
NEURAL NETWORKS IN INSURANCE

MAGALI-CHEN GOULET

A Thesis

in

The Department

of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Science (Mathematics) at

Concordia University

Montreal, Quebec, Canada

July 2021

c© Magali-Chen Goulet, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Magali-Chen Goulet

Entitled: Neural Networks in Insurance

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted stan-

dards with respect to originality and quality.

Signed by the final Examining Committee:

Chair

Dr. Frédéric Godin

Examiner
Dr. Simone Brugiapaglia

Supervisor
Dr. Mélina Mailhot

Approved by

Chair of Department or Graduate Program Director

2021

Dean of Faculty

Abstract

Neural Networks in Insurance

To date, in the insurance industry, the premium for a given risk is based on

the expected claim amount since the models used are only meant to calculate

a mean response. However, getting more information about the distribution

of each single risk would be useful for risk assessment. A method in Neural

Networks (NN) called Tractable Approximate Gaussian Inference (TAGI) by

Goulet et al. (2020) allows to study each response individually since each

output follows its own Normal distribution. The main contributions of this

thesis are to make this technique available through an open source package,

to apply TAGI in insurance and compare it to other techniques and to study

risk measures with it.

iii

Acknowledgments

First, a special thank you to my supervisor, Dr. Mélina Mailhot, not only

for her great expertise and guidance through my thesis journey, but for the

human being that she is and all the support she gave me.

Secondly, I am sincerely grateful to Dr. James-A. Goulet and Dr. Luong Ha

Nguyen for their ideas and support on TAGI.

Moreover, thanks to my closest friends who reminded me that life is not

just about work and performance, by bringing me happiness and joyful mo-

ments.

Last but not least, I would like to thank my parents, for their unconditional

love and everything they have done for me. Thanks for giving me the chance

to live the life I have now, and for becoming the person I am.

iv

Contents

1 Introduction 1

2 Machine Learning 6

2.1 Common Types of Learning 6

2.1.1 Supervised Learning 6

2.1.2 Unsupervised Learning 7

2.1.3 Semi-Supervised Learning 8

2.1.4 Reinforcement Learning 9

2.2 Neural Networks . 10

2.2.1 General Process . 12

2.2.2 Literature Review of the Model: Tractable Approxi-

mate Gaussian Inference (TAGI) 23

2.2.2.1 Concepts and Propositions in TAGI 28

2.3 Gradient Boosting . 31

2.3.1 Gradient Boosting Algorithm 31

2.3.2 Extreme Gradient Boosting 39

2.4 Comparaison between TAGI and XGBoost 43

3 Partial Derivatives 46

3.1 First Derivative . 49

3.2 Second Derivative . 54

3.2.1 Generalization . 59

3.3 Third Derivative . 63

4 Risk Measures 68

v

4.1 Properties of Risk Measures 68

4.2 Common Risk Measures In Actuarial Science 68

4.3 Risk Measures in TAGI . 72

4.3.1 Simple Experiment with Risk Measures in TAGI 73

4.3.2 Precipitations Example 80

5 Conclusion 85

Appendices 92

A First Derivative with Two Hidden Layers 92

B Second Derivative with Two Hidden Layers 96

B.1 Sequence Type 1 . 96

B.2 Sequence Type 2 . 103

B.3 Sequence Type 3 . 105

C Activation’s Derivative a(z) 107

C.1 Sigmoid(z) . 107

C.1.1 First Derivative . 107

C.1.2 Second Derivative . 109

C.2 Tanh(z) . 109

C.2.1 First Derivative . 110

C.2.2 Second Derivative . 111

C.3 ReLU(z) . 111

C.3.1 First Derivative . 112

D Package Manual 113

vi

List of Figures
2.1 Multilayer Neural Network . 11

2.2 Network Graph of z(j+1)
i Calculations 13

2.3 Sigmoid Function . 15

2.4 Hyperbolic Tangent Function 16

2.5 Softsign Function . 17

2.6 ReLU and LReLU . 18

2.7 Softplus Function . 19

2.8 Tractable Recursive Layer-Wise Inference1 29

2.9 Classification Tree Example 32

3.1 Neural Network with Two Hidden Layers 47

3.2 Neural Network with Three Hidden Layers 60

vii

List of Tables
2.1 Description of Medical Cost Personal Dataset 43

2.2 Medical Cost Personal Dataset Results with XGBoost 45

3.1 Sequence Types of Product Terms 59

3.2 Expectations at Layer 1 for a Three Hidden Layers Model . . 62

4.1 Quantile Models’ Bias2, Variance, MSE and RMSE 82

4.2 RMSE under Quantile Regression (QR) and Neural Network

(NN) . 84

B.1 Sequence Types of Product Terms 96

B.2 Sequence Type 1 at Layer 1 98

viii

List of Algorithms
2.1 Inference Procedure . 31

2.2 Simplified Gradient Tree Boosting Algorithm for Regression . 36

2.3 Generic Gradient Boosting Algorithm for Regression 37

2.4 Gradient Boosting Algorithm for Least-Squares Regression . . 38

ix

1 Introduction

In the insurance industry, whether in Life insurance, Group Benefits or in

Property and Casualty, the formula to calculate a premium is represented as

follows,

Premium = E[Claim] + Taxes+ Fees,

where E[Claim] is the expected claim amount and the fees include a risk

loading and a profit margin. Many techniques exist to predict the expected

claim amount. It can go from standard methods such as Generalized Linear

Models (GLM) to machine learning models. In Group Benefits, it can be cal-

culated as a combination of the client’s past experience and trends observed

in its industry.

As an insurer, it is useful to calculate the expected claim amount, not only

for the premium, but also for risk assessment. If the expected claim amount

is too high, the insurer might consider not binding a given policy. However,

knowing the distribution of each risk would be even more helpful for risk as-

sessment. For example, for a given policy, the expected claim, calculated from

a traditional method, can be considered as acceptable if the amount is not

particularly high. The policy would be bound. However, suppose it would be

possible for the insurer to also calculate the policy’s risk distribution. It can

reveal a very high volatility and a non-negligible probability that the claim

amount would be higher than the insurer’s risk appetite. Then, knowing the

risk distribution of any single risk or policy could be used to decline policies

1

that are normally bound or to adjust premiums accordingly.

An industry which could particularly benefit from this new feature would be

the Commercial Lines (CL) in Property and Casualty, since they consist in

multiple types of risk with less population as in the Personal Lines, which

provide auto and house insurance coverages to individuals. CL provide lia-

bility and property coverages to businesses. They can be of any types such

as restaurants, contractors, retailers, etc. which are all very different risks.

Thus, knowing the risk distribution of each single risk would benefit this

industry.

To do so, there are already some techniques that exist in the literature such as

Quantile Regression (QR) which is commonly used to estimate the median

of the response variable. However, its use is not restricted to the median

since it can predict any quantiles of the response variable. It is particu-

larly interesting in our case, since insurers are generally worried about the

extreme values. Predicting high quantiles of potential claims can provide

better risk assessment of a given portfolio of risks, lines of business and/or

coverages.

More recently, machine learning is growing in popularity in many fields of

study. Many techniques are studied, developed and improved and some of

them provide more information about the predicted responses than only

their means. Notably, methods from Gradient Boosting (GB) and Neural

Networks (NN) achieve that objective. Tractable Approximate Gaussian In-

ference (TAGI) by Goulet et al. (2020) is extensively reviewed in this thesis,

as for all the model’s parameters, the predicted responses follow a Normal

2

distribution which, not only answers to the initial purpose of this thesis, but

also opens up opportunities for diverse areas of study. Since insurance is our

subject of interest, we find interesting to compare general performance of

a GB method to TAGI on a medical cost dataset. For its ability to model

large amounts of data, efficiency and popularity of use, Extreme Gradient

Boosting (XGBoost) by Chen and Guestrin (2016) is the chosen GB method

to compare with TAGI.

Moreover, to test the impact of variation of the input variables on a variable

of interest, sensitivity analysis is commonly used in pricing and reserving by

insurers. Partial derivatives can be used as "local" sensitivity measures to

understand the impact of a change on a single input to the model outputs.

They can be estimated in TAGI since all model’s parameters and states follow

a Normal distribution and the outputs are functions of the inputs. Detailed

explanations on the first and second derivatives are provided in Section 3 and

we also develop the third one.

Another interesting approach to improve risk assessment is to study risk

measures. There are different measures that are used to quantify risk from

many angles, especially in situations with evidence of randomness. For ex-

ample, in finance, they can be used to assess volatility of portfolio returns

so that an investment strategy can be adjusted accordingly. Popular risk

measures are Value at Risk (VaR) and Tail Value at Risk (TVaR). Let X be

the random variable of interest. Then, VaRα(X) is the quantile risk measure,

which represents the minimum value of X that should not be exceeded with

probability α ∈ [0, 1]. Insurers are often interested in the potential extreme

values for claims. Since they are in the right tail of the claim distribution,

3

risk measures at 95% and 99% α-levels are typically used.

In addition, if interested in the remaining (1-α)% scenario, TVaRα(X) is the

conditional expectation given that X exceeds VaRα(X). An alternative to

TVaR is the Range Value at Risk (RVaR), which instead of considering all

values starting from VaRα(X) up to the end of the X distribution, caps the

conditional expectation to VaRα+(X), where 0 ≤ α < α+ < 1. Moreover,

the upper bound of those three risk measures, obtained from the Chernoff

inequality, is called the Entropic Value at Risk (EVaR). All those measures

are of interest in actuarial science, especially in our case to capture the risk

of large losses in claims predictive models. Risk measures study was not yet

performed on TAGI, so we take that opportunity to test them on TAGI mod-

els. We demonstrate layer by layer how modifying the inputs have an impact

on the resulting distribution of the outputs and hence, on the risk measures.

Moreover, we study the performance of TAGI in prediciting quantiles and

compare it to the specialized technique to do so, QR.

4

To summarize the contributions of this thesis, it is to be noted that TAGI was

initially developed in Matlab 2 programming language. We developed a com-

prehensive package in R. As the major contribution, the package "tagi"3 con-

tains functions to perform TAGI on any datasets and functions to compute

the first and second derivatives (the last one was not implemented anywhere

before). Vignettes to guide the users through the package and a reference

manual are also provided. The other contributions are all the work around

TAGI discussed above such as comparing TAGI’s general performance to

XGBoost, developing the third partial derivative and studying risk measures

on TAGI, which includes comparing it at predicting quantiles with QR.

2Available at https://github.com/CivML-PolyMtl/TAGI.
3Available at https://github.com/mgoulet847/tagi. Manual is included in Appendix D.

5

2 Machine Learning

Machines can develop a form of intelligence, which is defined as Artificial In-

telligence (AI). Machine Learning (ML), considered a subset of AI, is the field

of study where techniques are developed so that machines can learn.

2.1 Common Types of Learning

2.1.1 Supervised Learning

Supervised learning consists in giving labeled data to the model, which con-

tains both the observations in input and their corresponding output. It would

be trained using the data provided and its objective is to be able to make

predictions given new observations in input which follow the same structure

as the training set.

Classification and regression problems can be solved using such technique. A

classification problem occurs when the output to predict is a class. Among

a possible set of categories, the model assigns one to each observation. A

regression problem occurs when the variable to predict is numerical, not

categorical. Supervised learning commonly uses neural networks (refer to

Section 2.2), random forests, logistic regression, decision trees, etc. Cluster-

ing techniques can also be supervised. In k-nearest neighbors clustering, an

observation is classified depending on the k categorized observations close to

it. Its class would result in the most important that is among its k neighbors.

For example, if k = 5, then we would look at the five nearest neighbors of

the observation of interest. For example, if the exercise consists in assigning

a color to a given dot and that the five nearest dots are three red, one blue

6

and one green, then since the majority are red, the dot of interest would be

classified as such.

Backtesting can be used to test the predictive models developed using super-

vised learning. It consists in using real historical data since the response to

the input variables are known. For the same inputs, outputs from model are

compared to the real results to assess accuracy of the predictions.

2.1.2 Unsupervised Learning

Unsupervised learning consists in giving unlabeled data to the model, which

contains observations in input, but not necessarily their outputs. The model’s

objective is to understand the relationships and patterns between the data.

Association and clustering are types of unsupervised learning problems. As-

sociation technique can be used in large datasets to assess relationships be-

tween variables. For example, for marketing purposes, companies are inter-

ested in clients’ behavior. Looking at purchasing histories can lead to inter-

esting associations, such as which products are generally bought together.

Clustering consists in assessing patterns between uncategorized data such

that clusters are created according to the structure obtained while learn-

ing. Different types of clustering techniques exist such as k-means and k-

medoids.

In k-means clustering, the number of clusters k is set in advance. Each

observation is assigned to one cluster, such that the sum of squares within

each cluster is minimized. A centroid, which represents the mean of a cluster,

is drawn among the data for each cluster. Each observation is closest to a

7

given centroid, so it is assigned to its corresponding cluster. However, means

are sensitive to outliers. An alternative to k-means is k-medoids clustering

by Rdusseeun and Kaufman (1987), which, instead of using the centroid, an

actual point in the cluster is chosen to be the center of the cluster. That

point is called the medoid.

2.1.3 Semi-Supervised Learning

Semi-supervised learning is a hybrid learning type, as a mixture of supervised

and unsupervised learning. The model is fed with both labeled and unlabeled

data so that it can efficiently learn from the labeled data and still use the

unlabeled one. In fact, the model uses the labeled data to make predictions

for the unlabeled ones.

Semi-supervised learning is commonly used with image, text and audio data,

which are situations where there are generally more unlabeled than labeled

data. An example would be for image recognition. Some pictures would be

labeled but most of them would not, since it is time-consuming to manually

identify or classify pictures. To improve consumers’ experience, some insurers

thought of speeding up the claim process by developing image recognition.

For example, if a client just had a car accident, he can send a picture of

his damaged car to the insurer. Then, the algorithm (developed using semi-

supervised learning) can immediately determine if the car is a total loss which

reduces delays and wait for the claimant to be paid.

8

2.1.4 Reinforcement Learning

Reinforcement learning consists in rewarding and/or penalizing actions, where

a specific objective is defined. There is no training dataset in this framework,

which implies that there are no observations. However, a reward function is

used to identify and quantify the desirability of actions to be made by an

agent which has to learn in an environment. Therefore, given an objective

(or a set of objectives), the agent performs an action in its current environ-

ment. Depending on how that specific action can be beneficial in achieving

the objective, positive or negative feedback is given to the agent, which learns

from it. The same action performed in a different environment would not

necessarily result in the same feedback as it would depict another situation.

Ultimately, a sequence of decisions is optimized to reach the objective, which

means that an action should be chosen if it is the most beneficial to the

objective in the long-run.

An example would be to make a machine play a game. It could be any games,

but as a general example, suppose the objective is to maximize a number of

points. Given a specific environment, some actions can result in obtaining

different number of points whereas others can make the agent lose some. The

agent would then learn to follow a sequence of actions that would result in

the highest score. For example, in a given environment, let the immediate

reward for choosing Action A and Action B be a and b points respectively,

where a > b. The chosen action should be the one that maximizes the final

score at the end of the game, which is not necessarily the action which results

in the immediate highest number of points.

9

In finance, reinforcement learning can be used to optimize allocation of assets

in portfolio management, where the objectives are generally to maximize

expected return and minimize financial risk.

2.2 Neural Networks

In insurance, as for many other fields, coming along with advanced technolo-

gies, we are now dealing with a tremendous amount of data. A technique

well suited to handle a large dataset is Neural Networks (NN) which can be

used as a supervised learning technique in loss modeling. The concept is

to provide a vast amount of input/output data to train the model so that

it can make predictions using new sets of inputs. A very large numbers of

covariates can be processed by NN.

NN are part of the ML family but more specifically, it can involve deep

learning. As a subset of ML, deep learning algorithms use multiple layers

to learn from a vast amount of data. A NN is composed of an input layer,

hidden layer(s) and an output layer. All layers contain neurons (also known

as units or nodes) which take a set of inputs and transform it into a single

number. Detailed explanations are provided in Section 2.2.1. All covariates

are entered in the input layer and their values correspond to the neurons of

the input layer. The output layer contains the prediction(s) of the model,

so the number of neurons corresponds to the number of desired outputs.

For example, if one is interested in assessing if a given risk would submit a

claim, then there would be only one neuron in the output layer which would

correspond to the probability of having a claim. A hidden layer can contain

any number of neurons and if a model contains more than one hidden layer,

10

they do not need to contain the same number of neurons.

x1

x2

...

xN

z
(1)
1

z
(1)
2

...

z
(1)

A(1)

. . .

. . .

. . . z
(L)
1

z
(L)
2

...

z
(L)

A(L)

ŷ1

ŷ2

...

ŷM

y1

y2

...

yM

input layer
1st hidden layer Lth hidden layer

output layer

Figure 2.1: Multilayer Neural Network4

Figure 2.1 can be referred to for the remaining of Section 2.2. In the illus-

trated NN, there are N input covariates and M outputs to predict. It has

L hidden layers and they can contain different number of hidden units, i.e.

there are A(j) hidden units at layer j. For simplicity, we denote A as the

number of hidden units in a given layer. Each element of the output layer

corresponds to a predicted response.

4Adapted from https://davidstutz.de/illustrating-convolutional-neural-networks-in-

latex-with-tikz/

11

2.2.1 General Process

Feedforward 5

In this section, we will describe the process to go from the input layer to the

output one. Suppose the model contains N covariates in input and only one

hidden layer. Each neuron from the hidden layer is a weighted combination

of the values from the input layer plus bias, as follows,

z
(1)
i = w

(0)
i1 x1 + w

(0)
i2 x2 + ...+ w

(0)
iN xN + b

(0)
i .

However, the neurons have to be activated. The value just obtained is then

passed into a function σ, called activation function, which results in the

activated neuron value. In hidden and output layers, activation functions

evaluate the worthiness of each neuron (i.e. to which point a neuron’s input

z
(j)
i is relevant to what the model is trying to predict) and most of them scale

the neurons between 0 and 1 or between -1 and 1, depending of the function

used.

The same process applies to the output layer, but instead of using the input

layer in the weighted combination, the activated neurons from the hidden

layer are used. Therefore, for the ith activation unit on the jth layer, a(j)i =

σ(z
(j)
i).

More generally, if there are more than one hidden layer, z(j+1)
i , the ith neuron

on the (j + 1)th layer containing A units, is calculated as follows,

5From https://youtu.be/jqd3Bj0q2Sc explaining Goulet et al. (2020)

12

z
(j+1)
i = w

(j)
i1 a

(j)
1 + w

(j)
i2 a

(j)
2 + ...+ w

(j)
iA a

(j)
A + b

(j)
i , (.)

where i ∈ {1, 2, ..., A} and j ∈ {1, 2, ..., L− 1}. It can be represented graph-

ically by Figure 2.2, as follows,

a
(j)
1

a
(j)
2

...

a
(j)
A

b
(j)
i

z
(j+1)
i

w
(j)
i1

w
(j)
i2

w
(j)
iA

Figure 2.2: Network Graph of z(j+1)
i Calculations

Similarly, from (.), the values of the output layer from the last hidden layer

L are obtained as follows,

g(yi) = w
(L)
i1 a

(L)
1 + w

(L)
i2 a

(L)
2 + ...+ w

(L)
iA a

(L)
A + b

(L)
i .

When there are more than one hidden layer, the activated neurons from the

previous layer are used to calculate the activated neurons of the next layer,

which is represented as follows,

a
(j+1)
i = σ(z

(j+1)
i) = σ(w

(j)
i1 a

(j)
1 + w

(j)
i2 a

(j)
2 + ...+ w

(j)
iA a

(j)
A + b

(j)
i). (.)

13

Activation Functions

An article by Nwankpa et al. (2018) presents several activation functions and

their current trends in applications in deep learning. The functions presented

in this section are from that article. As discussed by Sharma and Sharma

(2017), the Rectifided Linear Unit (ReLU) function, which is described in

this section, is the most popular activation function and generally achieves

better results. The Leaky ReLU (LReLU) is one alternative to ReLU that

can improve ReLU’s performance.

Linear Activation Functions

A linear activation function is of the form f(x) = ax + b, where a and

b ∈ R. Activation is proportional to the weighted sum of the neurons from

the previous layer plus the current layer’s bias as described in (.). The

range of the output can be (−∞,∞). Weights and biases are still updated

during backpropagation, which will be presented and detailed later in Section

2.2.1. However, error does not improve from one iteration to the next, since

it would be the same gradient value at each iteration (derivative of a linear

function is a constant). Information about which weights would provide a

better prediction is therefore not available. Furthermore, for any number of

hidden layers in the NN, since a linear function is used, the last layer ends

up also being a linear function of the input layer.

Non-Linear Activation Functions

Using non-linear activation functions, information about which weights would

provide a better prediction is available, as more complex patterns can be

14

identified from the data.

1. The Sigmoid Function

−4 −2 0 2 4

0.2

0.4

0.6

0.8

x

f
(x

)

Figure 2.3: Sigmoid Function

The Sigmoid function is shown in Figure 2.3 and is represented as fol-

lows,

f(x) =
1

1 + e−x
.

Since f(x) ∈ (0, 1), the Sigmoid function can be used to predict probabilities

of a defined event happening in binary classification problems, where the

response is either 0 or 1. Given a specific threshold (commonly set as 0.5),

if the output value falls above it, the prediction would be 1, whereas if it is

below, the prediction would be considered as 0.

15

2. The Hyperbolic Tangent Function

−4 −2 0 2 4
−1

−0.5

0

0.5

1

x

f
(x

)

Figure 2.4: Hyperbolic Tangent Function

The Hyperbolic Tangent function is shown in Figure 2.4 and is represented

as follows,

f(x) =
ex − e−x
ex + e−x

,

with f(x) ∈ (−1, 1). As for the sigmoid function, the Hyperbolic Tangent

function is also mainly used in binary classification problems, where the

output is between 0 and 1. However, it is smoother than the sigmoid function

and it is also centered to zero. Its main advantage over sigmoid is that the

activated units are then zero centered which can help in the backpropagation

process, which is presented and detailed later in Section 2.2.1.

16

3. The Softsign Function

−4 −2 0 2 4

−0.5

0

0.5

x

f
(x

)

Figure 2.5: Softsign Function

The Softsign function is shown in Figure 2.5 and is represented as follows,

f(x) =
x

|x|+ 1
,

with f(x) ∈ (−1, 1) as for the Hyperbolic Tangent function, which seems

similar looking at the graphs. However, from the performance analysis by

Farzad et al. (2019), Softsign, introduced by Turian et al. (2009), produces

better results than common functions such as sigmoid and tanh for classifi-

cation problems using Long Short-Term Memory (LSTM) neural networks.

LSTMs, introduced by Hochreiter and Schmidhuber (1997), can process se-

quences of data such as speech and video.

17

4. The Rectified Linear Unit function (ReLU) Function

−4 −2 0 2 4

0

1

2

3

4

5

x

f
(x

)

ReLU
LReLU

Figure 2.6: ReLU and LReLU

The Rectified Linear Unit function (ReLU) is shown in red in Figure 2.6 and

is represented as follows,

f(x) = max(0, x), (.)

with f(x) ∈ [0,∞). This is the activation function that is mostly used.

Computational speed is increased when using ReLU compared to other func-

tions. It is a simple function that does not contain exponential nor divisions

and neither does its derivative. However, since a neuron with a negative

value becomes 0 after activation, it weakens training by causing subsequent

neurons to be null and by preventing weight updates.

The Leaky ReLU (LReLU) was proposed as a solution to those drawbacks.

18

It is shown in blue in Figure 2.6 and is represented as follows,

f(x) =

αx, if x ≤ 0

x, if x > 0,

where α ∈ R is a very small value (typically around 0.01), which is enough

to keep some small slope when x < 0 to avoid neurons with negative values

to become 0 after activation.

5. The Softplus Function

−4 −2 0 2 4

1

2

3

4

5

x

f
(x

)

Figure 2.7: Softplus Function

The Softplus function is shown in Figure 2.7 and is represented as fol-

lows,

f(x) = ln(1 + ex),

19

with f(x) ∈ [0,∞). It is similar to the ReLU function, in a smoother

version. It has been shown by Zheng et al. (2015) that the Softplus function

provides better performance with less epochs in training compared to ReLU

and Sigmoid functions.

Multivariate Functions

There also exist activation functions, such as the Softmax and the Maxout

functions, which do not take a single "x" as input, but a whole vector corre-

sponding to the neurons in the current layer.

The Softmax function is represented as follows,

f(xi) =
exi∑
j e

xj
,

where i and j are the ith and jth neurons on the current layer. It is used to

solve categorical output variable problems. For instance, each f(xi) ∈ [0, 1]

and their sum is 1, so f(xi) represents the probability of an observation being

in the ith category. The predicted output would then be the category that

has the highest probability.

The Maxout function, proposed by Goodfellow et al. (2013), is represented

as follows,

f(x) = max(w1x+ b1, w2x+ b2).

It uses two sets (instead of one) of weights and bias to compute the activated

units. More generally, we can have f(x) = max
i

xi, where i is the number of

20

sets of parameters. However, using more sets of parameters would increase

computational time and resources since it would multiply the number of

parameters used in the network by i.

Error Measurement

Now, weights and biases can be first randomly generated but the objective

is to optimize them such that the cost function is minimized to improve the

accuracy of the model. The cost function results in a number represent-

ing how poor the accuracy of the model is by usually taking the prediction

errors.

Many types of cost functions exist. Let ŷi be the predicted value and yi

be its corresponding real value, where i ∈ {1, ..., N}. For regression prob-

lems, examples are the mean absolute error (MAE), the mean squared error

(MSE) and the root mean squared error (RMSE) which are represented as

follows,

MAE =
1

N

N∑
i=1

|ŷi − yi|,

MSE =
1

N

N∑
i=1

(ŷi − yi)2,

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2,

where MAE represents the average absolute difference value between the N

predicted estimates and their true value, whereas MSE calculates the average

of the squared difference. RMSE is simply the square root of the MSE.

21

For classification problems, cross entropy is a cost function which is used in

two cases. Binary cross entropy is used when there are two possible outcomes

and is defined as follows,

−
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)].

If there areM possible categories, the cross entropy formula is as follows,

−
M∑
j=1

N∑
i=1

[yi log(ŷi)].

Backpropagation

The cost function is evaluated after the first iteration (using the randomly

generated weights and biases). The result is called the cost value. We can

see the weights and biases as being parameters of the cost function, since

they have an impact on it. Increasing or decreasing any given weight in the

model would change the cost value. The same principle applies to biases.

Therefore, calculating the partial derivative of each parameter in the model

with respect to the cost function is called backpropagation. Once the deriva-

tives are calculated, the algorithm which tries to find the minimum of the

cost value function at each iteration is called the gradient descent algorithm.

It allows to update the parameters using the partial derivatives (gradients)

calculated during backpropagation. However, gradient descent can find sta-

tionary points which are not guaranteed to be local minimums, but generally

points towards such minimums.

22

Optimal weights and biases are now found for the current iteration. At each

iteration, we update parameters and repeat the process until convergence

(when error is below a prescribed tolerance) or when the maximum number

of epochs is reached. An epoch represents how many times the model would

be trained using the same training set. It is set before starting the training.

However, a high epoch value could lead to overfitting.

2.2.2 Literature Review of the Model: Tractable Approximate

Gaussian Inference (TAGI)

Goulet et al. (2020) developed a method, called Tractable Approximate Gaus-

sian Inference (TAGI), that calculates the distribution of each predicted re-

sponse from a NN, which respond to the initial purpose of this thesis. Thus,

for a given predicted response, the uncertainty around this prediction is Nor-

mal. Let E ∼ N (0,ΣE) be the observations errors. In a NN with L hid-

den layers, where the output layer is the (L + 1)th, the observed responses

Y ∼ N (µY ,ΣY), where µY = µZ(L+1) and ΣY = ΣZ(L+1) + ΣE. Further-

more, all elements in TAGI follow a Normal distribution from which we can

get the mean and variance for each of them. Moreover, diagonal covariance

matrices are used instead of full matrices for computational efficiency pur-

poses. Finally, layer-wise inference of hidden units and parameters is possible

using one observation at a time.

In terms of computational efficiency and accuracy, TAGI matches the perfor-

mance of state-of-the-art NN architectures using backpropagation for both

regression and classification problems6.

6Refer to results presented in Goulet et al. (2020).

23

Before providing detailed explanations on TAGI, some concepts used in that

method will be discussed first for better understanding.

Background Information

Bayesian Neural Network

In a Bayesian NN, the weights and biases have probability distributions which

is not the case in a standard NN framework, where weights and biases are

point estimates that are commonly calculated using maximum-likelihood.

The article by Jospin et al. (2020) illustrates the particularities of a Bayesian

NN. Learning distributions for weights and biases allow to capture uncer-

tainty around the parameters and outputs, which is a feature that is not

possible in standard NN.

Let weights and biases be represented by θ. A prior distribution for the

weights and biases, p(θ), is first defined. A common choice of prior dis-

tribution is θ ∼ N (µ,Σ) but other distributions can be used. Applying

Bayes’ Theorem in a NN context to get the posterior distribution is shown

as follows,

p(θ|D) =
p(Dy|Dx,θ)p(θ)

p(Dy|Dx)
=

p(Dy|Dx,θ)p(θ)∫
θ
p(Dy|Dx,θ′)p(θ′) dθ′

,

where D = {Dx, Dy} is the training set. However, computing the poste-

rior is not possible using a standard NN. More precisely, the denominator∫
θ
p(Dy|Dx,θ′)p(θ′) dθ′ cannot practically be computed as the search space

of θ is too large considering all possible combinations. Approaches exist to

approximate the posterior. For example, variational inference is still used

24

nowadays by Blundell et al. (2015) and consists in performing inference with

a variational distribution, which is a distribution qφ(θ) with known form

and parameters φ that approximates the true p(θ|D). qφ(θ) can follow any

known distributions of simple form such as the Normal distribution, in which

case φ would include the mean and variance parameters.

Multivariate Normal Distribution

As described in Johnson et al. (2002), for a n-dimensional random vec-

tor X = (X1, X2, ..., Xn), X follows a Multivariate Normal distribution

N (µ,Σ), where

µ =

µ1

...

µn

 , Σ =

σ11 . . . σ1n
...

σn1 . . . σnn

 ,
and where σi,j = cov(Xi, Xj) is the covariance between Xi and Xj for i, j ∈
{1, ..., n}.

An interesting feature of the Multivariate Gaussian distribution is thatX can

be partitioned and that all subsets are normally distributed. For example, if

X is partitioned in two, then X1 ∼ N (µ1,Σ1) and X2 ∼ N (µ2,Σ2).

Moreover, the conditional distribution of X1 given that X2 = x2, X1|X2 =

x2, follows a Normal distribution with

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (.)

and

25

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21, (.)

where Σij is the covariance matrix of i and j.

Application in TAGI 7

Recall that (.) provides the values of the neurons before activation of the

layer j + 1 using the activated units of layer j, with A(j) and A(j+1) as the

number of neurons in layers j and j + 1 respectively. The equation can

be rewritten in matrix form as Z = WA +B, where Z is a A(j+1)-vector

representing the units to calculate, W is the weight (A(j+1) × A(j))-matrix,

A is a A(j)-vector representing the activated units from the previous layer

and B is a A(j+1)-vector representing the bias.

Now, let A ∼ N (µA,ΣA), B ∼ N (µB,ΣB) and W ∈ RA(j+1)×A(j) . Using

partitioning, the joint probability distribution f(z,a) is N (µ,Σ) with

µ =

µZ
µA

 and Σ =

 ΣZ ΣZA

ΣAZ ΣA

,
where using basic properties of matrices we can obtain

µZ = WµA + µB,

ΣZ = WΣAW
T + ΣB,

ΣZA = ΣAW
T and ΣAZ = ΣT

ZA.

We can also get the conditional distribution of A|Z = z which would be

N (µA|z,ΣA|z), where, using (.) and (.),

7From https://youtu.be/jqd3Bj0q2Sc explaining Goulet et al. (2020)

26

µA|z = µA + ΣAZΣ−1
Z (z − µZ),

ΣA|z = ΣA −ΣAZΣ−1
Z ΣZA.

Now, it can be used in Bayesian NN, where weights also follow a probability

distribution. Let W ∼ N (µW ,ΣW). Since there are now three random

variables, the joint probability distribution f(z,a,w) is of interest. How-

ever, that distribution cannot be Multivariate Gaussian because of WA.

Multiplying two Gaussian distributions does not result in a Gaussian joint

distribution, but in a Chi-Square distribution. Therefore, the closed-form

with (.) and (.) cannot be used to get the conditional distribution, which

corresponds to the posterior probability distribution p(θ|D).

Product of Two Gaussian Random Variables

Suppose that X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y), where the two Gaussian

random variables X and Y are independent. We can write the product XY

as follows,

XY = 1
4
((X + Y)2 − (X − Y)2)) = (X+Y

2
)2 − (X−Y

2
)2,

which follows a generalized Chi-Square distribution since it is a linear com-

bination of noncentral Chi-Square distributions with one degree of freedom

each.

If we are interested in the distribution of the sum of product of two Gaussian

random variables, it is now equivalent to find the distribution of the sum of

Chi-Square random variables. Suppose there are n independent Chi-Square

random variables (i.e. n products of two Gaussian random variables) de-

noted as X1, X2, ..., Xn with mean µ and variance σ2. Central limit theorem

27

(CTL) states that, as n → ∞, their normalized sum converges to a Normal

distribution.

2.2.2.1 Concepts and Propositions in TAGI

We would like to approximate the distribution of WA by a Normal distribu-

tion, where W ∼ N (µW , σ
2
W) and A ∼ N (µA, σ

2
A). In the case discussed in

Section 2.2.2, the sum of many product terms of two Normal distributions is

used to calculate the hidden units as illustrated in (.). As a solution, the au-

thors considered Gaussian multiplication approximation (GMA), which they

define as "the approximation of the probability density function (PDF) for

any product term XiXj by a Gaussian whose first two moments are defined

by" (.) to (.), which are as follows,

E[X1X2] = µ1µ2 + cov(X1, X2), (.)

cov(X3, X1X2) = cov(X1, X3)µ2 + cov(X2, X3)µ1, (.)

cov(X1X2, X3X4) = cov(X1, X3)cov(X2, X4)

+ cov(X1, X4)cov(X2, X3)

+ cov(X1, X3)µ2µ4 + cov(X1, X4)µ2µ3

+ cov(X2, X3)µ1µ4 + cov(X2, X4)µ1µ3,

(.)

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)

2 + 2cov(X1, X2)µ1µ2

+ σ2
1µ

2
2 + σ2

2µ
2
1.

(.)

As the number of product terms increases, the distribution of the sum of those

product terms (resulting from GMA) tends to follow a Normal distribution,

28

as expected from CTL. (.) to (.) are valid when the random variables

are Normal and were derived using moment generating functions8. They will

be used in Section 3.

Now that the hidden units can be calculated using GMA, we would like to

carry their uncertainty in the activation phase. However, applying a non-

linear activation function to a random variable does not propagate its un-

certainty. For its low computational cost, performance and usability with

common activation functions described in Section 2.2.1, the authors propose

a linearization procedure σ̃(·), where (.) is approximated as follows,

a = σ(z) ≈ σ̃(z) = σ(µZ) +
∂σ(µZ)

∂z
(z − µZ), (.)

where the linearization is done at µZ .

The authors suggest to perform tractable recursive layer-wise inference which

is possible using the inherent conditional independence concept, where Z(j−1)

is statistically independent ofZ(j+1) given z(j). Tractable recursive layer-wise

inference is represented as follows,

x z(1) . . . z(L) z(L+1) y

f(x) f(x, z(1)) f(z(L−1), z(L))f(z(L), z(L+1))
f(θ) f(θ(0), z(1)) f(θ(L−1), z(L))f(θ(L), z(L+1))

f(z(L+1),y). . .

. . .f(x|y) f(z(1)|y) f(z(L)|y) f(z(L+1)|y)
f(θ(0)|y) f(θ(1)|y) f(θ(L−1)|y) f(θ(L)|y)

f(y)

θ(0) θ(1) θ(L−1) θ(L)

Figure 2.8: Tractable Recursive Layer-Wise Inference9

8 Please refer to Appendix A in Goulet et al. (2020) for more details.

29

For two given consecutive layers, let {θ,Z} = {θ(j),Z(j)} and {θ+,Z(+)} =

{θ(j+1),Z(j+1)} represent the sets of parameters and hidden units for the cur-

rent layer and the next one respectively. Using the Rauch-Tung-Striebel re-

cursive procedure by Rauch et al. (1965), f(θ|y) = N (θ;µθ|y,Σθ|y), where

µθ|y = µθ + Jθ(µZ+|y − µZ+), (.)

Σθ|y = Σθ + Jθ(ΣZ+|y −ΣZ+)JTθ , (.)

Jθ = ΣθZ+Σ−1
Z+ , (.)

and where f(z|y) is N (z;µZ|y,ΣZ|y) with

µZ|y = µZ + JZ(µZ+|y − µZ+), (.)

ΣZ|y = ΣZ + JZ(ΣZ+|y −ΣZ+)JTZ , (.)

JZ = ΣZZ+Σ−1
Z+ . (.)

Therefore, for a model with L hidden layers, parameters are not updated

using backpropagation, but through the inference procedure using (.) to

(.), which is summarized as follows,

9Adapted version of Figure 6(b) in Goulet et al. (2020)

30

Algorithm 2.1 Inference Procedure
1: for (j in (L+ 1) : 0)

2: Calculate and store µZ(j)|y and ΣZ(j)|y

3: Calculate µθ(j)|y and Σθ(j)|y

4: Update parameters’ distribution θ(j) using µθ(j)|y and Σθ(j)|y

2.3 Gradient Boosting

Another popular supervised ML technique is Gradient Boosting (GB), which

is mainly known for its predictive accuracy. In this section, details and ex-

planations on this technique and one of its famous implementation, Extreme

Gradient Boosting (XGBoost), are provided. In auto insurance, GB trees,

which are described in Section 2.3.1, are used for loss cost modeling and pre-

diction by Guelman (2012) and XGBoost for fraud detection by Dhieb et al.

(2019).

2.3.1 Gradient Boosting Algorithm

First, boosting is a technique converting weak learners into strong ones, where

weak learners are defined as learners that are slightly better at predictions

than randomly guessing. Using decisions trees, an initial one is generated

based on the initial data and then subsequent ones are grown from previous

trees, which makes boosting a sequential process. The objective is to improve

the accuracy of predictions from trees to trees since each tree is improved

based on its previous version.

Since decision trees are an important concept used in GB, we first provide

31

detailed explanations about them. However, please note that they consist in

a classification and regression technique that was developed independently

of GB. Decision trees can be solely used, but they are included in some GB

algorithms.

Decision Trees

Classification and Regression Trees (CART), introduced by Breiman et al.

(1984), are a supervised learning technique that can be used to predict cat-

egorical and numerical responses respectively.

For example, let a and b be continuous variables and c be a discrete variable

which can take three values ({c1, c2, c3}). A decision tree trying to predict a

binary variable y can be as follows,

c

c1

a > 5

b > 25, 000

y = 0

b ≤ 25, 000

y = 1

a ≤ 5

y = 0

c2

b > 10, 000

y = 1

b ≤ 10, 000

y = 0

c3

y = 1

Figure 2.9: Classification Tree Example

A decision tree must be read from its root at the top to the bottom and is

composed of nodes, which are subsets of previous nodes. In Figure 2.9, the

32

root node is in blue and the red nodes are called decision nodes. Each node

has two or more branches which represent a split among the possible values

at that node. For example, the split at the c1 node is done with the variable

a, whereas it is done with variable b at the c2 node and no split is observed

at the c3 node. At each node, the resulting split provides the most accurate

prediction of the response variable. At the c1 node, given the observations

that are in the c1 category, the clearest distinction between those which y = 0

to y = 1 occurs with a split at a = 5. For the c2 category, it occurs when the

data is divided between whether b is below or above 10,000.

When a node cannot be split into further nodes (reasons to stop the splitting

nodes process are explained later in the current section), it leads to the leaf

node (represented in green in Figure 2.9). It is where a decision about the

prediction is made. In the example, the y prediction is assessed given the

number of observations with y = 0 and y = 1 at the end of each tree path.

Since this is a binary problem, if the majority of the observations have y = 0,

then the leaf would be y = 0 (the same principle applies if the majority is

y = 1). If there are more than 2 possible categories, than the leaf would take

the value of the most important resulting category among the observations.

In the case of a regression tree, where the response variable is numerical,

the leafs correspond to the mean value of the response variable among the

observations at the last node.

Splitting at Nodes

Now, we provide further explanations on when and how the splitting process

is stopped. First, if all observations in a node have the same response (i.e.

33

if they all belong to the same category to predict), then there is no need to

split them, since it is a pure node. Second, the splitting process stops if there

is no more input variables to consider at that point. Third, there are some

parameters which can be set when building a tree such as maximum depth,

minimum number of training observations in each leaf, minimum number

of training observations for a node split, maximum number of leaves and

maximum variables to consider for a split. The depth of a tree is defined as

the length of the longest path from the root to a leaf. Setting a maximum

depth stops the splitting process for every paths that attain the specified

length. Maximum depth along with the other parameters allow to control

the size of the tree.

At each node, the best possible split is evaluated based on a criterion. Two

commonly used criteria are the Gini index by Breiman et al. (1984) and

entropy by Quinlan (1986), which are calculated as follows,

Gini = 1−
K∑
j=1

p2j ,

Entropy = −
K∑
j=1

pjlog2pj,

where there are K possible categories to the response variable and pj is

the proportion of observations in class j among the observations at that

node.

Both indices can be used to calculate the information gain which is the mea-

sure that determines which variable is split at a node and at which threshold.

34

At a given node, there is the set S of observations, so let l(S) be the impu-

rity measure at that node (calculated either with Gini or Entropy). To get

the informational gain for an attribute A, we compute the gain G(S,A) as

follows,

G(S,A) = l(S)−
C∑
i=1

pcl(c),

where l(c) is the impurity measure at potential child node c among C pos-

sible number of child nodes and pc is the corresponding proportion of obser-

vations that fit in that child node. The information gain is calculated for

any attribute A. Therefore, the split at a node corresponds to the one that

maximizes the information gain.

Advantages and Disadvantages

The advantages of using CART are that the models are easy to understand

and interpret. Data preparation is relatively easy since decision trees han-

dle categorical and numerical data, they are not too sensible to extreme

data/outliers and they can work with missing data. They also implicitly con-

tribute to feature selection and detect interactions between variables.

However, those models are less accurate when they are used for classification

problems with many categories. Also, if one category prevails over the data,

it can create biased trees, so it is recommended to use a balanced training

set. Furthermore, those models are subject to overfitting by creating very

complex trees if parameters are not well controlled, such as the depth and

minimal leaf size parameters.

35

Gradient Boosting with Trees

Let x = {x1, ..., xp} be a set of p covariates and ρ(m) > 0 be a multiplier which

acts as a learning rate. With a training set {(xi, yi)}ni=1 and M iterations,

the following is a simplified version of the gradient tree boosting algorithm

for regression.

Algorithm 2.2 Simplified Gradient Tree Boosting Algorithm for Regression
1: Build a initial tree based on all data in the training set, where the variable

to predict is ŷi.

2: for (m in 1 : M)

3: Calculate the residuals: r(m)
i = yi − ŷi

4: Take a random sample from remaining observations to build a tree r̂(m)
i

from which the variable to predict is the residuals r(m)
i ’s using the xi’s

as covariates.

5: Update the model by combining that tree with the others with multipli-

ers: ŷ(m)
i = ŷ

(m−1)
i + ρ(m)r̂

(m)
i

Gradient Boosting: General Case

In every GB problems, the objective is to minimize the loss function. Taking

the derivative of the loss function with respect to the predictions would give

insights on how the predictions can be adjusted to maximize the loss. Since

the objective is to minimize it, gradient descent defined in Section 2.2.1

is used to get the negative gradient −
[
∂L(yi,F (xi)
∂F (xi)

]
F (x)=Fm−1(x)

. Thus, for a

loss function L which includes both the real value y and its corresponding

prediction F , the negative of the derivative of that function with respect to F

36

is called a pseudo-residual. An example with the squared error loss function

is illustrated in Algorithm 2.4.

With a training set {(xi, yi)}ni=1, M iterations and a differientiable loss func-

tion L(y, F), the generic gradient boosting algorithm discussed in Friedman

(2001) for regression is as follows,

Algorithm 2.3 Generic Gradient Boosting Algorithm for Regression
1: Initialize the model: F0(x) = argmin

ρ

∑n
i=1 L(yi, ρ).

2: for (m in 1 : M)

3: Calculate the pseudo-residuals: ỹi = −[∂L(yi,F (xi)
∂F (xi)

]F (x)=Fm−1(x) for i =

1, ..., n

4: Fit a base learner h(xi;a) to the pseudo-residuals using the

training set {(xi, ỹi)}ni=1 and compute multiplier: (am, ρm) =

argmin
a,ρ

∑n
i=1 L(yi, Fm−1(xi) + ρh(xi;am))

5: Update the model: Fm(x) = Fm−1(x) + ρmh(x;am)

where h(x;a) is a parameterized function of the covariates x with parameters

a = {a1, a2...}. In the case of trees, h(x;a) would be an individual tree and

a = {a1, a2...} would be its structure and components (split of variables and

thresholds and terminal node means).

A common loss criterion is the least-squares (LS), where the objective is

to minimize the sum of squares of the error terms. The squared error loss

function is L(y, F) = (y−F)2

2
and the pseudo-residuals are the error terms,

ỹi = yi − Fm−1(x). The generic algorithm is modified as follows:

37

Algorithm 2.4 Gradient Boosting Algorithm for Least-Squares Regression
1: Initialize the model: F0(x) = ȳ.

2: for (m in 1 : M)

3: Calculate the pseudo-residuals: ỹi = yi − Fm−1(x) for i = 1, ..., n

4: Fit a base learner h(xi;a) to the pseudo-residuals using the training set

{(xi, ỹi)}ni=1 and compute the multiplier: (am, ρm) = argmin
a,ρ

∑n
i=1[ỹi −

ρh(xi;a)]2

5: Update the model: Fm(x) = Fm−1(x) + ρmh(x;am)

Advantages and Disadvantages

The most important feature of GB is the prediction accuracy that can be

reached. It also shares some of the decision tree advantages. No data impu-

tation is required since it handles missing values. Categorical and numerical

variables are also treated by those models.

However, outliers in the data have a negative effect on the model training.

Since the model trains on errors, there is a high risk of overfitting. Also, GB

models are computationally expensive in the number of generated trees over

all iterations and in the search of the best features that minimize the loss at

each step of the processes. Lastly, this type of model is not easy to interpret,

especially when comparing to decision trees which are interpretable simply

by looking at the trees with their nodes and branches illustrating the possible

paths to the predictions.

38

2.3.2 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost), developed by Chen and Guestrin

(2016), is a specific implementation of GB which contains improved features,

from which computational speed may be the most important one. It is avail-

able in many programming languages such as R and Python. As in standard

GB, the first-order gradients on the loss function are used. XGBoost also

computes the second-order gradients which provides additional information

on how to minimize the loss function. Moreover, L1 and L2 regularizations

are implemented which improves the models.

L1 and L2 Regularizations

L1 regularization corresponds to the Lasso (Least Absolute Shrinkage and

Selection Operator) regression. It adds a penalty term to the loss func-

tion using the absolute value of weights. For example, let x = {x1, ..., xp}
be a set of p covariates, βj be the weight associated with the jth covariate

and {(xi, yi)}ni=1 be the training set. If the loss function is represented by∑n
i=1(Yi −

∑p
j=1Xijβj)

2, then λ
∑p

j=1 |βj| is added to the function, where

λ > 0 is the regularization parameter. Using gradient descent, differentiat-

ing the loss function with respect to the weights allows to adjust them and

to remove the less important features by shrinking their weight to zero. L1

regularization is useful for feature selection.

L2 regularization corresponds to the Ridge regression. It adds a penalty

term to the loss function by squaring the weights. For example, if the loss

function is represented by
∑n

i=1(Yi −
∑p

j=1Xijβj)
2, then λ

∑p
j=1 β

2
j is added

to the function. L2 regularization keeps all the variables, estimates their

39

importance and penalizes those that are not important, which contribute in

reducing overfitting in the models.

Computational Speed

In GB, the splitting step can be time consuming considering that the algo-

rithm evaluates the information gain of every possible features. It can result

in an extensive phase if there are thousands of them. There is a histogram-

based algorithm in XGBoost which allows, for all possible features in a node,

to split the data into bins which reduces the time spent on searching for a

split value.

Parameters

The package "xbgoost" by Chen et al. (2020) offers many features. Hyper-

parameters and parameters values can be specified in inputs which prevents

overfitting and reduces the number of computations. There are two types

of learners, called boosters, which are tree booster (gbtree) or linear booster

(gblinear). The first one generates trees whereas the second one uses linear

functions. Gbtree performs better than gblinear when there are non-linear

relationships in the data and/or when interactions are unknown. Both can

be used for classification and regression problems. Known for its predictive

accuracy, XGBoost generally well fits training data compared to many other

methods. For example, using gblinear as booster is different than using linear

regression and can provide better accuracy. XGBoost uses coordinate descent

(optimization of one parameter at a time) instead of standard gradient de-

scent (optimization of all parameters at once). However, XGBoost is more

prone to overfitting than linear regression. To avoid overfitting, XGBoost

40

uses a learning rate parameter to slow down learning at each iteration. For

both boosters, the maximum number of iterations and the use of L1 and/or

L2 regularizations can be set. Specific to the tree booster, parameters specific

to trees, such as maximum depth, number of observations and/or features

supplied to a tree, are available.

Moreover, a choice of metrics to evaluate the model’s accuracy is available.

For regression problems, the default error function is Root Mean Square Error

(RMSE), but Mean Absolute Error (MAE) is also available. For classification

problems, the default error function is the binary classification error rate

which is the proportion of failed predictions. Multiclass classification error

rate, negative log-likelihood and multiclass logloss are also available.

Multiclass classification error rate is also available, which is the same as bi-

nary classification error but for cases where there are more than two possible

classes.

Negative Log-Likelihood

Since the objective is to improve the model accuracy from an iteration to the

next, we want to increase likelihood. Let the model have only two possible

classes for the response variable. It can be represented as a binary classi-

fication problem with yi = 1 if the prediction is accurate for observation

i. Otherwise, yi = 0. The likelihood L(θ) of a Bernoulli distribution for n

observations is represented as follows,

L(θ) =
n∏
i=1

θyii (1− θi)1−yi ,

41

where θi is the probability calculated by the model of predicting the appro-

priate class for observation i. To make the optimization of the likelihood

easier, log-likelihood (LL) is often used, since it easier to work with sums

than products. Log-likelihood, l(θ), is represented as follows,

l(θ) =
n∑
i=1

[yi log θi + (1− yi) log(1− θi)].

Maximizing LL is equivalent to maximizing likelihood since the logarithmic

function is strictly increasing. However, error (or loss) functions should be

minimized. We can use Negative log-likelihood (NLL), which is the negative

of the log-likelihood, −l(θ), since minimizing NLL is equivalent to maximizing

LL.

Multiclass Log Loss

Multiclass log loss is the same as NLL, but for problems where there are more

than two classes. For a classification problem with m possible categories,

multiclass log loss is represented as follows,

−l(θ) = −
n∑
i=1

m∑
j=1

yij log θij,

where yij is the binary indicator that assesses if class j is the appropriate one

for observation i and θij is the corresponding probability.

42

2.4 Comparaison between TAGI and XGBoost

We apply TAGI and XGBoost to an insurance dataset by Lantz (2013). It

contains 1,338 observations with seven variables and no missing data. Table

2.1 provides a description of the variables, as follows,

Variable Type Description

Age Numerical Age of the insured

Sex Categorical Gender of the insured: male or female

BMI Numerical Body Mass Index (kg/m2) of the insured

Children Numerical Number of children covered as dependents

Smoker Categorical Smoking status: "yes" or "no"

Region Categorical Insured’s residential US area: northeast,

southeast, southwest, northwest.

Charges Numerical The response variable: Medical costs

Table 2.1: Description of Medical Cost Personal Dataset

The variable to predict is the medical costs ("charges"). Since TAGI does not

take directly categorical nor string variables as inputs, "sex" and "smoker"

variables are transformed into binary variables based on whether the insured

is a female and a smoker respectively. For "region" variable, we use one-

hot encoding, which means that we transform each possible value into a

binary variable. With that data preparation step, there are now nine covari-

ates.

For TAGI, models are trained over 40 epochs and one observation at the time

43

(i.e. batch size is one). 80% of the observations are used for the training

set. Data is normalized. The activation function used is the ReLU defined

by (.). The initial prior distribution of the biases is N (0,ΣB), where

ΣB = 0.01× I and the initial prior distribution of the weights is N (0,ΣW),

where ΣW is obtained by multiplying a factor 0.25 to the Xavier’s approach

by Glorot and Bengio (2010). Xavier’s approach consists in initializing the

weights as N (0, 1
n(j−1)) or as N (0, 2

n(j−1)+n(j)), where n(j−1) and n(j) represent

the number of units in the previous and current layers respectively. The

models have one hidden layer of 50 and 100 units respectively, as they are

common models to use. We generated 20 of each, which means that they are

all trained using a different training set which was randomly selected among

data for each model.

For the Extreme Gradient Boosting (XGBoost) technique, as it is a regression

problem, we test the tree and linear boosters, described in Section 2.3.2, with

their default parameters, except for the number of rounds which corresponds

to the number of boosting iterations. For both techniques, we try with 40

rounds (as it can be comparable to the 40 epochs used in TAGI) and with

optimization of the number of rounds using the inbuilt xgb.cv function based

on the RMSE, which is defined in Section 2.2.1. Therefore, the optimized

number of rounds is the round which minimizes RMSE at validation step,

so the parameters at that specific round are used on the testing set. The

average RMSE and its variance for each type of model (since for each of

them, 20 models were generated using different training sets) is shown in

Table 2.2.

44

Model Root Mean Square Error (RMSE)

TAGI with L = 50 4,904.40 ± 576.34

TAGI with L = 100 4,607.99 ± 358.08

gbtree with nrounds=40 5011.28 ± 389.45

gbtree with optimized nrounds 4,781.26 ± 385.45

gblinear with nrounds=40 6,397.32 ± 348.49

gblinear with optimized nrounds 6,047.67 ± 457.74

Table 2.2: Medical Cost Personal Dataset Results with XGBoost

Comparing the two TAGI models, not surprisingly, the model with the hidden

units containing 100 units performs better, since the model is more complex

with more hidden units. However, a model with too many hidden units or

layers can result in overfitting. In our case, it did not seem to have happened

since it improved RMSE.

Comparing XGBoost models, gblinear performs very poorly compared to

gbtree, which indicates that there are non-linear relationships in the data.

Compared to TAGI, using gbtree with the same number of iterations, TAGI

results in a smaller RMSE, but with optimized number of rounds, gbtree per-

forms better than the model with 50 hidden units, but does not outperform

the model with 100 hidden units.

45

3 Partial Derivatives 10

Sensitivity analysis can be used when there exists uncertainty in a given

model from any fields of study, such as finance, biology, meteorological, en-

gineering, etc. Sensitivity analysis consists in studying the relationships be-

tween inputs and outputs by testing how changes to inputs affect model

outputs.

Partial derivatives can be used as "local" sensitivity measures to understand

the impact of a change on a single input to the model outputs. Let X =

(X1, X2, ..., Xn) be the vector of inputs for a given model. Denote the output

Y = g(X) as a function of its input factors. The partial derivative of Y with

respect to Xi is represented by
∂g(X)

∂Xi

, where i ∈ {1, 2, ..., n}.

However, using partial derivatives as sensitivity measures does not fully cap-

ture the interactions and dependence between input variables. This drawback

is addressed in a new technique called cascade sensitivity by Pesenti et al.

(2020).

Since NN can be used as a predictive model, partial derivatives can be cal-

culated. Recall that outputs are linked to inputs through neurons in hidden

layers. Details are provided through the following example of a NN with two

hidden layers.

10In collaboration with J.-A. Goulet and L. H. Nguyen.

46

z
(0)
1

z
(0)
2

z
(0)
3

z
(0)
4

z
(1)
1

z
(1)
2

z
(1)
3

z
(2)
1

z
(2)
2

g y

b(0)

b(1)

b(2)

w
(0)
11

w
(0)
21

w
(0)
31

w
(0)
12

w
(0)
22

w
(0)
32

w
(0)
13

w
(0)
23

w
(0)
33

w
(0)
14

w
(0)
24

w
(0)
34

w
(1)
11

w
(1)
21

w
(1)
12

w
(1)
22

w
(1)
13

w
(1)
23

w
(2)
11

w
(2)
12

input layer

1st hidden layer

2nd hidden layer

output layer

Figure 3.1: Neural Network with Two Hidden Layers

47

In Figure 3.1, neurons are not activated. From (.), the a(j)i ’s terms below

are obtained from a
(j+1)
i = σ(z

(j+1)
i). Defining step by step (i.e. layer per

layer) how g is a function of the input layer, we first start from the output

layer,

g = w
(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + b(2), (.)

where, using (.),

a
(2)
1 = σ(z

(2)
1) = σ(w

(1)
11 a

(1)
1 + w

(1)
12 a

(1)
2 + w

(1)
13 a

(1)
3 + b

(1)
1) (.)

a
(2)
2 = σ(z

(2)
2) = σ(w

(1)
21 a

(1)
1 + w

(1)
22 a

(1)
2 + w

(1)
23 a

(1)
3 + b

(1)
2). (.)

The activated units from layer 1 are functions of the input layer and are as

follows,

a
(1)
1 = σ(z

(1)
1) = σ(w

(0)
11 a

(0)
1 + w

(0)
12 a

(0)
2 + w

(0)
13 a

(0)
3 + w

(0)
14 a

(0)
4 + b

(0)
1) (.)

a
(1)
2 = σ(z

(1)
2) = σ(w

(0)
21 a

(0)
1 + w

(0)
22 a

(0)
2 + w

(0)
23 a

(0)
3 + w

(0)
24 a

(0)
4 + b

(0)
2) (.)

a
(1)
3 = σ(z

(1)
3) = σ(w

(0)
31 a

(0)
1 + w

(0)
32 a

(0)
2 + w

(0)
33 a

(0)
3 + w

(0)
34 a

(0)
4 + b

(0)
3). (.)

Please note that normally, neurons from the input layer (layer 0) are not

activated (i.e. a
(0)
i = z

(0)
i). However, if one would use a given layer of a

model to feed another NN, then the input layer of the second NN would

be activated, which is the case using convolutional neural networks. For

generalization purposes, partial derivatives are demonstrated with activation

of the input layer.

48

3.1 First Derivative

Since g is not directly a function of the inputs z(0), the chain rule for the

first derivative is used. Let g = f(u) and u = y(x), then

∂g

∂x
=
∂g

∂u

∂u

∂x
.

Derivative of g can be evaluated with respect to any nodes in the NN, includ-

ing variables from input layer. Going through the process above to find the

derivative of g with respect to the first input z(0)1 ,
∂g

∂z
(0)
1

is as follows,

∂g

∂z
(0)
1

=
∂

∂z
(0)
1

(
w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + b(2)

)
=

∂g

∂a
(2)
1

∂a
(2)
1

∂z
(0)
1

+
∂g

∂a
(2)
2

∂a
(2)
2

∂z
(0)
1

= w
(2)
11

∂a
(2)
1

∂z
(0)
1

+ w
(2)
12

∂a
(2)
2

∂z
(0)
1

.

(.)

Derivatives of a(2)1 and a
(2)
2 can be expressed using layer 1 terms as fol-

lows,

49

∂a
(2)
1

∂z
(0)
1

=
∂

∂z
(0)
1

(
σ(z

(2)
1)
)

=
∂a

(2)
1

∂z
(2)
1

∂z
(2)
1

∂z
(0)
1

=
∂a

(2)
1

∂z
(2)
1

[
∂z

(2)
1

∂a
(1)
1

∂a
(1)
1

∂z
(0)
1

+
∂z

(2)
1

∂a
(1)
2

∂a
(1)
2

∂z
(0)
1

+
∂z

(2)
1

∂a
(1)
3

∂a
(1)
3

∂z
(0)
1

]

= σ′(z
(2)
1)

[
w

(1)
11

∂a
(1)
1

∂z
(0)
1

+ w
(1)
12

∂a
(1)
2

∂z
(0)
1

+ w
(1)
13

∂a
(1)
3

∂z
(0)
1

]
,

∂a
(2)
2

∂z
(0)
1

=
∂

∂z
(0)
1

(
σ(z

(2)
2)
)

· · ·

= σ′(z
(2)
2)

[
w

(1)
21

∂a
(1)
1

∂z
(0)
1

+ w
(1)
22

∂a
(1)
2

∂z
(0)
1

+ w
(1)
23

∂a
(1)
3

∂z
(0)
1

]
.

Derivatives of a(1)1 , a(1)2 and a(1)3 can be expressed using input layer terms as

follows,

50

∂a
(1)
1

∂z
(0)
1

=
∂

∂z
(0)
1

(
σ(z

(1)
1)
)

=
∂a

(1)
1

∂z
(1)
1

∂z
(1)
1

∂z
(0)
1

=
∂a

(1)
1

∂z
(1)
1

∂z
(1)
1

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

= σ′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1),

∂a
(1)
2

∂z
(0)
1

=
∂

∂z
(0)
1

(
σ(z

(1)
2)
)

= σ′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1),

∂a
(1)
3

∂z
(0)
1

=
∂

∂z
(0)
1

(
σ(z

(1)
3)
)

= σ′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1).

Combining all derived elements above in (.) results as follows,

51

∂g

∂z
(0)
1

=
∂g

∂a
(2)
1

∂a
(2)
1

∂z
(2)
1

[
∂z

(2)
1

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

+
∂z

(2)
1

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

+
∂z

(2)
1

∂a
(1)
3

∂a
(1)
3

∂z
(1)
3

∂z
(1)
3

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

]
+

∂g

∂a
(2)
2

∂a
(2)
2

∂z
(2)
2

[
∂z

(2)
2

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

+
∂z

(2)
2

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

+
∂z

(2)
2

∂a
(1)
3

∂a
(1)
3

∂z
(1)
3

∂z
(1)
3

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

]
= w

(2)
11 σ

′
(
z
(2)
1

) [
w

(1)
11 σ

′
(
z
(1)
1

)
w

(0)
11 σ

′(z
(0)
1) + w

(1)
12 σ

′
(
z
(1)
2

)
w

(0)
21 σ

′(z
(0)
1)

+w
(1)
13 σ

′
(
z
(1)
3

)
w

(0)
31 σ

′(z
(0)
1)
]

+ w
(2)
12 σ

′
(
z
(2)
2

) [
w

(1)
21 σ

′
(
z
(1)
1

)
w

(0)
11 σ

′(z
(0)
1)

+w
(1)
22 σ

′
(
z
(1)
2

)
w

(0)
21 σ

′(z
(0)
1) + w

(1)
23 σ

′
(
z
(1)
3

)
w

(0)
31 σ

′(z
(0)
1)
]
.

(.)

The same process can be applied to obtain the first derivatives of g with

respect to the other input variables
∂g

∂z
(0)
2

,
∂g

∂z
(0)
3

and
∂g

∂z
(0)
4

. The matrix

representation is as follows,

52

∂g

∂z(0)
=

∂z(1)

∂z(0)︷ ︸︸ ︷

σ′(z
(0)
1)

σ′(z
(0)
2)

σ′(z
(0)
3)

σ′(z
(0)
4)

�

w
(0)
11 w

(0)
21 w

(0)
31

w
(0)
12 w

(0)
22 w

(0)
32

w
(0)
13 w

(0)
23 w

(0)
33

w
(0)
14 w

(0)
24 w

(0)
34

︸ ︷︷ ︸

Layer L−2

×

∂z(2)

∂z(1)︷ ︸︸ ︷
σ′
(
z
(1)
1

)
σ′
(
z
(1)
2

)
σ′
(
z
(1)
3

)
�

w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

︸ ︷︷ ︸

Layer L−1

×

∂g
∂z(2)︷ ︸︸ ︷ σ′(z

(2)
1)

σ′(z
(2)
2)

�
 w

(2)
11

w
(2)
12

︸ ︷︷ ︸

Layer L

=
[
σ′(z(0))�W(0)

]
×
[
σ′(z(1))�W(1)

]
×
[
σ′(z(2))�W(2)

]
,

(.)

where
∂z(2)

∂z(0)
=

∂z(2)

∂z(1)

∂z(1)

∂z(0)
. Since the network is fully connected, which

means that all nodes and weights from consecutive layers are connected,

there is no matrix dimension issues when multiplying matrices, element wise

or not.

Recall that in TAGI, every parameters and nodes follow Normal distributions

53

N (θ;µθ|y,Σθ|y) and N (z;µZ ,ΣZ), respectively. Therefore, the mean of the

derivative of g can be obtained. It is represented by taking the expectation of

a product of six terms. The detailed explanations of g derivative calculations

for a NN with two hidden layers are provided in Appendix A.

Adding layers results in more and longer product terms to sum, but the

approach remains the same. Let V represents weights and nodes in the NN.

For a model with L hidden layers,

E
[
V1V2...V2L−1V2LV2L+1V2(L+1)

]
= E [V1V2...V2L−1V2L]E

[
V2L+1V2(L+1)

]
+ E

[
V1V2...V2(L−1)−1V2(L−1)

]
cov(V2L−1V2L, V2L+1V2(L+1)).

(.)

3.2 Second Derivative

Again, we use the chain rule to compute the next order derivative. Let

g = f(u) and u = y(x), then

∂2g

(∂x)2
=

∂2g

(∂u)2

(
∂u

∂x

)2

+
∂g

∂u

∂2u

(∂x)2
. (.)

Continuing with the example of a NN with two hidden layers, u = z(2) and

x = z(0) (the inputs). Recall that z(2) are functions which can be expressed

in terms of z(0). Using the chain rule, the second derivative of g can be

expressed as follows,

∂2g

(∂z(0))2
=

∂2g

(∂z(2))2

(
∂z(2)

∂z(0)

)2

+
∂g

∂z(2)
∂2z(2)

(∂z(0))2
. (.)

54

The second derivative of g with respect to the first input variable z
(0)
1 ,

∂2g

(∂z
(0)
1)2

, is derived from (.) and is equal to

∂g

∂a
(2)
1

∂2a
(2)
1

(∂z
(2)
1)2

[
∂z

(2)
1

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

+
∂z

(2)
1

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

+
∂z

(2)
1

∂a
(1)
3

∂a
(1)
3

∂z
(1)
3

∂z
(1)
3

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

]2
+

∂g

∂a
(2)
1

∂a
(2)
1

∂z
(2)
1

∂z(2)1

∂a
(1)
1

∂2a
(1)
1

(∂z
(1)
1)2

(
∂z

(1)
1

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

)2

+
∂z

(2)
1

∂a
(1)
2

∂2a
(1)
2

(∂z
(1)
2)2

(
∂z

(1)
2

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

)2

+
∂z

(2)
1

∂a
(1)
3

∂2a
(1)
3

(∂z
(1)
3)2

(
∂z

(1)
3

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

)2

+
∂g

∂a
(2)
1

∂a
(2)
1

∂z
(2)
1

[
∂z

(2)
1

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂a
(0)
1

∂2a
(0)
1

(∂z
(0)
1)2

+
∂z

(2)
1

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂a
(0)
1

∂2a
(0)
1

(∂z
(0)
1)2

+
∂z

(2)
1

∂a
(1)
3

∂a
(1)
3

∂z
(1)
3

∂z
(1)
3

∂a
(0)
1

∂2a
(0)
1

(∂z
(0)
1)2

]
+

∂g

∂a
(2)
2

∂2a
(2)
2

(∂z
(2)
2)2

[
∂z

(2)
2

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

+
∂z

(2)
2

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

∂z
(2)
2

∂a
(1)
3

∂a
(1)
3

∂z
(1)
3

∂z
(1)
3

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

]2

+
∂g

∂a
(2)
2

∂a
(2)
2

∂z
(2)
2

∂z(2)2

∂a
(1)
1

∂2a
(1)
1

(∂z
(1)
1)2

(
∂z

(1)
1

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

)2

+
∂z

(2)
2

∂a
(1)
2

∂2a
(1)
2

(∂z
(1)
2)2

(
∂z

(1)
2

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

)2

+
∂z

(2)
2

∂a
(1)
3

∂2a
(1)
3

(∂z
(1)
3)2

(
∂z

(1)
3

∂a
(0)
1

∂a
(0)
1

∂z
(0)
1

)2

+
∂g

∂a
(2)
2

∂a
(2)
2

∂z
(2)
2

[
∂z

(2)
2

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂a
(0)
1

∂2a
(0)
1

(∂z
(0)
1)2

+
∂z

(2)
2

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂a
(0)
1

∂2a
(0)
1

(∂z
(0)
1)2

+
∂z

(2)
2

∂a
(1)
3

∂a
(1)
3

∂z
(1)
3

∂z
(1)
3

∂a
(0)
1

∂2a
(0)
1

(∂z
(0)
1)2

]
.

(.)

55

Replacing all the derivative terms,

∂2g

(∂z
(0)
1)2

= w
(2)
11 σ

′′(z
(2)
1)
{
w

(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)

+w
(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}2

+ w
(2)
11 σ

′(z
(2)
1)

{
w

(1)
11 σ

′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]2

+w
(1)
12 σ

′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]2

+ w
(1)
13 σ

′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]2}

+ w
(2)
11 σ

′(z
(2)
1)
{
w

(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′′(z
(0)
1) + w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′′(z
(0)
1)

+w
(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′′(z
(0)
1)
}

+ w
(2)
12 σ

′′(z
(2)
2)
{
w

(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1)

+w
(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1) + w

(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}2

+ w
(2)
12 σ

′(z
(2)
2)

{
w

(1)
21 σ

′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]2

+ w
(1)
22 σ

′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]2

+w
(1)
23 σ

′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]2}

+ w
(2)
12 σ

′(z
(2)
2)
{
w

(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′′(z
(0)
1)

+w
(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′′(z
(0)
1) + w

(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′′(z
(0)
1)
}
.

(.)

56

The same process can be applied to obtain the second derivatives of g with

respect to the other input variables
∂2g

(∂z
(0)
2)2

,
∂2g

(∂z
(0)
3)2

and
∂2g

(∂z
(0)
4)2

. From

(.),
∂g

∂z(2)
and

∂z(2)

∂z(0)
are already shown in matrix form in (.). The

remaining terms,
∂2g

(∂z(2))2
and

∂2z(2)

(∂z(0))2
, are represented in matrix form as

follows,

∂2g

(∂z(2))2
=

 σ′′(z
(2)
1)

σ′′(z
(2)
2)

�
 w

(2)
11

w
(2)
12

︸ ︷︷ ︸

Layer L

,
(.)

57

∂2z(2)

(∂z(0))2
=

σ′(z
(0)
1)

σ′(z
(0)
2)

σ′(z
(0)
3)

σ′(z
(0)
4)

�

w
(0)
11 w

(0)
21 w

(0)
31

w
(0)
12 w

(0)
22 w

(0)
32

w
(0)
13 w

(0)
23 w

(0)
33

w
(0)
14 w

(0)
24 w

(0)
34

� 2

︸ ︷︷ ︸
Layer L−2

×

σ′′
(
z
(1)
1

)
σ′′
(
z
(1)
2

)
σ′′
(
z
(1)
3

)
�

w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

︸ ︷︷ ︸

Layer L−1

+

σ′′(z
(0)
1)

σ′′(z
(0)
2)

σ′′(z
(0)
3)

σ′′(z
(0)
4)

�

w
(0)
11 w

(0)
21 w

(0)
31

w
(0)
12 w

(0)
22 w

(0)
32

w
(0)
13 w

(0)
23 w

(0)
33

w
(0)
14 w

(0)
24 w

(0)
34

︸ ︷︷ ︸

Layer L−2

×

σ′
(
z
(1)
1

)
σ′
(
z
(1)
2

)
σ′
(
z
(1)
3

)
�

w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

︸ ︷︷ ︸

Layer L−1

.

(.)

The detailed explanations of g second derivative calculations for a NN with

two hidden layers are provided in Appendix B.

58

3.2.1 Generalization

Adding hidden layers to the model results in adding sequence types, which

are different combinations of product terms from all hidden layers and input

layer. As seen in a model with two hidden layers, the sequences follow some

patterns because of the chain rule for first and second order derivatives. The

observed patterns are:

1. A sequence will follow the first derivative process (multiplying two

terms of first order per layer) until there is a first pair of second order.

2. At only one layer per sequence, there is a pair of second order terms and

that position is unique among all sequences. Also, among all sequences,

pairs of second order terms fill all positions.

3. Following a pair of second order terms are four terms of first order

thereafter.

Table B.1 is modified to illustrate the general case for a model with L hidden

layers which is shown in Table 3.1.

Layer L Layer L− 1 · · · Layer 1 Layer 0

1 2 × 2nd order 4 × 1st order · · · 4 × 1st order 4 × 1st order

2 2 × 1st order 2 × 2nd order · · · 4 × 1st order 4 × 1st order
... 2 × 1st order 2 × 1st order · · · 4 × 1st order 4 × 1st order

L 2 × 1st order 2 × 1st order · · · 2 × 2nd order 4 × 1st order

L+ 1 2 × 1st order 2 × 1st order · · · 2 × 1st order 2 × 2nd order

Table 3.1: Sequence Types of Product Terms

59

Some combinations are not covered yet in Section 3.2, since they do not exist

in the context of a NN with two hidden layers. Illustrating a model with

three hidden layers as follows,

z
(0)
1

z
(0)
2

z
(0)
3

z
(0)
4

z
(1)
1

z
(1)
2

z
(2)
1

z
(2)
2

z
(2)
3

z
(3)
1

z
(3)
2

g y

b(0)
b(1)

b(2)

b(3)

w
(0)
11

w
(0)
21

w
(0)
12

w
(0)
22

w
(0)
13

w
(0)
23

w
(0)
14

w
(0)
24

w
(1)
11

w
(1)
21

w
(1)
31

w
(1)
12

w
(1)
22

w
(1)
32

w
(2)
11

w
(2)
21

w
(2)
12

w
(2)
22

w
(2)
13

w
(2)
23

w
(3)
11

w
(3)
12

input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

output layer

Figure 3.2: Neural Network with Three Hidden Layers

60

In the model shown in Figure 3.2, the second derivative of g, using the chain

rule, can be expressed as follows,

∂2g

(∂z(0))2
=

∂2g

(∂z(3))2

(
∂z(3)

∂z(0)

)2

+
∂g

∂z(3)
∂2z(3)

(∂z(0))2
, (.)

where, considering only the above derivative with respect to the first input

variable,
∂2g

(∂z(3))2

(
∂z(3)

∂z
(0)
1

)2

is equal to

w
(3)
11 σ

′′(z
(3)
1)

{w(2)
11 σ

′(z
(2)
1)w

(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(2)
11 σ

′(z
(2)
1)w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)

+ w
(2)
12 σ

′(z
(2)
2)w

(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(2)
12 σ

′(z
(2)
2)w

(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)

+ w
(2)
13 σ

′(z
(2)
3)w

(1)
31 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(2)
13 σ

′(z
(2)
3)w

(1)
32 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)}2

+ w
(2)
12 σ

′′(z
(2)
2)

{w(2)
21 σ

′(z
(2)
1)w

(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(2)
21 σ

′(z
(2)
1)w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)

+ w
(2)
22 σ

′(z
(2)
2)w

(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(2)
22 σ

′(z
(2)
2)w

(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)

+ w
(2)
23 σ

′(z
(2)
3)w

(1)
31 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(2)
23 σ

′(z
(2)
3)w

(1)
32 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)}2.
(.)

Evaluating the second derivative of g considering the model with three hidden

layers follows the same process as for the model with two hidden layers for

layers 2 and 3 (refer to layers 1 and 2 respectively in Section B.1). However,

layer 1 is treated differently, since once the expression above is developed,

expectations of products from layer 1 shown in Table 3.2 are to be calcu-

lated.

61

Case Expectations

1 E
[(
w

(1)
11 σ

′(z
(1)
1)
)2]

, E
[(
w

(1)
12 σ

′(z
(1)
2)
)2]

, E
[(
w

(1)
21 σ

′(z
(1)
1)
)2]

E
[(
w

(1)
22 σ

′(z
(1)
2)
)2]

, E
[(
w

(1)
31 σ

′(z
(1)
1)
)2]

, E
[(
w

(1)
32 σ

′(z
(1)
2)
)2]

2(a) E
[
w

(1)
11 σ

′(z
(1)
1)w

(1)
12 σ

′(z
(1)
2)
]
, E
[
w

(1)
21 σ

′(z
(1)
1)w

(1)
22 σ

′(z
(1)
2)
]
,

E
[
w

(1)
31 σ

′(z
(1)
1)w

(1)
32 σ

′(z
(1)
2)
]

2(b) E
[
w

(1)
11 σ

′(z
(1)
1)w

(1)
22 σ

′(z
(1)
2)
]
, E
[
w

(1)
11 σ

′(z
(1)
1)w

(1)
32 σ

′(z
(1)
2)
]
,

E
[
w

(1)
12 σ

′(z
(1)
2)w

(1)
21 σ

′(z
(1)
1)
]
, E
[
w

(1)
12 σ

′(z
(1)
2)w

(1)
31 σ

′(z
(1)
1)
]
,

E
[
w

(1)
21 σ

′(z
(1)
1)w

(1)
32 σ

′(z
(1)
2)
]
, E
[
w

(1)
22 σ

′(z
(1)
2)w

(1)
31 σ

′(z
(1)
1)
]

3 E
[
w

(1)
11 w

(1)
21 σ

′(z
(1)
1)2

]
, E
[
w

(1)
11 w

(1)
31 σ

′(z
(1)
1)2

]
,

E
[
w

(1)
12 w

(1)
22 σ

′(z
(1)
2)2

]
, E
[
w

(1)
12 w

(1)
32 σ

′(z
(1)
2)2

]
E
[
w

(1)
21 w

(1)
31 σ

′(z
(1)
1)2

]
, E
[
w

(1)
22 w

(1)
32 σ

′(z
(1)
2)2

]
Table 3.2: Expectations at Layer 1 for a Three Hidden Layers Model

Let V7V8V9V10 be the four order derivative terms from layer 1. The cases are

explained as follows,

1. V7V8 = V9V10: Same node and weight are multiplied.

2. V7 6= V9 and V8 6= V10: Not same node nor weight are multiplied.

(a) Weights point toward the same next layer node.

(b) Weights do not point toward the same next layer node.

3. V7 6= V9 and V8 = V10: Same node but not same weight are multiplied.

Case 2(b) does not exist in the model with two hidden layers, so when calcu-

62

lating expectations, cov(V7V8, V9V10) = 0. Moreover, it is the first time that

all cases exist together. Cases 1 and 2(a) arise in layer 1 and Cases 1 and 3

in layer 0 in Section B.1, but never the three of them at the same time in all

the calculation process from Section 3.2.

In a given sequence, let j be the layer where there is the pair of second

order terms, then Case 2(b) can be observed in layers 1 to j − 2 inclusively,

where j ∈ {3, ...L}. Ultimately, Case 2(b) has an impact on the covariance

between the next and current layers, the number of possible covariance terms

to consider increases. Therefore, (B.) cannot automatically be simplified as

before.

3.3 Third Derivative

To obtain the next order derivative, the chain rule for third derivative is used.

Let g = f(u) and u = y(x), then

∂3g

(∂x)3
=

∂3g

(∂u)3

(
∂u

∂x

)3

+ 3
∂2g

(∂u)2
∂u

∂x

∂2u

(∂x)2
+
∂g

∂u

∂3u

(∂x)3
. (.)

Continuing with the example of a NN with two hidden layers, u = z(2) and

x = z(0) (the inputs). Recall that z(2) are functions that can be expressed in

terms of z(0). Using the chain rule, the third derivative of g can be expressed

as follows,

∂3g

(∂z(0))3
=

∂3g

(∂z(2))3

(
∂z(2)

∂z(0)

)3

+ 3
∂2g

(∂z(2))2
∂z(2)

∂z(0)
∂2z(2)

(∂z(0))2
+

∂g

∂z(2)
∂3z(2)

(∂z(0))3
.

(.)

63

∂g

∂z(2)
and

∂z(2)

∂z(0)
are already shown in matrix form in (.). For the sec-

ond derivative terms,
∂2g

(∂z(2))2
and

∂2z(2)

(∂z(0))2
are shown in (.) and (.)

respectively. From (.), the remaining terms,
∂3g

(∂z(2))3
and

∂3z(2)

(∂z(0))3
, are

represented in matrix form as follows,

∂3g

(∂z(2))3
=

 σ′′′(z
(2)
1)

σ′′′(z
(2)
2)

�
 w

(2)
11

w
(2)
12

︸ ︷︷ ︸

Layer L

,
(.)

∂3z(2)

(∂z(0))3
=

σ′(z
(0)
1)

σ′(z
(0)
2)

σ′(z
(0)
3)

σ′(z
(0)
4)

�

w
(0)
11 w

(0)
21 w

(0)
31

w
(0)
12 w

(0)
22 w

(0)
32

w
(0)
13 w

(0)
23 w

(0)
33

w
(0)
14 w

(0)
24 w

(0)
34

� 3

︸ ︷︷ ︸
Layer L−2

×

σ′′′
(
z
(1)
1

)
σ′′′
(
z
(1)
2

)
σ′′′
(
z
(1)
3

)
�

w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

︸ ︷︷ ︸

Layer L−1

64

+ 3

σ′(z
(0)
1)

σ′(z
(0)
2)

σ′(z
(0)
3)

σ′(z
(0)
4)

�

σ′′(z
(0)
1)

σ′′(z
(0)
2)

σ′′(z
(0)
3)

σ′′(z
(0)
4)

�

w
(0)
11 w

(0)
21 w

(0)
31

w
(0)
12 w

(0)
22 w

(0)
32

w
(0)
13 w

(0)
23 w

(0)
33

w
(0)
14 w

(0)
24 w

(0)
34

� 2
︸ ︷︷ ︸

Layer L−2

×

σ′′
(
z
(1)
1

)
σ′′
(
z
(1)
2

)
σ′′
(
z
(1)
3

)
�

w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

︸ ︷︷ ︸

Layer L−1

+

σ′′′(z
(0)
1)

σ′′′(z
(0)
2)

σ′′′(z
(0)
3)

σ′′′(z
(0)
4)

�

w
(0)
11 w

(0)
21 w

(0)
31

w
(0)
12 w

(0)
22 w

(0)
32

w
(0)
13 w

(0)
23 w

(0)
33

w
(0)
14 w

(0)
24 w

(0)
34

︸ ︷︷ ︸

Layer L−2

×

σ′
(
z
(1)
1

)
σ′
(
z
(1)
2

)
σ′
(
z
(1)
3

)
�

w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

︸ ︷︷ ︸

Layer L−1

.

(.)

From (.), developing the equation for
∂3g

(∂z
(0)
1)3

results as follows,

65

= w
(2)
11 σ

′′′(z
(2)
1)
{
w

(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)

+ w
(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}3

+ 3w
(2)
11 σ

′′(z
(2)
1)
{
w

(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1)

+ w
(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1) + w

(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}

{
w

(1)
11 σ

′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]2

+ w
(1)
12 σ

′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]2

+ w
(1)
13 σ

′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]2

+ w
(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′′(z
(0)
1)

+ w
(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′′(z
(0)
1) + w

(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′′(z
(0)
1)
}

+ w
(2)
11 σ

′(z
(2)
1)

[
w

(1)
11 σ

′′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]3

+ w
(1)
12 σ

′′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]3

+ w
(1)
13 σ

′′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]3

+ 3
{
w

(1)
11 σ

′(z
(1)
1)[w

(0)
11]2σ′(z

(0)
1)σ′′(z

(0)
1)

+ w
(1)
12 σ

′(z
(1)
2)[w

(0)
21]2σ′(z

(0)
1)σ′′(z

(0)
1) + w

(1)
13 σ

′(z
(1)
3)[w

(0)
31]2σ′(z

(0)
1)σ′′(z

(0)
1)
}

+ w
(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′′′(z
(0)
1) + w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′′′(z
(0)
1)

+ w
(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′′′(z
(0)
1)
]

+ w
(2)
12 σ

′′′(z
(2)
2)
{
w

(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1)

+ w
(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1) + w

(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}3

+ 3w
(2)
12 σ

′′(z
(2)
2)
{
w

(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1)

+ w
(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}{

w
(1)
21 σ

′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]2

+ w
(1)
22 σ

′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]2

+ w
(1)
23 σ

′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]2

+ w
(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′′(z
(0)
1) + w

(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′′(z
(0)
1)

+ w
(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′′(z
(0)
1)
}

+ w
(2)
12 σ

′(z
(2)
2)

[
w

(1)
21 σ

′′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]3

+ w
(1)
22 σ

′′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]3

+ w
(1)
23 σ

′′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]3

66

+ 3
{
w

(1)
21 σ

′(z
(1)
1)[w

(0)
11]2σ′(z

(0)
1)σ′′(z

(0)
1) + w

(1)
22 σ

′(z
(1)
2)[w

(0)
21]2σ′(z

(0)
1)σ′′(z

(0)
1)

+ w
(1)
23 σ

′(z
(1)
3)[w

(0)
31]2σ′(z

(0)
1)σ′′(z

(0)
1)
}

+ w
(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′′′(z
(0)
1)

+ w
(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′′′(z
(0)
1) + w

(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′′′(z
(0)
1)

]
(.)

Since the development of the third derivative is considerably longer than the

second derivative, the detailed explanations about how to compute the expec-

tations and the covariance terms are not provided. However, the logic behind

those calculations remains the same as for the first and second derivatives.

Consequently, (A.) and (.) can always be used to compute expectations

of products of consecutive or same layers and can be adapted for the num-

ber of terms to multiply together. Moreover, (A.) can be referred to for

covariance terms.

67

4 Risk Measures

In insurance and in finance, risk measures are used to quantify risk in situ-

ations with evidence of randomness. For example, in finance, risk measures

are used to assess volatility of portfolio returns and in actuarial science, to

capture the risk of large losses in claims predictive models.

4.1 Properties of Risk Measures

From Artzner et al. (1999), a risk measure is coherent if it satisfies translation

invariance, subadditivity, positive homogeneity and monotonicity, which are

defined below.

Let ρ be a risk measure and X and Y be random variables. Then, ρ(X) is

the risk measure ρ evaluated for X distribution and ρ(Y) for Y .

1. Translation invariance: If a ∈ R, then ρ(X + a) = ρ(X) + a

2. Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y)

3. Positive homogeneity: If α ≥ 0, then ρ(αX) = αρ(X)

4. Monotocity: If X ≤ Y , then ρ(Y) ≥ ρ(X)

4.2 Common Risk Measures In Actuarial Science

The most popular risk measures used in actuarial science are Value at Risk

(VaR) and Tail Value at Risk (TVaR).

Let X be a random variable and FX be its cumulative distribution function.

For 0 ≤ α < 1, VaRα is the α-th quantile defined as follows,

68

VaRα(X) = inf{x ∈ R, FX(x) ≥ α}, (.)

which represents the minimum value of X that should not be exceeded with

probability α. Insurers are often interested in the potential extreme values

for claims. Since they are in the right tail of the claim distribution, VaR95

could be an interesting measure to calculate, which corresponds to the claim

cost that would not be exceeded 95% of the time. Now, if we are interested in

the expected claim amount of the remaining 5%, we should calculate TVaR95,

where TVaRα is defined for a continuous random variable X as follows,

TVaRα(X) = E [X|X > VaRα(X)]

=
1

1− α

∫ 1

α

VaRu(X) du. (.)

Now, Range Value at Risk (RVaR) is similar to TVaR with the difference that

instead of taking the expectation of the domain at all points bigger than a

given quantile VaRα, it considers an upper bound that is set at VaRα+ , where

0 ≤ α < α+ < 1, as follows,

RVaRα,α+(X) = E [X|VaRα < X < VaRα+]

=
1

α+ − α

∫ α+

α

VaRu(X) du. (.)

69

If α = α+, it would be equivalent to calculate VaRα. Moreover, if α+ = 1,

then we get TVaRα. RVaR is an interesting measure to calculate in insurance

if we are interested in the expected claim amount over a specific range of loss

probabilities.

The Entropic Value at Risk (EVaR) and expectiles are two risk measures

that can be considered as alternatives to VaR and TVaR.

LetMX(z) be the moment-generating function ofX which exists for all z ≥ 0.

For 0 ≤ α < 1, EVaRα is defined as follows,

EVaRα(X) = inf
z<0

{
z−1 ln

(
MX(z)

1− α

)}
. (.)

For the same α, EVaR is the tightest upper bound to VaR and TVaR obtained

from the Chernoff inequality, where VaR(X) ≤ TVaR(X) ≤ EVaR(X). For

any constant a, the Chernoff inequality by Chernoff et al. (1952) is defined

as follows,

P(X ≥ a) ≤ e−zaMX(z).

EVaR was introduced by Ahmadi-Javid (2012). The author showed that

EVaR can be used to efficiently solve stochastic problems which are compu-

tationally intractable when using TVaR. In the literature, VaR and TVaR are

often used in portfolio optimization. Ahmadi-Javid and Fallah-Tafti (2019)

showed that EVaR approach performs similarly in terms of computational

efficiency as TVaR approach and outperforms it as the sample size increases.

Moreover, Firouzi and Luong (2014) applied EVaR to a portfolio optimization

70

problem since that risk measure yielded an explicit formula for the objective

function, which was not the case with VaR and TVaR, where numerical ap-

proximations were needed.

Now, expectiles eα(X), introduced by Newey and Powell (1987), are defined

as follows,
eα(X) = argmin

x∈R
αE
[
(X − x)2+

]
+ (1− α)E

[
(X − x)2−

]
,

where α ∈ (0, 1). If
E
[
(X − x)2+

]
E [(X − x)2−]

=
1− α
α

, then x is the α-expectile for the

distribution X. In finance and in insurance, this quantity can be interpreted

as the amount of money to add in order to satisfy a given gain-loss ratio.

Note that e0.5(X) = E[X].

To conclude, TVaR, EVaR and RVaR are coherent risk measures as they

satisfy all properties listed earlier. As stated by Bellini et al. (2014), eα(X)

is a coherent risk measure if α ≥ 0.5. Hovewer, VaR is not coherent since it

does not satisfy the subadditivity property. Coherence is important since a

portfolio can contain different types of assets or insurance products. Applying

a given risk measure individually to the different assets or products should

be consistent to applying it at the portfolio level. For example, for the

subadditivity property, the risk of the entire portfolio should be smaller than

the sum of the risk of each individual elements.

A risk measure for which verification and comparison of predictive perfor-

mance of risk models can be achieved using a scoring function is considered

elicitable. It is known that VaR and expectiles are elicitable, whereas TVaR

is not. Since elicitability allows for backtesting, it can be interesting to use

an elicitable risk measure even if it is not coherent.

71

4.3 Risk Measures in TAGI

In TAGI, all elements in a NN (weights, biases, nodes and outputs) follow

a Normal distribution which capture the uncertainty around them. TAGI

outputs a mean µ and a variance σ2 for each predicted output. Therefore, it

is possible to study risk measures applied to each predicted output. In addi-

tion, with all the usual transformations from activation functions in NN, the

input variables being normalized and the outputs being denormalized at the

end of the process, it is interesting to show if the risk measures still satisfy

their properties, such as positive homogeneity, even after such transforma-

tions.

Since we are interested in risk measures applied to outputs that follow a

Normal distribution, from (.) to (.), there exist closed-form formulas for

VaR, TVaR, RVaR and EVaR which are calculated as follows,

VaRα(X) = µ+ σΦ−1(α), (.)

TVaRα(X) = µ+ σ
φ[Φ−1(α)]

1− α
, (.)

RVaRα,α+(X) = µ+ σ
φ[Φ−1(α)]− φ[Φ−1(α+)]

α+ − α
, (.)

EVaRα(X) = µ+ σ
√

2 ln(1− α), (.)

where φ(x) and Φ(x) denote the probability and cumulative distribution

functions, respectively, of a standard Normal distribution.

72

4.3.1 Simple Experiment with Risk Measures in TAGI

Consider a simple case where there are n input variables X1, X2, ..., Xn and

the response variable is Y =
∑n

i=1Xi. Let Y1 =
∑n

i=1Xi and Y2 =
∑n

i=1 cXi =

cY1. Because of the positive homogeneity property of risk measures, if c ≥ 0,

then for an homogeneous risk measure ρ, ρ(Y2) = cρ(Y1). We are interested

to see if it is also the case when using {cXi}ni=1 as inputs in TAGI.

To calculate VaR, TVaR, RVaR and EVaR for the outputs in TAGI, we first

need to derive µ and σ which are used in (.) to (.). Let A(j) be the

number of units in layer j and L be the number of hidden layers in a NN

with ReLU as the activation function. We first need to standardize the input

variables {Xi}ni=1. Let Si =
Xi − µi
σi

. We would be interested in cSi.

To calculate the mean and variance, (.), (.) and (.) are used. With

ReLU, using the linearization procedure from (.), the ith activated unit

of layer j is as follows,

a
(j)
i = σ(z

(j)
i)

≈ σ̃(z
(j)
i)

= σ(E[z
(j)
i]) +

∂σ(E[z
(j)
i])

∂z
(j)
i

���
���

��:0
(z

(j)
i − E[z

(j)
i])

= max(0,E[z
(j)
i]),

(.)

since linearization is done at E[z
(j)
i].

The mean of the ith activated unit of layer j is as follows,

73

E[a
(j)
i] = E[max

(
0,E[z

(j)
i]
)

]

= max
(

0,E[z
(j)
i]
)
.

(.)

The variance of the ith activated unit of layer j can be found using Taylor

series approximation and is as follows,

V (a
(j)
i) =

(
∂σ(E[z

(j)
i])

∂z
(j)
i

)2

V (z
(j)
i)

= 1
z
(j)
i >0

V (z
(j)
i).

(.)

Layer 1

For the first hidden layer, the mean and variance of the ith hidden unit are

as follows,

E[z
(1)
i] =

A(0)∑
l=1

E[w
(0)
il]E[cSl] + E[b

(0)
i]

= c

A(0)∑
l=1

E[w
(0)
il]Sl + E[b

(0)
i],

(.)

V (z
(1)
i) =

A(0)∑
l=1

(
V (w

(0)
il)���

��:0
V (cSl) + V (w

(0)
il)E[cSl]

2 + E[w
(0)
il]2���

��:0
V (cSl)

)
+ V (b

(0)
i)

= c2
A(0)∑
l=1

V (w
(0)
il)S2

l + V (b
(0)
i).

(.)

74

From (.) and (.) and using (.) and (.), the mean and variance

of the ith activated unit are as follows,

E[a
(1)
i] = max

0, c
A(0)∑
l=1

E[w
(0)
il]Sl + E[b

(0)
i]

 , (.)

V (a
(1)
i) = 1

z
(1)
i >0

c2
A(0)∑
l=1

V (w
(0)
il)S2

l + V (b
(0)
i)

 . (.)

Layer 2

From the first hidden layer, (.) and (.) are used to calculate the mean

and variance of the ith hidden unit for a second layer, which are as fol-

lows,

E[z
(2)
i] =

A(1)∑
l=1

E[w
(1)
il]E[a

(1)
l] + E[b

(1)
i]

=
A(1)∑
l=1

E[w
(1)
il]

max(0, c
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l])

+ E[b
(1)
i],

(.)

V (z
(2)
i) =

A(1)∑
l=1

(
V (w

(1)
il)V (a

(1)
l) + V (w

(1)
il)E[a

(1)
l]2 + E[w

(1)
il]2V (a

(1)
l)
)

+ V (b
(1)
i)

=
A(1)∑
l=1

1
z
(1)
l >0

c2
A(0)∑
k=1

V (w
(0)
lk)S2

k + V (b
(0)
l)

(V (w
(1)
il) + E[w

(1)
il]2

)

+V (w
(1)
il) max

0, c
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l]

2+ V (b
(1)
i).

(.)

75

From (.) and (.) and using (.) and (.), the mean and variance

of the ith activated unit are as follows,

E[a
(2)
i] = max(0,

A(1)∑
l=1

E[w
(1)
il]

max(0, c
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l])

+ E[b
(1)
i]),

V (a
(2)
i) = 1

z
(2)
i >0

{
A(1)∑
l=1

1
z
(1)
l >0

c2
A(0)∑
k=1

V (w
(0)
lk)S2

k + V (b
(1)
l)

(
V (w

(1)
il) + E[w

(1)
il]2

)
+ V (w

(1)
il) max

0, c
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l]

2
+ V (b

(1)
i)

}
.

Output Layer

For the output layer, the mean of the response can be expressed as fol-

lows,

E[g(Y ∗2)] =
A(L)∑
l=1

[
E[w

(L)
1l] · · ·max

(
0,

A(1)∑
k=1

E[w
(1)
tk]
(

max(0, c
A(0)∑
m=1

E[w
(0)
km]Sm

+ E[b
(0)
k])

)
+ E[b

(1)
t]

)
· · ·
]

+ E[b
(L)
1],

(.)

where Y ∗2 represents the response variable prior to the denormalization step.

However, note that the mean and variance of the activated units of the last

hidden layer L can be expressed in a generalized form, as follows,

76

f (L)(f (L−1)(· · · f (2)(f (1)(cS)) · · ·)), (.)

where for the mean, at layer j, (.) is rewritten as follows,

m(j)(a) = max

0,
A(j−1)∑
l=1

E[w
(j−1)
il]E[a

(j−1)
l] + E[b

(j−1)
i]

 , (.)

where i is the ith activated units of layer j. For the variance, at layer j, (.)

is rewritten as follows,

v(j)(a) = 1
z
(j)
i >0

{A(j−1)∑
l=1

(
V (w

(j−1)
il)V (a

(j−1)
l) + V (w

(j−1)
il)E[a

(j−1)
l]2

+E[w
(j−1)
il]2V (a

(j−1)
l)

)
+ V (b

(j−1)
i)

}
.

(.)

Now, because there is no activation at the output layer, expressing the

mean and the variance of the response using (.) and (.) results as

follows,

E[g(Y ∗2)] =
A(L)∑
l=1

E[w
(L)
1l]m(L)(m(L−1)(· · ·m(2)(m(1)(cS)) · · ·)) + E[b

(L)
1],

V (g(Y ∗2)) =
A(L)∑
l=1

(
v(L)(v(L−1)(· · · v(2)(v(1)(cS)) · · ·))

(
V (w

(L)
1l) + E[w

(L−1)
1l]2

)
+V (w

(L)
1l)(m(L)(m(L−1)(· · ·m(2)(m(1)(cS)) · · ·)))2

)
+ V (b

(L)
1).

77

Now, even before the denormalization step, when using {cXi}ni=1 as inputs, we

see that the positive homogeneity property of risk measure cannot be followed

because of the bias terms which are not multiplied by c. For example, in the

simple case where L = 1, the mean and variance of Y ∗2 are as follows,

E[g(Y ∗2)] =
A(1)∑
l=1

E[w
(1)
1l]

max(0, c
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l])

+ E[b
(1)
1],

V (g(Y ∗2)) =
A(1)∑
l=1

1
z
(1)
l >0

c2
A(0)∑
k=1

V (w
(0)
lk)S2

k + V (b
(1)
l)

(V (w
(1)
il) + E[w

(1)
1l]2

)

+V (w
(1)
1l) max

0, c
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l]

2+ V (b
(1)
1),

whereas the mean and variance of Y ∗1 are as follows,

E[g(Y ∗1)] =
A(1)∑
l=1

E[w
(1)
1l]

max(0,
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l])

+ E[b
(1)
1],

V (g(Y ∗1)) =
A(1)∑
l=1

1
z
(1)
l >0

A(0)∑
k=1

V (w
(0)
lk)S2

k + V (b
(1)
l)

(V (w
(1)
il) + E[w

(1)
1l]2

)

+V (w
(1)
1l) max

0,
A(0)∑
k=1

E[w
(0)
lk]Sk + E[b

(0)
l]

2+ V (b
(1)
1).

One sees that ρ(g(Y ∗2)) does not equal to cρ(g(Y ∗1)). Moreover, in the case

where for z(1)l , a hidden unit l in layer 1,
∑A(0)

k=1 E[w
(0)
lk]Sk and E[b

(0)
l] are of

opposite signs (i.e. one term is negative and the other is positive), then

78

multiplying
∑A(0)

k=1 E[w
(0)
lk]Sk by c > 0 can result in the original z(1)l to change

sign, which can completely change the outcome at activation using ReLU.

With more than one hidden layer, such modifications to the first layer units

when using {cXi}ni=1 as inputs create a chain reaction, since units in layer j

are calculated based on units from layer j − 1.

From (.) to (.), VaR, TVaR, RVaR and EVaR are as follows,

VaRα(g(Y ∗2)) = E[g(Y ∗2)] +
√
V (g(Y ∗2))Φ−1(α)

6= cE[g(Y ∗1)] + c
√
V (g(Y ∗1))Φ−1(α) = cVaRα(g(Y ∗1)),

TVaRα(g(Y ∗2)) = E[g(Y ∗2)] +
√
V (g(Y ∗2))

φ[Φ−1(α)]

1− α
6= cE[g(Y ∗1)] + c

√
V (g(Y ∗1))

φ[Φ−1(α)]

1− α = cTVaRα(g(Y ∗1)),

RVaRα,α+(g(Y ∗2)) = E[g(Y ∗2)] +
√
V (g(Y ∗2))

φ[Φ−1(α)]− φ[Φ−1(α+)]

α+ − α
6= cE[g(Y ∗1)] + c

√
V (g(Y ∗1))

φ[Φ−1(α)]− φ[Φ−1(α+)]

α+ − α
= cRVaRα,α+(g(Y ∗1)),

EVaRα(g(Y ∗2)) = E[g(Y ∗2)] +
√
V (g(Y ∗2))

√
2 ln(1− α)

6= cE[g(Y ∗1)] + c
√
V (g(Y ∗1))

√
2 ln(1− α) = cEVaRα(g(Y ∗1)).

Furthermore, the mean and variance of the response variable from the train-

ing set are used at the denormalization step as follows,

E[g(Y2)] = E[g(Y ∗2)]
√
V (Ytrain) + E[Ytrain],

V (g(Y2)) = V (g(Y ∗2))V (Ytrain).

79

Since, in theory, we do not know the underlying function predicted by the

NN (i.e. in our simple example, training is done such that weights and biases

are optimized to replicate Y =
∑n

i=1Xi, but the model does not explicitly

calculates Y =
∑n

i=1Xi), we cannot use cYtrain for denormalization. Thus,

ρ(g(Y2)) 6= cρ(g(Y1)) when using {cXi}ni=1 as inputs.

4.3.2 Precipitations Example

Daily previsions on precipitations for many geographic locations from 24

experts are available from CRIM (2021) and the real data is from Muñoz-

Sabater (2019). Both previsions and real data are available from 1981 up

to early 2021, so we can train and test models during that period of time.

Moreover, daily previsions are available up to 2100 for almost all experts, so

we can predict precipitations in the future using NN trained on the 40 years

of previsions and precipitations we have. All experiments are done at the

same coordinates and the units are milliliters.

To continue exploring risk measures with TAGI, we show how that technique

performs in predicting quantiles. Since TAGI performs well when there is

few observations, we consider modeling on an annual basis. To compare

with models that contain more data, we also show models that are on a

monthly basis. Even though real data for early 2021 is available, we use

up to December 31st, 2020 data to calculate risk measures that are based

on complete years. We built models for the 50th, 60th, 70th, 80th, 90th, 95th

and 100th quantiles, as well as for the mean. Lower quantiles are not shown

since they consist in very low values (approaching zero, if not zero), which

is not a case of interest. For a given model, the input variables are the

80

quantile of each of the 24 experts and the output variable is the real data’s

quantile on the desired time span basis. In other words, for a given year

and for each expert, we have approximately 365 daily previsions, so we can

calculate the quantiles from those values for each expert. The same principle

applies for the monthly models, where instead of having approximately 365

daily precipitations, the quantiles are calculated over 30 values. We use the

same method to calculate the observed precipitations quantiles. For example,

the VaR100 annual model is fed by 40 observations which each contains the

maximum daily prevision over a year from each expert. That model predicts

the maximum daily precipitations in any given years.

As for the insurance example, we use a NN with one hidden layer of 50

neurons with ReLU activation function. There are 40 epochs and one split.

Testing is done on 20% of the observations, which are out-of-sample. For

different quantiles and for the mean, the mean-square errors (MSE) and its

bias-variance decomposition as well as the root-mean-square errors (RMSE)

for the testing set are as follows,

81

Annual Monthly

Bias2 V (Ŷ) MSE RMSE Bias2 V (Ŷ) MSE RMSE

VaR100 114.6 136.6 250.2 15.8 162.1 77.8 239.9 15.5

VaR95 5.6 0.5 6.1 2.5 48.3 28.7 77.0 8.8

VaR90 1.1 3.9 5.0 2.2 26.2 13.6 39.7 6.3

VaR80 0.8 0.1 0.9 1.0 10.6 4.5 15.0 3.9

VaR70 0.1 0.0 0.2 0.4 2.9 1.4 4.3 2.1

VaR60 0.0 0.0 0.1 0.2 0.9 0.5 1.4 1.2

VaR50 0.0 0.0 0.0 0.1 0.3 0.2 0.5 0.7

Mean 0.1 0.0 0.1 0.4 1.5 1.0 2.5 1.6

Table 4.1: Quantile Models’ Bias2, Variance, MSE and RMSE

The annual models achieve better accuracy than the monthly ones, except

when predicting the maximum. High V (Ŷ) can be an evidence of overfitting,

which seems to be the case for the annual model predicting the maximum.

High Bias2 can be an evidence of underfitting, which seems to be the case in

monthly models. Monthly risk measures are calculated on around 30 obser-

vations (which is 12 times less than with annual measures) so it is more likely

to diverge from the real quantity. Moreover, for both time spans, accuracy

improves as quantiles decrease, which is not surprising as extreme values

are generally more difficult to predict than values close to the mean. How-

ever, the annual models perform well for high quantiles, achieving low RMSE

levels, which are only met starting at the 70th quantiles for the monthly mod-

els.

82

Now, it is interesting to compare performance with a different method. Since

our focus is on risk measures, quantile regression is an appropriate method for

comparison purposes. Instead of estimating the mean of the response variable

(as for least-squares regression), it estimates its quantiles. It is commonly

used to predict the median, as an alternative to linear regression.

Previously, the xth quantile from each expert was used to predict the real

xth quantile. In quantile regression, the response variable’s quantiles are

predicted using a single set of input variables. Therefore, let the mean pre-

dictions from each expert be used as inputs to both methods to predict all

chosen quantiles. In other words, for a given year and for each expert, we

have approximately 365 daily previsions, so we can calculate the mean from

those values for each expert. The same principle applies for the monthly

models, where instead of having approximately 365 daily precipitations, the

mean is calculated over 30 values. For NN, there is a different model for each

of the quantiles to predict, but each is trained using the same mean predic-

tions. Both approaches are built on 80% of the data. RMSE is calculated on

the remaining 20% using the real observed quantiles calculated previously.

For the same quantiles shown in Table 4.1, the results for both methods are

as follows,

83

Annual Monthly

QR NN QR NN

VaR100 40.6 12.0 23.0 15.0

VaR95 13.1 2.4 12.4 8.5

VaR90 6.8 1.4 7.6 6.7

VaR80 1.6 0.8 3.5 4.0

VaR70 1.1 0.4 2.1 2.1

VaR60 2.2 0.2 2.3 1.2

VaR50 2.7 0.1 2.5 0.7

Table 4.2: RMSE under Quantile Regression (QR) and Neural Network (NN)

According to Table 4.2, for both annual and monthly time spans, NN models

generally perform better than quantile regression, particularly in predicting

extreme values. NN learns from each real response’s quantile whereas QR’s

estimates are only based from responses’ mean. However, the difference is

less pronounced at quantiles closer to the median.

Regarding NN only, as mentioned previously, the difference between exper-

iments in Table 4.1 and Table 4.2 is that the first one uses the xth quantile

from each expert as inputs whereas the second one uses the mean to predict

the real xth quantile. The same conclusions are drawn for the last experiment,

which are that annual models perform better than monthly ones (especially

for extreme values) and that accuracy improves as quantiles decrease. More-

over, RMSE at each quantile for both time span models are similar.

84

5 Conclusion

The initial purpose of this thesis was to explore techniques which predict

output risk distribution (not only mean response) and apply them to in-

surance premium pricing to improve risk assessment. Quantile regression

(QR) is a well-known method for doing so by predicting response’s quan-

tiles. More recently, several machine learning techniques are studied, devel-

oped and improved and some of them provide more information about the

predicted responses. Notably, methods from Gradient Boosting (GB) and

Neural Networks (NN) achieve that objective. Tractable Approximate Gaus-

sian Inference (TAGI) by Goulet et al. (2020) is extensively reviewed in this

thesis, as for all the model’s parameters, the predicted responses follow a

Normal distribution which, not only answers to the initial purpose of this

thesis, but also opens up opportunities for diverse areas of application.

Thus, it was interesting to compare general performance of TAGI to a GB

technique on an insurance dataset. Extreme Gradient Boosting (XGBoost)

by Chen and Guestrin (2016) was chosen for its ability to model large amounts

of data, efficiency and popularity of use. From Table 2.2, for similar parame-

ters, TAGI performs generally better than XGBoost, where results are more

comparable when tree booster is used rather then the linear one.

Furthermore, since all model’s parameters and states follow a Normal dis-

tribution and also because the outputs are functions of the inputs, partial

derivatives, which are commonly used in sensitivity analysis, can be esti-

mated using TAGI. Detailed explanations on the first and second derivatives

are provided in Section 3 as well as the formulas for the third one which are

85

developed and shown.

Moreover, risk measures study was not yet performed on TAGI and since

the outputs follow a Normal distribution, analyzing such measures on them

is possible. In a simple experiment, we demonstrate layer by layer how

modifying the inputs have an impact on the resulting distribution of the

response and hence, on the risk measures. We also use TAGI to build models

to predict quantiles of daily total precipitations on annual and monthly time

spans, from which we compare to QR’s performance. As shown in Table 4.2,

NN models generally performs better than QR, particularly when predicting

extreme values. However, the difference is less pronounced at quantiles closer

to the median.

Lastly, TAGI was initially developed in Matlab11 programming language.

We developed a comprehensive package in R. As the major contribution

from this thesis, the package "tagi"12 contains functions to perform TAGI

on any datasets and functions to compute the first and second derivatives.

Vignettes to guide the users through the package and a reference manual

are also provided. The other contributions are all the work around TAGI

discussed previously such as comparing TAGI’s general performance to XG-

Boost, developing the third partial derivative and studying risk measures on

TAGI which implies testing and comparing it at predicting quantiles.

11Available at https://github.com/CivML-PolyMtl/TAGI.
12Available at https://github.com/mgoulet847/tagi. Manual is included in Appendix D.

86

To conclude, further research can include:

1. Test TAGI models’ accuracy and performance at predicting extreme

values. With climate change, more natural disasters are expected,

which impacts the insurance industry.

2. Develop a premium pricing model using TAGI based on insurers’ real

(and comprehensive) data and then use backtesting to assess the qual-

ity of the model. It would be beneficial for the insurance industry

to explore different techniques than the traditional generalized linear

models (GLM) for example.

3. Develop and implement higher order partial derivatives. The complex-

ity and the number of calculations to perform, such as expectations

of products of variables and covariance terms, increase at each order

derivative, which also increases programming challenges and computa-

tion time substantially. Derivatives are used in sensitivity analysis but

also in engineering problems, where the first derivative corresponds to

speed, the second derivative to acceleration and the third derivative to

the rate at which acceleration changes.

87

References

A. Ahmadi-Javid. Entropic value-at-risk: A new coherent risk measure.

Journal of Optimization Theory and Applications, 155(3):1105–1123, 2012.

A. Ahmadi-Javid and M. Fallah-Tafti. Portfolio optimization with entropic

value-at-risk. European Journal of Operational Research, 279(1):225–241,

2019.

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of

risk. Mathematical finance, 9(3):203–228, 1999.

F. Bellini, B. Klar, A. Müller, and E. R. Gianin. Generalized quantiles as

risk measures. Insurance: Mathematics and Economics, 54:41–48, 2014.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncer-

tainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and

regression trees. CRC press, 1984.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785–794, 2016.

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho,

K. Chen, R. Mitchell, I. Cano, T. Zhou, M. Li, J. Xie, M. Lin,

Y. Geng, and Y. Li. xgboost: Extreme Gradient Boosting, 2020. URL

https://CRAN.R-project.org/package=xgboost. R package version

1.2.0.1.

88

H. Chernoff et al. A measure of asymptotic efficiency for tests of a hypothesis

based on the sum of observations. The Annals of Mathematical Statistics,

23(4):493–507, 1952.

CRIM. Daily total precipitation at (-73.6,45.5), 2021. Retrieved May 26,

2021, from https://climatedata.ca/.

N. Dhieb, H. Ghazzai, H. Besbes, and Y. Massoud. Extreme gradient boost-

ing machine learning algorithm for safe auto insurance operations. In

2019 IEEE International Conference on Vehicular Electronics and Safety

(ICVES), pages 1–5. IEEE, 2019.

A. Farzad, H. Mashayekhi, and H. Hassanpour. A comparative performance

analysis of different activation functions in lstm networks for classification.

Neural Computing and Applications, 31(7):2507–2521, 2019.

H. O. Firouzi and A. Luong. Optimal portfolio problem using entropic value

at risk: When the underlying distribution is non-elliptical. arXiv preprint

arXiv:1406.7040, 2014.

J. H. Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics, pages 1189–1232, 2001.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pages 249–256, 2010.

I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio.

Maxout networks. In International conference on machine learning, pages

1319–1327. PMLR, 2013.

89

J.-A. Goulet, L. H. Nguyen, and S. Amiri. Tractable approximate Gaussian

inference for bayesian neural networks. arXiv preprint arXiv:2004.09281,

2020.

L. Guelman. Gradient boosting trees for auto insurance loss cost modeling

and prediction. Expert Systems with Applications, 39(3):3659–3667, 2012.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

R. A. Johnson, D. W. Wichern, et al. Applied multivariate statistical analysis,

volume 5. Prentice hall Upper Saddle River, NJ, 2002.

L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun. Hands-

on bayesian neural networks–a tutorial for deep learning users. arXiv

preprint arXiv:2007.06823, 2020.

B. Lantz. Machine learning with R. Packt publishing ltd, 2013.

J. Muñoz-Sabater. Era5-land hourly data from 1981 to present, 2019. Coper-

nicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed

on 26-05-2021), 10.24381/cds.e2161bac.

W. K. Newey and J. L. Powell. Asymmetric least squares estimation and

testing. Econometrica: Journal of the Econometric Society, pages 819–

847, 1987.

C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation func-

tions: Comparison of trends in practice and research for deep learning.

arXiv preprint arXiv:1811.03378, 2018.

90

S. M. Pesenti, P. Millossovich, and A. Tsanakas. Cascade sensitivity mea-

sures. Available at SSRN 3270839, 2020.

J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,

1986.

H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of

linear dynamic systems. AIAA journal, 3(8):1445–1450, 1965.

L. Rdusseeun and P. Kaufman. Clustering by means of medoids, 1987.

S. Sharma and S. Sharma. Activation functions in neural networks. Towards

Data Science, 6(12):310–316, 2017.

J. Turian, J. Bergstra, and Y. Bengio. Quadratic features and deep archi-

tectures for chunking. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics, Companion Volume: Short Papers,

pages 245–248, 2009.

H. Zheng, Z. Yang, W. Liu, J. Liang, and Y. Li. Improving deep neural

networks using softplus units. In 2015 International Joint Conference on

Neural Networks (IJCNN), pages 1–4. IEEE, 2015.

91

Appendices

A First Derivative with Two Hidden Layers

Let E [V1V2V3V4V5V6], where V1 = W(2), V2 = σ′(z(2)), V3 = W(1), V4 =

σ′(z(1)), V5 = W(0) and V6 = σ′(z(0)). For implementation, we proceed by

layer, starting from the last hidden layer.

In layer 2, there are two expectations to compute, which are E
[
w

(2)
11 σ

′
(
z
(2)
1

)]
and E

[
w

(2)
12 σ

′
(
z
(2)
2

)]
. They can be calculated as follows,

E [V1V2] = E [V1]E [V2] +���
��

��:0
cov(V1, V2), (A.)

where V1 and V2 are independent because there is no dependence between a

given node and its weights.

In layer 1, there are six expectations to compute, which are

E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
11 σ

′
(
z
(1)
1

)]
, E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
12 σ

′
(
z
(1)
2

)]
,

E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
13 σ

′
(
z
(1)
3

)]
, E
[
w

(2)
12 σ

′
(
z
(2)
2

)
w

(1)
21 σ

′
(
z
(1)
1

)]
,

E
[
w

(2)
11 σ

′
(
z
(2)
2

)
w

(1)
22 σ

′
(
z
(1)
2

)]
and E

[
w

(2)
11 σ

′
(
z
(2)
2

)
w

(1)
23 σ

′
(
z
(1)
3

)]
.

They can be calculated as follows,

92

E [V1V2V3V4] = E [V1V2]E [V3V4] + cov(V1V2, V3V4)

=

(
E [V1]E [V2] +���

��
��:0

cov(V1, V2)

)
×
(
E [V3]E [V4] +���

��
��:0

cov(V3, V4)

)
+ cov(V1V2, V3V4)

= E [V1]E [V2]E [V3]E [V4] + cov(V1V2, V3V4).

(A.)

Using (.) in (.) to rewrite cov(V1V2, V3V4) as follows,

cov(V1V2, V3V4) = cov(V1, V3)cov(V2, V4) + cov(V1, V4)cov(V2, V3)

+ cov(V1, V3)µ2µ4 + cov(V1, V4)µ2µ3

+ cov(V2, V3)µ1µ4 + cov(V2, V4)µ1µ3

= cov(V1, V3)cov(V2, V4) + cov(V1, V4)cov(V2, V3)

+ µ2 (cov(V1, V3)µ4 + cov(V1, V4)µ3)

+ µ1 (cov(V2, V3)µ4 + cov(V2, V4)µ3)

= cov(V1, V3)cov(V2, V4) + cov(V1, V4)cov(V2, V3)

+ µ2cov(V1, V3V4) + µ1cov(V2, V3V4).

(A.)

Applying (A.) to E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
11 σ

′
(
z
(1)
1

)]
to demonstrate cov(V1V2, V3V4)

in (A.),

93

cov(V1V2, V3V4) =
���

���
���:

0
cov
(
w

(2)
11 , w

(1)
11)
)
cov
(
σ′(z

(2)
1), σ′(z

(1)
1))

)
+
���

��
���

���:
0

cov
(
w

(2)
11 , σ

′(z
(1)
1))

)
cov
(
σ′(z

(2)
1), w

(1)
11)
)

+ E
[
w

(2)
11

]
cov
(
σ′(z

(2)
1), w

(1)
11 σ

′(z
(1)
1)
)

+ E
[
σ′(z

(2)
1)
]
���

���
��

���
��:0

cov
(
w

(2)
11 , w

(1)
11 σ

′(z
(1)
1)
)

= E
[
w

(2)
11

]
cov(d+1 , w

(1)
11 d1).

Now, covariance calculation between derivatives depends on the activation

function that is used. Formulas for sigmoid, tanh and ReLU functions are de-

tailed in Appendix C. For generalization purposes, covariance can be rewrit-

ten as follows,

cov(V1V2, V3V4) = E
[
W+

]
cov(d+,Wd). (A.)

Then, remains the calculations in the input layer to get
∂g

∂z
(0)
1

from (.).

E [V1V2V3V4V5V6] = E [V1V2V3V4]E [V5V6] + cov(V1V2V3V4, V5V6)

= E [V1V2V3V4]E [V5V6]

+ E [V1V2] cov(V3V4, V5V6)

+ E [V3V4]
���

���
���:0

cov(V1V2, V5V6)

= E [V1V2V3V4]E [V5V6]

+ E [V1V2] cov(V3V4, V5V6),

(A.)

94

where E [V5V6] and cov(V3V4, V5V6) can be calculated using (A.) and (A.)

respectively. Note that V1V2 (from layer 2) and V5V6 (from layer 0) are

independent because of the inherent conditional independence of hidden units

between layers Z(j−1) ⊥⊥ Z(j+1)|z(j).

95

B Second Derivative with Two Hidden Layers

As for the first derivative of g, expectations of products terms must be com-

puted. With two hidden layers, there are three possible types of sequence

of product terms, one from
∂2g

(∂z(2))2

(
∂z(2)

∂z
(0)
1

)2

and two from
∂g

∂z(2)
∂2z(2)

(∂z
(0)
1)2

,

which are shown in Table B.1.

Layer 2 Layer 1 Layer 0

1 2 × 2nd order 4 × 1st order 4 × 1st order

2 2 × 1st order 2 × 2nd order 4 × 1st order

3 2 × 1st order 2 × 1st order 2 × 2nd order

Table B.1: Sequence Types of Product Terms

B.1 Sequence Type 1

We first start with
∂2g

(∂z(2))2

(
∂z(2)

∂z
(0)
1

)2

from (.) which is equal to

w
(2)
11 σ

′′(z
(2)
1){

w
(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1) + w

(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}2

+ w
(2)
12 σ

′′(z
(2)
2){

w
(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′(z
(0)
1) + w

(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′(z
(0)
1) + w

(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′(z
(0)
1)
}2

.

Implementation is, as for the first derivative, done by layer from the last

hidden layer to the input layer.

96

In layer 2, there are two expectations to compute which are E
[
w

(2)
11 σ

′′
(
z
(2)
1

)]
and E

[
w

(2)
12 σ

′′
(
z
(2)
2

)]
. They can be calculated using (A.).

In layer 1, developing

(
∂z

(2)
1

∂z
(0)
1

)2

results in multiplying w(2)
11 σ

′′(z
(2)
1) to

[
w

(1)
11 σ

′(z
(1)
1)
]2 [

w
(0)
11 σ

′(z
(0)
1)
]2

+ 2w
(1)
11 σ

′(z
(1)
1)w

(1)
12 σ

′(z
(1)
2)w

(0)
11 w

(0)
21 σ

′(z
(0)
1)2

+ 2w
(1)
11 σ

′(z
(1)
1)w

(1)
13 σ

′(z
(1)
3)w

(0)
11 w

(0)
31 σ

′(z
(0)
1)2 +

[
w

(1)
12 σ

′(z
(1)
2)
]2 [

w
(0)
21 σ

′(z
(0)
1)
]2

+ 2w
(1)
12 σ

′(z
(1)
2)w

(1)
13 σ

′(z
(1)
3)w

(0)
21 w

(0)
31 σ

′(z
(0)
1)2 +

[
w

(1)
13 σ

′(z
(1)
3)
]2 [

w
(0)
31 σ

′(z
(0)
1)
]2
,

(B.)

and developing

(
∂z

(2)
2

∂z
(0)
1

)2

results in multiplying w(2)
12 σ

′′(z
(2)
2) to

[
w

(1)
21 σ

′(z
(1)
1)
]2 [

w
(0)
11 σ

′(z
(0)
1)
]2

+ 2w
(1)
21 σ

′(z
(1)
1)w

(1)
22 σ

′(z
(1)
2)w

(0)
11 w

(0)
21 σ

′(z
(0)
1)2

+ 2w
(1)
21 σ

′(z
(1)
1)w

(1)
23 σ

′(z
(1)
3)w

(0)
11 w

(0)
31 σ

′(z
(0)
1)2 +

[
w

(1)
22 σ

′(z
(1)
2)
]2 [

w
(0)
21 σ

′(z
(0)
1)
]2

+ 2w
(1)
22 σ

′(z
(1)
2)w

(1)
23 σ

′(z
(1)
3)w

(0)
21 w

(0)
31 σ

′(z
(0)
1)2 +

[
w

(1)
23 σ

′(z
(1)
3)
]2 [

w
(0)
31 σ

′(z
(0)
1)
]2
.

(B.)

Note that the layer 1 weights that are multiplied together point to the same

node in layer 2. For example, w(1)
11 and w

(1)
21 , which point to z

(2)
1 and z

(2)
2

respectively, are never multiplied. Expectations of product terms to compute

in layer 1 are shown in Table B.2.

97

Related to w(2)
11 σ

′′
(
z
(2)
1

)
Related to w(2)

12 σ
′′
(
z
(2)
1

)
E
[
w

(2)
11 σ

′′
(
z
(2)
1

) [
w

(1)
11 σ

′(z
(1)
1)
]2]

E
[
w

(2)
12 σ

′′
(
z
(2)
2

) [
w

(1)
21 σ

′(z
(1)
1)
]2]

E
[
w

(2)
11 σ

′′
(
z
(2)
1

)
w

(1)
11 σ

′(z
(1)
1)w

(1)
12 σ

′(z
(1)
2)
]

E
[
w

(2)
12 σ

′′
(
z
(2)
2

)
w

(1)
21 σ

′(z
(1)
1)w

(1)
22 σ

′(z
(1)
2)
]

E
[
w

(2)
11 σ

′′
(
z
(2)
1

)
w

(1)
11 σ

′(z
(1)
1)w

(1)
13 σ

′(z
(1)
3)
]

E
[
w

(2)
12 σ

′′
(
z
(2)
2

)
w

(1)
21 σ

′(z
(1)
1)w

(1)
23 σ

′(z
(1)
3)
]

E
[
w

(2)
11 σ

′′
(
z
(2)
1

) [
w

(1)
12 σ

′(z
(1)
2)
]2]

E
[
w

(2)
12 σ

′′
(
z
(2)
2

) [
w

(1)
22 σ

′(z
(1)
2)
]2]

E
[
w

(2)
11 σ

′′
(
z
(2)
1

)
w

(1)
12 σ

′(z
(1)
2)w

(1)
13 σ

′(z
(1)
3)
]

E
[
w

(2)
12 σ

′′
(
z
(2)
2

)
w

(1)
22 σ

′(z
(1)
2)w

(1)
23 σ

′(z
(1)
3)
]

E
[
w

(2)
11 σ

′′
(
z
(2)
1

) [
w

(1)
23 σ

′(z
(1)
3)
]2]

E
[
w

(2)
12 σ

′′
(
z
(2)
2

) [
w

(1)
23 σ

′(z
(1)
3)
]2]

Table B.2: Sequence Type 1 at Layer 1

Let V3V4V5V6 be the four first order derivative terms from layer 1. Then,

(A.) can be rewritten for the expectation of the product of layers 2 and 1

terms as follows,

E [V1V2V3V4V5V6] = E [V1V2]E [V3V4V5V6] + cov(V1V2, V3V4V5V6)

= E [V1V2]E [V3V4V5V6] + E [V3V4] cov(V1V2, V5V6)

+ E [V5V6] cov(V1V2, V3V4).

(A.) can be used to calculate E [V3V4V5V6]. However, cov(V3V4, V5V6) is

not like in (A.) since now, the covariance is between terms from the same

layer. There exists a theoretical covariance between nodes from the same

layer, but it becomes negligible as the number of nodes increases, so it is not

considered in TAGI. Since a hidden layer usually contains many neurons,

98

we assume that covariance is null for simplicity. Therefore, if V3V4 6= V5V6,

cov(V3V4, V5V6) = 0, but if V3V4 = V5V6,

cov(V3V4, V5V6) = V(V3V4)

= σ2
3σ

2
4 +���

���
�:0

cov(V3, V4)
2 + 2���

���
�:0

cov(V3, V4)E [V3]E [V4]

+ σ2
3E [V4]

2 + σ2
4E [V3]

2

= σ2
Wσ

2
d + σ2

WE [Vd]
2 + σ2

dE [VW]2 ,

(B.)

from (.). Note that expectation and variance for weights are already pro-

vided from the TAGI model and those for the derivatives are found in Ap-

pendix C since they depend on the activation function used.

It remains to calculate cov(V1V2, V3V4) and cov(V1V2, V5V6). For those, (A.)

is modified such that

cov(V1V2, V3V4) = E
[
W+

]
cov(dd+,Wd), (B.)

since the term from next layer is a second order derivative instead of first.

Formulas for sigmoid, tanh and ReLU functions are detailed in Appendix

C.

Now, the last calculations for the sequence type are done in layer 0. Four

terms from layer 0 are to be multiplied within the expectations shown in

Table B.2. For the exact combinations, refer to (B.) and (B.).

Let V7V8V9V10 be the four first order derivative terms from layer 0. Then,

the expectation of the product of layers 2, 1 and 0 terms is as follows,

99

E [V1V2V3V4V5V6V7V8V9V10] = E [V1V2V3V4V5V6]E [V7V8V9V10]

+ cov(V1V2V3V4V5V6, V7V8V9V10)

= E [V1V2V3V4V5V6]E [V7V8V9V10]

+ E [V1V2] cov(V3V4V5V6, V7V8V9V10)

+ E [V3V4V5V6]
��

���
���

���
�:0

cov(V1V2, V7V8V9V10)

= E [V1V2V3V4V5V6]E [V7V8V9V10]

+ E [V1V2] cov(V3V4V5V6, V7V8V9V10).

(B.)

Note that, as in (A.), V1V2 (from layer 2) and V7V8V9V10 (from layer 0)

are independent because of the inherent conditional independence of hidden

units between layers Z(j−1) ⊥⊥ Z(j+1)|z(j). (A.) can be used to calculate

E [V7V8V9V10]. However, cov(V7V8, V9V10) is not like in (A.) since now, the

covariance is between terms from the same layer and V8 = V10. Therefore, if

V7 = V9 (i.e. V7V8 = V9V10), (B.) can be used, but if V7 6= V9,

cov(V7V8, V9V10) = cov(V7V8, V9V8)

=���
��

��:0
cov(V7, V9)cov(V8, V8) +���

��
��:0

cov(V7, V8)���
��

��:0
cov(V8, V9)

+ E [V7] cov(V8, V9V8) + E [V8]���
���

��:0
cov(V7, V9V8)

= E [V7]

(
E [V9] cov(V8, V8) + E [V8]���

��
��:0

cov(V8, V9)

)
= E [V7]E [V9]V(V8)

= E [VW7]E [VW9]V(Vd),

100

using (A.). It only remains to calculate cov(V3V4V5V6, V7V8V9V10). Using

(A.),

cov(V3V4V5V6, V7V8V9V10)

= cov(V3V4, V7V8)cov(V5V6, V9V10) + cov(V3V4, V9V10)cov(V5V6, V7V8)

+ E [V3V4] cov(V5V6, V7V8V9V10) + E [V5V6] cov(V3V4, V7V8V9V10)

= cov(V3V4, V7V8)cov(V5V6, V9V10) + cov(V3V4, V9V10)cov(V5V6, V7V8)

+ E [V3V4] (E [V7V8] cov(V5V6, V9V10) + E [V9V10] cov(V5V6, V7V8))

+ E [V5V6] (E [V7V8] cov(V3V4, V9V10) + E [V9V10] cov(V3V4, V7V8)) ,

(B.)

where cov(V3V4, V7V8), cov(V5V6, V9V10), cov(V3V4, V9V10) and

cov(V5V6, V7V8) can be calculated using (A.). From the possible combina-

tions of products of terms from layers 1 and 0, there are only two possible

types:

1. V7V8 is only connected to V3V4 and V9V10 to V5V6 (i.e. same layer 0

node, but are not connected to the same layer 1 node)

2. V3V4 = V5V6 and V7V8 = V9V10, where V7V8 is connected to V3V4

In both cases, the node from layer 0 is always the same such that V8 =

V10.

For Case 1, if the two terms from layer 1 and the two from layer 0 are

not connected in Figure 3.1 (i.e. if the weight from layer 0 does not point

toward the layer 1 node), their covariance is equal to 0. Taking for ex-

ample E
[
w

(1)
11 σ

′(z
(1)
1)w

(1)
12 σ

′(z
(1)
2)w

(0)
11 w

(0)
21 σ

′(z
(0)
1)2

]
and evaluating the required

covariance cov(w
(1)
11 σ

′(z
(1)
1)w

(1)
12 σ

′(z
(1)
2), w

(0)
11 w

(0)
21 σ

′(z
(0)
1)2) using (B.),

101

cov(w
(1)
11 σ

′(z
(1)
1)w

(1)
12 σ

′(z
(1)
2), w

(0)
11 w

(0)
21 σ

′(z
(0)
1)2)

= cov(w
(1)
11 σ

′(z
(1)
1), w

(0)
11 σ

′(z
(0)
1))cov(w

(1)
12 σ

′(z
(1)
2), w

(0)
21 σ

′(z
(0)
1))

+
��

���
��

���
���

���:
0

cov((w
(1)
11 σ

′(z
(1)
1), w

(0)
21 σ

′(z
(0)
1))
��

���
���

���
���

��:0

cov(w
(1)
12 σ

′(z
(1)
2), w

(0)
11 σ

′(z
(0)
1))

+ E
[
w

(1)
11 σ

′(z
(1)
1)
]
E
[
w

(0)
11 σ

′(z
(0)
1)
]
cov(w

(1)
12 σ

′(z
(1)
2), w

(0)
21 σ

′(z
(0)
1))

+ E
[
w

(1)
11 σ

′(z
(1)
1)
]
E
[
w

(0)
21 σ

′(z
(0)
1)
]
���

���
���

���
���

�:0

cov(w
(1)
12 σ

′(z
(1)
2), w

(0)
11 σ

′(z
(0)
1))

+ E
[
w

(1)
12 σ

′(z
(1)
2)
]
E
[
w

(0)
11 σ

′(z
(0)
1)
]
���

���
���

���
���

�:0

cov(w
(1)
11 σ

′(z
(1)
1), w

(0)
21 σ

′(z
(0)
1))

+ E
[
w

(1)
12 σ

′(z
(1)
2)
]
E
[
w

(0)
21 σ

′(z
(0)
1)
]
cov(w

(1)
11 σ

′(z
(1)
1), w

(0)
11 σ

′(z
(0)
1))

= cov(w
(1)
11 σ

′(z
(1)
1), w

(0)
11 σ

′(z
(0)
1))cov(w

(1)
12 σ

′(z
(1)
2), w

(0)
21 σ

′(z
(0)
1))

+ E
[
w

(1)
11 σ

′(z
(1)
1)
]
E
[
w

(0)
11 σ

′(z
(0)
1)
]
cov(w

(1)
12 σ

′(z
(1)
2), w

(0)
21 σ

′(z
(0)
1))

+ E
[
w

(1)
12 σ

′(z
(1)
2)
]
E
[
w

(0)
21 σ

′(z
(0)
1)
]
cov(w

(1)
11 σ

′(z
(1)
1), w

(0)
11 σ

′(z
(0)
1)).

In Case 1, (B.) simplifies to

cov(V3V4V5V6, V7V8V9V10) = cov(V3V4, V7V8)cov(V5V6, V9V10)

+ E [V3V4]E [V7V8] cov(V5V6, V9V10)

+ E [V5V6]E [V9V10] cov(V3V4, V7V8),

since cov(V3V4, V9V10) = cov(V5V6, V7V8) = 0.

In Case 2, V3V4 = V5V6 and V7V8 = V9V10. Also, V7V8 is connected to V3V4

so cov(V3V4, V7V8) 6= 0. (B.) simplifies to

102

cov(V3V4V5V6, V7V8V9V10) = cov((V3V4)
2, (V7V8)

2)

= 2cov(V3V4, V7V8)
2

+ 4E [V3V4]E [V7V8] cov(V3V4, V7V8).

B.2 Sequence Type 2

The second sequence type is the first sum in
∂g

∂z(2)
∂2z(2)

(∂z
(0)
1)2

, which is, from

(.), equal to

w
(2)
11 σ

′(z
(2)
1)

{
w

(1)
11 σ

′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]2

+ w
(1)
12 σ

′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]2

+w
(1)
13 σ

′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]2}

+ w
(2)
12 σ

′(z
(2)
2)

{
w

(1)
21 σ

′′(z
(1)
1)
[
w

(0)
11 σ

′(z
(0)
1)
]2

+w
(1)
22 σ

′′(z
(1)
2)
[
w

(0)
21 σ

′(z
(0)
1)
]2

+ w
(1)
23 σ

′′(z
(1)
3)
[
w

(0)
31 σ

′(z
(0)
1)
]2}

.

In layer 2, the same expectations as in the first derivative process (refer

to Section 3.1), E
[
w

(2)
11 σ

′
(
z
(2)
1

)]
and E

[
w

(2)
12 σ

′
(
z
(2)
2

)]
, are to be calculated

using (A.).

In layer 1, there are six expectations to compute from which the only dif-

ference with the first derivative process is that the products of layer 1 are

now of second order derivative (instead of first). Expectations to calcu-

late are now E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
11 σ

′′
(
z
(1)
1

)]
, E

[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
12 σ

′′
(
z
(1)
2

)]
,

E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
13 σ

′′
(
z
(1)
3

)]
, E
[
w

(2)
12 σ

′
(
z
(2)
2

)
w

(1)
21 σ

′′
(
z
(1)
1

)]
,

E
[
w

(2)
11 σ

′
(
z
(2)
2

)
w

(1)
22 σ

′′
(
z
(1)
2

)]
and E

[
w

(2)
11 σ

′
(
z
(2)
2

)
w

(1)
23 σ

′′
(
z
(1)
3

)]
. They can,

as in the first derivative process, be calculated using (A.), but to calculate

cov(V1V2, V3V4), (A.) is modified as follows,

103

cov(V1V2, V3V4) = E
[
W+

]
cov(d+,Wdd), (B.)

since the term from layer 1 is a second order derivative instead of first.

Formulas for sigmoid, tanh and ReLU functions are detailed in Appendix

C.

Now at layer 0, let V5V6V7V8 be the four order derivative terms from that

layer. Similar to (B.),

E [V1V2V3V4V5V6V7V8] = E [V1V2V3V4]E [V5V6V7V8]

+ cov(V1V2V3V4, V5V6V7V8).

From the possible combinations of products of terms from layers 0 and 1,

there is only one possible type:

1. V5V6 = V7V8, where V5V6 is connected to V3V4

From (A.) and (B.), E [V5V6V7V8] is as follows,

E [V5V6V7V8] = E
[
(V5V6)

2]
= E [V5]

2 E [V6]
2 + Var(V5)Var(V6)

+ Var(V5)E [V6]
2 + Var(V6)E [V5]

2 .

Also, similar to (B.) and using (A.),

104

cov(V1V2V3V4, V5V6V7V8)

=
���

���
���:0

cov(V1V2, V5V6)cov(V3V4, V7V8) +
��

���
���

�:0
cov(V1V2, V7V8)cov(V3V4, V5V6)

+ E [V1V2] cov(V3V4, V5V6V7V8) + E [V3V4]
��

���
���

���:
0

cov(V1V2, V5V6V7V8)

= E [V1V2] (E [V5V6] cov(V3V4, V7V8) + E [V7V8] cov(V3V4, V5V6))

= 2E [V1V2]E [V5V6] cov(V3V4, V5V6).

Note that, as in (A.) and (B.), V1V2 (from layer 2) is independent of V5V6

and V7V8 (from layer 0) because of the inherent conditional independence

of hidden units between layers Z(j−1) ⊥⊥ Z(j+1)|z(j). (A.) can be used

to calculate E [V7V8V9V10]. cov(V3V4, V5V6) can be directly calculated using

(B.).

B.3 Sequence Type 3

The last sequence type is the second sum in
∂g

∂z(2)
∂2z(2)

(∂z
(0)
1)2

which is, from

(.), equal to

w
(2)
11 σ

′(z
(2)
1){

w
(1)
11 σ

′(z
(1)
1)w

(0)
11 σ

′′(z
(0)
1) + w

(1)
12 σ

′(z
(1)
2)w

(0)
21 σ

′′(z
(0)
1) + w

(1)
13 σ

′(z
(1)
3)w

(0)
31 σ

′′(z
(0)
1)
}

+ w
(2)
12 σ

′(z
(2)
2){

w
(1)
21 σ

′(z
(1)
1)w

(0)
11 σ

′′(z
(0)
1) + w

(1)
22 σ

′(z
(1)
2)w

(0)
21 σ

′′(z
(0)
1) + w

(1)
23 σ

′(z
(1)
3)w

(0)
31 σ

′′(z
(0)
1)
}
.

For both layers 2 and 1, the same process as for the first derivative (refer

to Section 3.1) is to be applied since the terms to multiply are the same for

105

those layers. The difference in process only comes at layer 0. Therefore,

starting with layer 2, the same expectations as in the first derivative process,

E
[
w

(2)
11 σ

′
(
z
(2)
1

)]
and E

[
w

(2)
12 σ

′
(
z
(2)
2

)]
, are to be calculated using (A.). In

layer 1, the six same expectations, which are E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
11 σ

′
(
z
(1)
1

)]
,

E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
12 σ

′
(
z
(1)
2

)]
, E
[
w

(2)
11 σ

′
(
z
(2)
1

)
w

(1)
13 σ

′
(
z
(1)
3

)]
,

E
[
w

(2)
12 σ

′
(
z
(2)
2

)
w

(1)
21 σ

′
(
z
(1)
1

)]
, E
[
w

(2)
11 σ

′
(
z
(2)
2

)
w

(1)
22 σ

′
(
z
(1)
2

)]
and

E
[
w

(2)
11 σ

′
(
z
(2)
2

)
w

(1)
23 σ

′
(
z
(1)
3

)]
, are to be calculated using (A.) and

cov(V1V2, V3V4) using (A.).

Now, at layer 0, E [V1V2V3V4V5V6] can be computed using (A.), but cov(V3V4, V5V6)

is calculated using (B.).

106

C Activation’s Derivative a(z)13

µa = a(µz)

Σa = JaΣzJ
ᵀ
a

Ja(µz) = µa [1− µa]

C.1 Sigmoid(z)

a =
1

1 + exp(−z)

C.1.1 First Derivative

d = a(z) [1− a(z)]

µd = µa (1− µa)− Σa

Σd = Σa [2Σa + 4µ2
a − 4µa + 1]

cov(d+,Wd) = cov(d+,W)µd + cov(d+,d)µW

cov(d+,W) = [1− 2µa+] cov(a+,W)

cov(a+,W) = Ja+cov(W,W)µa

cov(d+,d) = cov(a+, a)− 2cov(a+, a)µa − 2cov(a+, a)µa+

+ 2cov(a+, a)2 + 4cov(a+, a)µa+µa

cov(a+, a) = Ja+cov(a, a)µW

13In collaboration with J.-A. Goulet and L. H. Nguyen.

107

cov(d+, z) = [1− 2µa+] cov(a+, z)

cov(a+, z) = Ja+Jacov(z, z)µW

cov(d, z) = [1− 2µa] cov(a, z)

cov(a, z) = Jacov(z, z)

The covariance between d+ and d is detailed following

cov(d+,d) = cov(a+(1− a+), a(1− a))

= cov(a+ − (a+)2, a− a2)

= cov(a+, a)− cov(a+, a2)− cov((a+)2, a) + cov((a+)2, a2)

= cov(a+, a)− 2cov(a+, a)µa − 2cov(a+, a)µa+

+ 2cov(a+, a)2 + 4cov(a+, a)µa+µa,

where

cov((a+)2, a2) = cov(a+a+, aa) see Equation 5 in Goulet et al. (2020)

= 2cov(a+, a)2 + 4cov(a+, a)µa+µa

cov(a+, a2) = 2cov(a+, a)µa see Equation 4 in Goulet et al. (2020)

cov((a+)2, a) = 2cov(a+, a)µa+

108

C.1.2 Second Derivative

dd = a(z) [1− a(z)] [1− 2a(z)]

cov(d, 1− 2a(z)) = 4Σaµa − 2Σa

µdd = µd(1− 2µa) + cov(d, 1− 2a(z))

Σdd = 4ΣdΣa + cov(d, 1− 2a(z))2

+ 2cov(d, 1− 2a(z))µd(1− 2µa) + Σd(1− 2µa)
2

+ 4Σaµ
2
d

cov(dd+, (Wd)2) = 2cov(dd+,Wd)µWd

cov(dd+,Wd) = cov(dd+,W)µd + cov(dd+,d)µW

cov(dd+,W) = cov(d+,W)− 2cov(d+,W)µa+ − 2cov(a+,W)µd+

cov(dd+,d) = cov(d+(1− 2a+),d)

= cov(d+,d)− 2cov(d+,d)µa+ − 2cov(a+,d)µd+

cov(a+,d) = cov(a+, a) [1− 2µa]

cov(d+,Wdd) = cov(d+,W)µdd + cov(d+,dd)µW

cov(d+,dd) = cov(d+,d)− 2cov(d+,d)µa − 2cov(d+, a)µd

cov(d+, a) = cov(a+, a) [1− 2µa+]

C.2 Tanh(z)

a = tanh(z)

109

C.2.1 First Derivative

d = 1− a(z)2

µd = 1− µ2
a − Σa

Σd = 2Σa (Σa + 2µ2
a)

cov(d+,Wd) = cov(d+,W)µd + cov(d+,d)µW

cov(d+,W) = −2µa+cov(a+,W)

cov(a+,W) = Ja+cov(W,W)µa

cov(d+,d) = 2cov(a+, a)2 + 4cov(a+, a)µa+µa

cov(a+, a) = Ja+cov(a, a)µW

cov(d+, z) = −2µa+cov(a+, z)

cov(a+, z) = Ja+Jacov(z, z)µW

cov(d, z) = −2µacov(a, z)

cov(a, z) = Jacov(z, z)

The covariance between d+ and d is detailed following

cov(d+,d) = cov(1− (a+)2, 1− (a)2)

= cov((a+)2, (a)2)

= cov(a+a+, aa)

= 2cov(a+, a)2 + 4cov(a+, a)µa+µa

110

C.2.2 Second Derivative

dd = −2a(z) [1− a(z)2]

cov(d,−2a(z)) = 4Σaµa

µdd = −2µdµa + 4Σaµa

Σdd = 4ΣdΣa + cov(d,−2a(z))2 − 4cov(d,−2a(z))µdµa

+ 4Σdµ
2
a + 4Σaµ

2
d

cov(dd+, (Wd)2) = 2cov(dd+,Wd)µWd

cov(dd+,Wd) = cov(dd+,W)µd + cov(dd+,d)µW

cov(dd+,W) = −2cov(a+,W)µd+ − 2cov(d+,W)µa+

cov(dd+,d) = −2cov(a+,d)µd+ − 2cov(d+,d)µa+

cov(a+,d) = −2cov(a+, a)µa

cov(d+,Wdd) = cov(d+,W)µdd + cov(d+,dd)µW

cov(d+,dd) = −2cov(d+, a)µd − 2cov(d+,d)µa

cov(d+, a) = −2cov(a+, a)µa+

C.3 ReLU(z)

a =

 z if z > 0

0 if z ≤ 0

111

C.3.1 First Derivative

d =

 1 if z > 0

0 if z ≤ 0

112

D Package Manual

113

Package ‘tagi’
July 23, 2021

Title Tractable Approximate Gaussian Inference in Neural Networks

Version 0.0.0.9000

Author Magali-Chen Goulet [aut, cre],
Mélina Mailhot [aut],
James-Alexandre Goulet [aut],
Luong-Ha Nguyen [aut]

Maintainer Magali-Chen Goulet <mag_goul@live.concordia.ca>

Description In this package, we implement the Tractable Approximate Gaussian Inference (TAGI)
is a method developped by Goulet et al. (2020),
used in Bayesian neural networks.

License GPL (>= 3)

URL https://github.com/mgoulet847/tagi

BugReports https://github.com/mgoulet847/tagi

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Suggests knitr,
rmarkdown,
mvtnorm,
randtoolbox,
xgboost

VignetteBuilder knitr

Imports matlab,
stats

Depends R (>= 2.10)

R topics documented:
activationFunIndex . 3
backwardHiddenStateUpdate . 4
backwardParameterUpdate . 5
batchDerivative . 6
BH . 7

1

2 R topics documented:

buildCzp . 8
buildCzz . 8
catParameters . 9
compressParameters . 9
compressStates . 10
computeError . 10
covariance . 11
covarianceCzp . 11
covarianceCzz . 12
covarianceSa . 13
covarianceSz . 13
covdx . 14
createDevCellarray . 14
createInitCellwithArray . 15
createStateCellarray . 15
denormalize . 16
derivative . 16
extractParameters . 17
extractStates . 17
fcCombinaisonDnode . 18
fcCombinaisonDweight . 19
fcCombinaisonDweightNode . 19
fcCombinaisonDweightNodeAll . 20
fcCovaddddddw . 21
fcCovawaa . 21
fcCovaz . 22
fcCovdaddd . 23
fcCovDlayer . 23
fcCovdwd . 24
fcCovdwddd . 25
fcCovdz . 25
fcCovwdo2wdiwdi . 26
fcCovwdowdi2 . 27
fcCovwdowdiwdi . 27
fcCwdowdowdiwdi . 28
fcCwdowdowdiwdi_4hl . 28
fcCwdowdowwdi2 . 29
fcCwdowdowwdi2_3hl . 30
fcDerivative . 30
fcDerivative2 . 32
fcDerivative3 . 33
fcDerivative4 . 35
fcDerivative5 . 36
fcHiddenStateBackwardPass . 37
fcHiddenStateBackwardPassB1 . 38
fcMeanDlayer2array . 39
fcMeanDlayer2row . 39
fcMeanVar . 40
fcMeanVarB1 . 41
fcMeanVarDlayer . 41
fcMeanVarDnode . 42
fcParameterBackwardPass . 43

activationFunIndex 3

fcParameterBackwardPassB1 . 44
feedBackward . 45
feedForward . 45
feedForwardPass . 46
forwardHiddenStateUpdate . 47
globalParameterUpdate . 47
hiddenStateBackwardPass . 48
initialization . 49
initialization_net . 49
initializeInputs . 50
initializeStates . 50
initializeWeightBias . 51
initializeWeightBiasD . 51
innovationVector . 52
layerEncoder . 52
loglik . 53
meanA . 53
meanMz . 54
meanVar . 54
meanVarDev . 55
MedicalCost . 55
network . 56
normalize . 57
parameterBackwardPass . 57
parameters . 58
regression . 59
runBatchDerivative . 59
split . 60
ToyExample.x_obs . 61
ToyExample.x_val . 61
ToyExample.y_obs . 62
ToyExample.y_val . 62

Index 64

activationFunIndex Assign ID to activation functions

Description

This function assigns an ID number depending on the type of activation function.

Usage

activationFunIndex(funName)

Arguments

funName Type of activation function: "tanh", "sigm", "cdf", "relu" or "softplus"

4 backwardHiddenStateUpdate

Value

An ID number which corresponds to:

• 1 if funName is "tanh"

• 2 if funName is "sigm"

• 3 if funName is "cdf"

• 4 if funName is "relu"

• 5 if funName is "softplus"

backwardHiddenStateUpdate

Backward hidden states update

Description

This function updates hidden units from responses to input data. It updates µZ|y and ΣZ|y from the
Z|y distribution for a given layer.

Usage

backwardHiddenStateUpdate(mz, Sz, mzF, SzF, SzB, Czz, mzB, idx)

Arguments

mz Mean vector of units for the current layer µZ
Sz Covariance matrix of units for the current layer ΣZ

mzF Mean vector of units for the next layer µZ+

SzF Covariance matrix of units for the next layer ΣZ+

SzB Covariance matrix of units for the next layer given y ΣZ+|y
Czz Covariance matrix between units of previous and current layers ΣZZ+

mzB Mean vector of units for the next layer given y µZ+|y
idx Indices for the hidden state update step of the current layer

Details

f(z|y) = N (z;µZ|y,ΣZ|y) where

µZ|y = µZ + JZ(µZ+|y − µZ+)

ΣZ|y = ΣZ + JZ(ΣZ+|y −ΣZ+)JTZ

JZ = ΣZZ+Σ−1

Z+

Value

• Mean vector of units for the current layer given y µZ|y

• Covariance matrix of units for the current layer given y ΣZ|y

backwardParameterUpdate 5

backwardParameterUpdate

Backward parameters update

Description

This function updates parameters from responses to input data. It updates µθ|y and Σθ|y from the
θ|y distribution for a given layer.

Usage

backwardParameterUpdate(mp, Sp, mzF, SzF, SzB, Czp, mzB, idx)

Arguments

mp Mean vector of parameters for the current layer µθ

Sp Covariance matrix of parameters for the current layer Σθ

mzF Mean vector of units for the next layer µZ+

SzF Covariance matrix of units for the next layer ΣZ+

SzB Covariance matrix of units for the next layer given y ΣZ+|y

Czp Covariance matrix between units and parameters for the current layer ΣθZ+

mzB Mean vector of units for the next layer given y µZ+|y

idx Indices for the parameter update step of the current layer

Details

f(θ|y) = N (θ;µθ|y,Σθ|y) where

µθ|y = µθ + Jθ(µZ+|y − µZ+)

Σθ|y = Σθ + Jθ(ΣZ+|y −ΣZ+)JTθ

Jθ = ΣθZ+Σ−1

Z+

Value

• Mean vector of parameters for the current layer given y µθ|y

• Covariance matrix of parameters for the current layer given y Σθ|y

6 batchDerivative

batchDerivative One iteration of the TAGI with derivative calculations

Description

This function goes through one learning iteration of the neural network model using TAGI with
derivative calculations.

Usage

batchDerivative(NN, theta, normStat, states, x, Sx, y, dlayer)

Arguments

NN Lists the structure of the neural network

theta List of parameters

normStat Normalized statistics

states List of states

x Input data

Sx Variance of input data

y Response data

dlayer Layer from which derivatives will be in respect to

Value

• List of parameters

• List of normalized statistics

• Mean of predicted responses

• Variance of predicted responses

• Mean of first derivative of predicted responses

• Variance of first derivative of predicted responses

• Covariance between derivatives and inputs

• Mean of second derivative of predicted responses

BH 7

BH Price of 506 Boston houses.

Description

This dataset was originally from the StatLib archive. It contains the price and other attributes of
506 Boston houses.

Usage

BH

Format

A data frame with 506 rows and 14 variables:

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

LSTAT % lower status of the population

MEDV median value of owner-occupied homes in $1000’s

Details

The dataset from the TAGI repository was used for comparison purposes, but the original dataset
was published by Harrison, D. and Rubinfeld, D.L.

Source

https://github.com/CivML-PolyMtl/TAGI/blob/master/BostonHousing/data/BostonHousing.
mat

References

http://lib.stat.cmu.edu/datasets/boston

Harrison, D. and Rubinfeld, D.L. ‘Hedonic prices and the demand for clean air’, J. Environ. Eco-
nomics & Management, vol.5, 81-102, 1978.

8 buildCzz

buildCzp Reformat covariance matrix between units and parameters

Description

This function properly reformats covariance matrix between units and parameters ΣZθ for the up-
date step.

Usage

buildCzp(Czw, Czb, currenthiddenUnit, prevhiddenUnit, batchSize)

Arguments

Czw Covariance matrix between units and weights for the current layer
Czb Covariance matrix between units and baises for the current layer
currenthiddenUnit

Number of units in the current layer
prevhiddenUnit Number of units in the previous layer
batchSize Number of observations trained at the same time

Value

Reformatted covariance matrix between units and parameters

buildCzz Reformat covariance matrix between units of the previous and current
layers

Description

This function properly reformats covariance matrix between units of the previous and current layers
ΣZZ+ for the update step.

Usage

buildCzz(Czz, currenthiddenUnit, prevhiddenUnit, batchSize)

Arguments

Czz Covariance matrix between units of the previous and current layers
currenthiddenUnit

Number of units in the current layer
prevhiddenUnit Number of units in the previous layer
batchSize Number of observations trained at the same time

Value

Reformatted covariance matrix between of the previous and current layers

catParameters 9

catParameters Concatenate parameters

Description

Combines in a single column vector each parameter for all layers.

Usage

catParameters(mw, Sw, mb, Sb, mwx, Swx, mbx, Sbx)

Arguments

mw Mean of weights for the current layer
Sw Covariance of weights for the current layer
mb Mean of biases for the current layer
Sb Covariance of biases for the current layer
... Other parameters

Value

• Mean vector of weights for the current layer

• Covariance vector of weights for the current layer

• Mean vector of biases for the current layer

• Covariance vector of biases for the current layer

compressParameters Compress parameters

Description

Put together parameters into a list of parameters.

Usage

compressParameters(mw, Sw, mb, Sb, mwx, Swx, mbx, Sbx)

Arguments

mw Mean vector of weights for the current layer
Sw Covariance vector of weights for the current layer
mb Mean vector of biases for the current layer
Sb Covariance vector of biases for the current layer
... Other parameters

Value

List of parameters

10 computeError

compressStates Compress states

Description

Put together states into a list of states.

Usage

compressStates(mz, Sz, ma, Sa, J, mdxs, Sdxs, mxs, Sxs)

Arguments

mz Mean of units for each layer

Sz Covariance of units for each layer

ma Mean of activated units for each layer

Sa Covariance of activated units for each layer

J Jacobian

... Other parameters

Value

List of states

computeError Compute error

Description

This function calculates the Root Mean Square Error (RMSE). It takes as input two vectors (or
matrices) with one containing the real y’s and the other the predicted y’s from the model.

Usage

computeError(y, ypred)

Arguments

y Response data

ypred Mean of predicted responses

Value

RMSE for the given data

covariance 11

covariance Indices for covariances in the neural network

Description

This function assigns indices for all covariance elements in the neural network.

Usage

covariance(NN)

Arguments

NN Lists the structure of the neural network

Value

NN with new elements:

• Indices (weights and activation units) for deterministic matrix F * µWA for each layer

• Bias indices for deterministic matrix F * µB for each layer

• Indices (weights and activation units) for deterministic matrix F * ΣZWA for each layer

• Indices for the parameter update step for each layer

• Indices for the hidden state update step for each layer

• Indices (weights and activation units) for deterministic matrix F * ΣWAθ for each layer

• Indices for activation unit for each layer

• Bias indices for deterministic matrix F * ΣB for each layer

covarianceCzp Covariance matrices between units and parameters

Description

This function calculate the covariance matrices between units and parameters ΣZW and ΣZB for a
given layer.

Usage

covarianceCzp(ma, Sp, idxFCwwa, idxFCb)

12 covarianceCzz

Arguments

ma Mean vector of activation units from previous layer µA

Sp Covariance matrix of parameters for the current layer Σθ

idxFCwwa Indices for weights and for activation units for the current and previous layers
respectively

idxFCb Indices for biases of the current layer

Value

• Covariance matrix between units and biases for the current layer ΣZB

• Covariance matrix between units and weights for the current layer ΣZW

covarianceCzz Covariance matrix between units of the previous and current layers

Description

This function calculate the covariance matrix between units of the previous and current layers ΣZZ+

for a given layer.

Usage

covarianceCzz(mp, Sz, J, idxCawa)

Arguments

mp Mean vector of parameters for the current layer µθ

Sz Covariance matrix of units for the current layer ΣZ

J Jacobian matrix evaluated at µZ

idxCawa Indices for weights and for activation units for the current and previous layers
respectively

Value

Covariance matrix between units of previous and current layers ΣZZ+

covarianceSa 13

covarianceSa Calculate variance of activated units

Description

This function uses lineratization to estimate the covariance matrix of activation units ΣA.

Usage

covarianceSa(J, Sz)

Arguments

J Jacobian matrix evaluated at µZ

Sz Covariance matrix of units for the current layer ΣZ

Value

The activation units covariance matrix ΣA

covarianceSz Covariance matrix of units

Description

This function calculate the covariance matrix of the units ΣZ for a given layer.

Usage

covarianceSz(mp, ma, Sp, Sa, idxFSwaF, idxFSwaFb)

Arguments

mp Mean vector of parameters for the current layer

ma Mean vector of activation units from previous layer

Sp Covariance matrix of parameters for the current layer

Sa Covariance matrix of activation units from previous layer

idxFSwaF Indices for weights and for activation units for the current and previous layers
respectively

idxFSwaFb Indices for biases of the current layer

Value

Covariance matrix of units for the current layer ΣZ

14 createDevCellarray

covdx Covariance between derivatives and hidden states

Description

This function calculates covariance between derivatives and hidden states. It is not related to the
derivative calculation process. It could be used infer Z (hidden states) with the constraint that the
derivative of g with respect to Z equals 0.

Usage

covdx(mwo, mw, mdgo2, mpdi, mdgoe, Cdozi, Cdizi, ni, no, no2, B)

Arguments

mwo Mean vector of weights for the next layer
mw Mean vector of weights for the current layer
mdgo2 Mean vector of product of derivatives in second next layer
mpdi Mean vector of first derivative product wd of current layer
mdgoe Mean of product of derivatives at each node in next layer
Cdozi Covariance between derivative (next) and hidden (current) layers
Cdizi Covariance between derivative and hidden layers (same layer)
ni Number of units in current layer
no Number of units in next layer
no2 Number of units in second next layer
B Batch size

Value

Covariance between derivative and hidden states

createDevCellarray States initialization (unit matrices)

Description

Initiliazes neural network derivative states at 1.

Usage

createDevCellarray(nodes, numlayers, B, rB)

Arguments

nodes Vector which contains the number of nodes at each layer
numlayers Number of layers in the neural network
B Batch size
rB Number of times batch size is repeated

createInitCellwithArray 15

Value

Unit matrices for each layer

createInitCellwithArray

Initialization (matrix of lists)

Description

Initializes a matrix containing lists.

Usage

createInitCellwithArray(numlayers)

Arguments

numlayers Number of layers in the neural network

Value

Matrix containing empty lists

createStateCellarray States initialization (zero-matrices)

Description

Initiliazes neural network states at 0.

Usage

createStateCellarray(nodes, numlayers, B, rB)

Arguments

nodes Vector which contains the number of nodes at each layer

numlayers Number of layers in the neural network

B Batch size

rB Number of times batch size is repeated

Value

Zero-matrices for each layer

16 derivative

denormalize Denormalize data

Description

This function denormalizes response data processed by the neural network.

Usage

denormalize(yn, syn, myntrain, syntrain)

Arguments

yn Predicted responses

syn Variance of the predicted responses

myntrain Mean vector of responses from training set

syntrain Variance vector of responses from training set

Value

• Mean of denormalized predicted responses

• Variance of denormalized predicted responses

derivative Derivative calculation

Description

This function does derivative calculations.

Usage

derivative(NN, theta, states, mda, Sda, mdda, Sdda, dlayer)

Arguments

NN Lists the structure of the neural network

theta List of parameters

states List of states

mda Mean vectors of activation units’ first derivative

Sda Covariance matrices of activation units’ first derivative

mdda Mean vectors of activation units’ second derivative

Sdda Covariance matrices of activation units’ second derivative

dlayer layer from which derivatives will be in respect to

extractParameters 17

Value

• Mean of first derivative of predicted responses

• Variance of first derivative of predicted responses

• Covariance between derivatives and inputs

• Mean of second derivative of predicted responses

extractParameters Extract parameters

Description

Extract parameters from list of parameters.

Usage

extractParameters(theta)

Arguments

theta List of parameters

Value

• Mean vector of weights for the current layer

• Covariance vector of weights for the current layer

• Mean vector of biases for the current layer

• Covariance vector of biases for the current layer

extractStates Extract states

Description

Extract states from list of states.

Usage

extractStates(states)

Arguments

states List of states

18 fcCombinaisonDnode

Value

• Mean of units for each layer

• Covariance of units for each layer

• Mean of activated units for each layer

• Covariance of activated units for each layer

• Jacobian

fcCombinaisonDnode Combination of products of first derivative (iterations on nodes)

Description

This function calculates mean of combination of products of first derivatives (wd)*(wd). Each node
is multiplied to another node in the same layer (including itself). Their weights are both pointing to
the same node in the next layer.

Usage

fcCombinaisonDnode(mpdi, mw, Sw, mda, Sda, ni, no, B)

Arguments

mpdi Mean vector of first derivative product wd of current layer

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mda Mean vector of activation units’ first derivative from current layer

Sda Covariance of activation units’ first derivative from current layer

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

Mean array of combination of products of first derivatives

fcCombinaisonDweight 19

fcCombinaisonDweight Combination of products of first derivative (iterations on weights)

Description

This function calculates mean of combination of products of first derivatives (wd)*(wd). Each
weight is multiplied to another weight (including itself) from the same node. Each node is multi-
plied to the same node (in the same layer).

Usage

fcCombinaisonDweight(mpdi, mw, Sw, mda, Sda, ni, no, B)

Arguments

mpdi Mean vector of first derivative product wd of current layer

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mda Mean vector of activation units’ first derivative from current layer

Sda Covariance of the activation units’ first derivative from current layer

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

Mean array of combination of products of first derivatives

fcCombinaisonDweightNode

Combination of squared products of first derivative

Description

This function calculates mean of squared products of first derivatives (wd)^2. Every products
(weight times node) from current layer are considered which results in a (B*ni x no)-matrix.

Usage

fcCombinaisonDweightNode(mpdi, mw, Sw, mda, Sda, ni, no, B)

20 fcCombinaisonDweightNodeAll

Arguments

mpdi Mean vector of first derivative product wd of current layer

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mda Mean vector of activation units’ first derivative from current layer

Sda Covariance of activation units’ first derivative from current layer

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

Mean matrix of squared products of first derivatives

fcCombinaisonDweightNodeAll

All possible combinations of products of first derivatives

Description

This function calculates mean of products of first derivatives wd*wd. Since both weight and node
are iterated over all products, every products (weight times node) from current layer are considered
which results in a (Bni x no x noni)-array. I.e. each dimension of the array represents a single
product being multiplied to all other possible products from current layer. Order is as followed:
w11d1, w12d2, w13d3, ..., w1nidni, w21d1, w22d2, ..., w2nidni, ... wno1d1, ..., wnonidni

Usage

fcCombinaisonDweightNodeAll(mpdi, mpdin, mpdiw, ni, no, B)

Arguments

mpdi Mean vector of first derivative product wd of current layer

mpdin Mean array of combination of products of first derivatives (iterations on nodes)

mpdiw Mean array of combination of products of first derivatives (iterations on weights)

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

Mean array of combination of products of first derivatives

fcCovaddddddw 21

fcCovaddddddw Covariance between first and second derivatives from consecutive lay-
ers

Description

This function calculates covariance between weights and second derivatives and covariance between
first and second derivatives from consecutive layers.

Usage

fcCovaddddddw(mao, mai, mdao, Caoai, Cdodi, Caow, Cdow, acto, acti, ni, no, B)

Arguments

mao Mean vector of activation units from next layer

mai Mean vector of activation units from current layer

mdao Mean vector of activation units’ first derivative from next layer

Caoai Covariance between activation units from current and next layers

Cdodi Covariance between first derivatives from current and next layers

Caow Covariance between activation units and weights

Cdow Covariance between derivatives and weights

acto Activation function index for next layer defined by activationFunIndex

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

• Covariance between first and second derivatives from consecutive layers

• Covariance between second derivatives from next layer and weights

fcCovawaa Covariance between activation units and weights

Description

This function calculates covariance between activation units and weights and covariance between
activation units from consecutive layers.

Usage

fcCovawaa(mw, Sw, Jo, mai, Sai, ni, no, B)

22 fcCovaz

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

Jo Jacobian of next layer

mai Mean vector of activation units from current layer

Sai Covariance of activation units from current layer

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

• Covariance between activation units and weights

• Covariance between activation units from current and next layers

fcCovaz Covariance between activation and hidden units

Description

This function calculates covariance between activation and hidden units.

Usage

fcCovaz(Jo, J, Sz, mw, ni, no, B)

Arguments

Jo Jacobian of next layer

J Jacobian of current layer

Sz Covariance of units from current layer

mw Mean vector of weights for the current layer

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

• Covariance between activation and hidden layers (same layer)

• Covariance between activation (next) and hidden (current) layers

fcCovdaddd 23

fcCovdaddd Covariance between first and second derivatives from consecutive lay-
ers

Description

This function calculates covariance between activation units and first derivatives and covariance
between first and second derivatives from consecutive layers.

Usage

fcCovdaddd(mao, mai, mdai, Caoai, Cdodi, acti, ni, no, B)

Arguments

mao Mean vector of activation units from next layer

mai Mean vector of activation units from current layer

mdai Mean vector of activation units’ first derivative from current layer

Caoai Covariance between activation units from current and next layers

Cdodi Covariance between derivatives from current and next layers

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

• Covariance between first derivatives from next layer and activation units from current layer

• Covariance between first and second derivatives from consecutive layers

fcCovDlayer Covariance between products of derivatives and weights

Description

This function calculates covariance between products of derivatives and weights from consecutive
layers.

Usage

fcCovDlayer(mdgo2, mwo, Cdowdi, ni, no, no2, B)

24 fcCovdwd

Arguments

mdgo2 Mean vector of product of derivatives in second next layer

mwo Mean vector of weights for the next layer

Cdowdi Covariance between derivatives and weights times derivatives

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

Covariance between weights times derivatives from consecutive layers

fcCovdwd Covariance between derivatives and weights*derivatives

Description

This function calculates covariance between derivatives and weights and covariance between deriva-
tives from consecutive layers.

Usage

fcCovdwd(md, mw, Cdow, Cdodi, ni, no, B)

Arguments

md Mean vector of derivatives

mw Mean vector of weights for the current layer

Cdow Covariance between derivatives and weights

Cdodi Covariance between derivatives from current and next layers

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

Covariance between derivatives and weights times derivatives

fcCovdwddd 25

fcCovdwddd Covariance between derivatives and weights

Description

This function calculates covariance between derivatives and weights and covariance between deriva-
tives from consecutive layers.

Usage

fcCovdwddd(mao, Sao, mai, Sai, Caow, Caoai, acto, acti, ni, no, B)

Arguments

mao Mean vector of activation units from next layer

Sao Covariance of activation units from next layer

mai Mean vector of activation units from current layer

Sai Covariance of activation units from current layer

Caow Covariance between activation units and weights

Caoai Covariance between activation units from current and next layers

acto Activation function index for next layer defined by activationFunIndex

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

• Covariance between derivatives and weights

• Covariance between derivatives from current and next layers

fcCovdz Covariance between derivatives and hidden Units

Description

This function calculates covariance between derivatives and hidden units.

Usage

fcCovdz(mao, mai, Caizi, Caozi, acto, acti, ni, no, B)

26 fcCovwdo2wdiwdi

Arguments

mao Mean vector of activation units from next layer

mai Mean vector of activation units from current layer

Caizi covariance between activation and hidden layers (same layer)

Caozi covariance between activation (next layer) and hidden (current) layers

acto Activation function index for next layer defined by activationFunIndex

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

• Covariance between derivative (next) and hidden (current) layers

• Covariance between derivative and hidden layers (same layer)

fcCovwdo2wdiwdi Covariance between products in (same) next and current layers

Description

This function calculates covariance cov(wdo^2,wdiwdi) of weights times derivatives products terms
when there are two products in both next and current layers. The product fom next layer is the same
squared.

Usage

fcCovwdo2wdiwdi(mpdo, Cwdowdiwdi)

Arguments

mpdo Mean vector of first derivative product wd of next layer

Cwdowdiwdi Covariance cov(wdo,wdi*wdi) of weights times derivatives products terms when
there are one product in next layer and two in current

Value

Covariance cov(wdo^2,wdi*wdi) of weights times derivatives products terms when there are two
products in both next and current layers

fcCovwdowdi2 27

fcCovwdowdi2 Covariance between next layer product and current layer squared
product

Description

This function calculates covariance cov(wdo,(wdi)^2) of weights times derivatives products terms
when there are one product in next layer and two squared in current.

Usage

fcCovwdowdi2(mpdi, Cdgoddgik)

Arguments

mpdi Mean vector of first derivative product wd of current layer

Cdgoddgik Covariance between weights times derivatives from consecutive layers

Value

Covariance cov(wdo,(wdi)^2) of weights times derivatives products terms when there is one product
in next layer and two squared in current

fcCovwdowdiwdi Covariance between next layer product and current layer multiplied
products

Description

This function calculates covariance cov(wdo,wdiwdi) of weights times derivatives products terms
when there are one product in next layer and two in current.

Usage

fcCovwdowdiwdi(mpdi, Cdgoddgik, ni, no, B)

Arguments

mpdi Mean vector of first derivative product wd of current layer

Cdgoddgik Covariance between weights times derivatives from consecutive layers

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

Covariance cov(wdo,wdi*wdi) of weights times derivatives products terms when there is one prod-
uct in next layer and two in current

28 fcCwdowdowdiwdi_4hl

fcCwdowdowdiwdi Covariance between next layer multiplied products and current layer
multiplied products (minimum 3 hidden layers)

Description

This function calculates covariance cov(wdowdo,wdiwdi) where all terms can be different. It is
used when there are at least 3 hidden layers and second next layer is a product of only two terms
(wdo2).

Usage

fcCwdowdowdiwdi(mpdi, mpdo, Cdgodgi, acti, ni, no, no2, B)

Arguments

mpdi Mean vector of first derivative product wd of current layer

mpdo Mean vector of first derivative product wd of next layer

Cdgodgi Covariance between weights times derivatives from consecutive layers

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

Covariance cov(wdowdo,wdiwdi) where all terms can be different

fcCwdowdowdiwdi_4hl Covariance between next layer multiplied products and current layer
multiplied products (minimum 4 hidden layers)

Description

This function calculates covariance cov(wdowdo,wdiwdi) where all terms can be different. It is
used when there are at least 4 hidden layers.

Usage

fcCwdowdowdiwdi_4hl(mpdi, mpdo, mdgo2, Cdgodgi, acti, ni, no, no2, B)

fcCwdowdowwdi2 29

Arguments

mpdi Mean vector of first derivative product wd of current layer

mpdo Mean vector of first derivative product wd of next layer

mdgo2 Mean vector of product of derivatives in second next layer

Cdgodgi Covariance between weights times derivatives from consecutive layers

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

Covariance cov(wdowdo,wdiwdi) where all terms can be different

fcCwdowdowwdi2 Covariance between next layer multiplied products and current layer
multiplied products (same derivative)

Description

This function calculates covariance cov(wdowdo,wdiwdi) where the di terms are the same, when
next second layer involves only a product term (wddo2).

Usage

fcCwdowdowwdi2(mpdi, mpdo, Cdgodgi, acti, ni, no, no2, B)

Arguments

mpdi Mean vector of first derivative product wd of current layer

mpdo Mean vector of first derivative product wd of next layer

Cdgodgi Covariance between weights times derivatives from consecutive layers

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

Covariance cov(wdowdo,wdiwdi) where the di terms are the same

30 fcDerivative

fcCwdowdowwdi2_3hl Covariance between next layer multiplied products and current layer
multiplied products (same derivative, minimum 3 hidden layers)

Description

This function calculates covariance cov(wdowdo,wdiwdi) where the di terms are the same when
next second layer involves multiplied terms (wdo2wdo2). It is used when there are at least 3 hidden
layers.

Usage

fcCwdowdowwdi2_3hl(mpdi, mpdo, mdgo2, Cdgodgi, acti, ni, no, no2, B)

Arguments

mpdi Mean vector of first derivative product wd of current layer

mpdo Mean vector of first derivative product wd of next layer

mdgo2 Mean vector of product of derivatives in second next layer

Cdgodgi Covariance between weights times derivatives from consecutive layers

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

Covariance cov(wdowdo,wdiwdi) where the di terms are the same

fcDerivative Derivatives for fully connected layers

Description

This function calculates mean and variance of derivatives and covariance of derivative and input
layers.

Usage

fcDerivative(
mw,
Sw,
mwo,
Jo,
J,
mao,

fcDerivative 31

Sao,
mai,
Sai,
Szi,
mdai,
Sdai,
mdgo,
mdgoe,
Sdgo,
mdgo2,
acto,
acti,
ni,
no,
no2,
B

)

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mwo Mean vector of weights for the next layer

Jo Jacobian of next layer

J Jacobian of current layer

mao Mean vector of activation units from next layer

Sao Covariance of activation units from next layer

mai Mean vector of activation units from current layer

Sai Covariance of activation units from current layer

Szi Covariance of units from current layer

mdai Mean vector of activation units’ first derivative from current layer

Sdai Covariance of activation units’ first derivative from current layer

mdgo Mean vector of product of derivatives in next layer

mdgoe Mean of product of derivatives at each node in next layer

Sdgo Variance of first derivatives in next layer

mdgo2 Mean vector of product of derivatives in second next layer

acto Activation function index for next layer defined by activationFunIndex

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

32 fcDerivative2

Value

Mean vector of first derivatives

Covariance matrix of first derivatives

Covariance matrix of first derivative and input layer

Covariance between activation units and weights

Covariance between activation units from current and next layers

Covariance between first derivatives and weights

Covariance between first derivatives from current and next layers

Covariance between first derivatives from next layer and weights times derivatives from current
layer

fcDerivative2 Second derivatives for fully connected layers

Description

This function calculates mean of product of derivatives, when new product term involves second
derivatives (wdd).

Usage

fcDerivative2(
mw,
mwo,
mao,
mai,
mdai,
mddai,
mpddi,
mdgo,
mdgo2,
Caoai,
Cdow,
Cdodi,
acti,
ni,
no,
no2,
B

)

Arguments

mw Mean vector of weights for the current layer

mwo Mean vector of weights for the next layer

mao Mean vector of activation units from next layer

mai Mean vector of activation units from current layer

fcDerivative3 33

mdai Mean vector of activation units’ first derivative from current layer

mddai Mean vector of activation units’ second derivative from current layer

mpddi Mean vector of second derivative product wdd of current layer

mdgo Mean vector of product of derivatives in next layer

mdgo2 Mean vector of product of derivatives in second next layer

Caoai Covariance between activation units from current and next layers

Cdow Covariance between first derivatives and weights

Cdodi Covariance between first derivatives from current and next layers

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

Mean of product terms for second derivative calculations

fcDerivative3 Products of first derivatives multiplied to second derivative for fully
connected layers

Description

This function calculates mean of product of derivatives, when new product term involves product of
two first derivatives (wdwd) from the same layer multiplied to second derivatives (wdd) from next
layer.

Usage

fcDerivative3(
mw,
Sw,
mwo,
mao,
mai,
mdao,
mdai,
Sdai,
mpdi,
mdgo,
mdgo2,
Caow,
Caoai,
Cdow,
Cdodi,
acto,

34 fcDerivative3

acti,
ni,
no,
no2,
B,
dlayer

)

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mwo Mean vector of weights for the next layer

mao Mean vector of activation units from next layer

mai Mean vector of activation units from current layer

mdao Mean vector of activation units’ first derivative from next layer

mdai Mean vector of activation units’ first derivative from current layer

Sdai Covariance of activation units’ first derivative from current layer

mpdi Mean vector of first derivative product wd of current layer

mdgo Mean vector of product of derivatives in next layer

mdgo2 Mean vector of product of derivatives in second next layer

Caow Covariance between activation units and weights

Caoai Covariance between activation units from current and next layers

Cdow Covariance between first derivatives and weights

Cdodi Covariance between first derivatives from current and next layers

acto Activation function index for next layer defined by activationFunIndex

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

dlayer TRUE if derivatives will be in respect to current layer

Value

Mean of product terms for second derivative calculations

fcDerivative4 35

fcDerivative4 Products of first derivatives multiplied to products of first derivatives
for fully connected layers

Description

This function calculates mean of product of derivatives, when new product term involves product
of two first derivatives (wdwd) from the same layer multiplied to product of two first derivatives
(wdwd) from next layer, when second next layer is second derivatives (wdd).

Usage

fcDerivative4(
mw,
Sw,
mwo,
mao,
mai,
mdao,
mdai,
Sdai,
mpdo,
mpdi,
mdgo,
mdgo2,
Cdowdi,
acto,
acti,
ni,
no,
no2,
B,
dlayer

)

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mwo Mean vector of weights for the next layer

mao Mean vector of activation units from next layer

mai Mean vector of activation units from current layer

mdao Mean vector of activation units’ first derivative from next layer

mdai Mean vector of activation units’ first derivative from current layer

Sdai Covariance of activation units’ first derivative from current layer

mpdo Mean vector of first derivative product wd of next layer

mpdi Mean vector of first derivative product wd of current layer

mdgo Mean vector of product of derivatives in next layer

36 fcDerivative5

mdgo2 Mean vector of product of derivatives in second next layer

Cdowdi Covariance between first derivatives from next layer and weights times deriva-
tives from current layer

acto Activation function index for next layer defined by activationFunIndex

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

dlayer TRUE if derivatives will be in respect to current layer

Value

Mean of product terms for second derivative calculations

fcDerivative5 Products of first derivatives multiplied to products of first derivatives
(not only last layer) for fully connected layers

Description

This function calculates mean of product of derivatives, when new product term involves product
of two first derivatives (wdwd) from the same layer multiplied to product of two first derivatives
(wdwd) from next and second next layers.

Usage

fcDerivative5(
mw,
Sw,
mwo,
mao,
mai,
mdao,
mdai,
Sdai,
mpdo,
mpdi,
mdgo,
mdgo2,
Cdowdi,
acto,
acti,
ni,
no,
no2,
B,
dlayer

)

fcHiddenStateBackwardPass 37

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mwo Mean vector of weights for the next layer

mao Mean vector of activation units from next layer

mai Mean vector of activation units from current layer

mdao Mean vector of activation units’ first derivative from next layer

mdai Mean vector of activation units’ first derivative from current layer

Sdai Covariance of activation units’ first derivative from current layer

mpdo Mean vector of first derivative product wd of next layer

mpdi Mean vector of first derivative product wd of current layer

mdgo Mean vector of product of derivatives in next layer

mdgo2 Mean vector of product of derivatives in second next layer

Cdowdi Covariance between derivatives from next layer and weights times derivatives
from current layer

acto Activation function index for next layer defined by activationFunIndex

acti Activation function index for current layer defined by activationFunIndex

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

dlayer TRUE if derivatives will be in respect to current layer

Value

Mean of product terms for second derivative calculations

fcHiddenStateBackwardPass

Backpropagation (states’ deltas) for fully connected layers (many ob-
servations)

Description

This function calculates units’ deltas at a given layer when using more than one observation at the
time.

Usage

fcHiddenStateBackwardPass(Sz, Sxs, J, mw, deltaM, deltaS, ni, no, B, rB)

38 fcHiddenStateBackwardPassB1

Arguments

Sz Covariance of units from current layer

Sxs Null by default (not used yet)

J Jacobian of current layer

mw Mean vector of weights for the current layer

deltaM Delta of mean vector of the next layer units given y µZ |y
deltaS Delta of covariance matrix of the next layer units given y ΣZ |y
ni Number of units in current layer

no Number of units in next layer

B Batch size

rB Number of times batch size is repeated

Value

• Delta of mean vector of current layer units given y µZ |y

• Delta of covariance matrix of current layer units given y ΣZ |y

fcHiddenStateBackwardPassB1

Backpropagation (states’ deltas) for fully connected layers (one ob-
servation)

Description

This function calculates units’ deltas at a given layer when using one observation at the time.

Usage

fcHiddenStateBackwardPassB1(Sz, Sxs, J, mw, deltaM, deltaS, ni, no)

Arguments

Sz Covariance of the units from current layer

Sxs Null by default (not used yet)

J Jacobian of current layer

mw Mean vector of weights for the current layer

deltaM Delta of mean vector of next layer units given y µZ |y
deltaS Delta of covariance matrix of next layer units given y ΣZ |y
ni Number of units in current layer

no Number of units in next layer

Value

• Delta of mean vector of current layer units given y µZ |y

• Delta of covariance matrix of current layer units given y ΣZ |y

fcMeanDlayer2array 39

fcMeanDlayer2array Mean of weights times derivatives products terms ((wdo*wdo) x
(wwdi^2))

Description

This function calculates mean of weights times derivatives products terms when adding two of those
products from current layer to already calculated expectation that ended with one such product of
next layer (i.e. (wdowdo) x (wwdi^2)). Mean terms are in array format. Once added, rows need to
be summed to aggregate expectations by node*weight combinations of current layer.

Usage

fcMeanDlayer2array(mpdi2w, mdgo, Cwdowdowwdi2, ni, no, B)

Arguments

mpdi2w Combination of products of first derivative of current layer (wd)*(wd) (iterations
on weights on the same node)

mdgo Mean of product of derivatives in next layer

Cwdowdowwdi2 Covariance cov(wdowdo,wdiwdi) of weights times derivatives products terms,
where the di terms are the same

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

Mean of weights times derivatives products terms

fcMeanDlayer2row Mean of weights times derivatives products terms squared (wdo x
(wdi*wdi))

Description

This function calculates mean of weights times derivatives products terms when adding two of those
products from current layer to already calculated expectation that ended with one such product of
next layer (i.e. wdo x (wdiwdi)). Mean terms are in array format. Once added, rows need to be
summed to aggregate expectations by node*node combinations of current layer.

Usage

fcMeanDlayer2row(mpdi, mpdi2, mdgo, Cwdowdiwdi, ni, no, no2, B)

40 fcMeanVar

Arguments

mpdi Mean vector of first derivative product wd of current layer

mpdi2 Mean array of combination of products of first derivatives

mdgo Mean vector of product of derivatives in next layer

Cwdowdiwdi Covariance cov(wdo,(wdi*wdi)) of weights times derivatives products terms
when there is one product in next layer and two in current

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

Mean of weights times derivatives products terms

fcMeanVar Mean and covariance vectors of units (many observations)

Description

This function calculate the mean vector of units µZ and the covariance matrix of the units ΣZfor a
given layer.

Usage

fcMeanVar(mz, Sz, mw, Sw, mb, Sb, ma, Sa, ni, no, B, rB)

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mb Mean vector of biases for the current layer

Sb Covariance of biases for the current layer

ma Mean vector of activation units from previous layer

Sa Covariance of activation units from previous layer

ni Number of units in previous layer

no Number of units in current layer

B Batch size

rB Number of times batch size is repeated

Value

• Mean vector of units for the current layer µZ

• Covariance matrix of units for the current layer ΣZ

fcMeanVarB1 41

fcMeanVarB1 Mean and covariance vectors of units (one observation)

Description

This function calculate the mean vector of units µZ and the covariance matrix of the units ΣZfor a
given layer.

Usage

fcMeanVarB1(mw, Sw, mb, Sb, ma, Sa, ni, no)

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mb Mean vector of biases for the current layer

Sb Covariance of biases for the current layer

ma Mean vector of activation units from previous layer

Sa Covariance of activation units from previous layer

ni Number of units in previous layer

no Number of units in current layer

Value

• Mean vector of units for the current layer µZ

• Covariance matrix of units for the current layer ΣZ

fcMeanVarDlayer Mean and variance of weights times derivatives products terms

Description

This function calculates mean and variance of weights times derivatives products terms.

Usage

fcMeanVarDlayer(mx, Sx, my, mye, Sy, Cxy, ni, no, no2, B)

42 fcMeanVarDnode

Arguments

mx Mean vector of inputs

Sx Variance of inputs

my Mean vector of outputs

mye Mean derivatives at each node in next layer

Sy Variance of outputs

Cxy Covariance between inputs and outputs

ni Number of units in current layer

no Number of units in next layer

no2 Number of units in second next layer

B Batch size

Value

• Mean of weights times derivatives products terms

• Covariance between weights times derivatives products terms

fcMeanVarDnode Mean and covariance of derivatives

Description

This function calculates the mean vector and the covariance matrix for derivatives.

Usage

fcMeanVarDnode(mw, Sw, mda, Sda, ni, no, B)

Arguments

mw Mean vector of weights for the current layer

Sw Covariance of weights for the current layer

mda Mean vector of activation units’ derivative from current layer

Sda Covariance of activation units’ derivative from current layer

ni Number of units in current layer

no Number of units in next layer

B Batch size

Value

• Mean vector of derivatives

• Covariance matrix of derivatives

fcParameterBackwardPass 43

fcParameterBackwardPass

Backpropagation (parameters’ deltas) for fully connected layers
(many observations)

Description

This function calculates parameters’ deltas at a given layer when using more than one observation
at the time.

Usage

fcParameterBackwardPass(
deltaMw,
deltaSw,
deltaMb,
deltaSb,
Sw,
Sb,
ma,
deltaMr,
deltaSr,
ni,
no,
B,
rB

)

Arguments

deltaMw next layer delta of mean vector of weights given y µθ|y
deltaSw next layer delta of covariance matrix of weights given y Σθ|y
deltaMb next layer delta of mean vector of biases given y µθ|y
deltaSb next layer delta of covariance matrix of biases given y Σθ|y
Sw Covariance of weights for the current layer

Sb Covariance of biases for the current layer

ma Mean vector of activation units for the current layer

deltaMr Delta of mean vector of next layer units given y µZ |y
deltaSr Delta of covariance matrix of next layer units given y ΣZ |y
ni Number of units in current layer

no Number of units in next layer

B Batch size

rB Number of times batch size is repeated

44 fcParameterBackwardPassB1

Value

• Delta of mean vector of weights given y µθ|y

• Delta of covariance matrix of weights given y Σθ|y

• Delta of mean vector of biases given y µθ|y

• Delta of covariance matrix of biases given y Σθ|y

fcParameterBackwardPassB1

Backpropagation (parameters’ deltas) for fully connected layers (one
observation)

Description

This function calculates parameters’ deltas at a given layer when using one observation at the time.

Usage

fcParameterBackwardPassB1(Sw, Sb, ma, deltaMr, deltaSr, ni, no)

Arguments

Sw Covariance of weights for the current layer

Sb Covariance of biaises for the current layer

ma Mean vector of activation units for the current layer

deltaMr Delta of mean vector of next layer units given y µZ |y
deltaSr Delta of covariance matrix of next layer units given y ΣZ |y
ni Number of units in current layer

no Number of units in next layer

Value

• Delta of mean vector of weights given y µθ|y

• Delta of covariance matrix of weights given y Σθ|y

• Delta of mean vector of biases given y µθ|y

• Delta of covariance matrix of biaises given y Σθ|y

feedBackward 45

feedBackward Backpropagation

Description

This function feeds the neural network backward from responses to input data.

Usage

feedBackward(NN, mp, Sp, mz, Sz, Czw, Czb, Czz, y)

Arguments

NN Lists the structure of the neural network

mp Mean vectors of parameters for each layer µθ

Sp Covariance matrices of parameters for each layer Σθ

mz Mean vectors of units for each layer µZ

Sz Covariance matrices of units for each layer ΣZ

Czw Covariance matrices between units and weights for each layer ΣZW

Czb Covariance matrices between units and biases for each layer ΣZB

Czz Covariance matrices between previous and current units for each layer ΣZZ+

y Response data

Value

• Updated mean vectors of parameters for each layer µθ

• Updated covariance matrices of parameters for each layer Σθ

See Also

backwardhiddenStateUpdate, backwardParameterUpdate, forwardhiddenStateUpdate

feedForward Forward uncertainty propagation

Description

This function feeds the neural network forward from input data to responses.

Usage

feedForward(NN, x, mp, Sp)

46 feedForwardPass

Arguments

NN Lists the structure of the neural network

x Input data

mp Mean vectors of parameters for each layer µθ
Sp Covariance matrices of parameters for each layer Σθ

Value

• Mean vectors of units for each layer µZ

• Covariance matrices of units for each layer ΣZ

• Covariance matrices between units and weights for each layer ΣZW

• Covariance matrices between units and biases for each layer ΣZB

• Covariance matrices between previous and current units for each layer ΣZZ+

feedForwardPass Forward uncertainty propagation for derivative calculation

Description

This function feeds the neural network forward from input data to responses and considers compo-
nents required for derivative calculations.

Usage

feedForwardPass(NN, theta, states)

Arguments

NN Lists the structure of the neural network

theta List of parameters

states List of states

Value

• Updated states

• Mean vectors of activation units’ first derivative

• Covariance matrices of activation units’ first derivative

• Mean vectors of activation units’ second derivative

• Covariance matrices of activation units’ second derivative

forwardHiddenStateUpdate 47

forwardHiddenStateUpdate

Last hidden layer states update

Description

This function updates last hidden layer units using responses. It updates µZ(0)|y and ΣZ(0)|y from
the Z(0)|y distribution.

Usage

forwardHiddenStateUpdate(mz, Sz, mzF, SzF, Cyz, y)

Arguments

mz Mean vector of units for the last hidden layer µX(0)

Sz Covariance matrix of units for the last hidden layer ΣZ(0)

mzF Mean vector of units for the output layer µy

SzF Covariance matrix of tunits for the output layer Σy

Cyz Covariance matrix between last hidden layer units and responses ΣY Z(0)

y Response data

Details

f(z(0)|y) = N (z(0);µZ(0)|y,ΣZ(0)|y) where

µZ(0)|y = µZ(0) + ΣT
Y Z(0)Σ

−1
Y (y − µY)

ΣZ(0)|y = ΣZ(0) −ΣT
Y Z(0)Σ

−1
Y ΣY Z(0)

Value

• Mean vector of last hidden layer units given y µZ(0)|y

• Covariance matrix of last hidden layer units given y ΣZ(0)|y

globalParameterUpdate Backpropagation (parameters update)

Description

This function updates parameters.

Usage

globalParameterUpdate(theta, deltaTheta)

48 hiddenStateBackwardPass

Arguments

theta List of parameters

deltaTheta Parameters’ deltas (mean and covariance for each)

Value

List of updated parameters

hiddenStateBackwardPass

Backpropagation (states’ deltas)

Description

This function calculates states’ deltas.

Usage

hiddenStateBackwardPass(NN, theta, states, y, Sy, udIdx)

Arguments

NN Lists the structure of the neural network

theta List of parameters

states List of states

y Response data

Sy Variance of responses

udIdx Specific update IDs

Value

• Delta of mean vector of units given y µZ |y at all layers

• Delta of covariance matrix of units given y ΣZ |y at all layers

initialization 49

initialization Network initialization

Description

Verify and add components to the neural network structure.

Usage

initialization(NN)

Arguments

NN Lists the structure of the neural network

Value

• NN with all required components

• States of all required elements to perform TAGI

initialization_net Network initialization

Description

Verify and add components to the neural network structure.

Usage

initialization_net(NN)

Arguments

NN Lists the structure of the neural network

Value

NN with all required components

50 initializeStates

initializeInputs Input initialization

Description

Initializes neural network inputs.

Usage

initializeInputs(states, mz0, Sz0, ma0, Sa0, J0, mdxs0, Sdxs0, mxs0, Sxs0, xsc)

Arguments

states States of the neural network

mz0 Input data

Sz0 Variance of input data

ma0 Activated input data

Sa0 Variance of activated input data

J0 Jacobian

... Other parameters

Value

States of the neural network

initializeStates States initialization

Description

Initiliazes neural network states.

Usage

initializeStates(nodes, B, rB, xsc)

Arguments

nodes Vector which contains the number of nodes at each layer

B Batch size

rB Number of times batch size is repeated

Value

States of the neural network

initializeWeightBias 51

initializeWeightBias Weights and biases initialization

Description

This function initializes the first weights and biases of the neural network.

Usage

initializeWeightBias(NN)

Arguments

NN Lists the structure of the neural network

Value

• Initial mean vectors of parameters for each layer

• Initial covariance matrices of parameters for each layer

initializeWeightBiasD Weights and biases initialization for calculating derivatives

Description

This function initializes the first weights and biases of the neural network.

Usage

initializeWeightBiasD(NN)

Arguments

NN Lists the structure of the neural network

Value

All parameters required in the neural network to perform derivative calculations

52 layerEncoder

innovationVector Last hidden layer states’ deltas update

Description

This function updates hidden layer units’ deltas using next hidden layer’ deltas. It updates µZ|y and
ΣZ|y from the Z|y distribution.

Usage

innovationVector(SzF, dMz, dSz)

Arguments

SzF Covariance matrix of units for the next layer Σy

dMz Delta of mean vector of units for the next hidden layer µZ
dSz Delta of covariance matrix of units for the next hidden layer ΣZ

Details

f(z|y) = N (z;µZ|y,ΣZ|y) where

µZ|y = µZ + JZ(µZ+|y − µZ+)

ΣZ|y = ΣZ + JZ(ΣZ+|y −ΣZ+)JTZ

JZ = ΣZZ+Σ−1

Z+

Value

• Delta of mean vector of current hidden layer units given y µZ |y

• Delta of covariance matrix of current hidden layer units given y ΣZ |y

layerEncoder Layer encoder

Description

Add layer encoder to the neural network structure.

Usage

layerEncoder(NN)

Arguments

NN Lists the structure of the neural network

Value

NN with layer encoder

loglik 53

loglik Compute log-likelihood

Description

This function calculates the log-likelihood (LL). It takes as input three vectors (or matrices) with
one containing the real y’s, one with the predicted y’s from the model and the last one with the
variance of the y’s.

Usage

loglik(y, ypred, Vpred)

Arguments

y Response data

ypred Mean of predicted responses

Vpred Variance of the predicted responses

Value

LL for the given data

meanA Calculate mean of activated units

Description

This function uses lineratization to estimate the activation units mean vector µA and the Jacobian
matrix evaluated at µZ .

Usage

meanA(z, mz, funIdx)

Arguments

z Vector of units for the current layer

mz Mean vector of units for the current layer µZ

funIdx Activation function index defined by activationFunIndex

Value

A list which contains the activation units mean vector µA and the Jacobian matrix evaluated at µZ

54 meanVar

meanMz Mean vector of units

Description

This function calculate the mean vector of units µZ for a given layer.

Usage

meanMz(mp, ma, idxFmwa, idxFmwab)

Arguments

mp Mean vector of parameters for the current layer

ma Mean vector of activation units from previous layer

idxFmwa Indices for weights and for activation units for the current and previous layers
respectively

idxFmwab Indices for biases of the current layer

Value

Mean vector of units for the current layer µZ

meanVar Mean, Jacobian and variance of activated units

Description

This function returns mean vector µA, Jacobian matrix evaluated at µZ and covariance matrix of
activation units ΣA.

Usage

meanVar(z, mz, Sz, funIdx)

Arguments

z Vector of units for the current layer

mz Mean vector of units for the current layer µZ
Sz Covariance matrix of units for the current layer ΣZ

funIdx Activation function index defined by activationFunIndex

Value

• Mean vector of activation units for the current layer µA

• Covariance matrix activation units for the current layer ΣA

• Jacobian matrix evaluated at µZ

meanVarDev 55

meanVarDev Mean and variance of activated units for derivatives

Description

This function calculates mean vector and covariance matrix of activation units’ derivatives.

Usage

meanVarDev(mz, Sz, funIdx, bound)

Arguments

mz Mean vector of units for the current layer µZ
Sz Covariance matrix of units for the current layer ΣZ

funIdx Activation function index defined by activationFunIndex

bound If layer is bound

Value

• Mean vector of activation units’ first derivative

• Covariance matrix of activation units’ first derivative

• Mean vector activation units’ second derivative

• Covariance matrix activation units’ second derivative

MedicalCost Medical Cost of 1,338 insureds.

Description

A dataset containing the medical costs ("charges") and other attributes of 1,338 insureds.

Usage

MedicalCost

Format

A data frame with 1,338 rows and 10 variables:

age age of the insured

sex gender of the insured, binary (if female)

BMI Body Mass Index of the insured

children number of children covered as dependents

smoker smoking status, binary (if the insured smokes)

56 network

region: northeast binary (if the insured lives in that region)

region: southeast binary (if the insured lives in that region)

region: southwest binary (if the insured lives in that region)

region: northwest binary (if the insured lives in that region)

charges medical costs, in US dollars

Details

The original dataset contains 7 variables, but one-hot encoding was used on the "region" categorical
variable. It is a dataset that was used in a Kaggle competition.

Source

https://github.com/stedy/Machine-Learning-with-R-datasets/blob/master/insurance.
csv

network One iteration of the Tractable Approximate Gaussian Inference (TAGI)

Description

This function goes through one learning iteration of the neural network model using TAGI.

Usage

network(NN, mp, Sp, x, y)

Arguments

NN Lists the structure of the neural network

mp Mean vector of parameters for each layer µθ

Sp Covariance matrix of parameters for each layer Σθ

x Input data

y Response data

Value

• Updated mean vector of parameters for each layer µθ

• Updated covariance matrix of parameters for each layer Σθ

• Mean of predicted responses

• Variance of the predicted responses

normalize 57

normalize Normalize data

Description

This function normalizes data before entering the neural network.

Usage

normalize(xtrain, ytrain, xtest, ytest)

Arguments

xtrain Training set of input variables

ytrain Training set of responses

xtest Testing set of input variables

ytest Testing set of responses

Value

• Normalized training set of input variables

• Normalized training set of responses

• Normalized testing set of input variables

• Normalized testing set of responses

• Mean vector of input variables from training set

• Covariance matrix of input variables from training set

• Mean vector of responses from training set

• Covariance matrix of responses from training set

parameterBackwardPass Backpropagation (parameters’ deltas)

Description

This function calculates parameter’s deltas.

Usage

parameterBackwardPass(NN, theta, states, deltaM, deltaS)

58 parameters

Arguments

NN Lists the structure of the neural network

theta List of parameters

states List of states

deltaM Delta of mean vector of units given y µZ |y at all layers

deltaS Delta of covariance matrix of units given y ΣZ |y at all layers

Value

Parameters’ deltas (mean and covariance for each)

parameters Indices for biases and weights

Description

This function assigns indices for all weights and biases in the neural network.

Usage

parameters(NN)

Arguments

NN List that contains the structure of the neural network

Details

Bias indices are assigned from 1 to the maximum number of biases for a given layer. Then, weight
indices start where bias indices end plus one until all weights are assigned an indice. The number
of weights for a given layer is the number of units in the previous layer times the number of units
in the current one.

For example, if there are 10 units in the previous layer and 50 in the current one, then there would be
50 biases and 500 weights in the current layer. The bias indices would be from 1 to 50 and weight
IDs from 51 to 550.

Value

NN with three new elements, each of size (number of layers -1) :

• Weight indices for each layer

• Bias indices for each layer

• Combined weight and bias indices for each layer

regression 59

regression Regression problem

Description

This function trains neural network models to solve a regression problem.

Usage

regression(NN, x, y, trainIdx, testIdx)

Arguments

NN Lists the structure of the neural network
x Input data
y Response data
trainIdx Observations IDs that are assigned to the training set
testIdx Observations IDs that are assigned to the testing set

Value

• Mean vector of parameters for each layer µθ

• Covariance matrix of parameters for each layer Σθ

• RMSE and LL metrics for each network models created

• Training time of each neural network models created

• Mean of predicted responses

• Variance of the predicted responses

runBatchDerivative Result of the TAGI with derivative calculations

Description

This function returns the resulting derivatives from the neural network model using TAGI.

Usage

runBatchDerivative(NN, xtrain, ytrain, xtest, ytest)

Arguments

NN Lists the structure of the neural network
xtrain Training set of input variables
ytrain Training set of responses
xtest Testing set of input variables
ytest Testing set of responses

60 split

Value

• Mean of predicted responses

• Variance of the predicted responses

• Mean of first derivative of predicted responses

• Mean of second derivative of predicted responses

split Split data

Description

This function splits data into training and test sets.

Usage

split(x, y, ratio)

Arguments

x Input data

y Response data

ratio Training ratio

Value

• Training set of input variables

• Training set of responses

• Testing set of input variables

• Testing set of responses

ToyExample.x_obs 61

ToyExample.x_obs Inputs used in training part for 1D toy problem

Description

The orignal dataset represents a 1D regression problem from Hernández-Lobato & Adams (2015):
y = x3 + ε where ε ∼ N (0, 9) and x ∈ [−4, 4] . In this dataset, x and y are normalized.

Usage

ToyExample.x_obs

Format

A data frame with 20 rows and 1 variable x

Details

The dataset generated with the seed from the TAGI repository was used for comparison purposes.

Source

https://github.com/CivML-PolyMtl/TAGI/blob/master/ToyExample/ToyExample_1D.m

References

Hernández-Lobato, J. M., & Adams, R. "Probabilistic backpropagation for scalable learning of
bayesian neural networks." International Conference on Machine Learning. 2015.

ToyExample.x_val Inputs used in validation part for 1D toy problem

Description

The orignal dataset represents a 1D regression problem from Hernández-Lobato & Adams (2015):
y = x3 + ε where ε ∼ N (0, 9) and x ∈ [−4, 4] . In this dataset, x and y are normalized.

Usage

ToyExample.x_val

Format

A data frame with 20 rows and 1 variable x

Details

The dataset generated with the seed from the TAGI repository was used for comparison purposes.

62 ToyExample.y_val

Source

https://github.com/CivML-PolyMtl/TAGI/blob/master/ToyExample/ToyExample_1D.m

References

Hernández-Lobato, J. M., & Adams, R. "Probabilistic backpropagation for scalable learning of
bayesian neural networks." International Conference on Machine Learning. 2015.

ToyExample.y_obs Responses used in training part for 1D toy problem

Description

The orignal dataset represents a 1D regression problem from Hernández-Lobato & Adams (2015):
y = x3 + ε where ε ∼ N (0, 9) and x ∈ [−4, 4] . In this dataset, x and y are normalized.

Usage

ToyExample.y_obs

Format

A data frame with 20 rows and 1 variable y

Details

The dataset generated with the seed from the TAGI repository was used for comparison purposes.

Source

https://github.com/CivML-PolyMtl/TAGI/blob/master/ToyExample/ToyExample_1D.m

References

Hernández-Lobato, J. M., & Adams, R. "Probabilistic backpropagation for scalable learning of
bayesian neural networks." International Conference on Machine Learning. 2015.

ToyExample.y_val Responses used in validation part for 1D toy problem

Description

The orignal dataset represents a 1D regression problem from Hernández-Lobato & Adams (2015):
y = x3 + ε where ε ∼ N (0, 9) and x ∈ [−4, 4] . In this dataset, x and y are normalized.

Usage

ToyExample.y_val

ToyExample.y_val 63

Format

A data frame with 20 rows and 1 variable y

Details

The dataset generated with the seed from the TAGI repository was used for comparison purposes.

Source

https://github.com/CivML-PolyMtl/TAGI/blob/master/ToyExample/ToyExample_1D.m

References

Hernández-Lobato, J. M., & Adams, R. "Probabilistic backpropagation for scalable learning of
bayesian neural networks." International Conference on Machine Learning. 2015.

Index

∗ datasets
BH, 7
MedicalCost, 55
ToyExample.x_obs, 61
ToyExample.x_val, 61
ToyExample.y_obs, 62
ToyExample.y_val, 62

activationFunIndex, 3, 21, 23, 25, 26,
28–31, 33, 34, 36, 37, 53–55

backwardHiddenStateUpdate, 4
backwardhiddenStateUpdate, 45
backwardParameterUpdate, 5, 45
batchDerivative, 6
BH, 7
buildCzp, 8
buildCzz, 8

catParameters, 9
compressParameters, 9
compressStates, 10
computeError, 10
covariance, 11
covarianceCzp, 11
covarianceCzz, 12
covarianceSa, 13
covarianceSz, 13
covdx, 14
createDevCellarray, 14
createInitCellwithArray, 15
createStateCellarray, 15

denormalize, 16
derivative, 16

extractParameters, 17
extractStates, 17

fcCombinaisonDnode, 18
fcCombinaisonDweight, 19
fcCombinaisonDweightNode, 19
fcCombinaisonDweightNodeAll, 20
fcCovaddddddw, 21
fcCovawaa, 21

fcCovaz, 22
fcCovdaddd, 23
fcCovDlayer, 23
fcCovdwd, 24
fcCovdwddd, 25
fcCovdz, 25
fcCovwdo2wdiwdi, 26
fcCovwdowdi2, 27
fcCovwdowdiwdi, 27
fcCwdowdowdiwdi, 28
fcCwdowdowdiwdi_4hl, 28
fcCwdowdowwdi2, 29
fcCwdowdowwdi2_3hl, 30
fcDerivative, 30
fcDerivative2, 32
fcDerivative3, 33
fcDerivative4, 35
fcDerivative5, 36
fcHiddenStateBackwardPass, 37
fcHiddenStateBackwardPassB1, 38
fcMeanDlayer2array, 39
fcMeanDlayer2row, 39
fcMeanVar, 40
fcMeanVarB1, 41
fcMeanVarDlayer, 41
fcMeanVarDnode, 42
fcParameterBackwardPass, 43
fcParameterBackwardPassB1, 44
feedBackward, 45
feedForward, 45
feedForwardPass, 46
forwardHiddenStateUpdate, 47
forwardhiddenStateUpdate, 45

globalParameterUpdate, 47

hiddenStateBackwardPass, 48

initialization, 49
initialization_net, 49
initializeInputs, 50
initializeStates, 50
initializeWeightBias, 51
initializeWeightBiasD, 51

64

INDEX 65

innovationVector, 52

layerEncoder, 52
loglik, 53

meanA, 53
meanMz, 54
meanVar, 54
meanVarDev, 55
MedicalCost, 55

network, 56
normalize, 57

parameterBackwardPass, 57
parameters, 58

regression, 59
runBatchDerivative, 59

split, 60

ToyExample.x_obs, 61
ToyExample.x_val, 61
ToyExample.y_obs, 62
ToyExample.y_val, 62

