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Abstract 

Teaching Inequalities to Young Children Using Visual Representations:  

Perceptual Richness and Concreteness 

Arielle Orsini 

 

Pictures are often used in the mathematics classroom to depict quantities in problems. Their 

physical properties can differ by perceptual richness, the degree to which they are visually 

stimulating, and by concreteness, the degree to which they evoke prior knowledge of real-world 

contexts. In the present study, I examined the effects of perceptual richness and concreteness of 

visual representations on children’s ability to learn about inequalities online. Twenty-eight five- 

to six-year-olds were randomly assigned to one of three visual representation conditions for all 

presented sets: bland abstract, rich concrete, and rich abstract. Participants number knowledge 

was tested at the start of the study. They then participated in an interactive lesson about 

inequalities and engaged in five tasks assessing different conceptual components of inequalities: 

three learning tasks and two transfer tasks. There was no effect of perceptual richness or 

concreteness on children’s performance on any of the tasks. Children with greater number 

knowledge received higher scores on the transfer tasks. Qualitative analysis of participants 

reading of inequalities revealed three types of readers: Direction readers were able to correctly 

read the inequalities based on the direction of the inequality symbol. Magnitude readers ignored 

the direction of the inequality symbol but were able to correctly read the magnitude relationship 

of the inequality. Incorrect readers failed to learn how to read inequalities. The study’s small 

sample did not afford the opportunity to investigate whether reader type differed by condition. 

The study’s limitations and directions for future research are discussed. 
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Chapter 1: Statement of the Problem 

A common mathematics teaching method involves the use of visual representations 

where mathematical concepts are highlighted through graphics, diagrams, illustrations, and other 

images (Arcavi, 2003). For example, young children may practice magnitude comparison 

between sets by counting the quantity of apples to oranges (6:4) on a given worksheet whereby 

the apples and oranges are visually represented with drawings. The set of fruits are thus visual 

representations used to help students compare quantities; it is easier to see the difference between 

six apples and four oranges with pictures than with numerical symbols when children have not 

yet acquired knowledge of symbolic notation, such as numerals. Visual representations can thus 

be useful learning tools to promote students’ mathematical comprehension (Múñez et al., 2013; 

Urban et al., 2017; Yung & Paas, 2015). Furthermore, visual representations come in such a wide 

variety that there are many ways researchers can classify and study them: They can be 

categorized them by their function (Elia & Philippou, 2004), their degree of seductive details 

(Harp & Mayer, 1997; Rey, 2012), and their use, such as the effects of multiple representations 

(Ainsworth et al., 2002) and dynamic representations (e.g., Ainsworth & VanLabeke, 2004), all 

of which can impact student learning.  

One recent factor of interest is concreteness, a spectrum on which visual representations 

may systematically differ in their appearance. At one end of this spectrum exists concrete visual 

representations, sometimes called grounded representations, which are defined as visually 

stimulating images that aim to represent a particular real-world context (Belenky & Schalk, 

2014; Kaminski et al., 2013). At the other end of the spectrum exists abstract visual 

representations, sometimes referred to as idealized or generic representations, which are simple 

images that are more conceptually abstract in nature and do not evoke an individual’s existing 
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knowledge of any one specific context (Belenky & Schalk, 2014; Kaminski et al., 2013). For 

example, a monochromatic picture of circle is a more abstract visual representation compared to 

an image or drawing of a pizza.  

Multiple researchers have studied the effects of concreteness on children’s abilities to 

learn and transfer their knowledge to novel mathematical situations and problems, but the results 

from one study to the next are inconsistent (see De Bock et al., 2011; compared to Siler & 

Willows, 2014). These mixed results may be in part due to an incomplete perspective on 

concreteness that confounds potential independent variables. Petersen and McNeil (2013) indeed 

found an interaction between perceptual richness (i.e., the degree of visual stimulation) and 

established knowledge (i.e., the degree to which a representation evokes an individual’s prior 

knowledge about the phenomenon, object, or animal it aims to represent). This provides 

empirical evidence that perceptual richness and concreteness are two different variables and 

should be operationalized as such. 

Most definitions of concreteness in the literature, however, do not distinguish between 

perceptual richness and the prior knowledge evoked by concreteness. Abstract visual 

representations tend be both perceptual bland in appearance and evoke little prior knowledge. 

Meanwhile, concrete visual representations tend be perceptually rich in appearance because they 

are trying to evoke the established knowledge an individual has of a particular real-world 

context. That said, abstract representations can indeed be perceptually rich and concrete 

representations can be perceptually bland. Thus, the current conception of the concreteness 

spectrum regarding visual representations confounds perceptual richness with prior knowledge. 

The current study aims to address this issue by individually assessing the effects of 

perceptual richness and concreteness (i.e., the degree of prior knowledge that is evoked by visual 
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representations) on children’s ability to learn about inequalities and transfer their understanding 

to related mathematical problems. Mathematical inequalities present an unequal comparison of 

magnitudes where one quantity is greater than or less than a second quantity. Inequalities can be 

represented symbolically with numerals. When teaching inequalities, teachers may use 

manipulatives so that students can physically interact with the quantities, or they can use visual 

representations where images are used to represent the quantities on a chalkboard or digitally. 

This study will use visual representations to represent the sets of quantities, whereby the visual 

representations will vary in both perceptual richness and concreteness. Doing so will not only 

expand on the current literature, adding more nuance to definitions of concreteness, but may also 

provide practical advice for designing visual representations, be it for research or educational 

purposes. Specifically, this research might help provide recommendations for teachers to choose 

the most appropriate kinds of visual representations based on their learning goals. 
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Chapter 2: Literature Review 

Pictures, illustrations, graphs, and diagrams are common visual representations used in 

mathematics education (Arcavi, 2003). Their function is to help elucidate the underlying abstract 

mathematical concepts and relationships for learners to increase their comprehension and 

problem-solving skills (Arcavi, 2003; Urban et al., 2017; Yung & Paas, 2015). In their didactic 

exploration of visual representations in early mathematics education, Urban and colleagues 

(2017) stated that visual representations are especially critical for promoting understanding of 

novel or unfamiliar concepts. Visual representations may also help reduce children’s cognitive 

load compared to mathematics problems without external representations, thus making problems 

easier for them to solve (Yung & Paas, 2015). They can also help children solve problems more 

quickly and reduce errors (Múñez et al., 2013). Because of their common use and potential 

benefits to mathematics learning, it is critical to investigate the affordances visual representations 

may have. 

Visual Representations: Pictures or No Pictures? 

To date, most of the literature on visual representations has focused on the impact of 

illustrations on students’ mathematical problem-solving (Clinton & Walkington, 2019; Cooper et 

al., 2018; Dewolf et al., 2014; Kulm et al., 1974; Yung & Paas, 2015). Illustrations are images 

that accompany word problems that could be solved without the pictures; thus, illustrations act as 

add-ons to the mathematics problems. Additionally, illustrations are often meant to be realistic 

and convey real-world phenomenon or objects, such as the distance between a helicopter and the 

Statue of Liberty or a cartoon dog chewing on a length of rope (see Clinton & Walkington, 2019; 

Cooper et al., 2018).  

Illustrations are often added to word problems to either help students solve the problems 
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or increase student interest in the problem, but studies show mixed results regarding their 

effectiveness. Compared to word problems without illustrations, studies found that illustrations 

helped students’ problems solving (Yung & Paas, 2015), had no effect on problem-solving 

(Berends & van Lieshout, 2009; Clinton & Walkington, 2019; Dewolf et al., 2014; Klum et al., 

1974), or even hindered problem-solving for students with lower cognitive skill (Klum et al., 

1974). The moderating effect of students’ mathematics skills on the impact of illustrations was 

also demonstrated in a trigonometry study, where illustrations helped students with higher 

mathematics abilities but hindered those with lower abilities (Cooper et al., 2018). Therefore, 

illustrations can differentially impact students’ learning based on their level of prior knowledge. 

Visual representations in mathematics are not always presented as illustrations, as is the 

case with picture problems. Unlike standard word problems, picture problems are arithmetic 

problems created with images; the pictures contain all (or most) of the mathematical information 

necessary for problem-solving, such as representing the relevant quantities with pictures (van 

Lieshout & Xenidou-Dervou, 2018). When comparing students’ performance on word problems 

with no visual representations to picture problems, Hoogland et al. (2018) found that students 

scored better on picture problems. A study by van Lieshout and Xenidou-Dervou (2018) showed 

similar results when comparing picture problems to word problems delivered auditorially and 

combined picture-auditory problems; students’ problem-solving was better with pictures than on 

standard word problems. In general, picture problems were more helpful than standard word 

problems, while word problems with or without illustrations differentially impacted students 

based on their prior mathematics knowledge. 

A critical difference between illustrations added to word problems compared to picture 

problems are that picture problems deliver all the mathematical information through the same 
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medium, namely pictures, while illustrations on word problems create mixed mediums: 

information is partially symbolic with written language and numerals, and partially illustrative, 

with images. In 2020, Elia assessed how mixing pictures and symbols in picture problems 

impacted students’ performance. In Elia’s research, there were three conditions: (a) picture-

picture problems, where the quantities in the problem were represented by pictures only (e.g., six 

monkeys and two new monkeys at the zoo), (b) picture-symbol problems, where one quantity 

was represented with pictures and the other was represented with a numeral (e.g., 2 new lollipops 

being added to a box, and inside the box is a lollipop marked by the number 6 to indicate 6 

lollipops in the box), and (c) symbol-symbol problems, where both quantitates were represented 

with numerals (e.g., a toy car marked with the number eight). The researcher found a main effect 

of picture type, where children had higher accuracy scores on picture-picture problems than on 

picture-symbol and symbol-symbol problems, thus further demonstrating that pictures can help 

students’ performance on arithmetic problems.  

Additionally, Elia (2020) found that students in the mixed picture-symbol condition 

performed worse compared to the other conditions depending on the type of arithmetic problem. 

These results demonstrate that mixed media for delivering information can negatively impact 

students’ performance and may partially explain why illustrations added to word problems 

produce mixed results whereas pictures in pictorial problems are consistently more beneficial. In 

short, the effectiveness of visual representations on children’s mathematics learning may differ 

based on whether word problems are presented as picture-picture problems, picture-symbol 

problems, or with added illustrations. 

Affordances of Representations on Learning and Transfer 

While learning has been defined as internalizing a schema in one context and being to 
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recall and apply it under similar conditions, transfer is the ability to recall and apply the learned 

concept to novel situations (Salomon & Perkins, 1989). Transfer can further be subdivided into 

near-transfer and far-transfer, which refers to the distance from which the task is removed from 

the original learning conditions; near-transfer being closer and far-transfer being farther.  

In representation research, transfer is typically assessed by modifying the representations 

used in the learning context. In near-transfer, the task would typically use a different 

representation than that used at learning to assess whether individuals have abstracted their 

understanding to other representations. For example, in one condition, Kaminski and colleagues 

(2013) used black shapes during the learning task, but used clouds that changed in size and color 

during the transfer task. In far-transfer, the task would typically eliminate the use of concrete or 

pictorial representations to assess whether individuals have abstracted the underlying concept to 

more generalized representations. In their study, for example, Siler and Willows (2014) included 

the same representations as Kaminski and colleagues during their learning conditions, but at 

transfer they eliminated the visual representations and used numbers instead. 

The properties of visual representations can additionally carry different affordances for 

both learning and the transfer of conceptual understanding to novel problems (Kaminski & 

Sloutsky, 2013; Menendez et al., 2020). Perceptual richness refers to how visually interesting a 

representation is and exists on a theoretical continuum from bland (i.e., boring and unalluring) to 

rich (i.e., attractive and stimulating; Petersen & McNeil, 2013). Some studies have assessed the 

effects of visual representations’ perceptual richness—typically framed as the presence or 

absence of extraneous information—on participants’ learning and transfer (Kaminski & 

Sloutsky, 2013; Menendez et al., 2020). In these studies, there was typically no difference in 

participants’ ability to learn based on whether they were shown perceptually rich or bland visual 
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representations. However, on transfer tasks, participants shown bland visual representations 

outperformed those shown perceptually rich visual representations.  

Other studies have assessed the effects of visual representations’ the degree of 

concreteness on learning and transfer (Belenky & Schalk, 2014; De Bock et al., 2011; Kaminski 

et al., 2008, 2013; Siler & Willows, 2014). According to Kaminski et al. (2013), concreteness 

can refer to either perceptual concreteness or conceptual concreteness. Perceptual concreteness is 

defined in much the same way as perceptual richness (i.e., the visual details or lack thereof), but 

with the added notion that perceptual concreteness triggers a viewer’s prior knowledge about the 

context to which the representation refers. Conceptual concreteness is defined as the degree to 

which a concept is grounded in reality and more easily perceived through the senses. Kaminski et 

al. gave the example of cats versus the concept of infinity, whereby cats are more easily 

perceived and thus concrete, and infinity is more abstract. Kaminski and colleagues’ research has 

predominately focused on perceptual concreteness. Regardless of the type of concreteness being 

assessed, it exists on a spectrum from concrete to abstract or generic, whereby concrete 

representations provide information that elicits an individual’s knowledge of the context and 

abstract representations do not activate such information.  

Other authors have developed similar understandings of visual representations. Belenky 

and Schalk (2014) refer to this spectrum as grounded versus idealized. The authors defined 

grounded representations as concrete representations that trigger a person’s knowledge of 

specific instantiations of real-world objects, and idealized representations as abstract 

representations that activate little to no prior knowledge. Urban and colleagues (2017) similarly 

distinguished between object models and schematic models, whereby objects models are 

representations of real-world objects in mathematics problems and schematic models replace 
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real-world objects with abstract shapes. 

Under the concreteness spectrum, research has shown that there was either no difference 

in learning when using abstract or concrete visual representations (Kaminski et al., 2008, 2013) 

or that concrete representations were better than abstract ones for learning (Goldstone & Son, 

2005). On transfer tasks, participants performed better when they had learned with abstract 

representations compared to concrete representations (Goldstone & Son, 2005; Kaminski et al., 

2008, 2013). Belenky and Schalk (2014) insisted that concrete representations were more 

effective for learning tasks because the concrete features could help students activate pertinent 

internal representations, so long as the representations contained few irrelevant details (i.e., low 

perceptual richness). They also argued that abstract representations were more effective for 

transfer because their lack of concrete features made it easier for students to abstract the 

underlying mathematical concepts in the problem, which are more easily transferred to novel 

contexts. Similarly, Urban and colleagues (2017) stated that object models (i.e., concrete 

representations) were suitable for learning and that schematic models (i.e., abstract 

representations) promoted the abstraction of mathematical concepts, as is the goal of transfer. 

In an extension of Kaminski et al.’s (2008) study, De Bock and colleagues (2011) 

supported Belenky and Schalk’s (2014) and Urban and colleagues’ (2017) arguments in their 

research. They also argued that the Kaminski and colleagues’ transfer task more closely matched 

their abstract representation condition than their concrete representation condition, which may be 

why they found an advantage of abstract over concrete. Thus, De Bock and colleagues (2011) 

varied whether participants were shown abstract or concrete visual representations during the 

learning and transfer tasks, creating four conditions: (a) AA, abstract representations at learning 

and transfer, (b) AC, abstract representations at learning and concrete at transfer, (c) CA, 
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concrete during learning and abstract at transfer, and (d) CC, concrete during learning and 

transfer. They found a partial advantage of concrete representations on the learning task, where 

participants in the concrete learning groups outperformed those in the AC group, but not the AA 

group. Regarding transfer, they found that CC participants scored higher than the AC 

participants, and the AA participants scored higher than the CA participants. Thus, the 

researchers concluded that participants performed better on transfer tasks when their visual 

representations matched at learning and transfer. 

Siler and Willows (2014) extended Kaminski et al. (2008), De Bock et al. (2011), and 

others’ research by assessing the effects of concreteness when the transfer task did not use visual 

representations. They changed the transfer task to be number-based rather than picture-based to 

better assess whether students abstracted the arithmetic concepts from the lesson. They argued 

that the use of picture-based representations at transfer in prior studies failed to appropriately 

capture whether students were truly understanding the underlying mathematics concepts, which 

transfer tasks are meant to assess.  

Siler and Willows created three conditions: (a) abstract condition, where the visual 

representations were basic black shapes, (b) abstract-relevant condition, where the 

representations were rectangles with shaded parts in thirds, and (c) concrete-relevant condition, 

where the representations were measuring cups with shaded parts in thirds. In the relevant 

conditions, the shaded proportions were associated with the underlying fraction arithmetic 

concept to be learned. They found that there was no effect of visual representation on 

participants’ learning, similar to Kaminski and colleagues (2008, 2013). Regarding the near-

transfer task, however, they reported that participants in the concrete-relevant condition 

outperformed those in the abstract-relevant condition, who outperformed those in the abstract 
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condition. On the far-transfer task, the concrete-relevant condition was better than both abstract 

conditions. Thus, Siler and Willows’ study (2014) indicated that concrete representations might 

be better for transfer than generic ones. They posited that these results occurred because the 

transfer task from prior studies, such as that used in Kaminski et al. (2008), made the features of 

the concrete representations irrelevant, whereas the design of Siler and Willows’ (2014) study 

made the same features relevant. 

Similar findings were demonstrated in research involving concrete objects as 

mathematical representations (also known as manipulatives). Carbonneau and Marley (2015) for 

example, assessed learning by asking preschoolers to compare quantities using manipulatives, 

whereby the sets in the problem were either represented with green chips (bland manipulatives 

that were more abstract) or frog counters (rich manipulatives that were more concrete). 

Concerning the learning task, the students were more accurate when shown bland manipulatives 

compared to rich manipulatives. On the transfer task, the opposite effect was found: Students 

who used rich manipulatives performed better than those who used bland manipulatives. The 

meta-analysis by Carbonneau and colleagues (2013) came to a similar conclusion: Perceptually 

bland (and therefore abstract) manipulatives were better for learning and perceptually rich (and 

therefore concrete) manipulatives were better for transfer. 

Interestingly, although the manipulatives research supports Siler and Willows (2014) in 

terms of the effects of perceptual richness on children’s transfer, manipulatives research reports 

different effects on learning. Visual representation research either indicated no effect (Kaminski 

& Sloutsky, 2013; Kaminski et al., 2008, 2013; Menendez et al., 2020; Siler & Willows, 2014), 

or that concrete representations were superior to abstract representations for learning (Belenky & 

Schalk, 2014; De Bock et al., 2011; Goldstone & Son, 2005). Some manipulatives research, on 
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the other hand, reported an effect of abstract (i.e., bland manipulatives) over concrete (i.e., rich) 

manipulatives on learning (Carbonneau & Marley, 2015; Carbonneau et al., 2013). 

Perceptual Richness vs. Prior Knowledge of Representations 

A potential reason for the aforementioned mixed results may be because definitions of 

concreteness, and the way it is typically operationalized, confound perceptual richness and prior 

knowledge. Representations that tend to be more concrete also tend to incorporate more 

extraneous information—that is, they tend to be more perceptually rich. Representations that are 

more abstract tend to be more perceptually bland, displaying little to no extraneous information. 

This is not always necessarily the case, however. Concrete representations, those that evoke 

children’s prior knowledge of specific contexts and real-world entities, can be more or less 

perceptually rich. Take as an example the bug life-cycle pictures Menendez et al. (2020) used to 

teach students about the biological concept of metamorphosis. The pictures of bugs were either 

black-and-white outlines of real-life bug species or colored drawings of real-life bug species. 

Both were drawings of the same bug life cycle; as such, both were concrete because students 

typically have prior knowledge of bugs. The black-and-white representations, however, were 

perceptually bland, whereas the colored representations were perceptually rich. Thus, abstract 

visual representations can similarly vary in their degree of perceptual richness. 

Kaminski and Sloutsky’s study (2013) presented a perfect example of confounding 

perceptual richness and prior knowledge. In their study, participants in one condition were 

presented graphs composed of monochromatic bars—that is, the bars were perpetually bland and 

abstract (i.e., unlikely to trigger participants’ prior knowledge of any specific contexts). 

Participants in the other condition were shown bars containing pictures of shoes or flowers, and 

as such, the bars were perceptually rich and concrete (i.e., likely to trigger participants’ prior 
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knowledge of shoes and flowers). While the authors found that the monochromatic bars were 

more effective than the bars with pictures, it is impossible to decipher whether students were 

hindered by the degree of extraneous information in the representations (i.e., the degree of 

perceptual richness), or by the potential activation of students’ prior knowledge about certain 

contexts, or both. 

Petersen and McNeil (2013) attempted to delineate the potential confound between 

perceptual richness and prior knowledge with concrete representations. In their first study, the 

researchers selected eight different objects from a teaching supply store: Two were classified as 

having rich physical features and high prior knowledge (e.g., colorful, plastic animal toys), two 

were classified as having rich features but low prior knowledge (e.g., colorful, sparkly pom-

poms), another two were classified as having bland features and high prior knowledge (e.g., 

uniformly-colored wooden pencils), and the last two were classified as having bland features and 

low prior knowledge (e.g., uniformly-colored wooden pegs). The participants were then given 

the manipulatives to perform counting tasks and a knowledge by perceptual richness interaction 

was found. With low prior knowledge objects, children performed better with rich manipulatives 

than bland ones. With high prior knowledge objects, however, there was no difference in 

children’s performance between using rich or bland objects. As such, rich manipulatives were 

tentatively better than bland manipulatives, but only when children had low prior knowledge of 

the objects. 

The authors performed a second study, creating their own manipulatives to have greater 

control over prior knowledge and physical richness. The rich manipulatives were shiny red and 

green shapes, and the bland manipulatives were dull shades of grey. Children in the high prior 

knowledge condition were introduced to the manipulative a week before the counting tasks, 
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whereas the children in the low prior knowledge condition never saw them before the counting 

tasks. With greater control, the researchers found that there was no difference in children’s 

performance with bland or rich manipulatives when they had low prior knowledge of the objects. 

When the children had high prior knowledge, the bland manipulatives were better than rich 

manipulatives. Thus, bland manipulatives may have been better than rich manipulatives only 

when children had high prior knowledge of the objects. Petersen and McNeil (2013) thus 

provided evidence that prior knowledge and perceptual richness are two separate variables. 

In sum, the literature on the affordances of representations indicates different effects 

between learning and transfer. For learning, manipulatives demonstrated an effect of bland over 

rich (Carbonneau & Marley, 2015; Carbonneau et al., 2013; McNeil et al., 2009), and this is 

perhaps solely for high prior knowledge manipulatives, according to Petersen and McNeil’s 

(2013) more controlled second study. Meanwhile, visual representations research either shows 

no effect on learning (Kaminski & Sloutsky, 2013; Kaminski et al., 2008, 2013; Menendez et al., 

2020; Siler & Willows, 2014), or that concrete representations are better for learning than 

abstract representations (Belenky & Schalk, 2014; De Bock et al., 2011; Goldstone & Son, 

2005). Interestingly, Petersen and McNeil’s first study similarly found that rich manipulatives 

may be more beneficial than bland manipulatives, but only when children had low prior 

knowledge of the objects.  

For transfer, some studies suggested that abstract or bland visual representations were 

better than concrete or rich visual representations (Belenky & Schalk, 2014; Goldstone & Son, 

2005; Kaminski & Sloutsky, 2013; Kaminski et al., 2008, 2013; Menendez et al., 2020), while 

others reported that concrete was better than abstract, or rich was better than bland (Carbonneau 

& Marley, 2015; Carbonneau et al., 2013; Siler & Willows, 2014). However, aside from Petersen 
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and McNeil (2013), these studies either confounded or did not account for the differences 

between perceptual richness and prior knowledge, a gap in the literature that will be addressed in 

the present study. 

Present Study 

Theoretically, visual representations can vary in their degree of perceptual richness and 

the degree to which they activate children’s prior knowledge. In the case of visual 

representations, perceptual richness more narrowly refers to the visual properties of the image, 

including the colors, visual textures (e.g., shading), dimensions (3D vs. 2D), and degree of detail 

they contain. Prior knowledge of visual representations is then defined as the knowledge a 

representation triggers in the individual about real-world phenomena, concepts, and personal 

experiences. The literature on visual representations views concreteness as a function of 

established knowledge, where concrete (or grounded) representations activate rich networks of 

prior knowledge, while abstract (idealized or generic) representations activate little to no prior 

knowledge.   

As previously mentioned, research on representations (whether they were manipulatives 

or visual representations) demonstrated effects on learning and transfer based on their degree of 

concreteness. Several conceptualizations of concreteness in previous research, however, 

confounded perceptual richness and prior knowledge; concrete representations were typically 

also perceptually rich and abstract representations were usually bland. Thus, the question arises 

whether perceptual richness and prior knowledge evoked by the concreteness of visual 

representations differentially impact children’s mathematics comprehension and performance. 

This study extricates perceptual richness from its operationalization of concreteness. As 

such, concreteness is defined solely by the degree to which the representations are likely to 
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evoke children’s prior knowledge. Perceptual richness is defined as the visual properties of an 

image, including color and other details. The present study aims to investigate the impact of 

perceptual richness and concreteness associated with visual representations on children’s 

learning and understanding of inequalities. I have adapted and expanded Carbonneau and 

Marley’s (2015) study, which demonstrated the effects of perceptual richness on learning and 

transfer. I modified their study to assess the affordances of visual representations rather than 

manipulatives, and expanded it to assess the effects of concreteness and perceptual richness as 

two separate factors. Carbonneau and Marley (2015) also assessed the impact of guidance level 

and found that children performed better with high guidance compared to low guidance across 

both learning and transfer tasks. Additionally, there was no interaction between guidance and 

perceptual richness, except on the transfer task: Participants with high guidance performed 

equally well regardless of manipulative type, but with low guidance there was an advantage for 

rich manipulatives over bland ones. The high guidance condition better mimics authentic 

classroom teaching and was thus used in the present study for the lesson on inequalities. 

Participants were randomly assigned to one of three visual representations conditions: (a) 

bland abstract representations, (b) rich abstract representations, and (c) rich concrete 

representations. The perceptually bland representations were uniform in color while the 

perceptually rich representations were multi-colored. The abstract representations were shapes 

because, according to Kaminski and colleagues (2013), shapes would not evoke much specific 

knowledge of any one physical, real-world context. The concrete representations were designed 

to activate children’s prior knowledge of a specific, real-world animal (i.e., frogs). I also avoided 

mixing representation types between learning and transfer by ensuring that participants assigned 

to a condition were shown the same representations at learning and at transfer when applicable 
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(De Bock et al., 2011). 

The children’s number knowledge was assessed at the start of the study to obtain a 

baseline. They then participated in an interactive, online lesson on mathematical inequalities with 

a researcher, where pictures were used to represent the quantities in the inequalities (i.e., picture 

problems; van Lieshout & Xenidou-Dervou, 2018). After the lesson, the children engaged in five 

tasks (also designed as picture problems), each assessing different conceptual components of 

mathematical inequalities. The first three tasks were learning tasks, all picture-picture problems, 

and the last two were transfer tasks, a near-transfer, picture-symbol problem task and a far-

transfer, symbol-only problem task. 

Two specific research questions guided this study: (a) How does the perceptual richness 

of visual representations impact participants’ performance on learning and transfer tasks about 

inequalities? (b) How does the degree of concreteness (i.e., the extent to which the representation 

activates prior knowledge) impact children’s performance on learning and transfer tasks about 

inequalities? 

With regards to perceptual richness, I predict that children shown bland representations 

will outperform those shown rich representations on the learning task. The prediction is based 

primarily on Petersen and McNeil (2013)—the only study I know of to have disentangled 

perceptual richness from prior knowledge. I also predict that children shown rich representations 

will outperform those shown bland representations on the transfer tasks. While Petersen and 

McNeil did not assess transfer, studies that similarly found an effect of bland over rich on 

learning demonstrated an effect of rich over bland on transfer (Carbonneau & Marley, 2015; 

Carbonneau et al., 2013). 

With regards to concreteness, I predict no performance difference between children 
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shown abstract representations compared to concrete representations on the learning tasks 

because the majority of studies that explicitly assessed the effects of concreteness found no effect 

on learning (Kaminski et al., 2008, 2013; Siler & Willows, 2014). For the near-transfer task, 

where pictures are still included, I predict that participants shown abstract representations will 

outperform those shown concrete representations. Studies whose transfer tasks included visual 

representations reported an advantage of abstract over concrete (Goldstone & Son, 2005; 

Kaminski et al., 2008, 2013). For the far-transfer task, where there are no pictures, I predict that 

participants shown concrete representations will outperform those shown abstract 

representations. This is because studies with symbol-only transfer problems reported an 

advantage of concrete over abstract (Carbonneau & Marley, 2015; Siler & Willows, 2014). 

Answering this study’s questions is particularly critical because although the use of 

pictures is promoted in mathematics instruction, not all visual representations are created equal. 

Some are much more colorful and detailed, while others are more simplistic and bland. Some are 

more reminiscent or real-world objects and are thus more likely to evoke children’s prior 

knowledge, while some are more abstract or novel to children. The literature on the affordances 

of pictures have yet to differentiate between perceptual richness and prior knowledge, which may 

differentially impact students’ learning and their ability to transfer their understanding to novel, 

but conceptually similar, mathematics problems. As has been shown with manipulatives, 

perceptual richness and prior knowledge—qualities associated with the objects themselves—

influence children’s problem-solving (Petersen & McNeil, 2013). It is possible that these same 

features of static images may also impact children’s mathematics performance. Therefore, when 

teachers create pictorial representations, it is critical to determine which kinds of images are best 

suited for improving children’s mathematics comprehension. 
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Chapter 3: Method 

Participants 

The participants were recruited from Canada, the United Kingdom, or unspecified. A 

recruitment flyer was distributed across various social media platforms and contacts, including 

school principals and school boards. Parental consent for children’s participation was obtained 

prior to their one-on-one interviews, and only children who provided assent before their 

interview took part in the study. Fifty parents reached out about the study, but only 29 consented 

(one with twins) for a retention rate of 58%. Of the 30 participants, one was excluded for having 

failed the screening measure and one was excluded for being the only four-year-old in the 

sample; all others were in kindergarten. This resulted in a final sample of 28 participants, where 

61% were recruited from Quebec school boards (n = 17), 3% from Facebook (n = 1), and 11% 

from the Children Helping Science recruitment platform (n = 3). It is unknown from where the 

remaining 25% were recruited (n = 7). Students had a mean age of 70.25 months (SD = 5.49), 

and 14 were female (50%). Parents also reported their children’s ethnicity on a demographic 

survey whereby 21 were Caucasian (75%), 3 were Asian (11%), and 4 were multi-ethnic (14%).  

Design 

The study used a 3(condition: bland abstract, rich abstract, rich concrete) between-groups 

design. Participants were randomly assigned one of three visual representation conditions: (a) 

perceptually bland and abstract visual representations (n = 12), (b) perceptually rich and abstract 

visual representations (n = 8), or (c) perceptually rich and concrete visual representations (n = 8). 

The bland abstract condition could be compared to the rich abstract condition to test for effects 

of perceptual richness while controlling for concreteness. The rich abstract could be compared to 

the rich concrete condition to test for effects of concreteness while controlling for richness. 
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Experimental Manipulation 

All visual representations were used to represent sets of quantities during the inequalities 

lesson and applicable measures. Participants in the bland abstract condition saw visual 

representations that were either complete green circles or grey circles with a divot, and were 3.35 

cm by 3.35 cm on the PowerPoint slide. Participants in the rich abstract condition were shown 

rainbow-colored, unusual shapes (all identical), which were 3.56 cm by 3.56 cm on the 

PowerPoint slide. Participants in the rich concrete condition saw green cartoon frogs that were 

3.63 cm by 3.35 cm. Each visual representation was shaped to appear as the same size as the 

others, and all quantities were presented in identical configurations on the slides. 

Figure 1 

The Visual Representation Conditions 

 

Note. Participants in the Bland Abstract condition were only shown one of the two. 
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The Inequalities Lesson 

The interactive inequalities lesson taught children about the concept of inequalities (see 

protocol in Appendix A). This lesson was modified for online delivery from Carbonneau and 

Marley’s (2015) high-guidance instruction condition. The purpose was to determine how the 

different visual representations used in the lesson impacted students’ performance on subsequent 

learning and transfer task that assessed different conceptual components of inequalities.  

Participants were first introduced to the concept of inequalities through a crocodile 

analogy in which participants were shown the picture of a crocodile head with its mouth open 

and were told that crocodiles want to eat the larger quantities. All quantities were represented 

using the pictures assigned to the participants’ condition. Students were then shown two 

examples of the crocodile with its open mouth facing the larger of two quantities. In the first 

example the crocodile faced the larger quantity and in the second example participants were 

asked to select one of two crocodiles (left facing and right facing) that would eat the larger 

quantity. The researcher corrected children if they selected the wrong facing crocodile. For each 

example, the researcher read the inequality to the participants (e.g., “four is more than two,” 

“three is less than five”).  

The students were then guided through three practice inequalities with the crocodile. For 

each practice item, they first selected the crocodile that would eat the bigger pile and then read 

the inequality. Corrective feedback was provided when necessary. Next, participants were 

introduced to the inequality symbol and the crocodile as an analogy—both representations open 

towards the larger of the two presented quantities, as if eating the larger quantity. Participants 

were shown one example of an inequality with the inequality symbol and how to read it before 

being presented with three practice inequalities using the inequality symbol. As with the 
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crocodile practice inequalities, participants selected the proper inequality symbol and were asked 

to read the inequality. Corrective feedback was again provided when necessary. 

Figure 2 

Example of a Practice Item Using the Crocodile During the Inequalities Lesson 

                   

 

Note. The example uses the visual representations from the Rich Concrete condition. Aside from 

the crocodiles, the visual representations differ by condition. Participants were shown the first 

slide and were asked: “Which crocodile eats the bigger pile? Blue or Yellow?”. After corrective 

feedback, they were shown the second slide and were asked: “Can you read this inequality?” 

Measures 

Screening Measure 

Most of the tasks in the subsequent measures were presented in a multiple-choice format. 

The possible answers were embedded in colored boxes and participants had to name the color 

that held their answer. Thus, a screening measure was used to assess whether participants were 

capable of adequately responding to this online testing format considering their young age (see 

Appendix B). 

The screening measure was comprised of two components. The first part was a 10-item 

training session to familiarize the participants with the names of the five different possible color 

options for the multiple-choice questions. Participants were asked to name the color and the 
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researcher corrected them when necessary. They were presented each of the five colors twice to 

ensure that they used the proper color name. The second component consisted of the actual 

screening test where participants were asked to name the color of the box with the rabbit inside. 

There were three items for a total of three points. Participants were deemed capable of 

responding to the online format only if they scored all three items correctly. 

Number Knowledge Measures 

The number knowledge measures were inspired by Carbonneau and Marley (2015), who 

assessed ordinality, cardinality, arithmetic, and number recognition. Ordinality, cardinality, and 

arithmetic were assessed in this study using the Preschool Early Numeracy Scales (PENS; 

Purpura & Lonigan, 2015). Specifically, ordinality was assessed using the Set Comparison 

subscale, cardinality was assessed using the Set-to-Numerals subscale, and arithmetic was 

assessed using items 55, 56, 58, and 59 of the Story Problems subscale to best match Carbonneau 

and Marley’s (2015) method. The number recognition measure was based on Carbonneau and 

Marely’s (2015) number recognition test because the PENS did not have such a measure. All 

tasks were modified for online data collection. See Appendix C for sample items of each number 

knowledge measure. 

Ordinality. The ordinality measure had six items assessing children’s ability to identify 

most and least quantities, three items for each. The ordinality measure had acceptable internal 

consistency (α = .76). 

Cardinality. The cardinality measure had five items assessing children’s ability to match 

a set of dots to a numeral and numerals to a set of dots: three set-to-numeral and two numeral-to-

set. The cardinality measure had good internal consistency (α = .80). 

Arithmetic. The arithmetic measure had four items assessing children’s ability perform 
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basic mental arithmetic presented in a word problem. The internal consistency of the arithmetic 

measure was low (α = .25). 

Number Recognition. The number recognition measure had four items assessing 

children’s ability to identify numerals. The first two items asked participants to identify a 

numeral among three other non-numeral symbols, and the last two items asked participants to 

identify the non-numeral symbol amongst three other numerals. 

Coding. For each number knowledge measure, participants received 1 point for correct 

responses and 0 points incorrect responses. A mean number knowledge composite score was 

then created by summing the total points across all number knowledge measures and dividing by 

the total number of pretest items attempted. 

Learning and Transfer Tasks 

There was a total of five tasks, (see Appendix D for the protocol and sample items on 

each task). Four tasks—judging inequalities, completing inequalities using symbols, completing 

inequalities using numerals, and number line—were inspired by Carbonneau and Marley’s 

(2015) measures. All tasks were modified from the original for online data collection and to 

account for differences between the use of manipulatives and visual representations. The fifth 

task—reading inequalities—was an additional task I created for this study to capture a more 

complete picture of children’s conceptual understanding of inequalities.  

All tasks with inequalities showed quantities, not numerals, and the quantities were 

represented using the visual representations of the participants’ assigned condition. During the 

administration of each task, the researcher wrote down the participants’ responses on a scoring 

sheet along with their score on each item. 

Judging Inequalities. The judge task was adapted from Carbonneau and Marley’s (2015) 
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first conceptual task, which was a learning task that assessed participants’ ability to recognize 

whether an inequality is correct or incorrect. Correct inequalities were those where the open face 

of the inequality symbol was directed towards the larger of the two quantities (e.g., “4 > 1”). 

Incorrect inequalities were those where the open face of the inequality symbol was towards the 

smaller of the two quantities (e.g., “5 > 9”).  

The judge task had six items: three items were correct and three items were incorrect. 

Additionally, the first three items presented greater than inequalities (i.e., >) and the last three 

items presented less than inequalities (i.e., <). For each item, participants were asked to show a 

“thumbs up” to the camera if they judged the inequality to be correct, and a “thumbs down” to 

the camera if they judged the inequality to be incorrect. Participants scored 1 point for each 

correctly-judged item and 0 points for each incorrectly-judged item. A mean judge score was 

calculated by summing the total points and dividing by the total number of items completed. 

Completing Inequalities using Symbols. The symbol task was adapted from 

Carbonneau and Marley’s (2015) second conceptual task that assessed participants’ ability to 

choose the correct inequality symbol (greater than or less than) to produce a correct inequality. 

On this task, two different quantities were presented on the slide with the appropriate visual 

representation with a vacant space outlined in the center for the symbol (e.g., 8 __ 6). The greater 

than symbol was presented in a blue box and the less than symbol was presented in a yellow box 

below the missing symbol sentence. The children were asked to select the symbol that would 

make a good inequality by naming the color of the box. 

The symbol task had six items. Half of the items had larger numbers on the left-hand side 

of the screen, such that a good inequality would require selecting the greater than symbol ( > ). 

The other half of the items had larger numbers on the right-hand side of the slide, such that a 
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good inequality required selecting the less than symbol ( < ). Participants scored 1 point for each 

correct response and 0 points for each incorrect response. A mean symbol score was calculated 

by summing the points and dividing by the total number of items completed. 

Reading Inequalities. The read task was created because of the emphasis in the 

Inequalities Lesson on children’s ability to read inequalities. This task assessed participants’ 

ability to (a) correctly read greater than and less than inequalities (i.e., the ability to read the 

direction of the inequality symbol), and (b) correctly read the magnitude relationship between the 

quantities -- that is, reading which quantity is either larger or smaller in relation to the other, 

regardless of the direction of the inequality symbol. Participants were shown a slide with an 

inequality and asked to read the inequality out loud. There were six items in the read task, half of 

the items were greater than inequalities and the other half were less than inequalities.  

Participants received two scores for the read task. The first score is the direction read 

score, which assessed whether participants correctly or incorrectly read the inequality based on 

the direction of the inequality symbol. Participants received 1 point for correctly-read 

inequalities and 0 points for incorrectly-read inequalities.  

The second score is the magnitude read score, which assessed whether participants could 

correctly read the magnitude of the inequality, regardless of the direction of the inequality 

symbol. For example, on item 1 (i.e., 4 > 3), participants may have read it as “three is less than 

four,” which preserves the correct magnitude of the relationship, or “four is more than three.” 

The magnitude was counted as incorrect if they read “four is less than three” or “three is more 

than four.” Participants received 1 point for correctly reading the magnitude, and they received 0 

points for incorrectly reading the magnitude.  

For both direction and magnitude reading, items were still counted as correct if 
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participants incorrectly identified a quantity in the problem, as long as they were not off by more 

than one. For example, if a participant said, “five is more than three” instead of “four is more 

than three” for 4 > 3, they still received a full point. Items were also considered correct if they 

used correct variations of “more than,” including “bigger” or “greater than,” and “less than” or 

“smaller.” The mean direction read score and the mean magnitude read score were each 

calculated by summing the total points and dividing by the total number of items completed. 

Completing Inequalities using Numerals. The numeral task was adapted from 

Carbonneau and Marley’s (2015) procedural task, a near-transfer task that assessed participants’ 

ability to create correct inequalities using numerals. The task assessed near-transfer because 

participants had only been presented inequalities with visual representations of quantities (i.e., 

sets of dots) during the lesson and prior measures. The numeral task, however, created a 

numeral-to-set comparison (i.e., a picture-symbol problem instead of a picture-picture problem). 

Participants were presented with an inequality missing a number on the left-hand side 

(e.g., ____ > 7; the right-hand side presented a set of seven visual representations). They were 

asked to select a numeral from three possible choices to create a correct inequality, where only 

one response out of three would create a correct inequality and the two other possibilities would 

create incorrect inequalities. Each choice was presented in a blue, yellow, or pink box at the 

bottom of the slide, and the participant named the color of the box that contained the correct 

answer.  

The numeral task had six items in total. Participants received 1 point for each correctly-

answered item and 0 points for each incorrect answer. A mean numeral score was calculated by 

summing the total points and dividing by the total number of items completed. 

Number Line. The number line task was the last task and was adapted from Carbonneau 
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and Marley’s (2015) transfer task. The task was a far-transfer task that assessed participants’ 

abilities to complete magnitude comparisons on a number line. It was considered a far-transfer 

task because it presented magnitude comparisons on a number line rather than in a number 

sentence. Participants were first given a brief explanation of the number line, after which they 

were presented with a number line from one to ten, with a target number bolded and in red.  

There were six items on the number line task. Three items asked participants to select two 

numbers on the number line that were more than the target number and the remaining three items 

asked them to select two numbers that were less than the target number. Correct answers were 

any selected number that correctly fit the direction of the magnitude comparison in relation to the 

target number. For each item, participants received 2 points if both numbers named were correct, 

1 point if only one of the two numbers was correct, and 0 points if both numbers named were 

incorrect. The number line score was the mean number of points on each item, then divided by 

two so that the mean score would be comparable to the mean scores of the other measures.  

Missing data. For all scored measures, the participants’ answers were marked as missing 

if the participants did not want to answer the items, but they received 0 points if they said they 

did not know the answer. In the cases where a parent or guardian attempted to assist the child, 

participants were scored based on the answer they gave prior to any assistance and were given a 

missing score if a parent or guardian assisted prior to letting the child answer on their own. 

Lastly, when there was poor internet connection and responses were inaudible, participants 

received a missing score. 

Procedure 

Children were interviewed one-on-one with a researcher online via Zoom. Video 

recordings of each interview were obtained, and each interview lasted between 20 to 40 minutes. 
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One participant completed the session on two consecutive days, while the rest did the study in 

one sitting. The interview tasks were administered by screen sharing PowerPoint slides 

controlled by the researcher. 

After the participants’ assent was obtained at the start of the interview, they underwent 

the two-minute screening measure. Participants who passed the screening then moved on to the 

number knowledge measures, which lasted about four to five minutes in total, at which point 

they completed the rest of the study. Children who failed the screening were only administered 

the first two number knowledge measures (ordinality and cardinality) before the interview was 

terminated. 

After the number knowledge measures, students were given an interactive lesson on 

inequalities that took approximately seven minutes. From there, the children completed the first 

three learning tasks and the two transfer tasks (one near- and one far-transfer). The tasks were 

completed in the following order: judging inequalities, completing inequalities using symbols, 

reading inequalities, completing inequalities using numerals, and the number line task. Once the 

tasks were completed, the researcher thanked the child for their participation and ended the 

interview. 
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Chapter 4: Results 

Descriptive Statistics 

The means and standard deviations for each number knowledge measure are reported in 

Table 1. Notably, there was next to no variance in the mean number recognition because all 

participants except one received a perfect score. As such, it was excluded from the mean number 

knowledge score. The total number knowledge score was thus a composite of the ordinality, 

cardinality, and arithmetic scores. 

Table 1 

Means and Standard Deviations of the Number Knowledge Measures 

Mean Score M SD 

Ordinality .95 .13 

Cardinality .87 .25 

Arithmetic .79 .23 

Number Recognition .99 .05 

Total Number Knowledge .87 .14 

 

Note. N = 28. 

Participants’ learning and transfer tasks scores by condition are presented in Table 2. 

Overall, children in the rich abstract condition had higher mean scores on the judge task and the 

numeral task than those in the bland abstract condition, who in turn had higher mean scores than 

participants in the rich concrete condition. Participants in the bland abstract condition had higher 

mean scores on symbol task, direction reading, and number line task than those in the rich 

abstract condition, who in turn had higher mean scores than those in the rich concrete condition. 

Additionally, participants in the bland abstract condition had higher mean scores on magnitude 

reading than those in the rich concrete condition, who in turn had higher mean scores than those 
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in the rich abstract condition. Notably, across all three conditions, participants had higher 

magnitude reading scores than direction reading scores. 

Table 2 

Descriptives of Age, Total Number Knowledge, Learning, and Transfer Task Scores by 

Condition 

Variable Bland Abstract a Rich Concrete b Rich Abstract c 

 M SD M SD M SD 

Age (mo) 70.08 5.50 68.25 6.74 72.50 3.59 

Number Knowledge .88 .11 .85 .20 .88 .13 

Judge .79 .23 .75 .24 .96 .12 

Symbol .90 .29 .71 .32 .81 .35 

Direction .57 .34 .52 .37 .53 .36 

Magnitude .82 .39 .74 .39 .71 .45 

Numeral .47 .23 .35 .30 .48 .24 

Number Line .91 .10 .79 .29 .90 .18 

 
a n = 12. b n = 8. c n = 8. 

Correlations between year of testing, age, total number knowledge score, and mean 

learning and transfer task scores across the entire sample were assessed to check for possible 

covariates (see Table 3).  

There was a large time gap between testing certain participants, which may have 

impacted performance on the learning and transfer tasks because of the different amounts of 

formal education they had received. Nine participants were tested at the beginning of the school 

year in 2020 and 19 participants were tested at the end of the school year in 2021. Year of testing 

was significantly and positively correlated with participants’ age in months, mean total number 

knowledge score, mean judge score, and mean number line score. In contrast, age in months was 
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not significantly correlated with any of the variables. Total number knowledge was significantly 

and positively correlated with numeral score and number line score. 

Regarding the correlations between the learning and transfer scores, participants’ 

direction reading score was significantly and positively correlated with their magnitude reading 

score and their number line score. None of the other learning and transfer task scores were 

correlated. 

Table 3 

Correlation Matrix Between Year of Testing, Age, Total Number Knowledge Score, and 

Learning and Transfer Task Scores 

Variable M SD 1 2 3 4 5 6 7 8 9 

1. Year – – –         

2. Age (mo) 70.25 5.49 .51** –        

3. Number Knowledge .87 .14 .66** .32 –       

4. Judge .83 .22 .46* .27 .37 –      

5. Symbol .82 .31 .02 .24 .25 .27 –     

6. Direction .55 .34 .24 .10 .30 .07 .05 –    

7. Magnitude .76 .39 .26 .02 .18 .01 -.09 .82** –   

8. Numeral .44 .25 .30 .33 .44* .18 .17 .13 .09 –  

9. Number Line .87 .19 .38* .26 .78** .33 .15 .40* .24 .24 – 

 

Note. Year of testing is a point-biserial correlation; two groups, 2020 and 2021. N = 28. *p < .05. 

**p < .01. 

Condition Effects 

To test for potential effects of perceptual richness and concreteness on the learning tasks 

and transfer tasks, several analyses of variance were performed. Year of testing was correlated 

with participants mean judge score, but the point-biserial correlations were not close to equal 
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within the three conditions (bland abstract: r = .36, p = .25; rich concrete: r = .68, p = .06; rich 

abstract: r = –.14, p = .74). Thus, year of testing was not used as a covariate for the analysis of 

variance by condition on the judge learning task. Similarly, the point-biserial correlations 

between year of testing and the number line task were not close to equal within the three 

conditions (bland abstract: r = .09, p = .79; rich concrete: r = .44, p = .28; rich abstract: r = .91, p 

= .002). Thus, year of testing was not used as a covariate for the analysis of variance by 

condition on the number line transfer task. 

The total number knowledge score was correlated to both the numeral and number line 

scores (see Table 3). Further correlations by condition revealed that total number knowledge was 

approximately equally correlated to numeral score in all three conditions (bland abstract: r = .58, 

p = .047; rich concrete: r = .31, p = .45; rich abstract: r = .46, p = .25), and was thus used as a 

covariate. Total number knowledge was also about equally correlated with the number line score 

in all three conditions (bland abstract: r = .73, p = .01; rich concrete: r = .83, p = .01; rich 

abstract r = .76, p = .03), and was thus used as a covariate. 

Learning Tasks 

A one-way ANOVA between the three conditions was performed with the mean judge 

score as the dependent variable. There was no statistically significant difference between 

conditions on their mean judge score, F(2,25) = 2.39, p = .11. Across all three conditions, 

participants appeared to perform equally well on judging whether inequalities were correct or 

incorrect, regardless of condition. This indicates that there was no effect of perceptual richness 

nor concreteness on the judge task. 

A second one-way ANOVA between the three conditions was performed with the mean 

symbol score as the dependent variable. There was no statistically significant difference between 
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conditions on their mean symbol score, F(2,25) = 0.92, p = .41. Participants seemed to perform 

equally well on selecting the appropriate inequality symbol to make a correct inequality, 

regardless of condition. Thus, there appears to have been no effect of perceptual richness or 

concreteness on the symbol task. 

A third 2 (reading: direction, magnitude) x 3 (condition: bland abstract, rich concrete, 

rich abstract) mixed ANOVA was performed to assess whether difference in reading scores 

interacted with condition. A main effect of reading was observed, F(1,25) = 22.65, p < .001, 

where participants had higher mean scores on magnitude reading (M = .76, SD = .39) than on 

direction reading (M = .55, SD = .34). Regardless of condition, participants were better at reading 

the magnitude relationship of inequalities than the direction of inequalities. That said, there was 

no main effect of condition, F(2,25) = 0.12, p = .88. Across all three conditions, participants 

performed equally well on the reading measures. Additionally, there was no interaction effect 

between reading and condition, F(2,23) = 0.25, p = .78. This means that perceptual richness and 

concreteness did not impact the differences between magnitude reading and direction reading; 

participants in all conditions had higher magnitude reading scores than direction reading scores. 

Transfer Tasks 

A one-way ANCOVA between the three conditions was performed with the mean 

numeral score as the dependent variable and the mean total number knowledge score as the 

covariate. There was a main effect of total number knowledge, F(1,24) = 5.40, p = .03, whereby 

the greater the participants’ total number knowledge, the better they performed on the numeral 

task. When controlling for total number knowledge, there was no statically significant difference 

between conditions on their mean numeral score, F(2,24) = 0.45, p = .65. Regardless of 

condition, participants appeared to perform equally well when asked to choose a numeral to 
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correctly complete the inequalities. This indicates that there was no effect of perceptual richness 

or concreteness on the near-transfer task. 

A second one-way ANCOVA between conditions was performed with the mean number 

line score as the dependent variable and the mean total number knowledge score as the covariate. 

Again, there was a main effect of total number knowledge, F(1,24) = 36.67, p < .001, whereby 

the greater the participants’ total number knowledge, the better they performed on the number 

line task. When controlling for participants’ total number knowledge, there was no significant 

difference between conditions on their mean number line score, F(2,24) = 1.10, p = .35. 

Participants in each condition seemed to perform equally on magnitude comparisons using the 

number line. As such, there was no effect of perceptual richness or concreteness on the 

participants’ performance on the far-transfer task. 

Reading Profile Analysis 

The prior analysis that assessed the difference between participants’ magnitude reading 

and direction reading across the three conditions used means scores that combined participants’ 

correct responses with their incorrect responses. To better understand how participants were 

correctly reading the inequalities between the conditions, I looked at participants who correctly 

read direction and correctly read magnitude, and those who made errors when reading the 

inequalities. 

I classified participants into a reading profile based on their performance on the read task. 

Participants were assigned to one of three reading profiles: (a) direction readers were those 

whose total score on direction reading was greater than or equal to their total score on magnitude 

reading; (b) magnitude readers were those whose total magnitude score was greater than their 

total direction score; and (c) incorrect readers were participants whose number of incorrect and 
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missing scores on the magnitude items was greater than their total direction score and their total 

magnitude score, separately. 

Table 4 illustrates the number of participants in each reading profile by condition. Of the 

28 participants, half were magnitude readers, but there were more direction readers than 

incorrect readers. Thus, almost 80% of the participants in the sample were able to read 

inequalities in some capacity after the lesson. Notably, there was a higher proportion (almost 

60%) of magnitude readers (than other types of readers) in the bland abstract condition than in 

the other two conditions. Additionally, there was a slightly higher proportion of direction readers 

(than other types of readers) in the rich concrete condition than in the other conditions. Lastly, 

there was a slightly higher proportion of incorrect readers (than other types) in both rich 

conditions compared to the bland abstract condition. 

Table 4 

Frequencies and Proportions of Reading Profiles by Condition and Total 

Reader Condition Full Sample d 

Bland Abstract a Rich Concrete b Rich Abstract c 

 n % n % n % n % 

Direction 3 25.0 3 37.5 2 25.0 8 28.6 

Magnitude 7 58.3 3 37.5 4 50.0 14 50.0 

Incorrect 2 16.7 2 25.0 2 25.0 6 21.4 

 
a n = 12. b n = 8. c n = 8. d N = 28 

Magnitude readers likely interpreted the task as a magnitude comparison task, ignoring 

the inequality symbol, but correctly identifying the magnitude relationship in the inequality. 

However, it is unclear whether direction readers merely learned the procedure for reading 

inequalities or if they, too, internalized the magnitude relationship in inequalities. I thus 
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compared direction readers to magnitude readers on their number line task performance, which 

assessed participants’ ability to correctly compare magnitudes. If magnitude readers have greater 

mean number line scores than direction readers, this may indicate that direction readers learned 

the procedure for reading inequalities without learning to interpret the magnitude relationship in 

the inequalities.  

The independent-samples t-test demonstrated no significant difference between direction 

readers and magnitude readers on their mean number line scores, t(20) = 0.93, p = .36. This lack 

of difference suggests that direction readers were equally capable of interpreting magnitude 

relationships between two numbers in an inequality (M = .94, SD = .18) as magnitude readers (M 

= .87, SD = .16). Thus, direction readers likely had a superior understanding of how to read 

inequalities: Not only could they interpret the magnitude relationship, but they could also read 

the direction of the inequality symbol. 
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Chapter 5: Discussion 

The goal of this study was to investigate the influence of visual representations’ 

perceptual richness and concreteness on children’s ability to understand and solve inequalities. 

Children were randomly assigned to one of three visual representation conditions: bland abstract, 

rich abstract, and rich concrete. A researcher gave them a short interactive lesson about 

inequalities before administering five tasks assessing different conceptual components of 

inequalities. The first three tasks were learning tasks, the fourth was a near-transfer task, and the 

fifth was a far-transfer task. The visual representation assigned to the conditions was shown 

throughout the inequalities lesson and all applicable tasks. For the most part, I did not find what I 

had predicted because of the study’s small sample, which resulted in an insufficient amount of 

power to detect differences (see my discussion of the study’s limitations below). As such, the 

pattern of results summarized below must be interpreted with caution. 

Regarding the effects of perceptual richness, I had predicted that participants shown 

bland visual representations would outperform those shown rich representations on the learning 

tasks and that those show rich representations would outperform those in the bland condition on 

the transfer tasks. These predictions were not supported. I found no difference between 

participants in the bland abstract condition and the rich abstract condition (or the rich concrete 

condition) on any of the learning or transfer tasks. As such, the data show no effect of perceptual 

richness on children’s learning and transfer of knowledge regarding inequalities. 

A handful of studies have similarly failed to find an effect of perceptual richness on 

learning (Kaminski & Sloutsky, 2013; Menendez et al., 2020; Osana et al., 2018). In some of 

these studies, however, the authors’ operationalization of perceptual richness was questionable. 

They compared bland abstract representations to rich concrete representations, thus confounding 
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perceptual richness and concreteness. In one notable exception, Menendez et al. (2020) 

compared bland concrete to rich concrete visual representations in a study on biology learning, 

thus controlling for concreteness, and found no difference in students’ learning. Taken together 

with the present study’s failure to detect differences on the learning tasks between participants 

exposed to bland abstract and those exposed to rich abstract visual representations, there may be 

tentative evidence that perceptual richness does not impact students’ learning when concreteness 

is taken into account. However, both Kaminski and Sloutsky (2013) and Menendez and 

colleagues (2020) reported that bland representations were better than rich ones for transfer, 

whereas my study found no such difference. 

Regarding the effects of concreteness, I had predicted that there would be no difference 

between the performance of participants who were shown concrete or abstract visual 

representations on the learning tasks. I had also hypothesized that participants in the abstract 

condition would outperform those in the concrete condition on the near-transfer task, and the 

reverse on the far-transfer task. While no differences were found on the learning tasks, as 

predicted, neither were differences found between conditions on either of the transfer tasks. 

Together, the observed results suggest that there is no effect of concreteness on learning or 

transfer. 

The fact that participants performed equally well at transfer regardless of visual 

representation type may be due to the lesson having a high level of guidance. Carbonneau and 

Marley (2015) also found no differences between conditions on transfer among children who 

received high-guidance instruction. A difference between bland and rich manipulatives only 

emerged for participants in the low guidance condition. As such, the impact of the properties of 

visual representations might be off-set by the explicit guidance provided during instruction. 
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There are several possible explanations for the sum of the results. For one, some prior 

research suggests that the effects of rich/realistic details (i.e., perceptually rich and concrete) on 

transfer depends on students’ prior knowledge of the subject at hand. Magner and colleagues 

(2014) found that seductive details only impacted students with very low or very high prior 

knowledge on a near-transfer measure, but that when participants had near average levels of 

prior knowledge, there was no difference between the groups. On far-transfer, prior knowledge 

was the only effect the Magner et al. found, with no effect of seductive illustrations at all. They 

concluded that seductive details might only negatively impact students with low prior 

knowledge, but not those with high prior knowledge. These findings may suggest that prior 

knowledge moderates the effects of perceptual richness and concreteness on transfer. My study 

supports this conclusion because children’s total number knowledge was positively correlated 

with both the near-transfer and far-transfer tasks, such that the greater their number knowledge, 

the better they performed on both transfer measures. 

On the methodological side, participants in the bland abstract condition were shown one 

of two different types of bland abstract visual representations, whereas participants in the rich 

concrete and rich abstract conditions were each shown only one type of visual representation. 

One of the bland abstract visual representations was green circles and the other was grey circles 

with a divot. According to existing operationalizations in the literature (Kaminski et al., 2013), 

both visual representations can be considered perceptually bland and abstract, but perceptual 

richness and concreteness exist on a spectrum. Thus, one of the representations used in my study 

may have been slightly more perceptually bland or abstract, or both, than the other, enough to 

potentially obscure the effects of the blandness and abstractness within the condition itself. 

Anecdotally, one participant called the grey divot-circles a pizza, mentally concretizing the 
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visual representation in their mind. It is unknown what the other participants thought of their 

visual representations and whether their internal perceptions of the visual representations 

impacted how concrete the representations actually were or the children’s mathematics 

performance, a consideration left for future research. Some preliminary evidence exists to show 

that the nature of children’s mental representations does indeed impact their mathematical 

problem-solving (Osana, Adrien, et al., 2021), much remains unanswered with respect to the 

impact of the perceptual features of visual representations on young children’s numeracy 

development. 

Another methodological explanation for the observed results is that visual representations 

were also used in the number knowledge measures to display sets, and these visual 

representations were different from those used in each of the conditions. De Bock and colleagues 

(2011) demonstrated that students performed better on the learning and transfer tasks when there 

was a match between visual representations at learning and transfer, and performed worse when 

there was a mismatch. In my study, the visual representations in the number knowledge measures 

were black dots, thus bland and abstract. This means that participants in the bland abstract 

condition had visual representations during the lesson and tasks that matched the number 

knowledge measures, but this was not the case for participants in either of the rich conditions. 

This may have produced an unfair advantage for participants in the bland abstract condition or 

hindered participants in the rich conditions, or both, potentially obscuring differences on task 

performance between conditions. In short, it is possible that the type of visual representations 

used in the number knowledge measures acted as a confound. 

There are also several differences between my study and others that assessed the 

perceptual affordances of visual representations that may account for my results. Critically, my 
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study was designed to disentangle the effects of concreteness from perceptual richness. Petersen 

and McNeil (2013) created the only other study I know of to have attempted the same. Their 

study used manipulatives, not visual representations, and they found interaction effects. I 

attempted to create a similar study using visual representations to assess whether the same effects 

hold, but I found no effect of either perceptual richness or concreteness.  

There are two possible explanations for the difference between my study and that of 

Petersen and McNeil. First, Petersen and McNeil only found interaction effects, but no main 

effects; my study was not designed to test for possible interaction effects (only main effects 

while controlling for the other factor). Thus, perceptual richness and concreteness might impact 

visual representations, but only under certain conditions, and future research designed to test for 

interactions with larger samples is needed. Second, perceptual richness and concreteness might 

only impact physical representations and not visual ones, a finding supported by the embodied 

cognition literature. Embodied cognition posits that children learn best through action and 

perception, suggesting that manipulating concrete objects leads to better understanding 

(Glenberg et al., 2007; Martin & Schwartz, 2005; Pouw et al., 2014) than if no physical 

manipulation occurs. By the same token, properties of physical representations may be more 

likely to impact performance than properties of visual representations because it is not possible 

to interact with static visual representations in the same way as with manipulatives (Osana, 

Lafay, et al., 2021). 

Beyond perceptual richness and concreteness, interesting patterns emerged in how 

participants learned to read inequalities. The data appear to suggest that children were more 

likely to adopt a “magnitude reading” of inequalities, ignoring the direction on the inequality 

symbol, than a “direction reading,” based on the direction of the symbol. Additionally, the 
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proportion of direction readers, magnitude readers, and incorrect readers, was not the same in 

each condition. The majority of participants in both abstract conditions were magnitude readers, 

whereas in the concrete condition, the proportions of all three types of readers were 

approximately equal. While visual representations’ perceptual richness and concreteness might 

not influence children’s ability to solve inequalities, this might not be the case when it comes to 

learning how to read inequalities. Unfortunately, the sample sizes were too small to assess 

whether reading type differed by condition. 

Limitations 

The results of this study must be interpreted with caution because of several limitations. 

Most egregious is the small sample size (N = 28), which severally diminished the power to detect 

statistically significant effects. Thus, using these data, it is difficult to draw a conclusion about 

the effects of perceptual richness and concreteness of visual representations on learning and 

transfer. Not only did the small number of participants in each condition reduce power, but it 

also increased the risk of non-normally distributed data. Additionally, the sample sizes varied 

between conditions (Bland Abstract n = 12; Rich Concrete n = 8; Rich Abstract n = 8), thereby 

potentially violating the assumption of homogeneity of variance. While the analysis of variance 

is robust against both violations, the F-test still has its limitations (Rheinheimer & Penfield, 

2001; Schmider et al., 2010). Thus, there was a large risk that the cell sizes were not big enough 

to trust the results of an analysis of variance. 

Another factor that hindered the overall strength of the study was the large time gap 

between participant testing. All the participants were in the same grade, but some were tested at 

the beginning of the school year in 2020 and others were tested at the end of the school year in 

2021. The possible effect of the time gap is evident, in part, from the relation between time of 
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testing and performance on the number knowledge measure: Participants tested in 2021 had 

greater total number knowledge than those tested in 2020. It is possible that no effects of 

perceptual richness or concreteness were found because by the end of the school year children 

had enough number knowledge that these features of visual representations no longer hindered 

their performance. As previously stated, prior knowledge can impact the effects of visual 

representations (Magner et al., 2014). 

In a similar vein, the tasks may have been too easy for my participants, as indicated by 

their high total number knowledge scores—especially those tested in 2021. The study was 

adapted from Carbonneau and Marley’s (2015) manipulatives research, who tested 3- to 4-year-

old participants. In the present study, most participants were tested at the end of the school year, 

meaning they received almost a whole year’s worth of formal education. Thus, the tasks may 

have no longer been developmentally appropriate, resulting in ceiling effects that obscured 

potentially real impacts of the representations’ perceptual qualities on their learning and transfer. 

Another limitation was that the total number knowledge measure was a composite score 

of three subtasks: ordinality, cardinality, and arithmetic. The number recognition subscale was 

not included because there was almost no variance. Performance on the ordinality subscale was 

at or near ceiling and the arithmetic subscale did not have good internal consistency, resulting in 

a composite score that was possibly not sensitive enough to detect true differences in 

participants’ number knowledge. It is possible the arithmetic subscale did not have good internal 

consistency because I only used four out of the seven items in the PENS Story Problem subscale. 

Additionally, it may be that children who participated in 2020 drastically underperformed 

compared to those who participated in 2021 due to their age difference. 

Lastly, the COVID-19 pandemic negatively affected participant recruitment. The 
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pandemic made it difficult to recruit participants from Quebec school boards that were busy 

adapting to the pandemic, and it slowed online recruitment through the Children Helping Science 

research recruitment website, which became backlogged from the increased movement towards 

online research. Additionally, the study had to be put on hold for several months because of 

recurring waves of infection, which partly contributed the large time gap between participant 

testing. 

More critically, it is unknown which of the participants, and how many, were familiar 

with online learning. Participants were recruited from several locations, each of which may have 

delivered online schooling at different times or not all. Greater familiarity with online education 

may have made the study’s online format easier for those participants and harder for others. 

Additionally, not all students received the same mathematics curriculum since they were 

sampled from various locations, which could have also impacted their performance. The random 

assignment to conditions served to mitigate this limitation, however. 

Future Directions 

The results from this study were inconclusive, and as such, should be replicated with 

modifications to reduce the study’s current weaknesses. Participants should be preschoolers and 

kindergarteners, tested solely at the beginning of the school year to ensure that the tasks are 

developmentally appropriate and to eliminate gaps in testing. The number knowledge measure 

should use a more advanced number recognition measure, such as the one in the PENS perhaps, 

which has been validated with Kindergarteners and preschoolers (Purpura & Lonigan, 2015). 

Additionally, the number knowledge measure should only use numerals and not sets to avoid the 

potential confound of exposure to visual representations prior to the inequalities lesson. 

Changes should also be made to the conditions. First, the visual representation design for 
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the bland abstract condition should be uniform. Future replications should either use green 

circles or the grey circle with a divot, or a new representation entirely. If the green circle is used, 

I would perhaps choose a duller shade of green to make the representation more perceptually 

bland in color, thus increasing the difference between the bland representations and the rich 

representations. If the grey divot-circle is used, I would choose a darker shade of grey to increase 

the contrast between the grey circle and the white background of the screen. That said, perhaps 

the best visually bland and abstract representation would be black dots, but a consideration for 

future research would be to find a representation that reduces as much as possible the 

participants’ visualization of real-world items, such as pizzas. 

Second, a fourth bland concrete condition should be added in order to test for potential 

interaction effects between perceptual richness and concreteness. The bland concrete 

representations should be a black-and-white version of the frog used in the rich concrete 

condition, similar to Menendez and colleagues’ (2020) approach. Participants should also be 

asked how they perceive the representations to ensure that their internal construction of the 

representation matches the condition’s intent. 

Most importantly, the study should be replicated with a much larger sample, with at least 

15 participants per condition, to have enough power to detect differences between conditions. All 

these changes are necessary to more adequately determine if a visual representation’s perceptual 

richness and concreteness impacts students’ ability to understand and solve inequalities. Until 

research can confidently state how perceptual richness and concreteness impact both learning 

and transfer in mathematics education, future research on the affordances of visual 

representations must continue to account for both variables.
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Appendix A 

Inequalities Lesson Protocol 

Crocodile Game Introduction: 

Say, We are going to play a game with this 

crocodile. Crocodiles are very hungry and want 

to eat big piles. 

 
 For example, (click) if I have 4 over here (click) 

and 2 over here,  

 
I want my crocodile to eat the pile of four 

because it is bigger. 

This makes an inequality, can you say 

inequality? 

 If Incorrect: repeat the word slowly and 

ask again. Say with participant if needed. 

Great, then I can read: (click) 4 (click) is more 

than (click) 2. (click) When the crocodile is 

facing this way, we say “more than”. This 

inequality lets us know which quantity is 

bigger. Let’s try a different one. 

 

 What if (click) I have 5 on this side (click) and 7 

on this side? Which color has the crocodile that 

would eat the bigger pile, Blue or Yellow?  
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After participant responds: 

 If Correct: Good, I would want my 

crocodile to eat the pile of 7 because 7 is 

bigger. 

 If Incorrect: I want my crocodile to eat 

the pile of 7 because 7 is bigger. 

I can read my inequality: (click) 5 (click) is less 

than (click) 7. (click) When the crocodile is 

facing this way, we say “less than”. This 

inequality lets us know which quantity is 

smaller. (click) Can you read this inequality?

 If Correct: Good. 

 If Incorrect: This inequality reads: 5 is 

less than 7. 

 

Say, I am going to start the inequality by 

showing two piles and you are going to be in 

charge of the crocodile by picking the crocodile 

that eats the bigger pile. Ready? After 

participant responds, Great let’s try a few 

inequalities. 

 
Inequalities with Crocodile: 

*Repeat for each practice inequality presented 

(5 > 2 ; 4 < 6 ; 3 > 1): 

Say, Which crocodile eats the bigger pile? Blue 

or Yellow? 

 If Correct: Good. 

 If Incorrect: The [color] crocodile eats 

the bigger pile. See-  

Ask, Can you read this inequality? 

 If Correct: Good, this inequality reads 

[answer]. 

 If Incorrect: This inequality reads 

[answer]. 

 Answer format = “# is more than #”  or  

“# is less than #”  
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Inequalities with Symbol: 

 Say, Great work! Let’s try some more 

inequalities. For example, (click) I can have 1 on 

this side and (click) 3 on this side (click) and use 

this symbol to make my inequality. This is 

called the inequality symbol and it works just 

like our crocodile. Do you remember what the 

job of our crocodile was? After participant 

responds, Good, the crocodile and the 

inequality symbol always eat the bigger 

number. 

 

So this inequality reads: (click) 1 (click) is less 

than (click) 3. 

 
*Repeat for each practice inequality presented 

(5 > 1 ; 3 < 6 ; 4 > 2): 

Say, Which way should the inequality symbol 

go? Blue or Yellow? 

 If Correct: Good. 

 If Incorrect: The [color] symbol eats the 

bigger pile. See-  

Ask, Can you read this inequality?  

 If Correct: Good, this inequality reads 

[answer]. 

 If Incorrect: This inequality reads 

[answer]. 

 Answer format = “# is more than #”  or  

“# is less than #”  

 

Note. Used rich concrete condition in above protocol for the example slides. “Click” (in red) 

corresponds to activating an animation within the slide. 

<

<

> <

>
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Appendix B 

Screening Measure 

Training Session: 

Repeat twice for each color (blue, yellow, pink, 
white, green): 
Say, What color do you see? 
Feedback: 
 Correct: Say, Good. This is [color]. 

 Incorrect: Say, We’re going to call this 

[color]. What color is this? 

  Correct: Say, Good. 

  Incorrect: Say, This color is 

[color]. 

 

Screening: 

Say, Now we are going to play a game. You’re 

going to see 3 colored boxes: Blue, Yellow, and 

Pink. A bunny is going to hop inside 1 of the 

boxes and I want you to tell me the color of the 

box that has the bunny. 

 
Say, Which color has the bunny? 

Record response 

 
Say, Which color has the bunny? 

Record response 
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Say, Which color has the bunny? 

Record response 
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Appendix C 

Number Knowledge Measure: Example Items 

Ordinality measure:  

“Say, Which box has the MOST dots?” 

Record response 

 
Cardinality measure:  

“Say, Which of these groups of dots means the 

same thing as the number on top?” 

Record response 

 
Arithmetic measure:  

“Say, Which of these groups of dots means the 

same thing as the number on top?” 

Record response 

*Blank slide 

Number recognition measure:  

“Say, Which one is a number?” 

Record response 

 

3

B e 2 *
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Appendix D 

Learning and Transfer Tasks: Protocol and Example Items 

Judging Inequalities: 

Say, Now we are going to play a game using our 
thumbs. I want you to tell me if the inequality 
makes sense or not. (click) Give a thumbs up to 
the camera when you see an inequality where 
the inequality symbol is eating the bigger 
number. (click) And give a thumbs down to the 
camera when you see an inequality symbol 
eating the smaller number. Let’s try one before 
we begin.  

 

2 is bigger and the inequality symbol is eating 

2. This makes sense so we give a thumbs up. 

Can you show me a thumbs up? After 

participant responds, Great. 

 
Here, 2 is still bigger but the inequality symbol 
is eating 1. This does not make sense so we 
give a thumbs down. Can you show me a 
thumbs down? After participant responds, 
Great. Let’s start. 

 
Example Item: 
Say, Thumbs up or thumbs down? 

 
Completing Inequalities using Symbols: 

<

Example

>

Example

>
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Say, Now we’ll play another game. Just like we 

did earlier, I want you to pick the inequality 

symbol that makes a good inequality. A good 

inequality is one where the inequality symbol 

is eating the bigger number. Again, name the 

colour that has your answer. Let’s start. 

 
Example Item: 
Say, Pick the inequality symbol that goes in the 
red box? 

 
Reading Inequalities: 

Say, Now I am going to show you some more 
inequalities and I’d like you to read them, just 
like we did before. Let’s start. 

*Blank slide 

Example Item: 
Say, Read the inequality. 

 
Completing Inequality using Numbers: 

Say, For this next math game, I am going to 
show you some inequalities that are missing 
numbers. I want you to pick the number that 
makes a good inequality. Just like before, name 
the colour that has your answer. Let’s start. 

 

> <

> <

>

1 2 3
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Example Item: 
Say, Which one makes a good inequality?  

 
Number Line: 

Say, You’re doing great work. We are going to 

use this number line to play one last math 

game. This is a number line and it shows all of 

the numbers from 0 to 10. (click) On this side 

we start with small numbers like zero, one, 

two, (click) and as we move up our number line 

we get bigger and bigger numbers (click). Use 

the number line to help you answer my 

questions. 
 

Example Item: 
Say, Name two numbers on this number line 
that are more than 5? 

 
 

Note. Used rich concrete condition in above protocol for the example slides. All example items 

are the first items of each measure. “Click” (in red) corresponds to activating an animation 

within the slide. 

 

>
8 5 6

863 7 9 105210 4

863 7 9 105210 4


