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ABSTRACT

A Poisson-disk sampling based particle-packing generation algorithm for Discrete Element
simulations

Haopeng Sun

The Discrete Element Method (DEM) has been extensively used to model deformation and stresses
developed in soils and rocks. The ever-increasing computational power allows the creation of
accurate numerical models using the DEM with a significant number of elements.

However, DEM models with equal-sized particles or particles with a narrow range of radii such as
those available in current DEM software cannot realistically reflect the physically interactive
forces between soil particles, resulting in inaccurate simulation results. This thesis proposes an
algorithm to generate circular and spherical particle assemblies that feature particle-size
distributions and void ratios derived from actual soil data to improve the accuracy of DEM results.
The proposed algorithm can automatically create particle packings with a wide range of radii
simulating real soil samples to increase the quality of DEM simulations. The Poisson Disk
Sampling and Grid Sampling techniques are introduced to generate models in a random but
controllable fashion, meaning that the positions and radii of particles are randomly selected,
however, the statistical profile of the particle assembly can be controlled. Similar to soil particle-
size analysis, the particle packing is created using a sieve-by-sieve approach. Prior to importing
the particle assembly into a DEM simulation system, the algorithm-generated particle assemblies
are imported into an open-source DEM framework to complete the model deposition process. This
study also includes a number of examples of building 2D and 3D particle assemblies using the
proposed algorithm according to laboratory data of pure, mixed, gap graded, uniformly graded,
dense, and loose soils to validate the algorithm.
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Notation

act = An array of newly generated points
adj =  An array of distances between the particle and adjacent particles
bdy =  Anarray of distances between the particle and boundaries
clr = Color of circular particles in 2D model
cols =  Number of cells in the long side of the canvas
d, =  Minimum distance between particle center and around particles
dp =  Minimum distance between particle center and borders
d. =  Distance between one corner of the cell and the particle center
dp =  Depth of the 3D canvas
e =  Void ratio
f = A boolean variable indicating whether the points are valid
grid = An array of cells in the canvas
grow =  An boolean variable indicating whether the particle can grow
ht =  Height of the 2D or 3D canvas
i = X coordinate of the cell where the random point is located
Ji = Y coordinate of the cell where the random point is located
max, =  Minimum value of the radius range
min, =  Maximum value of the radius range
p =  Percent finer
px = A smallest addressable element in 2D model canvas
pos =  Anarray of new randomly selected points
posit =  Position of the particles in Circle or Sphere object
Tmin =  Minimum radius of the next round of particles insertion
rad =  Radius of a circular or spherical particle
ranidx =  Aninteger where a random element in the array is chosen
rows =  Number of cells in the short side of the canvas
Sm =  Minimum canvas size
Vmax = Individual volume of the biggest particles

XV



Ptcl

< = X

"<Q><

[

© N N
aQ

The length of the cell (pixel)

Width of the 2D or 3D canvas

X coordinate of the first randomly selected point
Y coordinate of the first randomly selected point
The number of contacts

An array of the particles generated by void infilling
Total mass

The number of particles

Total volume of the sand sample (mm?3)

X coordinate of a randomly selected cell

Y coordinate of a randomly selected cell
Coordination number

Z coordinate of a randomly selected cell

Density (g/mm?3)

Xvi



Chapter 1 Introduction
1.1 Background

Numerical modeling is a vibrant research area in geotechnical engineering. The development of
numerical simulation comes hand-in-hand with the rapid introduction of novel computational
techniques and the prevalence of powerful personal computers. The development of numerical
modeling techniques has considerably accelerated in recent years due to the exponential increase
in computational capacity (Zhang et al. 2013).

Numerical simulation methods of rock and soil stress and deformation analysis, in a broad sense,
can be categorized into continuum methods and dis-continuum methods (Jing and Hudson 2002;
Jing 2003). Continuum methods treat a rock or soil mass as a continuum, and the procedure is to
exploit approximations to the connectivity and continuity of displacements and stresses between
elements. Dis-continuum methods regard a rock or soil mass as an assemblage of distinct
interacting blocks or bodies that can be treated as rigid or could be subdivided into deformable
finite-difference meshes that follow linear or non-linear stress-strain laws (Jing and Stephansson
2007).

Continuum methods can also be classified into integral methods and differential methods. For the
former, only problem boundaries are defined and discretized. They are more efficient
computationally than differential methods but restricted to elastic analyses. For the latter, the
whole problem domain is defined and discretized. They can simulate materials with non-linear and
heterogeneous properties but are more computationally intensive than the integral methods
(Sbirrazzuoli et al. 2009).

1.000e-03  0.0013 0.0015 0.0018  2.000e-03

“J'Ill.l.liﬁ;l_lllJIJI|II1I;H

Particle radius (cm)

Fig 1.1 Discrete Element Method simulation results using the open-source code LIGGGHTS (Aggarwal and Kumar
2019)

Discrete Element Method (DEM) is a dis-continuum numerical method designed to handle contact
conditions for a mass of irregularly shaped particles (Munjiza 2005). It is an effective method of
solving engineering problems that deal with granular and discontinuous materials, such as granular
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flows, powder mechanics, and rock mechanics. Fig 1.1 shows the DEM settlement simulation of
a particle assembly in a container (Aggarwal and Kumar 2019).

The advantage of DEM is that it can simulate a wide variety of granular flow and rock mechanics
problems and allows a more detailed study of the micro-dynamic analysis of powder flows than
physical experiments (Boac et al. 2014). However, it is computationally intensive compared to
other numerical methods, which may cause long computation time and limit either the length of a
simulation or the number of particles (Bandeira and Zohdi 2018). Another challenge of DEM is
generating particle packings that represent realistic conditions (Dang and Meguid 2010).

1.2 Research Objectives and Scope

This research aims to propose an algorithm to generate 2D and 3D DEM simulation models that
are close to actual conditions. In particular, the main target is to develop algorithms to create an
assembly of circular (in 2D) and spherical (in 3D) particles, which are similar to real soils in terms
of particle-size distribution and void ratio, to increase the DEM simulation accuracy. The current
simulation software and open-source codes can only create same-sized particles or particles with
a narrow range of radii, which cannot reflect the real interactive forces between soil particles. For
example, Yade (Donz¢ et al. 2009), an open-source DEM simulation code, can only generate quasi
equal-sized spherical particles based on users’ definition on sphere centers, radii, and relative fuzz
variation of radii. Current software only generates DEM models with same-sized particles or
particles with narrow-range radii because of computational power limitations. However, the
speedy development of CPU and GPU calculation capacity makes the creation of more accurate
and close-to-reality models possible.

Particle assemblies with particle-size distributions and void ratios that approximate real soil data
can yield results that are theoretically and physically more accurate using DEM. In a DEM
simulation, two critical components are needed to account for the evolution of a mechanical system:
the geometry of particles and the interaction forces between them (Wautier et al. 2018). Fig 1.2
shows the normal and tangential forces between two contacting particles. The dimensions and
masses of particles play essential roles in the DEM simulation result. As such, a model with equal-
sized particles fails to simulate realistic interactions between soil particles and, therefore, generates
inaccurate results.
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Fig 1.2 Elasto-frictional contact law used in DEM simulations (Wautier et al. 2018)
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Fig 1.3 shows the calculation process of the DEM simulation, including time steps, variables, and
formulas (O’Sullivan 2011). When contact forces and body forces between particles are calculated,
the masses and dimensions of interacting particles are key parameters in the calculation process.
As a result, a DEM simulation can produce more accurate results by modeling particles with an
extensive radius range that approximates particle-size distributions and void ratios of real soil data
rather than models with equal-sized particles or particles with a narrow range of radii.

friction, when two particles touch each other; contact
plasticity, or recoil, when two particles collide;
gravity, the force of attraction between particles due
to their masses; attractive potentials, such as
cohesion, adhesion, liquid bridging.
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Fig 1.3 The calculation process of Discrete Element Method (O’Sullivan 2011)

The detailed objectives of this study aimed at bridging existing research gaps are as follows:

a) Propose an algorithm to create DEM particle packings that feature particle-size distributions
and void ratios close to those encountered in actual soils.

b) Introduce the Poisson Disk Sampling method to generate particles belonging to the largest
opening sieve and the Grid Sampling method to insert particles of the remaining sieves by filling
the voids between large particles.

c¢) Achieve particle packing deposition by importing the algorithm-generated models into the DEM
simulation software to realize the particle packing densification and obtain the void ratio of the
deposited model.

d) Provide examples of 2D and 3D models generated by the algorithm targeting the laboratory data
of various soils to validate the algorithm.

1.3 Research Methodology

The methodology is presented below to describe how the research objectives are accomplished:

a) This thesis introduces Poisson Disk Sampling and Grid Sampling methods to randomly but
3



controllably generate particle packings sieve-by-sieve based on user-defined parameters. Poisson
Disk Sampling is used to generate samples with an even but random distribution. This method will
be applied to determine the positions of particles in the largest opening sieve, laying the model’s
foundation. Subsequently, the Grid Sampling method locates voids by checking cells that divide
the whole area evenly and fills these gaps by inserting particles belonging to the remaining sieves.

b) In computer science, recursion is a method used to handle uncertain reiteration problems. It is
used to rerun the particle insertion process when errors exceed the acceptable threshold, or when
the particle volume does not reach the target. Particle validation checks if a randomly selected
point in the void space can be used to generate a particle. Combining both approaches enables the
algorithm to automatically generate particles without manual adjustment based on the user-defined
particle-size distributions and void ratios. To pinpoint the void spaces in the canvas, the algorithm
randomly generates particles only in non-filled cells.

c¢) The model deposition simulation is done by Yade (Donz¢ et al. 2009). The algorithm-generated
particle assembly is imported into Yade. It exports the deposited model and several related
parameters, including inter-particle forces, unbalance force ratio, coordination number, and void
ratio.

d) The algorithm is written by Python (Van 2009). Object-oriented programming (OOP), a
computer programming method that organizes software design based on objects (Doherty 2020),
is introduced. An object or a data field with unique attributes and behaviors is defined herein as a
particle in the DEM model. The algorithm also employs a Python library, NumPy (Travis 2005),
to empower the handling of data and arrays.

e) The 2D model visualization is completed by JavaScript and P5.js (McCarthy et al. 2015), a
JavaScript-based library specialized in presenting graphics. The 3D model is displayed in Paraview,
an open-source, multi-platform visualization application (Rober 2014).

1.4 Thesis Outline

This thesis contains five chapters:

Chapter 1 introduces the research motivations and objectives. The main objective is to propose an
algorithm that generates DEM models similar to the real soils in terms of particle size distributions
and void ratios. DEM models with similar statistical characteristics to actual soils can provide
more accurate simulation results than currently available models.

Chapter 2 presents the literature review. It first introduces simulation methods and places emphasis
on DEM. DEM simulation and the current DEM particle packing generation methods that open-
source codes and simulation software use are also described. This chapter then covers the Poisson
Disk Sampling and Grid Sampling techniques that the algorithm utilizes to generate particles with
a random and even distribution. Finally, an overview of programming languages, visualization
tools, data formats, and code editors is provided.

Chapter 3 described the algorithm development. The model building process consists of two parts:

generating particles for the largest opening sieve using the Poisson Disk Sampling technique,

which lays the model’s foundation, and then filling the voids to insert particles belonging to the

remaining sieves using the Grid Sampling method. This chapter presents the definitions and

recommended values of parameters defined in the algorithm and techniques to optimize the model
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building process and reduce the running time. The chapter ends by outlining how the model is
deposited in Yade and how contact friction is used to adjust the void ratio of the deposited models.

Chapter 4 deals with algorithm testing and validation. Examples of building 2D and 3D models
using the proposed algorithm targeting a wide variety of soils are provided to demonstrate that the
algorithm can generate models for soils with various characteristics. The algorithm-generated

models may produce differences compared to the actual soil, and the type of errors is finally
described.

Chapter 5 provides concluding remarks and emphasizes the strengths and limitations of the
algorithm. Recommendations for future study are also given.



Chapter 2 Literature Review

2.1 Introduction

The DEM is a popular numerical method for computing the motion and response of an assemblage
of particles, and it has been widely used to solve problems dealing with granular or discontinuous
materials in geotechnical engineering (Donz¢ et al. 2009). This chapter describes several numerical
modeling methods, including DEM, outlines supersampling used by the algorithm to generate
particles in a random but controllable fashion, and gives an account of other computational tools
that played a pivotal role in the development of the algorithm.

This chapter is divided into four sections organized as follows: Section 2.2 deals with the
developments and applications of several numerical simulation methods with a special emphasis
on the DEM. Section 2.3 presents DEM model generation methods currently available in
simulation software packages and currently explored research avenues in the field. Section 2.4
introduces supersampling techniques, including the Poisson Disk Sampling method and Grid
Sampling method and different ancillary algorithms to realize these methods. Section 2.5 describes
computational tools, including Python, NumPy, a Python-based data analysis library, and data
formats. This chapter ends by describing JavaScript and p5.js, the visualization tools for the 2D
particle packing, and Paraview, a 3D model visualization application.

2.2 Numerical Modeling Methods in Soil Mechanics

The commonly applied numerical modeling methods for soil mechanics problems can be classified
into two categories, continuum methods, including the finite difference method (FDM), the finite
element method (FEM), and the boundary element method (BEM), and discrete or dis-continuum
methods, such as the DEM, and discrete fracture network method (DFN). This part briefly
introduces these numerical modeling methods as well as their advantages and limitations while
focusing on the DEM.

2.2.1 Finite Difference Method

The Finite Difference Method (FDM), based on finite-difference approximations for derivatives
occurring in differential equations, is one of the simplest and oldest methods of solving differential
equations (Datas 2020). Euler initially proposed FDM in one-dimension space, and this method
was extended to two dimensions by Runge in 1908 (Timoshenko and Goodier 1982). Finite-
difference techniques were first applied in practice in the early 1950s. Their developments were
stimulated by the emergence of computers that offered a convenient framework for dealing with
complex technological problems. The relaxation method developed by Southwell in 1964 allowed
for systems of equations to be solved quickly and significantly contributed to the widespread use
of FDM (Cryer 1970).

Theoretical results were produced regarding the accuracy, stability, and convergence of the finite
difference method for partial differential equations. The FDM is based on the following premise:
finite differences at grid points can adequately represent the governing differential equations. It
operates by discretizing the governing partial differential equations by replacing the partial
derivatives with differences defined at neighboring grid points (Datas 2020). The FDM can handle
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complex non-linear material behavior, such as laterally loaded piles, one-dimensional
consolidation, two and three-dimensional seepage (Desai and Christian 1979; Bobet 2010), and
solve time-dependent problems (Nikoli¢ et al. 2016). However, this method still has limitations in
modeling arbitrarily shaped domains. When the configuration of a field is simple, e.g., a
rectangular shape, the mesh points can be adjusted to coincide with the boundaries. In contrast, the
mesh points may not fall on the irregular boundary (Desai and Christian 1979).

Newly developed techniques now make it possible to handle irregular meshes, such as triangular
grid or Voronoi grid systems, which leads to Control Volume, or Finite Volume, techniques.
Voronoi polygons grow from points to fill the space instead of tessellations where the polygons
are formed by lines cutting a plane or building up a mosaic from pre-existing polygonal shapes
(Gore et al. 2005).

2.2.2 Finite Element Method

The Finite Element Method (FEM) is the most commonly used numerical method in engineering
and mathematical models (Rapp 2017). Courant initially developed this method using the Ritz
method of numerical analysis and minimization of variational calculus in 1943 (Finlayson 1972).
The broader definition of finite element analysis was first coined by Turner and Clough in 1956,
who investigated the stiffness and deflection of complex structures (Widas 1997). By the early
1970s, FEM was limited to expensive mainframe computers owned by the aeronautics, defense,
and nuclear industries. Due to the rapid decline in computer cost and the phenomenal increase in
computing power, it has witnessed considerable improvements in precision and speed (Tan et al.
2011).

The FEM subdivides a large model into small and simple parts, called finite elements, which form
a mesh containing a limited number of points representing the numerical domain for the solution.
The FEM formulation of a boundary value problem results in equations where the method
approximates the unknown function over a given domain. The simple equations representing these
finite elements are then assembled into a more extensive system of equations that models the entire
problem. The FEM uses variational methods from the calculus of variations to approximate a
solution to the system of equations by minimizing an associated error function (Ashcroft and
Mubashar 2011). Fig 2.1 illustrates a slope displacement and corresponding safety factors
calculated using the FEM method.



(a)

Safety Factor = 1,928

(b)

Safety Factor = 1.505

Fig 2.1 Contour of slope displacement using FEM (Hammouri et al. 2008)

Compared to other numerical methods, FEM offers the following advantages: modeling the slope
with a degree of a high pragmatism such as complex geometry, sequences of loading, presence of
material or reinforcement, capturing the action of water, and use of constitutive laws that
characterize complex soil behavior; quickly observing the deformations of soils (Matthews et al.
2014). However, there are several caveats associated with FEM. Indeed, it yields an approximate
solution, and only the solution at nodes is accurate. In addition, FEM comes at a high
computational cost, and the time needed to solve the problems increases with the degree of mesh
fineness (Sharma 2019).

2.2.3 Boundary Element Method

The Boundary Element Method (BEM) is a numerical computational method of solving linear
partial differential equations formulated as integral equations. It calculates a weak solution at the
global level through a numerical solution of an integral equation derived using Betti’s reciprocal
theorem and Somigliana’s identity (Cheng and Cheng 2005). The diagram presenting the BEM to
define the boundary value for an arbitrary shape is shown in Fig 2.2.



Boundary value given along
the boundary curve

Region governed by a
differential equation

Fig 2.2 BEM diagram for an arbitrary shape (Pearce 2011)

In the BEM, discretization is performed differently than it is in both the FDM and the FEM. It
solves a boundary integral equation only related to the boundary values (Hall 1994). As such, the
BEM discretizes only the boundaries of the continuum, while the entire medium and boundaries
are discretized using the FEM and FEM (Bobet 2010).

The BEM formulations are particularly well-suited to address static continuum problems with
small boundary-to-volume ratios, elastic behavior, and stresses or displacements applied to the
boundaries. However, it remains challenging to deal with angular boundaries since the appropriate
boundary integral equations give rise to large and dense matrices to be solved (Costabel 1987).

2.2.4 Discrete Element Method

The Discrete Element Method (DEM) is a fundamental physics method that treats each particle of
a granular material individually (Hager et al. 2018). Each particle is represented through a
descriptive shape and size that interacts with other particles and boundary geometry. These
interactions are the core of the DEM and are modeled through different user-defined material
properties. The DEM features three aspects: the representation of contacts, modeling solid
materials, and the scheme used to detect and update the set of contacts (Cundall and Hart 1992).

The classical DEM first developed by Cundall (1971) was meant for rock mechanics problems. It
was further developed by Cundall and Strack (1979), who proposed a method to calculate
interaction forces when elements slightly penetrate each other. This force-displacement
formulation is typically referred to as a smooth contact method. Other discrete numerical methods,
referred to as non-smooth contact methods, exclude possible interpenetration between elements
and only deal with unilateral contact (Moreau et al. 1994; Jean et al. 1995 and Luding et al. 1996).

The primary difference between the DEM and other continuum-based methods is that the contact
patterns between components are continuously changing during the deformation process for the
former but are fixed for the latter (Khan 2010).
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Fig 2.3 Observation scale in the classification of numerical modeling techniques of materials (D’Addetta et al. 2001)

A DEM simulation can reflect the most striking characteristic of granular material, its dual nature
lying between a disjoint, discrete material and a continuum. Fig 2.3 shows different materials that
can be characterized from discontinuity to homogeneity (D’Addetta et al. 2001). Although
individual particles are solid, they are only partially connected at contact points. The DEM treats
particles individually and can be regarded as a method that closely simulates reality. Particle types
vary due to different properties, including shape and size distribution, density, Young’s Modulus,
Poisson ratio, adhesion, thermal conductivity, specific energy for breakage, etc. These parameters
can capture the unique complexities of the system under different conditions (Yue et al. 2018). Fig
2.4 shows the continuous, discrete-block, and discrete particles models simulated by different
numerical software.

FLAC, FLAC3D, and FLAC/Slope UDEC and 3DEC PFC2D and PFC3D
CONTINUUM DISCRETE - BLOCK DISCRETE - PARTICLES
gridpoints contacts (slip, separation,

(forces, displacement and velocity) 7 closure, forces, and yielding)
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gridpoints zones (displacement and velocity) (stress, strains,
(forces, displacement and velocity) (stress, strains. and yielding) @ smoothjoint 1 otacement, and velocity)

RIGID PARTICLES

() contact

Fig 2.4 Continuum, discrete-block, discrete-particles models provided by different numerical software (Itasca 2019)
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The application of DEM has recently been extended to study physical and geotechnical phenomena
such as deformation mechanisms, constitutive soil relations, stability of rock masses, the flow of
granular media, ground collapse, etc. (Donzé¢ et al. 2009). This method is designed to deal with
contact conditions for a mass of irregular particles (Munjiza 2005).

There are many solution strategies for different DEM formulations. The primary distinguishing
feature is the method for treating material deformability. The rigid body analysis is currently a
universal method. An explicit time-marching scheme uses finite difference schemes to solve the
dynamic equations of motion of a rigid body system or a dynamic relaxation scheme for a quasi-
static problem. However, for deformable-body systems, two solution strategies currently exist. An
explicit solution with a finite-difference discretization of the body interiors ensures only one
system unknown is kept at a local equation at a time step with no matrix equations needed in
general. An implicit solution with finite element discretization of the body interior results in a
matrix equation representing both motion and deformation of the individual bodies (Jing and
Stephansson 2007).

2.2.5 Discrete Fracture Network

The Discrete Fracture Network (DFN) is an advanced method to mimic discrete pathways for
fluid flow through a fractured rock mass (Makedonska and Gable 2018). This method explicitly
represents the geometrical properties of each fracture (e.g., orientation, size, position, shape, and
aperture) and the topological relationships between individual fractures and fracture set within a
rock mass, as shown in Fig 2.5 (Lei et al. 2017). The DFN method assists with fragmentation
assessment by better describing natural fragmentation distribution than other numerical methods
(Elmo et al. 2014).

Fig 2.5 Geologically-mapped DFN patterns based on (a) a limestone outcrop at the south margin of the Bristol
Channel Basin, UK, (b) sandstone exposures in the Dounreay area, Scotland, and (c) fault zone structures in the
Valley of Fire State Park of southern Nevada, USA. (Lei et al. 2017)

However, questions are being raised within the hydrogeologic community over the value of the
discrete fracture network method compared to stochastic continuum approaches. Such doubts are
fueled by the concept of representative elementary volume on which all continuum approaches
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hinge (Dershowitz et al. 2004).

2.3 Current Developments in DEM

This section focuses on current developments in Discrete Element Modeling. DEM innovations
can be generally categorized into two branches: improving the calculation of the interactive force
between particles and novel methods to generate particle packings.

The first part of this section describes new methods for DEM model generation. The second section
presents current leading software and open-source code for DEM implementation and their
applications. The last part of this section reviews developments in DEM model generation methods
used to create particles with various sizes, shapes, and distributions.

2.3.1 Current DEM Model Generation Innovations

Jing and Hudson (2002) designed the granular element method to accurately capture grain shape
using Non-Uniform Rational Basis-Splines (NURBS). They proposed a mathematical model
commonly used in computer graphics to represent curves and surfaces (Schneider 2011). Their
method allows discrete elements to take realistic and complex granular shapes encountered in
engineering and science, improving in discrete computational mechanics of granular materials.

Zsaki (2013) developed a reusable library that can generate element assemblages to reduce model
generation times drastically. He proposed a fast and straightforward method to accomplish the
boundary conformance by building on a previously developed and published algorithm and adding
new features.

Fig 2.6 A 2D model generation of a draw point chute for DEM simulation (Zsaki 2013)

Fig 2.6 shows the process of a 2D DEM model generation for a draw point chute, typically found
in underground mining (Matrix 2010), using the method proposed by Zsaki (2013). The process
consists of three steps: 1) building the boundary of the problem superimposed on an arrangement
of elements selected from the library (Fig 2.6a), 11) identifying an outer layer or ring of disks inside
the model boundaries (Fig 2.6b), and iii) adding multiple layers of newly added elements resulting
from infilling (Fig 2.6c, Fig 2.6d).
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A novel method to simulate non-spherical particles Validation
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Fig 2.7 Discrete element modeling of non-spherical particles (Dong et al. 2015)

Dong et al. (2015) developed a novel method based on orientation discretization for discrete
element modeling of representative non-spherical particles, as shown in Fig 2.7. Their approach
was based on orientation discretization and pre-calculated databases and can be applied to any
shaped particles in a general scheme.

2.3.2 DEM Simulation Software

There are currently many software packages and open-source codes that can run DEM simulations.
This section presents several leading DEM simulation software and open-source codes, including
Universal Distinct Element Code (UDEC) (Itasca 2019), Particle Flow Code (PFC) (Itasca 2019),
Yade (Donz¢ et al. 2009), ESyS-Particle (Mora et al. 2006), and LIGGGHTS (Kloss et al. 2012).

The Universal Distinct Element Code (UDEC), developed by Itasca Consulting Group Inc. in 1996,
is the current representative DEM software. UDEC is a two-dimensional numerical program that
simulates the quasi-static or dynamic response to loading of media containing multiple intersecting
joint structures. 3DEC, a three-dimensional version of UDEC, is used to simulate the response of
discontinuous media, such as jointed rock or masonry bricks, subjected to either static or dynamic
loading. Particle Flow Code (PFC), also from Itasca Consulting Group Inc., was released in 2014
and is a general-purpose DEM framework used for two- and three-dimensional simulation (PFC?P
and PFC?P, respectively). The PFC?P implements a particle flow model in terms of a collection of
circular rigid particles or discs, and PFC?P simulates a collection of rigid spheres. These two
programs are based on the idea that a rock mass can be represented by many constituent particles
whose contact stiffness and bounding behavior are relatively simple (Jing and Stephansson 2007).

Fig 2.8 shows a spherical particle packing that PFC>P generated based on user-defined particle size
distribution (Itasca 2019). The difference between the PFCP model generation and the algorithm
proposed in the study is that particles overlap in the model generated by PFC?P but the proposed
algorithm in the study generates models with particles that do not overlap.
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Fig 2.8 3D particle packing generated by PFC3P based on user-defined particle size distribution (Itasca 2019)

Yade is an extensible open-source code for discrete numerical models, developed by Donz¢ et al.
(2009). The computation parts are completed using a flexible object model, allowing the
implementation of new algorithms and interfaces independently. Python is introduced to perform
rapid and concise scene construction, simulation control, postprocessing, and debugging (Kozicki
and Donz¢ 2009).

ESyS-Particle was created by Mora et al. in 1992 and is another open-source DEM simulation
software for particle-based numerical modeling. It is designed for execution on parallel
supercomputers, clusters, or multi-core PCs running Linux or Windows. The simulation engine
implements spatial domain decomposition via the Message Passing Interface (MPI). A Python
wrapper API provides flexibility in numerical models, modeling parameters and contact logic, and
analysis of simulation data. ESyS-Particle has been extensively used to simulate earthquake

nucleation, comminution in shear cells, silo flow, rock fragmentation, and fault gouge evolution
(Weatherley 2008).

LIGGGHTS is an open-source DEM simulation software developed by Sandia National
Laboratories, a US Department of Energy institution, in 2011. It can simulate particulate materials
and aims to solve industrial problems. The program is based on LAMMPS, a classical molecular
dynamics simulation code designed to run efficiently on parallel computers (Kloss et al. 2012).

2.3.3 Application of DEM Simulation with Different Engineering Problems

Anandarajah (1994) proposed a method to carry out research into the stress-strain behavior of
cohesive soils. His method approximately simulated double-layer repulsive force between inclined
particles and formation of new contacts, deletion of existing contacts, and slip between particles,
by using suitable force-displacement laws for the mechanical contacts.

Buttlar and You (2001) investigated the use of asphalt technology to reduce the need for costly
tests to characterize asphalt-aggregate mixtures to design flexible pavement structures and
materials, which extended traditional discrete element modeling analyses.
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Fig 2.9 2D particles of discrete element method to investigate the penetration in granular media (BalevicCius et al.
2004)

Balevicius et al. (2004) investigated keel penetration in a granular model using DEM simulation.
DEMMAT code, a DEM software that relies on procedural and object-oriented approaches
(Balevicius et al. 2005), was introduced to generate a time integration algorithm. The visco-elastic
granular media composed of circular particles is presented in Fig 2.9.

(a) (b)

Fig 2.10 Identical grain size distributions prepared at the same void ratio and arranged to similar initial fabrics: (a)
Glass beads; (b) Ottawa rounded sand; and (c) Ottawa angular sand. (Ashmawy et al. 2003)

Ashmawy et al. (2003) evaluated the influence of particle shape on liquefaction behavior using 2D
DEM. Particle assemblies of varying degrees of angularity were subjected to simulated undrained
cyclic shear conditions to assess their liquefaction susceptibility. Fig 2.10 shows the assemblies of
particles with different shapes but identical grain size distribution, which were used to evaluate the
effect of grain morphology on the cyclic load response.

Balevicius et al. (2005) applied three versions of a software code to simulate granular material
dynamics using DEM. Their codes DEMMAT F90 and DEMMAT PAS were used to implement
a purely procedural method using two programming languages, FORTRAN 90 and OBJECT
PASCAL. In contrast, the code DEMMAT CPP represented a strictly object-oriented
programming approach using C++.
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Martin et al. (2006) investigated the free sintering of metallic powders using DEM, which allowed
the particulate nature of the material to be taken explicitly into account. Omer (2006) extended the
usage of DEM to analyze the bearing capacity of shallow foundations. Pefia et al. (2006) used
DEM to examine masonry structures represented by discrete elements as assemblies of blocks or
particles, an idealization of their discontinuous nature that governs their mechanical behavior.

(b)
Fig 2.11 3D mesh made of unstructured tetrahedra (a) and its corresponding polydisperse sphere packing (b) (Jérier
et al. 2008)

Jérier et al. (2008) developed a new geometric algorithm based on tetrahedral meshes to generate
dense isotropic arrangements of non-overlapping spheres with different sizes. The proposed
method first fills a tetrahedral mesh with spheres in contact (i.e., hard-sphere clusters) shown in

Fig 2.11 (a). Large empty spaces in the model are then detected and filled with new spheres to
increase packing Fig 2.11 (b).

Belheine et al. (2009) noted that using spherical elements within the DEM can reduce
computational costs, but this oversimplification of the granular geometry has drawbacks when
quantitatively assessing the model even for frictional geomaterials. To overcome this limitation,
they recommended that the local constitutive law considers the transfer of a moment between

elements. Adding normal and shear local interaction forces to particles can improve the simulation
accuracy.

100 y

S 80f

]

£ 60

= 40t

(=

g

& 20F
0 . , ; . : ;
00 04 08 12 16 20 24

(a) (b)

Particle diameter, d (mm)

Fig 2.12 Particle-size distribution and rock samples for (a) uniaxial compression test and (b) direct tension test (Shi
et al. 2015)
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Shi et al. (2015) conducted research on the Distinct Element Method, a variation of DEM, with a
novel bond contact model to discover the microscopic physical origin of macroscopic behaviors
of weathered rock and capture the changing laws of microscopic parameters observed decaying

properties of rocks during weathering. Fig 2.12 shows th
particles of their model.
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(a)
Fig 2.13 DEM assembly of particles for triaxial testing (a) and particle-size distributions of Dunkerque sand (b)
(Aghakouchak 2015)

e particle-size distribution curve and rock

/' Dunkerque sand:
¥ Simulation
P ---- Experimental [1]

0.1 0.2 04 06 08 1
Particle diameter (mm)

(b)

Aghakouchak (2015) investigated the behavior of Dunkerque sand subjected to cyclic loading
using DEM. Fig 2.13 shows the particle assembly and the particle-size distribution curves of the

experimental and simulated sands.

C++ source code snippet [{(si=1SRI-3 BT

Fig 2.14 An OpenFPM-based distributed Molecular Dynamics simulation visualized in situ using the prototype, and
the lines of code that needed to be changed to enable in situ visualization (Incardona et al. 2019)

Incardona et al. (2019) introduced OpenFPM, an open and scalable framework, to provide an
abstraction layer for numerical simulations using particles and meshes. Fig 2.14 shows the model

they built and the C++ source code snippet.
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Fig 2.15 The ellipsoidal particles after deposition (Liu et al. 2019)

Liu et al. (2019) investigated the soil micro-scale responses during shield tunnel excavation in a
sandy-cobble stratum using DEM. Their model, made up of the ellipsoidal particles, is shown in
Fig 2.15.
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(b)
Fig 2.16 Mixed-mode crack test: (a) crack observed in the experimental test; and (b) crack predicted through
numerical simulation with the PFC2D in the study of Lopez et al. (2020)

Fig 2.16 compares a DEM mixed-mode crack model to an experimental crack path obtained using
the single-edge-notched beam (SEB) test. PFC2D was used to generate the DEM model and
perform the SEB test (Lopez et al. 2020).
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2.4 Poisson Disk Sampling and Grid Sampling

Supersampling is a spatial anti-aliasing method in computer graphics to reduce the jagged parts at
the margin of objects in rendered images (Beets and Barron 2000). Poisson Disk Sampling and
Grid Sampling are two extensively used supersampling techniques to find the sample locations in
pixel space and decide the color of adjacent pixels (Klassen 1989).

This section first introduces the supersampling technology and focuses on Poisson Disk Sampling
and Grid Sampling. The second part presents the current approaches used to perform these two
sampling methods.

2.4.1 Supersampling

Supersampling is performed to remove aliasing or jaggies from rendered pictures in computer
programs. Real-world objects have continuous smooth curves and lines, but a computer screen
shows the viewer using a large number of tiny squares called pixels. These pixels have the same
size, and each one has a single color. A line can only be shown as a collection of pixels and
therefore appears jagged unless it is perfectly horizontal or vertical. The supersampling technique
aims to reduce this effect (Zvekan 2004). The method of deciding the sample positions in pixels,
representing the color of adjacent pixels, is the critical aspect of the technology (Cugowski 2016;
Zoeken 2004).

[e]

Pixel with sampling positions

o]

Sampled colours

Average = displayed colour

Fig 2.17 How supersampling works on a pixel (Taxel 2016)

Fig 2.17 shows how supersampling works. An average color value is calculated based on color
samples taken at several points inside the pixel (not just at the center). It is generally done by
rendering the image at a much higher resolution than the one displayed, then shrinking it to the
desired size, using the extra pixels for calculation. This method can generate a down-sampled
image with smoother transitions from one line of pixels to another along the edges of objects
(Cugowski 2016).

Taking samples to characterize the colors in pixels plays a pivotal role in supersampling. Several
algorithms presented below are commonly used to decide the samples’ positions.

At its simplest, a random algorithm randomly selects the X and Y coordinates of points located
within the width and height of a pixel. However, the main limitation of this method is that it cannot
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generate samples with a random and uniform distribution.

Fig 2.18 Points distributed by Grid Sampling (Chappell et al. 2013)

Fig 2.18 illustrates the Grid Sampling method. The whole canvas is divided into same-sized cells
treated as sub-pixels, and then one pixel is randomly selected from every cell in the grid. The
distribution of points created in this method is more even than the random algorithm, but two
randomly selected points may still be close to one another.

Fig 2.19 Points distributed by Poisson Disk Sampling (Bridson 2007)

The Poisson Disk algorithm can produce a random set of tightly packed points. The distances
between them are not smaller than a specified minimum distance. Fig 2.19 shows a point
distribution generated with Poisson Disk sampling (Bridson 2007).

20



The points generated using Poisson Disk Sampling are randomly placed and roughly evenly spaced.
This feature makes Poisson Disk Sampling the most popular supersampling technique in computer
graphics and several related fields, such as video game design (Hemalatha 2019).

2.4.2 Poisson Disk Sampling and Grid Sampling Generation Algorithms

Due to its excellent blue noise spectral properties, the Poisson Disk distribution is widely used for
image sampling. Researchers in computer graphics and computer science developed techniques to
generate such a distribution more efficiently (Liang et al. 2015).

Cook (1986) generated blue noise sample patterns with Poisson Disk distributions and used the
naive rejection-based approach for generating Poisson Disk samples, such as dart-throwing.

Dunbar and Humphreys (2006) presented a new method for sampling using the dart-throwing
method in O(N log N) time and introduced a novel and efficient variation of generating samples
with Poisson Disk distributions in O(N) time and space, which alleviates the usually high
computational cost associated with the real-time generation of Poisson Disk distribution.

Bridson (2007) found that existing efficient techniques cannot generalize a blue noise distribution
beyond two dimensions. He modified the dart-throwing to generate Poisson Disk samples in O(N)
time and easily implemented them in arbitrary dimensions.

e :
Fig 2.20 Spheres placed at points in a Poisson Disk sample in 3D (Tulleken 2008)

Tulleken (2008) proposed a method that is relatively easy to implement and runs reasonably fast.
His idea was to generate points around existing points and check whether they could be added
while not disturbing the minimum distance requirement. Cells in a grid are used to perform fast
point lookups. Two lists keep track of points that are generated and those that need processing. Fig
2.20 shows 3D spheres based on points with Poisson Disk distribution.

Gamito and Maddock (2009) extended the Poisson Disk distribution of a 2D model to 3D or any
higher-dimensional space models. Their method generated distributions with the same statistical
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properties and yielded more accurate results than methods relying on the brute force dart-throwing
algorithm. The technique has O(N log N) time complexity relative to the number of samples. The
method can generate maximal distributions in which no further examples can be inserted after the
algorithm is completed.

2.5 Computer Languages and Visualization Tools Used in the Algorithm
Development

This section introduces the computational tools that are at the core of this research work, such as
the programming language used to build the algorithm, the model visualization tools, the data
formats employed to transfer data, and the code editor software.

The first subsection gives a brief description of Python, a programming language developed by
Van (2009) used to develop the algorithm, and NumPy (Travis 2015), a Python-based library used
to manipulate data. The second subsection presents Yade (Donzé et al. 2009), the open-source
framework for discrete numerical models that performs the particle deposition process, the last
step before the model is imported into a DEM simulation system. The third subsection introduces
JavaScript, a programming language first released by Netscape in 1995, and p5.js (McCarthy et al.
2015), a graphical JavaScript-based library that visualizes 2D models. ParaView, an extensively
used 3D model visualization tool to showcase 3D models, is then described. The fourth subsection
deals with two data formats, CSV and JSON (Crockford 2011), used as input and output data
between the aforementioned programs. Sublime Text, a code editor developed by Jon Skinner in
2008, using which the algorithm is written, is finally presented.

2.5.1 Python and NumPy

Python is an interpreted, high-level, and general-purpose programming language with a design
philosophy that emphasizes code readability using significant whitespace. The language constructs
and object-oriented approach help programmers write clear, logical code for small and large-scale
projects (Kuhlman 2012).

Guido van Rossum first released Python in 1991 (Venners 2003). Python 2.0 was released in 2000
and introduced new features, including list comprehensions and a garbage collection system with
reference counting. Python 3.0, released in 2008, was a significant revision of the language that is
not entirely backward-compatible, and Python 2 code does not run unmodified on Python 3 (Van
2009; Bill 2003).
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Fig 2.21 Python introduction (Van 2009)

Python is designed for a simpler, less-cluttered syntax and grammar while giving developers a
choice in their coding methodology, shown in Fig 2.21. It has found many applications in data
science, machine learning, data analysis, and web development. (Bhavsar 2020).

NumPy, an open-source Python-based library (Travis 2015), provides functions for large, multi-
dimensional arrays and matrices, along with an extensive collection of high-level and complex
mathematical functions to deal with data (Harris et al. 2020).

2.5.2 Yade

Yade is an extensible open-source GNU/GPL software framework for discrete numerical models
and primarily focuses on DEM (Donz¢ et al. 2009). The computation parts of Yade are written in
C++ using a flexible object model, allowing the independent implementation of algorithms and
interfaces. Python is also introduced to realize rapid and concise scene construction, simulation
control, postprocessing, and debugging. Fig 2.22 shows a concrete specimen, subject to three-point
bending composed of discrete particles, connected using a cohesive law, generated by Yade
(Donzé et al. 2009).

Fig 2.22 A DEM specimen of concrete (aggregates connected using cohesive law), subject to three-point bending,
generated by Yade (Donzé et al. 2009)
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2.5.3 JavaScript and P5.js

This research uses JavaScript and P5.js as a 2D model visualization tool. JavaScript is a high-level,
just-in-time compiled, multi-paradigm programming language (Alex 2018). All popular modern
Web browsers currently support JavaScript with built-in execution environments (Flanagan 2011;
Alex 2018). JavaScript was first introduced in Netscape (1995) and developed by Brandon Eich.

1 wvar table;
2 wvar dataX;
3 wvar dataY;

aR-

preload(){
= = loadTable('2d-uniform-title.csv',

1
12
13 roundRadius = [48, 24, 12, 6, 2]

14 colorRadius = [220, 180, 140, 100, 60]
15

1

67 function setup() {
17 createCanvas(800, 800);
18 background(255);

20 num = table.getRowCount();
SEP 1S,
L ats
> e - (B

Fig 2.23 The p5.js web editor interface visualizing a 2D packing of circles generated by the algorithm proposed in
this thesis

McCarthy developed p5.js in 2013 by collaborators supported by the Processing Foundation and
NYU ITP. It is an open-source JavaScript library for creative coding and contains a complete set
of drawing functionality (McCarthy et al. 2015). The P5.js web editor interface is shown in Fig

2.23.

2.5.4 ParaView

ParaView, an open-source multiple-platform application for interactive, scientific visualization, is
employed as a 3D model visualization tool in this thesis. It was first released in 2020 by Kitware

Inc. and Los Alamos National Laboratory (Réber 2014).
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Fig 2.24 ParaView software interface visualizing a 3D packing of spheres generated by the algorithm proposed in
this thesis

ParaView can handle structured (uniform rectilinear, non-uniform rectilinear, and curvilinear
grids), unstructured, polygonal, image, multi-block, and supports many input/output data formats.
An intuitive and flexible interface enables users to change filters by directly interacting with the
3D view using 3D widgets. Paraview has been used in many different fields to analyze and
visualize scientific data sets (Moreland and Greenfield 2007). The ParaView software interface is
shown in Fig 2.24.

2.5.5 JavaScript Object Notation and Comma Separated Values

Comma Separated Values (CSV) is a text file format that this research uses to export data from
the algorithm and import it into visualization tools and the deposition simulation program. Data in
the CSV file is saved in a tabular form.
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Ccsv

Xcoordinate, Ycoordinate, radius
1279,584,191

234,1446,191

1512,1459,134

2016,1579,134

1519,843,110

1985,2103,110

1409.1015,94

1372,2208,110

651,1003,79

Easy to type and
Human-readable

Comma Separated Values

The interchange of
tabular data between
programs

Supported by all
computer platforms

Fig 2.25 CSV file format example and features

CSV file is easy to type compared with fixed-column-aligned data and widely used to exchange
data in many programs and software (Shafranovich 2005). Fig 2.25 shows a simple CSV file and

its characteristics.

In this research project, JavaScript Object Notation (JSON), a lightweight data-interchange format,
is used to store the statistical results of the DEM models generated by the algorithm. It is easy for
people to read and write and for machines to parse and generate (Freeman 2019). JSON was a
subset of the JavaScript scripting language, Standard ECMA-262 3rd Edition (1999) (Stefanov

2010). The data format was first specified by Crockford (2011).

JSON

!

sieve: 0.3-0.2,

percentage finer: 0.0594,
ideal volume units: 148645,
volume units: 149008,

ideal mass g: 0.15152,
mass_g: 0.15189,

error _g: 0.00037

}

Attribute—value pairs is
easy to type and
Human-readable

language-independent
data format

Dominant data
interchange format used
by a diverse range of
programs

Fig 2.26 JSON file format example and features
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A JSON example and its outstanding features are shown in Fig 2.26. It is built on a collection of
name/value pairs. In various programming languages, this is done as an object, record, struct,
dictionary, hash table, keyed list, or associative array, i.e., an ordered list of values (Freeman 2019).

2.5.6 Sublime Text

All codes in this thesis were written and edited in Sublime Text, a shareware cross-platform source
code editor developed by Skinner and Sublime HQ company and released in 2008 (Wes 2014). It
supports many programming markup languages, and users can insert functions using plugins
(Brian 2021). Fig 2.27 shows the interface of the Sublime Text editor.

Fig 2.27 Sublime Text code editor interface
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Chapter 3 Development of Particle Generation Algorithm

3.1 Introduction

The process of generating the particle assemblies characterized by randomness and controllability
is introduced in this chapter. The algorithm builds particle packings sieve-by-sieve. Particles of
the sieve with the largest opening size are computed based on the distribution obtained from
Poisson Disk Sampling. Particles belonging to the remaining sieves are then inserted during the
void-filling process using the Grid Sampling method.

Section 3.2 defines the basic parameters that are set to build models based on real soil data. They
include: 1) the canvas size, an area where particles are located; ii) the unit size, which is the scale
between the length in the simulation model and the length in actual soil samples; iii) the cell size,
which initializes grids covering the whole canvas to generate particles with Poisson Disk
distribution and implement the void-filling process; iv) the number of particle insertion rounds and
the radius ranges of each particle insertion process, used to generate particles sieve-by-sieve; v)
the target volumes for particles in each sieve, calculated by the algorithm based on the particle-
size distribution and the void ratio of real soils defined by users.

Section 3.3 describes the generation of particles with the Poisson Disk distribution. This procedure
generates particles corresponding to the largest opening sieve, laying the model’s foundation. For
2D models, the points based on the Poisson Disk distribution are first generated. A “Circle” object,
which can be regarded as the template of circular particles with parameters and specific
characteristics, is introduced to create particles based on previously generated points. 3D particle
assembly is generated using an approach similar to that of 2D particle packing. The differences
are that the points of Poisson Disk distribution in 3D are created, and the object used to generate
particles is changed to a “Sphere” object by extending the algorithm into the third (Z) dimension.

Section 3.4 deals with the void-filling process using the Grid Sampling method to insert particles
belonging to the remaining sieves. The process includes: 1) omitting the fully covered cells, which
means that when particles are inserted, the algorithm does not check cells entirely occupied by a
previously-generated particle to accurately locate the voids and thus reduce the running time; ii)
the particle validation is the method of determining whether the algorithm can generate a valid
particle based on a randomly selected point in a non-filled cell; iii) recursive call is used to rerun
the particle insertion process if the volume error between the algorithm-generated model and the
actual soil is beyond the acceptable level or if the particle volume does not reach the target.

Section 3.5 introduces the particle assembly deposition process that is implemented in DEM before
the simulation begins. The particle packing is deposited under gravity, becoming denser with
particles touching each other. Yade DEM simulation framework is used to implement this process.

This chapter gives details on the algorithm development by providing flow diagrams to illustrate
the process and pseudocodes detailing how models are built in the code. There are also several
examples showing the results of every model-generated step.

3.2 Setting Basic Parameters

The fundamental parameters that require user input in the algorithm to build models include the
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unit size, the canvas size, the cell size, the number of particle-insertion rounds, the particle radius
range for each sieve, and the target volumes for particles in every sieve. The definition of each
parameter, as well as their recommended values, are provided in this section.

3.2.1 Unit Size

The unit size is defined as the length that one unit in the algorithm-generated model is equivalent
to in the real condition. It is determined based on the sieve sizes that the particle-size distribution
provides. There are two requirements that the unit size must satisfy:

a) The opening size of every sieve should be divisible evenly by the unit size because the algorithm
needs to ensure the particle size can perfectly fit every sieve size.

b) The unit size should not be too small because a small value will over-refine the canvas and
exponentially increase the algorithm’s running time.

Thus, the maximum value that can uniformly divide openings of all sieves in the target particle-
size distribution is recommended. For example, if the target is to generate models for soil samples
with particle-size distributions ranging from US sieve No.4 to US sieve No.200. Unit sizes of 0.05
mm, 0.025 mm, and 0.0125 mm may be selected, as shown in Table 3.1. If the target distribution
has a minimum radius of soil particles of 0.075 mm, setting one unit as 0.025 mm is recommended
because it can divide all sieve openings evenly. A unit size of 0.0125 mm can also meet the
requirements, but it is smaller than 0.025 mm, and further dividing the canvas, which translates
into an increase in running time. A unit size of 0.05 mm is not suitable in this case because 0.075
mm, the opening size of the last sieve, cannot be divided evenly by 0.05 mm, which violates the
first requirement.

Table 3.1 The opening sizes of typical sieves and their corresponding units

US sieve Opening Unit Unit Unit
No. (mm) (1 unit=0.05mm) (1 unit=0.025mm) (1 unit=0.0125mm)
4 4.75 95 190 380
10 2.00 40 80 160
20 0.85 17 34 68
30 0.60 12 24 48
40 0.425 9 17 34
60 0.25 5 10 20
100 0.15 3 6 12
200 0.075 - 3 6

3.2.2 Canvas Size

The canvas is an area where circular or spherical particles are generated. For 2D models, it consists
of a square, while it is a cube in 3D models. The inequality in Equation 3-1 is the recommended
method to estimate the minimum canvas size. The algorithm generates particles sieve-by-sieve.
As such, the canvas size should be large enough to contain several particles belonging to the largest
opening sieve. The minimum canvas size of 3D models should contain at least three particles of
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the largest opening sieve. When the 3D canvas size is decided upon, the 2D square canvas size is
assigned the same value as the 3D model. Thus, a canvas size that is set greater than this minimum
value calculated by Equation 3-1 is suitable.

sm/ (1+e)xp

Umax

> 3 (3-1)

where s, is the minimum canvas size, e is the void ratio, p is the finer percentage of the particles
of the largest opening sieve based on the particle-size distribution that the algorithm aims toward,
and vima 1s the individual volume of particles of the largest opening sieve.

3.2.3 Cell Size

The generation of particles with Poisson Disk distribution requires a grid to cover the whole canvas.
The cell size is set to r/v2 (r is the minimum distance between points) as proposed by Bridson
(2007) to ensure points can be distributed uniformly in the canvas. The minimum distance between
points is initially set to half of the canvas length. The algorithm automatically adjusts the value
until the volume of particles in the largest opening sieve reaches the target (the details are presented
in Section 3.3.4).

After creating particles with Poisson Disk distribution, the algorithm builds a new grid that divides
the whole canvas into smaller cells to locate void spaces and fill them up by inserting particles
belonging to the remaining sieves.

Fig 3.1 (a) shows the grid with a cell size of 7/V2 used to generate particles with Poisson Disk
distribution. Fig 3.1 (b) presents the refined grid which is used in the void-filling process. The
white circular particles are generated based on Poisson Disk distribution, and the grey particles are
inserted during the void-filling process.
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Fig 3.1 Grids for Poisson Disk Sampling and void-filling process
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During the void-filling process, the cell size must meet the following requirements:

a) The canvas should be divided evenly by cells because a grid (i.e., all cells) should cover the
whole canvas without blank margins.

b) The cell size should be small enough to target tiny voids for the smallest particles, ensuring that
each cell contains no more than one of the smallest particles.

However, the cell size should not be too small because the smaller the cell size, the more cells the
algorithm needs to check when inserting particles during the void-filling process and the longer
the running time. It is recommended to select the largest value that can simultaneously satisty both
requirements.

For example, suppose the unit size is 0.0125mm, the 2D canvas size is 1000unitx1000unit, and
the diameter range of minimum particles is from 4 units to 7 units, which is categorized as the
lowest sieve. In this case, a cell size of Sunitx5unit is recommended. Using a cell size of
4unitx4unit is also possible, but it will increase the running time because it divides the canvas
further, and the algorithm needs to check more cells to find voids. A cell size of Sunitx5unit yields
a total of 40,000 cells in this given canvas, while a 4unitx4unit cell size results in 62,500 cells. A
cell size of 8unitx8unit can also evenly divide the whole canvas. However, given that the diameter
of the smallest particles is 4 units and a square cell of 8unitx8unit can contain at most four smallest
particles, the second requirement is violated since one cell cannot contain more than one of the
smallest particles. Thus, the cell size of 8unitx8unit cannot be selected.

3.2.4 Number of Rounds of Particle Insertion

The algorithm builds particle packing by generating particles using a sieve-by-sieve method. The
number of particle insertion rounds is computed based on the number of sieves that the target
particle-size distribution contains.

For example, sandy and fine-grained soils contain eight sieves (US sieves No. 4, 10, 20, 30, 40,
60, 100, and 200). The algorithm generates particles by nine rounds since it must cover all sieves
and add a final particle-insertion round for particles with radii smaller than the opening size of US
sieve No. 200 and left in the pan at the bottom of the sieve stack.

3.2.5 Radius Range

The algorithm sets the radius ranges for particles in every sieve based on the sieve opening size
and the unit size. The various radius ranges ensure that every round of particle insertion is specific
to one sieve size. For example, if the unit size is 0.0125 mm and the algorithm is required to build
a model based on US sieves, the radius range for every particle insertion round is shown in Table
3.2.

31



Table 3.2 Radius range for particle-insertion rounds

Round of particles US sieve No. Opening(mm/unit) Diameter range (unit)
insertion

1 4 4.75/380 D> 380
2 10 2.00/160 380>D > 160
3 20 0.85/68 160>D > 68
4 30 0.60/48 68>D >48
5 40 0.425/34 48>D >34
6 60 0.25/20 34>D=>20
7 100 0.15/12 20>D>12
8 200 0.075/6 12>D>6
9 pan - D<6

It should be noted that users are required to set the minimum diameters for particles left on the pan
at the bottom of the sieve stack. Particle diameters smaller than 6 units make up the diameter range
for particles belonging to the lowest sieve. However, the particle size in the last sieve cannot be
infinitely small. Thus, the user can set any integer smaller than 6 as the minimum particle diameter.
It is preferable to select an even number for the diameter to ensure the particle radius is an integer.
Thus, setting the minimum diameter as 4 units or 2 units is recommended.

3.2.6 Target Volume

The algorithm first sets the targets, which are the ideal particle volumes for every sieve, based on
the user-defined particle-size distribution and void ratio. Afterward, it generates particles from the
first sieve to the last one. When inserting particles, the algorithm simultaneously checks the total
volume of particles in a given sieve. If the volume reaches the target, the algorithm stops inserting
particles for this sieve and continues generating particles for the next one.

Equation 3-2 is used to calculate the target volume of particles.

Vparticle = Vcanvas/(1 +e) (3-2)

where V' 1s the total volume, e is the void ratio.

Suppose the algorithm aims to create models for homogenous soils (soil densities in all sieves are
almost identical). In that case, the “percent finer” between sieves equals the percent of the particle
volume in every sieve. Thus, for every sieve, the target volume is calculated by Equation 3-3a.

V=(m xp)/p (3-3a)

Suppose the soil the algorithm is required to simulate is a soil mixture, such as a sand-silt mixture.
In that case, the algorithm allows users to input the densities for sand and silt respectively to
calculate the target volumes for every sieve by using Equation 3-3b and 3-3c.
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Vsana = (m X p)/psand (3-3b)
Vsiie = (m X p)/psite (3-3¢)

where V' is the total volume, M is the total mass, p is the “percent finer”, and p is density.

3.3 Generation of Particles Based on Poisson Disk Distribution

This section describes how 2D and 3D particles are generated for the largest-opening sieve based
on Poisson Disk distribution.

The algorithm first creates points with Poisson Disk distribution, which can approximately evenly
place samples not too close to one another within a minimum distance in a random fashion. This
feature enables the uniform creation of particles with a specific radius, laying the particle packing’s
foundation. The point generation method the algorithm uses is similar to the approach proposed
by Bridson (2007). The next step is to generate particles based on the points created in the previous
step. The algorithm builds an “object” as a template to complete the particle generation.

3.3.1 Generation of Points in 2D Based on Poisson Disk Distribution
Points with a Poisson Disk distribution in 2D are created using a three-step process:

a) Initialize a grid that covers the whole canvas,

b) Randomly choose a point in the canvas as the first point,

¢) Randomly create points inside the spherical annulus around the existing points and filter them
by checking whether those newly-generated points are far enough from other points. If they are,
these points are created in the canvas, and if not, they are abandoned.

The third step is repeated until there is no void space left in the canvas where new points can be
inserted. The process is described in-depth in the following paragraphs.

a) Build a 2D canvas where the points are placed. Initialize a grid to divide the whole canvas into
equal-sized cells and ensure each cell can store at most one point. The cell size is initialized to be
bounded by r/v2 where r is the minimum distance between points required for a uniform point
distribution (Bridson 2007). Implement the cells as a 2D array and assign a default value
“undefined” to every cell, indicating no sample inside the cell.

The pseudocode of this step is shown below. (“#” is a symbol in the programming language used
to add comments. Lines preceded by this symbol are not executed).

function grid ()
grid =[] # create a grid array and initialize it as empty
create a 2D canvas
w=1/V2 # set the cell size
cols = wd of canvas / w # the count of cells on the side of the canvas
rows = ht of canvas / w
for every cell inside the cols x rows grid
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# Initialize every element in the grid array as “undefined”
grid [1] = undefined

b) Select the first point randomly inside the canvas, and determine the cell in which the point is
located. Initialize an “active” array to temporarily contain the points randomly generated around
the existing points and checked as valid. The point is removed from the “active” array after the
algorithm checks that there is no void space around this point where new points can be created.

If a point is inside a cell, this cell is assigned as a vector. The vector with a magnitude and a
direction simplifies the creation of new points in its spherical annulus from 7 to 2r. A cell is defined
as a vector rather than “undefined”, meaning there is already a point inside it. The flow diagram is

shown in Fig 3.2.

Based on the minimum

Divide the canvas into distance between points
equal-size cells I of Poisson disk
distribution

]

Set every cell as
“undefined”

¥

Randomly select a
point and append it in
the “active” array

Fig 3.2 Flow diagram of steps a) and b)

The pseudocode of the process mentioned above is shown below.

function initial_sample ()
act =[] # create an “active” array and initialize it as an empty array
# Randomly find a point in the canvas
x =random (wd)
y =random (At)
i = floor (x / w)
j=tloor (y/ w)
# Pinpoint the cell where this point is placed
grid [i + ] * cols] = pos
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# Create a vector and assign it to the cell

pos = createVector (x, )

# Append this initial point into act array
act. push(pos)

Fig 3.3 Spherical annulus around the chosen point

c) If the “active” array is not empty, there might be void spaces where new points can be inserted.
The algorithm then chooses a random sample in the “active” array and generates 30 points, based
on Bridson (2007) inside the spherical annulus (the grey annulus shown in Fig 3.3) with the radii
ranging between » and 2r (r is the minimum distance between points) around this chosen point
using the previously generated vector, thereby ensuring the canvas is full packed with points. The
vector contains a magnitude that can be used to insert points within the distance from » and 2r and
a direction that can randomly generate points 360 degrees inside the spherical annulus. The
algorithm then examines each point one by one to determine whether the distance between this
newly-generated point and surrounding points ranges from r to 2r.
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Fig 3.4 Check eight cells around the chosen point A

When examining whether a randomly generated point is far enough from neighboring points, the
algorithm only checks points inside the eight surrounding cells, such as the grey cells shown in
Fig 3.4, to reduce the running time. For example, if a randomly inserted point 4 is checked, the
algorithm only checks the distance between point 4 and point C. Since points B, D, and E are
outside the eight grey cells around point 4, the algorithm does not check them.

The algorithm also checks whether the distances between a randomly created point and the canvas
boundary are greater than the minimum value of the radius range of the largest opening sieve size.
If the point is close to the boundary, it means that based on this point the algorithm cannot generate
a particle whose radius is within the radius range and this point will not be inserted in the canvas.

If a newly generated point is far enough from its adjacent points and the canvas boundary, the
algorithm inserts it in the canvas and appends it to the “active” array. If the distances between a
point and its neighboring points are smaller than the minimum distance r, this point is abandoned.

The algorithm removes a point from the “active” array after randomly creating 30 points around
it, and no extra point can be added, indicating that there is no void space left around the chosen
point where new points can be inserted. The algorithm ends when the “active” array is empty,
which means the canvas is fully packed with points, and there is no potential void area where extra
points can be inserted. The flow diagram of step 3) is shown in Fig 3.5.
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Fig 3.5 Flow diagram of step c)

The pseudocode of the process described above is shown below.

while the act array is not empty
ranidx # an element chosen randomly in the act array
pos =[] # create an empty array to contain positions of new randomly-selected points
f=false # create a boolean variable that indicates whether there are valid points founded around
this element
# Randomly generate 30 points inside the spherical annulus around a point in the array act
for try thirty times
sample # Create a vector variable that facilitates the generation of new points around this
selected point in the array act
m # Create a variable that sets the magnitude of vector sample from r to 2r
set m to vector sample and append it to the array pos
find the cell where a sample is placed
if cell is valid
# Assume there is at least one valid point around the checked point
valid = true # a boolean variable initialized as true, meaning it assumes this point is valid
in the first place
for the eight neighbor cells around the checked cell
index = serial numbers of eight neighbor cells
neighbor-cells = grid[index] # an array that contains surrounding cells
if neighbor is valid # means if there is a point inside this neighbor cell
create a variable dis, which means the distance between sample and neighbor points
if dis is smaller than the minimum distance »
set valid = false # this sample is invalid and needs to be discarded
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# If distances between the sample and neighbor points are greater than the minimum distance r
if valid = true:
# Check whether min_bdy, the distance between the point and the canvas boundary, is greater
than min_r, the minimum value of the radius range of the largest opening sieve size.
If min_bdy < min_r:
set valid = false # this sample is too close to the canvas boundary and needs to be discarded
# There is a point that is valid around the sample
if valid is true
f=true # assign f variable as true
put sample in the corresponding cell
add sample into array act
# There is no void space around this sample, and remove it from the array act
if fis false
delete ranidx in the array act

Fig 3.6 presents the points generated based on Poisson Disk distribution. The parameters are that
the canvas size was 800unit x 800unit; the minimum distance » was 80 units.

Fig 3.6 Points of Poisson Disk distribution in 2D

3.3.2 Generation of 2D Circular Particles

The 2D particles are generated during a two-step process. The first step consists of building a
“Circle” object. It involves parameters including the position, the radius, and the color of a particle,
and functions that the algorithm uses to determine whether a particle can continue growing,
whether a particle touches the canvas borders, and draw a circular particle in the canvas. In the
second step, the algorithm loops through the “grid” array to scan for points inside the cell. If one
is found, the algorithm creates a “Circle” instance (an instance, in object-oriented programming,
is a specific realization of the object) and starts the particle enlargement process using the object
built before.
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The positions of circular particle centers are the points that the algorithm generated in the previous
section. The algorithm builds a “Circle” object, which can be regarded as a template that contains
several parameters and various functions. The “Circle” object is shown in Fig 3.7 and includes the
following four parameters:

e the constructor, which is composed of four variables: X coordinate, Y coordinate, particle radius,
and particle color;

e the “grow” function, which determines whether a particle can grow after checking if there is
enough space for it to grow;

e the “edge” function, which checks whether a particle touches the canvas borders;

e the “show” function, which draws particles in the canvas using the P5.js library.

Function edge:

“Circle” Object Check whether a
circular particle
Constructor: touches the boundaries
X coordinate,
Ycoordinate, p -
particle radius, Function grow:

Check whether a particle
can grow without
touching other particles

particle color

Function show:
Draw a particle in the
canvas

Fig 3.7 “Circle” object used to generate 2D particles
The pseudocode of the process mentioned above is shown below.

class Circle

constructor:

integer variables: posit, rad, clr

boolean variable: grow

grow ()
if grow is true after checking the distance between this point and the adjacent points

a particle can continue growing by adding rad

edge ()
if the posit shows a particle touches the canvas boundaries
grow = false

show ()
set the stroke weight and c/r of the circle
draw the particle in the 2D canvas

39



After the algorithm builds the “Circle” object, it loops through the “grid” array to create instances
for every particle. The particle radius is initially assigned the minimum value of the radius range
for the largest opening sieve, and particles are grown in the next step. This minimum value in the
range must be equal to or smaller than 7, i.e., the minimum distance between points in the Poisson
Disk distribution. If not, the particles may overlap. The pseudocode is shown below.

for each cell in the grid array
if there is a vector in the cell
set the weight of the circle stroke using functions offered by P5.js
# Create an instance using the “Circle” object
new_circle = new Circle (posit, rad, clr)
# Add new_circle into array Ptcl
Ptcl. push(new_circle)

After building instances based on the “Circle” object, the algorithm checks particles one by one to
determine whether they can be enlarged. It assesses whether the distances between the center of
the checked particle and the centers of the surrounding particles are greater than the sum of two
particles’ radii. If a particle is too small to touch neighboring particles and the canvas borders, it
can continue to grow. It should stop growing if it comes in contact with neighboring particles or
boundaries, meaning the particle has finished building. Fig 3.8 shows the process of determining
whether a particle can grow.

hether a particle can
continue growing

This particle stops f this particle touches
growing the canvas border;

This particle stops yes f the particle touches
growing surrounding particles

The particle grows by
one unit and the
algorithm continues
checking other
particles

Fig 3.8 Flow diagram of determining whether a particle can grow
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The algorithm needs to ensure a simultaneous growth of all circular particles. It initially assigns
particles the same radius, which corresponds to the minimum value in the largest opening sieve
radius range. The algorithm then examines particles to determine whether they can grow. If a
particle can be enlarged, the algorithm increases its radius by one unit. If it cannot grow, the
algorithm skips it, no longer checks it, and continues examining other particles. This particle-
growing process is repeated until no particle can grow. The pseudocode is shown below.

function generate circle ()
for each circle in array Ptcl
# Originally in the “Circle” object, every circle’s grow variable is set as true
# Two conditions below which set grow as false to stop particle growing
if the grow of circle is true
if the circle’s edge extends to the borders
grow = false # stop the particle from growing
else
for each circle in array Ptcl
# For particles surround this checked particle
if the particles around this circle
generate dis which is the distance between the checked circle and its adjacent circles
if dis is smaller than the sum of the radii of these two circles
grow = false # stop the particle from growing

Fig 3.9 (a) shows the point of Poisson Disk distribution generated in the previous step, and Fig 3.9
(b) shows an assembly of circular particles with Poisson Disk distribution. The parameters are: the
canvas size was 800unitx800unit; the minimum distance was 80 units; the original radius of the
circles was 30 units.

) g

(a) (b)
Fig 3.9 Points bases on Poisson Disk distribution (a) and circular particle assembly (b)
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3.3.3 Generation of 3D Spherical Particles Based on Poisson Disk Distribution

Building 3D spherical particle assembly is similar to creating 2D circular particles. The main
differences are generating points with Poisson Disk distribution in 3D and the spherical shape of
particles. Fig 3.10 shows the process and the modified parts of 3D particle packing generation.

3D vector and distance
calculation function

Points creation based . )
on Poisson disk » Particle generation > Particle growth
distribution
A grid dividing the Using 3D “sphere” object

whole 3D canvas
Fig 3.10 3D model building process and the modified parts in every step compared to 2D model building

3.3.3.1 Generation of Points in 3D Based on Poisson Disk Distribution

The method to generate points based on Poisson Disk distribution in 3D is similar to the approach
proposed by Bridson (2007). The process is divided into three steps:

a) Build a grid covering the whole 3D canvas,

b) Randomly choose a point inside the canvas as the first point,

c¢) Create new points by randomly generating points inside the shell between two 3D concentric
spheres with the existing point as the center and the radii ranging from r to 2r, shown in Fig 3.11,
and then check whether those newly generated points are far enough from other points.

Fig 3.11 The shell between two 3D concentric spheres where the algorithm generates points
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If the distances between a new point and its neighboring particles are greater than the minimum
distance between points, a 3D vector, represented by the arrow shown in Fig 3.11, is assigned to
the cell where the new point is located. This vector is used in the next step to randomly generate
30 points around this point to explore void places in the surrounding area where new points can be
inserted.

1]

Fig 3.12 Points based on Poisson Disk distribution in 3D

Fig 3.12 shows the points with Poisson Disk distribution in 3D. The parameters used in this case
are as follows: were that the 3D canvas size was 600unitx600unitx600unit; the minimum distance
between points was 30 units. The picture may not clearly present points distributed in 3D, but the
particle packing generated in the next step better illustrates the three-dimensional nature of the
result.

3.3.3.2 Generation of 3D Spherical Particles

The algorithm in this step starts by generating spherical particles based on points of Poisson Disk
distribution. It consists of two steps: building a “Sphere” object and generating particles using this
object.

43



" . . Function edge:
Sphere” Object Check whether a

spherical particle
touches the boundaries

Constructor:
X coordinate,
Y coordinate,

Function grow:

Z coordinate, Check whether a
particle radius particle can grow
without touching other
particles

Fig 3.13 “Sphere” object used to generate 3D particles

A “Sphere” object is shown in Fig 3.13. It contains three parameters:

e the constructor, including the particle position and the particle radius;
e the “grow” function, which determines if there is enough space for this particle to grow;
e the “edge” function, which can stop particle growing if it touches the canvas boundaries.

A “Sphere” object does not have a “color” variable and a “show” function like the “Circle” object
because ParaView is used to visualize 3D particle assemblies, and parameters to display the model
can be manually set in the software.

Based on the object built in the first step, the algorithm starts generating spherical particles. The
method of particle growing is the same as in the 2D model. The algorithm determines whether a
particle can grow using the “edge” and “grow” functions. If it can, its radius is increased by one
unit. If it cannot, the algorithm skips it and no longer checks it, and the generation of this particle
is completed. This process is repeated until no further particle can grow.

Fig 3.14 (a) shows points generated based on Poisson Disk distribution in 3D, and the spherical
particle assembly created using the previously generated points is shown in Fig 3.14 (b). The
original radius of spheres was set to 30 units, and the remaining parameters were the same as the
point generation example shown in the former section.
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(a)

(b)

Fig 3.14 Points of Poisson Disk distribution in 3D (a) and 3D spherical particle packing (b)

3.3.4 Volume Adjustment

The volume of particles with Poisson Disk distribution should be adjusted to make it within the
acceptable range. Hogg (2008) discussed issues in interpreting particle size data and different
measurement procedures to classify soil particles. He required the relative error of particle-size
distributions to be less than 5%. In this thesis, the acceptable range of errors is set to 2%, which
means that particle volumes reaching the target but not surpassing it by more than 2% are regarded

as acceptable.

The algorithm initially sets the minimum distance between points of Poisson Disk distribution as
half of the canvas length and then gradually decreases it until the error is within the acceptable
range. If the volume does not reach the target, the algorithm needs to add more particles belonging

Fig 3.15 The process of particle volume adjustment
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to the sieve in question. To do so, it deletes all already-generated particles and reruns the point
generation process to create particles with a smaller minimum distance between points of Poisson
Disk distribution until the error is within the acceptable range. If the particle volume exceeds the
target by more than 2%, the algorithm shrinks the particle radii until the volume is within the
acceptable limit or all particle radii are equal to the minimum value of the radius range. If the
particle volume is within the limit, the algorithm continues to start the void filling process, which
is presented in the next section. Fig 3.15 shows the particle volume adjustment process.

The algorithm uses the minimum distance between points of Poisson Disk distribution to adjust
the number of points. The smaller the minimum distance between points, the more points are
generated based on Poisson Disk distribution. For example, in Fig 3.16, the canvas size was
600unitx600unit, and the minimum distance between points was reduced from 100 units to 80
units. Correspondingly, the number of particles increased from 37 points to 60 points.

(a) =100 units 37 points (b) »=280 units 60 points

Fig 3.16 The points of Poisson Disk distribution with different minimum distances (r is the minimum distance)

3.4 Void-filling

After creating particles based on the Poisson Disk distribution, the algorithm starts filling voids
with particles belonging to the remaining sieves. It pinpoints void spaces in the canvas by checking
the positions of non-filled cells and randomly selecting a point inside them. Suppose this point is
not inside an existing particle and also far enough from the surrounding particles. In that case, it is
identified as valid, and the algorithm inserts a particle based on this point. If it is already inside an
existing particle or touches the canvas boundaries, this point is discarded, and the algorithm
continues checking the next non-filled cell. Meanwhile, the algorithm calculates the total volume
of particles. It stops inserting particles belonging to this sieve size and continues creating particles
of the next smaller sieve size when the particle volume reaches the target.

This section first describes the method used to filter the non-filled cells. Only checking empty or
partially covered cells can increase the probability of finding a valid point in the canvas and thus
reduce the running time. It then presents the particle validation process to fill voids by inserting
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particles. The recursive call to decrease errors and optimize the algorithm is finally introduced.

3.4.1 Fully Filled Cells Checking

Inserting particles by only checking empty or partially covered cells can help accurately locate the
void spaces in the canvas to reduce the running time. The algorithm first finds cells that are fully
occupied by existing particles and then ignores these cells in the subsequent particle insertion
round.

The method to determine if an existing particle fully covers a cell consists in checking whether all
corners of this cell satisfy Equation 3-4.

de <1+ Tin (3-4)

where d. is the distance between one corner of the cell and the particle center, 7, is the particle
radius, and the 7, is the minimum value in the radius range for the next round of particle insertion.

For example, the algorithm finishes generating particles for US sieve No.100 (the particle radii
range from 6 units to 9 units) and starts inserting particles for the next sieve, US sieve No.200 (the
particle radii range from 3 units to 5 units). For a 2D particle with a radius of 7 units that belongs
to US sieve No.100, the radius of the extended circular area is 10 units, which is 7 units, i.e., the
radius of the existing particle, plus 3 units corresponding to the minimum radius of the subsequent
particle insertion round for US sieve No.200.

2D particle €+ Fully covered cell

Expanded //
circular area —
for checking / Partially covered cell
whether a cell
is fully filled

—7

—1
Empty cell

Fig 3.17 Extended area to determine full covered, partially covered, and empty cells

Fig 3.17 illustrates the method of determining whether a cell is fully covered. The gray cells, which
are partially covered by the expanded circular area, and the white cells, which are entirely empty,
are regarded as non-filled cells, which means the algorithm may insert a valid particle of the next
sieve size inside them. Cells inside the extended circular area, which are the black cells, are marked
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as fully filled cells and are not checked when the algorithm inserts particles for the next sieve.
After running several generations of models, neglecting fully-covered cells before the algorithm
generates particles for the next sieve can roughly cut the running time in half.

3.4.2 Particle Validation

The particle validation is determined by whether the algorithm can generate a particle within the

radius range of the current round of particle insertion based on a randomly selected point in a non-
filled cell.

For every randomly selected point, the algorithm calculates two parameters:

e dp: the minimum distance between this point and the canvas borders;
e d,: the minimum distance between this point and other adjacent particles.

Based on Equation 3-5, the algorithm decides whether a randomly selected point is valid. If it is
valid, the particle radius is then determined, and the new particle is inserted into the canvas. If this
point is not valid, the algorithm ignores it and continues inserting particles in other non-filled cells.
The algorithm needs four different scenarios to carry out the particle validation. If a valid point is
found, the method to determine its corresponding radius is also presented.

If dp and d, are in the range of radii of the sieve, shown by Equation 3-5a, the algorithm marks this
point as valid and generates a particle with the radius corresponding to the minimum value of dp
and d..

max, > d,,d, > min, (3-5a)

where max, and min, are the maximum and minimum values of the radius range calculated based
on the sieve opening size.

If dp is greater than the maximum value of the radius range and d, is within the range, presented
by Equation 3-5b, the algorithm treats this point as valid and selects d, as the particle radius.

dp, > max, > d, > min, (3-5b)

Suppose d» and d, are both greater than the maximum value of the range of radii, shown by
Equation 3-5c¢. In that case, the algorithm treats this point as valid and creates a particle with the
radius as the minimum value of d and d...

dp,d, > max, (3-5¢)

Suppose either dj or d., is smaller than the minimum value of the range of radii, shown by Equation
3-5d. In that case, the algorithm labels this point as invalid because it is either too close to the
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borders or touching adjacent particles.

d, < min, or d, < min, (3-5d)

For example, the algorithm randomly selects point 4 in a non-filled cell, as shown in Fig 3.18, and
then calculates d,,, which is the minimum distance between point 4 and four adjacent particles, and
dp, which corresponds to the minimum distance between point 4 and the closest border. If both
values are within the radius range, the algorithm generates a circular particle with radius d, because
d, 1s smaller than dj.

\
/

db

A A

Fig 3.18 Point validation example

The diagram presenting the void-filling process is shown in Fig 3.19.
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Fig 3.19 Flow diagram of filling the voids

The pseudocode below presents the point validation process.

Function particle validation (non-filled cell number, radius range)

valid = true # create a “valid” boolean variable to mark whether a point is valid

Randomly select a cell in the array of non-filled cells

# Get the X¢, Y., Z. coordinates of the cell

[ = the side length of the cell

# Randomly select a point inside this non-filled cell

x =random (X, Xc % I¢)

y=random (Ye, Ye X L)

z=random (Z, Z. % l.)

# Create an array of the distances between the point and boundaries

bdy =[x, y, z, (wd - x), (ht - y), (dp - 2)]

# Get the minimum distance in the boundary array

# min 1s the function that outputs the minimum value of an array

if min(bdy) < the minimum value of the radius range
# If the minimum distance is not in the radius range, the point will be marked invalid
valid = false

# Create an array of the distances between the point and the adjacent particles

adj = distances between point and other adjacent particles

if min(adj) < the minimum value of the radius range
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# If the minimum distance is not in the radius range, the point will be marked invalid
valid = false
# If valid is true, the algorithm creates a new particle with the radius based on Equation 3-5
if valid is true
if min(bdy) < min(adj)
if min(bdy) <= the maximum value of radius range:
create a particle with radius min(bdy)
else
create a particle and set the maximum value of radius range as the particle radius
if min(bdy) > min(adj)
if min(adj) <= maximum value of radius range
create a particle with a radius min(adj)
else
create a particle and set the maximum value of radius range as the particle radius

Fig 3.20 shows the 2D particle packing after the void-filling process. The black circular particles
were inserted during the void-filling process. The canvas size was set to 800unitx800unit, and the
minimum distance » was 80 units. The initial radius of the minimum newly generated particle was
10 units, which was smaller than the initial radius (30 units) of the particles generated with Poisson
Disk distribution in the previous step. The assembly of 2D particles became more tightly packed
after the void-filling process.

l®

o0

(a) (b)
Fig 3.20 The 2D particle assembly (a) after filling the voids compared with original particle packing (b)

Fig 3.21 shows the 3D particle packing that becomes more packed after the void filling process.
The black particles were inserted during the void filling process. The parameters, in this case, are
as follows: the canvas size was set to 600unitx600unitx600unit; the minimum distance between
points generated with Poisson Disk distribution was 30 units; the initial radius of particles inserted
in the void filling process was 10 units.
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(a) (b)
Fig 3.21 The original particle packing (a) and the model after the void-filling process (b)

3.4.3 Recursive Call

The algorithm inserts particles sieve-by-sieve and concurrently calculates the particle volume in
each sieve. If the volume of particles created during the void-infilling process for one sieve reaches
the target, the algorithm stops inserting particles for this sieve and moves to the next one. It starts
a recursive call to rerun the particle insertion function when either of the two following scenarios:

When the algorithm creates particles for large-opening sieves, the following situation may occur:
the volume of particles in the sieve reaches the target but exceeds it by more than 2%. The main
reason is that large particles have significant individual volumes, and after the last particle in this
sieve is generated, the total volume may significantly exceed the target. This situation causes a
discrepancy between the simulation model and actual soil data. Thus, a recursive call is introduced
to reduce the error within an acceptable range, which means all particles generated for this sieve
are eliminated, and the particle insertion process reruns with a shrunken radius range to decrease
the individual volumes of the largest particles and the total volume.

For example, for the initial radius range based on Table 3.1, the unit size is 0.0125 mm. For US
sieve No0.20, which contains particles with a diameter from 2.00mm to 0.68mm (160 units to 68
units), the initial radius range is defined from 80 units to 34 units. If the total volume of this particle
insertion round surpasses the target by more than 2%, the algorithm deletes newly inserted particles
in this sieve and reruns the void-filling progress with a smaller radius range, reducing the
maximum value of a radius range by one unit, which is from 79 units to 34 units. If the overshoot
still exists, the algorithm further shrinks the range (from 78 units to 34 units) and reruns the particle
insertion until the total value is within the acceptable range or all particle radii are set to the
minimum value of the radius range.

Fig 3.22 shows the process used to determine whether the algorithm needs a recursive call. It
should be noted that if all radii of particles in this sieve are reduced to the minimum value in the
radius range, the algorithm moves to insert particles for the next sieve because it cannot further
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shrink the radius range.

The algorithm starts inserting
particles for the sieve

Whether the total volume
of particles for this sieve
exceeds the target by
more than 2%

Recursive call

Wipe out all newly added
particles for this sieve and run the
void filling process again with a
shrunken range of radius

Whether all particle radii
are reduced to the
minimum value of the
radii range

yes

The algorithm continues particle
insertion for the next sieve

Fig 3.22 Recursive call used in the particle generation of large opening sieves

Another problem that may occur is when the algorithm inserts particles for small opening sieves.
This condition might be the opposite of the previous scenario. The void-filling process checks all
non-filled cells to insert particles of this sieve, but the total particle volume falls short of the target.
In this case, the algorithm executes a recursive call to rerun the particle insertion function to
generate more particles. For the first time, in a non-filled cell, the algorithm randomly selects a
point and then checked it as invalid. However, it may choose another valid point in the same cell
in the following void-filling process.

For example, the algorithm randomly selects a non-filled cell, such as the gray cell shown in Fig
3.23(a), and all points in that cell may be chosen as the potential center of a circular particle, as
shown in Fig 3.23(b). Still, only the points shown in Fig 3.23(c) are valid because they are far
enough from adjacent particles and boundaries. If a point in a non-filled cell is randomly selected
and then is checked as invalid in the first round of particle insertion, the algorithm marks this cell
as “checked but no particle inserted”. Nevertheless, if the algorithm reruns the particle insertion
function and revisits this cell, a valid point may be selected, and the algorithm successfully inserts
a particle.
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Fig 3.23 Rerunning the particle insertion function to generate more particles

Suppose the algorithm finds that the void-filling process is completed after running out of non-
filled cells instead of reaching the targeted total volume. In that case, the void-filling process
reiterates until the total volume reaches the target. The diagram is shown in Fig 3.24.

The algorithm starts inserting Recursive call
particles for the sieve <

Whether the total
volume reaches the
target after checking all
non-filled cells

no Rerun the particle insertion
function to generate more
particles for this sieve

The algorithm continues the next
round of particle insertion

Fig 3.24 Recursive call used in the particle generation of small opening-size sieves

The pseudocode below describes the particle insertion process and the conditions when a recursive
call is used. It starts with filtering fully occupied cells. The void-filling process then starts to insert
particles by randomly selecting points in the non-filled cells. The algorithm reruns the particle
insertion process if the particle volume surpasses the target by more than 2% or if the total volume
does not reach the target after all non-filled cells are checked.

Function particle_insertion ()
for every particle
# Find the non-filled cells
Filter the fully covered cells and the algorithm does not check it when inserting particles
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while total volume < target volume and there are still non-filled cells that are not checked
Randomly select a point inside a non-filled cell
if the point is valid:
Insert a particle
else
Mark the cell as “visited but no particle inserted”
# If the total volume surpasses the target by more than 2%
if total volume > ideal volume x 1.02:
Eliminate the new particles the algorithm created for this sieve
Rerun the “particle insertion” function with a shrunken radius range
# If the algorithm checks all non-filled cells, but the total volume does not reach the target
if all non-filled cells checked:
Rerun the function with the accumulated volume and revisit all the non-filled cells

3.5 Particle Deposition

After being imported into a DEM simulator, the particle assembly first collapses and densifies,
thereby reducing the void ratio. The void ratio is indeed manifested when particles touch each
other. Yade is used to simulate particle packing deposition.

This section first introduces the features of explicit DEM simulations and the model calculation
process used by Yade. The model deposition using the “Gravity Deposition Module” in Yade is
subsequently described. Finally, contact friction, which is the parameter used to represent inter-
particle friction during the deposition simulation, is introduced to investigate the relationship
between this parameter and the void ratio of the deposited model. The method of adjusting the
contact friction in the Yade simulation to guarantee the 3D model deposition results in a void ratio
that slightly decreases and is close to the target is finally presented.

3.5.1 DEM Calculation Process

In Yade (Donz¢ et al. 2009), when simulating the particle assembly gravity deposition for particles
that may establish a new interaction, Yade executes the following steps: 1) detecting collision
between particles, ii) creating new interactions, and iii) determining their properties.

For interactions that already exist between particles, the strain is evaluated, stresses are computed
based on the calculated strains, and forces are applied to particles in interaction, as shown in Fig
3.25 (Jérier et al. 2010).

Collision . | Creating interaction .| Kinematic . Motion _ g?&;%‘;?y
detection between particles variables integration conditions
Stiftness Normal deformation Position Deformations
Shear deformation Orientation Collision detection

Numerical damping
Stability consideration

Fig 3.25 Yade calculation process of particle forces (Jérier et al. 2010)
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The detailed calculation process includes:

a) Yade detects potential collisions between particles and establishes interactions,

b) Stiffness and shear stiffness are defined according to the basic DEM interaction rules,

¢) The normal deformation and the shear deformation between particles are calculated,

d) Yade accumulates the generalized forces that every particle is subjected to in the contacts, and
these generalized forces are then used to integrate motion equations for each particle separately,
e) Particles’ boundary conditions are updated, and the unbalanced force ratio, which is the ratio of
maximum contact force and maximum per-body force, is calculated.

If the unbalanced force ratio is smaller than 0.05, the particle assembly is regarded as stable, and
the deposition simulation process is finalized. If it is not, the program continues finding potential
interactions between particles and reruns the procedure until the unbalanced force ratio is lower
than 0.05.

3.5.2 Gravity Deposition Module

The process through which particles touch each other and the entire particle packing densifies is
called particle collapsing. It is performed by using Yade’s Gravity Deposition Module. The module
comprises three parts:

a) importing the algorithm-generated model into the Yade module,
b) simulating the particle assembly deposition,
c) outputting results, including the updated particle positions and forces between particles.

The diagram describing this process is shown in Fig 3.26.

Export the deposited
particle packing
Create 3D cube box | Import the algorithm-| | Gravity deposition
as a canvas "| generated model ”| module simulation
3 7Y Export a plot showing
forces between
. - particles and the
Define soil materials Define contact unbalanced force ratio

parameters (Young'’s
modulus, friction
angle, Poisson’s
ratio)

friction of particles

Fig 3.26 Particle deposition process simulated by Yade
The particle assembly deposition simulation includes three steps:

The first step consists in generating a model. Yade first builds a 3D canvas using the facet function
and then generates a particle packing using the SpherePack and makeCloud functions.
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(a) 3D particle assembly (b) 3D particle assembly after deposition
Fig 3.27 3D particle assembly deposition simulated by Yade

In the second step, the forces between particles are calculated, including contact plasticity, gravity,
kinetic energy, plastic dissipation, and damping dissipation. All these forces are added up to
calculate the total force acting on each particle. An integration method is introduced to compute
the change in the position and the velocity of each particle during a specific time step from
Newton’s laws of motion. Then, the new particle positions are updated to compute the forces in
the next step. This loop repeats until the unbalanced force ratio falls below 0.05, indicating the
particle packing is stable. The original model and the model after the deposition process are shown
in Fig 3.27.
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Fig 3.28 The plot of forces between particles provided by Yade

Finally, Yade exports the updated particle positions, calculates the deposited model’s void ratio,
and plots the result of all forces. Fig 3.28 shows the resulting plot, where the Y-axis represents all
forces between particles and the X-axis is the time step.
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The “Gravity Deposition Module” is designed specifically for 3D spherical particle models. For
the 2D model, this thesis proposed using this model by assigning the same Z-axis value to all 2D
particles and transferring them to spherical particles. During the 2D deposition simulation, the
freedom of particles in the Z plane is restricted, meaning particles can only move in the X-Y plane.
Fig 3.29 shows the 2D model placed in Yade and its deposition result.

(a) 2D particle assembly (b) 2D particle assembly after deposition

Fig 3.29 2D particle model deposition of Yade simulation

3.5.3 Contact Friction

Contact friction is a parameter that reflects the inter-particle friction in the model deposition.
Contact friction, one of the micro properties of particle packings, is not equal to the overall friction
angle of particles. But, to simplify the simulation process, Yade sets the minimum value of the
friction angles of two particles equal to the contact friction. It also provides the setContactFriction
function to adjust contact friction manually.

The stability of the particle packing is parametrically influenced by varying inter-particle friction.
Suppose the particles during the deposition process are set to frictionless. In that case, the void
ratio of the deposited particle packing decreases sharply compared to the original value because
particles with frictionless surfaces can easily slide over each other. On the other hand, if contact
friction is infinitely rough, the contact forces between particles become friction-driven, and the
void ratio after the model deposition may remain unchanged or just decrease slightly. So, changing
contact friction, a micro property between particles, can adjust the void ratio, a macro property, of
particle packings.

The ideal model deposition results in a densified particle packing with particles touching each
other. Meanwhile, the void ratio should slightly decrease while still remaining close to the target
value.
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Contact friction-void ratio curve
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Fig 3.30 Curves of the relationship between contact friction and void ratio of deposited models

For example, Fig. 3.30 shows the relationship between the void ratio of the deposited model and
contact friction obtained by changing the contact frictions of 2D and 3D particle packings. The
curves illustrate that, for the 3D particle packing, the model’s void ratio initially increased with
increasing contact friction. However, once the contact friction exceeded 45°, this increasing trend
slowed down, and the curve tended to be flat. Thus, a contact friction of 45° can be regarded as the
threshold value. When the contact friction is greater than this value, the model deposition can be
achieved with a slightly reduced void ratio. Therefore, setting the contact friction greater than 45°
in the 3D model deposition is recommended for this case. The trend is similar to the conclusion of
Thornton (2000). He found that the increasing value of interparticle friction induces an increase in
the void ratio of spherical particles subjected to triaxial stress condition in 3D DEM simulation but
the effect of contact friction is limited when it reaches some threshold value.

It should be noted that contact frictions set in the Yade program start from 30° to 55°. The reason
is that based on Dai et al. (2016), interparticle friction angles that range from 0° to 15° are
considered relatively low. Contact friction angles larger than 15° are regarded as relatively high.
Larger contact friction should be set to minimum the void ratio reduction of the deposited model.
In addition, after running several model position simulations, the study found that threshold values
are normally within the range from 40° to 50°. The initial value of contact friction should be greater
than 15° and outside the possible range of threshold values. So, in this study, contact frictions that
are set in Yade software start from 30°. The study did not run deposition simulations with contact
friction larger than 55°, since void ratios of deposited models did not change after contact friction
was set larger than the threshold value.

However, contact friction does not significantly impact the void ratio of the 2D deposited model,
and the void ratio also reduced sharply compared to the original value and the target. The potential
reasons might include:

a) For 2D models, since the movements of 2D particles are limited in the X-Y plane, inter-particle
contacts only exit in the 2D plane. But they occur in all directions for the 3D model. Coordination
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number, i.e., the average number of interactions per particle, can reflect this difference.

The coordination number Z is defined as:

Z=2C/N (3-6)

where C is the number of contacts and N is the number of particles.

The coordination number of a stable 3D particle assembly is generally greater than 4, while it is
just around 2 for 2D particle packings (Rothenburg and Kruyt 2004).

Coordination number also indicates the stability of a particle assembly. A particle packing can be
regarded as dense and stable, and particles are closely packed if the coordination number is higher
than 4. Therefore, inter-particle friction can play a critical role in the density of particle assemblies
and thus influences the void ratio (Masanobu 1977).

In addition, mechanical properties of compacted soils could be influenced by coordination number.
Strong frictional resistance combined with a high coordination number would restrict the possible
axis of rotation, eventually leading to rotational arrest or frustration (Santamarina 2003; Minabe
et al. 2016). 2D particles can only move in the X-Y plane during the deposition process, and 2D
particles are not as tightly packed as 3D particles. Thus, contact friction can barely influence the
void ratio of the 2D model. Moreover, 3D particle packings with a high coordination number mean
that the load that works on every particle, which is the gravity during the deposition for this case,
can be distributed by neighboring particles. Thus, it is more stable than the 2D particle assembly
with a low coordination number (Hagerty et al. 1993).

Yade provides the avgNumlinteractions function to calculate the coordination numbers of particle
assemblies. In the case presented above, the coordination number of the 3D deposited model was
4.22. By contrast, that of the 2D deposited model was only 1.84.

b) The particle arrangement, namely particle-size distributions and initial void ratios, also plays a
significant role in the void ratio reduction after the model deposition. For example, Wang et al.
(2018) studied the minimum void ratio of gap graded soil-rock mixtures (SRM) with varying
particle breakage. They concluded that if the particles in a gap interval play the role of filling
components, their absence will increase the void ratio of the SRM.

c¢) The 2D particle shape in the algorithm-generated model is circular. Rounded particles can rotate
and slide over one another more easily than angular and ellipsoidal ones (Lin and Ng 1997; Ke
and Takahashi 2012; Fei and Narsilio 2020). In addition, coordination numbers of rounded
particles are usually lower than angular particles, indicating rounded particles are generally less
packed (De Bono and McDowell 2015; Estrada et al. 2008). Therefore, circular particles easily fill
voids during the deposition process, causing the void ratio to reduce dramatically.

d) There are many more opportunities for particle interlocking to form in a 3D particle assembly
than in a 2D particle packing since particle contacts only exist in the X-Y plane in 2D models, but
they occur in all directions in 3D models. Therefore, weak particle interlocking also results in the
model’s void ratio reduction after the deposition process.

For 3D models, the relationship between contact friction and the void ratio of the deposited model
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is similar to the curve shown in Fig 3.30, but the threshold value may vary. The void ratio first
increases with the growth of contact friction and remains constant when the contact friction reaches
some threshold value. The curve indicates the recommended contact friction to perform the model
deposition with a void ratio that remains close to the original value. However, for 2D models,
altering contact friction cannot achieve the same effect. The void ratio decreases considerably after
the deposition process. The reasons include weak particle interlocking, low coordination number,
initial arrangement of particles, and rounded shape of particles.

3.6 Conclusion

This chapter introduces the details of the algorithm developed to generate 2D and 3D models. The
algorithm can generate particle assemblies sieve-by-sieve using Poisson Disk Sampling and Grid
Sampling techniques based on user-defined particle-size distributions and void ratios.

The parameters the algorithm requires to build models are defined, and their recommended values
are provided. The algorithm generates particles for the largest opening sieve based on Poisson Disk
distribution and then fills void spaces by inserting particles belonging to the remaining sieves. The
particle validation and recursion are used to reduce errors during the void-filling process and
optimize the algorithm. Omitting the fully-covered cells prior to the particle insertion process can
also reduce the running time. Finally, Yade is used to simulate the particle packing deposition.
Adjusting the contact friction can help realize the 3D model deposition with a slightly reduced
void ratio. However, contact friction barely influences the 2D model density, and the void ratio of
the 2D model reduces significantly after the gravity deposition. Coordination number, initial
particle arrangement, particle shape, and particle interlocking may influence the void ratio
reduction.
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Chapter 4 Testing and Validation

4.1 Introduction

This chapter provides examples showing how 2D and 3D models representing a wide variety of
actual soils are generated using the proposed algorithm.

Section 4.2 contains six examples of real soil samples with different characteristics. The algorithm
creates models aiming to produce well-graded pure sands and soil mixtures with narrow and wide
ranges of particle radii. The algorithm then generates particle assemblies for poorly graded soils,
including gap graded and uniformly graded soils. Building models simulating well-graded dense
and loose soils also shows that the algorithm can generate particle packings with a broad range of
void ratios. The particle packing deposition result is completed by Yade, and the relationship
between the void ratio of the deposited model and contact friction is also presented. Since the
algorithm-generated models may bring errors compared to real soils, an error analysis is presented
in Section 4.3.

A sieve-by-sieve demonstration is used to illustrate the model-building process. In order to show
the process of particle generation, the particle colors are set as different contrasting shades of grey
to distinguish particles generated in different particle insertion rounds, where particles get darker
as the insertion process proceeds.

4.2Verification of Algorithm Implementation
4.2.1 Pure Sand Example

The first example aims to recreate pure sands using the proposed algorithm. The actual soil data is
based on Fragaszy and Sneider (1991). The algorithm creates 2D and 3D particle packings that
simulate the fine portion of the soil sample. The particle-size distribution of the pure sand with a
void ratio of 0.6 is shown in Table 4.1.

Table 4.1 Particle-size distribution of the pure sand sample (Fragaszy and Sneider 1991)

Sieve(mm) 4.75- 2.36- 1.7-0.6  0.6-0.4 0.4-0.3 0.3-0.15 0.15- <0.075
2.36 1.7 0.075
Radius(unit) 190-95 95-68 68-24 24-16 16-12 12-6 6-3 <3
Finer percentage 100% 76% 70% 47% 29% 18% 5% 2%
Mass percentage 24% 6% 23% 18% 11% 13% 3% 2%

for each sieve

The model’s unit size was set to 0.0125mm based on the soil sieve sizes. The 2D canvas size was
12.5mmx12.5mm/1000unitx1000unit, and the total volume of 2D particle assembly was 1000% +
1.6 = 625000 unit>. The algorithm calculated the target volumes for each sieve using Equations 3-
2 and 3-3, shown in Table 4.2.

62



Table 4.2 Finer percentage and target volumes of 2D particles for every sieve

Radius(unit) 190-95 95-68 68-24  24-16  16-12 12-6 6-3 <3
Mass percentage 24% 6% 23% 18% 11% 13% 3% 2%
for each sieve
Target volume 15 3.75 14375 11.25  6.875 8.125 1.875 1.25

(x10* unit?)

The cell size used in the void-filling process was Sunitx5Sunit. This cell size was small enough to
target the tiny voids of the smallest sieve particles while ensuring the canvas was evenly covered.

Fig 4.1 shows the 2D model building process sieve-by-sieve.

(a) Poisson round of 2D particle insertion (b) First round of 2D particle insertion
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(c) Second round of 2D particle insertion (d) Third round of 2D particle insertion

Fig 4.1 2D model generation for pure sand
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Fig 4.1 (Continued) 2D model generation for pure sand

Table 4.3 shows the results of the 2D particle packing. A total of 1790 circular particles were
generated in the model, and the running time was 3.5 seconds. It must be noted that all
computations and model deposition simulations in this thesis were completed on a ROG Strix G15
with an AMD Ryzen7 4800HS CPU @2.9 GHz and 16 GB of memory.
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Table 4.3 Details of 2D particle packing

Round of Opening of Mass Ideal mass Finer Ideal finer Percent

particles sieves gx1073 gx1073 percentage percentage difference

insertion mm

Poisson 4.75-2.36 4424 39.23 100% 100% 0%
1 2.36-1.7 9.67 9.56 73.40% 76% 2.60%
2 1.7-0.6 37.34 36.63 67.59% 70% 2.41%
3 0.6-0.4 28.70 28.67 45.17% 47% 1.83%
4 0.4-0.3 17.66 17.52 27.94% 29% 1.06%
5 0.3-0.15 20.72 20.71 17.33% 18% 0.67%
6 0.15-0.075 4.81 4.79 4.89% 5% 0.11%
7 <0.074 3.33 3.19 2% 2% 0%

The particle-size distributions of the algorithm-generated model and the actual soil are shown in
Fig 4.2. The model’s particle-size distribution curve closely matches that of the actual soil. The
average error was 1.44%, while the maximum error occurred during the first round of particle
insertion and had a value of 2.60%. The primary source of error is that the volume of particles
belonging to the largest-opening sieve exceeded the target by more than 2%. Due to the
considerable individual particle volume, the total volume exceeded the target after the algorithm
created the last particle. However, without this particle, the volume would have fallen short of the
target. This problem persisted when the algorithm used recursion to generate particles with a
shrunken radius range, as described in Section 3.4.3. The errors for the particles generated for the
remaining sieves were considered acceptable.

The void ratio of the particle assembly was 0.531, which is slightly lower than the target of 0.600.
The main reason is that the volume of particles in the sieve with the largest opening size exceeded
the target, causing the model’s void ratio to be smaller than the target.

Particle Size Distribution Curve
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Fig 4.2 Comparison of particle-size distributions of the algorithm-generated 2D model and the real soil
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The curve showing the relationship between contact friction and the void ratio of the 2D deposited
model is shown in Fig 4.3. It indicates that contact friction had little influence on the void ratio of
the 2D deposited model. The void ratio increased slightly when contact friction rose from 35° to
40°. The reason is that the particle packing can be regarded as stable and tightly packed if the
coordination number is higher than 4 (Masanobu 1977), however, the coordination number of the
2D particle assembly was only 1.86, meaning that particles were loosely packed. Thus, inter-
particle friction that takes place when particles are in contact with one another hardly impacts the
deposition results.
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Fig 4.3 The relationship between contact friction and void ratio of 2D deposited model

Fig 4.4 shows the result of the particle assembly deposition. The model’s volume decreased from
12.5mmx12.5mm to 12.5mmx10.3625mm, and accordingly, the post-deposition void ratio was
0.300 compared with 0.531 prior to deposition. The running time was 45 seconds.
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Fig 4.4 The comparison of the original model (a) and the deposited model (b)

The void ratio significantly decreased after the model deposition. This is mainly attributed to the
initial void ratio being 0.531, indicating there were many voids in the original model. Particles
belonging to the last three sieves accounted for a high percentage of the total soil mass (17.33%),
meaning that a large number of small particles slid into the voids between large particles during
the deposition process, causing the void ratio to decrease significantly. In addition, the 2D model’s
coordination number was low, meaning that the 2D particles were loosely packed. As such, after
the gravity densified, the particle packing densified, and the void ratio decreased significantly.

For the 3D model, the total volume was 1000° + 1.6 = 6.25 x 10® unit?, and the cell size was Sunit
x5unitx5Sunit. The remaining parameters were assigned the same values as in the 2D model. The
finer percentage and target volumes for each sieve are shown in Table 4.4. The algorithm-
generated 3D model is shown in Fig 4.5 sieve-by-sieve.

Table 4.4 Finer percentage and target volumes of 3D particles for every sieve
Radius 190-95 95-68 68-24 24-16 16-12 12-6 6-3 <3
(unit)
Finer 24% 6% 23% 18% 11% 13% 3% 2%
percentage
Target 1.5 0.375 1.4375 1.125 0.6875 0.8125 0.1875  0.125
volume
(x10%unit’)
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(a) Poisson round of 3D particle insertion

(b) Second round of 3D particle insertion (c) Third round of 3D particle insertion

(d) Fourth round of 3D particle insertion (e) Fifth round of 3D particle insertion
Fig 4.5 3D model generation for a pure sand
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(f) Sixth round of 3D particle insertion (g) Seventh round of 3D particle insertion
Fig 4.5 (Continued) 3D model generation for a pure sand3D

Table 4.5 shows the details of the 3D model. A total of 525,333 spherical particles were generated
for the model, and the running time was 56,906 seconds. The particle generation for the smallest
opening sieve was time-consuming, accounting for roughly 40% of the total running time.

Table 4.5 Details of 3D particle packing

Round of Opening of Mass Ideal mass Finer Target finer Percent

particles sieves gx1072 gx107? percentage percentage difference

insertion mm

Poisson 4.75-2.36 49.25 46.82 100% 100% 0%
1 2.36-1.7 11.94 11.70 75.42% 76% 0.58%
2 1.7-0.6 45.79 44.87 69.46% 70% 0.54%
3 0.6-0.4 35.82 35.12 46.61% 47% 0.39%
4 0.4-0.3 21.89 21.46 28.73% 29% 0.27%
5 0.3-0.15 25.88 25.36 17.81% 18% 0.19%
6 0.15-0.075 5.86 5.85 4.89% 5% 0.11%
7 <0.074 3.96 3.90 2.00% 2% 0%

The particle-size distribution curves for the model generated by the algorithm and the actual soil
are shown in Fig 4.6. The model’s particle-size distribution closely matches that of the original
soil. The average error between the 3D model and the actual soil was 0.29%, and the maximum
error was 0.58%. It occurred in the Poisson round of the particle insertion. Errors were regarded
as small and acceptable. The model’s void ratio of 0.584 was close to the target of 0.600.
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Particle Size Distribution Curve
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Fig 4.6 Comparison of particle-size distributions of the algorithm-generated 3D model and the real soil

The curve in Fig 4.7 shows the relationship between the void ratio of the deposited model and the
contact friction defined in Yade. The void ratio initially increased with rising contact friction but
remained constant once the contact friction exceeded 45°, which can be considered the threshold
value. Setting contact frictions greater than this point guarantees that the final void ratio closely
matches the target void ratio after the deposition process. The particle packing is deemed stable
and tightly packed if the coordination number is higher than 4 (Masanobu 1977). The 3D model’s
coordination number was 4.77, meaning that particles were densely packed after the gravity
deposition. Thus, inter-particle friction can be used to adjust the void ratio.
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void ratio (after deposition)
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Fig 4.7 The relationship between contact friction and void ratio of 3D deposited model

The result of 3D model deposition is shown in Fig 4.8. The friction contact was 45°. The volume
of the 3D particle packing after the model deposition shrank to 12.5mmx12.5mmx12.36mm from
the original 12.5mmx12.5mmx12.5mm. The void ratio was 0.563, which reduced slightly from
the original value of 0.584 and was close to the target of 0.6. The running time was 1,987 seconds.

4.3.2 Mixed Sand Example

The second example illustrating the process of building DEM models aims to simulate silica sand,
a gravel-sand mixture widely used as a proppant by companies in the oil and natural gas recovery

(b
Fig 4.8 The comparison of the original model (a) and the deposited model (b)
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industry (Campos et al. 2018). The particle-size distribution shown in Table 4.6 is taken from the
Geotechnical Aspects of Pavements Reference Manual (2006). The void ratio of typical silica sand
1s 0.49~0.79 (Ahn and Jung 2017). The void ratio for this example is assigned a value of 0.55.

Table 4.6 Particle-size distribution of Silica Sand (Geotechnical Aspects of Pavements Reference Manual 2006)
Sieve 10-4.75  4.75-  3.35- 2-1 1-0.85 0.85-0.5 0.5-03 0.3-0.2 0.2-0.1 <0.1
(mm) 3.35 2

Radius 400-190  190- 134-  80-40  40-34 34-20 20-12 12-8 8-4 <4
(unit) 134 80

Finer 100% 95% 93% 90% 68% 44% 20% 8% 2% 0.5%
percentage
Mass 5% 3% 2% 22% 24% 24% 12% 6% 1.5% 0.5%
percentage
for each

sieve

Based on the sieve opening sizes, the unit size was set to 0.025mm. Due to a wide range of particle
radii, the canvas size needed to be larger than that used for the pure sand example and was set to
36mmx36mm/2400unitx2400unit. It took ten rounds of particle insertion to generate the model.
The cell size used in the void-filling process was Sunitx5unit. The target volume of the particle
assembly was 24007 + 1.55 = 3.7 x 10° unit®. Table 4.7 shows the target volumes for every sieve

in the 2D model. The corresponding 2D particle packing generated by the algorithm is shown in
Fig 4.9.

Table 4.7 Finer percentage and target volumes of 2D model for every sieve

Radius 400- 190- 134-  80-40 40-34 34-20 20-12 12-8 8-4 <4
(unit) 190 134 80

Percentage 5% 3% 2% 22% 24% 24% 12% 6% 1.5% 0.5%
finer

Target 1.85 1.11 0.74 8.14 8.88 8.88 4.44 2.22 0.56 0.18
volume
(x103 unit?)
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(a) Poisson round of 2D particle insertion
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(¢) Second round of 2D particle insertion

(e) Fourth round of 2D particle insertion
Fig 4.9 2D model generation for mixed sand

(b) First round of 2D particle insertion

(f) Fifth round of 2D particle insertion
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(h) Seventh round of 2D particle insertion
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Fig 4.9 (Continued) 2D model generation for mixed sand

The properties of the model generated with the 2D algorithm are shown in Table 4.8. There were
in total 3,391 particles in the model, and the running time was 9.7 seconds.
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Table 4.8 Details of 2D particle packing

Round of Opening of Mass Ideal mass Finer Target finer Present

particles sieves gx1073 gx1073 percentage percentage difference

insertion mm

poisson 10-4.75 233.53 189.41 100% 100% 0%
1 4.75-3.35 114.94 75.76 93.99% 95% 1.01%
2 3.35-2 116.47 113.64 91.03% 93% 1.97%
3 2-1 838.97 833.39 88.03% 90% 1.97%
4 2-0.85 910.08 909.15 66.43% 66% 0.43%
5 0.85-0.5 911.24 909.15 42.95% 42% 0.95%
6 0.5-0.3 454.59 454.57 19.53% 20% 0.47%
7 0.3-0.2 227.67 227.28 7.83% 8% 0.17%
8 0.2-0.1 57.20 56.82 1.97% 2% 0.03%
9 <0.01 19.12 18.93 0.49% 0.5% 0.01%

Fig 4.10 shows the particle-size distribution curves of the generated model and the actual soil
sample. The model created by the algorithm agrees with the actual soil in terms of particle-size
distribution. The average error was 0.78%, and the maximum error was 1.97%, which occurred in
the second and third rounds of particle insertion due to volumes of particles for the first two sieves
exceeding the target by over 2% and resulting in volume errors. Using recursion with a shrunken
radius range to reduce the total volume can decrease the errors, as described in Section 3.4.3.
However, in this case, even setting all radii of particles to the minimum value in the radius range,
the overshoot still existed. When the algorithm generated the last particle belonging to the two
aforementioned sieves, the volumes substantially surpassed the target. However, without the last
particle, the volume would not reach the target. The errors of the particles generated for the other
sieves were regarded as small and acceptable. The void ratio of the 2D model was 0.523, which is
close to 0.550, which is that of the target sand mixture.

Particle Size Distribution Curve
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Fig 4.10 Comparison of particle-size distributions of the algorithm-generated 2D model and the real soil
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Fig 4.11 shows that the relationship between the void ratio of the deposited particle assembly and
contact friction. The void ratio slightly increased as contact friction rose, indicating that contact
friction barely impacted the void ratio of the 2D deposited model. The coordination number of the
2D particle assembly was 2.47, which is lower than 4, meaning particles were not tightly packed
(Masanobu 1977). Thus, since inter-particle friction relies on particle contact, it cannot influence
soil density.

Curve of Relationship between Contact Friction and Void Ratio
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Fig 4.11 The relationship between contact friction and void ratio of 2D deposited model

The 2D particle assembly deposition simulated by Yade is shown in Fig 4.12. The void ratio of
the deposited model decreased to 0.300 compared with the original 0.523, and the model’s volume
correspondingly shrank from 36mmx36mm to 36mmx27mm. It took 53 seconds to run the
algorithm.

(@) | )
Fig 4.12 The comparison of the original model (a) and the deposited model (b)
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The void ratio decreased sharply after the model deposition process, which can be attributed to the
pivotal role of the particle assembly’s particle size distribution. Compared to the pure sand sample,
the gravel-sand mixture had a more comprehensive radius range, and large particles of the first
four sieves accounted for just 10% of the total volume. Thus, a large number of small particles
filled nearly all the voids in the model, causing the void ratio to reduce considerably.

For the 3D model generation, the canvas size was set to 36mmx>36mmx36mm/2400unitx2400unit
x2400unit, and the remaining parameters were the same as those of the 2D model. The target
volume of the 3D particles was 2400° + 1.55 = 8.9 x 10° unit’. Table 4.9 shows the target volumes
for every sieve in the 3D model. The 3D model generated by the algorithm is shown in Fig 4.13
sieve-by-sieve.

Table 4.9 Finer percentage and target volume of 3D model for every sieve

Radius 400- 190- 134-  80-40 40-34 34-20 20-12 12-8 8-4 <4
(unit) 190 134 80

Percentage 5% 3% 2% 22% 24% 24% 12% 6% 1.5% 0.5%
finer

Target 4.55 2.67 1.78 19.58 21.36 21.36 10.68 5.34 1.34 0.45
volume

(X108 unit®)

K = ©

v © o’/ v
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(a) Poisson round of 3D particle insertion (b) First round of 3D particle insertion
Fig 4.13 3D model generation for mixed sand
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(f) Fifth round of 3D particle insertion

(g) Sixth round of 3D particle insertion (h) Seventh round of 3D particle insertion
Fig 4.13 (Continued) 3D model generation for mixed sand
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(1) Eighth round of 3D particle insertion () Ninth round of 3D particle insertion
Fig 4.13 (Continued) 3D model generation for mixed sand

Table 4.10 shows details of the 3D model. The total number of spherical particles in the algorithm-
generated model was 1,048,576, and the running time was 100,766 seconds. The generation of
particles in the two lowest sieves was the most time-consuming, accounting for 50% of the running

time.
Table 4.10 Details of 3D particle packing

Round of Opening of Mass Target mass Finer Target finer Percent

particles sieves gx107! gx10! percentage percentage difference

insertion mm

poisson 10-4.75 115.19 113.64 100% 100% 0

1 4.75-3.35 45.74 45.45 94.94% 95% 0.06%
2 3.35-2 68.27 68.18 92.93% 93% 0.07%
3 2-1 500.33 500.03 89.93% 90% 0.07%
4 2-0.85 545.52 545.49 65.96% 66% 0.04%
5 0.85-0.5 545.54 545.49 41.99% 42% 0.01%
6 0.5-0.3 272.93 272.74 20.00% 20% 0%
7 0.3-0.2 136.43 136.37 8.00% 8% 0%
8 0.2-0.1 34.35 34.09 2.00% 2% 0%
9 <0.01 11.47 11.36 0.50% 0.5% 0%

The particle-size distribution curves of the 3D model and the real soil are shown in Fig 4.14. The
particle-size distribution of the algorithm-generated model is consistent with that of the actual soil
sample. The average error between the 3D model and the real soil data was 0.06%, and the
maximum error was 0.07% which occurred during the first and second rounds of particle insertion.
Errors were considered acceptable. The void ratio of the model was 0.547, which is also close to

the target of 0.550.
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Particle Size Distribution Curve
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Fig 4.14 Comparison of particle-size distributions of the algorithm-generated 3D model and the real soil

If the model with a considerable number of particles is imported into the Yade simulation program,
the running time will be extremely long. This thesis proposed a method to simplify the imported
model to avoid this problem. The void ratio of the particle packing after the deposition process can
be estimated by importing the model without the smallest sieve particles, which accounts for 0.5%
of the total volume in this case. After neglecting the smallest particles, the total number of particles
in the model decreased considerably to a little over 700,000, a number that Yade can easily handle.
The effect of deleting the smallest particles in the model was deemed small and acceptable.

Curve of Relationship between Contact Friction and Void Ratio
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Fig 4.15 The relationship between contact friction and void ratio of 3D deposited model
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Fig 4.15 shows the relationship between the void ratio of the deposited particle packing and contact
friction. The model’s void ratio significantly increased as contact friction grew but remained
roughly constant when the contact friction was greater than 50°, which can be regarded as the
threshold point. Using a contact friction that exceeds the threshold point guarantees the void ratio
experiences only a minor reduction and stays close to the target void ratio after the model
deposition process. For the 3D deposited model, the coordination number was 4.94, which is
higher than 4, indicating that the particle packing was dense and stable (Masanobu 1977). Thus,
inter-particle friction that functions based on particle contacts can help to adjust the void ratio.

(b)
Fig 4.16 The comparison of the original model (a) and the deposited model (b)

Fig 4.16 shows the model deposition simulation results. The contact friction was set to 50°. The
void ratio was 0.547 initially and decreased slightly to 0.534 after the model deposition. The model
volume accordingly shrank from 36mmx36mmx>36mm to 36mmx=36mmx35.685mm. The particle
deposition process took a total of 890 seconds.

4.3.3 Gap Graded Sand Example

The third example consists in creating models to simulate gap graded soils. The real soil data is
based on Reboul et al. (2010). The particles of the actual gap graded soil whose radii range from
2 mm to 0.3mm are missing. The particle-size distribution of the real soil data is shown in Table
4.11, and the void ratio of the soil sample was 0.55.
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Table 4.11 Particle-size distribution of gap graded sand (Reboul et al. 2010)

Opening 10.5-10 10-8 8-2 2-0.3  0.3-025 0.25-0.2 0.2-0.15 0.15-0.125 <0.125
of sieves

(mm)
Radius 420-400 400- 320- 80-12 12-10 10-8 8-6 6-5 <5
(unit) 320 80
Finer 100% 83% 52% 15% 15% 6% 3.5% 1.5% 0.5%
percentage
Mass 17% 21% 37% 0% 9% 2.5% 2% 1% 0.5%
percentage
for each
sieve

For the 2D model generation, the unit size was set to 0.025 mm. The canvas size had to be greater
than the one used in previous models and was 2400unitx2400unit/60mm x60mm.The total volume
was 2400% + 1.55 = 3.72 x 10° unit®. The percentage passing and the target volumes for each sieve
are shown in Table 4.12.

Table 4.12 Finer percentage and target volumes for each sieve of 2D model

Opening of  10.5-10 10-8  8-2 2-0.3  0.3-0.25 0.25-0.2 0.2-0.15 0.15-0.125 0.125-0.1
sieves(mm)

Finer 17% 31%  37% 0% 9% 2.5% 2% 1% 0.5%
percentage

Target 63 115 138 0 335 9.3 7.4 0.372 0.186

volume
(x10%unit®)

The model generation process was divided into nine rounds of particle insertion. The third round
of particle insertion generated particles with radii ranging from 2mm to 0.3mm, which were
missing in the gap graded soil. Thus, the algorithm did not generate particles in this round. The
cell size used in the void-filling process was Sunitx5unit.

The 2D algorithm-generated model is shown in Fig 4.17 sieve-by-sieve.
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(a) Poisson round of 2D particle insertion

(b) First round of 2D particle insertion

/

(c) Second round of 2D partlcle 1nsert10n

(e) Fourth round of 2D partlcle insertion

(d) Third round of 2D part1cle 1nsert1on
%)

(f) Fifth round of 2D particle insertion
Fig 4.17 2D model generation for gap graded sand
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(h) Seventh round of 2D particle insertion
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(i) Eighth round of 2D partlcle insertion
Fig 4.17 (Continued) 2D model generation for gap graded sand

The results for 2D particle packing are shown in Table 4.13. There were 2,625 particles in the 2D
model, and the running time was 19 seconds.

Table 4.13 Details of 2D particle packing

Round of Opening of Mass Target mass Finer Target finer Percent

particle sieves gx1072 gx107? percentage percentage difference

insertion mm

Poisson 10.5-10 65.14 64.40 100% 100% 0%
1 10-8 119.04 117.43 82.90% 83% 0.10%
2 8-2 142.11 140.16 51.95% 52% 0.05%
3 2-0.3 0 0 14.87% 15% 0.13%
4 0.3-0.25 34.13 34.09 14.87% 15% 0.13%
5 0.25-0.2 9.51 9.47 5.96% 6% 0.04%
6 0.2-0.15 7.62 7.57 3.48% 3.5% 0.02%
7 0.15-0.125 3.82 3.79 1.49% 1.5% 0.01%
8 0.125-0.1 1.91 1.89 0.5% 0.5% 0%
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The particle-size distributions of the 2D model and the soil sample shown in Fig 4.18 are very
close to each other. The average error was 0.06%. The maximum error was 0.12% and took place
during the third round of particle insertion. The volume errors of particles generated for the
remaining sieves were deemed acceptable. The void ratio of the 2D model is 0.532, close to the
real soil of 0.550.

Particle Size Distribution Curve
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Fig 4.18 Comparison of particle-size distributions of the algorithm-generated 2D model and the real soil

The contact friction had little influence on the void ratio of the 2D deposited model, shown in Fig
4.19. The void ratio increased slightly only when the contact friction was changed from 40° to 45°.
Contact friction could barely influence the post-deposition void ratio. The coordination number of
the 2D deposited model was 2.67, which is lower than 4, meaning the particles were loosely packed
(Masanobu 1977). Thus, inter-particle friction just has a slight influence on the model density.
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Curve of Relationship between Contact Friction and Void Ratio
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Fig 4.19 The relationship between contact friction and void ratio of 2D deposited model

Fig 4.20 shows the result of the 2D model deposition. The void ratio of the deposited model was
0.373, which decreased compared with the original void ratio of 0.532, and the model’s volume
shrank from 60mmx>60mm to 60mmx46mm. The running time was 22 seconds.

Fig 4.20 The comparison of the original model (a) and the deposited model (b)

The void ratio decreased significantly after the model was deposited. This is due to the fact that in
gap graded soils, large particles make up the soil skeleton, and their interlocking plays a decisive
role in determining the void ratio of the deposited model (Ke and Takahashi 2012). Small particles,
on the other hand, act as separators and merely fill the gaps between the larger particles during the

86



deposition process, having only a minor influence on the void ratio. In addition, well-graded soils
develop better particle interlocking than poorly graded ones (Khan 2012). Thus, weak interlocking
in gap graded soils played a role in the void ratio reduction after the model deposition.

For the 3D model, the canvas size was set to 2400unitx2400unitx2400unit/60mmx60mm x60mm.
The remaining parameters of the 3D model were the same as in the 2D model. The target volume
of 3D particles was 2400° + 1.55 = 8.919 x 10° unit’. Based on Equations 3-2 and 3-3, the particle-
size distribution and target volumes of the 3D particle packing for every sieve are shown in Table
4.14. The 3D model building process is shown in Fig 4.21 sieve-by-sieve.

Table 4.14 Finer percentage and target volumes for each sieve of 3D model

Opening of  10.5-  10-8 8-2 2-03 0.3-025 0.25-0.2 0.2-0.15  0.15-0.125 0.125-0.1
sieves(mm) 10

Finer 17%  31% 37% 0% 9% 2.5% 2% 1% 0.5%
percentage
Target 15.2 27.6 33 0 8.03 2.23 1.78 0.89 0.45
volume

(x10%unit®)

(a) Poisson round of 3D particles (b) First round of 3D particles insertion
Fig 4.21 3D model generation for gap graded sand
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(c) Second round of 3D particles insertion (d) Third round of 3D particles insertion

(e) Fourth round of 3D particles insertion (f) Fifth round of 3D particles insertion

(g) Sixth round of 3D particles insertion (h) Seventh round of 3D particles insertion
Fig 4.21 (Continued) 3D model generation for gap graded sand
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(1) Eighth round of 3D particles insertion

Fig 4.21 (Continued) 3D model generation for gap graded sand

The results of the 3D model are shown in Table 4.15. There were 583,777 spherical particles in
the 3D model. The running time was 117,377 seconds. Creating particles belonging to the smallest
opening sieve was the most time-consuming, accounting for roughly 40% of the total running time.

Table 4.15 Details of 3D particle packing

Round of Opening of Mass Target mass Finer Target finer Percent

particles sieves gx10° gx10° percentage percentage difference

insertion (mm)

Poisson 10.5-10 40.29 38.64 100% 100% 0%
1 10-8 71.70 70.46 82.25% 83% 0.75%
2 8-2 84.10 84.09 51.4% 52% 0.6%
3 2-0.3 0 0 14.78% 15% 0.12%
4 0.3-0.25 20.48 20.46 14.78% 15% 0.12%
5 0.25-0.2 5.68 5.68 5.91% 6% 0.09%
6 0.2-0.15 4.55 4.55 3.45% 3.5% 0.15%
7 0.15-0.125 2.28 227 1.48% 1.5% 0.02%
8 0.125-0.1 1.13 1.13 0.49% 0.5% 0.01%

The particle-size distribution of the 3D model shown in Fig 4.22 compares well with the actual
soil sample. The average error was 0.23%, and the maximum error was 0.75%, which occurred in
the first round of the particle insertion. Differences were regarded as small and acceptable. The
void ratio of the model was 0.526, close to the target of 0.550.
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Particle Size Distribution Curve
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Fig 4.22 Comparison of particle-size distributions of the algorithm-generated 3D model and the real soil

The curve in Fig 4.23 shows the relationship between contact friction and the void ratio of the 3D
deposited model. The model’s void ratio initially increased with the growth of contact friction and
remained roughly constant once the contact friction exceeded 40°. Thus, contact friction of 40° can
be regarded as the threshold point. Using contact frictions greater than 40° guarantees a particle
assembly only experiences minor changes in void ratio during densification. The particle packing
is deemed stable and tightly packed if the coordination number is greater than 4 (Masanobu 1977).
The coordination number of the 3D model was 4.52, which means spherical particles were tightly
packed after the deposition. Thus, inter-particle friction played a significant role in the model’s
void ratio.
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Curve of Relationship between Contact Friction and Void Ratio
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Fig 4.23 The relationship between contact friction and void ratio for 3D model deposition

Fig 4.24 shows the model deposition of 3D particle packing. The contact friction was set to 50°.
The model void ratio decreased slightly to 0.521 after the deposition process, compared with an
original value of 0.526, and the volume correspondingly contracted from 60mmx60mmx60mm to
60mmx60mmx59.825mm. The running time was 738 seconds.

(a) (b)
Fig 4.24 The comparison of the original model (a) and the deposited model (b)

4.3.4 Uniformly Graded Sand Example

The fourth example simulated uniformly graded soils, and the data of actual uniformly graded river
soils is based on Opara et al. (2008). The uniformity coefficient of the soil sample was 2.11, less
than that of well-graded soils, which usually range from 4 to 6. In addition, there were only five
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particle insertion rounds due to the small scope of particle radii. The particle-size distribution of
the real soil sample is shown in Table 4.16. The typical void ratio for poorly graded river sands is
0.8 (Dunning 2006).

Table 4.16 Particle-size distribution of uniformly graded river sand (Opara et al. 2008)

Opening of 4.75-2.36 2.36-1.18 1.18-0.6 0.6-0.3 0.3-0.15
sieve (mm)
Radius (unit) 94-48 48-24 24-12 12-6 6-2
Finer 100% 92% 82% 58% 14%
percentage
Mass 8% 10% 28% 44% 15%
percentage for
each sieve

The unit size was set to 0.05 mm based on the sieve opening sizes. Due to a narrow range of
particle radii, the canvas size was set to 800unitx800unit/40mmx40mm, which is relatively smaller
than previous models. The total volume of 2D particle packing was 8002 + 1.8 = 3.55 x 10° unit?.
The size of cells used in the void-filling process was set to 2unit x 2unit. The finer percentage and
the target volumes for each sieve are shown in Table 4.17. The 2D model created by the algorithm

is shown in Fig 4.25 sieve-by-sieve.

Table 4.17 Finer percentage and target volumes for each sieve in 2D model

Opening of sieve 4.75-2.36 2.36-1.18 1.18-0.6 0.6-0.3 0.3-0.15
(mm)
Mass percentage 8% 10% 28% 44% 15%
for each sieve
Target volume 2.84 3.55 9.94 15.6 5.33

(x 10%unit?)

® - ©

0 O
O

(a) Poisson round of 2D particles insertion (b) First round of 2D particles insertion
Fig 4.25 2D model generation for uniformly graded sand
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(e) Fourth round of 2D particles insertion
Fig 4.25 (Continued) 2D model generation for uniformly graded sand

Table 4.18 presents the details of 2D particle packing. There were 1,576 circular particles in total
in the 2D model, and the running time was 15 seconds.

Table 4.18 Details of 2D particle packing

Round of Opening of Mass Target mass Finer Target finer Percent
particle sieves gx1072 gx1072 percentage percentage difference
insertion mm
Poisson 4.75-2.36 11.59 11.07 100% 100% 0%
1 2.36-1.18 16.36 14.49 91.45% 92% 0.55%
2 1.18-0.6 34.88 34.79 81.50% 82% 0.5%
3 0.6-0.3 63.88 63.79 57.52% 58% 0.48%
4 0.3-0.15 20.50 20.29 13.98% 14% 0.02%

The particle-size distribution curves of the model generated by the algorithm and the actual soil
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are shown in Fig 4.26. The particle-size distribution of the 2D model agrees with that of the real
soil sample. The mean error was 0.39%, and the maximum error was 0.55%, which took place in
the first round of particle insertion. The volume of particles generated in the first void-filling round
exceeded the target by more than 2%. The generation of particles with a shrunken radius range, as
described in Section 3.4.3, could have reduced the difference, but the overshoot still existed. After
the algorithm inserted the last particle belonging to the second-largest sieve into the model, the
volume significantly exceeded the target. However, without this particle, the volume would not
reach the target. The errors of particles in the remaining sieves were considered acceptable. The
void ratio of the model was 0.779, which is close to the target of 0.800.

Particle Size Distribution Curve
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Fig 4.26 Comparison of particle-size distributions of the algorithm-generated 2D model and the real soil

The curve that describes the relationship between the void ratio of the 2D deposited model and
contact friction is shown in Fig 4.27. The void ratio of the deposited model only increased slightly
when contact friction rose from 35° to 40°. This is attributed to the fact that the number of inter-
particle contacts in the 2D particle packing was only 1.94, which is lower than 4, meaning that
particles were loosely packed, and the 2D model was unstable (Masanobu 1977). Thus, the inter-
particle friction could barely influence the soil density.
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Curve of Relationship between Contact Friction and Void Ratio
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Fig 4.27 The relationship between contact friction and void ratio for 2D model deposition

Fig 4.28 shows the result of the 2D particle deposition simulated by Yade. The deposited model’s
volume shrank from 40mmx40mm to 40mmx>27mm. Accordingly, the void ratio was reduced to
0.380 in comparison to the original 0.779.

(b)
Fig 4.28 The comparison of the original model (a) and the deposited model (b)

The void ratio of the 2D model decreased significantly after the deposition process compared with
the original value. The void ratio of the original model was 0.779, indicating the particle packing
was classified as a loose soil, and many voids existed in the model before it was deposited. In
addition, particles belonging to the smallest-opening sieve accounted for 13.98% of the total mass.
As a result, it can be concluded that a considerable number of small particles filled nearly all the
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voids between large particles during the deposition process, causing the void ratio to decrease
dramatically.

The total volume of the 3D model was 800° + 1.8 =2.84 x 10® unit®, and the remaining parameters
needed by the algorithm to generate 3D models were the same as that of 2D models. The finer
percentage and the target volumes for each sieve are presented in Table 4.19. The 3D algorithm-
generated model for uniformly graded soils is shown in Fig 4.29 sieve-by-sieve.

Table 4.19 Finer percentage and target volumes for each sieve in 3D model

Opening of sieve 4.75-2.36 2.36-1.18 1.18-0.6 0.6-0.3 0.3-0.15
(mm)
Mass percentage 8% 10% 28% 44% 15%
for each sieve
Target volume 2.27 x 107 2.84 x 107 7.95 x 107 1.25 x 108 4.26 x 107
(unit’)

(a) Poisson round of 3D particles insertion (b) First round of 3D particles insertion

(¢) Second round of 3D particles insertion (d) Third round of 3D particles insertion
Fig 4.29 3D model generation for uniformly graded sand
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(f) Fourth round of 3D particles insertion
Fig 4.29 (Continued) 3D model generation for uniformly graded sand

Table 4.20 presents the result of the 3D model. There were 898,458 spherical particles in the model,
and the running time was 142,639 seconds. Generating particles for the smallest-opening sieve is
the most time-consuming, accounting for 50% of the running time.

Table 4.20 Details of 3D particle packing

Round of Opening of Mass Target mass Finer Target finer Percent
particle sieve gx10° gx10° percentage percentage difference
insertion mm
Poisson 4.75-2.36 4.67 4.64 100% 100% 0%
1 2.36-1.18 5.81 5.79 91.22% 92% 0.78%
2 1.18-0.6 13.92 13.92 81.31% 82% 0.69%
3 0.6-0.3 25.52 25.51 57.62% 58% 0.38%
4 0.3-0.15 8.19 8.12 13.97% 14% 0.03%

The particle-size distribution curves of the model generated by the algorithm and the real soil are
shown in Fig 4.30. The particle-size distribution of the 3D model compares well with that of the
real soil sample. The average error was 0.47%, and the maximum error was 0.78% and occurred
in the first round of particle insertion. Errors were deemed small and acceptable. The void ratio of
the model was 0.799, also close to the target of 0.800.
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Particle Size Distribution Curve
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Fig 4.30 Comparison of particle-size distributions of the algorithm-generated 3D model and the real soil

The relationship between the void ratio of the deposited model and contact friction is shown in Fig
4.31. It indicates that the void ratio increased significantly as contact friction rose. The curve
leveled off when the contact friction exceeded 50°, which can be considered the threshold point.
Contact frictions set greater than this point can ensure the model deposition only triggers a slight
reduction in void ratio. The coordination number of the particle assembly is 4.32, which is higher
than 4, indicating that particles were tightly packed (Masanobu 1977). Thus, inter-particle friction
can be used to adjust the void ratio.

Curve of Relationship between Contact Friction and Void Ratio
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Fig 4.31 The curve of the relationship between contact friction and void ratio of 3D deposited model
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The 3D model deposition is shown in Fig 4.32. The contact friction was set to 50°. The void ratio
decreased from 0.799 to 0.743 after the model was deposited, and accordingly, the volume shrank
from 40mmx*40mmx>40mm to 40mmx*40mmx38.75mm. The running time was 560 seconds.

(b)
Fig 4.32 The comparison of the original model (a) and the deposited model (b)

The void ratio of the uniformly graded soil model decreased more significantly compared to
examples of the other 3D models. The primary reason is similar to that of the 2D uniformly graded
particle assembly. The particle packing had a high void ratio and small particles that accounted for
a high percentage of the total mass and collapsed further after the deposition since small particles
nearly filled all voids between large particles.

4.3.5 Dense Sand Example

The fifth example aimed to create 2D and 3D models for the well-graded dense sand samples,
using real soil data based on Skaggs et al. (2001). The particle-size distribution of dense soil
samples is shown in Table 4.21, and the void ratio of a typical dense sand is 0.4 (Das 2003).

Table 4.21 Particle-size distribution of the dense sand sample (Skaggs et al. 2001)

Opening of 3352  2-1.7 1.7- 1.18 1- 0.85- 0.5- 0.355- 0.25- 0.18- 0.106- 0.053- <0.03
sieve 1.18 -1 0.85 0.5 0.355 0.25 0.18 0.106 0.053 0.038 8
mm
Radius 268-  160-  136-  94-  80-  68-  40- 2820 20- 148 8-4 4-3 3-2
units 160 136 94 80 68 40 28 14

Target finer 100% 90% 82% 66% 50% 36% 22% 13% 8% 5% 3% 2% 1%

percentage

Mass 10% 8% 16% 16% 14% 14% 9% 5% 3% 2% 1% 1% 1%

percentage

for each

sieve

The simulation parameters were as follows: the canvas size was 1500unitx1500unit/18.75mmx
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18.75mm; the unit size was 0.0125 mm; the total volume of 2D particles was 1500% + 1.4 = 1.6 x
10° unit?; the cell size was Sunitx5unit. The canvas size is relatively larger than previous models
since dense soils had a more comprehensive radius range. Table 4.22 shows the finer percentage
and target volumes of 2D particles for every sieve. The 2D model generated by the algorithm based
on well-graded dense sand data shows in Fig 4.33 sieve-by-sieve.

Table 4.22 Finer percentage and target volumes of 2D particles for every sieve

Radius 268- 160- 136- 94- 80- 68- 40- 28-20 20- 14-8 8-4 4-3 3-2
unit 160 136 94 80 68 40 28 14

Mass 10% 8% 16% 16% 14% 14% 9% 5% 3% 2% 1% 1% 1%
percentage

for each

sieve

Target 1.6 1.28 2.56 256 224 224 1.44 0.8 0.48 0.32 0.16 0.16 0.16
volume
x 10° unit’

dn
<

(a) Poisson round of 2D particles insertion
Fig 4.33 2D model generation for dense sand
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(b) First round of 2D particles insertion



(¢) Second round of 2D particles insertion

(g) Sixth round of 2D particles insertion (h) Seventh round of 2D particles insertion
Fig 4.33 (Continued) 2D model generation for dense sand
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(j) Ninth round of 2
S e

M .

(m) Twelfth round of 2D particles

Fig 4.33 (Continued) 2D model generation for dense sand
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The results of the 2D model are presented in Table 4.23. There were 2,312 circular particles in the
model, and the running time was 20 seconds.

Table 4.23 Details of 2D particle packing

Round of Opening of Mass Target mass Finer Target finer Percent
particle sieves gx1073 gx1073 percentage percentage difference
insertion mm
Poisson 3.35-2 57.0 40.9 100% 100% 0%
1 2-1.7 33.2 32.7 86.66% 90% 3.34%
2 1.7-1.18 65.6 65.5 78.90% 82% 1.10%
3 1.18-1 65.9 65.5 63.57% 66% 2.43%
4 1-0.85 57.5 57.3 48.17% 50% 1.83%
5 0.85-0.5 57.4 57.3 34.73% 36% 1.27%
6 0.5-0.355 37.2 36.8 21.32% 22% 0.68%
7 0.355-0.25 2.08 2.04 12.62% 13% 0.38%
8 0.25-0.18 124 12.2 7.75% 8% 0.25%
9 0.18-0.106 8.21 8.19 4.85% 5% 0.15%
10 0.106-0.053 4.13 4.09 2.93% 3% 0.07%
11 0.053-0.038 4.13 4.09 1.97% 2% 0.03%
12 <0.038 4.29 4.09 1.00% 1% 0%

The particle-size distribution curves of the 2D model and the real soil are shown in Fig 4.34. The
algorithm-generated model agrees with the actual soil sample in terms of particle-size distribution.
The average error was 0.81%, and the maximum error was 3.34% and occurred in the first round
of the particle insertion. The reason is that the volume of particles belonging to the largest opening
sieve significantly surpassed the target. Due to the considerable individual particle volume, the
total volume exceeded the target volume by more than 2% after the algorithm created the last
particle for this sieve. Nevertheless, without this particle, the volume would not have reached the
target. The recursive call presented in section 3.4.3 was introduced to avoid this problem by
shrinking the radius range. However, even setting the particle radius as the minimum value in the
range still caused the volume to be beyond the acceptable limit. The differences between particles
in the remaining sieves and real soils were regarded as acceptable.

The void ratio of the 3D model was 0.343, which is slightly lower than the target of 0.400, mainly
due to the volume of particles in the largest opening sieve that exceeded the target.
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Particle Size Distribution Curve
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Fig 4.34 Comparison of particle-size distributions of the algorithm-generated 2D model and the real soil

Contact friction barely influenced the void ratio of the deposited model, as shown in Fig 4.35. The
void ratio only slightly increased when contact friction rose from 40° to 45°. The reason is that the
coordination number of the 2D particle assembly was 2.73, which is lower than 4, indicating that
this particle packing was unstable and not tightly packed (Masanobu 1977). Thus, inter-particle
friction cannot impact the void ratio by much.

Curve of Relatinship between Contact Friction and Void Ratio
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Fig 4.35 The curve of the relationship between contact friction and void ratio of 2D deposited model

The result of the 2D model deposition is shown in Fig 4.36. The void ratio decreased moderately
to 0.290 compared with the original value of 0.343. Correspondingly, the volume shrank from
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18.75mmx*18.75mm to 18.75mmx16.93mm. The running time was 24 seconds.

Fig 4.36 The comparison of the original model (a) and the deposited model (b)

The void ratio decreased moderately compared with the original value. Compared to other 2D
model deposition simulations presented before, the void ratio reduction was smaller in this case.
The main reason is that the initial void ratio was low, meaning that the particle assembly was dense
before the deposition simulation. In addition, the number of small particles in the last five sieves
was low, accounting for just 8% of the total mass. After the model deposition, small particles did
not fill all the voids, causing only minor changes in the void ratio. Additionally, the 2D dense soil
model had the highest coordination number of all the 2D examples. Thus, relatively strong
interlocking between particles also prevented the particles from collapsing.

The canvas size for the 3D model was set to 1500 unitx1500unitx1500 unit/18.75mmx18.75mm
x18.75mm, and the volume of 3D particles was 1500° + 1.4 = 2.4 x 10° unit®>. The remaining
parameters the algorithm requires to build 3D models were the same as in the 2D model. Table
4.24 shows the percent finer and the target volumes of the 3D model for every sieve. The 3D
algorithm-generated model for well-graded dense sand is shown in Fig 4.37 sieve-by-sieve.

Table 4.24 Finer percentage and target volumes of 3D particles for every sieve

Radius 268- 160- 136- 94- 80- 68- 40- 28-20 20- 14-8 8-4 4-3 32
unit 160 136 94 80 68 40 28 14

Mass 10% 8% 16% 16% 14% 14% 9% 5% 3% 2% 1% 1% 1%
percentage

for each

sieve

Target 2.4 1.92 3.84 384 336 336 216 1.2 0.72 0.48 0.24 0.24 0.24
volume

x 103 unit®
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(a) Poisson round of 3D particles insertion (b) First round of 3D particles insertion

(e) Fourth round of 3D particles insertion (f) Fifth round of 3D particles insertion
Fig 4.37 3D model generation for dense sand
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(j) Ninth round of 3D particles insertion

(k) Tenth round of 3D particles insertion (1) Eleventh round of 3D particles insertion
Fig 4.37 (Continued) 3D model generation for dense sand
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(m) Twelfth round of 3D particles insertion
Fig 4.37 (Continued) 3D model generation for dense sand

Details of the 3D model are presented in Table 4.25. There were 998,390 spherical particles in the
model. The running time was 132,171 seconds. Generating particle generation belonging to the
smallest opening sieve was the most time-consuming step, accounting for roughly 35% of the total
running time.

Table 4.25 Details of 3D particle packing

Round of Opening of Mass Target mass Finer Target finer Percent

particles sieves gx107? gx1072 percentage percentage difference

insertion mm

Poisson 3.35-2 77.82 76.79 100% 100% 0%
1 2-1.7 66.66 61.43 89.99% 90% 0.01%
2 1.7-1.18 125.9 122.87 81.42% 82% 0.58%
3 1.18-1 123.1 122.87 65.63% 66% 0.37%
4 1-0.85 107.61 107.51 49.45% 50% 0.55%
5 0.85-0.5 107.55 107.51 35.57% 36% 0.43%
6 0.5-0.355 69.13 69.15 21.74% 22% 0.26%
7 0.355-0.25 38.40 38.39 12.85% 13% 0.15%
8 0.25-0.18 23.04 23.04 7.92% 8% 0.08%
9 0.18-0.106 15.36 15.35 4.95% 5% 0.05%
10 0.106-0.053 7.68 7.67 2.98% 3% 0.02%
11 0.053-0.038 7.68 7.67 1.99% 2% 0.01%
12 <0.038 7.79 7.67 1% 1% 0%

The particle-size distribution curves of the algorithm-generated particle packing and the actual soil
are shown in Fig 4.38. The particle size distribution of the 3D model compares well with that of
the actual soil sample. The average error was 0.21%, and the maximum error was 0.58%, which
occurred in the second round of particle insertion. The generation of particles for the sieve with an
opening size ranging from 2mm to 1.7mm caused errors. The particle volume of this sieve
exceeded the target by more than 2%. The main reason is that particles of this sieve accounted for
just 8% of the total mass but had a significant individual particle volume. As such, when the
algorithm inserted the last particle for this sieve into the model, the volume considerably surpassed
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the target. However, without this particle, the volume would not have reached the target. Shrinking
the radius range could have alleviated this problem, but the error was still out of the acceptable
range. Errors of particle percentages for the remaining sieves were deemed as small and acceptable.
The void ratio of the model was 0.382, which is close to the target of 0.400.

Particle Size Distribution Curve
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Fig 4.38 Comparison of particle-size distributions of the algorithm-generated 3D model and the real soil

Since the 3D particle packing contained a large number of particles, the simplification method
used in the mixture sand example was employed. The particle assembly without the particles in
the smallest opening sieve was imported into Yade. This significantly reduces the running time of
the Yade simulation. Omitting the smallest opening sieve particles, which accounted for 1% of the
total mass in this case, was deemed acceptable.

The curve showing the relationship between the void ratio of the deposited model and contact
friction is presented in Fig 4.39. The void ratio initially increased with the rising contact friction.
Then the curve started to flatten, and the void ratio remained constant once the contact friction
exceeded 45° which can be regarded as the threshold point. Using a contact friction greater than
this point ensures the model only experiences a slight decrease in void ratio during the deposition
process. After the deposition process, the coordination number of the model was 5.72, which is
higher than 4, meaning the particles were closely packed (Masanobu 1977). Thus, inter-particle
friction could be used to adjust the void ratio.
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Curve of Relatinship between Contact Friction and Void Ratio
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Fig 4.39 The relationship between contact friction and void ratio of 3D deposited model

The 3D model deposition simulated by Yade is shown in Fig 4.40. The contact friction was set to
45 degrees. The void ratio of the 3D deposited model decreased slightly from 0.382 to the original
value of 0.380. The model volume shrank from 18.75mmx18.75mmx18.75mm to 18.75mmx
18.75mmx18.7125 mm. The running time was 892 seconds.

(a) (b)
Fig 4.40 The comparison of the original model (a) and the deposited model (b)

4.3.6 Loose Sand Example

In this example, 2D and 3D models simulating well-graded loose sand samples are generated. The
particle-size distribution of the soil sample is shown in Table 4.26 and is taken from Skaggs et al.
(2001). The void ratio of typical loose sands is 0.65, according to Das (2003).
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Table 4.26 Particle-size distribution of the loose sand sample (Skaggs et al. 2001)

Opening of  3.35-2  2-1.7 1.7- 1.18 1- 0.85- 0.5- 0.355- 0.25- 0.18- 0.106- 0.053- <0.03
sieves 1.18 -1 0.85 0.5 0355 0.25 0.18 0.106 0.053 0.038 8
mm
Radius 268- 160- 136- 94- 80- 68- 40- 28-20 20- 14-8 8-4 4-3 3-2
units 160 136 94 80 68 40 28 14
Ideal finer 100% 90% 82% 66% 50% 36% 22% 13% 8% 5% 3% 2% 1%

percentage

Mass 10% 8% 16% 16% 14% 14% 9% 5% 3% 2% 1% 1% 1%

percentage

for each

sieve

For the 2D model, the canvas size was 1500unitx1500unit/18.75mmx18.75mm, and the unit size
was 0.0125 mm. The target total volume was 1500% + 1.65 = 1.36 x 10° unit?>. The cell size for the
void-filling process was SunitxSunit. Table 4.27 shows the target volumes of 2D particles for every

sieve. The 2D model generated by the algorithm targeting well-graded loose sands is shown in Fig
4.41 sieve-by-sieve.

Table 4.27 Finer percentage and target volumes of 2D particles for every sieve

Radius 268- 160- 136- 94- 80- 68- 40- 28- 20-14 14-8 8-4 4-3 3-2
unit 160 136 94 80 68 40 28 20
Mass 10% 8% 16% 16% 14% 14% 9% 5% 3% 2% 1% 1% 1%
percentage
for each
sieve
Target 1.36 1.08 2.18 2.18 1.9 1.9 1.22  0.68 0.408 0.272 0.136 0.136  0.136
volume
x 10° unit’
\'// \
|
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(a) Poisson round of 3D particles insertion

(b) First round of 3D particles insertion

Fig 4.41 2D model generation for loose sand
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(g) Sixth round of 3D particles insertion (h) Seventh round of 3D particles insertion
Fig 4.41 (Continued) 2D model generation for loose sand
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und of 3D particles insertion (j) Ninth round of 3D particles insertion

(i) Eighth ro
‘ [ ]

(m) Twelfth round of 2D particles insertion
Fig 4.41 (Continued) 2D model generation for loose sand
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The results of the 2D model are shown in Table 4.28. There were 1,939 circular particles in the
model, and the running time was 19 seconds.

Table 4.28 Details of 2D particle packing

Round of Opening of Mass Target mass Finer Target finer Present

particles sieves gx1073 gx1073 percentage percentage difference

insertion mm

Poisson 3.35-2 35.64 34.75 100% 100% 0%
1 2-1.7 29.62 27.80 89.99% 90% 0.01%
2 1.7-1.18 55.80 55.60 81.51% 82% 0.49%
3 1.18-1 56.12 55.60 65.69% 66% 0.31%
4 1-0.85 49.47 48.65 49.79% 50% 0.21%
5 0.85-0.5 49.01 48.65 35.77% 36% 0.23%
6 0.5-0.355 31.59 31.27 21.88% 22% 0.12%
7 0.355-0.25 17.47 17.37 12.92% 13% 0.08%
8 0.25-0.18 10.44 10.42 7.97% 8% 0.03%
9 0.18-0.106 7.03 6.95 5% 5% 0%
10 0.106-0.053 3.49 3.47 3% 3% 0%
11 0.053-0.038 3.51 3.47 2% 2% 0%
12 <0.038 3.64 3.47 1% 1% 0%

The particle-size distribution curves of the algorithm-generated model and the real soil are shown
in Fig 4.42. The particle-size distribution of the 2D model agrees with that of the real soil sample.
The average error was 0.12%, and the maximum error was 0.49%, which occurred in the second
round of the particle insertion. Errors were considered small and acceptable. The void ratio of the
model was 0.625, close to the target of 0.650.

Particle Size Distribution Curve
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Fig 4.42 Comparison of particle-size distributions of the algorithm-generated 2D model and the real soil
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The curve describing the relationship between contact friction and the void ratio of the 2D model
is shown in Fig 4.43. The void ratio increased slightly along with an increase in contact friction.
Contact friction could not influence the model’s void ratio by much. This is due to the model
having a low coordination number of 1.79, indicating the soil was loosely packed. As such, since
inter-particle friction relies on particle contacts, it only had a limited impact on the soil’s density.

Curve of Relationship between Contact Friction and Void Ratio
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void ratio (after deposition)
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Fig 4.43 The relationship between contact friction and void ratio of 2D deposited model

The result of the 2D model deposition is shown in Fig 4.44. The model’s void ratio decreased from
0.625 to 0.403 after the deposition. Accordingly, the volume contracted from 18.75mmx18.75mm
to 18.75mmx14.32mm. The running time was 39 seconds.

Fig 4.44 The comparison of the original model (a) and the deposited model (b)
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The void ratio decreased sharply compared with the original value after the deposition simulation.
The main reason is that compared to the dense soil model, the loose soil model had more voids,
causing the void ratio to reduce considerably after the deposition. In addition, since 2D particles
were loosely packed and had a low coordination number, weak interlocking between the circular
particles contributed to the void ratio reduction.

The canvas size for the 3D model was set to 1500unitx1500unitx1500unit/18.75mmx18.75mm
x18.75mm, and the total volume of the model is 1500° + 1.65 = 2.05 x 10° unit’. The remaining
parameters used in the algorithm were the same as in the 2D model. Table 4.29 shows the percent
passing and the target volumes for every sieve. The 3D algorithm-generated model for well-graded
loose sand is shown in Fig 4.45 sieve-by-sieve.

Table 4.29 Finer percentage and target volumes of 3D particles for every sieve

Radius 268- 160- 136- 94- 80- 68- 40- 28- 20-14 14-8 8-4 4-3 3-2
unit 160 136 94 80 68 40 28 20

Mass 10% 8% 16% 16% 14% 14% 9% 5% 3% 2% 1% 1% 1%
percentage

for each

sieve

Target 2.05 16.4 3.28 328 2.87 2487 1.85 1.03  0.615 0410 0205 0205 0.205
volume
x 103 unit®

vo

(a) Poisson round of 3D particles insertion

(b) First round of 3D particles insertion
Fig 4.45 3D model generation for loose sand
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(g) Sixth round of 3D particles insertion (h) Seventh round of 3D particles insertion
Fig 4.45 (Continued) 3D model generation for loose sand
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(1) Eleventh round of 3D particles insertion

(m) Twelfth round of 3D particles insertion
Fig 4.45 (Continued) 3D model generation for loose sand
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The details of the 3D model are shown in Table 4.30. There were 835,674 particles in total in the
model, and the running time was 105,508 seconds. The generation of particles belonging to the
smallest opening sieve was time-consuming, accounting for roughly 30% of the running time.

Table 4.30 Details of 3D particle packing

Round of Opening of Mass Ideal mass Finer Ideal finer Percent

particles sieves gx107? gx10? percentage percentage difference

insertion mm

Poisson 3.35-2 68.24 65.15 100% 100% 0
1 2-1.7 52.51 52.12 89.62% 90% 0.38%
2 1.7-1.18 105.71 104.25 81.64% 82% 0.36%
3 1.18-1 104.77 104.25 65.56% 66% 0.34%
4 1-0.85 91.62 91.22 49.36% 50% 0.64%
5 0.85-0.5 91.25 91.22 35.70% 36% 0.3%
6 0.5-0.355 58.68 58.64 21.82% 22% 0.18%
7 0.355-0.25 32.58 32.58 12.90% 13% 0.1%
8 0.25-0.18 19.55 19.54 7.94% 8% 0.04%
9 0.18-0.106 13.03 13.03 4.97% 5% 0.03%
10 0.106-0.053 6.52 6.52 3.00% 3% 0
11 0.053-0.038 6.53 6.52 2.00% 2% 0
12 <0.038 6.62 6.52 1.00% 1% 0

The particle-size distribution curves of the algorithm-generated model and the real soil sample are
shown in Fig 4.46. The particle-size distribution of the 3D model compares well with the real soil
sample. The average error was 0.20%, and the maximal error was 0.64%, which occurred in the
fourth round of particle insertion. Differences were regarded as acceptable. The void ratio of the
model was 0.635, close to the target of 0.650.

percentage finer

0,2 1

0,0

Particle Size Distribution Curve

—a— real soil data

—&— 3D model

void ratio of real soil = 0.650
void ratio of 3D model = 0.635

1 0,1

grain size (mm)

0,01

Fig 4.46 Comparison of particle-size distributions of the algorithm-generated 3D model and the real soil
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The curve that presents the relationship between the void ratio of the deposited model and contact
friction is shown in Fig 4.47. The void ratio first increased as contact friction rose but remained
roughly constant after contact friction exceeded 35°. Contact friction of 35° can be considered the
threshold point. Setting contact friction higher than this point ensures particle packing deposition
results only in a minor reduction in void ratio. The coordination number of the 3D particle
assembly was 4.80, which is greater than 4, indicating the particles were tightly packed (Masanobu
1977). As such, inter-particle friction could be used to adjust the void ratio.

Curve of Relationship between Contact Friction and Void Ratio
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Fig 4.47 The relationship between contact friction and void ratio of 3D deposited model

The results of the 3D model deposition simulated by Yade are shown in Fig 4.48. The contact
friction was set to 45°. The void ratio of the deposited model slightly decreased from the original
value of 0.635 to 0.633. The model’s volume correspondingly shrank from 18.75mmx18.75mmx
18.75mm to 18.75mmx18.75mmx18.725mm. The running time was 548 seconds.
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(b)
Fig 4.48 The comparison of the original model (a) and the deposited model (b)

4.3 Error Analysis

The differences in the volume of particles belonging to the large sieves and the resulting void ratio
variations in the 2D deposited models lead to errors between the algorithm-generated models and
actual soils.

In 2D models, generating particles belonging to large-opening sieves is likely to result in errors.
Errors were typically caused by the considerable volume of large sieve particles that led the total
soil volume to exceed the target beyond the acceptable tolerance of 2% after the last particle was
inserted. However, without this particle, the volume would have fallen short of the target. In 3D
models, the overshoot could usually be minimized by shrinking radius ranges using recursion, as
described in Section 3.4.3. However, in some cases, the particle volume still surpassed the target
even when the algorithm shrank the radius range or set it equal to the minimum value. This problem
most likely occurs when the individual volume of particles is large, and the difference between
two sieve sizes is narrow, but particles account for a small percentage of the total mass. Adjusting
the total volume with a narrow range of radii and large individual particle volumes is challenging,
hence the emergence of errors.

Errors caused by volume overshoots are analyzed as follows:

a) In the 2D pure sand sample, the average error was 1.44%. The maximum error was 2.6%, and
it occurred when the algorithm generated particles for the largest sieve. There were five circular
particles in this sieve in the model, and their radii were all reduced to the minimum value in the
radius range. Once the algorithm inserted the last particle for this sieve, the volume considerably
exceeded the target. However, the volume would not have reached the target had the last large
particle not been inserted. In the 3D model, the average error was 0.29%, and the maximum error
was 0.58%. They were deemed acceptable, and the recursion method to rerun the particle insertion
process with a reduced radius range could decrease the particle volume to an acceptable level.

b) In the 2D soil mixture sample, the average error was 0.78%, and a maximum error of 1.97%
occurred when particles were created for the largest and second-largest sieves. The individual
volumes of particles in these two sieves were considerable. In contrast, they only accounted for 5%
of the total volume of the largest sieve particles and 2% of the second-largest sieve particles. As
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such, the particle volume could easily exceed the target. Using the recursion to shrink the particle
radii, the algorithm set the radii of particles in these two sieves as the smallest value in the radius
ranges, but the overshoot still existed. In the 3D model, the average error was 0.06%, and the
maximum error was 0.07%. Both were considered acceptable.

¢) In the 2D model of gap graded soils, the average error was 0.06%, and the maximum error was
0.12%, and it occurred in the third round of particle insertion. Due to the large fractions of particles
in the first two sieves, with the particles in the largest sieve accounting for 17% of the total and
those in the second-largest sieve accounting for 31% of the total, reducing the particle radius could
adjust the volume to ensure errors were within the acceptable limit. In the 3D model, the average
error was 0.23%, and the maximal maximum error was 0.75%, which occurred in the first round
of the particle insertion. Errors in the 3D model were slightly higher than in the 2D model, and
this is attributed to the fact that the particle volume in the largest sieve surpassed the target. There
were six spherical particles in the largest opening sieve, and their radii were reduced to the smallest
value of their radius range by the algorithm. The recursion used in the algorithm to reduce the
radius range was not able to minimize the error.

d) In the 2D uniformly graded soil sample, the mean error was 0.39%, and a maximum error of
0.55% occurred in the first round of particle insertion. The main reason is that the individual
particle volume in the first round of particle insertion was significant. In contrast, the percentage
of particles in this sieve was relatively small, representing only 10% of the total volume. The
sizeable individual particle volume combined with a small percent passing for this sieve caused
the volume to easily exceed the target. In the 3D model, the average error was 0.47%, while the
maximum error was 0.78%. They were deemed small and acceptable.

e) In the 2D model of the dense soil sample, the average error was 0.81%, while a maximum error
of 3.34% occurred when particles belonging to the largest sieve were generated. This was caused
by the fact that the largest opening sieve was 3.35-2mm, and the individual particle volumes in
this sieve were considerable. In contrast, particles in this sieve accounted for only 10% of the total
soil mass. Errors are likely to occur when the individual particle volume is large while the percent
finer for this sieve is small. The radii of all the particles in this sieve were reduced to the minimum
value in the radius range by the algorithm, but the overshoot could not be minimized. Thus, the
volume exceeded the target when the algorithm inserted the last particle, however removing this
particle would have caused the volume not to reach the target. In the 3D model, the average error
was 0.21%, and the maximum error was 0.58%. The errors were considered acceptable.

f) In the 2D loose soil sample, the average error was 0.12%, and the maximum error was 0.49%.
For the 3D model, the average error was 0.20%, and the maximal error was 0.64%. By shrinking
the particle radius range in the large sieves, the algorithm ensured that the particle volumes of each
sieve did not surpass the target by more than 2%. The errors were acceptable.

Another significant difference between 2D algorithm-generated models and real soils is the void
ratios of the particle packings after the deposition process. For 3D models, the critical value of
contact friction ensures that the void ratio of the deposited model reduces slightly and is close to
the original value after the model deposition. The main reason is that the coordination numbers of
spherical particle assemblies were generally above 4, which means 3D models were dense and
stable. Tightly packed particles mean inter-particle friction played an essential role in the model
density during the deposition process. As such, contact friction could be used to adjust the model’s
void ratio. Additionally, the high coordination number of most 3D models indicate that particle
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interlocking prevents particle packings from collapsing

However, since the coordination number of 2D models was generally around 2, contract friction
could not be used to control the void ratio as it was in 3D models. In addition, the particle-size
distribution also influenced the void ratio reduction. Small particles could easily slide over each
other and fill nearly all the void spaces between large particles in models with a broad radius range
or a high percentage of small sieve particles or models simulating poorly graded or loose soils,
causing the void ratio to decrease sharply. The error analyses for the void ratio reduction in the 2D
models after the deposition process are detailed below:

a) For the 2D pure sand model, the void ratio decreased sharply after the model deposition. This
is attributed to the fact that the model had a pre-deposition void ratio of 0.531, indicating that it
was loosely packed. Additionally, the model consisted of a large number of particles belonging to
the three smallest sieves, which accounted for 17.33% of the total mass. As such, a large number
of small particles slid into void spaces between large particles during the deposition process,
causing the void ratio to decrease dramatically.

b) For the 2D mixture soil model, the void ratio decreased considerably to 0.300 from the original
value of 0.523 after the model deposition simulation. The model’s particle-size distribution played
a significant role in reducing the void ratio. Compared to the pure sand sample, the gravel-sand
mixture had a more comprehensive radius range. In addition, the particles of the first four largest
sieves only accounted for 10% of the total mass, meaning that small particles accounted for a high
percentage of the total mass. Therefore, it can be concluded that a large number of small particles
filled nearly all the voids, causing the void ratio to decrease considerably.

c) For the 2D model of the gap graded soil sample, the void ratio decreased considerably to 0.373
after the model deposition process compared with the original value of 0.532, which is the most
significant reduction in all the 2D examples. The main reason is that the percent finer of the three
largest sieves accounted for 85% of the total mass. Thus, the positions of the large particles can
essentially decide the void ratio. Small particles filled the voids between the large particles during
the deposition process and hardly affected the void ratio. In addition, interlocking between the
particles in well-graded soils is stronger than in poorly-graded ones (Khan 2012). Thus, weak
interlocking in gap graded soils contributed to the void ratio reduction.

d) In the 2D uniformly graded soil sample, the model’s void ratio decreased considerably to 0.380
after the deposition process compared with the original value of 0.779, which is the most
significant reduction in all the 2D examples. This is attributed to the particle size distribution.
Indeed, the high void ratio of the original model indicates the particles were loosely packed, and
many voids existed in the model before the deposition simulation. Additionally, particles
belonging to the smallest sieve accounted for a high proportion of the total mass (13.98%). It can
be concluded that a considerable number of small particles filled nearly all the voids after the
model was deposited, leading to a considerable void ratio reduction.

e) In the 2D dense soil example, the void ratio decreased moderately to 0.290 from the original
value of 0.343 after the deposition process. Compared to the other 2D model deposition
simulations, this void ratio reduction was the smallest. This is mainly due to the tight packing of
the particles before the deposition simulation. Additionally, the proportion of particles in the last
five smallest sieves was small, accounting for just 8% of the total mass. Accordingly, the small
particles could not fill all the voids, leaving many empty spaces in the post-deposition model.
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Moreover, the coordination number of the dense soil model was the highest of all the 2D models,
indicating the relatively strong interlocking compared to the other 2D models helped prevent the
particles from sliding. Thus, the void ratio did not reduce considerably.

f) The void ratio decreased sharply to 0.400 compared with the original value of 0.625 after the
model deposition in the 2D loose soil example. This occurred because there were many voids in
the loose soil sample, causing the particle assembly to collapse and its void ratio to be dramatically
reduced following the deposition process.

4.4 Conclusion

This chapter provides examples aiming to simulate real soils to demonstrate the usability of the
proposed algorithm. The 3D particle assembly generated by the algorithm showed excellent
agreement with the actual soil in terms of the particle-size distribution and the void ratio. In 3D
models with a high coordination number and a tight particle packing, contact friction can help
adjust void ratios to ensure the deposition process only triggers a minor void ratio reduction. The
particle-size distributions of 2D models compare well with the real soils, but there were still errors
in the void ratios of deposited models. The primary sources of error are loosely packed 2D particles,
weak interlocking, and initial particle arrangement.
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Chapter 5 Conclusions and Future Work

5.1 Conclusion

This thesis proposes an algorithm to generate DEM models simulating the particle size distribution
and void ratio of actual soil samples. The resulting models provide more accurate simulation
results than currently available DEM software packages since the algorithm-generated models
closely replicate real-world conditions. The conclusions are summarized as follows:

a) The proposed algorithm can create 3D particle assemblies that closely simulate the particle-size
distribution and void ratio of real soils, thereby improving the accuracy of DEM simulations. It
can also generate models in 2D that compare well with the real soils in terms of particle-size
distribution, but the void ratios of the deposited models are significantly smaller than the target.

b) The algorithm can build particle assemblies sieve-by-sieve. The particle generation for the
largest opening sieve is based on Poisson Disk distribution, and then the void-filling process
creates particles belonging to the remaining sieves.

c) Particle validation enables determining whether a randomly selected point in a non-filled cell is
valid. The recursive call ensures that the algorithm generates particles based on the user-defined
soil data, reducing the error. Omitting fully covered cells before the particle insertion reduces the
algorithm running time.

d) The model deposition simulation is done by Yade. Due to the closely packed particles in the 3D
models, contact friction can help to adjust the void ratio of deposited models. There is a critical
value of contact friction that can be used to ensure the model’s void ratio is only slightly reduced
by the deposition process. However, in 2D models, the void ratio decreased considerably after the
model deposition. This is primarily caused by weak interlocking, lower coordination numbers,
particle-size distribution, and initial void ratio.

5.2 Limitations

Although the DEM models created by the proposed algorithm are similar to real soils in terms of
particle-size distributions and void ratios, there are two limitations in this study.

The first limitation is that building 3D models is time-consuming even though several acceleration
measures were introduced. There are two potential solutions. The first consists in running the
algorithm using a machine with a greater computational capacity. All the computations in this
thesis were performed using an AMD Ryzen™ 7 4800H with 7nm FinFET. Recently, a CPU with
Snm FinFET with excellent calculation speed has been introduced. Given the speedy development
of chip manufacturing technologies, computational power will undoubtedly increase. Another
alternative is to simplify the models. The algorithm generates particles sieve-by-sieve. Shrinking
the number of sieves that the particle packing contains, such as omitting particles of small-opening
sieves, can sharply decrease the number of particles in the model and the running time. The process
of particle insertion for the smallest-opening sieve is the most time-consuming, accounting for
roughly 30%-40% of the total running time. The generation of particle assemblies without the
smallest sieve particles substantially saves time but decreases the accuracy of the simulation results.

The second limitation is errors generated by the algorithm in 2D models. They may occur in two
cases. The first one is that the void ratio of the 2D deposited model reduced significantly compared
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to the original model and the target void ratio. This is attributed to the interlocking phenomenon,
the particle size distribution, the model’s pre-deposition void ratio, and the rounded shape of the
particles. Particles in 2D models were not as closely packed as in 3D models. Thus, contact friction
cannot be used to adjust the void ratio. The second case is that errors are likely to arise when
circular particles belonging to the large opening sieves are generated. Due to their large volumes
of individual particles, the total volume may surpass the target by more than 2%. Shrinking the
radius range can reduce the particle volume, but the overshoot may still persist.

5.4 Future Work

The innovations of DEM simulation are mainly focused on building models that replicate actual
soil data with a high degree of fidelity and more accurate simulations of forces between particles.
More research could be done in modeling particles of various shapes and assemblies of such
particles with a particle-size distribution and a void ratio that compare well with actual soil data.
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