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Abstract

A recommender system for scientific datasets and analysis pipelines

Mandana Mazaheri

Scientific datasets and analysis pipelines are increasingly being shared publicly in the

interest of open science. However, mechanisms are lacking to reliably identify which

pipelines and datasets can appropriately be used together. Given the increasing

number of high-quality public datasets and pipelines, this lack of clear compatibil-

ity threatens the findability and reusability of these resources. We investigate the

feasibility of a collaborative filtering system to recommend pipelines and datasets

based on provenance records from previous executions. We evaluate our system using

datasets and pipelines extracted from the Canadian Open Neuroscience Platform,

a national initiative for open neuroscience. The recommendations provided by our

system (AUC= 0.83) are significantly better than chance and outperform recommen-

dations made by domain experts using their previous knowledge as well as pipeline

and dataset descriptions (AUC= 0.63). In particular, domain experts often neglect

low-level technical aspects of a pipeline-dataset interaction, such as the level of pre-

processing, which are captured by a provenance-based system. We conclude that

provenance-based pipeline and dataset recommenders are feasible and beneficial to

the sharing and usage of open-science resources. Future work will focus on the col-

lection of more comprehensive provenance traces, and on deploying the system in

production.
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Chapter 1

Introduction

Traditionally, scientific research was conducted in the research or academic insti-

tutions and was kept there. That was closed science, where after the findings were

published, the data were often inaccessible to others due to privacy issues and own-

ership of the resources. This made data difficult to find and access and made further

research on that subject slower. For such reasons, Open Science emerged to pre-

pare and release the data to the whole scientific community worldwide, so they can

collaborate in research and discovery, which leads to faster growth of findings.

Open Science is an umbrella term covering open dissemination of data, manuscripts,

software, materials, methodologies, and other outputs that scientists produce in their

research. Open Science also aims to make the scientific process more transparent and

accessible. Open Science research allows others to collaborate and contribute to the

study using freely available research data and all the resources in the research process,

which facilitates the reuse, redistribution and reproduction of the research outcome

and its underlying data and methods [10].

In Open science, it is essential to share the resources correctly and make the

research findings reproducible, since due to shortcomings in many current methods for

sharing and capturing data, “approximately 50% of all research data and experiments

are considered not reproducible, and the vast majority (likely over 80%) of data never

makes it to a trusted and sustainable repository” [4].

Moreover, Open Science is increasingly important in the current science world,

beneficial for scientists, patients, and the public and has emerged as a framework

to improve the quality of scientific analyses. There are several reasons why Open
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Science is necessary. The findings and output of publicly-funded scientific research

would be more available and accessible. Therefore the scientific works would be

more transparent and reproducible. Also, the public implication would be possible in

conducting the research and might impact the results. Also, open peer-review would

be possible, encouraging broader and more transparent review processes by extending

knowledge exchange between researchers [75, 55].

There are different definitions for the concerns and principles required to follow

in Open Science. As mentioned above, Open Science encompasses a variety of areas,

including open access to publications, open research data, open-source software/tools,

open workflows, open educational resources, and alternative methods for research

evaluation, including open peer-review [49]. There is a set of five broad concerns as

“schools of thought”; defined by Fecher & Friesike in 2014 [11], to be considered to

implement these practices.

These concerns are represented in Figure 1: “Democratic school” believes scholarly

knowledge (including publications and data) should be available freely for all. The

second one is “Pragmatic school,” which aims to make scholarly methods transparent

and concerns with efficient knowledge creation through collaboration and critique.

The third is “Infrastructure school”, mentioning “efficient research requires readily

available platforms, tools and services for dissemination and collaboration”[20]. The

fourth is “Public school”, claiming that the public should collaborate in research

and that the scholarship should be more readily understandable through less formal

communicative methods. The last one is “Measurement school” that believes it is

required to define alternative metrics to track and measure the impact of scholarship.

Figure 1: Five Open Science Schools of Thought. Figure reproduced from [11]

Wilkinson defines the following widely referred definition for principles of Open
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Science in 2016 as FAIR principles [73] which claims that the research should be

Findable, Accessible, Interoperable, and Reusable for all users. Many of the currently

available platforms for sharing resources are trying to guarantee the FAIR principles.

Each one of the principles in FAIR is explained in the background chapter of this

thesis.

Open Science affected almost all scientific research studies, particularly neuro-

science [3], our main application domain of interest. Open science practices can

help to address many challenges in neuroscience. For instance, the answer to many

key neuroscience questions can be found when the research findings and outputs are

openly shared. In this case, people can also collaborate and help discover innovative

solutions for the treatment of brain-related illnesses.

The resources to be shared in neuroscience include the datasets consisting of raw

data, pre-processed data or the result of analysis applied to raw or pre-processed data,

which should be shared on data sharing platforms. The data-sharing platforms in neu-

roscience and other health-related areas are mostly following the principles defined

by the National Institutes of Health (NIH) [45]. According to these principles, “Data

should be made as widely and freely available as possible while safeguarding the pri-

vacy of participants, and protecting confidential and proprietary data”. LORIS [66]

is an open-source framework for storing, processing and sharing behavioural, clinical,

neuroimaging and genetic data. Brain-CODE [70], also, is “A Secure Neuroinformat-

ics Platform for Management, Federation, Sharing and Analysis of Multi-Dimensional

Neuroscience Data”.

The data itself is not enough in neuroscience research studies; there are a set of

neuroimaging tools and pipelines for processing the data that should be shared as

well. Therefore, to guarantee open science principles in neuroscience, it is required to

use platforms for sharing neuroscience datasets and neuroimaging tools and pipelines

and the possible outcome of conducted analysis. There are many neuroscience data

and tool sharing platforms such as Canadian Brain Research Strategy (CBRS) [63],

NeuroImaging Tools & Resources Collaboratory (NITRC) [67], OpenNeuro [40] and

Canadian Open Neuroscience Platfrom [1]. Three of these platforms are explained in

Chapter 2 of this thesis: NITRC, OpenNeuro, and CONP.

Although there are many platforms for data and tool sharing in neuroscience, it

is still required to have a system to help users bridge the datasets and tools together
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when they conduct an analysis. In the best scenario, the users can see the outcome

of analysis applied on data in current platforms. However, providing a list of possible

tools/pipelines for a data/dataset will facilitate the user’s analysis process and prevent

the confusing and time-consuming process of selecting an appropriate tool/pipeline

for the candidate data/dataset. The same scenario would be helpful when the user

needs to select data/dataset to execute a candidate tool/pipeline.

The aim of this thesis is to investigate the feasibility of implementing a recom-

mender system to identify the compatible tools/pipelines and data/datasets based on

the available records from previous executions. Meaning that, for a given dataset, we

would provide a list of compatible pipelines which are supposed to end in successful

execution process. Conversely, for a given pipeline a set of compatible datasets would

be provided.

There is also a field of research called “dataset search” [7] which provides rec-

ommender systems or search engines to find the most related datasets based on the

searched key-words. These systems are mostly based on semantic analysis, however,

we focus of compatibility of datasets with the given neuroimaging pipelines which

also depend on more low level syntactical and infrastructural details.

Consistently with our motivating use case, we focused on the available neuro-

science tools/pipelines and data/datasets (from now on ‘pipeline’ and ‘dataset’) in

the Canadian Open Neuroscience Platform (CONP) available at https://portal.

conp.ca/index. The pipelines in CONP are described in Boutiques [14] which is a

software library for sharing tools according to the FAIR principles. CONP has dis-

tributed datasets in neuroimaging, transcriptomics, genomics, and other related data

modalities. More details about the CONP and its available pipelines and the dataset

are provided in Chapter 2.

Recommender systems are widely used and increasingly successful in satisfying

the users by suggesting the items they might like and helping them select the better

choices faster. There have been many successful works on recommender systems such

as Netflix [5] for movie recommender and Amazon [61] as product recommenders.

There are two main strategies for recommender systems. The first one is Collaborative

Filtering [50] which proposes recommendations based on the user-item interactions,

recommending an item to a user if similar users like it. The other approach is Content-

based Filtering [47] which recommends a user items that are similar to their previous
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choices.

It is important to note that the goal of our recommender system is to identify

the compatible datasets and pipelines, which is slightly different from the classical

use of recommender systems which recommend the most relevant item to a user.

This is a restriction of the general concept of recommender system that would adjust

to the users’ preferences. The ultimate goal of this project is to reach that broad

recommender system and consider much more detailed information. However, in this

first study we will focus on compatibility that would be a first step toward helping

users in their neuroimaging analysis process.

We focused on collaborative filtering for our project to recommend neuroimaging

data/datasets and tools/pipelines given the other. In this case, we have a database

of the previously executed pipeline-dataset pairs and apply a collaborative filtering

model to get the recommended items. We did not select a content-based approach

for the recommender system since, in this case, there should be accurate and com-

prehensive descriptions for all datasets and pipelines.

The descriptions for datasets and analysis pipelines are supposed to be available

through their metadata which in many cases are generated manually. Some auto-

mated approaches exists to generate metadata [36] for the documents and some types

of resources in studies .However, to the best of our knowledge, in neuroscience, such

automated metadata techniques have not been applied widely, although it would be

an interesting topic to explore in another research.

This thesis is organized as follows. In Chapter 2, we explain the details about the

required components and background knowledge. Chapter 3 explains the Canadian

Open Neuroscience Platform (CONP). Chapter 4 presents the recommender system

proposed in this thesis, which was submitted to the 16th Workshop on Workflows in

Support of Large-Scale Science (https://works-workshop.org/). Finally, Chapter

5 expands the conclusions and explains more about the possible future works on this

project.
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Chapter 2

Background

In this chapter, we expand the explanations about the concepts and required

knowledge for this thesis. First, we expand open-science and its principles since the

resources and infrastructures we employed in the thesis are compatible with open-

science criteria. In section one, we explain the FAIR principles [9] which are defined

for open science, and how open science can be helpful for researchers and scientists.

We will then explain that open science is highly noticeable in neuroscience in section

two and will write about some of the existing data and tool sharing platforms that

attempt to guarantee FAIR principles [73]. Recommender systems is a key concept

for our project. Therefore, in section three, we will explain the recommender systems,

the leading strategies and applications.

2.1 Open Science

Open science is a collection of actions designed to make scientific processes more

transparent and results more accessible. Its goal is to build a more replicable and

robust science [62]. Open science means that all steps in scientific research (including

publications, data, physical samples, and software) should be publicly accessible to all

levels of an inquiring society, amateur or professional [74]. In 2016, the ‘FAIR Guid-

ing Principles for scientific data management and stewardship’ [73] were published

and intended to provide guidelines to improve the Findability, Accessibility, Inter-

operability, and Reusability of digital assets to promote open science. Importantly,

these principles apply to ‘data’ in the conventional sense and to the algorithms, tools,
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and workflows that led to that data. All scholarly digital research objects (from data

to analytical pipelines) benefit from applying these principles since all components

of the research process must be available to ensure transparency, reproducibility, and

reusability.

The following explanations about the definitions of FAIR principles are derived

from the FAIR website [9].

Findability

Finding the data is the first step of reusing them so metadata and data should be

easy to find for both humans and computers, to achieve that, the metadata should

be machine-readable for automatic discovery of datasets and services. Findability

includes four principles:

F1. (Meta)data are assigned a globally unique and persistent identifier

Data or metadata needs to be assigned a globally unique and persistent identifier

to remove ambiguity, make findability more feasible and help others for the citation

when they reuse the data. Some data repositories will automatically generate such

identifiers for the deposited datasets

F2. Data are described with rich metadata

Rich metadata means that the description of the data should include information

about the context, quality and condition, or characteristics of the data therefore,

users will be able to find data based on the information provided by their metadata,

even without the data’s identifier.

F3. Metadata clearly and explicitly include the identifier of the data they

describe

This principle is critically important since usually the metadata and the data itself

are in separate files. Therefore the association between them should be made explicit

by mentioning a dataset’s globally unique and persistent identifier in the metadata.

7



F4. (Meta)data are registered or indexed in a searchable resource

To ensure ‘findability,’ the data and resources should be discoverable using index-

ing which will be achieved by F1-F3.

Accessibility

After finding the data, the user needs to know how to access or get the data.

There are two required principles to make it happen :

A1. (Meta)data are retrievable by their identifier using a standardized

communications protocol

To make the (meta)data retrievable, the protocol is required to guarantee the

following principles:

A1.1. The protocol should be open, free, and universally implementable to

facilitate data retrieval so that anyone with a computer and an internet connection

can access at least the metadata.

A1.2. The protocol should allow for an authentication and authorization pro-

cedure, where necessary. Meaning that accessibility does not necessarily mean ‘open’

or ‘free,’ and it is required for the data repositories to provide the conditions or in-

structions under which the data will be accessible, creating an account in repositories

for the data user, for instance.

A2. Metadata are accessible, even when the data are no longer available

Accessibility of metadata is related to the registration and indexing issues de-

scribed in F4.

Interoperability

The data usually need to be integrated with other data interoperate with appli-

cations or workflows for analysis, storage, and processing. To make it happen, it is

required that:

8



I1. (Meta)data use a formal, accessible, shared, and broadly applicable

language for knowledge representation

“Interoperability typically means that each computer system at least has knowl-

edge of the other system’s data exchange formats” [9]. To make this happen, it is

required to use commonly used controlled vocabularies, ontologies, and a good data

model to describe and structure (meta)data.

I2. (Meta)data use vocabularies that follow FAIR principles

These vocabularies are used to describe datasets and need to be documented using

globally unique and persistent identifiers.

I3. (Meta)data include qualified references to other (meta)data

It should be specified in the metadata if one dataset builds on another dataset,

additional datasets are required to complete the data, or complementary information

stored in a different dataset. In particular, the scientific links between the datasets

need to be described.

Reusability

To achieve the final principle in FAIR, it is required that:

R1. (Meta)data are richly described with a plurality of accurate and

relevant attributes

It would be much easier to find and reuse data if metadata includes many labels.

R1 is related to F2; however, R1 means if the user or machine can decide if the data

is actually ‘useful’ in a particular context. Therefore, metadata should richly describe

the context under which the data was generated.

R1.1. (Meta)data are released with a clear and accessible data usage license,

R1.2. (Meta)data are associated with detailed provenance

R1.3. (Meta)data meet domain-relevant community standards

9



2.2 Open neuroscience

In the world of neuroscience, many attempts have been made to simplify repro-

ducible research, specifically in neuroimaging and functional Magnetic Resonance

Imaging (fMRI) [59]. Also, such platforms need to satisfy FAIR principles. Among

the existing platforms for open neuroscience, we introduce OpenNuero, NeuroImag-

ing Tools & Resources Collaboratory (NITRIC) and Canadian Open Neuroscience

Platform (CONP).

2.2.1 OpenNeuro

OpenNeuro [40, 15], formerly known as OpenfMRI [48], is a free online platform

for storing, sharing and analyzing neuroimaging data [15]. Researchers can upload

their data to share it with others and download others’ shared data; also, they can

run analysis pipelines on the data.

Uploading and sharing data

OpenNeuro only accepts datasets compatible with the Brain Imaging Data Struc-

ture (BIDS) [17], a standard for organizing and describing MRI datasets. Also, all

datasets will be validated to be BIDS compatible before being uploaded to Open-

Neuro. In OpenNeuro, users can specify whether their data will be accessible publicly

or not; however, the user agrees that the uploaded data will be publicly accessible

after 18 months. After uploading the data on OpenNeuro, the users can change the

dataset, change metadata, apply versioning on the dataset or make copies of the

dataset to guarantee the reproducibility of analysis.

The users can share their uploaded data with other colleagues or researchers and

specify the level of access ranging from viewing to administration.

Running analysis on the data

The most exciting feature of OpenNeuro is that the users are able to run fur-

ther analysis on the data and share the results of that. The user can select one of

the containerized analysis pipelines among all available BIDS Apps to apply to the

dataset. The only applicable tools are BIDS Apps [16] since, as mentioned above,

OpenNeuro accepts only BIDS compatible datasets. After selecting a BIDS App, the

10



user can set parameters and specify if the analysis should run on the whole dataset

or on specific subjects or sessions. Then the user can download all the generated

results, use them for higher-level costume analysis and will have access to all logs for

the executed analysis and will be able to debug the process if it has failed.

2.2.2 NeuroImaging Tools and Resources Collaboratory (NI-

TRIC)

The Neuroimaging Informatics Tools and Resources Collaboratory (NITRIC) [26]

provides a triad of services include a Resources Registry (NITRIC-R), Image Repos-

itory (NITRIC-IR) and a cloud Computational Environment (NITRIC-CE) to meet

the needs of the neuroimaging researchers.

NITRIC-R

Resources, in this case, are broadly defined to include software, hardware, data,

websites, community organizations, etc. NITRC-R gives researchers better and more

efficient access to the tools and resources they need, better categorizing and orga-

nizing existing tools and resources, facilitating interactions between researchers and

developers, and promoting better use through enhanced documentation and tutorials,

forums, and updates.

Each NITRC project has a homepage that describes the resources, provides a

standard set of resource characteristics (i.e. keywords, license, dependencies, etc.),

and provides a standard set of links for the resources (i.e. download, documentation,

support, etc.). Each resource page is maintained by the resource administrator, who

is responsible for keeping it up to date. For every project, resource administrators

are free to enable/disable any functionality and redirect any content to other sources

pertinent to the resource developers’ needs. Visitors to the NITRC site can search

for resources based on keywords, free text and specific capabilities to find relevant

resources. Currently, there are more than 1200 registered tools and 43000 registered

users in NITRIC-R.
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NITRIC-IR

NITRC Image Repository offers a cloud-based federated neuroimaging data stor-

age system for sharing neuroimaging data in DlCOM and NIfTI formats. Currently,

it includes thousands of subjects and imaging sessions searchable across over a dozen

projects to promote the re-use and integration of valuable NIH-funded data.

The NITRC-IR is built on XNAT [39] and provides sharing infrastructure for im-

ages and related data that can be closely integrated with the NITRC-R resources in or-

der to better support, promote, and manage data sharing functions for NITRC-hosted

projects. NITRC-R projects can be associated with NITRC-IR (XNAT) ‘projects,’

which can be interlinked.

NITRIC-CE

The NITRC Computational Environment is a freely downloadable, virtual com-

puting cloud-based platform built upon a NeuroDebian operating system. NITRC-

CE preinstalls popular neuroimaging tools such as AFNI, ANTS, FreeSurfer, FSL,

C-PAC, and MRIcron into a standardized computational environment to help users

analyze their data quickly and easily, (for the complete list of tools, visit this page).

This environment can be deployed in the cloud (using Amazon Web Services Elastic

Compute Cloud (EC2) or the Microsoft Azure Cloud Computing Platform), or as a

virtual machine for local use. To run analysis, NITRIC-CE can access data through

NITRIC-IR, NITRIC-R, secure file transfer from outside sources, and file system

mounting of AWS S3 resources.

2.2.3 The Canadian Open Neuroscience Platform (CONP)

The Canadian Open Neuroscience Platform includes all the datasets and analysis

pipelines that we employed in our project for this thesis. I have contributed to the

technical development of CONP web platform and implemented some features there.

Also, I am a co-author in CONP paper which is under revision at Scientific Data [1].

Some of the figures or data in this section are derived from either the paper or the

website of CONP.

12

https://www.nitrc.org/plugins/mwiki/index.php/nitrc:User_Guide_-_NITRC-CE_Installed_Packages


Figure 2: Architecture of the Canadian Open Neuroscience Platform. The platform

is comprised of multiple tiers including: i) independent data infrastructure; ii) Meta-

data integration across tools and datasets via standard models (Biocaddie DATS,

Boutiques descriptors); iii) Data analysis on High-Performance Computing and; iv)

Web and command-line interfaces. The figure is reproduced from CONP paper.

2.3 Architecture of CONP

The Canadian Open Neuroscience Platform (CONP) provides an infrastructure

for the promotion of open-science workflows and the sharing of neuroscience data.

There are several open-source technologies integrated in CONP web portal to provide

extensible distributed federation of datasets, unified search capabilities for data and

software tools, the ability to run analyses either on High-Performance Computing

(HPC) infrastructures or locally.

Figure 2 illustrates the architecture of CONP and since we focused on the available

datasets and pipelines in CONP in our project, we explain the levels of this structure

in following.
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2.3.1 Data infrastructure

CONP employes different distributed data repositories with different infrastruc-

tures, access control requirements, APIs, and licensing such as domain-agnostic data-

stores (OSF, Zenodo, FRDR-DFDR), specific brain imaging repositories (LORIS,

XNAT, Brain-CODE), and the commonly used HTTP and FTP web protocols. Also,

CONP is extensible to any repository which allows access via programmatic web-

compatible interfaces.

2.3.2 Data integration

In the (meta)data integration layer, CONP leverages DataLad [24] as a backend,

GitHub to host the metadata, and enables uniform data search queries based on the

Data Tags Suite model [54]. Datalad is responsible for integration between datasets,

it is a software library for managing Git repositories referencing the data through

storing metadata, file URLs and hashes of data managed by git-annex. Therefore, a

DataLad dataset does not contain the data themselves, the actual datasets remain

stored remotely.

Also there is a crawling framework developed in CONP which manages the life cy-

cle of DataLad datasets on GitHub. Using this crawler as web platform, users are able

to upload datasets to the CONP without knowledge of Datalad or the GitHub work-

flow used in CONP. This crawler searches for CONP-tagged datasets and whenever

a new dataset is found creates a Datalad dataset for that, and updates the Datalad

dataset whenever a modification is detected in a dataset, and then updates the CONP

forked GitHub repository. Also generates DATS file with minimal information for a

dataset whenever the dataset does not have one.

CONP uses CircleCI as a dataset testing suite to periodically and continuously test

if datasets are available, installable by Datalad, and if data are accessible by testing

the download of a few files from the datasets. To detect possible issues, CircleCI

repeats such tests every four hours for all available datasets in CONP and provides

a continuous monitoring for them. Also, since CONP Datalad datasets are hosted in

GitHub, the integration with CircleCi would be transparent and more feasible.
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2.3.3 Analysis and tools

The analysis layer not only allows finding and downloading of tools, also allows

directly integrating tools into workflows and their execution on High-Performance

Computing (HPC) systems such as CBRAIN [60, 70]. All tools or pipelines available

in CONP are described in Boutiques, which is a software library for sharing tools

based on the FAIR principles. Through Boutiques library, the tools and pipelines

are described as JSON objects containing the specifications about input data, pa-

rameters, and output data. Boutiques descriptors are also linked to a Docker or

Singularity container image “where the tool and all its dependencies are installed

and configured for execution” [1]. Tools described by Boutiques can be published,

archived, and retrieved in the Zenodo and then assigned a DOI, which makes their

archives permanently findable.

2.3.4 Interface

All the technologies and methods used in CONP are described as a web portal [65]

on which the users can search for, download and upload datasets, tools or pipelines,

they are also able to lunch tools on their selected datasets using registered HPC

systems such as CBRAIN without requiring advanced computing skills.

Through the analytics available on web interface of CONP, we can see a summary

of available contents. As represented in Figure 3, the number of pipelines and datasets

has been increased in the last three years. There are currently 57 datasets in CONP,

as of July 2021. Each dataset is usually assigned a list of keywords and modalities

which describes the category of compatibility of the dataset, Figure 4 illustrates that

most of the datasets in CONP are ‘neuroimaging’.

Also, according to Figure 3, the number of pipelines has increased steadily in that

period of time. Currently there are 75 tools/pipelines which many of them come from

neuroscience or genomics research institutes. There are some tags assigned to each

tool/pipeline which describes its category of application, as illustrated in Figure 5,

pipelines are mostly ‘neuroinformatics’ and ‘mri’.
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Figure 3: Cumulative number of datasets and pipelines.

(Figure is copied form CONP portal at https://portal.conp.ca/analytics)
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2.4 Recommender Systems

Recommender systems or recommendation systems are included in the information

filtering systems which aim at providing suggestions for items to a user by predicting

the ‘rating’ or ‘preference’ a user would give to an item [23, 53]. These suggestions

might come from various decision-making processes, whether or not to buy an item,

listen to a piece of music or read an article. Also, ‘item’ is a general-purpose term

referring to what the system will recommend to its users. For instance, it can be a

software tool, news or magazine, and products to purchase. The definitions provided

in the rest of this section are mostly a summary of Chapter 9 of [50].

Currently, the recommender systems can be seen anywhere that a possible user

needs to choose an ‘item.’ From the most popular recommendation systems, we can

point to product recommendations, movie recommendations and news and article

recommendations. In product recommendations, online retailers such as Amazon are

increasingly attempting to attract and keep their users by suggesting more relevant

products that they might like to buy. This will lead to a win-win outcome, finding

relevant products for the users and increasing the revenue for the business owners.

Another application of recommender systems is movie recommendations such as

Netflix, which recommends to its users the movies or TV shows that they might

like based on many factors such as previously watched movies, the ratings (currently

‘like’ or ‘dislike’) given or the similar users’ choices. There are so many other factors

that help Netflix to provide good suggestions for its users. Another application of

recommender systems can be in news and articles in which the goal is to identify

articles that users would like to read based on what they have read before.

There are several technologies in recommender systems to find the best ‘item’ for

a ‘user’ that we can classify in two broad groups, Content-based and Collaborative

filtering [50]. A content-based recommender system focuses on an item/user profile

which describes a set of features and properties of that item/user. Then recommends

an item to a user if it is similar to the previous choices of the user. However, a

Collaborative filtering recommender system focuses on the relationship between users

and items; items will be recommended to a user if similar users prefer it.

Before going through detailed explanations of Content-based and Collaborative

Filtering recommendation approaches, we need to define the Utility Matrix and its

role in recommendation approaches.
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2.4.1 Utility Matrix

In the recommender systems, ‘user’ and ‘item’ are the terms used to represent

the two main classes of entities. The Utility Matrix is indexed with users’ ids on

one axis and items’ on the other and includes values assigned to each user-item pair,

representing the user’s preference for the item. In this case, values might represent

the item’s rating given by the user, 1-5 stars, for example. Usually, the utility matrix

is sparse, meaning that the rating value for most user-item pairs is ‘unknown,’ which

implies that there has not been explicit information about the user’s preference for

that item.

Figure 6 is an example in which the utility matrix represents the ratings (1-5) for

movies (HP1, HP2, and HP3 for Harry Potter I, II, and III, TW for Twilight, and

SW1, SW2 and SW3 for Star Wars episodes 1, 2, and 3) given by the users (A, B, C,

D). The blank units represent unknowns, in which the user has not rated the movie.

In practice, the utility matrices are mostly sparser than this matrix since a small

fraction of real users gives explicit feedback on items. The goal of the recommender

system is to predict the value for the blanks in the utility matrix.

Figure 6: A utility matrix representing ratings of movies on a 1–5 scale. Figure

extracted from Chapter 9 of [50]

The utility matrix is the most important requirement to generate a recommenda-

tion system. However, it is usually difficult to acquire data from users for the utility

matrix. There are two general approaches to gather data from users, first by asking

them to rate the items. For instance, asking them to rate after watching a movie or

buying a product. However, this this approach is not effective due to the fact that

users usually are not willing to provide responses, so the collected information might

be biased since it is provided by people who are willing to give ratings. Another
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approach would be data acquisition from users interactions and behaviour. For in-

stance, if a user buys a product, watches a movie, or reads an article, it represents

that they ‘liked’ that item. For this sort of rating the only value is 1 (for getting

user’s response) and the unknown pairs would be 0; in this case 0 is not lower that

1, it is no rating at all.

2.4.2 Implicit and explicit feedback data

Recommender systems rely on different types of input data which are catego-

rized as explicit feedback and implicit feedback. The explicit feedback which is more

convenient one, includes the ratings, or any other types of inputs which the users

have provided explicitly, such as the stars representing movie rating. However, ex-

plicit feedback is not always available and should be captured from investigating the

behavior of user which indirectly reflect their preferences such as purchase history,

browsing history, search patterns, or even mouse movements [22]. The majority of the

literature related to recommender systems are focused on explicit feedback, however,

in many practical situations it is required to consider the implicit feedback data.

There are some unique characteristics for implicit feedback data which prevent

the direct use of algorithms that are designed for explicit feedback. First, there is

no negative feedback, since the implicit data is based on user’s behaviours, it is not

possible to understand which items the user does not like. For example, not watching

a movie does not necessarily mean that the user does not like it, it probably means

that they did not know about that, or did not have access to that. In this case, the

user-item pairs that there is no gathered data for, usually the vast majority of the

data, are treated as “missing data” and will be omitted from the analysis.

Second characteristic is that implicit feedback data are noisy, meaning that the

user-item interactions do necessarily mean the user’s preference. For instance pur-

chasing might be as a gift, or the user might be unhappy after using that. Third,

numerical values in implicit feedback data describe the frequency of actions not user’s

preference, for instance, how many times a certain movie is watched by a user, or a

certain product is ordered by a user. In this case a larger value does not mean a higher

preference. “For example, the most loved show may be a movie that the user will

watch only once, while there is a series that the user quite likes and thus is watching

every week” [22].
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And finally, evaluation of implicit-feedback recommenders is more sophisticated

than for the explicit feedback. When the items are explicitly scored by the user,

clear metrics such as mean square error can be used to measure the success rate of

predictions. However,there are many factors to be considered for implicit feedback

such as the availability of the item, the repeat feedback, and the competition for an

item among others. For instance, the user might have to choose one program among

two of his/her favourite shows that will be played at the same time.

2.4.3 Content based

Content-based recommender systems focus on the item’s properties described in

its profile and then recommends a user the similar items to the ones they ‘liked’

before. The profile for an item or user is a set of properties or descriptions assigned

to item or user. Similarity between items will be obtained by measuring the similarity

between their profiles.

The item profile consists of item’s properties, there are different classes of items

and for each class of them the approach for collecting the properties is different. The

first and most convenient way of obtaining features is when the features are explicitly

assigned to the item. For instance, the movies usually are assigned with the number

of stars indicating the level of users’ preference, and other properties such as year of

production, name of director and actors and the genre. Another example can be the

products which usually are described by the manufacturer with relevant features.

There are other classes of items which the values of features are not immediately

apparent, such as documents. Documents, articles and web pages, consist of thou-

sands of words but do not tend to have readily available assigned information to be

used to find their topic. To characterize this class of items, it is required to remove

the stop words (such as ‘is’,‘they’) and then compute the TF.IDF score [51] for all

remaining words, the top n words with highest scores will characterize the document.

In content-based recommendation, there should be item profile and user pro-

file [50]. Item profile consists of feature-value pairs and user profile summarizes the

preferences of the user. There would be a feature matrix with columns that are fea-

tures, the values for features can be Boolean or numerical, each row represents an

item’s profile as a vector of its features. The user profile should represent the prefer-

ence of the user about items, which can be achieved by aggregation of the profiles of
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items which user has ‘liked’. Then for estimating the degree to which a user would

prefer an item, the cosine distance between the user’s and item’s vectors should be

computed, the less distance represents the more chance of preference.

2.4.4 Collaborative filtering

Collaborative filtering is one of the most successful approaches for recommender

systems which identifies new user-item associations by analyzing the relationships

between users and interdependencies among items (products) [29]. The fundamental

assumption of Collaborative Filtering is that users with similar preferences in the

past are likely to have similar preferences in the future [64]. “A major appeal of

collaborative filtering is that it is domain free, yet it can address data aspects that

are often elusive and difficult to profile using content filtering” [29]. There are three

main categories of Collaborative Filtering, Memory-based, Model-based and Hybrid

collaborative filtering (which combines Collaborative Filtering with other techniques).

In Memory-based Collaborative Filtering algorithms the assumption is that every

user is from a group of users with similar interests. Therefore prediction of preferences

of a new user on a new items can be produced by identifying the neighbors of that user.

Neighbor-based collaborative filtering (kNN) is the prevalent algorithm in this class.

Although memory-based Collaborative Filtering approaches are identified as easy-to-

implement and highly effective, they have many limitations including the fact that

user-item ratings should be stored in memory, adding a new items is sophisticated,

and the performance decreases when the data is sparse since the similarity values are

based on common items.

To overcome the limitations of memory-based collaborative filtering and providing

better performance, the model-based collaborative filtering was investigated [64, 31].

Model-based collaborative filtering techniques use the pure rating data to learn/train

a model which can later be used for predictions. In this class the model can be data

mining or machine learning algorithms. Also, since it is not required to have data

stored in memory, the prediction process can be fast and even using less data than

the original. Among the possible techniques, the Latent Factor based algorithms are

proven to be effective to address the scalability and sparsity challenges of collaborative

filtering tasks.

Among the techniques for latent factor models, some of the most successful ones
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are based on matrix factorization [29] which aims to extract meaningful latent con-

nections between users and items based on user-item rating patterns. Recommender

models based on Matrix factorization “map both users and items to a joint latent

factor space of dimensionality f , such that user-item interactions are modeled as

inner products in that space”. Each item i is associated with a vector of factors (fea-

tures) qi ∈ Rf which represents how much (positive or negative) this item contains

those factors; similarly, each user u is associated with a vector of factors(features)

pu ∈ Rf which measure the extent of interest the user has in items that are high on

the corresponding factors.

To learn the latent factors (pu and qi), more recent works suggested modeling based

on the known ratings, therefore, the regularized squared error should be minimized

on the set of known ratings:

min
q∗,p∗

∑
(u,i)εκ

(rui − qTi pu)
2

+ λ
(
‖qi‖2 + ‖pu‖2

)
(1)

where κ is the set of user-item pairs for which rui, the rating of item i by user u,

is available. Unknown elements of the utility matrix are predicted by the value of

qτi pu which represents the user’s overall interest in the item’s characteristics and is an

approximation of the rated value if item i by user u.

2.4.5 Evaluation of Recommender systems

To evaluate the result of the recommender engines, there are two classes of metrics,

statistical and decision support accuracy metrics [57]. In statistical accuracy metrics,

the predicted rating will be compared directly with the actual user ratings. Mean

Absolute Error (MAE), Root Mean Square Error (RMSE) and Correlation are usually

used as statistical accuracy metrics [23], also precision at k (prec@k) ”which counts

the number of relevant items in the top-k positions of a ranked list” is included in

this class of evaluation [38, 25].

However, the decision support accuracy metrics distinguish good items from those

items that are not good, like a binary operation. The popular measurements in

decision support include Receiver Operating Characteristics (ROC) and Precision-

Recall Curve (PRC), Precision, Recall and F-measure. We focussed on Receiver

Operating Characteristics (ROC) since we had a utility matrix of binary values and

needed to classify the predictions to fail or succeed.

24



Chapter 3

A Recommender System for

Scientific Datasets and Analysis

Pipelines

This chapter is under review at the 16th Workshop on Workflows in Support of

Large-Scale Science: Mandana Mazaheri, Gregory Kiar, Tristan Glatard, “A recom-

mender system for scientific datasets and analysis pipelines”. My contribution was

to implement the system, design and conduct all the experiments, analyse the data

and write the initial draft of the paper. The contribution of Gregory Kiar was to

provide input on the experiment design and editing the manuscript. And the contri-

bution of Tristan Glatard was to provide input on the experiment design, editing the

manuscript and overall guidance to the project .

3.1 Introduction

Open science has emerged as a framework to improve the quality of scientific anal-

yses, ideally leading to Findable, Accessible, Interoperable, and Reusable (FAIR [73])

datasets and analysis pipelines. In neuroscience, our main application domain of

interest, platforms have emerged to facilitate the sharing of datasets and pipelines,

including OpenNeuro [15], NeuroImaging Tools and Resources Collaboratory (NI-

TRC [26]), and the Canadian Open Neuroscience Platform [1]. However, while public

datasets and pipelines proliferate, researchers remain unassisted in creating relevant
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analyses from these resources that therefore remain largely underutilized. Identifying

the set of analysis pipelines that may be relevantly applied to a given dataset, or

conversely the list of datasets that may be processed by a given pipeline, remains

challenging. In this paper we investigate the development and use of recommender

systems to address this issue.

The past decades witnessed the adoption of recommender systems as the major

technology to help customers navigate the abundant product offerings of online retail

platforms. Two main recommending strategies emerged: content-based strategies,

which match content-rich item profiles with user profiles [47], and collaborative filter-

ing, which recommends items to a given user based on those selected by users with

similar preferences [50]. Both strategies have been successfully applied and have their

own strengths and weaknesses.

While these techniques have largely been employed in the space of retail con-

tent delivery, we evaluate the feasibility of matching scientific pipelines and datasets

using existing recommender system techniques. We focus on collaborative filter-

ing approaches, since content-based methods would require extensive annotations

about pipelines and datasets which are not broadly available despite on-going ef-

forts [19, 56, 54]. However, collaborative filtering requires an affinity measure between

users and items. To define such a measure between pipelines and datasets, we rely

on past execution outcomes (e.g. exit status) available through provenance records.

The compatibility of a pipeline with a dataset depends on semantic, syntactic,

and infrastructural factors. Semantic factors refer to the content of datasets and

analyses. For instance, a pipeline developed for the segmentation of brain Magnetic

Resonance Images (MRIs) would not produce meaningful results on other image types.

Syntactic factors refer to file formats and dataset organization. For instance, brain

images are commonly stored using the NIfTI [34] or MINC [72] formats and pipelines

developed to ingest one format may not apply to others. In addition, the multiple

files and directories composing a dataset are increasingly structured using the Brain

Imaging Data Structure (BIDS [18]) which is required by some pipelines while other

ones use their own structure or neglect structure entirely and require explicit pointers

to specific files. Finally, infrastructural factors refer to the availability of pipelines

and datasets which can be functionally deployed. For instance, some pipelines may

require the loading of an entire dataset in memory, which may not be feasible for large
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datasets. All these levels must be considered in pipeline or dataset recommendations.

Provenance is a key concept in computational analyses, referring to the detailed

description of data transformations. Provenance records typically include information

about the input data, the analysis software and parameters, the execution context

and finally, the execution outcomes. In neuroimaging, the NeuroImaging Data Model

(NIDM [41]) project proposed domain-specific formats and tools based on standards

from the W3C PROV working group [43]. In its current form, our recommender

system merely relies on execution outcomes (summarized via “exit codes”) extracted

from these or similar provenance records.

To summarize, this paper makes the following contributions:

• Describes and presents a provenance-based recommender system for scientific

pipelines and datasets;

• Evaluates the system for datasets and pipelines from the Canadian Open Neu-

roscience Platform;

• Compares the system against domain expert recommendations.

3.2 Related Work

Systems have been used to recommend software in various contexts such as work-

flow composition and algorithm selection. However, as explained below, our context

is slightly different since we aim at recommending analyses that are applicable to

a given dataset. In neuroimaging, existing platforms focus on finding and reusing

pipelines and datasets but do not include any recommender engine.

3.2.1 Workflow composition

Recommender systems have been described to assist users with workflow com-

position, in particular to identify candidate software components for a given work-

flow. For example, the Galaxy tool recommender [30] recommends possible workflow

components using a deep learning model trained on 18, 000 bioinformatics workflows

from the European Galaxy server. Recommendations depend on the definition and

organization of all the tools in the workflow (so-called “higher-order workflow depen-

dencies”) instead of focusing only on the most recently added workflow components.
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Workflow dependencies are learned using Recurrent Neural Networks, resulting in a

mean accuracy of 98%. The system is available for Galaxy users as an extension.

Previous approaches to assisted workflow composition included loose program-

ming, initially proposed in the PROPHETS system [33, 44, 32]. Loose programming

enables workflow developers to program using concepts rather than accurate proce-

dural code. Loose programming exposes to the workflow developers semantic annota-

tions describing the functionalities of workflow components. Workflow developers can

then assemble such components without having to care about correct typing, interface

compatibility, platform parameters or other technical details that are taken care of

through subsequent validations. PROPHETS was applied to various bioinformatics

use cases, including mass spectrometry-based proteomics [46].

The WINGS (Workflow INstance Generation and Specialization) system [13] uses

AI planning and semantic reasoners to assist users in creating workflows while vali-

dating that the workflows comply with the requirements of the software components

and datasets. WINGS can reason about the constraints of the components and the

characteristics of the data and propagate them through the workflow structure.

These approaches assist users by matching workflow components together. In-

stead, in our context, the workflows (or pipelines) are already available and need to

be matched to relevant datasets. Conversely, relevant analysis workflows need to be

recommended for a given dataset.

3.2.2 Algorithm selection

Other recommender systems aim at selecting specific algorithms for a given prob-

lem. For instance, the Oracle machine-learning toolkit [42] selects machine-learning

algorithms and models for classification and regression problems. Algorithm selection

uses advanced machine learning techniques to automatically rank the best algorithms

for a dataset. Model selection identifies the best hyperparameters to maximize a

given prediction performance score.

Another recent example is PennAI [31], a platform that recommends suitable

models given a supervised classification problem. The platform was evaluated on 165

classification problems. Results showed that matrix factorization-based recommen-

dation systems outperform meta-learning methods.

In addition, Dyad ranking [68, 69] represents the algorithm and problem instance
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by a feature vector, and selects the best feature vectors using machine learning. The

training dataset is a set of dyads ranked according to a specific preference relation.

The dyad ranker learns using the neural-network-based PLNet [58] algorithm. Re-

sults show that this approach outperforms many algorithm selectors while using less

computation.

All these approaches assume the existence of an objective function such as F1

score, accuracy or mean average error to compare algorithms or models that are

known to apply to the problem. Instead, our goal is not to compare pipelines with

each other but to predict if a given pipeline will work on a given dataset. From a

methodological point of view, algorithm selection techniques are mostly content-based

while we will adopt a collaborative filtering approach.

3.2.3 Finding tools and datasets in neuroimaging

Several platforms have been developed to facilitate the sharing of tools and datasets

in neuroimaging. For instance, NITRC [26] provides a richly-annotated catalog of

tools and datasets that can be processed in the NITRC computing environment.

In OpenNeuro [40], datasets complying to the BIDS data structure can be publicly

shared and processed using BIDS apps. Finally, the Neuroscience Information Frame-

work (NIF [12]) is a powerful search engine for neuroscience software and data. While

all these platforms provide substantial services for data and tool sharing, they do not

seem to include any system to assist users in the matching of pipelines and datasets.

Matching relevant pipelines and datasets would also enable the automated triggering

of data processing when new pipelines or datasets become available.

3.3 Materials and Methods

The goal of our recommender system is to predict if a data processing pipeline

will successfully run on a given dataset. Predictions are obtained from provenance

records created from previous pipeline executions. Figure 7 presents an overview of

our system that is detailed in the remainder of this section with our experimental

methodology.
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Figure 7: Overview of our recommender system

3.3.1 Data processing pipelines

Consistently with our motivating use case, we focused on the 64 neuroscience

pipelines available in the CONP as of October 2020. The available pipelines have 23

different tags which shows an overview of the type of data and analyses supported

by these pipelines. The most popular tags are “neuroinformatics”, “mri”, “fmri”,

“bioinformatics” and “dmri”. These pipelines are command-line tools described by

Boutiques descriptors [14] and containerized using Docker or Singularity, which makes

them portable across a wide range of infrastructures, including local workstations,

clusters, and clouds [27]. Each pipeline descriptor is stored on the Zenodo research

archive [8] and identified by a permanent Digital Object Identifier (DOI). Through

the Boutiques command line, the pipelines can be validated, installed, published,

and executed. When the execution completes, Boutiques creates a JSON provenance

record containing a summary of the execution process including the pipeline DOI,

input and output file hashes, parameter values, and exit code. Our recommendation

system uses such provenance records to track the outcome of pipeline executions on

a given dataset.
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3.3.2 Datasets

We used the 42 datasets available in the CONP as of October 2020, representing a

total of 2,807,267 files, 3,078 GB, and 6,330 subjects. These datasets are coming from

various sources distributed in Canada and abroad. The most frequent dataset key-

words are “brain imaging”, “human pain”, “MRI”, “neuroimaging” and “structural

MRI”. Datasets are made available through DataLad [24], a Git-based framework

that provides a uniform and version-controlled view of distributed storage.

A DataLad dataset is a particular type of Git repository that stores data files

using git-annex [21]. Git objects contain hashes and URLs of the data files but not

the data itself. With the DataLad client, users can download specific files and track

their versions. Using DataLad, our system matches provenance records to particular

datasets through file hashes. In addition, specific files from a given dataset can be

downloaded on demand without having to download the entire dataset.

In some cases, minor adjustments such as file renamings or exclusions (on 8/22 of

tested datasets) to the organization of BIDS datasets were performed to make them

fully compliant with the standard specification and reduce the processing time of our

experiments by excluding some subjects. We did not apply any data type conversion

since in neuroimaging they are known to create issues when not done properly [35].

3.3.3 Expert reference

To build an expert reference, we recruited 13 experts among graduate students,

software developers and data engineers at the Canadian Open Neuroscience Platform.

Since the number of pipeline-dataset pairs to evaluate was beyond the amount that

could reasonably be evaluated by a human expert (2,688), we split our survey in

two steps. In the first survey (confidence survey), experts were asked to rate their

knowledge and confidence about each pipeline and dataset on a 4-level scale: no

knowledge, some knowledge, good knowledge, and expert knowledge. In the second

survey (prediction survey), experts were ask to predict the execution outcome (success

or failure) for all pipeline-dataset pairs in which they had indicated good or expert

knowledge in the first survey for both the pipeline and the dataset. Both surveys

included links to dataset and pipeline description pages on the CONP portal, such

that the experts were able to consult their detailed descriptions. Survey forms are

available on GitHub for more information. Surveys happened between November
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2020 and March 2021.

It should be noted that the experts were supposed to predict the compatibility of

a given dataset and pipeline and not to what extent they are relevant which might

lead to priming or evaluation bias [71].

3.3.4 Provenance records

Similar to pipeline descriptors, Boutiques provenance records can be published to

Zenodo, which makes them publicly and permanently accessible. We created prove-

nance records for each pipeline-dataset pair for which at least one expert predicted

successful execution. To generate a provenance record we executed a pipeline using

an invocation file including all required parameters for that pipeline. The instructions

for generating the invocations are available through Boutiques for each pipeline. We

mostly used default parameters and created minimal invocations, however, to exe-

cute some pipelines we requested domain experts’ assistance to generate a working

invocation file. The provenance records were entered in a database together with the

file hashes of all datasets retrieved using DataLad. From this database, we generated

(pipeline, dataset, execution outcome) triplets to use in our recommender system.

3.3.5 Recommender system

Collaborative filtering predicts the rating of a given item (dataset in our case)

by a given user (pipeline in our case) from the “utility matrix” containing previous

ratings [50]. Two approaches are commonly used: neighbor-based methods [28] and

latent factor models [29, 6]. Neighbor-based collaborative filtering, also known as k-

nearest neighbors, identifies like-minded users or similar items based on the similarity

of entries in the utility matrix. In contrast, latent factor models, the method that we

used, represent items and users in a latent space obtained from a factorization of the

utility matrix r in a user matrix p and an item matrix q. The factorization is learned

by minimizing the least square error between the available ratings and the ratings

predicted by the factorization:

min
q∗,p∗

∑
(u,i)εκ

(rui − qTi pu)
2

+ λ
(
‖qi‖2 + ‖pu‖2

)
(1)
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where κ is the set of user-item pairs for which rui, the rating of item i by user

u, is available. Unknown elements of the utility matrix are predicted by the dot

product of the corresponding vectors in q and p. In our case, pipelines represent users,

datasets represent items, execution outcomes represent ratings, and κ is the set of

pipeline-dataset pairs for which provenance records are available. Two minimization

methods are commonly used: stochastic gradient descent and alternating least squares

(ALS). We used ALS as implemented in the Apache Spark Machine Learning library

(spark.ml) version 3.1.2.

3.4 Results

We evaluated our approach in two different ways. First, we compared the expert

predictions to real execution outcomes extracted from provenance records. Second, we

evaluated the accuracy of our recommender system through 10-fold cross validation.

The data and code required to reproduce our results are available at https://github.

com/big-data-lab-team/paper-pipelines-datasets-recommender.

3.4.1 Expert predictions vs real executions

Figure 8a shows expert predictions of pipeline-dataset execution outcomes. The

average number of expert predictions by pipeline-dataset pair was 1.39. Only the

32/64 pipelines for which at least one dataset was predicted to be successfully pro-

cessed by at least one expert are represented. Similarly, only the 22/42 datasets for

which at least one pipeline was predicted to be successfully executed by at least one

expert are represented. Pipeline and dataset names are reported in Tables 1 and 2.

Entries in these tables are clickable for more information. Out of a total of 704

pipeline-dataset pairs, the execution outcome of 37% was predicted as failed by all

the experts (white cells), the outcome of 25% was predicted as successful by all the

experts (dark green cells), 21% were not known with enough confidence by any expert

(gray cells), and the outcome of the remaining ones was predicted as successful by

some experts and as failed by other experts. The large fraction of pipeline-dataset

pairs unknown to any expert reinforces the motivation for an automated recommender

system.

Figure 8b shows the actual execution outcome for all the pipeline-dataset pairs
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Index Pipeline Name

P0 ApplyTOPUP

P1 ApplyWarp

P2 BIDS App – FSL Diffusion Preprocessing

P3 BIDS App - FreeSurfer 6.0

P4 BIDS App - fmriprep

P5 BIDS App - ndmg

P6 BIDS app example

P7 ANTS Brain Extraction

P8 ANTS Concat Transfo

P9 ANTS Cortical Thickness

P10 DTIFit

P11 Dipy Tracking and Connectome Generation

P12 FLIRT

P13 FNIRT

P14 FreeSurfer-Recon-all

P15 FreeSurferPipelineBatch-CentOS7

P16 FslBet601

P17 ICA AROMA

P18 MCFLIRT

P19 MRIQC

P20 PreFreeSurferPipelineBatch

P21 SPARK (stage 1 of 3)

P22 TOPUP

P23 fsl anat

P24 fsl bet

P25 fsl fast

P26 fsl first

P27 fsl probtrackx2

P28 fslstats

P29 mask2boundary

P30 ndmg

P31 oneVoxel

Table 1: Tested pipelines
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Index Dataset Name

D0 BigBrain

D1 BigBrain 3DClassifiedVolumes

D2

Comparing Perturbation Modes

for Evaluating Instabilities

in Neuroimaging Processed NKI

RS Subset 08 2019

D3 BigBrainHippoUnfold

D4 BigBrainMRICoreg

D5 HCPUR100-Template

D6

Learning Naturalistic Structure

Processed fMRI dataset

D7

MRI and unbiased averages

of wild muskrats

Ondatra zibethicus

and red squirrels

Tamiasciurus hudsonicus

D8

Numerically Perturbed Structural

Connectomes from 100 individuals

in the NKI Rockland Dataset

D9 SIMON-dataset

D10 cneuromod

D11 mm neo atlas

D12 multicenter-phantom

D13 openpain/BrainNetworkChange Mano

D14 openpain/cbp resting

D15 openpain/placebo 1

D16 penpain/placebo predict tetreault

D17 openpain/subacute longitudinal study

D18 openpain/thermal

D19 preventad-open

D20 preventad-open-bids

D21 visual-working-memory

Table 2: Tested datasets
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for which at least one expert predicted a successful execution outcome (green cells in

Figure 8a). Out of 288 executed pairs, 134 were successful and 154 failed. Important

discrepancies are observed between expert predictions and actual executions. Overall,

53% of the executions that were predicted successful by at least one expert failed in

reality (red cells in Figure 8b). In addition, the average expert confidence was found

to be significantly higher for failed executions than for successful ones (p <0.002,

Figure 9), which is unexpected. Therefore, expert predictions seem to be largely

unreliable. Note that we used the experts’ predictions as a baseline for prediction

performance comparison rather than a ground truth on the execution outcome of a

given pipeline on a given dataset.

Many practical reasons explain the observed discrepancy between expert predic-

tions and pipeline executions (Table 3). First, some datasets did not match the format

required by the tested pipeline. For instance, P26 (fsl-first) requires anatomical images

in the NIfTI file format, however, some datasets such as D12 (multicenter-phantom)

contain anatomical images in the MINC format.

Failure reason Fraction of failed executions

File format not supported 31%

Type D pre-processing required 18%

Dataset not available 38.5%

Other 12.5%

Table 3: Execution failure causes

In addition, five pipelines (P8, P17, P19, P20 and P27) failed due to unresolved pre-

processing requirements. We identified four types of dependencies between pipelines.

Type A refers to pipelines such as P24 (fsl-bet) or P23 (fsl-anat) that can be executed

directly on the tested dataset. Type B refers to pipelines that require the tested

dataset as well as the results of the application of another pipeline on the tested

dataset. For example, P31 (oneVoxel) requires a binary mask for its input image

that is created by another pipeline. Type C refers to pipelines requiring inputs from

more than one dataset. For instance, P7 (ANTS Brain Extraction) and P9 (ANTS

Cortical Thickness) require external templates and segmentations obtained outside

of the dataset. Type D refers to pipelines that process data derived from the tested
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dataset but not the tested dataset directly. For instance, P27 (fsl-probtrackx2) per-

forms probabilistic tractography on the output of bedpostx, a pipeline that no expert

predicted to run successfully on any dataset. In a Type D configuration, the pipeline

is considered to not successfully execute on the dataset.

In addition, 4 datasets were not available for download in CONP, due to various

issues. For example, D10 (CNeuromod) is currently not downloadable in CONP due

to technical issues. Finally, a set of executions failed for other reasons including issues

in Boutiques pipeline descriptors or corrupted datasets.

Overall, experts seem to have neglected such practical failure reasons. In gen-

eral, experts tend to rely on their semantic understanding of the interactions between

pipelines and datasets (for instance, a given pipeline may operate on fMRI data),

while in practice, pipeline executions depend on the lower-level syntactical and in-

frastructural details mentioned previously.

3.4.2 Recommender system evaluation

We evaluated the latent-factor model using 10-fold cross validation on the pipeline

execution matrix in Figure 8b. We varied the threshold used to round predicted

values to 1 (failed execution) or 2 (successful execution), resulting in the Receiver

Operating Characteristic (ROC) curve in Figure 10. We obtained the ROC curve of

experts predictions by predicting execution outcomes using various thresholds in the

fraction of experts predicting successful execution.

The area under curve (AUC) of our recommender system was 0.83, showing that

our model is significantly better than chance (AUC=0.5) and expert predictions

(AUC=0.63). For instance, given a rounding threshold of 1.2 (black dot in the ROC

curve), out of 10 pipelines recommended by our system for a particular dataset, 8

would be applicable to the dataset while only 2 would not. This good performance

was expected to some degree given that the pipeline execution matrix in Figure 8b

bears some sort of structure. A more random utility matrix would obviously be more

difficult to predict.
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3.5 Discussion

The performance of the proposed recommender system is substantially higher

than chance and expert predictions. Predicting the successful execution outcome of

a pipeline on a given dataset is a difficult task for a human expert as it requires a

comprehensive knowledge and understanding of the technical infrastructure, pipeline

syntactical requirements, analysis types, data formats, and data semantic types. In

practice, it is common for human experts to only master some parts of this environ-

ment. For example, the successful processing of BIDS datasets by BIDS applications

requires datasets to pass BIDS validation, which can hardly be guessed from a high-

level overview of the dataset. In addition, pipelines or data transfers may fail for

technical reasons unknown to the experts. Therefore, automated recommender sys-

tems based on provenance records have a strong added value compared to human

recommendations.

Our experiments were conducted using one of the largest data and pipeline shar-

ing platform in neuroscience. Other platforms such as NITRC [26] contain larger

collections of pipelines and datasets, but they are not available through a consistent

interface such as Boutiques and DataLad, which would make such an experiment

hardly feasible there.

The described system architecture could potentially scale widely beyond the spe-

cific context of CONP, as it only relies on file hashes and therefore does not require

data sharing agreements or extensive data storage. In addition, the recommender

system could leverage provenance records produced by multiple platforms provided

that they are shared in some way. DataLad would detect possible duplication among

datasets through file hashes. The framework is also expected to apply to other dis-

ciplines than neuroimaging although changes in the technical context — such as

datasets being stored in databases instead of files — may require adaptations.

In production conditions, the recommender system would rely on provenance

records of pipeline executions launched by arbitrary users. While this would increase

the amount of data available, potentially resulting in more accurate recommenda-

tions, it would also come with challenges. For instance, while our framework models

the execution outcome of a given pipeline-dataset pair as a binary variable (success

or failure), different execution outcomes may be produced for a given pipeline-dataset

pair, due to different parametrizations or analysis types. Besides, analyses launched
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by less experimented users may produce misleading provenance records. We antici-

pate that the recommender could be configured to use implicit feedback to address

this issue [22].

The successful execution of a pipeline on a given dataset does not necessarily

imply that results are meaningful. Relying exclusively on execution exit statuses

therefore requires that users producing execution records mostly execute meaningful

experiments, which may not always be the case. Taking into account the popularity

of the datasets derived from a given provenance record in the recommendations might

help address this issue.

3.6 Conclusion

Collaborative filtering predicts the execution outcome of a given pipeline on a

given dataset with usable accuracy (AUC=0.83) in the context of the Canadian Open

Neuroscience Platform. The performance achieved by our system outperforms human

expert recommendations, presumably due to syntactical and infrastructural factors

neglected by human experts. Future work will focus on the deployment of such a sys-

tem in production conditions, which will require dealing with less reliable provenance

records.

The framework could be extended by considering pipelines and datasets at a

finer granularity. Pipelines can often be used in different ways depending on their

parametrization. Different parametrizations could be identified in the provenance

records and recommended accordingly for specific datasets. Besides, datasets often

consist of multiple sub-parts corresponding to different subjects or data types. A

recommender system could be designed to recommend analyses for such sub-parts,

resulting in more specific recommendations.
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Chapter 4

Conclusion

In this thesis we investigated if it would be feasible to implement a provenance-

based recommender system for recommending compatible scientific datasets and pipelines

given the other. We focused on the neuroimaging datasets and pipelines available in

Canadian Open Neuroscience Platform (CONP) as of October 2020. For our recom-

mender approach, we needed the provenance records generated in pipeline execution

processes, however, there have been 2688 pairs of pipeline-datasets for execution.

Therefore, we recruited 13 experts among graduate students, software develop-

ers and data engineers at the CONP and sent them a two phase survey to pre-

dict the execution outcome of all pipeline-dataset pairs which they have knowl-

edge for both pipeline and dataset. Then we executed only the pipeline-dataset

pairs for which at least one expert predicted a successful execution. All the gener-

ated provenance records are available at https://github.com/big-data-lab-team/

paper-pipelines-datasets-recommender/tree/main/data/.

Moreover, we have contributed to the web interface of CONP portal and uploaded

all the provenance records there to be accessible on a dashboard, Figure 11, so that

users can search for any available combination of executed pipeline-dataset pairs and

see the actual provenance records by clicking on their status, Figure 12 shows the

provenance record for processing a file in ‘SIMON’ dataset by ‘fsl bet’ pipeline whith

successful execution outcome (‘exit-code’ = 0).

From the outcome of these executions we filled the pipeline execution matrix

,Figure 8b, as the utility matrix for our recommender approach. Then, we applied
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Figure 11: Dashboard of Provenance Records integrated in CONP portal

Figure 12: One of the generated provenance records (JSON object)
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Alternative Least Square model, which implements latent-factor model in Collabo-

rative Filtering recommendation approach, on this matrix. We evaluated this model

by applying 10-fold cross validation on the pipeline execution matrix and varying the

threshold for rounding the generated values to 1 (failed execution) or 2 (successful ex-

ecution). Therefore, by creating the Receiver Operating Characteristic (ROC) curve

we got the area under curve (AUC) as 0.83. We also evaluated the experts’ predic-

tions by applying varying thresholds on the fraction of experts predicting successful

execution and got AUC = 0.63 for the corresponding ROC curve which indicates that

our system outperforms human experts’ recommendations.

There might be a several reasons why our system has a better performance than

experts recommendations (predictions). There are many technical details that usu-

ally are ignored or neglected by the experts such as type compatibility of pipeline and

dataset, pre-processing requirements for the pipelines, and availability and accessibil-

ity of the data at that time are some the reasons. Moreover, the good performance of

our system could be expected to some extent since the pipeline execution matrix is

not a random one and there are some sort structural patterns which helps the model

having better accuracy.

In this study we contributed to three out of four of FAIR principles. We con-

tributed to findability, since using our system people are assisted in finding the

datasets that will work with a given pipeline or conversely the compatible pipelines

for a given dataset. We also address the interoperability question, since our system

highlights what datasets and pipelines will inter-operate and what will not. More-

over, we contribute to Reusability, since for a newly added dataset or pipeline for

which there is no record, our system will recommend the popular ones which helps

to promote the adoption of that new dataset or pipeline.

Among the possible future works for this project, the most highlighted one is

increasing the number of provenance records. These provenance records would be

either uploaded by public users to a repository for CONP usage only or to distributed

repositories which CONP would be responsible to collect them. Therefore, by having a

large set of provenance records, more than one outcome for each pipeline-dataset pair,

it might be required to change the recommendation approach for implicit feedback

data. Since there would not be any limitation or range for the number of provenance

records per pair, if the approach is going to focus on the number of executions per
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pair, the feedback data will not be explicit and it will be required to use collaborative

filtering for implicit feedback data [22].

There would be some points to consider in this case, focusing only on the num-

ber of (successful) executions per pair will not provide strong and rational enough

recommendations. For instance, some pipelines are simpler to use and mostly will

be executed successfully, such as ‘fsl-bet’, also accessing to some datasets is more

straightforward than others, this leads to higher number of provenance records for

specific pipeline-dataset pairs while they will not necessarily provide the best recom-

mendations. It is important to consider the different factors: How many (successful)

executions per pair? What fraction of all executions per pair is successful? How

frequently the pipeline or dataset is used among all pipelines and datasets? What

is the subtraction of successful and failed executions per pair? For considering these

different factors, one possible approach can be an ensemble of utility matrices (one

per factor) resulting a set of recommendation lists for each pair, then the final list

can be the union of all these recommendations for each pair.

We are integrating the current version of this recommender system to the CONP

portal and it will provide a full operational recommender system based on available

provenance records. This system is supposed to work with the publicly uploaded

provenance records on the CONP portal and provide a list of highly recommended

pipelines for a dataset in each dataset card and the highly recommended datasets for

in each pipeline card. Figure 13 represents the sample dataset recommendations for

‘fsl-bet’ pipeline.

Another work to be done in future is handling cold start problem. Our system

focuses on the available datasets and pipelines that we have provenance records for,

therefore, whenever there is no provenance record for a dataset or pipeline we would

face cold start problem [37]. In collaborative filtering, cold start happens when there

is no record for the interactions between the cold-user and all items or between the

cold items and all users. One of the most common approach to handle cold start in

collaborative filtering is to recommend the most popular items to the cold user or

the most popular users to the cold item [52]. Therefore, one possible approach in our

case is to recommend the pipelines with most number of successful executions to a

new dataset or the datasets with highest number of successful executions to a new

pipeline.
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Figure 13: The mock-up for the recommender system to be integrated in CONP

portal

Handling cold start with recommending the most popular datasets or users might

raise the problem of popularity bias [2], meaning that the system will more and more

recommend the datasets or pipelines which have the highest number of interactions,

however, there would be many other datasets and pipelines with fewer interactions

that would not be recommended. Therefore the unpopular datasets or pipelines would

receive much less visibility than popular ones and will rarely receive interactions.

To address this issue, it would be helpful to combine the content-based approach,

meaning that find the similar datasets and recommend the pipelines which have more

interactions with those datasets. However, currently, in our context, the available

descriptions of datasets and pipelines in CONP are limited, which is a challenge.
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