when O1 increases 

O3 decreases). Hence, it means that the problem of designing OAM fibers is intrinsically multi-

objective. For this section, we used the multi-objective version of GWO (MGWO) with 30 

artificial grey wolves and up to 200 iterations. In general, these algorithms start searching from 

random positions. In order to make the searching process easier and faster, the optimal design and 

some of the decent designs obtained by GWO in the previous section were fed to the MGWO as 

initial guesses. Finally, the optimization ended with 48 optimal designs. The search history of the 

MGWO and the Pareto front (Pareto optimal solution) is depicted in Figure 4-6 and 4-7. As it can 

be seen from the figures, a wide range of optimal designs are obtained, which are suitable for 

specific applications. Some of the obtained designs having a high number of supported OAM 

modes are shown in Table 4-2. All of the obtained designs have a very high Avg(PPF). This is 

because of selecting proper modes and optimizing the structure to maximize Avg(PPF) as well as 

the other merit factors. In order to examine the performance of the obtained optimal designs in 

detail, we selected two optimal designs from Table 4-2 which are the best designs in terms of the 

number of supported OAM modes and Avg(Δneff). The effective indices (neff) and the effective 

index differences (Δneff) as a function of the wavelength of those two designs are shown in Figure 

4-8. 

The next step after finding the set of optimal solutions is to select an optimal design which is 

the best match with the requirements of the target transmission configuration. That is to say, we 

select the design with the trade-off best matched to the configuration between the performance 

merit factors. For example, in a case where we need 28 channels (14 OAM modes) and Δneff >1e-

4, first, we remove from consideration any designs with less than 14 supported OAM modes. 

Since for all of the designs the condition of Δneff >1e-4 is satisfied, we just need to sort the rest of 

the designs with respect to Avg(PPF). The optimal design with the highest Avg(PPF) is the best 

choice for this example.  

The proposed method in this study can find a wide range of high-performance optimal designs. 
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The advantage of the proposed method is that we can easily define a new complex cross-section 

refractive index profile for an OAM fiber and let the optimizer find a wide range of optimally 

designed structures without human intervention. Finally, this method opens up a new way of 

designing high-performance OAM fibers for any target transmission configuration. 

 

Figure 4-6 Search history of multi-objective GWO with some marked designs. The gray points are the evaluated 

designs during the search and the colorful points are the final optimal designs. The blue and green points represent 

the best designs in terms of the number of supported OAM modes and Avg(Δneff), respectively. 

 

 

Figure 4-7 Pareto optimal solution of multi-objective GWO with some marked designs. 
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Table 4-2: Properties of obtained structures by multi-objective GWO 

 label Structural parameters Output merit factors  

No.  ri  (μm) 
wr 

(μm) 
ni nr 

# of 

OAMs 

Avg 

(PPF) 
Avg(Δneff) |l| 

1 Blue 11.04 2.182 1.147 1.481 18 0.996 9.00E-04 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 

2  9.532 2.252 1 1.484 16 0.991 1.10E-03 1 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 

3  10.943 2.189 1.207 1.482 16 0.986 9.00E-04 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 

4  8.972 1.95 1.224 1.484 15 0.991 1.00E-03 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 

5  11.112 2.322 1.197 1.484 15 0.998 9.00E-04 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 

6  8.567 2.238 1 1.484 14 0.998 1.20E-03 3 3 4 4 5 5 6 6 7 7 8 8 9 9 

7  8.567 2.238 1 1.484 14 0.998 1.20E-03 3 3 4 4 5 5 6 6 7 7 8 8 9 9 

8  8.553 2.096 1.186 1.484 13 0.999 1.10E-03 2 3 3 4 4 5 5 6 6 7 7 8 8 

9  9.277 1.917 1.112 1.483 13 0.996 1.00E-03 3 4 4 5 5 6 6 7 7 8 8 9 9 

10  7.795 2.038 1.128 1.484 12 0.999 1.20E-03 3 3 4 4 5 5 6 6 7 7 8 8 

11  8.243 2.227 1.119 1.484 12 0.999 1.20E-03 3 3 4 4 5 5 6 6 7 7 8 8 

12  8.459 2.133 1.202 1.484 12 0.999 1.10E-03 3 3 4 4 5 5 6 6 7 7 8 8 

13  8.516 2.052 1.224 1.484 12 0.999 1.10E-03 3 3 4 4 5 5 6 6 7 7 8 8 

14  8.623 2.225 1.091 1.484 12 0.998 1.10E-03 3 3 4 4 5 5 6 6 7 7 8 8 

15  8.727 2.341 1.132 1.484 12 0.999 1.10E-03 3 3 4 4 5 5 6 6 7 7 8 8 

16  8.792 1.964 1.164 1.48 12 0.999 1.00E-03 3 3 4 4 5 5 6 6 7 7 8 8 

17 Green 1.702 3.127 1.338 1.484 5 0.988 3.10E-03 1 3 3 4 4 
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Figure 4-8 a, b) neff(λ) and Δneff(λ) of the best designs in terms of the number of supported OAM modes (marked 

with blue color in Figures 4-6 and 4-7). c, d) neff(λ) and Δneff(λ) of the best designs in terms of Avg(Δneff) (marked 

with green color in Figures 4-6 and 4-7). 

4.5 Conclusion 

In summary, we have presented a case study on the design of an OAM fiber using frameworks 

involving single- and multi-objective optimization algorithms. The proposed frameworks can 

effectively design the cross-section refractive index profile of a newly introduced OAM fiber and 

optimize the design for any target transmission configuration. No human intervention, simplicity, 

and straightforward implementation are the advantages of the proposed framework. Moreover, 

manufacturing constraints and other merit factors can be  added to the frameworks in a 

straightforward fashion. In addition, various optimization algorithms can be easily used to 

achieve a wide range of optimal designs. Eventually, the proposed framework opens up an 

effective way of designing high-performance OAM fibers for any target transmission 

configuration and paves the way for the development of optical communication systems based on 

OAM-modulation. 
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Chapter 5: Optimization Frameworks for Designing Photonic Crystal 

Filters 

5.1 Introduction 

This chapter is based on the paper published in the Journal of Applied Optics [2]. Recently, 

Photonic Crystal (PhC) devices attract much attention due to their wide range of applications. 

The phenomenon of the bandgap of PhC structures and the results of the defect creation in such 

structures provide the opportunity to manipulate the light for specific purposes. The behavior of 

light propagation and the modeling of the internal process in such structures are usually very 

challenging tasks. In addition, such devices are usually designed by human involvement in 

tedious non-systematics efforts due to the complexity of the relationship between the device 

output performance and its structural parameters, a large number of structural parameters, and the 

lack of the analytical method for designing devices [93]–[98]. 

The focus of this chapter is on PhC filters. PhC ring resonator [99]–[101], PhC cavity [102], 

and PhC filter based on defect mode [103] are some of the prominent types of such devices. As 

mentioned above, such devices are usually designed with tedious non-systematics efforts. The 

main gap in the literature is the lack of a comprehensive and automatic method for designing 

PhCs filters. 

The aim of this chapter is to propose a framework as a steppingstone to fill this gap which 

assists researchers in designing every kind of PhCs filter considering all issues in optical filters. 

Our proposed solution to this problem is the use of artificial intelligence techniques to bypass 

discovering the relationship between the outputs and the structural parameters. 

This approach has been followed in the literature as maximizing Quality factor (Q) of PhC 

cavity [104]–[106], minimizing of bend loss of PhC waveguide [107], designing PhC notch-filter 

[108], slow light characteristic optimization of PhC waveguides [66]–[71], [109], and PhC LEDs 

designing [65]. 

In this chapter, we proposed a novel multi-objective optimization framework for designing any 

kind of PhC filter. The aim of this framework is to design such devices with considering and 

handling all the issues in the optical filters designing process.  Parameters, Constraints, and 

Optimizer module  are the main parts of this framework. All of the concepts are presented with an 

example of designing a new six channels Wavelength Division Multiplexer (WDM) with regard 

to the WDM standard defined by ITU-T Recommendation G.694.2 [103]. Six channels with 

20nm channel spacing from 1490~1590nm window are considered in this standard. Also, the 

maximum deviation of central channel wavelength from the standard defined channel center must 

not be more than 2nm. 

5.2  PhC filter Structure and Related Issues 

A leakage mode is generated in the photonic bandgap by introducing defects in a photonic 

crystal lattice. This leakage mode guides a narrowband of spectral wavelength. Therefore, such 

structures can be utilized as narrow band filters. 

Achieving desirable optical PhC filters is mainly done by designing structural parameters of the 

defects. It is obvious that the flexibility to manipulate the light of PhC filters is directly related to 

the pattern and the shape of the defect region. The more rods involved in defect region, the more 

flexible the PhC filter structure, and the more complexity and difficulty for designing such 
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structures. 

WDM is a bunch of optical filters, which can be assumed as a popular application of optical 

filters. In this work, we aim to design PhC filters for applications in WDM. The proposed layout 

of the WDM is shown in Figure 5-1. In order to simplify the process of designing the WDM, we 

design each filter cell separately. To  do so, it is necessary to minimize the effects of adjacent 

filters. Therefore, in order to minimize such effects, we considered large enough spaces (5 rods) 

between every two adjacent filters. It is worth mentioning here that the propagation of the 

electromagnetic wave (light) in such devices follows a complicated behavior. Therefore, the 

waveguide region must be considered in addition to the filter cell to prepare the similar situation 

in which the filter cell works (in WDM). In other words, the effect of adjacent filters in WDM 

must be considered while designing each filter. Hence, if the waveguide region is not considered, 

the final designed PhC filter will not work properly in its place in the WDM. The final filter cell 

for separately designing is shown in Figure 5-2. 

The PhC lattice consists of pillars of In0.53Al0.16Ga0.31As in air background with the square 

array pattern. For an incident wavelength at 1.55 µm, the refractive index of In0.53Al0.16Ga0.31As 

rods is 3.19. The radius of rods of this structure is considered as R=0.185a [103]. The reason for 

selecting this value is reaching the maximum photonic band gape. Therefore, wider photonic 

bandgap provides wider operational window of wavelength to be filtered. For the simulation of 

this device Finite-Difference Time-Domain (FDTD) simulator will be used. Since the 

optimization process requires an extremely large number of function evaluations (simulations) 

and 3D simulation is computationally very expensive, it is not reasonable to use 3D FDTD 

simulations. Instead, 2D FDTD simulations with effective index method [110] and effective 

period method [111] provide very fast and accurate simulations which reduce the required 

resources by 2–3 orders of magnitude. The effective period method uses the effective index 

method in its internal process, so it is a more sophisticated method to estimate actual simulation 

with 2D simulation.  

In the effective period method, the actual value of refractive index will be utilized in 2D 

simulations. The only thing that is necessary to be modified is the period of the lattice as follows 

[111]: 

𝑎𝑒𝑓𝑓 =
𝑛𝑒𝑓𝑓

𝑛𝑏𝑢𝑙𝑘
𝑎 (5-1) 

where 𝑎𝑒𝑓𝑓 is the effective period, 𝑛𝑒𝑓𝑓 indicates the effective index which is calculated by 

effective index method of [110], 𝑛𝑏𝑢𝑙𝑘 signifies the refractive index of bulk, and 𝑎 shows the 

period or lattice constant. 

The height of the rods is considered as 400 nm, which gives  𝑛𝑒𝑓𝑓 = 2.89. Since the central 

normalized frequency of photonic bandgap placed on 0.389, the lattice constant is 𝑎 = 0.389 ∗

1550 = 603 𝑛𝑚. As such, 𝑎𝑒𝑓𝑓 =
2.89

3.19
∗ 603 = 546 𝑛𝑚. Overall, the device simulations will be 

done by considering the actual value of refractive indexes and 𝑎𝑒𝑓𝑓 of 546 𝑛𝑚 during 2D FDTD 

simulations. 

 



 

40 
 

 
Figure 5-1 The proposed WDM layout. 

The output spectral transmission performance of a sample case is calculated by FDTD 

simulation for TM-polarization (the electric filed parallels the rod axis) and shown in Figure 5-3. 

In order to prepare the PhC filter designing problem for multi-objective optimization, three merit 

factors are defined as follows [62]: 

• Ampc indicates the maximum amplitude of filter output in channel range 

• Amps represents the maximum amplitude of filter output in the WDM working bandwidth 

(1480-1600nm) outside the channel region.  

• Deviation represents as the absolute value of subtraction of central wavelength of the output 

filter peak (𝜆𝐶) to the defined central wavelength of channel (𝜆𝑂) (𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |𝜆𝐶 − 𝜆O|).  

Ampc, Amps and Deviation are illustrated in Figure 5-3. 
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Figure 5-2 Proposed PhC filter according to super defect structure with waveguide. The radii of defect rods 

considered as the structural parameters. 

 

 
Figure 5-3 The output spectral transmission performance of a sample case of PhC filter. 

5.3 Single- and multi-objective optimization frameworks for designing PhC filters 

The main idea of obtaining optimal PhC filter designs is to propose a PhC filter structure in 

which Ampc is maximized while Amps and Deviation are minimized. Due to the complexity of the 

relationship between the merit factors and structural parameters, proposing analytical methods for 

designing such devices is very difficult, and in some cases, it is almost impossible to  achieve. 

This is the reason why we develop a multi-objective framework which finds optimum PhC filters 

without human involvement. This framework consists of three main modules as follows (Figure 

5-4): 
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Figure 5-4 Proposed single- and multi-objective optimization frameworks for designing PhC filters. 

A. Parameters Module (P) 

In this module structural parameters are defined and handled. In other words, all of the 

structural parameters, which the best values for them will be found, must be identified in this 

module. The P modules for this super defect PhC filter (Figure 5-2) is as follows: 

𝑃: 𝑥 = [
𝑅1

𝑎
,
𝑅2

𝑎
,
𝑅3

𝑎
,
𝑅4

𝑎
,
𝑅5

𝑎
] (5-2) 

B. Constraints Module (C) 

Most of the issues in the process of PhC filter designing are considered in this module. Three 

groups of constraints are considered here  to address such issues: parameters range (C1), Amps 

limitation (C2), and Deviation limitation (C3). The first set of constraints indicates the 

manufacturing limitations and structural parameters ranges, the second constraint is for 

legitimating narrow band filtering operations, and the third constraint is applied for handling 

Deviation safe interval. The C module for the proposed super defect filter cell (Figure 5-2) is as 

follows: 

𝐶 = [𝐶1, 𝐶2, 𝐶3], 

𝐶1: 0 ≤
𝑅1

𝑎
,… ,

𝑅5

𝑎
≤ 0.5, 

𝐶2: 𝐴𝑚𝑝𝑠 < 𝐴𝑚𝑝𝑐 , 

𝐶3: 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≤ 2 𝑛𝑚 

(5-3) 

C. Optimizer Module (O) 

Two components should be identified for O module: objective functions and optimizer. The 

objective function for the single objective optimizer is the combination of the merit factors as 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
𝐴𝑚𝑝𝐶

𝐴𝑚𝑝𝑆+𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 [62]. The optimizer should maximize this aggregated objective 

function in order to achieve a high performance PhC filter.  Optimization with respect to this 

objective causes some issues described in the next section. 

The objective functions for the multi-objective optimizer are Ampc, Amps and Deviation. The 

optimizer should find the PhC filter structures in which Ampc is maximized while Amps and 

Deviation are minimized. 

Diverse optimization techniques can be used in the optimizer component [22], [89], [90]. We 
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choose the single and multi-objective version of the Grey Wolf Optimizer (GWO) algorithm for 

the optimizer [21], [24], [91]. This algorithm mimics the leadership and social behavior of grey 

wolves in nature and proves its performance in different fields of engineering. Our main 

motivation to choose this algorithm is the high local optima avoidance. Since the problem 

investigated in this work has a large number of variables, the search space is very difficult to 

explore and there is a lot of local solutions.  

Note that multi-objective problems have more than one objective function. Due to the nature of 

such problems, there is no single solution for them. Instead, a set of optimal solutions called the 

Pareto-optimal set is the answer of multi-objective problems, representing the best trade-offs 

between multiple objectives [73]. 

5.4 Results and discussion 

After setting up each module, the single- and multi-objective frameworks are ready to optimize 

the structures of the proposed PhC filter. Technically speaking, the optimizer systematically 

checks different possible combination of variables in order to achieve high performance 

design(s).  

Single objective optimization scheme: 

The aim of this optimization process is to maximize the 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
𝐴𝑚𝑝𝐶

𝐴𝑚𝑝𝑆+𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
. As the 

Ampc increases and the Amps+Deviation decreases, Objective increases. To achieve a high 

performance PhC filter, therefore, optimizer simply considers 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 as the objective 

function and tries to find its maximum value. 

We utilized single-objective version of GWO with 24 artificial gray wolves during the 400 

iterations to approximate the global optimum for this problem. The results of GWO are shown in 

Table 5-1. In this table Q represents the quality factor and calculates as 𝑄 = 𝜆0/Δ𝜆. The high 

value of Qs indicates that the optimal design satisfies the conventional merit factor (Q) as well as 

our merit factors (𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒). The  convergence curve and the output spectral transmission 

performance of the PhC filters of Table 5-1 are shown in Figure 5-5 and Figure 5-6. 

Convergence curve is a very common tool to qualitatively present results of a single-objective 

optimization algorithm. This curve shows that the best design is found up to an iteration. In other 

words, GWO starts searching for the best design with random initialization. In iteration 1, it 

found a design with Objective=0.198. It continued searching to find a better design. During 

iterations 2 to 23, GWO did not find a better design in terms of Objective. In iteration 24, a 

design with Objective=0.242 has been found. Therefore, GWO continues searching until the 

iteration 197. In that iteration a design with Objective=7.014 was found. After that, between 

iteration 198 to 400, no better design has found. It shows that we can be confident that the best 

design with respect to merit factor of Objective has found. If you wonder why the convergence 

curve remains constant for a certain number of iteration, this is because of the stochastic nature of 

GWO and other similar algorithms. The random changes in the solutions periodically increase to 

avoid entrapping of the algorithm in local solutions. For search space with many local solutions, 

such techniques never show a constant drop or climb in the convergence curve. 
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Table 5-1 Properties of obtained structures during single-objective optimization 

Iter R1 R2 R3 R4 R5 Ampc Amps D(nm) Objective Q 

1 105 237 205 236 64 0.176 0.0017 0.886 0.198 1017 

24 9 197 204 168 267 0.1 0.0023 0.409 0.242 678 

25 85 243 195 272 101 0.197 0.0019 0.257 0.759 1018 

49 146 141 272 52 56 0.144 0.0089 0.028 3.911 957 

197 142 147 168 20 57 0.202 0.0008 0.028 7.014 1163 

Unit of Rx is nm. 
 

 
Figure 5-5 Convergence curve of single-objective optimization of the PhC filter. 
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Figure 5-6 The output spectral transmission performance of the PhC filter designs of Table 5-1. 

Multi objective optimization scheme: 

The conflicting behavior of the Ampc, Amps and Deviation shows that this problem is 

intrinsically multi-objective. As mentioned before, there is no single solution for a multi-

objective problem, therefore a set of optimum solutions representing the best trade-offs between 

multiple objectives is the answer to these problems. Combining these merit factors and solving 

the problem with the single objective optimization approach results in finding only a member of 

the set of optimal solutions. It is worth mentioning here that all the members of the set of optimal 

solutions are the best optimal designs and no one is better than others when considering multiple 

objectives. A good analogy is to purchase a laptop. Two objectives would be performance and 

price. A laptop that has high performance but more expensive is not better than a laptop with low 

performance but cheap. If we consider either performance or price, we can say one of those 

laptops are better. However, both laptops are good when considering two objectives. It is worth 

noting here that a laptop of low performance and expensive is definitely worse than the other two.  

Further explanation about the set of optimum solutions is provided in the next paragraph. 

Multi-objective version of GWO with 72 artificial gray wolves and 200 iterations are utilized 

here to find the set of optimum solutions. MOGWO managed to find 54 optimal designs at the 

end of optimization process. The search history of multi objective optimization and Pareto front 

(Pareto optimal solution) are depicted in Figure 5-7 and 5-8.  In order to justify these results, the 

characteristics of some of the designs presented in Figure 5-7 and 5-8 are shown in Table 5-2 and 

their output spectral transmission performances are plotted in Figure 5-9. The comparison of the 

Pareto optimal solutions (Figure 5-8) and the optimal design which was found by-single objective 

approach indicates that the optimization with respect to a single objective approach results in 

loosing of many decent designs which are suitable for specific applications. The high value of Qs 

of the designs also indicates that the obtained designs satisfy the conventional merit factor (Q). 
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Figure 5-7 Search history of multi objective optimization with some marked designs. 

 

 
Figure 5-8 The Pareto front (Pareto optimal solution) of multi objective optimization approach with some marked 

designs. 
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Table 5-2 Optimum structures of multi-objective optimization approach which are marked in Figure 5-7 and 5-8. 

Label R1 R2 R3 R4 R5 Ampc Amps D(nm) Q 

S1 168 174 119 180 47 0.285 0.0116 3.866 858 

S2 79 195 58 172 71 0.258 0.0023 1.114 905 

S3 126 175 66 185 76 0.258 0.0047 0.733 856 

S4 172 175 87 181 85 0.255 0.004 0.067 708 

S5 76 207 57 173 69 0.219 0.0008 1.779 1086 

S6 112 204 66 173 58 0.17 0.0004 0.314 1252 

Unit of Rx is nm. 
 

 
Figure 5-9 The output spectral transmission performance of the PhC filter designs of Table 5-2. 

5.5 Wavelength division multiplexer (WDM) designing by using optimal filter cells 

We have utilized the multi-objective approach for designing the other 5 channel of utilized 

WDM standard [103]. After finding the set of optimum solutions, the next step toward the WDM 

designing is to select a design of each channel. Hence, the similar structures in terms of Ampc 

were chosen. Finally, six selected design are placed side by side to implement the desirable 

WDM. The characteristics of the designed WDM with optimal filter cells is shown in Table 5-3. 

The structure and the output spectral transmission performance are also shown in Figure 5-10 and 

5-11. 

Table 5-3 shows that the Ampss are very low. It shows that cross talk of this WDM is very low 

(-35.1dB) in the worst case. In addition, very low Deviation values of all channels shows the 𝜆𝐶 

is located correctly. In addition, the magnitudes of Q factors are so high which indicates that the 

designed WDM satisfies the conventional merit factor. Overall, the substantial characteristics 

prove that the WDM is well designed and totally matched up with the corresponding WDM 

standard (ITU-T Recommendation G.694.2 [103]). 

The comparative study in Figure 5-11 shows that the WDM obtained using the multi-objective 

approach has a higher overall performance compared to the similar designs in term of utilized 

WDM standard in [103] and [62]. Note that all of the three structures in this figure were 
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stimulated with the same input power. The advantages of the proposed method in this study, 

which result in having the higher performance  design, are because of two reasons. The first 

reason is due to the use of the super defect instead of a simple defect to provide much flexibility 

in manipulating the guided light through the defect. The second reason is to utilize the systematic 

multi-objective optimization method to find the suitable design for each channel. 

All in all, the multi-objective optimization technique is an easy and comprehensive method for 

designing the complex super defect PhC filters with a large number of structural parameters. 

Furthermore, this method opens up a way towards designing complicated and very high 

performance PhC filters, which is almost impossible to achieve by the current try and error 

process. 

The Designed WDM in Table 5-3 requires a 1 nm manufacturing resolution. Based on the 

fabrication process of photonic crystal structures which was reported in [112], [113], it can be 

stated that this structure is feasible to build considering the current fabrication process. To 

investigate the influence of some fabrication tolerances, 100 random values between [-1nm, 1nm] 

are added to the radiuses in 100 independent simulations. The calculated results showed that the 

average of Ampcs, maximum of deviations and worst case Cross talks are still good enough to rest 

assure that the fabricated device works properly. The output spectral transmission performance of 

these simulations are shown in Figure 5-12. 

Table 5-3 Calculated properties of the designed WDM with optimal filter cells. 

channel # R1 R2 R3 R4 R5 Ampc Amps D(nm) Q 

1 111 172 124 161 139 3.71 0.01 0.39 1731 

2 128 166 155 163 117 5.18 0.02 0.69 1232 

3 131 154 183 67 131 5.15 0.02 0.66 1413 

4 172 175 87 181 85 4.81 0.13 0.09 759 

5 158 168 202 205 41 6.38 0.09 0.33 761 

6 197 119 143 193 87 6.2 0.02 0.02 1258 

The unit of Rx is nm. 
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Figure 5-10 The WDM designed with optimal filter cells. 

 

 
Figure 5-11 The output spectral transmission performance of the WDM structure in [103] (a), Designed WDM by the 

single-objective approach in [62] (b) and this work (c). Note that all structures are simulated with the same input 

power. 
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Figure 5-12 The output spectral transmission performance of the designed WDM during the 100 simulations in 

which the structural parameters fluctuated randomly. 

5.6 Conclusion 

In summary, the case study investigated showed that the proposed multi-objective framework 

is able to effectively design and optimize the structure of the newly introduced PhC filter in this 

chapter. The proposed framework is also applicable to any kind of complicated super defect PhC 

filters. Different structures can be formulated and designed with respect to any filter standard. 

This method does not require human involvement to provide an initial design to start the 

optimization. Moreover, there is the possibility to add any manufacturing limitation in the C 

module. Various multi-objective algorithms can be easily utilized to implement the optimizer 

module in order to achieve a wide range of optimal designs. Finally, the proposed multi-objective 

framework opens up an effective way for designing WDM filter cells with respect to any WDM 

standards. 
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Chapter 6: Radiation Pattern Design of Photonic Crystal LED 

optimized by using Multi-objective Grey Wolf Optimizer 

6.1 Introduction 

This chapter is based on the paper published in the Journal of Photonic Network 

Communications [3]. To date, Photonic Crystal (PhC) structures cover a wide range of 

applications in the field of optics and photonics. An interesting application of such a structure is 

enhancing the performance of Light-Emitting Diodes (LED). In LED devices, the generated light 

in the active region must be extracted from the device as much as possible. That is to say, an LED 

without a well-designed guiding path of generated photons does not show a significant irradiance. 

There are some works in the literature on increasing the Extraction Ratio (ER) of LEDs by using 

a Photonic Crystal (PhC) slab [114]–[116], in which a PhC layer is placed in the top of active 

regions to enhance the ER. The complex, often ill-defined relationship between the structural 

parameters and the device output has prevented researchers from suggesting the analytical 

method for designing the PhC layer. Due to the lack of an analytical method for designing PhC 

layer, therefore, the PhC layers have been designed manually by trial and error techniques. This 

drawback has been tackled and alleviated in 2015 [65], where a multi-objective artificial 

intelligence optimizer was used to maximize the ER and Purcell Factor (PF) of PhC LED. In fact, 

the process of discovering the relation between the structural parameters and the device outputs 

was bypassed. The results of this study showed that a multi-objective optimizer is able to find 

optimal designs for PhC LEDs as far as ER and PF are concerned. 

Although by the aforementioned approach PhC LEDs can be designed, another issue is not 

considered; the radiation pattern of final optimal designs shows a dissipate distribution of light 

intensity. Hence, optimization with considering just ER and PF does not ensure controlling the 

shape of the radiation pattern. This motivated our attempt to propose an optimization framework 

for shaping the radiation pattern for specific applications in this work. The rest of this chapter is 

organized as follows:  

Section 6.2 explains the PhC structure and related issues which should be considered during the 

designing process. In Section 6.3, the problem formulation for the radiation pattern shaping of 

PhC LEDs is described. The results of optimization on the case study PhC LED are provided in 

Section 6.4. Finally, Section 6.5 concludes the work. 

6.2 PhC LED Structure and Related Issues: 

The case study (see Figure 6-1) investigated here is the green PhC LED (520nm). In order to 

increase the flexibility of the structure to guide the generated light, it is necessary to have a large 

number of structural parameters. Therefore, we have considered each section independent with a 

unique structural parameter. The reason why we considered a symmetrical structure is that we 

want to design an LED in which the output radiation pattern has a symmetrical form. So, the 

symmetrical structure provides such a desired output. In addition, by using a symmetrical device, 

just half of the device can be simulated. It significantly reduces the simulation time and speeds up 

the optimization process. 
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Figure 6-1 1D PhC LED structure which is utilized as a case study. The thickness of the top, active region, and 

bottom layer are 0.85, 0.7, and 0.15 µm. 

The PhC layer of the case study consists of seven independent structural parameters (W0-5 and 

Depth).  It is worth mentioning that most of PhC LED designs use equal values of W0-W5, but the 

modeling method of this chapter considered a situation where W0-W5 are different. The reason 

why we considered such situation is that in order to increase the flexibility of the structure to 

guide the generated light, it is necessary to have a large number of structural parameters which 

can be tuned separately. In other words, we want to shape the radiation pattern. Therefore, by 

using equal values of W0-W5, there is not enough flexibility to manipulate the structural 

parameters and shape the radiation pattern.  

The separation of the grating (Period) is 0.6 µm. For manipulating the light within a photonic 

crystal structure, the value of structural parameters must be in the same order of light wavelength. 

Since we want to provide a comparative study to justify the performance of the proposed method, 

the structure proposed in [116] is used as the case study. Generally, the separation of the grating 

can be defined as an independent structural parameter. Therefore, the optimization framework 

will find its optimal value. 

 The existing analytical methods for gratings in such structures are not robust enough to 

perform the optimization. This is mainly because the structure under study is a non-uniform and 

non-periodic grating. In order to simulate the unpolarized and incoherent behavior of the 

generated light in the active region, eleven incoherent dipole sources are considered within the 

active region [117], [118]. They are placed directly below the grating. The results of three 

coherent FDTD simulations in the three orthogonal directions for each dipole are incoherently 

combined together. Therefore, the eleven sets of results which correspond to eleven dipoles are 

incoherently combined together. By doing so, the intrinsic behavior of the incoherent generated 

light in the active region will be simulated. Therefore, the light source which is utilized to 

simulate the LED is a narrow bandwidth Gaussian pulse centered on the wavelength of 520nm. 

This light source corresponds to the generated green light of PhC LED. Basically, simulations 

have been done for a wide range of wavelengths, whereas the analysis of the LED has been done 

for the visible wavelength range (400-700 nm). Note that a homogeneous refractive index is 

assumed in the LED. In addition, the condition of the bottom boundary is Perfect Electric 

Conductor (PEC) to model the mirror, and the rest are Perfectly Matched Layer (PML). 

The radiation pattern of the three sample cases is shown in Figure 6-2. As mentioned before, 

optimization with considering just ER and PF does not provide any control to shape the radiation 

pattern. Therefore, the process of formulating the device designing problem is provided in the 

next section. 
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Figure 6-2 Radiation pattern of three designs of the structure which is shown in Figure 6-1. The flat LED (W0-5 and 

Depth=0), structure propose in [116], and optimal design (S5) in [65]. 

6.3 Problem formulation for the radiation pattern shaping: 

The problem formulation is divided into three main phases: variable identification, constraint 

identification, and optimizer phase. As its name implies, the variable identification phase finds 

the structural parameters of the PhC layer of the LED. The constraint identification phase 

identifies the constraints applied to the range of the structural parameters and the fabrication 

limitations. The optimizer phase consists of two sections: multi-objective cost (objective) 

function and multi-objective optimizer. The first aim of radiation pattern shaping is focusing the 

intensity of LED light on a narrow-angle range. Therefore, there are two objectives to be 

optimized. The intensity of the radiated light in the range of 𝜃 degree must be maximized, while 

the intensity of the radiated light outside the range of 𝜃 degree must be minimized 

simultaneously. After defining the multi-objective cost function, the multi-objective optimizer 

will be utilized to find optimal designs. In this chapter, the Multi-Objective version of Gray Wolf 

Optimizer (MOGWO) will be utilized to shape the PhC LED radiation pattern [24]. Therefore, 

the problem formulation for the case study which is shown in Figure 6-1 is as follows. 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7] = [𝑊0,𝑊1,𝑊2,𝑊3,𝑊4,𝑊5, 𝐷𝑒𝑝𝑡ℎ] 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠: 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝐴𝑣𝑔𝐶),𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐴𝑣𝑔𝑆) 

Where: 

𝐴𝑣𝑔𝐶 =
1

𝜃
∫ 𝐼(𝛼) 𝑑𝛼

𝜋
2+

𝜃
2

𝜋
2−

𝜃
2

∶  

(𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑒𝑛𝑡𝑒𝑟) 

𝐴𝑣𝑔𝑆 =
1

𝜋
2

−
𝜃
2

∫ 𝐼(𝛼) 𝑑𝛼

𝜋
2−

𝜃
2

0

+
1

𝜋
2

−
𝜃
2

∫ 𝐼(𝛼) 𝑑𝛼
𝜋

𝜋
2+

𝜃
2

∶ 

(𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑖𝑑𝑒) 

𝐼(𝛼): 𝑇ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑙𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑃ℎ𝐶 𝑙𝑎𝑦𝑒𝑟 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒: 0 ≤ 𝑥1−7 ≤ 600 𝑛𝑚 

(6-1) 

The optimizer considers the problem as a black box and checks some combinations of the 

variables to find the optimal designs. For the optimizer, a wide range of optimizers can also be 

utilized [89], [119], [120].  
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In the literature, the use of artificial intelligence techniques for designing PhC devices has been 

also examined. Some of the seminal works are: PhC filters are designed [2], [62], PhC liquid 

sensors are optimized [6], large mode area PhC fibers are optimized [4], Quality factor of a PhC 

cavity is maximized [104]–[106], [121]–[125] , bend loss of a PhC waveguide is minimized 

[107], a PhC notch-filter is designed [108], and slow light characteristic of PhC waveguides is 

optimized [66]–[71], [126], [127]. Also, waveguide-based LP01–LP0m mode converters are 

designed with similar approach [5]. 

In the next section, the results of six optimization scenarios on the PhC LED case study are 

provided. 

6.4 Results and discussion: 

The problem of shaping the radiation pattern of a PhC LED is solved in six scenarios as 

follows: 

Scenario 1: 

The MOGWO with 60 artificial gray wolves, archive size of 100, and the 80 iterations is 

utilized. For the first scenario, we have considered 𝜃 =
𝜋

3
 and Period=0.6 µm. Therefore, after 

4800 simulations MOGWO found 69 optimal solutions as shown in Figure 6-3. Note that there is 

not a single solution for multi-objective problems. Instead, the answer of such a problem is a set 

of optimal solutions representing the best tradeoffs between the objectives. Therefore, MOGWO 

found the set of optimum solutions. In Figure 6-3, each point corresponds to an evaluated PhC 

LED design. The Pareto optimal solutions (red dots) are the best designs found during the 

optimization. The properties and radiation patterns of the highlighted designs of Figure 6-3 are 

shown in Table 6-1 and Figure 6-4. 

 

 

Figure 6-3 Search history of MOGWO after 4800 simulations (scenario 1: 𝜃 =
π

3
). 

𝐴𝑣𝑔𝐶 

 

−
𝐴
𝑣
𝑔

𝑆
 

 

Non-dominated solution 

 
Pareto optimal solution 

 

 4800 simulations 

 
S5 

 

S4 

 S3 

 S2 

 

S1 

 



 

55 
 

Table 6-1 The characteristics of the highlighted PhC LED designs of Figure 6-3 (scenario 1). 

Label D W0 W1 W2 W3 W4 W5 𝐴𝑣𝑔𝐶 −𝐴𝑣𝑔𝑆 

S1 267 0 188 242 330 310 350 0.335 -0.106 

S2 193 0 258 314 380 350 336 0.321 -0.092 

S3 124 0 330 59 591 509 141 0.3 -0.075 

S4 102 0 343 0 540 517 47 0.262 -0.065 

S5 52 0 456 0 502 600 39 0.22 -0.055 

Unit of widthx (Wx) and depth (D) are nanometers. 

 

Figure 6-4 Radiation pattern of the highlighted PhC LED designs of Figure 6-3 (scenario 1). 

Scenario 2: 

For the next  scenario, we decrease the 𝜃 to 𝜃 =
𝜋

6
. After 4800 simulations MOGWO found 57 

optimal designs. The search history of this scenario is shown in Figure 6-5 and the properties and 

radiation patterns of some highlighted designs are provided in Table 6-2 and Figure 6-6. 

 

Figure 6-5 Search history of MOGWO after 4800 simulations (scenario 2: 𝜃 =
π

6
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Table 6-2 The characteristics of the highlighted PhC LED designs of Figure 6-5 (scenario 2).  

Label D W0 W1 W2 W3 W4 W5 𝐴𝑣𝑔𝐶 −𝐴𝑣𝑔𝑆 

S1 200 186 301 209 312 334 214 0.352 -0.124 

S2 107 0 487 404 107 350 366 0.33 -0.104 

S3 93 46 531 430 20 459 423 0.289 -0.092 

S4 47 0 551 426 62 432 343 0.244 -0.087 

S5 5 2 500 409 116 422 319 0.212 -0.077 

Unit of widthx (Wx) and depth (D) are nanometers. 

 

 

Figure 6-6 Radiation pattern of the highlighted PhC LED designs of Figure. 6-6 (scenario 2). 

Scenario 3: 

In addition to radiation pattern focusing, the uniformity of the radiated light within the 𝜃 angle 

is also very important for application of reading lamp. For this application, we changed the 

second cost function. Hence, a new merit factor is defined as 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = max(𝐼(𝛼)) −

min (𝐼(𝛼)) within the range of 
𝜋

2
−

𝜃

2
≤ 𝛼 ≤  

𝜋

2
+

𝜃

2
. After 4800 simulations, MOGWO found 36 

optimal PhC LED designs. The search history of this scenario for 𝜃 =
𝜋

3
 is shown in Figure 6-7 

and the characteristics and radiation patterns of some highlighted designs are provided in Table 

6-3 and Figure 6-8. 
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Figure 6-7 Search history of MOGWO after 4800 simulations for uniform radiation intensity in 𝜃 =
π

3
 (scenario 3). 

Table 6-3 The characteristics of the highlighted PhC LED designs of Figure 6-7 (scenario 3). 

Label D W0 W1 W2 W3 W4 W5 𝐴𝑣𝑔𝐶 −𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

S1 306 473 70 379 211 362 476 0.31 -0.148 

S2 305 474 110 338 213 324 472 0.303 -0.096 

S3 313 456 118 334 181 294 392 0.293 -0.054 

S4 304 378 188 292 271 225 284 0.267 -0.024 

S5 388 512 468 286 414 386 254 0.217 -0.014 

Unit of widthx (Wx) and depth (D) are nanometers. 
 

 

Figure 6-8 Radiation pattern of the highlighted PhC LED designs of Figure 6-7 (scenario 3). 

To see the effect of variation of the grating separation, this parameter is also considered as an 

independent variable (Period). Therefore, we have repeated the three previous scenarios as 

follows: 
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Scenario 4: 

As it was mentioned before, for manipulating the light within a photonic crystal structure, the 

value of structural parameters must be in the same order of light wavelength. Therefore, we 

consider the range of 0.1 to 1µm for the Period. This range is large enough to provide a wide 

range of choices for the optimizer. Hence the optimizer decides which value(s) will provide a 

higher output performance. We have repeated the scenario 1 in which we want to maximize the 

Avgc and minimize the Avgs with the 𝜃 =
𝜋

3
. The variables and their ranges are as follows: 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8]

= [𝑃𝑒𝑟𝑖𝑜𝑑,
𝑊0

𝑃𝑒𝑟𝑖𝑜𝑑
,

𝑊1

𝑃𝑒𝑟𝑖𝑜𝑑
,

𝑊2

𝑃𝑒𝑟𝑖𝑜𝑑
,

𝑊3

𝑃𝑒𝑟𝑖𝑜𝑑
,

𝑊4

𝑃𝑒𝑟𝑖𝑜𝑑
,

𝑊5

𝑃𝑒𝑟𝑖𝑜𝑑
, 𝐷𝑒𝑝𝑡ℎ] 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒: 100 ≤ 𝑥1 ≤ 1000 𝑛𝑚, 
                                  0 ≤ 𝑥2−7 ≤ 1, 
                                  0 ≤ 𝑥8 ≤ 600 𝑛𝑚 

(6-2) 

Note that we consider normalized values ( 
𝑊0−5

𝑃𝑒𝑟𝑖𝑜𝑑
) to provide the size of the grooves. 

 MOGWO found 38 optimal designs as shown in Figure 6-9. In this figure, the Pareto optimal 

solutions of the previous optimization with constant Period=0.6 µm are also depicted for 

comparison. It is evident that the results of involving Period in the optimization show much 

higher performances with respect to defined merit factors (Avgc and Avgs). The properties and 

radiation patterns of some highlighted designs of Figure 6-9 are provided in Table 6-4 and Figure 

6-10. 

 

 

Figure 6-9 Search history of MOGWO after 4800 simulations (scenario 4: 𝜃 =
π

3
). 

𝐴𝑣𝑔𝐶 

 

−
𝐴
𝑣
𝑔

𝑆
 

 

 4800 simulations 

 S5 

 

S4 

 

S3 

 

S2 

 
S1 

 

Non-dominated solution 

Pareto optimal solution 

Pareto optimal solution 

with a constant Period 

 

 

 

 



 

59 
 

Table 6-4 The characteristics of the highlighted PhC LED designs of Figure 6-9 (scenario 4). 

Label D W0 W1 W2 W3 W4 W5 Period 𝐴𝑣𝑔𝐶 −𝐴𝑣𝑔𝑆 

S1 278 775 238 388 548 558 422 817 0.348 -0.118 

S2 268 790 234 391 539 583 389 806 0.333 -0.113 

S3 462 27 46 59 134 112 71 167 0.331 -0.024 

S4 354 50 41 68 104 107 73 153 0.314 -0.014 

S5 346 70 42 69 84 71 81 133 0.246 -0.01 

Unit of widthx (Wx), depth (D), and Period are nanometers. 
 

 

Figure 6-10 Radiation pattern of the highlighted PhC LED designs of Figure 6-9 (scenario 4). 

Scenario 5: 

In this scenario, the 𝜃 is decreased to 𝜃 =
𝜋

6
. After 4800 simulations, MOGWO found 100 

optimal designs. The search history of this scenario is shown in Figure 6-11. Also, the Pareto 

optimal solutions of the previous optimization (scenario 2) with a constant Period=0.6 µm are 

illustrated in this figure for comparison. A similar observation is made here: considering Period 

in the optimization process provides more flexible PhC LED structure. Therefore, by finding the 

proper values for the whole structural parameters, very high performance devices will be 

obtained. The properties and radiation patterns of some highlighted designs of this optimization 

are provided in Table 6-5 and Figure 6-12. 

The search history of Figure 6-11 shows that Period is a significant parameter when we want to 

shape the radiation pattern. More interestingly, this parameter is important for focusing the light 

in a narrow-angle range. 
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Figure 6-11 Search history of MOGWO after 4800 simulations (scenario 5: 𝜃 =
π

6
). 

Table 6-5 The characteristics of the highlighted PhC LED designs of Figure 6-11 (scenario 5). 

Label D W0 W1 W2 W3 W4 W5 Period 𝐴𝑣𝑔𝐶 −𝐴𝑣𝑔𝑆 

S1 268 105 54 123 144 94 60 170 0.4 -0.04 

S2 234 101 42 80 116 60 39 140 0.351 -0.031 

S3 209 110 25 60 110 43 16 126 0.284 -0.025 

S4 212 107 49 38 73 16 2 112 0.187 -0.019 

S5 195 100 56 22 56 4 0 100 0.107 -0.014 

Unit of widthx (Wx), depth (D), and Period are nanometers. 

 

 

Figure 6-12 Radiation pattern of the highlighted PhC LED designs of Figure 6-11 (scenario 5). 

Scenario 6: 

As it was mentioned before, in addition to radiation pattern focusing, the uniformity of the 
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radiated light within the 𝜃 angle is also very important for some applications. Therefore, we 

consider Avgc and Deviation as the merit factors of PhC LEDs. After employing MOGOW and 

4800 simulations, 21 optimal designs were found. The search history of this scenario is shown in 

Figure 6-13. The Pareto optimal solutions of the previous optimization (scenario 3) with a 

constant Period=0.6 µm are also visualized in this figure. The comparative study shows that the 

results of having Period as independent structural parameters provide optimal designs with much 

higher performances. The characteristics and radiation patterns of some highlighted designs of 

Figure 6-13 are shown in Table 6-6 and Figure 6-14. 

 

Figure 6-13 Search history of MOGWO after 4800 simulations for uniform radiation intensity in 𝜃 =
π

3
 (scenario 6). 

Table 6-6 The characteristics of the highlighted PhC LED designs of Figure 6-13 (scenario 6). 

Label D W0 W1 W2 W3 W4 W5 Period 𝐴𝑣𝑔𝐶 −𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

S1 522 57 701 33 600 172 693 1000 0.362 -0.086 

S2 517 20 772 20 686 204 734 1000 0.352 -0.053 

S3 550 55 739 114 634 253 615 997 0.332 -0.028 

S4 549 341 381 161 353 181 502 781 0.296 -0.011 

S5 518 192 42 96 53 82 183 233 0.145 -0.01 

Unit of widthx (Wx), depth (D), and Period are nanometers. 
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Figure 6-14 Radiation pattern of the highlighted PhC LED designs of Figure 6-13 (scenario 6). 

The results in the six scenarios show the effectiveness of the proposed method to shape the 

radiation pattern of PhC LEDs. The behavior of the two objectives indicates that these objectives 

are in conflict. Increasing the one culminates in decreasing the other. As a result, solving the 

problem by considering two independent objectives is an effective way to find the designs in 

which a trade-off is being established between the objectives. Note that there is not a single 

solution for multi-objective problems. Alternatively, a set of optimum solutions is the answer to 

multi-objective problems. Moreover, these substantial achievements are obtained by just tuning 

the variables. The fabrication process is not changed, and additional PhC layers are not added to 

the structure. 

In order to extend the proposed approach to two-dimensional PhC LEDs, the spherical 

coordinate system should be utilized instead of the polar coordinate system for radiation patterns. 

The average of radiation intensity will be calculated with respect to two angles (θ, φ). Although 

two-dimensional PhC LEDs are more common, the simulation time increases by 2–3 orders of 

magnitude in two-dimensional structures. Fortunately, current CPUs are powerful enough to 

perform such optimization. 

6.5 Post processing on Pareto optimal designs: 

After the optimization process in all scenarios, the final result is a set of optimal solutions 

called Pareto optimal solutions. We need to choose one of the optimal designs which establishes 

the best tradeoff between the output merit factors. If there are no criteria for the merit factors, we 

can use a combination of the merit factors (O) as a new merit factor (𝑂 =
𝐴𝑣𝑔𝐶

𝐴𝑣𝑔𝑆
 or 𝑂 =

𝐴𝑣𝑔𝐶

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
). 

Therefore the best design in terms of O factore is a design which shows highest O factor.  

In another case, there might be a set of criteria for one or both of the output merit factors. For 

example, considering 𝐴𝑣𝑔𝑆 < 𝑀 where M is a constant value, we should remove the solutions in 

the Pareto optimal solution set that do not sasisfy this criterion. After that, we select a design that 

shows the highest 𝐴𝑣𝑔𝐶. For more details about decision makings techniques and practices, 

interested readers are referred to [6]. 

6.6 Conclusion 

In summary, the results show that the proposed method could be utilized to shape the radiation 

pattern of any PhC LEDs for specific applications. The results are obtained by just employing 

MOGWO to tune the structural parameters. No extra complexity in terms of the fabrication 

process and the shape of the PhC layer is added to the PhC LEDs. It is worth mentioning that a 
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pre-defined PhC LED design is not required to embark on the optimization. We just defined the 

objectives corresponded to a specific application. Then, a multi-objective optimizer is employed 

to find a wide range of optimal designs providing many choices for LED designers to attain a 

well-matched design for the specific application. 
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Chapter 7:  Conclusion and Future Works 

7.1 Conclusion: 

The case studies investigated in this thesis have shown that the AI optimizers are able to 

effectively optimize the design (involving physical structures and material compositions) of 

several different newly introduced optical devices. Therefore, this shows that a wide range of 

optical devices (useful for diverse applications) can be formulated and designed.  

This approach for solving the problem of optical devices design does not require human 

involvement, neither to provide a starting initial design nor to guide the optimization process. 

Various single- and multi-objective algorithms can be easily utilized to implement the optimizer 

module in order to achieve a wide range of optimal designs. Finally, the proposed optimization 

frameworks for designing optical devices open up an effective way of developing a new 

generation of optical devices. 

7.2 Research Contributions 

7.2.1 Design optimization of orbital angular momentum fibers 

Optical data communication based on the orbital angular momentum (OAM) of light is a 

recently proposed method to enhance the transmission capacity of optical fibers. This requires a 

new type of optical fibers, the main part of the optical communication system, to be designed. 

Typically, these fibers have a ring-shaped refractive index profile. We aim to find an optimized 

cross-section refractive index profile for an OAM fiber in which the number of supported OAM 

modes (channels), mode purity, and the effective refractive index separation of OAM modes to 

other fibers modes are maximized. However, the complexity of the relationship between 

structural parameters and optical transmission properties of these fibers has resulted in the lack of 

a comprehensive analytical method to design them. In this thesis, we have investigated the 

process of designing OAM fibers and proposed a framework to design such fibers by using 

artificial intelligence optimizers. It is worth mentioning here that this problem is intrinsically a 

multi-objective optimization problem and the actual solution for such problems is not unique and 

leads to a set of optimum solutions. Therefore, at the end of the optimization process, a wide 

range of optimal designs have been obtained in which a trade-off is established in each of the 

solutions. We solved this problem with the multi-objective Grey wolf optimizer (GWO) and 

compared the results with that of the single-objective GWO. The framework can easily find many 

optimal designs that support more than 20 OAM modes. The obtained results show that the 

proposed method is comprehensive and can optimize the structure of any OAM fibers. No human 

involvement, simplicity, and being straightforward are the main advantages of the proposed 

framework. 

7.2.2 Optimization frameworks for designing photonic crystal filters 

We have proposed a framework for multi-objective optimization of photonic crystal (PhC) 

filters. In this framework, the Multi-Objective Gray Wolf Optimizer has been utilized to 

automatically find the optimal designs. The proposed method is able to design any kind of PhC 

filter. As a case study, a new structure of super defect PhC filter for application in the wavelength 

division multiplexer (WDM) was designed using the framework. The results show that the 

proposed framework is comprehensive and able to find a significantly wide range of optimal 

designs for general and specific application such as WDM with respect to each defined WDM 

standard. 
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7.2.3 Radiation pattern design of photonic crystal LED 

We have proposed an effective method for shaping the radiation pattern intensity of Photonic 

Crystal (PhC) Light-Emitting Diodes (LED). In this method, the process of shaping the radiation 

pattern intensity is first formulated as a multi-objective problem. The Multi-Objective Gray Wolf 

Optimizer (MOGWO), is then utilized to find a set of optimal designs. The proposed shaping 

method aims to focus the intensity of light in a narrow-angle range and provide uniform radiated 

light in this range. The proposed method is also described and applied to a case study. The results 

show that the method proposed is beneficial and could be utilized to design any kind of PhC 

LEDs. As the lack of analytical method prevents researchers form finding optimal designs, this 

method is a shortcut to systematically shape the radiated intensity of PhC LED light. 

7.3 Future work 

• Optical data communication based on the OAM of light provides high capacity data 

communication. This interesting research topic needs to be investigated in detail in order 

to reach a mature level of advancement to be applied in the practical systems. Generation, 

modulation, and transmission of OAM modes with minimal dispersion, as well as 

detection and demultiplexing of OAM mode, are topics in the field of optical MDM 

where a significant amount of work is being done, and where more exploration is 

required. 

• Considering fabrication uncertainties during the optimization of optical devices, using the 

constraint module. 

• Robust optimization can be very important in some complicated photonic structures like 

photonic crystal fibers, where small changes in the size of an element can lead to huge 

changes in the characteristics of the fiber. For such cases, applying robustness parameters 

to the objective list can significantly improve the convergence and reliability of the final 

designs.  

• In this thesis, we have mainly focused on the steady-state operation of optical devices. 

Evaluating the dynamic response of active and passive optical components is extremely 

crucial for assessing device capabilities at high speeds.  

• Fabrication of the optimized devices and experimental validations are two fundamental 

pillars for asserting the reliability of the optimization frameworks. Post-fabrication re-

optimization will be required in cases where the expected results from the optimal design 

do not match well with experimental data.  
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Appendix A:  Optimal Design of Large Mode Area Photonic Crystal 

Using The Multi objective Gray Wolf Optimizer 

A.1   Introduction 

This appendix is based on the paper published in the Journal of Journal of Lightwave 

Technology [4]. High power fiber lasers and amplifiers have been the subject of enormous 

researches during the last decades. Nowadays, industrial fiber lasers with the output power up to 

100 kW are available [128]. However, the maximum achievable power is limited by the 

nonlinearity and optical damages arisen from high power density. By increasing the mode area in 

such fibers, the power density decreases and consequently the onset of the nonlinear effects 

increases significantly [129]–[131]. On the other hand, in order to obtain a high beam quality and 

power stability, the single-mode operation of the large mode area (LMA) fiber should be 

guaranteed [132]–[134]. 

In order to increase the mode area of conventional LMA optical fibers, it is required to increase 

the core radius of the fiber. Enhancing the mode area with the increase of core size results in the 

appearance of higher-order modes (HOMs) and subsequently the multimode operation of LMA 

fiber [135], [136]. Having a low contrast between the core and cladding indices is necessary for 

single-mode operation. However, fabrication of conventional LMA fibers with a very low 

numerical aperture (NA) is a challenging process. Moreover, LMA fibers are often coiled to 

fabricate smaller devices. Conventional LMA optical fibers with low NA are very sensitive to 

bending and it is difficult to achieve low bending loss and LMA simultaneously [131], [137], 

[138].  

It is possible to have a good compromise between the large mode field area and the single-

mode operation using photonic crystal fibers (PCFs).  The effective refractive index of the 

cladding region and the NA of the PCFs are tailored by varying the diameter of the air-holes and 

the hole-pitch (the center-to-center spacing between two adjacent air-holes). These variations can 

lead to an increase in the size of the core region, enhancement of the loss of the higher-order 

modes, and the decrease of the fundamental mode  loss. Therefore, the single-mode operation of 

LMA-PCFs can be achieved [139]–[142]. However, in PCFs with symmetric structures the 

bending loss is significant and the mode area experiences a large reduction in the bent state. It has 

been proven that non-symmetric designs shows superior performance on HOM suppression, 

potentially enabling to increase the threshold for appearance of mode instabilities [143]. It is 

worth noting that although all-solid LMA leakage channel fibers (LCFs) have a high mode area 

and a simpler fabrication process, their FM loss is higher than air-hole PCFs [144]. 

M. Napierała et al. reported an asymmetric LMA-PCF structure with single-mode operation 

based on removing two additional air-holes in the cladding region, where the structure was 

optimized with a few degrees of freedom [145]. In order to obtain the best possible design of an 

LMA-PCF, all degrees of freedom could be taken into account, i.e. the diameters of all air-holes 

as well as the structure pitch. However, finding a relation between the structural parameters of the 

LMA-PCFs and the output performance is difficult and needs much skills and efforts. Moreover, 

due to a large number of input parameters, it is impossible to achieve an optimal structure using 

trial and error methods. Therefore, employing systematic approaches such as optimization 

techniques and artificial intelligence would be required to find the optimum structures.  

In this chapter, we utilize the Multi-Objective Gray Wolf Optimizer (MOGWO) to maximize 

the effective mode area (EMA) and the bending loss of HOMs, while minimizing the 
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fundamental mode (FM) loss to maintain the single mode operation in the bent state. The chapter 

is organized as follows. In Section A.2, the PCF structure is introduced and the method of 

analysis is explained in details. The multi-objective optimization framework for designing the 

LMA-PCF is described in Section A.3. In Section A.4, the optimal results are reported and 

discussed. Finally, the chapter is concluded and summarized in Section A.5.  

A.2   Theoretical Background 

The three-dimensional schematic of the investigated LMA-PCF is shown in Figure A-1. As 

seen from the figure, the fiber is in a circular bent state with a bending radius of R, where the 

wave propagates in the φ direction. The eigenvalue equation for the electric field is obtained from 

the vector Helmholtz equation [17] 

𝛻 × (𝛻 × 𝐸) − 𝑘0
2𝑛2𝐸 = 0  (A-1) 

where E is the electric field vector, k0 is the wavenumber in the free space, and n is the refractive 

index. 

 
Figure A-1  Three-dimensional schematic of the bent LMA-PCF. 

The cross-section of the proposed LMA-PCF structure is shown in Figure A-2. The air-holes 

are arranged in a hexagonal lattice with seven missing air-holes in the core region. Furthermore, 

two air-holes have been removed from the cladding region to improve the index-matched 

coupling between the core and cladding modes and consequently increasing the loss of HOMs 

[145]. The core is surrounded by three rings of air-holes to ensure good confinement of the light 

in the core. As seen in Figure A-2, the parameters r1 to r29 represent the radii of air-holes and Λ 

denotes the air-hole pitch. It should be noted that the structure is symmetric along the z-direction. 

The background material is silica with the refractive index of 1.45 at λ=1.064 μm wavelength 

[146]. It is assumed that besides ytterbium doping, the core is co-doped with other rare earth 

elements and the refractive index is preserved to the level of undoped silica [145]. We have used 

the finite element method (FEM) combined with the perfectly matched layer (PML) boundary 

condition to calculate the eigenvalues and the mode profiles. The EMA of the FM, the bending 

loss of the HOMs, and the FM loss are considered as the optimization objectives. 
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Figure A-2  Two-dimensional model of the bent LMA-PCF. The hexagonal shape with a side length of 2.5 Λ is the 

boundary between the doped and undoped regions. 

Bending loss 

The bending loss of modes (dB/m) can be calculated using the imaginary part of the 

propagation constant as [147] 

𝐿 = 8.686𝑘0 𝐼𝑚( 𝑛eff) (A-2) 

where Im(β)Im(neff)Im(neff) is the imaginary part of the effective refractive index of the 

propagating mode, and k0 is the free space wavenumber in 1/m. 

Effective mode area (EMA) 

The EMA of the propagating mode in the PCF structure can be calculated using [21] 

𝐴eff =
(∬ |𝐸|2𝑑𝑧𝑑𝑟)2

∬|𝐸|4𝑑𝑧𝑑𝑟
 (A-3) 

One of the major challenges in the optimization of the LMA-PCF structure is to recognize the 

order of the modes. One solution would be the use of effective index which is not very useful for 

the bent fiber which contains both cladding and core modes [148]. In this work, an image 

processing technique has been employed to recognize the mode order based on the electric field 

distribution of the propagating modes [149].  

A.3   Multi-objective Optimization Framework  

In order to optimize the LMA-PCF structure, the MOGWO is utilized for maximizing the EMA 

and the bending loss of the HOMs (LH) while minimizing the FM loss (LF), where LH is the 

lowest bending loss among all HOMs. In this optimization problem, there are three conflicting 

objectives to be optimized and the constraints to be fulfilled. Such a multi-objective problem 

does not have a single optimal solution. Instead, a set of optimum solutions known as the Pareto-

optimal set is the answer to such problems. The multi-objective optimization algorithm considers 

multiple merit factors and finds a wide range of optimal designs. It is worth mentioning here that 

combining merit factors in order to solve the problem using the single-objective optimization 

approach causes finding only one member of the Pareto-optimal set [6]. Therefore, the multi-
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objective optimization is the best way to solve this problem. The main parts of this framework 

are shown in Figure A-3. As seen in this figure, the framework is composed of three major 

components including the parameter module (PM), the constraint module (CM), and the 

optimizer module (OM). First, the structural parameters and limitations are defined in the PM and 

CM and are then fed into the OM. Finally, the OM moves towards the optimal solutions based on 

the MOGWO algorithm.  

 

Figure A-3  The proposed multi-objective framework for designing the LMA-PCF. 

Parameter Module (PM) 

The PM defines and selects the structural parameters. The diameters of the air-holes and the 

hole-pitch are the structural parameters. Due to the symmetry of the structure along the z-axis, 

there are 29 air-holes with independent diameters defined as the input parameters. By including 

the hole-pitch, there would be 30 input parameters in the PM, as follows  

𝑃𝑀 = [
𝑟1
𝛬

,
𝑟2
𝛬

, . . . ,
𝑟28

𝛬
,
𝑟29

𝛬
, 𝛬] (A-4) 

Constraint Module (CM) 

This module contains the range of structural parameters and other device limitations during the 

optimization process. Therefore, there are two groups of constraints. The first group is the range 

of parameters (CM1) which expresses the manufacturing and bending limitations. In this regard, 

we assume that the radii of all air-holes are limited to the range of 0.1𝛬 -0.4𝛬. Exceeding beyond 

the upper limit may lead to an overlap between adjacent air-holes while decreasing beyond the 

lower limit is hard to achieve. The second group of the constraints expresses the limitations on 

the outputs CM2, CM3, and CM4. The optimal structures are assumed to have EMA> 600 μm2, LH 

> 8 dB/m, and LF <0.02 dB/m.  

𝐶𝑀 = [𝐶𝑀1, 𝐶𝑀2, 𝐶𝑀3, 𝐶𝑀4], 

𝐶𝑀1: 0.1 <
𝑟1
𝛬

,
𝑟2
𝛬

,… ,
𝑟28

𝛬
,
𝑟29

𝛬
< 0.4, 

16(𝜇𝑚) < 𝛬 < 19(𝜇𝑚) 

𝐶𝑀2: 𝐿𝐹 < 0.02 (
𝑑𝐵

𝑚
) , 

𝐶𝑀3: 𝐿𝐻 > 8(
𝑑𝐵

𝑚
) 

𝐶𝑀4: 𝐸𝑀𝐴 > 600(𝜇𝑚2) 

(A-5) 

These constraints are chosen based on the original structure which was reported in [145], which 
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guarantees that all of the members of the Pareto front show better performance compared to the 

previous work. 

Optimizer Module (OM) 

In this module, the optimizer and the optimization objectives are defined. To implement the 

optimizer, a wide range of multi-objective optimizers can be employed [22], [89], [90]. We 

choose MOGWO which mimics the leadership and hunting behavior of grey wolves in nature 

[21], [24]. Because of having a large number of structural parameters, the search space is huge 

and has many local optimums. The MOGWO has the mechanism to avoid trapping in the local 

optimums.  

 
Figure A-4  Flowchart for the calculation of LMA-PCF merit factors. 

The flowchart of calculating the merit factors is shown in Figure A-4. The FEM simulation is 

performed for the defined structure. Then the order of modes is recognized using image 

processing techniques. After that, the EMA and the LF are calculated for the fundamental mode 

and the LH is evaluated for the HOM with the lowest loss. Therefore, the optimizer considers the 
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problem as a black box, in which the input is composed of the structural parameters and the 

output is a collection of the merit factors. For the candidate designs in which the constraints do 

not satisfy, a low negative value of -1e20 will be assigned to the objectives. By doing so, the 

optimizer can understand that such candidate designs are not feasible and consequently neglect 

them during the optimization process. 

 

Table A-1 Properties of optimum structures designed by MOGWO which are marked in Figure A-4 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

r1/Λ 0.27 0.26 0.22 0.22 0.27 0.25 0.26 0.25 0.25 0.25 0.24 0.21 0.23 0.25 0.19 0.24 

r2/Λ 0.20 0.18 0.18 0.16 0.18 0.16 0.16 0.16 0.18 0.18 0.15 0.13 0.18 0.18 0.11 0.16 

r3/Λ 0.37 0.35 0.37 0.33 0.33 0.37 0.36 0.36 0.36 0.34 0.36 0.31 0.37 0.34 0.31 0.34 

r4/Λ 0.38 0.38 0.34 0.36 0.34 0.31 0.36 0.35 0.37 0.34 0.33 0.33 0.33 0.34 0.29 0.35 

r5/Λ 0.22 0.21 0.19 0.22 0.22 0.19 0.19 0.21 0.21 0.22 0.21 0.18 0.19 0.20 0.18 0.20 

r6/Λ 0.16 0.18 0.15 0.19 0.16 0.18 0.14 0.19 0.16 0.17 0.18 0.17 0.15 0.16 0.22 0.16 

r7/Λ 0.23 0.23 0.25 0.21 0.21 0.23 0.24 0.23 0.26 0.21 0.23 0.24 0.26 0.23 0.25 0.23 

r8/Λ 0.35 0.35 0.37 0.35 0.37 0.36 0.40 0.37 0.36 0.37 0.39 0.37 0.36 0.37 0.40 0.36 

r9/Λ 0.13 0.14 0.13 0.13 0.14 0.13 0.10 0.12 0.12 0.14 0.11 0.12 0.12 0.12 0.11 0.11 

r10/Λ 0.21 0.24 0.25 0.25 0.24 0.26 0.27 0.25 0.23 0.23 0.25 0.23 0.25 0.25 0.25 0.25 

r11/Λ 0.29 0.28 0.25 0.29 0.29 0.30 0.31 0.32 0.29 0.29 0.31 0.33 0.26 0.28 0.32 0.28 

r12/Λ 0.29 0.24 0.24 0.22 0.23 0.26 0.25 0.26 0.25 0.23 0.27 0.29 0.23 0.24 0.31 0.25 

r13/Λ 0.19 0.17 0.16 0.17 0.17 0.17 0.13 0.14 0.16 0.17 0.13 0.12 0.17 0.16 0.14 0.16 

r14/Λ 0.25 0.26 0.26 0.25 0.25 0.24 0.26 0.25 0.26 0.25 0.23 0.23 0.25 0.25 0.20 0.24 

r15/Λ 0.17 0.19 0.19 0.20 0.20 0.18 0.20 0.19 0.19 0.20 0.17 0.14 0.20 0.19 0.12 0.18 

r16/Λ 0.26 0.27 0.29 0.24 0.26 0.29 0.29 0.28 0.28 0.26 0.29 0.32 0.29 0.27 0.30 0.27 

r17/Λ 0.30 0.31 0.28 0.34 0.31 0.31 0.28 0.32 0.29 0.31 0.28 0.30 0.27 0.27 0.31 0.28 

r18/Λ 0.30 0.30 0.35 0.35 0.32 0.34 0.34 0.35 0.31 0.32 0.34 0.30 0.35 0.34 0.29 0.35 

r19/Λ 0.26 0.27 0.26 0.28 0.27 0.26 0.23 0.25 0.30 0.27 0.25 0.23 0.25 0.25 0.26 0.24 

r20/Λ 0.22 0.20 0.21 0.22 0.19 0.21 0.18 0.19 0.23 0.20 0.22 0.22 0.22 0.22 0.24 0.22 

r21/Λ 0.17 0.18 0.20 0.18 0.19 0.16 0.16 0.15 0.16 0.19 0.14 0.10 0.18 0.17 0.10 0.17 

r22/Λ 0.24 0.27 0.24 0.28 0.24 0.25 0.25 0.24 0.23 0.24 0.25 0.21 0.24 0.26 0.20 0.25 

r23/Λ 0.29 0.31 0.34 0.33 0.33 0.30 0.33 0.32 0.30 0.33 0.32 0.35 0.34 0.32 0.32 0.32 

r24/Λ 0.21 0.21 0.21 0.23 0.21 0.22 0.22 0.22 0.21 0.20 0.24 0.24 0.21 0.20 0.21 0.20 

r25/Λ 0.18 0.20 0.15 0.19 0.20 0.20 0.18 0.20 0.20 0.20 0.18 0.19 0.15 0.18 0.17 0.18 

r26/Λ 0.24 0.22 0.23 0.25 0.22 0.22 0.23 0.21 0.23 0.22 0.22 0.26 0.23 0.21 0.28 0.22 

r27/Λ 0.28 0.29 0.31 0.31 0.29 0.31 0.31 0.32 0.30 0.29 0.31 0.31 0.31 0.29 0.32 0.29 

r28/Λ 0.28 0.28 0.27 0.30 0.29 0.29 0.25 0.29 0.28 0.29 0.28 0.28 0.26 0.27 0.31 0.26 

r29/Λ 0.26 0.27 0.24 0.26 0.28 0.27 0.27 0.28 0.26 0.28 0.27 0.28 0.24 0.26 0.28 0.27 

Λ(μm) 18.1 18.5 18.1 18.4 18.4 18.5 18.5 18.5 18.4 18.4 18.6 18.6 18 18.3 18.4 18.2 

EMA (μm2) 679 678 669 680 667 703 702 706 694 666 728 803 673 680 828 688 

LF (10-4 

dB/m) 
44.7 10.0 6.01 6.86 7.16 11.1 15.3 10.9 45.3 7.60 26.3 52.0 5.84 17.6 112 24.6 

LH (dB/m) 98.5 23.7 18.5 20 27.4 14.4 42.3 10.7 81.1 29.5 31.9 8.85 11.1 65.7 9.33 62.2 
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Figure A-5  Search history of the multi-objective optimization. 

A.4   Results and Discussion 

As mentioned before, the conflicting nature of merit factors has made the problem multi-

objective. Therefore, the optimizer selects the optimum designs among different possible 

structures. We employ the MOGWO with 60 artificial grey wolves and maximum of 250 

iterations. A complete simulation run took approximately four weeks on a server with 40 cores 

and 256 GB of RAM. The optimization search history is shown in Figure A-5, where 16 selected 

optimal designs are marked with red filled circles. The optimization method has found 16 optimal 

designs, which their properties and their output characteristics are depicted in Table A-1. The 

best structures are bolded in terms of the EMA, the LH, and the LF. These structures are the 

optimal designs that have well confinement of FM, improved EMA and very lossy HOMs. The 

EMA for this bending radius is acceptable and can be improved by a factor of 1.26 compared to 

the design reported in [145]. Furthermore, the bending loss of the HOMs (the FM) can be 

increased (decreased) by a factor of 7 (17). In order to calculate the LH, the cladding modes with 

no electric field inside the core region are neglected and only those that have an electric field 

component in the core region are taken into account. According to the market demand, all of 

these optimal designs are desirable and no one is better than the others. The column #1 in Table 

A-1 shows the values of the structural parameters for the optimal design with the highest HOM 

loss. However, the FM loss of this structure is among the highest losses and also the EMA is not 

as high as many other optimal designs. Column #13 in Table A-1 illustrates the values of 

structural parameters for the optimal design with the lowest FM loss.  For this case, the EMA of 

the fiber is one of the lowest among all structures, which implies that the optical mode is 

confined inside the core region and the scattering loss due to the propagation inside the cladding 

region is minimal. In other words, there is a trade-off between the EMA and the FM loss. As 

shown in column #15 of Table A-1, this structure has the highest EMA and FM loss among all 

optimal structures. The large FM loss is a result of spreading the FM over an area larger than the 

core region, which has led to a decrease in the FM confinement and an increase in the scattering 

loss.  
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Figure A-6  Field  distribution for the (a) FM of design #1 (b) HOM of design #1 (c) FM of design #13 (d) HOM of 

design #13 (e) FM of design #15 (f) HOM of design #15. All simulations are performed for λ=1.064 μm. 
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Figure A-7  Wavelength dependence of the (a) effective mode area, (b) higher order mode loss, and (c) fundamental 

mode loss. 

Figure A-6 illustrates the mode profile of the FM and the lowest-loss HOM in three LMA-PCF 

structures, i.e. #1, #13, and #15. In these profiles, the mode amplitudes are truncated at -40 dB 

relative to its maximum value. A comparison between Figure A-6(a), (c), and (e) reveals that the 

structure #15 (which has the highest EMA) has the lowest maximum electric field strength inside 

the core region and the highest leakage into the cladding region. Therefore, the FM loss for this 

structure is higher than that in other two structures. Furthermore, as can be seen in Figure A-6(b), 

6(d), and 6(f), because of efficient leakage of the HOM profiles into the cladding region, the 

structure #1 has the highest HOM loss compared to all other optimal structures. The wavelength 

dependence of the LF, the LH and the EMA are illustrated in Figure A-7. As seen in Figure 
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A-7(a), the EMA increases with increasing the wavelength. This behavior is a result of decreased 

in-plane wavenumber at higher wavelengths. Figure A-7(b) shows that almost in all optimal 

designs the maximum values of the LH occur around the design wavelength of 1.064 μm. One can 

see that the structure #1 which has the maximum LH among all the optimal designs, shows the 

highest sensitivity to the wavelength. On the other hand, as seen in Figure A-7(c), the LF 

decreases with increasing the wavelength in the bent state. This behavior is a result of better 

confinement of the FM at larger wavelengths. A comparison between the FM profiles shown in 

Figure A-8(a), (c), and (e) reveals that, as the wavelength of the input light increases the mode 

profile tends to move towards the center of the fiber core. Consequently, the bending loss 

decreases as a result of decreasing the scattering loss at larger wavelengths. As can be seen in 

Figure A-8(b), (d), and (f), the HOMs with the lowest losses are associated with the second order 

modes. However, while the lowest HOM loss at the wavelength of 1.032 μm is associated to the 

LP11-odd mode, the HOM with the lowest loss at the wavelengths of 1.064 μm and 2.5 μm 

correspond to the LP11-even mode. A comparison between the FM loss at the bent and straight 

states is demonstrated in Figure A-9. As seen in this figure, in contrary to the bent state, for the 

straight fiber the FM loss increases at larger wavelengths. This behavior is a result of the 

penetration of the mode profile into the cladding region rather than moving towards the core 

fiber. This result is in agreement with the results reported in [150]. 

 
Figure A-8  Field distribution in design #1 for the (a) FM at λ=1.032 μm (b) HOM at λ=1.032 μm (c) FM at λ=1.064 

μm (d) HOM at λ=1.064 μm (e) FM at λ=2.5 μm (f) HOM at λ=2.5 μm. 
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Figure A-9  The wavelength dependence of the FM loss for the optimal design #1 at the bent and straight states. 
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Figure A-10  The dependence of the (a) effective mode area, (b) higher order mode loss, and (c) fundamental mode 

loss on the bending radius. 

Variations of the bending loss and the EMA versus the bending radius are illustrated in Figure 

A-10. As stated before, all structures that were optimized in this chapter were designed for the 

bending radius of 10 cm and are not necessarily optimal for other radii. As seen in Figure 

A-10(a), although the EMA enhances with increasing the radius for almost all optimal structures, 

in two cases namely structures #12 and #15, the EMA increases as the bending radius decreases 

below 9 cm. In these two structures, the FM field is drawn to the cladding region with decreasing 

the bending radius. Furthermore, Figure A-10(b) illustrates that the LF decreases with increasing 

the bending radius. This result is in complete agreement with the simulation results reported in 

[18]. The dependence of the LH on the bending radius is shown in Figure A-10(c). This figure 

reveals that the LH is very sensitive to the bending radius. We can see that the LH in almost all 

optimal structures has been maximized at the bending radius of 10 cm. On the other hand, the LH 

in the optimal structure #1 is very sensitive to the bending radius. Meanwhile, a few designs like 
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the structure #15 have a low sensitivity to the bending radius. Consequently, based on the desired 

application, the optimal design could be selected among structures with the lowest sensitivity. It 

is worth mentioning that it is possible to prepare complex preform designs using laser drilling 

technology combined with the three-dimensional printing of doped fused silica glass [151], [152]. 

However, the characteristics of the optimized PCFs may undergo changes due to statistical 

structural fabrication-induced imperfections. The effects of the fluctuations in the size of the air-

holes can be taken into account using a statistical analysis [153]. It should be noted that the 

refractive index of the silica changes due to the stress-optical effect (photo-elasticity) caused by 

the local strain in the bent PCF. Accordingly, the effect of the photo-elastic phenomena can be 

modeled by an effective bending radius varying between 1.28 R to 1.40 R [154], [155]. This 

means that the optimal performance of the PCF designed for the bending radius of 10 cm, will be 

achieved in the range of 7.1 to 7.8 cm. 

A.5   Conclusion 

In summary, a multi-objective optimization framework was proposed for designing single-

mode LMA-PCFs. For this purpose, the MOGWO was utilized to maximize the EMA and the 

bending loss of HOMs while minimizing the FM loss. The simulation results demonstrated that 

the proposed multi-objective framework can effectively design and optimize the structure of 

LMA-PCFs. Sixteen optimal structures were designed that can be selected based on the desired 

applications. No initial design was required to start the optimization process. Furthermore, 

manufacturing limitations were included in the constraints module (CM). This framework 

enabled us to improve the EMA by a factor of 1.26 compared to the non-optimal design. 

Moreover, the bending loss of the HOMs (the FM) was increased (decreased) by a factor of 7 

(17). The proposed framework is a general method for the design and optimization of optical 

fibers and can optimize any kind of PCFs for any type of application. 
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Appendix B:  Design Optimization of a Waveguide-Based LP01 to LP0m 

Mode Converter 

B.1 Introduction 

This appendix is based on the paper published in the Journal of Electronics Letters [5]. Space 

division multiplexing (SDM) has been proposed to overcome the capacity limitations of optical 

networks based on standard single mode fiber (SMF). It uses the orthogonal guided optical 

modes of few mode fibers to carry different optical signals, i.e., one mode corresponding to one 

optical channel. The high order of these modes is usually obtained from converting the 

fundamental mode [156].  

Mode conversion can be achieved either using free-space or waveguide-based optics. Free-

space mode conversion is based on matching the spatial profile from an input mode to an output 

mode using a phase mask or spatial light modulator such as liquid crystal on silicon (LCOS) 

[157]. This type of conversion includes phase plates, beam splitters, mirrors, and lenses. 

Therefore, it results in bulky structures with high insertion losses. Free-space based mode 

converters could be deployed in almost any wavelength window since they are wavelength 

insensitive. 

Mode converter structures based on fibers or waveguides could be realized through a variety of 

techniques, such as grating, coupling, tapers, lanterns, photonic crystal fibers, etc.[157]–[161]. 

These converters are obtained by matching the propagation constant from the input mode to the 

(desired) output mode by altering the physical characteristics of the fiber or the waveguide such 

as its cross-section area or its refractive index.  

In [162], a mode converter was proposed to convert LP01 to LP11 based on long-period fiber 

grating (LPFG). The converter was designed for the C-band and an insertion loss of 1.5 dB and 

an extinction ratio of 22 dB at 1550 nm are achieved. However, the converter can operate in a 

narrow bandwidth of 13 nm centered at 1551 nm. The work in [163] presented an LP01 to LP02 

mode converter based on multimode interference (MMI) in a fiber and it was realized by 

interconnecting a single mode fiber (SMF) with a few-mode fiber (FMF) using a multimode fiber 

(MMF). The extinction ratio and loss of the mode converter are 55 dB and 1.8 dB respectively at 

1550 nm.  

Directional couplers can also be used to convert and multiplex different spatial modes [164]. 

Furthermore, couplers can be cascaded to convert and multiplex more modes such as the one 

illustrated in [165] for converting and multiplexing LP01, LP11, LP21 and LP02 with low insertion 

loss. Couplers can also be designed using Silica-based planar lightwave circuits (PLC) [161], 

[166]. Conversion using couplers is achieved through matching the effective index of one mode 

in one waveguide to the other mode in the other waveguide. Y-junctions and optical lanterns are 

other fiber structures to realize mode converters [166].  

Structures based on waveguides for mode converters and multiplexers result in high mode 

conversion efficiency [167] and they are compact in footprint. However, they are in general 

wavelength dependent. 

A mode converter based on a waveguide can be optimized by optimizing some of the structural 

parameters, and high mode conversion efficiency (i.e. low insertion loss) and high extinction 

ratio (i.e. high mode purity) are achieved. Another issue that should not be ignored is the 

feasibility of the device to be fabricated. There is a set of fabrication rules that should be 
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considered during the design/optimization process [168]. The more structural parameters are 

included, the more difficult the design/optimization process is, and also a larger degree of 

freedom can be achieved in design. Other researchers in this field, usually try to manipulate the 

structural parameters by some try and error simulations to find out the relations between the 

structural parameters and the device output merit factors [169]. Therefore, the process and human 

involvement are tedious, and also the final design will mostly be far from the optimal structure. 

In this chapter, firstly, we propose a waveguide-based mode converter using two-stage taper 

structure that converts the fundamental LP01 mode to LP0m (m=2, 3, …, 7) mode. Secondly, to 

solve the problem of finding the optimal design, we shall utilize an artificial intelligence 

optimizer called Grey Wolf Optimizer (GWO) to find the optimal structural parameters (physical 

dimensions) [21]. 

B.2 Mode Converter Structure and Related Definitions:  

The proposed mode converter structure is based on the circular waveguide and is shown in 

Figure B-1. It consists of two-stage taper. The first stage has two sections: a tapered section (L1) 

and a non-tapered section (L2). The tapered section has a starting diameter r1 and an ending 

diameter r2. The second non-tapered section has a diameter r2. The core of this first section has a 

refractive index n1, and the cladding has a refractive index n2. The second stage (L3-L4-L5) is 

obtained by inserting a double-tapered inner core (tapered at both sides). This inner core has a 

refractive index n2 and consists of three sections. The first section L3 starts with a zero diameter 

and is tapered to an ending diameter r3. This first section is followed by a non-tapered section L4. 

Then, another tapered section of length L5 follows, where its diameter is tapered from r3 to zero. 

 
Figure B-1 Schematic diagram of the proposed mode converter. 

For the mode converter to work, the power of the fundamental mode (LP01) is injected at the 

left of the first stage (left of L0 section). The diameter of this section (r1) is chosen to couple 

easily to a single mode fiber (SMF) with a minimum coupling loss. By careful tuning of the 

parameters of this stage (mainly r2, L1, and L2), the power transfer can be forced to occur mostly 

from LP01 to the desired LP0m. However, other non-desired modes (especially those LP0k, k≠m) 

can still have a significant portion of power at the end of this stage. The second stage of the 

converter is then used to further enhance the desired mode conversion and reduce the conversion 

to other non-desired modes. The second stage has four parameters that can be tuned to obtain a 

high conversion efficiency from LP01 to the desired LP0m (or low insertion loss of the desired 

LP0m mode) and a high extinction ratio (high mode purity of the desired mode and low residual 

powers from the other non-desirable modes). Therefore, there are seven parameters (two 

diameters r2 and r3 and five lengths L1 to L5) that could be tuned for a target LP0m mode. 

Finding the optimal parameters for a particular LP0m mode will be formulated as an 

optimization problem, where the objective function to minimize is the mode insertion loss subject 

to a set of constraints representing the fabrication limitations. These requirements are the 
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minimum physical dimensions required for fabrication using 3D femtosecond laser inscription. 

The optimization problem formulation is discussed in the next section. 

B.3 Proposed optimization method:  

Problem formulation refers to the process of formulating the device designing problem to make 

an objective function for an artificial intelligence optimizer. For mode converter, we consider the 

structural parameters as the input of objective function and the Insertion Loss (IL) as the output 

of the function. The problem formulation is given by: 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: 𝑥 = [𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝑟1, 𝑟2, 𝑟3] 

𝑂𝑏𝑗𝑒𝑐𝑖𝑡𝑣𝑒: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = 𝑃𝑖𝑛/𝑃0𝑚
𝑜𝑢𝑡 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒: 

𝑀𝑖𝑛(𝑥 ) = [100  0 50 0 50 8 20 0] 

𝑀𝑎𝑥(𝑥 ) = [3000 1500 2000 1500 2000 12 250 100]  

(B-1) 

These minimum and maximum values are obtained after discussion with the fabrication team 

and are in the unit of µm [168]. Note that the IL of mode LP0m is computed as follows: 𝐼𝐿 =
𝑃𝑖𝑛/𝑃0𝑚

𝑜𝑢𝑡, where Pin is the normalized input power (in the fundamental LP01 mode) injected at the 

left of the converter and 𝑃0𝑚
𝑜𝑢𝑡 is the normalized power in mode LP0m at the output of the 

converter. 

B.4 Results and discussion:  

To optimize the structural parameters of the device, the GWO with 60 artificial gray wolves 

and maximum iteration of 250 is utilized. This algorithm simulates the social behavior and 

leadership of grey wolves in nature and proves its performance in several fields of engineering 

[21]. The convergence curve for each optimization is shown in Figure B-2. In addition, the 

obtained optimum structural parameters for each mode converter is shown in Table B-1. The 

obtained results show that the proposed method is very efficient and comprehensive in finding 

the best value of the structural parameters. Also, the comparative study shows that there are 

significant improvements in the IL. For example, the obtained LP01 to LP02 mode converter 

provides an improvement of more than 50% in IL compared to the one presented in [170]. 
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Figure B-2 GWO convergence curves for each LP01 to LP0m converter. 
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Table B-1 Obtained optimal structural parameters for the mode converters. 

LP01 to L1 L2 L3 L4 L5 r1 r2 r3 IL (at 1550nm) 

LP02 1179 114 167 95 1337 10 82 11 0.1 

LP03 1359 3 418 4 1833 12 115 15 1 

LP04 2898 373 105 1244 2000 12 80 71 1.2 

LP05 121 763 1424 300 542 12 147 47 2.5 

LP06 1414 388 557 53 589 12 163 100 2 

LP07 2482 26 100 290 917 12 213 92 2.5 

All dimension parameters are in the unit of µm. 
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Figure B-3 Insertion loss (IL) of LP0m modes at the output of mode converter (a) over a broadband, and (b) over the 

C-band. 

Figure B-3 shows the IL of the several LP0m modes. Figure B-3(a) indicates that the obtained 

mode converters can operate over a broad bandwidth. For instance, LP01-LP02 mode converter 

can be used over the O-, E-, S-, C- and L-bands for an IL less than 1 dB. The same bandwidth can 

be obtained for the LP01-LP03 mode converter with a maximum IL of 3.5 dB.  More interestingly, 

Figure B-3(b) demonstrates that all the designed mode converters could span the C-band (from 

1530 to 1565 nm) with an IL not exceeding 3 dB. 
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B.5 Conclusion 

In this chapter, we have presented an optimization algorithm based on utilizing artificial 

intelligence techniques to design mode converter structures automatically. As a case study, a 

mode converter structure has been designed to convert LP01 to LP0m (m=2, …, 7). The obtained 

mode converters can operate in a broad bandwidth. The optimization takes into consideration the 

fabrication limitation of the devices by respecting a set of fabrication rules in terms of minimum 

dimensions. The results have revealed the optimization approach is effective in designing such 

complex devices. It has also been shown that the obtained device insertion loss outperforms 

similar structures by a factor of 50%. In addition, the optimizer allows the designers to optimize 

complex structures with multiple merit factors. 
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Appendix C:  Optimization Framework for Designing Photonic Crystal 

Sensors 

C.1   Introduction 

This appendix is based on the paper published in the Journal of Journal of Applied Optics [6]. 

To date, Photonic Crystal (PhC) devices have become popular  because they cover a wide range 

of applications. PhC structures show bandgaps in their spectral transmission performance. By 

creating defects in the PhC lattice, some leaky modes will be generated in the bandgap region. In 

other words, these leaky modes provide the opportunity to manipulate the transmitted light [14]. 

The use of a leaky mode to implement optical filters is one of the most standard applications of 

PhC structures. This leaky mode provides a very narrow bandpass filter that could be used in a 

wide range of applications. In this chapter, a PhC sensor, based on the optical filtering operation 

of a PhC structure, is designed with the proposed optimization method. In such structures, a PhC 

slab with some air holes is usually considered as the sensing device. Hence, sensing operation is 

performed by filling the air holes with the designated material and measuring the wavelength 

shift in the output spectrum of the filter [171]. 

The main problem inherent with the use of such devices is how to model the internal 

propagation light. In other words, finding an analytical equation describing the relationship 

between the structural parameters and the device output performance is usually very challenging, 

and in many cases it is impossible. The complexity of the relationship between the structural 

parameters and the device output performance prevents researchers from proposing analytic 

methods to design such devices. 

The typical method utilized in this field to design such devices is trial and error; that is, the 

structural parameters are manipulated, then the behavior of the device is observed, and these 

observations are used to estimate the approximate relation between the structural parameters and 

the device output. This method requires a huge amount of human involvement with tedious non-

systematic efforts. Moreover, the finally designed device is usually far from the optimal one. The 

trial and error process have been followed in many works in the field of PhC devices [93]–[95], 

[97], [98], [172]. Many PhC filter structures, such as PhC cavity [102], PhC ring resonator [99]–

[101], and defect-mode based PhC filter [103], have been designed by this approach. More 

specifically, PhC liquid sensors that we aim to concentrate on here have been designed  manually, 

which leads to be far from the optimal designs [173], [174].  

To solve the problem of the lack of an automatic and comprehensive method for designing PhC 

devices, use of artificial intelligence techniques has been proposed. Up to date, the Quality factor 

(Q) of PhC cavity has been maximized by genetic algorithms [104]–[106]. In ref.[108], PhC 

notch-filter has been designed by the particle swarm optimization algorithm. The bend loss of 

PhC waveguide has been minimized by use of a genetic algorithm [107]. The Extraction ratio and 

Purcell factor of PhC LEDs have been maximized using a multi-objective grey wolf optimizer 

[65]. Furthermore, the slow light properties of PhC waveguides have been optimized using 

similar optimization algorithms [66]–[72]. 

Recently, comprehensive frameworks for designing PhC filters have been proposed [2], [62]. 

In these frameworks, the optimal designs have sharp, well-tuned, and low crosstalk output 

completely, suitable for all filter applications. However, for the application of PhC sensors based 

on PhC filters, the sensitivity of the sensors must be evaluated and considered in addition to other 



 

85 
 

merit factors. Therefore, in this chapter we upgrade the multi-objective optimization framework 

for the application of PhC sensor design, in which the sensitivity will be maximized as well as 

other merit factors. In the rest of the chapter, the process of this framework is explained with an 

example of designing a PhC liquid sensor.  

C.2   PhC Sensor Structure and Related Issues 

The proposed structure of liquid sensor is shown in Figure C-1. The structure consists of a 

silicon slab with some holes in it to form a waveguide and a cavity section. The cavity is  made by 

eight holes. The light will enter the device from the left side. The device has optical filtering 

characteristic and the spectral transmission characteristic can be examined at the right side 

output. Filling the holes with Oil (n=1.45) or water (n=1.33) will result in a shift in the output 

spectral transmission performance. This is the principle for utilizing this structure as a liquid 

sensor [173], [174]. 

Before designing the cavity section, it is necessary to design the photonic crystal lattice to have 

the largest photonic band gap as a large photonic bandgap provides a wider working wavelength 

window to design filters. In order to calculate the photonic bandgap of the PhC lattice, the 2D 

Plane Wave Expansion (PWE) with a slab equivalent index method is utilized [175]. We consider 

a Silicon-On-Insulator (SOI) slab with 400 nm thickness of silicon slab, which corresponds to a 

slab equivalent index of 3.18 for a Transverse Electric (TE) polarized mode [176]. In addition, 

we consider that the holes are normally filled with Oil (n=1.45) [173]. By sweeping the filling 

factor (f=r/a, where a is the lattice constant and r is the hole radius) from 0 to 0.5, we conclude 

that at f = 0.41, the largest photonic bandgap will be achieved. However, we consider f=0.375 

which provides a large enough bandgap and a more mechanically rigid PhC slab. In addition, the 

central normalized frequency of the photonic bandgap is set 0.389. Therefore, the lattice constant 

is 𝑎 = 0.280 ∙ 1550 = 433 𝑛𝑚. 

The idea of realizing a filter by modifying a PhC lattice comes from the fact that introducing 

defects in PhC lattice causes leaky modes in the photonic bandgap. These leaky modes provide 

an opportunity to utilize the structure as a narrow bandpass filter. In other words, the leaky mode 

guides a narrow band of spectrum. Therefore, such structures can be utilized as narrow bandpass 

filters. To tune the leaky mode, it is necessary to modify the defect structure. In our case, we use 

holes as a defect region to create the leaky modes. 

The more holes involved in defect region, the more flexible the PhC sensor structure is, and the 

more complex and difficult designing such structures becomes. Here, we consider eight holes as 

the defect region to manipulate the guided light, which is large enough to provide sufficient 

flexibility in the design and to show our approach. 

In order to evaluate the performance of the device, the output spectral transmission 

performance is calculated by a 2D FDTD simulation for TE-polarization. As a sample case study, 

the output of the device is shown in Figure C-2. To design a PhC sensor, four merit factors must 

be considered: 

• Ampc: Maximum amplitude of the output in the main band. 

• Amps: Maximum amplitude of the output in the sidebands.  

• Deviation: The deviation of the central wavelength of the output peak (𝜆𝑐) to the 

defined central wavelength of the channel (𝜆𝑂) (𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |𝜆𝑐1 − 𝜆O|).  
• Sensitivity: the ratio of change in the central wavelength of the output peak (𝜆𝑐) divided 
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by change in the refractive index of the filed holes (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = |
𝜆𝑐2−𝜆𝑐1

𝑛2−𝑛1
|). 

The first three factors are three of which are directly related to the performance of the filtering 

operation [2], [62], while the sensitivity is a criterion specific to a sensor. The above five 

parameters of Ampc, Amps, 𝜆O, 𝜆𝑐1, and 𝜆𝑐2 are illustrated in Figure C-2. 

 
Figure C-1 Proposed PhC liquid sensor. Eight holes are used to form the super defect region. 

 
Figure C-2 Output spectral transmission performance of an example of a PhC liquid sensor. 

C.3   Multi-objective optimization frameworks for designing PhC Sensors 

As mentioned before, it is very difficult to find analytical methods; we can sweep the search 

space or utilize an optimizer algorithm to find the best possible designs. If a design shows high 

Ampc and Sensitivity with low Amps and Deviation, it means that it is a well-designed PhC sensor. 

Therefore, the multi-objective optimizer looks for the designs in which Ampc and Sensitivity are 
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maximized while Amps and Deviation are minimized. The framework can be divided in three 

main modules: Parameters Module, Constraints Module and Optimizer Module, illustrated by 

Figure C-3. 

 
Figure C-3 Proposed multi-objective optimization framework for designing PhC sensors. 

A. Parameters Module (P) 

In this module, the structural parameters must be defined and handled. Therefore, the best 

values for the structural parameters will be found. The P module for the proposed PhC sensor 

(Figure C-1) is given by: 

𝑃: 𝑥 = [
𝑅1

𝑎
,
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𝑎
,
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𝑎
,
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𝑎
,
𝑅7

𝑎
,
𝑅8

𝑎
] (C-1) 

B. Constraints Module (C) 

All of the issues that must be considered during the PhC sensor design are considered in this 

module. For this case study, two groups of constraints are considered to address the issues. The 

first group (C1) is related to the parameters ranges. In addition, any  manufacturing limitations 

could be added to this group. The second group (C2) is for checking the validity of the filtering 

operation of the device. The C module for the proposed PhC sensor (Figure C-1) is given by: 

𝐶 = [𝐶1, 𝐶2], 

𝐶1: 0 ≤
𝑅1

𝑎
,… ,

𝑅8

𝑎
≤ 0.5, 

𝐶2: 𝐴𝑚𝑝𝑐1 > 𝐴𝑚𝑝𝑠1 , 
𝐴𝑚𝑝𝑐2 > 𝐴𝑚𝑝𝑠2 

The index of 1 and 2 of the C2 section indicates the number of the device simulation. 

(C-2) 

C. Optimizer Module (O) 

Objective functions and an optimizer should be identified for this module: in order to solve the 

problem with single objective optimization approach, a new merit factor, a combination of the 

previous merit factors, is defined as: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐴𝑚𝑝𝐶1 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +
1

𝐴𝑚𝑝𝑆 + 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (C-3) 

The single objective optimizer will try to maximize this parameter. As the Objective is 

maximized, a higher performance PhC sensor design is achieved. Solving the problem as a single 
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objective problem results in losing many decent designs since the actual answer to multi-

objective problem is a set of optimal solutions. 

The objectives for the multi-objective optimization approach are Ampc, Amps, Deviation, and Sensitivity. 

The optimizer should find the PhC sensor structures in which Ampc and Sensitivity are maximized while 

Amps and Deviation are minimized. Several single- and multi-objective optimization algorithms can be 

used for the optimizer [22], [89], [90]. We choose the Single- and Multi-Objective Grey Wolf Optimizer 

(SOGWO and MOGWO) algorithm for the optimizer [21], [24], [91]. This algorithm mimics the social 

behavior and leadership of grey wolves in nature.  This algorithm proved its performance in several fields 

of engineering. The main motivation to choose Grey Wolf Optimizer is the high local optima avoidance, 

since the problem that is investigated in this work has a large number of variables, resulting in a very 

difficult task to explore the search space with many local solutions [92].  

It is worth mentioning here that there is no single solution for multi-objective problems due to the nature 

of such problems. A set of optimal solutions (Pareto-optimal set) is the answer to multi-objective 

problems. They represent the best trade-offs between the objectives [73]. 

A flow chart of how to calculate the merit factors is shown in Figure C-4. The reason why -Amps1 and -

deviation1 are considered is that the multi-objective optimizer tries to maximize the outputs of the 

objective function. By considering the negative value of an output, the direction of the behavior is 

changed. For Amps1 and deviation1, minimization is required; alternatively, for the negative -Amps1 and -

deviation1, maximization is required. Overall, all of the outputs behave in the same direction.  

A candidate design, which does not satisfy the conditions that mean a valid filter device cannot be 

made, is what we call infeasible design. Hence, for such a design the outputs of the objective function 

must be a set of values, which are much worse than that of the normal valid designs. In this case, we 

consider Output=-100 for the single objective optimization approach and Output=[-100 -100 -100 -100] 

for the multi-objective optimization approach. In order to calculate the merit factors, two simulations are 

required (one with oil as the external medium and one with another liquid). For infeasible designs, we 

bypass the second simulation, since it does not provide any valuable information. 
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Figure C-4 Flowchart for the calculation of merit factors (the objective function of multi-objective optimization 

approach). 

C.4   Results and discussion 

After setting up each module, the framework is ready to optimize the proposed PhC sensor. 

Basically, the optimizer checks different possible combination of the structural parameter values 

to achieve high-performance design(s). 

Single-objective optimization approach: 

In order to perform the single-optimization, we have utilized SOGWO with 60 artificial grey 
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wolves and maximum iteration of 400 to approximate the global optimum. The optimizer just 

considers the Objective function as 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐴𝑚𝑝𝐶1 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +
1

𝐴𝑚𝑝𝑆+𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 and 

manipulates the structural parameters until the best value of the Objective is found. The results of 

single-objective optimization approach are shown as  a  convergence curves in Figure C-5. 

SOGWO, Particle Swarm Optimization (PSO) [18], [19], and Genetic Algorithm (GA) [20] were 

utilized to optimize this problem. The comparative study shows that SOGWO gives better results 

than the others. Therefore, the results of SOGWO with iterations are shown in Table C-1, and 

correspondingly the output spectral transmission performance of the obtained designed filter is 

given in Figure C-6. It is seen that the transmission spectrum performance is better and better 

with the increase of iterations. It is also shown that single-objective optimization is not the best 

way to solve this problem. This motivates us to solve the problem with multi-objective 

optimization approach. 

Table C-1 Properties of obtained structures with single-objective optimization by SOGWO 

Iter R1 R2 R3 R4 R5 R6 R7 R8 Ampc -Amps -D(nm) Sen Obj 

1 63 105 154 178 199 32 150 99 0.0003 -0.0001 -0.53 0.285 1.6 

3 217 156 175 186 118 3 134 77 0 0 -0.38 0.613 2.1 

7 120 164 103 53 0 110 0 27 0.0134 -0.0113 -0.3 0.172 3 

20 170 137 26 217 94 131 25 5 0.0788 -0.0052 -0.15 0.277 6.1 

22 217 154 0 188 201 68 31 0 0.0721 -0.0018 -0.15 0.24 6.3 

24 202 128 27 217 106 217 58 6 0.001 0 -0.15 0.255 6.4 

33 162 89 84 217 90 77 40 41 0.0537 -0.0249 -0.08 0.27 9.7 

50 217 10 8 180 50 143 46 33 0.0325 -0.0267 0 0.247 37.1 

147 217 127 13 150 25 187 51 30 0.0288 -0.0124 0 0.21 80.7 

283 214 128 10 134 34 196 62 22 0.0389 -0.0108 0 0.217 92.6 

287 217 136 9 139 38 183 71 23 0.035 -0.0099 0 0.217 100.8 

308 217 129 8 126 34 203 73 30 0.0495 -0.0093 0 0.217 107.2 

337 213 129 8 120 36 208 73 27 0.055 -0.0089 0 0.217 111.8 

341 217 140 9 130 35 193 74 22 0.0435 -0.0086 0 0.21 116.4 

354 217 139 9 128 35 197 74 22 0.0461 -0.0084 0 0.217 118.5 

370 210 148 9 120 36 200 74 22 0.0486 -0.0079 0 0.202 125.8 

374 211 148 9 120 37 198 75 22 0.0487 -0.0079 0 0.21 125.9 

379 213 141 10 118 35 205 75 22 0.0528 -0.0077 0 0.202 130.1 

387 212 144 9 118 35 204 75 22 0.0522 -0.0076 0 0.202 130.5 

388 207 143 9 117 36 205 75 21 0.0534 -0.0076 0 0.202 131.1 

390 209 143 9 117 36 204 75 22 0.0535 -0.0076 0 0.21 131.2 

393 210 144 9 116 36 204 76 22 0.0542 -0.0074 0 0.202 134.9 

394 215 146 9 116 36 203 77 22 0.0538 -0.0073 0 0.202 137.3 

397 214 145 9 118 36 202 78 22 0.0545 -0.0072 0 0.202 138.5 

398 212 145 9 117 36 203 78 22 0.0553 -0.0072 0 0.202 139.3 

The unit of Rx is nm. 
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Figure C-5 Convergence curve of single-objective optimization approach. 

 

Figure C-6 Output spectral transmission performance of the PhC sensor designs of Table C-1. The purple/thick curve 

indicates the spectrum at the end of optimization, the best design with singe-objective optimization approach. 

Multi-objective optimization approach: 

The Ampc, Amps. Deviation, and Sensitivity show a conflicting behavior. Therefore, it means 

that this problem is intrinsically multi-objective. Since there is no single solution for such 

problem, solving the problem with just single objective optimization approach, in which the 

combined result of merit factors is considered, causes to find only a member of the set of 

optimum solutions.  
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Since the output of the many designs in the search space does not satisfy the condition of 

Ampc1>Amps1, second simulation has been bypassed, significantly decreasing the total run time of 

the optimization. 

Finally, the optimization ends up with 100 optimal designs. Since calculating the four merit 

factors requires two simulations, the second simulation is done to calculate the Sensitivity. 

Therefore, in order to simplify the plot, the output spectral transmission performance for the first 

simulation of the optimal designs are depicted in Figure C-7. The best and the worst designs with 

respect to each of the merit factors are shown in Figure C-8. As it can be seen, the range of 

optimal designs is so wide. As it is already mentioned, all of the solution of the Pareto-optimal 

set are optimal and no one is better than the others. Hence, we need to choose a design in which 

the best trade-off has been established between the merit factors. To select a design from the set 

of optimal designs, firstly, we omit the designs in which the Ampc1 of them are very low as they 

transmit a low portion of optical power. Secondly, we omit the designs in which the ratio=Ampc1/ 

Amps1 is very low. Designs with a ratio lower than 40 have been omitted. Therefore, 33 optimal 

designs remain, which are shown in Table C-2. The output spectral transmission performance of 

the first simulation of the remaining 33 designs is depicted in Figure C-9 and zoom-in in Figure 

C-10. 

Among the few remaining optimal designs, the design that provides the highest sensitivity is 

the best choice for liquid sensor application, i.e. structure #1 in Table C-2. The output spectral 

transmission performances of the selected design (i.e. structure #1) and the physical geometry of 

the device are shown in Figure C-11 and 12 respectively. It is also seen that a slight change of 

filling material refractive index results in a clear shift of output transmission spectrum. In 

addition, the simulation results for a design of filling the holes with Oil (n=1.45) and water 

(n=1.33) are shown in Figure C-13, and it is observed that a big shift in the output spectral 

transmission performance is achieved. The comparison between the designed sensor in this work 

and the similar works reported, the performance of this work based on the newly defined merit 

factors is much better than that of the similar works reported [173], [174]. 

 
Figure C-7 Output spectral transmission performance of the 100 optimal PhC liquid sensor by first simulation. 
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Figure C-8 Best and worst designs with respect to each of the merit factors. 
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Table C-2 Properties of optimum structures designed by multi-objective optimization approach. 

No. R1 R2 R3 R4 R5 R6 R7 R8 Ampc -Amps -D(nm) Sen 

1 162 144 98 104 142 138 69 88 0.0756 -0.0017 -2.02 0.314 

2 173 149 100 98 141 150 84 98 0.048 -0.0008 -0.75 0.307 

3 158 137 105 97 143 148 75 92 0.0756 -0.0016 -0.22 0.307 

4 171 156 96 103 137 151 72 84 0.0511 -0.0008 -2.25 0.306 

5 174 145 112 94 132 168 89 89 0.0331 -0.0006 -3.07 0.306 

6 176 154 102 94 136 163 75 99 0.0305 -0.0004 -4.22 0.301 

7 179 157 102 96 131 167 75 99 0.0246 -0.0004 -3.69 0.301 

8 167 144 101 94 150 155 79 98 0.0456 -0.0006 -3.39 0.301 

9 161 138 103 94 156 159 72 111 0.0526 -0.0006 -1.28 0.3 

10 171 135 95 108 141 157 57 72 0.0436 -0.0011 0 0.3 

11 151 168 79 112 147 137 76 97 0.0678 -0.0008 -0.53 0.3 

12 164 156 93 102 149 142 85 75 0.0537 -0.0008 -1.72 0.299 

13 151 151 99 99 151 137 85 82 0.0747 -0.0014 -1.95 0.299 

14 178 154 103 95 146 171 72 87 0.0346 -0.0004 -3.67 0.298 

15 167 156 93 98 146 152 73 97 0.0451 -0.0005 -5.43 0.294 

16 173 143 107 84 158 162 65 82 0.0341 -0.0003 -3.54 0.294 

17 177 174 98 91 146 151 81 101 0.0228 -0.0003 -2.86 0.293 

18 162 144 97 95 159 167 63 99 0.0289 -0.0003 -2.41 0.293 

19 166 152 104 85 164 162 72 107 0.0363 -0.0002 -2.18 0.293 

20 173 160 101 94 144 152 74 95 0.0342 -0.0004 -1.05 0.293 

21 161 164 80 112 145 140 59 74 0.0567 -0.0008 -0.38 0.292 

22 160 157 83 110 148 138 68 84 0.0574 -0.0008 -0.08 0.292 

23 159 170 76 116 144 132 73 78 0.0676 -0.001 -0.08 0.292 

24 170 153 89 107 147 146 59 88 0.0511 -0.0005 -0.67 0.292 

25 174 164 94 96 156 155 65 89 0.0361 -0.0003 -1.43 0.292 

26 178 163 108 85 151 162 77 98 0.0212 -0.0002 -1.43 0.292 

27 173 164 77 119 139 137 65 84 0.0616 -0.0008 -1.43 0.292 

28 181 165 115 80 150 160 61 68 0.0124 -0.0001 -1.58 0.292 

29 172 166 97 89 155 169 75 116 0.0193 -0.0002 -3.23 0.286 

30 172 163 98 87 164 161 75 83 0.0208 -0.0002 -3.08 0.286 

31 195 155 108 81 162 173 55 82 0.0184 -0.0001 -0.23 0.285 

32 183 165 94 96 153 163 63 96 0.0305 -0.0002 -1.13 0.284 

33 192 184 77 95 179 165 42 103 0.018 -0.0001 -4.52 0.264 

The unit of Rx is nm. 
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Figure C-9 Output spectral transmission performance of the optimal PhC liquid sensors of Table C-2 by first 

simulation. 

 
Figure C-10 Zoom-in output spectral transmission performance of the optimal PhC liquid sensors of Table C-2 by 

first simulation. The thick curve indicates the design has higher sensitivity than the others. 
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Figure C-11 Output spectral transmission performance of the selected optimal PhC liquid sensor by two simulations 

with different filler materials. 

 

 
Figure C-12 Physical geometry of the obtained PhC liquid sensor. 

Input 

Cavity 

Super defect Si 

slab 

Filled hole 

Output 



 

97 
 

 
Figure C-13 Output spectral transmission performance of the selected optimal PhC liquid sensor in real application. 

The method proposed in this study, which is able to automatically find a high-performance 

design, has two main advantages. First, using a large defect with several free parameters provides 

much flexibility in manipulating the guided light through the defect. Second, using a systematic 

multi-objective optimization method allows finding a wide range of optimal designs without 

human involvement. 

To summarize, the multi-objective optimization technique is a straightforward and 

comprehensive method for designing complex super-defect PhC liquid sensors with a large 

number of structural parameters. Moreover, this method opens up a way towards designing new 

and very high-performance PhC Sensors, which work based on the wavelength shift in the output 

of the PhC filters. 

The designed PhC liquid sensor requires 1 nm manufacturing resolution. Considering the 

fabrication process of PhC structures reported in [112], [113], this structure should be feasible to 

build.  

C.5   Conclusion 

In summary, the case study investigated here has shown that the proposed multi-objective 

framework can effectively design and optimize the structure of a newly introduced PhC liquid 

sensor. The proposed framework can design any complicated super-defect PhC sensors. Several 

structures can be designed with respect to any application. No initial design and human 

involvement are required to start the optimization process. Moreover, any manufacturing 

limitation can be added in the constraints module. Various multi-objective algorithms can be 

easily used in optimizer module to achieve the optimal designs. Finally, the proposed multi-

objective framework opens up an effective way for designing very high-performance PhC 

sensors. 
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