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Abstract

Design and Planning of Maintenance Logistics Networks

Shayan Tavakoli Kafiabad, Ph.D.

Concordia University, 2021

The system up-time and availability play an essential role in industrial, maritime, aeronautical,

and health care sectors. These sectors utilize, in general, several advanced capital systems, such as

gas turbines, radars, airplane engines, and MRI-scanners. Most of these technical devices contain

expensive and low-demand repairable parts. The management of maintenance logistics networks

deal with decisions both in the design and planning phases. In the design phase, goals such as

the allocation of users to maintenance centers and spare-part provisioning are pursued. On the

other hand, the planning phase deals with decisions in terms of workforce, capacity, and aggregate

planning. Maintenance planning is a hard task due to several conflicting constraints, such as spo-

radic demand, uncertain repair and inspection time, limited capacity, and availability of resources

(inventory and certified operators). Our problem of interest is mainly motivated by maintenance

logistics networks in the context of gas turbine engines. The maintenance service providers to

these devices are confronted with the interaction of workforce training and operations planning

along with demand and repair time uncertainty, that introduce new challenges to the management

of these logistics networks.

In the first part of this thesis, we devise a decision model to obtain the optimal size of workforce,

training schedule, repair quantity, as well as number of repair jobs to outsource so as to minimize

the cost of repair operations, spare part stock, training, outsourcing, and penalties incurred for the

delayed delivery of repaired equipment over a planning horizon. Then, we evaluate the impact of

integrating workforce training with operational planning decisions in maintenance facilities. Be-

sides, we analyze the role of risk mitigation strategies such as outsourcing of repair jobs to other

maintenance centers and borrowing of certified operators in the presence of demand fluctuations

by formulating a two-stage stochastic programming model.
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The second part of the thesis is an effort to incorporate the repair time uncertainty into the decision

model developed in the first contribution. We propose a multi-stage stochastic programming model

for integrated production and workforce planning under independent random repair times of faulty

components. Then, we develop an approximate decomposition algorithm, based on Lagrangian re-

laxation approach, to efficiently solve the problem for real-size instances. This algorithm relies on

decomposing the MSP model into sub-models corresponding to component scenario trees and co-

ordinating them via a sub-gradient algorithm to obtain a high-quality feasible solution.

In the final part of this thesis, given an MLN that provides maintenance/repair services to ge-

ographically dispersed equipment users, we propose a two-stage robust optimization model for

collaborative design and planning of maintenance networks under demand uncertainty. The goal

of this model is to determine the optimal allocation of customers to each maintenance center along

with the initial stock level of different spare parts in each facility so as to minimize the cost of

late deliveries under worst-case demand scenarios. We consider component and operator sharing

strategies as the recourse actions in this model to hedge against the demand surge. The proposed

approach is compared with a deterministic model by the aid of Monte-Carlo simulation on several

test instances inspired by a real case study.
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Chapter 1

Introduction

1.1 Overview

For advanced capital systems like trains, planes, medical devices, radars and antenna components,

high system availability is essential. Based on the usage time and maintenance policy (preven-

tive or corrective maintenance), these components or systems are confronted with failures and

down-times. Such disruptions are generally very costly and require a responsive logistics net-

work to replace the failed item by a functional one in a timely manner. Traditionally, the users

of complex equipment own their logistics network to maintain the system availability. Such user

maintenance networks are common in the military bases (Muckstadt, 2004). On the contrary, due

to the technical issues, price and high variety of these equipment, the users prefer to outsource ma-

jor components of service upkeep to the Original Equipment Manufacturer (OEM) or an external

service provider (Basten & Van Houtum, 2014).

Maintenance logistic networks (MLN) are comprised of suppliers in the upstream, central and

local maintenance facilities in the midstream and customers in the downstream echelons. Their

goal is providing maintenance service to the users of the above-mentioned technical devices. They

are also featured with complicating characteristics such as the large number and diversity of spare

parts, extremely sporadic component failure rates (random demand), uncertain inspection and re-

pair times, high prices of spare parts, and financially remarkable effect of spare part shortage.
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The OEM or external maintenance service providers are confronted with a variety of decision-

making problems in the MLN. Such decisions can be classified into strategic, tactical and opera-

tional categories. While the former encompasses the long-term decisions on the configuration of

the network, inventory control policies in each echelon, and the allocation of customers to differ-

ent local maintenance facilities, the latters revolve around operations management in maintenance

facilities. Work-force sizing, capacity planning, production planning, procurement, and inventory

planning in addition to workforce scheduling and training are few examples among others.

Motivated by the requirements and constraints of such maintenance service providers, the focus of

this thesis is on the design of maintenance logistics networks and planning of operations in main-

tenance facilities. Integrated workforce training and operations planning in some maintenance

centers is a complex problem due to the various types of constraints such as training certificate

expiration and capacity constraints. On the other hand, maintenance service providers constantly

deal with a high degree of uncertainty in terms of the number of failed components and inspection

and repair time, which further necessitates a robust planning approach.

This thesis significantly contributes to the existing literature on maintenance logistics network

management. First, this research is an attempt to incorporate training of certified operators on a

periodic basic to abide by stringent safety regulations of maintenance service providers. Moreover,

the integration of training schedule with repair operations is another original contribution of this

thesis. Besides, this thesis contributes to the literature by incorporating the repair time uncertainty

into the problem by assuming the independent repair time of components that leads to a notori-

ously complex MSP model as a result of merging component scenario trees. Another contribution

is focused on developing an efficient decomposition algorithm to overcome the computational

complexity of the proposed MSP model. The final significant contribution of this thesis relies on

introducing the notion of resource sharing in MLNs by proposing a collaborative two-stage robust

optimization model for maintenance service providers.

In what follows, we first provide a brief description of the studied problems. We then present the

research scope and objectives. Finally, we provide the outline of this thesis.
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1.2 Problem description

In this thesis, we confine our attention to an MLN that comprises of a central repair facility, a

set of local maintenance facilities, and equipment users. The local maintenance facilities receive

preventive and corrective maintenance jobs from several equipment users that are geographically

dispersed and own different families of equipment that share a set of (common) components in

their modular structure. The major operations in maintenance facilities encompass the preliminary

inspection followed by replacing defective components with the functional ones according to a

dual sourcing strategy for spare parts replenishment. More precisely, they can be replenished from

the inventory of repaired parts and/or the central repair facility. While facing the random failure

of equipment components and consequently random spare part demand, the service provider is

also dealing with uncertain repair and procurement lead-times. All the operations in maintenance

service providers are carried out by certified operators who are only competent to work on a subset

of modules. Further, the validation period of such certificates is limited in many industries. For

example, in the aeronautical industry, operators can be certified for specific tasks (inspection, as-

sembly, repair, etc.) for a validation period of one or two years. Therefore, designing a framework

that aggregate the training plan with procurement, production, and inventory plans can help the

maintenance providers to balance their operations and workforce level to reduce their costs.

Variations in the number of failed components and the repair time of components are two major

sources of uncertainty in the context of maintenance logistics network. The repair time of some

complex components (e.g., rotors in gas turbines) is an uncertain parameter that depends on the

skill level of operators, age, and condition of devices. Repair time randomness may delay the

delivery of devices to the users, incurring high penalty costs to the maintenance facilities. Given

the uncertainty in components repair times, the deterministic setting described earlier is extended

into a multi-stage stochastic programming model. Due to the size of the underlying scenario tree,

an approximate decomposition algorithm is necessary to efficiently solve the problem for real-size

instances.

Finally, rather than focusing on a single maintenance service provider, it is worth to investigate

the design and planning of a maintenance logistic network under demand uncertainty. More pre-

cisely, by assuming the formation of a grand coalition among the local maintenance facilities in

3



the network, these centers can (temporarily) share a certain percentage of components and certi-

fied operators among each other in order to avoid delayed delivery of repaired devices in case of

demand surge in some facilities. In this context, a two-stage robust decision model is proposed that

seeks the optimal allocation of users to these centers along with the stock pre-positioning levels

for different components in each facility as strategic decisions. The tactical planning decisions in

this model, on the contrary, are defined for each demand scenario. These decisions incorporate the

quantity of repair jobs scheduled in each facility along with the quantity of resources that must be

exchanged among different facilities in the network in order to satisfy the demand.

1.3 Scope and objectives

To fill the gap in the existing literature, the main contribution of this thesis is to develop a compre-

hensive decision framework for the robust design and planning of maintenance logistics networks

in the context of repairable spare parts. Given the problem description, the specific objectives are

summarized as follows.

(1) To evaluate the impact of integrating workforce training with operations planning decisions

in maintenance facilities.

(2) To devise a decision model to obtain the optimal repair workforce size, training require-

ments, quantity of faulty components to repair, as well as the quantity of repair jobs to

outsource in maintenance centers.

(3) To analyze the role of risk mitigation strategies such as outsourcing and borrowing of certi-

fied operators in the presence of high demand volumes in these facilities.

(4) To explicitly incorporate the uncertain repair time of the components into the proposed

mathematical model by the aid of multi-stage stochastic programming model.

(5) To devise an efficient solution algorithm to efficiently solve the resulting multi-stage stochas-

tic programming model.

(6) To incorporate collaboration in terms of sharing scarce resources among different facilities

in a maintenance logistics network design and planning problem.
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(7) To propose a robust decision model for collaborative maintenance network design and plan-

ning under demand uncertainty.

(8) To compare the proposed robust optimization model with a deterministic approach by the

aid of Monte-Carlo simulation.

1.4 Organization of the thesis

This manuscript is divided into five chapters, which are listed below. Chapter 2 addresses the

fundamental problem of this study that is integrating workforce training decisions with operations

planning in the context of maintenance logistics network. The decisions to be made are the optimal

repair workforce size, training requirements, quantity of faulty components to repair, as well as

the quantity of faulty spare parts to outsource so as to minimize the cost of repair operations, spare

part stock, training, outsourcing, and penalties incurred for delayed delivery of repaired equip-

ment over a one-year planning horizon. Besides, a two-stage stochastic programming framework

is proposed to incorporate the demand uncertainty in this problem. In chapter 3, through modeling

uncertainty in the repair time of repairable components, the deterministic model is extended to a

multi-stage stochastic program. The proposed model is then solved via an approximate decompo-

sition algorithm, based on Lagrangian relaxation approach. This algorithm relies on decomposing

the MSP model into sub-models corresponding to component scenario trees and coordinating them

via a sub-gradient algorithm to obtain a high-quality feasible solution. Chapter 4 presents a a two-

stage robust optimization model for collaborative design and planning of maintenance networks

under demand uncertainty. The proposed robust approach is compared with a deterministic model

with the aid of Monte-Carlo simulation. Finally, chapter 5 provides concluding remarks as well as

several avenues for future research.
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Chapter 2

Integrated planning of operations and

on-job training in maintenance logistics

networks

This chapter merges the following two papers published in 2020 and 2021:

(1) Shayan Tavakoli Kafiabad, Masoumeh Kazemi Zanjani, and Mustapha Nourelfath. ”Inte-

grated planning of operations and on-job training in maintenance logistics networks.” Reli-

ability Engineering System Safety 199 (2020): 106922.

(2) Shayan Tavakoli Kafiabad, Masoumeh Kazemi Zanjani, and Mustapha Nourelfath. ”Work-

force training and operations planning for maintenance centres under demand uncertainty.”

International Journal of Production Research (2021): 1-13.
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Abstract

Companies that provide repair & overhaul services to the users of complex technical systems are

confronted with uncertain volume of demand when making tactical decisions such as workforce

training and planning of repair operations over an annual planning horizon. Given the high impor-

tance of equipment availability (e.g., gas turbines) to the users (e.g, power plants), any delay in the

delivery of repaired equipment caused by demand uncertainty would lead to significant penalties

and loss of customer goodwill. In this chapter, first a deterministic integrated planning of oper-

ations and on-job training in maintenance logistics networks is proposed. Moreover, a two-stage

stochastic programming model is proposed to obtain the optimal number of items to repair, spare

part inventory, and the number of operators to train with the goal of minimising the total expected

cost of maintenance operations and late delivery. Outsourcing and borrowing are introduced as

corrective actions to mitigate the risk of late delivery in the presence of demand uncertainty. The

numerical results highlight the effectiveness of incorporating uncertainty into the mentioned tacti-

cal planning decisions and mitigation strategies in controlling the cost.

2.1 Introduction

High system availability is critical for advanced technical systems such as aircraft engines and

medical devices. Based on the usage time and maintenance procedure, these systems are con-

fronted with failures and system downtime. Such disruptions are generally very costly and need a

responsive logistics network to replace the failed item by a functional one promptly. On the con-

trary, the late delivery of such equipment to the customer can lead to increased system downtime

and consequently, a significant profit loss. Traditionally, users of complex equipment own their

logistics network to maintain system availability. Such user maintenance networks are common in

the military bases (Muckstadt, 2004). On the contrary, due to the technical issues, price and high

variety of equipment, the users prefer to outsource major components of service upkeep to the

Original Equipment Manufacturer (OEM) or an external service provider (Basten & Van Houtum,

2014).

The Maintenance Logistics Network (MLN) in the context of complex equipment is typically a

three-echelon supply chain. It comprises spare parts suppliers in tier one, central repair facility
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and local maintenance facilities in tier two, and the equipment users in the downstream layer. Lo-

cal maintenance facilities, in general, provide services to a cluster of equipment users based on

geographic proximity. For instance, in the context of the gas turbine engines, power plants are the

users that outsource the maintenance to a maintenance service provider (e.g., a gas turbine manu-

facturer maintenance division). On its turn, the service provider replenishes the inventory of spare

parts and/or repairable parts from other suppliers (e.g., a gas turbine repair shop for turbines).

Maintenance facilities play a vital role in MLN. These facilities receive advanced capital equip-

ment for preventive or corrective maintenance. Each equipment usually contains several modules,

and each module consists of independent repairable components (e.g., rotor, nozzle, etc.). The

major operations in the maintenance facility consist of disassembly, initial fault diagnostic, and

inspection followed by replacing the failed parts with functional ones and the final assembly of

modules. In the replacement phase, if the component is available in stock of the maintenance fa-

cility, it will be replenished from the internal warehouse, and the failed component is replaced by

another component which is as good as new. Otherwise, the component is back-ordered until the

failed part is repaired at the central repair facility. All defective parts are shipped to the central

maintenance facility for repair/reconditioning. The suppliers in the upstream level are responsible

for replenishment of consumable parts as well as work-kits to maintenance facilities. Figure 2.1

represents the conceptual model of a maintenance logistics network comprised of one central re-

pair facility and one local maintenance facility.

All the tasks mentioned above are carried out by certified operators who are only competent

to work on a subset of modules. Further, the validation period of such certificates is limited in

many industries. For example, in the aeronautical industry, operators can be certified for specific

tasks (inspection, assembly, repair, etc.) for a validation period of one or two years. This limited

validation period of certificates necessitates the periodic re-training of workers on different com-

petencies, which in many cases is an on-job training by an available certified operator. Therefore,

the aggregation of the training plan with procurement, production, and inventory plans can help

the maintenance providers to balance their operations and workforce level to reduce their costs.

The critical issue in maintenance facilities is the prompt delivery of repaired devices given the

significantly high cost of system down-time for the users. Such facilities are also confronted
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Figure 2.1: Conceptual framework of a maintenance logistics network

with demand fluctuations and considerable back-ordering (penalty) costs as a result of late de-

livery of devices to the users. The penalty cost is in fact a contractual term to compensate the

equipment unavailability in users’ site. For instance, the maintenance facilities are expected to

recompense power plants for the production loss of electricity due to unavailability of turbines.

In face of demand volume beyond their capacity (i.e., equipment and workforce), these facilities

might exert different mitigation strategies such as outsourcing the repair operations to other facili-

ties. Alternatively, they can also resort to temporarily borrowing available certified operators from

similar facilities. This strategy is particularly justified in industries, where idle operators during

low-demand periods cannot be laid-off either due to scarcity of certified operators or union rules.

When adopting the mentioned mitigation strategies, the maintenance facility must seek a trade-off

between the service level and financial viability of operations.

In this chapter, we propose a decision support model to maintenance service providers in order

to assist them to determine the optimal level of maintenance/repair operations, inventory level of

spare parts, along with the workforce training plan in each period (month) over an annual planning

horizon under uncertain demand. When dealing with optimization models that incorporate uncer-

tain parameters in the right-hand-side or coefficients of constraints, stochastic programming (Birge

& Louveaux, 2011) and robust optimization (Bertsimas & Sim, 2004) approaches are among the

most suitable methodologies in order to obtain an implementable solution that does not rely on

foreseeing uncertain events.
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In this study, we assume that the R & O contracts are signed in the beginning of planning horizon,

such that each contract has a different delivery due date. Nevertheless, the service provider needs

to finalize the plan for repair operations and training requirements prior to finalizing the contracts.

In practice, this can be considered as a capacity plan that is usually determined based on histori-

cal demand information before the start of the next planning horizon. This step is denoted as the

first-stage of the decision making process when dealing with random events such as demand (See,

e.g., Birge and Louveaux (2011)). The second stage corresponds to the stage, where complete

information on random demand is revealed to the decision maker, i.e., the first period of the plan-

ning horizon. In this stage, if the demand exceeds the capacity determined in the first-stage, some

corrective (recourse) actions must be taken into consideration to mitigate the risk of late delivery

of products. Once the maintenance contracts are finalized, the facility obtains full information on

the demand for the upcoming planning horizon. This is also due to the fact that in case of PM

and over-haul services, which are the main focus of this study, the majority of critical components

are required to be replaced. In other words, demand has a stationary behaviour over the planning

horizon once the contracts are finalized. Hence, we adopt a two-stage stochastic programming

(2SP ) approach (Birge & Louveaux, 2011) to model the integrated planning problem. The main

idea behind this approach is to obtain first-stage decisions such that the expected cost of recourse

actions over the scenario set plausible to random events is minimized.

The proposed 2SP , in particular, seeks the optimal level of replacement/repair operations along

with the training plan for the available workforce in the absence of accurate demand forecasts

(first-stage). In the second-stage, once more information on the maintenance contracts for the up-

coming planning horizon is available, the model provides a number of recourse (corrective) actions

to mitigate the risk of high demand volumes. More precisely, two types of such mitigation strate-

gies have been taken into consideration: i) outsourcing the maintenance of a number of received

equipment to other maintenance facilities, albeit, at a higher cost compared to in-house operations

cost; and ii) increasing the capacity of repair via temporarily borrowing certified operators from

other facilities. The objective of the 2SP model is to minimise the expected cost of operations,

training, outsourcing, borrowing, and the late delivery of equipment under a set of scenarios plau-

sible to the uncertain demand over the planning horizon.

The contributions of this study are twofold: First, we incorporate the decisions related to workforce

training plan into the aggregate spare parts provisioning and operations planning for a maintenance
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service provider. The novelty of this paper in terms of modeling is considering the limited age of

operators’ certificate in the mathematical model and integrating on-job training with operations

planning. As shown by a literature review in the next section and to the best of our knowledge,

there is no existing work investigating the integration of workforce training into tactical decisions

in maintenance logistics networks by using mathematical programming. Second, outsourcing and

borrowing strategies are proposed to mitigate the risk of late delivery in the presence of high de-

mand volumes in the framework of a two-stage stochastic programming model. The uncertain

demand is also modelled as a set of scenarios based on historical data and experts opinion. To the

best of the authors’ knowledge, the integrated planning of repair operations and workforce training

under demand uncertainty has not been studied in the literature.

The rest of this chapter is organized as follows. In Section 2.2, the recent works related to the con-

text of maintenance logistics networks are reviewed to highlight the paper contribution. In Section

2.3, the Deterministic integrated planning of operations and on-job training in maintenance logis-

tics networks are discussed. Integrated planning of operations and on-job training in maintenance

logistics networks under uncertain demand is proposed in Section 2.4. In Section 2.5, a case study

is provided, and a sensitivity analysis is performed on different parameters of the proposed model.

Finally, Section 2.6 summarizes the paper and proposes some future research directions.

2.2 Literature review

In this section, by analyzing the literature, different decision-making problems in the context of

maintenance logistics network are reviewed. Then, some related papers on integrated maintenance

with aggregate planning models are investigated. Then, recent papers related to the role of training

in maintenance operations are reviewed. Finally, the motivation of this paper is clarified based on

the literature.

The maintenance logistics networks are confronted with a variety of decision-making problems.

Such decisions can be classified into strategic, tactical, and operational categories. While the

strategic level encompasses the long-term decisions on the configuration of the network, inven-

tory control policies, and the allocation of customers to different local maintenance facilities, the

tactical and operational levels revolve around operations management in maintenance facilities.

Work-force sizing, capacity planning, production planning, procurement, and inventory planning
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in addition to workforce scheduling and training are a few examples among others. Several stud-

ies in the literature ((Muckstadt, 2004), (Basten & Van Houtum, 2014), (Manikas, Sundarakani,

& Iakimenko, 2019), (Eruguz, Tan, & van Houtum, 2017) and (Zhu, van Jaarsveld, & Dekker,

2020)) investigated repairable spare part inventory management in maintenance logistics networks

(MLN), whereas others ((Candas & Kutanoglu, 2007), (Rappold & Van Roo, 2009), and (Wheat-

ley, Gzara, & Jewkes, 2015)) investigated MLN network design problem.

Only a handful of articles investigated integrated operations planning in such value chains at

tactical and operational levels. Zanjani and Nourelfath (2014) studied the integrated planning of

spare parts procurement, inventory, and production in a maintenance facility by proposing a multi-

stage stochastic programming model. The goal was to minimize the expected cost of procurement,

production, and late delivery under an uncertain amount of maintenance demand. Weinstein and

Chung (1999) investigated a model that integrates the selection of the maintenance policy with the

aggregate production planning. Sensitivity analysis was conducted to test the impact factors such

as maintenance activity, failure significance, maintenance activity cost, and aggregate planning

policy on maintenance policy selection. Sitompul and Aghezzaf (2011) investigated an integrated

hierarchical production and maintenance planning for a multi-stage production environment. They

developed a hierarchical production planning that consists of an aggregate and detailed planning.

Two categories of maintenance actions were investigated in their model. The preventive main-

tenance policy was considered in the aggregate planning model and the machine failures, which

require corrective maintenance policy, discussed in the detailed planning. Fitouhi and Nourelfath

(2014) developed an integrated tactical production planning with noncyclical preventive mainte-

nance policy for multi-state systems. The model simultaneously determines the quantity of in-

ventory, back-order, items to produce, set-up times, and preventive maintenance times. Fakher,

Nourelfath, and Gendreau (2017) proposed a multi-product capacitated lot-sizing problem in an

in-house maintenance network. Their model coordinated the quality production planning, mainte-

nance scheduling, and process inspections to minimize the total cost. In the same context, Fakher,

Nourelfath, and Gendreau (2018) investigated a capacitated aggregate planning to integrate pro-

duction, maintenance and quality decisions with the objective of maximizing the expected profit.

Rezaei-Malek, Siadat, Dantan, and Tavakkoli-Moghaddam (2019) proposed an integrated plan-

ning of part quality inspection and preventive maintenance in a multi-stage production system.

Their model obtained the optimum place and time for preventive maintenance and part quality
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inspection while optimizing system total cost and productivity.

In (Phogat & Gupta, 2017), the authors mentioned that lack of appropriate strategic planning

and the lack of training are among the main challenges of maintenance operations toward an ef-

ficient maintenance management system. They also discussed that the effective training aid to

change the mindset of operators from traditional maintenance approach to the modern one and help

the companies to optimize the number of operators and expand their adaptability. In the realm of

maintenance logistics networks, only a few studies considered the integration of workforce capac-

ity, training planning, and operations scheduling in a repair facility. Sleptchenko, Turan, Pokharel,

and ElMekkawy (2017) investigated the joint optimization of cross-training of operators and spare

parts provisioning of repairable parts in a maintenance facility that perform repair operations. Re-

cently, Sleptchenko, Al Hanbali, and Zijm (2018) studied the integrated optimization of workforce

capacity planning and spare parts provisioning in a supply chain comprising of one maintenance

facility and multiple demand points. They assumed that for each failed item, an operator and the

corresponding spare part should be allocated; hence, the unavailability of each leads to shortages.

There are some other papers ((Norman, Tharmmaphornphilas, Needy, Bidanda, & Warner, 2002),

(De Bruecker, Van den Bergh, Beliën, & Demeulemeester, 2015) and (Techawiboonwong, Yen-

radee, & Das, 2006)) that investigate workforce sizing and training in other context like production

planning and scheduling.

The survey of the literature reveals that the majority of the studies assume cross-trained op-

erators and an unlimited validation period for operators’ certificates. As a consequence, the im-

portance of integrating workforce training into other tactical decisions in a maintenance facility

was not investigated in the literature. Furthermore, there is no existing paper that incorporates de-

mand uncertainty into this problem; hence the efficiency of outsourcing and borrowing strategies

in controlling the total maintenance cost and reduce the risk of late delivery.

2.3 Deterministic integrated planning of operations and on-job train-

ing in maintenance logistics networks

Consider a maintenance facility that receives advanced expensive technical devices (e.g., gas

turbine engines) mainly for overhaul services over a planning horizon T indexed by t. Each device

has several modules; each consists of independent repairable components. In this context, R is the
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set of components indexed by r. dr,t is the number of component r scheduled to be replaced in

period t. Given that the majority of modules/components must be replaced by functional ones in

overhauled devices, the demand of components is considered as a deterministic parameter. This

can be further justified by the fact that the periodicity of overhaul services for different users are

clearly defined in their contract with the maintenance service provider. The devices undergo the

disassembly (to their components) and inspection by the certified operators. We define inspection

as any task undertaken to determine the condition of components and to find the tools, labor,

materials, and equipment required to repair the components. In this phase, each component is

inspected by the certified inspectors to find out whether or not the component needs replacement.

In case the replacement is required, the failed component would be replaced by a functional one.

Qr,t is the number of replaced component (ready for assembly) in period t. The latter is replenished

from the internal inventory if the component is available in stock in the maintenance facility. Ir,t

is the number of component r available in stock in period t and the unit inventory holding cost

and safety stock are denoted by hr and SSr, respectively. Otherwise, the component would be

back ordered until the failed part is repaired/reconditioned. Qrepr,t is the number of component r

that should be inspected and eventually replaced in period t with unit internal maintenance cost

kr. Without loss of generality, we only consider the cost of replacing one unit of component as the

unit maintenance cost. lreprt is the replacement time of component r in period t. Br,t is the shortage

quantity of component r in period t. It should be mentioned that the number of delayed repaired

devices is calculated at the component level. In other words, the component with the highest

amount of shortage (due to unavailability of spare part or the certified operators) determines the

total number of devices that cannot be delivered in-time. b is the unit penalty cost for late delivery

of each equipment and θt is the auxiliary variable representing the maximum quantity of shortages

among all the components.

To perform the maintenance operations, the operators need valid certificate related to specific

skills. Here we assume skill set S indexed by s consists of inspection and repair competencies. αr,s

is the labor consumption factor of component r per skill type s in period t. The certificates are valid

for a specific duration per skill set es. Besides, after the certificate expiration date for a given task,

the operator is not allowed to perform that task. In other words, the inspection/repair operations

on a component will be delayed if the certified operators are not available. The total number of

operators per skill type s is Ws and the initial number of a-months old certified operators per skill
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type s in period 0 is Ea,s,0. As is the set of possible certificate ages associated with skill s indexed

by a (|As|=max{a in period 0}+ |T|). Ea,s,t is the number of a-months old certified operators per

skill type s in period t. Thus, the company needs to train the operators with unit cost ns before

the expiration date to maintain a sufficient number of certified operators. Ra,s,t is the number of

a-months old operators of skill type swho are under training in period t. The training is performed

on the job on a one-by-one basis. In other words, there should be one certified operator available to

train an operator whose certificate is expired. Further, to instruct each operator on a specific skill in

a given period, there should be a demand for that skill during that period. The goal of the company

is to deliver the repaired devices according to promised due dates and to avoid penalties for the

late delivery. In this study, in order to investigate the impact of the inventory level of spare parts

as well as the number of operators with valid certificates on the delays in the delivery of repaired

devices, we envisage two outsourcing policies. More precisely, we assume that the company has

the option to temporarily borrow required number of certified operators Vs,t for a given skill type

in a specific period from another maintenance facility with unit cost qs if enough certified operators

are not available in that period. Gs is the maximum allowable number of certified operators with

skill type s that can be borrowed in each period. Alternatively, the maintenance operations for a

given component can be outsourced to another maintenance facility at a significantly higher cost

as compared with borrowing operators from that facility. Qoutr,t is the number of component r

that should be outsourced with unit outsourcing cost ur to an external maintenance facility for

inspection/repair in period t. loutr and Mout
r,t are the outsourcing lead time and maximum capacity

of external maintenance facility to repair component r respectively. Besides, the available budget

for repair, training and outsourcing in each period is Lt, Ot and Pt respectively. It is worth to

mention that the aforementioned outsourcing and borrowing strategies can also be considered as

the mitigation actions in case the demand is higher than the actual repair capacity in the facility.

Based on the context and assumptions mentioned above, the company is looking for the optimal

spare part inventory level, number of components to inspect/repair, number of operators to train as

well as the number of temporary operators to borrow, and the number of outsourced maintenance

jobs in each period in the planning horizon. The goal is to minimize the total cost consists of the

repair, inventory, outsourcing of components, late delivery, training, and borrowing operators. The

objective function of the problem is as follows:
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Minimize
∑
t∈T

∑
r∈R

krQ
rep
r,t +

∑
t∈T

∑
r∈R

hrIr,t +
∑
t∈T

∑
r∈R

urQ
out
r,t

+ b
∑
t∈T

θt +
∑
t∈T

∑
s∈S

∑
a∈As

nsRa,s,t +
∑
t∈T

∑
s∈S

qsVs,t

(2.1)

The objective function 2.1 encompass three category of constraints namely operations, workforce

and domain constraints.

Operations constraints

Qr,t −Br,(t−1) +Br,t = dr,t ∀t ∈ T, ∀r ∈ R (2.2)

Qrep
r,(t−lreprt )

+Qoutr,(t−loutr ) + Ir,(t−1) − Ir,t = Qr,t ∀t ∈ T\1, ..., lreprt , ∀r ∈ R (2.3)

θt ≥ Br,t ∀t ∈ T, ∀r ∈ R (2.4)∑
r∈R

αr,sQ
rep
r,t ≤

es∑
a=1

Ea,s,t + Vs,t ∀t ∈ T, ∀s ∈ S (2.5)

Qoutr,t ≤Mout
r,t ∀t ∈ T, ∀r ∈ R (2.6)

Ir,t ≥ SSr ∀t ∈ T, ∀r ∈ R (2.7)∑
r∈R

krQ
rep
r,t ≤ Lt ∀t ∈ T (2.8)

∑
r∈R

urQ
out
r,t ≤ Pt ∀t ∈ T (2.9)

Qrepr,t = 0 ∀t ∈ 1, ..., lreprt , ∀r ∈ R (2.10)

Qoutrt = 0 ∀t ∈ 1, ..., loutr , ,∀r ∈ R (2.11)

Constraints (2.2)-(2.11) represent various limitations related to operations planning. Constraints

(2.2) imply the balance between the number of components scheduled to be replaced, the actual

number of replaced components, and the shortages in two consecutive periods. Constraints (2.3) is

the inventory balance constraint for components. It ensures that the inventory level of each com-

ponent in each period equals to its inventory in previous period minus the number of repaired and

outsourced components while considering the inspection and repair times as well as outsourcing

lead time. Constraints (2.4) calculate the maximum amount of shortages of components in each
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period. In other words, the component with the highest amount of shortage will identify the total

number of delayed deliveries. Constraints (2.5) limits the total number of components that can

be repaired in each period based on the number of available certified operators in addition to the

number of temporary operators who will be borrowed from other facilities. Constraints (2.6) state

the maximum capacity of other facilities in repairing outsourced components. Constraints (2.7)

ensure the safety stock in each period. Constraints (2.8) and (2.9) imply the maximum available

budget for repair operations and outsourcing. Constraints (2.10) and (2.11) set the initial values of

repair and outsourcing decisions.

Workforce constraints

E(a+1),s,t = Ea,s,(t−1) −Ra,s,(t−1) ∀t ∈ T, ∀s ∈ S,∀a ∈ As (2.12)

E1,s,t =
∑

a∈As\1

Ra,s,(t−1) ∀t ∈ T, ∀s ∈ S (2.13)

∑
a∈As\1

Ra,s,t ≤
∑
r∈R

Qrepr,t ∀t ∈ T, ∀s ∈ S (2.14)

∑
a∈As\1

Ra,s,t ≤
es∑
a=1

Ea,s,t ∀t ∈ T, ∀s ∈ S (2.15)

∑
a∈As

Ea,s,t +
∑

a∈As\1

Ra,s,t = Ws ∀t ∈ T, ∀s ∈ S (2.16)

Vst ≤ Gs ∀t ∈ T, ∀s ∈ S (2.17)∑
s∈S

∑
a∈As

nsRa,s,t ≤ Ot ∀t ∈ T (2.18)

Based on the aforementioned assumptions, the certificates of the operators are valid for a specific

duration. Thus, in order to perform repair operations, the company requires a workforce planning

in order to maintain sufficient number of certified operators. Constraints (2.12)-(2.18) represent

various limitations related to workforce training. As we need to track and update the certificate age

of the operators, constraints (2.12) and (2.13) are proposed. constraints (2.12) ensure the certified

operators’ balance in two consecutive periods. In other words, if the company trains the operators

with age a in period t, the number of certified operators with age a+ 1 decreases in the next period.

For example, for t = 6 and a = 3, equation E4,s,6 = E3,s,5 −R3,s,5 means that if the company

trains in period 5 a number R3,s,5 of 3-months old certified operators, this number (R3,s,5) is
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subtracted from the number E3,s,5 of certified operators with age 3 in period 5 to decrease the

numberE4,s,6 of certified operators with age 4 in period 6. Constraints (2.13) state that the number

of operators under training in each period is equal to the number of certified operators with age

1 in the next period. In other words, after the on-job training in period (t-1), the operators are

able in period t to perform repair operations associated with each skill. Constraints (2.14) specify

that the number of operators under training should be less than the number of components under

inspection. In fact, under high volume demands, we want to avoid training operators who are

not immediately needed. Constraints (2.15) ensure that the number of operators under training is

less than the number of certified operators associated with each skill. The flow constraints (2.16)

ensure the balance between the total number of employees, number of certified and uncertified

operators, in addition to the number of operators under training. In fact, these constraints ensure

that the total number of operators (Ws) is the sum of the total number of certified operators and

the total number of operators under training. Constraints (2.17) state the allowable number of

certified operators that the company can borrow from other maintenance providers. Constraints

(2.18) specify the maximum available budget for training in each period.

Domain constraints

Qr,t, Q
rep
r,t , Ir,t, Br,t, θt, Ea,s,t, Ra,s,t ∈ Z+ ∀t ∈ T, ∀s ∈ S,∀a ∈ As, ∀r ∈ R

(2.19)

Constraints (2.19) are the domain constraints.

2.4 Integrated planning of operations and on-job training in mainte-

nance logistics networks under uncertain demand

The demand (at the device level) is a random variable that can be represented as a set of sce-

narios with known probabilities. It is worth to mention that the demand scenarios can be either

generated based on experts’ opinion and or by discretizing the underlying probability distribution

(e.g., Normal). Furthermore, the demand might follow a cyclic pattern over the planning horizon

that can be represented as a scenario set with corresponding probabilities based on historical data.
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The demand at the component level can be accordingly calculated from the Bill-of-Material cor-

responding to each device.

As mentioned earlier, a two-stage stochastic programming (2SP ) approach is adopted in this study

to formulate the integrated planning of repair operations and workforce training. This is due to

the stationary behaviour of demand over the planning horizon. In other words, once the R & O

contracts are signed in the beginning of planning horizon, the number of components that must

be replaced under a PM policy or overhaul procedure can be calculated for the entire horizon de-

pending on the due date of each contract. Hence, the decision-making process can be divided

into two-stages that are distinguished in terms of the availability of information on the demand.

The first-stage (present time) corresponds to the moment where the maintenance contracts for the

upcoming planning horizon are not yet finalized; nevertheless, the facility needs to identify the

required capacity of repair operations in addition to the on-job training schedule for the operators.

The second-stage, on the contrary, represents the beginning of the planning horizon, where a more

clear picture on the demand pattern (scenario) is revealed to the decision-maker. In this stage, sev-

eral corrective actions are envisaged to protect the first-stage plan against random fluctuations in

demand. Note that the second-stage decisions are defined for each period in the planning horizon

and their value depends on the corresponding scenario. In a two-stage stochastic programming

framework, the first-stage decisions need to be identified without full knowledge on the uncer-

tainty. That is why, they are not indexed by scenarios. Contrarily, the second-stage (recourse)

decisions are only determined once an actual scenario is observed, hence they are indexed by sce-

narios.

The first-stage tactical planning decision in a maintenance facility encompasses the number of

components that should be repaired in each period in the planning horizon. The second-stage

tactical planning decisions that are determined based on the demand outcome (scenario) in each

period incorporate: i) the number of replaced components (ready for assembly)(this quantity is

replenished from the internal inventory if the component is available in stock; Otherwise, the com-

ponent would be back-ordered until the failed part is repaired/reconditioned); ii) the number of

components available in stock; and iii) the shortage quantity of each component.

To perform the maintenance operations, the operators need valid certificate related to specific

skills. The certificates are valid for a specific duration per skill set. Besides, after the certificate

expiration date for a given task, the operator is not allowed to perform that task. In other words,
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the repair operations on a component will be delayed if the certified operators are not available.

Thus, the company needs to train the operators before the expiration date to maintain a sufficient

number of certified operators. It is worth to mention that the company would incur a training cost

per trainee that encompasses the cost of low productivity of operators during training sessions. The

training is performed on the job on a one-by-one basis. In other words, there should be one cer-

tified operator available to train an operator whose certificate is expired. Further, to instruct each

operator on a specific skill in a given period, there should be a demand for that skill during that

period. We assume further that the duration of each training session does not exceed one period

in the planning horizon. The (first-stage) training decisions correspond to the number of certified

operators of different skill types and certificate ages available to work in each period, in addition

to the number of operators of different skill types and certificate ages who are under training in

each period in the planning horizon.

In order to minimise the delays in the delivery of repaired devices as a results of demand uncer-

tainty, two corrective actions are envisaged. More precisely, it is assumed that the company has the

option to temporarily increase the repair capacity via borrowing a limited number of certified oper-

ators for a given skill type in a specific period from another maintenance facility at a certain cost if

enough certified operators are not available in that period. Hence, two additional second-stage de-

cisions are defined as the number of operators to temporarily borrow for one period (month) along

with the number of components that can be repaired in each period under each demand scenario

after adding the additional temporary workforce capacity. Alternatively, the maintenance opera-

tions for a given component can be outsourced to another maintenance facility at a significantly

higher cost compared to borrowing operators from that facility. The corresponding (second-stage)

decision is, hence, defined as the number of components that should be outsourced to an external

maintenance facility for inspection/repair in each period under each demand scenario. Without

loss of generality, we are assuming that the transportation cost of repaired components by sub-

contractors is included in the unit outsourcing cost.

Based on the context and assumptions mentioned above, the company is looking for the optimal

spare part inventory level, number of components to repair/replace, number of operators to train

as well as the number of temporary operators to borrow, and the number of outsourced mainte-

nance jobs in each period in the planning horizon. The goal is to minimise the total expected cost
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over all demand scenarios comprising of the replacement, repair, inventory, outsourcing, late de-

livery, training, and borrowing operators. The description of parameters and decision variables is

provided in Tables 2.1 & 2.2.

Table 2.1: Sets, indices and parameters
T The planning horizon indexed by t
R The set of components indexed by r
S The set of skills indexed by s

As
The set of possible certificate ages associated with skill s indexed by a
(|As|=max{a in period 0}+ |T|)

Ω The set of all plausible scenarios indexed by ω
pr(ω) The probability of scenario ω
dr,t(ω) The number of component r scheduled to be replaced in period t in scenario ω
lrepr The repair time of component r
SSr The safety stock of component r
Mout
r,t Maximum capacity of external maintenance facility to repair component r

hr The unit inventory holding cost ($) of component r
kr The unit internal maintenance cost ($) of component r
cr The unit replacement cost ($) of component r
ur The unit outsourcing cost ($) of component r
b The unit penalty cost ($) for late delivery of each piece of equipment
ns The unit training cost ($) of operators per skill type s
qs The unit borrowing cost ($) of certified operators with skill type s
Ot The available budget ($) of training in each period t
Lt The available budget ($) for repair in each period t
Pt The available budget ($) for outsourcing in each period t
αr,s The labor consumption factor (number of required operators) for component r per skill type s in period t
es The certificate validation period (months) of skill type s

Gs
The maximum allowable number of certified operators with skill type s that can
be borrowed in each period

Ws The total number of operators per skill type s
Ea,s,0 the initial number of a-months old certified operators per skill type s in period 0

Table 2.2: Decision variables
Qr,t(ω) The number of replaced components (ready for assembly) in period t in scenario ω
Ir,t(ω) The number of component r available in stock in period t in scenario ω
Qrepr,t The number of component r that should be repaired in period t

Qtempr,t (ω)
The number of component r that can be repaired in period t in scenario ω
after adding additional temporary workforce capacity

Br,t(ω) The shortage quantity of component r in period t in scenario ω

θt(ω)
The auxiliary variable representing the maximum quantity of shortages among
all the components in period t in scenario ω

Ea,s,t The number of a-months old certified operators per skill type s in period t
Ra,s,t The number of a-months old operators of skill type s who are under training in period t
Vs,t(ω) The number of borrowed certified operators of skill type s in period t in scenario ω
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The objective function of the problem can be formulated as follows:

Minimise
∑
t∈T

∑
r∈R

krQ
rep
r,t +

∑
t∈T

∑
s∈S

∑
a∈As

nsRa,s,t +
∑
ω∈Ω

p(ω)(
∑
t∈T

∑
r∈R

crQr,t(ω)

+
∑
t∈T

∑
r∈R

hrIr,t(ω) +
∑
t∈T

∑
r∈R

krQ
temp
r,t (ω) +

∑
t∈T

∑
r∈R

urQ
out
r,t (ω)

+ b
∑
t∈T

θt(ω) +
∑
t∈T

∑
s∈S

qsVs,t(ω))

(2.20)

The objective function 2.20 incorporates the cost of conducting repair operations under regular

capacity and training of operators (first-stage cost) along with the expected cost of replacing com-

ponents, inventory, repair operations conducted by extra operators borrowed from other facilities,

outsourcing, shortage, and borrowing of operators from other facilities. Three category of con-

straints namely operations, workforce and domain constraints are taken into consideration.
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Operations constraints

Qr,t(ω)−Br,(t−1)(ω) +Br,t(ω) = dr,t(ω) ∀t ∈ T, ∀r ∈ R,∀ω ∈ Ω (2.21)

Qrep
r,(t−lrepr )

+Qoutr,t (ω) +Qtemp
r,(t−lrepr )

(ω) + Ir,(t−1)(ω)− Ir,t(ω) = Qr,t(ω)

∀t ∈ T\1, ..., lreprt , ∀r ∈ R,∀ω ∈ Ω

(2.22)

θt(ω) ≥ Br,t(ω) ∀t ∈ T, ∀r ∈ R,∀ω ∈ Ω (2.23)∑
r∈R

αr,sQ
rep
r,t ≤

es∑
a=1

Ea,s,t ∀t ∈ T, ∀s ∈ S (2.24)

∑
r∈R

αr,sQ
temp
r,t (ω) ≤ Vs,t(ω) ∀t ∈ T, ∀s ∈ S,∀ω ∈ Ω (2.25)

Qoutr,t (ω) ≤Mout
r,t ∀t ∈ T, ∀r ∈ R,∀ω ∈ Ω (2.26)

Ir,t(ω) ≥ SSr ∀t ∈ T, ∀r ∈ R,∀ω ∈ Ω (2.27)∑
r∈R

krQ
rep
r,t ≤ Lt ∀t ∈ T (2.28)

∑
r∈R

urQ
out
r,t (ω) ≤ Pt ∀t ∈ T, ∀ω ∈ Ω (2.29)

Qrepr,t = 0 ∀t ∈ 1, ..., lreprt , ∀r ∈ R (2.30)

Qtempr,t,ω = 0 ∀t ∈ 1, ..., lreprt , ∀r ∈ R,∀ω ∈ Ω (2.31)

Constraints (2.21)-(2.31) represent various limitations related to operations planning. Constraints

(2.21) imply the balance between the number of components scheduled to be replaced, the ac-

tual number of replaced components, and the shortages in two consecutive periods. Constraints

(2.22) is the inventory balance constraint for components. It ensures that the inventory level of

each component in each period equals to its inventory in previous period minus the number of re-

paired components (by using regular and temporary workforce) and outsourced components while

considering the internal repair times into consideration.It is assumed that the outsourced compo-

nents are received in the same period via emergency shipment from another maintenance facility.

Constraints (2.23) calculate the amount of shortage of components in each period. It should be

mentioned that the number of delayed repaired devices is calculated at the component level. In

other words, the component with the highest amount of shortage (due to unavailability of spare
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part or the certified operators) determines the total number of devices that cannot be delivered in-

time. Constraints (2.24) limits the total number of components that can be repaired in each period

based on the number of available certified operators. Constraints (2.25) limits the total number

of components that can be repaired in each period by temporary certified operators who are bor-

rowed from other facilities. Constraints (2.26) state the maximum capacity of other facilities in

replenishing outsourced components. Constraints (2.27) ensure the safety stock in each period.

Constraints (2.28) and (2.29) imply the maximum available budget for repair operations and out-

sourcing. Constraints (2.30) and (2.31) set the initial values of repair decisions for both regular

and temporary workforce.

Workforce constraints

E(a+1),s,t = Ea,s,(t−1) −Ra,s,(t−1) ∀t ∈ T, ∀s ∈ S, ∀a ∈ As (2.32)

E1,s,t =
∑

a∈As\1

Ra,s,(t−1) ∀t ∈ T, ∀s ∈ S (2.33)

∑
a∈As\1

Ra,s,t ≤
∑
r∈R

Qrepr,t ∀t ∈ T, ∀s ∈ S (2.34)

∑
a∈As\1

Ra,s,t ≤
es∑
a=1

Ea,s,t ∀t ∈ T, ∀s ∈ S (2.35)

∑
a∈As

Ea,s,t +
∑

a∈As\1

Ra,s,t = ws ∀t ∈ T, ∀s ∈ S (2.36)

Vs,t(ω) ≤ Gs ∀t ∈ T, ∀s ∈ S, ∀ω ∈ Ω (2.37)∑
s∈S

∑
a∈As

nsRa,s,t ≤ Ot ∀t ∈ T (2.38)

Constraints (2.32) track and update the certificate age of the operators and ensure the certified

operators’ balance in two consecutive periods. In other words, if the company trains the operators

with age a in period t, the number of certified operators with age a+ 1 decreases in the next pe-

riod. Constraints (2.33) state that the number of operators under training in each period is equal to

the number of certified operators with age 1 in the next period. Given that the training on a certain

skill can only be carried out only if a part that requires the same skill has been scheduled in a given

period, Constraints (2.34) and (2.35) state the number of operators under training should be less
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than the number of available components under inspection and certified operators associated with

each skill, respectively. Constraints (2.36) is the flow constraints and ensure the balance between

the total number of employees, number of certified and uncertified operators, in addition to the

number of operators under training. Constraints (2.37) state the allowable number of certified op-

erators that the company can borrow from other maintenance providers. Constraints (2.38) imply

the maximum available budget for training in each period.

Domain constraints

Qrepr,t , Ea,s,t, Ra,s,t, Qr,t(ω), Ir,t(ω), Br,t(ω), θt(ω), Qtempr,t (ω), Qoutr,t (ω) ∈ Z+

∀t ∈ T, ∀s ∈ S,∀a ∈ As, ∀r ∈ R,∀ω ∈ Ω

(2.39)

2.5 Numerical results

The computational experiments in this section are conducted on a case study in the context of

gas turbine. Our objectives are to: (1) analyze the impacts of including training decisions in the op-

erations planning model; (2) investigate the role of outsourcing and borrowing strategies on annual

penalty and total costs; (3) asses the impact of fluctuations in demand, inspection and replacement

time, labor consumption factor, certificate validation period, repair cost and safety stock; and (4)

compare the efficiency of the plan obtained from the 2SP model with a deterministic plan under

different stochastic settings (demand patterns). In particular, the goal is to investigate the role of

outsourcing and borrowing strategies on the total cost as a response to fluctuations in demand. The

key performance indicators in all tests incorporate the cost of repair, holding, outsourcing, penalty,

training, borrowing, in addition to the annual total cost, the number of trainees, and the number

of operators with expired certificates at the end of the planning horizon. The proposed model is

solved by CPLEX 12.8 run on a computer equipped with an Intel Core i7 at 3.4 GHz and 8GB of

RAM under Windows seven system. In what follows, we first present the details of the case study.

Afterwards, we present the results of sensitivity analysis on the aforementioned parameters.
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2.5.1 Case study

In the context of gas turbine engines, maintenance service providers are dealing with different

engines (industrial, trent, jet engines, etc.). The main modules common in any gas turbine engines

are the compressors, combustors, and turbines. The basics types of compressors are centrifugal

flow and axial flow ones, and both are responsible for compression of the air before expansion in

the turbines. The main components of a centrifugal flow compressor are impellers and a diffusers.

Besides, the main parts of an axial flow compressor are rotor, blades, and stator vanes. The com-

bustor is responsible for burning fuel (supplied from fuel spray nozzles) with air (supplied by the

compressor) with maximum heat release and minimum loss in pressure. The main components of

combustors are combustion chamber, injectors, vaporizer, and nozzles. The turbines are respon-

sible for supplying the power to drive the compressor and accessories. The basic components of

the turbine are the combustion discharge nozzles, nozzle guide vanes, discs, and blades (Soares,

2015). The maintenance operators working with these modules need valid certificates on certain

skills (competencies) such as inspection and disassembly/assembly. An operator associated with a

given category of skills could have certificates on all associated sub-categories. For example, the

inspection skill could encompass main build inspection and conformance check, while the disas-

sembly/assembly skill could contain calibration and balancing competencies of each module.

We investigate a maintenance facility that receives a specific kind of gas turbine engine consist-

ing of three major modules. Also, we only consider five expensive and critical repairable compo-

nents with higher failure rates in these modules. The number of repairable components scheduled

to be replaced dr,t is changing on the interval of (0, 5). The holding costs and safety stock of com-

ponents of all modules are considered as hr = 40 and SSr = 1, respectively. 12 operators with

different certificate ages are assigned to each skill type (inspection and disassembly/assembly) at

the beginning of planning horizon. The planning horizon consists of 12 months and the other pa-

rameters are set as lrepr = 1, loutr = 1, Lt = 3000, Ot = 3000, Pt = 1500, kr = 150, ur = 600,

ns = 50, qs = 300, b = 1000, Mout
r,t = 20, es = 9, Gs = 3, and αr,s = 1.

The above numerical values have been inspired by a real industrial case. Using CPLEX optimiza-

tion software, for all the problem instances considered, CPU time is less than two seconds.
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2.5.2 Demand scenarios

In this study, the uncertain demand is approximated as a set of subjective scenarios based on

experts’ opinion and historical data. More specifically, we assume that the number of devices that

are received during the upcoming planning horizon are featured by a cyclic pattern. We generate all

possible scenarios by considering four different stochastic settings. In setting 1, 9 scenarios have

been generated by considering low, average and high demand with variations in the range of +/−

15% of the average value on a 6-month cyclic pattern. More precisely, the demand for the first six

months is set as low (15% less than average), average, or high (15% above average; whereas the

demand over the next six month might remain the same or change. For instance, the demand for

the first cycle (6-month) can be low and it can remain low or it can change to average or high in

the second cycle. This leads to 9 possible demand scenarios over the planning horizon. Setting 2

is similar to the first setting except that the variation range of demand is within +/− 30% of the

average value. In settings 3 and 4, 27 scenarios have been generated by considering low, average,

and high demand that, respectively vary between +/− 15% and +/− 30% of the average value

on a 3-month cyclic pattern. For instance, the demand in the first, second, third, and forth cycles

(3-month) can follow a pattern similar to “low, low, low, low” or “low, low, average, low”, etc.

Without loss of generality, we assume equal probabilities for the mentioned scenarios. Note that

settings 1 and 3 are similar in terms of demand variability level (+/− 15% of the average value)

and distinguished in terms of seasonality pattern. In the same vein, settings 2 and 4 represent

higher variability of demand over the average value albeit at different seasonality levels.

2.5.3 Sensitivity analysis on the deterministic model

The sensitivity analysis of changes in demand drt is presented in Table 2.3. The results in this

table correspond to the increase and decrease in base values by 30 % and 15%. As expected, by

increasing dr,t, the penalty, training, borrowing and total cost increase. Also, it can be remarked

that for low demand, the outsourcing and borrowing strategies are not much effective. On the con-

trary, these strategies play an important role in reducing shortages (penalty cost) at high demand

values.
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Table 2.3: Sensitivity analysis on changes in demand of repairable components drt

drt
Repair
cost ($)

Holding
cost ($)

Outsourcing
cost ($)

Penalty
cost ($)

Training
cost($)

Borrowing
cost ($)

Number of
trainees

Number of
expected
workers

Annual
total cost ($)

-%30 5,850 3,800 0 0 600 0 12 24 10,250
-%15 8,250 3,200 4,800 0 800 0 16 24 17,050

0 7,350 3,240 10,800 1,000 800 2,400 16 20 25,590
+%15 8,100 3,280 10,200 4,000 800 9,000 16 24 35,380
+%30 8,100 2,800 11,400 46,000 1,100 13,200 22 2 82,600

Figure 2.2: Impact of training on the total annual cost under three demand patterns

To investigate the effectiveness of training, the model was evaluated under different demand pat-

terns: (a) low-demand (-%30), (b) normal-demand and (c) high-demand (+%30) under two poli-

cies: 1) non-training and 2) training. The trend of total annual cost and the penalty cost under

the three demand patterns and the two training policies is provided in Fig. 2.2 and Fig. 2.3, re-

spectively. The results indicate that adopting a training policy decreases the annual penalty and

total costs under all three demand patterns. However, for unit penalty cost b close to the training

cost, the training policy is not much effective, and the cost saving is rather negligible (less than

1 percent). Besides, the outsourcing and borrowing policies are not effective for low unit penalty

cost and low-demand scenarios. On the contrary, by increasing b, the total cost under a training

policy is much lower than the non-training policy. In particular the cost saving for high-demand

values and unit penalty cost is more significant.

We next conduct sensitivity analysis on the certificate validation period (months) es. When es is

small (e.g., 3 months), the system faces a large penalty cost due to the lack of certified operators.
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Figure 2.3: Impact of training on the penalty cost under three demand patterns

By increasing the duration of validity, the maintenance facility has more certified operators in each

period. Therefore, the company can repair and store more components due to increased capacity.

Thus, repair and holding costs of the system increase at higher validation periods. In the same vein,

as the maintenance facility has enough capacity, the penalty cost is also reduced and as the facility

is not dependent on other maintenance providers, the outsourcing and borrowing costs decrease.

Further, due to increased validation period of certificates, the operators are trained less frequently;

hence the training cost and the number of trainees decrease. Also, as the unit borrowing cost ns

is less than unit outsourcing cost ur, the borrowing cost decreases drastically, but the outsourcing

cost first increases smoothly and then decreases. Fig. 2.4 represents the trade-off between repair,

training, outsourcing and borrowing costs by increasing es.

The results of sensitivity analysis on the inspection and replacement time of repairable compo-

nents lrepr indicate that by increasing lrepr , the penalty and total costs increase. Also, the holding

and training costs and the number of trainees are decreasing as well. Besides, the outsourcing and

borrowing costs are increasing for small to medium inspection and replacement times. Neverthe-

less, for lrepr more than two months, these strategies are not much effective; thus, the outsourcing

and borrowing costs are decreasing. Fig. 2.5 represents the trade-off between repair, training,

outsourcing and borrowing costs by increasing lrepr .
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Figure 2.4: Trade-off between repair, training, outsourcing and borrowing costs by increasing es

Figure 2.5: Trade-off between repair, training, outsourcing and borrowing costs by increasing lrepr
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The sensitivity analysis on the unit outsourcing cost ur indicate that for the lower amount of ur,

the borrowing cost is zero. Vice versa, for the higher amount of ur, the outsourcing cost is zero.

Thus, there is a trade-off between borrowing and outsourcing cost. Besides, by increasing ur, the

company decides to repair the components internally which increases the repair cost. Furthermore,

the outsourcing strategy does not have any significant impact on training and holding costs. Fig.

2.6 represents the trade-off between repair, training, outsourcing and borrowing costs by increasing

ur.

Figure 2.6: Trade-off between repair, training, outsourcing and borrowing costs by increasing ur

The sensitivity analysis on changes in labor consumption factor αr,s reveal that by increasing

αr,s, the training and total costs increase. For lower values of αr,s, as the company has enough

capacity, the outsourcing and borrowing strategies are not effective. However, for higher values

of αr,s, outsourcing and borrowing strategies play an important role in controlling the penalty and

total costs due to reduced internal capacity. Besides, by increasing αr,s, the repair operations are

performed externally (outsourcing), and the repair cost decreases. Fig. 2.7 represents the trade-off

between repair, training, outsourcing and borrowing costs by increasing αr,s.

With increasing the repair cost kr, the company decided to outsource the repair operations and

as a result, outsourcing cost increases. Besides, when kr is high, it’s not beneficial for the system

to borrow certified operators and therefore the borrowing cost decreases. It can be concluded

that for small changes in kr, the holding cost, penalty cost, training cost, number of trainees and
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Figure 2.7: Trade-off between repair, training, outsourcing and borrowing costs by increasing
αr,s

expired operators remain constant. However, by increasing kr drastically, the average penalty cost

increases and the average training cost decreases. Fig. 2.8 indicates the trade-off between repair,

training, outsourcing and borrowing costs with increasing kr.

Figure 2.8: Trade-off between repair, training, outsourcing and borrowing costs with increasing
kr

The sensitivity analysis of changes in safety stock SSr is presented in Fig. 2.9. This sensitiv-

ity analysis reveals that increasing SSr does not have any significant impact on the training cost.

However, with increasing SSr, the repair, holding and borrowing costs increase. Recall from the
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model that the reason of shortages is related to lack of certified operators and/or lack of compo-

nents. To increase the safety stock, the company has to borrow more certified operators to perform

repair operations, and the borrowing cost increases. Also, we remark that when the value of SSr

increases, the company perform the repair operations internally and the outsourcing cost decreases.

Figure 2.9: Trade-off between repair, training, outsourcing and borrowing costs with increasing
SSr

2.5.4 Value of stochastic solution

In this section, we aim to compare the performance of the plan obtained from the stochastic

model (2.20)-(2.39) with the one determined by a deterministic model, where the expected value

of demand is taken into consideration. It is worth noting that the deterministic model does not

include the two mitigation strategies (i.e., outsourcing and borrowing). This can be justified by the

fact that the average value of historical demand volumes are usually balanced with the capacity of

the facility in real-life applications. In order to compare the cost-efficiency of the mentioned plans,

we measure the Value of Stochastic Solution (V SS) for different stochastic settings introduced in

section 2.5.2. Let us denote the optimal objective function value of the stochastic model as 2SP

and the expected cost of deterministic solution as EDS. The latter is calculated via plugging

the optimal solution of the deterministic model (Qrepr,t , Ea,s,t, Ra,s,t) as the first-stage decisions

into model (2.20)-(2.39) without considering outsourcing and borrowing strategies. V SS is then

calculated as the difference between the objective function value of EDS and 2SP models, as

indicated in the following equation:
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V SS(%) =
EDS − 2SP

EDS
100 (2.40)

The results are summarized in Table 2.4, where the deterministic solution, EDS and 2SP for

all the four settings are compared in terms of repair, outsourcing, borrowing, penalty cost of late

delivery, and total cost. Based on the total cost of EDS and 2SP , the V SS(%) is calculated in

the last column. As it can be observed in the row corresponding to the deterministic model, the

main portion of the total cost is associated with the cost of conducting repair operations. Penalty

cost of late delivery is less significant given that the expected values of demand has been taken into

consideration. This is also due to the fact that the capacity of the maintenance facility is generally

enough to respond to the average value of demand. Nonetheless, according to the EDS row,

implementing the deterministic plan under random demand would result in significant amount of

shortage of components and penalty cost of late delivery.

Similar to the deterministic model, the cost of conducting repair operations constitutes the major

portion of total cost in the 2SP model. On the contrary, the stochastic model yields significantly

lower penalty cost due to the shortage of components. This is due to adopting borrowing and

outsourcing strategies in this model. Another interesting observation is that both deterministic and

stochastic models used the maximum capacity of repair operations based on the results provided

in “Repair Cost” column.

Table 2.4: The results of deterministic, 2SP and EDS models

Setting Model Repair
cost ($)

Penalty
cost ($)

Outsourcing
cost ($)

Borrowing
cost ($)

Total
cost ($) VSS (%)

Deterministic 15,900 1,500 - - 34,120

Setting 1
EDS 15,916 15,500 - - 48,681

31
2SP 16,150 833 2,533 400 37,103

Setting 2
EDS 16,783 40,167 - - 74,934

59
2SP 12,766 3,000 3,866 2,466 47,077

Setting 3
EDS 15,916 15,389 - - 48,529

31
2SP 16,144 444 2,933 377 36,845

Setting 4
EDS 16,744 39,056 - - 73,745

60
2SP 17,016 2,277 3,888 2,666 45,948

Finally, the comparison of V SS values between stochastic settings 1 and 2 (and respectively 3 and

4) reveal that the demand variation has a high impact on V SS. In other words, the stochastic model
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significantly outperforms the deterministic one when increasing the demand variability. Neverthe-

less, the comparison between the first and third (and respectively second and forth) stochastic

settings, showcases the negligible impact of demand seasonality on the V SS.

2.5.5 Managerial insights

The focus of this research is on improving the efficiency of maintenance logistics networks. For

instance, given a PM contract between the user and the maintenance service provider, adopting this

model guaranties the contract terms via improving the reliability and efficiency of maintenance

operations. Based on the result of sensitivity analysis, the following managerial insights can be

derived.

1. With the integration of training decisions with other operational decisions, the maintenance

facilities can reduce the annual penalty and total costs up to 40 percent especially when the unit

penalty cost is high.

2. Outsourcing and borrowing are useful strategies to mitigate the risk of shortages at a high rate

of demand for the repaired components. The maintenance facilities can decrease their total costs

by exerting an appropriate outsourcing and borrowing contracts with other maintenance facilities.

3. Fluctuations of demand, inspection and replacement time, and labor consumption factor have

the highest impact on KPIs. As a consequence, it is recommended to hire more certified operators

to hedge against high demand volumes and extended repair times.

2.6 Conclusion and future research

In this paper, we analyzed the impact of incorporating the training plan into other tactical

planning decisions in a maintenance facility that offers various maintenance services to the users

of technical devices with a modular structure. Further, our contribution is unique in the sense

that the limited age of operators’ certificate, the on-by-one, and on-job training aspects have not

been previously investigated in the training planning problems in the literature. Our case study

demonstrated the effectiveness of adopting a training policy in reducing the penalty cost of late

delivery and the total cost up to 30%. This impact is expected to be more significant in other

stochastic settings where the variability of demand is higher. Besides, our results revealed that
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adopting a deterministic decision model, where the expected volumes of demand are taken into

consideration can lead to significant amounts of penalty cost as a result of late delivery of repaired

devices. In particular, under demand patterns with high levels of variability, the gap between the

cost of stochastic and deterministic plans can reach up to 60%. Our experimental results also

revealed a trade-off between unit outsourcing and borrowing cost. More precisely, under high

outsourcing costs, the maintenance facility chooses to borrow an operator to perform the repair

operations internally.

It is noteworthy that implementing the proposed decision model in maintenance facilities is ex-

pected to improve the efficiency of maintenance operations. In other words, adopting an optimal

training plan while scheduling maintenance jobs along with the borrowing/outsourcing strategies

would increase the capacity of operations in such facilities. Under a PM contract between the user

and the maintenance service provider, adopting the proposed model would guaranty the realiza-

tion of contract terms as a result of increased capacity and improved efficiency. As a consequence,

this would positively impact the availability and reliability of the fleet of equipment at the user’s

site. The proposed structure for workforce constraints by considering the limited age of operators’

certificate can be exerted in other tactical planning problems such as production, service industries

and health care systems, where the operations must be carried out by certified operators due to

safety regulations and product standards.

In this study, we assumed a full collaboration between the maintenance facility under investigation

and its competitors in terms of sharing resources (operators and facility). Whereas, in practice, the

external facilities are not committed to accept outsourced repair jobs and/or share their resources

unless an incentives mechanism are put in place. Designing a collaboration mechanism among

such service providers is an interesting avenue of research. We also assumed that the maintenance

policy is already defined. For the industrial context motivating our study, this assumption is real-

istic because maintenance contracts (between the user and the maintenance service provider) are

designed at the strategic level (long term planning decisions), whilst we rather confine our attention

in this paper to the tactical level decisions (mid-term planning).
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Chapter 3

An approximate decomposition

algorithm for multi-item tactical

planning with independent random

parameters

This chapter corresponds to the following journal paper:

Shayan Tavakoli Kafiabad, Masoumeh Kazemi Zanjani, and Mustapha Nourelfath. ”An approxi-

mate decomposition algorithm for multi-item tactical planning with independent random parame-

ters”. Revision submitted to Computers and Operations Research, June 2021.
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Abstract

Integrated planning of production and workforce training is a challenging task in a multi-product

setting where the demand and/or production lead-time of different items are independent random

variables. With a particular focus on maintenance facilities, this study proposes a multi-stage

stochastic programming (MSP) model for integrated production and workforce planning under in-

dependent random repair times of faulty components. An approximate decomposition algorithm,

based on Lagrangian relaxation approach, is also developed to efficiently solve the problem for

real-size instances. This algorithm relies on decomposing the MSP model into sub-models cor-

responding to component scenario trees and coordinating them via a sub-gradient algorithm to

obtain a high-quality feasible solution. Our numerical experiments conducted on a range of prob-

lem instances demonstrate the significant value of incorporating repair time uncertainty in this

problem setting and the effectiveness of the proposed solution methodology in overcoming the

computational complexity.

3.1 Introduction

Businesses are involved with medium-term decision-making (also known as tactical planning)

problems on a regular basis while confronting various sources of uncertainty. In particular, we may

refer to the planning of production quantity, inventory level, workforce level, logistics, and training

requirements in a multi-product setting under uncertain demand, production/procurement lead-

time (LT), and resource availability. Given the multi-period structure of such problems, the above

uncertain parameters are, in general, featured with a dynamic behaviour over the planning horizon;

hence they are commonly modeled as a scenario tree (ST). The latter is a viable way of discretizing

a dynamic stochastic process over time. It incorporates a number of stages, each including a set

of uncertain outcomes, represented as nodes with a certain probability. Each path from the root

node (present time) to the leaf node (e.g. last period in the planning horizon) in a ST captures the

evolution of all information trajectories over time. The multi-stage stochastic programming (MSP)

approach, accordingly, can be explored as a prominent approach in formulating these problems

when incorporating the underlying scenario trees corresponding to uncertain parameters. This

approach relies on defining the decision variables for the nodes of the ST and optimizing the
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expected value of the objective function over all nodes. Nevertheless, such MSP models suffer

from the curse of dimensionality as the underlying scenario trees grow exponentially in size when

dealing with multiple independent random processes corresponding to each item (product). More

precisely, the MSP model is formulated based on a large-scale master ST as a result of merging

STs corresponding to each product. This makes the MSP model computationally intractable when

dealing with realistic-scale tactical planning problems that incorporate 6-12 periods (stages).

This study is motivated by integrated production and workforce planning (IPWP) in the context

of maintenance facilities responsible for the repair and overhaul of complex devices such as gas

turbines. Due to the technological limitations and large number of spare parts required to maintain

such devices, the users prefer to outsource the maintenance jobs to an external service provider

(Basten & Van Houtum, 2014). Nevertheless, such facilities are expected to abide by stringent

safety regulations and delivery deadlines. In other words, as a result of quality non-conformities

and late delivery of repaired devices, they would incur significant amounts of penalty. This is

mainly due to the negative impact of such phenomena on users’ system availability, e.g., availabil-

ity of gas turbines for power generation in utility companies.

The major operations in maintenance facilities encompass the preliminary inspection of devices

followed by their disassembly (into their components) and replacing the defective items with the

functional ones from the inventory of repaired components. All operations in such facilities are

carried out by a fleet of certified operators who are only qualified to perform a subset of inspec-

tion and repair operations. Furthermore, some industries, such as gas turbine maintenance centers

require the periodic re-training of the workforce on different skills according to an on-job basis by

available certified operators. In other words, they issue certificates with a limited validation period

(2-3 years) after each training session. This necessitates the aggregated planning of training and

production so as to balance the operations and workforce levels and ultimately avoid the delayed

delivery of repaired devices. In other words, the IPWP problem aims to determine the optimal

quantity of repair operations along with the training schedule in each period over a (medium term)

planning horizon at the minimum cost. The above decisions must abide by two main groups of con-

straints, namely operations and training constraints in order to adjust the balance between repair

quantities, inventory/backorder, and workforce levels while respecting specific training protocols.
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It is worth to mention that the repair time of some complex components (e.g., rotors in gas tur-

bines) is an uncertain parameter that depends on the skill level of operators, age, and condition of

devices. Repair time randomness may delay the delivery of devices to the users, incurring high

penalty costs to the maintenance facilities. Thus, this uncertain factor must be incorporated into

tactical planning decisions in order to reduce the risk of late delivery. To the extent of the authors’

knowledge, no prior work in the literature focus on integrating workforce training with production

decisions in maintenance facilities by incorporating the repair time uncertainty. To fill this gap,

our first contribution revolves around addressing the IPWP problem by considering the random

repair time of different components involved in these modular-structured devices. In this study,

components repair times are assumed to be independent random stochastic processes that can be

modeled as STs. This is a realistic assumption given that the age and condition of different com-

ponents in such devices (e.g., nozzles and rotors in gas turbines) are usually independent of each

other. The mentioned STs are then merged together to form a master ST, which grows exponen-

tially in size as the number of components and stages (periods) increases. The IPWP problem is

accordingly formulated as a multi-stage stochastic mixed-integer programming (MS-MIP) model,

which is computationally intractable for problem instances with multiple components and a plan-

ning horizon comprising of 6-12 periods.

Our second contribution is focused on developing an efficient decomposition algorithm to over-

come the computational complexity of the proposed MS-MIP model for IPWP problem. This

algorithm relies on decomposing the MS-MIP model, formulated based on the master ST, into

component sub-models by relaxing the binding workforce capacity constraint. The sub-models are

then coordinated into a feasible solution by adding the Lagrangian penalty terms in their objective

function and implementing the sub-gradient algorithm. Nevertheless, component sub-problems are

per se intractable MS-MIP models given the exponentially large number of nodes in the master ST.

Hence, an approximation algorithm is proposed that relies on formulating component sub-models

based on their corresponding ST rather than the master ST. Afterwards, the Lagrangian penalty

terms are also approximated in each sub-model by considering the other sub-models’ solutions.

It is noteworthy that the proposed approximate decomposition algorithm provides a lower bound

(LB) to the optimal objective function value of the MS-MIP model. An efficient repair mechanism

is also developed to obtain a high-quality solution from the converged solution of this algorithm.
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The proposed solution methodology in this study is an original contribution that can be applied to

other multi-component, multi-period tactical planning models under uncertainty as demonstrated

in a set of numerical experiments.

The rest of this paper is organized as follows. A review of recent literature is provided in Section

3.2. In Section 3.3, the problem description and the MSP model are presented. In Section 3.4, the

solution methodology is provided. In section 3.5, the numerical results are presented. Finally in

Section 3.6, conclusions and directions for future research are provided.

3.2 Literature review

In this section, a brief review of the most pertinent modeling and algorithmic approaches for

addressing tactical planning under uncertainty is primarily provided. Afterwards, we confine our

attention to the prevailing research on production and workforce planning under uncertainty in

maintenance facilities that is the main focus of the current study.

3.2.1 Tactical planning under uncertainty

Multi-stage stochastic mixed-integer programming (MS-MIP) (Birge & Louveaux, 2011) has been

widely applied for various tactical planning problems under uncertain parameters (e.g., supply

and demand) that are featured with a dynamic behavior over the planning horizon. For instance,

Kazemi Zanjani, Nourelfath, and Ait-Kadi (2010) propose an MSP model for sawmill produc-

tion planning under demand uncertainty. An MSP model is developed in (Körpeoğlu, Yaman, &

Aktürk, 2011) for master production planning problem in a production environment with uncer-

tain demand, controllable processing times, and a nonlinear profit function. Guan and Philpott

(2011) propose a quadratic multi-stage stochastic programming model for production planning

under supply and demand uncertainty in the context of New Zealand dairy industry. A dynamic

outer-approximation sampling algorithm is applied to efficiently solve the MSP model. A two-

stage stochastic programming model is proposed in (Megahed & Goetschalckx, 2018) for multi-

product supply chain tactical planning in the context of wind turbine industry under uncertain de-

mand and suppliers’ yields and lead times. The authors in (Alonso-Ayuso, Escudero, Guignardb,
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& Weintraub, 2020) propose a novel scenario tree structure and an multi-stage stochastic mixed-

integer programming model to solve a strategic and tactical planning problem in the context of

forest harvesting networks under uncertain timber production. An uncapacitated multi-item multi-

echelon lot-sizing problem within a remanufacturing system is investigated in (Quezada, Gicquel,

Kedad-Sidhoum, & Vu, 2020) by considering random coefficients in the bill-of-material of the

used products. The problem is formulated as an MSP model and a branch-and-cut algorithm is

proposed to efficiently solve the model.

Generally speaking, MS-MIP models that incorporate a large number of complicating binary

and/or integer variables as a result of the growth in the size of the underlying ST are computa-

tionally demanding. Among the variety of algorithms proposed in the literature for solving such

models, we may refer to scenario decomposition (SD) and scenario cluster decomposition (SCD)

strategies. Progressive Hedging Algorithm (PHA) (Rockafellar & Wets, 1991) is one of the sce-

nario decomposition techniques that has been applied as a heuristic to solve MS-MIP models.

The main idea behind this algorithm is to decompose the original MSP model into determinis-

tic scenario sub-models. Afterwards, the sub-models are coordinated to an implementable so-

lution by incorporating Lagrangian penalty terms in their objective function. Løkketangen and

Woodruff (1996) propose a heuristic algorithm based on PHA and Tabu Search for solving multi-

stage stochastic binary integer programming models. Despite several advantages, SD algorithms

suffer from non-convergence or long CPU times for solving large-scale MS-MIP models. Watson

and Woodruff (2011) propose algorithmic innovations to enhance the performance of PHA in the

context of large-scale two-stage discrete optimization problems. The notion of scenario clustering

has been proposed by several authors (e.g., (Escudero, Garı́n, & Unzueta, 2016; Kazemi Zanjani,

Bajgiran, & Nourelfath, 2016)) to alleviate the shortcomings of SD algorithms. This approach

relies on decomposing the original ST into smaller sub-trees. Afterwards, the MSP model is de-

composed into scenario cluster sub-models by relaxing the non-anticipativity condition (NAC) in

the root node of sub-trees. The latter conditions indicate that in each stage of the ST, the deci-

sion maker cannot foresee the outcomes of random events corresponding to future stages. Finally,

the lack of NAC is compensated by adding Lagrangian penalty terms in the objective function of

corresponding sub-models within a LR scheme. The authors in (Escudero et al., 2016) propose

an SCD algorithm for solving MS-MIP model by exploring four different methods for updating
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Lagrangian multipliers. Kazemi Zanjani et al. (2016) propose a hybrid SCD algorithm where

an ad-hoc decomposition algorithm is developed to efficiently solve scenario cluster sub-models

within an SCD framework. One remarkable observation in reviewing the above state-of-the-art

decomposition algorithms is their limitation in solving large-scale MS-MIP models that involve

millions of nodes in their underlying scenario tree. In other words, the scenario cluster sub-models

would remain challenging to be solved by commercial solvers or exact decomposition algorithms

when dealing with such large-scale STs.

3.2.2 Production and workforce planning under uncertainty in maintenance facil-

ities

Maintenance facilities are confronted with different tactical decisions, such as the planning

of workforce capacity and training/operations schedule. In the context of aircraft maintenance,

De Bruecker, Beliën, Van den Bergh, and Demeulemeester (2018) propose a hierarchical plan-

ning approach incorporating three mixed-integer programming models associated with workforce

scheduling, skill-mix planning, and training scheduling problems. While the first two models are

concerned with constructing and optimizing the workforce schedule of the next maintenance sea-

son, the training model is only concerned with constructing a feasible training schedule during the

current season. It is worth to note that the main focus of this study is on an operational-level train-

ing and personnel scheduling in the context of unlimited age of operators’ certificates. The authors

in (Sleptchenko et al., 2018) investigate the integrated planning of workforce capacity and spare

part provisioning in a maintenance facility that serves multiple demand points. The integration of

workforce training and operations planning in maintenance facilities is studied in (Tavakoli Kafi-

abad, Zanjani, & Nourelfath, 2020) under the assumption of deterministic demand and repair time

of faulty components. The tactical planning model was solved by a commercial solver.

The authors in (Erkoyuncu, Durugbo, & Roy, 2013) categorize uncertainties confronted by main-

tenance service providers based on a 3-year study with 22 aeronautical experts. The results of their

research indicate that the repair time uncertainty frequently arises in maintenance operations and

depends on several factors, such as the inspection time, complexity of equipment, maintenance

knowledge requirements, quality of components, and rate of repairability. Although extremely

important in practice, the demand and repair time uncertainties have been highly neglected in the
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literature when proposing decision models for tactical planning in maintenance facilities. Zan-

jani and Nourelfath (2014) propose a multi-stage stochastic programming model for the integrated

planning of spare part procurement, inventory, and production under uncertain demand in a main-

tenance facility. In the context of in-house maintenance, Rezaei-Malek et al. (2019) study the

integrated planning of preventive maintenance and part quality inspection in a multi-stage pro-

duction system under demand uncertainty. The goal is to maximize the system productivity at

minimum cost.

The above review of the literature clearly indicates the paucity of research on integrating un-

certainty into tactical planning decision models in the context of maintenance facilities. This is

mainly due to the complexity of the resulting MS-MIP model given the multi-item, multi-stage

nature of these problems in addition to the independent behavior of random parameters, such as

repair time and demand corresponding to different items. Furthermore, the existing decomposition

approaches that rely on a scenario clustering scheme are not efficient in solving such large-scale

MS-MIP models. This study aims to fill these gaps by proposing a novel multi-stage stochastic

programming model and an approximate decomposition algorithm for multi-item tactical planning

by incorporating independent random parameters that evolve over time.

3.3 Problem description and formulation

3.3.1 Integrated production and workforce planning (IPWP) in maintenance facil-

ities

Consider a maintenance facility that receives complex devices (e.g., gas turbine engines) for

overhaul services. Each device is composed of different modules; each consists of several re-

pairable components. Upon receiving the devices, they are disassembled into their components

and inspected. More precisely, each component is verified by the certified operators to find out

whether or not it is functional. If the component is diagnosed as defective, it would be replaced

by a functional one from the internal inventory. If the maintenance facility is out of stock for a

given component, the device would be backordered until the failed part is repaired/reconditioned.

It is further assumed that the facility receives a fleet of aged devices for mainly overhaul services.

Hence, in the majority of cases all key components must be replaced.

44



In order to carry out repair operations, the operators require valid certificates related to particular

skill sets. In some maintenance centers, the certificates are valid for a limited period (e.g., 2-3

years) in the sense that the operators are not allowed to perform certain tasks once their certificates

are expired. In this case, the inspection/repair operations might be delayed due to the unavail-

ability of the certified operators. Therefore, the company needs to train the operators prior to the

expiration date of their certificates in order to maintain a sufficient number of certified operators.

For instance, in the gas turbine repair centers, the operators are certified for specific tasks (inspec-

tion, assembly, repair, etc.) for a validation period of two to four years. In fact, these facilities

receive a large variety of equipment (engines) on an occasional basis. In other words, the oper-

ators rarely find the opportunity to carry out repair and inspection operations on similar product

families; hence they might forget relevant technical details over time if they have not applied them

over a long period of time. Nevertheless, due to the severe impact of human error in conduct-

ing inspection and repair operations on products’ safety, the operators are required to repeat the

training sessions on a periodic basis. In addition to the limited age of operators’ certificates, in

some industries, due to the complex design of products, the training is carried out on an on-job

basis by certified operators. In other words, enough certified workers must be available to train

operators on a certain skill set in a given period in the planning horizon. In addition, the training

can be scheduled in a period only if the inspection/repair of a component that requires a similar

skill set is also scheduled in that period. As a consequence, the integration of the training schedule

with the production plan in these facilities provides the opportunity to balance the operations and

workforce levels and ultimately minimize the late delivery of repaired devices.

The focus of this study is a context where the repair and overhaul (R & O) contracts are signed

at the beginning of planning horizon, such that each contract has a different delivery due date.

The critical issue in maintenance facilities is the prompt delivery of repaired devices given the

significantly high cost of system downtime for the users. Such facilities are also confronted with

uncertain repair time of some complex components (e.g., rotors) that increases the risk of the late

delivery of the devices and considerable backordering (penalty) costs, accordingly. The penalty

cost is a contractual term to compensate the equipment unavailability in users’ sites. For instance,

the maintenance facilities are expected to recompense power plants for the production loss of elec-

tricity due to the unavailability of turbines. In this context, we aim to develop a mathematical
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programming model for IPWP that determine the optimal quantity of repair operations along with

the training schedule in each period over a medium term (e.g., annual) planning horizon. The

objective is to minimize the total cost of operations, inventory, delays, and training by consider-

ing repair time uncertainty. Two main categories of constraints, namely operations and training

constraints must be taken into consideration. While the former category mainly adjust the balance

between repair quantities, inventory and backorder levels, the latter control the number of trainees

and required certified operators.

3.3.2 Modeling the uncertain repair time

Inspired from a real gas turbine maintenance center where a fleet of aged engines are received

for R & O services, it is assumed that the repair times of components involved in a complex device

are independent random variables. This is a realistic assumption due to the independent life-time

distribution of different components involved in the design of such modular-structured products. In

the IPWP model proposed in this study, the repair time appears in the index of the repair decision

variables. Hence, we need to generate discrete realizations for this parameter. To this end, we

adopt a procedure to discretize the continuous distribution representing the random repair time as

a set of integer outcomes with a given probability as follows:

Pr{lrepr = a} = Pr{(a− 1 < Xr ≤ a)|(Xr ≤ b)} =
Pr{a− 1 < Xr ≤ a}

Pr{Xr ≤ b}
(3.1)

where lrepr denotes a specific (discrete) realization of random repair time of component r; Xr

represents the random repair time of component r; b is the maximum empirical threshold of repair

time that can be determined based on historical data; and a is an integer number in the interval of

[1, b]. For instance, if the repair time follows an exponential distribution with the average repair

time λr equal to 0.83, by assuming that the maximum repair time is not longer than 2 periods,

the conditional probability of having a realization of repair time equal to 1 period is calculated as

follows:

Pr{lrepr = 1} =
e−(0)λr − e−λr
Pr{Xr ≤ 2}

= 0.7

Given the multi-period nature of the IPWP problem under investigation, it is more realistic to
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assume that the repair time of each component follows a non-stationary (dynamic) behavior over

the planning horizon (e.g., 6 periods). Hence, the uncertain repair time of each component can be

modeled as a ST. An example of a 7-stage ST is depicted in Figure 3.1. In a scenario tree, each

stage represents the point of time when new information on the uncertain event (repair time) is

revealed to the decision-maker. In this study, we consider a period in the planning horizon as a

stage, where the first stage represents current time (period zero). Each stage encompasses a set of

nodes, each representing one possible outcome corresponding to the uncertain parameter (repair

time). A probability is associated to each node of the ST such that the sum of probabilities of all

nodes in each stage is equal to one. In the example of Figure 3.1, two outcomes are considered

for each component denoted as low (e.g., 1 period) and high (e.g., 2 periods) repair times. The

root node in stage 1 denotes the current state of the world (i.e., period 0 in the planning horizon).

Besides, a scenario is defined as a path from the root node to each leaf node in the ST where the

probability of each scenario is the product of probabilities of the nodes on this path.

Following the independency of repair times for different components, the scenario trees corre-

sponding to each component should be merged and form a master ST (Figure 3.2). The nodes in

this ST denote all possible combinations of random outcomes for all components in each stage.

Due to the independency assumption, the probability of each node is thus calculated as the product

of probability of corresponding outcomes (nodes) in each component ST. For instance, consider

two components with independent repair times, each represented as a scenario tree similar to the

one depicted in Figure 3.1. In this ST, two outcomes with equal probabilities (0.5) are considered

for the repair time (high and low). Merging these STs forms a master ST similar to the one in

Figure 3.2 that consists of 4 nodes in Stage 2 (period 1), 16 nodes in stage 3, 64 nodes in stage

4, 256 nodes in stage 5, 1024 nodes in stage 6 and 4096 nodes in the last stage. In this ST, nodes

(2)-(5) in stage 2 have equal probabilities of 0.25 and represent, respectively, high repair time for

components #1 & #2; high repair time for component #1 & low repair time for component #2;

low repair time for component #1 & high repair time for component #2; and low repair time for

components #1 & #2. As it can be observed in this example, the size of the master ST grows expo-

nentially as the number of components with random repair time along with the number of periods

in the planning horizon increases. This would drastically increase the computational complexity

of the corresponding multi-stage stochastic IPWP model.
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Figure 3.1: Example of a scenario tree for one component

Figure 3.2: Example of master scenario tree corresponding to two components
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3.3.3 Problem formulation

According to the ST representation of the random repair time, the IPWP problem can be for-

mulated as a multi-stage stochastic programming (MSP) model. We assume that the stages in the

master scenario tree correspond to the periods in the planning horizon. By adopting a compact for-

mulation for the MSP model, the decision variables are defined for each node in the scenario tree.

It should be mentioned that in the compact formulation, the non-anticipativity constraints (NAC)

are implicitly included in the model. The description of sets, parameters, and decision variables

are provided in Tables 3.1 & 3.2. The MSP model is formulated as model (3.2)-(3.14). In this

model, the demand is assumed to be deterministic in the context that the equipment is received for

overhaul services. As a consequence, the type of component that is required to be replaced in each

device is known based on its maintenance history. In other words, according to the time required

to assemble repaired/replaced components, and the requested delivery due date, the demand for

the number of components to be replaced is determined (dr,t). It is further assumed that the com-

ponents of the devices go under a preliminary inspection upon disassembly where an estimation

on the repair time is provided based on the condition of the component and its history of usage.

Accordingly, a high or low repair time (i.e., a node index) is associated with each component.

In the IPWP problem, the repair quantity (Qrepr,t ), the number of required a-months old certified

operators (Ea,s,t) along with the number of trainees (Ra,s,t) are the here-and-now decisions that

must be determined before the actual repair times for different components for the next stage are

estimated; nevertheless, it is assumed that the realization of the repair time in the current stage

is known to the decision-maker at the beginning of that stage. On the contrary, the number of

replaced components (Qr,t), the inventory level (Ir,t), as well as the backorder level (Br,t) and

the maximum quantity of backorder (θt) are the wait-and-see (state) decisions that are determined

once the components are gone under repair and their actual repair times are revealed. This leads

to a compact formulation for the corresponding MSP model, where the NAC is implicitly applied

to decision variables, indicating that the decision-maker cannot foresee the outcomes of random

repair times corresponding to future stages. It is worth to note that the uncertain repair times

appear in the index of Qrep
r,(t−lrepr (n))

. Furthermore, despite the compact representation of the MSP

model, since the repair time can exceed one period (e.g., 2 periods), the decision variables are

indexed both by time periods t and nodes n.
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Table 3.1: Sets, indices and parameters
N Set of nodes in the (master) scenario tree, indexed by n
T Planning horizon, indexed by t
R Set of components, indexed by r
S Set of skills, indexed by s

As
Set of certificate ages for skill s, indexed by a
(|As|= max {a in period 0 } + |T|)

a(n) Parent node of node n in period (t− 1)
a′r(n) Ancestor node of node n in period (t− lrepr ) for component r
pr(n) Probability of node n
lrepr (n) A (possible) realization of repair time of component r at node n
dr,t Number of component r required to be replaced in period t
SSr Safety stock of component r
hr Unit inventory holding cost of component r
kr Unit repair cost of component r
b Unit penalty cost for the delayed delivery of each device
ns Unit training cost per skill type s
Ot Available training budget in each period t
αr,s number of operators with skill type s required for component r
es Certificate age of skill type s
Ws Total number of available operators with skill type s
Ea,s,0 Initial number of a-months old certified operators of skill type s in period 0

Table 3.2: Decision variables
Qr,t(n) Number of replaced components (ready for assembly) at node n in period t
Ir,t(n) Inventory level of component r at node n in period t
Qrepr,t (n) Number of repaired component r at node n in period t
Br,t(n) Backorder level of component r at node n in period t
θt(n) Maximum quantity of backorders among all components at node n in period t

Ea,s,t(n)
Number of operators per skill type s with a-months old certificates at node n
in period t

Ra,s,t(n)
Number of operators of skill type s with a-months old certificates who are under training
at node n in period t
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Multi-stage stochastic model for the IPWP problem

Minimize
∑
n∈N

pr(n)
∑
t∈T

(∑
r∈R

(krQ
rep
r,t (n) + hrIr,t(n))

+ bθt(n) +
∑
s∈S

∑
a∈As

nsRa,s,t(n)

) (3.2)

The objective function (3.2) minimizes the expected cost of repair, inventory, late delivery, and

training over all nodes and periods in the planning horizon. The MSP model encompasses several

families of constraints associated with the repair operations, workforce training, and the domain

of decision variables.

Operational constraints

Qr,t(n) +Br,t(n)−Br,(t−1)(a(n)) = dr,t ∀t ∈ T, ∀r ∈ R,∀n ∈ N (3.3)

Constraints (4.2) represent the flow balance between the number of components that must be re-

placed (dr,t(n)), the actual number of replaced components (Qr,t(n)), and the quantity of back-

ordered components at each node and its parent node in two consecutive periods (Br,t(n) and

Br,(t−1)(a(n)) ).

Qrep
r,(t−lrepr (n))

(a′r(n)) + Ir,(t−1)(a(n))− Ir,t(n) = Qr,t(n)

∀t ∈ T\1, ..., (lrepr (n)),∀r ∈ R,∀n ∈ N
(3.4)

The inventory balance constraints (3.4) imply that the stock level of each component at a specific

node in each period (Ir,t(n)) equals to its stock level at the parent node in the previous period

minus the number of repaired components by considering the random repair times. Qr,t(n) which

represents the number of replaced components at node n in period t is replenished from the internal

inventory if the component is available in stock.

θt(n) ≥ Br,t(n) ∀t ∈ T, ∀r ∈ R,∀n ∈ N (3.5)
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Constraints (3.5) calculate the maximum level of backorder among all components at a specific

node in each period (θt(n)). It is noteworthy that the (modular-structured) devices can only be

delivered to customers once all of their components are replaced. Therefore, the number of delayed

repaired devices is calculated at the component level. As such, the component with the highest

backorder level determines the number of devices with delayed delivery.

∑
r∈R

αr,sQ
rep
r (n) ≤

es∑
a=1

Ea,s(n) ∀t ∈ T, ∀s ∈ S, ∀n ∈ N (3.6)

Ir,t(n) ≥ SSr ∀t ∈ T, ∀r ∈ R,∀n ∈ N (3.7)

Qrepr,t (n) = 0 ∀t ∈ 1, ..., lreprt (n),∀r ∈ R,∀n ∈ N (3.8)

Constraints (3.6) set a limit on the level of repair operations at a specific node in each period

based on the number of available certified operators over different skill sets. Constraints (3.7)

ensure the safety stock at a specific node in each period. Constraints (3.8) set the initial values of

repair decisions to zero in periods smaller than the repair time in each node.

Training constraints

E(a+1),s,t(n) = Ea,s,(t−1)(a(n))−Ra,s,(t−1)(a(n)) ∀t ∈ T, ∀s ∈ S, ∀n ∈ N, ∀a ∈ As (3.9)

E1,s,t(n) =
∑

a∈As\1

Ra,s,(t−1)(a(n)) ∀t ∈ T, ∀s ∈ S, ∀n ∈ N (3.10)

Constraints (3.9) and (3.10) update the age of operators’ certificates. Constraints (3.9), in partic-

ular, maintains the balance in terms of the number of certified operators between a node and its

parent node in two consecutive periods. More specifically, training the operators with certificate

age a for each skill set at a given node in period t would reduce the number of certified operators

with age a+ 1 at the corresponding (child) node in the next period. Constraints (3.10) state the

balance between the number of operators under training for each skill set at a given node in each

period (Ra,s,t(n)) with the number of certified operators with age 1 at the corresponding (child)
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node in the next period (E1,s,t(n)).

∑
a∈As\1

Ra,s,t(n) ≤
es∑
a=1

Ea,s,t(n) ∀t ∈ T, ∀s ∈ S, ∀n ∈ N (3.11)

∑
a∈As

Ea,s,t(n) +
∑

a∈As\1

Ra,s,t(n) = Ws ∀t ∈ T, ∀s ∈ S, ∀n ∈ N (3.12)

∑
s∈S

∑
a∈As

nsRa,s,t(n) ≤ Ot ∀t ∈ T, ∀n ∈ N (3.13)

Constraints (3.11) limits the number of trainees to the number of certified operators available

to deliver the training sessions. Constraints (3.12) guarantees the balance between the number

of available operators (Ws), the number of certified and uncertified operators, in addition to the

number of trainees. Constraints (3.13) correspond to the training budget limits available in each

period in the planning horizon.

Domain constraints

Qr,t(n), Qrepr,t (n), Ea,s,t(n), Ra,s,t(n) ∈ Z+&Ir,t(n), Br,t(n), θt(n) ∈ R+

∀t ∈ T, ∀n ∈ N, ∀r ∈ R,∀s ∈ S, ∀a ∈ As

(3.14)

3.4 Solution methodology

3.4.1 Computational complexity of the IPWP problem

The IPWP model (2)-(14) is a complex MS-MIP model with (4×|R||T ||N |+|T ||N |+|As||S||T ||N |)

decision variables and (5 × |T ||R||N | + 4 × |T ||S||N | + |T ||N | + |T ||S||N ||As|) constraints.

Although the small instances of the problem are solvable by a commercial solver, such as CPLEX,

real-size instances are usually computationally intractable for the following reasons. First, by

increasing the number of periods in the planning horizon, which is a realistic assumption for

similar tactical planning problems, the size of the master ST grows exponentially. Besides, the

independency of repair times for different components significantly elevates the size of master

ST and consequently, the computational complexity of this model. For instance, by considering

two/three components with independent uncertain repair times, each discretized as two outcomes,

and a 12-month planning horizon, the resulting 13-stage master ST will contain approximately
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22× 106/7.7× 1010 nodes, respectively.

To overcome the computational complexity of this problem, two decomposition algorithms

based on Lagrangian relaxation (LR) approach are proposed. LR algorithm relies on relaxing

a set of complicating constraints in the original MIP model and penalizing their infeasibility by

adding Lagrangian penalty terms in the objective function. It is expected then that the relaxed

model will be easier to solve and/or decomposable into smaller sub-problems that can be efficiently

solved by the aid of commercial solvers or ad-hoc algorithms Wolsey (1998). The main idea

behind the decomposition algorithms proposed in this study is to decompose the MS-MIP model

per component. More precisely, the proposed solution methodology can be summarized as the

following steps:

1- LR based on the master scenario tree (LRMST ): this algorithm is an LR scheme implemented

by formulating component sub-models based on the master ST; hence it leads to the exact decom-

position of the original MS-MIP model into component sub-models. Given that the size of the

master ST could be very large for some problem instances, the resulting component sub-models

could still become computationally intractable. Therefore, it is desirable to approximate these

sub-models to significantly smaller models.

2- LR based on the component scenario tree (LRCST ): this method provides an approximation

to component sub-models in the LRMST algorithm in order to reduce their size. The idea is

to formulate these sub-models based on component scenario trees. It is noteworthy that both LR

algorithms provide a lower bound (LB) to the optimal objective function of model (3.2)-(3.14).

However, it is expected that the bound provided by the approximate LRCST algorithm is weaker

than the former algorithm due to formulating component sub-models based on their corresponding

ST rather than the master ST.

3- An efficient repair mechanism is also proposed to obtain a high-quality feasible solution and

upper bound (UB) based on the converged solution of LRMST and LRCST algorithms.

The detailed description of each step is provided in the following sections.
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3.4.2 Lagrangian relaxation algorithm based on the master scenario tree (LRMST )

As mentioned earlier, the main goal of LRMST is to reduce the computational complexity

of the original MS-MIP model by decomposing it into r component sub-models, each formulated

based on the master ST. To this end, Constraints (3.6) in model (3.2)-(3.14) that bind component

sub-models, must be relaxed. Afterwards, the resulting sub-models can be solved independently.

Nevertheless, the obtained solution of the relaxed models might be infeasible with respect to the

relaxed constraints. In other words, the number of certified operators (Ea,s,t(n)) and trainees

(Ra,s,t(n)) obtained from each sub-model might violate the workforce capacity constraints (3.6).

Hence, we propose an LR algorithm where possible violations of these constraints are added as

the penalty terms in the objective function of each sub-model. More precisely, by introducing

Lagrangian multipliers λs,t(n), the following LR model is obtained:

L(λs,t(n)) = Minimize
∑
n∈N

pr(n)
∑
t∈T

(∑
r∈R

(krQ
rep
r,t (n) + hrIr,t(n)) + bθt(n)+

∑
s∈S

∑
a∈As

nsRa,s,t(n)

)
+
∑
n∈N

∑
t∈T

∑
s∈S

λs,t(n)

(∑
r∈R

αr,sQ
rep
r,t (n)−

es∑
a=1

Ea,s,t(n)

)
(3.15)

Subject to:

Constraints (3.2)-(3.5) and (3.7)-(3.14).

Since we aim to decompose model (3.2)-(3.14) to component sub-models, we define Es,t(n)

to approximate the cumulative workforce requirement (required for all components) per each skill

set and node in the master scenario trees as follows:

Es,t(n) =
∑
r∈R

αr,sQ
rep
r,t (n) (3.16)

It is noteworthy that the value of Es,t(n) is updated in each iteration of the proposed LR algorithm

based on the current value of Qrepr,t (n) obtained from corresponding component sub-models. Be-

sides, θt(n) needs to be replaced byBr,t(n) to track the backorders quantity per component in each

sub-model. Finally, in order to improve the quality of the LB provided by the Lagrangian model,

we propose to include a disaggregated version of constraints (3.6) in the component Lagrangian
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sub-models (Constraints (3.20)).

Proposition 1. The LR model Ł(λs,t(n)) can be decomposed into the following |R| sub-models:

Lr(λs,t(n)) = Minimize
∑
n∈N

pr(n)
∑
t∈T

(
krQ

rep
r,t (n) + hrIr,t(n) + bBr,t(n)+

∑
s∈S

∑
a∈As

nsRa,s,t(n)

)
+
∑
n∈N

∑
t∈T

∑
s∈S

λs,t(n)

(
Es,t(n)−

es∑
a=1

Ea,s,t(n)

)
(3.17)

Subject to:

Constraints (3.9)-(3.14) and

Qr,t(n)−Br,(t−1)(a(n)) +Br,t(n) = dr,t ∀t ∈ T, ∀n ∈ N (3.18)

Qrep
r,(t−lrepr (n))

(a′r(n)) + Ir,(t−1)(a(n))− Ir,t(n) = Qr,t(n) ∀t ∈ T\1, ..., lrepr , ∀n ∈ N (3.19)

αr,sQ
rep
r,t (n) ≤

es∑
a=1

Ea,s,t(n) ∀t ∈ T, ∀s ∈ S, ∀n ∈ N (3.20)

Ir,t(n) ≥ SSr ∀t ∈ T, ∀n ∈ N (3.21)

Qrepr,t (n) = 0 ∀t ∈ 1, ..., lreprt (n) (3.22)

Proof. Obvious.

Since Lr(λs,t(n)) is a nonlinear mathematical program, it can be solved by a sub-gradient

algorithm (Algorithm 1). In this study, the Lagrangian sub-problems in Algorithm 1 are efficiently

solved by a commercial solver (CPLEX). The stopping criterion in this algorithm is considered

as a fixed number of iterations. Furthermore, Given that the convergence rate of this algorithm is

dependent on the step size (uk), this parameter is updated in each iteration of the algorithm.

It is worth to mention that Lr(λs,t(n)) obtained in each iteration of Algorithm 1 does not

explicitly provide a LB to the optimal objective function of model (3.2)-(3.14). In fact, the LB

is calculated by combining the solution of Lagrangian (component) sub-models as described in

Algorithm 2. Recall from Section 3.3 that the objective function (3.2) is composed of repair,

inventory, backorder, and training costs. To calculate the LB in each iteration of Algorithm 1,
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Algorithm 1 Sub-gradient algorithm (LRMST )
Step 0 (Initialization):
Assign zero to λ(1)

s,t (n)
Assign −∞ to the LB
Set iteration counter k equal to 1
Assign initial values to u0 and p

While the stopping criteria is not satisfied do:
Step 1: Solve the Lagrangian problem Lr(λs,t(n)) and update the LB (Algorithm 2)
Step 2: Update the step-size as uk=u0p

k

Step 3: Update the Lagrangian multipliers as follows:

λ
(k+1)
s,t (n) = λ

(k)
s,t (n) + uk

{
E

(k+1)
s,t (n)−

es∑
a=1

E
(k)
a,s,t(n)

}
E

(k+1)
s,t (n) =

∑
r∈R

αr,sQ
rep
r,t (n)(k)

k = k + 1

End While

the first two categories of cost are calculated by combining the repair and inventory decisions

obtained from each component sub-model. Nevertheless, the backorder cost is considered as the

highest backorder quantity obtained from these sub-models. In the same vein, the Lagrangian

penalty cost and training cost are also calculated based on the maximum workforce and training

levels (Ea,s,t(n) and Ra,s,t(n)) obtained over all component sub-models. This is due to the fact

that these decisions are not defined per component, hence it is possible that they take different

values in those sub-models. By considering the maximum value over all component sub-models,

the infeasibility of the relaxed constraint set (3.6) is expected to be minimized in each iteration of

Algorithm 1. The proof is similar to the one provided for Proposition 2.

It should be pointed out that the component sub-models in LRMST are per se large-scale MS-

MIP models given that they are formulated based on a master ST, merging individual component

scenario trees. In other words, these sub-models can be computationally intractable if the master

ST grows exponentially in size due to an increase in the number of stages and components with

uncertain repair time. To alleviate this complexity, an approximate LR algorithm (denoted as

LRCST ) is proposed where component sub-models are modeled based on their corresponding

ST, rather than the master ST. Afterwards, the optimal value of decision variables corresponding
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Algorithm 2 Lower bound calculation algorithm (LRMST )
Step 1: Calculate the maximum Lagrangian penalty term, training and penalty costs over all
component sub-models as follows:

SOL = max
r∈R

{∑
n∈N

∑
t∈T

∑
s∈S

λs,t(n)

(
Es,t(n)−

es∑
a=1

Ea,s,t(n)

)}
COT = max

r∈R

{∑
n∈N

∑
t∈T

∑
s∈S

∑
a∈As

pr(n)

(
nsRa,s,t(n)

)}
θt(n) = max

r∈R,n∈N

{
Br,t(n)

}

Step 2: Update the Lagrangian LB as follows:

LB =
∑
n∈N

pr(n)

(∑
t∈T

(
∑
r∈R

krQ
rep
r,t (n) +

∑
r∈R

hrIr,t(n) + bθt(n))

)
+ COT + SOL

to the nodes of master ST can be determined in a straightforward manner based on the values

obtained in each node of component STs.

3.4.3 Lagrangian relaxation algorithm based on the component scenario tree (LRCST )

The prime idea behind this approximate decomposition algorithm is the relationship between

the nodes of master and component STs. In fact, when decomposing the original MS-MIP model

(formulated based on master ST) into component sub-models, some nodes in each stage of master

ST would be indistinguishable in each sub-model. For instance, consider two component STs simi-

lar to the one depicted in Figure 3.1. In this figure, node (2)/(3) in stage two represent, respectively,

high/low repair time for each component. When combining these two STs, based on the definition

of nodes in master ST in section 3.3.2, it is straightforward to verify that nodes (2) & (3) in stage

two of the master ST (Figure 3.2) are equivalent to node (2) in component ST when decomposing

the MS-MIP model to component #1 sub-model. In fact, they both represent a high repair time for

this component. Nevertheless, these nodes are not indistinguishable in the sub-model correspond-

ing to component #2 since they represent high/low repair times for this component. In addition,

nodes (4) & (5) are indistinguishable in component #1 sub-model, both representing a low repair

time. In a similar fashion, nodes (2) & (4) and (3) & (5) are indistinguishable in sub-models cor-

responding to component #2. As a consequence, we propose to formulate component sub-models

(3.17)-(3.22) based on their corresponding ST (rather than the master ST) as follows:
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Lr(λs,t(n)) = Minimize
∑
n∈N ′

pr(n)
∑
t∈T

(
krQ

rep
r,t (n) + hrIr,t(n) + bBr,t(n)+

∑
s∈S

∑
a∈As

nsRa,s,t(n)

)
+
∑
n∈N ′

∑
t∈T

∑
s∈S

λs,t(n)

(
Es,t(n)−

es∑
a=1

Ea,s,t(n)

) (3.23)

Subject to:

Constraints (3.9)-(3.14) and

Qr,t(n)−Br,(t−1)(a(n)) +Br,t(n) = dr,t ∀t ∈ T, ∀n ∈ N ′ (3.24)

Qrep
r,(t−lrepr (n))

(a′r(n)) + Ir,(t−1)(a(n))− Ir,t(n) = Qr,t(n) ∀t ∈ T\1, ..., lrepr ,∀n ∈ N ′ (3.25)

αr,sQ
rep
r,t (n) ≤

es∑
a=1

Ea,s,t(n) ∀t ∈ T, ∀s ∈ S,∀n ∈ N ′ (3.26)

Ir,t(n) ≥ SSr ∀t ∈ T, ∀n ∈ N ′ (3.27)

Qrepr,t (n) = 0 ∀t ∈ 1, ..., lreprt (n) (3.28)

where N ′ denotes the set of nodes in the component ST.

main difficulty in formulating component sub-models based on their corresponding ST is estimat-

ing the cumulative workforce requirement (Es,t(n)) in each sub-model. Therefore, we propose to

approximate this parameter by accumulating the level ofQrepr,t (n) obtained in each sub-model with

the expected amount of repair activities obtained over all nodes in the corresponding stage in the

other component sub-models. For instance, consider a three-components system where the repair

time of each component is represented as the ST in Figure 3.1. The value of Es,1(4) (workforce

level for component #1 in node (4)), is approximated by considering Qrepr,1 (4) and the expected

values of this variable in nodes (4)-(7) in component sub-models #2 and #3. This is based on the

fact that when the repair time of component #1 is represented by node (4) in its corresponding

ST, the repair time of the two other components could be represented by any of the possible four

nodes (nodes (4)-(7)) in the STs corresponding to the two other components. Therefore, the value

of Es,t(n) in LRCST sub-models can be approximated as follows:
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Es,t(n) = αr,sQ
rep
r,t (n) +

∑
n∈Nt

∑
i∈R\r

pr(n)αi,sQ
rep
i,t (n) (3.29)

where Nt denotes the set of nodes in each stage t of the component ST. The nonlinear LRCST

sub-models (Lr(λs,t(n))) can be solved by the aid of Algorithm 1. Afterwards, an approximate

LB within the sub-gradient algorithm can be calculated by the aid of Algorithm 2 where N is

replaced by N ′. Nevertheless, the exact LB can only be calculated by the aid of Algorithm 2 after

converting the solution of LRCST to its counterpart in the original MS-MIP model as described

in the following section.

Converting the solution of LRCST to its counterpart in the original MS-MIP model

Recall from section 3.3 that the decision variables in the original MS-MIP model are defined

for the nodes of master ST. The converged value of these variables in LRCST algorithm, on

the contrary, are defined for the nodes of component STs (n′ ∈ N ′). It is quite straightforward

to convert the values of Qr,t(n′), Qrepr,t (n′), Br,t(n′) and Ir,t(n′) to their corresponding values

in the nodes of master ST. In model (3.17)-(3.22), these decisions are indexed by component r

and node n. Hence their optimal value depends on the value of demand dr,t, which is a deter-

ministic parameter defined per component, in addition to the repair time corresponding to each

node of the master ST. Hence, the value of these decisions corresponding to the indistinguish-

able nodes of the master ST are identical and can be directly retrieved from the solution obtained

from LRCST algorithm. In other words, by assuming that a given node n ∈ N in the master

ST is the result of merging nodes n′r ∈ N ′r in component scenario trees r = 1, 2, ...|R|, and by

denoting the converged solution of LRCST as Q̂r,t(n′), Q̂repr,t (n′), B̂r,t(n′) and Îr,t(n′); we ob-

tain Qr,t(n) = Q̂r,t(n
′
r), Qrepr,t (n) = Q̂repr,t (n′r), Br,t(n) = B̂r,t(n

′
r) and Ir,t(n) = Îr,t(n

′
r). For

instance, in a two-component master ST (Figure 3.2), node (3) in period 1 (stage 2) is the result of

merging nodes (2) and (3) in component 1 and component 2 STs (Figure 3.1), respectively. Hence,

Qrep1,1 (3) = Q̂rep1,1 (2) and Qrep2,1 (3) = Q̂rep2,1 (3).

The training and workforce level decisions, on the contrary, could take different values in dif-

ferent component sub-models, although they are not indexed by components. Hence, it is less
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straightforward to determine their value in the nodes of master ST. The following proposition,

thus, provides an approximation rule to convert the converged value of these decisions in LRCST

to their counterparts in the original MSP model.

Proposition 2. The value of workforce and training level decisions (Ea,s,t(n) andRa,s,t(n)) in the

nodes of the master ST can be approximated as the maximum values, obtained within the LRCST

scheme, in corresponding nodes of component sub-models. This would guarantee the minimum

amount of infeasibility in terms of workforce capacity constraints (3.6) in each node of the master

ST.

Proof. The proof is provided in Appendix A.

According to Proposition 2, the objective function value of the converted solution provides the

(largest) LB to the optimal objective value of the original MSP model (3.2)-(3.14) given that all

decisions are defined for the nodes of master ST.

3.4.4 Upper-bound calculation heuristic

As mentioned earlier, the LRMST and LRCST algorithms provide an LB to the optimal

objective value of MS-MIP model (3.2)-(3.14). In other words, the converged solution of these

algorithms are not necessarily feasible with respect to the workforce capacity constraints (3.6). In

order to repair the infeasibility and obtain a feasible solution and an UB to the optimal objective

value of this model, we first propose a heuristic algorithm in the context of LRMST algorithm.

Let us denote the converged solution of these algorithms as (Q̂r,t(n), Q̂repr,t (n), B̂r,t(n), Îr,t(n),

Êa,s,t(n), R̂a,s,t(n)). The infeasibility in this solution reflects the imbalance between the number

of certified operators required to carry out the repair quantity operations (
∑

r∈R αr,sQ̂
rep
r,t (n)) and

the total number of available certified operators (
∑es

a=1 Êa,s,t(n)) in each node of the ST. Thus, two

corrective actions are proposed to adjust either the repair quantity or number of certified operators

to obtain a feasible solution in each component sub-model. More precisely, given that the cost of

training is considerably lower than the penalty cost of late delivery, as the first step, the algorithm

tries to increase the number of certified operators by forcing the model to train more operators. If

a feasible solution exists, an UB will be obtained. Otherwise, the algorithm decreases the repair

quantity in order to obtain a feasible solution (and an UB). The summary of the repair mechanism
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heuristic and the upper bound calculation procedure for LRMST is provided in Algorithms 3 and

4.

Algorithm 3 Repair mechanism heuristic (LRMST )
Step 1:
Calculate the amount of infeasibility in each node of component sub-models (Lr(λs,t(n))) as:

∆̂Es,t(n) = max

{
0,

(
Ês,t(n)−

es∑
a=1

Êa,s,t(n)

)}
∀t ∈ T, ∀s ∈ S, ∀n ∈ N

While ∆̂Es,t(n) > 0 do:
Step 2: Remove the Lagrangian term from each sub-model (Lr(λs,t(n))).

Step 3: Fix the values of Qrepr,t (n) in Lr(λs,t(n)) as Q̂repr,t (n) and calculate Ês,t(n) accordingly
by the aid of (16).
Step 4: Solve each sub-problem (Lr(λs,t(n))) after adding the following constraints:

es∑
a=1

Ea,s,t(n) ≥ Ês,t(n) + ∆̂Es,t(n) ∀t ∈ T, ∀s ∈ S,∀n ∈ N

Step 5: If a feasible solution exists, calculate the UB by the aid of Algorithm 4;
Else go to step 6.

Step 6: Remove the constraints in step (4) from Lr(λs,t(n)) model and solve it by fixing the
value ofQrepr,t (n) as (Q̂repr,t (n)−∆̂Es,t(n)); Afterwards, calculate the UB by the aid of Algorithm
4.
End While

As it can be observed in Algorithm 4, in order to calculate the UB, the backorder cost is considered

as the highest backorder quantity obtained from these sub-models. As mentioned earlier, these

decisions are not defined per component, hence it is possible that they take different values in

component sub-models. Therefore, the Lagrangian penalty cost and training cost are calculated

based on the maximum workforce and training levels (Ea,s,t(n) and Ra,s,t(n)) obtained over all

component sub-models.

Proposition 3. Considering the maximum value of workforce and training decisions over all

component sub-models in calculating the UB on the optimal objective value of model (3.2)-(3.14)

guarantees the feasibility of the relaxed constraint set (3.6).

Proof. The proof is provided in Appendix B.
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Algorithm 4 Upper bound calculation algorithm (LRMST )
Step 1: Calculate the maximum training and penalty cost over all component sub-models as
follows:

COT = max
r∈R

{∑
n∈N

∑
t∈T

∑
s∈S

∑
a∈As

pr(n)

(
nsRa,s,t(n)

)}
θt(n) = max

r∈R,n∈N

{
Br,t(n)

}

Step 2: Update the Upper bound UB as follows:

UB =
∑
n∈N

pr(n)

(∑
t∈T

(
∑
r∈R

krQ
rep
r,t (n) +

∑
r∈R

hrIr,t(n) + bθt(n))

)
+ COT

Upper-bound calculation heuristic for the converged solution of LRCST algorithm

Recall from section 3.4.3 that the component sub-models in LRCST algorithms are formu-

lated based on component STs. The procedure to obtain an UB on the optimal objective function

of model (3.2)-(3.14) is, thus, less straightforward in this context. As the first step, The repair

mechanism in Algorithm 3 can be applied to the converged solution of LRCST algorithm, where

n is replaced by n′ denoting the nodes of component STs. Afterwards, the repaired solution can

be converted to its counterpart in the master ST by the aid of the procedure described in section

3.4.3.1. Nevertheless, this solution is not necessarily feasible due to the fact that Es,t(n) in com-

ponent sub-models is approximated as
(
αr,sQ

rep
r,t (n) +

∑
n∈Nt

∑
i∈R\r pr(n)αi,sQ

rep
i,t (n)

)
. The

left-hand-side of constraints (3.6), on the contrary, is formulated as
∑

r∈R αr,sQ
rep
r,t (n). There-

fore, the third step relies on verifying the feasibility of constraint (3.6) in the converted (repaired)

solution of LRCST algorithm. If the solution is feasible, Algorithm 4 can be applied accordingly

to calculate the UB. Otherwise, the repair mechanism in Algorithm 3 is applied to this solution

before calculating the UB.

3.5 Numerical experiments

In this section, we analyze the performance of the proposed solution methodology in terms

of quality of bounds and CPU time for two classes of multi-item tactical planning problem in-

stances. We also investigate the value of adopting a multi-stage stochastic programming approach

for IPWP under repair time uncertainty rather than a deterministic approach. In what follows, we
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Table 3.3: The value of parameters in the numerical experiments
Parameter hr SSr αr,s b kr Ot ns es

Value 40 1 1 1,000 150 3,000 50 24

first provide the details of different problem instances, followed by the results of parameter tuning

for different algorithms. Afterwards, the detailed analysis of our numerical experiments are pro-

vided. All algorithms are implemented in C++ programming language using Concert Technology

with IBM-ILOG CPLEX 12.10 on an Intel Core i7 3.4 GHz with 8GB of RAM.

3.5.1 Experimental design

Our numerical experiments are designed in the context of a maintenance facility, similar to

the one described in Section 3.3.1, that receives a specific type of gas turbine engine. Among the

large number of components involved in the structure of this type of equipment, we confine our

attention to five expensive and critical repairable components. Some of the parameters associated

with this experimental example are summarized in Table 3.3. 11 operators with two skill sets (re-

pair and disassembly/assembly) are considered with the certificate validation period of 24 months.

Besides, the initial certificate age of operators vary between 16 to 22 periods (months).

Within this context, different test instances have been generated in two classes of problems,

namely IPWP, described in section 3.3, and a generic multi-item production planning (MIPP) prob-

lem where the operators’ certificates have an unlimited validation period. It is worth to mention

that the MIPP problem is recurrent in a wide range of industries with less stringent product safety

standards. In other words, the certified operators are not required to repeat the training sessions

on a regular basis. The mathematical formulation of MIPP problem is provided in Appendix C.

Given the unlimited validation period of certificates, the workforce level and training decisions

are not incorporated in this model. Hence, when implementing the LRMST and LRCST algo-

rithms, all terms associated with these variables are not taken into consideration in Algorithms 1-4.

In particular, Algorithm 1 must be adapted as described in Appendix D. Furthermore, in compo-

nent Lagarngian sub-models (3.17)-(3.22) and (3.23)-(3.28), the right-hand-side of constraint sets

(3.20) and (3.26) must be replaced by Ws.

In both classes of problem instances, two demand profiles (dr,t) are taken into consideration,

namely averages demand, determined based on the historical data available in the maintenance
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Table 3.4: Size of IPWP problem instances

Number of stages Setting 1 Setting 2
# of nodes in the

master scenario tree # of constraints # of integer variables # of nodes in the
master scenario tree # of constraints # of integer variables

5-stage 341 17,096 23,529 4,681 248,158 341,713
7-stage 5,461 305,866 420,497 299,593 >14.98×106 >23.96×106

13-stage >22×106 >1.25×109 >1.79×109 >7.68×1010 >3.84×1012 >5.37×1012

facility, as well as high demand by increasing the average value by 20%. We further analyze each

class under two settings that differ in terms of the number of components with uncertain repair

time. In setting 1, only two components (out of five) are featured with random repair times, both

modeled as an ST similar to Figure 3.1. In this setting, the repair time can take two possible

outcomes for each component. In particular, lrep1 = 1 with probability of 0.7; lrep1 = 2 with prob-

ability of 0.3; lrep2 = 1 with probability of 0.8; and lrep2 = 2 with probability of 0.2. Deterministic

repair times are considered for components 3-5 with the value equal to 1 period. In setting 2, 3

components have uncertain repair times where lrep3 = 1 with probability of 0.8 and lrep3 = 2 with

probability of 0.2. Furthermore, 3 different planning horizons are considered for both settings,

including 4, 6, and 12 periods (months) that lead, receptively, to a 5-stage, 7-stage, and 13-stage

scenario trees. To illustrate the size of problem instances, the number of nodes in the correspond-

ing master ST in addition to the number of constraints and integer variables for each instance in

the first class of problems (IPWP) are presented in Table 3.4.

3.5.2 Parameter tunning

The quality of the LB, along with the CPU time of the LRMST and LRCST algorithms are

dependent on the value of parameters involved within the sub-gradient scheme. In particular, the

maximum number of iterations (K), and step-size parameters (u0 and p) are the influencing factors

on the aforementioned metrics. Therefore, we aim to analyze the impact of these factors by the

aid of designed experiments and ANOV A on the response variable, i.e., the LB obtained from

LRMST and LRCST . The goal is to set the levels to these parameters such that the largest

LB is obtained. To this end, the experiments are run on two medium-size problem instances (i.e.,

5-stage and 7-stage in setting 2) by considering three levels for each parameter. Nine experiments
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are thus conducted over each test instance. The main effect plots of the experiments on the 5-

stage test instance are provided in Figures 3.3 and 3.4. Based on this analysis, for both LRMST

and LRCST algorithms, we set p = 0.9 and K = 50. It should be mentioned that by increasing

the number of iterations from K = 50 to K = 100, the changes in the value of LBs are negligi-

ble. Moreover, u0 = 6.5 and u0 = 1.2 have been chosen for LRMST and LRCST algorithms,

respectively. Similar results are obtained for the 7-stage test instance.

Figure 3.3: Main effect plot of parameters in LRMST algorithm

Figure 3.4: Main effect plot of parameters in LRCST algorithm

3.5.3 Analysis of the performance of LRMST and LRCST algorithms

The results of implementing LRMST and LRCST algorithms on different classes of problem

instances are provided in Tables 3.5-3.7. Table 3.5 and 3.6 present the results of the IPWP model by

considering average and high demands and Table 3.7 summarizes the results of the MIPP model.
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These tables have been divided into three main columns, including “CPLEX”, “LRMST ” and

“LRCST ”. In “CPLEX” column, the “Best feasible solution” and “CPU time (second)” obtained

by a commercial solver (CPLEX) are reported. “*” in “Best feasible solution” column indicates

the optimality of the obtained solution. In some large-scale instances (e.g., setting 1, 13-stage),

CPLEX is not able to find the optimal solution within a 24 hours time limit; hence, the objective

value of a feasible solution with 2% optimality gap is reported. Moreover, for other instances

(e.g., IPWP setting 2, 13-stage) CPLEX is not able to load the model due to the model size.

Therefore, the ”Best feasible solution” and “CPU time” are reported as “NA”. In “LRMST ”

and “LRCST ” columns, “LB” represents the lower bound obtained by the proposed algorithms.

Besides, “Optimality Gap (%)” corresponds to the relative gap between the LB corresponding to

LRMST / LRCST and the best feasible solution (BFS) obtained by CPLEX and is calculated as

((BFS−LB)/BFS)×100). In “LRCST ” column, “Infeasibility (%)” denotes the percentage of

nodes in the component ST with infeasible solutions. “UB” represents the upper bound obtained by

implementing the procedure provided in 3.4.4.1. “UB Gap (%)” denotes the relative gap between

the “UB” and the BFS obtained by CPLEX and is calculates as ((UB − BFS)/BFS) × 100) .

Also, “UB-LB Gap (%)” measures the relative gap between “UB” and “LB” of LRCST and is

calculated as ((UB − LB)/UB)× 100).

As it can be observed in these tables, increasing the number of components with random repair

time would significantly increase the size of MS-MIP models. That is why, problem instances

with a planning horizon longer than 6 months in setting 2 cannot be solved by a commercial

solver. Also, in all three classes of problems, CPLEX is not able to load the model for instances

that incorporate 12 periods in the planning horizon. Similar trends are observed from the results of

LRMST algorithm where the MS-MIP is decomposed per component sub-models, each formu-

lated based on the master ST. Despite the high quality of the LB obtained by this algorithm (with

less than 1% optimality gap on average), it is not able to solve realistic-size problem instances

(7-stage and 13-stage) given that CPLEX is not able to load the corresponding component sub-

models. LRCST algorithm, on the contrary, can efficiently solve all problem instances. In other

words, formulating the component sub-models based on component STs significantly reduces the

size of these models, thus the computational time of LRCST is much lower than the LRMST al-

gorithm. Furthermore, the CPU time in the largest instances (13-stage) does not exceed 7h which
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Table 3.5: The results of the IPWP model with average demand
Setting Number

of stages
CPLEX LRMST LRCST

Best feasible
solution

CPU
time (s) LB CPU

time (s)
Optimality

Gap(%) LB CPU
time (s)

Optimality
Gap(%)

Infeasibility
(%) UB UB

Gap (%)
UB-LB

Gap (%)

Setting 1
5-stage 7,509* 12 7,471 107 0.51 7,445 57 0.86 2.58 7,546 0.49 1.33
7-stage 11,498 >24h 11,399 3,452 0.86 11,361 132 1.19 4.56 11,519 0.18 1.37
13-stage NA NA NA NA NA 20,470 21,317 NA 7.28 23,319 NA 12.21

Setting 2
5-stage 7,884* 69,060 7,841 3,478 0.53 7,814 68 0.88 3.22 7,991 1.35 2.21
7-stage NA NA NA NA NA 11,776 124 NA 5.67 12,112 NA 2.77
13-stage NA NA NA NA NA 21,143 22,647 NA 9.02 25,182 NA 16.03

is reasonable given that the tactical planning models under investigation are not required to be

solved frequently. This algorithm provides high-quality solutions with small optimality gaps in a

reasonable time for small and medium-size instances. In particular, the UB Gap (%) for 5-stage

and 7-stage instances (setting 1) is less than 0.5 %. This clearly indicates that the proposed re-

pair mechanism in Algorithms 3 and 4 does not significantly increase the objective function value

of the solution obtained by LRCST algorithm. Nonetheless, the quality of LB deteriorates by

increasing the number of components with uncertain repair time and the length of the planning

horizon. In particular, as the number of stages increases (e.g., 13-stage instances), the number of

nodes with infeasible solutions is increased. Consequently, the gap between the repaired solution

(UB) from the LB in these instances is higher than the one in 5-stage and 7-stage ones.

It is also worth to mention that in all problem instances, the proposed repair mechanism on the

converged solution of LRCST algorithm (Algorithm 3) is effective enough to avoid infeasibility

in the converted solution of this algorithm to its counterpart corresponding to the master scenario

tree. More precisely, in all the numerical experiments, the infeasibility in terms of workforce ca-

pacity constraints is resolved by reducing the quantity of repair operations (Qrepr,t (n)) according to

Step 6 of Algorithm 3. This would minimize the chance of infeasibility in the converted solution

of LRCST algorithm given that the latter do not involve any approximation with regard to repair

decisions.

Based on the results provided in Table 3.6, by increasing the demand in IPWP instances, larger LB

(the total cost) values are obtained. This result clearly indicates that that capacity of the mainte-

nance facility is not sufficient to satisfy the increased demand within the delivery due dates, which

leads to a higher backorder cost. The MIPP instances (Table 3.7), on the contrary, provide the low-

est cost given the unlimited validation period of operators certificates which leads to an increased

capacity in the maintenance facility.
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Table 3.6: The results of the IPWP model with high demand
Setting Number

of stages
CPLEX LRMST LRCST

Best feasible
solution

CPU
time (s) LB CPU

time (s)
Optimality

Gap(%) LB CPU
time (s)

Optimality
Gap(%)

Infeasibility
(%) UB UB

Gap (%)
UB-LB

Gap (%)

Setting 1
5-stage 13,189* 18 13,073 123 0.87 13,049 65 1.06 3,87 13,359 1.28 2.32
7-stage 21,268 >24h 21,028 4,726 1.12 20,958 184 1.45 5,66 21,712 2.08 3.47
13-stage NA NA NA NA NA 36,217 23,178 NA 8,31 40,982 NA 11.62

Setting 2
5-stage 18,275* 216 18,049 4,409 1,23 17,693 87 1.7 5,80 18,720 2.43 5.48
7-stage NA NA NA NA NA 24,218 213 NA 5,77 25,579 NA 5.32
13-stage NA NA NA NA NA 39,534 24,162 NA 9,15 46,912 NA 15.72

Table 3.7: The results of the MIPP model
Setting Number

of stages
CPLEX LRMST LRCST

Best feasible
solution

CPU
time (s) LB CPU

time (s)
Optimality

Gap(%) LB CPU
time (s)

Optimality
Gap(%)

Infeasibility
(%) UB UB

Gap (%)
UB-LB

Gap (%)

Setting 1
5-stage 6,142* 3 6,134 122 0.13 6,128 45 0.21 1.93 6,185 0.7 0.92
7-stage 10,431* 25,350 10,398 3,121 0.31 10,390 95 0.39 3.62 10,599 1.61 1.97
13-stage NA NA NA NA NA 17,968 18,326 NA 6.21 19,083 NA 5.84

Setting 2
5-stage 6,578* 4,825 6,568 1,512 0.15 6,562 35 0.24 3.22 6,649 1.07 1.30
7-stage NA NA NA NA NA 11,776 115 NA 4.72 11,985 NA 1.74
13-stage NA NA NA NA NA 19,390 21,912 NA 6.9 20,927 NA 7.34
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Figure 3.5: LRCST CPU time comparison for different models
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Figure 3.6: LRCST Optimality Gap(%) comparison
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Figure 3.7: LRCST UB Gap(%) comparison

The comparison between different classes of problem instances in terms of CPU time, Opti-

mality Gap (%), and UB Gap(%) of LRCST algorithm is provided in Figures 3.5-3.7. As it can

be observed in Figure 3.5, the MIPP test instances are the least demanding ones in terms of CPU

time. This is due the reduced number of decision variables (i.e., the absence of workforce and

training variables) in these instances. Contrarily, the IPWP instances with high demand are the

most difficult instances to solve by LRCST algorithm. Furthermore, the CPU time required to

run this algorithm for solving the problem instances in setting 2 is higher than the ones in the first
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setting due to the increased number of component sub-models in these instances. The comparison

between the LRCST Optimality Gap (%) of 5 and 7-stage problem instances (Figure 3.6) indi-

cates that the performance of this algorithm (in terms of the quality of LB) slightly deteriorates by

increasing the demand. As expected, the smallest optimality gaps are observed in MIPP instances.

This result can be clearly justified based on the fact that Lagrangian component sub-models in

Algorithm 5 (Appendix B) does not include workforce level decision variables. Therefore, when

applying the sub-gradient scheme within the LRCST algorithm, the Lagrangian penalty terms are

more effective in minimizing the infeasibility in terms of workforce capacity constraints. Finally,

the quality of the optimality gap slightly deteriorates by increasing the number of components

with uncertain repair time (setting 2). Similar trends can be observed when comparing different

classes of problem instances in terms of UB Gap (%) in LRCST algorithm (Figure 3.7). In other

words, for the same reason described above, the smallest percentage of infeasibility is obtained in

the converged solution of LRCST algorithm in MIPP test instances resulting in smaller values for

the UB and consequently lower UB Gap (%) values. Finally, by comparing the values of LB and

UB for 13-stage instances in Tables 3.5 and 3.7, it can be observed that the number of nodes with

infeasible solutions significantly declines in MIPP instances; therefore, the UB Gap (%) in these

instances is 50% lower than the IPWP ones. These results clearly indicate that LRCST algorithm

is more efficient in solving generic stochastic multi-item tactical planning problems where the

workforce capacity does not change over the planning horizon.

3.5.4 The value of stochastic solution

In this section, the production and workforce training plan obtained from the proposed MS-MIP

IPWP model is compared with the one obtained from a deterministic model where the average

repair times are taken into consideration. More specifically, the value of adopting a multi-stage

stochastic programming is measured by calculating the value of stochastic solution (V SS). Let us

denote the optimal objective function value of the stochastic model asMSP and the expected cost

of the deterministic solution as EDS. The latter is calculated by fixing the value of Qrepr,t , Ea,s,t,

and Ra,s,t in model (3.2)-(3.14) as their optimal value obtained from solving the deterministic

model. Afterwards,EDS is calculated accordingly as the objective function of model (3.2)-(3.14).

V SS is then calculated as the difference between EDS and MSP , as indicated in the following
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Table 3.8: Value of stochastic solution in 7-stage and 13-stage IPWP models
Setting Expected repair

cost ($)
Expected training

cost ($)
Expected backorder

cost ($)
Total expected

cost ($) V SS (%)

Setting 1
7-stage EDS 6,600 200 7,299 15,789

27.17
MSP 7,150 300 2,298 11,498

13-stage EDS 15,600 300 10,163 29,163
29.80

MSP 16,227 500 624 20,470

Setting 2
7-stage EDS 6,600 200 8,538 17,028

30.84
MSP 7,206 300 2,552 11,776

13-stage EDS 15,600 399 12,951 31,951
33.82

MSP 16,485 500 1,043 21,143

equation:

V SS(%) =
EDS −MSP

EDS
100 (3.30)

The results for the 7-stage and 13-stage IPWP models are presented in Table 8 where the EDS

and MSP in the two problem settings are broken down into the expected repair, training, backo-

rder, and total costs. V SS(%) is calculated in the last column based on theEDS andMSP values

in terms of the total expected cost. As it can be observed in this table, the multi-stage stochastic

programming approach significantly outperforms the deterministic one based on V SS(%) results.

Furthermore, the expected backorder cost seems to be the major contributing factor to the large

value of EDS in all problem instances. In other words, the results indicate that implementing

the plan obtained from a deterministic model leads to a high backorder cost that represents the

penalty cost of late delivery of repaired devices. This is due to ignoring the possibility of extended

repair times and consequently the shortage of repaired components and/or certified operators. In

fact, the main advantage of the stochastic model is the flexibility to update the production (repair)

quantities and training levels at every stage (period) in the planning horizon as a response to dif-

ferent repair time outcomes. The deterministic model, on the contrary, provides a fixed production

plan without considering the upcoming changes in repair time uncertainty. That is why, the repair

quantities and training levels in the stochastic model are higher than the deterministic one.

3.6 Conclusion

With a particular focus on maintenance facilities, we proposed two multi-stage stochastic

programming models for two multi-item tactical planning problems that are featured with uncer-

tain parameters with independent probability distributions. More specifically, we investigated two

classes of problems that differ in terms of the validation period of operators’ training certificates.
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The first category incorporates IPWP problems, which are among the most complex tactical plan-

ning problems due to the limited validation period of operators’ certificates. Hence, the workforce

level and training decisions must be explicitly considered in these problems given that the certifi-

cates of operators expire over time. The second category, on the contrary, is more generic and is

applicable in the context of technical devices that are required to comply with less stringent safety

standards. As a consequence, once the operators are trained and certified, their certificates will

be valid for an unlimited duration. In both classes of problems, the repair times of some com-

ponents were assumed to be random variables, each represented as an independent scenario tree

over the planning horizon. Incorporating the repair time uncertainty into an integrated workforce

and production planning problem in maintenance facilities is a novel contribution that has not

been previously investigated in the literature. The assumption of independence among random pa-

rameters significantly increases the size of corresponding master ST and the MS-MIP models. As

another original contribution, an approximate decomposition algorithm was proposed to efficiently

solve the real-size instances in both categories of problems that contain 12 periods in the planning

horizon. The proposed algorithm relies on decomposing the MS-MIP models into component sub-

models within an LR scheme where the sub-models are formulated based on their corresponding

ST. A heuristic algorithm was also proposed to repair the infeasibility of the obtained solution

within the LR framework that provides a high-quality upper bound to the optimal objective value

of the original MS-MIP model.

Our numerical experiments conducted on several test instances clearly showcased the capability

of the proposed approximation algorithm to efficiently solve real-size tactical planning problems.

The results are in particular very promising in the generic tactical planning problems featured with

a fixed amount of workforce capacity. Our results also demonstrated the importance of incorporat-

ing uncertain repair times into the tactical planning under investigation. Adopting a deterministic

approach, in particular, would lead to 30% increase on average in terms of the total cost that is

mainly due to the shortage of certified operators and repaired components.

The current study can be extended in terms of modeling aspects, algorithmic implementation,

and application in other manufacturing sectors. From the modeling point of view, some mitigation

(recourse) actions can be incorporated into the multi-stage stochastic model so as to compensate

the risk of extended repair times. Partial outsourcing of repair operations to other collaborating

73



facilities and/or temporarily borrowing available certified operators from those facilities could be

considered as two strategies to hedge against the shortage of components and workforce in the

presence of extended repair times. Nevertheless, such strategies heavily rely on the existence of

a coalition among a set of maintenance facilities. From an algorithmic perspective, the proposed

decomposition algorithm is amenable to parallel computing; hence it can be applied to efficiently

solve problem instances with a large number of components with random repair times. Finally, the

proposed model and solution methodology can be extended in the context of other manufacturing

environments that are confronted with the random demand of products following independent

probability distributions. In the same vein, they can be applied to tactical planning models that

include binary set-up decisions. In this case, the component sub-models can be solved by efficient

ad-hoc algorithms rather than a commercial solver.

Appendix A

Proof of proposition 2

Recall from the component Lagrangian sub-model (3.15) that the amount of infeasibility with re-

gard to the workforce capacity constraint (3.6) is penalized in the objective function by:

∑
n∈N

∑
t∈T
∑

s∈S λs,t(n)

(
Es,t(n)−

∑es
a=1Ea,s,t(n)

)

Given that the workforce level (Ea,s,t(n)) decisions are not indexed per component, they might

take different values at the optimal solution in different component sub-models within theLRCST

scheme. According to proposition 2, the value of this decision in each node of master ST (n ∈ N )

is set as max
r∈R,n′

r∈N ′
n

Êa,s,t(n
′
r), where N ′n denotes the set of nodes in the |R| component sce-

nario trees that constitute node n in the master ST and Êa,s,t(n′r) denotes the converged value

of the workforce level decisions in LRCST component sub-models. It can be easily verified

that ∀r ∈ R|Êa,s,t(n′r) < max
r∈R,n′

r∈N ′
n

Êa,s,t(n
′
r),
(
Es,t(n) −

∑es
a=1 Êa,s,t(n

′
r)

)
>

(
Es,t(n) −

max
r∈R,n′

r∈N ′
n

∑es
a=1 Êa,s,t(n

′
r)

)
. Therefore, this proposition provides an approximation rule for

Ea,s,t(n) that results the smallest amount of infeasibility (if any) in terms of workforce capac-

ity constraints.
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Finally, in order to guarantee the feasibility of workforce training constraints (3.12)-(3.13), the

same rule applies for converting the training decisions in the master ST. In other words,Ra,s,t(n) =

max
r∈R,n′

r∈N ′
n

R̂a,s,t(n
′
r), where R̂a,s,t(n′r) denote the converged value of training decisions inLRCST

component sub-models.

Appendix B

Proof of proposition 3

Let us denote the repaired solution of LRMST algorithm as Q̂r,t(n), Q̂repr,t (n), B̂r,t(n), Îr,t(n),

Êa,s,t(n), R̂a,s,t(n). We also denote the nodes of master ST in each component sub-model r as

nr. It can be easily verified that:

∀r ∈ R|Êa,s,t(nr) < max
r∈R

Êa,s,t(nr),
∑

r∈R αr,sQ
rep
r,t (n)) ≤

∑es
a=1 Êa,s,t(nr) ≤ max

r∈R

∑es
a=1 Êa,s,t(nr).

Therefore, this proposition provides an approximate value for Ea,s,t(n) that guarantees the feasi-

bility of workforce capacity constraints.

Appendix C

Mathematical formulation for multi-item production planning (MIPP) problem

Minimize
∑
n∈N

pr(n)
∑
t∈T

(∑
r∈R

(krQ
rep
r,t (n) + hrIr,t(n)) + bθt(n)

)
(3.31)

Operations constraints

Qr,t(n)−Br,(t−1)(a(n)) +Br,t(n) = dr,t ∀t ∈ T, ∀r ∈ R,∀n ∈ N (3.32)

Qrep
r,(t−lrepr (n))

(a′r(n)) + Ir,(t−1)(a(n))− Ir,t(n) = Qr,t(n)

∀t ∈ T\1, ..., (lrepr (n)), ∀r ∈ R,∀n ∈ N
(3.33)

θt(n) ≥ Br,t(n) ∀t ∈ T, ∀r ∈ R,∀n ∈ N (3.34)∑
r∈R

αr,sQ
rep
r (n) ≤Ws ∀t ∈ T, ∀s ∈ S, ∀n ∈ N (3.35)

Ir,t(n) ≥ SSr ∀t ∈ T, ∀r ∈ R,∀n ∈ N (3.36)

Qrepr,t (n) = 0 ∀t ∈ 1, ..., lreprt (n), ∀r ∈ R,∀n ∈ N (3.37)
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Domain constraints

Qr,t(n), Qrepr,t (n), Ir,t(n), Br,t(n), θt(n) ∈ Z+
0 ∀t ∈ T, ∀n ∈ N, ∀r ∈ R,∀s ∈ S (3.38)

Appendix D

Algorithm 5 Sub-gradient algorithm (LRMST) for MIPP problem
Step 0 (Initialization):
Assign zero to λ(1)

s,t (n)
Assign −∞ to the LB
Set iteration counter k equal to 1
Assign initial values to u0 and p

While the stopping criteria is not satisfied do:
Step 1: Solve the Lagrangian problem Lr(λs,t(n)) and update the LB (Algorithm 2)
Step 2: Update the step-size as uk=u0p

k

Step 3: Update the Lagrangian multipliers as follows:

λ
(k+1)
s,t (n) = λ

(k)
s,t (n) + uk

{
E

(k+1)
s,t (n)−Ws

}
E

(k+1)
s,t (n) =

∑
r∈R

αr,sQ
rep
r,t (n)(k)

k = k + 1

End While
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Chapter 4

Robust collaborative maintenance

logistics network design and planning

This chapter corresponds to the following journal paper:

Shayan Tavakoli Kafiabad, Masoumeh Kazemi Zanjani, and Mustapha Nourelfath. ”Robust col-

laborative maintenance logistics network design and planning.” Revision submitted to Interna-

tional Journal of Production Economics, September 2021.
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Abstract

Maintenance service providers to advanced technical devices are confronted with uncertain de-

mand, high cost of components, and the need for certified operators. Collaboration in terms of

sharing scarce resources among different facilities in a maintenance logistics network is expected

to reduce the delays in the delivery of repaired devices. This study proposes a two-stage robust

optimization model for collaborative design and planning of maintenance networks under demand

uncertainty. The goal of this model is to determine the optimal allocation of customers to each

maintenance center along with the initial stock level of different components in each facility so

as to minimize the cost of late deliveries under worst-case demand scenarios. Component and

operator sharing strategies are proposed as the recourse actions in this model to hedge against

the demand surge. The proposed approach is compared with a deterministic model by the aid

of Monte-Carlo simulation on several test instances inspired by a real case study. Our numeri-

cal experiments demonstrate the significance of adopting the proposed collaborative mechanisms

among maintenance facilities in terms of cost reduction, especially when the demand fluctuation

is relatively high.

4.1 introduction

For many advanced systems, such as gas turbines and medical equipment, high system availability

is crucial. Maintenance companies are typically responsible for the repair and overhaul of these

technical devices on the basis of a strategic contract with equipment users. However, these compa-

nies are confronted with the occasional surge in demand due to the sporadic failure rates of compo-

nents involved in the structure of these systems. Consequently, they might experience the shortage

of expensive resources, such as components, and certified operators required to perform repair

operations. To ensure resource availability and reduce the risk of delays invoked by shortages,

maintenance centers can resort to various strategies, such as pre-positioning more components in

their internal warehouses and collaborating with other centers in the maintenance logistics network

in terms of sharing components and operators according to a predetermined sharing level. Besides,

estimating the probability distribution of the demand is a challenge for these centers mainly due to

the unavailability of historical data on equipment failures along with accurate information on the
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equipment’s usage pattern.

In response to the above challenges, this paper provides a robust collaborative decision model for

the simultaneous strategic design and tactical planning of a maintenance logistic network com-

prising of a central repair facility along with a set of local repair facilities (LRFs) and equipment

users. More specifically, we assume the formation of a grand coalition among the LRFs to (tem-

porarily) share a certain percentage of components and certified operators among each other to

avoid delayed delivery of repaired devices in case of demand surge in some facilities. The demand

uncertainty is modeled as an interval by considering a budget of uncertainty, without assuming a

specific probability distribution. In this context, a two-stage robust optimization model is proposed

that seeks the optimal allocation of users to LRFs along with the stock pre-positioning levels for

different components in each facility as strategic (here-and-now) decisions. The tactical planning

decisions in this model, on the contrary, are wait-and-see and defined for each demand scenario.

These decisions incorporate the quantity of repair jobs scheduled in each LRF along with the

quantity of resources that must be exchanged among different facilities in the network in order to

satisfy the demand. In fact, this model aims to determine the optimal design decisions in addition

to the anticipation of tactical decisions in the presence of different demand scenarios. The objec-

tive of this model is to minimize the cost of establishing the network along with the cost of repair

operations, resource exchange, and shortages under worst-case demand scenarios within a given

uncertainty set.

The proposed collaborative decision model significantly contributes to the literature on mainte-

nance logistics network management. Our first contribution revolves around incorporating a si-

multaneous component and operator sharing mechanism among stakeholders as a risk mitigation

action into the integrated design and planning of such logistics networks in a multi-period, multi-

component setting. To the extent of the authors’ knowledge, no prior work in the literature consid-

ers resource sharing strategies in this problem. Our second contribution is focused on adopting a

two-stage robust optimization (RO) approach Zeng and Zhao (2013) to incorporate demand uncer-

tainty into the above-mentioned problem. Besides, we develop a Monte-Carlo simulation platform

to compare the results of the two-stage RO model with a deterministic model in a realistic envi-

ronment. Finally, we provide managerial insights by running sensitivity analysis experiments on

a large set of problem instances inspired by a real case study in the gas turbine industry. Our goal
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is to investigate the impact of the proposed resource sharing mechanism on the total cost of the

network and, in particular, on the shortage cost under different sharing levels agreed among the

stakeholders.

The remainder of this paper is divided into the following sections. To highlight the paper contri-

bution, Section 4.2 provides a review of recent literature on maintenance logistics network design

and planning. Section 4.3 presents the problem description and formulation as a deterministic

mixed-integer programming model. Incorporating the demand uncertainty into the problem under

investigation is elaborated in Section 4.4. The Monte-Carlo simulation platform is provided in

Section 4.5. Section 4.6 presents the numerical results. Finally, in Section 4.7, conclusions and

future research directions are provided.

4.2 Literature review

This section primarily provides a brief review of the most relevant research on the design and

planning of maintenance logistics networks. Afterwards, we narrow our focus to the prevailing

research on collaborative planning in supply chains that is closely related to the current study.

4.2.1 Maintenance logistics network design and planning

Only a handful of papers investigate the design of maintenance networks for repairable parts. The

authors in Rappold and Van Roo (2009) develop a network design model for repairable spare

parts to determine the optimal facility location, user allocation, and capacity investment decisions

simultaneously. Their model considers a capacitated central warehouse at the upstream level,

maintenance facilities at tier two, and local warehouses at the downstream level. The authors in

(Wu, Hsu, & Huang, 2011) propose an integrated model for the selection of network configuration,

suppliers, and transportation modes with the aim of maintaining an average target availability

while minimizing the total cost. The availability of the device in each local maintenance facility is

ensured by installing sufficient resources, i.e., operators and spare parts inventory.

Another category of articles in the literature deal with the allocation of users’ demand to the

existing maintenance facilities and setting inventory levels of repairable parts in these facilities.

Kutanoglu and Lohiya (2008) consider a network consisting of a central warehouse with infinite
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capacity, multiple local warehouses, and equipment users. They propose a mathematical inventory-

allocation model by considering a continuous review policy, time-based service level and different

transportation modes (slow, medium, fast). In the context of a utility company, Van den Berg,

van der Heijden, and Schuur (2016) study a maintenance network consisting of a supplier, a cen-

tral warehouse, and some advanced and basic local warehouses. Motivated by the importance of

the availability of spare parts in the network, they develop a two-echelon service-parts allocation

model by considering time window constraints.

Somarin, Chen, Asian, and Wang (2017) consider a network that consists of one central main-

tenance facility with a single repair server at the upstream level and multiple local maintenance

facilities at the downstream level. They propose an allocation mechanism to find the optimal initial

spare part levels at local maintenance facilities and the best reallocation strategy for the ready-to-

use spare parts that have been repaired at the central maintenance facility.

In the realm of maintenance supply chains, few studies deal with integrated tactical planning prob-

lems in local repair facilities. Zanjani and Nourelfath (2014) propose a multi-stage stochastic

programming model for operations planning in the context of multi-component repairable devices

with the goal of minimizing the expected cost of procurement, inventory, and late delivery under

uncertain demand scenarios. Sleptchenko et al. (2017) investigate the joint optimization of cross-

training of operators and spare parts provisioning of repairable parts in a single echelon supply

chain consisting of multiple local warehouses and one maintenance facility. The integration of

operations and workforce planning in maintenance facilities is studied in (Tavakoli Kafiabad et

al., 2020) under the assumption of deterministic demand for faulty components. In another work

(Tavakoli Kafiabad, Zanjani, & Nourelfath, 2021), the impact of demand uncertainty on integrated

operations and workforce scheduling in similar facilities is investigated.

4.2.2 Collaborative supply chain planning

In the realm of inventory management in maintenance logistics networks, there are several studies

that investigate resource sharing mechanisms such as inventory pooling, lateral transshipment, and

demand rationing strategies. The authors in (Wong, Cattrysse, & Van Oudheusden, 2005) propose
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a mathematical model to approximate various performance measures in a single-product, multi-

facility, inventory management system where complete pooling of parts is permitted among the

facilities. They consider non-zero lateral transshipment time as well as the delayed lateral trans-

shipment and formulate the problem as a multi-dimensional Markovian problem and solve it using

a two-stage solution method. The authors in (Tiemessen, Fleischmann, van Houtum, van Nunen,

& Pratsini, 2013) develop a framework for dynamic demand fulfillment in the maintenance logis-

tics network of advanced technical system that deals with users with different service contracts.

The demand of users can be fulfilled from local facilities via a regular delivery, or from an ex-

ternal source with ample capacity via an emergency shipment. They propose a dynamic demand

allocation rule that belongs to the class of one-step look-ahead policies and develop an iterative al-

gorithm to approximate the expected total cost over an infinite planning horizon. A comprehensive

literature review of inventory models with a lateral transshipment strategy can be found in (Pater-

son, Kiesmüller, Teunter, & Glazebrook, 2011). Collaborative planning in supply chains has been

studied in several contexts in the literature, including humanitarian, healthcare and transportation

networks. In the context of humanitarian networks, Doodman, Shokr, Bozorgi-Amiri, and Jolai

(2019) propose a collaborative bi-objective two-stage stochastic programming model. This model

determines the optimal pre-positioning of relief items in the warehouses along with the distribution

of relief items after observation of demand scenarios. In particular, the authors propose a lateral

transshipment strategy among the local warehouses to reduce the relief shortages. The objective is

to maximize the fairness and minimize the total cost of the network. In another study, Mehrotra,

Rahimian, Barah, Luo, and Schantz (2020) propose a collaborative two-stage stochastic optimiza-

tion model for allocating and sharing life-saving resources in the case of COVID-19 pandemic

among hospitals under random demand. They also assume a safety threshold parameter that cap-

tures the risk-aversion level of each hospital in sharing excess inventory with other hospitals in

the network. Guajardo and Rönnqvist (2015) develop a mixed integer linear programming model

to integrate coalition structure and cost allocation problems in the context of forest transportation

networks and inventory management of spare parts. The authors report 5-15% cost saving as a

result of collaboration in the forest transportation network and around 20% saving in inventory

costs in the spare parts inventory management case.
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The above survey of literature clearly indicates the paucity of research on developing a collabora-

tive framework for the design and tactical planning in maintenance networks. This is mainly due

to the fact that all the current papers in the literature either focus merely on the design of such

networks or optimize the operations from the viewpoint of a single maintenance facility. Further-

more, the adoption of a resource sharing policy in terms of operators and components to hedge

against surge of demand has never been investigated in the literature. It is also worth to mention

that none of the above-mentioned studies focus on tactical planning in a maintenance logistics

network; they rather study this problem from the perspective of a single maintenance facility. To

fill the above-mentioned research gaps, the present paper develops a collaborative framework for

the strategic design and tactical planning in maintenance networks. The proposed model adopts

a resource sharing policy in terms of operators and components to hedge against surge of de-

mand. It incorporates such resource sharing mechanisms among stakeholders as a risk mitigation

action into the integrated design and planning of such logistics networks. To take into account de-

mand uncertainty, we adopt a two-stage robust optimization approach. Furthermore, we develop

a Monte-Carlo simulation and we provide managerial insights by running analysis experiments

on a large set of problem instances inspired by a real case study in the gas turbine industry. The

resulting proposed approach investigates the impact of resource sharing mechanism on the total

cost of the network and, in particular, on the shortage cost under different sharing levels.

4.3 Problem description

4.3.1 Collaborative maintenance logistics network design and planning

Consider a maintenance logistics network consisting of a central repair facility (CRF), multiple lo-

cal repair facilities (LRF) and a set of equipment users. The users in this network utilize advanced

technical devices (e.g., gas turbines) comprising several modules and repairable components that

are subject to random failures. Besides, the users are geographically dispersed and, based on a

long-term contract, they outsource their system upkeep and overhaul services to an LRF. There-

fore, each LRF is responsible for satisfying the demand of a cluster of users. Upon receiving the

failed pieces of equipment, the LRF is responsible for the disassembly, inspection, and replace-

ment of defective components. Besides, all such faulty components are repaired and recovered in

the CRF. Figure 4.1 provides a conceptual framework for this network.
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Figure 4.1: The conceptual framework of a maintenance logistics network

The collaborative design and planning problem, proposed in this study, incorporates two phases. In

the design phase, the optimal allocation of users to LRFs as well as the inventory pre-positioning

decisions are crucial. We further assume the demand of each user is only satisfied by one LRF.

Besides, the user allocation cost is an increasing function of the distance between the user and the

LRF along with the average demand of the user. The adequate initial inventory level of components

in the CRF and LRFs will assure the responsiveness of the network in the tactical phase. Thus, at

the beginning of the planning horizon, the CRF and LRFs are required to procure components from

suppliers and store them in their internal warehouses with respect to their procurement budget and

estimated demand.

The planning phase, in contrast, revolves around anticipating the optimal level of operations as

a response to the demand of maintenance services for the devices that are being received by the

LRFs from the assigned users over a planning horizon. We further confine our attention to a fleet

of aged devices, where the majority of components must be replaced. In this phase, the repairable

components would be replenished from the internal inventory of each LRF if they are available in

stock. Otherwise, they would be back-ordered until the failed components are repaired in the CRF.

The latter receives all failed components and carries out repair/recovery operations on them with

variable repair times. Afterwards, the recovered components are shipped back to corresponding

LRFs. Both the CRF and LRFs have a limited capacity for replacement and repair operations in
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each period of the planning horizon that is a function of the number of available operators and

budget.

Given that the network is confronted with demand uncertainty in the tactical phase, the LRFs

exert two risk mitigation strategies, namely component and operator sharing. In other words, it

is assumed that a grand coalition has been established among the LRFs, such that each player

shares a predetermined percentage of their affiliated operators and components available in stock

with others. In the same vein, each LRF has the right to keep a certain level of reserved operators

and components as safety stock to maintain a minimum service level. In this context, the shared

operators and components are sent immediately to satisfy the unmet demand in the same period

by considering the operator’s relocation as well as component transportation costs.

Based on the assumptions mentioned above, we formulate the collaborative design and planning

problem as a mixed integer programming model. The description of parameters and decision

variables is provided in Tables 4.1 & 4.2. The operating cost drivers incorporate: (1) user allocation

cost to LRFs; (2) inventory pre-positioning cost at CRF and LRFs; (3) inventory holding cost at

CRF and LRFs; (4) repair and replacement costs; (5) transportation cost; (6) shortages cost; (7)

Operator sharing cost; and (8) Component sharing cost. The objective of the model is to minimize

the total cost of the system over the planning horizon.
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Table 4.1: Sets, indices and parameters
J Set of LRFs indexed by j

I Set of users indexed by i

R Set of components, indexed by r

ur Unit procurement cost of component r

kr Unit repair cost of component r

hr Unit holding cost of component r

fij Fixed allocation cost of user i to LRF j

vj Unit transportation cost from CRF to LRF j

ljk Unit component sharing cost from LRF j to LRF k

rjk Unit operator sharing cost from LRF j to LRF k

πr Unit penalty cost for the shortage of component r

nc Available budget of CRF to repair components

mc Available budget of CRF to procure components

ml
j Available budget of LRF j to procure components

gr Repair time of component r

ej Number of operators affiliated with LRF j

βr Resource consumption factor (operator) to inspect/replace component r

drit Number of components r of user i scheduled to be sent to LRFs for repair in period t

τj Percentage of initial inventory level of components in LRF j that the LRF is willing to share with other LRFs

λj Percentage of reserved inventory that LRF j keeps as the safety stock in internal warehouse in each period

ηj Percentage of affiliated operators of LRF j that can be shared with other LRFs

ζj Percentage of reserved operators in LRF j in each period
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Table 4.2: Decision variables
Drjt Number of component r scheduled to be replaced in LRF j in period t

Xij 1 if user i is assigned to LRF j, 0 otherwise.

Yjkt Number of operators assigned to LRF k by the LRF j at the beginning of period t

Qcr Quantity of component r prepositioned in the CRF

Qlrj Quantity of component r prepositioned in LRF j

Icrt Inventory level of component r in CRF in period t

Bl
rjt Shortage quantity of component r in LRF j in period t

Bc
rt Shortage quantity of component r in CRF j in period t

I lrjt Inventory level of component r in LRF j in period t

Zclrjt Quantity of component r sent from the CRF to LRF j in period t

Z latrjkt Quantity of component r sent from LRF j to LRF k in period t

Rrjt Quantity of ready to assembly component r in LRF j in period t

Qreprt Number of component r that should be repaired in the CRF in period t

Ujt Number of available operators in LRF j in period t including the affiliated and shared operators

Vrjt 1 if LRF j decides to send components to other LRFs for component r in period t, 0 otherwise

Wjt 1 if LRF j decides to share operators with other LRFs in period t, 0 otherwise

4.3.2 Mathematical formulation

According to the problem description and assumptions mentioned above, the objective function of

the model can be formulated as follows:

min
∑
i∈I

∑
j∈J

fijXij +
∑
r∈R

urQ
c
r +

∑
r∈R

∑
j∈J

urQ
l
rj +

∑
r∈R

∑
t∈T

krQ
rep
rt

+
∑
r∈R

∑
j∈J

∑
t∈T

hr(I
c
rt + I lrjt) +

∑
r∈R

∑
j∈J

∑
t∈T

vjZ
cl
rjt +

∑
r∈R

∑
j∈J

∑
k∈K

∑
t∈T

ljkZ
lat
rjkt

+
∑
r∈R

∑
j∈J

∑
t∈T

πr(B
c
rt +Bl

rjt) +
∑
j∈J

∑
k∈K

∑
t∈T

rjkYjkt

(4.1)

Objective function (4.1) minimizes the total cost of user allocation to LRFs, and procurement

of the repairable components in the strategic phase; in addition to the costs corresponding to the

tactical phase, such as the cost of repair, inventory, transportation between the CRF and LRFs,
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shortages, as well as component and operator sharing among LRFs. Two main categories of con-

straints are taken into account, including design and tactical planning constraints. Constraints

(4.2)-(4.5) represent a set of conditions related to network design aspects.

Design constraints

∑
r∈R

urQ
c
r ≤ mc (4.2)

∑
r∈R

urQ
l
rj ≤ ml

r,j ∀j ∈ J (4.3)

∑
j∈J

Xij = 1 ∀i ∈ I (4.4)

∑
i∈I

Xij ≥ 1 ∀j ∈ J (4.5)

Constraints (4.2) and (4.3) represent the available procurement budget available at the CRF and

LRFs. Constraints (4.4) ensure that each user is assigned to one of the LRFs. More precisely, the

demand of each user is assigned to one particular LRF in the tactical phase. Constraints (4.5) state

that at least one user is assigned to each LRF. Constraints (4.6)-(4.22) indicate a set of constraints

related to tactical planning decisions.
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LRF flow constraints

Drjt =
∑
i∈I

dritXij ∀j ∈ J, ∀r ∈ R,∀t ∈ T (4.6)

Rrjt +Bl
rjt −Bl

r,j,(t−1) = Drjt ∀j ∈ J, ∀r ∈ R,∀t ∈ T (4.7)

Qlrj + Zclrj1 = Rrj1 + I lrj1 ∀j ∈ J, ∀r ∈ R (4.8)∑
k∈J\k 6=j

Z latrkjt + Zclrjt + I lr,j,(t−1) =
∑

k∈J\k 6=j

Z latrjkt +Rrjt + I lrjt

∀j ∈ J, ∀r ∈ R,∀t ∈ T\1

(4.9)

I lrjt ≤ Qlrj ∀j ∈ J, ∀r ∈ R,∀t ∈ T (4.10)∑
k∈J

Z latrjkt ≤MVrjt ∀j ∈ J, ∀r ∈ R,∀t ∈ T (4.11)

M(Vrjt − 1) ≤ I lrjt − (1− τj)Qlrj − λjDrjt ∀j ∈ J, ∀r ∈ R,∀t ∈ T (4.12)∑
k∈J

Z latrjkt ≤ I lrjt − (1− τj)Qlrj − λjDrjt +M(1− Vrjt) ∀j ∈ J, ∀r ∈ R,∀t ∈ T (4.13)

Constraints (4.6) calculate the number of components scheduled to be replaced in each LRF ac-

cording to the user allocation decisions. Constraints (4.7) represent the balance between the actual

number of replaced components (Rrjt), the shortages in two consecutive periods (Bl
rjt), and the

number of components scheduled to be replaced (drjt) in each LRF. Constraints (4.8) and (4.9)

imply the flow balance constraints in each LRF. Constraints (4.8) state the balance between the

number of prepositioned components (Qlrj), the number of repaired components sent from CRF to

LRF (Zclrjt), the inventory level (I lrjt) and the number of ready to assembly components (Rrjt) in

the first period. Constraints (4.9) represent the balance between the shared components between

LRFs (Z latrkjt), number of components sent from CRF to LRF (Zclrjt), inventory level and number

of components that are ready to assemble in each period. Constraints (4.10) ensure that the in-

ventory level of components in each period (I lrjt) is less than the LRF base stock inventory (Qlrj).

Constraints (4.11)-(4.13) ensure the satisfaction of component sharing conditions. More precisely,

in each period, the LRF reserves a portion of demand as the safety stock (λjDrjt). Constraints

(4.11), hence, imply that the number of shared components is zero if the net inventory level is neg-

ative. Constraints (4.12) state that the LRF is only allowed to share components if the difference

between the inventory level (I lrjt) and the total reserved components and safety stock is positive.
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When the LRF is allowed to share components, Constraints (4.13) calculate the maximum number

of shared components from LRF j to other LRFs.

CRF flow constraints

Qcr =
∑
j∈J

Zclrj1 + Icr1 ∀r ∈ R (4.14)

Qrepr,(t−gr) + Icr,(t−1) +Bc
rt −Bc

r,(t−1) =
∑
j∈J

Zclrjt + Icrt ∀r ∈ R,∀t ∈ T\1...gr (4.15)

Icrt ≤ Qcr ∀r ∈ R,∀t ∈ T (4.16)∑
r∈R

krQ
rep
rt ≤ nc ∀r ∈ R,∀t ∈ T (4.17)

Constraints (4.14) and (4.15) represent the flow balance constraints in each CRF. Constraints (4.14)

represent the balance between the number of prepositioned components in CRF (Qcr), the number

of components sent from CRF to LRF (Zclrjt) and the inventory level of components (Icrt) in the

first period. Constraints (4.15) guarantee the balance between the number of repaired compo-

nents, considering the corresponding repair time (Qrepr(t−gr)), the inventory level and shortages of

two consecutive periods, and the number of parts sent from the CRF to LRFs. Constraints (4.16)

state that the inventory of components in each period is less than the CRF’s base stock inventory

level. Constraints (4.17) impose the repair budget of the CRF available to repair and recover failed

components.

90



Workforce constraints

ej −
∑

k∈J\k 6=j

Yjkt +
∑

k∈J\k 6=j

Ykjt = Ujt ∀j ∈ J, ∀t ∈ T (4.18)

∑
r∈R

βrRrjt ≤ Ujt ∀j ∈ J, ∀t ∈ T (4.19)

∑
k∈J\k 6=j

Yjkt ≤MWjt ∀j ∈ J, ∀t ∈ T (4.20)

M(Wjt − 1) ≤ ηjej − ζj
∑
r∈R

βrdrjt ∀j ∈ J, ∀t ∈ T (4.21)

∑
k∈J\k 6=j

Yjkt ≤ ηjej − ζj
∑
r∈R

βrdrjt +M(1−Wjt) ∀j ∈ J, ∀t ∈ T (4.22)

Constraints (4.18) represent the balance between the initial number of affiliated operators (ej) of

LRF j, the number of shared operators with other LRFs (Yjkt), the number of borrowed oper-

ators from other LRFs (Ykjt) and the total number of operators available to work (Ujt) in each

period. It should be noted that the LRFs are only allowed to share the affiliated operators and

not the borrowed ones. Constraints (4.19) limit the total number of components that can be pro-

cessed/assembled in each period by the total number of operators who are available in the LRF.

Constraints (4.20)-(4.22) represent the total number of operators that the LRF is able to share with

other LRFs based on the number of affiliated operators and the number of components scheduled

to be replaced. Constraints (4.20) indicate that the number of shared operators is set to zero if the

number of net available operators in a period is negative. Constraints (4.21) state that the LRF is

only allowed to share affiliated operators if the difference between the number of operators willing

to share (ηjej) and the number of reserved operators (ζj
∑

r∈R βrdrjt) is positive. It should be

mentioned that the number of reserved operators is estimated as a fraction of the labor consump-

tion factor (βr) multiplied by the number of components scheduled to be replaced (drjt). When

the LRF is allowed to share affiliated operators, constraints (4.22) calculate the maximum number

of operators that can be shared by LRF j with other LRFs.

Domain constraints

Xij ,Wjt, Vrjt ∈ {0, 1} (4.23)

Yjkt, Z
lat
rkjt, Z

cl
rjt, I

l
rjt, I

c
rt, Brjt, Rrjt, Q

l
rj , Q

c
r, Q

rep
rjt ≥ 0 (4.24)
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4.4 Robust collaborative maintenance logistics network design and

planning under random demand

In practice, the users’ demand for the maintenance of devices is highly uncertain. Besides, esti-

mating the probability distribution of demand is not straightforward due to the unavailability of

accurate information on the usage pattern of the fleet of equipment by the users. Furthermore, even

if such a probability distribution could be estimated, the resulting stochastic programming model

would be notoriously complex to solve due to the multi-component and multi-period structure

of the problem. Alternatively, adopting a robust optimization (RO) approach (Bertsimas & Sim,

2004) that does not rely on an exact probability distribution of uncertain demand might be a better

option. This is motivated by the fact that the decision-makers in this context are typically more

interested in minimizing equipment unavailability (due to delayed maintenance operations) along

with the system costs under some worst-case demand scenarios. Nevertheless, a classical RO ap-

proach that considers all decision variables as here-and-now decisions would be less applicable to

the problem under investigation as it contains long-term (design) and mid-term (tactical) decisions.

While the design decisions can be considered as here-and-now, the tactical ones can be set once

the actual outcome of the demand is revealed; hence, they should be considered as wait-and-see

decisions. Therefore, a two-stage robust optimization approach (e.g., (Bertsimas, Litvinov, Sun,

Zhao, & Zheng, 2012), (Zeng & Zhao, 2013)) would be the best alternative in this context. More

details on the proposed approach are provided as follows.

4.4.1 Modeling the demand uncertainty

The deterministic model (1)-(24) provides design and planning decisions based on the average

demand. In this section, we aim to incorporate demand fluctuations in the process of decision

making. Inspired by similar studies in the literature ((Bertsimas & Sim, 2004), (Zeng & Zhao,

2013)), the users’ uncertain demand in each period (d̃rit) is modeled as a convex set by considering

the average demand (drit) and the maximum deviation over the average value (d̂rit). However, the

uncertainty set could be also represented as other sets of convex constraints that leads to a general

polyhedron. It is worth noting that RO is a conservative approach that seeks an optimal solution

under the worst-case scenario. When dealing with multi-dimensional random parameters, such
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as the demand of different customers for multiple components in different periods, the worst-

case (maximum) outcome for all customers and components in all periods is an extremely rare

phenomenon that provides an overly conservative solution. Therefore, a budget of uncertainty (Γ)

can be introduced in the uncertainty set to control the number of such worst-case outcomes over

all customers, components and periods. Furthermore, given that it is unlikely in practice to receive

maximum demand from all users in the network, we consider a budget of uncertainty (Γ) to control

the variation of the demand in the interval between the average and the maximum value over all

users. This would also allow us to adjust the level of conservatism in the resulting RO model. The

demand uncertainty set can be accordingly represented as follows:

Ω =

{
d̃rit ∈ Z+ := drit + σr,i,td̂rit, σr,i,t ∈

{
0, 1
}
,
∑
i∈I

σr,i,t ≤ Γ, ∀r ∈ R,∀t ∈ T
}

(4.25)

According to set Ω, the maintenance logistic network is expected to receive the maximum quantity

of demand from up to Γ users in each period of the planning horizon. It can be easily verified that

this set incorporates a large (finite) number of outcomes (scenarios) for the uncertain demand. By

considering the number of users asM , the number of periods as T , and the number of components

as R, the total number of possible scenarios can be obtained by R×T×m!
Γ!(M−Γ)! .

4.4.2 Two-stage robust optimization model

The main idea behind the two-stage robust optimization model is to determine the optimal first

stage (here-and-now) decisions such that the cost of second-stage decisions under worst-case sce-

narios within the given uncertainty set is minimized. As mentioned earlier, the first stage decisions

are assumed to be determined before the realization of random parameters, while the second-stage

decisions are made under complete information in terms of the outcome of uncertainty to hedge

against random parameter perturbations. Let x and y be the first-stage and second-stage deci-

sion variables, respectively, and Ω be the uncertainty set, the general setting of two-stage robust
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optimization model can be formulated as follows (Zeng & Zhao, 2013):

U(x, y) = min
x

cTx+ max
ω∈Ω

min
y∈F (x,ω)

bT y (4.26)

s.t. Ax ≥ d x ∈ Px (4.27)

where F (x, ω) =
{
y ∈ Py : Gy ≥ h− Ex−Mω

}
with Py ⊆ Rn+ and Px ⊆ Rm+ .

Model (4.26)-(4.27) is a nonlinear program that contains a max-min term, associated with the

second-stage problem, in the objective function. Two categories of approaches have been pro-

posed in the literature to overcome the computational complexity of this class of RO models.

The first approach relies on modeling the second-stage decision variables as affine functions of

the uncertain parameters and solving the two-stage RO model accordingly. Some applications of

this approach are provided in (Bertsimas, Brown, & Caramanis, 2011). The second approach,

on the contrary, revolves around reformulating model (4.26)-(4.27) as a bi-linear programming

model by discretizing the initial uncertainty set as a scenario set. Benders-dual cutting plane and

column-and-constraint generation algorithms are among the most common algorithms proposed

to efficiently solve the resulting bi-linear model. By assuming that the second-stage decisions are

continuous, in the Benders-dual cutting plane algorithm, the dual of second-stage decisions are

explored to gradually construct the value function of the first-stage decisions (e.g., (Bertsimas et

al., 2012)), (Gabrel, Lacroix, Murat, & Remli, 2014)). In other words, in this approach, model

(4.26)-(4.27) is decomposed as an outer minimization (master) problem that solves the first-stage

problem and contains the dual of second-stage decisions, obtained from a bi-linear inner minimiza-

tion problem. This algorithm relies on adding (optimality) cuts generated by an inner optimization

algorithm designated to solve the second-stage (bi-linear) sub-problems, to the first-stage problem

in an iterative manner until the convergence criterion is met. The column-and-constraint genera-

tion procedure ((Zeng & Zhao, 2013) (Zhao & Zeng, 2012)), on the contrary, begins by solving the

master problem by considering a subset of the extreme points of the uncertainty set. After solving

the master problem and obtaining the initial first-stage solutions, new extreme points are added

iteratively to the initial subset after solving associated second-stage bi-linear sub-problems. It is

noteworthy that the latter bi-linear models are either solved by the aid of an ad-hoc algorithm or
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linearized by the aid of big-M method after adding constraints corresponding to KKT conditions.

Despite being efficient for solving certain classes of two-stage RO models, the above-mentioned

algorithms explore the dual of second-stage decisions in different iterations; hence, they are not ap-

plicable to model (4.1)-(4.24) that contains binary and integer second-stage variables. Therefore,

we propose an approximation algorithm by considering a random subset of scenarios (s = 1, ..., p)

in uncertainty set Ω. Given that the uncertainty set Ω is composed of a finitely large number of

scenarios, considering all such scenarios would drastically increase the complexity of the corre-

sponding two-stage RO model. Therefore, we propose to approximate this model by considering a

scenario subset, randomly sampled from all plausible demand scenarios, representing set Ω. This

is equivalent to relaxing constraints that correspond to the scenarios that are not included in the

selected sample and provides a valid relaxation (and, consequently, a lower bound) to the optimal

objective value of the original two-stage RO model. By considering ωs as a possible outcome of

the uncertain parameter under scenario s, model (4.26)-(4.27) could be approximated as a mixed-

integer programming model as follows:

Û(x, ys, θ) : min
x

cTx+ θ (4.28)

s.t. Ax ≥ d (4.29)

θ ≥ bT ys s = 1, ..., p (4.30)

Ex+Gys ≥ h−Mωs s = 1, ..., p (4.31)

x ∈ Px, y ∈ Py (4.32)

The non-linear max-min term in (4.26) is linearized in model (4.28)-(4.32) by defining variable

θ in the objective function that captures the maximum of bT ys over all demand scenarios based

on constraints (4.30). Besides, set F (x, ω) in (4.26) is explicitly represented as constraints (4.31),
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where the second-stage decision variables are indexed by scenarios. Based on the above discus-

sions, the two-stage robust counterpart of model (4.1)-(4.24) can be formulated as follow:

min
(X,Qc,Ql)∈Px

= SC + max
s∈Ω

min
(Qrep,Ic,Il,Zcl,Zlat,Bc,Bl,Y,W,V )∈Py

TC

(4.33)

s.t. Px =
{

(X,Qc, Ql) ∈
{

0, 1
}m×n × Rr+ × Rr+ : (4.2)− (4.5)

}
(4.34)

Py =
{

(Qrep, Ic, I l, Zcl, Z lat, Bc, Bl, Y,W, V ) ∈ Rr×n×t+ × Rr×t+ × Rr×n×t+ × Rr×n×t+ ×

Rr×n×n×t+ × Rr×t+ × Rr×n×t+ × Rn×n×t+ ×
{

0, 1
}n×t × {0, 1

}r×n×t
: (4.6)− (4.22)

}
(4.35)

In this model, the allocation of users to LRFs and inventory pre-positioning decisions are first-stage

decisions, whereas the inventory, repair, transportation, shortage, and resource-sharing decisions

are second-stage decisions. The objective function in equation (4.33) minimizes the strategic costs

(SC) and the tactical costs (TC) under worst-case scenarios within the uncertainty set, defined

in 4.4. In other words, the strategic costs in (4.1) (SC =
∑

i∈I
∑

j∈J fijXij +
∑

r∈R urQ
c
r +∑

r∈R
∑

j∈J urQ
l
rj) is equivalent to the first-stage cost cTx in (4.28); whereas TC, that will be de-

fined for each scenario, is equivalent to bT ys in (4.30). Constraints (4.34) correspond to constraints

(4.2)-(4.5) with respect to the domain of first-stage decision variables. Constraints (4.35) represent

constraints (4.6)-(4.22) with respect to the domain of second-stage decision variables. By indexing

second-stage decision variables by scenarios s, the expanded form of this model corresponding to

a sub-set of random demand scenarios (S) is provided in Appendix A.

4.5 Monte-Carlo simulation platform

In this section, we propose a Monte Carlo simulation algorithm to compare the maintenance net-

work’s optimal decisions, obtained from deterministic and two-stage RO approaches, in a realistic

environment. More specifically, we aim to compare the expected cost of solutions provided by

these approaches under realistic scenarios. Recall from Section 4.4 that the deterministic model

provides design and tactical decisions based on the average demand, drit. In contrast, the RO
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model provides these decisions under worst-case demand scenarios. In the same vein, the second-

stage cost (TC), obtained from this model, corresponds to the worst-case scenario. Our goal is thus

to assess the performance of both models in terms of second-stage decisions in a more realistic

context, represented as a set of scenarios randomly generated within the interval corresponding to

the minimum and maximum value of the demand. To this end, the deterministic model (4.1)-(4.24)

is solved for the scenario mentioned above after fixing the first-stage decisions at their optimal val-

ues obtained from the (mean-value) deterministic and RO models. This provides the actual cost of

second-stage decisions for each demand scenario based on a given first-stage decision. Afterwards,

the average objective function values are calculated over all scenarios in order to compare the first-

stage (design) decisions proposed by deterministic and robust models. Algorithm 1 summarizes

the details of the simulation procedure. In this algorithm, a uniform distribution is considered

to generate random demand scenarios. This is mainly motivated by the assumption of modelling

random demand as a box uncertainty set, represented by a lower and upper bound around the av-

erage demand. Nevertheless, depending on the definition of the uncertainty set, other probability

distributions can be considered in this algorithm as well.

Algorithm 6 Monte-Carlo simulation platform
Step 1: Solve the deterministic model (4.1)-(4.24) and obtain the first stage decision variables
(Xij , Qlrj , and Qcr).
Step 2: Solve the two-stage robust optimization model (4.33)-(4.35), formulated based on a
randomly-generated scenario set of size M from the set described in (4.25) and obtain the first-
stage decision variables (Xij , Qlrj , and Qcr).
Step 3: Generate N random demand scenarios (N >> M ) from a Uniform distribution in
[drit-d̂rit, drit+d̂rit].
for n ∈

{
1, ..., N

}
do

Step 4: Fix the the value of first-stage decision variables in model (4.1)-(4.24) to the values
obtained in Step 1 and solve this model by considering demand scenario n.
Step 5: Fix the the value of first-stage decision variables in model (4.1)-(4.24) to the values
obtained in Step 2 and solve this model by considering demand scenario n.

end
Step 6: Calculate the average objective function values of the deterministic and two-stage robust
optimization models obtained from Step 4 and Step 5.
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4.6 Numerical results

The computational experiments in this section are carried out on a case study inspired by the

gas turbine maintenance industry. The objectives of our experiments are threefold: (1) to assess

the impact of component and operator sharing strategies on the shortage and total costs in the

deterministic model; (2) to conduct similar analysis in the context of the proposed two-stage robust

optimization model; and (3) to compare the results of the deterministic and robust models by the

aid of the proposed Monte-Carlo simulation platform. In what follows, we first provide the details

of the case study. Afterwards, the detailed analysis of our numerical experiments is provided. All

models are implemented in the Python programming language using the DOCPLEX package with

IBM-ILOG CPLEX 12.8 on an Intel Core i7 3.4 GHz with 8GB of RAM.

4.6.1 Case study

Consider a maintenance network with an upstream central repair facility (CRF), five intermediate

local repair facilities (LRFs), and ten users in the downstream echelon. Among all the components

that are included in the pieces of equipment (gas turbines), three expensive and critical repairable

items are taken into consideration. We assume that the network’s LRFs are of varying sizes. More

precisely, LRFs 1 and 2 represent relatively small maintenance facilities with 18 affiliated operators

and a $16,000 procurement budget. LRFs 3 and 4 are medium-sized centers with 20 affiliated

operators and a $20,000 procurement budget per facility; whereas, LRF 5 is a large maintenance

facility with 24 affiliated operators and a $24,000 procurement budget. The user allocation costs

for each LRF are provided in Table 4.3. The CRF procurement and monthly repair budgets are

set to $18,000 and $28,000, respectively. The planning horizon is comprised of 6 periods, with an

average demand of 2 repairable components per user in each period. The unit holding cost (hr)

is 10% of the unit procurement cost (ur) and the unit shortage cost (πr) is considered as 160%

of the unit procurement cost to reflect the severe consequences of late deliveries. Besides, we

assume that the repair time (gr) and the labor consumption factor (βr) are equal to 1 for all the

components. The values of parameters related to the components are provided in Table ??. The

parameters related to the LRFs are provided in Table 4.5. The values of vj and ljk in this table are

functions of the distance between facilities.
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Table 4.3: The user allocation cost to each LRF
User 1 2 3 4 5

LRF 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

fij 20,000 40,000 40,000 40,000 40,000 40,000 20,000 50,000 40,000 40,000 40,000 50,000 20,000 40,000 40,000 30,000 40,000 20,000 40,000 40,000 50,000 40,000 40,000 20,000 40,000

User 6 7 8 9 10

LRF 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

fij 40,000 40,000 40,000 20,000 40,000 40,000 40,000 40,000 40,000 50,000 40,000 40,000 40,000 40,000 20,000 40,000 40,000 40,000 40,000 20,000 40,000 40,000 40,000 40,000 20,000

Table 4.4: The values of parameters related to components
Component ur kr hr πr gr βr

1 400 350 40 640 1 1

2 600 400 60 960 1 1

3 800 450 80 1,280 1 1

Table 4.5: The values of parameters related to LRFs
LRF vj τj λj ηj ζj ljk ojk

1 200 0.9 0.1 0.9 0.1 100 300

2 200 0.9 0.1 0.9 0.1 100 300

3 200 0.9 0.1 0.9 0.1 100 300

4 200 0.9 0.1 0.9 0.1 100 300

5 200 0.9 0.1 0.9 0.1 100 300

4.6.2 Experimental settings

In order to validate the collaborative network design model under different circumstances in terms

of demand and collaboration level among stakeholders in the network, various experimental set-

tings are considered. In particular, in addition to the base case (average demand for all users),

we investigate three demand patterns, namely Cases A, B, and C, based on the uncertainty set

(4.25), described in Sub-section 4.4.1. In all cases, the value of base demand is set to drit=2, and

the maximum demand deviation is set to d̂rit=3. In case A, we set Γ = 2 and randomly assign

the maximum demand of 5 units for each component in each period to 2 users out of 10 in each

generated scenario. The demand for the remaining 8 users is considered as the base value. In the

same vein, for cases B and C, we set Γ = 4 and Γ = 6 and assign the maximum demand to 4 and

6 users, respectively. We further study each demand pattern under three resource sharing levels

among LRFs, namely, no-sharing, medium, and high. It is worth noting that the no-sharing strat-

egy, particularly in terms of operators, is a benchmark scenario that represents the current practice

in the majority of maintenance networks. Under the no-sharing strategy, both the τj and ηj are set
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to zero. This represents the case where LRFs are not willing to share their resources (operators and

components) with other entities in the network. When the sharing level is medium, we set τj = 0.5

and ηj = 0.5, representing the case where LRFs are partially willing to share their resources with

each other. Finally, when the sharing level is high, we set τj = 0.9 and ηj = 0.9. In this case, the

LRFs agree to share 90% of their resources to enhance the overall performance of the maintenance

network.

4.6.3 Impact of resource sharing policies on the network cost: deterministic model

The purpose of this section is to investigate the impact of sharing policies under different demand

patterns on the expected costs of the deterministic model. To this end, for each test case, 100

replications are generated and the deterministic model is solved iteratively. The average cost of

the network over these replications is broken down into the strategic costs and various categories

of tactical costs as reported in Table 4.6. The average Gap (%) in this table corresponds to the

relative difference between the expected total cost of the network by considering sharing (at high

or medium levels) and no-sharing policies.

As shown in Table 4.6, the capacity of LRFs in terms of operators and components can meet the

average demand (base case). As a result, the cost of shortages, as well as component and operator

sharing, are zero. However, increasing the demand from case A to case C, would significantly

increase the expected repair, shortage, and component/operator sharing costs. By analyzing the

strategic costs, it can be noticed that the average user allocation cost is increasing under the no-

sharing strategy. In other words, the model adjusts the number of users allocated to each LRF

according to their repair capacity. However, when medium and high sharing levels are considered,

the user allocation cost is not changing, and the model incorporates sharing strategies to meet the

additional demand. Besides, by increasing the level of demand uncertainty, the model prepositions

more components to the CRF and LRFs at the beginning of the planning horizon to hedge against

augmented volumes of demand at certain user sites. Furthermore, analyzing the Gap (%) column

reveals that including a resource sharing policy in the network leads to a significant cost reduc-

tion when the demand uncertainty is relatively high (case B). This, in fact, is mainly attributed to

the reduction of shortage cost as a result of sharing resources among LRFs in the network. Nev-

ertheless, it can be observed that the difference between medium and high sharing levels is not

100



remarkable under all demand patterns. This result clearly advocates that horizontal collaboration

among stakeholders helps to reduce delayed deliveries (shortages) to some extent. In fact, this is

an encouraging outcome given that convincing network partners to share 50% of their resources is

much more realistic than establishing an almost perfect resource sharing policy, similar to the one

in Case C, among these entities. Finally, the results in Table 4.6 indicate that the sharing strategies

are less effective at controlling the shortage cost under extreme levels of demand uncertainty (Case

C) as compared with the two other demand patterns.

Table 4.6: The expected costs of the deterministic model by considering different cases under 100

replications

drit
Sharing

level

Expected strategic costs Expected

repair

cost ($)

Expected

shortage

cost ($)

Expected

component

sharing

cost ($)

Expected

operator

sharing

cost ($)

Expected

transportation

cost ($)

Expected

total

cost ($)

Gap (%)
Expected

user

allocation

cost ($)

Expected

CRF

procurement

cost ($)

Expected

LRF

procurement

cost ($)

Base

case

High 220,000 0 60,000 99,000 0 0 0 48,000 431,800 0

Medium 220,000 0 60,000 99,000 0 0 0 48,000 431,800 0

No-sharing 220,000 0 60,000 99,000 0 0 0 48,000 431,800 0

Case A

High 220,000 0 84,208 122,768 915 0 1,848 59,010 497,887 0.94

Medium 220,000 0 84,208 122,768 915 0 1,848 59,010 497,887 0.94

No-sharing 220,800 12 83,776 122,568 7,354 0 0 58,900 502,628 0

Case B

High 220,000 14,360 93,748 138,898 16,304 287 13,050 69,262 578,894 6.50

Medium 220,000 15,126 92,856 139,025 16,336 93 13,122 69,574 579,122 6.46

No-sharing 239,600 7,9280 94,460 139,010 59,302 0 0 67,560 619,138 0

Case C

High 220,000 17,972 95,788 139,496 258,784 22 7,848 69,595 820,247 2.40

Medium 220,200 17,968 95,762 139,513 259,840 4 7,272 69,600 820,989 2.31

No-sharing 238,400 17,983 95,834 139,620 267,520 0 0 69,674 840,461 0

Table 4.7: The user-allocation decisions in the deterministic model
LRF User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

LRF 1 X - - - - - - - - -

LRF 2 - X - - - - X - - -

LRF 3 - - X X - - - - - -

LRF 4 - - - X X - - - -

LRF 5 - - - - - - - X X X

The user allocation decisions obtained from the deterministic model are presented in Table 4.7.

From this table, it can be observed that LRF 5 is in charge of satisfying the demands of three

users and LRF 1 only serves one user. The expected number of received and shared components

and operators among LRFs are reported in Table 4.8. As it can be observed in this table, LRF 5
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that represents the largest facility in the network, receives temporary operators from other LRFs to

perform repair operations more efficiently. More specifically, LRF 1 and LRF 2, representing the

smallest facilities, share a high number of their affiliated operators with LRF 5 under cases B and

C. This can be mainly attributed to the higher number of users allocated to LRF 5, as demonstrated

in Table 4.7. In other words, under high-demand scenarios (such as Cases B and C), this LRF faces

the highest surge of demand; hence, it requires extra resources to satisfy the demand. By observing

LRF 3 and 4, that are medium-sized maintenance centers, it can be noticed that they share their

affiliated operators when the demand is low and receive operators when the demand is high. As

expected, only a few spare parts are shared among LRFs which is mainly due to the relatively

small number of these (expensive) items initially prepositioned in the facilities.

Table 4.8: The expected number of shared/received components and operators among LRFs

Model
Sharing

level

LRF 1 LRF 2 LRF 3 LRF 4 LRF 5
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Case A

High 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0 4

Medium 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0 4

Case B

High 1 1 14 4 1 0 16 4 0 0 7 5 0 0 6 6 0 1 0 25

Medium 0 0 13 4 0 0 14 4 0 0 8 5 0 0 8 6 0 0 1 25

Case C

High 0 0 9 4 0 0 16 3 0 0 1 5 0 0 1 3 0 0 0 11

Medium 0 0 9 3 0 0 14 2 0 0 1 5 0 0 1 4 0 0 0 10

4.6.4 Performance of the two-stage robust optimization model

The purpose of this section is to assess the performance of the two-stage robust optimization (RO)

model under different experimental settings. To this end, 100 scenarios are generated for cases

A, B, and C and the model is solved by setting the CPU time to 4 hours. It should be noted that
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the relative optimality gap reported by CPLEX in case A is zero; whereas, the reported average

optimality gap under cases B and C is around 2.5%. The strategic cost (SC), tactical cost (TC),

the total cost and the total gap % of the cost under no-sharing and different sharing policies are re-

ported in Table 4.9 for both the deterministic model (base case) and the two-stage RO model under

cases A, B and C. By analyzing the strategic costs obtained from the RO model, it can be noticed

that the average user allocation costs are higher in cases B and C due to the surge of demand in

these cases. Moreover, under all sharing levels, the CRF and LRF procurement costs along with

the tactical costs are increasing by increasing the budget of uncertainty.

According to the results presented in this table, the total cost of RO model is greater than the deter-

ministic model due to the fact that the former model obtains an optimal solution that is protected

against the worst case demand scenario within any given uncertainty set. Furthermore, by compar-

ing the results under cases A, B, and C in Tables 4.6 and 4.9, it can be concluded that the two-stage

RO model leads to a higher Gap (%) than the deterministic model. In other words, the component

and operator sharing strategies play a more crucial role in controlling the shortage and total cost

when adopting a conservative decision model (i.e., RO model) as compared with a deterministic

model that relies on average demand volumes. Nevertheless, similar trends can be observed in the

two-stage RO approach in terms of the effectiveness of sharing strategies under different resource

sharing levels and demand patterns. More precisely, these collaboration mechanisms are most ef-

fective under demand pattern B and a medium sharing level. Finally, the user-allocation decisions

obtained from the two-stage RO model (under demand case B) are presented in Table 4.10, where

a different pattern is observed as compared with the deterministic model (Table 4.7). In particular,

the RO model assigns less users to LRF 5 in order to reduce the penalty cost invoked for the late

delivery of repaired devices. One of the small LRFs, on the contrary, has more users as compared

with the solution of the deterministic model.
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Table 4.9: The results of the two-stage robust optimization model

drit
Sharing

Level

SC
TC ($)

Total

cost ($)

Total

Gap (%)User

allocation

cost ($)

CRF

procurement

cost ($)

LRF

procurement

cost ($)

Deterministic

model

High 220,000 0 60,000 147,000 431,800 0

Medium 220,000 0 60,000 147,000 431,800 0

No-sharing 220,000 0 60,000 147,000 431,800 0

Case A

High 220,000 7,200 79,000 196,800 503,000 4.32

Medium 220,000 6,600 78,600 198,820 504,020 4.12

No-sharing 220,000 800 81,200 223,710 525,710 0

Case B

High 240,000 17,800 91,600 252,040 601,440 10.53

Medium 240,000 17,000 93,000 254,540 604,540 10.07

No-sharing 240,000 5,400 91,800 335,060 672,260 0

Case C

High 240,000 18,000 95,600 499,710 853,310 3.07

Medium 240,000 18,000 95,800 505,410 859,210 2.40

No-sharing 240,000 18,000 95,800 526,570 880,370 0

Table 4.10: The user-allocation decisions of two-stage robust model with considering case B
LRF User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

LRF 1 X - - - - - X - - -

LRF 2 - X - - - - - - X -

LRF 3 - - X X - - - - - -

LRF 4 - - - X X - - - -

LRF 5 - - - - - - - X - X

Impact of sample size on the performance of two-stage robust optimization model

Recall from section 4.4 that the two-stage RO model (4.33)-(4.35) is approximated by considering

a scenario set, randomly sampled from the demand uncertainty set. Therefore, our goal is to

analyze the impact of sample size on the optimal (robust) solution along with the variability of the

obtained solution for different samples. To conduct these experiments, we chose Case B because

it represents the most realistic circumstances in terms of demand uncertainty among the two other

demand patterns. In other words, by considering four out of ten users experiencing the maximum

demand surge, Case B is neither overly conservative, as Case C, nor optimistic, as Case A. To
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obtain the smallest sample size to reach a trade-off between solution variability and CPU time,

we tested case B by considering 25, 50, and 100 scenarios. Accordingly, the results indicated no

significant difference in terms of total cost under 50 and 100 scenarios. Afterwards, to test sample

variability, we tested case B by considering 5 independent random samples consisting of 100

scenarios. The average sample standard deviation (STD), expected sample total cost (ETC) and

the coefficient of variation (CV) of these five samples for different cost categories (i.e., strategic

(SC), tactical (TC) and total cost) are reported in the Table 4.11. The ”CV” is the ratio of STD to

ETC and is calculates as (STD/ETC)× 100). According to these results, the variability of total

cost by considering 100 random scenarios with and without considering resource sharing strategies

are 0.11% and 0.5%, respectively. Therefore, it can be concluded that this is an appropriate sample

size providing a robust solution with a low variability.

Table 4.11: Results of the two-stage robust optimization model with 5 different samples

Sample drit Sharing level SC ($) TC ($)
Total

cost ($)
Gap (%)

No.1 Case B
High 349,400 252,040 601,440

10.53
No-sharing 337,200 335,060 672,260

No.2 Case B
High 349,400 251,740 601,140

9.57
No-sharing 340,600 324,160 664,760

No.3 Case B
High 350,800 251,720 602,520

9.33
No-sharing 338,200 326,360 664,560

No.4 Case B
High 347,200 254,600 601,800

9.86
No-sharing 335,400 332,200 667,600

No.5 Case B
High 349,400 253,330 602,730

10.07
No-sharing 338,200 332,060 670,260

Metric ETC STD CV

Average of

samples
Case B

High 601,926 683.57 0.11

No-sharing 667,888 3379.48 0.50
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4.6.5 Comparison between the robust and deterministic models by the aid of Monte-

Carlo simulation

In this section, we present the results of conducting Monte-Carlo simulation experiments, de-

scribed in section 4.5, that aims to compare the performance of deterministic and two-stage robust

network design models. The results are only provided for case B, where the impact of resource-

sharing strategies deemed more significant. To choose the right sample size in the simulation

experiments, we ran them by considering 250, 500 and 1000 scenarios within the interval of [1,5],

representing the minimum and maximum amount of demand in these experiments.

The analysis revealed that there is a negligible difference between the results by considering 500

and 1000 scenarios. Thus, 500 scenarios are selected to compare the models. Table 4.12 summa-

rizes the results of Monte-Carlo simulation experiments. Comparing the deterministic and two-

stage RO models reveals that the strategic costs of the latter are approximately 6.5 percent higher

than that of the former model. This difference is mainly due to the different user allocation pattern

as well as higher number of components pre-positioned in the CRF in the RO model to better hedge

against demand fluctuations. Figure 4.2 compares the expected tactical costs of deterministic and

two-stage RO models. It can be observed that exerting resource sharing strategies as well as an

adequate initial inventory level at LRFs and CRF can reduce the shortage cost in the two-stage

RO model by up to 43% when compared to the deterministic model. This is a remarkable advan-

tage of adopting a robust optimization approach given that maintaining a high service level (a low

shortage cost) is a top priority in maintenance logistics networks. Besides, the expected repair,

component sharing, operator sharing and transportation costs are higher in the deterministic case

under medium and high sharing levels. Most notably, adopting the strategic decisions determined

by the deterministic model would engage 43% more operator sharing cost to reduce the shortage

cost, which is not a convenient solution in practice.

The expected number of shared/received components and operators obtained from the Monte-

Carlo simulation experiments based on the strategic (design) decisions of both models are provided

in Table 4.13. The results of the deterministic model show that at medium and high sharing levels,

LRF 1 is only sharing components with other LRFs and LRF 2 is only receiving components

from other LRFs during the planning horizon. LRFs 3, 4, and 5, on the other hand, receive and
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share components based on their actual demand in each period. According to the deterministic

user-allocation decisions, reported in Table 4.7, 3 users are assigned to LRF 5. As a result, at

medium and high sharing levels, LRF 5 receives a large number of operators to perform repair

operations, the majority of whom are affiliated with LRF 1 that has only one user according to

Table 4.7. Analyzing the resource sharing results in the two-stage RO model reveals that LRFs

3, 4, and 5 share their components with LRFs 1 and 2. Besides, at the medium sharing level,

only LRF 5 shares the components with LRF 1. These results can be justified by looking into the

user-allocation decisions reported in Table 4.11. In fact, in the two-stage RO model, fewer users

are allocated to LRF 5 compared with the deterministic one. As a result, rather than receiving

operators from other LRFs, LRF 5 shares affiliated operators with LRFs 1 and 2 to meet their

needs in terms of operators to fulfill repair operations when facing a demand surge.

Table 4.12: The results of Monte Carlo simulation experiments

Model
Sharing

level

Strategic costs Expected

repair

cost ($)

Expected

shortages

cost ($)

Expected

component

sharing

cost ($)

Expected

operator

sharing

cost ($)

Expected

transportation

cost ($)

Expected

total

cost ($)

Average

Gap (%)User

allocation

cost ($)

CRF

Procurement

cost ($)

LRF

Procurement

cost ($)

Deterministic

High 220,000 16,000 92,400 129,965 16,367 835 8,926 65,596 565,377 8.29

Medium 220,000 16,800 91,600 130,895 17,429 384 8,739 66,325 567,785 7.90

No-sharing 230,000 8,800 92,000 130,417 76,557 0 0 64,188 616,472 0

Two-stage RO

High 240,000 17,800 91,600 129,851 9,347 480 5,305 66,572 576,172 3.88

Medium 240,000 17,000 93,000 129,537 9,435 179 5,401 66,770 575,797 3.94

No-sharing 240,000 5,400 91,800 134,668 49,569 0 0 65,717 599,458 0

Figure 4.2: Comparison between the expected tactical costs of deterministic and two-stage RO
models
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Table 4.13: Monte-Carlo simulation results for resource sharing among LRFs

Model
Sharing

level

LRF 1 LRF 2 LRF 3 LRF 4 LRF 5
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Deterministic

High 6 0 16 0 0 4 3 6 1 1 7 3 1 1 4 2 0 2 0 19

Medium 2 0 16 0 0 2 2 6 1 1 6 3 1 0 4 2 1 1 0 18

Two-stage RO

High 0 2 1 6 0 2 1 6 1 0 4 2 2 0 6 2 1 0 5 0

Medium 0 2 1 6 0 0 1 6 0 0 4 2 0 0 5 3 2 0 6 0

4.7 Conclusion and future research

In this paper, we investigated the collaborative design and planning of a maintenance logistics

network, encompassing a CRF and multiple LRFs that repair and overhaul a fleet of failed technical

devices. Our contribution is unique in the sense that proposing robust collaborative mechanisms

among LRFs for integrated strategic and tactical planning in these networks has never been studied

in the literature. To mitigate the risk of demand uncertainty, we incorporated two resource-sharing

mechanisms, namely component and operator sharing strategies at different levels. To incorporate

the demand uncertainty into this problem, we proposed a two-stage RO model to obtain the optimal

configuration of the network along with the initial stock levels in the facilities as the first stage

decisions. The second-stage decisions in this model are associated with tactical plans in terms of

repair operations planning and resource sharing decisions. The objective is to minimize the cost

of first-stage decisions along with the tactical costs under worst-case demand scenarios. We also

provided an extensive set of numerical experiments inspired from a real case to draw managerial

insights.

According to the outcomes of our numerical experiments, we first demonstrated the significance
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of adopting a collaborative mechanism among LRFs that relies on operator/component sharing

strategies. The results indicated that incorporating these policies leads to a significant cost reduc-

tion when the demand uncertainty is relatively high. The experiments revealed that considering

a moderate sharing level would, respectively, lead to 6.5 % and 10.5 % total cost reduction when

adopting deterministic and robust optimization decision models. Moreover, we demonstrated the

significance of incorporating demand uncertainty into the problem by the aid of Monte-Carlo sim-

ulation experiments. In particular, the results indicated that adopting an RO approach provides

a higher service level (43% lower shortage cost) for maintenance service providers at the cost of

pre-positioning more components at the beginning of the planning horizon and a different user

allocation pattern as compared with the solution of a deterministic model. This large gap is in fact

attributed to insufficient initial inventory levels assigned to each facility in the deterministic model.

The RO model, in contrast, relies on the highest levels of demand according to a given budget of

uncertainty; hence, it foresees more resources in these facilities.

In this study, the random demand was modeled as a box uncertainty set by considering a budget

of uncertainty. Nonetheless, given that the proposed RO model is formulated by considering a

scenario set, randomly selected from the uncertainty set, considering other uncertainty sets does

not affect the structure of the model. It might rather affect the strategic and tactical decisions

in the network. The current study can be extended in terms of modeling aspects and solution

methodology. In this paper, we assumed all LRFs are in a grand coalition and share a pre-defined

percentage of operators and components among each other. Besides, we assumed the LRFs have

the same service level for all demand classes corresponding to different users. Nevertheless, the

grand coalition is not always achievable due to varying service levels among the users, distance

between LRFs, and different management policies in each maintenance facility. Thus, formulating

a coalition structure problem by considering different demand classes to determine the optimal

sub-coalition among network partners would be an interesting avenue of research. In the same

vein, designing efficient cost-sharing mechanisms among the members to assure the stability of

the coalition would be another modeling extension that is worth investigating. In terms of solution

methodology, providing exact algorithms for solving the proposed two-stage robust optimization

model that contains binary and integer second-stage variables is another interesting avenue of

research.
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Appendix A: Two-stage robust optimization model

min Û = SC + θ

(4.36)

s.t SC =
∑
i∈I

∑
j∈J

fijXij +
∑
r∈R

urQ
c
r +

∑
r∈R

∑
j∈J

urQ
l
rj

(4.37)

TCs =
∑
r∈R

∑
t∈T

krQ
rep
rts +

∑
r∈R

∑
j∈J

∑
t∈T

hr(I
c
rts + I lrjts) +

∑
r∈R

∑
j∈J

∑
t∈T

vjZ
cl
rjts

+
∑
r∈R

∑
j∈J

∑
k∈K

∑
t∈T

ljkZ
lat
rjkts +

∑
r∈R

∑
j∈J

∑
t∈T

πr(B
c
rts +Bl

rjts) +
∑
j∈J

∑
k∈K

∑
t∈T

rjkYjkts ∀s ∈ S

(4.38)

TCs ≤ θ ∀s ∈ S

(4.39)∑
r∈R

urQ
c
r ≤ mc

(4.40)∑
r∈R

urQ
l
rj ≤ ml

r,j ∀j ∈ J

(4.41)∑
j∈J

Xij = 1 ∀i ∈ I

(4.42)∑
i∈I

Xij ≥ 1 ∀j ∈ J

(4.43)

Drjts =
∑
i∈I

dritsXij ∀j ∈ J, ∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.44)

Rrjts +Bl
rjts −Bl

rj(t−1)s = Drjts ∀j ∈ J,∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.45)
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Qlrj + Zclrj1s = Rrj1s + I lrj1s ∀j ∈ J,∀r ∈ R,∀s ∈ S

(4.46)∑
k∈J\k 6=j

Z latrkjts + Zclrjts + I lrj(t−1)s =
∑

k∈J\k 6=j

Z latrjkts +Rrjts + I lrjts

∀j ∈ J, ∀r ∈ R,∀t ∈ T\1,∀s ∈ S

(4.47)

I lrjts ≤ Qlrj ∀j ∈ J, ∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.48)∑
k∈J

Z latrjkts ≤MVrjts ∀j ∈ J, ∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.49)

M(Vrjts − 1) ≤ I lrjts − (1− τj)Qlrjs − λjDrjts ∀j ∈ J, ∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.50)∑
k∈J

Z latrjkts ≤ I lrjts − (1− τj)Qlrjs − λjDrjts +M(1− Vrjts) ∀j ∈ J, ∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.51)

Qcr =
∑
j∈J

Zclrj1s + Icr1s ∀r ∈ R,∀s ∈ S

(4.52)

Qrepr(t−gr)s + Icr(t−1)s +Bc
rts −Bc

r(t−1)s =
∑
j∈J

Zclrjts + Icrts ∀r ∈ R,∀t ∈ T\1...gr, ∀s ∈ S

(4.53)

Icrts ≤ Qcr ∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.54)∑
r∈R

krQ
rep
rts ≤ nc ∀r ∈ R,∀t ∈ T, ∀s ∈ S

(4.55)
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ej −
∑

k∈J\k 6=j

Yjkts +
∑

k∈J\k 6=j

Ykjts = Ujts ∀j ∈ J, ∀t ∈ T, ∀s ∈ S

(4.56)∑
r∈R

βrRrjts ≤ Ujts ∀j ∈ J, ∀t ∈ T, ∀s ∈ S

(4.57)∑
k∈J\k 6=j

Yjkts ≤MWjts ∀j ∈ J, ∀t ∈ T, ∀s ∈ S

(4.58)

M(Wjts − 1) ≤ ηjej − ζj
∑
r∈R

βrDrjts ∀j ∈ J, ∀t ∈ T, ∀s ∈ S

(4.59)∑
k∈J\k 6=j

Yjkts ≤ ηjej − ζj
∑
r∈R

βrDrjts +M(1−Wjts) ∀j ∈ J, ∀t ∈ T, ∀s ∈ S

(4.60)

Xij ,Wjts, Vrjts ∈ {0, 1}

(4.61)

Yjkts, Z
lat
rkjts, Z

cl
rjts, I

l
rjts, I

c
rts, Brjts, Rrjts, Q

l
rj , Q

c
r, Q

rep
rjts ≥ 0

(4.62)

The SC (4.37) contains the total cost of user allocation to LRFs, and procurement of the repairable

components in the strategic phase. On the other hand, TCs (4.38) formulates the total cost of repair

cost, holding cost, transportation cost between the CRF and LRFs, the shortage cost, component

and operator sharing costs between LRFs in different scenarios. θ in (4.39) captures the maximum

tactical cost TCs among all the realizations of demand scenarios.
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Chapter 5

Conclusion and Future Work

5.1 Concluding remarks

This thesis addressed maintenance logistics network design and planning problems in the context

of advanced systems distinguished by their modular structure and high cost of repairable compo-

nents. It accounted for several types of problems in practice associated with design and planning

of repairable components in maintenance facilities. Inspired by a real-life example in the context

of gas turbine industry, we investigated the performance of risk-mitigation strategies and solution

approaches on real-size instances. It was shown that the problem instances can be solved within

reasonable amount of times utilizing the proposed solution schemes.

In chapter 2, we proposed a deterministic followed by a two-stage stochastic programming model

for integrated workforce training and operations planning problem. In addition to the common

operations planning constraints, the training constraints such as the validity period of training

certificate and the required number of employees to train, the limited capacity of operators and

spare parts, and the outsourcing and borrowing constraints were also taken into account. Besides,

we analyzed the impact of incorporating the training plan into other tactical planning decisions

as well as outsourcing and operator sharing strategies in a maintenance facility that offers various

maintenance services to the users of technical devices with a modular structure.
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In chapter 3, we proposed a multi-stage stochastic programming model for the integrated work-

force scheduling and operations planning, which is among the most complex tactical planning

problems due to the limited validation period of operators’ certificates. The repair times of some

components were assumed to be random variables, each represented as an independent scenario

tree over the planning horizon. The repair time uncertainty was incorporated into an integrated

workforce and production planning problem in maintenance facilities that has not been previously

investigated in the literature. Besides, we proposed an approximate decomposition algorithm to

efficiently solve the real-size instances in both categories of problems that contain 12 periods in

the planning horizon. The proposed algorithm relies on decomposing the MS-MIP models into

component sub-models within an Lagrangian relaxation scheme where the sub-models are formu-

lated based on their corresponding ST. Moreover, we proposed a heuristic algorithm to repair the

infeasibility of the obtained solution within the LR framework that provides a high-quality upper

bound to the optimal objective value of the original MS-MIP model.

Finally, in chapter 4, we investigated the collaborative design and planning of a maintenance lo-

gistics network, encompassing a central repair center and multiple local repair facilities that repair

and overhaul a fleet of failed technical devices. We proposed a collaborative mechanism among

local repair facilities for integrated strategic and tactical planning in these networks. We incor-

porated two resource-sharing mechanisms, namely component and operator sharing strategies at

different levels to mitigate the risk of demand uncertainty. Besides, we proposed a two-stage Ro-

bust optimization model to obtain the optimal configuration of the network along with the initial

stock levels in the facilities as the first stage decisions. The second-stage decisions in this model

were associated with tactical plans in terms of repair operations planning and resource sharing de-

cisions. We also provided an extensive set of experiments with the aid of a Monte-Carlo simulation

platform to draw managerial insights.
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5.2 Future research directions

Immediate extensions of this thesis can revolve around the following avenues of research.

(1) Considering a variant of the proposed models accounting for uncertainty in unavailability of

operators and economic parameters such as component and operator sharing costs.

(2) Designing efficient cost-sharing mechanisms among the members to assure the stability of

the coalition.

(3) Developing efficient solution algorithms for the variants mentioned above would be another

promising avenue of research.

(4) Given that the grand coalition is not always achievable among maintenance service providers,

formulating a coalition structure problem by considering different demand classes to deter-

mine the optimal sub-coalition among network partners is another avenue of research.

(5) The proposed structure for workforce constraints by considering the limited age of opera-

tors’ certificate can be exerted in other tactical planning problems such as production, ser-

vice industries and health care systems, where the operations must be carried out by certified

operators due to safety regulations and product standards.
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