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Abstract

Broadcasting in Hyper-cylinder graphs

Aria Adibi

Broadcasting in computer networking means the dissemination of information, which is

known initially only at some nodes, to all network members. The goal is to inform every

node in the minimal time possible. There are few models for broadcasting; the simplest and

the historical model is called the Classical model. In the Classical model, dissemination

happens in synchronous rounds, wherein a node may only inform one of its neighbors. The

broadcast question is: What is the minimum number of rounds needed for broadcasting,

and what broadcast scheme achieves it?

For general graphs, these questions are NP-hard, and it is known to be at least 3 − ϵ

inapproximable for any real ϵ > 0. Even for some very restricted classes of graphs, the

questions remain as an NP-hard problem. Little is known about broadcasting in restricted

graphs, and only a few classes have a polynomial solution.

Parallel and distributed computing is one of the important domains which relies on

efficient broadcasting. Hypercube and torus are the most used network topology in this

domain. The widespread use is not only due to their simplicity but also is for their efficiency

and high robustness (e.g., fault tolerance) while having an acceptable number of links. In

this thesis, it is observed that the Cartesian product of a number of path and cycle graphs

produces a valuable set of topologies, we called hyper-cylinders, which contain hypercube

and Torus as well. Any hyper-cylinder shares many of the beneficial features of hypercube

and torus and might be a suitable substitution in some cases. Some hyper-cylinders are also
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similar to other practically used topologies such as cube-connected cycles. In this thesis,

the effect of the Cartesian product on broadcasting and broadcasting of hyper-cylinders

under the Classical and Messy models is studied. This will add a valuable class of graphs

to the limited classes of graphs which have a polynomially computable broadcast time. In

the end, the relation between worst-case originators and diameters in trees is studied, which

may help in the broadcast study of a larger class of graphs where any tree is allowed instead

of a path in the Cartesian product.
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Chapter 1

Introduction

To broadcast information is to transmit that information to many receivers. Three examples

are a radio station broadcasting a signal to many receivers; Wi-Fi networks broadcasting

their SSID1 to all nearby wireless devices; and in computer networking, data packets being

sent to all recipients all at once.

In computer networking, broadcasting is one of the fundamental operations and may

be performed at any level of the network. For instance, as a high-level operation, some

applications use broadcasting to share information or to coordinate between clients; as a

middle-level operation, DHCP2 clients use broadcasting to assign IP3 addresses for net-

works running IPv44,5; and as a low-level operation, broadcasting is used in Ethernet to

resolve IP addresses to MAC addresses 6.

Several papers have been published about broadcasting; however, as is the case for any

design in computing, the results function under different hypotheses and objectives, making

some of them incomparable. To understand different hypotheses and to further illustrate the

1Service Set IDentifier
2Dynamic Host Configuration Protocol
3Internet Protocol
4Internet Protocol version 4, the network protocol used by most of today’s internet
5In newer protocol IPv6 broadcasting is replaced by a more versatile method called multicasting.
6Media Access Control address
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practicality of broadcasting, let us first narrow our discussion to an exceptionally impor-

tant context for which efficient broadcasting is essential, namely, parallel and distributed

computing architecture. Pierre Fraigniaud and Emmanuel Lazard have done a marvelous

job in [45] providing a taxonomic framework and giving a survey of existing results in

broadcasting. Their work influenced me in structuring and writing this introduction.

1.1 Parallel and Distributed Computing Architectures

Parallel and distributed computing systems are mainly composed of interconnected general-

purpose processors, whose performance depends on both the computational power of the

processors and the way they interact. If the processors are all linked to a shared mem-

ory, the main issues to solve are those concerning the concurrent access to the memory;

however, if memory is distributed, data movements will depend on the topology of these

connections. While some design variants are dedicated to a more niche type of computing,

let us consider the more general distributed memory multiprocessors systems that can be

connected using different topologies. The following is a quote form [45] explaining the

typical architecture of such systems.

Memories and processors are connected by a point-to-point interconnection

networks; described in terms of nodes and links. A node in a typical network

architecture consists of a processor, a memory, a fast bus, and several direct

memory access (DMA) channels (see Figure 1). Each DMA channel con-

nects the node to one of its neighbors. The memory and DMA channels are

all connected to the fast bus, and the processor is connected to the memory.

A processor communicates with a neighbor by writing the information in its

memory. The information is then transmitted by the appropriate DMA channel

via the bus to the neighbour’s memory via its bus. This communication path
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between two DMA-channels will be called a link.

DMA DMA DMA· · ·

Links

Bus

Memory Processor

Figure 1: Architecture of a Node

1.1.1 Choice of the Topology

A good topology should strike a good enough balance between cost and performance based

on the system’s objectives. Examples of costs are, looking for the minimum number of

wires (e.g., for financial reasons); efficient layout of the topology (e.g., wanting it to be

efficiently planar for wire crossing issues); simple routing algorithms; simple construction;

etc. On the performance side, examples are small diameter, extendability, short wires and

redundant paths (e.g., for fault resistance, etc. In chapter 3, the topologies are discussed in

more depth, and d-dimensional (Directed) Hyper-cylinder topologies are introduced, which

is the main topic of this thesis.

1.1.2 Message Relaying Method

In this thesis, it is assumed that the relaying of the messages is done in store-and-forward

(or packet-switch) fashion which means a node cannot send a message unless all bits of it

are received. This is in contrast to circuit-switched (or wormhole) mode. Packet-switched

networks move data in separate, small blocks – packets – based on the destination address
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in each packet. When received, packets are reassembled in the proper sequence to make

up the message. Circuit-switched networks, on the other hand, require dedicated point-

to-point connections during calls. The reasons for this choice are (1) any circuit-switched

machine can also perform store-and-forward mode, (2) circuit-switch is a better option if

uninterrupted connections are of utmost importance and the number of nodes is limited,

which is an atypical situation; for other situations, packet-switch is more advantageous and

preferred, (3) only a few algorithms have been found that work better in broadcasting under

circuit-switch mode and the existence of many such algorithms have been deemed unlikely

[97].

The communication links are usually made of simplex communication channels, which

send information in one direction only. If the bidirectional flow is needed, two simplex

channels operating in the opposite direction, called duplex communication channel, are

used. There are two types of duplex communication channels (1) full-duplex and (2) half-

duplex. If both processors can communicate with each other simultaneously, the link is

full-duplex; otherwise, if both can communicate with each other but not simultaneously,

the link is said to be half-duplex.

1.1.3 Communication Time and Synchronicity

Discussions about broadcasting time require a mathematical model for measuring time. Let

communication time T be the time it takes to send a message through a link in the network.

Many experiments have shown that T greatly depends on the length L of the message [19,

23, 74, 98]. For this reason, the link communication time is usually modeled linearly with

L as the sole dependent variable:

T = β + Lτ

Other physical attributes of the link and network used in this equation are latency or start-

up time β, and data transfer time per element or propagation time τ (1/τ is the bandwidth).
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Another factor in the overall time measurement is whether the network uses synchronous

or asynchronous transmissions. Synchronous transmissions are synchronized by an exter-

nal clock, while asynchronous transmissions are synchronized by special signals along the

transmission medium.

If the lengths of the messages is small, one can approximate T to a constant value.

Taking this constant as the unit of time, T = 1 may be assumed. This makes the mes-

sage relays behave synchronously; if no intentional delay is in place. Hence, no need to

compare synchronous and asynchronous behaviors here. The fact that most applications

of broadcasting send small messages for coordination purposes; makes this simplification

a pragmatic one as well. Moreover, T was traditionally defined like this; more on this in

subsection 1.2.1, The Origin.

1.1.4 Bottlenecks

Two of the main objectives studied for broadcasting are the time it takes to broadcast and

the schemes used to achieve it; formally defined in section 1.4, Formal Definitions. These

objectives are highly dependent on the bottlenecks of the network system. The three usual

categories are:

1. If the system’s nodes can only use one link for communication at each time unit, the

system is said to be processor-bound, also called 1-port or whispering.

2. In contrast, if the system’s nodes can use all the available links, the system is called

link-bound. This is because now, the number of links is the bottleneck. Other names

are n-ports, shouting, or flooding.

3. In between, if the system’s nodes can utilize k links at the same time, the system is

called DMA-bound. This is because one scenario in which this behavior is possible

is when the number of DMAs that can use the fast bus is limited. Although, it is also
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possible that the system’s nodes’ internal links are bounded.

The study of broadcasting in link-bound systems is relatively simple. In this thesis, the

processor-bound bottleneck is assumed.

1.2 Abstraction, Graph Notation

In section 1.1, one context in which broadcasting is used was given. One can abstract away

many technicalities and work on a more general mathematical model framework, broaden-

ing the scope of contexts in which broadcasting is exploited. Usually, this abstraction is

done through graph theory notions. Other models have also been used; for instance, matrix

representation [106, 109], and integer/linear programming [8, 92, 95].

A simple connected graph G can model the communicating objects as vertices and the

possible communications as edges. In parallel and distributed computing, a vertex corre-

sponds to the network node and edges to network links. Simplex link is usually modeled

with a directed edge, while full-duplex links with symmetric directed edges and half-duplex

links with an undirected edge. In some contexts, it is natural for the communication links

to be dynamic and frequently changing. For these cases, dynamic graphs (sequences of

graphs) may be used to study the broadcasting; an example of such treatment is [49]. In

this work, we only consider cases where links are not dynamic.

If v and u are two vertices, the edge between v and u is denoted with uv. If the edge is

directed, the order describes the direction; from u to v. Otherwise, both uv and vu are the

representation of the same edge. The distance between u and v is the length of the shortest

path between u and v. The diameter is the greatest distance between vertices.

Convention 1. Sometimes, notations are slightly abused to minimize the repetition of

ideas and definitions caused by slight technical differences between undirected and directed
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graphs. In addition to the same notation being used for directed and undirected edges ex-

plained above, the notation for classes of graphs like paths and cycles are also the same for

directed and undirected graphs. Overall, there should be no confusion based on the context,

or it will be explicitly clarified.

1.2.1 The Origin

In the 20th century, when the problem was first defined, parallel and distributed computing

was not very common, and communication algorithms were studied with a graph-theoretic

approach. In [41], Farley et al. first defined broadcasting alongside minimum broadcast

time and minimum broadcast graph problems using graph-theoretic approach; the formal

definition of which is provided in section 1.4. The following question, asked by A. Boyd,

[52], also sparked some exuberance in the research of broadcasting and similar problems.

“ There are n ladies, and each one of them knows an item of scandal which is not

known to any of the others. They communicate by telephone, and whenever two

ladies make a call, they pass on to each other as much scandal as they know at

that time. How many calls are needed before all the ladies know all the scandal?

”This problem was enjoyed and popularized with several mathematicians at the time and was

called gossiping or telephone problem. Broadcasting and gossiping are similar concepts;

[64] have studied the relation between solving for minimum broadcasting time and gossip-

ing time for some families of graphs. In both problems, the constraints are similar to that

of a (1) store-and-forward, (2) processor-bound communication with (3) communication-

time T = 1 (and as a result synchronous, as explained in subsection 1.1.3). This model

is still frequently used and studied not only because of its simplicity and theoretical graph

properties but also for its fastidious modeling of communications in which small messages

are exchanged. This model is called the Classical model, which is the hypothesis of this

thesis in chapter 4.
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1.3 Similar Problems

As was seen in The Origin, gossiping and broadcasting are similar problems; however,

gossiping is not the only important problem resembling broadcasting. The following is a

non-comprehensive list of pertinent procedures that resemble broadcasting and broadcast-

ing:

• Routing: A node wishes to send a piece of information to another node. (One-to-One)

• Broadcasting: A node wishes to send a piece of information to all the other nodes.

(One-to-All)

• Multi-casting: A node wishes to send a piece of information to some of the other

nodes. (One-to-Many)

• Scattering: A node has different pieces of information for different nodes it wishes

to sent. (Personalized One-to-All)

• Gossiping: All nodes have a piece of information that they need to send to every

other node. (All-to-All)

1.4 Formal Definitions

The definitions are inspired by [51, Sec. 12.2].

Note that unlike in gossiping, there is no reason to differentiate between full and half-

duplex links in broadcasting. This is because only one-directional flow between any pair of

vertices suffices. For this reason, one can assume that the representative graph is directed

or undirected and not hybrid; by modeling half-duplex links as symmetric directed edge,

just like full-duplex representation.
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Definition 1.4.1 (Broadcasting). Broadcasting is the goal of sending a single message from

a particular vertex (called the originator) to all of the other vertices in the graph.

Definition 1.4.2 (Broadcast protocol for an originator u, broadcast protocol tree). The

broadcast protocol is an algorithm describing a scheme used to broadcast information from

u. Formally it is represented on the graph G by at most one positive integer labeling of

edges representing that link being used at that time-unit after the process has started. This

labeling should also satisfy

1. The set of edge labels incident to any vertex are disjoint.

2. There is exactly one path with increasing edge labels from u to any other vertex in

G, forming a tree. This tree is called the broadcast protocol tree.

Definition 1.4.3 (Non-lazy broadcast protocol). Non-lazy broadcast protocol is a broadcast

protocol in which each vertex after receiving the information is not idle in sending the

information unless there is no more sending to do. Alternatively, (1) the set of edge labels

incident to any vertex consists of consecutive integers, and (2) one edge of the originator

should be labeled with 1.

Definition 1.4.4 (Informed at time t, completion time). A vertex v is informed at time t by

a broadcast protocol for originator u if the last edge in the path from u to v is labeled with t.

The completion time of a broadcast protocol for originator u is the largest edge label used

in that broadcast protocol.

Definition 1.4.5 (Broadcast time of originator u, b(u)). In graph G, broadcast time of

originator u, is the minimum completion time that can be obtained from any broadcast

protocol from u. It is denoted by b(G, u) or bG(u); however, whenever there is no ambiguity

about G it is denoted by b(u).

It is clear that for every minimum broadcast protocol of any vertex, there exists another

(not necessarily distinct) with the same completion time, which is non-lazy.
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Definition 1.4.6 (Broadcast time of a graph G, b(G)). The broadcast time of a graph G is

the maximum of broadcast time of all the vertices.

Example 1.4.1. Figure 2 shows an example of two broadcast protocols with u as the orig-

inator. In this graph b(G) ≥ ⌈log2(7)⌉ = 3; hence, b(u) = 3. By symmetry, it is easy

to verify that any vertex is able to disseminate a piece of information in three time-units;

therefore, b(G) = 3.

u
1 2

3

3

2

3
u

2 3

32

1

4

Figure 2: Two broadcast protocols with u as the originator; b(u) = 3 and b(G) = 3.
Courtesy of [51, Sec. 12.2].

Definition 1.4.7 (Broadcast center of a graph G, BC(G)). The broadcast center of a graph

G is the set of vertices having the minimum broadcast time.

Example 1.4.2. Figure 3 indicates the broadcast center (BC) in the example graph. The

broadcast time of BC vertices is 6, while every other vertex has a larger broadcast time.

For example, b(x) = 7.

At each time-unit in the Classical model, the number of informed vertices cannot exceed

double the previous amount; for this reason b(G) ≥ ⌈log2(|V |)⌉. It is easy to see that this

bound is achieved by complete graph Kn (see subsection 2.2.3); yet, Kn does not have the

minimum number of edges in all the graphs with n vertices that achieves this minimum.

For example, the graph obtained by removing any edge from Kn also achieves this bound.

Definition 1.4.8 (Broadcast function, B(n)). The broadcast function, B(n), is the mini-

mum number of edges in any graph G with n vertices such that b(G) = ⌈log2(n)⌉.

10



x

Figure 3: Light teal-colored vertices are the broadcast center (BC) of this graph. The
broadcast time of BC vertices is 6, while other vertices have a larger broadcast time. For
example, b(x) = 7.

Definition 1.4.9 (Minimum Broadcast Graph (mbg)). A minimum broadcast graph (mbg)

is a graph G with n vertices and B(n) edges such that b(G) = ⌈log2(n)⌉.

Minimum broadcast graphs represent the cheapest possible communication networks

(having the fewest communication links) in which broadcasting can be accomplished, from

any vertex, as fast as theoretically possible.

1.5 Messy Models

In a network that knows how to broadcast in minimum time, it is tacitly assumed that either

1. an omniscient being is coordinating the actions of the vertices, or

2. each vertex has a set of coordinated actions (or can compute it) optimized for each

originator. In this case, the vertices must have enough storage space and must also

be able to determine the originator.

However, in many situations, this assumption is not desirable or realistic. For instance,

the designers wanting the topology to be independently expandable, or they do not like to

use high memory or processing power due to many costs, including but not limited to: high

11



financial price, cyber security reasons, and even susceptibility to theft; etc. An example in

point is the TCP/IP internet network currently in use.

It is, therefore, natural that nodes in networks have local knowledge of the network

rather than a global one. Similar assumptions are made in [11], where the topology is not

known; and in [6, 7, 9], where broadcasting with the same assumption in a particular type

of networks called radio networks is studied. The exact such models used in this thesis

were first defined in [3], named Messy models. In this model, the nodes do not know the

state of the network, the originator, or the start time of the broadcasting. Moreover, they are

independent agents with a limited view of their neighbors. There are three slightly different

Messy models:

Definition 1.5.1 (Model M1). Each vertex knows the state of its neighbors at any time-unit,

informed or uninformed. Each informed vertex must transmit the broadcast message to one

of the uninformed neighbors, if any, in each time-unit.

Definition 1.5.2 (Model M2). Every informed vertex knows from which neighbor (neigh-

bors) it received the broadcast message and to which neighbors it has sent the message.

Each informed vertex must transmit the broadcast message to all the neighbors except the

ones it knows are informed.

Definition 1.5.3 (Model M3). Each vertex knows to which neighbors it has sent the broad-

cast message. Each informed vertex must transmit the broadcast message to all the neigh-

bors except the ones it knows are informed.

With the local knowledge, it is not natural to ask about the minimum broadcast time,

but rather it is natural to ask what is the worst case time or broadcast scheme.

Definition 1.5.4 (Broadcast time of vertex u). The broadcast time of vertex u in graph G

using model Mi, denoted ti(G, u) or simply ti(u), for i = 1, 2, 3, is the maximum number

of time-units required for the broadcast to inform all the vertices.
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Definition 1.5.5 (Broadcast time of graph G). The broadcast time of graph G using model

Mi, denoted ti(G), for i = 1, 2, 3 is the maximum broadcast time for all vertices u of G;

ti(G) = max{ti(u)|u ∈ V (G)}.

Example 1.5.1. Figure 4 provide an example and highlights the difference between the

three Messy models.

u 1

2 22

3
3

(a) t1(u) ≥ 3

u 1

2 22
3

3
4

(b) t2(u) ≥ 4

u 1

2
2

3 3

4

4
5

6

(c) t3(u) ≥ 6

Figure 4: An example showing the difference between Messy models. The drawn scheme
are optimal. It is easy to verify that t1(u) = 3, t2(u) = 4, t3(u) = 6, and also t1(G) = 3,
t2(G) = 4, t3(G) = 6.

One might think of a more generalized version, in which instead of one level knowledge

(only neighbors), each vertex has k levels knowledge. Informally, in most cases of concern,

replacing an edge with a path of length k creates graphs with similar difficulties faced with

the original graph with level one knowledge. Accordingly, the knowledge gained is not

particularly useful. In [5], this difference was better analyzed, albeit the model there is

slightly different than ours. Chapter 5 uses Messy models as its hypotheses.

1.6 Outline

The main objective of this thesis is to analyze broadcasting in the valuable class of topolo-

gies d-dimensional (Directed) Hyper-cylinder under Classical and Messy models. Con-

sequently, hyper-cylinders will be added to the limited arsenal of graph classes for which
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broadcast time is known to be polynomially computable. Chapter 2 is the literature re-

view where the “hardness” of finding the answer to minimum broadcast time, both in terms

of NP-hardness and inapproximability, is explained. It also compiles the known results

for particular classes of graphs, especially the known practical topologies. In chapter 3

some preliminary results regarding the effects of Cartesian product on broadcasting are

provided, and then motivations and aims of this thesis are laid out; including the definition

of Hypercylinder graphs. The thesis studies the polynomiality of the broadcast problem in

hyper-cylinder graphs, expanding the classes of graphs for which the broadcast problem is

polynomially computable. Chapters 4 and 5 explore the newly found results and conjec-

tures in details within Classical and Messy models, respectively. Chapter 6 provides some

results in regards to the relation between worst-case originators and diameters in trees,

which are missing from the literature. This finding may help to generalize the result to

a more general class of graphs. Finally, in chapter 7 all conclusions and conjectures are

summarized, and few suggestions for future studies are suggested.

14



Chapter 2

Literature Review

Sources [45, 51, 62, 65] which include survey papers and book chapters are great resources

for compilation of main results of broadcasting.

2.1 A Hard Problem

It turns out that finding b(u) for an arbitrary vertex in graph G is a difficult task, both in

terms of NP -hardness and lower bounds of approximation algorithms.

NP-hardness. D. S. Johnson proved that finding minimum broadcast time is NP -

complete, and with his permission, the result was published by Slater et al. in [100]. Let

us call the problem of finding the minimum broadcast time with multiple originators MB

and a single originator SB problem.

Theorem 2.1.1 ([100]). MB is NP -complete even with deadline T ≥ 4.

Theorem 2.1.2 ([100]). SB is NP -complete even with deadline of O( 3
√

|V |).

The broadcast time of trees, however, can be found in linear time. The same paper [100]

provides an algorithm to achieve this. Therefore, the question is, how complex is the prob-

lem for more restricted cases?

15



Restricting the graph to be planar and even with a very small bounded degree does not

make the problem any easier. The best-known result in this matter are:

Theorem 2.1.3 ( [67]). MB restricted to 3-regular planar graphs and a deadline 2 is

NP -complete.

Theorem 2.1.4 ( [85] ). SB restricted to planar graphs of degree 3 is NP -complete (the

deadline grows like
√
|V |).

NP -completeness of several restricted simple graphs for MB have also been proven

[68]; namely, bipartite planar graphs, grid graphs, complete grid graphs1, split graph2, and

chordal graph3.

Polynomially computable. Only a few classes of graphs are known for which broad-

cast problem is polynomially solvable.

Many combinatorial optimization problems for graphs can be solved polynomially

when the graph has bounded tree-widths or small connectivity (for examples, refer to [4]

and [93].) In this respect, the broadcasting problem seems to be more complicated since it

does not have finite-state property or a bounded number of equivalent classes (see [4] and

[93] for the meaning); consequently, the methods used in [4] and [93] are not directly appli-

cable. Despite this difficulty, [67] used a modified framework developed in [93] to define a

Node and an Edge decomposition for graphs and presented a broadcasting algorithm. This

algorithm proves polynomiality for restricted versions of Node and Edge decompositions

and provides an intuitive sense of what makes the broadcasting problem difficult.

To the best of our knowledge, the exhaustive list of such classes are,

1The definition of grid graphs here differs from the definition in section 3.1. Here the definition is a planar
graph with grid-like edges. Complete grid graph would be the same 2D version of grid defined in this work.

2A split graph is a graph in which the vertices can be partitioned into a clique and an independent set and
possibly some edges in between.

3A chordal graph is one in which all cycles of four or more vertices have a chord.
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1. Trees [100]

2. Tree of cycles; [59] Tree of cliques [60].

3. Unicyclic graphs; [56, 57] Fully connected trees [58]

4. Necklace graph [53],

5. k-cactus graph where each vertex is common between at most k cycles, with k being

a constant [22] It is strongly believed, yet not proved, by our work that cactus graphs

in general are NP-hard; main difficulty may be observed at [17]

6. Restricted versions of certain Node and Edge decomposition. [67]

7. Some basic usual and practical network topologies presented in section 2.2, Usual

Topologies.

Approximation algorithms. Best general approximation algorithm known is O
(

log(n)
log(log(n))

)
-

approximation for minimum broadcasting on a n-node graph [38].

Two other influential approximation papers are: (1) an O
(

log2(n)
log(log(n))

)
-approximation

Theorem 2.1.5 ([92]). There is an O (nmlog2n)-time algorithm that, given an undirected

graph G on n nodes with m edges and a source node r, computes a broadcast scheme that

completes in time O
(
b(r) log2(n)

log(log(n))

)
.

and (2) an additive approximation algorithm [73], which computes a scheme that finishes

in the minimum broadcast time plus an additive factor of O (
√
n).

In [43] the authors analyzed the randomized broadcasting scheme in general graphs and

gave the expected and almost sure coverage time for such scheme.

Inapproximability. Best general inapproximability lower bound so far is due to [39],

which states:
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Theorem 2.1.6 ([39]). For undirected graphs (resp. directed) broadcast problem is NP -

hard (resp., impossible unless NP ⊆ DTIME
(
nO(logn)

)
) to approximate it within a

ratio of 3− ϵ for any ϵ > 0 (resp., Ω
(√

log n
)
.)

The authors also provided a combinatorial algorithmic approximation with some advan-

tages, which was missing in previous (mostly linear programming based) good approxima-

tion. The most important benefit is a better insight of the structure of the solution.

Another notable, yet generally weaker, inapproximability proof is due to [96], which

proves the NP -hardness to distinguish between graphs G = (V,E) with broadcasting

time smaller than b ∈ θ(|V |) and larger than (57
56

− ϵ)b for any ϵ > 0. In this paper;

inapproximability for 3-regular graphs was also proven for both MB and SB.

Theorem 2.1.7 ([96]). For ternary graphs it is NP -hard to decide whether the broadcast-

ing time is b ∈ θ(log |V |) or b+θ(
√
b) in the case of multiples sources. For ternary networks

with single sources, it is NP -hard to distinguish between graphs with broadcasting time

smaller than b ∈ θ(|V |) and larger than b+ c
√
log b.

As a result of this difficulties some research has been made in approximation or heuris-

tic algorithm (usually with no theoretical guarantee) to determine the broadcasting (see [10,

47, 48, 61, 95]. ) Another direction is to limit the study to a particular class of graphs, as it

is the case in this thesis.

2.2 Usual Topologies

2.2.1 Path Pn

Path Pn is a sequence of n connected vertices, see Figure 5. The diameter is n− 1.

For the originator to obtain optimal time, it should send the information to the longer

side first. After that decision non-lazy scheme is unique. Accordingly, b(Pn) = n − 1. In
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computer networking, “buses” are mostly modeled with paths.

Figure 5: Path Pn for n = 7.

2.2.2 Cycle Cn

Cycle Cn is a wrap-around sequence of n connected vertices; see Figure 6. The diameter

is ⌊n/2⌋.

After the first message relay, moves are uniquely determined in any non-lazy schemes.

Due to symmetry, it does not matter which direction the first move is. Consequently, b(u)

is the same for all vertices and b(Cn) = ⌈n/2⌉. In computer networking, “rings” are mostly

modeled with cycles.

Figure 6: Cycle (Ring) Cn for n = 7 and n = 3.

2.2.3 Complete Graph Kn

In Complete graph Kn, all n vertices are linked together; see Figure 7. The diameter is 1.

Let the name of the vertices be from 0 to n − 1, with 0 as the originator. At step i

have informed vertex p send a message to vertex 2i−1 + p. In this way it can be seen that

b(Kn) = ⌈log2(n)⌉. The diameter is one, but the number of edges is far too high to be

practical in a computing network connection when n is big enough. For small n; however,

it might be beneficial to use Kn; for example, [46] uses such interconnection.
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Figure 7: Complete graphs Kn for n = 6 and n = 4.

2.2.4 Hypercube Hd

Hypercube Hd is a graph recursively defined as follows. A 0-dimensional hypercube H0 is

a vertex. A d + 1-dimensional hypercube Hd+1 consists of two copies of Hd, where same

vertices in each is connected to each other; see Figure 8.

Hypercube is a minimum broadcast graph; therefore, b(Hd) = d. One optimal scheme

is the following: at step i have informed vertex p send the message in its ith-dimention

neighbor, the connecting edges for building Hi from two Hi−1.

Figure 8: Hypercube graphs Hd for dimensions d = 3 and d = 4.

The hypercube is used in many parallel computers due to its many features, includ-

ing but not limited to small diameter log2 n (n is the number of vertices), fault tolerance

capabilities, and easily simulating other topologies. For this reasons, many research have

been done on hypercube for different objectives; few related examples are [18, 26, 94, 99].
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Some researchers tried to build or find graphs with lower edges while preserving some of

the features that hypercube provides; the following Cube-Connected Cycles CCCd and De

Bruijn Network UB(d,D) are examples of such attempts.

2.2.5 Cube-Connected Cycles CCCd

Cube-connected cycles graph of order d, CCCd, can be defined as a graph with d2d vertices,

indexed by pair of numbers (c, p) where 0 ≤ c < 2d and 0 ≤ p ≤ d. Vertex (c, p)

is connected to three neighbor: (x, (y + 1) mod d), (x, (y − 1) mod d), and (x ⊕

y, y), where ⊕ denotes the bitwise exclusive or operation on binary numbers; see Figure 9.

Diameter is 2d+ ⌊d/2⌋ − 2, for d > 3 [84].

By first relaying the message through hypercube neighbors and then through the cycle

it can be seen that b(CCCd) = ⌈5d/2⌉ − 1. Cube-connected cycles CCCd can be viewed

as d-dimensional hypercube Hd where every vertex is replaced by cycle of d. For this

reason, as mentioned, cube-connected cycles have been proposed as a good alternative for

hypercube for a large class of algorithms on general-purpose parallel processors with the

additional benefit of having a small bounded degree (3 regular) [89].

(0, 0) (0, 2)

(0, 1)(1, 1)

(1, 2) (1, 0)

(3, 0)

(3, 2)

(3, 1) (2, 1)

(2, 2)

(2, 0)

(4, 0) (4, 2)

(4, 1)(5, 1)

(5, 2) (5, 0)

(7, 0)(7, 2)

(7, 1) (6, 1)

(6, 2)

(6, 0)

Figure 9: Cube-connected Cycle graph CCCd for d = 3.
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2.2.6 De Bruijn Network UB(d,D)

The de Bruijn Network UB(d,D) is a digraph with indegree and outdegree d and diameter

D with dD vertices. The vertices are words of length D on an alphabet of d letters. There is

an edge from v to u, called shuffle-edge, if and only if last D− 1 letters of v is the same as

first D − 1 letters of u; see Figure 10. The undirected de Bruijn Network is obtained from

removing the orientations of the edges.

The de Bruijn Network has been proposed and studied as a good competitor for hyper-

cube [15]. Broadcasting has been studied on the directed version, and some bounds have

been found; interested readers may refer to [14, 63, 70].

000

001

010

100

101

011

111

110

Figure 10: De Bruijn Network UB(2, 3).

2.2.7 Shuffle-Exchange Network SEd

Shuffle-Exchange Network SEd is a 3-regular graph with 2d vertices. The vertices are

d-bits strings x = x0 . . . xd−1 whose neighbors are x1 . . . xd−1x0 and xd−1x0 . . . xd−2 via

shuffle edge and to x0 . . . xd−1 via exchange edge; see Figure 11. Diameter is known to be

2d− 1.

It has been shown in [37] that b(SEd) = 2d − 1. A small number of steps for routing

and the existence of fast parallel algorithms for basic problems like sorting, matrix multi-

plication, polynomial evaluation, and Fourier transforms are some of the advantages of this
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000 001

010

100

111110

101

011

Figure 11: Shuffle-Exchange Network SE3.

network [77, 78].

2.2.8 Butterfly Network BFd

Butterfly Network BFd is a graph with d2d vertices, diameter ⌊3d/2⌋, and maximum degree

4. The vertices are labeled with a pair of numbers (l, x), l is called the level (0 ≤ l ≤

d − 1) and x = x0 . . . xd−1 is a d bit string called the position-within-level. Each vertex

(l, x) is connected by a straight edge to (l + 1 mod d, x) and by a cross edge to (l + 1

mod d, x0 . . . xl−1xlxl+1 . . . xd−1); see Figure 12.

000 001 010 011 100 101 110 111
level 0

level 1

level 2

level 0
replicated

Figure 12: Butterfly Network BFd for d = 3. For clarity, level 0 has been replicated.

First investigation of broadcasting were done by [101, 102], later the result was im-

proved by [70] to 1.7417d ≤ b(BFd) ≤ 2d− 1.
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In computer networking, Butterfly Networks are used primarily on shared memory mul-

tiprocessors having advantages like relatively low diameter and high link failure tolerance.

2.2.9 d-dimensional Grid G[n0 × n1 × . . .× nd−1]

The d-dimensional grid graph of dimensions n0, n1, . . . , nd−1 denoted by G[n0×n1×· · ·×

nd−1] is the graph whose vertices are d-tuple of positive integers (v0, v1, . . . , vd−1) where

0 ≤ vi ≤ ni − 1 for all 0 ≤ i ≤ d− 1. The edges connect d-tuples which differ in exactly

one coordinate by one; see Figure 13. Diameter is
∑d−1

i=0 (ni − 1).

Figure 13: Grid graph G[4× 5] and G[3× 4× 3].

The first study of broadcasting in grids is by [40] in which b(G[n0×n1]) = n0+n1−2

was proven, and more generally they showed:

• For a corner vertex v, b(v) = n0 + n1 − 2

• For a side vertex v, b(v) = the maximum distance form v to a corner vertex.

• For an interior vertex v = (i, j), b(v) = the maximum distance form v to a corner

vertex

– plus 1 if j = n1+1
2

– plus 2 if j = n1+1
2

and i = n0+1
2
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It can also be shown that for d-dimensional grids, b(G[n0 × n1 × · · · × nd−1]) =∑d−1
i=0 (ni − 1); however, b(v) proves to be much more difficult and no work has been

done about it. They also considered broadcasting in an infinite 2-dimensional grid. Let

f(n, t) be the maximum number of vertices than can be informed after t time-units in this

grid. They have proved that f(2, t) ≤ 2t2 − 6t + 8 for t ≥ 2 and conjectured equality.

Inspired by this conjecture papers [29, 71, 72] improved the results to

f(n, t) ≤ 2n

n!
tn +

2− n2n

(n− 1)!
tn−1

+
1

(n− 2)!

(
4− n− 1

3
(2n+1 − n2n−2) + n22n−1

)
tn−2 +O(tn−3).

Infinite 2-dimensional hexagonal arrays, or triangular arrays, along with more conjectures

and special case proofs have also been done; for more detailed information and references,

please refer to [62]. Many computer networking systems employed grid structure for var-

ious reasons. All the examples provided in the Hypercube Hd section are applicable here

since hypercubes are a special kind of grid network.

2.2.10 d-dimensional Torus T [n0 × n1 × . . .× nd−1]

The d-dimensional Torus graph can be defined the same way as d-dimensional grid graph

with the exception that the arithmetic of each dimension is done modulo to that dimension

size. In this way, for dimension i, ni − 1 and 0 in that dimension have a difference of one.

Conceptually, d-dimensional torus can be viewed as forming a torus (hence the name);

therefore, it is a toroidal graph; see Figure 14. The graph is 2d-regular and its diameter is∑d−1
i=0 ⌊ni/2⌋.
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Figure 14: Torus graph T [4× 4]. Torus graph embeded on torus surface.

In [40], 2-dimensional torus was studied and they showed:

b(T [n1 × n2]) =


⌊n1/2⌋+ ⌊n2/2⌋ If n1 and n2 are even

⌊n1/2⌋+ ⌊n2/2⌋+ 1 If n1 and n2 are odd

⌊n1/2⌋+ ⌊n2/2⌋+ 1 Otherwise

The following scheme obtained this result: if a vertex is informed by one of its vertical

neighbors, it sends the message to its other vertical neighbor. Otherwise, it first sends the

message to its other horizontal neighbor, then to its upper vertical neighbor, and finally

to its lower vertical neighbor. However, this result is flawed for T [3 × 3], which will be

discussed in chapter 4. For d-dimensional torus, it is known that

d−1∑
i=0

⌊ni

2

⌋
≤ b(T [n0 × n1 × . . .× nd−1]) ≤

d−1∑
i=0

⌊ni

2

⌋
+max{0,m− 1}

where m is the number of odd cycles. This can be proven using the 2-dimensional version

and a simple induction. In computer networking, torus is a commonly used structure. Few

examples are the use of 2-dimensional torus in [83, 91] and more generally use of torus in

[1, 2, 66, 108].
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2.2.11 Summary of the Known Results for the Usual Topologies

In [45] the status of the investigation of graphs mentioned above has been provided. Since

then, some of the results may have been improved.

Kn Cn 2-dimensional T T G Hd CCCd UB(d,D) SEd BFd

D D D TI D D D TI D TI

(a) Broadcasting under the Classical model

Kn Cn 2-dimensional T T G Hd CCCd UB(d,D) SEd BFd

Full-duplex D D D TI D D TI ? ? TI
Half-duplex D D TI TI TI TI TI ? ? TI

(b) Gossiping under the Classical model

D (Done) The exact value is known or tight bounds can be given.
TI (To Improve) Results are to be improved in a significant way.
? Open problem.

(c) Legend

Table 1: The status of known results of the usual topologies mentioned in section 2.2
according to [45].

2.3 Minimum Broadcast Graph

Historically, finding the broadcast function B(n) and minimum broadcast graph (mbg)

were the first investigated problems. By the discussion of section 2.1, A Hard Problem

it is expected that finding B(n) and mbg’s should be extremely difficult. These problems

indeed prove to be very difficult evident by the limitations of the proven results.

In [62], it is reported that the results of [41, 80, 86] collectively indicate the values of

B(n) for n ≤ 18 and B(2k) = k2k−1. At the time no other result were known. Figure 15

and Table 2 summarize some of these findings. Since then some new results have been

emerged; most notably, (1) [69], and [35] have independently showed that B(2k − 2) =

(m − 1)(2m−1 − 1) for m ≥ 2; (2) the result for n ≤ 22, n = 26 [110], n = 63 [76],
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n = 127, n = 1023, n = 4095 and possibly more have also been found.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number 1 1 1 1 4 1 1 4 6 21 2 1∗ 1∗ 2∗ 3∗ 8∗ 5∗ 1∗

∗ Indicates the number known at the time of [62].

Table 2: Number of mbg’s; courtesy of [62].

(a) 8 : (Slater) (b) 9 : (Farley) (c) 10 : (Mitchell)

(d) 11 : (Beyer-Proskurowski) (e) 12 : (Mitchell-Hedetniemi) (f) 13 : (Hedetniemi)

(g) 14 : (Bermond) (h) 15 : (Hahn)

Figure 15: Example of minimum broadcast graphs; courtesy of [62].

Since finding the exact mbg is very difficult, some researchers have focused on giving

sparse graphs and continually making them smaller to yield a better bound for B(n). Some

of these works are [12, 24, 25, 35, 36, 50, 55, 69]. In practice, for the design of the

actual network, other considerations must be noted, particularly the average degree of the

network. Examples of research on bounded degree graphs are [13, 21, 79].
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2.4 Other Models

In addition to Classical and Messy models model and all the alternative models mentioned

in the Introduction, including but not limited to the dynamic links model, alternative time

models (e.g., linear model), or circuit-switch model, etc. there are many other hypotheses

for which broadcasting/gossiping has been studied. Here a non-exhaustive list of such

papers is presented.

In [44] the authors propose a linear model similar to the one discussed in which it also

incorporates the number of communication links simultaneously used by each processor,

and thus can also take into account the possibility of communicating in a restricted number

of directions; in [16], the authors considered a model with constant T whereby splitting

and combining of the packets are not allowed; in [20], broadcasting multiple messages in

generalized Fibonacci trees is studied under the model that every processor can send one

packet and receive one packet; in [81], authors study gossiping under the edge-coloring

model in order to avoid the possibility of message collision and congestion; in [90], the

authors discuss the problem of routing of several requests in all-optic networks, which has

a high bandwidth; in [31, 88, 103], the authors analyze under reduced buffering; in [105],

broadcasting of small number of messages in a square grid graph under different buffer

sizes, in [42], consider a model between whispering and shouting; in [75], broadcasting

and gossiping are generalized and studies on hypergraphs. Some networks with specific

topologies have a property that passing a message between any pair of processors takes

roughly the same time; for examples, see [27, 28, 32, 34]. To analyze this type, Bar-Noy

and Kipnis have developed postal model [104], in which one can assume the processors are

connected in a complete network, but there is a communication latency factor λ for sending

a message. Broadcasting of multiple messages in the postal model is analyzed in [82].
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Chapter 3

Cartesian Product in Broadcasting and

Motivation

Hypercube and torus are the most common instances of k-ary n-cubes (cubes with n dimen-

sions and k nodes in each dimension) in a network of multiprocessors [33]; some examples

can be found in section 2.2, Usual Topologies. Hypercube topology has various beneficial

features, which makes it ideal for multiprocessor systems, as it was pointed out in sec-

tion 2.2. However, it has few drawbacks, such as not having a small fixed degree for any

number of processors. Torus topology is also popular partly because of [33], in which they

show that in some contexts, torus outperforms hypercubes. More information about why

these two topologies are vastly used, considered beneficial, and the comparison between

them can be found in [87]. Despite their simple form, one might wonder what feature(s)

makes these topologies beneficial and commonplace.

It appears that the way edges are added in the recursive definition of the hypercube is

what makes hypercube exceptionally good for parallel computing needs. The same kind of

edges can be seen in torus if viewed as continually connecting one cycle to another copy

of itself. This method of adding edges is reminiscent of the definition of Cartesian product

in graphs. For this reason, we explored the definition of Cartesian product and investigated
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its effect on broadcast time.

Definition 3.0.1 ( Cartesian product ). The Cartesian product of graphs G and H whether

directed or undirected, written G×H , is the graph with vertex set V (G)×V (H) specified

by putting (u, v) adjacent to (u′, v′) if and only if (l) u = u′ and vv′ ∈ E(H), or (2) v = v′

and uu′ ∈ E(G).

Subgraph H of (a, b) or the graph H associated with (a, b) is defined as the induced

subgraph on vertex set {(u, v)|u = a}, which by the definition is isomorphic to graph H .

Similarly, subgraph G of (a, b) or the graph G associated with (a, b) is defined.

Example 3.0.1. Figure 16 shows an example of the Cartesian product for undirected

graphs.

× =

Figure 16: An example of the Cartesian product for undirected graphs. Courtesy of
Wikipedia webpage [107].

Now that the definition is clear, let us explore to have a clearer picture of the effects

of the Cartesian product in broadcasting under the Classical model starting with Theo-

rem 3.0.1 which is our result.
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Theorem 3.0.1. Let G and H be two simple directed or undirected graphs then b(G×H) ≤

b(G) + b(H).

Proof. Let the originator be (oG, oH). The following broadcast scheme takes no more than

b(G) + b(H) time-units: Consider a non-lazy optimal broadcast scheme for each of G and

H , namely SG and SH . After the vertex (a, b) is informed it follows SG on associated G

and then it follows SH on associated H .

Let VG be the set of vertices of the associated G of (oG, oH). All vertices in VG are

informed by b(G) time-units. The vertices of G×H can be partitioned into |VG| copies of

the graph H; expressly, for every vertex x ∈ VG the induced subgraph {(u, v)|u = x}. At

time b(G), since VG is fully informed, all of these |VG| copies of H have a vertex x informed

and these x’s have no other vertex to inform in their associated G; i.e. VG. Accordingly, all

vertices will be informed no later than b(G) + b(H) time-units.

Corollary 3.0.1.1. Let G = Πd−1
i=0Gi, then b(G) ≤

∑d−1
i=0 b(Gi).

Proof. Proof by induction on d. The case d = 2 is Theorem 3.0.1 and has been proven.

Assume the result is true for d − 1, for some d ≥ 3. Let H = Πd−2
i=0Gi, by the induction

hypothesis b(H) ≤
∑d−2

i=0 b(Gi). Since G = H × Gd−1, using theorem 3.0.1 we conclude

that b(G) ≤
∑d−1

i=0 b(Gi).

Remark 3.0.1. Corollary 3.0.1.1 may be tight for some graphs; for example, it is tight for

2d-grid as was seen in subsection 2.2.9.

The scheme used in Corollary 3.0.1.1 will be used in other parts of this document as

well; therefore, let us name it In order scheme. The pseudocode is presented in In order

scheme.

The proof of Theorem 3.0.1 in some sense suggests that the upper bound may not be

tight even when either of G or H is slightly dense. Example 3.0.2 shows that the bound is

indeed not tight.
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Algorithm In order scheme Finds the next vertex to be informed from the
given vertex using In order scheme in graph G = Πd−1

i=0Gi

Input:
A vertex v = (v0, v1, . . . , vd−1) that has been informed.

Having access to fixed schemes S(G0), S(G1), · · · , S(Gd−1)

Output:
Next vertex to be informed from (v0, v1, . . . , vd−1)

1: function nextInOrderScheme( v )

2: for i = 0 to d− 1

3: if vi has a neighbor to inform in associated Gi based on S(Gi)

4: return next vertex in associated Gi based on S(Gi)

5: return NULL //No next vertex to inform from v

Example 3.0.2. Let G = K5 × Pm, where m ≥ 4. The scheme in Figure 17 shows that

b(G) ≤ m− 1 + 2 < m− 1 + 3 = b(Pm) + b(K5).
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Figure 17: A scheme for K5×Pm where m ≥ 4, which achieves broadcast time of m−1+2.
The achieved time is less than b(Pm) + b(K5). For clarity, two edges of K5 are not drawn.
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To utilize the Cartesian product to find information about new classes of graphs, we

must restrict the classes of “primitive” graphs, meaning the Gi’s that are multiplied to-

gether. As it was seen when primitive graphs are even slightly dense, our current bound

is not tight. Two useful types of graphs that are not dense are paths and cycles. The set

of graphs obtained by the closure of the set of paths and cycles under Cartesian product

contains Path Pn, Cycle Cn, d-dimensional Grid G[n0 × n1 × . . . × nd−1] (in particular

Hypercube Hd,) and d-dimensional Torus T [n0 × n1 × . . . × nd−1]. It also contains other

beneficial topologies which might be useful in different fields where the study of broadcast-

ing is of significance; see Figure 18 for some examples. Let us name this set hyper-cylinder

graphs. In section 3.1, hyper-cylinder is formally defined, and an alternative definition of

grid and torus graphs is presented.

3.1 Definitions and Conventions

Definition 3.1.1 ( d-dimensional (Directed) Hyper-cylinder ). The graph obtained by Carte-

sian product of d (directed) paths, or (directed) cycles, i.e. Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli},

is called d-dimensional (directed) hyper-cylinder of size Πd−1
i=0 li.

Definition 3.1.2 ( d-dimensional (Directed) Grid, d-dimensional (Directed) Torus ). If all

the graphs (Hi’s) used in the definition of d-dimensional (directed) hyper-cylinder are (di-

rected) paths the hyper-cylinder is a d-dimensional (directed) grid; and if all of them are

(directed) cycles the graph is a d-dimensional (directed) torus.

Convention 2. In the examples, the positive direction of vertical lines is taken to be down-

ward in order for the vertex 0 to be at the top left.

Example 3.1.1. Some examples of hyper-cylinder graphs are provided in the Figure 18.
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(a) Hyper-cylinder P3×P4×P3, generating
grid G[3× 4× 3]. (b) Hyper-cylinder C4×C4, generating torus

T [4× 4].

(c) Hyper-cylinder P2×P2×P2,
generating hypercube H3.

(d) Hyper-cylinder C3 × P2 × P2 × P2, resembling CCC3.

(e) Hyper-cylinder C6 × P4.

Figure 18
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(f) Hyper-cylinder P2 × P2 × P2 × C4

(g) Hyper-cylinder C4 × C4 × P3

Figure 18: Examples of hyper-cylinder graphs. Corner vertices have been distinguished by
light teal color.

Convention 3 (Lengths). It is assumed that for all paths, their length is at least one, and

for all cycles, the length is at least two. This is because the Cartesian product of a graph G

with P1 is isomorphic to G, and with C1 is isomorphic to G with additional loops for each

vertex which renders the result useless. The result of the Cartesian product with P0 or C0

is the “null” graph, which is a trivial structure for the study of broadcasting.
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Convention 4 (Naming of vertices). For every (not infinite) path and cycle, rename the

vertices with non-negative integer numbers according to their ordering position, starting

with 0. Consequently, when the length is l, modulo l and its arithmetic can be used to refer

to the vertices. Additionally, without the loss of generality, assume that the ordering (in

intuitive pictorial representation) is clockwise. To illustrate, vertex −1 refers to the vertex

l − 1, and vertex 1 is the next vertex of 0 clockwise.

In the case of (both side) infinite paths, 0 is assigned to an arbitrary vertex, and a positive

direction is chosen; then, vertices are renamed as integer numbers. The positive direction is

the outgoing direction in directed graphs, and it is randomly selected for undirected graphs.

Definition 3.1.3 (0 vertex). The vertex of a d-dimensional hyper-cylinder whose all of its

coordinate are 0, is called the 0 vertex.

Definition 3.1.4 (Corner Vertex). Consider a d-dimensional hyper-cylinder H = Πd
i=1Hi,

where Hi ∈ {Pli+1, Cli}. Vertex u = (u1, u2, . . . , ud) is a corner vertex of H , if for each

Hi that is a path ui ∈ {0, li}. If no Hi is a path, no corner vertex exists.

Example 3.1.2. Figure 18 indicates the corner vertices in the provided examples.

Definition 3.1.5 ((k-)Borders). Let H = Πd−1
i=0Hi where Hi ∈ {Pli+1, Cli} be a d-dimensional

hyper-cylinder, by reindexing if necessary let us assume that H0, . . . , Hp−1 are paths and

the rest are cycles provided that p ≥ 1. For any fixed k indices from 0 to p − 1, namely

i0, i1, . . . ik−1 a k-border on these indices is the induced hyper-cylinder subgraph of H on

the vertex set V ′ = {w = (w0, . . . , wd−1)|w ∈ V (H), wij = lij for 0 ≤ j ≤ k − 1}.

Another name for 1-border is border. The name 0-border will be used to describe an

induced subgraph on the set of vertices that are not in any border.

A strict k-border is a k-border which is not a (k + 1)-border of G.

Definition 3.1.6 ( d-dimensional (Directed) Infinite Grid ). If all the graphs (Hi’s) used in

the definition of d-dimensional (directed) hyper-cylinder are (directed) infinite paths (P∞)

this hyper-cylinder is called d-dimensional (directed) infinite grid.
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Chapter 4

Broadcasting in Hyper-cylinder Graphs

under Classical Model

4.1 Directed Graphs

Theorem 4.1.1. Let H = Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli} be a directed hyper-cylinder

graph. With 0 as originator, b(0) =
∑d−1

i=0 l
′
i where l′i = li when Hi = Pli+1 and l′i = li − 1

otherwise.

Proof. The length of the shortest directed path from originator 0 to (l′0, l′1, . . . , l′d−1) is∑d−1
i=0 l

′
i; therefore, b(0) ≥

∑d−1
i=0 l

′
i. In order scheme will reach all the vertices by

∑d−1
i=0 l

′
i

time-units.

Corollary 4.1.1.1. Let G = Πd−1
i=0Pli+1 and T = Πd−1

i=0Cli be a directed grid and torus

respectively. With 0 as originator, bG(0) =
∑d−1

i=0 li and bT (0) =
∑d−1

i=0 (li − 1).

Remark 4.1.1. The only viable choices for originator in a directed hyper-cylinder are the

vertices that share one associate cycle with 0 vertex. This is because from other vertices,

there is no other directed path to 0, and hence 0 will never get informed. It is easy to see

38



that there is an automorphism such that each of these viable options becomes 0 vertex. This

proves bH(0) = b(H).

Example 4.1.1. Figure 19 illustrates the scheme and viable originators for directed hyper-

cylinder H = C6 × P4.

0

Figure 19: In order scheme for directed hyper-cylinder H = C6 × P4; b(H) = bH(0) =
5 + 3 = 8. Other viable originators have light blue color.

4.2 Undirected Graphs

Definition 4.2.1. Let u = (u0, u1, . . . , ud−1) be a vertex in a d-dimensional hyper-cylinder

H = Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli}. Expression mid(u) = k signifies that u is the

middle vertex of exactly k of the odd-length paths (Pli+1’s); more precisely, it means that

there is exactly k of i’s such that ui =
li−1
2

which is the index of middle vertex of odd-length

path Pli+1.

Lemma 4.2.1. Let G = Πk−1
i=0P3 be a grid and m = (1, 1, · · · , 1) be the middle vertex, then

b(m) ≤ 5× ⌊k/3⌋+ 2× (k mod 3). For k ≤ 3 this upperbound is tight.
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Proof. The broadcast time of m for k = 2 is four, a special result of Farley and Hedet-

niemi which is mentioned in [62]. For k = 3, G has 27 vertices; consequently, bG(m) ≥

⌈log2(27)⌉ = 5. In Figure 20 a broadcast scheme for both k = 2 and k = 3 is provided

which achieves these bounds.

m

1

2

2

3

3

33

4

4

4

4

4

4

4

4

5

5

5

5

5

5

55

5

5

5

(a) b(P3 × P3 × P3, m) = 5.
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(b) b(P3 × P3, m) = 4.

Figure 20: A minimum broadcast scheme for P3 × P3, and for P3 × P3 × P3.

Proof by induction on k for k ≥ 3. For base case consider the aforementioned proof for

k = 3. Assume the result is true for all values of n, which satisfies 3 ≤ n < k.

If k mod 3 ̸= 0, define Gk−1 = Πk
i=1P3 and note that G = Gk−1 × P3. Graph G can

be though of as a path P3 whose vertices are Gk−1. Consider the middle Gk−1, vertex m

is the middle vertex of this subgraph as well. Therefore, the induction hypothesis indicates

that starting from m the middle Gk−1 can be informed in no more than 5× ⌊(k − 1)/3⌋+

2 × ((k − 1) mod 3) time-units. Applying Theorem 3.0.1 on Gk−1 × P3 concludes that

bG(m) ≤ 5× ⌊(k − 1)/3⌋+ 2× ((k − 1) mod 3) + 2 = 5× ⌊k/3⌋+ 2× (k mod 3).

Now consider k mod 3 = 0. Letting Gk−3 = Πk−3
i=1P3, G can be expressed as Gk−3 ×

40



(P3 × P3 × P3). By the nature of Cartesian product one can imagine G as a P3 × P3 × P3

graph whose vertices are a copy of Gk−3. Similar to before using the induction hypothesis

the middle Gk−3 can be informed in no more than 5×⌊(k − 3)/3⌋+2× ((k− 3) mod 3)

time-units. After that, the scheme mentioned in Figure 20 can be used to cover all G, this

time; however, instead of a vertex informing another vertex a copy of Gk−3 informs another

copy of Gk−3. Accordingly, bG(m) ≤ 5 × ⌊(k − 3)/3⌋ + 2 × ((k − 3) mod 3) + 5 =

5× ⌊k/3⌋+ 2× (k mod 3).

Theorem 4.2.2. In d-dimensional grid G = Πd−1
i=0Pli+1 with u = (u0, u2, . . . , ud−1) as

originator,

1. If mid(u) = 0 then bG(u) =
∑d−1

i=0 b(Pli+1, ui); the sum of broadcast time of ui in

Pli+1 for every 0 ≤ i ≤ d− 1.

2. Otherwise, if mid(u) = k ≥ 1, then

[
d−1∑
i=0

b(Pli+1, ui)

]
− k + 1 ≤ bG(u) ≤

[
d−1∑
i=0

b(Pli+1, ui)

]
− 1

3
(k − [k mod 3])

Proof. Let mid(u) = k, C be the set of furthest corner vertices to u, and l′i be the distance

of ui to one of the furthest end-vertices of the associated Pli+1. Cardinality of C is 2k and

the shortest distance from u to any member of C is
∑d−1

i=0 l
′
i. If ui is not the middle vertex

of the associated Pli+1, then b(Pli+1, ui) = l′i, else b(Pli+1, ui) = l′i + 1. As a result,

bG(u) ≥
∑d−1

i=0 l
′
i =

∑d−1
i=0 b(Pli+1, ui)− k.

Corollary 3.0.1.1 (using In order scheme) shows that bG(u) ≤
∑d−1

i=0 b(Pli+1, ui) time-

units. Therefore, if k = 0, bG(u) =
∑d−1

i=0 b(Pli+1, ui).

Otherwise, if k ≥ 1, consider the broadcast tree. Since |C| ≥ 2 we have bG(u) ≥∑d−1
i=0 b(Pli+1, ui)− k + 1.

Without the loss of generality (with reindexing) assume that the associated Pl0+1 to

Plk−1+1 are the paths in which the projection of u is in the middle. View G as Πd−1
i=kPli+1
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connection of “hyper-vertices” Πk−1
i=0Pli+1. Let H be the hyper-vertex that contains u.

Note that by our choice u is the middle vertex of H , and mid(H) = 0 in the grid of

hyper-vertices. We assert that H can be informed in 5 × ⌊k/3⌋ + 2 × (k mod 3) +[∑k−1
i=0 b(Pli+1, ui)

]
− 2k time-units. If the assertion is true, by first informing H and

then treating the problem as a similar problem for Πd−1
i=kPli+1 originating from H we get

bG(u) ≤ b(H, u) +
d−1∑
i=k

b(Pli+1, ui)

≤

[
d−1∑
i=0

b(Pli+1, ui)

]
− 2k + 5× ⌊k/3⌋+ 2× (k mod 3)

=

[
d−1∑
i=0

b(Pli+1, ui)

]
− 1

3
(k − [k mod 3])

concluding the proof.

The proof of the assertion. Associate a standard n-dimensional integer lattice (Zk)

to vertices. Let vertex u be the 0 vertex, and e0, e1, . . . , ek−1 be the standard basis of

our coordinate system. The new “coordinate” of vertex v = (v0, v1, . . . , vk−1) will be

(v0 − u0, v1 − u1, . . . , vk−1 − uk−1). Having a vector notation facilitates the proof by

allowing the use of vector operations.

By Lemma 4.2.1 all vertices of the middle subgraph B = Πk−1
i=0P3 can be informed in

5 × ⌊k/3⌋ + 2 × (k mod 3) time-units. The following is a partitioning of vertices of H

into nine sub-multi-dimensional grids; in which each has a distinct vertex of B as a corner

vertex. For each vertex b ∈ B, its multi-dimensional grid partition is defined as

Pb =

{
v ∈ V (H)

∣∣∣ v = b+
k−1∑
i=0

cibiei where for all i, ci ∈ Z+

}

Note that bi ∈ {−1, 0, 1}; hence, biei only dictates the direction away from the cor-

ner b in this multi-dimensional grid. To prove that this is a partition take a vertex v =

(v0, v1, . . . , vk−1). Choose b = (b0, b1, . . . , bk−1) ∈ B, such that for each i, bi is 1 if vi is
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positive, 0 if vi is zero and −1 if it is negative. Vertex v only resides in Pb.

Vertex b in Pb is the corner vertex and therefor midPb
(b) = 0. Consequently, the

broadcast time of Pb with b as originator is
∑k−1

i=0 |bi|(l′i − 1). After B is informed each

b ∈ B will act as the originator of its partition and exclusively broadcast there. Therefore,

b(H, u) ≤ 5× ⌊k/3⌋+ 2× (k mod 3) + max
b∈B

{bPb
(b)}

= 5× ⌊k/3⌋+ 2× (k mod 3) +
k−1∑
i=0

(l′i − 1)

= 5× ⌊k/3⌋+ 2× (k mod 3) +

[
k−1∑
i=0

b(Pli+1, ui)

]
− 2k

Corollary 4.2.2.1. For every vertex v with mid(v) ≤ 1 in G = Πd−1
i=0Pli+1, b(G, v) =∑d−1

i=0 b(Pli+1, vi). Consequently, if the number of odd length paths does not exceed one

the broadcast time of every vertex will be known.

Corollary 4.2.2.2. Let G be a d-dimensional grid G = Πd−1
i=0Pli+1. By our knowledge of

worst-case originators and broadcast center of paths we conclude that:

1. b(G) =
∑d−1

i=0 li; the sum of broadcast time of the paths.

2. Vertex w = (w0, w1, . . . , wd−1) is the worst-case originator, if and only if wi is

the worst-case originator of Pli+1 for all 0 ≤ i ≤ d − 1. Consequently, the set of

worst-case originators are the set of corner vertices.

Proof. The result is the direct consequence of Theorem 4.2.2, noting that
∑d−1

i=0 b(Pli+1, ui)−
1
3
(k− [k mod 3]) ≤

∑d−1
i=0 b(Pli+1, ui) and that b(Pli+1, ui) are largest for the mentioned

vertices.

Example 4.2.1. Consider G = P4×P3×P3 the information Theorem 4.2.2 and its corollary

provide is summarized in Figure 21.
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k = 0 Worst-case originators b(v) = 7

k = 0 b(v) = 6

k = 1 Depending on the chosen vertex deterministically b(v) = 6 or 5

k = 2
For the two middle nodes the formula indicates 3 ≤ b(v) ≤ 4 and for
the two outer ones 4 ≤ b(v) ≤ 5.

Figure 21: Summary of the information provided by Theorem 4.2.2
in P4 × P3 × P3.

Theorem 4.2.3. Broadcast time of T = Cl1 × Cl2(2d-torus) is:

b(T ) =


⌈l1/2⌉+ ⌈l2/2⌉ = 4 If l1 = l2 = 3

⌈l1/2⌉+ ⌈l2/2⌉ − 1 Else if l1 and l2 are odd numbers

⌈l1/2⌉+ ⌈l2/2⌉ Otherwise

Proof. Note that torus is vertex-transitive; therefore, only 0 vertex will be analyzed.

Consider the set L = {(v1, v2) | v1 ∈ {⌊l1/2⌋, ⌈l1/2⌉}, v2 ∈ {⌊l2/2⌋, ⌈l2/2⌉}} of

vertices, which has the cardinality of 2number of odd cycles. The shortest path from origin to any

vertex in L is ⌊l1/2⌋+ ⌊l2/2⌋, therefore b(T ) ≥ ⌊l1/2⌋+ ⌊l2/2⌋.

Theorem 3.0.1 (using In order scheme) guarantees that b(T ) ≤ ⌈l1/2⌉ + ⌈l2/2⌉. This

concludes the proof for the case where both l1 and l2 are even.

For other cases, consider the broadcast tree T ∗ of any optimal scheme. As mentioned

vertices in L have distance ⌊l1/2⌋ + ⌊l2/2⌋ from the originator. Since |L| > 1, T ∗ cannot
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reach all elements in L in ⌊l1/2⌋ + ⌊l2/2⌋ time-units; thus, b(T ) ≥ ⌊l1/2⌋ + ⌊l2/2⌋ + 1.

This will conclude the result for the case when one cycle is of odd length and the other

even.

For the case where both l1 and l2 are odd, if both are three we know that b(T ) ≥

⌈log2(3× 3)⌉ = 4 = ⌈l1/2⌉+ ⌈l2/2⌉. Else, the following broadcast scheme informs every

vertex in ⌈l1/2⌉+⌈l2/2⌉−1 time-units, and since this number is equal to ⌊l1/2⌋+⌊l2/2⌋+1

the result is obtained. An example of this scheme is shown for C5 × C5 in Figure 22.
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Figure 22: A broadcast scheme that informs C5 × C5 in ⌈5/2⌉+ ⌈5/2⌉ − 1 time-units.

By symmetry, assume that l2 ≥ l1; accordingly, l2 ≥ 5. Define Ci to be the associate Cl2

for the vertex (i, 0). The scheme: Start by informing C0 just like the regularly considered

optimal scheme for cycles starting in clockwise direction. This means that first (0, 1) is

informed, then (0, 0) progress counter-clockwise and (0, 1) continues informing clockwise.

At time ⌈l2/2⌉−1, only (0, ⌈l2/2⌉) is not informed in C0. Utilizing Convention 4 notation,

at time ⌈l2/2⌉ vertices {(0, v2) | − (⌊l2/2⌋− 1) < v2 ≤ ⌊l2/2⌋} will inform {(−1, v2) | −

45



(⌊l2/2⌋−1) < v2 ≤ ⌊l2/2⌋} and (0,−(⌊l2/2⌋−1)) will inform (0,−⌊l2/2⌋) = (0, ⌈l2/2⌉),

which makes C0 fully informed. At time ⌈l2/2⌉ + 1, C0 will inform C1, and the only two

uninformed vertices in C−1; i.e. (−1,−(⌊l2/2⌋ − 1)) and (−1, ⌈l2/2⌉), will get informed

respectively by (−1,−(⌊l2/2⌋ − 2)) and (−1, ⌊l2/2⌋). From now on, T is treated as Cl1

whose vertices are Ci’s. At this time C−1, C0, C1 are informed. Going clockwise from C1

and counter-clockwise from C−1 all vertices will be informed in ⌈l2/2⌉+1+ ⌊l1/2⌋− 1 =

⌈l1/2⌉+ ⌈l2/2⌉ − 1 time-units.

Remark 4.2.1. Unfortunately, we did not have access to [40] in which the 2d-torus is stud-

ied. However, we believe their method briefly mentioned in subsection 2.2.10 is different

from ours; and more importantly, they did not distinguish the special case T [3× 3].

Corollary 4.2.3.1. Let T = Πd−1
i=0Cli be a d-dimensional torus with at most two odd cycles

Cli . If both odd length are not 3, then the broadcast time and scheme of any vertex v is

b(v) =


∑d−1

i=0 ⌈li/2⌉ − 1 Two odd cycles∑d−1
i=0 ⌈li/2⌉ Otherwise

Proof. If two odd cycles exist, treat T as the connection of hyper-vertices isomorphic to

the Cartesian product of the two odd cycles. In this case, by first informing the originator

hyper-vertex using Theorem 4.2.3, and then using Corollary 3.0.1.1 the bound is achieved.

The lower bound can be proven by noting that the eccentricity of any vertex is precisely

this amount. Other cases are treated similarly; for one odd cycle, the hyper-vertex is that

odd cycle, and for no odd cycle, the hyper-vertex is the vertex itself.

Corollary 4.2.3.2. Let T = Πd−1
i=0Cli be a d-dimensional torus with k1 odd cycles with
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length more than 3 and k2 odd cycles with length 3. Then

b(T ) ≤


∑d−1

i=0 ⌈li/2⌉ −
⌊
k1+k2

2

⌋
If k1 ≥ k2∑d−1

i=0 ⌈li/2⌉ − k1 Otherwise

Proof. Note that the torus is a vertex-transitive graph; consequently, the proof for an ar-

bitrary originator is sufficient. Let the number of odd li’s be k = k1 + k2. The same

techniques used in the proof of Theorem 4.2.3 is applicable here to get the result for the

cases where 0 ≤ k ≤ 2; in fact, it will prove that the broadcast time is exactly this bounds.

The general case can be proven using induction on k. Take the correctness of k = 0 and

k = 1 as the base case.

Assume the result is true for values less than k, where k ≥ 2. There are two possibilities

(1) k1 ≥ k2 and (2) k1 < k2. For (1) if k2 ≥ 1, then take one odd cycle of length more than

three and one with length three; and without the loss of generality (by reindexing) assume

they are the first two cycles; i.e. Cl0 and Cl1 . Consider the graph Q = Cl0 ×Cl1 associated

with the origin. Base on Theorem 4.2.3 Q can be informed in ⌈l1/2⌉+⌈l2/2⌉−1 time-units.

The graph G can be seen as H = Πd−1
i=2Cli connection of hyper-vertices isomorphic to Q.

After the Q associated with the origin is informed, treat the broadcasting as informing H

with the aforementioned hyper-vertex as originator. Note that H has k1 − 1 odd cycles

with length larger than three and k2 − 1 with length three. By induction hypothesis H

can be informed in
∑d−1

i=2 ⌈li/2⌉ −
⌊
k1−1+k2−1

2

⌋
time-units; hence, G can be informed in∑d−1

i=0 ⌈li/2⌉ −
⌊
k1+k2

2

⌋
time-units. If however, k2 = 0, then take two odd cycle with length

more than three and similar arguments applies.

For (2) same technique is used; however, the case where k1 = 0 needs to be proven

separately. In this case, Corollary 3.0.1.1 is a scheme achieving the bound.

Conjecture 4.2.3.1. The bounds provided in Corollary 4.2.3.2 are the exact broadcasting

time of the torus graph under the Classical model.

47



Remark 4.2.2. If Conjecture 4.2.3.1 is true, Corollary 4.2.3.2 provides an optimal broadcast

scheme. Another optimal broadcast scheme will be presented shortly as well.

To justify our intuition for Conjecture 4.2.3.1, another optimal scheme with the same

bound is provided. Based on this scheme, it can be intuitively seen that the bounds should

be tight. Mainly it helps us to build the skeleton of a lower-bound argument. For this

justification, the primary purpose is to present the intuition and the idea ( the “leading

messengers” ); accordingly, the details are omitted.

Observation 4.2.1 (All odd cycles). As it was seen in Corollary 4.2.3.1 and Corollary 4.2.3.2

the presence of even cycles C2l in the Cartesian product of T does not change our boundary

gap of T ’s broadcast time. It increases both the upper and lower bound by l. Consequently,

it is sufficient to only study the broadcast time of T = Πk−1
i=0Cli where all the cycles have

odd length.

The issue of odd cycles of length three will be discussed at the end. For now, assume

that all the odd cycles have a length greater than 3. Let T = Πk−1
i=0Cli be such a graph. With

these assumption, our new broadcast scheme should inform T in

k−1∑
i=0

⌈li/2⌉ − ⌊k/2⌋ =
k−1∑
i=0

⌊li/2⌋+ k − ⌊k/2⌋ =
k−1∑
i=0

⌊li/2⌋+ ⌈k/2⌉

time-units. Let L be the set of vertices with maximum distance (which is
∑k−1

i=0 ⌊li/2⌋)

from the originator. The cardinality of L is 2k.

At first, Scheme1 is presented which will informs T in
∑k−1

i=0 ⌊li/2⌋ + k time-units

and introduces the imaginary concept of “replicating leader messengers.” Scheme 2 is the

tweaked version of Scheme 1 and will inform G in
∑k−1

i=0 ⌊li/2⌋ + ⌈k/2⌉ time-units, the

desired time.

Scheme 1. Figure 23 illustrates an example of this scheme. Scheme 1 can be expressed
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by a story-like behavior using an imaginary concept named “replicating leader messen-

gers.” For brevity, let us call them “leaders”.

Originator
1

2 3

4

5

6

6

7

4

5

6

7

7

8

2

34

56

7

7

8

5

6

7

8

8

9

Replicating
Leader

Messengers: 000001010 011100 101 110111

Figure 23: Scheme 1 applied to C5×C5×C5 whose broadcast time is
[∑2

i=0⌊5/2⌋
]
+3 = 9.

The leaders and their followers have been indicated with different colors. The completion
time for each leader (and its followers) is

[∑2
i=0⌊5/2⌋

]
plus the number of 1’s in its binary

representation. Let L be the set of maximum distance vertices to the originator. At the end
of the scheme, there is a one to one correspondence between the leaders and the members
of L.

The story is as follows: A message needs to be sent to all the vertices. A replicating
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leader messenger named Λ (null string) is chosen to complete this mission, with the addi-

tion of two priorities; (1) an ordering of the cycles (Cli) for informing purposes should be

respected, and (2) within each cycle clockwise direction should be prioritized. Assuming

that each action takes one time-unit, the behavior of a leader s is as follows: Before enter-

ing a new cycle, s duplicates itself. The new name for s will be s0, and the duplicate will

have the name s1. The cycle ordering priority of s1 remains the same as s0; however, the

direction priority changes to the other direction. The new leader s1 needs one time-unit to

recover before it starts its mission. The first move of Λ is to enter the first cycle at the orig-

inator position. After entering a cycle, a leader starts informing the vertices of that cycle in

the direction of its priority. If the priority is clockwise, it will stop at vertex ⌊li/2⌋ of that

cycle; and if it is counter-clockwise, it will stop at vertex −⌊li/2⌋ = ⌈li/2⌉ of that cycle.

Each vertex that is informed becomes a new follower of the leader who informed it. For

the first vertex of each cycle where both s0 and s1 enter, the vertex becomes the follower

of s0. The followers help their leader spread the message by mimicking their behavior, if

possible, to a corresponding neighboring vertex. At the time of replication, followers of

s0 after helping s0 will help s1 gain its first wave of followers. Figure 23 illustrates this

behavior.

Observation 4.2.2. It is clear that in Scheme 1.

1. All the vertices will be informed starting at the originator and that the scheme is a

Classical broadcasting scheme.

2. In the end, there is a one-to-one correspondence between members of L and the

leaders’ positions.

3. Once a leader reaches a vertex in L, the leader and its followers remain idle for the

rest of the scheme.

4. In the end, each leader and its followers partition the vertex set. The completion

50



time in each partition is the distance traveled by the leader (
∑k−1

i=0 ⌊li/2⌋) plus all the

recovery delays that the leader had. The recovery time is equal to the number of 1’s

in the leaders name. Consequently, the ending time unit is
[∑k−1

i=0 ⌊li/2⌋
]
+ k.

Induced subgraph of L. Consider the induced subgraph Q of L. Since

L =
{
(v0, v1, . . . , vk−1)

∣∣∣ vi ∈ {⌊li/2⌋, ⌈li/2⌉} for 0 ≤ i ≤ k − 1}
}

Q is a k regular graph, one neighbor in each corresponding cycle. If the leaders’ name are

taken to be the names of vertices in Q, it is not hard to see that vertex v is connected to u

if u’s name can be obtained by “flipping” (negating) two consecutive bits of vertex v, or

flipping the last (to the right) bit only. Since Q is k regular, these are the only connections

for any vertex in Q.

Scheme 2. Figure 24 illustrates this scheme on C5 × C5 × C5. Scheme 2 follows

Scheme 1 except for two important changes, which allows it to have the completion time of[∑k−1
i=0 ⌊li/2⌋

]
+ ⌈k/2⌉ time-units. The changes are

1. A leader will not duplicate if its double will attain more than ⌈k/2⌉ ones in its (par-

tial) name; however, it will append a 0 to its name as before. As was observed in item

4 of Observation 4.2.2, in this way when all the leaders reach L (the end) the com-

pletion time is
[∑k−1

i=0 ⌊li/2⌋
]
+ ⌈k/2⌉. Unfortunately, however, due to this change,

not all the vertices get informed. The next change will remedy this.

2. Assume v is a leader who is not created. In this scheme, the responsibility of inform-

ing the corresponding end vertex of v and all of its uninformed followers falls on

leader u’s shoulders, whose name is attained using the following procedure. Divide

the (end) name of v into chunks of two bits from left to right; if k is odd, ignore the

last bit. Go through these chunks one by one from left to right. If a chuck is 11,

change it to 00 and immediately check if the number of 1’s fall bellow or equal to
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Figure 24: Scheme 2 applied to C5 × C5 × C5 whose broadcast time is
[∑2

i=0⌊5/2⌋
]
+

⌈3/2⌉ = 8. Leader 111 was not created and instead leader 001 took its responsibility.

⌈k/2⌉ and if they do, stop the process. At some point, the stopping criterion happens.

The arrived bit string is the name of u.

Let Xu be the set of all absent leaders whose duty has fallen on leader u’s shoulders.

Note that all such absent leaders share the same exact changed chunks of 2-bit string,

with the only difference being one goes further to the right and changes one or a
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few more chunks than the other. Let v ∈ Xu be the one who needed to change the

rightmost chunk to reach u.

Leader u and its followers after reaching the corresponding vertex in L, start fulfilling

their obligation to members of Xu. Leader u = w0 and its relevant followers send the

message to their neighboring vertices that reside in the partition associated with the

leader whose name is obtained if the first (to the left) changed chunk of v is reversed

back to 11 from u; let us call this leader w1. Note that w1 need not be an element of

Xu. Then w1 and its relevant followers send the message to neighboring vertices of

the partition of the leader whose name is obtained by reversing the first two changed

chucks of u; call it w2. And so forth, until wp = v is reached.

First, note that it is not hard to see that (1) such neighboring exists, (2) Xu ⊆

{w1, w2, . . . , wp}, and (3) if these additional moves produce no conflict in the scheme,

doing these additional moves will fulfill the duties of Xu members. Moreover, the

total amount of time for leader u will not exceed
[∑k−1

i=0 ⌊li/2⌋
]
+ ⌈k/2⌉ time-units.

Unfortunately; however, some conflict may arise which is addressed with the follow-

ing change.

Because of the namings, the series of additional moves of one leader has no conflict

with the additional move of another leader. The following modification resolves

any conflict between the additional move of one leader and the Scheme 1 move of

another. When u reaches L in Scheme 1, all of its followers and itself have no further

moves. Therefore, for the first additional move, there is no conflict. In this way,

w1 and part of its followers are informed one time sooner than it was scheduled by

Scheme 1. This is because the equivalent action of two ones in the name of w1 was

replaced by just one additional move from w0 = u to w1. Generally, wi and part of

its partition are informed i time-units sooner than what was scheduled in Scheme 1.

Consider the move of informing partition of wi+1 from wi for any possible conflict.
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The actions of followers of wi can be categorized into two classes (1) they help to

inform other vertices within the partition associated to wi, or (2) they help to gain

the initial followers for a double of their leader. When the w1 is informed, all of its

partition is informed. Accordingly, if there is any category one move in Scheme 1

from followers of w1 ignore it since they are useless. In this way, followers of w1 will

have no conflict that can be caused due to their category one actions. For category

two actions, note that not all followers of w1 are needed to inform the partition of

w2, and those that are needed are the ones informed for the first time in the previous

cycle (Clj ) except the first hyper-vertex of this cycle. These vertices do not have any

category two actions; therefore, no conflict will happen. This argument can be made

formal with the help of mathematical induction.

Lower bound. Scheme 2 can help to gain intuition on the lower bound and to construct

a skeleton of a possible proof for it. Let T ∗ be an optimal broadcast scheme tree. The paths

in T ∗ that inform members of L are the main focus. The proof wants to say that under any

scheme, the last member of L informed is informed no sooner than
[∑k−1

i=0 ⌊li/2⌋
]
+⌈k/2⌉.

Without going through the details, there are two general approaches. The first approach

highlights certain paths from originator to members of L in T ∗ inspired by the definition of

leaders above. For example, (not very precisely) the paths that leave a cycle last, and the

direction priority is determined by the first move after they enter a cycle. After, the time

of the latest such path is investigated. The second approach is to trace the leaders’ paths

exactly as scheme 2 and compare it to T ∗. Both methods have some success. Since we have

failed to completely succeed in proving the lower bound using one of these methods, we

will not explain our cumbersome effort in detail, which provides an even better intuition.

The concise overview of our attempt at the second approach is as follows. In some

sense, consider the paths of leaders until they reach L we want to say that there is an

optimal broadcast scheme that obeys the same paths (in some sense, maybe due to conflict
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similar to Scheme 2 some moves are not necessary). Assume not, for the closest optimal

scheme to our claim, consider the first place they differ. One can change that position to

make it closer to our paths while maintaining the optimality, contradicting the assumption.

After this point, argue that there is an optimal scheme with the previous condition that

only leaders should inform members of L. If not, the leader of the non-leader vertex who

informed a certain member of L could inform that member as well without the loss of

optimality, a contradiction. Finally, consider the position of the last informed leader, i.e.,

11 . . . 1. In the induced subgraph on L, as mentioned before, one leader is only connected

to the other if two consecutive bits are flipped or the last bit is flipped. Any other 1 that is

not obtained in these ways signifies an additional delay compared to the shortest distance.

Consequently, to inform 11 . . . 1’s position at least ⌈k/2⌉ delays are needed. Concluding

that b(T ) ≥
[∑k−1

i=0 ⌊li/2⌋
]
+ ⌈k/2⌉.

Cycle of length 3. Consider the broadcast time of an odd length cycle. In the last move,

there is only one uninformed vertex which can be informed by any of its two neighbors.

This leaves one of the neighbors idle and unable to propagate the message to further dis-

tance. The following is the intuitive reasoning of what causes the delays and what is unique

about C3. The aforementioned idleness is the exact cause of delay. This delay is halved by

pairing the odd cycles, one odd cycle utilizing its “idle” vertices, at least two, to send the

information to the other cycle one time-unit sooner, eliminating the need for the last step

in the other cycle. For this pairing to work, the number of odd idle vertices should be at

least two. While C3 can be the recipient of these benefits, it does not have enough “idle”

vertices to reduce the time for others. This explained the bounds and the pairing treatment

of the proof of Corollary 4.2.3.2.

Remark 4.2.3. The knowledge obtained from grids and torus provides bounds for any

hyper-cylinder graph. Specifically, it gives the exact broadcast time and an optimal scheme

of any vertex in any hyper-cylinder whose Cartesian product has at most two odd cycles
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and at most one odd-length path. Note that any number of even cycles or even length paths

may be in the Cartesian product. The proof uses the hyper-vertex technique for the upper

bound and the maximum distance with consideration of the optimal broadcast tree for the

lower bound. Because of the similarity, the proof is omitted.

Example 4.2.2. Broadcast time and an optimal broadcast scheme for every vertex of hyper-

cylinder P3 × C5 × C5 is known. This is because hyper-cylinder P3 × C5 × C5 has two

odd cycles and one odd-length path. The discussed optimal scheme for one vertex has been

depicted in Figure 25, and based on our result, its broadcast time has been calculated.
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Figure 25: An optimal scheme from the indicated vertex in hyper-cylinder P3 ×C5 ×C5 is
shown. The broadcast time of the originator is 2 +

[∑1
i=0⌈5/2⌉

]
− ⌊2/2⌋ = 7.
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Chapter 5

Broadcasting in Hyper-cylinder Graphs

under Messy Models

5.1 Directed Graphs

The broadcast time of the directed multidimensional torus was studied in [30]. In this

study, the authors successfully found the exact broadcast time for Messy models M2 and

M3; however, for model M1 failed to come up with an answer and only gave the exact time

when the torus is two-dimensional. The following is the summary of their work for each

model.

Remark 5.1.1. By symmetry, without the loss of generality, any (directed) torus T =

Πd−1
i=0Cli can be expressed such that 2 ≤ l0 ≤ l1 ≤ · · · ≤ ld−1.

• Model M3:

Theorem 5.1.1 ( [30] ). Consider the d-dimensional directed torus T = Πd−1
i=0Cli ,

t3(T ) =
d−1∑
i=0

(i+ 1)(li − 1) = (l0 − 1) + 2(l1 − 1) + 3(l2 − 1) + · · ·+ d(ld−1 − 1)
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where 2 ≤ l0 ≤ l1 ≤ · · · ≤ ld−1 and d ≥ 2.

• Model M2:

Theorem 5.1.2 ( [30] ). Consider the d-dimensional torus T = Πd−1
i=0Cli ,

t2(T ) =

[
d−1∑
i=0

(i+ 1)(li − 1)

]
− j

where 2 = l0 = l1 = · · · = lj−1 for 1 ≤ j < d, and 3 ≤ lj ≤ · · · ≤ ld−1 for d ≥ 2.

Remark 5.1.2. Note that in Theorem 5.1.2, all the dimensions cannot be two. If all the

dimensions are 2 then t2(T ) = t2(Π
d−1
i=0C2) =

[∑d−1
i=0 (i+ 1)(1)

]
−d+1 = d(d−1)

2
+1

which is one more than the formula expressed in Theorem 5.1.2. In this case the

torus is isomorphic to a symmetric directed k-dimensional hypercube which under

M2 model can be viewed as an undirected hypercube. To prove the formula for t2(T )

in this case, an almost identical proof to Theorem 5.1.2 can be used, or as mentioned,

the result for undirected hypercube in [54] can be utilized; the latter is the choice of

the authors in [30].

• Model M1:

Theorem 5.1.3 ( [30] ). t1(Cl0 × Cl1) = l0 + l1 − 2 where 2 ≤ l0 ≤ l1.

Remark 5.1.3. Under Messy model M1, in higher dimensions note that just like under

model M2, T = Πd−1
i=0C2 can be viewed as an undirected hypercube. In [54] it is

hinted that it is not easy to know the exact broadcast time of undirected hypercube

under M1. The argument is based on the exact broadcast time and schemes obtained

on small hypercubes. For this reason, the more general directed torus should not

fair any better. It is, however, not obvious how much of this difficulty remains if

we consider higher lengths for each dimension. Nevertheless, this difficulty can be

intuitively sensed in higher lengths as well.
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Inspired by [30], with a slightly different perspective, a proof of broadcast time and an

optimal broadcast scheme can be given for d-dimensional hyper-cylinders. The result on

both torus and grid can then be taken as corollaries. However, to make the proof easier to

understand, first, the result for infinite grid and grid are found and then generalized to hyper-

cylinder graphs. The idea is to investigate u, v-paths in any optimal broadcast tree where

u is the originator. Each vertex in the path has some branches, some of which are useful

in some sense which we named “improvements,” others can “delay” the path. Using this

point, ti(u, v) for 2 ≤ i ≤ 3 will be calculated. The equation ti(u)1≤i≤3 = max{ti(u, v)}

is used thereafter to conclude the broadcast time.

To explain the definition of “improvement,” and “delay” moves, let us further elaborate

on the idea used on a d-dimensional directed grid G = Πd−1
i=0Pli+1 with u as the originator.

The investigative objective is to find the value of t3(u, v) (or t2(u, v)) for all reachable

vertices v. Consider G′ to be the subgraph induced by the vertex set

V ′ =
{
w
∣∣∣ w ∈ V (G), ui ≤ wi ≤ vi for 0 ≤ i ≤ d− 1

}

Note that (1) in any scheme, the path that conveys the information to v should reside entirely

within G′. This is because it is not possible to come back to G′ after exiting it. (2) Assuming

there would be no call to outside of G′, vertex v will get informed in exactly
∑n

i=1(vi−ui)

time-units irrespective of the behavior of the used scheme. Accordingly, the only cause

of delay on the path that conveys the information to v happens when the path delays by

sending the message outside of G′, which requires the path to be at that particular border of

G′. For any vertex v and any scheme, refer to the movements of the u, v-path that are inside

G′ as “improvement” moves and movements that send the message out of G′ as “delay”

moves.

In the following, the broadcast time of some classes of hyper-cylinder is studied. Using

their results at the end, a concluding general theorem for any hyper-cylinder is presented.
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This is done to break the final proof, to make it easier to understand. All the previous results

may be seen as corollaries of the general theorem.

Theorem 5.1.4 (Infinite directed grid). Consider a d-dimensional directed infinite grid

G = Πd−1
i=0P∞, and 0 as the originator. Under Messy models M2 and M3, for any reachable

vertex v (non-negative coordinates, Convention 4)

t2(0, v) = t3(0, v) =
d−1∑
i=0

(i+ 1)(vπ(i))

where π is a permutation of 0, 1, · · · , d− 1 such that vπ(0) ≤ vπ(1) ≤ · · · ≤ vπ(d−1).

Proof. Since there are no pair of symmetric arcs, the analysis is similar under models M2

and M3; for this reason, only model M3 is investigated.

Motivated by the prior discussions, consider the 0, v-path P in a scheme S that max-

imizes t3(0, v). Denote 0 with u0. First consider the case where G′ is d-dimensional; i.e.

for every i, vi > u0
i = 0.

Let u1 be the first vertex on P that encounters a (1-)border (Definition 3.1.5) of G′; this

should happen since u0 is on no borders of G′ and v is the only vertex on the d-border. No

matter the scheme, it takes exactly d(u0, u1) time-units to reach u1 since all the movements

are improving. Note that once P hits a border due to the directions it will remain on that

border until it reaches v. Hitting the border means that for some i, u1
i = vi; without the

loss of generality (by reindexing if necessary) assume u1
0 = v0. Now let u2 be the first

vertex that encounters a 2-border. It may be the case that u2 = u1 if u1 is already on a

2-border. The required time-units to travel from u1 to u2 on P is no more that 2d(u1, u2);

one possible delay move for each vertex which sends the message outside of G′ using the

first coordinate. Similar to above without the loss of generality assume u2
1 = v1. Generally,

let uk for 1 ≤ k ≤ d be the first vertex that hits a k-border. The amount of time needed to

go from uk−1 to uk does not exceed kd(uk−1, uk); maximum k−1 delay moves (by sending
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the message outside of G′ in k − 1 direction) before an improvement move for each vertex

on the path . Also uk
k−1 = vk−1 is assumed. Consequently,

t3(0, v) = t3(u
0, ud) ≤

d∑
i=1

i d(ui−1, ui)

= (u1
0 − u0

0) + (2u2
1 − u1

1 − u0
1) + (3u3

2 − u2
2 − u2

2 − u1
2 − u0

2) + · · ·

+ (dud
d−1 − ud−1

d−1 − · · · − u0
d−1) ≤ u1

0 + 2u2
1 + · · ·+ dud

d−1

= 1v0 + 2v1 + · · ·+ dvd−1

In above argument some reindexing has been done for the ease of the explanation;

therefore, the indices here are technically a permutation of 0, 1, · · · , d − 1. This then tell

us that without reindexing t3(0, v) ≤ maxσ{1vσ(0) + 2vσ(1) + · · ·+ dvσ(d−1)} where σ is a

permutation of 0, 1, · · · , d − 1. Hence, t3(0, v) ≤ 1vπ(0) + 2vπ(1) + · · · + dvπ(d−1), where

π is a permutation that satisfies vπ(0) ≤ vπ(1) ≤ · · · ≤ vπ(d−1). The permutation π signifies

that the border of a shorter dimension needs to be encountered sooner than a larger one.

If on the other hand G′ is p-dimensional where p < d, the same argument as above can

be made with u0 = u1 = · · · = ud−p in mind (as if we are starting at ud−p with d − p

delays available at the start). Like before after each hitting the border the number of delays

available is increased by one. Note that being in this case means that (again with reindexing

in mind) v0 = v1 = · · · = vd−p−1 = 0. Accordingly, the same expression as above will

work here as well.

The equality is obtained if a scheme has t3(0, v) ≥
∑d−1

i=0 (i + 1)(vπ(i)), where π is

a permutation of 0, 1, · · · , d − 1 such that vπ(0) ≤ vπ(1) ≤ · · · ≤ vπ(d−1). Consider this

scheme: for each vertex the order of the neighbors to inform follows π; this means that

the vertex w = (w0, w1, · · · , wd−1) will first inform (w0, · · · , wπ(0) +1, · · ·wd−1) and then

(w0, · · · , wπ(1) + 1, · · ·wd−1) and so forth. Indeed, the scheme is In order scheme with

the imposed order of π. In this way vertex v is informed at exactly
∑d−1

i=0 (i + 1)(vπ(i))
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time-units for the first time. Figure 26 illustrates the behavior of this scheme.

Second border hit

(0, 0, 0, 0)

First
border

hit

v = (0, 3, 2, 2)

Figure 26: Let G = Π3
i=0P∞ be a 4-dimensional directed infinite grid. The In order scheme

with the imposed permutation (0, 2, 3, 1) reaches v = (0, 3, 2, 2) at 1×0+2×2+3×2+4×3
time-units for the first time. The shown subgraph is G′ which is 3-dimensional. Note that
the delay move used by every vertex in the path which utilizes the first dimension is not
shown.

Remark 5.1.4 (Grid originator). In directed grid graphs, the only suitable broadcast origi-

nator is vertex 0, since that is the only vertex that can reach every other vertex. In infinite

grid graph, by vertex transitivity 0 is chosen as the originator.

Lemma 5.1.5 (k-border of directed grid). Consider a d-dimensional directed grid G =

Πd−1
i=0Pli+1 with 0 as the originator. Under Messy models M2 and M3, for any vertex v

which lies on a strict k-border of G, for some k ≥ 0

t2(0, v) = t3(0, v) ≤

[
d−k−1∑
i=0

(i+ 1)(vπ(i))

]
+ (d− k + 1)

[
d−1∑

i=d−k

vπ(i)

]

= (1)vπ(0) + · · ·+ (d− k)vπ(d−k−1) + (d− k + 1)vπ(d−k) + · · ·+ (d− k + 1)vπ(d−1)

where π is a permutation of 0, 1, · · · , d− 1 such that vπ(0) ≤ vπ(1) ≤ · · · ≤ vπ(d−1).
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The equality happens if v lies on the k-border whose indices are

{
π(d− k), π(d− k + 1), · · · , π(d− 1)

}

Proof. First, note that k = 0 is also possibility, meaning that the vertex v lies on no border.

In this case, (d − k + 1)
[∑d−1

i=d−k vπ(i)

]
= 0 since the starting index is greater than the

ending index.

The proof is almost identical to the proof of Theorem 5.1.4 with one exception; the coef-

ficients behind d(ui−1, ui). Let ci be the coefficient for d(ui−1, ui) in this case. Like before

c1 = 1. For i ≥ 2, we refer to the moment ui was encountered. In the previous proof, it was

noted that at this moment ui
i = vi which opens up one delay move opportunity. The delay

move is obtained by sending the message outside of G′ using the ith dimension, causing

the coefficient behind d(ui−1, ui) to be one larger than that of d(ui−2, ui−1). In non-infinite

grids; however, this opportunity does not present itself when vi = li since there are no ver-

tices whose ith dimension exceed li. Since v is in a strict k-border this situation happens

exactly k times. Consequently, c1, c2, . . . , cd is a non-decreasing sequence in which, (1)

c1 = 1 (2) ci+1 = ci or ci+1 = ci + 1 for i ≥ 2, (3) cd = d− k + 1. Hence,

t3(0, v) = t3(u
0, ud) ≤

d∑
i=1

cid(u
i−1, ui)

≤ c1u
1
0 + c2u

2
1 + · · ·+ cdu

d
d−1 = c1v0 + c2v1 + · · ·+ cdvd−1

As in the previous proof if reindexing is not done we have t3(0, v) ≤ maxσ{c1vσ(0) +

c2vσ(1)+ · · ·+cdvσ(d−1)} where σ is any permutation of 0, 1, · · · , d−1. Since the sequence

[ci]1≤i≤d is non-decreasing, t3(0, v) ≤ c1vπ(0) + c2vπ(1) + · · · + cdvπ(d−1), where π is a

permutation that satisfies vπ(0) ≤ vπ(1) ≤ · · · ≤ vπ(d−1). Lastly, by the limitations of the

sequence t3(0, v) ≤
[∑d−k−1

i=0 (i+ 1)(vπ(i))
]
+ (d− k + 1)

[∑d−1
i=d−k vπ(i)

]
.
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If v lies on the k-border whose indices {π(d − k), π(d − k + 1), · · · , π(d − 1)}, as

indicated by the above inequalities In order scheme with imposed order of π (similar to

the proof of Theorem 5.1.4) proves that this bound it tight for v. Figure 27 illustrates the

behavior of this scheme, and provides a case where the inequality is not tight.

(0, 0, 0)

First border hit of G′

Not a true border of G
A delay opportunity

v = (4, 1, 2)

v = (3, 2, 1)

Second border hit of G′

Another delay opportunity

Figure 27: Let G = P5 × P3 × P3 be a 3-dimensional grid. The vertex (4, 1, 2) is on a
strict 2-border and the bound of Lemma 5.1.5 is tight for it. The vertex (3, 2, 1) is on a
strict 1-border. The bound for this vertex yields 14 time-units, but the best possible is 13
time-units using the shown broadcast scheme.

By symmetry, without the loss of generality, directed grid G can be expressed as

Πd−1
i=0Pli+1 where 1 ≤ l0 ≤ l1 ≤ · · · ≤ ld−1.

Theorem 5.1.6 (Directed grid). Consider a d-dimensional directed grid G = Πd−1
i=0Pli+1

where 1 ≤ l0 ≤ l1 ≤ · · · ≤ ld−1. With 0 as the originator,

t2(0) = t3(0) =

[
d−k∗−1∑

i=0

(i+ 1)(li − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

li

]

k∗ = argmax
0≤k<d

{
d− k −

d−1∑
i=d−k

li > 0

}
+ 1
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Proof. Due to the absence of symmetric arcs, t2(0) = t3(0); therefore, it is suffice to only

find t3(0). We have

t3(0) = max
v

{
t3(0, v)

∣∣∣ v ∈ V (G)
}

= max
0≤k≤d

{
max

v
{t3(0, v)

∣∣∣ v belonging to a strict k-border of G
}
}

For a fix k using Lemma 5.1.5 it is easy to see that

max
v

{
t3(0, v)

∣∣∣ v belonging to a strict k-border of G
}

=

[
d−k−1∑
i=0

(i+ 1)(li − 1)

]
+ (d− k + 1)

[
d−1∑

i=d−k

li

]

By definition 0 ≤ k ≤ d. in the following the incremental changes of this function from

k to k + 1 is of interest; consequently, for k consider the range 0 ≤ k < d. The change

to this function from k to k + 1 is d − k − (ld−k + · · · + ld−1); therefore, it is a strictly

decreasing function with respect to k. For k = 0 the change is +d which is in accordance

to the formula if we treat (ld−k + · · · + ld−1) as 0. For k = 0 as mentioned the change is

positive and there is a first k with which this change cease to be positive, due to the fact that

for k = d−1 (for d ≥ 2) the change is non-positive. This k is one more than the maximum

integer k that satisfies d− k − (ld−k + · · ·+ ld−1) > 0; call it k∗. Consequently, for d ≥ 2

t3(0) =

[
d−k∗−1∑

i=0

(i+ 1)(li − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

li

]

For d = 1 the formulas also works correctly. See Corollary 5.1.6.2 for an example.

Corollary 5.1.6.1 (Last vertices). Consider a d-dimensional directed grid G = Πd−1
i=0Pli+1

where 1 ≤ l0 ≤ l1 ≤ · · · ≤ ld−1. With 0 as the originator, under Messy models M2

and M3 in any non-lazy optimal broadcast scheme of G the set of last vertices informed
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are all in strict k∗-border(s) or strict (k∗ + 1)-border(s) of G, where k∗ is the same as in

Theorem 5.1.6. The strict (k∗ + 1)-border is only a possible if d− k∗ −
∑d−1

i=d−k∗ li = 0.

Proof. This is the direct consequence based on the proof of Theorem 5.1.6, especially

the fact that the change function mentioned is strictly decreasing and cannot have two

consecutive 0 values. Therefore, there can be only one or two consecutive maximizing k’s.

See Figure 28 for an example.

Corollary 5.1.6.2 (Hypercube). The broadcast time of a d-dimensional directed hypercube

G = Πd−1
i=0P2 under Messy models M2 and M3 is ⌊(d+ 1)/2⌋⌈(d+ 1)/2⌉.

Proof. Directed hypercube is a type of directed grid and thus Theorem 5.1.6 applies to it.

Let us find k∗.

d− k >
d−1∑

i=d−k

li ⇒ d > 2k ⇒ k ≤
⌊
d− 1

2

⌋
⇒ k∗ =

⌊
d+ 1

2

⌋

Therefore, the broadcast time under Messy models M2 and M3 is

[
d−k∗−1∑

i=0

(i+ 1)(li − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

li

]
= (d− k∗ + 1)k∗ =

⌊
(d+ 1)

2

⌋⌈
(d+ 1)

2

⌉

Figure 28 shows one such optimal scheme in 3-dimensional directed hypercube.

Remark 5.1.5. By Corollary 5.1.6.1, if the usual binary naming of hypercube is used, the

set of last vertices getting informed in any non-lazy optimal scheme will be those ver-

tices that have ⌊(d+ 1)/2⌋ or ⌈(d+ 1)/2⌉ ones in their binary representation. The latter

(⌈(d+ 1)/2⌉ ones) is only possible if d is even. See Figure 28 for an example.

General theorems. Finally, the general theorems for hyper-cylinders are presented,

first under Messy model M3 and then under Messy model M2. The theorems may seem
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1
2

3
3

4

3
4

2
3

4

(0, 0, 0)

(1, 0, 0)

(1, 1, 0) (1, 1, 1)

(1, 0, 1)

(0, 0, 1)

(0, 1, 1)(0, 1, 0)

Figure 28: A non-lazy optimal broadcast scheme under model M2 and M3 for 3-
dimensional directed hypercube, whose broadcast time is

⌊
4
2

⌋⌈
4
2

⌉
= 4. The possible last

informed vertices are indicated with light blue color. In this scheme (0, 1, 1) is the last
informed. Its delaying path is displayed with a dark orange color.

complicated, but they describe an intuitive optimal broadcast scheme just like the ones seen

for torus and grid. Using these theorems, one can be sure that an easy optimal broadcast

scheme is known for any hyper-cylinder under Messy models M2 and M3. Furthermore,

these theorems provide a means to calculate broadcast time easily. These consequences

and other corollaries will be explained after the proof of the relevant theorem.

Remark 5.1.6. Just like the cases for torus and grid, by symmetry, without the loss of

generality, hyper-cylinder H can be expressed as H = Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli}

and l0 ≤ l1 ≤ . . . ≤ ld−1.

Remark 5.1.7. The only possible originators for a d-dimensional hyper-cylinder H =

Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli} are the vertices who share an associated cycle (Cli)

with vertex 0. For any other vertex, there is no path to vertex 0. Due to symmetry, the

results for 0 applies to any possible originator.

To make the general theorems more easily expressible, let us explore the idea under

Messy model M3 first and provide two definitions.
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If one carefully observes the discussion of directed grid graph, it becomes apparent that,

in short, the discussed optimal scheme works as follows: One by one, it traverses d − k∗

smaller dimensions until just before hitting the border of G, while utilizing any delay move

possible along the way. Not hitting the border allows for one additional delay move in each

such dimension for the rest of the path. The last k∗ dimensions, which are the largest, will

be traversed in the same way, except this time the border of G is hit. The formula expresses

how to find an optimal k∗. See Figure 28 for such example example path, here k∗ = 2. In

the case of a torus, the problem of hitting the border is non-existence, and each dimension

can be utilized for an additional delay move eventually. By observing this, the idea for an

optimal broadcast scheme of general hyper-cylinder is to find a similar k∗ such that only the

k∗ largest paths hit the border (without producing any delay move opportunity) and the rest

utilized to the fullest extent while also providing an additional direction for delay move.

Consider a d-dimensional hyper-cylinder H = Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli} and

l0 ≤ l1 ≤ . . . ≤ ld−1. Let p be the number of paths in the Cartesian product of hyper-

cylinder H . For any fix 0 ≤ k < p, a separate list similar to li’s is desired such that in can

be viewed as separating the k largest paths from the li’s list.

Definition 5.1.1 (Sequence l′i). For a fix 0 ≤ k < p, let l′d−k ≤ · · · ≤ l′d−1 be the length of

k largest paths chosen from li’s, and l′0 ≤ · · · ≤ l′d−k−1 the remaining lis.

Lastly, the index of paths (as opposed to cycles) in li’s will also be helpful.

Definition 5.1.2 (Index of a path, Ij). For 1 ≤ j ≤ p, let Ij be the index of jth occurrence

of a path in the li’s list.

Both Ij for 1 ≤ j ≤ p, and list l′i for particular k are easy and efficient to calculate.

Theorem 5.1.7 (General theorem, Messy model M3). Consider a d-dimensional directed

hyper-cylinder H = Πd−1
i=0Hi as described above. Let p be the number of paths in this
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Cartesian product of H . With 0 as the originator, the broadcast time of H under Messy

model M3 is

t3(0) =

[
d−k∗−1∑

i=0

(i+ 1)(l′i − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

l′i

]
(1)

where l′i is the list described in Definition 5.1.1 for k = k∗. If p = 0 or the argument inside

argmax of the following Equation 2 is not positive for k = 0, k∗ = 0; otherwise,

k∗ = argmax
0≤k<p

[
(Ip−k + 1) + lIp−k

(d− k − Ip−k − 1)
]
−

d−1∑
i=Ip−k+1

li > 0

+ 1 (2)

Proof. The proof is similar to the proof of Theorem 5.1.6 with some important nuances.

Here only these nuances are addressed, due to similarity the overall proof will easily follow.

Firstly, consider the vertices in a strict k-border of H . In the proof of Theorem 5.1.6 it

has been concluded that the

max
{
t3(0, v)

∣∣∣ v residing in a strict k-border
}

=

[
d−k−1∑
i=0

(i+ 1)(li − 1)

]
+ (d− k + 1)

[
d−1∑

i=d−k

li

]

As discussed, the equality happens when only the k largest paths hit the border, which

means no increasing the next coefficient, and these k paths are traversed at the end of the

scheme. In the Cartesian product of a hyper-cylinder, in addition to paths, there might be

some cycles. In cycle C, even if the “end” vertex (depending on which vertex is taken as

first) in the associated C is reached, the delay opportunity within it still exists, since the

end vertex still can send the message in this direction to the first vertex. A similar argument

as Theorem 5.1.6 can be given, noticing that the border hitting paths should be traversed at

the end of the scheme to utilize all the delay opportunities that will be created.
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In Theorem 5.1.6, since the k border hitting paths do not increase the coefficient, it was

easy to see that the maximum is achieved by considering the k largest length paths to be

the border hitting ones. The same reasoning applies here. The k largest length path will

be at the end of our summation and the rest (path and cycle) sorted in increasing order of

their length, increasing the coefficient one by one. Note, for example, that the length of

one cycle might be larger than the largest path length; nevertheless, for the maximum to

be achieved, it will appear to the left term of our summation. The definition of l′i helps to

conclude that

max
{
t3(0, v)

∣∣∣ v residing in a strict k-border
}

=

[
d−k−1∑
i=0

(i+ 1)(l′i − 1)

]
+ (d− k + 1)

[
d−1∑

i=d−k

l′i

]

Secondly, in the proof of Theorem 5.1.6 the maximizing k∗ was found by analyzing the

incremental change function from k to k + 1. In the end, it was concluded that

k∗ = argmax
0≤k<d

{
d− k −

d−1∑
i=d−k

li > 0

}
+ 1

The argument here is similar. If p = 0, then since all vertices reside in a strict 0-border the

maximizing k∗ = 0. Otherwise, if p > 0, consider the change from k to k+1 border hitting

paths. The range of investigation for k is 0 ≤ k < p. Since li’s are sorted the indices of k

largest paths (the border hitting ones) within this list are {Ip−k+1, . . . , Ip}. In this change

the Ip−k-th path with length lIp−k
joins the border hitting paths.

Note that for k the sequence l′0, . . . , l
′
Ip−k

and sequence l0, . . . , lIp−k
are exactly the

same because the k largest paths are to the right of Ip−k index. By adding Ip−k-th path to
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the border hitting paths, the change is

[
(Ip−k + 1) + lIp−k

(d− k − Ip−k − 1)
]
−

d−1∑
i=Ip−k+1

l′i

=
[
(Ip−k + 1) + lIp−k

(d− k − Ip−k − 1)
]
−

d−1∑
i=Ip−k+1

li

The first term is the changes with focus on Ip−k-th path only, and the second term are

changes due to the one reduction of coefficients after Ip−k term. Note that
∑d−1

i=Ip−k+1 li′ =∑d−1
i=Ip−k+1 li, this is because in this portion the content of both li and l′i are the same just

not in the same order.

The change function is strictly decreasing with respect to k, since Ip−k is strictly de-

creasing and also due to the fact that lis are increasing
∑d−1

i=Ip−k+1 li ≥ (d−k−Ip−k−1)lIp−k
.

As a consequence, if the value for k = 0 is not positive the maximizing k∗ = 0. If positive;

however,

k∗ = argmax
0≤k<p

[
(Ip−k + 1) + lIp−k

(d− k − Ip−k − 1)
]
−

d−1∑
i=Ip−k+1

li > 0

+ 1

Note that unlike in Theorem 5.1.6 for d ≥ 2, change function for k = p − 1 may still

be positive. Since, the maximum range of k is p−1, k∗ still is well-defined. Example 5.1.1

illustrates this.

Corollary 5.1.7.1. Theorem 5.1.1 and Theorem 5.1.6 under Messy model M3 are special

cases.

Proof. Let us start with a directed torus T = Πd−1
i=0Cli . In this case p = 0; therefore, k∗ = 0.
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For k = 0, the l′i = li for all 0 ≤ i ≤ d− 1. Consequently,

t3(0) =

[
d−k∗−1∑

i=0

(i+ 1)(l′i − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

l′i

]

=
d−1∑
i=0

(i+ 1)(li − 1)

in accordance with Theorem 5.1.1.

Now let G = Πd−1
i=0Pli+1 be a directed grid. In this case p = d, Ij = j−1 for 1 ≤ j ≤ d,

and for any k, l′i = li. For k = 0 the argument inside argmax Equation 2 is d a positive

number. Consequently, by Equation 2

k∗ = argmax
0≤k<p

[
(Ip−k + 1) + lIp−k

(d− k − Ip−k − 1)
]
−

d−1∑
i=Ip−k+1

li > 0

+ 1

= argmax
0≤k<d

{
d− k −

d−1∑
i=d−k

li > 0

}
+ 1

in accordance with Theorem 5.1.6. According to Equation 1 the broadcast time is

t3(0) =

[
d−k∗−1∑

i=0

(i+ 1)(l′i − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

l′i

]

=

[
d−k∗−1∑

i=0

(i+ 1)(li − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

li

]

which is also in accordance with Theorem 5.1.6.

Example 5.1.1. Consider a 4-dimensional hyper-cylinder H = P2 × P2 × P2 × C3, as

shown in Figure 29. Using Theorem 5.1.7, it is found that k∗ = 1. The list l′i for k = k∗

will be 1, 1, 3, 1, and consequently by Theorem 5.1.7 the broadcast time is
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t3(0) =

[
d−k∗−1∑

i=0

(i+ 1)(li − 1)

]
+ (d− k∗ + 1)

[
d−1∑

i=d−k∗

li

]

= 1× 0 + 2× 0 + 3× 2 + 4× 1 = 10

The broadcast scheme has been partially drawn in Figure 29. The dark orange part is

the maximum path with its delay. The transparent edges signify that the information has

already reached the receiver, and this transmission will only cause a delay.
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7
8

9

10

Originator

Last informed vertex

Figure 29: The hyper-cylinder and its partial optimal broadcast scheme of Example 5.1.1.
The dark orange part is the maximum path with its delay. All possible originators are
indicated with light teal color, and all possible end vertices with light blue color. In the
chosen scheme the last informed vertex has been indicated.
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Theorem 5.1.8 (General theorem, Messy model M2). Consider a d-dimensional directed

hyper-cylinder H = Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli} such that l0 ≤ l1 ≤ · · · ≤ ld−1.

Let x be the number of cycles with length two in the Cartesian product of H . With 0 as the

originator, under the Messy model M2

t2(0) =


t3(0)− x+ 1 If k∗ = 0, ld−1 = 2, and there is no path of length 2.

t3(0)− x Otherwise

where k∗ is calculated the same way as in Theorem 5.1.7. Additionally, the optimal scheme

is similar to that of Theorem 5.1.7 as well, with few minor changes explained in the proof.

Proof. The only obstacle under model M2 compared to model M3 is the behavior of cy-

cles of length two (2-cycles). Consider the maximizing path with its delay in an optimal

broadcast scheme under model M2 (for example the dark orange part in Figure 29 is such

path for model M3). For each 2-cycle C, there is a point in which this path goes from

corresponding coordinate 0 to 1, a move in associated C. At that point, unlike model M3,

a delay in the same direction C cannot be utilized because the next vertex is the previous

sender, which under M2 is known to be informed. Note that if the length of C exceeds 2,

the next vertex would have been different from the previous sender, causing no trouble for

the delay move. Consequently, one delay move which was possible under M3 is not possi-

ble here. After any other move; however, the delay move becomes available since the next

vertex in direction C is not the same as the previous sender. Accordingly, for each 2-cycle

one time-unit less is required compared to model M3. There is an exception; however, if

the 2-cycle move is the last move, in this case, there was no delay under model M3 to begin

with. By the formulation of Theorem 5.1.7 this can happen only if k∗ = 0, ld−1 = 2, and

there is no path of length 2; meaning the largest component is forced to be a cycle of length

2. See Figure 30 for an example of each case.
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Corollary 5.1.8.1. Theorem 5.1.2 including the directed torus whose the length of all of its

dimensions is two (symmetric directed hypercube), and Theorem 5.1.6 under model M2 are

special cases.

Proof. The argument is similar to that of Corollary 5.1.7.1 with the correction mentioned

in Theorem 5.1.8 in case cycles of length two exists.

Corollary 5.1.8.2 (Last vertices). Consider a d-dimensional directed hyper-cylinder H =

Πd−1
i=0Hi, where Hi ∈ {Pli+1, Cli}. With 0 as the originator, under Messy models M2

and M3 in any non-lazy optimal broadcast scheme of H the set of last vertices informed

are all in strict k∗-border(s) or strict (k∗ + 1)-border(s) of H , where k∗ is the same as in

Theorem 5.1.7. The strict (k∗ + 1)-border is only a possible if k∗ ̸= 0 and
[
(Ip−k∗ + 1) +

lIp−k∗ (d− k∗ − Ip−k∗ − 1)
]
−

∑d−1
i=Ip−k∗+1 li = 0.

Proof. This is the direct consequence based on the proof of Theorem 5.1.7 and Theo-

rem 5.1.8, especially the fact that the change function mentioned is strictly decreasing and

cannot have two consecutive 0 values. Therefore, there can be only one or two consecutive

maximizing k’s. See Figure 29 for an example.

Example 5.1.2. Figure 30 provides an example for each case of Theorem 5.1.8, and com-

pares it with the similar optimal scheme under Messy model M3.

Theorem 5.1.9 (2-dimensional hyper-cylinder, Messy model M1). Consider a 2-dimensional

directed hyper-cylinder H = Π1
i=0Hi, where Hi ∈ {Pli+1, Cli}. With 0 as the originator,

t1(H) = l0 + l1 − x where 2 ≤ l0 ≤ l1 and x is the number of cycles in Cartesian product

of H .

Proof. In [30], Theorem 5.1.3 was proved using a simple induction on l0 + l1. The main

idea is the fact that if vertex (a, b) is informed at time-unit t then all vertices {(x, y)|0 ≤

x ≤ a, 0 ≤ y ≤ b} are informed by time-unit t as well. Consider graph H as grid whose top
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(a) Under model M3
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1
2
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Figure 30: Comparing the optimal scheme under models M2 and M3. The red edge is the
delay that cannot be utilized under model M2 at that particular time. Part (d) is the first
case of Theorem 5.1.8, and part (b) is the second case.

left vertex is 0, with additional “loop back” edges for every cyclic dimension. For example,

for C4×C4 the graph will look like directed version of Figure 14. By not utilizing the loop

back edges, the graph becomes a grid and the above idea will apply; accordingly, here too

by time-unit t all vertices in {(x, y)|0 ≤ x ≤ a, 0 ≤ y ≤ b} are informed. Since the bottom

right vertex will feasibly be informed at l0 + l1 − x at the latest, the result is proved.

Corollary 5.1.9.1. Theorem 5.1.3 is a special case.
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5.2 Undirected Graphs

This section starts with inquiring about the value of t3(u, v) in an infinite grid. Like before,

define G′ as the induced subgraph on the vertex set

V ′ =
{
w
∣∣∣ w ∈ V (G), ui ≤ wi ≤ vi for 0 ≤ i ≤ d− 1

}

where u is the originator. Due to vertex transitivity, it is suffice to just calculate t3(0, v).

The idea used in finding this value and an optimal broadcast scheme for the directed infinite

grid is helpful here; however, two main problems exist. The first problem is that if a path

encounters (hit) a border of G′ unlike in the directed infinite grid, the rest of the path is not

forced to remain in that border. The second problem is that the improving move defined

before is not applicable here, since a path may “circle back” yet informing new vertices

and be crucial for the optimal path. To fix these problems, improving/delay move will be

redefined, and an improving path will be considered, which may not be part of an optimal

scheme.

Definition 5.2.1 (Saturated coordinate). For 0 ≤ i ≤ d− 1, the ith coordinate of vertex w

is called saturated if wi = vi.

Theorem 5.2.1 (Infinite grid, Messy model M3). Consider a d-dimensional infinite grid

G = Πd−1
i=0P∞, and 0 as the originator. Under Messy model M3, for any vertex v

t3(0, v) =
d−1∑
i=0

(d+ i+ 1)(|vπ(i)|)

where π is a permutation of 0, 1, · · · , d− 1 such that |vπ(0)| ≤ |vπ(1)| ≤ · · · ≤ |vπ(d−1)|.

Proof. For simplicity, first, assume that all coordinates of v are non-negative. By our nam-

ing convention, at each message relay, the coordinate of the neighboring vertex is obtained

by changing one of the coordinates of the current vertex by one. For each vertex u ∈ V ′, a
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message relay is called an improving move if the receiver’s distance to v is reduced. Alter-

natively, in an improving move, one unsaturated coordinated is increased by one. Call the

remaining moves a “delay” move.

Starting at 0, improving path consists of first encountered improving move for each of

its vertexes until it reaches v. This definition is well defined because (1) each vertex of the

improving path has an improving move and since the degree of every vertex is 2d eventually

for each such vertex an improving move will be made, and (2) after
∑d−1

i=0 vi improving

moves the path is forced to be at v. Consequently, the length of the improving move is∑d−1
i=0 vi. If improving path hits any of the G′ borders, the rest of the path will remain there.

These properties allow us to use a similar argument as in the proof of Theorem 5.1.4.

In short, for 0 ≤ i ≤ d let ui be the first vertex of the improving path that hits a i-border

of G′. Note that u0 = 0, ud = v, and different ui’s may be the same vertex. Until hitting the

first border only d moves of each vertex is a delay move. More generally, for the vertices

between ui and ui+1 including ui but excluding ui+1 each vertex has d + i delay moves.

With similar argument to the proof of Theorem 5.1.4 it is easy to see that

t3(0, v) ≤
d−1∑
i=0

(d+ i+ 1)(vπ(i))

where π is a permutation of 0, 1, · · · , d− 1 such that vπ(0) ≤ vπ(1) ≤ · · · ≤ vπ(d−1). An

optimal scheme achieving this bound works as follows. Permutation π indicates an order

on dimensions. Every vertex v after receiving the information sends it to the neighbors in

the negative direction of dimensions by the order indicated by π. After that, v uses the same

order of dimensions and sends the information to the neighbors in their positive direction.

It is easy to see that this scheme achieves the bound mentioned above. See Figure 31 for

an example.

For general vertex v, a coordinate may be negative. For such an unsaturated coordinate
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the distance is reduced if the coordinate is decreased by one; therefore, for any v

t3(0, v) =
d−1∑
i=0

(d+ i+ 1)(|vπ(i)|)

where π is a permutation of 0, 1, · · · , d− 1 such that |vπ(0)| ≤ |vπ(1)| ≤ · · · ≤ |vπ(d−1)|.
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Figure 31: An optimal broadcast scheme for vertex v = (3, 2) in 2-dimensional infinite grid
G = P∞ × P∞. Vertex v is informed at time-unit (2 + 0 + 1)× 2 + (2 + 1 + 1)× 3 = 18.

Grid graphs. Consider a 2-dimensional grid G = G[n + 1, m + 1] = Pn+1 × Pm+1

for some integers n ≥ 1 and m ≥ 1. By symmetry, without the loss of generality, assume

n ≤ m. The difference between a grid and an infinite grid graph in Messy broadcasting

is that in a grid, the maximum possible delay any k-border vertex could cause is smaller

than that of k− p-border vertices, where p > 0. Intuitively, for a 2-dimensional case, since

interior vertices may cause more delays, it is implied that there is an optimal broadcast

scheme in which for any vertex v, the path that first informs v creeps through the borders

first until it branches out in a straight line to v.
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First move. Which direction should the originator 0 send the message first? Our in-

tuition tells us that the shorter dimension (n, the vertical) should be informed first. The

reason is as follows: As discussed, the bottleneck for delaying is the borders; therefore, the

optimal scheme should delay informing them as much as possible. If the message is sent

through the shorter dimension first, while it is true that the shorter border will be informed

sooner, it is also true that it delays the progression of information toward the longer di-

mension (to the right) with the help of interior vertices and the fact that the bottom border

already has significant enough delay. Based on our intuition, assume that the first move is

downward along the shorter dimension. Later we will prove that this is an optimal choice.

For a vertex v, the maximum time of all possible border creeping paths is to be in-

vestigated. In our notation u means going up, d going down, r going right, and l going

left.

Definition 5.2.2 (Border creeping paths). Inspired by the above motivation for a vertex v

consider all the 4 border creeping paths; namely, dr-path, dru-path, rd-path, and rdl-path.

For example, dru-path starts at 0, creeping the border downward until it reaches the bottom

border, then goes right on the bottom border until it reaches the horizontal position of v,

then finally, it goes up (not necessarily on any border) until v is reached. The last change

of direction is the only part of these paths that may not be on any border.

It is easy to see that for an interior vertex v = (i, j) the maximum time it takes each

border creeping path to reach v is:

tdr(v) = 1 + 3(i− 1) + 3 + 4(j − 1)

tdru(v) = 1 + 3(n− 1) + 2 + 3(j − 1) + 3 + 4(n− i− 1)

trd(v) = 2 + 3(j − 1) + 3 + 4(i− 1)

trdl(v) = 2 + 3(m− 1) + 3 + 3(i− 1) + 3 + 4(m− j − 1)
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For example, let us investigate the dru-path. The 1 is the maximum time it will take to

reach the vertex one down of 0 (originator), the 3(n − 1) to reach the bottom border, the

2 for changing the direction at the corner vertex and go one to the right, the 3(j − 1) to

reach the horizontal position of v, the 3 to change the direction upward and going one up,

the 4(n − i − 1) to go up and reach v. See such portion of the scheme in Figure 32. By

these values, an easy upper bound to t3(0, v) can be given for interior vertices.

Lemma 5.2.2 (Upper-bound, Interior vertices). Let v = (i, j) be an interior vertex, then

t3(0, v) ≤ min {tdr(v), tdru(v), trd(v), trdl(v)}

Similar upper-bound can be given to border vertices as well; here however, it is clear

which border creeping path has the minimum time.

Lemma 5.2.3 (Upper-bound, Border vertices). Let v = (i, j) be an border vertex, then

t3(0, v) ≤



0 i = 0 and j = 0

2 + 3(j − 1) i = 0 and 0 < j ≤ m

1 + 3(i− 1) j = 0 and 0 < i ≤ n

1 + 3(n− 1) + 2 + 3(j − 1) i = n and 0 < j ≤ m

2 + 3(m− 1) + 2 + 3(i− 1) j = m and 0 < i ≤ n

Comparison between the maximum time of each two border creeping paths P1 and

P2 separates the vertices into two groups; the vertices whose P1 maximum time is less

than equal to that of P2, and the rest. The boundary is a line, let us denote it with
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Figure 32: Broadcasting under Messy model M3 in G = P17 × P21.
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L(type 1, type 2). The equations associated with each of these six lines is as follows.

L(dr, rd) : i = j − 1

L(dr, dru) : i = n−
(
j + 1

7

)
L(rd, rdl) : i = 7m− 7j − 1

L(dru, rdl) : i = (n−m) + j − 1

7

L(rd, dru) : i =
7n− 2

8

L(dr, rdl) : j =
7m

8

An example is shown in Figure 32 which also explain how to detect the regions that a

particular type has the minimum, meaning that type reached those vertices first.

Lemma 5.2.4 (Common intersections). Each of the following 4 groups of three lines, have

a common intersection.

1.
{
L(dr, rd), L(dr, dru), L(rd, dru)

}
2.

{
L(dru, rdl), L(rd, rdl), L(rd, dru)

} 3.
{
L(dru, rdl), L(dr, dru), L(dr, rdl)

}
4.

{
L(dr, rd), L(rd, rdl), L(dr, rdl)

}
Proof. The common point for group 1 is

(
7n−2

8
, 7n+6

8

)
, for group 2 is

(
7n−2

8
, m− n+6/7

8

)
,

for group 3 is
(
n− m

8
− 1

7
, 7m

8

)
, and for group 4 is

(
7m
8
− 1, 7m

8

)
.

For a scheme S, let tS(v) be the time it takes S to inform v for the first time; clearly,

t3(0, v) = maxS{tS(v)} for all schemes S. For any vertex v, let x(v) ∈ {dr, dru, rd, rdl}

be the type of border creeping path which achieves the aforementioned upper-bound for

t3(0, v).

In any scheme S, if tS(v) = tx(v)(v) the behavior of the scheme throughout x(v)-path

is uniquely determined. This is because there is only one behavior that causes the vertices

of x(v)-path to delay the information to v for this long, any other behavior will inform v
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sooner. Knowing this, we ask whether there exists a scheme S such that for any vertex

v, tS(v) = tx(v)(v). If such scheme exists it would be an optimal scheme. Unfortunately,

for large enough n and m, such scheme cannot exists. Consider a grid with n ≥ 2 and

m ≥ 1, then x((1, 1)) = x((2, 1)) = dr. The dr-path for (2, 1) shares the dr-path for (1, 1)

until vertex (1, 0). The requirements of the described unique behavior for vertex (1, 0) are

different depending which of these two vertices are considered. Therefore, such S cannot

exists.

Border evading scheme. For any interior vertex v, in the calculations of tx(v)(v) for

the last direction change +3 was considered, which can only be achieved if at that point the

message relays are first sending the message to the previous sender, then to the next vertex

on the border, and lastly toward v. If from the unique behavior we only change this part so

that it first sends to the previous sender, and then toward v we have a behavior that informs

v in tx(v)(v)− 1 time-units. It is as if the new behavior wanted to evade informing the rest

of the border as much as possible. For any border vertex v, no changes is considered for the

behavior; accordingly, the behavior will inform v at tx(v)(v) time-unit. In light of the new

behavior for all vertices, it becomes clear that combining them produces no conflict (unlike

before); therefore, describing a general scheme. Name this scheme border evading scheme.

In the border evading scheme, for all interior vertices, all border creeping paths times are

reduced exactly by one compared to their maximum. Accordingly, the regions associated

with the earliest reaching border creeping paths (detected before) remain the same.

Thus far it is deduced that for border vertices t3(0, v) = tx(v)(v) and for interior vertices

tx(v)(v) − 1 ≤ t3(0, v) ≤ tx(v)(v). Let B be the set of border vertices, then since t3(0) =

maxv∈V (G) {t3(0, v)} we have

max

{
max
v∈B

{
tx(v)(v)

}
, max

v∈V (G)−B

{
tx(v)(v)− 1

}}
≤ t3(0) ≤ max

v∈V (G)

{
tx(v)(v)

}
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Let

v∗ = argmax
v∈V (G)

{
max
v∈B

{
tx(v)(v)

}
, max

v∈V (G)−B

{
tx(v)(v)− 1

}}
with a preference to be an interior vertex. In this way, if v∗ ∈ B, then for any interior

vertex v, t3(0, v∗) ≥ t3(0, v); consequently, t3(0) = t3(0, v
∗) and border evading scheme

is an optimal scheme. Otherwise, if v∗ ∈ V (G)− B, if we can modify the border evading

scheme in such a way that v∗ in the new scheme is informed at time-unit tx(v∗)(v∗) then the

new scheme will be an optimal scheme, and t3(0) = tx(v∗)(v
∗). To do that first let us find

v∗.

Continuous view. Let us refer to the previously detected regions of the grid associated

with the type of border creeping path that reaches a vertex first, by just regions. In the

border evading scheme, if a message relay is entirely within one region, the change between

the first informed time of the sender and receiver is known. For example, in the region

associated with dr, a move to the right has +4 change while in dru has +3 and in rdl has

-4. One can change the view from discrete movements (e.g., going up by one unit) to a

continuous one. In this view, define the gradient of each point within a region based on

the aforementioned uniform changes; in case a point belongs to multiple regions, choose

one randomly. The vector field is conservative since it can be viewed as the gradient of

a function composed of unions of linear equations. To know the first informed time of a

vertex v, consider a point p at the coordinate of v. For any continuous path from 0 to v (due

to path independence), the line integral over the vector field is the answer. This time can be

associated with any other point in the grid. As an example, take a look at Figure 32, under

the magnifying glass. As indicated, the change in the first informed time of the two vertical

blue dots is 4ϵ+ (−4)(1− ϵ).

Using the continuous view, and Lemma 5.2.4 it is clear that point p∗ with the most as-

sociated first informed time is the intersection of L(dru, rdl), L(rd, rdl), and L(rd, dru)

lines; p∗ =
(

7n−2
8

, m− n+6/7
8

)
. This is true even for the case n = m, the only case
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in which L(dru, rdl) comes before L(dr, rd). Important note: The placement of p∗

was determined by the separating lines and not by direct investigation of the line integrals.

Take L(dr, dru), for example, its equation was derived from tdr(v) = tdru(v). The la-

tent assumption in the value of tdru(v) is that v’s vertical position is not n; which comes

from the +2 applied for changing the direction upward. Consequently, if 7n−2
8

> n − 1 or

m − n+6/7
8

> m − 1 the above position might be problematic and additional checks are

required. The two restrictions are false if n ≥ 7.

For n ≥ 7, based on the vector fields, the choice for v∗ will be limited to three possible

vertices in the vicinity of p∗;

1. v∗1 =
(⌊

7n−2
8

⌋
, m−

⌈
n+6/7

8

⌉)
2. v∗2 =

(⌊
7n−2

8

⌋
+ 1, m−

⌈
n+6/7

8

⌉)
3. v∗3 =

(⌊
7n−2

8

⌋
+ 1, m−

⌈
n+6/7

8

⌉
+ 1

)
See Figure 32, under the magnifying glass. The red point is p∗ and the possible three

vertices have blue points. To understand which has the higher first informed time, the

changes from v∗1 to v∗2 and then from v∗2 to v∗3 will be calculated. Let ϵ = 7n−2
8

−
⌊
7n−2

8

⌋
.

By the slope of the lines, it is deduced that vertices v∗2 and v∗3 are in the dru region (cyan

color in Figure 32), and vertex v∗1 in rd region (gray). Note that if n mod 8 = 1 then v∗1 is

in the boundary of rd and dr regions, in this case we consider the rd region. As depicted in

Figure 32, these positioning implies that the change from v∗1 to v∗2 is 4ϵ+ (−4)(1− ϵ) and

from v∗2 to v∗3 is +3. Consequently, vertex v∗3 is the sole last informed vertex except when

(1) n mod 8 = 5, where v∗1 is also the last informed; (2) n mod 8 = 6, where v∗1 is the sole

last informed vertex; and (3) b mod 8 = 7, where v∗2 is the sole last informed vertex.

On the other hand if n ≤ 6, then a similar analysis points to 3 candidates for v∗; namely,

(n − 1, m − 1), (n, m − 1), and (n, m). The change from an vertex at vertical position

n − 1 to n can be anything from +3 to −2, and the change from (n, m − 1) to (n, m) is
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+3; consequently, (n, m) will be the sole last informed vertex.

Optimal scheme, changing the border evading scheme. Now that all the possible

candidates for v∗ (and their time) is determined for border evading scheme, we can describe

a new similar scheme that will be completed in t3(0, v
∗) and hence is an optimal scheme.

If n ≤ 6, no change is necessary. Otherwise, (1) if n mod 8 ∈ {0, 1, 2, 3, 4, 5} change the

behavior at (n, m −
⌈
n+6/7

8

⌉
+ 1) so that at that point there is no evading the border as

described before; see Figure 32 the modification of the behavior is in red. In this way, the

dru-path time to v∗ is increased by one and since dru-path was the only path that could

inform the fastest, the desired scheme is achieved. (2) If n mod 8 = 7, do the similar

modification but this time for (n, m −
⌈
n+6/7

8

⌉
) to match the v∗; (3) If n mod 8 = 6, in

this case v∗ resides (only) in the rd region; therefore, with the similar justification modify

the behavior of (0, m−
⌈
n+6/7

8

⌉
).

First move revisited. At first it was assumed that the first move is downward, through

the smaller dimension. A similar analysis can be made if the first move is toward right. In

that case the position of v∗ is shifted to the left and since the best path for v∗ is dru-path its

completion time will be reduced. Consequently, sending though the smaller dimension as

the first move is an optimal choice.

To summarize all the findings:

Theorem 5.2.5 (2-dimensional grid, Messy model M3). Consider a 2-dimensional grid

G = Pn+1 × Pm+1, where n ≤ m. With 0 as originator, under the Messy model M3,

t3(0) =



3m+ 3n− 2 if n ≤ 6

3m+ 3n− 5 +
(
4n− 3

⌈
n+6/7

8

⌉
− 4

⌊
7n−2

8

⌋)
if n ≥ 7 and n mod 8 ∈ {0, 1, 2, 3, 4, 5}

3m+ 3n− 4 +
(
4n− 3

⌈
n+6/7

8

⌉
− 4

⌊
7n−2

8

⌋)
if n ≥ 7 and n mod 8 = 6

3m+ 3n− 8 +
(
4n− 3

⌈
n+6/7

8

⌉
− 4

⌊
7n−2

8

⌋)
if n ≥ 7 and n mod 8 = 7
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Moreover, an optimal scheme similar to border evading scheme is known, in which the

sole last informed vertex is



(n, m) if n ≤ 6(⌊
7n−2

8

⌋
+ 1, m−

⌈
n+6/7

8

⌉
+ 1

)
if n ≥ 7 and n mod 8 ∈ {0, 1, 2, 3, 4, 5}(⌊

7n−2
8

⌋
, m−

⌈
n+6/7

8

⌉)
if n ≥ 7 and n mod 8 = 6(⌊

7n−2
8

⌋
+ 1, m−

⌈
n+6/7

8

⌉)
if n ≥ 7 and n mod 8 = 7

Proof. The optimal scheme and its last informed vertex v∗ has been explained above.

Knowing v∗, t3(0) = tx(v∗)(v
∗).

Corollary 5.2.5.1. Consider a 2-dimensional grid G = Pn+1 × Pm+1, where n ≤ m.

Under the Messy model M3, for large enough n

t3(0) ≈ 3m+ 3
1

8
n
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Chapter 6

Worst-case Originators and Diameters

in Trees

One of the fundamental case studies of broadcasting is broadcasting in trees. Trees were

among the first structures for which broadcasting was studied, not only because of their

simple and common structure but also because every broadcasting scheme describes a tree

that is a connected subtree of some binomial tree.

Consider a rooted tree T , with root vertex r. For every vertex v ∈ V (T ), let Tv be the

subtree of T with root v. If u1, u2, . . . , up are children of vertex v such that b(Tu1 , u1) ≥

b(Tu1 , u1) ≥ · · · ≥ b(Tup , up), [100] showed that

b(Tv, v) = max
1≤i≤p

{b(Tui
, ui) + i} (3)

Knowing this relation, a linear recursive algorithm could be given to calculate b(T, r).

The base cases are leaves v, where b(Tv, v) = 0. Equation (3) also describes an optimal

scheme. After vertex v is informed, under this optimal scheme v informs u1 to up in order;

meaning in order of their broadcast time.

One follow-up question is then, what is the broadcast time of the tree? Of course, one
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might take each vertex as the root vertex run the previous algorithm to find the broadcast

time of every vertex; and, consequently, the broadcast time of the tree. However, the time

complexity will be of O(n2), where n is the number of vertices. Intuition might suggest

that at least one of the end vertices of every diameter of the tree is the worst-case origi-

nator. If that is the case, then one can find both end vertices of a diameter in O(n), run

the aforementioned recursive algorithm for both and compare the results all in O(n), and

find b(T ) in only O(n) time and space. Algorithms and situations like these make it worth-

while to study the relationship between the worst-case originators and the end vertices in

diameters. Another situation to consider is when instead of a path, any tree is allowed as

a primitive graph in the Cartesian product for a more general class of graphs to consider

for broadcasting. Here, one might think that by studying only the end vertex of a diameter

of trees, the broadcast time of the structure might be found. In the following, we analyze

the relationship between worst-case originators and dimeters in trees, which seems to be

missing from the literature, and show that the previous intuition is not correct.

Question 6.0.1. Is it true that any worst-case originators is an end vertex of a diameter in

tree?

Answer. No, Figure 33 is an example.

Figure 33: A worst-case originator may not reside in any diameter.

Question 6.0.2. Is it true that at least one end vertex of any diameter in the tree T is a

worst-case originator?

Answer. No, Figure 34 is an example.
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A diameter with no worst-case originator.

w

the only worst-case
originator; b(w) = 9

v; b(v) = 8

Figure 34: A diameter may not contain any worst-case originators.

Question 6.0.3. Is it possible that none of the diameters’ end vertices are worst-case orig-

inator?

Answer. No, at least one end vertex of a diameter is a worst-case originator. To prove this,

by the sake of contradiction assume otherwise. Make the tree rooted from one of the worst-

case originators, call it w; see Figure 35. Note that all the worst-case originators are leaves.

Consider a diameter xyz where x and z are the leaves and y is the common ancestor. By

our assumption x ̸= w and z ̸= w. Let d(x, y) = L and d(z, y) = L′; therefore, the length

of the diameter is L+ L′. Without the loss of generality assume L′ ≤ L.

w v

u′ · · ·

y

yx
· · ·

yz

x
z

L− 1 L′ − 1

Figure 35: The tree rooted at the worst-case originator w. Path xyz is one diameter with
the length L+ L′.

Since w is not the end vertex of any diameter, d(w, y) < L′ ≤ L. Under any optimal
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scheme, any vertex v in the wy-path excluding y has no choice but to inform the next vertex

in this path. For w this is true since w is a leaf. Assume this assertion is not true, in that

case consider the first vertex v which does not obey this behavior. Let u be the child of v

such that y ∈ Tu; define Tv−y = Tv − Tu. Lack of obedience means u is not the first child

to get informed after v is informed. Accordingly, there is a child of v, called u′ such that

b(Tu′ , u′) ≥ b(Tu, u) and the optimal scheme chose u′ as the first child to be informed

after v. Since b(Tu′ , u′) ≥ b(Tu, u), by Equation 3

b(Tv, v)− 1 ≤ b(Tv−y, v) ≤ b(Tv, v)

Since v is the first anomaly, b(w) = d(w, v) + b(Tv, v). Consider vertex x as the

originator, then b(x) ≥ d(x, v) + b(Tv−y, v). This is true since the only way to inform

vertices of Tv−y is through vertex v and the shortest distance to v is d(x, v). By our first

assumption, x is not a worst-case originator; therefore, b(x) < b(w). However, since

d(y, v) ≥ 1 and d(w, v) ≤ d(w, y) ≤ L

b(x) ≥ d(x, v) + b(Tv−y, v) ≥ L+ d(y, v) + b(Tv, v)− 1 ≥ d(w, v) + b(Tv, v) = b(w)

a contradiction.

This proves that b(w) = d(w, y)+b(Ty, y). Note that z is in a different child subtree of

y (under Tyz ) than x (under Tyx). At least one of yx or yz will not get informed the next move

after the optimal scheme reaches y. Assume yz is not informed at that time. This implies

that b(Tyz , yz) is not the sole greatest broadcast time of children of y; consequently, with

the similar argument to above

b(y) ≥ L′ + b(Ty, y)− 1 ≥ d(w, y) + b(Ty, y) = b(w)
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This is a contradiction, since by our first assumption y should not be a worst-case originator.

On the other hand if yx is not informed at that time, similarly we have

b(x) ≥ L+ b(Ty, y)− 1 ≥ d(w, y) + b(Ty, y) = b(w)

again a contradiction. As a result, our first assumption that no diameter’s end vertex is a

worst-case originator is incorrect.

Question 6.0.4. Is there a diameter that both of its end vertices are worst case originator?

Answer. Not necessarily, Figure 34 is an example.
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Chapter 7

Conclusion and Future Work

Inspired by the practical and efficient hypercube and torus topologies in computing net-

works, a new, more general class of graph called hyper-cylinders was introduced, which

have similar features. A hyper-cylinder is a graph that is obtained by the Cartesian product

of some paths and cycles. In this thesis, the broadcast problem was studied for hyper-

cylinder under both Classical and Messy models. As a consequence, some hyper-cylinders

were added to the limited classes of graphs for which broadcast time is polynomially com-

putable. For future work, it will be interesting to study the classes of graphs that can be

obtained using the Cartesian product of other simple structures. In particular, the use of

any tree (or arborescence in directed graphs) instead of paths. At the end of the thesis, the

position of worst-case originators is studied, which might help with this generalization.

The broadcasting in hyper-cylinder graphs under the Classical model is studied in

chapter 4. The result for grid and torus networks was improved, and some bounds for

hyper-cylinders, in general, were provided. In particular, the exact result is found for di-

rected hyper-cylinders and for a useful type of undirected hyper-cylinders described in

Remark 4.2.3. For future work, the following can be improved. The exact broadcast time

and optimal scheme, or a polynomial algorithm for calculating it for vertices in a grid that

are at least in the exact middle of two dimensions. For d-dimensional torus where d ≥ 3;
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although a convincing conjecture is given, the formal proof for the exact broadcast time

and the optimal scheme is missing. Accordingly, the exact result for general undirected

hyper-cylinders is missing as well; however, we believe that if the result for torus and grid

is found, the result for hyper-cylinders will follow.

In chapter 5, the broadcasting in hyper-cylinders under Messy models is studied. For

the directed graphs, the exact result for Messy models M2 and M3 are found; however, for

Messy model M1 the result is only proved for 2-dimensional hyper-cylinders. For future

work, Messy model M1 can be studied further; especially, in hypercubes. For the undi-

rected graphs, the result for the infinite d-dimensional grid and 2-dimensional grid under

Messy model M3 was found. For the latter, a continuous view technique was introduced,

which we believe has a high potential in finding the broadcast time and optimal scheme of

general d-dimensional grids. The result for any other type of hyper-cylinders is still un-

known. Other broadcasting models or criteria, particularly the study of fault tolerance in

hyper-cylinders, are also an interesting topic for future research.
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[64] Juraj Hromkovič, Claus-Dieter Jeschke, and Burkhard Monien. “Optimal algo-
rithms for dissemination of information in some interconnection networks”. In: In-
ternational Symposium on Mathematical Foundations of Computer Science. Springer.
1990, pp. 337–346.
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